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ABSTRACT 

 

Polycrystalline materials are widely used for industrial applications. These materials are highly 

anisotropic with different responses under different loading conditions. This dissertation uses a 

crystal plasticity scheme in the finite element framework (CPFEM) to study deformation 

mechanisms in alumina, aluminium and stainless steel – all polycrystalline. Four research cases 

in this dissertation have been presented in the form of manuscripts for publication. When 

possible, modelling predictions have been compared against various experimental techniques 

such as Diffraction Contrast Tomography (DCT), Neutron Diffraction (ND) and Electron Back 

Scatter Diffraction (EBSD). After an introduction (Chapter 1) and a literature review (Chapter 2) 

on plastic deformation and modelling techniques, the methodology and results are presented 

and discussed (Chapters 3 and 4). Measurements of elastic strains for individual grain families 

(ND) and local rotations (DCT and EBSD) are compared against corresponding predictions by 

the model following different loading modes. Each study reveals different degrees of agreement 

between predictions and measurements. The individual conclusions to each study are 

presented in Chapter 4. Some overall conclusions and suggestions for further work are 

presented in Chapter 5. 
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1 Introduction 

 

A vast majority of the metals used in engineering applications are polycrystalline. The 

elastic and plastic anisotropies of the grains in the polycrystal lead to incompatibilities 

between grains during deformation. This implies that deformation at the 

microstructural scale is heterogeneous. Polycrystalline materials behave very 

differently at the –micro (~10-10m-10-7m) and –meso (10-5m) scales than they do at the 

macroscale (10-3m) (McDowell, 2008). As a result, the local stresses, strains and 

rotations within each grain are heterogeneous. The stresses, strains and rotations in 

each grain depend not only on the orientation of that grain, but they are also affected by 

the constraints imposed by neighbouring grains. 

 

Approaches to determine macroscopic resistance to yielding, fatigue or fracture have 

been known for many decades. However, because measuring stresses within grains is 

essentially impossible, there is considerable interest in modelling behaviour at different 

length scales (Rühle and Metallforschung, 2002, Kassner et al., 2005). Failure at the 

macroscale often means that only a selected region at the microscale has failed. For 

example, failure by fatigue initiation, SCC or fracture may happen in especially 

vulnerable features (e.g. grain boundaries). For example, the grain boundary character 

distribution has been shown to be important and useful in explaining and controlling 

high temperature plasticity, superplasticity and fragility in polycrystals (Watanabe, 

1993). In principle, a better understanding of what microscopic character is more 

damaging would allow us to design better materials in the future. These include, for 

instance, the generation of microstructural textures with desired macroscopic elastic–

plastic properties (Shaffer et al., 2010) or the generation of corrosion-resistant 

annealing twins. 

 

Failure by fatigue, SCC or fracture may have in common the driving mechanism: stress. 

Failure by these mechanisms may happen below or above the elastic limit. Materials 
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often go far above the elastic limit during machining, deforming the material plastically. 

For example, aluminium may be extruded into a bar or a steel bar may be bent and 

straightened (Martinez et al., 2002). During plastic deformation stresses are introduced 

into the body and remain in it even when the machining process has finished (usually 

called residual stress). A common residual stress profile is that of a bent bar (Davies et 

al., 1988). Consequently, mechanical design requires that the external load is combined 

with the residual stresses present in the body. A major aim of this thesis is to improve 

understanding of deformation and the associated residual stress. This has been 

achieved by using a model that simulates elastic and plastic deformation of individual 

crystallites. For example, one aim is to improve the understanding of the effect of 

different combinations of grain orientations on grain boundary stresses after plastic 

deformation in polycrystalline materials (publication 2). When possible, corresponding 

predictions have been compared with experimental measurements. This is the case of 

publication 1, where the predicted residual strains after strain path changes are 

contrasted against measured strains by neutron diffraction. As an alternative to 

(destructive) serial sectioning techniques via EBSD (Spanos et al., 2008), experimental 

data from diffraction contrast tomography (DCT) has been used in this dissertation. 

DCT is a relatively novel technique that can map grain shapes and grain orientations in 

3D to build image-based models. As DCT is non-destructive, it allows comparison with 

corresponding image-based models. The technique and results will be explored in 

publications 3 and 4. 

 

The rest of this dissertation is structured as follows: in chapter 2 the literature review 

of the materials used and their deformation along with general modelling techniques 

are presented; chapters 3 and 4 contain the modelling methodology used, results and 

discussions for each independent research case (published and non-published); finally, 

some overall directions for further work are extracted in chapter 5.  
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2 Literature review 

2.1 Stress operating at various length scales 

 

It has been known for a long time that the plastic deformation of individual grains in 

aggregates is by no means uniform. For example, Boas and Hargreaves (1948) found 

great variability of hardness and strain across and within grains in a coarse-grained 

aluminium specimen. The length scales over which residual stresses self-equilibrate 

may be used to categorise them into one of three types (Withers and Bhadeshia, 2001). 

Type 1 stress, or macrostress, develops in the body of a component on a scale larger 

than the grain size of the material and acts at the macroscopic scale. Type 2 stress, or 

intergranular stress, is stress that varies on the scale of several grains and causes the 

average stress within each grain to differ from the macrostress. Type 3 residual stresses 

are associated with the atomic scale.  One example is the residual stress field generated 

by a dislocation trapped in the lattice (Hull and Bacon, 1984). 

 

Types 2 and 3 residual stresses can be classed as meso and micro-stresses whereas 

type 1 is called macroscale stress. In Figure 2.1, it can be seen how an averaged 

macroscopic stress varies when we look into a smaller scale. In this way, stresses vary 

from grain to grain (at the mesoscale) although the average still corresponds to the 

macroscopic scale (Dye et al., 2001). Simililarly, stress may vary with position within a 

grain (at the microscale). 
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Figure 2.1. Schematic representation of variation of stress through a polycrystalline material, 

showing contribution of type 1 (σI), type 2 (σII) and type 3 (σIII) stresses to the overall stress (Dye 

et al., 2001) 

 

A polycrystalline material that has never exceeded the elastic limit, and provided that 

microplasticity has not occurred, may have zero stress throughout the microstructure 

upon unloading. Meaning that, once the load has been removed, the average stresses 

(type 1), the inter-granular stresses (type 2), and the stresses within a grain (type 3) 

will all be zero. By contrast, if loading above the elastic limit, type II or type III stresses 

remain once the load is retired. In other words, residual stresses appear, indicating that 

plastic deformation has been put into the body. In practise even below nominal yielding 

some grains suffer permanent deformation as we will see in the chapter 4. Residual 

stress can also exist in a region always loaded within the elastic limit (Davis et al. 1988) 

e.g. neighbouring region to the neutral fibre in a plastically bent beam. 

 

 

Stress is often associated with damage. However, residual stresses are not necessarily 

harmful; they can also be deliberately introduced in the body for engineering purposes. 
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For example, failure by stress corrosion cracking (SCC) and fatigue can be affected by 

the residual stress put by different welding techniques (Mochizuki, 2007). The uses of 

CPFEM models on damage mechanisms will be explored in section 2.6. 

2.2 Plastic deformation in metal crystals 

 

The stresses described in the previous section act on the material. Thus, it is of interest 

to gain a better physical insight on the studied material. Here we present the most 

common forms of plastic deformation in metal crystals.  

2.2.1 Resolved shear stress and Schmid’s law 

 

The yield stress of a single crystal under a tensile load varies greatly with orientation. 

This tensile stress can be related to the shear stress that acts along the slip direction to 

determine the stress required to start plastic deformation (see for instance (Dunne and 

Petrinic, 2005)). Consider a single crystal in the shape of a rod of cross section A and an 

applied uniaxial tension σ along the tensile axis (t) in Figure 2.2.  

 

 

Figure 2.2. Resolved shear stress on a slip system (Dunne and Petrinic, 2005) 

 

The Force acting in the slip direction (s) of the slip plane (n) is Aσcosλ, defining λ as the 

angle between t and s. The area on which this force acts is A/cosφ, defining φ as the 
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angle between t and n. Thus the resolved shear stress acting parallel to the slip direction 

may be written as:  

 

τ = (A σ cosλ)/(A/cosφ)= σ cosλ cosφ= σ (t·n) (t·s)    (Eq. 2.1) 

 

If we now substitute the term τ for the critical resolved shear stress (τcritical ) we have 

Schmid's law. This critical shear stress is related to the stress required to move 

dislocations across the slip plane. 

2.2.2 Plastic deformation by slip 

 

If the resolved shear stress reaches τcritical, slip will take place in a slip system Taylor 

(1934). In general, the higher the temperature1 and the lower the strain rate, the lower 

τcritical. Slip occurs in well-defined planes and directions, depending on the crystal 

system. Slip tends to occur in the densest planes (or close packed) and the directions in 

which atoms are packed closest together. For Face-Centered Cubic (FCC) crystals there 

are  4 possible slip planes and 3 slip directions in each plane (i.e. 12 slip systems), five 

of these slip systems are always independent as we will see when describing Taylor 

model. Although in practice it is very rare to observe 5 operating slip systems, being 2 

or 3 the usual (Honeycombe, 1984) . This may be partially explained by the fact that 

most observations have been made on the free (less constrained) surface. 

 

In FCC metals (e.g. aluminium, copper, nickel, austenite) slip takes place on the {111} 

planes and the <110> directions. 2) In BCC metals (e.g. ferrite) slip can occur on {110} 

and/or {112} and/or {123} planes and <111> directions (Honeycombe, 1984). 

 

                                                        
1 In this chapter we assume that thermal activation can only overcome short-range barriers, reducing the 
total flow stress to the contribution of the athermal component only. The athermal component of the flow 
stress remains almost independent of temperature. (HULL, D. & BACON, D. J. 1984. Introduction to 
Dislocations, Butterworth-Heinemann., p. 212). 
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2.2.3 Existence of dislocations and types 

 

Frenkel as early as 1926 first estimated the theoretical shear strength assuming that 

slip occurs between two rows of atoms. This resulted in τ theoretical = Gb/2πa (Frenkel, 

1926). Where G is the shear modulus, b is the magnitude of the Burgers vector (b) and a 

the distance between the two rows of atoms. When substituting with reasonable values 

of G, b and a, τtheoretical results in a very high shear strength. The observed values of shear 

strength are much lower. Orowan (1934), Taylor (1934) and Polanyi (1934) first 

introduced the concept of dislocation in a crystalline solid. Peierls (1940) and Nabarro 

(Nabarro, 1947) first gave an expression to calculate the shear stress needed to move a 

dislocation (Peierls-Nabarro stress): 
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
      (Eq. 2.2) 

 

where v is the Poisson’s ratio, giving a much closer approximation to experimental 

observations than Frenkel’s relationship. However, the presence of dislocations was not 

evidenced until 1950 (Honeycombe, 1984) using etching to image them, although other 

techniques were used to visualize them in the 1950s ((Hull and Bacon, 1984), chapter 

2). Since the 1950s, TEM has become the most widely used technique for the 

observations of dislocations. Dislocations are present in a large number, even in 

annealed metals (~1010-1012 m-2), and their propagation produces slip. Each dislocation 

is associated with a unit of slip displacement given by the Burgers vector, which is 

defined more rigorously by means of Burgers circuit. The Burgers circuit defines an 

atomit path involving two lattice directions normal to each other. The vectorial 

difference in Burgers circuits for perfect and faulted lattices defines the Burgers vector. 

The retraction of a given atomic path (Burgers circuit) involving two lattice directions 

normal to each other defines the Burger vector. Thus the Burgers vector is parallel to 

the slip direction. In edge dislocations the Burgers vector is perpendicular to the 

dislocation line whereas in screw dislocations the Burgers vector (or slip direction) and 
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the dislocation line coincide. Loop dislocations describe a dislocation line in the form of 

a ring or a loop which comprises components of both: edge and screw dislocations. 

Dislocation loops can expand under an applied shear stress and propagate through 

different slip planes (e.g. {111} for FCC) that share a common slip direction (e.g. [110] 

in FCC). This process is called cross slip. In BCC metals, cross slip looks less well defined 

under the microscope because of the larger choice of slip planes. 

2.2.4 Stacking fault energy (SFE) 

 

Stress fields in the surroundings of the dislocation core radius (~b-4b) can be 

calculated assuming, for simplicity, isotropic elasticity. Simillarly, the elastic strain 

energy associated to a dislocation (edge or screw) may be calculated using linear 

(isotropic) elasticity (Hull and Bacon, 1984). This associated elastic strain energy 

(excluding the dislocation core) can be approximated to Eel = αGb2, resulting relatively 

insensitive to the character of the dislocation (screw or edge) (Hull and Bacon, 1984) . 

This is known as Frank’s rule and, as before, b represents the magnitude of the Burgers 

vector (b) and α is in the range 0.5-1. 

 

If we consider the (111) plane in a FCC crystal, one of the 3 shortest lattice vectors for 

slip is b1 = (1/2) [-110]. The same displacement can be achieved through the path of the 

two partial dislocations: b2 = (1/6) [-211] + b3 = (1/6) [-12-1] (Hull and Bacon, 1984). 

The latter displacement is energetically more favourable according to Frank’s rule, 

because b12 > b22 + b32. The stacking sequence before slip is ABCABC… whereas after slip 

is ABCACABC. This is shown in Figure 2.3, where the atoms in the “B” positions go to “C” 

positions. Such a configuration allows the partial dislocations to be at a distance d0 in 

the [-110] direction, creating a faulted region (not shown). The lower d0, the higher the 

stacking fault energy (SFE) of the material. The addition of alloying elements 

significantly lowers the SFE of most metals (Venables, 1964). 
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Figure 2.3. Slip on {111} planes in FCC crystals.(Cottrell, 1953) 

 

Table 1. Stacking Fault Energy of some engineering materials (Dieter, 1988) 

Metal Austenitic Stainless Steels Ag Au Cu Ni Al 

303 304 310 

SFE (mJm-2) 8 20 45 ~25 ~50 ~80 ~150 ~200 

 

Since they are less hindered by their short d0, metals with high SFE often form smooth 

slip lines and form dislocation tangles and wall-cells substructures2. Cross-slip requires 

the association of partial dislocations which is relatively easier in high SFE metals 

(short d0). The SFE can also affect texture (Kocks et al., 2000) following uniaxial 

deformation (Honeycombe, 1984, p. 327) and cold rolling (Humphreys and Hatherly, 

2004). 

2.2.5 Work hardening  

 

As a dislocation moves within the crystal, it finds forces exerted by point defects, other 

dislocations, deliberately introduced alloying elements or second phase particles3. 

                                                        
2 TEM observations have revealed a subdivision of the cell-walls structures into 
geometrically necessary boundaries GNBs and incidental dislocation boundaries IDBs, 
each evolving by different mechanisms. (Hughes et al., 2003, Liu and Hansen, 1995) 
3 An obstacle in the form of a second phase particle can be overcome by leaving a 
dislocation loop around it (also called Orowan mechanism after his discoverer (Orowan, 
1959)).  
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These mechanisms increase the strength of the crystal and are known as work 

hardening. The process is rather complex. For example, an edge dislocation can move 

out of its slip plane in a process called climbing which is promoted by temperature. 

Climbing promotes other mechanisms: cross slip for edge dislocations ((Honeycombe, 

1984), p. 101); movement of jogged screw dislocations; and grain boundary sliding. 

 

In tests on single crystals, it is usual to resolve the stress and strain onto the plane and 

direction of which slip occurs first. Above the critical resolved shear stress, three stages 

are typically well defined which can be modelled using dislocation theory 

((Honeycombe, 1984), chapter 5). The flow stress (τflow) in Stages I and II is realistically 

related to the dislocation density (ρ) as: τflow=0.5Gbρ1/2 (Ashby, 1970, Ungar et al., 1984, 

Mughrabi, 2006). The extent and hardening rate of the 3 stages depend on the metal, 

the impurities, the temperature and the orientation of the applied load. For example, the 

hardening rates in Stages I and II are insensitive to temperature whereas the Stage 3 

hardening rate decreases with temperature. Small stages IV and V have also been 

reported which showed similarities with stages II and III respectively (Zehetbauer and 

Seumer, 1993). 

2.2.5.1 Stage I 

 

In Stage I (also called easy glide), slip takes place on the slip system with the maximum 

resolved shear stress. The crystal will extend considerably with little hardening. Many 

tens of dislocations move over long distances (~100µm) forming slip lines. In FCC 

metals, the lower the temperature the larger the extent of stage I hardening. As 

deformation increases the lattice rotates and slip may begin on a second slip system 

with a resolved shear stress equal to that of the primary slip system. Therefore, the 

higher the propensity for multislip (which depends on the crystal orientation), the shorter the 

extent of stage I. This work hardening stage is not present in policrystals (Hull and Bacon, 

1984). 
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2.2.5.2 Stage II 

 

Secondary slip leads to strong obstacles (e.g. dislocation tangles) which can form 

dislocation pile-ups. New dislocations in relatively soft regions multiplicate by Frank-

Read sources before being locked themselves. This leads to long-range stress fields, 

with a hardening rate about 10 times with respect to the previous stage.  

2.2.5.3 Stage III 

 

In this stage the stress is so high that the lattice is partially restored by a process called 

dynamic recovery which leads to a decrease in the dislocation density. This involves 

annihilation of screw dislocations of opposite sign and rearrangement of edge 

dislocations to form low angle boundaries. Slip lines are replaced by (thicker and 

shorter) slip bands and the obstacles generated in stage II can be overcome by cross 

slip. The extent of stages II and III are dominated by low and high temperatures 

respectively. In metals with high SFE (i.e. easy cross slip), stage III can dominate the 

stress-strain curve even at medium temperatures. This is the case of pure aluminium 

where room temperature (293 °K) is about 0.31 times its melting temperature (limit of 

cold work). 

2.2.6 Twinning 
 

An important deformation mechanism often associated to hexagonal metal crystals and 

to cubic structures is twinning. Even though the twinning mechanism is neglected in 

this model, it is worth describing it since, among other things, it can play an important 

role to prevent damage in SCC. Also, deformation twinnning can create damage at the 

boundary in the form of microcracks (Bieler et al., 2009). Moreover, its prominent 

presence in twinning induced plasticity steels can improve ductility, work hardening 

and ultimate strength (Qin and Bhadeshia, 2008). The texture changes introduced by 

twins under tension in zirconium have been successfully predicted by CPFEM 

(Abdolvand et al., 2011).  
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We say there is a twin in a crystal when parts of which are oriented with respect to one 

another following some symmetry rule (Kelly et al., 2000, Cullity and Stock, 2001). In 

FCC materials, a displacement applied to the upper part of the plane (111) in the lattice 

produces a partial dislocation. The same displacement applied at successively higher 

layers parallel to (111) planes produces a twin. It is worth pointing that a partial 

dislocation is merely a dislocation in which the Burgers vector is a fraction of the unit 

cell. Note that if such vector was exactly (or a multiple of) the value of the unit cell there 

would be no change in orientation whilst twinning, by definition, involves a change in 

orientation (Kelly et al., 2000, Cullity and Stock, 2001). 

 

In Figure 2.4, all the atoms above the mirror plane (or twinning plane) (111) (Figure 

2.4a) have been translated in the twinning direction (1/6) [11-2] (Shah, 2012). The new 

projection of these translations on the plane (-110) is shown on Figure 2.4b. If the 

translation of atoms or rotation of the lattice happened again about another mirror 

plane parallel to the first, the original orientation would appear again, forming a 

twinned region (Figure 2.4b).  

 

Notice that both before and after the translation all the atoms stay on the (-110) plane 

since no distortion of the unit rectangular cell projected in (-110) plane is observed. 

Unlike slip, twinning is directional. Accordingly, when reversing the direction of the 

Burgers vector to (1/6) [-1-12], the translated atoms sit (uncomfortably) on top of the 

(111) plane (hydrostatic axis view). An alternative diagram showing this can be found 

in ((Oliver, 2004), p. 43-45). For BCC the twin plane is usually {112} and the twinning 

shear is in the <111> direction. Twins in FCC and BCC metals are usually narrow in 

contrast to those in HCP metals which are thicker (Hosford 2005). 
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Figure 2.4. Twin mechanism in a FCC lattice showing: a) the twinning plane and the twin direction, 

and b) view of the translated lattice on the (-110) plane (Shah, 2012). 

 

Twins can be created in two ways: annealing twinning and deformation twinning (Kelly 

et al., 2000, Cullity and Stock, 2001). Annealing twinning occurs during grain growth on 

cooling after heating a cold worked specimen. Annealing twins occur in an effort to 

accommodate the overall energy balance across its boundaries. As a consequence, 

stored energy from dislocations can be relieved through heating, along with that 

releasing of energy, twinning appears. Deformation twinning follows plastic 

deformation i.e. the crystal prefers to accommodate the imposed shear deformation by 

twinning. In general, the lower the temperature and the higher the strain rate, the 

higher the tendency to deform by twinning. Metals with low SFE (such as austenitic 

stainless steels) tend to deform relatively more by twinning (Honeycombe, 1984), 

presumable because other “less catastrophic” modes are hindered by their high d0. 

 

It is not always clear whether a twin was formed by growth or shear. However, there is 

a tendency for annealing twins to present a larger twinned region (wider bands) 

crossing the grain throughout. Twins by plastic deformation are usually rather narrow 

and often discontinue somewhere inside the grain. Nevertheless, once a twin has 

formed it is believed they behave similarly regardless of the cause for forming (Kelly et 

al., 2000) 
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2.3 Polycrystalline Materials 

 

Here we examine the chemistry, structure and behaviour of some of the polycrystalline 

materials that are widely used in industry. Namely, we are interested in the materials 

modelled in this dissertation: austenitic stainless steels, aluminium and alumina. 

Aluminium, however, is not further discussed here because some relevant points have 

been previously addressed about this metal (work hardening section) and some others 

are examined in publication 3. 

2.3.1 Deformation of polycrystalline metals 

 

The mechanisms discussed in section 2.2 largely apply for polycrystals. However there 

are some differences such as the absence of stage I. Further, the grain boundaries have 

an impact on the response of the polycrystal. Near the boundaries, where constraints 

are greatest, more slip systems have seen active than in the centre of grains, being this 

observation more pronounced in large grains (Hirth, 1972). 

 

Another mechanism that could contribute on plastic deformation is sliding along grain 

boundaries; however this is thought not to be significant for temperatures below 50% 

the melting temperature (Tm) (Honeycombe, 1984). For the purpose of simplification, 

this is neglected in this research. 

 

Plastic deformation can also, by itself, promote new phases in the material. This is the 

case of martensite (Varma et al., 1994), usually referred to as deformation induced 

martensite. Martensite is formed as a result of lack of diffusion of the atoms of carbon, 

avoiding the formation of cementite and getting them trapped in the unit cell forming a 

body centred tetragonal structure (BCT). This could be fatal, since martensite is very 

brittle. Nevertheless martensite is largely used in industry when the designing 

conditions require a high level of hardness. 
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2.3.2 Phase formation in metals and its relevance 

 

Although this research focuses primarily on single phase polycrystalline aggregates, 

second phase particles usually coexist in the aggregate. An anisotropic polycrystalline 

aggregate effectively contains as many phases as orientations. Second phase particles 

essentially involve a more pronounced anisotropy and a great effect, for example, in the 

internal stress redistribution or the Bauschinger effect. Internal stresses may also arise 

due to a phase transformation itself. Modelling results and neutron diffraction 

measurements of two phase metals have shown the large stresses developed for 

different phases (Oliver et al., 2004). 

 

An example of the phase transformation in plain carbon steel is presented. Plain carbon 

steel is an interstitial solid solution of carbon (normally less than 1% wt.) in iron 

(Callister, 2006). Plain carbon steels are made of the combination of one or two out of 

the four solid phases which presence, in percentages, varies depending on the 

temperature and the percentage of Carbon according to the lever rule. The solid phases 

are α ferrite (BCC), austenite (FCC), δ ferrite (BCC) and cementite (orthorhombic crystal 

structure of 12 Fe atoms and 4 C atoms). The relative amount of these phases obtained 

upon cooling of austenite depends on the rate of cooling. Namely, pearlite or bainite are 

obtained when performing a slow or medium cooling rate respectively.  

2.3.3 Austenitic stainless steel 

 

Ferrous alloys are especially important in engineering because of their abundance on 

earth and their relatively economical fabrication (Callister, 2006). The principal 

disadvantage of many ferrous alloys is their susceptibility to corrosion. Stainless steels 

are iron based alloys containing at least 11% wt. of chromium, enhancing their 

resistance to corrosion (e.g. (Lozano-Perez et al., 2009)). They achieve this resistance 

by forming a surface-adherent layer of Cr2O3 rather than Fe2O3 (rust) which does not 

adhere adequately to the surface due to the volume changing associated with its 
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formation. Stainless steels are divided into three classes on the basis of the 

predominant phase constituent of the microstructure: austenitic, martensitic and 

ferritic. 

 

Austenitic stainless steels (Grade 316) has been studied in publications 1 and 2. 

Austenite (FCC) can exist at room temperature when stabilizing elements are added 

(mainly nickel and manganese, (Raghavan, 2006)). This alloy is called austenitic 

stainless steel. The chemical compositions of the popular 304L and 316L austenitic 

stainless steel are shown in Table 2 and Table 3 respectively (Raquet et al., 2006). The 

low carbon contents of these steels reduce the susceptibility to sensitization during 

high temperature applications including welding. 

 

Table 2. Chemical composition of 304L. (Raquet et al., 2006). 

304L  C  Cr  Ni  Mo  Mn  Si  P  S  N  

Wt %  0.026  19.23  9.45  0.24  1.49  0.52  0.027 0.002  0.064  

 

Table 3. Chemical composition of 316L. (Raquet et al., 2006). 

316L  C  Cr  Ni  Mo  Mn  Si  P  S  N  

Wt %  0.027  17.2  12.15  2.34  1.76  0.48  0.23  0.001  0.064  

 

Molybdenum is often added as it improves the resistance against SCC (Shibata, 1983, 

Karaminezhaad et al., 2006). On the other hand, molybdenum content in stainless steels 

can promote low temperature embrittlement (Kain et al., 2004), suggesting the use of 

304 Type (rather than 316 Type) in nuclear reactors. There are other elements that can 

be added to austenitic stainless steels. For example, niobium is often added in modern 

steels such as pipeline steels (cca. 0.06% Nb) to mitigate both: thermal sensitisation 

(Schweitzer, 2010; Mcguire, 2008) and irradiation damage (Ahmedabadi et al., 2011). 

In both cases, damage is caused by the migration of chromium. In thermal sensitisation, 

the free atoms of chromium in the lattice combine with carbon to form chromium 

carbides at the boundary. This effect leaves a lack of chromium in the vicinity of the 

grain boundary (GB) making this region more exposed to corrosion. In this case, Nb 
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combines with carbon to stop the formation of chromium carbides. In irradiation 

damage, vacancies and dislocations tend to propagate near the GB. Atoms of chromium 

are somewhat ejected by the incoming lattice defects. The role of Nb is, in this case, to 

stop the propagation of lattice defects from the core of the grain to the GB. 

2.3.4 Aluminium oxide  

 

Alpha alumina (Al2O3), as most ceramic materials, is brittle (KIc ~4 MPa/m1/2), stiff 

(E~393 GPa), strong (Flexural strength: 275-7004MPa) and has a mixed ionic (63%)-

covalent (27%) atomic bonding (Callister, 2006). Although alumina has a trigonal 

structure (R-3c), the oxygen ions nearly form an hexagon (Figure 2.5a). For this reason, 

it is usually described as ABAB stacking of oxygen planes along the c axis with Al ions in 

2/3 of the octahedral interstitial positions as seen in Figure 2.5. 

             

Figure 2.5: Unit cell of α -Al2O3. A) Arrangement of Al3+ ions and holes between two layers of O2- 

ions. Large open circles represent underlying O2- ions, small open circles represent holes, and 

small filled circles represent Al3+ ions. The upper layer of O2- ions (not shown) are translated in 

]0110[ by the O2- ion diameter (blue arrows). b) The Al3+ ions sublattice. Filled circles are Al3+ ions, 

open circles are empty octahedral interstices (Kronberg, 1957). 

                                                        
4 Flexural strength according to ASTM Standard C1161. “Standard Test Method for 
Flexural Strength of Advanced Ceramics at Ambient Temperature” 
 

a) b) 
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2.4 Modelling of materials 

 

Cottrel (1953) classed hardening as a “spectacular phenomenon” and probably the last 

problem to be solved by dislocation theory. Unfortunately, his statement still largely 

remains valid (Humphreys and Hatherly, 2004), although some unified theories have 

been proposed (Brown, 2003). In the past decades, increasingly high power of 

computers has enabled atomistic simulations (~10-10m). Yet, computers can only model 

about 0.1µm while a small grain size in metals is about 10 µm. These can be coupled 

with discrete dislocation mechanics to model larger amount of material (Shilkrot et al., 

2004). A defect in the atomic arrangement can then be detected at the boundary and 

“converted” to a well-defined dislocations interacting in a continuum elastic medium 

and vice versa. The dislocation can travel in the continuum medium over a long distance 

which is often the case of ductile metals. This model captured the critical stress 

intensity factor (material opening toughness) at the crack tip in a single crystal of 

hexagonal Al, even when using a small number of atoms. Much of the recent work in 

modelling plasticity at the micro scale (~10-10m-10-7m)  has been compiled (McDowell, 

2008), emphasizing the limiting computational power at modelling these scales. 

 

Deformation via slip solving simultaneously the linear momentum balance and a 

(thermodynamically consistent) slip evolution equation has been claimed to predict 

dislocation patterning (Yalcinkaya et al., 2011). In such approach three participating 

stress contributions can be distinguished: 1) the conventional resolved stress, 2) the 

modified stress characteristic of the strain gradient plasticity (considering size effects) 

and 3) and the stress that emanates from a non-convex free energy function. The use of 

such a function and the strong coupling (unlike weak coupling in phase field models) 

between deformation and the evolution of plastic slip are seen, in such work, as keys for 

patterning prediction. Yet validation would involve numerous thin-foil electron 

micrographs. Polycrystal plasticity (~10-5m), also called crystal plasticity, is sufficient 

for many applications such as predicting texture (Needleman and Asaro, 1985), 

formability of sheets, etc. In this chapter attention will be paid to this group. Many of 
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the recent simulations using crystal plasticity have been reviewed by Roters et al. 

(2010). We will also present the constutive laws of continuum plasticity (10-3m), due to 

its relevance to industrial applications (e.g. fracture, fatigue, etc) for decades. 

2.4.1 Elastic deformation 

 

The generalized Hooke’s law at any small volume of material may be given as: 

  

klijklij C         (Eq. 2.3) 

 

The 81 components of the fourth rank tensor ( ijklC ) may be reduced to 36 because of 

the symmetries of the Cauchy stress tensor ( jiklijkljiij CC  ) and the 

infinitesimal strain tensor ( ijlkijkllkkl CC   ). These symmetries are called the 

minor symmetries of the stiffness tensor ijklC . 

 

Further, the components of ijklC the can be given as a strain energy function, )(EW , 

(Teodosiu, 1982), where E is the Green-Lagranian strain tensor. 
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The arbitrariness of the order of differentiation implies that klijijkl CC  , reducing the 

total number of independent constants to 21. These symmetries are called the major 

symmetries of the stiffness tensor ijklC . 

 

For simplicity, Hook’s law is usually given in Voigt notation: by σi = Cij εj  (i,j=1,2,…,6), as 

explained by Nye (1985). Note that the terms ε4, ε5 and ε6 represents the engineering 

shear strain components. If the shear components of the strain tensor are used, these 

should enter Hook’s law by doubling their values. Note that, if using Abaqus FE package, 
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the output is always in terms of the engineering shear strain components. 

 

It is possible to resolve the directional stiffness in a particular direction (Oliver, 2004, 

Wong and Dawson, 2010), as done in section 4.2. 

 

In the case of cubic crystal structures, symmetric relationships are applied (Nye 

1985), giving: C11=C22=C33, C12=C21=C13=C31=C23=C32 and C44=C55=C66, for any 

other term Cij=0. Thus the terms are reduced to 3 independent constants: C11, C12 

and C44. In the case of isotropic elasticity, the stiffness tensor can be reduced to two 

independent terms (Young modulus and Poisson ratio). 

2.4.2 Continuum plasticity 

 

This theory (Hill, 1998), since it was first published by Hill in 1950, has been widely 

used in modelling metal process forming (Szczepinski, 1979) or fracture. In this 

dissertation, we also use it in publication 2. Although its basic concepts are presented 

here, greater details can be found in the literature (Hill, 1998, Dunne and Petrinic, 

2005). 

2.4.2.1 Yield function 

 

Tresca and Von Mises are perhaps the best known yielding criteria. These criteria have 

been used for about a century in structural integrity and mechanical design in order to 

keep the material under its elastic limit. The Von Mises equivalent stress is defined by: 

 

)'(':'
2

3
2/1

σσσ Je 







      (Eq. 2.5) 

 

where 'σ  represents the deviatoric stress tensor, namely: 
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Iσσσ )Tr(
3

1
'            (Eq. 2.6) 

 

σ  is the general stress state at an infinitesimal point in the material, “Tr” is the trace of 

its matrix representation and I is the identity tensor. The term on the right represents 

the hydrostatic stress and it has no effect on yielding. From now on, function J may be 

used because of its similarity with the second stress invariant. 

