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the base learners are Näıve Bayes models. Replace and Bagging

outperform DivBoost and Keep when the base learners are lossless. 145

5.7 Performance on Heart Disease and Ionosphere datasets after a con-

cept change with oracle detection delayed by 10 steps. With de-

layed detection, Replace and Online Bagging perform much worse. 147

5.8 Various adaptive algorithms on low and high severity concept changes.

Keep performs consistently well; Adaptive DivBoost is generally

better than Replace, but never out-performs Keep. . . . . . . . . 150

5.9 Various adaptive algorithms on high severity concept changes. Lower

severity datasets were omitted since DDM did not detect changes

on them. These results show no discernible advantage to DivBoost

over Keep. Continued in Figure 5.10. . . . . . . . . . . . . . . . . 151

5.10 Continuation of Figure 5.9. . . . . . . . . . . . . . . . . . . . . . . 152

5.11 Various adaptive algorithms on real non-stationary problems. With

MLP base learners, changes are rarely detected; this suggests that

MLPs alone are able to adapt sufficiently fast for these problems.

Since we are never able to detect drift in the Luxembourg dataset,

we initiate false change detections every 500 steps — Replace and

Adaptive DivBoost do worse because of these false detections. . . 153

5.12 The same experiments as in Figure 5.11, but with Näıve Bayes base
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Abstract

Diversity, Margins and Non-Stationary Learning
Richard Stapenhurst

A thesis submitted to the University of Manchester
for the degree of Doctor of Philosophy, 2012

Ensemble methods are frequently applied to classification problems, and gen-

erally improve upon the performance of individual models. Diversity is considered

to be an important factor in this performance improvement; in the literature there

is strong support for the idea that high diversity is crucial in ensembles. Voting

margins provide an alternative explanation of the behaviour of ensembles; they

have been prominently used in the interpretation of the Adaboost algorithm, and

the literature suggests that large margins are beneficial. In this thesis, we exam-

ine these two quantities — which in both cases the literature suggests should be

increased — and show that (in 2-class problems) they are inversely related, high

diversity corresponding to small absolute margins. From this it can be seen that

the views expressed in the literature are contradictory; we argue that ensemble

behaviour can be sufficiently understood without the need to quantify ‘diversity’.

However, in non-stationary learning scenarios — where we must process data

that is not independent and identically distributed — the model must not only

generalise well, but also adapt to changes in the distribution. Building on the

work of Minku, we hypothesise that high diversity might be of special significance

in such problems in determining the rate at which the model can adapt. We use

the correspondence between diversity and margins to formulate the reasoning be-

hind this intuition formally, and then derive an algorithm that explicitly manages

diversity in order to test this hypothesis. An empirical investigation shows that

13



managing diversity can, under certain conditions, improve the ability of an ensem-

ble to adapt to a new concept; however, it typically seems that other aspects of

the learning algorithm, especially concept change detection, have a substantially

larger impact on performance than diversity does.
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Chapter 1

Introduction

In this thesis, we present a number of contributions to the machine learning sub-

field of ensemble methods. As an introduction, we first give an overview of the

problem domains that we consider (Section 1.1). Next, we describe the motiva-

tion for studying these domains (Section 1.2) and propose several contributions

(Section 1.3). In Section 1.4 we outline the structure of the thesis, and finally

present notation tables for reference (Section 1.5).

1.1 Context

We present an overview of three areas of interest for the thesis: supervised learn-

ing, ensemble methods and non-stationary learning.

1.1.1 Supervised Learning

One advantage conveyed by the ubiquity of computer systems is the ability to

replace human labour with autonomous programs; this often brings advantages

in both cost (running computers is cheaper than employing humans), and per-

formance (computers can solve many problems faster and more accurately than

humans). With tasks that can easily be expressed algorithmically, this replace-

ment can be effected by following principles of software and systems design; for

example, a computerised tax system can follow an algorithm to retrieve income

data and apply tax rate and exemption rules to compute the payable tax.

However, many tasks cannot be feasibly solved by engineering an algorithm;

when the task is complex or poorly understood, even experts who are able to

18
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Index Features Label
Patient Age Gender Blood Pressure (mm Hg) . . . Heart Disease?
1 63 Male 145 . . . No
2 67 Male 160 . . . Yes
3 41 Female 130 . . . Yes
4 56 Male 120 . . . No
5 57 Female 120 . . . No

Table 1.1: Heart Disease Training Data

solve the problem themselves may be unable to describe the process by which

they achieve this. For example, in medical diagnosis, Kononenko [46] describes

an expert system for diagnosing heart disease in new-born babies; although it

required several man-months to create, it was out-performed by a simple1 learning

algorithm. The supervised learning paradigm provides an alternative: instead of

writing an algorithm to solve a task, we collect a set of input/output examples,

and by examining these we hope to derive general rules that succeed on future

inputs.

To continue with the diagnosis example, we might take measurements from

groups of patients with heart disease, and the same measurements from patients

without heart disease. These measurements would form the inputs (or features)

of the training data; they might include quantities such as age or blood pressure,

as well as categorical variables such as gender. The desired output (or label)

would be a binary variable indicating whether each patient had heart disease. In

Table 1.1, we show some examples from the Heart Disease dataset that is used

later in this thesis.

A supervised learning algorithm takes this training data as an input. As an

output, it returns a model. The model is able to take inputs (i.e. measurements

from new patients) and return outputs (i.e. predictions of whether they have

heart disease). The idea is that by examining the examples in the training data,

the learning algorithm is able to produce a model that accurately reflects the

diagnosis process for heart disease. Figure 1.1 gives a schematic overview of the

supervised learning process.

1Näıve Bayes
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Figure 1.1: Supervised Learning Block Diagram. The learning algorithm is used
in the training stage to produce a model. The model is used in the deployment
stage to make predictions on unlabelled data.

1.1.2 Ensemble Methods and Diversity

Ensemble methods aggregate predictive models in an attempt to improve upon

their individual performances, often using a voting system. The intuition behind

this can be seen by considering the purpose of voting systems in other domains.

Votes are often used where we expect most voters to make the best decision —

for example, in the “Who Wants to be a Millionaire?” game-show [12], the ask

the audience rule gives the contestant the option of agreeing with the majority

vote of the audience. While it is unlikely for individual audience members to be

knowledgeable enough to answer every question correctly, the aggregated audi-

ence answers will be accurate as long as individual audience members pick the

correct answer more often than they pick the next most popular answer.

In an ensemble model, the ‘voters’ are base learners — individual models

that each produce predictions on input data. In the simplest case, the ‘ensemble

prediction’ is whichever prediction was most popular among the base learners.

Figure 1.2 shows schematically how these voting predictions work. The primary

concern of an ensemble algorithm is how to train individual models; in the liter-

ature there are many suggestions for what training procedures will result in the

most accurate ensembles. One important and well-understood tool for investi-

gating the behaviour of ensembles is the voting margin. This is a measurement

of how many of the base learners in the ensemble make correct predictions, and

can roughly be interpreted as the confidence of the ensemble in its prediction; we

provide a precise definition in Section 2.2.3.

The idea of voting to improve the quality of a prediction relies upon diversity

between the voters: it is okay for them to vote incorrectly sometimes, so long

most voters vote correctly on every prediction. In a game of “Who Wants to be

a Millionaire”, diversity could be achieved by ensuring that the audience had a
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PredictionUnlabelled Data ...

Vote

Base Learners

Ensemble

Figure 1.2: Ensemble Prediction Block Diagram. Base learners produce predic-
tions, and the voting process chooses a single label as the ensemble’s prediction.

wide variety of experts — some with deep knowledge of sports, or medicine, or

politics, et cetera; if instead the audience comprised only experimental physicists,

we would expect good answers on physics questions, but not on disparate topics

like art history.

In ensemble methods, diversity is achieved through the algorithm that co-

ordinates the training of component models. However, the literature abounds

with speculation over how exactly diversity should be quantified and optimised;

opinions range from enthusiasm [38]:

“it is almost an axiom that the base classifiers must be diverse in order

for the ensemble to generalize well.”

through cautious acceptance [49]:

“there is still much room for heuristic in classifier combination, and

diversity might be one of the lines for further exploration”

to complete pessimism [75]:

“not only [does] no useful measure [of diversity] exist today, but it is

unlikely that one will ever exist.”

In Sections 1.2 and 1.3, we outline how we intend to usefully contribute to this

debate.
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i.i.d.
Deploy in 

Rural ChinaTrain System 
in Europe

Different Distribution

Distribution Changes over Time

Deploy in 
Europe time

Figure 1.3: Schematic representation of violations of the i.i.d.ãssumption. When
the system is deployed in rural China, the immediate change in demographic will
damage its performance. Deployment in Europe is initially successful, since the
unlabelled data is i.i.d., but over time gradual changes to lifestyle and diet cause
the distribution to deviate too far from that of the training data.

1.1.3 Non-Stationary Learning

The supervised learning paradigm is quite general, and can be applied to many

common tasks. However, it does make various assumptions that do not always

hold in practice. In non-stationary learning, we address one such assumption:

all data is independent and identically distributed (i.i.d.). This property requires

essentially that there is a fixed way in which every item of data (both training

data examples, and unlabelled data) is sampled, and implies that training data is

representative of unseen data. Whether data is actually i.i.d.d̃epends partly on the

data collection process (for example, if we collect data from European patients to

train a medical diagnosis system on, the model may not perform well if we deploy

it in rural China), but also on the nature of the problem (even if we carefully

train and deploy a diagnosis system on patients from a fixed distribution, the

long term success of the system is not assured; changes to lifestyle and diet will

eventually destroy the i.i.d.p̃roperties of the data). These kinds of distribution

change are illustrated in Figure 1.3.

In many scenarios where such issues occur, a viable solution is to follow a

non-stationary learning procedure. The expectation that the distribution may

change renders the idea of ‘train-then-deploy’ inadequate; it is necessary for con-

tinual training so that changes to the distribution can affect the model. Therefore,
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in non-stationary learning, labelled training data arrives sequentially, and predic-

tions on unlabelled data may be required at any time. This scenario is applicable

to a number of high-profile tasks such as spam email detection, weather pre-

diction, and economic forecasting. Existing high-quality non-stationary learning

algorithms can be expected to improve performance and reduce manual interven-

tion in real-world applications; interest in applying ensembles to such tasks is

still relatively high, with a number of competitive algorithms proposed in recent

years [5, 31, 45,66,67].

1.2 Motivation

In this section, we present some motivation for studying our areas of interest, and

describe how our contributions will benefit future researchers and practitioners.

1.2.1 Understanding Ensemble Diversity

The field of ensemble diversity is characterised by strong intuitive arguments, use-

ful heuristics, an abundance of diversity measures with varying degrees of theoret-

ical and empirical support, and relatively few highly-cited algorithms (Random

— and Rotation — Forests [9, 74] being the only examples of notorious algo-

rithms with explicit diversity-based motivation of which we know). In Section

1.1.2, we presented three quotes that describe a spectrum of different views on

diversity. Because of this uncertainty regarding its definition, purpose and utility,

we believe that efforts to consolidate, relate to external fields, and experimentally

corroborate aspects of ensemble diversity are extremely valuable.

The motivation behind our contributions here is exemplified by our own use of

diversity in non-stationary learning. A consideration for researchers who attempts

to rigorously apply diversity theory is “How should diversity be measured, and

what is the meaning of this measure?”

For example, we would not be justified in selecting a diversity measure, ac-

cepting it as axiomatically beneficial, and then using it as a vacuous explanation

for the behaviour of the ensemble; the idea that “the ensemble is successful be-

cause it has high diversity” should be treated with caution, since one of the most

concrete conclusions of diversity literature is that there is no simple link between

high diversity and good ensemble performance [49, 75].
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If we can improve our understanding of how diversity interacts with other

properties of ensembles, then it should become easier to exploit this understand-

ing to suffix that incomplete explanation: “the ensemble is successful because it

has high diversity, implying X about its other properties, which influences perfor-

mance because of Y ”.

1.2.2 Diversity and Adaptation in

Non-Stationary Learning

Non-stationary learning is an important class of supervised learning task. Since

such problems occur in real-world scenarios, this alone is sufficient motivation to

aim to improve our understanding of how algorithms can better adapt.

Our specific topic, diversity in non-stationary learning, reflects recent interest

in applying ensembles to non-stationary learning tasks; in the Chapter 4, we will

provide more intuition as to why ensembles are seen to be especially appropriate

in these environments.

Of course, just because ensembles provide a promising approach to non-

stationary learning tasks does not especially justify us in investigating ensem-

ble diversity in these tasks. However, in Chapter 5 we explain how our insights

from our contributions in ensemble diversity cause us to expect diversity to be

influential in determining how quickly an ensemble adapts to a new concept. De-

pending on the degree to which our expectations are realised, diversity could form

an important part of a successful non-stationary learning ensemble algorithm.

1.3 Contributions

Here, we present two main areas of contribution. The first of these — Interpret-

ing Diversity using Voting Margins — is a significant insight into a fundamental

theoretical connection between two aspects of ensemble methods. The next con-

tributions exploit this connection, using our insights to understand how and why

we might Manage Diversity for Non-Stationary Learning.

1.3.1 A Relationship between Diversity and Margins

In Chapter 3, we show that:
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1. A large number of diversity measures from the literature [1,15,16,18,26,29,

30, 35, 43, 48, 63, 81, 95] can be exactly described within the voting margin

framework. ‘High diversity’ corresponds to voting margins that are close to

zero.

2. Although high diversity is often considered to be beneficial, ideas from

margin theory and our empirical investigation suggest that low diversity

can reduce generalisation error in some circumstances.

3. By applying Taylor approximations, we can see two interesting relation-

ships; one is between ‘entropy’ and ‘disagreement’ which answers an open

question of Chen [16]. The other is between double fault diversity [30] and

the exponential loss function used by Adaboost [76] — we investigate this

relationship empirically.

1.3.2 Managing Diversity for Non-Stationary Learning

Our previous contributions demonstrate a strong theoretical connection between

diversity and margins. The next part of the thesis (Chapter 5) investigates this

relationship in a non-stationary environment. We:

1. Derive a novel incremental learning algorithm, DivBoost, that uses our

diversity-margin correspondence from Chapter 3 to manage diversity ac-

cording to a parameter.

2. Empirically identify (Using DivBoost) specific scenarios where high diver-

sity contributes to the adaptation of the ensemble, applying techniques from

the literature [65, 82] to generate toy data with known properties.

3. Extend our experimental study to include more datasets, both real and ar-

tificial, finding that other factors in non-stationary learning (such as change

detection and windowing) dominate the impact of diversity in realistic sce-

narios.

1.4 Thesis Structure

The thesis is separated in to two parts — Part I starts with some background

on ensembles, diversity and voting margins (Chapter 2). We then present our
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first contributions on diversity and margins (Chapter 3). Part II starts with

another background chapter on non-stationary learning and the use of ensembles

for such tasks (Chapter 4), and continues by presenting the contributions relating

to non-stationary learning (Chapter 5). We conclude with a summary of the

contributions, and suggestions for future work (Chapter 6).

1.5 Notation

Here, we introduce the relevant notation for the thesis. Tables 1.2, 1.3 and 1.4

summarise all the appropriate values and functions. A small number of values

are ‘overloaded’ to maintain consistency with other published works (e.g. some

EDDM parameters), however in general we have converted others’ notation in

favour of internal consistency. Overloaded notation is only ever used in unam-

biguous contexts.

We have generally given some information about the definitions of notation

here; either a full definition, or a description of its possible values. All notation

is additionally introduced with greater depth in the body of the thesis.
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Notation Definition Description
Pr(a) Pr(a) ∈ [0, 1] Probability of a
δ[a] δ[a] ∈ {0, 1} 0/1 Indicator function
Poiss Poiss(λ) ∈ N Poisson random number
λ λ ∈ [0,∞] Poisson parameter
X X = Rd Feature space
d d ∈ N Number of features
Y Y = {−1, 1} Target Space
x x ∈ X Features
y y ∈ Y Target
〈x, y〉 - Example
N N ∈ N Training dataset size
T {〈x1, y1〉 . . . 〈xN , yN〉} Training dataset

H(x) H : X → Y Predictive model

etr
1
N

∑N
i=1 δ[H(xi) 6= yi] Training Error

egen

∫
x,y∈X×Y δ[H(x) 6= y]Pr(x, y)dxdy Generalisation Error

h(x) h : X → Y Base learner
α α ∈ R Base learner weight
L L ∈ N Ensemble size

F (x)
∑L

l=1 αlhl(x) Ensemble weighted sum

m(x, y) yF (x)∑L
l=1 |αl|

Margin

m 1
N

∑N
i=1mi Average Margin

θ minimi Minimum Margin
s EPr(x,y)[m(x, y)] Strength

ci
1
L

∑L
l=1 δ[hl(xi) = yi] Proportion of correct predictions

L - Learning algorithm
C - Cost Function

Dl(i) Dl(i) ∈ [−1, 1] Example weight

ε
∑N

i=1 Dl(i)δ[hl(xi) 6= yi] Weighted error

P̂ r(y|x) 1
2
(1 + F (x)∑L

l=1 |αl|
) Predicted probability

w w ∈ Rd Linear classifier weights
b b ∈ R Linear classifier bias

mgeo
y·(w>x−b)
‖w‖2 Geometric margin

v - VC-dimension
η η ∈ [0, 1] Bound probability

Table 1.2: Notation



28 CHAPTER 1. INTRODUCTION

Notation Definition Description

f f ∈ [0, 1] Output flip rate parameter
γ γ ∈ [0, 1

2
] Adaboost weak learning parameter

Z Z =
∑N

i=1 Dl(i) Adaboost normalisation constant
p p ∈ N DWM period
β β ∈ [0, 1] DWM discount
θ θ ∈ [0, 1] DWM pruning threshold
f f ∈ R DWM cumulative prediction
µ µ ∈ [0,∞] DivBoost quadratic minimum
p p ∈ [0, 1] DDM mean
s s ∈ [0, 1] DDM standard deviation
p′ p′ ∈ [o,∞] EDDM mean
s′ s′ ∈ [0,∞] EDDM standard deviation
α α ∈ [β, 1] EDDM warning threshold
β β ∈ [0, α] EDDM drift threshold

Nt(y) Nt(y) ∈ N Näıve Bayes class-conditional count (at time t)

µ
(j)
t (y) µ

(j)
t (y) ∈ R Näıve Bayes class-conditional mean (jth feature)

γ
(j)
t (y) γ

(j)
t (y) ∈ [0,∞] Näıve Bayes class-conditional sum-of-squares

σ
(j)
t (y) σ

(j)
t (y) ∈ [0,∞] Näıve Bayes class-conditional standard deviation

Table 1.3: Algorithm Parameter Notation

hj correct hj wrong
hk correct N11

j,k N01
j,k

hk wrong N10
j,k N00

j,k

Table 1.4: Pairwise contingency table for a pair of base learners, j, k. Each cell is
a count over training data of how often two classifiers, j and k, are correct/wrong
in accordance with the superscript.
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Chapter 2

Background and Related Work

2.1 Ensemble Algorithms for

Supervised Learning

In the previous chapter, we introduced the idea of ensemble algorithms and pro-

vided some intuitive explanations for their popularity. In this section, we describe

supervised learning and voting ensembles in more detail and provide the relevant

notation. We then introduce Adaboost, a popular ensemble algorithm, and show

how voting margins are used to understand its behaviour. Finally, we discuss

gradient descent and the Anyboost algorithm, which is a generalised version of

Adaboost that we will use in our experiments later in this thesis.

2.1.1 Supervised Learning

Supervised learning problems can be characterised by a probability distribution

over feature/target space in conjunction with a finite sample that is drawn inde-

pendently from this distribution (i.i.d.). In the 2-class classification problems that

we will consider, the feature space will be continuous, defined as X = Rd, where d

is the number of features. The target space is binary, with positive and negative

classes: Y = {−1, 1}. The unknown distribution from which data is generated is

Pr(x, y). N training examples are sampled i.i.d.̃from this distribution to give a

training set1 T = {〈x1, y1〉 . . . 〈xN , yN〉}, with examples 〈xi, yi〉 ∈ X × Y .

From T , the learning task is to derive a model, H(x) : X → Y , which achieves

1Although the training set is described as a ‘set’, it may contain identical examples such
that 〈xj , yj〉 = 〈xk, yk〉, j 6= k.

30
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low generalisation error with respect to Pr(x, y); generalisation error is defined

as:

egen =

∫
x,y∈X×Y

δ[H(x) 6= y]Pr(x, y)dxdy. (2.1)

This corresponds to the probability that, given a random sample from Pr(x, y),

H assigns the incorrect label. In noisy scenarios it may be possible for a given x

to receive more than one label — either because the target variable is inherently

non-deterministic, or because the features in x are not sufficient to predict y —

in these cases, the conditional probability Pr(y|x) for each label given the feature

values can be between 0 and 1, so the deterministic model H cannot always

correctly predict x. The lowest achievable error occurs when H always predicts

the most probable label. This is the Bayes error :

ebayes =

∫
x,y∈X×Y

δ[arg max
y′

Pr(y′|x) 6= y]Pr(x, y)dxdy. (2.2)

Therefore, the Bayes-optimal classifier is one where H(x) = arg maxy Pr(y|x).

However, constructing such a classifier is difficult since Pr(y|x) is unknown, and

the only clue we have to the nature of this distribution is the training data set.

The intuition behind the formulation of the supervised learning task — i.e. the

use of a training data set — is that the training data is representative of the un-

known distribution, so that a model which accurately predicts the training data

might be expected to achieve a low generalisation error. To this end, many super-

vised learning algorithms use the training error to guide their training process:

etr =
1

N

N∑
i=1

δ[H(xi) 6= yi]. (2.3)

2.1.2 Fitting the Model to the Training Data

It may seem that, using the law of large numbers, we can view etr as an estimate of

egen; because of this, many approaches to supervised learning aim to learn models

with low training error. However, to optimise only training error is not useful,

since the dependence of H on T will cause etr to be biased. Figure 2.1 shows why

this is a problem: a model that is too well fitted to the training data can often

have worse performance than a simpler model with higher training error.

This phenomenon is called overfitting, and is an important consideration in

supervised learning algorithms. “Occam’s Razor” provides one solution: choose
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Figure 2.1: Comparison of the decision boundaries from KNN and linear regres-
sion on a toy Gaussian dataset (the dataset is described in Appendix A.1). The
generalisation accuracies are 84.6% and 91.2% respectively.

the simplest model that ‘explains’ the data. The toy Gaussian task in Figure 2.1

shows that the linear model correctly classifies (‘explains’) most of the training

data; furthermore, it is substantially ‘simpler’ than the KNN classifier2 (a rough

measure of simplicity is the number of model parameters, which is d+ 1 = 3 for

linear regression and effectively N = 20 for 1-nearest neighbour; though the VC-

dimension [88] gives a more robust way to quantify this). The idea of encouraging

simpler solutions is known as regularisation, and is usually incorporated into

supervised learning algorithms, such as support vector machines (SVMs) which

can use ‘soft margins’ to trade-off between training accuracy and model simplicity

[17], or decision trees [11], which can enforce a maximum tree depth.

While using simple models can often alleviate overfitting problems, if the

complexity of the learning task is unknown then we risk choosing a model that

is too simple, which gives similarly poor performance. Ensemble algorithms take

an alternative approach to supervised learning problems, exploiting multiplicities

of individual models in ways which often mitigate overfitting while still obtaining

sufficient expressive power to learn complicated tasks.

2K-Nearest Neighbour (KNN) classifiers predict each input with the majority label of the
K nearest training examples, where K is a user-specified parameter.
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PredictionUnlabelled Data
x

h1

h2

hL

...

Combiner

h (x)1

h (x)2

h (x)L

H(x)

Figure 2.2: Block diagram of an ensemble. For weighted voting ensembles, the
combiner takes the form of Equation 2.5.

2.1.3 Ensemble Algorithms

In an ensemble, multiple models are aggregated by some combination strategy.

A popular combiner is a vote, as in weighted ensembles :

F (x) =
L∑
l=1

αlhl(x), (2.4)

H(x) = sign(F (x)), (2.5)

where L base learners and associated weights α1 . . . αL are used to give a single

prediction. F gives a real-valued output with a magnitude that depends on how

many and which base learners made each prediction. We give a block diagram

representation of an ensemble in Figure 2.2.

The success of ensembles has been attributed to a number of reasons. Di-

etterich [19] describes three: a statistical motivation because of the averaging

effect of using multiple base learners. A computational advantage over individual

models, where single learners may converge to a local optima while multiple base

learners have more opportunities to converge to better optima, and are corre-

spondingly more likely to arrive at a better solution. Finally, a representation

benefit as the use of an ensemble expands the ‘hypothesis space’ in which models

can be found.

In the next section, we describe a particular ensemble algorithm — Adaboost
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— in detail. An important aspect of Adaboost is exploitation of the representa-

tional benefits of an ensemble; by combining a sufficient number of base learners,

it is possible to ‘boost’ inaccurate models so that they predict training data per-

fectly.

2.2 Boosting

Boosting algorithms have formed a prominent subfield within ensemble learning

literature for much of its history. The original idea of boosting has its roots in

the hypothesis boosting problem [41]; whether there is equivalence between weak

learnability (prediction with better accuracy than random guessing) and strong

learnability (arbitrarily high accuracy on training data). Schapire [77] proved an

affirmative answer to this question, and subsequently (with Freund) [76] derived

the Adaboost algorithm, which takes as input a weak learning algorithm, and

uses it to train a weighted ensemble of weak models which are combined to give a

strong model. In this section, we introduce Adaboost, discuss some of the related

theory on margins [78], and then describe Anyboost [62] — a generalised version

of Adaboost that we will use later in this thesis.

2.2.1 The Adaboost Algorithm

Adaboost is an iterative algorithm, running for a pre-defined number of rounds

and adding a single base learner in each round. The central notion is that of

weighting both examples and base learners during the training process. Examples

are weighted according to how difficult it has been to learn their true labels, while

learner weights indicate how useful each learner is to the ensemble.

The specifics of Adaboost hinge upon the use of a surrogate cost function:

Cada =
N∑
i=1

e−yiF (xi), (2.6)

≥
N∑
i=1

δ[H(xi) 6= yi], (2.7)

which upper-bounds the training error; by setting the example and learner weights

such that this cost is reduced at each step, the classification error is necessarily
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reduced, though not monotonically. Under modest assumptions3, Adaboost can

be shown to eventually achieve maximum training accuracy, if enough base learn-

ers are added to the ensemble. This is ensured by two update rules for Dl, the

example weights to train the (l + 1)th learner with, and αl, the voting weight of

the lth learner:

Dl(i) =
e−yi

∑l
k=1 αkhk(xi)∑N

j=1 e
−yj

∑l
k=1 αkhk(xj)

, (2.8)

αl =
1

2
log

1− εl
εl

, (2.9)

where εl is the weighted error of the lth base learner:

εl =
N∑
i=1

Dl−1(i)δ[hl(xi) 6= yi]. (2.10)

Schapire and Freund [76] show that training error is upper bounded by:

etr ≤ (
√

1− 4γ2)L, (2.11)

where εl ≤ 1
2
− γ represents the weak learning assumption on the base learners.

Algorithm 1 Adaboost

Require: L← number of base learners
Require: L ← base learning algorithm
Require: T ← training data set

D0(i)← 1
N
∀i

for l = {1 . . . L} do
hl ← L(T , Dl)
εl ←

∑N
i=1 Dl−1(i)δ[hl(xi) 6= yi]

if εl ≥ 1
2

then
L← l − 1
break

end if
αl ← 1

2
log 1−εl

εl

Dl(i)← Dl−1(i)e−yiαlhl(xi)

Zl
∀i

end for

3The base learning algorithm must perform at least a fixed but arbitrarily small amount
better than random guessing on weighted training data.
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Adaboost is defined in full in Algorithm 1. The L algorithm in Adaboost needs

to train a base learner using the example weights provided with Dl−1; some exist-

ing learning algorithms can be naturally adapted to accommodate weighted data,

but generally it is possible to replace T with a weighted sample-with-replacement

from T ; the distribution of the weighted sample is an approximation to the dis-

tribution Dl(i) [76, Section 4.1].

