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Chapter 1
Introduction

Classically, there are just three phases of matter. These phases can be easily described

by imagining a simple system of spherical, interacting particles. With enough energy

these particles form a gas, moving freely and filling whatever vessel they are contained

in. If they are compressed or cooled sufficiently they condense and form a liquid, still

free to move around, but now with a fixed volume. If they are cooled further, the free

movement of the particles ceases, they solidify and are reduced to vibrating around

fixed positions relative to one another. The positions of these molecules can often

create long-range ordered structures, forming crystals.

This is the very simple model of matter which most people recognise. Of course, these

three phases encompass the states in which the vast majority of matter around us exists.

However, there are numerous other phases of matter that can only be described by

adding complexity to the model. For example, plasmas and Bose-Einstein condensates

can exist at the extremes of the energy spectrum, but require specific knowledge of the

subatomic structure of the atom.
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If the particles in this simple model are sufficiently distorted from a spherical shape,

through being elongated, flattened, or having non-spherical interactions with other par-

ticles, then additional phases can exist between the liquid and solid phases. These

“intermediate phases”, or mesophases, occur when the particles in a system align and

share a common orientation, similar to a crystal, but retain the ability to move trans-

lationally like a liquid. It is from these two characteristics that these mesophases are

termed liquid crystals.

The initial discovery of liquid crystals was made in the late 19th century by Friedrich

Reinitzer while experimenting with cholesteryl benzoate [1]. While melting and freez-

ing these materials, he noted the presence of two different liquid-like phases, one clear

and one cloudy, with a distinct phase transition between the two. Under microscopic

inspection, it was revealed that this cloudy phase had a crystal-like structure, and that

the material also had the ability to interact in unusual ways with polarized light [2].

However, it was the work by Georges Friedel in 1922 that categorized different liq-

uid crystal behaviours into specific classes, and gave credence to the idea that these

mesophases were new, distinct phases of matter [3].

1.1 Liquid crystals

There are many different liquid crystal phases, each with their own distinct properties

and characteristics. We can explain the major phase categories using a system of rod-

like (calamitic) molecules, a simple representation of a liquid crystal mesogen, that is,

the solid core of a liquid crystal molecule which gives it its geometric structure. The

elongated axis of a calamitic mesogen gives the molecules an orientation vector, along

which they will preferentially want to align.
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Some of the liquid crystal phases that can be achieved are illustrated in Fig. 1.1. The

simplest phase is the isotropic (I) state (Fig. 1.1a), in which both the positions and

orientations of these molecules are distributed randomly. This is identical to the liquid

phase of matter. If, on cooling or compression, the average of the molecular orientation

vectors becomes non-isotropic while the molecular motion remains fluid, we have a

liquid crystal phase. We can define the net orientation of these vectors as the global

system director n̂ and assign a liquid phase according to the following classifications

[4]:

(a) (b)

(c) (d)

Figure 1.1: Examples of some of the liquid crystal phases achieveable
with rod-like molecules. Examples shown include (a) isotropic, with nei-
ther orientational nor positional ordering; (b) nematic, with orientational
alignment but no positional alignment; (c) smectic A, where the molecules
have positional ordering in one dimension; and (d) smectic C, where the
orientation director is tilted with respect to the smectic layers.
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• If the mesogens have a net alignment along n̂ but lack any kind of translational

ordering, the system is in a nematic (N) phase (Fig. 1.1b). The nematic phases

can be sub-categorized depending on the geometry of the molecules. These in-

clude rod-like nematics, with elongated or calamitic mesogens such as prolate

spheroids or spherocylinders; discotic nematics, with “flattened” mesogens such

as discs or oblate spheroids; chiral nematics (cholosterics); and biaxial nematics,

which will be discussed in more depth later.

• The smectic (Sm) phases are characterised by orientationally aligned mesogens,

regular translational ordering in one dimension, but a random positional dis-

tribution in the other two dimensions. This gives the appearance of repeating,

fluid-like layers. There are a number of different types of smectic phases, with

the two most common being the smectic A (SmA, Fig. 1.1c) and smectic C

(SmC, Fig. 1.1d). In the smectic A phase the director n̂ is perpendicular to

the layers of molecules, while the smectic C phase has a director which is tilted

with respect to the layers. Other smectic phases include the smectic B, where

the in-layer distribution has a degree of hexagonal packing; and the chiral smec-

tic C (SmC∗), where the director n̂ is not identical between layers but instead

precesses around the layer normal.

• There are many more liquid crystal phases that exist outside of these two primary

categories, and are achieveable with different mesogenic shapes. For example,

more oblate shapes (such as cut spheres) can form both columnar and cubatic

phases [5], both of which are distinct from these groupings.

A change in phase behaviour is generally induced by changing the temperature, pres-

sure or otherwise exerting external forces on a molecular system. The ability to induce
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liquid crystal phase behaviour by freezing or melting leads to these phases being clas-

sified as thermotropic liquid crystals. There is also another family of liquid crystals,

termed lyotropics, which undergo phase changes based on molecular concentration.

These are typically comprised of amphiphilic molecules, consisting of both hydrophilic

and hydrophobic components, and are mixed with a solvent such as water. These sys-

tems are important in detergents and biological processes, and act as surfactants [6].

The molecules self-assemble in order to shield their hydrophobic components from the

solvent, forming micellar phases at low concentrations. As the concentration of these

molecules is increased, they can transition to columnar and lamellar layer phases [7].

Today, the most widespread implementation of thermotropic liquid crystals today is in

liquid crystal displays (LCDs). These have been primarily based around the twisted

nematic cell, which takes advantage of the light transmission properties of nematic

liquid crystals. An illustration of such a twisted nematic cell is shown in Fig. 1.2.

A nematic liquid crystal is sandwiched between two electrodes, each treated so as to

encourage the mesogens to line up with the surfaces in a desired direction. The two

surfaces have their preferred directions set perpendicular to each other, which makes

the mesogens gradually go through a 90◦ rotation across the width of the cell. In the

“off” state, light passes through a plane polarizer, it is rotated by the twisted nematic,

and passes through a second crossed polarizer without effect. In the “on” state, an

electric field is applied across the cell, inducing a polarization in the molecules. The

director of the nematic phase then aligns along the electric field, rather than to the cell

walls. Now that the molecules are parallel to the direction of light transmission, they

do not rotate the light as it passes through the cell and the light is extinguished by the

second polarizing filter [8].

The types of liquid crystals used in these displays are termed uniaxial nematics, as
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there is only one axis along which light can be transmitted without a change in its

polarization. Typical rod-like molecules which have the necessary shape and polar-

izability for use in twisted nematic devices include 4-cyano-4’-pentylbiphenyl (5CB,

shown in Fig. 1.3) and para-azoxyanisole (PAA) [4, 9].

The nematic phase behaviour exhibited by rod-like mesogens is one of the simplest to

manipulate, and it is the most widely-used liquid crystal phase in display technology

today. However, more complex mesogenic shapes can give rise to new liquid crystal

phases, with unique optical properties, and could form the basis for novel technologies.
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Figure 1.2: A twisted nematic liquid crystal cell, showing the “off” state
(A) which allows light transmission; and the “on” state (B), which ap-
pears dark. The mesogens, shown in green, reorientates themselves to align
along the electric field when it is present. Reproduced from Ref. [10].