 

We can now write a yield function that relates the Von Mises equivalent stress and the 

uniaxial material strength ( y ) as: 

yef        (Eq. 2.7) 

Therefore the material would not yield if f is less than zero under this criterion. Such 

function in general defines a cylinder in stress space which is a 3D yield surface. The 

axis of this cylinder is the hydrostatic axis (σ1= σ2= σ3). For plane stress this yield 

surface becomes a 2D ellipse when projected on the plane of stress.  

2.4.2.2 How does the material deform when it has reached yielding? 

 

We have given so far a yield function that determines whether or not yielding occurs. 

The normality hypothesis of plasticity states that the increment in the plastic strain 

tensor occurs in a direction normal to the yield surface at the load point.  In Eq. 2.8, the 

direction of plastic flow is given by σf .  
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   or   (Eq. 2.8) 

The term dλ is called the plastic multiplier and is related to the magnitude of the plastic 

deformation away from the yield surface which, for a material that yields according to 

the Von Mises criterion, it turns out to be simply equal to the rate of equivalent plastic 

strain, p . However, p is still unknown but can be found using the consistency 
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condition. Then using Hook’s law and the additive decomposition of total strain into 

elastic plus plastic5, we can solve p as a function of the elastic constants, σf  and 

pf  .     

 

The yield function, as seen above, varies depending on the type of hardening 

considered: kinematic hardening, isotropic hardening or both. This function has to be 

implemented into the formula by differentiating over the stress σf , term that will 

provide with a vector defining the direction of the plastic strain increment.  

 

Moreover, the yield function may evolve depending on the current state of the material. 

This is the case of material hardening. In order to get a better physical insight about 

these changes of f, we will first introduce isotropic and kinematic hardening.  

2.4.2.3 Isotropic hardening 

At some point in which plastic deformation has occurred, the stress required for 

yielding (σy) it is no longer constant and this is precisely the term in the yielding 

function that varies depending on the hardness. When the expansion of the yield 

surface is uniform in all directions in stress space, the hardening is referred to as 

isotropic. The amount of expansion depends on the accumulated plastic strain, p:  

 

σy (p) = σy0 + r(p)         (Eq. 2.9) 

 

the term σy0 is the initial yield stress. The term r(p) is referred to as the isotropic 

hardening function. Consequently, the yield function becomes: 

  f = σe - σy (p)      (Eq. 2.10) 

Finally, the plastic deformation increment can be calculated using Eq. 2.8. In order to 

find p, it is now necessary to integrate p over the time increment. 

                                                        
5 Assuming that elastic strains are small  
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2.4.2.4 Kinematic hardening  

 

Considering uniquely isotropic hardening leads to very large elastic regions on reverse 

loading which disagrees with experiments. In fact a much smaller region is expected if 

the load was to be reversed; this is called the Bauschinger effect (Bauschinger, 1881, 

Bauschinger, 1886). Such effect can be captured through the incorporation of kinematic 

hardening. This is equivalent to the translation of the yield surface6 by |x| which is 

called often back stress and it is a tensor unlike the scalar value “r” in isotropic 

hardening. The explanation at the microstructure level of the Bauschinger effect deals 

with the dislocation theory and is discussed in publication 1. With kinematic hardening 

the yield function may be modified by using (σ’ – x’) in place of σ. Using linear Prager 

(1956) hardening: 

 

yf 









2/1

)''(:)''(
2

3
xσxσ    (Eq. 2.11) 

When kinematic hardening is modelled, the plastic multiplier also results a function of 

the backstress which is a function of the plastic strain increment itself. In reality, 

kinematic and isotropic hardenings are combined to define the entire hardening of the 

material. The reader is referred to the book by Dunne and Petrinic (2005) for details on 

the form of the plastic multiplier.  

2.4.2.5 Combined hardening  

 

We have considered non time-dependent plasticity so far. In reality the rate of 

deformation affects the stress-strain relationships. This implies another change in the 

stress-strain relationship (or viscous stress) where a rate-dependent deformation 

function is introduced7. This adds up to the total stress associated in the deformation, in 

a similar way as r(p) does in isotropic hardening. 

                                                        
6 Some details about this translation will be seen in more detail in section 4.1.4 
7 Similar hardening and rate-dependence will be seen in more detail when modelling slip (section 2.4.3), 
yet these mechanisms occur at different length scales. 
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For a von misses material, the plastic multiplier (dλ) equals the increment of effective 

plastic strain ( p ). Combining effects of isotropic and kinematic hardening and viscous 

stress by viscoplasticity under uniaxial perfect plasticity the plastic multiplier becomes: 
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where K and m are constants associated to viscoplasticity. The term σf  turns out to 

be: 
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Finally, substituting these two terms into equation Eq. 2.8: 
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   (Eq. 2.14) 

2.4.3 Constitutive laws for a crystal plasticity model 

 

Plastic flow in a single crystal is anisotropic, and cannot be adequately modelled using 

the constitutive equations for continuum plasticity. Instead, a slip-based constitutive 

law can be used (Asaro and Rice, 1977, Asaro, 1983). These constitutive equations are 

capable of modelling the rotations of individual grains in a polycrystal, and hence to 

predict the evolution of texture (Pi et al., 2008) as well as the elastic and plastic 

deformation. Here we are describing the basic steps in the ABAQUS material subroutine 

used in this dissertation (Huang, 1991) to model deformation by slip. The subroutine 

describes the material behaviour of a single crystal or in other words; the response in 

incremental stress that the subroutine returns for an assumed (small or large) total 
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displacement. The material subroutine also provides the material Jacobian matrix 

εσ  for building the global stiffness matrix, assuming small elastic strains. The 

differentiation of the second order tensor σ with respect to the second order tensor 

ε  gives a the fourth order tensor. Thus, because of the symmetries of σ  and ε (see 

section 2.4.1), the material Jacobian will be composed of 36 components for a fully 

three-dimensional problem. 

 

1st) Determine the velocity gradient ( L ): to define the spatial rate of change of the 

velocity since we are dealing with a rate-dependent model. 

 

1 FFL       (Eq. 2.15) 

 

Where F  and F  are the deformation gradient and its rate. Both are assumed to be 

known from the imposed deformation of the current time increment. At a given time 

increment and at a given Newton-Raphson iteration, the residual values (from Newton-

Raphson procedure) would update the displacements and these would update F  and 

F . 

 

The deformation gradient consists of both elastic and plastic terms related as follows 

according to the multiplicative decomposition: 

 

pe
FFF      (Eq. 2.16) 

 

where p
F  corresponds to an intermediate configuration where only plastic shear has 

occurred whereas in e
F denotes stretching and rotation of the lattice. Elastic properties 

are assumed to be unaffected by slip leaving the dependence of stress solely on e
F  

 

2nd) Decomposition of L into D (rate of deformation) and W (continuum spin) given by 

the symmetric and anti-symmetric tensors of L respectively. As a consequence of the 
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elastic-plastic decomposition in the previous step and assuming small elastic stretches, 

each of these tensors can be decomposed into an elastic and a plastic part as follows: 

 

peTsym DDLLLD  )(
2

1
)(     (Eq. 2.17) 

peTasym WWLLLW  )(
2

1
)(      (Eq. 2.18) 

For simplicity, here we assume 0p
W , so the continuum spin, W , will be directly 

assigned to a rotation of the elastic domain. 

 

3rd) Calculate the plastic deformation component of the stretching: p
D  which will be 

the sum of the deformation of all active slips systems at that integration point: 

 

)()()( 



 msD  p     (Eq. 2.19) 

Where for the slip system  , )(
m is the vector normal to the slip plane and )(

s is the 

vector defining the slip direction. The slipping rate for that slip system is defined by 

)( . Obviously, only planes with )( > 0 will contribute to the deformation. (this is a 

similar criterion to the yielding function for continuum plasticity). The slipping rate 

)(  depends on the current resolved shear stress ( )( ), current strength ( )(g ) and 

cumulative shear strain ( )( ) of the slip system  . These variables are explained 

further in publication 2. The values of such variables in the previous time increment can 

serve as an initial guess for the first global Newton-Raphson iteration (step 5 of finite 

element section). For subsequent global Newton-Raphson iterations, the new stresses 

calculated in the previous iteration would serve to calculate new guesses of )( , )(g  

and )( . In practice, it is possible to use an incremental integration scheme in an effort 

to find a better initial guess for such plastic parameters (data card number 20 in the 

UMAT used (Huang, 1991). The subroutine allows two means to find such initial values: 

by a linear increment formulation or using a non-linear increment formulation. In the 

linear increment formulation, a simple Euler time integration scheme or a linear 
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interpolation within the time increment are possible. In the non-linear increment 

formulation scheme, a Newton-Raphson iteration within the subroutine is employed, 

using the linear increment formulation as an initial guess. In the present work, the linear 

increment formulation approach is used. Further discussions about these methodologies 

can be found elsewhere (Abdolvand, 2012). 

 

4th) Determine the rate of elastic deformation e
D  

This is a rather simple step assuming small elastic strains since we know the total rate 

of deformation imposed D, hence: 

 

pe
DDD         (Eq. 2.20) 

 

5th Determine the stress rate in the material (global) coordinates: First, we consider the 

rate of stress due solely to the rate of elastic deformaiton e
D  using Hook’s law as if 

rotations never occurred by assuming co-rotational axes that rotate with the crystal 

lattice. For a general case where the material is elastically anisotropic, the Jaumann 

stress rate (


σ ) becomes: 

 

e
DLσ :



         (Eq. 2.21) 

 

Where here L is the tensor of elastic moduli (Nemat-Nasser, 2004). This expression 

represents the double contraction of rank-fourth tensor (L) with rank two tensor e
D , 

giving a rank two tensor, as explained by Dunne and Petrinic (2005). Whereas the rate 

of deformation D is objective, the continuum spin W is not. This means that a variation 

of the continuum spin (combined with the presence of any rate of deformation) will 

affect the material stress rate of Cauchy stress (σ ) in the global reference and hence a 

correction must be applied to make it objective. The stress rate of the material 

therefore depends on both: the previously defined Jauman stress rate and the total 

continuum spin:  
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σWWσσσ 


     (Eq. 2.22) 

 

Naturally, the step-dependent variables in the iteration need to be updated at the end of 

each time increment. If using the large deformation option in Abaqus software (2006), 

the material stress rate is automatically calculated from the Jaumann stress rate by the 

software. 

2.4.3.1 Differences and similarities to the continuum plasticity method 

 

This procedure of relating imposed strains and associated stress in the crystals is 

similar to that used to define continuum plasticity. In fact the procedure holds if we 

replace the 3rd step for the plastic deformation component of the stretching (DP) for this 

model. For example, we could use the combined isotropic and kinematic hardening and 

viscoplasticity seen in Eq. 2.8 8: 

 

)'(

')'(

2

3
/1

xσ

xσxσ
D











 


JK

rJ
m

yp


  (Eq. 2.23) 

 

To conclude, note that the backstress itself depends upon strain, showing in this way 

the incremental time nature of plasticity. 

2.4.4 Models of polycrystalline deformation 

2.4.4.1 Deformation and displacement gradients by slip 

 

For simple shear or slip, , on the plane where shear deformation occurs as the 

reference frame, we have: 

                                                        
8 Note the equivalency between the rate of deformation (DP) and the plastic strain rate (

p
ε ). If small 

elastic strains are assumed, an additive rate of deformation decomposition is possible (4th step in section 

2.4.3). Under such assumption, the rate of stretch (DP) can be approximated to the plastic strain rate ( ε ) 

(Abaqus Documentation, Inc., 2006), where the classical decomposition (
pel
εεε   ) still holds.  



Chapter 2 – Literature review 
 

45 
 

 



















100

010

01

sh



F     (Eq. 2.24) 

 

It is convenient to describe this in terms of the displacement gradient ( Xuu  ) 

which represents the partial differentiation of the displacement vector with respect to 

the global or material coordinates (X). The displacement gradient and the deformation 

gradient on the shear plane are related as: 

 

 IFu  shsh

     

(Eq. 2.25)

  

where I is the second-order identity tensor. Ignoring second-order terms, the Green-

Lagrange strain tensor or simply the large strain tensor becomes:  

 T

shshsh )(
2

1
uuE             (Eq. 2.26) 

 

Assuming small displacements, the Green-Lagrangian description (global or material 

coordinates) and the Eulerian description (current or spatial coordinates) are 

approximately equal ( shsh εE  ). Moreover, Eq. 2.26 implies that the displacement 

gradient can be split into their symmetric and anti-symmetric parts, representing the 

shear strain ( shε ) and the rotation ( shω ): 

 

shshsh ωεu       (Eq. 2.27) 

 

or 
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   (Eq. 2.28) 
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Alternatively, the polar decomposition theorem can be used to obtain the rotation Rsh 

and the stretch Ush from the deformation gradient using little algebra ((Dunne and 

Petrinic, 2005), p. 57). Again, if small displacements are assumed and second-order 

terms ignored ( 2~0), it can be easily shown that Rsh= shω and Ush = shε . 

2.4.4.2 Sachs model 

 

Sachs, as early as 1928, proposed a plastic polycrystalline model to determine the yield 

stress under uniaxial tension (Sachs, 1928). An important simplification has been done 

by assuming one slip system, namely that with the highest Schimd’s factor, to become 

active. As grains are differently oriented, stress and strain discontinuities at GBs will 

appear. This contradicts equilibrium, which states that the variation of stress is smooth. 

By implementing a hardening law, the Sachs model may also be used to predict a plastic 

flow curve (Clausen, 1997). 

2.4.4.3 Taylor model 

 

In 1938, Taylor proposed another model to determine the yield stress under uniaxial 

tension (Taylor, 1938). In this case, Taylor assumed that all the grains undergo the 

same amount of deformation for a given overall deformation. Some details on this 

model are presented, as it is still relevant in modelling single crystal plasticity, such as 

tool machining (Demir, 2008). The macroscopic incremental plastic strain tensor for 

uniaxial loading (σ11) in the 1-axis is given by: 
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Note that the trace of P
εd equals zero, this reflects the incompressibility condition. The  

macroscopic work done is: 

pw 1111dd       (Eq. 2.30) 

 

Von Mises (Von Mises, 1928) demonstrated in 1928 that 5 independent strain 

components (shear deformations by slip in our case) are sufficient to create any desired 

change in deformation. In the case of FCC metals, five independent slip systems are 

assumed to be active out of 12 possible for a given deformation. Based on this criterion, 

Taylor assumed that the 5 active slip systems are those which require least work. The 

work done by the active slip systems in all the differently oriented grains is given by: 

 





  dd w     (Eq. 2.31) 

Where  and  are the shear stress and the shear strain for the slip system α. Taylor 

further assumed that the critical shear stress is identical for all slip systems ( c  ). 

Equating Eq. 2.30 and Eq. 2.31, we can then write: 
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     (Eq. 2.32) 

 

The number m relates the uniaxial yield stress with the critical resolved shear stress. 

Using Sachs and Taylor models, the calculated m for FCC polycrystals are 2.24 (Sachs, 

1928) and 3.06 (Taylor, 1938) respectively. These represent the lower and upper limits, 

analogous to Reuss (1929) (uniform stress) and Voigt (1889) (uniform strain) models 

for determining the average elastic stiffness in an elastic polycrystalline aggregate. 

 

Once the shear strain is known in each system, the crystal rotations, if needed, can be 

calculated for Sachs and Taylor models. This can be done incrementally using Eq. 2.28. 

Despite his age, Taylor model can simulate texture in largely deformed Al policrystals as 

successfully as modern crystal plasticity models such as CPFEM (Pi et al., 2008). 
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2.4.4.4 Elasto Plastic Self  Consistent (EPSC) 

Another relevant approach is described here due to the important validation work that 

has been done using this model using neutron diffraction: Elasto Plastic Self Consistent 

(EPSC) model. This model is based in the well-known work by Eshelby (1957). In his 

paper Eshelby proposes a model to determine the stress and strain fields due to an 

eigenstrain in an ellipsoidal inclusion embedded in an infinite matrix. The three basic 

steps include: “imaginary cutting” the inclusion from the matrix (allowing free 

transformation); “straining” the inclusion to achieve its original shape; and “weld back” 

by applying forces of opposite sign in the surrounding matrix. Eshelby demonstrated 

that the stress and strain are uniform within an ellipsoidal inclusion. Many researchers 

were inspired by his work over the following decades. Eshelby’s work assumes the 

ellipsoidal inclusion embedded in an homogeneous medium. However, the theory 

becomes more powerful when the inclusion and the matrix are allowed to have a 

different stiffness. This is called the equivalent inclusion method (Clyne and Withers, 

1995) and can be applied to a wide range of problems because the equations of the 

ellipsoid, when approximating it to a plate or a fibre, still hold. 

 

The self-consistent model was proposed to tackle problems where a matrix does not 

exist i.e. polycrystalline aggregates (Kröner, 1958). The averaged elastic modulus of an 

aggregate containing many differently oriented anisotropic inclusions can be calculated 

via iteration, because it depends on the estimated modulus itself. Hill proposed an 

initial estimate as the arithmetic average of the Reuss (1929) (uniform stress) and Voigt 

(1889) (uniform strain) elastic moduli averages.  

 

An important breakthrough in polycrystal plasticity can be achieved by “upgrading” the 

(elastic) self-consistent model through modelling of slip (Kröner, 1961). Elasto Plastic 

Self Consistent (EPSC) model considers an ellipsoidal inclusion in a surrounding 

medium which has the average properties of the entire polycrystal. Since the properties 

of the medium derive from the average response of all grains, these are computed by 

iteration. In this case, elastic isotropy is assumed. The anisotropy arises from the 
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compliancy caused by slip for plastically deformed grains, quantified by the 

instantaneous moduli. The slip rate in each slip system is determined from the current 

slip system strength which increases with slip via a hardening matrix. For grains where 

plasticity has not occurred yet, the instantaneous moduli equal the elastic stiffnesses. 

An averaged instantaneous moduli is initially estimated and updated with each 

iteration until the difference between its successive values is small enough to be 

neglected. Having determined the self-consistent instantaneous stiffness, a small strain 

increment is prescribed, and the stress and strain states of the individual crystals are 

updated.  

 

This approach, unlike CPFEM, does not fully simulate the effect of neighbours. Usually, 

elastic anisotropy is also neglected when using this approach. However, it becomes of 

interest due to its cost efficiency (relatively low time required for simulations) and 

good experimental validation results (Daymond et al., 2000, Daymond, 2005, Oliver et 

al., 2004).  

2.4.5 Crystal plasticity finite element modelling (CPFEM) 

 

The pioneer compilation by Zienkiewicz (1977) describes the FE methodology in 

mathematical rigor whereas practical engineering examples can be found elsewhere 

(Benham et al., 1996). Here attention is paid to what concerns the implicit 

implementation of the crystal plasticity approach used in this research. 

 

Time-independent elastic problems can usually be solved using a linear finite element 

approach. Meaning that only one increment is needed to obtain the final solution. 

However, contact between elements presenting different material properties is highly 

non-linear  thus non-linear finite element approach is required, as used in publication 4. 

Continuum plasticity, as seen earlier, is another example of non-linear finite element 

approach. In general, such approach is needed when the material properties are a 

function of the current stress (Crisfield, 1996). Its solving involves an iterative process 

which is described in this section. 
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2.4.5.1 Steps in non-linear implicit 

 

We present here the general steps to be followed by a non-linear implicit finite element 

analysis assuming large (plastic) deformations. These steps, as well as the stiffness 

matrix K, can be found either by the virtual work principle (Abaqus Documentation, 

Inc., 2006; Keavy, 2008) or the variational principle (Fagan, 1992; Buchanan, 1995). 

Although explicit implementation must be used for high discontinuity problems (e.g. 

impact), in this work the solution is smooth with time. Moreover, explicit 

implementation may become numerically unstable thus a much smaller time increment 

is required. 

 

1. An initial displacement increment is guessed for all the nodes on a basis of the previous 

displacements. The strain rates are calculated at each Gauss point from the velocity 

gradient, which is a function of the mentioned assumed displacement. 

2. The material subroutine is called (step 1 to 5 of previous section) to calculate the stress 

rates using the strain rates calculated in step 1. Still for each Gauss point, the material 

Jacobian tensor is calculated.  

3. The stiffness matrix of the element is given by: 

 

d(vol)T

 eV

e
DBBK      (Eq. 2.33) 

 

Where D is the material Jacobian. In the case of a purely elastic element, this would 

simply be the elastic moduli (fourth rank tensor). The matrix B represents the kinetics 

in the element and relates the strains with the displacements. The matrix B depends on 

the shape functions which are used to describe the displacement at any point within the 

element from the displacement at the element nodes (Zienkiewicz, 1977). The shape 

functions comprise a very important and wide subject in finite element analysis but 

they are out of the scope of this work. It is of interest to mention that in the case of large 

deformations, the matrix B is also a function of the displacements (B = B(u)). 
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In order to interconnect these elements to each other, an assembly matrix is created in the 

basis of the geometry of the problem to be solved e.g. node 1 of element 2 might be 

connected to node 2 of element 1 but not to node 1 of element 1. 

 

The stiffness tensor of the whole model is assembled using the Jacobian of each 

integration point.  

 

d(vol)T

 V
DBBK     (Eq. 2.34) 

4. Equilibrium is checked using the known external loads at nodes (f), the previously 

calculated assembled stiffness matrix and the assumed displacements (u). The residual 

forces are: 

fKuuF )(R             (Eq. 2.35) 

In the case of other forces acting on nodes such as body forces or those arising from 

initial strains or initial stresses, these would be added to f 9. In practise, if the stress 

rates are known, it is easier to integrate them over the time increment to obtain the 

stress to give the residual forces as (Bonet and Wood, 1997): 

fσBuF   d(vol))( T

V
R          (Eq. 2.36) 

Since we are essentially dealing with a static problem, the target for the residual 

forces )(uFR  is zero. If equilibrium occurs according to a certain convergence criterion 

(e.g. )(uFR  approaches zero) then the step solution ends here and the supposed 

displacements in step 1 and the new stress rates calculated in step 2 are assumed valid. 

At this stage, the solver is ready for the next increment assuming the “new” stresses 

now as “old” ones. The solver now jumps to step 6. If such criterion reveals no 

convergence, the solver jumps to step 5. 

                                                        
9 In the case of large total deformations: f = f(u) 
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5. A further iteration is needed (from steps 1 to 4) but now assuming “new” 

displacements. This is done using the residual forces function: 
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(Eq. 2.37) 

The current displacements are updated by adding the change of displacements, u , 

according to the Newton-Raphson iterative process. This will result in a better 

displacement guess. 

In general, the initial guess for the unknown u in the assembled system can be the 

previous or an extrapolated value. For the first iteration of the first increment, u can 

generally be set to zero because f (in Eq. 2.36) will not be zero and the global system 

material Jacobian ( )()( uuF  R ) is not zero. This would provide with non-zero values 

in Eq. 2.37 to update the displacements with a better guess. 

6. Once such iteration (from steps 1 to 5) has finished, the “new” stress rates computed 

from the displacements assumed are considered as valid. In the event that a large 

number of iterations from steps 1 to 5 did not meet the equilibrium criterion, a shorter 

time increment would be assumed. The velocity gradient would be recalculated and it 

would be needed to go to step 1. 

2.4.5.2 Coupling in FEM 

 

A major concern of multiscale modelling is how to link computations at these various 

length scales together. A straight forward mean to achieve this is by one-way coupling, 

in which the boundary conditions are passed through from a component level 

simulation to another. For example, it is possible to model the stress state near the 

crack tip or at some point in a bent bar (section 4.4.2). This model is called the global 

model in Abaqus software. The displacement field at a smaller simulation window 

within this model can be passed on to an assembly of anisotropic crystals. This model is 

called the sub-model in Abaqus software. This in principle changes the geometry of the 
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global model, but in practice, the change is small enough to be negligible since a large 

number of randomly oriented crystals would result in an isotropic behaviour at the 

macroscale. Thus, there is no need to iterate.  

 

Alternatively, the iteration between the two simulations can be taken into account. In 

the example above, this means Sub-modelling results need to be incorporated into the 

global model. When the input of one physics analysis depends on the results from 

another analysis, the analyses are fully coupled. This may be achieved by assembling all 

the physics fields as finite-element equations in one matrix. Meaning that properties of 

the submodel are incorporated into the global model as a mathematical relationship. 

This makes the stiffness matrix more complicated and the most computationally 

intensive.  

2.4.6 Recent approaches in CPFEM 

2.4.6.1.1 Modelling the Hall-Petch effect 

 

Nye (1953) first thought that the curvature of the lattice can be accommodated by an 

introduction of a density of dislocations. These dislocations are referred to as 

geometrically necessary dislocations (GNDs) which differ from the randomly 

introduced dislocations or statistically stored dislocations (SSDs). Both SSDs and GNDs 

accumulate in single crystals during straining. Hardening is assumed to arise from the 

addition of SSDs and GNDs. Strain spatial gradients (with distance), which typically 

build up near interfaces, are responsible for GNDs (Ashby, 1970) and, thereby, increase 

the slip resistance.  

 

Recent studies aim to capture the Hall-Petch effect in order to explain the effect of the 

grain size on hardness: “the smaller the harder”. The main contribution of such studies 

is the consideration of GNDs as an extra contribution to hardening. Since GND are 

believed to arise from the strain gradients, it is possible to predict different aggregate 

responses for different grain sizes. 
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Fleck and co-authors (1994) conducted experiments on polycrystals that confirmed the 

strain gradient hardening. This finding fits with the Hall-Petch effect found in 

polycrystals since, for a given deformation field within a polycrystal, the shorter the 

length scale the higher strain gradients. They further proposed that hardening arises 

from the addition of dislocation densities of SSDs and GNDs. 

 

The density of GNDs is related to the net Burgers vector associated with 

crystallographic slip that produces plastic strain incompatibility. Nye’s dislocation 

density tensor (1953), defined as α=curl Fp, is a measure of the plastic strain 

incompatibility (or the number of GNDs). Years after, Kroner (1960) first established an 

equivalency between elastic and plastic strain tensors and gave the dislocation tensor 

as a function of the elastic tensor and the lattice rotation. Based on this principle, the 

elastic part of the deformation gradient, as determined by high resolution EBSD 

(Electron Backscatter Diffraction), can be used to estimate the density of GNDs. (Britton 

et al., 2009). 

 

Busso and co-authors (2000) first implemented the theory of strain gradient plasticity 

into a finite element model. Using this theory, some Hall-Petch effect has been shown 

through the introduction of GNDs (Abrivard et al., 2007). Further, in-grain 

heterogeneity of accumulated plastic strain correlated visually with in-grain 

heterogeneity of rotations when only SSDs were considered. A grain that presented a 

high heterogeneity of rotations showed relatively large accumulation of GNDs. Later, 

(Liang and Dunne, 2009) showed some agreement between simulated and measured 

GNDs at the interface of a plastically deformed aluminium bi-crystal. They also showed 

some effect of the GNDs on lattice rotations at the interface. Size-dependent models 

tend to predict higher stresses near the GB due to the high degree of deformation 

heterogeneity at the boundary. 

 

Kroner (2001) has suggested some pathways for development of dislocation density 

models. For instance, models were reported to only incorporate dislocations of one 
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sign, whilst it is well known that the presence of both signs explains the hardening and 

softening of materials. In this respect, some progress has recently been done by 

modelling the signs of screw and edge dislocation densities (Alankar et al., 2009), yet 

validations of such results remain difficult. Kroner also emphasized that the motion of 

atoms during plastic deformation is extremely discontinuous and might not be valid for 

continuum mechanics. In his article, Kroner suggests a continuum theory through 

molecular dynamics (principles of molecular dynamics can be found in (Arsenault et al., 

1988), page 47) and statistical physics as a way forward. An adequate model should be 

able to reproduce the random dislocation networks formed in the aggregate. 

 

The local dislocation density has been modelled in BCC metals  (Ma et al., 2007) as well 

as FCC metals (Ma et al., 2006). In both cases, the hardening was modelled by the 

energy associated with edge (forest cutting process) and screw (Peierls energy barrier) 

dislocation densities at the local level. While the Peierls mechanism dominates in BCC 

metals, the forest dislocation density dominates the hardening in FCC. Although 

activation of slip systems was captured, agreement in strain predictions between 

simulations and experiments is generally poor. This study also aimed to capture the slip 

transmission across the boundary by taking into account an energy barrier parameter 

that varies as a function of the GB angle and misorientation between grains. For this 

purpose, the geometry of the boundary was represented by a boundary finite element. 

It was shown that the calculated misorientation across the boundary was influenced by 

the boundary finite element constants. Adjusting such constants can be sufficient to 

reproduce the measured misorientations. 

 

Some approaches try to capture the Hall-Petch effect by assigning a higher hardening 

rate to an exterior phase around the GB of an arbitrary thickness (Meyers et al., 2002). 

However, unlike strain gradients theory, this approach does not describe a smooth 

transition of GNDs across the grain. 
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2.4.6.1.2 Thermo-dynamical approaches 

 

In the recent years, considerable attention has been paid into the search of 

thermodynamical formulations for crystal plasticity (McDowell, 2008).  These are based 

in the fundamental inequality which contains the first and second principles of 

thermodynamics. The fundamental inequality delivers thermodynamical balance, 

including stress, rate of deformation, entropy, internal free energy, temperature and 

heat flux. A free energy function can be introduced into such inequality (Lemaitre and 

Chaboche, 1994). The free energy function is a function of a reduced set of state 

variables associated to thermoelastic and inelastic deformation. The variables that 

enter the latter set have been proposed differently by several authors in crystal 

plasticity. For example, Gurtin (2002) suggested the free energy being dependent on the 

dislocation density tensor (G). In this way, the standard elastic strain-energy is 

augmented by a defect energy, in consistency with classical dislocation theory (Hull and 

Bacon, 1984). The manner in which G enters the free energy function has later been 

discusssed by Archaya (2008). Alternatively, the free energy function has been assumed 

to depend on the gradient of the plastic slip (Yalcinkaya et al., 2011). Slip activity, stress 

and the back-stresses can then be calculated. Only a few practical CPFEM simulations 

have been performed to date following such procedure, yet in 1D elements (Yalcinkaya 

et al., 2011). 

2.5 Measuring strain by neutron diffraction 

 

The principle of diffraction is based on the well-known Bragg’s law: sinθ= λ/2d where d 

is the spacing between atoms in the lattice arranged in imaginary planes (Cullity and 

Stock, 2001) (see Figure 2.6a). For a given crystal structure, each lattice plane has an 

associated angle at which the diffraction peak occurs. This angle is determined by the 

formula. The variation of the diffraction angle of such peak is precisely what is related 

to the d spacing parameter and hence, to the elastic strain stored in the lattice in a given 

direction. Modern measurement facilities can record several diffraction peaks at the 
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same time thus differently oriented grains within the gauge volume for a given 

direction. Some measurement facilities even let record other sections of the diffraction 

cone, allowing experimental measurement of texture. 

 

 

Figure 2.6. A) diagram demonstrating Bragg’s law (Kelleher, 2006). B) diffraction patterns 

showing the measured peaks in IF steel (BCC structure), (Quinta da Fonseca et al., 2006). 

 

Diffraction by high power X-Rays (generated in synchrotron facilities) allows strain 

analyses at a depth to study the bulk material properties rather than conventional X-

Rays where only surface measurements are possible. Neutron diffraction allows even 

deeper measurements (several tens of mm underneath the surface) due to their lack of 

electrical charge and thus the weak interaction with other atoms in the lattice, although 

the resolution is not as good as that for high energy X-Rays. 

 

Different length scale residual stresses can be measured by diffraction. Consider a  

diffraction intensity diagram showing the different diffraction peaks for different 

crystallographic planes (Figure 2.6b): 1) Type I stresses alone would move all peaks in 

the same direction (left or right) 2) Type II stresses would move some peaks left and 

some right by different amount.  

 

The magnitude of the relative shifts of individual peaks is expected to be related to the 

maximum Inter Granular Stress (IGS) in the material, although in reality, IGS may vary 

locally since diffraction only measures the average strains over many grains 3) Type III 

stress makes the peak wider keeping the area constant. This peak widening can be due 



Chapter 2 – Literature review 
 

58 
 

to either: spreading of the different peaks due to the difference of stress in the different 

grains contributing in the diffraction (IGS) or due to the lattice defects and dislocation 

density making each diffraction peak wider. 4) Additionally, a change in texture would 

changes the area of each peak.  

 

In FCC metals, 200 and 111 diffraction peaks are elastically softest and stiffest in the 

loading direction (Korsunsky et al, 2004). As a result, <111>//LD grains have been 

shown to carry more load and yield earlier (Wang 2005), despite having the highest 

yield strength. These experimental results agree with predictions from EPSC 

(Korsunsky et al., 2004). This shows evidence of, apart from the presence of IGS, certain 

families of grains yielding before than others and likely some of them yielding even in 

the elastic regime. Average stiffness between 111 and 200 peaks has been 

experimentally found in 311 peaks in FCC polycrystals (Daymond, 2005). 

Measurements of individual peaks in hexagonal materials (Ti-6Al-4V alloy) is also 

possible, yielding a good agreement with finite element simulations (Song et al., 2008). 

2.6 Damage mechanisms in polycrystalline materials  

 

There is a number of damage mechanisms where CPFEM can be useful such as fracture, 

stress corrosion cracking or fatigue. These are discussed in this section. 