The conditional statement “if εl ≥ 1
2

then” considers the possibility that the

weak learning assumption is violated. This could happen if the base learner is

not sufficiently expressive to learn a particular weighting of the data — in which

case εl = 1
2

— or in the weighting-by-sampling scenario discussed above, a base

learner that satisfies the weak learning assumption on the sampled dataset that it

was trained on need not necessarily achieve εl <
1
2

when considering the weighted

data. However, we observe that:

• Base learners with weighted error 1
2

can be ignored; if εl = 1
2
, then Equation

2.9 will set αl = 0.

• Base learners with weighted error of more than 1
2

are ‘inverted’ by Equation

2.9; they receive a negative weight, with the effect of inverting all their

predictions (in which case their effective weighted error becomes 1 − εl by

the symmetry of 2-class problems), and the magnitude of the weight is

correct for this ‘inverted’ model.

Combined, these allow us to omit the weak learning check in our implementation;

Equation 2.9 ensures that αl are chosen correctly regardless of what the weighted

error is; at worst, we will end up including many 0-weighted learners.

2.2.2 Empirical Evaluation of Adaboost

Experimental studies on Adaboost have generally confirmed its value as a pow-

erful learning algorithm. Many of these have compared Adaboost against Bag-

ging [7], which is an algorithm for producing unweighted ensembles where each

base learner is trained on a uniformly weighted sample-with-replacement from T .

Bauer and Kohavi [4] perform experiments on 14 datasets, comparing Ad-

aboost, Bagging and some variants with tree or Näıve Bayes base learners. Their

results generally indicate that boosting algorithms outperform Bagging, and in

almost all situations both ensemble algorithms improve upon the performance
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of individual learners. Dietterich [20] experiments on 33 learning problems with

Adaboost, Bagging and Randomisation using decision tree base learners, finding

that Adaboost is almost always superior, but that the addition of noise to the

target variable can be especially detrimental, and that Bagging is often better

in scenarios exhibiting such noise. Maclin and Opitz [58] compare Bagging and

Boosting with decision tree and neural network base learners, also confirming

that the accuracy of Adaboost suffers when the labels are noisy; on low-noise

datasets, however, Adaboost is generally the better algorithm of the two. Quin-

lan [72] performs detailed experiments with C4.5 base learners using Adaboost

and Bagging, and arrives at similar conclusions to other empirical evaluations:

Adaboost typically performs very well on low-noise data, but this performance

rapidly degrades as artificial noise is added to target variables in the problem.

2.2.3 Understanding Ensemble Behaviour with

Voting Margins

Schapire et al. [78] investigate an interesting aspect of Adaboost: it is experimen-

tally observed that, in some cases, adding more base learners continues to improve

generalisation accuracy even after training accuracy reaches 100%. Not only does

this seem anomalous given that we expect Boosting to succeed purely because of

its effect on training accuracy, but Freund and Schapire [76] had originally shown:

egen ≤ etr + 2

√
v′(log 2L

v′
+ 1) + log 9

η

L
, (2.12)

≤ etr + Õ
(√Lv

N

)
, (2.13)

with probability η, where v′ is the VC-dimension4 of the Adaboost ensemble;

Freund and Schapire show this to be upper bounded by v′ ≤ 2(v + 1)(L +

1) log2 e(L+ 1), where v is the base learner VC-dimension (Õ is used to hide con-

stant and logarithmic factors; f(n) = Õ(g(n)) means that f(n) = O(g(n) logk g(n))

for some k). This would suggest that large Adaboost ensembles overfit (since L

is in the numerator), contradicting the aforementioned phenomenon. Schapire

4The VC-dimension is a measure of algorithm complexity; the VC-dimension of an algorithm
L is the largest v such that there exists a set of v datapoints on which L can achieve 0 training
error regardless of how those datapoints are labelled [88]. The VC-dimension of a linear classifier
in d-dimensional space is d+ 1; the VC-dimension of a 1-nearest neighbour classifier is infinite.
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et al. [78] propose an alternative explanation of generalisation error in Adaboost

based on voting margins; here we shall introduce margins, and then present the

results of Schapire et al. and others.

Geometric Margins

x1

x2

w x - b = 0T

Geometric Margins for a Linear Classifier

b w
||w||

2

2

Figure 2.3: Geometric margins for a linear classifier. The solid line shows the
direction of the weight vector, w. The dashed line is the decision boundary, x
s.t. w>x− b = 0. The many dotted lines show geometric margins for each of the
examples.

A ‘margin’ represents the distance between a data point and a decision bound-

ary. The concept of margins has been studied in the context of linear classifiers

extensively; if we have a linear classifier with weight parameters w1 . . . wd (where

d is the dimensionality of the input space) and bias b, then the geometric margin

of a data point 〈x, y〉 is:

mgeo(x, y) =
y · (w>x− b)
‖w‖2

. (2.14)

This is illustrated in Figure 2.3. A margin of 0 would indicate that a point lies

on the decision boundary. mgeo conveys valuable information about the quality
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of a classifier; if margins on training data are large, then we can consider there

to be a significant gap separating the classes, and the decision boundary cuts

through the middle of the gap; smaller margins might tell us that either the data

or the decision boundary is less conveniently positioned. Vapnik [88] showed that

the geometric margin plays an important role in determining a bound on the

generalisation error of support vector machine (SVM) classifiers.

Margins and Boosting

The voting margin is a quantity that can be meaningfully computed on any

data point with reference to an ensemble. We present its definition for two-class

problems, as well as two notational conveniences that we will use:

m(x, y) =
yF (x)

‖α‖1

(2.15)

mi = m(xi, yi), (2.16)

m =
1

N

N∑
i=1

mi, (2.17)

where α is the vector comprising α1 . . . αL. The voting margin quantifies the

difference between support for the correct class, and support against. The sign

of the margin indicates correctness or otherwise, so etr = 1
N

∑N
i=1 δ[mi < 0], while

the magnitude of the margin will be between 1, when all base learners agree, and

0, when both classes receive equal support. Figure 2.4 illustrates voting margins

in two-class problems.

Since F (x) could alternatively be written as α>x, there is a close correspon-

dence between voting and geometric margins; geometric margins are normalised

by the L2 norm, voting margins by the L1 norm. Equivalently 5, the geometric

margin is the L2 distance between the data point and the decision boundary,

while the voting margin is the L∞ (max norm) distance between the data point

and the decision boundary (defined by F (x) = 0) in a hypercube [−1, 1]L with

vertices that represent the 2L possible outputs of the base learners.

This relationship makes it possible to consider the problem of assigning weights

to base learners in an ensemble as a normal supervised learning problem, and

5Due to Mangasarian [59, Theorem 2.1, Equation 7]: For a plane A = {a|a>w− b = 0}, the
distance between q and its projection on to a hyperplane A, projA(q) is: ‖q − projA(q)‖z =
|q>w−b|
‖w‖z′

, where the norms z and z′ are dual to one another, 1
z + 1

z′ = 1
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Figure 2.4: Illustration of voting margins. In the scenario on the left, 5 learners
vote incorrectly and 4 vote correctly, so the resulting margin is negative (since
the majority vote is incorrect) and its magnitude is 4−5

9
. Similarly, on the right,

3 learners are incorrect and 6 are correct, giving a margin of 6−3
9

.

hence generalisation bounds can be obtained based on the distance between data

points and the margin, as with Vapnik’s result on geometric margins. Schapire

et al. [78] show that:

egen ≤
1

N

N∑
i=1

δ[mi ≤ θ] +
2N

ve
1
2

+
[ 1

2N

(4v

θ2
log

N

v
log

eN2

v

+ log
16e8

θ2
log

N

v
(

4

θ2
log

N

v
+ 1)2 − log η

)] 1
2
, (2.18)

≤ 1

N

N∑
i=1

δ[mi ≤ θ] + Õ
(√ v

Nθ2

)
, (2.19)

for all values of θ with probability 1 − η, with Õ defined as in Equation 2.13.

In practice, the tightest bound is often achieved for θ = minimi, and so this

result can be seen as implying that increasing the minimum margin will tighten a

generalisation error bound. They also show that Adaboost is an effective method

for increasing the minimum margin, since the loss function applies exponentially

larger weight to examples with small margins (Rätsch et al. [73] additionally il-

lustrate parallels between the maximisation of the minimum voting margin in

Adaboost and maximisation of the minimum geometric margin in SVMs). How-

ever, Breiman [8] shows that idea of increasing margins does not fully explain
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the performance of Adaboost; he presents an alternative algorithm, arc-gv, that

achieves more favourable margin distributions than Adaboost in terms of Equa-

tion 2.19 but which performs consistently worse than Adaboost. Breiman suggests

as an explanation for this that Adaboost concentrates weight on fewer examples

than arc-gv, and that this is a contributing factor to its success. Grove and

Schuurmans [33] formulate boosting as a linear programming task, and derive

an algorithm called LP-Boost which specifically optimises the minimum mar-

gin. Like Breiman, they find that this does not achieve the kind of performance

improvement over Adaboost that Equation 2.19 would suggest.

Margin theoretic results related to Adaboost have progressed since the original

bound of Schapire et al.. The view presented by Wang et al. [92] is more complex,

giving a bound that is similar in flavour to Equation 2.196 — specifically, both

bounds contain a θ value that can be altered to produce the tightest bound.

However, the bound of Wang et al. is not usually minimised when θ = minimi;

instead, it is minimised by a term that they describe as the equilibrium margin

(Emargin, θ∗). They say:

“. . . the Emargin depends, in a complicated way, on the whole margin

distribution. Roughly, if most training examples have large margins,

then θ∗ is large . . . The minimum margin is only a special case of the

Emargin.”

From this result, it would seem that the relationship between voting margins

and generalisation error is more complex than the ‘minimum margin’ explanation

suggests. We take the view that the whole margin distribution is important, which

is supported by the conclusions of Wang et al.; furthermore, we also conclude

that, even though the precise relationship is not clear, large margins are good

— by this we mean that if we have an opportunity to increase the margin on a

single data point without affecting any other aspect of the ensemble, then this

change can only have a positive effect on generalisation accuracy (The result of

Wang et al. [92, Theorem 6] broadly says this; that increasing θ∗ or reducing the

proportion of examples with margins less than θ∗, the generalisation error bound

is reduced).

6We omit full the definition [92, Theorem 7] due to its verbosity; given two functions D−1

and u, the bound is egen ≤ v2+1
N + minθ∗

N−1
N D−1(q, u[θ∗]), where q is the proportion of the

training data with margins of θ∗ or less; significantly, θ∗ is chosen to produce the tightest bound.
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2.2.4 The Gradient Descent Perspective on Boosting

An alternative view of boosting is based on the idea of stepwise gradient descent

over the objective function. Friedman et al. [34] show that by minimising ex-

ponential cost EPr(x,y)[e
−yF (x)], the weighted ensemble prediction can be used to

estimate conditional probabilities via logistic regression:

Pr(y = 1|x) =
e2F (x)

1 + e2F (x)
, (2.20)

Pr(y = −1|x) =
e−2F (x)

1 + e−2F (x)
. (2.21)

They derive this by considering the minimum of the cost function, at which:

F (x) =
1

2
log

Pr(y = 1|x)

Pr(y = −1|x)
. (2.22)

From this, they proceed to demonstrate that the example and learner weight

updates in Adaboost correspond to “stagewise estimation procedures for fitting

an additive logistic regression model”.

Subsequently, Mason et al. [62] showed that the stagewise procedures that

Friedman et al. describe fit into a general gradient descent framework for opti-

mising cost functions, which they call AnyBoost. For a cost function C(yF (x))

there are appropriate choices of example weights and learner weights that will

perform gradient descent on that function:

Dl(i) =

∂
∂yiF (xi)

C(yiF (xi))∑N
j=1

∂
∂yjF (xj)

C(yjF (xi))
, (2.23)

∂

∂αl

1

N

N∑
i=1

C(yiF (xi)) = 0. (2.24)

Equation 2.23 defines a direction of steepest descent over the cost on all examples,

assuming the function C is convex and monotonic. Once a base learner hl is

trained, its predictions on the training data define another direction; the weak

learning assumption implies that it is a descent of the cost function, although

not necessarily the steepest descent as defined by the Dl. Equation 2.24 then

computes the step size, αl, that depends on the minimum of the ‘slice’ of the

cost function defined by the base learner. These two update rules are used in

an algorithm called Anyboost, which differs from Adaboost only in these more
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general update rules.

It can be seen that when C(yF (x)) = e−yF (x) is plugged in to Equations 2.23

and 2.24, they give exactly the weight updates used by Adaboost.

2.2.5 Summary

In this section, we have introduced the idea of boosting weak learners to create

ensembles with low (potentially 0) training error. We described the Adaboost

algorithm, and explained the voting margin framework which has been used to

investigate the properties of Adaboost. Finally, we described a general gradient

descent algorithm, AnyBoost, that allows ensembles to perform gradient descent

on arbitrary convex monotonic cost functions.

2.3 Diversity

Diversity is widely believed to be of paramount importance in ensemble models.

Dietterich [20] states that:

“The goal of ensemble learning methods is to construct a collection (an

ensemble) of individual classifiers that are diverse and yet accurate.”

Every ensemble training algorithm can be seen as a method for producing diverse

base learners. This is the case simply because the alternative — the non-diverse

ensemble — can easily be seen to be ineffective: there is no way to combine many

identical base learners such that the ensemble is different from the individual

classifiers.

While, in this sense, the topic of diversity pervades all of ensemble literature,

the idea of quantifying diversity is not so prevalent. In this section, we will be

examining these parts of the literature — where authors perceive that there is

some advantage in measuring diversity. Our central contribution in Chapter 3 is

an alternative interpretation of diversity that encompasses many of its existing

definitions and applications; hence, it is important to examine these elements of

the literature closely.

We will first discuss in more detail why diversity is considered to be so impor-

tant, before presenting definitions for various diversity measures, showing existing

work on the unification of these measures, and finally surveying some algorithms

that explicitly exploit diversity.
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2.3.1 Why is Diversity Important?

In this section, we give more detail on the motivation behind the study of diversity

in the literature.

Independent Errors

The idea of ensemble diversity is proposed by Hansen and Salamon [35], where

they analyse the impact of independent errors in neural network ensembles.

They make some assumptions for convenience — that base learner errors are

independent and that all base learners achieve the same individual accuracy — so

that ensemble errors can be modelled by a binomial distribution. We introduce

some notation for c(x, y), the proportion of base learners that correctly classify

〈x, y〉, its value on a training data point, ci, and its average c:

c(x, y) =
1

L

L∑
l=1

δ[hl(x) = y], (2.25)

ci = c(xi, yi), (2.26)

c =
1

N

N∑
i=1

ci. (2.27)

Note that c is the average base learner accuracy. The result of Hansen and

Salamon [35] states that, under these assumptions, the probability of k base

learner errors occurring on any data point is:

Pr(ci = 1− k

L
) =

(
L

k

)
cL−k(1− c)k, (2.28)

and therefore the ensemble error rate is:

etr =
L∑

k=dL/2e

Pr(ci = 1− k

L
), (2.29)

=
L∑

k=dL/2e

(
L

k

)
cL−k(1− c)k, (2.30)

This alone is sufficient motivation to pursue independence of errors in ensem-

bles (and therefore, to some extent, diversity); for c > 0.5, Equation 2.30 will

approach 0 as L increases, as illustrated in Figure 2.5.
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Figure 2.5: Relationship between ensemble size and ensemble error rate for base
classifiers making independent errors (Equation 2.30). c is the average individ-
ual accuracy of base classifiers. For all c > 0.5, ensemble error will eventually
converge on 0.

In this context, ‘ensemble diversity’ could be considered to be the propensity

of the base learners to make independent errors. Hansen and Salamon [35] sub-

sequently derive a specific diversity measure, which we describe in Section 2.3.2,

based on this idea. Note that independence of errors is different from having in-

dependently trained base learners : in algorithms such as Bagging [7] and Random

Subspaces [37] the training data or feature subspaces are sampled independently

for each base learner, which makes them independently trained (as opposed to

Adaboost [76] where the training data for one learner depends on the predictions

of the preceding learner). However, there is still commonality between base learn-

ers in the training data used, so we might still expect dependence between their

errors (for example, ‘easy’ examples may be classified correctly by most learners,

while ‘hard’ examples are classified wrongly by most learners). Statistical inde-

pendence of errors implies that, for example, knowing hl(xi) does not provide

any information about hk(xi) for l 6= k.

The general message from the work of Hansen and Salamon is that errors

rates can be reduced by:

1. Increasing individual base learner accuracy.

2. Increasing the independence of base learner errors (diversity).
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This idea that ensembles should be both accurate and diverse is a general theme

in ensemble diversity literature.

Motivation from Regression Learning

The idea of ensemble diversity can be understood from the perspective of regres-

sion learning, where the target variable y is real-valued, as are the predictions

made by base learners h(x). The ensemble prediction can be a simple average

over base learners H(x) = 1
L

∑L
l=1 hl(x). In regression, base learner errors can

occur either when h(x) is higher or lower than y; so there can be a clear advantage

to ‘diversity’, if base learners that over-predict the target ‘compensate’ for those

that under-predict it. The ambiguity decomposition of Krogh and Vedelsby [47]

provides a useful perspective on the relationship between diversity and squared

error7 even when base learners are dependent :

(y −H(x))2 =
1

L

L∑
l=1

(y − hl(x))2 − 1

L

L∑
l=1

(H(x)− hl(x))2, (2.31)

where the three terms are described as ensemble error, average base learner error,

and ambiguity respectively. Ambiguity describes the differences between base

learner predictions and the ensemble prediction, and this decomposition shows

that reducing ensemble error can be achieved either by reducing individual error,

or increasing ambiguity.

The ambiguity decomposition is exploited in negative correlation learning

(NCL) [57], where neural networks are trained with a regularised cost function,

where λ is a trade-off parameter:

CNCL =
1

2
(hl(x)− y)2 + λ(hl(x)−H(x))

L∑
j 6=l

(hj(x)−H(x)), (2.32)

which encourages base learners to disagree with the ensemble; Brown [13] shows

that the regularisation term from NCL can be rearranged to give the ambiguity

term from the ambiguity decomposition. Therefore, NCL can be viewed as a

procedure for minimising the ensemble squared error by training base learners to

7Squared error is a popular error function for regression learning; it captures the absolute
difference between predictions and the target variable, with more emphasis placed on larger
errors.
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be both accurate (low individual error) and diverse (high ambiguity).

Theoretical Relationships

Kuncheva [49] suggests several reasons why it is important to study diversity.

The first of these is for the purpose of finding bounds and theoretical relationships ;

the result of Hansen and Salamon [35] that we discussed in Section 2.3.1 is an

example of such a result, but there exist several others in the literature which we

will review in this section.

Breiman [10] presents an interesting result as part of his work on Random

Forests. Random Forests use random feature subsets to encourage diversity, in

addition to taking random samples of training data for each learner. By consid-

ering the correlation between base learner predictions (diversity) and the average

margin (accuracy), Breiman derives a bound on ensemble error:

egen ≤
ρ(1− s2)

s2
, (2.33)

where ρ is the pairwise average correlation8 and s is the expected margin s =

EPr(x,y)[m(x, y)]. In this bound, ρ is considered to mean ‘diversity’, while s

quantifies the average accuracy of individual base learners. The bound is reduced

by low correlation between learners or high individual accuracy. Figure 2.6 gives

an indication of the implications of the bound. It is assumed that s > 0 (i.e. on

average, base learners perform better than random guessing), and that learners

are generated independently (this applies for Bagging and Random Forests, but

not for algorithms like Adaboost). These two assumptions, combined with the

fact that ρ is an expectation over possible base learner pairs, ensure that both ρ

and s are strictly positive, so that the bound must also remain positive.

Tumer and Ghosh [86] analyse the added error (i.e. error above the Bayes rate)

of an ensemble by examining the region around the decision boundary. They show

that added error is reduced by a factor of L when base learners have uncorrelated

errors (this is the scenario considered by Hansen and Salamon [35]):

egen = ebayes +
eadd

L
, (2.34)

8The exact definition is ρ = 1
L(L−1)

∑L
l=1

∑L
k 6=l

(
corrPr(x)[hl(x), hk(x)]

)
where corrPr(x)

indicates Pearson’s correlation with respect to the unknown distribution Pr(x). We refer to
this as ρ to avoid confusion with the diversity measure φ introduced later, which is an estimate
of ρ on training data.
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Figure 2.6: Generalisation error bound based on the average margins on general-
isation data, and average correlation between base learners

where eadd is the added error of individual base learners. Tumer and Ghosh

generalise this analysis to consider correlated base learner errors, giving:

egen = ebayes + eadd

(1 + ψ(L− 1)

L

)
, (2.35)

where (for 2-class problems), ψ is defined as:

ψ =
1

2
(Pr(y = 1)ψ1 + Pr(y = −1)ψ−1), (2.36)

ψc =
1

L(L− 1)

L∑
l=1

L∑
k 6=l

corrPr(x)[ν
l
c(x), νkc (x)], (2.37)

νlc(x) = δ[hl(x) = c]− Pr(y = c|x). (2.38)

The ν values describe the error of hl(x) with respect to the class probabilities

for x. ψ is a pairwise averaged correlation between these errors, weighted by

class probabilities. The overall implication here is an interpolation between a

correlation of ψ = 1, where the ensemble error matches the base learner error,

and ψ = 0, where Equation 2.35 reduces to Equation 2.34.

Kuncheva [55] has suggested a link between the pairwise averaged Q statistic

[94] on base learner outputs and ensemble accuracy under certain assumptions

that she describes as “Patterns” of success or failure. Brown and Kuncheva [15]

have developed a similar idea based on “Good” and “Bad” diversity, deriving an
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expression for ensemble error, similar to the ambiguity decomposition:

etr = eind −DBrown, (2.39)

DBrown =
1

N

N∑
i=1

yiH(xi)
1

L

L∑
l=1

1

2
(1− hl(xi)H(xi)), (2.40)

where DBrown describes the diversity of the ensemble; it can be positive or nega-

tive, depending on the sign of yiH(xi) — so if the ensemble makes a correct pre-

diction, high diversity is “good”, while an incorrect prediction will cause DBrown

to become negative, making diversity “bad”. The ensemble prediction distribu-

tions that maximise DBrown correspond exactly to those that are assumed under

the “Pattern of Success” voting configuration in Kuncheva’s analysis of the Q

statistic.

These theoretical relationships based on ensemble diversity show that diver-

sity does have some relevance in determining the performance of ensembles, and

therefore they provide good motivation for better understanding the role of di-

versity.

Diversity for Visualisation

This is the second use of diversity that Kuncheva proposes [49]. Since diversity is

often considered in conjunction with individual base learner error as a determin-

ing factor in ensemble behaviour, examining these properties and the interplay

between them can provide interesting insights.

Kuncheva and Whitaker [53] provide bounds on pairwise diversity with respect

to individual accuracy for a number of diversity measures. Visualising these

bounds on plots of average individual accuracy against diversity helps to provide

an intuition for how the two properties interact. Margineantu and Dietterich [60]

originally suggested scatter-plots that show kappa diversity (defined in Section

2.3.2) and individual error rate. In Section 2.3.4, we describe how a Pareto front

on these plots is used to prune trained ensembles.

Rodriguez et al. [74] use kappa-error plots to understand the behaviour of

Rotation Forest ensembles — these visualisations show that Rotation Forests

tend to achieve higher individual accuracy that Random Forests or Adaboost,

but higher diversity than Bagging ensembles. This provides a more complete

explanation for the success of the algorithm.
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Diversity in Ensemble Algorithms

The final two motivations for investigating diversity that Kuncheva presents are

both oriented around the design of ensemble algorithms — firstly, using diversity

to guide classifier selection, and secondly in the process of building the ensemble.

We will describe existing algorithms that make use of diversity in detail in Section

2.3.4.

2.3.2 Diversity Measure Definitions

Many of the most popular diversity measures were presented by Kuncheva [54],

although they were previously defined outside of the ensemble literature. The

relevant notation is introduced in Section 1.5.

Q Statistic

The Q statistic [94] is a measurement of independence between classifiers:

Qj,k =
N00
j,kN

11
j,k −N01

j,kN
10
j,k

N00
j,kN

11
j,k +N01

j,kN
10
j,k

, (2.41)

DQ =
1

L(L− 1)

L∑
j=1

L∑
k 6=j

Qj,k. (2.42)

It is also possible to interpret Q as a transformation of the odds ratio:

Qj,k =
ORj,k − 1

ORj,k + 1
, (2.43)

ORj,k =
N00
j,kN

11
j,k

N10
j,kN

01
j,k

. (2.44)

The odds ratio [22] describes the dependence between two binary variables

(in this case, the outputs of two base classifiers), with OR = 1 where there is

independence between the two classifiers, OR > 1 when the outputs are positively

correlated, and OR < 1 when they are negatively correlated. The meaning of the

odds ratio can be broadly described as the ratio between the probability that hk is

correct when hj is correct and the probability that hk is correct when hj is wrong.
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The transformation applied to give Q adjusts the odds ratio such that 0 indicates

independence, and it has minimum and maximum values of −1 and 1 respectively.

Kuncheva [54] has shown limits on the ensemble accuracy based on Q when

the ensemble is configured in a ‘pattern of success’ or ‘pattern of failure’. This

analysis shows that small Q (high diversity) is beneficial for ‘pattern of success’

ensembles, but detrimental in ‘pattern of failure’ ensembles. We discuss this

result in detail in Chapter 3.

Phi Coefficient

The phi coefficient is more commonly referred to as Pearson’s correlation coeffi-

cient (Dφ is the special case of Pearson’s, for 2-by-2 contingency tables). Like Q,

it is a pairwise measure:

φj,k =
N00
j,kN

11
j,k −N01

j,kN
10
j,k√

(N11
j,k +N10

j,k)(N
11
j,k +N01

j,k)(N
00
j,k +N10

j,k)(N
00
j,k +N01

j,k)
, (2.45)

Dφ =
1

L(L− 1)

L∑
j=1

L∑
k 6=j

φj,k. (2.46)

The numerator in Dφ is the same as in Q; consequently, the sign of the two

measures is always the same.

Disagreement

Disagreement is introduced by Skalak [81] as “the percent of instances for which

base and complementary classifiers make different predictions but for which one

of them is correct”, and used to investigate the behaviour of various boosting-like

algorithms. It can be defined in terms of a contingency table as:

Ddis =
1

L(L− 1)

L∑
j=1

L∑
k 6=j

N01
j,k +N10

j,k

N
. (2.47)

Gatnar [29] proposed ‘Hamann’s measure’ for measuring diversity. However,

using the property of the contingency table that N00 + N01 + N10 + N11 = N ,

it can be seen to be a simple transformation of disagreement, so we omit it from
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our analysis.

Double Fault

Double fault diversity [30] was introduced as a distance measure for clustering

neural networks; similar networks would make many coincident errors, so clus-

tering and choosing networks from each resulting cluster would give a ‘diverse’

ensemble of neural networks. Double fault diversity is defined as:

DDF =
1

L(L− 1)

L∑
j=1

L∑
k 6=j

N00
j,k

N
. (2.48)

The same measure is described by Ali et al. as ‘correlation’ [1].

Kohavi-Wolpert Variance

Kohavi-Wolpert (KW) variance [43] is defined using the idea that the ensemble

output can be interpreted as a predicted probability, P̂ r(y = 1|x). The variance

of this probability is:

DKW =
1

2N

N∑
i=1

(1− P̂ r(y = −1|xi)2 − P̂ r(y = 1|xi)2). (2.49)

Kuncheva [54] suggests that these probabilities can be quantified based on

the proportion of base learners predicting the class in question; her derivation

concludes with a correspondence between KW variance and disagreement:

DKW =
(L− 1)

2L
Ddis. (2.50)

Interrater Agreement

Interrater agreement (or the kappa coefficient) is a statistical measure [26] which

quantifies a level of agreement between ‘raters’.
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Dκ = 1− L

N(L− 1)

N∑
i=1

ci(1− ci)
c(1− c)

. (2.51)

There is also a pairwise version of interrater agreement (which does not, when

averaged over all pairs, correspond to Dκ):

Dk =
1

L(L− 1)

L∑
j=1

L∑
k 6=j

2(N11
j,kN

00
j,k −N01

j,kN
10
j,k)

(N11
j,k +N10

j,k)(N
01
j,k +N00

j,k) + (N11
j,k +N01

j,k)(N
10
j,k +N00

j,k)
.