Figure 1.3: 4-cyano-4’-pentylbiphenyl, or 5CB, a commonly used liquid
crystal in twisted nematic displays.
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1.2 Biaxial nematics

The rod-like molecule used to explain some of the fundamental liquid crystal phases

in the previous section has infinite rotational symmetry around its single axis of align-

ment. Work by Marvin Freiser in 1970 predicted that if a mesogen had less rotational

symmetry and instead had a second orthogonal alignment director, a new liquid crys-

tal phase could occur if both directors aligned simultaneously while retaining random

positional ordering [11]. This phase was dubbed the biaxial nematic phase (NB), as

there would be three separate orthogonal alignment axes, allowing light to pass freely

in two directions without affecting its polarization.

An example of a biaxial mesogen is a molecule with a board-like shape, as it has both

a “long” and “short” axis along which alignment is possible. A theoretical biaxial

nematic phase made from board-like molecules is shown in Fig. 1.4.

Figure 1.4: A biaxial nematic phase constructed from board-like meso-
gens, with l, m and n indicating the three orthogonal axes of alignment.
Reproduced from Ref. [12].
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This prediction of the biaxial nematic phase has attracted a lot of research attention

over the years [13]. Its special symmetries and multiple alignment axes raise the pos-

sibility of novel optoelectronic devices that could make use of these features. One spe-

cific proposal is the development of a faster alternative to the twisted nematic cell. In a

basic twisted nematic, the realignment of the nematic phase involves rotating the long

axis of the mesogens through 90◦ in order to switch between the “light” and “dark”

states. If a nematic could undergo a phase transition between uniaxial and biaxial

phases by changing the alignment of just the short axes of the molecules (l in Fig. 1.4),

then a reduced level of molecular movement could theoretically lead to much faster

display response times [14].

Within ten years of the initial theoretical prediction, Yu and Saupe made the first ex-

perimental observation of a biaxial nematic phase in a lyotropic liquid crystal. At a

very narrow temperature and concentration window, they were able to create micelles

that were board-like in shape [15]. However, the ultimate goal of a thermotropic bi-

axial nematic liquid crystal phase has presented a somewhat more difficult challenge.

In the late 1980s to early 1990s, a number of publications claimed to have discov-

ered thermotropic biaxial nematics using a variety of molecules with board-like shapes

[16, 17, 18]. However, macroscopic quantities of bulk nematic liquid crystals rarely

have a single system director. Instead they split into large “domains”, which interfere

with optical analysis techniques and made it difficult to prove that the claimed biaxial

nematic phases were real. It was not until the development of non-optical techniques

that the presence of a biaxial phase could be reliably examined in bulk samples [19],

and it was eventually shown that the claimed phases were instead uniaxial nematics

[20, 21, 22].

More recently, V-shaped or “bent-core” mesogens have been suggested as a superior
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candidate for the formation of a biaxial nematic phase [23]. As with the the board-like

molecules, these mesogens are inherently biaxial with a distinct pair of orthogonal long

and short axes. They can be constructed by linking together two rod-like mesogens via

a central component which defines a bend angle. An example of such a molecule that

has been examined experimentally is shown in Fig. 1.5. The degree of biaxiality of

the molecule, i.e. the relative length of the long axis compared to the short axis, is

governed by the bend angle of the molecule. The example in Fig. 1.5 has a bend angle

of ∼ 140◦ between the two arms.

Figure 1.5: An example of the chemical structure of a bent-core mesogenic
molecule [24].

Bent-core molecules had long been believed to be a poor choice of liquid crystal meso-

gen. It was assumed that if the molecules were allowed to rotate freely around their

long axis, then the large excluded volume would mean that densities would be too low

for reasonable liquid crystal behaviour [25]. The first bent-core mesogens were not

synthesized until the early 1990s by Matsunaga and coworkers [26, 27]. In 1996, a

bent-core molecule synthesized by Niori et al. was shown to have thermotropic phase

behaviour [28]. The publication of these findings kick-started a huge surge of research

interest into bent-core based liquid crystal phases, and the possibility of their use in

liquid crystal devices [29, 30, 31]. In particular, experimental analysis indicated the

possibility of an inducable polarity across the short axis of the molecules, suggesting

the possibility of phase alignment through the use of external electrical fields [32],

similar to how twisted nematic cells are controlled (see Fig. 1.2).
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The synthesis and experimental testing of a single bent-core mesogenic compound for

the presence of a biaxial nematic phase is a difficult and time-consuming procedure.

The systematic testing of a wide range of molecular geometries within a reasonable

period of time is virtually impossible. It is therefore important for the synthesis of

suitable mesogens to be guided by theoretical predictions, in order to determine which

molecular geometries offer the best chance of forming a biaxial nematic phase.

1.3 Molecular simulation

Molecular simulation has proven itself to be an invaluable tool for liquid crystals re-

search over the last fifty years. By directly modelling the interactions of mesogenic

shapes, theoretical phase behaviour predictions can be directly tested without the need

to synthesize complex molecules. It is especially useful when the techniques for cre-

ating specific shapes have not yet been developed. A huge strength of simulation is

that the molecular arrangement and statistical properties of a system can be directly

inspected, and the phase behaviour can be examined without the need to rely on the

sometimes indirect observations that are necessary with experimental systems. Results

from simulations can be fed back into theory to validate or improve their predictions

and provide a more robust insight into which properties are important in achieving

desired liquid crystal phase behaviours.

As liquid crystal phase behaviour is reliant on the collective motion and alignment

of many mesogens, relatively large quantities of molecules must be simulated for

meaningful results. Full atomistic simulation of sufficient quantities of molecules is

therefore impossible without vast quantities of computational power. By simplifying
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the molecules down to the interactions between their mesogenic cores, we can ob-

tain a strong understanding of which properties are most important to the fundamental

physics of these systems, while remaining simple enough to calculate in a reasonable

time.

1.4 Thesis outline

In this thesis we aim to extensively explore the available parameter space of bent-

core mesogens using molecular dynamics simulations of a highly simplified molecular

model. The goal of this work is to provide insight into which structural properties are

important to the phase behaviour of bent-core systems, particularly with the goal of

achieving a biaxial nematic phase.

In Chapter 2, we detail the molecular simulation concepts used for the simulation of

liquid crystals in this thesis, as well as the main analysis methods used for determing

the phase behavior that occurs. In Chapter 3 we investigate how the liquid crystal

phase behaviour of bent-core mesogens is related to the bend angle between the two

arms of the molecules. Chapter 4 focuses on how the length of the mesogenic arms is

influential in the liquid crystal phase behaviour of these systems. The phase behaviour

of binary mixtures of mesogens is studied in Chapter 5, in order to determine their

ability to alter the monocomponent phase behaviour and potentially form new phases.

Chapter 6 then concludes this thesis with a discussion and summary of the results, and

possible avenues for further research.



Chapter 2
Molecular simulation of liquid crystals

When computing resources first became available to the public, one of their earliest

applications was in the simulation of complex multi-body dynamical systems. It was

in 1953 that Metropolis et al. published the first ever computer study of a liquid of

hard discs in two dimensions [33], and this was rapidly followed by the first study

of a three dimensional liquid [34]. These papers established the basis of the Monte

Carlo method (MC) for studying the behaviour of multi-body systems. Within a few

years, Alder and Wainwright had published the first results of computer simulations

that modelled the interactions between hard spheres using classical mechanics [35] –

the first implementation of a molecular dynamics (MD) simulation.