2.6.1 Fracture 

2.6.1.1 Macroscale 

 

In 1913, Inglis found an expression to relate the average tensile stress to the local stress 

at the head of a crack tip in a homogeneous (amorphous) material (Inglis, 1913). Such 

higher local stress is associated with a release of elastic strain in the solid as the crack 

grows. Years later, Griffith (1921) postulated that the crack will grow if this energy is 

higher than the energy needed to create the new (crack) surface. The surface energy 

can be adjusted to allow a small amount of plasticity. In these materials, the stress 
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intensity factor, which is related to the crack length and the external load, can be 

compared directly to the material toughness. In fully elastic-plastic materials,  the 

numerical difficulties involved in computing the stress close to a crack tip makes 

inadequate the calculation of stress intensity factor. In 1968, Rice showed that the J-

integral could be used to post-process the energy release rate (Rice, 1968) in a 

continuum plasticity model (section 2.4.2), and this can be compared to the material 

fracture toughness (Riveros, 2006). Nowadays, many structural integrity assessments 

rely on the assumptions of Inglis and Griffith (for brittle materials) and Rice (for elastic-

plastic materials). 

2.6.1.2 Meso and microscale 

 

The local variability of the maximum tensile stresses within the microstructure is of 

special concern since this drives brittle fracture Figure 2.7. The variability of 

intergranular stresses is studied in publications 1 and 2.  

 

 

 

 

The combination of CPFEM modeling  with a fracture initiation parameter has been 

shown promising at evaluating damage at boudnaries in a TiAl polycrystal (Bieler et al., 

2009). The damaged boundary of a reconstructed microstructure had a high fracture 

+  stress  - 

Figure 2.1. Heterogeneity of stress at Grain Boundaries (GB) for a given macroscopic stress 
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initiation parameter (fip) value, indicating that multiple types of imperfect slip transfer 

were possible, leaving residual dislocation content at the boundary. In this case 

microcracks developed where neither the stress nor the strain was large, indicating that 

a high strain energy did not cause fracture.  

 

Finally, it is worth noting that transgranular brittle fracture is also possible. For 

example, BCC crystals at low temperatures tend to crack along defined crystallographic 

planes (cleavage), propagating rapidly since these planes possess low surface energy 

(Honeycombe, 1984). 

2.6.2 Fatigue 

 

Failure by fatigue is estimated to comprise approximately 90% of all the metallic 

materials failures (Callister, 2006). Although fatigue is not dealt with in this research, it 

is a field where crystal plasticity has been claimed as useful (McDowell and Dunne, 

2010). Some basic concepts and directions are presented here. 

2.6.2.1 Fatigue in individual FCC crystals  

 

As discussed previously, modelling of microscopic features within grains are still 

difficult. A brief insight of the microstructure evolution under cycling and a CPFEM 

approach are presented here. 

 

It is well established that plastic strains are necessary for the inducement of fatigue 

fracture in ductile single crystals (Suresh, 1998). Usually shear strain-stress tests 

involving fixed amplitudes of plastic strains in crystals oriented for single slips are 

conducted. Such tests reveal an initial rapid hardening. Eventually the stress is no 

further altered by the cycling (saturation stress), which depends on the crystal 

orientation (Wang et al., 2001). The dislocation substructures in the crystal can be 

related to the variation of the saturation shear stress with the imposed plastic strain. 

These substructures include veins, labyrinth structures, dislocation cells and persistent 
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slip bands (PSBs). PSBs appear at low fixed plastic strains and eventually cover the 

whole crystal volume at higher fixed plastic strains. PSB are composed of a large 

number of slip planes forming a flat lamellar structure and spanning the whole cross 

section of the single crystal thus reaching the GB. In CPFEM, slip softening properties 

can be assigned to bands within grains with typical observed values of thickness and 

wavelength in, for instance, a Ti–6Al–4V alloy (Zhang et al., 2010). 

 

Further, PSBs are divided by walls and channels, each having very different dislocation 

densities (Suresh, 1998). Therefore, as flow stresses may vary accordingly, internal 

stresses may appear, behaving effectively as different phases. Mughrabi (Mughrabi, 

1983) first proposed a composite model to study such stress effects.  

2.6.2.2 Fatigue cracks in polycrystals 

 

The relative number of cycles to crack initiation and crack propagation depend on the 

material and testing conditions (Callister, 2006). Initiation depends on features such as 

crystallographic orientations (Taylor 1999), triple points, inclusions (Dunne et al 2007 - 

Experimental and computational studies of low cycle fatigue crack nucleation in a 

polycrystal) as well as on the interaction of PSBs with GBs (Zhang and Wang 2008). 

Once a stable crack has nucleated, it then initially propagates very slowly and, in 

polycrystalline metals, along crystallographic planes of high shear stress (stage I 

propagation). Eventually, a second propagation stage (stage II) takes over, wherein the 

crack extension rate increases dramaticall (Callister, 2006).  

 

The fatigue regime can influence the mode of the crack in polycrystals. Figure 2.8  

shows an intergranular crack in High Cycling Fatigue (HCF) and a transgranular crack 

in Low Cycling Fatigue (LCF) where the crack seems to present little susceptibility to 

the GB.  
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Figure 2.8: a) Intergranular crack (white arrows) in HCF in 304 Stainless Steel after 16,850 tested 

at 300 °C (Bhatti and Withers, 2008), b) Transgranular crack in LCF in 316 Stainless Steel after 

5159 cycles tested at room temperature (Wang and Wang, 2005) 

2.6.2.3 Impact of stress and deformation  

 

Elber (1970) showed that fatigue cracks could remain closed even when subjected to 

cyclic tensile loads. Plastic deformation (e.g. bending) can introduce a compressive 

residual stress that promotes crack closure. This can be checked by measuring the crack 

propagation rate as a function of number of cycles (Kelleher et al., 2010) or by 

measuring the reduction of compressive lattice strains by ND. If this residual stress was 

previously preventing the growth of a crack, then it is possible that a crack will initiate 

and grow once the residual stress disappears. Surface treatments, such as peening, are 

often performed in order to introduce average in-plane compressive residual stress 

near the surface. This can improve (or sometimes worsen) in cyclic bending tests 

(Mochizuki, 2007, Fathallah et al., 2003). Peening, however, is difficult to model due to 

the high strain rates, the high total plastic strains involved or even the deformation 

induced martensite (Smith et al., 2009).  

 

At the mesoscale, difference of stresses for different grains may control the initiation in 

fatigue life in polycrystalline samples (Song et al., 2008). In LCF, IGS stays constant after 

a few cycles until the initiation of the crack (Wang and Wang, 2005). ND measurements 

(Korsunsky et al., 2004), have revealed that {200} grain families show a high hysteresis 

(a) 
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cycle while {111} show a virtually elastic cycle, being the latter more likely to fail 

(Taylor et al., 1999). These deformation anisotropies within the polycrystal during 

cycling, inspire the exploration of the CPFEM capabilities presented in the next section. 

 

2.6.2.4 Length scales of fatigue modelling 

 

At the macroscale, there is a large stage of linear relationship between log(∆K) and 

log(da/dN) as Paris10 determined for a number of alloys in the HCF regime (Callister, 

2006). At the microscale, prediction of dislocation structures such as cells or PSBs are in 

early stages according to a recent review paper (Dunne 2010). At the mesoscale, CPFEM 

can be used to model the role of microstructure on the driving forces for fatigue 

initiation, particularly in HCF where cyclic plastic deformation is highly heterogeneous. 

For example, CPFEM can be used to predict life-limiting scenarios within a RVE of 

grains (Zhang et al., 2010). 

 

In the HCF regime, Dang Van (1993) postulated that infinite fatigue life (fatigue limit) 

corresponds to elastic response occurring on every crystallographic plane, relating 

damage with the dissipated energy . The energy per saturated cycle could be considered 

as a constant to be multiplied by the number of cycles. Thus such approach can be easily 

extended to complex loading paths as opposed to classical criteria based on variables 

such as maximum stresses, plastic strain range, total strain range (Korsunsky et al., 

2007). CPFEM shows promise at predicting crack initiation by the locations of most 

intense energy dissipation by slip (Korsunsky et al., 2007) or simply by accumulated 

plastic slip (Manonukul and Dunne, 2004). The experimentally observed nucleation 

sites have been predicted as the regions of highest accumulated slip (Dunne et al., 

2007). Criteria combining stress components with the cumulative plastic slip are also 

possible (McDowell and Dunne, 2010). 

 

                                                        
10 ∆K and da/dN represent the stress intensity range and crack growth rate respectively. 
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2.6.3 Capabilities towards SCC 

 

Some materials in some environments subjected to stress may suffer SCC. SCC 

predictions often rely on fracture mechanics at the macroscale. The stress intensity 

factor limit in an environment is lower than the critical material’s KI (opening mode) 

(Anderson, 2005). The reduction of KI depends on the alloy and the SCC environment.  

 

Inter-laboratory studies using nominally identical material-environment combinations 

have revealed a high degree of scatter between the obtained values of KISCC (Dietzel and 

Turnbull, 2007). In this regard, the boundary character can play a role on the boundary 

resistance to SCC (Marrow et al., 2006, King et al., 2008). These findings are 

summarized in annex 6.1.  

 

An example is given in Figure 2.9, where crack bridges are formed by non-sensitised 

boundaries around which the crack has deviated (annealing twins (Σ3)). In contrast to 

the brittle failure of the sensitised boundaries, these bridges deform plastically before 

ultimate rupture.  

 

Figure 2.7 shows that stresses between grains (or intergranular stresses) vary for 

different grain boundaries. Since the stress corrosion cracks are largely intergranular, 

there is an interest in modelling stresses at boundaries. For example, in publication 2 

we seek for combinations of grains that may lead to high stresses at the boundary in 

virtually generated microstructures.  
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Figure 2.9. Example of intergranular stress corrosion cracking of susceptible boundaries (smooth 

surfaces) and ductile failure of a bridge formed by a resistant grain boundary (rough surface, 

marked with an arrow). Image courtesy of D. Engelberg (University of Manchester). 

 

Alternatively, a stress corrosion crack can be imported into a 3D CPFEM model 

(Simonovski and Cizelj, 2012, Simonovski and Cizelj, 2011b). This allows evaluation of 

the role of boundary stress on cracking when coupled with the findings of susceptible 

boundaries (annex 6.1). The calculated boundary stresses are, of course, an 

approximation since the model does not capture certain effects. For example, different 

mechanisms occurring at the boundary (dislocation pile-ups or GNDs) may 

substantially increase the local stresses (Kamaya et al., 2005).  
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3 Experimental methods 

 

The majority of the experimental and modelling techniques are described in each (self-

consistent) publication. Further experimental methods not included in the publications 

are presented in the supplementary research associated to each publication. The 

experimental methods used in additional research cases are also presented in the next 

chapter. In addition, the pre-processing methodology used for the initial random grain 

orientation assignment is described in section 6.2. The post-processing methodology 

used for averaging lattice rotations, taking into account the crystal symmetry, is 

described in section 6.3. As the material presented in these annexes are used in a number 

of occasions in the remaining of the dissertation. 
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4 Results and discussions  

 

This chapter is structured in the form of four publications. Supplementary research 

material associated to these publications will be presented in annexes 6.4, 6.5 and 6.6. 

The experimental methods, discussions and results are presented individually in each 

research case. In publication 1: “Macro and Intergranular stress responses of austenitic 

stainless steel to 90° strain path changes”, results of elastic strains for individual grain 

families by neutron diffraction following strain path changes are compared to those 

predicted by CPFEM. Publication 2: “Modelling the effect of elastic and plastic 

anisotropies on stresses at grain boundaries”, is a virtual study where the relative impact 

of crystal anisotropies on grain boundary stresses is examined. Special attention is paid 

to the unloaded state because of its relevance to SCC. In publication 3: “Modelling and 

measurement of plastic deformation and grain rotation in 3D at the grain-to-grain level”, 

the lattice rotations in a reconstructed aluminium polycrystal have been measured (by 

Diffraction Contrast Tomography (DCT)) and predicted (by CPFEM). In publication 4: 

“Three-dimensional observation and image-based modelling of thermal strains in 

polycrystalline alumina”, the stresses at boundaries in a reconstructed (by DCT) 

aluminium oxide polycrystal have been calculated. Diffraction images have been 

measured and predicted via post-processing. 

 

Additional research material to these publications has been performed. This will be 

presented in annexes 6.7, 6.8, 6.9 and 6.10. The corresponding experimental methods, 

discussions and results are presented individually in each of these annexes for each 

research case. 
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4.1 Publication 1 

 

 

 

Macro and Intergranular stress responses of austenitic stainless steel to 90° 

strain path changes  

 

D. Gonzalez, J.F. Kelleher, J. Quinta da Fonseca, P.J. Withers 

 

 

Materials Science and Engineering: A, Volume 546, 1 June 2012, Pages 263–271 

 

 

 

 

 

 

In this publication the idea of stress-strain measurements in perpendicular directions 

to the pre-strain was proposed by J.F. Kelleher and supervised by P. Withers. The 

corresponding experimental results were performed by J.F. Kelleher and myself. Some 

comments in the paper about the neutron diffraction technique used were edited by 

Joao Fonseca. The Voronoi geometry was created by Zoran Petric and I. Simonovski 

(Petric, 2010) whereas the rest of the pre-processing (meshing, material properties 

calibration, random orientation assignment, boundary conditions…etc) and all the post-

processing was done by myself. 
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Macro and Intergranular stress responses of austenitic stainless steel to 90° 

strain path changes  

 

D. Gonzalez1 *, J.F. Kelleher2, J. Quinta da Fonseca1, P.J. Withers1 

 

1 School of Materials, Univ. of Manchester, Grosvenor St., Manchester, M1 7HS, UK. 

2 ISIS Pulsed Neutron & Muon Source, RAL, Didcot, OX11 OQX, UK 

 

*Corresponding author:  

david.gonzalez@postgrad.manchester.ac.uk 

Mobile number: 00447961684966 

 

Strain path history can play a crucial role in sensitising/desensitising metals to various 

damage mechanisms and yet little work has been done to quantify and understand how 

intergranular strains change upon path changes, or their effect on the macroscopic 

behaviour. Here we have measured, by neutron diffraction, and modelled, by crystal 

plasticity finite elements, the stress-strain responses of 316L stainless steel over three 

different 90º strain paths using an assembled microstructure of randomly oriented 

crystallites. The measurements show a clear Bauschinger effect on reloading that is 

only partially captured by the model. Further, measurements of the elastic response of 

different {hkl} grain families revealed an even earlier onset of yield for strain paths 

reloaded in compression while a strain path reloaded in tension showed good 

agreement with corresponding predictions. Finally, we propose that the study of strain 

path effects provides a more rigorous test of crystal plasticity models than conventional 

in situ diffraction studies of uniaxial loading. 

 

Keywords: neutron scattering, finite element method, austenite, residual stresses, 

crystal plasticity, hardening 
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4.1.1 Introduction 

 

The purpose of this paper is to contribute to our understanding of the mechanical 

response to non-monotonic strain paths at the granular level.  In practice it is rare for 

metals to be deformation processed to final shape without some form of strain path 

change having taken place at some stage; either at 180° (e.g. tension compression) or 

90° (say tension perpendicular to a prior tensile strain) or at some arbitrary angle. 

However most of our understanding of the deformation of polycrystalline metals has 

been acquired on the basis of uniaxial deformation, with limited attention focused on 

strain reversals (180°).  Consequently relatively little is known about the development 

of intergranular and intragranular stresses and heterogeneities as a function of complex 

(non 180°) strain paths.   

 

This gap in our knowledge base is of concern because strain history can play a crucial 

role in sensitising/desensitising metals to various damage mechanisms.  For example, 

prior strain path can influence stress corrosion cracking [1], most probably due, at least 

in part, to the inter-granular stress (IGS) acting between grains, while a reduction in the 

critical crack tip opening displacement (COTD) has been observed in pipe-line steels 

after tensile and compressive pre-strain, the effect being most severe for compressive 

pre-strain [2]. Similarly, a few percent of pre-strain was found to promote strain-

induced ductile-brittle transition and a high compressive pre-strain found to accelerate 

fatigue-crack initiation and growth [2]. Further, several studies conducted under high 

temperature PWR environments have demonstrated the importance of strain path on 

cracking, for example: Couvant et al. [3] found that the complex strain paths can 

promote the intergranular crack initiation in 304L steels as well as 316L steels [4], 

while the influence of loading orientation on crack growth rates has been shown in 

cold-rolled Alloy 600 [5] and 304 stainless steel [6]. 

 

In general, any amount of plastic deformation in a material changes the stress required 

for further deformation. Typically, plastic strain increases the stress required for 
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continued deformation in the same direction (i.e. strain hardening occurs), but the yield 

stress in other directions may be affected in more subtle ways. In particular, if the sign 

of the applied load is reversed after plastic deformation, the yield stress in the opposite 

direction may be reduced. This is the ‘Bauschinger effect’ (BE), named after its 

discoverer, which has been known for over a hundred years [7]. The Bauschinger effect 

can originate at two length scales, namely at the inter- and intra-granular levels.  

 

In polycrystalline metals heterogeneous yielding leads to intergranular stresses (IGS), 

sometimes referred to as mean stresses, between crystallographic families [8,9], or 

between different phases [10-12], which will remain upon unloading. For certain grain 

families (sometimes called soft grains) these mean (back) stresses will add to the 

applied stress upon reverse loading leading to premature yield whereas in other (hard) 

grains they will be of opposite sign and oppose it.  

 

At the intra-granular level (or microscale), several mechanisms contribute to the 

hetereogeneous nature of deformation that can facilitate slip upon load reversal [13]. 

These could be pile-up dislocations present at obstacles [14-16] such as vacancies, 

dislocation tangles, small second-phase particles [17], Lomer-Cottrell locks [18,19], or 

twins [20]. Similarly, cells and walls within grains may also behave as distinct regions 

within the crystals, generating long-range internal or mean stresses that act similarly to 

the IGS [21].  

 

Mathematically the directionality of hardening is often described by isotropic and 

kinematic hardening components. The former describes hardening that exhibits no 

directionality and thus it does not contribute to strain path effects.  For a single phase 

this is equivalent to saying that dislocations once created are equally difficult to move in 

all directions. The later describes hardening that is strain path dependent; this could be 

at the intra granular or intergranular level as discussed above. 

 

The macroscopic flow curve has traditionally been the primary means of characterising 

metal deformation. These macroscopic measurements can be compared with Crystal 
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Plasticity Finite Element Modelling (CPFEM) which simulates the deformation of an 

aggregate of grains [22-24]. The macroscopic BE in sheet metal has been captured by 

straightforward [25] and sophisticated empirical models [26]. At the grain scale, a 

model considering easier slip upon reversal has been incorporated to capture the 

Bauschinger effect observed in cycled single crystals of copper [27]. Stress-strain 

hysteresis loops and the evolution of resolved shear stress amplitude versus resolved 

plastic shear strain amplitude were also captured by the model. Miller and McDowell 

[28] used a Taylor model to predict compression-followed-by-torsion under large 

strains (>50%). This model only partially captured the experimentally observed 

textural softening during torsion, probably due to the over constrains assumed in 

Taylor model. Sophisticated multiscale models that incorporate dislocation-based 

reversal mechanisms have been used to successfully capture the strain path changes in 

uniaxial loading of polycrystals at the macroscale [29,30].  In 1965, Wilson [31] found a 

relationship between the residual stress and the permanent softening in two phase 

steels using X-ray diffraction. Years later, the residual stress was demonstrated to 

approach the same limiting value in forward and reverse loading with this limiting 

value dependent on the amount of pre-strain [11,32].  

 

Over the last 15 years, neutron diffraction has been used to measure the evolution of 

lattice strain for individual grain families (or mesoscopic behaviour) under plastic 

deformation of initially unstrained samples [33-35]. For uniaxial loading, such 

measurements showed a good agreement with elastic intergranular strains predicted 

by CPFEM. Moreover, correlations between the broadening of the Bragg peaks and the 

evolution of the system strength have been demonstrated [36]. In addition the lattice 

strain response to 180° (tension-compression) path changes has been studied by 

neutron diffraction [8],[37].  However, we are not aware of any studies looking at 90° 

path changes. This is perhaps a pity because it may provide a more critical test of such 

models. 

 

Here the goal is to compare CPFEM predictions with neutron diffraction measurements 

of intergranular strain for 90° strain path changes. In our study the pre-strains applied 
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do not exceed 4%, since texture has been found not to change significantly up to about 

8% strain [38].  

4.1.2 Experimental 

4.1.2.1 Material, sampling and loading paths 

316L stainless steel (composition summarised in Table 1) was annealed for about 10 

hours at 1050°C, in an effort to obtain a more homogeneous microstructure giving an 

average grain size of 65m Figure 1. The neutron diffraction spectra revealed low 

texture and an absence of second phases such as martensite or ferrite.  

 

Table 1 . Chemical composition in % of the AISI 316L stainless steel used in the present work. 

316L  C  Cr  Ni  Mo  Mn  Si  P  S  N  

Wt %  0.02

3  

16.7  10.1  2.04  1.57  0.53  0.03  0.02

6  

0.04

8  

 

 

Figure 1. Micrograph of the recrystallised austenite after 1050 °C annealing in the studied 316L 

stainless steel. 

 

Figure 2a shows the sample design developed to achieve multiaxial strain paths. Both 

tensile and compressive loads can be applied in the longitudinal direction via threaded 

sample ends. The gauge length of each sample was machined to a square cross-section. 

Compression can thus also be applied to the flat faces of the gauge length in either one, 

or both, of the two transverse directions by means of contacting alumina platens (used 
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due to its relative transparency to neutrons.). For this work, the platens were coated 

with copper grease to prevent the expected Poisson expansion being constrained by 

friction. A range of plastic strain states could thus be introduced although with the 

restriction that tension can only be applied along one axis. 

 

Diffraction measurements were made for three samples during the second loading 

stage, each deformed following a different strain path (C2C1, T3C1 and C2T3 - see Figure 

2b). In each of the three strain paths studied, the pre-strain was approximately 1.5% 

and the total deformations during the in-situ measurement are about 3%. Lattice strains 

have been measured both axial and transverse to the loading direction.  

 

 

 

Figure 2. a) The sample design allows three distinct 90° strain path changes shown in (b), namely 

compression-compression (C2C1), tension-compression (T3C1) and compression-tension (C2T3). 

For sake of clarity, only the longitudinal components of plastic strain are shown.  

 

Conventionally, the Bauschinger Effect (BE) describes the reduction in yield strength 

when the direction of loading is completely reversed (180°). In our case the strain paths 

are different by 90°; in order to quantify this “reversibility” in the strain paths, Schmitt 

[39,40] introduced the scalar parameter (α): 
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Where p
ε  is the tensor corresponding to the plastic pre-strain and ε  the tensor 

representing the plastic part of the subsequent deformation. The α parameter 

quantifies the magnitude of a change of strain path upon reloading with;  

α = -1 indicating that subsequent straining is in the opposite sense to pre-straining 

(conventional BE);  

α = +1 indicating that subsequent straining is in the same sense as pre-straining;  

α = 0  indicating that subsequent straining is at 54.7° to uniaxial pre-straining.  

Substituting the plasticity tensors for our strain paths into equation 3, the α values for 

C2C1, C2T3 and T2C1 are -0.5, 0.5 and 0.5 respectively. Of these, the C2C1 strain path is 

closest to “complete reversibility” (α = -1).  

 

4.1.2.2 Neutron diffraction measurements 

Neutron diffraction is a versatile probe of the elastic strain state: it is sufficiently 

penetrating to provide a volume average, yet selectively measures only those grains 

which have a common crystallographic direction normal to the diffracting planes. Our 

measurements were carried out at the ENGIN-X time-of-flight diffractometer at the ISIS 

spallation neutron source. Two detector banks were employed, each situated opposite 

the other so as to make a 90º angle with the incoming neutron beam (2θ) in the 

horizontal plane. In this way, the strain within the gauge volume (4×4×4 mm3) can be 

measured in the direction of applied load and at 90º to it (i.e. also measuring in the 

direction of Poisson straining). Each diffraction peak in the time-of-flight spectrum 

represents a different family of grain orientations {hkl}.  The loading test was 

undertaken in situ, providing neutron strain measurements for each level of sample 

deformation. The strain was held constant while each neutron measurement was made 

in order to minimize creep relaxation effects; even though some additional plastic 

straining occurred over the ~10 minutes required to acquire each measurement point. 
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The interplanar spacing for an (hkl) peak, dhkl, can be calculated as a function of the 

measured time of flight and Bragg angle 2θ of the detector [41]. The average strain for 

grains {hkl} oriented for diffraction may then be found as  

 

hkl

hklhkl

hkl
d

dd

0

0
   eq. 2 

 

where 
hkl

d0 is the lattice spacing for the same hkl peak in the unstressed state. Ideally, 

hkl
d0 would be measured from an unloaded sample on the same instrument at a similar 

time, so that any change in the measured lattice spacing could be directly attributed to 

strain and not any instrumental or sample artefacts. However, the samples measured 

here had all been pre-strained off-line. A single value of a0 was determined for an 

unstrained sample using a Rietveld refinement of the entire diffraction spectrum. 

Individual 
hkl

d0 were determined from a0 using:  

 
lkh

a
d

hkl 222

0
0


  eq. 3 

 

Finally, some instrumental and electronic artefacts had to be accounted for in order to 

achieve the required strain accuracy. An ideal instrument should show a linear, 

unvarying relation between the time-of-flight value for each hkl peak and the 

corresponding d-spacing value. However, a small quadratic term had to be included in 

the calibration, and a different relation was derived for each sample to allow for long-

term drift of instrument parameters. The quadratic part of the calibration was derived 

by exploiting the fact that different order crystallographic reflections from the same 

plane (e.g. 111 and 222 peaks) must have identical strains for any intergranular stress 

state. The dhkl values found in this way were used to find strains with equation (1) 

where it was verified that higher order hkl peaks each showed the same behaviour as 

the corresponding lower order peak.  
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4.1.3 Crystal plasticity model  

 
A UMAT subroutine has been implemented in ABAQUS to describe the slip-restricted 

elasto visco-plastic material behaviour of each crystal inside a polycrystalline aggregate 

of material [42]. Random orientations have been assigned to each individual grain 

following the procedure described in [43]. Here we model a representative volume 

element (RVE) comprising 199 grains.  

4.1.3.1 Modelled geometry and meshing 

A given displacement was applied as a boundary condition to one face of the RVE. The 

other opposite face was fixed by a boundary condition restricting displacement only in 

the direction of the applied displacement. Each grain was linked to its neighbours 

through a surface constraint i.e. nodes belonging to the boundary surface of one grain 

evolve with interpolated displacements and rotations from the boundary surface of the 

second grain. The experimental and modelled strain rates were assumed to be 

approximately 2×10-6 s-1 for loading steps and 2×10-5 s-1 for unloading. These strain 

rates fall within the set of strain rates previously measured and simulated by CPFEM 

where good agreement was found [24].  

 

3D Voronoi tessellation [45] was used to produce a random virtual microstructure that 

mimics the presence of real microstructure features, including a range of grain sizes, 

grain shapes, and crystallographic orientations.  We investigated meshing the RVE 

using both C3D411 linear interpolation elements (Figure 3) and C3D10M1 quadratic 

interpolation elements. In an effort to achieve similar computational cost, the quadratic 

element mesh (16,783 elements) was substantially coarser than the linear element 

mesh (228,946 elements). This resulted in some (quadratic) elements being too 

distorted when meshing a region containing relatively small edges. To overcome this, 

we firstly merged some small edges together (always preserving the GB) and refined 

the mesh near GBs with 3 edges. Since both meshes gave almost identical results, only 

the linearly interpolated elements are reported here. 

                                                        
11   Details regarding the formulation can be found in [46]. 
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Figure 3. Mesh used to simulate microstructure of 199 randomly oriented grains using linear 

interpolation elements. 

 

4.1.3.2 Constitutive laws 

The single crystal parameters required for the crystal plasticity constitutive laws used 

in the model cannot be obtained directly from an experiment on a polycrystal. Instead, 

it is common practice to calibrate the model using the macroscopic stress-strain curve 

(Figure 4c). The parameters obtained this way are given in Table 2.  

 

Table 2. Constants used in the present work. The elastic constants (C11, C12 and C44) and other 

parameters used in the model [44]. 

 

C11 

(GPa) 

C12 

(GPa) 

C44 

(GPa) 

n a  
0h  

(MPa) 

s  

(MPa) 

0  

(MPa) 

204.6 137.7 126.2 55 0.001 675 175 90 

 

The slip rate of each individual crystallographic slip system is a function of the current 

strength of the slip system, which increases as deformation proceeds. We assume that 

flow on one slip system causes hardening on all slip systems to the same extent. 

Hardening on each slip system is directionally independent hence the model assumes 

isotropic hardening at the crystal level and is strain rate sensitive. The present model 

was first proposed by Hill and Rice [47] in its rate-independent form and updated by D. 
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Peirce and co-authors [48] for elasto-visco plastic deformation by slip. The parameters 

used to match the tensile stress strain curves between the modelled aggregate and the 

solution annealed 316L steel samples are given in Table 2. Further detail regarding the 

constitutive laws and examples of the implementation can be found elsewhere [49,50].  

4.1.3.3 Extracting the response of {hkl} grain families 

Six simulations using different random grain orientation sets were studied and found to 

show negligible differences in the uniaxial macro stress-strain curve.  This suggests 

that, from a macroscopic point of view, the RVE contained sufficient grains.  Since 

diffraction is grain orientation selective only correctly oriented grains contribute to 

each diffraction peak. A post-processing tool was incorporated to calculate elastic 

strains averaged only over those grains oriented so as to contribute to a given {hkl} 

diffraction peak. All grains oriented within 8 degrees or the exact diffraction condition 

were included: this is comparable to the angular discrimination of the detector used for 

the neutron diffraction experiment. 

4.1.4 Results and discussions 

4.1.4.1 Macroscopic stress-strain curves 

The macroscopic stress-strain curves predicted by CPFEM for the three strain paths are 

shown in Figure 4 alongside the experimentally measured ones. The differences in the 

initial elastic slopes during pre-straining in compression can probably be attributed to 

displacement resulting from initial sample re-alignment and expulsion of lubricant 

between the sample and the hydraulic press. The associated yield stresses (at 0.2% 

permanent strain), which are not sensitive to these effects, are presented in Table 3. 
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Table 3. Yield stresses (at 0.2% permanent strain) extracted from the predicted and measured 

stress-strain curves for the three different strain paths. Note the model was calibrated on the 

basis of the tensile yield curve T2 

 

Strain 

path 

 Pre-strain 

(%) 

Initial Forward Yield 

(±10 MPa) 

Reloaded Yield 

(±10 MPa) 

 Model Experiment Model Experiment 

C2C1 -0.5 1.3 -210 -200 -270 -200 

C2T3 0.5 1.5 210 225 270 240 

T2C1 0.5 1.6 -210 -210 -270 -240 

 

 

It is clear from both the model and the experiments that on changing the strain path, 

yielding initiates due to transient softening before the current yield point for continued 

forward loading, though this effect is more pronounced for the experimental curves. 

The fact that the 0.2% yield point on reloading is lowest for C2C1 may relate to its being 

a more drastic strain path change, as quantified by the  parameter.   

 

It is also clear from Figure 4 that only for C2T3 is there any significant Bauschinger-style 

permanent lowering of the yield stress (~30MPa).  These observations are consistent 

with those of [51] who found only a very small permanent BE after 1.5% pre-strain for 

316L, but significant transient softening. The Bauschinger effect (BE) seems to be 

controlled by the amount of piled-up dislocations against the obstacles during the pre-

strain. Low stacking fault energy (SFE) [16], the presence of particles [52], or alloying 

elements [53] would enhance this effect. It is also well known that the transient 

softening region and permanent softening increase with the amount of pre-strain. 

Therefore the small permanent softening is not unexpected given the low SFE and the 

small pre-strain applied. 
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C2T3 and T3C1 are equivalent strain paths (in terms of α), but their reverse straining 

responses are different. A small transient hardening region can be seen for the C2T3 

strain path before significant permanent softening. However, a larger transient region 

can be seen for the T3C1 strain path, with no permanent softening.  It remains unclear 

why this happens but analysis of other samples pre-strained to a similar extent 

confirmed this behaviour. It is possible that, due to poor lubrication, an effective biaxial 

(rather than an ideal uniaxial) stress state occurs in tests where the compression is 

applied upon reloading (T3C1 and C2C1). This would leave an extended transient 

hardening region for these strain paths, as opposed to the permanent softening 

observed for C2T3. Of course, the corresponding predictions are not sensitive to this 

anisotropy. 
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Figure 4 Measured stress strain data (points) and CPFEM simulations (continuous lines) for the 

three different strain paths. 
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4.1.4.2 Intergranular mean stresses 

Intergranular mean stresses arise naturally from the heterogeneous flow predicted by 

the CPFE model at the grain scale some of which assist reverse flow (back-stresses) 

while those in other grain families hinder it.  What is clear from Figure 4 is that the local 

grain to grain residual stresses accumulated during pre-straining do initiate 

microyielding on reloading at stresses well below that required for continued forward 

loading (see also the discussion in 4.3.2) – if not quite to the same extent as that 

observed by experiment.  However the fact that this effect exhausts at about 0.5% strain 

rather than give rise to a permanent softening is because the strains developed on pre-

strain are soon replaced by strains characteristic of the new strain path. It is 

noteworthy that the predicted spread of IGS as demonstrated in Figure 5 behaves 

similarly. It can be seen that soon after reloading (~250MPa) the spread for the pre-

strained sample matches that developed by simple uniaxial tension or compression. 