(2.52)

This differs from the phi coefficient Dφ only by the denominator; both Chen

[16] and Kuncheva [54] have observed this similarity empirically. When the two

kinds of pairwise disagreement are balanced (i.e. N01 = N10), the pairwise and

non-pairwise kappa coefficients are identical [51] (See Appendix B.2.12 for de-

tails).

Difficulty

The difficulty diversity measure [35] is simply defined as the variance of the

predicted probability of error over all classifiers:

Ddiff = VarPr(x,y)[c(x, y)]. (2.53)

This variance tells us whether all training examples are equally ‘hard’ (high

diversity), or whether there is variability in the amount of agreement exhibited

on each example (low diversity).

Entropy

Entropy is a popular measure from information theory which quantifies the ‘ran-

domness’ of a distribution. Kuncheva defines one measure based on entropy [54]:

Dent =
L

N(L− dL/2e)

N∑
i=1

min{ci, 1− ci}, (2.54)
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while Cunningham uses another quantity [18]:

DH = − 1

N

N∑
i=1

P̂ r(y = −1|xi) log P̂ r(y = −1|xi)

+ P̂ r(y = 1|xi) log P̂ r(y = 1|xi), (2.55)

where we can again interpret P̂ r as we did for KW variance.

Generalised Diversity

Generalised diversity is based on the probability of exactly k classifiers correctly

predicting a randomly chosen example. From this quantity, Pr(ci = k
L

), we

consider the probability that either one or two randomly chosen base learners

make an error. Generalised diversity is one minus the ratio between these two

quantities; however, we present a simpler form due to Tang [84]:

DGD = 1−
∑L

l=1 l(l − 1)Pr(ci = L−l
L

)∑L
l=1 l(L− 1)Pr(ci = L−l

L
)
. (2.56)

This measurement was applied in software failure analysis by Partridge et al. [48].

Coincident Failure Diversity

Another measure defined by Partridge et al. [48] is coincident failure diversity,

where Pr(ci = k
L

) is evaluated for other values of k:

DCFD =

{
0 if Pr(ci = 1) = 1∑L

l=1(L−l)Pr(ci=L−l
L

)

(L−1)(1−Pr(ci=1))
otherwise

(2.57)

Ambiguity

Because of the ambiguity decomposition [47], the term ‘ambiguity’ is often ap-

plied in diversity measures for classification. Chen proposed a decomposition of

classification error which features an ambiguity term [16]:

DChen =
1

2N

N∑
i=1

L∑
l=1

yi(
1

L
H(xi)− αlhl(xi)). (2.58)
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For clarity, we will refer to this measure as “Ambiguity (Chen)”. Tsymbal et

al. [85] define an alternative ambiguity measure based on applying a squared

error function to classification problems:

Damb =
1

NL

N∑
i=1

L∑
l=1

(δ[hl(xi) = 1]− P̂ r(y = 1|xi))2+

(δ[hl(xi) = −1]− P̂ r(y = −1|xi))2, (2.59)

which we refer to as “Ambiguity (Tsymbal)”. Zenobi [95] uses an ambiguity

function based on 0/1 cost, defined as:

DZenobi =
1

NL

N∑
i=1

L∑
l=1

δ[hl(xi) = H(xi)]. (2.60)

Melville et al. [63] measure diversity based on how often base learners disagree

with the ensemble prediction; this is the same as DZenobi from Equation 2.60

except that it measures inequality, rather than equality.

Brown and Kuncheva [15] derive a diversity measure based on a decomposition

of classification error, which we will call “Ambiguity (Brown)”:

DBrown = − 1
2NL

∑N
i=1 yiH(xi)

∑L
l=1(1− hl(xi)H(xi)). (2.61)

where yiH(xi) — the correctness of the ensemble output — determines whether

‘diversity’ is good or bad.

Information Theoretic Measures

Brown [14] gives a decomposition of ensemble mutual information which could

be interpreted as a description of ensemble diversity:

I({h1 . . . hL};Y ) =
L∑
l=1

I(hl, Y ) +
∑

{h}⊆{h1...hL}
|{h}|=2...L

(
− I({h}) + I({h}|Y )

)
. (2.62)

The term on the left, I({h1 . . . hL};Y ), is the mutual information between base

learner outputs and target labels. Using Fano’s inequality [25] and a bound

of Hellman & Raviv [36], it can be shown that low conditional entropy (and

therefore, high mutual information) minimises upper and lower bounds on the
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error of the optimal combiner.

The three terms in the decomposition are described as relevancy, redundancy

and conditional redundancy. Relevancy is most closely related to individual ac-

curacy. The other two terms collectively describe how individual base learners

should differ from each other; redundancy captures mutual information between

subsets of base learners (unlike pairwise diversity measures, redundancy mea-

sures mutual information between subsets of all cardinalities). Conditional re-

dundancy measures class-conditional differences between base learners; since this

term is positive, Brown suggests that ensembles should aim for small within-class

variance, but large between-class variance.

Zhou and Li [96] further refine Brown’s interpretation to describe diversity

with multi-information terms:

I({h1 . . . hL};Y ) =
L∑
l=1

I(hl;Y ) + I({h1 . . . hL}|Y )− I({h1 . . . hL}).

These terms can, in a sense, be decomposed over the base learners; for exam-

ple, I({h1 . . . hL}) =
∑L

l=1 I(hl; {h1 . . . hl−1}). Zhou uses this decomposition to

estimate redundancy and conditional redundancy in ensembles.

In Chapter 3, we will not discuss these information theoretic measures in

detail. The quantity I({h1 . . . hL};Y ) is most significant when considering the

theoretically optimal combiner ; however, in this thesis we will deal only with

voting combiners, and as such the mutual information over-estimates the amount

of information that can be extracted from the base learners. We illustrate this in

x1 x2 x3 x4

h1 −1 −1 1 1
h2 −1 1 −1 1
y −1 1 1 −1
y′ −1 −1 −1 1

Table 2.1: Classifier outputs with label y, which is the XOR of h1 and h2, and
label y′ which is the AND of h1 and h2.

Table 2.1, which shows base learner outputs and target labels in an ensemble of

two learners. In both cases, the mutual information between base learner outputs

and the target label suggests that the optimal combiner predicts y and y′ with

perfect accuracy. However, when we consider the form of this ‘optimal combiner’,

it is clear that it cannot be linear in the case of y, while it can be for y′.
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Note that the ‘optimal combiner’ is not quite the same as an optimal oracle

combiner; an oracle combiner may examine an example’s features to determine

which base learner (or base learners) to include in the majority vote. An optimal

oracle would be one which always produces a correct prediction as long as at

least one base learner is correct. However, the ‘optimal combiner’ must make a

prediction based only on base learner outputs, but is not constrained to agree

with any of the base learners.

We would expect the case where the optimal combiner can predict perfectly,

but the optimal linear combiner cannot (as illustrated in Table 2.1) to be rela-

tively common, since an optimal combiner could be a look-up table between then

base learner outputs and the labels; such a combiner would predict perfectly so

long as all differently-labelled examples can be distinguished based on the base

learner predictions. We illustrate this in Figure 2.7, where the descriptive power of

the information theoretic interpretation does not describe the observed behaviour

of a voting ensemble9; the theoretical minimum error reached zero very quickly,

while the linear combiner did not achieve 0 training error even for L = 100.

Because the mutual information measure makes an assumption about the

combiner that is inappropriate (in the context of this thesis — voting ensembles),

the diversity terms in the decompositions of mutual information likewise describe

behaviour in ensembles with very general combiners. Of course, if we did want to

consider diversity outside the domain of voting ensembles, this could be a natural

measure for doing so.

2.3.3 Interpretations of Diversity Measures

In addition to Kuncheva’s efforts in proposing, collecting and investigating diver-

sity measures [49,53–55], other researchers have made progress in unifying diver-

sity measures, showing direct theoretical correspondences between them. Since

one of our major contributions is of this nature, we consider our work to build

directly on the results of Tang [84] and Saitta [75], who describe several diversity

measures within common frameworks.

9For this illustration, we train Adaboost on the entire heart disease dataset. Since Adaboost
combination weights are chosen in a forward search, we also train a linear SVM on the base
learner outputs — this gives a result that is closer to the optimal linear combiner.
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Figure 2.7: Error rate and theoretical minimum error rate for Adaboost ensembles
(both using Adaboost combination weights, and a linear SVM combiner) on the
Heart Disease dataset (270 training examples). The theoretical minimum error is
the error obtained by a lookup table between base learner outputs and predictions
— so errors only occur when two examples with opposite labels are predicted
identically by all the base learners.

Tang’s Diversity Framework

Tang’s framework [84] is based on two properties of voting ensembles: the number

of base learners that incorrectly predict each example (li in Tang’s notation), and

the average base learner accuracy (P in Tang’s notation). In our notation, these

two quantities are:

li = L(1− ci), (2.63)

P = c (2.64)

respectively. We present Tang’s results in our notation for consistency.

Tang derives expressions for 6 diversity measures: disagreement, double fault,

KW variance, interrater agreement, generalised diversity and difficulty. He ob-

serves that all the measures include a term:

N∑
i=1

(1− ci)2, (2.65)

which is associated with low diversity. Occurrences of c are less easily interpreted,
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so Tang applies the assumption: “regard the average classification accuracy . . . of

the base classifiers as a constant”, meaning that he considers scenarios where ci

can vary but c must remain constant. Tang solves a constrained optimisation

problem to find the minimum of
∑N

i=1(1− ci)2 subject to the constraint implied

by constant c and the definition of c in Equation 2.27. However, we prefer to

understand this by considering Jensen’s Inequality:

( 1

N

N∑
i=1

(1− ci)
)2

≤ 1

N

N∑
i=1

(1− ci)2, (2.66)

where we know that the left-hand side of the equation is constrained to be a

constant (1 − c)2 and we wish to minimise the right-hand side. In Jensen’s

inequality, equality is obtained when all the terms have the same value.

Constant ci with respect to i implies that all training examples are correctly

classified by the same number of base learners. Tang calls this the uniformity

condition, deriving the equality:

ci = c ∀i. (2.67)

Since the margin is a simple transformation of number of correct predictions,

Tang is able to use the fact that the minimum of a sample is necessarily upper

bounded by the average to relate the minimum margin and the average accuracy:

mi = 2ci − 1, (2.68)

min
i
ci ≤ c, (2.69)

min
i
mi ≤ 2c− 1, (2.70)

max min
i
mi = 2c− 1. (2.71)

Combining this with the fact that the uniformity condition (Equation 2.67) must

hold if the ensemble is maximally diverse, Tang states:

“If [average individual accuracy] is regarded as constant and the maxi-

mum diversity is achievable, maximising the diversity among the base

classifiers is equivalent to maximising the minimum margin of the en-

semble on the training samples.”

Tang interprets this as suggesting that maximising diversity can be viewed as an
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implicit way to maximise the minimum margin of the ensemble. In this thesis we

show our own margin-based interpretation of diversity; while will not dispute the

correctness of Tang’s result, we will give a view that does not rely on assumptions

of constant individual accuracy and achievable maximum diversity.

Firstly, we emphasise that the process of maximising diversity is not nec-

essarily related to that of maximising the minimum margin; Tang shows that

the maximum values will occur in the same situation, but not that there is any

monotonic relationship between the two.

Furthermore, although ‘maximising the minimum margin’ may sound tanta-

lisingly like processes that occur in Adaboost or SVMs, since the maximum of a

sample is lower bounded by the sample average, we can symmetrically argue that:

maxmi ≥ 2c− 1, (2.72)

and hence Tang’s result equally implies that maximising diversity is related to

finding the minimum maximum margin. From that perspective, high diversity

seems less promising; and as discussed in Section 2.2.3, recent margin theory

results suggest that generally increasing all margins (not just the minimum) is

beneficial.

Saitta’s Diversity Framework

Saitta [75] presents interpretations of various diversity measures based on prop-

erties of oracle output matrices: Q statistic, disagreement, double fault, entropy

(Kuncheva), KW variance, inter-rater agreement, difficulty, generalised diversity

and coincident failure diversity. Many of the interpretations are either analogous

to those of Kuncheva or Tang, or derived by considering behaviour in certain

scenarios. The view expressed by Saitta is that:

“not only no useful measure exists today, but it is unlikely that one

will ever exist.”

The justification for this is that diversity has no monotonic relationship with

performance, and that iterative construction of an ensemble based on diversity

optimisation does not exhibit optimal substructure. To an extent, we agree that

Saitta’s work supports this negative conclusion, although of course the usefulness

or otherwise of a diversity measure is contingent on how ‘usefulness’ is defined.
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The idea that diversity should be derived from an oracle matrix and be pre-

dictive of ensemble accuracy seems strange, since ensemble accuracy itself can be

computed with an oracle matrix (Saitta mentions this in her conclusions). Both

the work of Kuncheva that we have referenced previously, and our own develop-

ments in Chapter 3, seem to take views that are not especially opposed to that

of Saitta, but rather disagree on what it would mean for diversity to be useful.

Certainly, some of Kuncheva’s proposals [49] can be seen to be satisfied by exist-

ing diversity measures to some extent; for example, visualising the behaviour of

ensembles in kappa-error diagrams has provided an improved understanding of

ensemble algorithms [74].

2.3.4 Using Diversity in Ensemble Algorithms

We now attend to some applications of diversity for the purpose of algorithm

design. Kuncheva [49] describes two broad techniques for applying diversity to

ensemble creation: ‘overproduce & select’, and ‘building ensembles’. In ‘overpro-

duce and select’ algorithms, many base learners are generated, and diversity is

used to guide a selection process that defines the final ensemble. ‘Building ensem-

bles’ refers to the idea that diversity could be used while creating base learners.

We will describe a number of approaches from the literature that fit into one or

other of these categories.

Pruned Adaboost

Margineantu and Dietterich [60] define several pruning algorithms that can be

applied to Adaboost ensembles. Two of these — ‘Kappa pruning’ and ‘Kappa-

Error convex hull pruning’, rely on the Kappa diversity measure to guide the

pruning process.

The simplest procedure, ‘Kappa pruning’, computes pairwise Kappa for each

of
(
L
2

)
classifier pairs. It then performs a forward search to add the most diverse

classifier pairs to the ensemble until the desired size is reached. This does not

necessarily give the classifier subset that maximises average pairwise kappa, and

also fails to account for the accuracy of individual classifiers.

‘Kappa-Error convex hull pruning’ addresses this second issue by computing

the convex hull of the classifier pairs in a two dimensional space of pairwise kappa

and average individual error. The final ensemble comprises only those classifiers
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contained in pairs that fall on the convex hull. Kuncheva [49] suggests using the

Pareto front as an alternative to the convex hull, since the convex hull could be

very sparse, and in such cases the ensemble could vary dramatically based on

slight noise in the estimates of Dκ and error.

Empirically, Margineantu and Dietterich found that Kappa pruning was com-

petitive with other pruning methods based on estimating error on a hold-out

set al.hough pruning rarely improved performance substantially beyond that of

unpruned Adaboost, but did achieve smaller ensemble sizes.

GASEN

Genetic Algorithm based Selective ENsemble (GASEN), proposed by Zhou et

al. [97] is an overproduce and select algorithm that uses a genetic algorithm to

evolve base learner weights, before using those weights as a threshold to guide

pruning.

GASEN relies on a decomposition of ensemble error based on error correlation:

etr =
L∑
j=1

L∑
k=1

αjαk(hj(x)− y)(hk(x)− y) (2.73)

This measure is estimated on hold-out training data, and used as a fitness function

to guide a genetic algorithm. GASEN is designed around quadratic loss; in the

case of 0/1 outputs from base learners and uniform weights, the term inside the

summation reduces to double fault diversity.

Label Switching

Breiman [9] proposes promotion of diversity via ‘output randomisation’. The idea

is to build an ensemble of base learners that are trained on all the training data,

but to add different random noise to target values prior to training each base

learner. In the context of regression, this involves adding Gaussian distributed

random noise to each output label. For classification problems, there were two

approaches: ‘Output Smearing’ involves converting the problem to a multiple

output regression problem, and adding Gaussian noise as in previous case. ‘Out-

put flipping’ is an alternative approach based on flipping the target label with a

certain probability. Breiman suggests that this should occur with probabilities

that retain consistent class proportions, so prior probabilities Pr(y) are estimated
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from training data. A flip rate parameter is specified, f , where higher values will

result in a greater likelihood of flipping labels.

For an example with true label y, the label is unchanged with probability

1− f(1−Pr(y))
1−

∑
y′∈Y Pr(y

′)2
, and is changed to k 6= y with probability:

fPr(k)

1−
∑

y′∈Y Pr(y
′)2
, (2.74)

In the case of output flipping, f is chosen on validation data. Empirically, ran-

domised outputs often outperform Bagging but not Adaboost.

Mart́ınez-Muñoz and Suárez [61] extend Breiman’s work by considering an

alternative relabelling scheme. In their algorithm, the label is unchanged with

probability 1− f , and changed to k with probability:

f

|Y| − 1
(2.75)

where |Y| is the number of classes, such that there is no longer any consideration

for the class priors. The rationale behind this adjustment is that the range of f

can be increased; for ‘convergence’ (by which the authors mean that an example

should receive its true label at least half of the time), it is necessary that:

f <
|Y| − 1

|Y|
, (2.76)

while Breiman’s transition probabilities require for convergence that f be less

than the proportion of examples in the minority class.

These transition probabilities are further motivated by the kind of analysis

that we described in Section 2.3.1: if the base learners are sufficiently strong

(i.e. if they will exactly fit their training data), then it is possible to use label

flipping to create truly independent training errors between base learners. This

creates a scenario where we can be sure that training error will converge to zero.

DECORATE

Melville and Mooney [63] propose an algorithm for Diverse Ensemble Creation by

Oppositional Relabelling of Artificial Training Examples (DECORATE). This is

an iterative ensemble construction algorithm that uses artificial data to promote

diversity. The algorithm generates artificial data from a Gaussian distribution
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that approximates the input distribution. The data is labelled oppositionally —

in the two-class case, if the ensemble predicts y with probability P̂ r(y|x), then

the next learner is trained on 〈x, y〉 with probability 1−P̂ r(y|x) and 〈x,−y〉 with

probability P̂ r(y|x).

This data is used in addition to the original training data, so each base learner

is trained with a different set of oppositional artificial data, fostering diversity.

The oppositional nature of the relabelling procedure encourages base learners to

disagree with the rest of the ensemble. Empirically, DECORATE is competitive

with Bagging and Adaboost, and especially effective when there is very little

training data [63].

2.3.5 Summary

We have introduced the idea of diversity, presented motivation from the litera-

ture for quantifying and studying it, and enumerated 16 existing measures. We

then highlighted some previous interpretations of diversity measures in unifying

frameworks, and finally surveyed some algorithms that are designed to exploit

ensemble diversity.



Chapter 3

Interpreting Diversity using

Voting Margins

3.1 Introduction

The primary contribution of this chapter is to establish a link between diversity

and voting margins. In Chapter 2, we introduced many diversity measures from

the literature, describing where and why they have been previously used. Sec-

tion 3.2 shows direct theoretical relationships between 15 of these measures and

expressions based on the margin distribution. We also consider measures that

cannot be described precisely via the margin distribution, specifically examining

their use in proving theoretical properties of diversity. We discuss the support

and utility of the margin theory framework via analysis of previous experiments

and two additional empirical investigations. One of these examines the influ-

ence of diversity on generalisation error, where the hypothesis arising from the

conventional view of diversity contradicts the hypothesis that we arrive at from

the margin theory perspective. Our second experiment considers the relationship

between a quadratic loss function, based on the double fault diversity measure,

and an exponential loss function as is used in Adaboost, showing how a Taylor

approximation to exponential loss gives rise to a set of interpolating loss func-

tions; we investigate the convergence of ensembles trained on successively closer

approximations to exponential loss.

Understanding diversity from the perspective of margin theory is valuable

because:

1. The rich margin theory literature enables us to make predictions about how

65
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diversity affects ensemble behaviour.

2. There are known techniques for optimising functions of the voting margin;

by implication, these techniques are also affecting diversity.

3. Our analysis reveals further redundancies and relationships in the plethora

of existing diversity measures.

3.2 Interpreting Diversity with Voting Margins

In Section 2.3, we introduced various measures of ensemble diversity. Now we

analyse each measure in turn. In the majority of cases, we show that the measures

correspond directly to some property of the margin distribution.

3.2.1 Related to the Absolute Margin

Here we show how entropy (Kuncheva), ambiguity (Zenobi) and diversity (Melville)

all measure essentially the same quantity, which is based on the absolute value of

the voting margin. We also examine ambiguity (Brown) and ambiguity (Chen),

showing their relationship with the absolute margin.

Theorem 1. Entropy (Kuncheva) [54] is a function of the absolute margin.

Original Form:

Dent =
L

N(L− dL/2e)

N∑
i=1

min{ci, 1− ci}. (3.1)

Margin Interpretation:

Dent =
L

(L− 1)
(1− |m|). (3.2)

Proof. In Appendix B.2.1.

Note that the coefficient is constant for a fixed ensemble size (L), and tends

towards 1 for large ensembles.
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Theorem 2. Ambiguity (Zenobi) [95] is a function of the absolute margin.

Original Form:

DZenobi =
1

NL

N∑
i=1

L∑
l=1

δ[hl(xi) = H(xi)]. (3.3)

Margin Interpretation:

DZenobi = 1
2
(1− |m|). (3.4)

Proof. In Appendix B.2.2.

Due to the similarity in the definition of diversity (Melville) [63] (recall that

it uses inequality in its definition, where DZenobi uses equality), the relationship

for diversity (Melville) follows analogously.

Theorem 3. The two diversity terms described by Brown [15] and Chen [16]

are identical, and they are asymmetric versions of the absolute margin diversity

measures.

Original Forms:

DBrown = − 1

2NL

N∑
i=1

yiH(xi)
L∑
l=1

(1− hl(xi)H(xi)), (3.5)

DChen =
1

2N

N∑
i=1

L∑
l=1

yi(
1

L
H(xi)− αlhl(xi)). (3.6)

Margin Interpretation:

DChen = −DBrown =
1

2N

N∑
i=1

yiH(xi)(1− |mi|). (3.7)

Proof. In Appendix B.2.3.

These measures contain the same absolute margin term as other diversity

measures, but also a yiH(xi) term. This is a result of fitting this diversity term

into a decomposition of ensemble error; the sign of yiH(xi) determines whether

high diversity on xi is beneficial or detrimental. In this sense, we could see

the (1 − |mi|) term describes ‘diversity’, while yiH(xi) describes the effect that

diversity will have on ensemble error.
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Chen does consider this decomposition of his ambiguity measure [16, Section

3.3], and directly notes that smaller |mi| corresponds to higher diversity.

3.2.2 Related to the Squared Margin

Next, we show several diversity measures that relate to the squared margin: KW

variance, disagreement, ambiguity (Tsymbal), entropy (Cunningham), and dou-

ble fault. These are also closely related to the measures from the previous section,

since |m| =
√
m2.

Theorem 4. KW variance [43] is a function of the squared margin.

Original Form:

DKW =
1

2N

N∑
i=1

(1− P̂ r(y = −1|xi)2 − P̂ r(y = 1|xi)2). (3.8)

Margin Interpretation:

DKW =
1

4
(1−m2) (3.9)

Proof. In Appendix B.2.4.

From here the known relationship with disagreement [81] gives:

Ddis =
2L

L− 1
DKW, (3.10)

=
L

2(L− 1)
(1−m2), (3.11)

which extends to ‘Hamann’s measure’ [29] by the simple transformation men-

tioned in the background section.

Theorem 5. Ambiguity (Tsymbal) [85] is a function of the squared margin.

Original Form:

Damb =
1

NL

N∑
i=1

L∑
l=1

(δ[hl(xi) = 1]− P̂ r(y = 1|xi))2+

(δ[hl(xi) = −1]− P̂ r(y = −1|xi))2. (3.12)
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Margin Interpretation:

Damb =
1

2
(1−m2). (3.13)

Proof. In Appendix B.2.5.

Entropy (Cunningham) is a more complex measure to interpret — it can be

expressed precisely in terms of the margin distribution, but the interpretation

is not easy to relate to other measures. However, using a Taylor expansion to

express the log terms (log x = (x−1)+ (x−1)2

2
, to second order) shows that entropy

does closely approximate other m2 measures.

Theorem 6. Entropy (Cunningham) [18] is, to second-order Taylor approxima-

tion, a function of the squared margin.

Original Form:

DH = − 1

N

N∑
i=1

P̂ r(y = −1|xi) log P̂ r(y = −1|xi)

+ P̂ r(y = 1|xi) log P̂ r(y = 1|xi) (3.14)

Margin Interpretation:

DH ≈
5

8
(1−m2) (3.15)

Proof. In Appendix B.2.6.

This approximation, in addition to showing a clear link between entropy and

voting margins, also explains an observation of Chen [16, page 46]:

“the high correlation between entropy and disagreement measure is

somewhat surprising and we currently do not know how to explain

this”

We make a novel contribution here by showing the second-order Taylor approx-

imation of entropy to disagreement, which explains why entropy behaves very

similarly (but not the same as) disagreement and KW variance. We show this

relationship in Figure 3.1.

Finally, we examine double fault diversity, which is an asymmetric measure,

unlike the previous three. Therefore, its margin-based interpretation does not

have such a close resemblance to the previous measures.
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Figure 3.1: We illustrate the second-order Taylor approximations for entropy
and exponential loss. In both cases, we see links with diversity measures; in the
first case, entropy is approximated by KW variance (scaled such that 1 is the
maximum value). For exponential loss, the Taylor approximation is very similar
to the double fault diversity measure (scaled to give the same area under the
curve).

Theorem 7. Double fault diversity [30] is a quadratic function of the margin.

Original Form:

DDF =
1

L(L− 1)

L∑
j=1

L∑
k 6=j

N00
j,k

N
. (3.16)

Margin Interpretation:

DDF =
1

2
(1−m)− L

4(L− 1)
(1−m2). (3.17)

Proof. In Appendix B.2.7.

The result contains two terms: (1−m) which favours accurate ensembles, and

(1−m2) which captures the same notion of diversity as KW variance, ambiguity

(Tsymbal) and entropy (Cunningham). This first term is what gives double fault

its asymmetry. Also note that, although double fault is generally considered a

‘pairwise’ diversity measure, this reinterpretation considers the margins of the

whole ensemble, rather than the behaviour of classifier pairs.

We can show another interesting property of double fault diversity by using

a Taylor approximation. Taking the exponential loss function used by Adaboost,
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Cada =
∑N

i=1 e
−mi , and computing the second-order Taylor approximation, gives:

Cada =
N∑
i=1

e−mi , (3.18)

≈ (1−m) +
1

2
m2, (3.19)

DDF = (1−m) +
1

2
m2 − 1

2
, (3.20)

when L is sufficiently large that L
L−1
≈ 1. This illustrates the close link between

double fault diversity and a Taylor approximation to exponential loss; they are

scaled and translated versions of one another. We show the approximation in

Figure 3.1. We investigate this relationship experimentally in Section 3.4.2.

3.2.3 Related to Other Functions of the

Margin Distribution

Some of the other diversity measures have more complex interpretations that

are nevertheless expressible in terms of the margin distribution. Difficulty is the

variance in the proportion of learners that predict the correct class; in fact, this

is almost the variance of the margin distribution:

Theorem 8. Difficulty [35] is closely related to the variance of the margin dis-

tribution.

Original Form:

Ddiff = VarPr(x,y)[c(x, y)]. (3.21)

Margin Interpretation:

Ddiff =
1

4
(m2 −m2). (3.22)

Proof. In Appendix B.2.8.

Difficulty measures only the variance of the margin distribution, so it does

not have a minimum at m = 0 as the absolute or squared margin measures do.

However, if individual base learner accuracy is fixed, then the only changes to

difficulty come from the m2 term, and in this sense it agrees with squared margin

measures.
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Theorem 9. Non-pairwise Interrater Agreement [26] can be described as a func-

tion of the margins.

Original Form:

Dκ = 1− L

N(L− 1)

N∑
i=1

ci(1− ci)
c(1− c)

. (3.23)

Margin Interpretation:

Dκ = 1− L

L− 1

(1−m2

1−m2

)
. (3.24)

Proof. In Appendix B.2.9.