These breakthrough works were essentially proof-of-concepts, and were verified by

calculating the equations of state and comparing them to values obtained through other

theoretical techniques. The first actual novel discovery made using molecular simula-

tion was presented in a pair of papers by Alder and Wainright [36] and Wood and

Jacobson [37]. They suggested that a system of spheres with purely repulsive inter-

actions and no attractive forces could undergo a phase transition from a liquid into an

33
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ordered crystal. This was one of the first “experimental” results that supported the idea

that the repulsive interactions between molecules are the most important property that

defines the behaviour of simple liquids [38].

The last fifty years have seen these two simulation methods of MC and MD substan-

tially developed, refined and improved, but their fundamental methods remain abso-

lutely central to molecular simulation today. In this chapter we will outline the methods

involved in MC and MD simulation, and their application in the simulation of liquid

crystal mesogens. We will also detail some of the methods used for analysing the data

generated by our simulations.

2.1 Monte Carlo simulations

In statistical mechanics, a thermodynamic ensemble is defined through a choice of

values for three macroscopic system properties – a value for internal system energy

or temperature (E or T ); a value for the pressure or volume of the system (P or V );

and the number of molecules or chemical potential (N or µ). The type of ensemble is

often abbreviated as the combination of these three letters – for example, a constant-

volume, constant-energy system can be referred to as an NVE ensemble, while an

isobaric-isothermal system is an NPT ensemble.

On the microscopic level, the instantaneous configuration (microstate) of a system

comprised of N rigid, aspherical molecules can be fully described by the complete

set of position vectors rN = ri . . . rN and orientation vectors uN = ui . . . uN . For a

specific choice of values for the macroscopic thermodynamic variables, there can be

infinitely many microstates in which the molecular configuration matches these values.
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An ensemble can be defined as a probability distribution for finding the system in any

one of the possible microstates at a specific time.

Some thermodynamic properties of an ensemble can be calculated by measuring the

value of the property in every microstate and then integrating across all possible mi-

crostates, weighting each microstate by its probability of occuring. The ensemble av-

erage of some property A in the NVT ensemble can be written as

〈A〉 =

∫
drN duN A(rN ,uN) P (rN ,uN), (2.1)

where the probability of the configuration occuring, P (rN ,uN), is given by

P (rN ,uN) =
exp(−βE(rN ,uN))∫

drM duM exp(−βE(rM ,uM))
, (2.2)

where E is the total internal energy of the system, the numerator is the Boltzmann

factor, and the denominator is the partition function of the complete ensemble [38].

In anything but the smallest of systems where N is very close to 1, the calculation of

these integrals is impossible to achieve either analytically or numerically. The strategy

behind Monte Carlo simulations is that the values of these integrals can be estimated

through random sampling of a large number of microstates. In the most basic approach

this can be done by generating a random set of positions and orientations rN and uN for

a set of N molecules, measuring the value of the property A and its Boltzmann weight

in that microstate, and repeating for a very large number of possible configurations.

Used naïvely, this strategy rapidly runs into trouble. The distribution of probable con-

figurations in the large parameter space is very inhomogeneous. In a dense molecular

system, the vast majority of randomly generated configurations will result in at least
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two molecules overlapping. If a pair of molecules have a large repulsive force at short

separations, then each overlapping pair adds a huge contribution to the internal energy

of the system, and as a consequence the Boltzmann factor assigns the configuration a

very low probability of occuring. The high probability configurations without over-

lapping molecules occupy a relatively tiny amount of the parameter space, such that

random sampling will generate vastly more unimportant than important configurations

by many orders of magnitude, wasting simulation time and failing to properly sample

the parameter space corresponding to probable configurations.

2.1.1 Metropolis algorithm

The Metropolis algorithm avoids this pitfall by using a technique called importance

sampling. Instead of generating configurations entirely at random and weighting them

by their Boltzmann factor, the Metropolis method performs a series of random pertu-

bations on an initially probable microstate. The Boltzmann factor is used to decide

whether or not to accept the new configuration, and the measured values from all ac-

cepted microstates are averaged with equal weight.

The Metropolis method biases the simulation towards microstates that are more likely

to occur by only introducing small pertubations from a known acceptable microstate.

However, it is still important to ensure that the parameter space is sampled randomly.

This is done by establishing a Markov chain: a sequence of configurations in which a

newly perturbed configuration depends only on the configuration before it, and has no

memory of the configurations that came before [39]. The steps of a Metropolis Monte

Carlo algorithm that achieve this in an NVT ensemble of rigid, anisotropic particles

are:
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1. A molecule from the system is selected at random (if molecules are selected

sequentially, then the steps are not independent of one another)

2. The molecule is perturbed in some way through a random translation or rotation

3. The change in internal energy of the entire system due to the pertubation is de-

termined

4. The move is accepted or rejected based on the new microstate’s probability, as

given by its Boltzmann factor.

For rigid anisotropic molecules, the pertubations are typically a small randomly gen-

erated translation or rotation up to a maximum pertubation size. In more complex

systems, the pertubations can be more varied – for example, a pertubation might con-

sist of a bond rotation in a system of molecules with increased degrees of freedom, or

a system in the NPT ensemble can modify the pressure by scaling the size of the simu-

lation cell and the intermolecular separations by a random amount to simulate volume

fluctuations. Regardless of which pertubation is undertaken, the initial choice of which

parameter to modify is chosen at random so as not to break the Markov chain.

The Boltzmann factor is used in the decision of whether or not to accept the newly

perturbed configuration. If the change in energy from the current configuration c to

the new configuration p is less than zero, then the total internal energy of the system

has been reduced by making the pertubation and the move is automatically accepted.

Otherwise, the move is accepted according to the probability

P (c→ p) = exp(−β∆E). (2.3)

In hard body systems where the energy barrier is infinite, ∆E is infinite when two
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molecules overlap and the probability is zero. For soft potentials there is a finite prob-

ability that the system can exist in a higher energy configuration, allowing energy

barriers to be overcome due to thermal fluctuations.

2.2 Molecular dynamics simulations

In contrast to the stochastic nature of Monte Carlo simulations which calculate system

properties based on ensemble averages, molecular dynamics simulations are fully de-

terministic, and properties of systems are calculated using time averages. Molecular

dynamics techniques aim to solve the classical equations of motion for a system of N

interacting bodies such that the individual trajectories of each body can be traced as a

function of time.

In order to simulate the motion of a particle i within a system, we need to solve the

second law of motion

d2

dt2
ri(t) =

d

dt
vi(t) = ai(t) =

Fi(t)

mi

, (2.4)

where ri(t) is the position of particle i at time t, vi(t) is its velocity, mi is the mass of

particle i and Fi is the force acting on particle i at time t. The force acting on a particle

arises from its interactions with the potentials of every other particle in the system at

that instant, that is

Fi(t) = −∇Ui(r1(t) . . . rN(t)). (2.5)

In dense systems where there are many particles with soft potentials interacting simul-

taneously, these equations of motion take the form of a complex multi-body interaction
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and are impossible to solve analytically. In time-driven molecular dynamics, the equa-

tions of motion are solved using a finite difference method of numerical integration.

In knowing the full set of positions of the particles at a time t, we attempt to resolve

the positions of every particle at a later time t + δt, where δt is the timestep of the

simulation. Once the full set of particle positions are known at the time t+ δt, they are

used as the new input and the system configuration at t+ 2δt can be computed. In this

manner, the trajectory of an entire system over time can be found iteratively.