This is consistent with neutron diffraction results of uniaxial path changes in two phase 

steels [11]. 
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Figure 5. Predicted scatter of IGS between different grains (quantified as the standard deviation 

of the grain-averaged stresses) versus the applied load for the three studied strain paths. Note 

that the spread for the pre-strained samples (initially ~50MPa) approaches that of the uniaxial 

strain (C2 or T2) at a load of about 250MPa regardless of the strain path. 

C2C1  

C2T3 

T3C1 

 

C2 (without prestrain) 

T3 (without prestrain) 

 



Chapter 4 – Results and discussions 
 

85 
 

 

4.1.4.3 Individual grain family responses 

4.1.4.3.1 Intergranular stresses upon uniaxial tensile loading 

The in-situ measured and predicted elastic strains for different {hkl} families under 

uniaxial tension of a non pre-strained sampled are shown in Figure 6. As in previous 

work there is good agreement between modelled and measured strains [33].  
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Figure 6. Measured (data points) and predicted (continuous line) elastic strains for axial tension 

to 2.5% total elongation a) in the direction of loading; b) in the perpendicular to loading for four 

{hkl} grain families during tension. The predictions are the average strain of six equivalent 

random orientation (RPV) sets is presented in all cases. The error bars correspond to the 

difference between the extreme 200 predictions for over the 6 representative models. 

 

Below 170MPa, the sample is fully elastic; above 230MPa it is fully plastic. The region 

between these two represents the elastic-plastic transition with certain grain families 

deforming plastically while others deform elastically. The crystal elastic constants 

define the response under the fully elastic regime, while both the elastic crystal 

constants and the Schmid’s factor of the crystallographic family define the fully plastic 
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region. Work by Wong and Dawson [54] has concluded that the single crystal elastic 

properties have a negligible effect in fully developed plasticity when the Young’s 

modulus is kept constant. This negligible effect of elastic anisotropy in fully developed 

plasticity has also been confirmed at stresses calculated directly at grain boundaries 

[43].  

 

We found that upon changing the set of random grains used to represent the polycrystal 

that in contrast to the insensitivity of the macroscopic response, the predicted elastic 

strains were quite sensitive to the grain set probably because only small numbers of the 

199 grains in the RPV contribute to a given diffraction peak response. Consequently, 

results averaged over six different equivalent random orientation sets are presented in 

Figure 6-9 and the error bars in Figure 6 represent the extreme values of over 6 sets. 

The variation was found to vary with {hkl} being much larger in the transverse 

direction than the axial with the transverse 200 peak exhibiting the largest variation. 

This is in agreement with CPFEM predictions of deformation of ferrite (BCC), where the 

in-plane rotation angle around the transverse measurement direction for grains giving 

rise to axial 200 and 110 peaks was found to have a great effect [17]. In the present FCC 

study this was not seen for the transverse 220 peak. It is clear, however, that local 

texture of the diffracting grains has a great impact on the measured and predicted 200 

peaks.  This probably explains the better agreement observed for the axial as against 

the transverse lattice strain data, as has been observed previously [34]. 

4.1.4.3.2 Intergranular stresses upon strain path change 

 

The hkl peaks responses for reloading for the three strain path changes C2C1, T3C1 and 

C2T3 are shown in Figure 7, Figure 8 and Figure 9 respectively assuming zero lattice 

strain prior to the pre-strain. It is clear from Figure 7a for C2C1 that upon re-loading the 

initial gradients observed experimentally differ from those predicted for elastic loading, 

but are closer to those predicted once yielding has begun.  This suggests that 

microyielding commences essentially from the onset of re-loading, possibly even having 

already started towards the end of unloading from the pre-straining (not shown). 
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Further, we can see that general yielding is predicted to occur at approximately -

260MPa which is between those for the axial (-270MPa) and transverse (-250MPa) 

inferred from the experimental curves in Fig.7. 
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Figure 7. Measured data points and predicted (continuous line) elastic strains: a) in the direction 

of loading; b) in the perpendicular to loading of four grain families during compression after 

compression in the perpendicular direction to the test (C2C1).  

 

The reloading response for C2T3 is shown in Figure 8. The measured and predicted 

elastic strains for most of the peaks are in good agreement for this strain path. The most 

noticeable difference is the offset due to incorrect prediction of the intergranular 

residual stresses incurred in forward loading, especially for the 200 peak measured in 

the transverse direction (Figure 8b). The onset of micro-yielding (~190MPa) is 

reasonably well captured, as is the onset of general yielding at around 260MPa.  
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Figure 8. Measured data points and predicted (continuous line) elastic strains: a) in the direction 

of loading; b) in the perpendicular to loading of four grain families during tension after 

compression in the perpendicular direction to the test (C2T3).  

 

For T2C1 (Figure 9), the lattice strain responses suggest micro-yielding at -50MPa with 

general yielding at around -270MPa in contrast to the model which predicts values of -

170 and -290MPa respectively.  This difference between predictions and simulations is 

again consistent with the macroscopic measurements and is similar to that observed for 

the C2C1 strain path.  
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Figure 9. Measured data points and predicted (continuous line) elastic strains: a) in the direction 

of loading; b) in the perpendicular to loading of four grain families during compression after 

tension in the perpendicular direction to the test (T2C1).  

 

In general, the measured and predicted lattice strain curves, shown in Figures 6 to 9, 

reveal considerable differences. Some of these differences arise from two contributing 

(scattering) factors in each grain in Bragg condition: its neighbourhood and its rotation 

about the measurement direction. Therefore, the averaged measured and averaged 

predicted strains may differ from one representative volume to another. In addition, 

strain-induced martensite is typically reported only for higher strains (>5%) for 316 

[55]; if present here, this phase would also contribute to the lattice strains and the 

Bauschinger effect.  

 

Table 4. Reloaded yield values extracted from the predicted and modelled lattice strain curves for 

the three different strain paths.  

Strain 

path 

 Pre-strain 

(%) 

Micro-yield 

(±10 MPa) 

General Yield 

(±10 MPa) 

 Model Experiment Model Experiment 

C2C1 -0.5 1.3 -180 0 -260 -270 

C2T3 0.5 1.5 190 150 270 260 

T2C1 0.5 1.6 -170 -50 -290 -270 
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From the changes in slopes of the elastic strains we can conclude that in the experiment 

micro-yielding occurs much earlier than the model predictions in C2C1 and T3C1 

samples. This tendency for earlier than predicted microyielding upon path change is 

consistent with previous work [37] where earlier than predicted micro-yielding was 

observed for 200 peaks under uniaxial tension-compression in 316L austenitic stainless 

steel. Such experiments showed a larger yielding transition (difference between 

microyield and general yield). This yielding transition was better captured by the 

incorporation of kinematic hardening at the grain level [8]. 

 

Overall, we can conclude that the macroscopic 0.2% yield stress determined from the 

stress-strain curve, with or without pre-strain, lies close to, but below, the point at 

which all grain families are under general yield. Additionally, for C2C1 macroyield 

occurred earlier than for other strain paths while microyielding occurred much earlier. 

These effects are attributed to greater strain path change (lower α).  

4.1.5 Conclusions 

 

Three different 90° strain path changes have been studied giving rise to the following 

observations. 

1) Transient softening upon changing strain path was observed both in the model and 

in the experiments. This arises at least in part from the different residual stresses 

introduced in each grain family during pre-straining. 

2) Only in the case of C2T3 was any significant permanent softening observed.   Low 

levels of permanent softening are consistent with previous work on single phase 

stainless steels.   

3) Modelling results show that intergranular strains are introduced in the pre-strain 

but these soon become over-written by intergranular strains characteristic of the 

reloading such that no permanent softening is predicted. 

4) While the slopes for the different {hkl} families were well predicted for elastic 

loading, the onset of microyielding was found to occur generally earlier than 
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predicted by the CPFE model especially for the samples reloaded in compression. 

By contrast, the occurrence of general yielding was in much closer agreement 

corresponding well with the onset of macroscopic yielding in the stress-strain 

curves.  This early activation of microyielding between the {hkl} families relative to 

that predicted has been observed previously for other strain path changes [37]. 

5) The current model does not include an inherent Bauschinger style permanent 

softening in the constitutive laws governing slip.  It is quite possible that this would 

need to be invoked to explain any permanent softening encountered for larger pre-

strains. 

6) At least for compressive reloading, the onset of microyielding between the lattice 

plane families occurs almost immediately in contrast to the model. This probably 

explains why the corresponding macrostress curves appear to show greater 

transient softening effects than for C2T3. Because of its more severe strain path 

change (lower α), these effects are more noticeable for C2C1 than T3C1. 

7) Studying the grain behaviours by diffraction during strain path changes would 

appear to be a more rigorous test of crystal plasticity models compared to 

monolithic straining. 
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In this publication the idea of investigating the effect of elastic and plastic anisotropies 

were proposed and supervised by Joao Fonseca. The 3D Voronoi geometry and mesh 

(including the inserted cohesive elements) were created by I. Simonovski (Simonovski 

and Cizelj, 2011a) whereas the rest of the pre-processing (material properties 

calibration, random orientation assignment, boundary conditions…etc) and all the post-

processing was done by myself. 
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Abstract 

 

It is believed that intergranular stresses play a significant role in failure processes, such 

as stress corrosion cracking (SCC) and fatigue cracking. In deformed cubic metals, 

intergranular stresses arise solely from the plastic and elastic anisotropies of the 

individual grains. In this work, stresses  normal to the grain boundaries in deformed 

stainless steel have been calculated using crystal plasticity finite element modelling 

(CPFEM). The calculations show that, at strains larger than 0.5% and under load, the 

stress at grain boundaries is dominated by the effect of plastic anisotropy rather than 

elastic anisotropy. Upon unloading, plastic misfit still fully dominates the heterogeneity 

of normal stresses and its insensitive to the angle between the boundary normal and 

the preloaded direction. The effects of mesh density and size of boundaries on normal 

stresses are also studied. Special attention has been focused on examining what 

conditions give rise to large grain boundary stresses. Our results suggest that the 

magnitudes of the residual grain boundary stress predicted is not highly correlated to 
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the amount of plastic strain in the vicinity of the boundary and whether it is higher or 

lower than the average plastic strain. In other words, a soft-hard grain combination 

does not imply high tensile (nor compressive) residual stress normal to its boundary. 

The results are similar if instead of comparing the plastic strain near neighbours, we 

compare the plastic strain in the grain to the average plastic strain. 

 

Keywords:  

 

A. grain boundaries 

B. anisotropic material 

B. polycrystalline material 

C. finite elements 

C. boundary elements 

4.2.1 Introduction 

 

Intergranular stresses are believed to be important for a range of grain boundary (GB) 

related failure mechanisms. For example, the brittle intergranular fracture of alumina 

can be related to the normal grain boundary stresses generated by the anisotropy in 

elastic constants (Marrow et al., 2011). Failure by stress corrosion cracking (SCC) in 

stainless steel often occurs intergranularly as illustrated in Figure 1 by Babout et al. 

(2006). The reasons for this are complex, but, the magnitude of stress normal to the 

grain boundary is likely to be one of the contributing factors for intergranular cracking 

(Palumbo et al., 1991). Similarly, grain boundaries have been demonstrated to have an 

impact on the initiation of fatigue cracks in polycrystals (Sangid et al., 2011). In such 

cases, measuring the stresses at grain boundaries in the bulk is very difficult 

experimentally, if not altogether impossible, although some hope has recently raised 

with high resolution EBSD techniques (Gardner et al., 2010).  Consequently, there is 

considerable interest in modelling deformation at the grain scale and using these 

models to give estimates of local stresses at the microstructural level. At this scale, 

isotropic material models no longer apply and the inherent plastic and elastic 
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anisotropy of crystals must be taken into account. One way of achieving this is to use 

the Finite Element Method (FEM) with appropriate single crystal plasticity laws. Such 

models can be used to successfully predict the evolution of the lattice strains during 

uniaxial tensile loading in stainless steels (Clausen et al., 1999) and to study the impact 

of single crystal elastic anisotropy on the lattice strains during the elastic-plastic 

transition (Clausen et al., 1998). Further, crystal plasticity models have been used to 

predict the dislocation density across the boundary of a deformed aluminium bi-crystal 

(Liang and Dunne, 2009) as determined experimentally (Sun et al., 2000). The 

strengthening effect of grain boundaries has also been modelled using size-dependent 

constitutive laws (Lim et al., 2011). However, only in a few cases has crystal plasticity 

FEM been used to predict stresses right at the boundary (Diard et al., 2002; Diard et al., 

2005), perhaps due to the difficulty in measuring them. 

 

In this article, we present the results of a systematic study on the development of 

normal stresses at grain boundaries during, and subsequent to, uniaxial deformation. 

The unloaded state is of particular interest due to the enhancing effect that prior 

deformation has on SCC and fatigue susceptibility (Mochizuki, 2007). Our study has two 

main aims: to determine the relative importance of elastic and plastic anisotropy on the 

development of grain boundary stresses and to determine whether the magnitude of 

the stresses can be correlated with the amount of plastic deformation in the grains that 

neighbour the boundary. In this line, intergranular damage has been correlated to the 

deformation incompatibility (Bieler et al., 2009) and the amount of plastic strain in 

neighbouring grains (Couvant et al., 2009). Here the emphasis is on the stresses acting 

normal to the grain boundaries, as these are probably the most relevant in the context 

of IGSCC. 
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In annealed metals, stresses at grain boundaries are likely to be relatively small, 

especially in those with a cubic crystal structure and which therefore have no thermal 

expansion anisotropy. When deformed, however, the magnitude of these stresses 

increases due to the mechanical anisotropy of individual grains. During uniaxial 

deformation, the magnitude of the stresses normal to the boundary depends on three 

major factors: boundary orientation with respect to the loading direction, elastic 

mismatches caused by the anisotropy single crystal elastic constants (Fallahi and Ataee, 

2010) and plastic strain misfit caused by single crystal plastic anisotropy. 

 

1) Boundary orientation with respect to the loading direction. The resolved stress at the 

grain boundary depends strongly on the angle of the grain boundary plane with the 

loading direction. 

2) Elastic mismatches caused by single crystal elastic anisotropy. Most metals exhibit 

elastic anisotropy at the single crystal level. During deformation of a polycrystalline 

aggregate, this anisotropy causes the strain and stress within each grain to differ from 

their macroscopic average (Sauzay, 2007). As a consequence, deformation 

incompatibilities develop between neighbouring grains with different crystallographic 

orientations, giving rise to stresses at the grain boundaries. If deformation is purely 

elastic, these stresses disappear on unloading. 

3) Misfit caused by plastic anisotropy. If plastic deformation occurs by crystallographic 

slip, then the stress at which individual grains deform plastically will depend on the 

100 µm 

 
 

Figure 2. Longitudinal sections from successive x-ray tomographs showing the same region in 
a sensitised type 302 stainless steel wire, demonstrating development of intergranular 
cracking (Babout et al. 2006). 
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crystallographic orientation of the grains. Grain orientation will determine how many 

slip systems are activated and how easily they are activated in response to a given 

constraint. Some grains are therefore “harder” than average and others “softer” in 

certain directions.  As in the elastic strain case, this plastic anisotropy leads to 

incompatibilities between neighbouring grains, with associated grain boundary 

stresses.  

 

Whilst the metal is being plastically deformed and therefore is under applied stress, 

elastic and plastic anisotropy modulate the grain boundary orientation effect. After 

unloading, however, the grain boundary residual stresses are determined by the 

mechanical anisotropy of the material alone.  The development of grain boundary stress 

was predicted in (HCP) zirconium following uniaxial deformation using CPFEM (Diard 

et al., 2005), accounting for both elastic and plastic anisotropy. Unsurprisingly, they 

found that the distribution of normal grain boundary stresses becomes increasingly 

wider as macroscopic deformation progresses. However, the study could not find any 

correlation between the magnitude of the grain boundary stress and the characteristics 

of the grains defining the boundary. 

 

Here we follow a similar methodology to distinguish the effects of elastic and plastic 

anisotropy on the magnitude of the stress calculated at grain boundaries in (FCC) 

stainless steel. Because of its assumed importance on intergranular cracking, only 

normal stresses are considered. Four cases are studied: elastic isotropy with plastic 

isotropy (model EI-PI), elastic anisotropy with plastic isotropy (model EA-PI), elastic 

isotropy with plastic anisotropy (model EI-PA) and elastic anisotropy with plastic 

anisotropy (model EA-PA) or fully anisotropic. We are interested in both the stress 

development during loading and on the residual stresses after load removal (unloaded 

state). The loaded case will provide us with information on how the anisotropy affects 

the stresses on grain boundaries during service. The study of the unloaded case will be 

relevant to intergranular stresses introduced by the previously introduced deformation 

or cold work which has a significant impact in development of damage and on stress 

corrosion crack susceptibility (García et al., 2001; Singh et al., 2003). Finally, we have 
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paid special attention to the high stresses developed at small grain boundaries, how 

these change with the mesh refinement and the effect of their exclusion. 

4.2.2 Model description 

In crystal plasticity finite element modelling (CPFEM), a finite element mesh is used to 

represent the grain structure. Grains are therefore represented by one or more 

elements. In single-phase polycrystals, the material properties are the same for all 

grains and grains are defined simply by their orientation. CPFEM models have been 

used to study stresses in aggregates by several authors (Barbe et al., 2001a; Barbe et al., 

2001b; Bate, 1999; Kalidindi et al., 1992; Sarma and Dawson, 1996). They have been 

validated at the -macro and –meso scales by strain-stress curves (Diard et al., 2005; 

Quilici and Cailletaud, 1999) and diffraction techniques (Lorentzen et al., 2002; Quinta 

da Fonseca et al., 2006; Song et al., 2008). The model used here was first introduced by 

Hill & Rice (1972) in its rate-independent form and updated (Peirce et al., 1983) into 

the current elasto-viscoplastic formulation.  

4.2.2.1 Crystal plasticity constitutive laws  

 

In our case we have used a UMAT subroutine (Huang, 1991) that has been implemented 

in ABAQUS to describe the slip-restricted elasto-viscoplastic material behaviour of each 

crystal. It is described only in essence here; more details and examples of 

implementation can be found in (Pi et al., 2008; Qian et al., 2010; Simonovski et al., 

2007). The plastic part of the velocity gradient is assumed to be the summation of the 

slip rates of each active slip system, ( ), considering the Schmid tensor in the 

evaluated Gauss point. The slip rate )(  is defined as: 
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In equation (1) )(  represents the resolved shear stress acting on the considered slip 

system, )(g  the current strength, )(a  the reference strain rate and n the strain rate 
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sensitivity. In the limit, as n approaches infinity, this power law approaches that of a 

rate independent material.  

 

For coplanar systems, the ratio of latent hardening to self-hardening is close to unity, 

whereas for non-coplanar systems the range 1.0-1.4 seems to encompass much of the 

experimental data (Kocks, 1970). We assume that flow on one slip system causes 

hardening on all slip systems to the same extent (isotropic hardening), meaning that all 

terms of the hardening matrix ( h ) are equal. Therefore, the current strength, )(g , of a 

slip system, ( ), is directly related to the slip rate of each active slip system and a 

parameter called slip hardening moduli ( h ) described by Peirce et al. (1982) as 

follows: 
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Whereh0 is the initial hardening modulus, s  is a hardening sensitivity parameter, 

0 represents the initial critical resolved shear stress. Cumulative slip is represented 

by  and it is defined as: 
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 (3) 

 

Although explicit implementation has been reported to perform better for large models 

(Harewood and McHugh, 2007), implicit implementation has been used for simplicity in 

the calibration of the model since stability checks are not needed, allowing a much 

larger time increment. Checks are done by definition in each increment.  

4.2.2.2 Meshing the grains 

 

Real microstructures are complex, comprising a range of grain sizes, grain shapes, 

crystallographic orientations, and orientations of the grain boundary plane relative to 

the loading direction. 3D Voronoi tessellation has been extensively used over the last 
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decade (Barbe et al., 2001a; Barbe et al., 2001b; Diard et al., 2005; Quilici and 

Cailletaud, 1999) since it produces a random virtual microstructure that captures some 

of these features. A virtual Voronoi microstructure needs to be meshed with individual 

elements for calculation with crystal plasticity finite element method (CPFEM). Since 

features such as small grains and small edges are present in real microstructures, the 

aggregate was generated without a repulsion distance function. This function ensures 

that the distance between any two random Voronoi seeds is above a limit resulting in a 

more homogeneous grain volume distribution. However, by not using a repulsion 

distance function we can probe the effects of differences in grain boundary size. The 

special behaviour exhibited by small boundaries is discussed later. Quey and colleagues 

(2011) have recently used an algorithm called “regularization” (implemented in a free 

(open-source) software package) to remove these small entities (edges and faces) that 

can lead to numerical issues. This work revealed a small effect of regularization on the 

grain size distribution. 

 

The 3D Voronoi tessellation, shown in Figure 2, was used to generate an aggregate 

composed of 199 grains and 1016 grain boundaries (Petric, 2010). This ensures a broad 

range of random grain boundary orientations with respect to the loading direction 

suitable for statistical analysis in the present study.  
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We found that linear elements allow longer time increments than quadratic ones. 

Therefore simulations to relatively large deformations (10%) were possible at a 

reasonable computational cost. Linear interpolation elements are, in general, less 

accurate than quadratic, meaning that more linear elements are needed compared to 

quadratic elements. A good balance between computational cost and mechanical 

response was found with tetragonal linear elements C3D412. This was determined by 

finding the point at which the stress-strain response became independent of mesh 

density. Although C3D4 elements can suffer from shear locking, becoming overly stiff 

under bending moments (ABAQUS, 2006), and more accurate results may be obtained 

by using quadratic C3D10M, these could not be used in this work since the number of 

nodes (i.e. 6) at their triangular faces differs from the number of nodes (i.e. 3) at the 

triangular faces of the cohesive elements used here (COH3D6). Nevertheless, the solid 

C3D4 elements gave similar results to the solid C3D10M elements. Further, the possible 

high in-plane shear strains introduced by possible shear locking at the linear cohesive 

elements are unlikely to affect the out-plane stresses (studied in this work). Therefore, 

                                                        
12 The element names used in the present work refer to Abaqus elements. Details in the formulation can 
be found elsewhere (ABAQUS, I., 2006. ABAQUS Documentation, Providence, Rhode Island.). 

   

Grain  186   

    

Grain 189   
    

Cohesive elements  
between grains 186  
and 189   

    

    

    

    

φ 

  

n  

 
Figure 3. A) Meshed Voronoi tessellation used in this work. B) Cohesive elements linking 
two grains across a boundary. Arrows represent the loading direction and φ the angle 
between the loading direction and the boundary normal (n) 
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we are confident that the main conclusions of this work are not affected by the use of 

linear elements. The resulting mesh comprised 148000 C3D4 elements and 22921 

cohesive elements. We assigned a random orientation to each grain whose first axis is 

based on the sphere point picking method (Weisstein, 2012). This method defines a 

vector from the sphere’s centre to a strictly random point on the surface of the sphere. 

The second axis is defined by a vector perpendicular to the first axis with origin in the 

sphere’s centre and ending in a random point between 0 and 2π. The third axis is 

defined by the cross product of the other two axes.  

4.2.2.3 Meshing and constitutive laws of the interface 

4.2.2.3.1 Choice of suitable elements 

Our aim is to study the effects of elastic and plastic anisotropies on the magnitude of the 

predicted grain boundaries stresses. In order to quantify stresses accurately at the 

grain boundary, Gauss points need to be placed directly at the interface. Standard solid 

elements do not usually contain Gauss points at the faces of the elements. However, this 

can be achieved in two ways: 1) by placing Gauss points at the element faces (Diard et 

al., 2002; Diard et al., 2005), 2) by inserting elements between the grains that do not 

significantly alter the mechanical response of the aggregate (Simonovski and Cizelj, 

2011). The latter approach was used here firstly because suitable elements are 

available in ABAQUS (ABAQUS, 2006) and secondly, because they allow for the 

incorporation of cracking which may be useful in the future.  

 

3D elements are required to calculate out-of-plane stresses between 3D grains. The 

elements need to be sufficiently thin so that their integration points are essentially 

positioned at the boundary. In theory, the resolution of the computation of the inserted 

element increases as their grain boundary normal dimension approaches zero. In 

practise, this causes computational errors (e.g. overly distorted elements) when using 

classic 3D elements such as C3D20R. Cohesive  elements (COH3D6) allow virtual 

thickness assignment, avoiding computational singularities.  
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4.2.2.3.2 Implementation of cohesive elements  

The cohesive elements (COH3D6) comprise 6 nodes and 3 Gauss points.  They were 

assigned the properties of bulk 316 stainless steel (E = 200 GPa, ν = 0.3). Further detail 

regarding cohesive element behaviour can be found elsewhere (ABAQUS, 2006). Note 

that the cohesive elements, as shown in Figure 2b, are planar, matching in-plane nodes 

of the element with nodes of adjacent C3D4 elements. The nominal thickness was 

chosen to be relatively very small, namely 10-5 the size of the Voronoi cube (Figure 2), 

in an effort to ensure that the mechanical response of the aggregate was not affected by 

the boundaries. This is several orders of magnitude smaller than the average grain size 

of the aggregate in Figure 2. 

 

4.2.2.4 Boundary conditions 

 

The aggregate shown in Figure 2 comprises a few hundred grains, which is sufficient to 

ensure that the macroscopic response does not depend too heavily on the details of the 

grain structure. According to this assumption, homogeneous stress or strain fields can 

be imposed as boundary conditions in the normal direction to the external boundaries 

of the aggregate. We constrained axial displacements to be zero over the bottom face 

and imposed the desired constant axial displacement across the nodes on the top face. 

This allowed bulk Poisson contraction of the side-faces. Such boundary conditions 

would introduce unrealistic stresses in the grains proximate to the constrained surfaces 

because of their anisotropy. In practise, full coupling may be addressed by embedding 

the RVE in a (finite) matrix of isotropic material with the average properties. This 

would better accommodate stress and strain fields around “hard” or “soft” grains 

positioned on the constrained surface. However, this would involve a considerable 

increase of computational cost due to the extra number of matrix-elements required to 

match the mesh of the RVE. A compromise was found by averaging the predicted 

boundary stresses over several simulations using each a different (equivalent) random 

set of crystal orientations. 
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4.2.2.5 Fitting to the macroscopic response 

The elastic anisotropy of single crystals is well documented (Nye, 1985). 316 stainless 

steel is face centred cubic and as such has the single crystal elastic constants given in 

table 1. Our calculations give the stiffest direction to be <111> at 308 GPa and the most 

compliant <100> at 91.7 GPa in close agreement with Wong et al. (2010) . Austenite has 

a relatively high elaastic anisotropy when compared to other cubic metals such as 

aluminium, nickel and ferrite (Sauzay, 2007). The single crystal directional elastic 

modulus surface for austenite is shown in Figure 3.  

 

Table 1. Constants used in the present work. The elastic constants (C11, C12 and C44) were obtained 

from the literature (Ledbetter, 1984). 

C11 

(GPa) 

C12 

(GPa) 

C44 

(GPa) 

n a  h0  

(MPa) 

t s  

(MPa) 

t 0  

(MPa) 

204.6 137.7 126.2 55 0.001 675 175 90 

 

 

 

Figure 3 Single crystal directional elastic modulus surface for austenite, showing the stiffness 

dependence on the direction of loading. 
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In contrast to the elastic properties, the plastic single crystal parameters required by 

the constitutive laws used in the model are not readily obtained experimentally. 

Instead, it is common practise to calibrate the model parameters by fitting the predicted 

deformation to the macroscopic stress-strain curve. Figure 4 shows the experimental 

and simulated curves obtained using parameters shown in Table 1. The behaviour of 

the aggregate was also validated by comparing the predicted average response for 

differently oriented grains with those measured by neutron diffraction showing good 

agreement (Gonzalez et al. 2012). Details about the neutron diffraction technique can 

be found elsewhere (Clausen et al., 1999; Oliver et al., 2004; Quinta da Fonseca et al., 

2006). 

 

 

 

For the two models with elastic isotropy, the bulk elastic constants (E = 200 GPa, ν = 0.3) 

were used. For the two models having plastic isotropy, the plastic response was chosen 

to match the response of the experimental stress strain curve in Figure 4. The macro 

response of the model was slightly affected by different sets of crystallographic 
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Figure 4. Measured and simulated macro response of the aggregate. 

The applied strain rates in the simulations were 
6104.1   s-1 

and 
5104.1   s-1 for loading and unloading respectively in 

approximate accordance with the loading experiment. 
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orientations. On the other hand, small changes to the thickness and elastic properties of 

the cohesive elements did not change the predicted stress-strain curve in a discernible 

way. 

 

4.2.3 Results and discussions 

4.2.3.1 Variability of normal grain boundary stresses 

We performed several bi-crystal simulations within the fully elastic region that served 

as a motivation for the study of polycrystalline materials. Our preliminary results show 

that, as crystallographic misorientation increases from 0 to ~60 degrees, the mean Von 

Mises stresses increases up to 80% at Gauss points in the vicinity of the grain 

boundaries due solely to elastic anisotropy. 

 

During uniaxial loading of an ideal uniformly stressed isotropic polycrystalline material, 

the normal stress across a grain boundary should vary with )(cos2  (Zavatsky 2012) 

where φ the angle between the grain boundary normal and the loading direction. The 

aim of our work is to study the perturbation to the homogeneous value caused by 

elastic and plastic anisotropy. To do this, we use the standard deviation (S) around the 

expected macrostress, macro: 

 

 

2/1

2)(
1









 

n

macroGB
n

S 

 (4) 

 

where GB  represents the mean boundary stress (i.e. the average stress for all elements 

in the grain facet, weighted by the triangular element area) and n is the total number of 

(flat) boundaries. 

Figure 5 shows the normal stress on each grain boundary, at 2.7% total strain for the 

fully isotropic model (model EI-PI), the elastically anisotropic model (EA-PI), the 

plastically anisotropic model (EI-PA) and the fully anisotropic model (EA-PA), each 
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compared against the continuum φ expectation. In the first case, full isotropy is 

assumed, meaning that the normal stress at each boundary should fall on the φ line. 

However, it can be seen that some boundaries deviate significantly from this value. 

These boundaries were found to be relatively small, containing only a few cohesive 

elements. Possible reasons for this effect and the consequences of excluding small 

boundaries are discussed later in the paper. The variations on such boundaries are 

likely to arise from numerical issues giving a standard deviation away from the 

continuum result of S~40MPa. Using a finer mesh reduced this scatter but could not 

remove it completely. Therefore, the scatter in the fully isotropic case can be regarded 

as the uncertainty in the model predictions at this strain.  It is clear by comparing 

Figure 5a-b with Figure 5c-d that the variability is much larger (S~470MPa), when the 

grains are allowed to deform anisotropically according to crystal slip.  
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Figure 5. Normal stress calculated at each grain boundary as a function of the angle 
between the angle between its normal vector and the loading direction for an overall 
strain of 2.7% for (a) EI-PI, (b) EA-PI, (c) EI-PA and (d) EA-PA models.   

EI-PI model EA-PI model 

EA-PA model EI-PA model 
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The evolution of variability in normal grain boundary stresses during the elastic and 

plastic straining is easily shown in Figure 6. It is clear that while the FE model does 

predict some grain boundary variability in the elastically anisotropic model, this is 

much smaller (<30MPa up to 10% strain) than for the plastically anisotropic models. It 

can be reduced by increasing mesh refinement but this leads to significantly higher 

computational costs and therefore a compromise was made resulting in a standard 

deviation of about 10% of the mean applied stress.  

 

 

It is clear from Figure 6(a) that elastic anisotropy (model EA-PI) increases the boundary 

to boundary variability, but really only until the proportional (elastic) limit for the 

plastically isotropic model is reached. Appropriately EA-PA matches EA-PI and EI-PA 

matches EI-PI up until the proportional limit (~0.1%) is exceeded, since there is little 

plastic deformation until this point. 

  

 
Figure 6. The variability in grain boundary stress (standard deviation) for each model a) at low 
strains, b) at larger strains. The early stage of deformation marked by the dashed box on the right 
plot is expanded in the left plot. Data plotted in Figure 5 come from the simulations at 2.7% strain 
(vertical dashed line). The variability on grain boundary stress upon unloading after 10% strain is 
also shown in (b). The spread in the variability according to the 4 initial equivalently-random set 
of grain orientations chosen is indicated by the error bars. 
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With the onset of plasticity the anisotropic nature of crystalline slip is much more of an 

influence on the grain boundary stress than the elastic anisotropy, such that from about 

0.1% plastic strain the effect of elastic anisotropy is relatively minor for stainless steel 

although it does appear to contribute about 20MPa to the variability irrespective of the 

strain for the fully anisotropic model compared to that which assumes only elastic 

isotropy. The standard deviation of the variation in grain boundary stress becomes 

larger than the applied stress at relatively low levels of plastic strain.  