As with difficulty, interrater agreement reduces to the squared margin when

individual accuracy is fixed.

Generalised diversity is similar to difficulty and interrater agreement, but

exhibits some explicit asymmetry.

Theorem 10. Generalised Diversity [48] can be described as a function of the

margins.

Original Form:

DGD = 1−
∑L

l=1 l(l − 1)Pr(ci = L−l
L

)∑L
l=1 l(L− 1)Pr(ci = L−l

L
)
. (3.25)

Margin Interpretation:

DGD =
L

L− 1

( 1−m2

2(1−m)

)
. (3.26)

Proof. In Appendix B.2.10.

This interpretation shows that generalised diversity is related to other squared

margin measures, but that it additionally considers the average margin, which

will quantify the accuracy of the ensemble to an extent.

Theorem 11. Coincident Failure Diversity [48] can be described as a function

of the margins.
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Original Form:

DCFD =

{
0 if Pr(ci = 1) = 1∑L

l=1(L−l)Pr(ci=L−l
L

)

(L−1)(1−Pr(ci=1))
otherwise

(3.27)

Margin Interpretation:

DCFD =
L

L− 1

(
1− 1−m

2(1− 1
N

∑N
i=1 δ[mi = 1])

)
. (3.28)

Proof. In Appendix B.2.11.

As discussed in the appendix, we have omitted the Pr(ci = 1) special case for

CFD due to the necessary condition (i.e. all base learners always make correct

predictions)1; the equation we have given here is undefined in such a scenario.

The general pattern of CFD is asymmetric, with one component for the average

margin, and one for the number of perfectly predicted examples.

3.2.4 Discussion of Terms in the Margin Framework.

So our interpretations have shown that most diversity measures can be described

using various properties of the margin distribution. We now give some attention

to what each of the terms involved mean.

|m| ∈ [0, 1] is the average absolute margin. This quantifies the average dif-

ference in support for the two classes, and is symmetric with respect to the true

label.

m2 ∈ [0, 1] is the average squared margin. Its meaning is similar to |m|, but

squaring the margins increases the influence of outliers (i.e. margins close to −1

or 1). Jensen’s Inequality describes a relationship between absolute and squared

margins: |m| ≤
√
m2, with equality when ∀i, j : |mi| = |mj|.

m ∈ [−1, 1] is the average margin. This is a simple transformation of the

average base learner accuracy. In practice we can often assume that m > 0

(although this does not have to be the case). m is asymmetric with respect to

the true label, so we should expect diversity measures that contain m to have a

stronger relationship with ensemble accuracy.

1Since Pr(ci = 1) can be expressed using margins, our omission here does not indicate that
coincident failure diversity cannot be perfectly expressed using the margins; we left the special
case out for clarity, and because it will only occur in an ensemble where base learners never
make errors.
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m2 ∈ [0, 1] is the squared average margin. This term is interesting as it is

symmetric in a sense (if we generated completely random ensembles, m2 would

have no relationship to accuracy), but in trained ensembles where m > 0 holds,

squaring m2 will not change the sign of m, and therefore it acts as an asymmetric

measure. As above, Jensen’s Inequality implies a relationship: m2 ≤ m2. These

two terms are also related as an empirical estimate of the variance of the margin

distribution: Var[m] = m2 −m2.

3.2.5 Agreement with Other Empirical Results

Our theoretical interpretations have suggested that many diversity measures can

be expressed simply using either |m| or m2. A simple way to verify our conclu-

sions is to examine the empirical results from the literature, where authors have

analysed correlations between various diversity measures.

Kuncheva produces tables of rank correlation coefficients for 10 measures,

based on results from ensembles of linear and quadratic classifiers generated with

varying feature subsets on the UCI Breast Cancer dataset [54, Section 6.4].

KW Variance, Disagreement and Entropy (Kuncheva)

Kuncheva’s experiments show that KW variance and disagreement are identical,

and often behave the same as entropy (Kuncheva). This agrees with the known

theoretical connection between KW variance and disagreement [54]. With re-

gards to entropy, for the first set of experiments, the ensemble size L = 3 would

prevent linear correlation from making a distinction between |m| and m2, so the

100% correlation in Kuncheva’s Table 7 agrees with our analysis. Kuncheva’s sub-

sequent clustering experiments always assign entropy to the same group as KW

variance and disagreement; however, her discussion (“. . . equivalence between KW

and Dis, and the similarity to E. . . ”) supports the idea that entropy behaves

similarly, but not identically.

Q Statistic, Phi Coefficient, Pairwise Kappa Coefficient, Generalised

Diversity

These measures are shown to be related, but not to the same extent as those

in the previous section. For L = 3, there are 4 possible margins and 6 possible

classifier pairs; case by case analysis gives each pairwise count as a function of
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counts of examples with specific margins (for example N11 = 6|{i : mi = 1}| +
2|{i : mi = 2

3
}|). In this situation, the denominator in Dk is the square of half

the denominator in Dφ; this close similarity agrees with the strong empirical

correlation between the two.

These measures have empirical similarity to generalised diversity and the 3

measures we discussed previously. Pairwise and non-pairwise kappa should be

expected to exhibit a close relationship (although non-pairwise kappa is not in-

cluded in the experiments); given this link, we should expect measures that are

related to pairwise kappa (DQ and Dφ) to be slightly similar to measures that

are based on the squared margin.

Difficulty, Double Fault

Kuncheva’s experiments on difficulty are especially interesting. In the first set of

experiments, difficulty correlates well with double fault but poorly with every-

thing else. In the second experiments, difficulty is included in the cluster with

all the measures discussed above. For double fault, m is combined with m2 at a

ratio of 2 : 1, meaning that the asymmetric component (m) is most significant.

Difficulty combines m2 and m2 at parity, so although m2 still provides some in-

formation about average base learner accuracy (assuming m > 0), the symmetric

information associated with m2 will have far more influence than it does in double

fault. But considering how much more significant the asymmetric component in

double fault is, we can see that the size of m will have some role in determining

this since that term is squared in difficulty. So we expect difficulty to be more

like double fault when m is large, and more like squared-margin measures when

m is close to 0.

This seems to fit with the experimental results, assuming the stronger learners

(and ease of achieving good performance on the breast cancer dataset) in the

first experiment cause m to be large; in the second experiment, some ensembles

are trained with random weak learners, which would suggest that m will be far

smaller. If these assumptions about m are true, then the experiments agree with

our interpretation of difficulty and double fault diversity.

Correlation with accuracy

Kuncheva found that “In general, the relationship between accuracy and diversity

was strongest for the DF and CFD measures with the majority vote accuracy”.
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These two measures are both strongly asymmetric; they both contain a m term

that gives them a relationship with average base learner accuracy; so there is

strong corroboration for our interpretation, since the measures that are most

predictive of accuracy are also most closely related to the average margin.

Chen’s Experiments with Generalisation Accuracy

Chen’s experiments [16, Section 3.4] examined correlations between various di-

versity measures and generalisation error, using Bagging ensembles of CART

learners. Like Kuncheva, Chen found that DKW and Ddis are identical; Chen

measured entropy as defined by Cunningham, and found that it was also very

similar to KW variance, which we have shown with a theoretical link via a Tay-

lor approximation. Dk, Dφ and DQ were very similar to each other, and quite

closely correlated with Ddis, DKW and DH , as was generalised diversity. Difficulty

was not strongly correlated with any other measure (double fault diversity was

not investigated here), and neither was coincident failure diversity. This agrees

with our experience of difficulty in high average base learner accuracy situations

(CART is a relatively strong base learner). Ambiguity (Chen) was shown to be

most strongly correlated with generalisation accuracy; this would agree with our

interpretation showing that ambiguity is the only measure to explicitly contain

yiH(xi), which essentially quantifies the training accuracy. The other measures

that Chen finds are most closely related to generalisation accuracy are also asym-

metric: generalised diversity, coincident fault diversity and difficulty.

Kapp et al. Empirical Study of Diversity and Voting Margins

Kapp et al. [40] investigate the relationship between diversity measures and vot-

ing margins, as well as training and generalisation accuracy. They find that some

measures (Q, disagreement, ambiguity (Zenobi), KW variance) were ‘weakly’ re-

lated to individual and ensemble accuracy, while other measures (generalised

diversity, difficulty, double fault) were ‘strongly’ related. These two groups cor-

respond to symmetric and asymmetric measures respectively.

Our result in Section 3.2.2 showed that there is a similarity between double

fault diversity and exponential loss. Kapp et al. observe:

“Maybe Double-Fault diversity has produced a stable behaviour because

if strong classifiers are available (high average margin), this measure
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seeks to decrease the probability of identical errors”

as an explanation for the good relationship between double fault diversity and

ensemble accuracy; this observation fits well with the success of exponential loss

as an optimisation criterion.

Kapp et al. also find a measure that they describe as ‘CI-measure’ to be

successful; below (in Equation 3.41), we show that this measure (a version of

the Chebyshev inequality on the margin distribution) is equivalent to the non-

pairwise kappa coefficient.

3.3 Relationship with Existing Theoretical Re-

sults

In this section, we address some existing theoretical results that are related to

diversity, and show how they can be viewed within the margin theory framework.

3.3.1 Breiman’s Random Forest Result

This result is important because it contains Dφ — the correlation between base

learners. This has been proposed as a diversity measure, but does not have a

direct interpretation from the margin theory perspective. Therefore, we should

examine the use of Dφ here to determine whether the same result can be derived

using only margin theory, or whether measuring diversity with Dφ does allow us

to learn new things about ensemble generalisation error.

Breiman motivates the diversity-inducing aspects of Random Forests with an

upper bound on the generalisation error of independent ensembles. The bound

describes the generalisation error of an ensemble of independent base learners in

terms of the average margin and the correlation between learners.

egen ≤
ρ(1− s2)

s2
, (3.29)

(see Section 2.3.1 for definitions of ρ and s). Because diversity measures are

defined with respect to training data, it is simplest to translate Breiman’s bound
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into estimates of all the variables from training data 2:

etr ≤
Dφ(1−m2)

m2 , (3.30)

which suggests that good performance can be achieved by reducing correlation,

or increasing the margin. This is useful as it bounds the error of the ensemble

with the correlation (which we can control to some extent while maintaining base

learner independence) and margin (which can be optimised independently by the

individual base learners).

The bound is derived from Chebyshev’s inequality on the margin distribution:

Pr(|m− E[m]| < k
√

Var[m]) ≤ 1

k2
, (3.31)

Pr(m < E[m] + k
√

Var[m]) ≤ 1

k2
, let k =

−E[m]√
Var[m]

(3.32)

Pr(m < 0) ≤ Var[m]

E[m]
, (3.33)

where all the expectations and variance are w.r.t.̃the distribution Pr(x, y).

The additional steps of Breiman’s derivation use the independence between

base learners to bound Var[m] with ρ. Since learners are independent, we can

consider each base learner to have been drawn from a distribution Pr(h). The

‘strength’ of an individual learner is closely related to its generalisation accuracy:

s(h) = EPr(x,y)[yh(x)], and the expectation of this over all base learners gives the

expected margin: EPr(h)[s(h)] = EPr(x,y)[m(x, y)]. Therefore:

Var[m] ≤ ρVarPr(h)[s(h)], (3.34)

= ρ(EPr(h)[s(h)2]− EPr(h)[s(h)]2), (3.35)

≤ ρ(1− E[m]2), (3.36)

which is combined with Equation 3.33 to give the final bound from Equation 3.29.

The beauty of this result is that correlation and average margin can both be

optimised for independent base learners, while directly optimising the variance

2Breiman’s statement that “the bound . . . fulfills the same suggestive function for random
forests as VC-type bounds do for other types of classifiers” is often quoted, and perhaps misin-
terpreted; the bound does not show a relationship between generalisation error and quantities
that can be measured on training data. Breiman’s implication seems to have been that it
describes the error as a trade-off — in this case between correlation and individual accuracy.
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of the margin would have required dependence between the learners. However,

the result is often interpreted as implying that optimising diversity is crucial for

ensemble learning; for example, Gatnar states [29, Section 3]:

“The conclusion from the above equations [including Equation 3.29]

is obvious: the stronger the correlation between members of the en-

semble, the higher the ensemble classification error.”

However, by examining the origin of Breiman’s bound, we have seen that the

relationship between correlation and error is as part of a bound on the variance

of the margins which is itself part of a bound on the error.

For our research, the most important issue regarding Breiman’s Random For-

est bound is whether itit ascribes special significance to the Dφ diversity measure

that could not equally apply to other diversity measures. If it does, then this

would suggest that taking a non-margin theory view of diversity could permit a

better understanding of diversity in ensembles of independent learners.

Since Breiman’s bound is based on the initial application of Chebyshev’s in-

equality on the margin distribution, we can actually see that the margin theory

explanation of diversity allows us to draw the same conclusions from Equation

3.33, for example:

etr ≤
4Ddiff

L2m2 , (3.37)

or even, with some manipulations, the (non-pairwise) kappa coefficient (we ap-

proximate for large L : L
L−1
≈ 1):

Dκ = 1− 1−m2 − Var[m] + Var[m]

1−m2 , (3.38)

= 1− 1− Var[m]−m2

1−m2 , (3.39)

=
Var[m]

1−m2 , (3.40)

etr ≤ Dκ. (3.41)

(Equation 3.41 may seem surprising since Dκ is symmetric with respect to ac-

curacy, but the bound requires m > 0, which is where the asymmetry necessary

to upper bound error comes from). We arrive at similar expressions for other
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measures that include m2:

etr ≤ 1 +
2DKW − 1

2(1−m2)
, (3.42)

etr ≤ 1− 2DGD

1 +m
. (3.43)

So, these results show that various diversity measures can form the ‘diversity’

component of a bound on generalisation error; in fact, they give an even tighter

bound than Dφ, since the inequality from Equation 3.36 (EPr(h)[s(h)2] ≤ 1) is

not required.

To summarise, we have shown the origins of Breiman’s bound on generalisa-

tion error, which suggests that Dφ (which cannot be expressed using the margin

distribution) has a unique application in ensemble theory. However, by examining

the bound in more detail, we showed that it was derived from an instantiation of

Chebyshev’s inequality, which itself is a bound on generalisation error in terms of

the margin distribution. Furthermore, we illustrated how several diversity mea-

sures could be inserted into Chebyshev’s inequality to express a tighter version

of Breiman’s bound without requiring Dφ.

3.3.2 Kuncheva’s Q Statistic Result

The Q statistic is another significant diversity measure that cannot be expressed

directly in terms of the margin distribution. Furthermore, it is one of the most

widely used measures, and was specifically recommended by Kuncheva following

an empirical study of diversity measures [54].

In this section, we will study Kuncheva’s bounds on majority vote accuracy in

terms of DQ. Since these results concern training accuracy, it may seem foolish

to consider the margin distribution; of course the training accuracy is exactly

the proportion of the margin distribution that lies above 0. However, the utility

of these bounds is that they show that for a constant individual base learner

accuracy, how to distribute votes so as to achieve maximal training accuracy.

The essential idea in Kuncheva’s analysis is that of “Patterns of Success” and

“Patterns of Failure”. These describe voting patterns that achieve maximum (or

minimum) training error3 assuming all base learners achieve the same individual

3For consistency, we have converted Kuncheva’s results to describe error rates, rather than
accuracy. We also assume L is odd, which is a reasonable assumption in unweighted voting
ensembles.
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error. The results show that two error values, esucc and efail can be defined in

terms of DQ, under the success/failure configurations.

esucc =
2L

(L+ 1)

1

(2−DQ)
− L− 1

L+ 1
, (3.44)

efail =
2L

(L− 1)

(1−DQ)

(2−DQ)
. (3.45)

Significantly, it seems that smallDQ (high diversity) is beneficial in the pattern

of success, but detrimental in the pattern of failure.

The “Pattern of Success” actually describes a family of margin distributions.

These distributions are zero everywhere except for m = −1 and m = 1
L

, which are

populated based on the accuracy of individual base learners. This distribution

matches the optimal distribution for the DBrown function introduced by Kuncheva

and Brown [15] — if yiH(xi) is negative (i.e. a misclassification), then the margin

should be −1, if yiH(xi) is positive, the margin should be as small as possible.

This pattern is the result of the idea that diverse ensembles should achieve the

highest ensemble accuracy possible for a fixed individual accuracy.

The derivation of the result has two main components: firstly, a description

of esucc and efail in terms of individual accuracy (c) and L:

esucc = 1− Lc

(L+ 1)
, (3.46)

efail =
2L(1− c)
(L+ 1)

. (3.47)

The other component of the derivation is an expression for DQ in terms of c:

Dsucc
Q =

1− 2c

1− c
, (3.48)

Dfail
Q =

2c− 1

c
. (3.49)

The expressions for e and DQ are finally combined to give the results from

Equation 3.45.

The relationship between this bound and the margin distribution can be seen

by examining Equations 3.47 and 3.49 individually. Both of these can be rewritten

to give esucc, efail, D
succ
Q and Dfail

Q in terms of the average margin, simply using

c = 1
2
(m+ 1);
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esucc = 1− L

2(L+ 1)
(m+ 1), (3.50)

efail = 1− L

L+ 1
(m− 1), (3.51)

Dsucc
Q =

2m

m− 1
, (3.52)

Dfail
Q =

2m

m+ 1
. (3.53)

These results imply that, with the assumptions that votes follow patterns of

success/failure and that all learners have the same individual accuracy, the diver-

sity and ensemble accuracy are both exactly determined by what the individual

accuracy of the base learners is; i.e. both e and DQ are functions of c. So, the

link between e and DQ does not provide evidence that DQ has some special sig-

nificance in determining training accuracy, since the same relationship can be

described concisely using the margin distribution as in Equation 3.51; rather, we

should see this as meaning that whatever aspect of DQ cannot be described by the

margin distribution, is precluded by one or both of the assumptions introduced in

order to derive Equations 3.45 and 3.44.

3.3.3 Tang’s Minimum Margin Result

Tang uses a common framework to express six of the diversity measures that

we described earlier [84]. Although he doesn’t specifically use the margin in his

definitions, he does make the connection between ci: the proportion of votes for

the correct class on 〈xi, yi〉, c, the average accuracy of the ensemble, and the

margin:

mi = 2ci − 1, (3.54)

m = 2c− 1, (3.55)

min
i
mi ≤ 2c− 1. (3.56)

From this, Tang concludes:

“If [average accuracy] is regarded as a constant and the maximum di-

versity is achievable, maximising the diversity among the base classi-

fiers is equivalent to maximising the minimum margin of the ensemble
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on the training samples.”

This can be seen because the maximum value of minimi occurs when all the

margins are the same, i.e. ∀i : mi = 2c−1, and Tang’s derived diversity measures

are maximised when ci is uniform over all i.

This result seems contrary to our own exposition from Section 3.2; we gen-

erally show that diversity is maximised when mi is close to 0, which typically

implies reducing the margins to increase diversity (when the margins are posi-

tive). The reason why Tang shows such a surprising result is the assumption

under which it holds: c (equivalently, m) is regarded as constant.

When considering the margin distribution, it becomes clear why constant m

causes this behaviour: to maintain constant m, any increase in the minimum

margin must be ‘balanced’ by a corresponding decrease in the margin of another

data point; hence, the minimum margin provides some measure of how uniform

the margin distribution is around m (although not a very sensitive one). Similarly,

diversity terms that are based on m2 provide an alternative measure of uniformity

when m is fixed.

The ‘equivalence’ of maximising the minimum margin and maximising diver-

sity is actually not very strong; even with the assumption of constant m, the two

quantities are not monotonic with respect to one another — so unless the opti-

mal scenario (uniform mi) is achievable, there is no necessary similarity between

the maximisation of the quantities. Furthermore, the general situations in which

the minimum margin is maximised are not well described by the assumption of

constant m; realistically m needs to vary to facilitate the maximisation.

In the next section, we perform experiments to illustrate the applicability

of our interpretation. Our findings suggest that high diversity should generally

reduce the size of voting margins, which would negatively impact generalisation

performance. This disagrees with sentiment in the diversity literature, which

generally suggests that high diversity should improve generalisation performance

[16,38,63].

3.4 Experiments

In this section, we present two experiments. The first investigates the relation-

ship between diversity and generalisation error, while the second examines a link

between the double fault diversity measure and the exponential loss function.
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3.4.1 Diversity and Generalisation Error

In this section, we perform an investigation which illustrates the utility of the

margin theory interpretation of diversity. Specifically, we evaluate the hypothe-

sis:

Hypothesis: For ensembles with identical training error, high diversity will

be associated with higher generalisation error.

This question is important because:

• In diversity literature it is suggested that high diversity will indicate low

generalisation error.

• In margin theory literature there are bounds that suggest that large margins

will indicate low generalisation error.

• Our connection between diversity and margins suggests that (for positive

margins), these two statements are in conflict.

Procedure

There are three main components to our experimental procedure:

1. We generate ensemble that achieve training error of less than 0.5, but are

otherwise random.

2. We control for training error by ‘binning’ ensembles according to their per-

formance on training data.

3. We measure Pearson correlation between diversity and generalisation error

within each bin.

This second step may seem strange, since the ‘training data’ is not actually

used for training. However, within each bin, the error on training data constitutes

a biased (optimistic) estimate of generalisation error. In this sense, we can look

at data in a single bin and ask: “Can any measure extracted from the training

data provide additional information about generalisation error?”

We define our procedure in Algorithm 2:
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Algorithm 2 Diversity and Generalisation Error Experiment

for i = 1 . . . 100000 do
Sample 20 training data points
Generate an ensemble of 25 random linear classifiers
if Ensemble training error > 0.5 then

Invert all the ensemble predictions
end if
Compute etr, ensemble training error
Compute |m|, average absolute margin on training data
Compute DQ, Q statistic on training data
Compute egen, generalisation error on hold-out data

end for
for For all ensembles within each distinct etr do

Compute correlation between |m| and egen

Compute correlation between DQ and egen

end for

Our experimental procedure involves generating many (100000) random un-

weighted ensembles of 25 linear classifiers. We use 20 training examples to po-

tentially invert the predictions of each ensemble, such that every ensemble has

training error of 0.5 or less. Since the small number of training examples leaves

only 11 possible values for training error, we can partition our 100000 ensembles

according to training error (this will control for the relationship between diversity

and training error). Within each set, we compute the correlation between aver-

age absolute margin on training data and generalisation error. Even though our

analysis has suggested that the absolute margin is representative of ‘diversity’,

we additionally show correlation between DQ and generalisation error since DQ

has been prominently used in the literature.

Because ensembles were generated at random, the cardinality of the bins varies

dramatically, with many thousands of ensembles achieving error around 0.5, and

very few achieving error of 0. This will affect the statistical significance of corre-

lation in very sparse bins.

To investigate this effect further, we perform the same experiment, but gener-

ating Bagging ensembles of 25 decision stumps or CART, and Adaboost ensembles

of 15 decision stumps — in these cases we train on the 20 sampled data point.

With Adaboost, we only measure |m|, since the ensemble is weighted.
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Results

The procedure gives us correlation values for each possible value of training er-

ror. We present these in Table 3.1, where bold highlighting indicates statistically

significant correlation at a level of p = 0.01. The experiment was repeated for

8 datasets. Note that both |m| and DQ are inversely proportional to ‘diversity’,

so a negative correlation indicates that diversity is positively correlated with gen-

eralisation error. Values for correlation are typically very low, but this is to be

expected, since m and DQ are measured on training data, and training error has

been controlled for.

In Table 3.2, we show the behaviour in Bagging ensembles of Decision Stumps.

In this case, the correlation is positive in many cases, which contradicts our

hypothesis. We find similar results with CART bagging ensembles (Table 3.3 —

due to the strength of CART models, we only show low error rates). Finally, the

results for Adaboost ensembles are displayed in Table 3.4.
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Conclusions

These experiments examined the relationship between diversity and generalisation

error. It was unclear, based on previous literature, whether generalisation error

would be positively influenced by high diversity (as is often suggested in diversity-

oriented literature), or large voting margins (and, equivalently, low diversity).

Our experiments examined correlations between the average absolute margin and

generalisation error in various ensembles, while controlling for training error.

Most of the correlations we observed in random ensembles were positive and

statistically significant. For training errors of 0.5, correlations were approximately

0, which is expected due to the symmetry of 2-class problems. This generally

positive correlation supports the idea that large margins are indicative of good

performance, and conversely that high diversity is not in general beneficial outside

of its influence on training error.

However, whether the correlation between these two values was positive or

negative depended on how the ensemble was generated; in Bagging ensembles,

low generalisation error was often associated with high diversity. Of course, the

quantity we measured (|m|) describes only one aspect of the margin distribution,

so from the perspective of margin theory, it is not too surprising that it does not

correlate positively with generalisation error. While our initial experiment showed

that our hypothesis was supported when ensembles were essentially random, the

learning algorithm and dataset also clearly plays a large role in how the margin

distribution behaves.

Similar experiments have previously been performed by Chen [16] and Kuncheva

[54], but with slightly different experimental goals. Chen investigates this corre-

lation without controlling for training error, so as to include the influence of the

relationship between diversity and training error. Kuncheva is interested in the

improvement of ensemble error over average individual error, and therefore parti-

tions ensembles based on average individual error, rather than ensemble training

error. We emphasise that, due to our controlling for training error, there is no

conflict in the outcome of those experiments and the one we have performed here.

3.4.2 Double Fault Diversity and Exponential Loss

In Section 3.2.2, we showed a relationship between a quadratic function (double

fault diversity), and exponential loss. In these experiments we will verify this
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behaviour and develop our understanding of polynomial approximations to the

exponential function in boosting algorithms.

We know that, using a Taylor expansion, we can derive polynomial functions

that approximate e−m, with higher degree polynomials giving closer approxima-

tions. However, we do not know to what extent this similarity will apply to the

behaviour of ensembles that optimise such functions. We would like to answer

the question if we optimise double fault diversity in an ensemble, how similar

is this to an Adaboost ensemble? Additionally, the ability to use higher order

Taylor approximations will allow us to examine the convergence of polynomial

loss ensemble to exponential loss. This gives us a hypothesis:

Hypothesis: By training with loss functions that approximate exponential

loss, we can create boosted ensembles that behave similarly to Adaboost.

To perform the investigation we use the AnyBoost algorithm that we intro-

duced in Section 2.2.4. The allows us to derive learner and example weight

update rules from both polynomial and exponential loss function (although we

are slightly restricted in that we require the polynomial functions to be convex ).

For example, we show second and forth degree polynomial cost functions:

Ck=2 =
N∑
i=1

1−mi +
1

2
m2
i , (3.57)

Ck=4 =
N∑
i=1

1−mi +
1

2
m2
i −

1

6
m3
i +

1

24
m4
i . (3.58)

we analytically compute the appropriate derivatives to train AnyBoost (Equations

2.23 and 2.24), and use Laguerre’s method4 to find their roots during the training

process.

Experimental Procedure

We define our procedure precisely in Procedure 3:

We produce 500 random train/test splits of the data (100 training and 100

testing examples). For each split, we train AnyBoost ensembles with k ∈ {2, 4, 8,
16, 32, 64, 128}, and a single Adaboost ensemble. Finally, we compute the average

4We perform up to 105 iterations with an error tolerance of 10−5.
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Algorithm 3 Polynomial and Exponential Loss Behaviour

for i = 1 . . . 500 do
Sample 100 training data points
for k = 2, 4, 8 . . . 128 do

Train Anyboost using a k-degree cost function, Ck
Compute ekgen, generalisation error

end for
Train Adaboost
Compute eada

gen, generalisation error
end for

generalisation accuracy difference between polynomial learners and Adaboost.

The hypothesis is confirmed if these differences tend to 0 as k increases. We repeat

the experiment on 6 datasets for 4 different base learning algorithms — Gaussian

Näıve Bayes, CART, perceptron (learning rate 0.01, 10 epochs), decision stumps.

In every case, the ensembles contain 15 base learners. More general information

on our experimental environment is provided in Appendix A.

Results

In Figure 3.2, we show the results for all the datasets studied, with polynomial

degree up to 128. With the exception of the breast cancer dataset, all other ex-

periments show convergence to the error rate of Adaboost. The convergence on

the breast cancer dataset seems to be ongoing at k = 128 but we have not tried

higher degree polynomials due to numerical precision issues. For two base learn-

ers — CART and decision stumps — low degree polynomials were consistently

worse or better (respectively) than exponential loss, while for Näıve Bayes and

perceptron learners this was dataset dependent.