In time-driven molecular dynamics simulations, the timestep δt has a constant value

for the duration of the simulation. Sensible selection of a value for δt is very important

– a small value will increase the accuracy of the calculations, but will also increase the

number of iterations required to move the system forwards through time, slowing the

speed of the simulation. If the timestep is too large, the simulation loses accuracy – a

large timestep can leave two potentials in a highly improbable configuration, or even

miss interactions entirely. It is therefore better to be cautious where possible and use

as small a timestep as is reasonable, while still being able to simulate sufficiently small

motions and obtain good time averages for any measured properties.

2.2.1 Integration algorithms

There are a number of choices available for performing the numerical integration of

the equations of motion. The most straightforward of these is the Verlet method [40],

obtained by performing a Taylor expansion for the position of a particle ri around t

and t+ δt, such that

ri(t+ δt) = ri + viδt+
1

2
a2
i δt

2 + . . . ,

ri(t− δt) = ri − viδt+
1

2
a2
i δt

2 + . . . .

(2.6)
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By adding together these two equations, we can eliminate the velocity and get

ri(t+ δt) = 2ri − ri(t− δt) + a2
i δt

2 + . . . , (2.7)

which gives the new position of a particle at time t+ δt knowing only the current force

on it, Fi(t), its current position ri(t) and its prior position ri(t− δt).

While straightforward, the standard Verlet algorithm has a couple of significant flaws.

Firstly, the addition of a O(δt2) term to an O(δt0) term can lead to the summation of

two numbers many orders of magnitude apart, which can give rise to significant prob-

lems with numerical accuracy as the simulation proceeds [41]. Secondly, velocities are

not calculated explicitly and are instead obtained by taking the average velocity over

neighbouring timesteps, i.e.

vi(t) =
ri(t+ δt)− ri(t− δt)

2δt
. (2.8)

As the velocities are not calculated directly from the forces and are instead averaged,

they may not be well-behaved and system properties which depend on them (e.g. ki-

netic energy) can be inaccurate.

There are two main improvements to the Verlet algorithm. The first is Verlet leapfrog

[42], where instead velocity is calculated at a half timestep t+ 1
2
δt, given by

vi(t+
1

2
δt) = vi(t−

1

2
δt) + aiδt, (2.9)

and then the positions of the particles are updated using these mid-timestep velocities,

i.e.

ri(t+ δt) = ri(t) + vi(t+
1

2
δt)δt. (2.10)
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This resolves the problems with adding together two values of different magnitudes,

and the velocities are calculated directly from the interacting forces. However, the

velocities are not known at the same time as the particle positions, and again an average

of two timesteps must be taken to find their mid-point value.

The second algorithm, velocity Verlet, uses a two-step procedure to resolve this issue

[43]. Firstly, the half-step velocity is obtained via

vi(t+
1

2
δt) = vi +

1

2
δt ai(t), (2.11)

and the position at the full timestep is calculated via

ri(t+ δt) = ri(t) + vi(t+
1

2
δt)δt. (2.12)

As the positions of the particles at t + δt are now known, so are the forces between

them, and so the velocities can be brought up to date in the second step, using

vi(t+ δt) = vi(t+
1

2
δt) +

1

2
ai(t+ δt). (2.13)

Although this method requires an additional step and a second set of redundant veloci-

ties need to be calculated, both velocities and positions at t+δt are determined directly

from the interacting forces. The two values are continuously tracked as adjustments to

the positions and velocities from the previous steps.

The choice between Verlet leapfrog and velocity Verlet depends primarily on the com-

putational cost of calculating the second set of velocities, versus the necessity to know

precise values for the velocities of the particles. With molecules more complex than
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simple spherical potentials in an NVE ensemble, the cost is multiplied with the effects

of molecular rotation, barostats and thermostats.

2.2.2 Motion of non-spherical particles

The algorithms for the integration of the equations of motion given in the previous

section can be used to obtain the linear positions and velocities of particles in a many-

body system. However, liquid crystal mesogens gain their phase behaviour from being

nonspherical, and thus the orientation and angular velocity of the molecules must also

be considered.

The orientation of a rigid nonspherical body can be defined in a number of ways. One

of these is through a set of Euler angles. These are the three angles that define a set

of rotations from which an initially aligned molecule can be rotated into an arbitrary

orientation. If we have a molecule with a set of orthogonal axes x̂, ŷ and ẑ, we can

define its orientation as a rotation around its own ẑ axis by an angle of φ, followed by

a rotation of θ around its x̂ axis, then a third rotation of ψ around its new ẑ axis [44].

An alternative representation of rotation is through the use of quaternions, four dimen-

sional unit vectors of the form Q = (q0, q1, q2, q3). These have the advantage in that

there is no way a rotation can become “locked” unlike Euler angles, and the compu-

tation of rotation matrices are a lot more straightforward [45]. A quaternion can be
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calculated from a set of Euler angles using the definitions

q0 = cos

(
θ

2

)
cos

(
φ+ ψ

2

)
,

q1 = sin

(
θ

2

)
cos

(
φ− ψ

2

)
,

q2 = sin

(
θ

2

)
sin

(
φ− ψ

2

)
,

q3 = cos

(
θ

2

)
sin

(
φ+ ψ

2

)
,

(2.14)

and can be ensured they form a unit quaternion through the check that [45]

q2
0 + q2

1 + q2
2 + q2

3 = 1. (2.15)

The motion of a fully rigid molecule can be described by calculating linear and rota-

tional motion separately. The linear motion of its center of mass can be found through

the use of one of the Verlet integration techniques detailed in the previous section, and

its orientation and angular velocity can be derived in parallel using quaternions. A

modification to the Verlet leapfrog algorithm can be used to model this [46], where the

angular momentum of a molecule at half and whole timesteps can be calculated from

Ii(t) = Ii(t−
1

2
δt) +

1

2
δtτ i(t) (2.16)

and

Ii(t+
1

2
δt) = Ii(t−

1

2
δt) + δtτ i(t) (2.17)

where τ i(t) is the torque on the molecule at time t around its center of mass ri(t). The

current time derivative of the quaternion, Q̇i(t), can be calculated through a simple

matrix multiplication of Qi(t) and the angular velocity at t [45], and the quaternions
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at the half-timestep found through

Qi(t+
1

2
δt) = Qi(t) +

1

2
δtQ̇i(t). (2.18)

By combining Ii(t + 1
2
δt) and Qi(t + 1

2
δt), Q̇ can be found at the half timestep, and

the final quaternion at the full timestep found through

Qi(t+ δt) = Qi(t) + δtQ̇i(t+
1

2
δt) (2.19)

which is analogous to Eq. (2.10). A more complex implementation also exists for

velocity Verlet integration [47].

For non-rigid molecules the procedure of updating positions is much more complex,

due to the degrees of freedom in the flexing and stretching of molecular bonds. A

common way to resolve this is to model the movement of every non-rigid component

without bond constraints, and then reintroduce the bonds by iteratively applying small

deviations to the components according to the restoring forces of the bonds. Two com-

monly used methods include the SHAKE algorithm [48] based on Verlet leapfrog, and

the RATTLE algorithm [49] based on velocity Verlet. The presence of non-rigid bonds

in a molecule can also add intramolecular motions which are faster than the motion

of the center of mass motion of the molecule, e.g. bond oscillations. The selection of

a timestep δt must be considered such that the effects of these extra degrees of free-

dom are not ignored, and to ensure that the system does not move into an unphysical

configuration.
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2.2.3 Ensembles

Using the method described in Sec. 2.1.1, Monte Carlo simulations are typically per-

formed in the NVT ensemble. Molecule moves do not attempt to conserve the energy

of the system, and instead act to bring the system into equilibrium with an external

temperature. With the addition of box volume change moves, the NPT ensemble can

also be simulated.