 

The unloaded state is also shown for all models after 10% strain in Figure 6b. For the 

completely isotropic model there is a reduction of variability upon unloading. 

Conversely, there is a small increase in variability for the other models.  It can be 

noticed, however, an increase of S for models with any kind of anisotropy upon 

unloading. It is intuitive to attribute this to the fact that unloading is dominated by the 

elastic anisotropic response. However, as we will discuss later, this effect was found to 

arise from the heterogeneities found in very small boundaries. The cohesive zone 

properties made no difference to the results before the proportional limit. Afterwards, 

they made only little difference when it was kept thin and within a reasonable stiffness 

range. 

 

These results are in agreement with recent work by Wong and Dawson (2010) who 

investigated the effect of elastic anisotropy on the evolution of the average response of 

crystals belonging to different crystallographic fibres. Several sets of cubic single crystal 

elastic constants were calculated while keeping the average Young’s modulus and 

average Poisson’s ratio unchanged. It was found that, in fully developed plasticity, the 

stress distribution of grains within fibres was independent of the single crystal elastic 

constants. CPFE modelling has also been used to evaluate the effect of elastic properties 

on the evolution of stress and total strain (Bieler et al., 2009). This work showed that, 

after about 1% strain, the stress and strain field gradients were similar regardless of 

the elastic properties. The dominance of plastic anisotropy over elastic anisotropy on 

stress is very clear. This suggests that, in some cases, elastic anisotropy can be 

neglected in these kinds of computations. When the stresses at boundaries for total 
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strains above 0.5% are of interest, isotropic elasticity can be assumed. This would 

simplify the computation of the Jaumann stress rate, since this depends on the elastic 

part of the rate of deformation (De). The resulting computational cost saving would 

make possible simulations of aggregates with a larger number of grains.  

4.2.3.2 Grain orientation statistics 

Although the simulated volume contains randomly oriented grains, the stresses at the 

boundaries change for sets computed for different random grain orientations since the 

number of grains in the policrystal is relatively small. The standard error arising from 

four different equivalent sets of random orientations is displayed as an error bar in 

Figure 6. Unsurprisingly, the spread varies much more for the crystal plasticity models 

(~+/-25% of the variability) than for the plastically isotropic ones.  

4.2.3.3 Grain boundary size and mesh density effects 

It was found that the consideration of small boundaries had a great impact on the 

computed standard deviations. The number of cohesive elements forming a boundary is 

proportional to its area.  Figure 2b illustrates a boundary composed of 24 cohesive 

elements. However, 70 grain boundaries in the aggregate (7% of the total number of 

boundaries) have only 1 cohesive element, 130 grain boundaries (11% of the total) 

have 2 cohesive elements or less and 200 grain boundaries (20% of the total) contain 5 

cohesive elements or less. Figure 7a shows the variability in grain boundary normal 

stress computed for the fully anisotropic model when different small grain boundaries 

are excluded. It is clear that small GBs have the highest variability of normal stress. This 

was also observed, but to a lesser extent, when only elastic anisotropy was considered 

for strains below the proportional limit (Marrow et al., 2011). In order to further 

investigate the behaviour of boundaries formed by one element only, the previously 

presented simulations were repeated with a finer mesh comprising 545002 C3D4 

elements and 58912 cohesive elements. The number of grain boundaries with only one 

element dropped from 70 to 43 and the results are shown in Figure 7b.  While there are 

slight differences between the curves, the overall results are largely the same: including 

small boundaries gives the largest variation in normal stress, regardless of the mesh 
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refinement of the boundary and its vicinity.  The variability for the grain boundaries for 

the EI-PI and EA-PI models is reduced by approximately 30% on using a finer mesh (not 

shown). For the EA-PA model, mesh refinement reduces the variability when very small 

boundaries are excluded (smallest 7%). However, when these boundaries are also 

included (all GBs included) the variability increases disproportionately after 4% strain 

regardless of the mesh density. It was observed that, at this point, some single-element 

boundaries presented extremely high stress magnitudes (i.e. about 60 times the 

standard deviation), leading to the overall disproportionate increase of variability. 

 

The high variability of stresses calculated at the small boundaries is somewhat 

surprising in our work, since the constitutive laws of the crystals are not size 

dependent. However, numerical and physical effects are possible. Numerically, this may 

be attributed to the limited number of elements conforming the mesh. Physically, this 

may be attributed to the stress concentrators arising from different geometries of the 

grains. Consider two elliptical grains of the same area embedded in a matrix, each grain 

having different elliptic eccentricities. If both embedded grains had a very low stiffness 

(or effectively a hole), then the stress at the boundary of the highly eccentric grain is 

higher near the low local radius of curvature (Griffith 1921). If we were to approximate 

each elliptical grain with a polygon of a fixed number of lines (e.g. 8) then the regions 

with the higher local radios of curvature would best fit using shorter lines (Weisstein , 

2012). Therefore, the smallest lines (or boundaries) of the octagons (or grains) would 

concentrate the highest stresses. 

 

Close inspection of the stress distribution across grain boundary faces revealed that 

stresses are always much higher at the edges (the line along which three 3D grains 

meet) as can be seen in Figure 8.  It is not unexpected that grain boundary edges should 

have the highest stresses; they represent regions in the polycrystals where at least 3 

grains meet and where, therefore, incompatibility stresses should be highest. In this 

regard, recent work has shown that near triple junctions, the influence of a third grain 

induces severe oscillations of the stress tensor, reflecting a singularity (Kanjarla et al., 

2010). Furthermore, different cohesive elements meet at these edges, which in itself 
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could give rise to the observed stress concentration. Whatever the reason for the higher 

stresses, the contribution of the edges to the average grain boundary stresses is 

proportionally higher for small boundaries and therefore they show extreme stress 

values. This effect is practically insensitive to mesh refinement. However, since it only 

affects the regions near the boundary edges (Figure 8), it is reasonable to ignore these 

small boundaries and their corresponding extreme stress values. This was the approach 

employed in the next sections, which deal with the effect of grain boundary orientation 

and the effect of local plasticity on grain boundary stresses.  
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Figure 7. Effect of the excluding small grain boundaries on computed standard deviation a) 
standard mesh, b) finer mesh on the EA-PA model. Hollowed circles represent the computed 
standard deviation after unloading. The effect of changing to another equivalent random 
orientation set is presented as the standard error (error bar length at the top left) when all 
boundaries are considered. 
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Figure 8. Stresses normal to the boundary elements for the EA-PA model: (a) at 10% strain, (b) 

after unloading. Maximum and minimum stresses tend to occur in elements in contact with 

boundary edges while inner areas of the GB show less extreme values. Small GBs (marked in white 

squares) generally show a very high stress variability. The white ellipses spot differences before 

and after unloading. Note that the figure represents a cut-through view of the (flat) grain 

boundaries which leaves some partially sectioned out-plane boundaries (darker regions)  

 

4.2.3.4 Distribution of stress normal to boundaries upon unloading 

 

Until now, grain boundary stresses have been considered mainly during loading. The 

unloaded state is of particular interest since it has been suggested that these grain 

boundary residual stresses have an impact on degradation mechanisms such as SCC. It 

has been reported that, following pre-straining, cracking susceptibility is direction 

dependent (Moshier and Brown, 2000; Tice et al., 2007). This is consistent with work 

on damage nucleation in nickel alloys (Dyson et al., 1976), where it is proposed that 

damage nucleation is anisotropic. There is therefore an interest in determining whether 

the spread in stresses observed is also anisotropic.  
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It has also been reported that cracking often occurs at boundaries separating grains 

that are heavily plastically deformed from those in which deformation is mostly elastic 

(Couvant et al., 2009). In some cases large local strains can help relax local stresses (e.g. 

favourable slip near grain boundaries) preventing damage, whereas in other cases 

heterogeneous deformation can lead to stress concentrations and even damage 

nucleation (Bieler et al., 2009). Therefore, we are interested in whether the stresses are 

highest at the boundaries separating “hard” and “soft” grains.  

 

4.2.3.4.1 Effect of grain boundary angle on stresses at grain boundaries 

We showed earlier that, in an anisotropic material, the spread in grain boundary 

stresses is mostly a consequence of plastic anisotropy. However the distribution of 

stresses were not analysed in detail. Figure 5 shows the normal stress on each grain 

boundary as a function of the angle φ. The unloaded state is now divided in 6 intervals 

of 15° depending on the angle φ. The standard deviations of each interval are shown in 

Figure 9a. The results from simulations containing five sets of random orientations 

were used to calculate the values of each interval. In order insure statistical 

significance, each interval contains at least 30 grain boundaries, from each orientation 

set. The total deviation in each angle range is reduced with the increasing exclusion of 

small grain boundaries (Figure 9b). This can also be seen in Figure 7, where the 

computed standard deviations become smaller as the percentage of exclusion increases. 
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Figure 9. Average grain boundary residual stress for each grain boundary angle interval (solid 

squares) after 10% strain when a) all boundaries are included, and b) when (small) boundaries 

composed of only one cohesive element are excluded. Error bars show the standard error for each 

grain boundary angle interval.  

 

Figure 9 shows that the average stress for each 15° interval is approximately zero. The 

error bars in that figure represent, for each interval, the standard deviation of the 

distribution of the stresses normal to each boundary. The distributions of stresses 

within these intervals are not symmetric when all GBs are included (Figure 9a). 

However, when boundaries comprised of only one cohesive element are excluded 

(Figure 9b), the dispersion becomes more uniform for each interval. Therefore, no clear 

trend of these standard errors can be inferred. 

 

Previous 3D bi-crystal simulations showed the influence of the grain boundary 

orientation (relative to the loading direction) on the strain and stress distributions 

(Sarma and Radhakrishnan, 2008). These results show that, in the absence of a 

precipitate, higher stress values are seen along certain boundaries depending on both 

grain orientation and the angle φ. Furthermore, 2D modelling work results show a clear 

influence of the angle φ on the stress in neighbouring “hard” grains, with a particular 

“rogue” combination causing significantly higher stresses (Dunne et al., 2007). 
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Our results complete such findings by statistically analysing the effect of the angle φ on 

the stress distribution using a 3D aggregate with numerous boundaries following 

deformation and unloading. If the angle φ were to have an effect on the stress 

distribution, the mean stress or the standard error (or a combination of both) would 

differ from some intervals to others in Figure 9. This applies for, in particular, high 

values of φ, where the predicted stress in previous work is higher (Dunne et al., 2007). 

Therefore, we conclude that, following preloading, a boundary is not statistically more 

likely to present higher or extreme values of stress by simply considering the angle φ 

when the boundary is embedded in a 3D polycrystal. Furthermore, we are just as likely 

to find boundaries under tensile residual stress as we are to find boundaries in residual 

compression, regardless of boundary orientation. 

4.2.3.4.2 Stresses at grain boundaries between soft and hard grains 

 

Since it is clear that plastic anisotropy is the main source of grain boundary stresses, it 

is reasonable to assume stresses will be highest on boundaries separating grains with 

the biggest difference in the amount of plastic strain, that is, the grain boundaries 

separating “hard” and “soft” grains. In this section, we present results that seek a 

relationship between and stresses at boundaries and plastic deformation in 

neighbouring grains.  

 

In their article on the effects of pre-straining on creep damage, Dyson et al. (1976) use a 

result by Kröner (1961) to try to explain why grain boundaries parallel to the 

preloading direction are more damaged than those perpendicular to it. Kröner 

established a correlation between the boundary stress and the amount of plastic strain. 

We recall that the internal stress, ij , in any small volume of the aggregate was given by 

Kröner as: 

)( ijijij        (8) 

where ij  is the average deviatoric plastic strain and ij is the local deviatoric plastic 

strain. This expression is based on the capability of relating all strain and stress 



Chapter 4 – Results and discussions 
 

122 
 

components within, and immediately outside, an ellipsoidal inclusion embedded in an 

infinite homogeneous medium through imaginary cutting, straining and welding 

operations (Eshelby, 1957). Consider tension applied on the medium where a grain is 

softer than the average. Then, near a boundary orthogonal to the loading direction 

ijij    and the stress normal to the boundary will be compressive. On the other hand, if 

the boundary is parallel to the loading direction ijij    and the stress normal to the 

boundary will be tensile. The normal stresses in the plastically harder grains will, of 

course, be of reverse sign. Therefore, using this approach, the difference between the 

average and local plastic strains is expected to reveal the sign (tension or compression) 

and relative magnitude of the stress normal to the boundary.  

 

The constraints on each grain in our aggregate are more complex since there are 

different grain shapes, neighbourhoods and orientations. However, because our models 

provide values for stress and strain at each integration point we can study this effect 

locally and in a statistical manner. It has been observed that stress corrosion cracks are 

often found on boundaries separating a heavily deformed grain from one with hardly 

any deformation (Couvant et al., 2009). There is some debate as to whether this is a 

consequence of the difference in dislocation density in neighbouring grains or of the 

residual stresses generated between the two misfitting grains. We are therefore 

interested whether the residual stress at grain boundaries can be correlated to the 

difference between plastic strain in the neighbouring grains. To achieve this, we 

propose to use the equivalent plastic strain (p) as a measure of the amount of plastic 

deformation in the neighbouring grains. We define p as: 

2

1

:
3

2








 plplp εε     (9) 

where pl
ε is the accumulated plastic strain tensor throughout the simulation time. For 

each grain, we have averaged all the values of p  at each Gauss point weighting by the 

Gauss point volume. Although the concept of equivalent strain is not entirely 

appropriate in a crystal plasticity framework, it is a convenient way of reducing the 
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deviatoric strain tensor to a scalar value that can be easily compared for neighbouring 

grains. Our results (not shown) showed a good correlation between the grian-averaged 

p and the grain-averaged cumulative slip (Eq. 3). 

0

50

100

150

200

0% 10% 20% 30%

|p 2 -  p 1|

|G
B

 s
tr

e
s
s
| 
(M

P
a
)

GB ┴ loading

GB ═ loading

0

50

100

150

200

0% 10% 20% 30%

|p (1 or 2) - p |
|G

B
 s

tr
e
s
s
| 
(M

P
a
)

GB ┴ loading

GB ═ loading

 

Figure 10. Absolute residual stress (after unloading) normal to boundaries versus the absolute 

difference between a) the equivalent plastic strain (p) of each adjacent grain to the boundary; b) 

the equivalent plastic strain of one adjacent grain to the boundary and the averaged plastic strain 

of the aggregate. The results are presented for boundaries with φ lower than 30° (considered 

orthogonal) boundaries with φ higher than 75° (considered parallel). 

 

Figure 10a shows the difference of equivalent plastic strain (p) between adjacent grains 

versus the stresses normal to their boundary, an indication of the extent to which 

neighbouring grains form a “hard-soft” combination. Figure 10b shows the difference of 

equivalent plastic strain (p) between one adjacent grain and the aggregate-averaged 

equivalent strain versus the stresses normal to their boundary, giving an indication to 

which extent the grain is “softer” or “harder” than average. Each boundary has two 

adjacent grains and therefore produces two values in the horizontal axis in Figure 10b. 

Only the 20 percent largest GBs (>120 Gauss points) have been considered to avoid the 

high stresses characteristic of small boundaries. In addition, the relatively extreme 

Gauss point stress values ( GB +-1000MPa) in the edges of these boundaries have been 

neglected on averaging the boundary stress. For clarity, boundaries are divided into 
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two sets: boundaries parallel to the loading direction, defined as those with φ >75°, and 

orthogonal boundaries, with φ < 30°.  

 

As it can be seen in Figure 10a, the grain boundary residual stresses range from 0 to 

about 140 MPa, whereas the differences in effective plastic strain range from 0 to just 

over 10%. There is no strong correlation between the magnitude of grain boundary 

residual stresses and the difference in equivalent plastic strain in neighbouring grains. 

Grain pairs with larger differences in plastic strain seem to have larger grain boundary 

stresses, however there is at least one boundary (~│140│MPa) separating grains with 

the same plastic strain.  Therefore, although a large difference in plastic strain seems to 

increase grain boundary stresses, it is not a necessary condition. Our results imply that, 

using our definition, a “hard-soft” grain combination is no more likely to cause higher 

grain boundary residual stresses than any other combination. The results are similar if 

instead of comparing the plastic strain of near neighbours, we compare the plastic 

strain in the grain to the average plastic strain, as can be seen in Figure 10b, which 

shows the absolute values of the grain boundary stresses. However, it is important to 

note that these stresses average to zero, which indicates that the stresses are as likely 

to be compressive as they are to be tensile.  
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Figure 11. Distribution of residual boundary stresses. The histograms show the effect of the high 

absolute difference between the (a and b) equivalent plastic strain (p) of each adjacent grain to 

the boundary; (c and d) the equivalent plastic strain of one adjacent grain to the boundary and the 

averaged plastic strain of the aggregate. The histograms also show the high boundary stress 

variability introduced by small boundaries (b and d) as studied in previous sections.  

 

The results largely remain the same if we consider boundaries of any orientation as 

well as the high stress values calculated at Gauss points near the boundary edges and 

(Figure 11). Boundaries separating grains with high difference in plastic deformation 

do not tend to develop higher tensile (or compressive) stresses. As previously shown, 

the results are similar if we compare the plastic strain in the grain to the average plastic 

strain. Further, these findings are unaltered by the high boundary stress variability 

introduced by small boundaries. 
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These results are somehow counterintuitive. One could reasonably expect that, since 

the origin of the residual grain boundary stresses is the misfit caused by anisotropic 

plasticity, the larger the difference in plastic strain between neighbouring grains, the 

larger the stresses across the boundary separating them. Although this is probably valid 

for the bi-crystal case, our results show is that, in a polycrystal, the stresses redistribute 

in such a way that it becomes impossible to predict their magnitude solely from the 

amount of plastic deformation near the boundary or the difference either side of it. This 

is consistent with previous CPFEM results using cycled polycrystals. The neighbouring 

crystallographic orientations were found to have a great impact on the stresses within 

grains (Turkmen et al., 2002) and on the crack tip opening displacement (Simonovski et 

al., 2007). Besides, plastic strain is well known to localize along bands which expand 

across several grains whereas stresses tend to localize into individual grains. This is to 

say that the stresses at the grain boundary depend not only on the misfits generated by 

plastic anisotropy but on how they are accommodated by the grains in the 

neighbourhood of the grain boundary of interest. This finding has implications for the 

understanding of intergranular SCC in cold worked material and, in particular, the 

observation that grain boundaries separating a heavily deformed grain and an 

undeformed or lightly deformed grain are more susceptible to cracking. Our results 

suggest that this higher susceptibility is probably not due to the intergranular residual 

stresses developed during cold working, since these can be compressive as well as 

tensile and their magnitude depends on how the stress redistributes over a wider 

neighbourhood. 

 

Interestingly, previous work using finite element crystal plasticity (Diard et al., 2005) 

also failed to relate grain boundary stress to other grain boundary characteristics such 

as misorientation and slip incompatibility. It is important to remember that, although 

crystal plasticity finite element modelling captures some features of the deformation at 

the microscale, it fails to capture other features, like the heterogeneous nature of 

deformation within grains and the slip localization (typically called slip bands) 

characteristic of low stacking fault energy metals like stainless steel. It is likely that 

these features give rise to stresses at grain boundaries that cannot be predicted with 
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the current crystal plasticity modelling approaches but which play a role during stress 

corrosion cracking.   

4.2.4 Conclusions 

 

Crystal plasticity finite element modelling using cohesive elements in the grain 

boundary regions have been incorporated in order to calculate normal stresses at grain 

boundaries generated by elastic and plastic anisotropy during deformation and 

following unloading.  This has enabled us to examine a number of factors that might be 

expected to give rise to large grain boundary stresses. 

 

Our results show that, after 0.5% applied strain, stresses normal to grain boundaries 

introduced by plastic anisotropy dominate over the normal stresses introduced by 

elastic anisotropy. This was unaffected by mesh density. Small boundaries were found 

to have much higher  absolute stresses (whether tensile or compressive) than larger 

boundaries. This was attributed to the high stresses predicted at grain boundary edges 

(or triple junctions). Generally, mesh refinement mitigated this effect, expect when the 

smallest GBs were considered. 

 

Following unloading, the standard deviation of residual grain boundary stresses was 

only slightly decreased and was found to be independent of grain boundary orientation. 

 

The magnitudes of the residual grain boundary stresses predicted is unrelated to the 

amount of plastic strain in the vicinity of the boundary and whether it was higher or 

lower than the average plastic strain. In other words, in a plastically deformed 

polycrystal, a soft-hard grain combination does not imply high residual stress normal to 

its boundary. 
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In this publication the idea of the comparison between the DCT data and the 3D model 

was proposed and supervised by Joao Fonseca. The corresponding experimental results 

were performed by a working team in ESRF (including myself) leaded by Andrew King. 

The Python scripts used to create the geometry (.sat files) from the DCT data (binary 

file) were developed by I. Simonovski whereas the rest of the pre-processing (Amira 

simplification and correction, Abaqus model import, meshing, material properties 

calibration, real orientation assignment, boundary conditions…etc) and all the post-

processing was done by myself. 
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Abstract 

 

The deformation of a polycrystalline sample of aluminium at the microstructural scale 

was studied by a combination of computational modelling and synchrotron X-ray 

diffraction contrast tomography (DCT). DCT was used to map the 3D grain arrangement 

in a polycrystal. This was the basis of a microstructurally faithful mesh for crystal 

plasticity finite element modelling (CPFEM). The sample was then monitored by DCT 

during incremental uniaxial compression. Changes in the diffracted spots during 

deformation were interpreted in terms or crystal re-orientation and orientation spread 

within grains. Reorientation within grains of ~ ± 1 ° has been observed after 1.2% 

compressive strain and alongside considerable grain-to-grain variation in reorientation 

relative to that expected according to simple crystal plasticity models. The CPFEM 

results showed similar grain-to-grain variations, indicating that the local geometry is 

important in determining the level of heterogeneity in deformation at this scale. 

However, on a grain-to-grain basis, agreement is relatively poor. Possible reasons for 

the observed differences are discussed. 
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4.3.1 Introduction 

 

Plastic deformation in polycrystalline materials is heterogeneous at the microstructural 

scale. It has been suggested that strain localisation at this scale is important in 

determining the fundamental processes responsible for failure in fatigue [1] and 

environmental assisted cracking [2]. In some cases large local strains can help relax 

local stresses (e.g. favourable slip near grain boundaries) preventing damage, whereas 

in other cases heterogeneous deformation can lead to stress concentrations and even 

damage nucleation [3].  There is therefore a need to understand and model the 

deformation of metals at the microstructural scale. 

 

When deformed in isolation, the mechanical behavior of a grain is simply related to its 

orientation, but in a polycrystal the deformation is further influenced by its shape, size, 

and the constraint of neighboring grains. As a consequence, it is not possible to compare 

the results from deformation models to results from experiments without a complete 

description of the microstructure. Consequently, while surface techniques such as 

electron back scattered diffraction (EBSD) can provide spatially resolved 

measurements of lattice rotation during straining [2], they cannot be directly compared 

to results from polycrystalline deformation models such as Crystal Plasticity Finite 

Element Models (CPFEM) [4] because there is no information regarding sub-surface 

grains before deformation. The only way to obtain this information is by destructive 

sectioning [5], which of course precludes further deformation. 

 

Synchrotron X-ray diffraction makes it possible to study individual grains in the bulk 

[6]. Diffraction Contrast Tomography (DCT) has recently become established as a 

technique for mapping polycrystalline microstructures in 3D [7, 8]. Since DCT is non-

destructive, diffraction measurements during deformation are possible. We have used 

DCT to fully map the grain geometries and orientations of an aluminium sample as a 

function of deformation. This has enabled us to build a microstructurally-faithful crystal 

plasticity model and to compare its deformation directly with experimental 3D 
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observations. To the best of our knowledge, this is the first side-by-side experiment vs 

model comparison for a real 3D microstructure that includes a full description of the 

local neighbourhoods. 

 

4.3.2 Material & Experimental Methods 

 

Material: We have studied a high purity aluminium (0.1% Mg) sample because of its 

low elastic anisotropy, almost perfect plasticity and high stacking fault energy (SFE). 

Traditionally, texture has been poorly captured by CPFEMs for low SFE FCC metals [9], 

in part due to the occurrence of twinning which is difficult to account for. Moreover, in 

high SFE metals obstacles to dislocations can be readily by-passed, in line with the 

idealised behaviour assumed by CPFEM.  

 

Diffraction Contrast Tomography: The experimental arrangement is similar to that 

used for absorption contrast tomography. The sample is illuminated by a parallel, 

monochromatic x-ray beam. A high resolution 2D detector placed close behind the 

sample records simultaneously radiographs (projections) of the sample and diffraction 

spots arising from grains oriented for Bragg diffraction. During rotation of the sample 

through 360º, many diffraction spots are observed from each grain. Diffraction spots 

are assigned to grains according to a range of geometrical criteria and the grain 

orientations reconstructed from the diffraction events. Grain shapes are reconstructed 

from the diffraction spots using a 3D ART algorithm [10]. More details about the DCT 

technique can be found elsewhere [11, 12]. 

 

A material comprising perfect grains would give diffraction spots that are spread over 

only 1-2 projections. However, distortion of the crystal lattice means diffraction spots 

arising from a grain smear out over 

a measure of the misorientation spread within a grain [6]. Each blob can be summed in 



Chapter 4 – Results and discussions 
 

139 
 

profile can then be fit using a Gaussian function. The observations are corrected for the 

Lorentz factor (blobs with a scattering vector that is close to the rotation axis spread 

over more images). After this correction, the average angular blob spread gives a scalar 

measure of the grain mosaicity [6].  Each grain comprises many diffraction blobs. To get 

a single value representative of the grain, we have averaged the blob values of the 

middle 50%. This discards outliers, reducing the effect of bad data points. Since the 

grains for the undeformed sample showed distortion (probably due to residual strain 

during grain growth), the blob values have been normalized by their initial value. 

During deformation the intensity within a blob does not spread out uniformly, but 

instead sub-structures are often observed within a blob. We have used an algorithm 

that estimates the misorientation as a function of position within a grain based on the 

observed diffraction blobs [13]. The algorithm can consider both the full elastic strain 

tensor and the rotation at each point. In this measurement, because of the low yield 

stress the elastic strain was neglected, and only the three components of rotation 

determined. 

 

DCT scans of the (ø 1 mm x 1.5 mm) cylindrical sample in its undeformed state revealed 

the grain size to be around 160 µm (Fig.1). As shown in Figure 2, the sample has a 

significant <100> texture. Grain distortion may mean that the DCT algorithms may fail 

to identify certain grains in later deformation steps. In this work, only grains whose 

orientations are available in all loading steps have been considered. Unfortunately it 

was not possible to measure the precise compressive strains at which DCT was carried 

out. Consequently, we have averaged the known angle of the average grain rotations for 

the two loaded steps (0.43° and 1.30°). We then calculated from the model the strains at 

which these average grain rotations are achieved (1.2% and 4.4%) which accord well 

with the loads applied.  

 

CPFEM Model: The sample reconstructed by DCT had 284 x 284 x 176 voxels. This 

volume was imported into Amira™ to reconstruct the grain boundaries. The number of 

these surfaces was 2,067,409. Since this would require too many elements for CPFEM 

computation, the surface geometry was simplified to 9,994 surfaces. These faces were 
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used to create the grains in ABAQUS software (using 3D10M elements) via a Python 

script [14]. Each grain was linked to its neighbours by merging the nodes. The total 

number of grains, elements, nodes and Gauss points of the model were 117; 31,490; 

93,699 and 125,960 respectively (Figure 1).  

 

Figure 1. Mesh built from 3D grains measured by DCT on 1mm diameter sample.  

 

The base of the sample was constrained only in the loading direction and a compressive 

displacement applied to nodes on the opposite face. A UMAT subroutine [15] has been 

implemented in ABAQUS to simulate the behaviour of each grain. This subroutine 

assumes elasto visco-plasticity where plasticity is treated uniquely via slip [16], [17]. 

We assume isotropic hardening which is to say that flow on one slip system causes the 

same hardening on all slip systems. The UMAT parameters used in Table 1 were used to 

adjust the macroscopic stress-strain curve of the model to that of the experiment. 

 

Table 1. UMAT parameters used in the present work 

C11(GPa) C12(GPa) C44(GPa) n a  h0(MPa) s (MPa) 0 (MPa) 

108.2 62.16 28.3 55 0.001 260 18 9.6 

 

Average grain rotations were calculated using quaternion algebra [18]. We have used 

the Grain Orientation Spread (GOS) to quantify the average misorientation within a 

grain, enabling comparison with experimental results.GOS is defined as the arithmetic 

mean of the minimum misorientation angles of local points when the reference is taken 

as the average orientation of the grain [19]. Finally, we have used quaternions to 
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compute local misorientation angles from the grain average orientation about each axis 

[20] for direct comparison with experiment. 

4.3.3 Results and discussion 

 

Grain Rotations: The crystal directions parallel to the compression axis for the CPFEM 

model and experiment are presented in Figure 2. In aluminium it is well known that a 

<110> fibre texture develops following compression [21]. Further, rotation of the 

crystal directions away from <100> and <111> poles is usually reported while rotations 

near <114> are hindered. These trends, marked by arrows in Fig 2, are weakly evident 

in the DCT data. Both model and measurements show grain-to-grain deviations from 

the Taylor model predictions, which assume homogenous plastic deformation due to 

grain-to-grain interactions.  Although the predicted rotations have the correct 

magnitude, the grain trajectories only agree for some grains being marginally better 

near the <100> pole than elsewhere. The overall lack of correlation grain-for-grain may 

be attributable to microstructural features that are neglected by the model. For 

example, deformation bands [23] and dislocation boundaries aligned with one of the 

{111} planes [24] have been reported in lightly deformed aluminum crystals. 

 

Measured

        

Modelled

 

Figure 2. The crystal directions parallel to the compression axis after 0, 1.2% and 4.4% strain; a) 

measured by DCT, b) modelled by CPFEM. The circles represent 4.4% strain. Surface contacting 

grains (red) and bulk grains (blue). Only those grains where data is available for all three loading 

steps are shown. 
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Orientation spread: GOS results for each grain from CPFEM correlate with the average 

equivalent plastic strain and the accumulated slip (not shown here). The GOS and the 

experimental blob spread, quantified as the normalized FWHM of the Gaussian fit are 

weakly correlated. That reasonable correlation is seen when they are normalized by the 

volume of the grain (Figure 3), suggesting that spread increases with grain size for both 

model and measurement.  In this respect mosaicity has been reported elsewhere to 

strongly correlate with the grain area in 2D measurements [18, 22].  Further this 

correlation of mosiacity with grain volume has also been observed in steels heated 

above the austenite transition temperature, which might be expected to be in an 

undeformed state [20]. Unsurprisingly spread increases with plastic strain.  For both 

loading steps bulk grains show a higher spread than surface grains (GOS and 

normalized FWHM), probably due to the higher constraints imposed by their neighbors.  
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Figure 3. Normalized diffraction blob spread (FWHM of the Gaussian fit) measured by DCT versus 

Grain Orientation Spread (GOS) by CPFEM as loaded in compression to; a) 1.2% strain, b) 4.4% 

strain 

 

Local Rotations: The intragranular rotations mapped over a cross-section through the 

sample at about 1/3 of the cylinder height for the experiment and model are presented 

in Figure 4. These results represent the intermediate loading step (1.2% strain), since 

the less deformed diffracted spots are easier to process. Again, some intragranular 
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rotations were measured prior to loading. In Figure 4, we have subtracted these from 

the final rotations. 

 

 

 

Figure 4. Intragranular rotations (°) about X, Y and Z axes; above) based on the observed 

diffraction spots, below) calculated from CPFEM after 1.2% strain 

 

The experimental results show substantial grain-to-grain variation in both the 

magnitudes of the local rotations and in the local, intragranular gradients of 

deformation. The spreads of the local lattice rotations predicted by the model agrees 

well with those observed, but the predicted intragranular variations are smoother and 

lower in magnitude. Since the model is micro structurally faithful, one might expect to 

see good agreement on a grain-to-grain basis. By contrast, we find poor relatively poor 

agreement. Interestingly, the patterns of lattice rotation often match well with those 

observed but are either the wrong sign or magnitude.  

 

There are several possible reasons for this lack of agreement. The analysis of the 

experimental diffraction data ignores elastic distortions, which might be a significant 

source of error, since elastic strains can also cause changes in contrast. Although the 

alloy is extremely soft, the low elastic stiffness of aluminium means that elastic strains 

will be large even if stresses are low. The procedure is now being extended to include 

elastic distortion effects.  The material model used is also very simple and it is likely 
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that it cannot capture well the results of multiple slip and the associated recovery that 

is known to occur in aluminium [19, 20]. It is also not clear whether the mesh density is 

sufficiently high to capture local variations faithfully. A sensitivity study on mesh 

density will shed some light on this issue. Furthermore, the boundary conditions 

employed in the model are likely to be somewhat different to those in the experiment. It 

is indeed very difficult to deform such a small sample in an idealised manner. 