Conclusions

The general conclusion here is that Adaboost with exponential loss can be seen an

algorithm that explicitly optimises diversity ; in a sense this is already known —

that Adaboost introduces diversity by example weighting — but our experiments

show how exponential loss relates to existing diversity measures. Quadratic loss

represents a trade-off between squared-margin diversity (e.g. KW variance) and

average margin (i.e. average individual accuracy). The interpolating loss func-

tions — higher order polynomials — imply the same intuition, with negatively
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Figure 3.2: Convergence of AnyBoost with Polynomial loss to Exponential loss,
as degree of Taylor approximation increases. Top left: Gaussian Näıve Bayes,
Top right: CART, Bottom left: Perceptron (lr = 0.01, epochs = 10), Bottom
right: Decision Stumps. Polynomial degrees for all powers of two up to 128.
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x1 x2 x3 x4 x5 x6

h1 1 -1 -1 1 -1 1
h2 -1 1 1 -1 -1 1
m 0 0 0 0 -1 1

x1 x2 x3 x4 x5 x6

h1 -1 -1 -1 1 -1 1
h2 1 1 1 -1 -1 1
m 0 0 0 0 -1 1

Table 3.5: Two possible scenarios for an ensemble of two base learners making
predictions on a dataset of six examples. The ensemble on the left has φ = −1

3
,

while the ensemble on the right has φ = −1
4
; however, the margin distributions

are identical.

weighted asymmetric components (encouraging accuracy) and positively weighted

symmetric components (encouraging diversity).

3.5 Alternatives to the Margin Interpretation

Much of the argument we have presented for viewing diversity as a property of the

margin distribution has been objectively valid (i.e. our derivations show that most

diversity measures are margin measures). One possible conclusion at this point

would be quantifying diversity is not useful since the margin distribution describes

it anyway. In this section, we aim to pose questions that, when answered, can

help to determine the validity or otherwise of that conclusion.

3.5.1 Diversity as Correlation

The phi coefficient cannot be described by examining the margin distribution.

Table 3.5 shows an example of a scenario where correlation differentiates between

two ensembles with identical margin distributions.

The implication here is that the margin distributions tells us how much dis-

agreement there is in the ensemble, while correlation also considers which base

learners are disagreeing. This is the basis for what we consider to be the strongest

case for non-margin-based diversity, and gives us an initial question to consider:

Do the two ensembles illustrated in Table 3.5 have different amounts of diver-

sity?
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h1

h2

h3

+

0.2

0.6

0.2

h1

h2

h2

h2

h3

+

Figure 3.3: We show how a weighted ensemble (left) can be converted to a larger,
unweighted ensemble, such that its behaviour (and margin distribution) is pre-
served. Each base learner is duplicated some number of times so that it accounts
for the correct proportion of the unweighted ensemble (i.e. since α2 = 3α1, h2

occurs three times as often as h1 in the unweighted ensemble).

3.5.2 Invariance over Ensemble Resizing

The issue of correlation vs. margins also arises when we consider resizing or

weighting an ensemble. Consider an ensemble L = 3 and its margin distribution;

now double the size of the ensemble by duplicating its base learners (h4 = h1, h5 =

h2, h6 = h3). The margin distribution does not change, but we might consider

diversity to be lower since half of the ensemble comprises duplicate base learners.

The difference between the ensembles would be captured by correlation, even

though their margin distributions are identical.

The invariance of the margin distribution when enlarging the ensemble in this

way does have some advantage though — it gives us a natural way to describe

the diversity of a weighted ensemble. For all of the measures that we interpreted

using margins, the weighting of learners could be achieved by considering the

margins of weighted ensembles; m(x, y) = y
∑L

l=1 αlhl(x). Existing weighted

diversity measures (such as those presented by Tang [84]) are consistent with this

interpretation. Therefore, the margin distribution of a weighted ensemble can be

achieved5 by an unweighted ensemble where each distinct base learner has been

duplicated in proportion to its weight.

According to the margin interpretation of diversity, such ensembles (as in Fig-

ure 3.3) would have the same diversity. A correlation-oriented diversity measure,

5Assuming weights are rational numbers; otherwise the margin distribution is only approxi-
mated.
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however, would assign different amounts of correlation. So our next question is:

If two ensembles of different sizes contain the same distinct base learners in

the same proportions (either via weighting or duplication), do they necessarily

have the same amount of diversity?

3.5.3 Tumer and Ghosh Correlation Result

While we have interpreted theoretical results of Breiman [10], Kuncheva [55] and

Tang [84] within the voting margin framework, we have shown no such interpre-

tation for the work of Tumer and Ghosh [86]. The correlation term used in their

result is not exactly the Dφ term we defined in Chapter 2; however, it is based on

the correlation between base learner errors. Whether or not the main theoretical

result here (Equation 2.35) can be expressed in terms of the margin distribution

is an open problem; their framework is quite complex and we have not found

any margin-based interpretation. To gain substantial evidence for or against the

margin interpretation of diversity, we would need to answer:

Is it possible to express the result of Tumer and Ghosh (Equation 2.35) in

terms of the margin distribution?

3.5.4 Learner- and Data-dependent Effects

While we consider that the margin distribution describes the important aspects

of ensemble behaviour in general, we can imagine that correlation-like measures

would have significance in specific scenarios. It is hard to construct an example

without considering convoluted learning algorithms or datasets; however, if there

were any cases where, for example, measuring correlation could differentiate be-

tween different types of noise or be used to detect when a base learning algorithm

was inappropriate for the task, then this would give us a good reason to give

deeper consideration to measures of correlation between learners.

Are there specific learning algorithms or classes of learning problem where

the correlation between base learner predictions on training data provides useful

information that is not contained in the margin distribution?

3.6 Conclusions

In this chapter we have made several novel contributions. We have:
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1. Shown direct theoretical links between many diversity measures and the

margin distribution.

2. Discussed corroboration of our results by existing empirical studies.

3. Analysed how other theoretical results from the diversity literature relate

to the voting margin framework.

4. Presented an experiment that tests two contrasting predictions about how

diversity affects generalisation error.

5. Performed a further experiment showing the relationship between polyno-

mial loss functions (e.g. double fault diversity) and exponential loss (Ad-

aboost).

These results are valuable for several reasons. Being able to interpret diversity

within the voting margin framework enriches our understanding of what diversity

is and how it should be used.

The impact for practitioners could be, as we suggested in Section 3.5, that

quantifying diversity is not useful since the margin distribution describes it any-

way. In this sense, the quantitative aspect of ensemble diversity should be consid-

ered within the framework of voting margins — for example, to say ‘the algorithm

encourages diversity’ really means ‘the algorithm encourages the margin distri-

bution to have a certain shape’.

Is the future really so bleak for ‘diversity’? Not necessarily: in Section 3.5 we

posed four questions — in the first two cases, we asked about what it meant for

two ensembles to have the same amount of diversity. The next questions were

open problems regarding diversity. If any of the questions were answered affir-

matively, it would imply that diversity does have some interesting and valuable

meaning outside of the margin distribution. In this case, our work has contributed

by refining the definition of diversity — specifically, we have shown that it would

only make sense to measure diversity as correlation or the Q statistic, and that

even in this case, it should be viewed from a holistic perspective that considers

its relationship with the voting margins.

Understanding this link between diversity and margins also enables our further

contributions in subsequent chapters; in Chapter 5, we show that diversity can be

optimised using gradient descent on a margin-based loss function, using a similar
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approach to our experiment from Section 3.4.2. We then exploit this to address

the issue of adaptation in non-stationary learninga
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Chapter 4

Background and Related Work

In this chapter, we introduce the specific set of assumptions that characterise non-

stationary learning, in preparation for Chapter 5, where we develop a diversity-

oriented approach to non-stationary learning. After describing the problem, we

discuss some important issues and state-of-the-art techniques.

4.1 From Ensemble Diversity to Non-Stationary

Learning

In the previous part of this thesis, we presented a link between ensemble diversity

and voting margins. This contributed towards a more unified understanding of

ensemble algorithms, and opened up several interesting research directions. The

ability to quantify diversity using voting margins makes it possible to manage

diversity using existing techniques based on voting margins; as such, it becomes

easier to evaluate hypotheses relating to the impact of high — or low — diversity.

In the field of non-stationary learning, there has been recent interest in ap-

plying ensemble methods [70]. Ensembles can be of use here because of their

inherent decomposition of complex tasks; diversity is one way of describing how

effectively a learning task has been ‘decomposed’, and as such we can imagine

that it will be especially important in non-stationary learning.

In this chapter, we will first introduce the domain of non-stationary learning

and describe some popular approaches — especially those based on ensemble

algorithms. Then, in Chapter 5, we consider intuitively and theoretically how we

should expect diversity to affect the ability of an ensemble to adapt to changes.

101
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Finally, we derive an algorithm and evaluate it on toy and real datasets to test

our hypotheses.

4.2 What Makes Non-Stationary Learning

Difficult?

Non-stationary learning differs from the conventional supervised learning frame-

work that we described previously in two respects: the dataset is ordered and we

should be able to make predictions at any point in the sequence, and examples are

not drawn from a fixed distribution. Both of these properties imply a relaxation

of assumptions that we normally have in supervised learning (so in this sense,

non-stationary learning is at least as hard as stationary learning).

4.2.1 Incremental Learning

Incremental Learning is the process of learning from sequential data, where data

is still i.i.d. In this case, the primary challenges are:

1. To train a learner such that predictions can be made after processing any

number of examples (Anytime prediction).

2. For an incrementally trained learner to be as similar as possible to a batch

learner trained on the same data (Losslessness).

3. For the time and space complexity of the learner to be constant irrespective

of the amount of data (Efficiency).

Achieving all three of these is possible for certain types of learning model. Ex-

amples of lossless algorithms are the categorical and Gaussian Näıve Bayes algo-

rithms that we use in our experiments [68, Section 2.3]. To illustrate this, we first

present the batch learning rules for Gaussian Näıve Bayes models, before giving
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equivalent incremental update equations:

Pr(y|x) ∝ Pr(y)
d∏
j=1

N (x(j);µ(j)(y), σ(j)(y)), (4.1)

P̂ r(y) =
N(y)

N
, (4.2)

µ(j)(y) =
1

N(y)

N∑
i=1

δ[yi = y]x
(j)
i , (4.3)

σ(j)(y) =

√∑N
i=1 δ[yi = y](x

(j)
i − µ(j)(y))2

N(y)− 1
(4.4)

Here, we use a Bernoulli distribution for the prior, with N(y) denoting the number

of examples with yi = y. The class-conditional distributions for the features are

Gaussians, with means µ(j)(y) (for feature j and class y) and standard deviations

σ(j)(y). All of these are estimated from the data, and prediction is achieved by

arg maxy Pr(y|x).

To approximate this in incremental learning, we need to be able to update all

the parameters each time we receive a new training example. For incremental

problems, we will use t to denote the time step (i.e. number of training examples

seen), so subscript t will refer to a quantity at time t. Therefore, we have update

rules for Gaussian Näıve Bayes, based on Welford’s technique for incrementally

updating means and variances [93]:

P̂ rt(y) =
Nt(y)

t
, (4.5)

N0(y) = 0, Nt(y) = Nt−1(y) + δ[yt = y], (4.6)

µ
(j)
0 (y) = 0, µ

(j)
t (y) = µ

(j)
t−1(y) +

δ[yt = y](x
(j)
t − µ

(j)
t−1(y))

Nt(y)
, (4.7)

γ
(j)
0 (y) = 0, γ

(j)
t (y) = γ

(j)
t−1(y) + δ[yt = y](x

(j)
t − µ

(j)
t−1(y))(x

(j)
t − µ

(j)
t (y)), (4.8)

σ
(j)
t (y) =

√
γ

(j)
t (y)

Nt(y)− 1
. (4.9)

These equations show how incremental learning works in a Gaussian Näıve Bayes

model; Nt(y) indicates the total number of y-labelled instances seen at or be-

fore time t, µ
(j)
t (y) indicates the class conditional mean of the jth feature after t
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training examples, while σ
(j)
t (y) is its standard deviation. We use γ

(j)
t (y) to sim-

plify the process of updating σ
(j)
t (y); γ

(j)
t (y) stores the sum of squared differences

between the jth feature and its mean for class y on the first t examples.

All the parameters computed in this incremental fashion will be the same as

if they had been computed using the batch algorithm on all data up to time

t. Furthermore, the updates require O(1) computation1, so the Gaussian Näıve

Bayes models satisfies all three desiderata of anytime prediction, losslessness, and

efficiency.

However, such a convenient conversion from batch to incremental learning is

not possible for most types of model; for example, building a lossless decision

tree incrementally is not possible to do with constant update time — inserting a

value normally requires a search of the tree, and the splitting criterion needs to

be re-evaluated after each insertion. Because of this, approximate tree learning

algorithms like ITI (Incremental Tree Inducer) [87] and Hoeffding Trees [21] are

necessary to perform incremental learning efficiently.

4.2.2 Non-Stationarity

The assumption of identical and independently distributed data is an essential

part of supervised learning; it implies that the training data is somehow rep-

resentative of the true distribution. If we completely discard this assumption,

then learning becomes impossible — the distribution that we are interested in for

prediction would not be related to the distribution that our data was sampled

from.

The assumption of non-stationarity lies somewhere between these two ex-

tremes — we assume that historic data is usually representative of the current

true distribution, or that it is almost representative of it. Žliobaitė [91] de-

scribes this as the “future assumption”. She presents three possible assumptions

that could be made about the relationship between the distributions from which

〈xt, yt〉 and 〈xt+1, yt+1〉 are sampled:

1. The distributions are the same,

2. The latter distribution can be predicted with xt+1,

3. The latter distribution can be predicted with 〈x1, y1〉 . . . 〈xt, yt〉.
1Within an arithmetic model of computation (i.e. constant time arithmetic operations).
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Batch Learning

Incremental Learning

Non-Stationary Learning

• i.i.d. data
• train-then-predict

• i.i.d. data
• Anytime prediction

• Concept drift/change
• Anytime prediction

Figure 4.1: Relationship between the assumptions in batch, incremental and non-
stationary learning paradigms.

However, alternative assumptions are described elsewhere in the literature; for

example, Bach and Maloof [2] describe an algorithm which computes a probability

distribution over possible change points. A change point is a value of t at which

the distribution exhibits a single, arbitrary change; a common assumption in non-

stationary learning is that such change points occur rarely. If the change really

is arbitrary, then the optimal strategy in such problems is to maintain a model

that has been trained on all data since the previous change point. We discuss

non-stationary learning with change point detection in more detail in Section

4.3.2. Another kind of assumption occurs in concept drift problems: the data

distribution may change slowly over time. Here, it is appropriate to assume that

the amount of drift between any two examples is small, so that recently seen data

is more relevant to the current task than distantly historic data.

We summarise the differences between batch, incremental and non-stationary

learning in Figure 4.1.

4.2.3 Parameter Selection and Evaluation

Without the assumption of i.i.d. data, selecting parameters and evaluating al-

gorithms becomes more difficult. A simple and general metric for evaluation is

test-then-train accuracy [6]: if we denote a model that is trained on the first t

examples as Ht, then the test-then-train error is:

ettt =
1

N

N∑
t=1

δ[Ht−1(xt) 6= yt], (4.10)
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so for each example, we first test the ensemble prediction, and then train the

ensemble on that example. To understand what this means, we introduce a time-

indexed distribution, Prt(x, y), which is the distribution from which example

〈xt, yt〉 is drawn. Therefore, we can consider the probability of error at time t:

egen(t) =

∫
x,y∈X×Y

δ[Ht−1(x) 6= y]Prt(x, y)dxdy. (4.11)

Test-then-train error is an estimate of this quantity summed over all t:

ettt ≈
1

N

N∑
t=1

egen(t). (4.12)

Test-then-train error tells us, for a problem with same sequence of distributions

Pr1(x, y) . . . P rN(x, y), what the expected overall error would be. Obviously as

an estimate of egen(t) for any single t, ettt is very poor — it only measures error

on a single data point. However, since the testing occurs before training, ettt is

unbiased, and so for large N , it will converge to the value in Equation 4.11.

So averaging test-then-train over the whole learning process gives a single

value — ettt — that is representative of overall performance. However, often

(especially when developing algorithms) we want to know what performance is at

a specific point during training. The test-then-train error for a single t is either

0 or 1, which is not very informative. One option is windowed error, where we

average test-then-train error over a window of K examples:

ewin(t) =
1

K

t∑
k=t−K

δ[Hk−1(xk) 6= yk]. (4.13)

There is a trade-off here in choosing K: a large K will give a low-variance esti-

mate, while small K will give a low-bias estimate. A variant of ewin is prequential

error, as is used by Baena-Garćıa et al. [3], where we average over test-then-train

error on all previous examples (or, in some cases, all examples since a known

change point). For a start time K0, prequential error is:

epreq(t) =
1

t−K0

t∑
k=K0

δ[Hk−1(xk) 6= yk]. (4.14)

When K0 = 0 and t = N , prequential error is test-then-train error averaged over
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all the data.

In toy scenarios, or problems where we know more about the nature of the

concept change, it can be possible to compute error rates using hold-out data.

Basically, for this to be possible, we need to have, at each time t, a substantial

amount of data sampled from Prt(x, y). In problems with abrupt concept change,

for example, we may have several hundred data points from a stationary distri-

bution, followed by hundreds more from a different stationary distribution. If we

know where the change points occur, then the data can be segmented into a num-

ber of stationary concepts; within each concept, we can keep hold-out training

data, and use techniques such as a cross-validation to perform repeat experiments

or select parameters.

Without hold-out data, we know of no robust way to select parameters in

non-stationary learning problems; Kuncheva and Žliobaitė [52] subsample from

non-stationary data, selecting every kth example, to produce k different datasets

with approximately the same distribution, though this increases the rate of change

in the datasets by a factor of k. In our work, we will generally choose parameters

based on what works well on stationary data.

4.3 Non-Stationary Learning Algorithms

There are many algorithms that have been developed to address non-stationary

learning problems. In some cases, these are modifications of existing algorithms

[42, 56, 69, 87], while other approaches are entirely novel [3, 28, 45]. Since there is

a lot of variety in non-stationary learning problems (e.g. abrupt concept change,

gradual drift, recurring concepts) different algorithms can be applicable in differ-

ent situations, so we first describe broad categories into which these algorithms fit.

We then describe non-ensemble or model-independent algorithms for incremental

and non-stationary learning, before finally reviewing ensemble algorithms.

4.3.1 Approaches

Žliobaitė [91] describes a taxonomy of adaptive supervised learning techniques

based on their methods of determining ‘when’ to adapt and ‘how’ to adapt. The

question of ‘when’ to adapt can be broadly separated into two approaches, which

Žliobaitė describes as “trigger-based” and “evolving”. Trigger-based algorithms

rely on a detection mechanism to provide a signal when the data distribution is
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considered to have changed substantially, while evolving algorithms will not ex-

plicitly model concept changes, but rather aim to adapt continuously. Because of

this, evolving algorithms must necessarily be lossy, so as to be able to ‘forget’ old

data. Trigger-based algorithms may be normal incremental learning algorithms

that are simply reset or otherwise modified when a change is detected.

With regards to how non-stationary learning algorithms adapt, Žliobaitė presents

a few general strategies: training set formation and model manipulation.

In training set formation techniques, the model itself is not directly affected

by the detection or adaptation strategy; instead, training data is manipulated

to describe the non-stationarity. For example, windowing algorithms select a

window of recent examples on which to train the learner, while the learner itself

trains on the data inside the window as though it were stationary.

In model manipulation, the parameters of the model are explicitly modified

in response to the changes in the distribution. These types of algorithm include

tree restructuring techniques like VFDTc [27]. Other algorithms, like windowed

KNN [56] and SVMs [42] are a combination of training set formation and model

manipulation.

4.3.2 Non-Ensemble Algorithms

In this section we describe a number of techniques for addressing non-stationary

learning without applying ensemble algorithms. In some cases, we will apply

these techniques in our empirical evaluations, and therefore will provide a precise

definition for the algorithm too.

First, we describe some windowing techniques. The idea of windowing is to

train a learner on a set of recent training examples, the size of which is indepen-

dent of N . This achieves constant-time updating, while also forgetting about data

prior to the start of the window. There are three primary issues in windowing:

1. Which examples should be kept in the window?

2. How should the learner be trained on windowed data?

3. How large should the window be?

Often, the answer to the first question is ‘the most recently seen examples’, but

sometimes, especially when the task is close to stationary, it is more important

that the window of examples is representative (spread out over the input space)
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Figure 4.2: Change detection measurements in a DDM change detector. Errors
are taken from a Näıve Bayes learner on the first two concepts of STAGGER.
The change occurs at t = 500 and is detected at t = 513.

rather than recent. Training a learner can be accomplished in two ways: the

simplest solution is to completely retrain the model every time the contents of

the window change, which has the advantage of not requiring any special consid-

erations on the part of the learner, although its time complexity is linear in the

size of the window, even if constant with respect to N ; the alternative is to train

incrementally on examples that are added to the window, and untrain on exam-

ples that leave the window. In this case, the amortised time complexity2 of each

update is O(1), but the learning algorithm must not only learn incrementally, but

also be able to unlearn data.

The size of a window is an important issue in windowing algorithms [52, 89].

In concept change problems, we often want to choose a window that encompasses

every example since the change point. Gama et al. [28] propose a Drift Detection

Method (DDM) which detects changes in the distribution of prediction errors.

DDM models errors as a binomial distribution with probability of failure:

pt =
1

t

t∑
k=1

δ[Hk−1(xk) 6= yk], (4.15)

where t denotes the number of examples since the previous detected change, and

2This is amortised time complexity if the size of the window varies; worst case time for a
single update is linear in the maximum window size.
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pt is the error rate since then (i.e. prequential error rate since previous detected

change). The standard deviation of this distribution is:

st =

√
pt(1− pt)

t
. (4.16)

As training progresses, the value of t for which pt+st was at a minimum is stored.

If the prequential error rate decreases below this, then a new minimum value is

stored. The ratio between the current and minimum pt + st values can be used

to compute a probability that the distribution of errors has changed. This is used

for determining warning and drift situations — the warning state indicates that

subsequent examples should be stored in preparation for a drift. When a drift is

detected, the window is cleared and replaced with only examples that occurred

after the warning state. This reflects the fact that it may take some time to differ-

entiate between noise and drift, but that if we observe apparently noisy behaviour

immediately prior to detecting a drift, then that data is likely to be from the new

concept. DDM therefore makes a strong assumption about the nature of concept

drift: that it occurs in abrupt transitions between unrelated concepts. Further-

more, because the detection is based on measures of the learner’s error rate, DDM

is only able to detect drifts that increase the error rate; while these may be the

most important drifts in many applications, there are drifts that would not be

recognised by DDM but where we would benefit from reducing the window size.

Figure 4.2 shows DDM detecting a concept change in STAGGER (See Appendix

A for a dataset description). The longer it takes to detect a change, the lower the

thresholds become — this reflects the fact that each new prediction will affect p

by only a small amount. Note that the measured value sometimes exceeds the

warning threshold when there is no change — at t = 100 and t = 660 — but only

exceeds the change detection threshold after the genuine change at t = 510.

EDDM [3] (Early Drift Detection Method) follows a similar principle to DDM,

but instead of examining the distribution of prediction errors, it measures the

distribution of distances between prediction errors. There are two rules for warn-

ing/drift levels (p′t and s′t are the mean and standard deviations of the distances
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between errors up to time t):

α >
p′t + 2s′t

p′max + 2s′max

, (4.17)

β >
p′t + 3s′t

p′max + 2s′max

, (4.18)

where α and β are parameters that define the warning and drift levels. In their

experiments, Baena-Garćıa et al. use α = 0.9, β = 0.95, and suggest choosing

parameters by experimentation. They propose that EDDM will detect changes

faster than DDM, especially gradual changes. This could be seen to be the case

because, although p′t is related to pt by p′t = 1
pt

, the standard deviation of the

distance captures some additional property of the error distribution; so s′t will be

especially small when the distances between errors is changing, while in DDM st

is entirely determined by pt.

Kuncheva and Žliobaitė [52] discuss window sizes in abrupt concept change

scenarios, showing a trade-off between large windows (low error during stationary

periods) and small windows (shorter transition period). By expressing the the-

oretical error of a classifier trained on K examples in terms of asymptotic error

(K →∞) and a classifier/data dependent function, it is possible to compute error

rates for windowed classifiers where all K examples are drawn from a stationary

distribution. They then consider the error immediately after a concept change

— when the entire window contains data from the old concept — and show the

interpolation between this error rate and the stationary error rate for the new

concept. By approximating the error rate during adaptation with a straight line,

they produce an expression for the overall error rate in terms of K, the total

size of the dataset, and some classifier and data dependent functions. Finally,

they derive a window resizing algorithm for nearest mean classifiers3 based on

this bound. In Figure 4.3, we give an example of the concept change scenario

they considered. The window size determines the error on stationary data and

the amount of time taken to adapt.

Klinkenberg [42] proposes a variable window size strategy for online SVMs,

based on the ease of estimating approximate upper bounds on their leave-one-

out training error. The window adjustment algorithm selects a window size that

minimises these estimates, by training multiple SVMs on different windows. This

3Nearest mean classifiers compute class means from input data, and then assign labels based
on which class mean is closest (via euclidean distance).
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Figure 4.3: Comparison of window sizes with KNN (K = 3) learners, window
sizes of 10 and 50. The learning task comprises two unit variance Gaussians; in
the first concept (t ∈ [1, 100]), class 1 has mean (0, 0) and class 1 has mean (2, 2).
In the second concept (t ∈ [101, 200]), class 1 has mean (2, 0) and class 2 has
mean (0, 2). Small window sizes give high error during stationary concepts, but
faster adaptation to concept changes, while larger window sizes perform better
during stationarity and adapt more slowly to changes.

is proposed to react better to non-stationarity because the leave-one-out error

estimate is more stable for small amounts of data than, for example, the error

rates estimated by DDM.

Perceptron and Multilayer Perceptron (MLP) learners can be easily modified

to work in non-stationary environments; the normal training procedure for these

is based on multiple epochs, as in Algorithm 4.

Algorithm 4 Multi-Epoch Perceptron/MLP training procedure

Require: Number of epochs, K

Initialise learner H randomly
for k = {1 . . . K} do

for i = {1 . . . N} do
Train H on 〈xi, yi〉

end for
end for

Training MLPs or perceptrons in this way requires batch access to the entire

training dataset, which is no longer possible in incremental learning. In many
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cases, a large value ofK is required for good performance. However, if we were in a

stationary but incremental setting, we could omit the outer for-loop (equivalently,

let K = 1), and still expect good performance for large N . This is a lossy version

of the training procedure on batch data, because we would expect K = 1 to give

worse performance until N is sufficiently large. Furthermore, in non-stationary

learning, it may be that the distribution changes before convergence can occur.

However, using a single epoch could be seen to be an advantage when the concept

is changing, because more recently seen examples will have more impact on the

behaviour of the classifier. MLPs and Perceptrons also include a learning rate

parameter, which determines the size of update that occurs after training on a

single example. High values of learning rate will promote forgetting, while lower

values are more appropriate if earlier data is still considered relevant.

4.3.3 Ensemble Algorithms

We now describe ensemble algorithms for non-stationary learning; ensemble al-

gorithms are inherently modular, so there is an intuitive argument for apply-

ing them in situations where it may be necessary to forget old knowledge and

adapt to new concepts. Žliobaitė suggests that most ‘evolving’ approaches to

non-stationary learning are ensemble algorithms [91], with the combination rules

being a primary tool for promoting adaptation. Kuncheva [50] surveys a num-

ber of ensemble-based approaches, suggesting in her conclusion that the accuracy

and flexibility of ensembles made them especially appropriate for non-stationary

problems. In this section, we introduce some important ensemble algorithms; for

algorithms that have special significance in the context of this thesis, we also

provide a full definition.

Dynamic Weighted Majority [45] (DWM) is a popular ensemble algorithm for

dealing with concept drift. In DWM, heuristic rules guide the addition, weighting

and removal of base learners, based on their performance on recently seen data.