As molecular dynamics simulations are based on the classical equations of motion,

energy is strictly conserved and simulations are performed in the NVE ensemble by

default – in fact, testing for a drift in internal energy of the system is one way of

detecting whether the simulations are accurate and the timestep is sufficiently small.

To simulate systems in the NVT or NPT ensembles, a thermostat and barostat need

to be implemented. These ensembles are required for our work as thermotropic liquid

crystal phase transitions are only induced experimentally by a change in the pressure

or temperature of the system.

2.2.3.1 Thermostats

The temperature of a molecular system is a property of the average kinetic energy of

the constituent molecules, which in turn is related to the linear and angular velocities

of the molecules. A thermostat can be implemented by directly altering the velocities

of the molecules, such that their kinetic energy is brought in line with the distribution

of energies expected at the desired temperature.

There are several different methods for scaling the linear velocities of the molecules
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within a molecular dynamics simulation. Among these are the Berendsen [50], Gaus-

sian [51] and Nosé-Hoover [52, 53] thermostats. The simplest of these to implement

is the Berendsen, which is a simple scaling of the velocities of the molecules between

each timestep, given by

v′i(t) = XB(t)vi(t), (2.20)

where v′i(t) is the new velocity of particle i after scaling, and XB is a system-wide

velocity rescaling factor. It is defined as

XB(t) =

[
1 +

δt

τ

(
Text
T (t)

− 1

)]1/2

, (2.21)

where Text is the desired barostat temperature, T (t) is the current instantaneous tem-

perature of the system, and τ is a time constant that defines how quickly the thermostat

reacts.

The scalings of the Berendsen thermostat are decoupled from the equations of motion

and are conducted between timesteps. This is a rather crude way of adjusting the

temperature, as energy is simply added or removed without a physical explanation.

The Nosé-Hoover method instead modifies the equations of motion themselves to add

a friction coefficient, as if the molecules are continuously interacting with a heat bath.

The equations of motion under this thermostat are given by

d2

dt2
ri(t) =

d

dt
vi(t) =

Fi(t)

mi

−X (t), (2.22)

where the friction coefficient X is given by the first order differential equation

d

dt
X (t) =

1

τ 2

[
T (t)

Text
− 1

]
. (2.23)
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As the friction coefficient is a time-based derivative, its trajectory through the life of

a simulation is also tracked using the same half-step method used to track velocity in

Verlet leapfrog (Eq. 2.9) or velocity Verlet (Eq. 2.13).

2.2.3.2 Barostats

As with Monte Carlo simulations, the pressure of a system can be controlled by scaling

the volume of the simulation cell and the distances between the molecules. There are

barostat equivalents for both the Berendsen and Nosé-Hoover thermostats that follow

the same concepts. The Berendsen barostat is implemented by scaling the volume of

the simulation cell between timesteps by a factor

ηB(t) = 1− δt

τ
(Pext − P (t)), (2.24)

where Pext is the desired barostat pressure. The simulation cell vectors and distances

between each molecule and the system center of mass are scaled in each dimension by

(ηB)1/3.

The equations of motion given by the Nosé-Hoover thermostat can modified to add

a term that compresses or decompresses the system and scales particle positions con-

tinuously using a piston-like effect, as formulated by Melchonnia [54]. The modified
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equations of motion to incoroporate both the thermostat and the barostat are given by

d

dt
ri(t) = vi(t) + η(ri(t)− rCOM),

d

dt
vi(t) =

Fi(t)

mi

− vi(t) [η(t) + X (t)] ,

d

dt
X (t) =

1

τ 2
T

[
T (t)

Text
− 1

]
,

d

dt
η(t) =

P (t)− Pext
ρNkBTextτ 2

P

,

d

dt
V (t) = 3η(t)V (t),

(2.25)

where rCOM is the center of mass of the entire system, η is the piston-like barostat fric-

tion and τP and τT are the response times of the barostat and thermostat respectively. A

full implementation of the Nosé-Hoover barostat using the Verlet leapfrog and velocity

Verlet integration techniques can be found in the DL_POLY_2 user manual [55].

2.2.4 Event-driven molecular dynamics

In Monte Carlo simulations, it is possible to model "hard" potentials, e.g. a solid sphere

potential of the form

U(rij) =


∞ rij ≤ σ,

0 rij > σ,

(2.26)

where σ is the radius of the sphere and rij is the separation between the two interacting

spheres. This leads to acceptance probabilities of either 0 or 1 depending on whether

two spheres are overlapping.

Due to the discrete changes in energy, these types of potentials cannot be simulated

using normal molecular dynamics techniques. With a fixed time step, the simulation
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will overshoot the step changes in the potential and, in the case of infinitely repulsive

potentials such as the hard sphere case, enter impossible configurations. One solution

to this is to use a variable-sized timestep which will fast-forward the system to the

exact time of the next particle interaction. This technique is known as event-driven

molecular dynamics.

In an event-driven simulation, the size of the next timestep is chosen by comparing the

trajectories of every possible pairing of particles and calculating the time until their

next collision, if at all. The smallest value of all these collision times system-wide

is the time of the next event, and is used as the value of δt for the current molecular

dynamics timestep. Every particle in the system is fast-forwarded to the new time,

and the velocities of the two particles that have collided are updated using simple

conservation of momentum laws. The process is then repeated to find the next pairing

of particles which will collide, and so forth.

In order for the time to the next event to be calculated, all the equations of motion in

the system must be able to be determined analytically, at least until the time of the next

collision. Therefore there cannot be any continuously varying potentials in the system,

and all motion is ballistic between collisions. This also means that no Verlet-style

integration algorithms are required to evolve the system.

At low densities, or in systems where the check to see if two particles will collide

is simple to compute, event-driven molecular dynamics can be very fast and systems

in excess of 106 particles have been successfully simulated for long timespans with

relatively little computational time [56]. However, at high densities the values of δt

can become very small and the overall speed of the simulation can drop below that of

using a soft-potential equivalent due to the extra step of comparing all future collision

times. In addition, detecting the time of next collision of two non-spherical particles is
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far more computationally expensive to calculate than the simple ballistic behaviour of

spherical particles.

There are a number of techniques that can be used to reduce the number of collision

time checks required and speed up event-driven molecular dynamics simulations. One

of these is “neighbour lists”, where the system is subdivided into small cells and only

pairs of particles in the same or neighbouring cells are checked for their collision times

[35]. Another is the use of asynchronous algorithms, where the trajectories of particles

are only updated when they are in the vicinity of a colliding pair or are themselves

tested for collision against another particle [57, 58]. Each particle keeps track of its

own current time in the simulation, and their ballistic motion means that particles can

be independently updated to the current “global” time as needed. Using these tech-

niques, it is feasibly possible to simulate liquid crystal systems of mesogens with hard

potentials using deterministic molecular dynamics methods [59].

2.3 Periodic boundary conditions

Regardless of which simulation techniques are used, current computational power typ-

ically restricts us to . 106 interacting potentials. If these potentials are within a simu-

lation cell that has solid walls, a significant fraction of the interactions will be between

the molecules and the edges of the cell. These boundary effects can strongly influence

the behaviour of the system and provide simulation results that are not indicative of

true behaviour in bulk systems.