 

4.3.4 Conclusions 

 

DCT has been used both to map the 3D arrangement in a polycrystal and to study the 

evolution of crystal re-orientation and orientation spread within grains with 

compressive deformation. A CPFE model has been constructed with the same initial 

polycrystal arrangement. In both cases reorientation of the grains by ~ ± 1 ° has been 

observed after 1.2% strain. In both cases, considerable grain-to-grain variation in 

reorientation under compressive deformation has been observed relative to the overall 

expected reorientation (Fig.2). This is presumably due in part to the effect of local 

neighbours. Some grains show good agreement between model and experiments, 

others much less so. This may be due to intragranular heterogeneities in deformation 

not accounted for in the model, or to oversimplifications in the analysis of the diffracted 

data. Nevertheless, this work shows that DCT can provide unique data for comparison 

with crystal plasticity deformation models. Although these initial results allow only 

limited insight into the effectiveness of the models, it is clear that the methodology has 

significant promise and we believe it will play an important role in the validation and 

development of future crystal plasticity models. 
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Abstract 

 

Diffraction Contrast Tomography (DCT) with synchrotron X-rays was used to map the 

three-dimensional microstructure of alumina; each grain boundary of this coarse grain 

size ceramic was characterised by its physical orientation and the crystal 

misorientation of the adjacent grains.  The microstructure of alumina was sufficiently 

well described by DCT to produce a microstructurally representative image-based finite 

element model comprising approximately 400 grains.  Grain boundary cohesive 

elements were used to calculate the local thermal stresses acting on each grain 

boundary arising from the crystal anisotropy.  The bulk properties of the model were 

tested by digital volume correlation analysis of computed tomography (CT) images of 

the elastic deformation of the sample under load; Poisson’s ratio was obtained.  The 

model simulations showed the average intergranular stress to be influenced by the 
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orientation of the grain boundary plane relative to the basal planes of the adjacent 

grains.  Boundaries to which at least one of the basal planes was closely aligned tended 

to develop higher tensile stress; these boundaries were predicted to have a tendency 

for intergranular fracture.  The predicted effect of crystal lattice strains and rotations 

on diffraction, due to the modelled thermal stresses, showed general agreement with 

the observed X-ray diffraction images of individual grains. 

4.4.1 Introduction 

The physical properties of polycrystalline materials depend on the aggregate behaviour 

of their constituent crystal grains, and may be affected strongly by their interfaces.  

Certain grain boundaries (GB) in metals are particularly resistant to stress corrosion 

cracking [1], for instance.  The strength of polycrystalline ceramics such as alumina may 

be affected by intergranular cracks, which are caused by residual stresses arising from 

the crystalline anisotropy of thermal expansion and elasticity [2].  The three-

dimensional distribution of grain boundary structures and the grain morphology 

determine the residual stresses, and thus influence the tendency for intergranular 

fracture.  As the underlying deformation is essentially elastic, such systems are well 

suited to numerical simulation of the interactions between individual crystals.  The 

purpose of such models is to guide the optimisation of microstructure; in the case of 

polycrystalline alumina the aim would be to control the proportion of boundaries that 

develop significant tensile internal stresses, ultimately improving strength. 

 

In single-phase non-cubic crystal ceramics, intergranular microcracks may occur on 

cooling from the fabrication temperature due to the strains of thermal expansion and 

elastic anisotropy [3].  Grain-to-grain misorientation has been proposed as a means of 

controlling grain boundary stress [4], supported by observations of cracks at such 

boundaries in a coarse alumina [2].  Commonly, grain-to-grain misorientations are 

defined using the coincidence site lattice (CSL) description, but this neglects the grain 

boundary plane.  A more complete description of the boundary, which is important in 

determining its structure and energy, involves five degrees of freedom; three to define 

the grain-to-grain misorientation and two to define the grain boundary plane [5, 6].  
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Direct measurements of intergranular crack nuclei in a fine grained alumina, identified 

by in-situ measurements of crack opening displacements under load using digital image 

correlation [7], showed that these were associated with grain boundaries that were 

aligned close to basal plane.  A simple model was proposed that predicted higher tensile 

stresses developed for larger grains having grain boundary facets close to the basal 

plane; grain-to-grain misorientation and boundary facet orientation were both found to 

be important. 

 

The grain boundary plane populations may be altered in some materials [8] by 

appropriate processing, usually referred to as grain boundary engineering (GBE) [9, 

10]; the aim being to maximize the proportion of GB with desirable properties.  For 

example, in austenitic stainless steels, maximising the population of coherent twin 

boundaries through thermo-mechanical processing may improve intergranular stress 

corrosion cracking resistance [11].  For ceramics, altering the dopants and sintering 

temperature can change the grain boundary plane distributions [12].  For instance, 

additions of silica to alumina sintered at 1400°C increased the abundance of basal plane 

facetted GBs [13].  Such processing might be used to improve the strength of ceramics, 

but guidance is needed from modelling on the desirable GB population characteristics, 

and also the achievable effects. 

 

A number of different models using abstract representations of the microstructure have 

been developed.  Two-dimensional approaches (e.g. [14-16]) have described 

approximately the crack path, the sensitivity to stress state and the statistics of failure, 

for example.  More realistic three-dimensional (3D) simulations of polycrystalline 

assemblages have, until lately, been impractical due to computing limitations.  However, 

progress has been made with constitutive models [17], and recent simulations used 3D 

tessellation to approach more realistic microstructures [18].  Image-based modelling 

(e.g. [19-21]) is an alternative approach in which a 3D reconstruction of the actual 

microstructure including crystallographic orientation provides the input for 3D Finite 

Element model simulations.  Such data can be obtained by serial sectioning (for 

instance by incremental focussed ion beam milling and electron backscatter diffraction 
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analysis [22-27]), but this is destructive.  Serial sectioning only provides surface 

information on residual stress or strain states, which may not be representative of the 

3D distribution that existed prior to sectioning. 

 

Experimental measurements are essential to validate and refine modelling approaches.  

To date, this has generally employed bulk measurements derived from the average 

behaviour of the microstructure, or by extracting the average response of particular 

grain families by neutron or X-ray diffraction [28-31].  However, techniques are now 

available for non-destructive three-dimensional local characterisation of 

microstructure [32-35] that can be used to develop new models and help to validate 

their outputs.  Recently, the internal strains in grains of metals [36] and ferroelectric 

ceramics [37] have been characterised by three-dimensional X-ray diffraction (3DXRD).  

Here, the related technique of diffraction contrast tomography (DCT) [34] has been 

applied to polycrystalline alumina.  DCT allows grain shapes and orientations in three-

dimensional volumes of over one thousand grains to be characterised, provided the 

sample fulfils certain conditions on grain size, mosaicity and texture [38-40].  It has the 

advantage of a simple experimental set-up and speed of data acquisition compared to 

other techniques, and can be easily combined with computed tomography to study 

simultaneously the 3D development of damage [39]. 

 

In this paper, DCT using synchrotron X-rays has been employed to map the three-

dimensional microstructure of polycrystalline alumina, a coarse grain size ceramic, in 

order to fully characterise each grain boundary.  The local thermal stresses from crystal 

anisotropy were calculated using an image-based finite element model, generated from 

the three-dimensional data.  The bulk properties of the model were tested by 

measurement of the bulk elastic properties of the sample, using digital volume 

correlation analysis of computed tomography (CT) datasets.  The crystal lattice strains 

and rotations obtained by the model are tested by comparison of the observed 

diffraction from individual grains with predicted diffraction images.  The aims were to 

determine whether the three-dimensional microstructure was sufficiently well 

described to produce a microstructural-representative model of a polycrystalline 
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aggregate, and to obtain guidance on the nature of undesirable grain boundary 

structures in polycrystalline alumina.  Image-based FE models are computationally 

intensive, but simulated large scale approximations of microstructure (e.g. Voronoi 

[21]) may use the insights obtained here to investigate the beneficial effects of 

alterations in the grain boundary population on the frequency and distribution of 

cracking, and hence component reliability. 

4.4.2 Experimental Details 

The principles of DCT have been presented elsewhere [34, 40], and only a brief 

description is provided here. The experimental arrangement is similar to that of 

absorption contrast tomography, with the sample illuminated by a parallel, 

monochromatic X-ray beam. A high-resolution 2D detector, placed close behind the 

sample, records radiographs and also the projected diffraction spots arising from grains 

oriented to satisfy the Bragg diffraction.  During the 360° sample rotation, multiple 

diffraction images are observed from all grains. Post-processing assigns the diffraction 

spots to grains according to a range of geometrical criteria. The grain orientations and 

positions within the sample are inferred from the geometry of the diffraction events, 

and 3D grain shapes are reconstructed using the diffraction images as grain projections.  

Due to overlap of diffraction spots, DCT is limited currently to samples containing less 

than a few thousand grains, so polycrystalline alumina with a nominal grain size of 80 

to 100 µm was used in this work.  This was the same material as studied in reference 

[2], prepared using Magnesia doped (500 ppm) Al2O3 powder (Sumitomo 23AKP 3000, 

99.995% pure, particle size 0.6 mm, Tokyo, Japan). 

 

A rectangular sample (4 mm × 0.7 mm × 0.7 mm) was examined on beamline ID11 at the 

European Synchrotron Radiation Facility (ESRF) (Figure 1). A monochromatic beam (E 

= 40  keV), produced by a Laue-Laue monochromator (bandwidth ΔE/E ~ 10-3), 

illuminated the sample. This provided sufficient flux for a counting time of one second 

per image, and a complete DCT scan with continuous rotation in 0.05° increments was 

recorded in less than 2.5 hours. The selected optics gave an effective projected image 

pixel size of 1.8  µm.  The minimum sample to detector distance, limited by the 
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diameter of the miniature loading rig, was approximately 8  mm. Hence with the 

maximum diffraction angle 2 of between 13° and 18°, the first 6 or 7 families of 

diffracting planes were sampled, giving around 25 diffraction images per grain. This 

was sufficient for the algebraic reconstruction of 3D grain shape.  After mapping of a 

volume of the unloaded sample by DCT, a series of absorption tomograms were 

recorded at increasing loads (55, 80, 120, 170 N) in order to observe the development 

of intergranular cracking.  The sample failed catastrophically under load, shortly after 

the scan at 170 N. 

 

The reconstructed absorption contrast CT datasets (each 500 ×  500 ×  200 voxels; a 

voxel is the 3D analogue of a pixel) were analysed by Digital Volume Correlation (DVC), 

using the LA Vision Davis 8.0 software [41].  The initial correlating patch size was 128 ×  

128 ×  128 voxels, followed by 64 ×  64 ×  64 voxels, each with 50% overlap and 3 

passes.  The objective of this analysis was to measure the bulk deformation of the 

specimen, and determine any misalignment of loading.  The relatively large patch size 

was necessary due to the paucity of contrast-inducing features in the microstructure. 
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Figure 1: Experimental arrangement for Diffraction Contrast Tomography and Computed 

Tomography on beam line ID11 at ESRF.  The compressive loading cell is positioned on the 

rotation stage.  The sample to camera distance was reduced to 8 mm for the actual observation.  

The inset optical image (top left) shows the sample observed between the anvils of the 

compressive loading stage. 

4.4.3 Experimental Results 

4.4.3.1 Three-Dimensional Reconstruction of Microstructure 

A typical projected diffraction image is shown in Figure 2. Most spots appear in one or 

two successive images as the sample is rotated, so the angular spread is up to 0.1 

degrees.  This is of the order expected when the Lorentz factor (i.e. the expected effect 

of spread in wavelength and lattice parameter) is taken into account.  One spot from a 

large grain is highlighted in Figure 2;  this grain is oriented such that the scattering 

vector is close to the sample rotation axis, and this exaggerates the angular spread in 

the diffraction images.  Its variation in appearance while rotated through 0.75° shows 
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its edges and centre differently satisfy the diffracting condition.  Some degree of angular 

spread within grains is generally detected in DCT of metallic samples [37], arising from 

misorientation gradients due to dislocations (i.e. mosaicity).  Plastic deformation is not 

anticipated during the processing of the alumina ceramic, and the observed spreads 

may be due to a combination of the Lorentz factor and lattice distortions from thermal 

stresses.  Summing the consecutive diffraction spot images minimised the effect of this 

angular spread on the process of grain shape reconstruction. 

A 2D slice through the reconstructed 3D grain volume is shown in Figure 3a, overlaid 

with the absorption contrast tomographic reconstruction, showing the larger 

intergranular pores.  The sample was slightly larger than the beam size, so both 

reconstructions show the region of interest of the sample that remained within the field 

of view during sample rotation.  Figure 3b shows the results of post-processing to form 

a space-filling structure by 3D morphological dilation of the reconstructed grains.  The 

DCT reconstruction process tends to systematically underestimate the size of 

reconstructed grains, since the segmentation of diffraction spots in the process tends to 

clip their edges and so reduce the reconstructed grain size.  To produce a space filling 

map, a morphological dilatation is required.  The maximum dilation applied was 18 µm, 

with less being sufficient in many regions. The dilation process consists of eliminating 

the gap between two parallel grain surfaces, and does not significantly alter the 

reconstructed plane and grain shapes. A small error (~ 3 µm) has been found in 

comparisons of a similarly dilated microstructure with a grain boundaries decorated by 

a second precipitated phase in a beta titanium alloy [40]. The pores generally coincide 

with the identified grain boundary triple points, which is consistent with the expected 

intergranular nature of porosity [2]. The three-dimensional visualization of the central 

volume of the sample in Figure 3c contains approximately 400 grains.  The effect of 

compressive load is illustrated in Figure 4.  The development of intergranular damage, 

observed at 170 N, correlates well with the grain boundaries detected by DCT. These 

observations support the reliability of the reconstructed three-dimensional grain 

shapes [40]. 
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a)  b)  

 

Figure 2: Projection diffraction images showing, a) diffraction spots obtained for the sample, after 

background correction and removal of the central transmitted image, b) the variation in 

appearance of the diffraction spot shown boxed in (a) at rotation intervals of 0.05º (top left to 

bottom right) 

a) b)  c)  

Figure 3: Diffraction contrast tomography; a) reconstructed 2D slice showing initial reconstructed 

grains, superposed on CT image of microstructure, b) the same 2D slice after 3D grain dilation c) 

3D volume of the microstructure, cropped from the centre of the sample, after grain dilation. DCT 

and CT images are superposed to show the pores. 

 

200 µm 
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Figure 4: a) CT image of a region of interest before loading, b) the same volume at a load of 170 N 

(~350 MPa), c) comparison of the microstructure obtained by DCT and the CT image at 170 N. 

(picture from reference [42]).  Intergranular damage is indicated by arrows in (b) and (c). 

4.4.3.2 Grain Boundary Plane Structures 

The full five-parameter description of GB structure [43] can be inferred from the DCT 

observations [39].  The simplest analysis fits a plane to the interface between each pair 

of adjoining grains.  The plane normal is defined relative to the crystal axes of the 

adjacent grains; hence every interface produces two plane normals in crystallographic 

coordinates.  These normals can be plotted using a stereographic projection to show the 

distribution of grain boundary planes referred to the crystallographic axes.  Figure 5(a) 

shows the frequency of occurrence of GB planes.  The total number of grains analysed is 

not very high (886), and confidence in the determination of the GB plane by DCT is 

estimated to be of the order of 5° to 10° [39], so some care should be taken in the 

interpretation of these plots.  Figure 5(b) shows the same data, weighted according to 

grain boundary area.  The application of the R-3c symmetry to the data in figure 5(c) 

aids the visual detection of more frequent sets of planes; its effect is analogous to 

plotting the full dataset within a standard triangle of the stereographic projection.  The 

distributions in Figure 5 are scaled relative to random distribution of poles; symmetry 

has been applied to a random distribution in Figure 5(c), leading to a non-uniform 

background against which the data are scaled.  

In an annealed microstructure, the GB facets are expected to be those with low energy. 

Transmission electron microscopy observations of facet planes from pores within 

sapphire (-alumina) crystals [44] show these to be the low energy basal (C) 

   

0001( ), 
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rhombohedral (R) 

   

0112{ }, prismatic (A)
 

   

1120{ }, pyramidal (P) 

   

1123{ }, and structural 

rhombohedral (S) 

   

0111{ }planes.  The prismatic (M) 

   

0110{ } is also a low energy plane, 

but has not been observed to form facets [44].  The locations of these poles are shown 

in Figure 5, indicating some prevalence for the basal (C), rhombohedral (R), and 

structural rhombohedral (S) planes in the measured GB plane distribution.  The paucity 

of GBs close to the prismatic (M) planes is quite noticeable, although the data do not 

show any clear preference for pyramidal (P) planes.  The observation of characteristic 

poles is not sensitive to weighting by GB area, nor selection of the larger boundaries. 

Consequently, the grain shapes obtained by DCT are broadly consistent with the 

expected planes for facetted grains with the alumina crystal structure.  

 

Figure 5: Stereographic projection of the distribution of poles (relative to a random distribution) 

(left) for all the GB planes, (middle) weighted by the area of the GB plane and (right) weighted by 

the area of the GB plane with trigonal symmetry applied R-3c. 

 

4.4.3.3 Digital Volume Correlation 

The DVC analysis was performed primarily to check the uniformity of compressive 

loading.  It used the reconstructed CT volume obtained at a compressive load of 55 N 

(~110 MPa) as a reference; this was correlated with the CT volumes at loads of 80 N 

and 120 N (~160 and ~245 MPa), mapping their relative displacements.  Correlation 

with the volume at 170 N (~350 MPa) was poor, with a high level of noise. Strains may 

be obtained by the local gradients of displacement, to extract a distribution of local 
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strain values.  Alternatively, the net displacements across the dimensions of the sample 

can be used to obtain the net strain in the sample, thereby treating it as a strain gauge.  

The maps of the axial displacement across the imaged volume at its top and bottom 

(Figure 6a and b) show that the sample tilted as the load was applied.  The 

displacement measurement error is approximately 5.2× 10-2 µm (i.e. ~0.03 voxels); this 

was estimated as the standard error between the measured values and a second order 

3D polynomial fit to the axial displacements.  It is the same value as the expected error 

in displacement measurement with a good quality image for the analysis window size 

(64 × 64 × 64 voxels) [45].  A map of the net axial strain was obtained from the 

displacement differences measured across the height (0.36 mm) of the imaged volume 

(Figure 6c).   The calculated strain error, based on the displacement error, is 0.15×10-3.  

The average strains in the axial and orthogonal directions are given in Table 1, with the 

derived Poisson’s ratio.   Young’s modulus was obtained by assuming the axial load was 

applied uniformly across the sample cross-section. 

 

The measured Poisson’s ratio, between 0.22 and 0.24, is reasonably close to the 

expected value of 0.27 [46], indicating that DVC of the CT data measures the sample 

displacements sufficiently well.  The measured Young’s modulus does not agree with 

the expected value of 400 GPa [47], and the deviation from the expected value increases 

with applied load.  The strains in the sample (Figure 6c), which are significant 

compared to the magnitude of the measurement uncertainty of the net axial strains, 

show that the sample is flexing due to uneven loading or barrelling.  The axial strain to 

one side of the sample therefore becomes progressively more tensile, by approximately 

0.5 to 1×10-3, as the compressive load increases from 55 N to 120 N.  The deviation 

between the measured and expected Young’s modulus (Table 1) is therefore due to the 

non-uniform axial stress, which is neglected in its measurement. 
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a)	 b)	 c)	
 

Figure 6:  DVC analysis of the deformation of the CT volume between -55 and -120 N; a) axial 

displacements at the top of the volume, b) axial displacements at the bottom of the volume, c) 

axial strain due to difference between a) and b) over the observed gauge length of 0.36 mm. 

 

 

Table 1: Strains and elastic moduli, obtained by DVC analysis of CT data at 80 and 120 N 

compressive loads (relative to data at 55 N compressive load).  The values are the averages 

obtained from using displacement vectors with an image analysis patch of 64 voxels with 50% 

overlap.  The uncertainties are the standard deviation. 

Relative 

Compressive 

Load 

(N) 

Relative 

Nominal 

Stress 

(MPa) 

Axial Strain 

(× 10-3) 

Orthogonal Strain 

(× 10-3) 

Young’s Modulus 

(GPa)  

Poisson’s 

ratio 

-25 -51 -0.113 

±0.007 

0.025 

±0.003 

464 

±59 

0.23 

±0.04 

-65 -133 -0.270 

±0.011 

0.066 

±0.003 

493 

±40 

0.24 

±0.02 

4.4.4 Imaged-based FEM Model 

4.4.4.1 FE Mesh Generation 

The procedure for creating a finite element mesh from DCT data for image-based 

modelling is described in [21], and so only a summary is presented here.  The DCT grain 

shapes and grain orientations were imported into the Amira13 software package and 

segmented to reconstruct surfaces that form the grain boundaries (Figure 7a and b).  

Each voxel in the DCT dataset is labelled with its corresponding grain number; a voxel 

with label n is assigned to grain number n.  The total numbers of crystallographic 

                                                        
13 Amira 5.2.1 <http://www.amiravis.com/> 
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orientations, grains and grain boundaries between adjacent grains (i.e. grain facets) 

were 886, 1048 and 5725 respectively.  Intersection errors were detected and manually 

repaired by slight adjustments to the corresponding interfaces.  A number of separated 

regions that had the same voxel label were observed; these might be connected regions 

of the same grain that had been separated by deficiencies in the observations and 

reconstruction.  For simplicity these were treated as separated grains of the same 

orientation.  After segmentation, there were approximately 8,220,000 triangles defining 

the multifaceted GBs (e.g. Figure 7c).  This number is impractical for FEM computation, 

so was decreased to approximately 275,000 using surface simplification (Figure 7d) 

(using standard algorithms in the Amira software), before creating the grains in the 

ABAQUS FE software14 using a Python script [21] (Figure 7e).  The average number of 

triangles per grain facet was 39  The grains were meshed using solid ABAQUS C3D4 

elements [48].  Finally, an assembly of cohesive elements linking the grains was 

generated in order to be able to extract grain boundary stresses from the model; further 

details of the cohesive elements are given in section 4.3. 

4.4.4.2 Geometrical Distribution of Grains  

The statistics for grain volume, number of facets per grain and facet area are 

summarised in Figure 8.  The 162 smallest grains all having fewer than 600 voxels are 

excluded from the statistics in Figure 8a; these small grains have the same orientation 

as nearby larger grains, but are unconnected to them, and as noted earlier may be 

reconstruction artefacts.   Grains in contact with the surface of the reconstructed 

volume (432 in total) were also excluded. The mean values for the remaining 454 grains 

are approximately 158,000 µm3 per grain, 12.4 facets per grain, and 1140 µm2 per 

facet.  Experimental data in the literature for describing the three-dimensional grain 

shapes are limited.  Mean numbers of facets per grain are reported to be 12.5, 11.8, 

12.9, 13.7 and 14 for an Al-Sn alloy, a β-brass, nickel-base superalloy [27], a β-titanium 

alloy [23] and a stainless steel respectively [6] which are broadly consistent with the 

12.4 facets per grain obtained here.  For a slowly cooled β-brass ingot [49], the number 

of facets per grain increased from 8 to 40 as grain size increased from 2 to 12 mm.  A 

                                                        
14 Simulia, Abaqus/Standard 6.6-1 <http://www.simulia.com/> 
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similar trend is observed here (Figure 8b), with larger grains having more facets.  

Previous studies on β-titanium alloy have reported also grains containing up to 40 

facets per grain [23]. These comparisons show that the reconstructed grain assembly is 

consistent with realistic microstructures. 

        

 

Figure 7: The finite element model; a) reconstructed grains comprising the polycrystalline 

aggregate, b) cohesive elements used to link grains. The different grains in a) and different grain 

boundaries in b) are randomly coloured for clarity. A typical grain showing c) surface before 

simplification, d) surface after simplification and e) FE mesh (black lines) after surface 

simplification.    

a) b) 

c) d) e) 
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b)  

Figure 8: Data for the grain assembly in the Finite Element model: a) histograms showing the 

volume per grain, number of facets and facet area (excluding grains connected to the surface); the 

mean average values are labelled.), b) the number of facets per grain as a function of grain size; 

the cumulative number of grains (continuous line) with increasing volume is on the secondary 

axis. 

4.4.4.3 Modelling of Intergranular Thermal Stresses 

A cooling cycle from a stress-free state at 1900°C to room temperature was imposed on 

the FE model in 10 steps.  No mechanical load was applied.  Cooling was done 

incrementally since although the material behaviour is treated as linear elastic, non-

linear effects might arise from the contact behaviour of grains. The elastic stiffness 

constants were: C11= 496.8 GPa, C12 = 163.6 GPa, C13= 110.9 GPa, C33 = 498.1 GPa and 
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C44 = 147.4 GPa [47], as in reference [2].  Although alumina is trigonal (space group R-

3c), hexagonal symmetry was assumed by setting to zero the small component of the 

stiffness matrix C14=-23.5 MPa.  The single crystal thermal expansion coefficients were 

α11 = α22 = 8.62 × 10-6 K-1 and α33 = 9.38 × 10-6 K-1 [50].  The thermal and elastic 

properties were assumed to be temperature independent.  Gauss points, placed directly 

at the GB through the use of cohesive elements [48], were used to find the interface 

stresses.  For this ABAQUS COH3D6 elements having 6 nodes and 3 Gauss points were 

used.  At each Gauss point, stress and strain are related through the stiffness matrix K 

via linear elasticity.  The assumed stress vector contains only one normal and two shear 

components.  Elastic isotropy was assumed at the grain boundaries; K is therefore a 

diagonal 3 ×  3 matrix.  The numbers of solid elements, cohesive elements, Gauss points 

and nodes were 1.0 × 106 , 2.2 × 105, 4.8 × 106  and 3.3 × 105 respectively.  The cohesive 

element thickness was 1.8 µm, approximately 50 times thinner than the average grain 

size, so as to minimize their effect on properties.  The interface elements had a Young’s 

modulus (E = 400  GPa) and Poisson’s ratio (v = 0.27), representative of the 

polycrystalline properties at room temperature [46]. The model sensitivity to the 

properties of the interface elements was tested by a set of simulations, varying the 

interface elastic modulus from 210 GPa (Young’s modulus of polycrystalline alumina at 

1400°C [46]) to 2100 GPa, with little or no effect on the calculated GB stresses.  

Although it would have been desirable to test the effects of mesh refinement to 

demonstrate convergence, it was not possible to run a more refined mesh on the 

available computing resource, and a more coarse mesh would have led to the loss of 

some boundaries.  The bulk elastic properties of the model were obtained by applying a 

uniform compressive axial displacement to develop a stress of 350 MPa.  The average 

axial and orthogonal strains were used to obtain Young’s modulus and Poisson’s ratio of 

377 GPa and 0.23.  Comparison with literature values [46] for Young’s modulus and 

Poisson’s ratio, and also the DVC data for Poisson’s ratio (Table 1) shows reasonable 

agreement, indicating that the sample contains sufficient grains to be representative of 

polycrystalline alumina. 
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The objective of the modelling work was to determine the intergranular stresses, and 

their relationship to the local microstructure.  A typical result (Figure 9) for the stresses 

within two grains and at their boundary shows significant spatial variation.  For 

instance, although the stress along segment AB varies relatively smoothly with distance 

to the boundary, the stress at point M, where AB intersects the boundary, is lower than 

the mean boundary stress (i.e. the average stress for all elements in the GB facet, 

weighted by the triangular element area).  This is a consequence of the relatively high 

stress around the grain boundary margins, indicating a significant effect of the grain 

junctions (i.e. triple points).  This pattern is typical of other grains. 

 

Figure 9: An example of thermal stresses developed between and within grains. Component of 

stress (MPa) normal to the grain boundary (i.e. in the direction AB) as a) a stress map for two 

grains sharing the (mean tensilely stressed) boundary , b) normal stress across the grain 

boundary , and c) variation in stress along the line AB compared with the mean and standard 

error of stress calculated across the boundary – see (b).  

 

The dependence of the GB area on the GB stress is plotted in Figure 10a, showing no 

clear trend. The relatively small GBs (area < 1000 µm2) comprise over 50% of the total 

number, and unsurprisingly show the larger variation. Previous experimental work on 

coarse-grained alumina [2] reported that 4 out of the 5 cracked grain boundaries that 

were observed exhibited a high degree of grain-to-grain misorientation.  The average 

normal stresses obtained at a GB as a function of the misorientation between the [0001] 

poles of adjacent grains are shown in Figure 10b. No significant sensitivity to grain-to-

0

50

100

150

200

250

300

350

400

-240 -180 -120 -60 0 60

Distance to boundary (µm)

S
tr

e
s
s
 (

M
P

a
) Stress along AB

GB mean stress

Stress at M

A

B
A 

M 
B 

M 

B 

A 

a) b) c) 



Chapter 4 – Results and discussions 
 

168 
 

grain misorientation is observed.  The crystal grain-to-grain misorientation angle 

therefore appears to be an insufficient indicator of GB stress in the model predictions. 

 

a)       b)     

c) d)  
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Figure 10: Mean normal stress at grain boundaries as a function of: a) the boundary area, b) the 

grain-to-grain misorientation angle, c) the angle formed between the crystal basal plane [0001] 

pole and the GB facet pole for at least one of the GB facet poles, and d) both GB facet poles below 

the threshold range. The scatter bars show the grain to grain facet variation. The secondary axes 

(continuous grey line) show the cumulative number of boundaries. 

 

The effect of grain orientation relative to the grain boundary plane was examined.  Here 

the vector normal to a GB defines the local GB pole.  The GB pole angle is defined as the 

angle between the basal plane normal of one of the neighbouring grains and the GB 

pole: if a GB is close to the basal plane, the angle will be zero.  As the pole approaches 
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the c axis, the thermal expansion coefficient in the direction of the pole approaches α33, 

which is the maximum value.  Each GB is a curved surface in 3D space, and the FE model 

approximates the surfaces between grains by a set of triangular elements, as shown in 

Figure 9b.  To obtain a representative average orientation of each GB, a weighted 

average orientation was calculated, where the weight is proportional to the triangle 

area.  This reduced the effects of smaller regions, which tend to be at the boundary 

edges.  

 

The data have been binned into a set of increasing angular ranges, each containing at 

least 92 GBs (Figure 10c).  The normal stresses are found to decrease with increasing 

angle, with the effect more marked in cases where both poles are close to the c axis; 

stresses at boundaries that are close to the basal plane in both grains are thus 

considerably more tensile, compared to those with at least one such grain.  These are 

the boundaries between the grains that contract most relative to the boundary plane.  

This is consistent with experimental observations of cracked boundaries in a fine-

grained polycrystalline alumina [51], and suggests the image-based FE model of the 

grain aggregate is sufficiently representative of the microstructure to predict the 

development of average intergranular thermal stresses. 

 

Inspection of the tomography images identified at least 21 cracked boundaries in the 

sample that was loaded in compression to 350 MPa (Figure 11a); no cracks were 

resolved at lower loads.  The cracks tended to be aligned orthogonally to the applied 

compressive stress (Figure 13b). The average GB pole angle of these boundaries was 

55° with 14 GBs presenting at least one GB pole higher than 60°. In order to investigate 

the stresses at these boundaries, the FE model was used to predict their normal 

stresses after cooling and with the sample loaded uniformly in compression (350 MPa) 

(Figure 11c).  With thermal loading alone, the average stress for both the total grain 

boundary population and the cracked boundary population was close to zero.  The 

cracked boundaries do not appear to present higher tensile stresses than the general 

population after cooling.  With uniform compressive load of 350 MPa applied, the 

normal stresses of the cracked boundaries tended to become more tensile relative to 
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the general population due to grain-to-grain interactions, although their developed 

tensile stresses are not large. Most other boundaries become compressively loaded, 

increasingly so the nearer their plane normal to the compressive loading axis.  

However, the cracked boundaries are clearly located towards with the region where the 

axial strain was measured to become increasingly tensile as the sample was loaded 

(Figure 11b and d).  This suggests that bending flexure of the sample quite strongly 

influences intergranular fracture in this experiment, and so further examination of the 

stresses on the cracked boundaries was not attempted.  However, this analysis shows 

that in principal, an examination of the cracked boundaries might lead to a criterion for 

intergranular fracture, such as a critical tensile stress, in an experiment with well-

defined loading.  DVC analysis of the displacement fields would provide the full 3D 

boundary conditions for the FE model. 



Chapter 4 – Results and discussions 
 

171 
 

  

Figure 11: Characterisation of cracked boundaries: a) a section of the tomography data at 170 N, 

showing intergranular cracking, b) visualisation of the cracked grain boundaries in the model and 

their calculated thermal stresses; the cracks are visualised in the x-y and x-z plane, c) the 

cumulative frequency distribution for the mean normal stress on all boundaries and cracked 

boundaries, with thermal stresses and with a uniform compressive stress of 350 MPa, d) The 

traces of the cracked boundaries in the same section of the tomography data are superposed with 

axial strain map (see Figure 6 for scale).  The circle in each case identifies the boundary of the FE 

model in the x-y plane; this was constructed from the DCT data of an unloaded sample and does 

not bound the CT data at 170 N  in (a) due to sample movement.  
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4.4.5 Validation of the FE Model by Diffraction 

The FE model predicts significant thermal strains within grains leading to local lattice 

distortion.  For example, a typical grain (Figure 12) experiences an average lattice 

rotation of 0.16° (calculated by quaternions [52]), but also has a spread of rotation of 

approximately 0.15°  due to the thermal strains within in the grain. Synchrotron X-rays 

are highly monochromatic, so the Bragg diffraction condition is satisfied only over a 

small angular range of crystal orientation (described by the Lorentz factor).  The 

observation that grains pass gradually through the Bragg condition (Figure 2 is an 

extreme example) may be explained by the range of thermal strain-induced lattice 

rotations (e.g. 0.15°).  By simulating the effect of these distortions on diffraction, a 

direct grain-by-grain comparison was therefore done to test the validity of the FE 

model.   