Since we will later use this algorithm to benchmark against our own, we provide

the full description4 in Algorithm 5.

DWM trains base learners incrementally on all data. However, by strate-

gically weighting, removing and replacing base learners, DWM can implicitly

adapt to non-stationarity. The period parameter, p, determines how often weight

decreases, pruning and learner addition occur — larger values here can reduce

4x ≡ y mod z is used to denote x being congruent to y, mod z (i.e. x mod z = y).
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Algorithm 5 DWM Algorithm (2-class)

Require: p← update period
Require: β ← error discount
Require: θ ← pruning threshold
L← 1
Create h1, new base learner
α1 ← 1
for Each example 〈x1, y1〉 . . . 〈xN , yN〉 do

f = 0
for l = {1 . . . L} do . Collect base learner predictions

if t ≡ 0 mod p and hl(y) 6= yt then . Decrease weight on error
αl ← βαl

end if
f ← f + αlhl(x)

end for
ŷ ← sign(f)
if t ≡ 0 mod p then

α← α
maxl αl

. Normalise weights
for all l : αl < θ do . Prune base learners

Remove hl from the ensemble
L← L− 1

end for
if ŷ 6= yt then . Add new learner on ensemble error

L← L+ 1
Create hL, new base learner
αL ← 1

end if
end if
for l = {1 . . . L} do . Train base learners

Train hl on 〈xt, yt〉
end for

end for
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execution time, but smaller values will adapt more aggressively to changes. The

discount parameter determines the degree to which learners are ‘punished’ for

making mistakes. There is subtle interplay between the weight normalisation

step and the weight discounting and pruning parameters: note that, without nor-

malisation, DWM would behave poorly in difficult learning scenarios, since all

the base learners would make errors, have their weight reduced, and be pruned,

frequently. Instead, normalisation ensures that only learners who perform signif-

icantly worse than the best learner will be pruned.

AddExp [44] is similar to DWM, the essential difference being that αL (the

weight of a new learner) is chosen as a proportion of the sum of learner weights; in

this sense, AddExp can be seen as equivalent to DWM but where normalisation

sets
∑L

l=1 αl = 1 instead of maxl αl = 1. An analysis of AddExp shows how

its performance compares to learners that are trained on only part of the data.

Specifically, for any partition of the data, AddExp achieves an error that differs

by a coefficient from a learner trained only on that partition. Furthermore, when

pruning is implemented in AddExp, it is possible to bound the maximum size of

the ensemble, while DWM ensembles could theoretically grow indefinitely.

Bach and Maloof’s Bayesian conditional model comparison (BCMC) algo-

rithm [2] works on a similar premise, by creating a new base learner at every

time step, and then calculating a probability distribution over time steps when

a concept change could have occurred. This distribution over possible change

points is determined by the performance of the base learners training on data

starting at those change points. In producing an ensemble prediction, base learn-

ers are weighted according to the probability that a change occurred immediately

before they were created.

These approaches — DWM, AddExp and BCMC — all use ensembles to

achieve the same goal: to approximate the prediction of a single base learner

trained on only data that occurred since the most recent change point. This pur-

pose differs to the common reason for applying ensembles in stationary learning

problems, which is to improve performance over an individual model.

Various boosting algorithms have been developed for non-stationary learn-

ing [32, 67, 69, 80]. The general approach is modelled upon online boosting for

incremental, stationary learning [68], but with modifications to the weighting

strategy and the addition or removal of base learners.

Oza described two important algorithms for incremental learning [68]: Online
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Bagging and Online Boosting. In both cases, it was shown that the models

learned by the online algorithms converge5 to their batch equivalents for large N .

We describe both algorithms here.

Algorithm 6 Online Bagging

Require: Ensemble size: L
Create base learners: h1 . . . hL

For each incoming example 〈x, y〉:
for each learner l do

Sample k ← Poiss(1)
Repeat k times: train hl on 〈x, y〉

end for

Prediction:
H(x) = sign

(∑L
l=1 hl(x)

)
The Online Bagging algorithm (Algorithm 6) trains each base learner on each

example Poiss(1) times. When training with batch Bagging, examples are sam-

pled with replacement, so that it is possible for an example to occur multiple

times in the dataset, or exactly once, or not at all. As N → ∞, the probability

distribution for this number approaches a Poisson distribution.

Online Adaboost is structured in a similar fashion, processing examples se-

quentially and training each learner on the same example some number of times.

However, instead of using 1 as the parameter to the Poisson distribution, Online

Adaboost computes an example weight in a way that corresponds to the weight-

ing procedure of batch Adaboost. We show Online Adaboost in Algorithm 7.

Achieving a good approximation with Adaboost is much harder than for Bag-

ging, however, since, for example, determining the weight assigned to the first

example after training on h1 requires us to know α1 — in batch Adaboost α1 de-

pends on the performance of h1 on all the data. For this reason, Online Adaboost

tends to perform significantly worse than batch Adaboost [68].

Online Non-Stationary Boosting (ONSBoost) [69] is a modification of Online

Boosting [68] which uses a window of recent examples to guide the replacement

of poorly performing ensemble members. With user-defined frequency, a floating

search is performed to identify the base learner which, when removed from the

5The convergence for Online Adaboost was only proven when the base learners were Näıve
Bayes.
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Algorithm 7 Online Adaboost

Require: Ensemble size: L
Create base learners: h1 . . . hL
Set correct/wrong sums λsc

1 . . . λ
sc
L , λ

sw
1 . . . λsw

L to 0.

For each incoming example 〈x, y〉:
λ← 1
for each learner l do

Sample k ← Poiss(λ)
Repeat k times: train hl on 〈x, y〉
if hl(x) = y then

λsc
l ← λsc

l + λ . Update total correct weight

εl ←
λswl

λscl +λswl
. Update weighted error

λ← λ
2(1−εl)

. Update example weight
else

λsw
l ← λsw

l + λ . Update total wrong weight

εl ←
λswl

λscl +λswl
. Update weighted error

λ← λ
2εl

. Update example weight
end if
αl ← log 1−εl

ε
. Update learner weight

end for

Prediction:
H(x) = sign

(∑L
l=1 αlhl(x)

)
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ensemble, reduces ensemble error. If such a classifier exists, it is replaced with

a new base learner. This replacement strategy ensures that base learners are

replaced if they became irrelevant to the current concept. However, in boosted

ensembles there is a hazard associated with base learner removal, since the order

of base learners during training is important — so removing a single base learner

can impact the way data is weighted for all subsequent learners.

IBoost [32] also uses a window of recent examples. When new data arrives,

the window is updated and used to modify learner weights in a similar fashion to

Online Adaboost. Additional learners may be added at a fixed frequency, with

a maximum ensemble size that is enforced by removing a learner. Rather than

using a floating search like ONSBoost, IBoost always removes the learner with

the lowest weight.

Learn++ [67] and KBS-Stream [80] operate with batches of data. In some ap-

plications, this is a natural property of the task — for example, an insurance risk

prediction system may be trained at the end of each working day — while in other

cases, sequential data would need to be collected and buffered to create batches.

In both these cases, it is assumed that data within each batch is stationary.

The original Learn++ [71] algorithm was designed for stationary data; it trains

a new ensemble using a boosting-like algorithm on each batch of data. Predic-

tions are made using all ensembles from previous batches. For dealing with non-

stationary problems, Learn++.NSE [24] adds only one learner after each batch.

All learners are evaluated on every batch, and error rates on all previous batches

are stored; the final prediction is computed with:

H(x) = arg max
y

L∑
l=1

δ[hl(x) = y] log
1∑L−l

j=0 w
L−j
l

εL−jl

1−εL−jl

(4.19)

where wjl is a coefficient which discounts historic weight for the lth learner from

the jth data batch sigmoidally, and εL−jl is the weighted error of base learner hl

on the jth batch of data. This weighting system is similar to that of Adaboost,

but it applies more emphasis to examples from recent batches of data.

The KBS-Stream algorithm [80] considers two possibilities after each batch of

data: either the new batch is from the same distribution as the previous one, or it

is from a different distribution. Therefore, KBS-Stream maintains two ensembles;

one ensemble is trained only on the most recent batch of data, and the other has
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been trained on all batches since the last ‘change’. By comparing these ensembles’

performance on the most recent batch, KBS-Stream can ensure that the ensemble

benefits from multiple batches of data when the distribution is stationary, but is

replaced when the distribution changes. Additionally, the base learners within

each ensemble are reweighted, and a new base learner is added, after each batch.

Note that Learn++ and KBS-Stream both rely on diversity in their ensembles,

to some extent: old learners are not retrained at any point, and so their diver-

sity determines how effectively the ensemble predictions can change when their

weights are updated; this is not explicitly discussed in the literature, but it is

an example of part of our motivation for investigating diversity in non-stationary

learning; we examine this in more detail in Section 5.2.

4.4 Diversity in Non-Stationary Learning

DDD [66] is an ensemble algorithm for non-stationary learning that specifically

uses diverse ensembles. It works on the same assumptions that we will discuss

in Chapter 5 — regarding diverse learners as being better positioned to adapt

to novel concepts — where diversity is created using a variant of Online Bag-

ging [68]. Up to four ensembles are created and trained, and complex heuristics

govern what the overall prediction should be, and how to organise the ensem-

bles during training. A change detection algorithm based on EDDM [3] is used

to guide the switching between ensembles. The motivation behind DDD is pre-

sented empirically, with an investigation of how diversity affects adaptation in

Online Bagging ensembles [65], and after deriving the algorithm, Minku evalu-

ates it extensively [64,66].

Overall, DDD achieves performance that is competitive with other state-of-

the-art algorithms, can be applied to a wide range of learning problems, has

a modular design that is agnostic with respect to base learning algorithm, the

ensemble algorithm (as long as it can run in both low and high diversity modes),

and the change detection algorithm. The sophisticated training strategy also

provides robustness against false change detection, and is able to distinguish

between several types of drift and react in an empirically justified way.

Since DDD is the only algorithm of which we know that operates on the

premise that diversity is important in non-stationary learning, we aim to sum-

marise Minku’s work here, so as to be able to indicate where our work is similar



120 CHAPTER 4. BACKGROUND AND RELATED WORK

or different.

4.4.1 Motivation

As we discussed in Section 2.3, the role of diversity is reasonably well studied (if

not so well understood) in normal supervised learning tasks. Minku et al. [65]

motivate an empirical study into diversity with two observations; firstly, that “no

study of the role of diversity in the presence of concept drift has ever been done”,

and secondly because:

“the literature does not contain any deep study of why [ensembles] can

be helpful for [concept drift] and which of their features can contribute

or not to deal with concept drift. Diversity could be expected to be

one of the features that help in dealing with concept drifts when using

ensembles.”

The subsequent empirical study shows, to some extent, that diverse ensembles

adapt better to new concepts (we discuss the study in more detail in the next

section). Based on these empirical observations, they develop the DDD algorithm,

which we describe in Section 4.4.3.

4.4.2 Controlling Diversity in Online Bagging

The method proposed by Minku et al. for controlling the diversity of incrementally

trained ensembles is based on a small modification to Online Bagging [68]. The

ensemble is trained in a similar fashion to normal Online Bagging, with a number

of duplicated examples (k) sampled from a Poisson distribution. However, instead

of consistently using 1 as the parameter to that distribution, a user-specified

parameter, λ, is used. Setting λ = 1 gives the original Online Bagging algorithm,

while smaller values of λ will decrease the similarity in each base learner’s training

set (in principle, λ > 1 could also be used to reduce diversity further). The

proportion of the dataset ‘seen’ by each base learner in batch Bagging is well

known:

1−
(N − 1

N

)N
, (4.20)

since each learner is trained on N samples, and each sample has a N−1
N

probability

of not being 〈xi, yi〉 for some specific i. As N →∞, this probability approaches
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the probability of not drawing 0 from a λ = 1 Poisson distribution6:

Pr(Poiss(λ) = k) =
λke−λ

k!
, (4.21)

∞∑
k=1

Pr(Poiss(λ) = k) = 1− Pr(Poiss(λ) = 0), (4.22)

= 1− e−λ. (4.23)

A final point that we note regarding the Poisson distribution is its expectation:

E[Poiss(λ)] = λ. (4.24)

Minku et al. show, by training ensembles with various choices of λ, that there

is a strong correlation between λ and DQ, the Q statistic diversity measure.

For this reason, future experiments use λ as a proxy for diversity. Given the

strength and monotonicity of the relationship between λ and DQ, the idea that

ensemble diversity can be controlled in Online Bagging using the λ parameter is

well supported by the results.

Here we briefly identify three important issues in the use of Bagging with a

modified λ parameter. Firstly, the algorithm relies upon training data dissimilar-

ity to promote diversity, and this dissimilarity is achieved primarily by training

base learners on datasets that are close to disjoint — however, note that if train-

ing data is i.i.d., diversity will converge to 0 (or, DQ will converge to 1) as N

increases. The actual convergence is probably not much of a concern — for small

λ, it can require very large N — but, as we show in Figure 4.4, the similarity

between base learners increases with N , such that relationship between λ and DQ

depends on N . However, this is not such an issue on non-stationary data, where

changes in concept prevent a high degree of convergence.

A second observation regarding Online Bagging is that changing λ changes

the amount of training data seen by each base learner; in fact, each base learner

sees on average E[Poiss(λ)]N examples, which by Equation 4.24 is λN . This

is significant in Online Bagging since some of the values of λ used in Minku’s

experiments are very low7 — in the most extreme case, each base learner was

trained on 1 out of every 2000 examples. One implication of this on smaller

6This result holds by examining Equation 4.20 in the limit of large N . See Oza [68, Section
3.4] for more detailed and general results.

7For initial experiments, λ ∈ {0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1}
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Figure 4.4: We train Online Bagging ensembles with varying amounts of training
data and varying values of λ. Diversity (|m|) is affected by both λ and N .

datasets is that many base learners will never be trained on any data8.

Another issue occurs if λ changes ; for lossless base learners, their ‘learning

rate’ is determined by how much data they have been trained on; for example,

Equation 4.7 shows that, for Näıve Bayes base learners, the change to the estimate

of class conditional mean involves a denominator of N(y) — the total number of

y labelled examples seen so far. If λ remains constant, then this learning rate

is constant too — for lower λ, each example will affect the base learner more,

but fewer examples are seen, and these two factors balance. If λ were changed

during training, this would either increase or decrease the learning rate; in the

subsequent section we will discuss what impact this has for DDD.

So, what is the implication of these three issues for generating diversity en-

sembles with Online Bagging? The first issue, regarding the relationship between

diversity and N , is unlikely to be too problematic — there is no noticeable effect

in Minku’s experiments, probably due to the use of small amounts of training

data and fairly complex datasets.

The second issue — amount of training data seen by each base learner —

seems to be significant in Minku’s initial experiments [65]. The datasets used

(See [65, Table 3]) are UCI datasets; concept change is simulated by changing

class labels. In many of the artificial drifts, more than 50% of the examples

have their labels changed; in such cases, high accuracy on the initial concept

is detrimental on the second concept. This will, in general, favour learners with

very low accuracy immediately after a concept change. An example of this occurs

8Note that in some cases, untrained base learners return random predictions, in which case
untrained learners are always ‘high diversity’
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in [65, Figure 9], where some of the plots show Online Bagging with very low λ

achieving approximately the error rate of random guessing throughout.

In the next section, we introduce DDD, and discuss how the third issue we

identified here — the impact of changing λ — is exhibited in DDD.

4.4.3 Diversity for Dealing with Drifts (DDD)

Diversity for Dealing with Drifts (DDD) [66] is an ensemble algorithm that works

on the premise that diverse ensembles are able to adapt more quickly to concept

changes. The essential components of the algorithm are:

1. Maintain various ensembles that have high or low diversity and have been

trained on varying amounts of data.

2. Detect concept changes with a stand-alone change detection algorithm.

3. Use switching heuristics based on change detection and error estimation to

decide when to create/replace ensembles.

4. Make predictions either with a single ensemble, or as a weighted vote, again

based on heuristic rules.

The full algorithm is presented in [66], and extensively evaluated in [64]. The

goal of the algorithm can be stated quite simply though: a diverse ensemble

is maintained, and where appropriate used to adapt more quickly to a concept

change. Many of the complexities of the algorithm are designed to correctly

identify situations where the diverse ensemble will be useful, based on insights

from previous experiments. The issue of very high severity concept changes was

alluded to in these experiments [64, Section 5.4.2]:

“. . . the new concept has almost no similarities to the old concept. So,

an ensemble which learnt the old concept either partly or fully will not

be so helpful (and could even be harmful) for the accuracy on the new

concept.”

This acknowledgement and further analysis of DDD on a wider range of low

severity concept changes, as well as on real data where concept change is expected

to be fairly gradual, suggests that the algorithm does more than just exploiting the

poor performance of very diverse ensembles. However, at this point we highlight
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Figure 4.5: Online Bagging (25 Näıve Bayes) with λ = 0.005 trained on the
car dataset. The proportion of untrained base learners decreases according to
Equation 4.25, while the average proportion of data that each base learner is
trained on remains at about 1

200
.

the third issue that was introduced in the previous section: essentially the learning

rate of lossless base learners depends on the amount of data they were trained on.

Many of the experiments in [64, Section 6.3] use either Näıve Bayes or ITI base

learners, although MLPs are also used in some cases. Because of the losslessness

of NB and ITI, it would be expected that in situations where diversity is actually

exploited by DDD — where an ensemble that had high diversity on the previous

concept is then trained with low diversity on the new concept — the effect would

be similar to training the base learners on a small number of examples from the

previous concept, and then many examples on the new concept. Obviously this

would compare favourably to situations where base learners see approximately N

examples from the previous concept; adaptation to the new concept requires new

examples to form a large proportion of the total data seen by the base learner.

In Figure 4.5, we show a few quantities of interest in Online Bagging (λ =

0.005) on the modified Car dataset9 [65]. Specifically, we count the proportion

of base learners that are completely untrained. For arbitrary λ, the probability

9Apart from the generalisation error, the other values shown in Figure 4.5 are base learner
and data independent.
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Figure 4.6: Illustration of the relative amounts of data from different concepts in
an example scenario.

that a base learner is untrained after t examples is:

Pr(Poiss(λ) = 0)t = e−λt, (4.25)

which is therefore also the expected proportion of base learners that are untrained

after t examples (the blue dashed line in Figure 4.5). Similarly, we know that

the expectation of a Poisson distribution is λ, and so the proportion of training

examples that each base learner has been trained on is also λ (shown on the black

dot-dash line in Figure 4.5).

The impact of these phenomena occurs when a change is detected in DDD;

the λ parameter in the ‘old high diversity’ ensemble is changed to 1, so that it

can become the ‘new low diversity’ ensemble. The adaptation of this ensemble

to the new concept is the essential part of ‘diversity in non-stationary learning’

that motivates the whole algorithm. However, we would attribute the behaviour

to other aspects of the state of the ‘old high diversity’ ensemble — specifically,

its base learners are trained on a very small amount of data.

For example, consider the scenario illustrated in Figure 4.6, where a stationary

concept experiences an abrupt shift at t = 500. At this point, base learners in a

diverse ensemble with λ = 0.005 have been trained on an average of 2.5 examples,

while learners in a non-diverse ensemble (λ = 1) have been trained on 500. We

set λ in the high diversity ensemble to 1, and then data from the new concept

arrives. At t = 600, base learners in the formally diverse ensemble have seen on

average 2.5 examples from the old concept and 100 from the new concept, while

base learners in the non-diverse ensemble have seen 500 from the old concept
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and 100 from the new. If the base learners are lossless then the data from the

previous concept will dominate the behaviour of the low diversity ensemble.

We believe this effect is likely to be responsible for much of the success of

DDD, along with sensible heuristics that decide when it is appropriate to keep

the low diversity ensemble from the previous concept (i.e. when there is not much

concept change) or to create an entirely new ensemble (i.e. when concept change

is severe). In fact, Minku observes [64, Section 6.3.4] that:

“. . . DDD obtained worse accuracy than DWM during the first and

last thirds of the learning when using MLPs, but similar (or slightly

better) when using NB.”

MLPs are lossy incremental learners (they are trained for a single epoch with a

fixed learning rate), so they will adapt to a new concept at the same rate regardless

of how many examples they have previously seen (their rate of adaptation might

be affected by what the previously seen data was, but not how much of it there

was). This observation supports the hypothesis that a significant part of DDD’s

success is related to the amount of data that base learners are trained on, rather

than the diversity of the ensembles.

We emphasise at this point that our criticism is not of the DDD algorithm —

in fact, our analysis here provides further support for the idea that DDD should

adapt quickly to new concepts. However, what we have illustrated is that the λ

parameter in Online Bagging does not control diversity in isolation, but rather

affects several factors within the model. It seems very likely that one of these

factors — the amount of training data — accounts for most or all of the success

that Minku attributes to ‘diversity’; there is considerable study of windowing

algorithms in the literature, so it is well known that models adapt quickly when

they are only trained on a small amount of data from a previous concept.

4.5 Summary

In this section, we have presented some important issues and approaches relat-

ing to non-stationary learning tasks. We have described various assumptions, and

shown how these assumptions relate to stationary, incremental and non-stationary

problems. We described some algorithms that can be applied to incremental and

non-stationary scenarios, highlighting the idea of lossless learners. We then dis-

cussed algorithms that specifically exploit the idea of an ensemble for adaptation.
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Finally, we analysed the DDD algorithm in detail, since it is highly relevant to

the content of Chapter 5.

Although DDD is presented as ‘diversity for dealing with drifts’, we have

actually suggested that diversity is not the main factor in determining adaptation

of ensembles to new concepts. However, our criticism does not extend to the

performance of DDD; empirical evaluations show that it performs competitively

on a wide range of learning problems, and in fact our analysis of the algorithm

here has provided theoretical support for the success of DDD. However, because

of this alternative explanation that we supply for the success of DDD, it is no

longer clear whether:

1. DDD is successful because of the effect of λ on the amount of training data

supplied to each base learner, and because of the effect of λ on ensemble

diversity, or

2. DDD is successful because of the effect of λ on the amount of training data

supplied to each base learner, and diversity is inconsequential.

This uncertainty over the exact conclusions that should be drawn from DDD

and the associated investigations provides one good reason for further investi-

gating diversity in non-stationary learning. Additionally, our contributions in

Chapter 3 have opened new possibilities for studying diversity; specifically, we

can consider how margins interact with non-stationarity, and derive further the-

oretical predictions about what role diversity plays in non-stationary learning.



Chapter 5

Managing Diversity for

Non-Stationary Learning

5.1 Introduction

In this chapter, we apply our insights from Chapter 3 to investigate the role of

diversity in non-stationary learning. Our approach consists of:

1. Using the connection between diversity and margins to consider how we

expect diversity to affect adaptation in non-stationary learning problems.

2. Deriving an algorithm that explicitly manages ensemble diversity using the

margin distribution.

3. Using a similar technique to Oza [68] so that we can apply our diversity-

managing algorithm to incremental problems.

4. Developing a method of exploiting diversity in non-stationary learning, sim-

ilar to Minku’s DDD algorithm [66].

5. Examining the behaviour of our algorithm on toy and real-world problems.

Our final goal — to investigate the role of diversity in non-stationary learning —

is identical to that of Minku [64]. In Section 4.4, we described Minku’s approach

in detail, concluding that its success should not be entirely attributed to diversity,

but that it exploited other useful effects when adapting to new concepts. In our

analysis, we build on Minku’s work by giving explicit consideration to issues

128



5.2. MOTIVATION FOR USING DIVERSITY IN NON-STATIONARY LEARNING129

such as our initial motivation and expectations, and performing further empirical

analysis in scenarios where the effects of other factors are controlled.

Due to the comparative simplicity of the ‘abrupt concept change’ scenarios

considered by many authors [2, 44, 52, 65], our analysis only extends to these

scenarios. Based on our theoretical results in Section 5.2, we are only able to

see an obvious potential benefit to diversity in situations of abrupt or very fast

drift, and since our experimental results suggest that realising this advantage is

very difficulty even in problems with abrupt change, we do not investigate our

hypotheses in gradual concept change scenarios.

5.2 Motivation for Using Diversity in Non-Stationary

Learning

Our primary hypothesis is that ensembles with higher diversity are better posi-

tioned to adapt to new concepts.

Diversity in non-stationary learning has only been discussed in previous liter-

ature by Minku [64]:

“. . . in offline mode, diversity among base learners is an issue that

has been receiving lots of attention . . . Many authors believe that the

success of ensembles algorithms depends on both the accuracy and

the diversity among base learners. However, no study of diversity has

even been done in online changing environments.”

While Minku adeptly identifies diversity in non-stationary learning to be of

interest, he does not actually present any motivational reason for why we might

expect diversity to be of special importance in these situations.

5.2.1 Intuitive Argument

We first discuss a qualitative interpretation of diversity in non-stationary learn-

ing, without alluding to the correspondence between diversity and margins, or

attempting to quantify adaptivity. We do this by considering how ensembles will

behave if they encounter a concept change where the new concept is unrelated to

the old one.
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Non-Diverse Ensembles

In a low-diversity ensemble, base learners are very similar, and there is necessarily

a high degree of similarity between the base learner predictions and the ensemble

predictions. Therefore, if the ensemble is irrelevant for predicting a new concept,

so are its base learners. In order for adaptation to occur, a majority of the

ensemble will either need to change or be replaced.

Diverse Ensembles

When the ensemble is diverse, a change of concept that renders its predictions

irrelevant does not necessary imply that the base learners themselves are no longer

useful. Because base learners are, in a sense, ‘spread out’, it is possible that some

will already be useful for solving the new concept. This intuitively seems like a

strong position for the ensemble to be in — adapting to the new concept should

require less updating/reweighting/replacement of base learners.

In fact, some concept change algorithms already implicitly exploit the diversity

of their base learners. For example, in KBS-Stream [80], base learners are never

retrained; only the voting weights change. If there was no diversity, then changing

the learner weights would not be sufficient to adapt to new concepts.

5.2.2 Quantitative Argument

We now discuss what changes must occur in an ensemble to cause ‘adaptation’,

and how diversity affects these changes.

When a concept change occurs, learners suffer because they make suboptimal

predictions on the affected data points. When we talk about ‘adapting to a

change’, we mean that these predictions should be changed as quickly as possible.

Hence, we can describe ‘adaptation’ as:

sign(mi) 6= sign(m′i), (5.1)

where mi is the original margin and m′i is the ‘adapted’ margin.

There are two ways in which the margin can change — either base learners

change their predictions, or the voting weights change. Both of these affect the
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margin in basic ways:

hl(xi) 6= hl(xi)
′ =⇒ m′i = mi + 2αlyihl(xi)

′, (5.2)

αl 6= α′l =⇒ m′i = mi + (α′l − αl)yihl(xi). (5.3)

In the first case, a learner changes its prediction, so the margin changes by some

amount. Similarly, in the second case a learner weight is changed, and therefore

that learner’s impact on the prediction changes.

From this we can see that the margin gives us a natural way of expressing

the amount of change necessary to ‘swing’ the prediction. If |mi| is large, then

changing the sign of mi requires many learners to change their prediction, and/or

a large change to be made to learner weights. For a small |mi|, a few learners

changing predictions, or a small change to learner weights, is sufficient to alter

the sign.

However, while this provides us with good motivation to investigate how di-

versity affects adaptation, it does not necessarily mean that high diversity will

improve adaptation. This would be the case if the amount of change to hl and αl

were constant — however, in practice we might expect these changes to depend

themselves on the magnitude of the margins; for example, Adaboost will imple-

ment larger updates when mi is negative, due to the steepness of the exponential

loss. Therefore, diversity is not a factor that we should consider in isolation;

there will be interactions between it and other aspects of the ensemble learning

algorithm which may diminish (or amplify) its efficacy.