These finite-size effects can be reduced through the use of periodic boundary condi-

tions [60]. Under these conditions, the main simulation cell is assumed to be a small
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portion of a much larger bulk material. Exact replicas of the main cell are placed on

each of its edges, termed image cells. When a particle moves within the main cell,

all of its replicas in the image cells move in an identical fashion. When a particle

reaches the boundary of a cell, it “wraps around” the edges of the cell and reappears

on the other side – effectively the same as the particle moving into an image cell, and a

replica particle entering the main cell. A two dimensional illustration of this is shown

in Fig. 2.1. As well as particle movement wrapping around the cell boundaries, the

presence of image particles allows for two particles on opposite sides of the main cell

to interact with each other via their image replicas.

Figure 2.1: A two-dimensional example of periodic boundary conditions.
The white cell is the real simulation cell, and the shaded cells are the image
cells.
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Using periodic boundary conditions can introduce new finite size effects which must

be accounted for. If the range of a potential is greater than half the length of the short-

est edge of the main cell, then a particle may interact with itself via its own image,

and can introduce artificial periodicity to the system [61]. This is especially important

to consider in liquid crystal simulations, as elongated mesogens can span a significant

length of a simulation cell and self-interact if not simulated in large enough quanti-

ties, where the artificial periodicity can be mistaken for the formation of liquid crystal

phases.

2.4 Choice of simulation technique

In this thesis, we will be using molecular dynamics simulation techniques exclusively.

To date, Monte Carlo methods been widely used due to the relative simplcity in which

they can be implemented, compared to the complexity of the full equations of mo-

tion of molecular dynamics techniques. However, the ongoing exponential growth in

available computer power means that it is now feasible to perform molecular dynam-

ics simulations on reasonably large sample sizes (tens of thousands of potentials) and

obtain bulk properties of simulated systems in a reasonable amount of time.

As liquid crystal phases require the simulation of high density liquids, Monte Carlo

techniques can sometimes suffer from a large number of rejected trial moves due to

overlapping molecules. In addition, the collective motion of all molecules simultane-

ously in molecular dynamics can lead to faster and clearer system equilibration follow-

ing a barostat or thermostat parameter change. These collective motions can be impor-

tant in the formation of liquid crystal phases, which involve the mutual alignment of
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large numbers of molecules simultaneously. Some properties of a system (e.g. com-

pressibility) can also be more efficiently calculated using molecular dynamics [60],

while some dynamical properties (e.g. transport coefficients) cannot be directly calcu-

lated at all using Monte Carlo techniques.

2.5 Results analysis

In order to analyse the phase behaviour that occurs within our simulations, it is nec-

essary to determine both what the phases are and where the transitions occur. In this

section we describe a number of tools used for identifying the properties of our results

that are indicative of liquid crystal phases.

2.5.1 Equation of state

In all simulations, the equation of state of a simulation run was traced by plotting the

pressure of the system against the number density of the molecules. In a single phase,

the equation of state will describe a smooth curve of density increasing as pressure

increases. At the mesophase transitions, the collective re-ordering of the molecules

causes a discontinuity in the system density. In practice, this is observed as separate

“branches” in the equation of state, with each branch corresponding to a separate phase

[62]. The locations of these branches can accurately tell us the pressure windows for

each mesophase, but very little about the actual molecular arrangement of the phase.

There are a number of theories which can successfully predict the equation of state

for different molecular systems in the isotropic liquid phase. By selecting a suitable
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theory, we can check that our simulations are representative of a true isotropic liquid

before the simulation runs begin, and to identify the point at which the liquid phase

ends and the mesophases begin. For ideal gases, the equation of state is given by

Z =
βP

ρ
= 1, (2.27)

where ρ is the molecular density and Z is the compressibility of the gas. In the ideal

gas limit, the molecules have no volume and the compressibility is invariant. For a

system comprised of hard spheres, the compressibility can be accurately described by

the Carnahan-Starling equation [63]

Z =
1 + η + η2 − η3

(1− η)3
, (2.28)

where η, the packing fraction, is given by

η = ρ
πσ3

6
, (2.29)

where σ is the hard-sphere diameter. It has recently been shown that repulsive soft

potentials that approximate hard sphere behaviour can have their compressibility ex-

pressed by a modified form of the Carnahan-Starling equation, given by

Z =
1 + η + aη2 − bη3

(1− η)3
, (2.30)

where a and b are fitting parameters that can be determined empirically depending on

the potential used [64].

If we have molecules which are composed of a number of soft potentials linked to-

gether, we can combine Eq. (2.30) with the SAFT theory of polymerization [65] and
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Wertheim pertubation theory of polymerization [66] and derive an equation for the

compressibility for these molecules. The full derivation is given in Appendix A, and

the final-line equation is

Z =1 +m

[
4η + (a− 3)η2 + (1− b)η3

(1− η)3

]
− (m− 1)η

[
a− 3 + 2η(1− b)

4 + (a− 3)η + (1− b)η2
+

3

1− η

]
,

(2.31)

where a and b are the same fitting parameters from Eq. (2.30), η is the same packing

fraction as Eq. (2.29) and m is the average number of potentials per polymer.

In order to select appropriate fitting values for a and b, Eqn. (2.31) was tested against

a number of datasets obtained from simulation results. This is detailed in the appendix

section A.2. From these tests, we determined that the fitting parameters of a = 1

and b = 1 (equivalent to the hard-sphere Carnahan-Starling equation of state) were

the most appropriate in describing the densities of our soft potential systems in the

isotropic liquid phase.

2.5.2 Order parameters

As liquid crystal phases are characterised by the way in which mesogens are mutually

aligned, quantifying this level of alignment is a useful tool for the identification of

phases. Different order parameters can be used to quantify different kinds of mutual

alignment, and together can be combined to identify specific types of phase behaviour.

In our case, it is useful to define a pair of uniaxial nematic and biaxial nematic order

parameters, which will indicate when molecules have aligned along a common primary

and secondary axis respectively.
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We define a set of three orthogonal axes â, b̂ and ĉ within the frame of reference of a

single bent-core mesogen, and assume that these are the axes along which the mesogen

will preferentially align. We can then define the uniaxial nematic order parameter Q2
00

and biaxial nematic order parameter Q2
22 using the equations

Q2
00 =

1

2

(
3 cos2 θ − 1

)
,

Q2
22 =

1

2
(1 + cos2 θ) cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ, (2.32)

where θ, φ and ψ are the Euler angles mentioned in Sec. 2.2.2. When a system is

perfectly isotropic, Q2
00 = Q2

22 = 0. In a perfect uniaxial nematic phase Q2
00 = 1 while

Q2
22 = 0, and in a perfect biaxial nematic phase Q2

00 = Q2
22 = 1 [67].

In the absence of an external field or force encouraging molecules to arrange in a

specific direction, we do not know which set of laboratory axes the molecules will

be aligning themselves to. Therefore, we need to use the directions of the molecules

themselves to define our set of lab axes.

For each of the three orthogonal molecular unit axes, we define an order tensor given

by

Qαα =
1

2N

N∑
i=1

(3αi ⊗ αi − I) (2.33)

where N is the number of molecules, I is the second-order, unit tensor and α ∈

{â, b̂, ĉ} for each molecule [45]. We then diagonalize each of these order tensors

to obtain three sets of eigenvalues, which are sorted from largest to smallest and la-

belled λ+
α , λ0

α and λ−α . Whichever of the three λ+ eigenvalues is the largest indicates

the molecular axis that is the most strongly aligned. Its corresponding eigenvector is

taken as being our laboratory Z-axis, ẑ. In turn, the eigenvector corresponding to the

second largest value of λ+ gives the laboratory Y-axis, ŷ. The final corresponding
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eigenvector defines our X-axis, x̂.