 

Figure 12: Rotation of individual elements in a grain from the initial orientation due to thermal 

strains: a) map of the grain surface b) cut-view of the same grain.  

 

The elastic strains and lattice rotations obtained at the nodal positions of the elements 

within the grains in the FE model were used to predict the diffraction images for each 

grain.  Assuming kinematical diffraction, the diffraction images are simulated by 

superposition of the diffracted intensity from each 3D element. To do this, each element 

is assigned an average lattice rotation and strain from the output of the FEM model.  

Functions describing the position of the diffracted intensity (in image coordinates x and 

y, and sample rotation ) are then calculated for each grain for the average grain 

orientation and the selected diffracting planes. Linear approximation, using coefficients 

from the partial derivatives of these functions with respect to the components of lattice 

Rotation ( °) 
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rotation and elastic strain, provides a computationally efficient means to calculate the 

effect of element strain and lattice rotation on the distribution of diffracted intensity. A 

separate diffraction image is thus obtained for each grain as a function of  in steps of 

0.05°; their diffracted intensities are summed and the local value relative to the average 

lattice rotation presented in a 2D image with an arbitrary scale to exclude outlier 

points. The predicted diffraction images are then compared to the experimental 

observations. An example for one grain in one diffracting condition is given in Figure 13 

(a and b). Further examples and explanations of the methodology are given in the 

online supplementary material.  The agreement between the predicted and observed 

diffraction images is fairly good; the model captures the general patterns of intensity, 

although there are differences in the detail. 

 

a)  b)  (c)  (d)  

Relative Rotation    Relative intensity 

     

  1            0           -1    0  1 

Figure 13: An example of the comparisons between measured and predicted diffraction image 

intensity; a) measured, b) prediction considering local strains and lattice rotation, c) measured 

(same as (a), scaled in relative intensity to remove sign), d) prediction considering lattice rotation 

only.  Data for 2113( )diffraction in grain 3.  Further examples are given in the online supplementary 

material. 

 

The relative importance of dilational strains (i.e. tension or compression) and shear 

strains (which are associated with lattice rotations) was investigated by post-

processing to predict diffraction images using only the local misorientation angles [54] 

relative to the grain average orientation that was obtained using quaternions [52].  Only 
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the rotation component about the sample rotation axis was considered.  The intensity 

change with , relative to the Bragg condition, was described by a Gaussian function 

with an arbitrary standard deviation of 0.05°.  A experimental and predicted diffraction 

image pair is shown in Figure 13 (c and d).  The predicted diffraction image was 

obtained by summing the set of images with rotation about the Bragg condition, as 

before.  While some features are captured, the agreement is worse than generally 

obtained when the elastic strains were included, indicating the dilational elastic strains 

contribute significantly to diffraction.  Varying the Gaussian standard deviation 

between 0.02° and 0.08° did not significantly affect the patterns of intensity, and an 

examination of the effect of lattice rotations about the diffraction plane did not improve 

the agreement with experiment. Further examples are given in the online 

supplementary material.   

 

The broad agreement between the experimental and predicted diffraction images 

supports the general validity of the thermal stresses predicted by the image-based 

Finite Element model.  We attribute the most significant cause of error to the inevitable 

approximations in grain shape in the creation of the model from the experimental DCT 

data.  Errors may also arise from neglect of stress redistribution following intergranular 

cracking during cooling. However tomography did not reveal significant levels of 

cracking, so this may not be important here.  However, intergranular porosity was 

observed and this has not been treated in the model.  The effects of plasticity were also 

neglected, since thermal strains would not have developed to a significant magnitude at 

the temperature where plasticity could occur in alumina.  However, any plasticity that 

did develop at high temperature may contribute to local lattice distortions [53].  

4.4.6 Concluding Summary 

Diffraction contrast tomography (DCT) has been applied to a coarse grain size 

polycrystalline alumina to obtain experimental 3D data on the shape and 

crystallographic orientation of each detected grain in a volume comprising many grains.  

Comparison with computed absorption tomography observations of intergranular 

porosity and cracking, the latter induced by compressive loading of the unconstrained 
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sample, provides confidence in the inferred grain boundary locations.  The grain 

boundary planes are also consistent with the expected preferences for low-energy 

facets in alumina.  The DCT data are judged to provide a good description of the three-

dimensional microstructure. 

 

An image-based Finite Element model of the microstructure, with cohesive elements at 

the grain boundaries to extract grain boundary stresses, has been constructed from the 

DCT data.  The grain orientations were used to implement the anisotropic crystal elastic 

stiffness constants and thermal expansion coefficients.  The bulk elastic properties of 

the model were consistent with those of polycrystalline alumina, and also agreed with 

the experimental observations of Poisson’s ratio obtained by digital volume correlation 

of tomographic images obtained under in-situ loading. 

 

Using the Finite Element model it was possible to simulate the effects of cooling from 

elevated temperature (i.e. sintering temperature) on strains at grain boundaries and 

within grains.  We found that the largest thermal tensile stresses develop for 

boundaries where one or both adjacent grains have their basal plane closely aligned to 

the grain boundary plane.  Higher tensile stresses are apparent when both grains have 

such orientation.  The average grain boundary stresses were insensitive to the relative 

grain-to-grain crystal misorientation and volume of adjacent grains, suggesting these 

are secondary factors.  It was not possible to use tomographic observations of 

intergranular cracking under load to obtain an intergranular failure criterion, 

principally due to experimental uncertainty caused by the alignment of loading and the 

resulting flexure of the sample. 

 

A spread of the diffraction angle was observed for individual grains, indicative of 

significant lattice rotations.  These are similar in magnitude and distribution with those 

predicted by FE.  Alternative simulations showed that the tensile and compressive 

elastic strains contribute significantly to diffraction; this supports the validity of the 

image-based Finite Element model to predict intergranular stress. 
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In conclusion, the three-dimensional microstructure of alumina has been sufficiently 

well measured by diffraction contrast tomography to produce a microstructurally-

representative model of a polycrystalline aggregate and its thermally induced residual 

stresses.  Future developments of this approach might use in-situ tomographic 

observations, with well-defined mechanical loading quantified by digital volume 

correlation, to obtain an intergranular fracture criterion as a function of grain boundary 

structure.  The relationships between grain and grain boundary orientations and grain 

boundary stress might also be implemented within Voronoi-type approximations of 

microstructures to investigate the sensitivity of the grain boundary structure 

distribution on the development of intergranular cracking.  
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4.4.8 Online supplementary material  

4.4.8.1 Additional validation research 

In Figure 13(a) we presented the calculated and predicted diffraction image for one 

diffraction condition of one grain (grain 3 in the dataset).  The diffraction images 

corresponding to all the observed diffraction conditions of this grain are shown in 

Figure 14; a total of 64 diffraction image pairs.  Visual examination shows the general 

agreement is reasonably good, with about half of the pairs showing similar patterns of 

relative rotation ().According to the author’s visual criterion, examples of good and 

bad agreement are enclosed in blue and red respectively. 
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Figure 14: Pairs of measured (left) and predicted (right) diffraction images for one grain (grain 3).  

Results are presented in a relative scale values of  (■1, ■-1).  Rows from top to bottom represent 

the diffraction conditions for the following families of planes: {0 1 -1 2}, {1 0 -1 4}, {1 1 -2 0}, {1 1 -

2 3}, 1 1 -2 3}, {1 1 -2 3}, {0 2 -2 4}, {0 2 -2 4}, {1 1 -2 6} and {1 1 -2 6}.  The pair shown in Figure 13 

is highlighted. 

 

A more detailed comparison of the measured and predicted diffraction images in terms 

of relative rotation () and diffracted intensity (as in Figure 13) is shown in Figure 15. 

As shown in Figure 13, the agreement is considerably worse than when the elastic 

strains were excluded (columns 1 and 2 in Figure 15), demonstrating that these 

contribute significantly to the observed diffraction effects.  
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  Grain 3, =250°, 2113( )  

 Grain 3, =220°, 2116( )  

 Grain 362, =135°, 1216( )  

 Grain 362, =30°, 1216( )  

 Grain 99, =48°, 1216( )  

 Grain 99, =228°, 1216( )  

 Grain 296, =300°, 2116( )  

 Grain 296, =133°, 2116( )  
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Figure 15: Further examples of the comparison between measured and predicted diffraction 

image intensity; column 1) measured, column 2) prediction considering local strains and lattice 

rotation, column 3) measured (same as (column 1), scaled in relative intensity to remove sign), 

column 4) prediction considering lattice rotation only. Data is shown for 2 pairs of grains (3-362 

and 99-296), sharing each a boundary predicted to be in compression. The relative positions of 

grain 3 (red) relative to 362 (blue) and the relative positions of grain 99 (red) relative to 296 

(blue) are shown in column 5 by their projected images. 

 

Figure 13 shows only one example of a visual comparison between the predicted and 

observed diffraction spot images for one diffraction spot for one grain.  In an effort to 

quantify the data from numerous image pairs, we selected the measured and predicted 

diffraction images of 34 grains that were adjacent to 17 large boundaries facets (>750 

µm2) that were predicted to be highly stressed (i.e. above 200 MPa in absolute 

magnitude): 8 boundaries were in compression and 9 in tension.  The predicted and 

measured diffraction images produced by each of these grains have been compared 

(rejecting those diffraction images which are almost two dimensional due to the 

insufficient intensity in the original data). Linear regression was applied to quantify the 

differences between the measured and predicted relative lattice rotation values () for 

all the pixels in each diffraction image.  The averaged coefficient of correlation (R) for 

the grains in compression is 0.23 with a standard of deviation 0.10 (here R=1 indicates 

a perfect fit).  In tension, the corresponding coefficient of correlation is 0.16 with a 

standard deviation of 0.16.  The correlation is no better than fair, although the 

agreement is worse for tensile grains, possibly due to some cracking, which is currently 

not modelled. 

 

4.4.8.2 Calculated stresses on cracked boundaries 

 

Here we plot the predicted stresses (in 3D) on the identified 21 cracked boundaries 

after cooling (Figure 16a) and subsequent loading in compression (Figure 16b). It can 

be seen that, as discussed earlier, with thermal loading alone their average stress was 

close to zero, although an average compressive stress of 120 MPa developed under 
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load. Further, these views fully locate the position of the cracked boundaries (towards 

one side of the sample).  

 

 

 

 

 

4.4.8.3 Simulation of diffraction spots from deformed grains 

Based on the deformations calculated using the finite element crystal plasticity model 

(FE-CPS), the diffraction patterns for each grain were simulated independently and 

compared to the observed ones. Taking the reconstructed 3D shape of each grain, each 

voxel was assigned a local strain and orientation state (i) from nearest neighbour 

interpolation of the FE-CPS results, and orientations of the diffracting plane normals are 

determined. The rotation angle (omega) at which diffraction occurs from a specific (hkl) 
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Figure 8: Calculated stress on observed cracked boundaries: a) after cooling and b) after such 
cooling with subsequent loading in compression (350MPa) along the Z axis (red arrows). The top 
views in the figure are the top views of the sample while the bottom views represent the side views 
of the sample. 
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plane normal can be found for each voxel by applying Bragg’s law. Once the omega 

angles and plane normal orientations for a given (hkl) reflection are known, the 

scattering and diffraction vectors and the path of the diffracted beam from each voxel 

can be calculated, and the intersection with the detector plane pi. Once this intersection 

is known for the undeformed state (p*i), it can be approximated for any deformed state 

using the Jacobian: 

                              Eq. (1) 

 

To facilitate the simulation, kinematical diffraction was assumed which allows that the 

diffraction spots to be approximated as a sum of the diffracted beam intensities from all 

the individual voxels. In other words, phase effects in the incoming and diffracted beam 

and therefore the interaction between the voxels were neglected. Self-absorption of the 

sample and extinction of the beam across diffracting grains were also neglected. All 

voxels are assumed to have the same scattering efficiency, contributing the same 

intensity to the diffracted beam.  The resulting intensity observed at a given position on 

the detector is given by the following equation, where  describes the interpolation of 

the projected intensities over the eight nearest detector pixels (in x, y, ) to pi.  

               Eq. (2) 

These approximations can be justified for deformed metallic crystals and have been 

successfully used to create grain maps of polycrystals using diffraction contrast 

tomography [40].  
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5 Conclusions and future work 

5.1 Overall conclusions 

 

The conclusions in this dissertation have largely been extracted in each individual 

research case (including the annexes). Some of these conclusions are compiled here. As 

the conclusions for each of the publications and supplementary research are indeed 

interrelated, these are referred in the text of this section when relevant. 

 

Previous to Publication 1, some residual stress measurements have been compared 

with CPFEM results in annex 6.9. In this case the residual stress across the section of a 

bent bar is well predicted and indication of the residual intergranular stress is 

anticipated. Publication 1 shows that, when averaged over several grains, the residual 

elastic strains can be reasonably well predicted even following complex loading paths. 

In such work three different 90° strain path changes have been studied. At the 

macroscale, the measurements revealed transient softening, only partially consistent 

with the predictions. Therefore, at this scale, Bauschinger effect on reloading that is 

only partially captured by the model. Only in the case of C2T3 was any significant 

permanent softening observed.   Low levels of permanent softening are consistent with 

previous work on single phase stainless steels. At the meso-scale (as defined in the 

introduction of this thesis), measurements of the elastic response of different {hkl} 

grain families were performed by neutron diffraction. These results revealed an even 

earlier onset of yield for strain paths reloaded in compression while a strain path 

reloaded in tension showed good agreement with corresponding predictions. Further 

results in publication 1 demonstrate some characteristics of plasticity in policrystals. 

For instance, modelling results show that intergranular strains are introduced in the 

pre-strain but these soon become over-written by intergranular strains characteristic of 

the reloading such that no permanent softening is predicted. Additionally, it is 

important to note that the current model does not include an inherent Bauschinger 
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style permanent softening in the constitutive laws governing slip.  It is quite possible 

that this would need to be invoked to explain any permanent softening encountered for 

larger pre-strains. This opportunity for improvement will be explained in more detail in 

the “further results” section. 

 

In publication 2, cohesive elements in the grain boundary regions have been 

incorporated in order to calculate normal stresses to grain boundaries generated by 

elastic and plastic anisotropy during deformation and following unloading. This work 

was inspired by elastic simulations in bi-crystals (annex 6.7). It was found that, after 

0.5% applied strain, stresses normal to grain boundaries introduced by plastic 

anisotropy dominate over the normal stresses introduced by elastic anisotropy. This is 

in line with results from Publication 1 (Figure 5) where it was seen that plastic 

deformation overwrote the previous internal strain characteristic to a give strain path. 

Further, stresses at triple junctions were predicted very high in magnitude (whether 

tensile or compressive). Some discussions were extracted in this respect. Finally, 

predictions of the magnitudes of the residual grain boundary stresses at soft-hard grain 

combinations were carried out, since these have been observed to fail. The results 

revealed the stress to be unrelated to the amount of plastic strain in the vicinity of the 

boundary and whether it was higher or lower than the average plastic strain. Finally, 

the relationship between the variability of residual grain boundary stresses and the 

grain boundary orientation was explored. Previous work has revealed some particular 

grain combinations that enhance intergranular stresses. In contrast with these results, 

the grain boundary orientation was statistically found to be independent to the residual 

grain boundary stresses. 

 

In publication 3, diffraction contrast tomography (DCT) was used to map the 3D grain 

arrangement of an aluminium polycrystal. This was the basis of a microstructurally 

faithful mesh for crystal plasticity finite element modelling (CPFEM). The sample was 

then monitored by DCT during incremental uniaxial compression. Changes in the 

diffracted spots during deformation were interpreted in terms or crystal re-orientation 

and orientation spread within grains. Reorientation within grains of ~ ± 1 ° has been 
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observed after 1.2% compressive strain as predicted by the model. However, on a 

grain-to-grain basis, agreement is relatively poor. These poor results may be attributed 

to the simplicity of the model or to the fact that the boundary conditions employed in 

the model are likely to be somewhat different to those in the experiment. It is indeed 

very difficult to deform such a small sample in an idealised manner. Future 

developments of this approach might use in-situ tomographic observations, with well-

defined mechanical loading quantified by digital volume correlation (DVC). Other 

opportunities for improvement are possible and these are discussed in more detail in 

the next section (further work section). 

 

In publication 4, an image-based FE model of a reconstructed alumina policrystal (using 

DCT) has been developed. Cohesive elements have been placed at the grain boundaries 

to accurately extract grain boundary stresses. The reconstructed grain orientations 

were used to implement the anisotropic crystal elastic stiffness constants and thermal 

expansion coefficients. This analysis was done using linear elasticity, neglecting any 

possible plasticity that could occur in the material. The purpose is to simulate the 

stresses formed upon cooling from an elevated temperature (i.e. sintering 

temperature). The stresses calculated at grain boundaries aligned with the basal plane 

are highest, in agreement with experiments and thermal lattice anisotropy. Higher 

tensile stresses are apparent when both grains have such common boundary 

orientation. Unlike findings in previous work, the average grain boundary stresses were 

insensitive to the relative grain-to-grain crystal misorientation. The predicted effect of 

crystal lattice strains and rotations on diffraction, due to the modelled thermal stresses, 

showed some agreement with the observed X-ray diffraction images of individual 

grains. Analogous to publication 3, well-defined mechanical loading quantified by 

digital volume correlation (DVC) may be used in future to feed realistic boundary 

conditions into the FE model. 

 

Overall, it is worth noting that many intra-granular mechanisms are not captured by the 

current model (e.g. dislocation pile-ups or slip transfer) meaning that local stresses may 

be poorly predicted at boundaries in plastic models. Further improvements may be 
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achieved by model coupling with Discrete Dislocation Dynamics (DDD) models. In this 

regard, statistical (at a larger scale) experimental vs. simulation comparisons show a 

better agreement than local comparisons. For example, the strong effect of the 

neighbourhood at redistributing local stresses has been shown (publication 2) in fully 

developed plasticity. Again in fully developed plasticity, another example can be found 

in the measurements and predictions of local rotation maps plotted in publication 3 

which show poor agreement. However, the magnitude of the reorientation within 

grains (~ ± 1 °) is predicted as observed. Further, the agreement between predicted and 

modelled grain-averaged GOS in publication 3 is much more satisfactory. The 

agreement between predicted and measured rotations with respect to the average 

orientation following rolling (6.10) is also statistically satisfactory.  

 

A further example on the local stress redistribution as a result of the neighbourhood in 

the policrystal can be found in publications 4 and in the supplementary research 

associated to publication 2 (annex 6.5). The partial disagreement between predicted 

and measured diffraction images in publication 4 could be, at least in part, attributed to 

the fact that cracking has not been modelled. It is probable that these agreements will 

improve when considering cracking because a cracked boundary would redistribute 

stresses in neighbouring grains. This redistribution of local stresses has also been 

shown in the supplementary research associated to publication 2 using a Kroner-type 

approximation (annex 6.5). Indeed publication 2 demonstrated the dominance of 

plastic anisotropies at boundary stresses. It is therefore essential to note that annex 6.5 

and publication 2 differ in nature to those in publication 4, since the later considers 

only linear elasticity. Yet the local redistribution of stresses is present in both. 

 

Choices of geometry (using truncated octahedra) for simulating the grains in the 

aggregate have also been explored in annex 6.8. Publication 1 was, in fact, first 

attempted with truncated octahedra but somehow poorer neutron diffraction 

simulation results were obtained as discussed in the publication. Publication 1 was 

therefore carried out using Voronoi tessellation. Publication 1 was also carried out 

using Voronoi tessellation in order to obtain a range of grain boundary orientations and 
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study the effect of these angles on the grain boundary residual stresses, as exposed 

above. A further limitation in 3D models is the computational cost. Ideally, very dense 

meshes of a very large number of grains using “good” (e.g. quadratic interpolation) 

elements should be used. Some of these meshing effects have been explored in 

publication 2 and section 6.10. In denser meshes used in section 6.10, a broader 

misorientation distribution around the three axes indicates the better accommodation 

of the constraints by the neighbourhood. Similarly, in publication 2, the finer the 

meshes used, the lower the grain boundary stress variability. 

 

5.2 Further work 

5.2.1 Slip-reversal  

 

Perhaps the most challenging and required model implementation in the near future is 

the incorporation of backstress at the slip level, i.e. making reverse slip easier on 

activated slip systems. This effect has been known to contribute to the Bauschinger 

effect of the aggregate. For example, for 304 stainless steel, we have tested the 

reloading yield stresses in different directions of a cold-rolled sample (Figure 5.1). 

Further, kinematical hardening at the slip level is believed to play a key role following 

strain path changes.  
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Figure 5.1. Stress-strain curves following reloading of cold-rolled 304 stainless steel in three 

different directions: rolling direction, normal direction and transverse direction. The curves show 

a clear difference in yield stress for different directions (especially the transverse direction). 

Courtesy of David Wright (University of Manchester, UK) 

 

Back-stress has been simulated at the crystal slip level (Barbe et al., 2001). This 

approach is based on a macroscopic Armstrong-Frederick non-linear kinematic 

hardening and has been extended at the crystal level. The back stress rate term is a 

function of the plastic strain rate itself. Such approach has been demonstrated 

successful in simulating 3D aggregates.  

 

Alternatively, the effect of strain softening in the opposite direction to the slip direction 

can be simulated without the knowledge of the back stress tensor. A strategy 

implemented by Lorentzen and co-workers (2002) considers that, as the hardening on 

a slip system that is loading is increased, the hardening coefficient on the opposite slip 

system, i.e. the same slip plane but opposite slip direction, is decreased by the same 

amount. This is a polycrystal plasticity model equivalent to the classical macroscopic 

kinematic hardening law. The main difference with macroscopic kinematic hardening is 

0    0.05          0.10    0.15            0.20             0.25           0.30        0.35 

True strain 
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that this describes a shift of the entire yield surface. In this case, however, the opposite 

slip direction is moved but the yield surface in other slip directions is unaffected. 

However, this is perhaps more representative of the “true” material, since it correlates 

with the reversal of dislocations on a given slip plane.  

 

It would be possible to implement the slip-based kinematic hardening into an Abaqus 

material subroutine (UMAT) that simulates elasto-viscoplastic deformation via slip 

(Huang, 1991). Although the calculation of the back-stress tensor is possible, this latter 

approach would be easier to implement. The initial state variables controlling 

hardening in each slip direction would need to be twinned with those acting in the 

opposite sense of direction. This is possible since the knowledge of the Cauchy stress 

tensor allows resolving stresses and their sign, according to a convenient sign criterion. 

 

5.2.2 Further work on grain boundary stresses  

 

It is necessary to conduct experiments that can reveal stresses at boundaries to validate 

current models. An opportunity is open through Focused Ion Beam (FIB), in which the 

displacements caused by the relaxation after a sectioning proximate to the boundary 

can be incorporated into elasticity laws to reveal the stress state previous to the 

sectioning. Recent work shows that this technique can be used to infer stresses at the 

grain size level (Winiarski et al., 2011, Winiarski and Withers, 2012). 

5.2.3 Fatigue and SCC 

 

There are multiple future opportunities using CPFEM that arise from discussions in 

section 2.6. For instance, the experimentally observed nucleation sites in low cycle 

fatigue have been predicted as the regions of highest accumulated slip (Dunne et al., 

2007). The research could then be extended to fatigue under complex loading paths. 

Further, the 3D path of an observed stress corrosion crack can be imported into a 3D 

CPFEM model containing damage-evolution boundary elements (e.g. cohesive elements 
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at the grain boundaries) (Simonovski and Cizelj, 2012). Then the damage-evolution 

properties would be adjusted according to the susceptibility/resistance of certain 

boundaries to SCC (see Annex 6.1)  

5.2.4 Further work aluminium 

 

Further work could be performed in this project in the deformed state (Figure 4.9, 

central and right columns). Electron channeling contrast imaging of sectioned grains in 

the Bragg condition could be used to quantitatively characterize the dislocation density 

or the developed in-grain structures such as cell structures15 (Gutierrez-Urrutia and 

Raabe, 2012). The link between these and the GOS or the average grain could be 

investigated. Similarly, predicted and measured average grain rotations could be 

plotted across a section of the aggregate (see Figure 4.9). This would enable us to 

visualize the level of agreement depending on the spatial arrangement of the grains i.e. 

grains with well-predicted average rotations could be grouped together in space. 

5.2.5 Further work alumina 

 

The model could be extended to fracture simulation, since the interface elements used 

allow damage evolution with the extreme case of the total loss of stiffness at the 

boundary (crack). In this regard, a Griffith-type fracture criterion has been incorporated 

to simulate cracking in polycrystalline alumina (Yousef et al., 2005). 

                                                        
15 As pure aluminium has a very high SFE, cell-walls structures are formed even at low strain (Landau et 
al. 2009) 
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6 Annexes 

 

In this section some supplementary material is presented. In the first annex a summary 

of the recent findings on boundary susceptibility in SCC is presented. Such findings 

(Marrow et al., 2006, King et al., 2008) could be incorporated into models of observed 

cracks in 3D (section 5.2.3). In the second and third annexes, the methodology for 

averaging orientations and random crystal orientation assignments are respectively 

described. 

 

Here, additional non-published research is disclosed. Firstly, we analyse the stresses 

developed in the vicinity of the grain boundary of an elastically anisotropic bicrystal. 

Secondly, we demonstrate the capability of sub-modelling in a bent bar i.e. the 

modelling at different length scales. Further, the intergranular stresses developed 

within individual grain families following 4 point bending and relaxation. Finally, we 

show CPFEM predictions of the statistical deviations of local rotations with respect to 

the average grain orientation. These results are then compared against EBSD 

measurements.  

 

Co-authorship 

 

The virtual experiences in sections 4.1.1 and 4.1.2 have been fully carried out by myself. 

In sections 4.1.3 and 4.1.4, I have performed the simulations while the experimental 

data (ND, DHD and EBSD) has been provided by co-authors in references (Smith et al., 

2009). 
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6.1 Annex: boundary character in SCC 

 

1) Orientation of the boundary plane {hkl} with respect to its lattice. The low index 

planes are resistant. For instance, the plane (111) it is considered as a low index plane. 

 

2) Coincidence Site Lattice (CSL or Σ) is inversely proportional to the number of 

common atoms between the two lattices at the GB. Boundaries with Σ11 or lower tend 

to be resistant (e.g Σ3 or twins boundaries). Only boundaries with Σ> 29 have been 

classified as susceptible boundaries. 

 

3) Boundary misorientation, being those below 9.4° identified as resistant16. 

 

A highly corrosion-susceptible boundary may be linked to a high boundary energy, 

where formation of chromium carbides is easier. This involves chromium depletion at 

the boundary, which may be enhanced by cold work. Read and Shockley (Read and 

Shockley, 1950) found that the boundary energy increases as the misorientation angle 

increases up to 15°, being the tilt accommodated by edge or screw dislocations. Rohrer 

(2004) has reported low boundary energy occurring in low index boundary planes. The 

relationships between the boundary energy and the CSL (Humphreys and Hatherly, 

2004) are not simple, although some advances have been done (Badiyan and 

Shekhovtsov, 2006).  

6.2 Annex: Random crystal orientation assignments 

In order to assign local random orientations to each of the crystals of the aggregate we 

concluded that the most feasible way is to consider the centre of an sphere as the origin 

of the coordinate system (x, y, z) and select a random point on the sphere to define the 

                                                        
16 Note that these groups are somewhat interrelated. For example, most of the Σ3 
(resistant boundaries) have also a low {hkl} index (111) because that is how they 
naturally grow. The Σ3 with a {hkl} index other than (111) are not resistant. 
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first axis. After this selection, another random selection (second axis) needs to be 

performed between 0 and 2around the first axis. Clearly, the latter selection simply 

consists of a random number to be picked within 0 and 2. One could assume the 

former selection by simply assigning a point’s spherical coordinates to a proportional 

random number. However, this would lead to weighting towards the poles, meaning 

that a correction to “non-weighted” the natural effect is needed. To better describe this 

non-random first point selection, consider a random selection of the angles in the 

vertical direction in the red grid in Figure 6.1 (left). Clearly this selection is uniform in 

units of angles but it is not in units of  

 

        Top view                  Side view               Top view                    Side view 

 

Figure 6.1 Left) showing the incorrectly distributed points, Right) showing the correctly 

distributed points (Weisstein, 2012). 

area, dwhich become smaller near the poles. Thus, if not correction is applied, the 

population density near the poles is expected to be greater since the expected 

occurrence in these units of area it is the same as the rest but the unit of area is smaller. 

The corrected angles can be found as (Weisstein, 2012) a function of two random 

numbers, u and v, (both between 0 and 1) to define two axis (x and y) by the two angles, 

 and , the first one corrected and the second one proportional to 2

= arc cos (2v – 1)    (Eq. 6.2.1)

= 2 u     (Eq. 6.2.2) 
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After such a correction is applied, any view of the sphere with a sufficiently large 

number of picked points should show a similar distribution, because of the infinite 

symmetry planes in a sphere (see Figure 6.1 (right)). The third axis of the material 

orientation is directly defined by the cross product vector between the first two vectors.  

 

 

6.3 Annex: averaging orientations in crystals 

 

Barton and Dawson (2001) suggested a Newton-Raphson based method to average 

orientations. However crystal symmetry was not dealt with. Years later, the arithmetic 

average of quaternions was presented as not suitable when dealing with crystal 

symmetry (Cho et al., 2005).  

 

For example, suppose the two orientations in Figure 6.2 to be averaged when cubic 

crystal lattice is present.  The upper raw gives the result when using the quaternions 

arithmetic mean to average the orientations (e.g. (Pantleon, 2008)). Clearly this does 

not represent the true average, instead the mean is either of the two orientations 

because of the crystal symmetry (lower row in Figure 6.2). 

 



Chapter 6 – Annexes 
 

200 
 

 

Figure 6.2. The upper row represents the arithmetic mean orientation when computed using 

quaternions and symmetry is neglected. The lower row represents the correct mean when cubic 

symmetry is present, which is equivalent to any of the two initial orientations 

 

 

  

Figure 6.3. Brass texture component, {144.74, 45, 270} in Bunge Euler angles is represented on 

the truncated cubic fundamental region in Rodrigues’ space. The Brass component lies on the 

symmetry plane: (a) filled region and (b) transparent region. (Cho et al., 2005) 

 

To illustrate this further, we can consider a typical Brass texture component in 

Rodrigues space (similarly in quaternions space) in Figure 6.3. Such texture component 

lies on the symmetry plane. Therefore, pairs of points belonging to that fundamental 

region can have small disorientation angles, yet appearing far apart in space. This is 

inconvenient for computing the arithmetic average so the fundamental zone or 
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disorientation zone is not appropriate for calculating the mean orientation of a set of 

points. Crystal symmetry can be used to place all the orientations close to one another 

and minimize the misorientations between them, but it is not helpful to confine the 

cloud to any particular copy of the fundamental zone, because we do not want the cloud 

to be divided by a symmetry plane, as shown in Figure 6.3. 

 

In order to deal with symmetry, a position criterion (Cho et al., 2005) was developed to 

average orientations. However, such method has only been applied for 2D 

measurements (we need 3D for the model). Moreover, this method is path dependent 

since the final result depends on the path chosen in a 2D grid. Alternatively, the 

geometrically central orientation could be taken as the mean orientation (Kamaya et al., 

2005). Nevertheless, the mean orientation can become sensitive to local rotations or 

local texture. 

 

In view of the complexity of averaging orientations with crystal symmetry, we have 

used a Hill Climbing procedure. We have chosen the quaternion that minimizes the sum 

of the misorientations from the trial quaternion to each of the other local orientations of 

the grain. We have considered (of course), for each point, the quaternion with the 

minimum rotation according to its symmetry. We have taken our trail orientations as 

each of the points of the grain where the orientation is known. This method is 

considerably computationally intense (because of its repetitive nature) and is 

schematically presented in Figure 6.4. 
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Figure 6.4. The Hill Climbing procedure used in the current research to determine the grain 

averaged orientation 

 

 

6.4 Supplementary research associated with publication 1 

 

In the remaining of the results and discussions section, some supplementary research is 

presented. Some key pre-processing and post-processing methods are first described. 

Further, some discussions on intragranular features as well as the particularity of the 

C2C1 path using the Prager kinematic hardening description macroscopic are analysed. 

6.4.1 Pre-processing 

The Voronoi diagram is the nearest-neighbour map for a set of points. Each region 

contains those points that are nearer to one input site than to any other input site. 

Meshing geometries containing relatively very small features can be problematic (Quey 
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et al., 2011). In the case of the ABAQUS C3D10M elements (quadratic), the poor mesh 

quality (rather coarse) results in some elements becoming too distorted. Very small 

edges have been suppressed in the Voronoi structure to avoid distortion when using 

such elements (see Figure 6.5). Special attention has been paid to boundaries consisting 

of 3 small edges. Boundaries belonging to these edges have not been merged in an effort 

not to lose the boundary. In cases where the small edges could not be removed, a local 

mesh refinement has been applied (Figure 6.6). 