5.3 Diversity Optimisation via Quadratic Loss

In this section, we describe our ‘DivBoost’ algorithm, which manages diversity

in incremental learning. Figure 5.1 compares various margin-based loss func-

tions: in general, such functions are monotonic, i.e. they decrease as the margin

increases. This is seen as appropriate since large margins can imply strong gener-

alisation [76, 92]. The relationship between diversity and margins makes it clear

that higher diversity occurs when margins are closer to 0 — so a loss function that

promotes high diversity should have a minimum that is close to 0 – and hence,

be non-monotonic. Therefore, we first examine the gradient descent interpreta-

tion of boosting, and modify the existing framework to allow non-monotonic loss
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exponential loss, is used by Adaboost and encourages large margins; however, to
explicitly promote diversity, we need to encourage margins to take specific values,
closer to 0. Quadratic loss can achieve this, since we can set the minimum to any
value.

functions. Next, we present a loss function that permits diversity to be managed

by a parameter. Finally, we extend the algorithm for online learning.

5.3.1 Non-Monotonic Loss in AnyBoost

In Section 2.2.4, we described the AnyBoost algorithm, which performs gradient

descent in functional space to train a weighted ensemble that optimises a convex

monotonic loss function. Example and base learner weight updates are effected

by two equations:

Dl(i) =
∂
∂mi

C(mi)∑N
j=1

∂
∂mi

C(mi)
, (5.4)

∂

∂αl

1

N

N∑
i=1

C(mi) = 0. (5.5)

However, the AnyBoost framework is only meaningful when C(mi) is a convex

monotonic function. Mason et. al. reason that any “sensible cost function of

the margin will be monotonically decreasing” [62, Section 2.4], with this intuition
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having implications in the derivation of Equation 5.4. While it is indeed sensi-

ble to accommodate only monotonic loss functions in many learning scenarios,

our plans for optimising diversity suggest that the loss function should be non-

monotonic with respect to the margin; this requires us to modify Equation 5.4

thus:

Dl(i) =
− ∂
∂mi

C(mi)∑N
j=1 |

∂
∂mi

C(mj)|
∝ − ∂

∂mi

C(mi), (5.6)

since the negative gradient implied by monotonic loss had previously allowed the

negative in the numerator to cancel the absolute in the denominator.

5.3.2 Incorporating Diversity in a Loss Function

We first need to find a loss function that will interpolate between accuracy (large

margins) and diversity (small absolute margins) according to a parameter µ.

One solution is to have a function that is convex with a minimum at µ; we will

examine quadratic loss, since its derivatives have convenient forms. We show

various quadratic losses and compare them to exponential loss in Figure 5.1.

C(mi) =
1

2
(µ−mi)

2. (5.7)

Computing the necessary derivatives gives:

∂

∂αl

1

N

N∑
i=1

1

2
(µ−mi)

2 = 0, (5.8)

αl =
N∑
i=1

yihl(µ− yi
L−1∑
l=1

αlhl(xi)), (5.9)

for the learner weights, and:

Dl(i) ∝ −
∂

∂mi

1

2
(µ−mi)

2 = µ−mi, (5.10)

for example weights. The offline version of DivBoost, therefore, is obtained by

using these update equations within the AnyBoost framework.
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5.3.3 Online DivBoost

We now modify this offline version of DivBoost to learn incrementally, using

techniques analogous to those in Online Adaboost (See Algorithm 7) [68]. This

algorithm is simpler than its Online Adaboost counterpart, due to the linearity of

the derivative of the loss: updates to the learner and example weights are additive

at each step. We use a Poisson distribution instead of weighted sampling, since

this removes the need for normalising example weights. Similarly, learner weights

are only maintained up to proportionality, but this gives the same result (We

normalise them when making predictions to give margins in [−1, 1]).

Hence Equation 5.9 becomes (we now index data with t, the current timestep):

αl,t ← αl,t−1 + ythl(xt)
(
µ− yt

l−1∑
k=1

αl,t−1hk(xt)
)
, (5.11)

and Equation 5.10 is replaced by a variable λ, which is updated as:

λl,t ← µ− yt
l∑

k=1

αk,t−1hk(xt). (5.12)

such that, as in Online Adaboost, the only disparity between this and a batch

learning version is due to changes in α and h over the course of training. In some

cases, this can severely impact convergence of the algorithm, since good values of

αl+1 and hl+1 depend on the stability of αl and hl.

Note that we substitute Equation 5.12 into Equation 5.11 in our definition

of the algorithm, for brevity. We show our online gradient descent boosting

algorithm in Algorithm 8.

µ can be chosen here based on the required diversity: µ = 1.5 gives a mono-

tonic loss for high accuracy/low diversity, while a value such as µ = 0.25 gives a

very diverse ensemble.

Unlike Online Adaboost, we allow λ to become negative, in which case we

choose k based on |λ| and invert the target value of y during training. This

indicates a situation where the prediction on 〈x, y〉 is too correct — something

which can only happen with non-monotonic loss. Clearly, if the minimum of the

loss function (µ) is less than 1, then sometimes the optimal base learner will need

to reduce the margin.

The updates to αl (base learner weights), ŷ (prediction of 〈x, y〉 by the first l
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Algorithm 8 DivBoost(µ)

Require: µ ∈ R: Target margin, L: Ensemble size
Set αl ← 0 for all base learners

For each incoming example 〈x, y〉:
Let λ = µ, ŷ = 0
for each learner l do

Repeat Poiss(|λ|) times: train hl on 〈x, sign(λ) · y〉
αl ← αl + λyhl(x)
ŷ ← ŷ + αlyhl(x)
λ← µ− (ŷ/

∑l
k=1 αk)

end for

Prediction:
H(x) = sign

(∑L
l=1 αlhl(x)

)

learners), and λ (relative example weight) are straightforward due to the conve-

nient form of the loss function.

As a pragmatic concern, we observe that if λ = 0 then no additional learning

will occur. A similar event can happen in Adaboost, should the weighted error

ever become 0. We handle this by resetting λ← µ in this event.

5.3.4 How DivBoost can be applied in Non-Stationary

Learning

Algorithm 9 Adaptive DivBoost

Hlow ← DivBoost (low diversity)
Hhigh ← DivBoost (high diversity)
for t ∈ 1 . . . N do

Train Hlow, Hhigh on 〈xt, yt〉
if change detected then

Hlow ← duplicate Hhigh

end if
end for

In Algorithm 9, we define a simple methodology for exploiting the diverse

ensembles produced by DivBoost in a non-stationary learning environment. Like

DDD [66], the idea is to maintain multiple ensembles (in this case, only 2),

predicting with one while training both. In our procedure, ‘Adaptive DivBoost’,
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we always make predictions with a low diversity ensemble (µ = 1.5) while training

a separate high diversity ensemble (µ = 0.5). A change detection algorithm

(such as DDM [28]) monitors the predictions of Hlow: when a concept change is

detected, the low diversity ensemble is replaced by the diverse ensemble, with its

µ parameter set to 1.5. In preparation for future drifts, we also duplicate the

diverse ensemble and continue training it with µ = 0.5.

By duplicating the diverse ensemble and continuing its training, we ensure

that there is always a trained diverse ensemble that can be used if a change is

detected; if we started to train a new diverse ensemble, then we might detect

another concept change before it had been sufficiently trained.

Of course, an alternative would be to use DivBoost as the ensemble algorithm

in DDD instead of Online Bagging. This could be an interesting future research

direction, although our experimental conclusions suggest that we would not ex-

pect DDD with DivBoost to outperform DDD with Online Bagging. Similarly,

we do not present Adaptive DivBoost as a competitive algorithm; an algorithm

like DDD has far more useful heuristic built in to deal with a variety of concept

change scenarios. The simplicity of DivBoost will be beneficial though, when we

try to understand its behaviour in an empirical setting.

5.4 Experiments

5.4.1 Experimental Aims

In these experiments, we aim to investigate:

1. Does DivBoost behave as we expect (i.e. does it allow us to control the

margin distribution, and hence diversity, without a large negative effect on

accuracy)?

2. What kind of problems should we consider applying Adaptive DivBoost to?

3. How do other components of the learning system (i.e. base learner choice

and change detection) affect the behaviour of Adaptive DivBoost?

4. Should we expect to achieve a measurable improvement in performance on

real-world problems?

Our general experimental environment is described in Appendix A.
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Learners and Parameters

We compare several algorithms in this section. The “Keep” algorithm is a simple

instantiation of DivBoost with µ = 1.5, with no accommodation for concept

change. “Replace” is similar, but when it is notified of a change, the ensemble is

replaced with a new, untrained DivBoost ensemble (still µ = 1.5). Online Bagging

is used as an alternative diversity-optimising algorithm [66]. We train an Online

Bagging ensemble with λ = 0.05 prior to drift, when a drift is detected we set

λ = 1 and continue training. Adaptive DivBoost is our algorithm as described in

Section 5.3.4. For benchmarking against an existing state-of-the-art algorithm,

it might seem appropriate to compare against DDD, but because there does not

seem to be evidence that DDD does use diversity (see Section 4.4.3), we instead

use the more popular and well-established DWM [45] algorithm.

We selected parameters that performed well in general, based on settings

from other authors, but did not tune them to specific datasets; since there is no

i.i.d.ãssumption, choosing parameters based on ‘validation data’ is futile (there

is no fixed distribution from which to draw the data), and choosing parameters

that perform well on the dataset would lead to overfitting; parameter selection

in non-stationary learning is a challenging open problem. We used an ensemble

size of 15 throughout. In DWM, we set weight decay β = 0.9, removal threshold

θ = 0.2 and period p = 5.

In most experiments (i.e. unless otherwise specified) we used multilayer per-

ceptrons (MLPs) as base learners. We used sigmoidal transfer functions, 5 hidden

units and 0.1 learning rate. To facilitate online learning, we trained for 1 epoch

on each example — hence, the momentum parameter is inconsequential. We used

the implementation from the Netlab toolbox.

We chose MLPs since their learning rate is independent of the amount of

data; this allows us to investigate the effect of ensemble diversity on adaptation

without confounding factors. In Section 5.4.4, we compare with Gaussian Näıve

Bayes (NB) base learners; this will illustrate how dramatically the base learner

can impact adaptation. In Section 4.4, we described the issues associated with

base learners with quantity of data dependent learning rates. Since µ in DivBoost

will affect the number of examples sent to each base learner, we do not attempt

to evaluate the utility of diversity when using such base learners.
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5.4.2 Does DivBoost Effectively Manage Diversity?

First, we perform two experiments with stationary data to establish the validity

of DivBoost.

Hypothesis: In DivBoost, margin distributions will be tightly clustered around

µ, and the accuracy will not suffer substantially even for quite diverse ensembles.

Procedure

Our first experiment produces cumulative distribution plots using DivBoost en-

sembles. We train DivBoost ensembles with various µ on stationary data from

4 UCI datasets. We then evaluate their margin distributions on a hold-out test

set. We perform 100 repetitions for each value of µ, using half of the data for

training and half for testing. Finally, we display cumulative margin distributions,

aggregating the margins from all repetitions.

The second experiment compares the behaviour of DivBoost to an alternative

diversity-promoting algorithm — Online Bagging. We organise the data as in the

previous experiment. We vary the λ and µ parameters non-uniformly between

0.002 and 1.5 (the full range is {0.002, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07,

0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5}), generating 50 ensembles for each

value and computing diversity and accuracy for each ensemble. We then plot

the average diversity and accuracy within each λ or µ value. This allows us to

demonstrate how accuracy is affected as diversity increases.

Results

In Figure 5.2, we show margin distributions produced by DivBoost. We see that

µ controls the skew of the distribution well, and in some cases the clustering of

the distribution is tight (e.g. breast cancer). In general, most of the distribution

lies below the ‘target’ margin of µ; the distribution will depend on the difficulty

of the learning problem, so easier tasks like breast cancer permit margins to be

generally closer to µ, while distributions are more diffuse for difficult problems

like diabetes.

In Figure 5.3, we show diversity and accuracy as µ and λ are varied in Di-

vBoost and Online Bagging respectively. The results show that the explicit di-

versity optimisation effected by DivBoost brings significant accuracy benefits, as

well as being able to encourage more diverse ensembles.
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Figure 5.2: Cumulative margin distributions on generalisation data on 4 UCI
datasets. Steep lines indicate tightly clustered distributions, with larger margins
when the distribution is skewed towards the right.
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on the plot indicate the µ or λ values used to generated those ensembles — they
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5.4. EXPERIMENTS 141

Overall, we can see that the behaviour of DivBoost agrees with the theoretical

premises from which it was derived. The µ parameter allows an efficient trade-off

between diversity and accuracy, and (when evaluated on this criterion), seems to

consistently achieve better accuracy that a recently-proposed alternative when

training high-diversity ensembles.

5.4.3 Oracle Change Detection

To investigate our second and third experimental aims, we use an oracle to provide

change detection information. This allows us to see how quickly DivBoost adapts

given perfect change detection information. We vary the severity of concept drifts

to delineate situations in which DivBoost has an advantage.

After this, we show the effect of using alternative base learners — specifically

investigating the differences between Näıve Bayes and MLPs. We also change the

oracle change detection to provide late concept change information, to establish

whether poor change detection is likely to neutralise DivBoost’s performance

advantage.

Hypothesis: (from Section 5.2) Ensembles with higher diversity are better

positioned to adapt to new concepts, and

Hypothesis: The choice of base learner and efficacy of change detection will

have a significant impact on the applicability of this approach.

Procedure

First, we aim to delineate the applicability of DivBoost given perfect change

detection. We use toy problems where we can control the position and severity of

a single abrupt change (See Section A.1). We train DivBoost with high diversity

on the ‘initial concept’. We then simulate a concept change, adjust µ in DivBoost

to 1.5 (i.e. low diversity), and evaluate the performance of DivBoost on hold-out

data as it adapts to the new concept. We use UCI datasets, with 50% of the data

in each concept. On the second concept, we only train on the first 50 examples,

using the rest to estimate generalisation accuracy.

For comparison, we use the similar technique with Online Bagging instead of

DivBoost (using a λ parameter of 0.05 for ‘high diversity’ and 1 for ‘low diversity’)

— the effectiveness of this method is an essential aspect of the DDD algorithm,

although DDD has other mechanisms that will improve over this performance in
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some situations. We also compare with Keep and Replace.

Note that this experiment does not consider the accuracy of the ensembles

before concept change — we only measure their performance as they adapt to

the new concept.

Next, we vary the base learner used in the ensembles — this will show the

difference between learners with constant learning rate (like MLPs), and learners

with learning rates that depend on the amount of data that they have been

trained on (like Näıve Bayes).

Finally, we simulate late change detection, simply by waiting for 10 time steps

before making the appropriate changes (i.e. learner replacement, changes to µ and

λ). This scenario is more likely in real problems, since change detection is not

generally able to detect concept change instantly.

Results

In Figure 5.4, we show adaptation to new concepts after changes of varying sever-

ity. The main effect we are looking for is a difference between DivBoost and

Keep; this would indicate that a trained but diverse ensemble has value immedi-

ately after a concept change. We see that extremes of very little concept change

(12 overlap) and complete concept change (0 overlap) favour Keep and Replace

respectively, since these correspond to scenarios where those approaches are opti-

mal. However, in general, either Keep or Replace performs well, while Adaptive

DivBoost retains consistent performance across various amounts of drift. Online

Bagging tends to mix the behaviour of Adaptive DivBoost and Replace.

From this experiment, we conclude that DivBoost may be valuable both when

concept changes are moderate in severity, or when change detection performs

badly and is likely to generate a high proportion of false or missed detections.
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Figure 5.6: Performance on Heart Disease dataset with Näıve Bayes learners. The
experiments are identical to those in Figure 5.4, except that the base learners are
Näıve Bayes models. Replace and Bagging outperform DivBoost and Keep when
the base learners are lossless.

Figure 5.6 shows how the choice of base learner impacts performance. The

learning rate of Näıve Bayes depends on the number of training examples previ-

ously seen. Therefore, Replace performs well (since the replacement model has a

high learning rate), while Keep performs poorly (its learning rate decreases as it

trains on additional examples). There is a significant difference between Online

Bagging and DivBoost now, due to the methods that they use to encourage di-

versity — since the λ parameter in Online Bagging corresponds to the mean of

a Poisson distribution, this directly translates into prior to the concept change,

each base learner in Online Bagging trains on an average of λN examples, while

the explicit diversity optimisation used by DivBoost means that its base learners

train many more examples — generally around N .

Our conclusion from this experiment is that the effect of learning rates in
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lossless base learner dominates any impact that diversity has; for such learn-

ers, controlling the learning rate will be much more important than diversity in

determining performance.

Finally, in Figure 5.7, we show the effect of late change detection (again, the

base learners are MLPs). In this case, the Keep strategy has an advantage (since

it did not rely on change detection anyway), while Replace performs very poorly.

The original effect we observed (DivBoost outperforming Keep on moderate and

severe changes) does not appear here.

Overall, these experiments have shown that DivBoost has a small potential for

applicability; although it performs quite well regardless of change severity, it does

not behave well when the base learner is lossless, and furthermore its advantage

over Keep (when base learners are lossy) is mostly neutralised by the presence of

late or false change detections.
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5.4.4 DDM Change Detection

Addressing our final experimental aim, we replace oracle change detection with

the DDM algorithm [28]. This introduces genuine late and false change detec-

tions, and also allows us to evaluate performance on real-world datasets where

underlying distributions are not known.

Hypothesis: The exploitation of diversity by DivBoost, although it can pro-

duce small improvements in adaptation in restricted scenarios, does not provide

significant utility under realistic conditions, where change detection and choice of

base learner have more impact on performance.

Procedure

We first experiment on toy datasets, as we have done previously, but using DDM

to provide concept change signals — this affects the behaviour of the Adaptive

DivBoost and Replace algorithms; in both cases, a DDM model is trained on

their predictions. Wherever such change detection is used, we provide cumulative

plots showing the distribution of change detections — these show (for all t) the

proportion of change detections that occurred on or before t; in the legend we

specify what the total number of detections was. When multiple repetitions were

performed, we aggregate change detections so that the cumulative plots display

averages over all repetitions.

We use a hold out test set to evaluate performance after every step — we use 50

examples from each stationary concept, and take averages over 200 independent

runs. Unlike the previous section, this time we show performance over the whole

learning process, since false detections can affect learning even on stationary data.

Finally, we show experiments on two real-world datasets — Australian Elec-

tricity and Luxembourg Internet Usage. In both cases we display the prequential

test-then-train accuracy. Drawing robust conclusions from such results is diffi-

cult, but they do give some indication as to the practical utility of a DivBoost

oriented approach to non-stationary learning.

Results

Figure 5.8 demonstrates the impact of using real change detection to guide the

behaviour of Adaptive DivBoost; as foreshadowed in the results from Figure 5.7,

we see that Adaptive DivBoost no longer exhibits any advantage over Keep.
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Similarly, Figure 5.9 shows that no benefit is realised for DivBoost on any of the

toy problems we examined earlier.

Finally, we perform experiments on Electricity and Luxembourg. These re-

sults broadly follow the pattern from Figure 5.8, suggesting that common real-

world drift is not amenable to Adaptive DivBoost; presumably, the drifts in these

datasets are gradual enough that MLP base learners are able to adapt sufficiently.

Performing the same experiment with Näıve Bayes base learners gives the result

that might be expected, with DWM and Replace being more effective as they

implement policies of base learner replacement.

With Luxembourg, we found that changes were never detected; this is likely

due to relatively slow drift and the fact that (with MLPs) the task took a long

time to learn (i.e. the benefit of training on more data outweighed the effect

of concept change). Since lack of detection caused all the same behaviour in

Keep, Replace and Adaptive DivBoost, we inserted false change detection to

better understand what its impact would be in this scenario; every 500 steps, we

informed all learners of a change detection and reset the parameters in DDM.
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Figure 5.9: Various adaptive algorithms on high severity concept changes. Lower
severity datasets were omitted since DDM did not detect changes on them. These
results show no discernible advantage to DivBoost over Keep. Continued in
Figure 5.10.
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Figure 5.10: Continuation of Figure 5.9.
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Figure 5.11: Various adaptive algorithms on real non-stationary problems. With
MLP base learners, changes are rarely detected; this suggests that MLPs alone
are able to adapt sufficiently fast for these problems. Since we are never able
to detect drift in the Luxembourg dataset, we initiate false change detections
every 500 steps — Replace and Adaptive DivBoost do worse because of these
false detections.
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Figure 5.12: The same experiments as in Figure 5.11, but with Näıve Bayes base
learners. Note that there are many changes detected, and Replace is most success-
ful here; DWM also outperforms strategies that do not replace base learners. As
before with Luxembourg, changes were not detected, so we inserted false change
detections ever 500 steps — here, Adaptive DivBoost does not suffer much from
the false detections.
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5.5 Conclusions

In this chapter we have presented an algorithm that manages diversity so as

to facilitate fast adaptation to new concepts in non-stationary learning. We

motivated our investigation from a theoretical perspective using our conclusions

from Chapter 3. We then discussed how gradient descent boosting could be

applied to the task of managing diversity; by modifying the AnyBoost algorithm

and taking inspiration from Online Adaboost, we were able to create DivBoost, an

algorithm that achieved an amount of diversity that depended on the parameter

µ, while retaining good accuracy and being able to learn incrementally.

We used DDM, a change detection algorithm, in combination with a simple

non-stationary learning framework, to apply DivBoost to artificial and real non-

stationary learning problems.

Our experimental evaluations gave mixed results; many of our conjectures

were confirmed — we showed that DivBoost worked correctly, and that it could

be used to improve adaptation in certain situations. However, when we tried to

use DivBoost with real change detection we found that its utility was greatly

diminished; we conclude that:

1. The adaptation benefit of high diversity was observed on toy datasets, when

moderate or severe changes occurred — in these cases, the diverse ensemble

adapted faster than a non-diverse one (i.e. Keep).

2. The effects of latency and false alarms from change detection were more

significant factors than diversity in determining adaptation. For the lossy

base learners we studied (MLPs), keeping a fixed ensemble and ignoring

change detection became more favourable when false or late changes were

detected.

3. Controlling diversity in ensembles of lossless base learners (such as Näıve

Bayes) also affected the amount of training data seen by the base learners,

which itself had a large effect on the adaptation of the ensemble.

4. The effect of varying amounts of training data in ensembles of lossless base

learners highlighted the fact that approaches that exploit these effects (like

windowing algorithms, or DWM, where base learners are replaced), could

achieve substantially better performance than algorithms that just manip-

ulated diversity.



Chapter 6

Summary and Conclusions

6.1 Summary

This thesis examined two properties of ensemble models — diversity and voting

margins. In diversity literature, it has generally been considered that high diver-

sity is beneficial; similarly, the theory of voting margins suggests that large voting

margins are important in ensembles. Our work shows a relationship between these

two quantities — surprisingly, high diversity corresponds to small margins — so

it would be contradictory for ensembles to benefit from both high diversity and

large margins. The first part of the thesis established this connection (Section

3.2) and investigated its implications (Sections 3.3 to 3.5).

In the next part of the thesis, we explored the case of non-i.i.d. learning prob-

lems, finding evidence that diversity had some special significance in this domain

(Sections 5.2 and 5.4.3). To achieve this, we derived an algorithm (DivBoost)

that explicitly managed diversity (Section 5.3), and applied it to toy problems

with known concept changes. Finally, we examined how the situation changed

in more realistic scenarios, finding that the small benefits measured on carefully

constructed toy problems were nullified by the effects of false and late change

detections.

6.2 Conclusions

In Chapter 3, we made several main contributions, showing that:

1. Most existing measures of ensemble diversity are also measures of the voting

156
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margin distribution (Section 3.2): In general, small absolute margins were

shown to be associated with ‘high diversity’. We showed empirical and the-

oretic validation of our interpretation in Sections 3.2.5 and 3.3 respectively.

2. High diversity can be associated with low generalisation accuracy under cer-

tain conditions (Section 3.4.1): Although diversity has relevance in achiev-

ing good training performance, the idea that diversity should positively

influence generalisation accuracy contradicts its interpretation within the

voting margin framework. Experimentally we showed that high diversity

could be detrimental to generalisation accuracy with certain training algo-

rithms and datasets, although diverse Bagging ensembles seem to achieve

high generalisation accuracy.

3. The exponential loss function used by Adaboost is approximated by double

fault diversity (Section 3.4.2): this shows a link between Adaboost and

existing diversity measures; furthermore, we empirically investigated the

approximation by deriving loss functions that interpolated between double

fault diversity and exponential loss.

This novel view of ensemble diversity improves our ability to use diversity in

ensemble learning scenarios; we have demonstrated this utility already, both in

making predictions about the effect of diversity (Item 2 in the above list) and

considering diversity in the derivation of algorithms (Chapter 5, below). We

anticipate further utility in similar future endeavours.

Chapter 5 exploits the diversity-margin correspondence to examine the role

of diversity in non-stationary learning. Our contributions were:

1. Deriving a novel algorithm, DivBoost, that manages diversity according to a

parameter and can learn incrementally (Section 5.3): we showed empirically

that DivBoost was able to manage diversity in a desirable fashion.

2. Identifying specific scenarios where high diversity contributes to the adap-

tation of the ensemble (Section 5.4): experimental results indicated that

using a diverse ensemble after concept change was usually better than using

a non-diverse ensemble (although for the largest changes, the best strategy

was to replace the model). This indicated a small potential for application

in situations where moderately severe concept changes occur.
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3. Showing that other factors in non-stationary learning dominate the impact

of diversity in realistic scenarios (Section 5.4): prompt change detection

was shown to be vital for exploiting diversity in the scenarios where it

could be useful. In many artificial situations, and all real datasets that

we tested, we failed to observe any advantage of switching to a diverse

ensemble (Adaptive DivBoost) over retaining a normal ensemble (Keep)

once we used a real change detection algorithm — even though such effects

had been observed with oracle change detection.

The DivBoost algorithm is valuable outside of the domain of non-stationary

learning: it provides a way of explicitly controlling diversity, and can be applied

in both batch and incremental scenarios. Our investigation of diversity in non-

stationary learning has not immediately suggested a competitive state-of-the-art

algorithm based on diversity, but it has identified areas where diversity could be

of value, and also shown that performance seems to depend far more on correctly

detecting concept change and influencing the adaptation of base learners.

6.3 Limitations

In the previous section, we enumerated the main contributions of the thesis and

their implications; however, it is also important to clearly state the limitations of

our work — in many cases we will discuss these again in Section 6.4 as potential

further work.

All of our contributions have relied to some extent on the restriction of super-

vised learning tasks to classification with two classes. Although we provide some

insight into how more general conclusions might be drawn (See Appendix C),

the two fundamental properties that we have discussed throughout the thesis —

diversity and voting margins — both benefit from a degree symmetry exhibited

by two-class problems that does not apply in the multi-class case. As such, there

is no trivial extension of our work to multi-class problems.

We have also described some potential semantic issues regarding our conclu-

sions about diversity and voting margins (see Section 3.5); in a sense, due to the

imprecise definition of ‘diversity’, it is not certain that the word should be applied

to our contributions in Part II of the thesis. This would not especially harm our

conclusions though; it would simply imply that we investigated ‘manipulation of

the margin distribution’ in non-stationary learning, rather than ‘diversity’.
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Our experiments in Part II are somewhat specific to MLP base learners; in

some of our experiments we illustrated why manipulating diversity in lossless

learners could cause unexpected results. Of course we should expect some degree

of learner and data dependence in our results, and so it would be wrong to draw

too general a conclusion.

Another aspect of our experiments was the nature of concept drift that we in-

vestigated: with the exception of the real world datasets (Electricity and Luxem-

bourg), all the problems we looked at exhibited abrupt concept change. Further-

more, our motivations in Section 5.2 only considered abrupt changes. Therefore,

we have not addressed the issue of ‘ensemble diversity in concept drift problems’;

however, we can also present no argument as to why we should expect diversity

to have special significance in such problems.

6.4 Further Work

In our work on diversity, we highlighted a novel connection between ensemble

diversity and voting margins. We propose three extensions to this work:

1. Elaborating on the relationship between diversity and margins ; for example,

both diversity and margins are most easily defined with respect to two-class

problems, and this thesis only considered such interpretations. However,

it seems that the multi-class definition of the voting margin and diversity

measures based on the dichotomy between correct and incorrect predictions

could be investigated to establish whether the link between diversity and

margins generalises to these multi-class definitions. In Appendix C, we

provide some more details on possibilities for this work.