With these axes defined, the order parameters Q2
00 and Q2

22 can be redefined as

Q2
00 = ẑ ·Qzz · ẑ, (2.34)

Q2
22 =

1

3

(
x̂ ·Qxx · x̂ + ŷ ·Qyy · ŷ − ŷ ·Qxx · ŷ − x̂ ·Qyy · x̂

)
, (2.35)

which are equivalent to the definitions given in Eqn. (2.32).

2.5.3 Pair correlation function

The pair correlation function g(rij) can be used to detect regular structure and ordering

within a liquid system, and is useful for detecting phases that are otherwise indistinct

when using order parameters alone, e.g. smectic A and uniaxial nematic. It is defined

as the distribution of all pairwise intermolecular distances in the system, normalized

by the equivalent distribution of distances in an ideal gas. The pair correlation function

can therefore be given by the equation

g(r) =
V

N2

〈
N∑
i

N∑
i 6=j

δ(r− rij)

〉
(2.36)

where δ is the Dirac delta function [60]. The resulting distribution gives the probability

that for a given molecule, another molecule will be a distance r away. If regular struc-

ture between molecular centers is present in the system (e.g. smectic phases), g(r) will

have peaks at repeating intervals.
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2.5.4 Visual inspection

As mentioned in Chapter 1, one of the great strengths of molecular simulation is the

ability to directly inspect the positions and orientations of molecules within a system.

We can have a clearer understanding of the values obtained through pair correlation

functions and order parameters if we know what kind of phase behaviour they corre-

spond to. Therefore, it is very useful to obtain qualitative information about the current

phase of a simulated system by visualizing it.

Throughout this thesis, we make extensive use of QMGA [68], a molecular visualiza-

tion package designed specifically for rendering the configuration of molecular sys-

tems of arbitrary objects. One of the strengths of QMGA is that molecules can be

coloured based on their alignment to a pre-speficied system director, on a spectrum

from blue (for fully aligned) to red (for 90◦ out of phase). By combining the coor-

dinate data of our systems with the global alignment director determined through the

order parameter calculations in Sec. 2.5.2, we can visualize areas of common align-

ment within a system based on colour. We can also use QMGA to highlight specific

parts of a molecule in order to inspect layered phases, such as smectics. By pairing

these visualizations with quantitative data from other analysis techniques, we can cat-

egorize and identify phase behaviour more successfully.

2.6 Summary

In this chapter we have described the theory behind the two main methods used for

simulating the phase behaviour of liquid crystal mesogens, and defined a number of
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the tools we will be using to identify any phases which are formed during our simula-

tions. As we will be using molecular dynamics simulations for the modelling of our

mesogens, in the next chapter we will build a model of a bent-core molecule suitable

for use with this simulation technique. We will then test the validity of our model

against existing theoretical predictions and compare to Monte Carlo-based results, and

analyse the effect of bend angle and system size on the overall phase behaviour.



Chapter 3
Phase behaviour of 11-bead bent-core

molecules

In this chapter, we begin by creating a simple model of a bent-core mesogen. We

conduct molecular dynamics simulations with this model in order to test its validity,

and the suitability of our simulation methods are compared to existing theories. The

spontaneous phase behaviour occuring in monocomponent systems of these mesogens

is explored as they are compressed from an initially isotropic state, and the parameter

space of bend angle and pressure is investigated with respect to the resulting liquid

crystal phase behaviour.

60
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3.1 Background

There have been two different important theoretical treatments used for predicting the

phase behaviour of simple bent-core molecular systems. Teixeira et al. [69] used ex-

cluded volume calculations of hard spherocylinder dimers to derive a phase diagram of

bend angle against density for bent-core molecules in the Onsager limit, where the ratio

of molecular arm length L to arm diameterD is L� D. A reproduction of their phase

diagram is shown in Fig. 3.1, which indicates four distinct regions. These consist of

the isotropic phase, the uniaxial nematic phase for long molecules with a large internal

bend angle, the discotic nematic phase for molecules with a much smaller bend an-

gle, and the biaxial nematic, where both types of nematic alignment are present. Prior

mean-field theory calculations by Luckhurst et al. on more general biaxial particles

without cylindrical symmetry [70] have also been re-applied specifically to bent-core

molecules, and a similar phase diagram derived [22]. Both works show a very narrow

biaxial phase that exists between the two nematic phases, with all four phases meeting

at a critical point located at θ ≈ 110◦. The span of internal bend angles that are ac-

cessible by the biaxial nematic phase in these diagrams is small, with a range of only

∼ 4◦ between the two uniaxial phases.

Following these theoretical treatments in the ideal limit, a wide variety of molecular

simulations have been used to identify the phase behaviour of models of bent-core

mesogens with finite values of L/D. In addition, they have also explored the fur-

ther phase behaviour at densities beyond the nematic phases. The earliest of these

simulations was by Camp et al., who modelled a bent-core molecule using two hard

spherocylinders with L/D = 2, joined together at a fixed angle to form a dimer [67].

MC simulations from initial low-density disordered and high-density ordered config-

urations found isotropic, nematic, smectic and solid phases for internal bend angles
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of θ = 180◦ (linear), 170◦ and 160◦, with the smectic phase disappearing at 150◦. At

much narrower angles of 120◦ and 90◦ they found no evidence of spontaneous ordering

from initially isotropic conditions.

Further work on hard spherocylinder dimers was performed by Lansac et al. [71].

From initally ordered high-density systems, MC simulations were used to map out

the complete phase behaviour for dimers with L/D = 5 in the range 90◦ < θ <

180◦. Their phase diagram is reproduced in Fig. 3.2. Away from the area of the phase

diagram where θ > 165◦ and the biaxiality of the molecules is low, they found systems

Figure 3.1: A reproduction of the phase diagram of reduced density
against bend angle, calculated for bent-core molecules in the Onsager limit
by Teixeira et al [69]. Labelled regions are, clockwise from top left, rod-
like uniaxial nematic (N+), biaxial nematic (B), plate-like uniaxial ne-
matic (N−) and isotropic (I). The vertical axis indicates the relative nu-
merical density of the system.
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exhibiting polar crystal, polar smectic A (whereby the short axes of the molecules are

pointing in parallel similar to a biaxial nematic, but the molecules are still separated

into smectic layers), uniaxial nematic and isotropic phase behaviour. In addition, they

also saw the loss of the uniaxial nematic phase for bend angles of θ < 135◦.

Simulations utilizing soft potentials have also been performed, resulting in more ex-

otic phase behaviour. Memmer used a bent-core model consisting of two Gay-Berne

ellipsoids joined at a bend angle of 140◦, and used MC tecnhiques to cool an isotropic

system with independently-varying simulation cell dimensions [72]. As well as uniax-

ial nematic and smectic A phases, large helical superstructures were seen. However, it

was not seen in all instances and was described as potentially being an artefact of the

Figure 3.2: A reproduction of the phase diagram of reduced pressure
against bend angle, calculated for bent-core molecules made from hard
spherocylinder dimers with L/D = 5 by Lansac et al [71]. Their defi-
nition of reduced pressure is P ∗ = βv0P , where v0 is the volume of the
entire spherocylinder dimer. Labelled regions are isotropic (I), rod-like
nematic (N), smectic A (SmA), polar smectic A (SmAPA), columnar
(Col), crystal (X) and polar crystal (XPA).
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simulation technique. Similar work was conducted by Johnston et al. for Gay-Berne

molecules with bend angles 180◦ ≤ θ ≤ 110, in an elongated cuboidal cell with fixed

box length ratios [73]. They too found a strong dependence of the phase behaviour on

the bend angle, with tilted smectic B phases at around 160◦.