 

   

  

Figure 6.5. Grain showing the removal of relatively small edges (a) to avoid distorted elements 

(marked with arrows in (b)). Grain after edge removal (c), and final mesh (d). 

a) c) 

b)
 
 
 
 
) 

d) 
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Figure 6.6. Resulting local mesh refinement (using ABAQUS C3D10M elements) to avoid element 

distortion. The RVE is shown in a) whereas close-up views are shown in b), c) and d). 

6.4.2 Post-processing 

 

A post-processing code has been written in Python and C++ to obtain the elastic strains 

for different families of crystallographic planes, as would be measured by neutron 

diffraction. Although not presented here, simulations of elastic strains using grains 

shaped as truncated octahedra (section 4.1.2) were also carried out. Surprisingly, 

agreement between neutron diffraction measurements and model predictions was 

found to be poorer than for the 3D Voronoi case. 

6.4.3 Intragranular features 

 

Recent ND studies have revealed a slight decrease of the peak width upon unloading in 

304 stainless steel (Ahmed, 2011). This suggests softening during unloading by slip 

a) b) 

d)
 
 
 
 
) 

c) 
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reversal. The incorporation of kinematic hardening at the slip level in the model has 

been recommended in the conclusions in this work. However, accurate predictions may 

be more challenging than softening a slip plane on its reverse slip direction. The 

Bauschinger effect may be inherently anisotropic at the crystal scale. Dislocation 

boundaries accommodated in specific planes (Huang and Hansen, 1997) and the angle 

formed between the strain measurement direction and the loading axis play an 

important role in the peak broadening asymmetry (Pantleon et al., 2004). This suggests 

a source of short-range internal stresses that may alter the elastic strains within grains 

of each family. 

6.4.4 Permanent softening at the macroscale 

 

In this section we use continuum plasticity to explain the low reloaded yield for the C2C1 

path, which is in consistency with its lower α and our experiment. This is, of course, an 

approximation of reality since promoted slip reversal and dislocation annihilation will 

occur only in active slip systems, changing the macroscopic cylindrical yield surface 

shape. 

 

A crystal accommodates the displacements imposed by its neighbours by slip and 

lattice rotations. This is achieved not only by movement of dislocations but also by 

creation of new dislocations which harden the material. This type of hardening would, 

in principle, harden the material equally in all subsequent reloading directions. 

Therefore, the elastic region increases uniformly upon subsequent strain paths. A 

hardening model can be used to describe this behaviour: isotropic hardening, in which 

the radius of the cylinder of plastification increases. This type of hardening has been 

claimed to be associated with the formation of stable dislocation structures, such as cell 

walls (Zang et al., 2011). In the (unrealistic) case that a material did not show any BE, 

its hardening may be described by pure isotropic hardening. 

 

Prager (1956) first proposed a model to describe the Bauschinger effect: kinematic 

hardening, which has been claimed to arise from the motion of stable dislocations (Zang 
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et al., 2011). An internal stress tensor (x) or backstress was assumed to superpose the 

applied stress, changing the effective yield strength. As a result, kinematic hardening 

implies a translation of the cylinder of plastification (Dunne and Petrinic, 2005). This 

translation can be represented by a directional stress or backstress vector which is 

present upon loading reversal. Years later, some other popular variants of kinematic 

hardening have been proposed (Armstrong and Frederick, 1966, Chaboche, 1986), 

which have been reported to better capture the transient and permanent macroscopic 

stress strain responses.  

 

 

Figure 6.7. Resulting yield strengths σy,(C2C1) and σy,(C2T3) as a result of the yield surface 

translation represented on the deviatoric plane or Π plane (Hill, 1998). The magnitude of the 

backstress tensor is represented as |x|. After compression in a transverse direction, the yield 

strength at 90° to this direction (in the axial or the other transverse direction) is reduced for 

compression but increased for tension (red arrows), when purely kinematic hardening and no 

shape change are assumed. 

 

If isotropic hardening is neglected for the time being, pre-straining will translate the 

elastic domain in one direction. This would be evident as a lowering in yield strength in 

the directions perpendicular to the pre-strain, in addition to the conventional 

Bauschinger effect (180° strain path changes). Prager assumed a linear proportionality 

between the increment of backstress and the increment of plastic strain. Based on this 

x22 

-x22/2 

σy, C2C1 Initial 
yield 

Yield after 
transverse 

compression 

σ1 

σ2 

σ3 

|x| 

σy, C2T3 
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theory, we note that like plastic strain, uniaxial loading creates not only a uniaxial 

component of x, but also the other direct components. Assuming a material that 

macroscopically obeys the Von Mises criterion, Figure 6.7 shows the final yield surface 

as well as the resulting yield strengths (σy, C2C1) and (σy, C2T3) in the directions 

transverse to the prestrain. The yield strength for the T3C1 strain path, although not 

shown for the sake of clarity, is equivalent in magnitude to (σy, C2T3).  

 

The uniaxial component of backstress, x22, as a function of the uniaxial prestrain and the 

backstress magnitude, |x|, are addressed next. Firstly we can examine the components 

of the backstress tensor, dx, as a function of the uniaxial prestrain (Dunne and Petrinic, 

2005). We consider the incremental plastic strain tensor for uniaxial loading in the 2-

direction: 
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We have taken the increment in kinematic hardening (dx) to be proportional to the 

increment of plastic strain (dε p):  

pd
3

2
d εx c                                                           (Eq. 6.4.2) 

where c is a material constant. This is called Prager linear hardening. dε p is deviatoric 

because of the incompressibility condition. Therefore dx is also a deviatoric quantity 

according to Eq. 4.2. For uniaxial loading in the 2-direction we may then write: 
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Combining equations Eq. 4.1, Eq. 4.2 and Eq. 4.3 we find that: 
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pcx 1111 d
3

2
d ε                                                         (Eq. 6.4.4) 

 

The magnitude or norm of the backstress vector, |x|, is shown in Figure 6.7 by 

construction and defined as: 
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Since the axis of the cylinder is perpendicular to the Π plane in Figure 6.7, the yield 

strengths (σy, C2C1) and (σy, C2T3) are accurately represented in magnitude. This is 

consistent with the lower yield observed in the experiment for the C2C1 than for the 

other two equivalent strain paths studied.  

 

 

6.5 Supplementary research associated with publication 2 

 

In this section we first address further relationships between stresses at boundaries in 

soft-hard grain combinations. Secondly, sensitivity results on the unloaded state that 

are briefly described in the publication are further examined. Finally, in order to gain a 

better insight of the results, the histograms of stresses of parallel and orthogonal 

boundaries in the unloaded state are presented. 
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6.5.1 Stresses at grain boundaries between soft and hard grains 
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Figure 6.8. Stress normal to boundaries versus the difference between a) the averaged plastic 

strain of the aggregate and the local plastic strain in the vicinity of the grain boundary; b) the 

plastic strains at each side of the grain boundary. All the results correspond to the unloaded state 

after 10% uniaxial strain. All the strains are resolved in the normal direction to the GB for 

comparison with Kroner approximation. The values are presented for boundaries approximately 

orthogonal and approximately parallel to the loading direction. 

 

Here discussions on section 3.4.2 of the main publication are recaptured. Figure 6.8a 

shows the relationship between the grain boundary stress and the differences of 

averaged and local plastic strains, all variables resolved direction normal to the 

boundary planes. For each boundary, the averaged plastic strain is calculated from the 

whole aggregate. The local plastic strain is taken as the elements in contact with the 

boundary for each grain. Thus, each boundary produces two local regions and 

consequently two values in the horizontal axis in Figure 6.8a. Two sets of boundaries 

are examined: parallel boundaries to the loading direction estimating that boundaries 

with φ higher than 75° are parallel and, orthogonal boundaries estimating that grain 

boundaries with φ lower than 30° are orthogonal. Following discussion derived from 

Eq. 8 (in publication 2), a boundary assumed to be parallel may exhibit tension if the 

local normal strain is higher than average whilst it may exhibit compression if the local 

normal strain results lower than that averaged for the aggregate. This means that, if the 
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present Eshelby-based approximation was somewhat applicable to randomly oriented 

polycrystals, the stress values in parallel GBs would show a tendency towards 

quadrants D and B (Figure 6.8a). Similarly, a tendency for orthogonal boundaries 

towards quadrants A and C would be noticed for plastically harder (than average), and 

plastically softer boundaries respectively. Such tendencies are clearly not observed; 

even when small boundaries, that present highly extreme stresses, are neglected. This 

may be explained, as previously discussed, by the strong influence of the neighbours 

acting over long distances within the polycrystal.  

 

Although not shown, the results were further examined by considering the averaged 

strain as that of the two whole adjacent grains to the boundary in place of the aggregate 

averaged strain. The purpose was to consider a “more local” average strain. Again, this 

did not show any correlation between differences of plastic strain and calculated stress. 

We further considered the differences between the local normal plastic strains at each 

side of the grain boundary in an effort to relate these to normal stresses (Figure 6.8b). 

This test seems reasonable since damage is highly related to severe local strain 

heterogeneity (Bieler et al., 2009). Once again, such local strain difference failed to 

correlate with the predicted stresses, regardless of the orientation of the boundary. 

6.5.2 Effect of excluding small grain boundaries 

 

In the main publication it was clearly shown the stress variability shown in relatively 

small boundaries. It is, however, less clear whether the pronounced effect of the small 

boundaries arises from their small size or from the lack of integration points on such 

boundaries. In this section we study the effect of excluding small grain boundaries (e.g. 

Figure 6.9) on the relationship between boundary stress and grain boundary angle. 

Figure 6.10 shows the reduction of the extreme predicted stresses for all the angle 

intervals as the boundary-size exclusion increases in the fully anisotropic model. 
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Figure 6.9. Example of a relatively small boundary (circled in white) where stresses show a much 

greater variability than other boundaries. 
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Figure 6.10. Average grain boundary stress for each grain boundary angle interval (solid squares) 

with the exclusion of the smallest: a) 70 boundaries (1 cohesive element each boundary), b) 109 

boundaries (2 cohesive elements or less each boundary), c) 200 boundaries (4 cohesive elements 

or less each boundary), d) 400 boundaries (11 cohesive elements or less each boundary). Error 

bars show the standard error for each grain boundary angle interval. 

6.5.3 Distribution of stresses at parallel and orthogonal boundaries 

Here we further investigate the distribution within angle intervals when all boundaries 

are included. Namely, the 0°-15° (orthogonal) and 75°-90° (parallel) intervals are 

studied. The results are presented in Figure 6.11 and Figure 6.12 respectively. The 

distributions appear to follow a Gaussian distribution without any noticeable difference 

between parallel and orthogonal boundary sets. 

a) b) 

c) d) 
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Figure 6.11. Histogram of stresses normal to boundaries whose boundary planes normal form an 
angle lower than 15° with the loading direction  (orthogonal) in the fully anisotropic model. The 
results correspond to the unloaded state after 10% uniaxial strain. 
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Figure 6.12. Histogram of stresses normal to boundaries whose boundary planes normal form an 
angle higher than 75° with the loading direction (parallel) in the fully anisotropic model. The 
results correspond to the unloaded state after 10% uniaxial strain. 
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6.6 Supplementary research associated with publication 3 

 

Here we first address the lattice rotation maps as annealed, as deformed and as the 

difference of these two (shown in publication 4). Moreover, we demonstrate the poor 

correlation of the measured and predicted GOS when the grain volume does not enter 

the correlation. 

6.6.1 Lattice rotation maps 

 

In the text it is commented: “…the grains for the undeformed sample showed distortion 

(probably due to residual strain during grain growth)”. Figure 6.13 shows the measured 

distortions before and after deformation. It is reasonable to link the observed initial 

misorientations with the non-trivial dislocation density in well annealed crystals 1010 

m-2 ((Honeycombe, 1984), p. 88) because the recrystallization is driven by the stored 

energy of these dislocations (Carpenter and Elam, 1920). Another source of distortion 

may arise from the effect of the grain boundary energy which influences grain growth.  
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ANNEALED DEFORMED    DIFFERENCE  

 

Figure 6.13. Local rotations about the grain average orientation, resolved about the X, Y and Z 

axes (in deg.). The rotations after annealing, subsequent deformation and the difference between 

these are shown in the left, central and right columns respectively. 

 

Rotation about X 

Rotation about Y 

Rotation about Z 
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6.6.2 Grain orientation spread 

 

In Figure 6.14, the predicted and measured mean orientation spreads are plotted; in 

this case without dividing each by the grain volume. The correlation in this case is very 

weak. The observed in-grain misorientation is much larger for larger grains. When the 

grain volume enters the correlation (Figure 3 in the main paper), the strong 

dependence of the grain volume on the in-grain misorientation is very clear. This may 

be due to the fact that interior regions of the grain solidify first than outter regions, 

generating larger misfits in larger grains. 

 

 

Figure 6.14. Measured diffraction blob spread by DCT versus Grain Orientation Spread (GOS) by 

CPFEM as loaded in compression at; a) 1.2% strain, b) 4.4% strain 

 

 

6.7 Elastic bi-crystal simulations 

 

A grain boundary is likely to raise stresses in its surroundings due to the deformation 

incompatibility due to elastic and plastic anisotropies. The grain boundary 

misorientation has been shown to influence the deformation close to the boundary in a 

plastically deformed aluminium bicrystal (Zaefferer et al., 2003). In this section, this 

fundamental question is envisaged via CPFEM considering only elastic anisotropy. This 
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study is somewhat simple but has served as a motivation for investigating the effects of 

elastic anisotropy in a polycrystal (publication 2). Attention is focused on the variability 

of stress caused by elastic anisotropy. The single crystal elastic constants used are those 

for 316 stainless steels: C11=205, C12=138 and C44=126 GPa (Ledbetter, 1984).  

 

The boundary conditions applied are shown in Figure 4.11a. Two constraints have been 

set as follows: 1) restrictions of movement only in the loading direction of the square 

surface below the cube 2 with the wall and 2) restriction of movement in directions 1 

and 2 plus rotation around direction 3 at Point A. These restrictions have been 

intentionally set to let the Poisson contraction, avoiding artificial stress risers because 

of the constraint. As shown in Figure 4.11a, a pressure of 100 MPa has been applied to 

act normal to the (squared) boundary of the bicrystal. This load is significantly below 

the uniaxial general yield of the polycrystal (~200MPa) so it is expected that the 

bicrystal is deforming elastically throughout the simulation.  

 

 

 

Each cube is composed of 250 C3D20R ABAQUS elements. A C3D20R ABAQUS element 

is composed of 8 Gauss points and 20 nodes. Four simulations were run assigning 

different material orientations to cube 2 (or grain 2) while the orientation of cube 1 (or 

grain 1) was always the sample coordinates (Figure 4.11). The reference system is as 

Direction  1 
1 1 

Pressure = 100 MPa 

Grain 2 

Grain 1 

Point A 

Direction 3 

       Direction 2  
(Inwards this plane) 

Figure 6.1. Elastic simulation of a bicrystal showing: a) layout of the model and b) the 
definition of the coordinate system employed. 
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described in Figure 4.11b. The direction cosines of the directions 1 and 2 of cube 2 (in 

the sample coordinates) were <1 0 0> and <0 1 0> for the first simulation; <0.447 0 

0.894> and <0 1 0> for the second; <0.707 0 0.707> and <0 1 0> for the third; and, 

<0.577 -0.577 0.577> and <0.408 0.817 0.408> for the fourth simulation. The 

corresponding misorientation angles are 0, 26.56, 45 and 56.6 degrees respectively. The 

Von Mises stresses obtained for the simulation with 45 degrees are shown in Figure 

4.12. The maximum stress at the nodes is shown to be ~150 MPa. Closer examination of 

the values registered at the Gauss points showed a slightly lower value of maximum 

Von Mises stress (137 MPa). This is attributed to the node extrapolation across the 

element. 

 

 

Figure 4.12. Calculated Von Mises stress (MPa) for a bi-crystal with a misorientation of 45 

degrees. 

 

A summary of the maximum Von Mises stress at the nodes in the vicinity of the grain 

boundary as a function of the misorientations are plotted in Figure 4.13. As expected, 

the Von Mises stress ratio (defined as the maximum stress over the average stress) is 

shown to increase up to 1.7 for a misorientation of 56.6 degrees. 

 

Grain 1 

Grain 2 
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Figure 4.13.  Maximum Von Mises stress computed at the nodes in the vicinity of the grain 

boundary in a bi-crystal as a function of the misorientation angle. 

 

 

6.8 Submodelling using truncated octahedra 

 

It is possible to use one way coupling (here also called submodelling) in which the 

displacements calculated in a global model are passed onto an aggregate of grains. 

Submodelling can be used to use crystal plasticity in a complex macroscopic stress state 

(e.g. near a crack tip or a plastically affected zone). In Figure 4.14, a submodel (or RVE) 

has been placed near the tensile surface of a bar subjected to 4 point bending. 

 

Simulating grains as truncated octahedra is fairly popular as it produces a 3D space 

filling tessellation (Jivkov et al., 2007, Quey et al., 2011, Delannay et al., 2006). A Python 

script has been written for generating grains as truncated octahedra. We have used 

such a microstructure as a submodel, which is a particular case of a 3D Voronoi 

tessellation in which the Voronoi seeds form a BCC lattice. The procedure to assign 

initial random orientations in the crystals is described in annex 6.2. Such procedure has 

been used in the remaining of this research whenever random orientation assignment 

is a target. 



Chapter 6 – Annexes 
 

220 
 

  

Each octahedron was meshed with 24 elements ABAQUS C3D20R elements. These 

elements are 20-nodes-quadratic-bricks with 8 integration points. This is a reduced 

integration element. It was chosen to avoid volumetric locking (a refusal of the element 

to deform as the set of equations becomes over-constrained), associated to Poisson’s 

ratio approaching v=0.5 which is the case of plasticity (Bower, 2008).  By contrast, the 

system of equations may include a weakly constrained deformation mode. This results 

in an unwanted deformation mode known as `hourglassing’ because of its unauthentic 

characteristic shape. 

 

 

Figure 4.14. Logitudinal stress (MPa) developed in a simulated 4 point bending test (loaded), 

showing: a) the boundary conditions in the global model, b) region in the global model where the 

submodel is placed, and c) the submodel made of 216 grains shaped as truncated octohedra. The 

average longitudinal stress in the global model and the submodel (~200MPa) differ from the local 

stresses simulated in the submodel. 

a) 

b) 

c) 
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6.9 Modelling intergranular residual stress after 4 point 

bending 

6.9.1.1 Scope of the study 

 

This study reports a straight forward but elegant analysis that simulates the averaged 

stress of individual diffraction peaks and the grain-to-grain stress variability within 

them. This in itself is not new but provides an indicator of the grain-to-grain stress 

variability as compared to other measurement techniques. Several previous studies 

have measured the strain response for averaged grain families each of which has the 

same orientation but different geometry and different neighbours (e.g. (Daymond, 

2005)). Very few, however have measured the averaged strains for individual grains 

(Lienert et al., 2004) or subgrains (Jakobsen et al., 2007). Here, the aim is to provide an 

indicator of the maximum stress variation if one particular diffraction peak was to be 

selected for neutron diffraction measurements. 

 

6.9.1.2 Modelling approach 

 

We have modelled the mesh shown in Figure 4.2, using C3D10M elements and random 

orientations as explained in annex 6.2. We have assigned the material properties by 

calibrating a uniaxial loading test of a 316 stainless steel (as done in publications 1 and 

2). Although sub-modelling is possible (see section 4.4.2), this would require running as 

many simulations as different positions of the aggregate through the thickness studied. 

Instead, the stress-strain curve was projected through the thickness taking the elastic 

limit at 3mm from the neutral fibre (depth). The subsequent loading was assumed only 

elastic, by subtracting a stress proportional to the depth. The subtracted stress was 

chosen so the area enclosed by the stress results zero at each side of the neutral fibre. 

This ensures momentum equilibrium in the out plane axis upon unloading. For a given 

depth, the unloading is assumed equal for all the individual grains.  
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6.9.1.3 Experimental  

 

The residual stress field induced by the elastic-plastic bending has been measured by 

ND and Deep Hole Drilling (DHD) (Smith et al., 2009). The DHD technique introduces a 

reference hole through the thickness of the component (Stefanescu et al., 2004, Leggatt 

et al., 1996, Smith et al., 2009). The displacements of the hole in the radial and vertical 

directions are measured after a cylinder, coaxial to the reference hole, is extracted from 

the component. This distortion allows determination of the residual stresses field using 

elasticity laws (section 2.4.1), setting the shear strains containing the cylindrical-hole to 

be zero. 

6.9.1.4 Results and discussions 

 

The measured and predicted residual stress are presented in Figure 4.15. The residual 

stress profile clearly follows the usual stress profile for 4 point bending (Davis et al., 

1988). The results illustrate the average stress for the {200} and {111} grain families 

and the possible variations in stress within each 

family.
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Figure 4.15. Predicted and measured macro-scale longitudinal residual stresses in an elastic-

plastically bent rectangular beam, including the extent of possible variations due to lattice 

orientation. The error bars show the maximum and minimum stresses for the {200} and {111} 

lattice planes (Smith et al., 2009). 

 

These results are in close agreement with previous experimental and modelling work 

(Lienert et al., 2004). For 2% applied strain, the measured {440} lattice strains of 20 

individual (bulk) grains in a copper polycrystal revealed a standard deviation of ~6% 

from the average axial lattice strain. Corresponding CPFEM predictions were in 

agreement with these observations (Lienert et al., 2004) 
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6.10 Intragranular rotations after cold-rolling stainless steel 

6.10.1.1 Introduction 

It was discussed in publication 1 that the strain history (e.g. strain paths) can play a 

crucial role in sensitising/desensitising metals to various damage mechanisms. The 

heterogeneity (or mosaicity) of lattice rotation with respect a reference orientation as 

deformation progresses is measurable (see the techniques in publication 3). This work 

presents the results of a numerical study aimed at exploring the mechanical aspects of 

cold rolling through the use of crystal plasticity finite element analysis. Specifically the 

work is aimed at quantifying the hetereogenity of crystal lattice rotations. Meaning that, 

the distribution of rotations within the grains is investigated. 

 

The CPFEM technique is highly applicable to investigate these aspects since it simulates 

the development of plastic strain through the consideration of the local slip systems 

operative within individual crystals including the effect of neighbouring grains. As 

discussed in the literature review, CPFEM simulates the behaviour of a Representative 

Volume Element (RVE) of material and is able to calculate stress, total strain and 

rotations under various conditions and combinations of loading.  Rotations 

distributions can then be assessed statistically to provide quantification of rotation 

around specific axes. 

6.10.1.2 Methodology 

6.10.1.2.1 Collection of EBSD data  

Here we present the methodology employed for gathering the EBSD data to be 

compared against the CPFEM results. EBSD measurements have been performed in 304 

austenitic stainless steel (grain size ~160 μm). In the current work, deformation twins 

are ignored by taking a rather large EBSD step size. Therefore mainly the orientations 

of the parent grain are considered because deformation twins were very narrow. EBSD 

data points have been collected in two planes: the RD-ND plane and the RD-TD plane 

(see Figure 4.16). Measurements on both planes have been performed at a 5 μm step 
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size. On the RD-ND plane, data has been collected from 270 grains.  The total point 

count is 46251 for all grains. The point count per grain averages 171. As for the RD-TD 

plane, data has been collected from 441 grains. The total number of points is 39092 for 

all grains. The point count per grain averages 89. 

 

Figure 4.16. Schematic illustration of the rolling process. Showing points of maximum 

compression and elastic relaxation. Relevant directions in the rolling process are shown: the 

normal direction (ND), the rolling direction (RD) and the transverse direction (TD). 

 

6.10.1.2.2 Model description 

The grains constituting the RVE of the polycrystal are represented by a finite element 

mesh. The elements used in this work are composed of 20 nodes and contain 8 Gauss 

points. Each element is assigned the properties of a single crystal and a crystallographic 

orientation. The RVE must contain a representative aggregate of grains, such that the 

global mechanical behaviour of the RVE is equivalent to that of the bulk. The actual 

orientations measured by EBSD (almost perfectly random) were used as the initial 

orientations for the simulations. 
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6.10.1.2.3 Constitutive laws and model calibration 

The CPFEM approach used here differs slightly from that used in the rest of this work. 

An initial guess of resolved shear stress at Gauss points is determined by considering 

the Schmid factor of the slip system. This allows the calculation of the slip strain 

increments (plastic) using a predictor and therefore the updated elastic strain 

increments because the total strain increment is known. This elastic-plastic 

decomposition is possible under the infinitesimal elastic strain assumption (finite 

increments of elastic strain of 1% or less). The stress tensor can then be derived from 

the elastic strain increment and an internal iteration takes place to refine the initial 

value of resolved shear stress. Next, an implicit (non-linear) implementation is used 

where equilibrium is determined at the end of each time increment.  Strain and rotation 

increments are given by the terminal strain rate and spin multiplied by that increment 

time. Details about the procedure along with some examples can be found in (Bate, 

1999).  Further examples of simulations can be found (Quinta da Fonseca et al., 2006, 

Utsunomiya et al., 2004). Plastic deformation is assumed to occur by slip (i.e. 12 slip 

systems here), which is assumed to be rate sensitive according to: 

m/1
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
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


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      (Eq. 4.6) 

where   is the slip rate, 0  is the nominal reference slip rate,  is the resolved shear 

stress and 
0

  is the instantaneous slip resistance in any given slip system. The rate 

sensitivity, m, has a small positive value (typically 0.02) for all slip systems. As slip 

continues, the resistance to slip (
0

 ) increases. This hardening behaviour is modelled 

using a modified Voce law, which describes a power law decay of the hardening rate 

from an initial to a final rate. It is given by: 
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where 
0

 is the initial hardening rate, 
IV

  is the stage IV or final hardening rate and 
S

  

is a saturation slip resistance. The parameters in table 1 were found to match the 
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stress-strain curve of the 304 stainless steel used in this work. The initial slip resistance 

was assumed to be 92 MPa for all slip systems. 

 

Table 4. Constants used in the present work to match the measured macroscopic stress-strain 

curve 

C11 

(GPa) 

C12 

(GPa) 

C44 

(GPa) 

  m 
0

  

(MPa) 

IV
  

(MPa) 

S  

(MPa) 

  205 139.7  130.3   3.7 0.02  1300    170   230 

 

6.10.1.2.4 Simulation of rolling 

The simulation of rolling requires that the maximum compression is applied to the RVE 

(to simulate the material condition between the rollers) following which elastic 

relaxation must be simulated (to simulate the material condition away from the rollers). 

This was undertaken in two stages (shown in Figure 4.16). In Stage 1 a compressive 

strain is applied to the RVE (20 % reduction in the ND or Z direction), whilst the TD (or 

X) is constrained. The material is therefore subjected to expand only along the RD (or 

Y), according to the incompressibility condition postulated in continuum plasticity. In 

Stage 2 all the boundary conditions are removed to allow elastic relaxation. 

6.10.1.2.5 Post-processing 

In the introduction, it was mentioned that rotations distributions can be assessed 

statistically to provide quantification of rotation around specific axes. Here we describe 

such procedure in detail. The steps we have carried out can be listed as follows: 

 

1st   - To obtain an average orientation for each grain 

2nd - Once an average orientation has been approved, the minimum misorientation 

quaternion between the average and the local orientation (∆q) is calculated, according 

to symmetry (24 operators for cubic materials) 

3rd  - To decompose each misorientation quaternion (∆q) around the sample axes (x, y, z) 

following the procedure in (Pantleon, 2008) 
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While the 2nd and 3rd step are well established and almost direct, the average 

orientation is less straight forward when crystal symmetry is present and deserves 

more discussion (Annex 6.3) 

6.10.1.3 Results and discussions 

6.10.1.3.1 EBSD Results 

 

Our results showed a broader distribution on the RD-ND plane than those on the RD-TD 

plane. This may be attributed to the higher averaged point-count-per-grain for the RD-

TD plane (171), as opposed to the RD-ND plane (89). Statistically it is likely that, in the 

former, more points are close to the grain boundaries where deformation heterogeneity 

is maximum. In the remaining, we take the average distribution (in each direction) of 

both planes and name it “EBSD data”. 

6.10.1.3.2 CPFEM vs. EBSD 

In this section we focus on the direct comparison between measurements (averaged for 

RD-TD and RD-ND data planes) and model predictions. For this we have used the 

methodology for averaging orientations and decomposing the in-grain rotations (with 

respect to its average), as described earlier. 

 

We have simulated the cold-rolling deformation of 1000 grains (10x10x10). Each grain 

is assumed to enclose a perfect cubic volume when undeformed. We have used two 

models in order to quantify the effect of the mesh density. In the first model, each grain 

is composed of one element (8 Gauss points). In the second model, each grain is 

composed of 8 elements (64 Gauss points). Figure 4.17 shows the EBSD data along with 

model predictions for both meshes. 
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Figure 4.17. In-grain rotations (with respect to its average) as measured by EBSD and as predicted 

by two models with different mesh density, decomposed about the: a) X axis (TD), b) Y axis (RD) 

and c) Z axis (ND). The results correspond to 20 % reduction in the ND or Z direction. 
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Clearly, in both models rotation about the transversal direction (X) shows a broader 

distribution with respect to the others. In passing, it is worth stating that both 

measured planes by EBSD also showed a broader distribution around X (not shown). 

This feature is therefore well captured by the model. It is also noticeable the broadening 

of the denser model (8 elements per grain) as opposed to the model where each grain is 

considered as a single element. This is expected since more elements mean more nodes 

and more Gauss points to accommodate the boundary conditions imposed by 

neighboring grains. 

6.10.1.3.3 Strain bands 

Slip bands (within grains) have been observed and linked to initiation of SCC in cold-

rolled 304L stainless steel in a 360°C PWR environment (Couvant et al., 2004). At a less 

small scale, strain bands running across grains are known to appear under deformation. 

Slip bands may develop in a region containing a strain band across grains, further 

enhancing strain localization and possibly damage. Local slip bands have been seen to 

oxidize more and to be locally more strained when located on macroscopic shear bands 

(The effect of strain localization on SCC Susceptibility R&T 002, 2012). While slip bands 

are not simulated by CPFEM, macroscopic strain bands can be captured (Barbe et al., 

2009).  

 

Figure 4.18 shows the total strain map of the RVE resolved in the three reference 

directions: RD , TD and ND . For each plot, the colour scale has been selected as the 

macroscopic ± 0.1 strain, giving a constant amplitude range of 0.2 strain. The intention 

is to visualize the relative heterogeneities and shear bands in the three strain 

directions. Consistent with experimental work, strain localisation is predicted to occur 

in strain bands, being more pronounced in the RD-ND plane. They seem to occur at a 

slightly lower angle than 45° with the RD (see Figure 4.19). By inspection of the 

deformed mesh, they presumably started forming at 45° and might have become 

inclined towards the rolling direction following the 20% thickness reduction.  
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Rolling, as described here (see section 4.4.4.2.4), is essentially a plain strain 

deformation at the macroscale. Clearly, the variability of strain resolved in the normal 

direction (Figure 4.18c) is lower than in the other two directions (Figure 4.18a and 

Figure 4.18b). This is in connexion with a somewhat plain strain condition associated to 

rolling, and so are the predictions and measurements showing a broader local 

misorientation distribution about the TD.  

 

       

0.1       0.2           0.3   -0.3     -0.2           -0.1          - 0.1       0             0.1           

   

RD     ND     TD  

TD 

RD ND 

 

Figure 4.18. Strain map of the RVE resolved (a) in the rolling direction, RD , (b) in the transverse 

direction, TD , and (c) and in the normal direction, ND . All strains have been plotted using a 

colour scale in the same strain amplitude range (0.2) to compare strain heterogeneities in the 3 

directions. 

a)                                                                             b)                                                  c) 
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Figure 4.19. Strain map (resolved in the rolling direction, RD ) of three faces of the RVE, showing 

differences in strain bands formation for different planes. Strain bands are predicted to be more 

pronounced in the RD-ND plane (dashed lines). Strain ranges from 0.1 (blue) to 0.3 (red). 

 

6.10.1.4 Conclusions 

 

 Local lattice rotations have been collected in the (20% thickness reduction) cold-

rolled 304 stainless steel, by EBSD, on the RD-ND and the RD-TD plane. 

 Corresponding 3D CPFEM cold-rolling simulations have been performed in two 

different models using: a coarse mesh density (one element per grain); and a fine 

mesh density (eight elements per grain). Both models contain, however, a RVE of 

1000 grains. The effectively random orientations measured by EBSD have served 

as an input for the model simulations. 
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 A Hill Climbing procedure has been implemented in order to calculate the grain-

averaged orientation of each grain. Then we have calculated the misorientation 

of each local point to the grain-averaged orientation and decomposed such 

rotation about the three sample axes: RD, TD and ND. 

 The local misorientation distribution about the three sample axes (to the grain-

averaged orientation) of the measured RD-TD and the RD-ND planes differ 

slightly, being the latter broader.  

 The model using the denser mesh shows a broader misorientation distribution 

around the three axes. This can be attributed to the larger number of elements 

defining each grain, because they can accommodate better the constraints by the 

neighbourhood. 

 Both: model predictions and measurements show a broader local misorientation 

distribution about the TD.  

 Strain outputs have been mapped and the heterogeneity of strain forming bands 

can be noticed. Such strain bands are predicted to be better defined on the RD-

ND plane. Strain heterogeneity in the TD is considerably weaker than in the 

other two directions.  
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