2. Exchange of insight between diversity and margins ; in Section 3.4.1, we

took an insight from the literature on voting margins (large margins are in-

dicative of better generalisation accuracy) and translated it into an insight

about diversity (high diversity is indicative of worse generalisation accuracy,

under certain circumstances). Given the originality of the margin-diversity

connection, it is conceivable that there are similar exchanges of insight be-

tween these two fields. For example, in noisy environments it is understood

that large margins are not necessarily beneficial (this is shown empirically

to some extent [20], and exploited by the DOOM II algorithm of Mason
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et al. [62]) — it is possible that this have some relevance for the role of

diversity in such scenarios.

3. Exploiting margin optimisation techniques ; In Chapter 5, we used the Any-

Boost framework to manage ensemble diversity. This was possible because

of the correspondence between diversity and margins. Therefore, in any sce-

nario where there is a hypothesis that diversity is beneficial or detrimental,

we can use this algorithm to evaluate such a hypothesis.

Our contributions related to diversity in non-stationary learning can also be

extended in a number of ways:

1. Use of diversity in a holistic approach to non-stationary learning ; we found

that managing ensemble diversity could be beneficial in some scenarios —

but our techniques for managing diversity precluded the exploitation of

other considerations such as windowing. Future work could involve diversity

management as a small component of a larger system that also includes

other state-of-the-art approaches.

2. Alternative loss function in DivBoost ; we use the quadratic loss function

in DivBoost because of its non-monotonicity, parameterised minimum, and

analytic convenience. However, quadratic loss does have some undesirable

properties — the function will strongly penalise very large or small margins,

and must be symmetric around µ. One improvement might be a negative

Gaussian loss function, which could work well in noisy scenarios, in the

same way that sigmoidal loss functions can work well as alternatives to

exponential loss [62].

3. Further study of non-stationary learning strategies not involving diversity ;

although there might be some value in including diversity in a non-stationary

learning algorithm, our results show that other factors tend to be far more

important. While there has been significant attention applied to change

detection and adaptive window sizing techniques, further attention to these

may be more fruitful than attempting to exploit diversity, which at best

seems to give only a modest improvement in performance in a restricted set

of situations.
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Experimental Preliminaries

In this section, we describe non-specific aspects of our experimental environment.

A.1 Datasets

We present information on the various datasets used in this thesis in Table A.1.

For experiments of stationary data, we use UCI and toy datasets. For the Iris

dataset, we converted the original multiclass problem to 2-class by grouping two

classes (Iris Setosa and Iris Versicolour) as one class, and the third class (Iris

Virginica) as the other (this class grouping is not linearly separable).

For non-stationary problems, we use some non-stationary toy data, some real

data, and some modified UCI datasets. With the UCI datasets, we generate arti-

ficial drifts using the technique described in [82] — we pad data with additional

zero mean unit variance noise features, and then swap the indices of the features,

giving two distinct concepts with a parameterised number of common features.

By varying this parameter — the number of overlapping features — we can ex-

periment with different amounts of severity. When overlap is 0, the two concepts

are independent, and when overlap is the same as the number of features, the

two concepts are identical.

The Plane dataset is based on the toy dataset used by Minku [65], which is

a generalisation of SEA [83]. Minku chooses a parameter a0, and changes it to

create a new concept. For our experiments, we use 6 different transitions for

a0 (denoted as Severity 1 to Severity 6): {−1.5 → −3.5,−1.4 → −3.6,−1.3 →
−3.7,−1.2 → −3.8,−1.1 → −3.9,−1 → −4}. Unlike SEA, the class priors are

0.5 in all concepts.

161
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Dataset Name Type Examples Features Class Balance
Breast Cancer UCI 569 30 0.37
Heart Disease UCI 270 13 0.44
Blood Transfusion UCI 748 4 0.24
Ionosphere UCI 351 33 0.64
Diabetes UCI 768 8 0.35
Iris (2-class) UCI 150 4 0.33
Plane Toy N/A 3 0.5
Checkerboard Toy N/A 2 0.5
Gaussians Toy N/A 2 0.5
STAGGER [79] Toy N/A 3 0.5
Australian Electricity Real 45312 7 0.42
Luxembourg [90] [39] Real 1901 31 0.49

Table A.1: Datasets used in experiments.

The Checkerboard dataset is based on a dataset described by Elwell and

Polikar [23], in which a checkerboard can be rotated to create concept drift. Our

checkerboard dataset is a stationary version of this, with uniformly distributed

features in [−1, 1]2. Tiles were squares with edges of length 0.75, tiled with

vertices at the origin, and rotated about the origin by 1 radian ≈ 57◦.

Our Gaussian toy dataset is a two-class problem, with classes drawn from

Gaussians with means (1, 1) and (3, 3) respectively and unit variance.

A.2 Evaluation

When evaluating hypotheses, we often measure training or generalisation accu-

racy on data. For UCI datasets, we estimate generalisation error on hold-out

data. In toy datasets, we simply use the data generating algorithm to supply

additional i.i.d.d̃ata for evaluation. To obtain robust estimates, we perform mul-

tiple repetitions of many experiments. For these, we choose random train-test

partitions of the data at each repetition.

For displaying results, we indicate significance with 95% confidence intervals

on the accuracy. In test-then-train evaluations, we display the prequential accu-

racy:

accT =
1

T

T∑
t=1

δ[H(xt) = yt]. (A.1)

Note that this can give misleading results, as performance is dampened by the
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1
T

factor for large T . This can make it harder to answer questions like “how

does the performance change when the underlying concept shifts?”; usually, we

use artificial data to evaluate such questions. Furthermore, drawing significant

conclusions about performance on real-world data in a test-then-train scenario

is difficult: the sequential nature of the data makes it impossible to perform

repetitions, so the only statistically robust statements we can make are regarding

the average performance over a large number of steps.

A.3 Learners and Parameters

Here, we will give a review of learners and their parameters. Since parameters may

vary depending on experiment and dataset, this section simply describes what

they are; we supply actual values later in the thesis when actually performing

experiments.

A.3.1 Adaboost

Algorithm: Defined by Freund and Schapire [76]. Online version defined by

Oza [68] Parameters: Ensemble size, base learner algorithm.

Adaboost is a popular supervised learning ensemble algorithm.

A.3.2 AnyBoost

Algorithm: Defined by Mason et al. [62]. Parameters: Ensemble size, base learner

algorithm, loss function.

AnyBoost generalises Adaboost to cater to a wide range of convex, monotonic

loss functions.

A.3.3 Bagging

Algorithm: Defined by Breiman [7]. Online version defined by Oza [68]. Param-

eters: Ensemble size, base learner algorithm.

Bagging is a simple ensemble algorithm where base learners are generated by

sampling the training data.
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A.3.4 Online Diverse Bagging

Algorithm: Defined by Minku [66]. Parameters: Ensemble size, base learner

algorithm, Poisson parameter.

A version of Online Bagging where data is sampled less frequently (according

to the Poisson parameter) to promote higher diversity.

A.3.5 Dynamic Weighted Majority

Algorithm: Defined by Maloof and Kolter [45] Parameters: Period, threshold,

discount factor, base learner algorithm

An algorithm for non-stationary learning. With a frequency determined by

the period parameter, base learners are down-weighted by the discount factor if

they make a mistake. Learners with weight below the threshold are removed.

A.3.6 Incremental Näıve Bayes

Algorithm: Defined in Section 4.2.1. Parameters: None.

Näıve Bayes is a well-known algorithm. We implement lossless incremental

update rules. Unit pseudo-counts are used to avoid assigning probabilities of 0.

A.3.7 Classification and Regression Trees (CART)

Algorithm: Defined by Breiman et al. [11]. Parameters: Minimum examples for

split, splitting criterion.

We use the MATLAB implementation of classification and regression trees,

with the Gini Diversity Index as a splitting criterion. We set the minimum number

of examples required to split a node to blogNc.

A.3.8 Decision Stump

Algorithm: Exhaustive search over splitting points. Parameters: Splitting crite-

rion.

Our decision stump algorithm searches for a feature and split point that min-

imises empirical error rate.
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A.3.9 Multi-layer Perceptrons

Algorithm: Multi-Layer Perceptrons with back propagation. Parameters: Num-

ber of hidden units, learning rate, activation function, epochs.

We use the Netlab MLP implementation. To precisely specify the options

vector supplied to the mlp function: x precision = 0.001, objective function

precision = 0.001, line minimisation via the learning rate. For online learning,

only 1 epoch is ever performed, so the momentum parameter is not used. The

transfer functions are sigmoidal, and the activation function is logistic (target

variables are projected into {0, 1}, and a threshold of 0.5 is used to indicate the

prediction).

In the experiments with DDD (Chapter 5), we use the same implementation

and default parameter settings as Minku [64].

Incremental Tree Inducer (ITI)

Algorithm: Defined by Utgoff et al. [87]. Parameters: None.

ITI is an incremental algorithm for producing decision trees. It produces an

approximation to the tree that would be induced in batch mode; significant for

our work is the fact that ITI uses example counts to maintain information about

previous data; because of this, the influence of the N th example diminishes as N

increases.
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Proofs of Theorems

B.1 Lemmas

Here we present a few lemmas that are used in several of the subsequent theorems.

Lemma 12. Multiplying the average of base learner predictions by the ensemble

prediction gives the absolute margin.

H(x)
L∑
l=1

αlhl(x) = |m(x, y)| (B.1)

Proof. This is the case because H(x) = sign(
∑L

l=1 αlhl(x)); therefore:

H(x)
L∑
l=1

αlhl(x) = |
L∑
l=1

αlhl(x)|, (B.2)

= |y
L∑
l=1

αlhl(x)|, (B.3)

= |m(x, y)|. (B.4)

The lemma holds regardless of the true label y, since |m(x, y)| = |m(x,−y)|. It

will also apply when learners are unweighted, by substituting αl = 1
L

.

Lemma 13. Identity functions on the equality of two variables in {−1, 1} can be
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expressed using a product.

δ[a = b] =
1

2
(1 + ab), (B.5)

δ[a 6= b] =
1

2
(1− ab). (B.6)

Proof. Using a case-by-case analysis, we construct a truth table for the four pos-

sible combinations of a and b:

a b δ[a = b] 1
2
(1 + ab) δ[a 6= b] 1

2
(1− ab)

−1 −1 1 1 0 0

−1 1 0 0 1 1

1 −1 0 0 1 1

1 1 1 1 0 0

Since the table enumerates all the possible values for a and b, and the equalities

from the lemma are seen to hold, the lemma is valid.

B.2 Diversity and Margins

B.2.1 Entropy (Kuncheva)

Proof. (Theorem 1)

Entropy (Kuncheva), E, is defined as:

Dent =
L

N(L− dL/2e)

N∑
i=1

min{ci, 1− ci}. (B.7)

First, we assume that L is odd 1. This allows us to replace the dL/2e with L+1
2

,

and hence express the coefficient to the summation as 2L
N(L−1)

. Now, by using

ci = 1
2
(1 + mi), we can express the term inside the summation as min{1

2
(1 +

mi),
1
2
(1−mi)}; a case-by-case analysis gives:

min{1

2
(1 +mi),

1

2
(1−mi)} =

{
1
2
(1 +mi) if mi ≤ 0

1
2
(1−mi) otherwise,

(B.8)

1For unweighted ensembles (as is assumed for Dent), the assumption of odd L is reasonable,
since even-sized ensembles have no additional expressive power, and additionally sometimes
cause tied votes (where both classes receive the same number of votes).
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which, since we add mi when it is negative or subtract it when it is positive, means

we can instead subtract |mi| unconditionally. This gives our final expression:

Dent =
2L

N(L− 1)

N∑
i=1

1

2
(1− |mi|), (B.9)

=
L

(L− 1)
(1− |m|).

B.2.2 Ambiguity (Zenobi)

Proof. (Theorem 2)

Ambiguity (Zenobi) is defined as:

DZenobi =
1

NL

N∑
i=1

L∑
l=1

δ[hl(xi) = H(xi)]. (B.10)

We can interpret the identity function using Lemma 13, and subsequently apply

Lemma 12 to arrive at the margin:

DZenobi =
1

NL

N∑
i=1

L∑
l=1

1

2
(1−H(xi)hl(xi)), (B.11)

=
1

N

N∑
i=1

1

2
(1−H(xi)

1

L

L∑
l=1

hl(xi)), (B.12)

=
1

N

N∑
i=1

1

2
(1− |mi|), (B.13)

=
1

2
(1− |m|).

Diversity (Melville) will follow an analogous process.
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B.2.3 Ambiguity (Brown) and Ambiguity (Chen)

Proof. (Theorem 3)

For Chen’s definition of ambiguity:

DChen =
1

2N

N∑
i=1

L∑
l=1

yi(
1

L
H(xi)− αlhl(xi)), (B.14)

=
1

2N

N∑
i=1

yiH(xi)(1−H(xi)
L∑
l=1

αlhl(xi)), (B.15)

=
1

2N

N∑
i=1

yiH(xi)(1− |mi|). (B.16)

where we use Lemma 12 to arrive at the absolute margin. Similarly, for Brown’s

ambiguity term:

DBrown = − 1

2NL

N∑
i=1

yiH(xi)
L∑
l=1

(1− hl(xi)H(xi)), (B.17)

= − 1

2N

N∑
i=1

yiH(xi)(1− |mi|).

B.2.4 KW Variance

Proof. (Theorem 4)

Starting with KW variance, we observe that the interpretation of P̂ r(y =

1|xi) as the proportion of base learners predicting h(xi) = 1 allows us to write

P̂ r(y = 1|xi) = 1
2
(1 + yimi)

2, after which the derivation is straightforward:

DKW =
1

2N

N∑
i=1

(1− P̂ r(y = −1|xi)2 − P̂ r(y = 1|xi)2), (B.18)

=
1

2N

N∑
i=1

1− 1

4
(1 + yimi)

2 − 1

4
(1− yimi)

2, (B.19)

=
1

2N

N∑
i=1

1− 1

4
(1 + 2yimi +m2

i )−
1

4
(1− 2yimi +m2

i ), (B.20)

=
1

4
(1−m2),

2Note that yimi has the same sign as H(xi).
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where the yi terms disappear when squared since yi ∈ {−1, 1}.

B.2.5 Ambiguity (Tsymbal)

Proof. (Theorem 5)

Ambiguity (Tsymbal) uses the transformation of P̂ r to margins (as with KW

variance), as well as Lemma 13. With yi and hl(xi) terms, since they are always

either −1 or 1, squaring gives 1.

Damb =
1

NL

N∑
i=1

L∑
l=1

(δ[hl(xi) = 1]− P̂ r(y = 1|xi))2+

(δ[hl(xi) = −1]− P̂ r(y = −1|xi))2, (B.21)

=
1

LN

N∑
i=1

L∑
l=1

(
1

2
(1 + hl(xi))−

1

2
(1 + yimi))

2

+ (
1

2
(1− hl(xi))−

1

2
(1− yimi))

2, (B.22)

=
1

LN

N∑
i=1

L∑
l=1

1

2
(1 +m2

i − 2hlyimi), (B.23)

=
N∑
i=1

1

2
(1 +m2

i −
2yimi

L

L∑
l=1

hl(xi)), (B.24)

=
1

2
(1−m2).
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B.2.6 Entropy (Cunningham)

Proof. (Theorem 6)

As with KW Variance, we convert estimated probabilities to margin-based

terms and simplify:

DH = − 1

N

N∑
i=1

P̂ r(y = −1|xi) log P̂ r(y = −1|xi)

+ P̂ r(y = 1|xi) log P̂ r(y = 1|xi), (B.25)

= − 1

N

N∑
i=1

1

2
(1 + yimi) log

1

2
(1 + yimi)

+
1

2
(1− yimi) log

1

2
(1− yimi). (B.26)

(B.27)

This shows that entropy (Cunningham) is a function of the margins, and we could

proceed slightly to simplify the result. However, in order to better compare it

with other measures, we wish to find a second order polynomial expression. For

this reason, we will use a Taylor approximation of log:

log x =
∞∑
k=1

(−1)k+1 (x− 1)k

k
, (B.28)

≈ (x− 1)− 1

2
(x− 1)2. (B.29)

We can see that Equation B.26 has two components — one for P̂ r(y = 1|xi) and

one for P̂ r(y = −1|xi). Once these probabilities are converted to margin-based

terms, the only difference is the sign of yi. Therefore, we will consider a single

component, and our conclusions will apply symmetrically to the other.

log
1

2
(1 + yimi) ≈

1

2
(1 + yimi)− 1− 1

2

(1

2
(1 + yimi)− 1

)2

, (B.30)

=
1

2
(yimi − 1)− 1

8
(yimi − 1)2, (B.31)

= −5

8
+

3

4
yimi −

1

8
m2
i . (B.32)
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We now multiply by 1
2
(1 + yimi) to compute the entire component:

1

2
(1 + yimi) log

1

2
(1 + yimi) ≈

1

2
(1 + yimi)(−

5

8
+

3

4
yimi −

1

8
m2
i ), (B.33)

=
1

2
(−5

8
− 1

8
yimi +

5

8
m2
i +

5

8
yim

3
i ). (B.34)

Now recall that this term must be added to the corresponding P̂ r(y = −1|xi)
term. That term will differ only in that occurrences of yi will be inverted; so to

find the sum we can3 cancel all of the terms that contain yi:

DH ≈ −
1

N

N∑
i=1

−5

8
+

5

8
m2
i , (B.35)

≈ 5

8
(1−m2).

3This is true, but perhaps not obviously so; equivalently, one could repeat the derivation for
P̂ r(y = −1|xi); we use the trick with yi for brevity.
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B.2.7 Double Fault

Proof. (Theorem 7)

Although double fault diversity is generally seen as a pairwise measure, we

show that by pulling a sum over training data to the front of the expression, the

pairwise terms can be ‘collapsed’ into margins:

DDF =
1

L(L− 1)

L∑
j=1

L∑
k 6=j

N00
j,k

N
, (B.36)

=
1

L(L− 1)

L∑
j=1

L∑
k 6=j

1

N

N∑
i=1

δ[hj(xi) 6= yi]δ[hk(xi) 6= yi], (B.37)

=
1

N(L− 1)

N∑
i=1

L∑
j=1

δ[hj(xi) 6= yi]
(1

2
(1− yi

1

L

L∑
k=1

hk(xi))−
1

L

)
, (B.38)

=
L

N(L− 1)

N∑
i=1

(1

2
(1−mi)−

1

L

) 1

L

L∑
j=1

1

2
(1− yihj(xi)), (B.39)

=
L

(L− 1)

(1

2
(1−m)− 1

L

)1

2
(1−m), (B.40)

= − L− 1

2(L− 1)
m+

L− 1

2(L− 1)
− L

4(L− 1)
+

L

4(L− 1)
m2, (B.41)

=
1

2
(1−m)− L

4(L− 1)
(1−m2).

Arriving at the final neat form requires various manipulations. Note the 1
L

term

that arise due to the j 6= k condition in the pairwise definition.

B.2.8 Difficulty

Proof. (Theorem 8)

Ddiff = VarPr(x,y)[c(x, y)], (B.42)

=
1

4
(E[(m(x, y) + 1)2]− E[(m(x, y) + 1)]2), (B.43)

=
1

4
(m2 + 2m+ 1−m2 − 2m− 1), (B.44)

=
1

4
(m2 −m2).
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The expectations are over Pr(x, y); hence, the conversion to m terms is not

strictly correct. However, since diversity is typically measured on training data,

this derivation shows the margin equivalent of the measured quantity (which is

only an approximation to difficulty). The second line (with expectations) shows

the exact relationship with the margin distribution.

B.2.9 Interrater Agreement

Proof. (Theorem 9)

Interrater Agreement has a complicated definition, but Kuncheva shows a link

to disagreement that we use to simplify our derivation [54]:

Dκ = 1− 1

2c(1− c)
Ddis, (B.45)

= 1− 1

21
2
(1 +m)(1− 1

2
(1 +m))

Ddis, (B.46)

= 1− 1

(1 +m)1
2
(1−m)

Ddis, (B.47)

= 1− 2

1−m2

L

2(L− 1)
(1−m2), (B.48)

= 1− L

L− 1

(1−m2

1−m2

)
.

B.2.10 Generalised Diversity

Proof. (Theorem 10)

We start from the definition given by Tang [84]:

DGD =
L

L− 1

(
1− 1

N

N∑
i=1

(1− ci)2

(1− c)

)
, (B.49)

=
L

L− 1

(
1− 1

N

N∑
i=1

(1
2
(1−mi))

2

1
2
(1−m)

)
, (B.50)

=
L

L− 1

(
1− (1− 2m+m2

i )

2(1−m)

)
, (B.51)

=
L

L− 1

( 1−m2

2(1−m)

)
.
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B.2.11 Coincident Failure Diversity

Proof. (Theorem 11)

First we show an expression for
∑L

l=0(L − l)Pr(c = L−l
L

), based on Tang’s

generalised diversity proof [84]:

L∑
l=0

(L− l)Pr(c =
L− l
L

) =
1

N

L∑
l=0

N∑
i=1

(L− l)δ[Lci = L− l], (B.52)

=
1

N

N∑
i=1

Lci, (B.53)

= Lc, (B.54)

= L
1

2
(1 +m) (B.55)

since we can reverse the order of the two sums, and then the sum over L has

exactly one non-zero term. We consider only the main case of the DCFD definition:

DCFD =

∑L
l=1(L− l)Pr(c = L−l

L
)

(L− 1)(1− Pr(c = 1))
, (B.56)

=
L1

2
(1 +m)− 1 + 1− LPr(c = 1)

(L− 1)(1− Pr(c = 1))
, (B.57)

=
L

L− 1

(
1− 1−m

2(1− Pr(c = 1))

)
, (B.58)

=
L

L− 1

(
1− 1−m

2(1− 1
N

∑N
i=1 δ[mi = 1])

)
.

Note that in the case of Pr(c = 1) = 1, then m = 1 and the second term becomes
0
0
; this necessitates the special case which defines Pr(c = 1) = 1 =⇒ DCFD = 1.

We omit this for clarity, and since Pr(c = 1) = 1 only occurs when all base

learners make perfect predictions — it seems unlikely that such a special case

should have any impact on our analysis 4.

B.2.12 Pairwise and Non-Pairwise Interrater Agreement

Pairwise (Dk) and non-pairwise (Dκ) interrater agreement (kappa) were intro-

duced in Section 2.3.2. Kuncheva [51] discusses the behaviour of pairwise kappa

4Though in an implementation of DCFD, this special case should be included.
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under the assumption of N01 = N10, although she does not specifically men-

tion that, under this assumption, Dk = Dκ. We are therefore unsure whether

this relationship is considered to be well-known in the literature, or whether our

exposition here is the only explicit reference to it. We start from Kuncheva’s

definition of a lower bound on Dk, which is tight when N01 = N10:

Dk ≥
1

L(L− 1)

L∑
j=1

L∑
k 6=j

1−
N01
j,k

Nc(1− c)
, (B.59)

= 1− 1

Nc(1− c)
1

L(L− 1)

L∑
j=1

L∑
k 6=j

N01
j,k. (B.60)

We have a known relationship between the disagreement measure and the mar-

gins:

Ddis =
1

L(L− 1)

L∑
j=1

L∑
k 6=j

N01
j,k +N10

j,k

N
, (B.61)

=
L

2(L− 1)
(1−m2). (B.62)

We can substitute disagreement into Equation B.60 to give:

Dk ≥ 1− NDdis

2Nc(1− c)
, (B.63)

= 1− L

2(L− 1)
(1−m2)

1

2c(1− c)
, (B.64)

= 1− L

(L− 1)

( 1−m2

4c(1− c)

)
, (B.65)

= 1− L

(L− 1)

(1−m2

1−m2

)
, (B.66)

= Dκ. (B.67)

Therefore, pairwise and non-pairwise kappa are equivalent when N01 = N10, and

otherwise non-pairwise kappa is a lower bound on pairwise kappa.



Appendix C

Multiclass Diversity and Margins

This thesis has dealt only with binary prediction tasks (Y = {−1, 1}). We have

presented no relationship between diversity and voting margins in the multiclass

case (Y = {1 . . . K}, K ∈ N). In many learning problems, there are more than

two possible predictions (for example, a vehicle recognition system could predict

car, motorbike, van, lorry, bus etc.). In this section, we explain why the multiclass

definition of the voting margin will not be directly related to multiclass diversity

measures, and suggest that a probabilistic interpretation of ensemble behaviour

might lead to a good multiclass measure of ‘diversity’. This content is primarily

for the suggestion of future directions.

C.1 Multiclass Diversity

As in the binary case, there are many definitions for different diversity measures.

For measures which are based on pairwise quantities, the definitions look essen-

tially the same — for example,

Ddis =
1

L(L− 1)

L∑
j=1

L∑
k 6=j

N01
j,k +N10

j,k

N
, (C.1)

since N10
j,k is based on a dichotomy between correct and wrong predictions. In

the two-class case, we could interpret N10
j,k as “the number of examples 〈x, y〉 for

which hj(x) = y and hk(x) = −y”; however, now we must subtly loosen this

definition to say that hk can predict anything other than y. We can express this

177
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as a sum over training data:

N10
j,k =

N∑
i=1

δ[hj(xi) = yi]δ[hk(xi) 6= yi]. (C.2)

In the two-class case, this measurement also described whether the classifier pair

agreed. In multiclass cases, we still know that N11
j,k counts agreement (there is

only one correct class), and N10
j,k, N

01
j,k count disagreement, but N00

j,k could describe

agreement or disagreement.

If we follow the same kind of manipulations that we used to relate diversity

to margins in the two-class case, we arrive at:

Ddis =
2L

(L− 1)
c(1− c), (C.3)

(c is the average classification accuracy of the base learners). In the two-class

case, we could connect this to the margin with c = 1
2
(1 +m).

C.2 Multiclass Voting Margins

Approaching from the perspective of voting margins, the multi-class margin is

defined as:

m(x, y) =
1

L

L∑
l=1

δ[hl(x) = y]− arg max
y′ 6=y

1

L

L∑
l=1

δ[hl(x) = y′]. (C.4)

Unlike the correct/wrong dichotomy used for diversity measures, the multiclass

margin makes distinctions between votes for the correct answer, and votes for the

most popular wrong answer. This does not seem to have any correspondence to

existing diversity measures.
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C.3 Future Work

One possibility is that, in the general case, diversity should be related to a proba-

bilistic interpretation of base learner predictions; we have the two-class relation-

ship between the margin and an estimated probability:

m(x, y) =
1

2
(1 + P̂ r(y|x)). (C.5)

For example, in the two-class case, the entropy of the distribution P̂ r(y|x) quan-

tifies the diversity and would meaningfully generalise to multiclass problems.

Unlike the voting margin, or measures based on contingency matrices, it would

be completely symmetric with respect to true class labels.

One issue with generalising ensemble-specific quantities is that we ideally want

the result to still specifically apply to ensembles; for example, in Section 2.3.2, we

described some information theoretic approaches to diversity; these were related

to a decomposition that permitted upper and lower bounds on the error rate of

the optimal combiner — which would not, typically, be a linear combiner as in

voting ensembles. Therefore, to achieve results that exploit the specific properties

of voting ensembles, there may be some value in considering measures that only

make sense for voting ensembles ; at this stage it is unclear whether a probabilistic

perspective would retain this specificity.
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[91] Indrė Žliobaitė. Learning under concept drift: an overview. Computing

Research Repository, abs/1010.4784, 2010.



188 BIBLIOGRAPHY

[92] L. Wang, M. Sugiyama, Z. Jing, C. Yang, Z. Zhou, and J. Feng. A refined

margin analysis for boosting algorithms via equilibrium margin. Journal of

Machine Learning Research, pages 1835–1863, 2011.

[93] B. P. Welford. Note on a method for calculating corrected sums of squares

and products. Technometrics, 4(3):419–420, 1962.

[94] G. U. Yule. On the association of attributes in statistics. Philosophical

Transactions of the Royal Society of London, 194:257–319, 1900.

[95] G. Zenobi and P. Cunningham. Using diversity in preparing ensembles of

classifiers based on different feature subsets to minimize generalization error.

European Conference on Machine Learning, 12:576–587, 2001.

[96] Z. Zhou and N. Li. Multi-information ensemble diversity. Multiple Classifier

Systems, pages 134–144, 2010.

[97] Z. Zhou, J. Wu, Y. Jiang, and S. Chen. Genetic algorithm based selec-

tive neural network ensemble. International joint conference on Artificial

Intelligence, 17:797–802, 2001.