More recently, Józefowicz and Longa have used a similar Gay-Berne-based molecule.

In their model a harmonic bond was used to link the two arms, allowing a degree

of molecular flexibility [74, 75]. Through MC simulations, they found that adding

flexibility reduced the melting temperatures for the crystal phases. In further work [75]

they propose the existence of a biaxial nematic phase for a molecule with a harmonic

bend angle around θ ≈ 140◦, but this was only observed on cooling runs, with the

phase being absent when melting ordered crystal phases.

There has also been work making use of molecules comprised of multiple soft poten-

tials linked together rigidly. Paolini et al. were among the first to use such a model

to simulate liquid crystal phases [76] by melting a crystal of molecules comprised of

eleven repulsive spherical potentials, linked to form a rod. Dewar and Camp have used

a similar model to perform MC simulations on the thawing of initially ordered systems

of molecules comprised of seven spherical Lennard-Jones potentials [77]. For bend

angles of θ = 160◦ they found smectic B and uniaxial nematic liquid crystal phases,

while at θ = 140◦ the nematic phase is lost, resulting in tilted and untilted smectic

phases.

Finally, Peláez and Wilson have performed the most detailed simulations to date [78],

using fully atomistic molecular dynamics to model a real bent-core molecule which

has been proposed to exhibit biaxial nematic behaviour experimentally [79, 24]. The

existence of the biaxial nematic phase is reported, but with a low degree of biaxial

system ordering.
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3.2 Simulation method

With the exception of the recent work by Peláez and Wilson [78], almost all modelling

of bent-core molecules has been performed using Monte Carlo techniques, often from

an initially ordered crystal lattice. We will use molecular dynamics techniques with

systems in isotropic initial conditions, in the hope of achieving previously reported

phase behaviour directly and spontaneously. In this section we will outline the de-

sign of mesogenic model we chose, as well as the methods used for conducting the

simulation runs.

3.2.1 Molecular model

Figure 3.3 is an illustration of the molecular model used within the simulations con-

ducted in this chapter. The overall geometry of the molecule is defined by two inter-

secting vectors ê1 and ê2, delineating the arms of the molecule. The angle between

Figure 3.3: A representation of an 11-bead bent-core molecule and a set
of orthogonal frame vectors. The centres of the spherical potentials along
an arm vector are separated by a distance σ.
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these two vectors is the internal bend angle θ. Spherical potentials are placed symmet-

rically along both arms, with a shared potential at the point of intersection between ê1

and ê2. Each of these “beads” is placed a distance σ from its neighbours. Each bead is

fixed in place relative to the defining vectors, producing a fully rigid molecule with no

bending or flexing in the arms, or any variation in the internal bend angle. It should be

noted that the placement of a bead at the vector intersection means that the values of

L/D for the spherocylinder dimers in other works [67, 71] are not exactly the same as

(n− 1)/2, where n is the number of beads, but that the equivalent L/D values for the

molecules used here are slightly smaller.

We also define a set of orthogonal vectors, representing the molecular frame of refer-

ence along which liquid crystal alignment is most likely to manifest itself. These are

given as

â =
ê1 − ê2
|ê1 − ê2|

,

b̂ =
ê1 + ê2
|ê1 + ê2|

,

ĉ = â× b̂ .

(3.1)

For convenience, the vectors â and b̂ will be referred to as the “long” axis and the

“short” axis of the molecule respectively.

In order to simplify the model and examine the effects of shape and bend angle alone,

we chose a purely repulsive isotropic potential to represent the sphere-sphere inter-

action between the beads of neighbouring molecules. We use the Weeks-Chandler-

Andersen (WCA) potential [80], which is defined as

U(rij) =


4ε
[
( σ
rij

)12 − ( σ
rij

)6
]

+ ε rij < 21/6σ

0 rij ≥ 21/6σ

(3.2)
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The upper part of Eqn. (3.2) is based on the Lennard-Jones potential, but with the ad-

dition of ε, which is equal to the attractive well depth in the regular Lennard-Jones

interaction. This added term upshifts the entire potential such that there are no attrac-

tive interactions. As the minimum of the attractive well lies at 21/6σ, the interaction

is now exactly zero at this point. The lower part of the potential acts to truncate it at

this minimum, removing all long-range interactions. The resulting WCA potential is

a function which goes asymptotically towards +∞ at rij = 0, smoothly decreasing

non-asymptotically to zero at a finite separation of rij = 21/6σ.

The steepness of the WCA potential means it can be treated as a continuous potential

analogue for hard spheres – the equation of state for the WCA monomer fluid can be

expressed as a simple correction to the Carnahan-Starling expression for hard sphere

fluids [64], where the effective hard-sphere diameter of the WCA potential can be

expressed as

σeff =
21/6

(1 +
√
T∗)1/6

σ, (3.3)

where T ∗ is the reduced temperature [81], defined in the next section in Eqn. (3.4).

Therefore, when the temperature of the system is T ∗ = 1, the effective hard sphere

diameter is the same as σ.

The finite cutoff is also beneficial to the speed of the molecular dynamics simulations,

as the majority of potential pairings in a system have a separation of rij � 21/6σ and

the interaction strength does not need to be calculated. In systems with long-range

interactions such as the Lennard-Jones potential, the long interaction tail is normally

ignored beyond a certain cutoff in order to provide similar efficiencies [38].



CHAPTER 3. 11-BEAD BENT-CORE MOLECULES 68

3.2.2 Reduced units

The numerical values chosen for ε and σ in Eqn. (3.2) define the fundamental energy

and length scales of the simulations. Therefore, any specific choice of values for tem-

peratures, pressures and so forth in SI units is relatively arbitrary, as such values are

entirely dependent on the values chosen for ε and σ [38]. Given the non-atomistic na-

ture of the molecular model being used, it is convenient to use dimensionless quantities

relative to these fundamental parameters for all values that would otherwise have units.

This also allows for straightforward comparison of results with other works, regardless

of what choices have been made for the actual simulation parameters implemented.

In this work, the basis for our reduced units was set by defining the fundamental energy

and length scales of the interactions as ε = 1 and σ = 1 respectively. In addition, a

single bead is used as the fundamental unit of mass, m = 1. The conversions between

SI units and reduced units for pressure P ∗, temperature T ∗, time t∗ and number density

ρ∗ are therefore defined as

P ∗ = P
σ3

ε
,

T ∗ = T
kB
ε
,

t∗ = t

(
σ

√
m∗

ε

)−1

,

ρ∗ = ρ σ3

(3.4)

respectively, where kB is the Boltzmann constant.
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3.2.3 Simulation procedure

All simulations in this chapter were implemented and conducted using DL_POLY_2

[82], a general multipurpose molecular dynamics simulation package using velocity

Verlet integration algorithms. Starting configurations were generated within a cubic

simulation cell with periodic boundary conditions. The required number of molecules

were placed on the sites of a primitive cubic lattice, with lattice spacings chosen such

that the number density of the system was ρ∗ ≈ 0.001 – sufficiently large such that

the intermolecular spacing was much greater than σ. This ensured that the molecules

would not initially be overlapping, and that free rotations about their initial positions

would not cause them to initally collide with any other molecules and restrict their

movement.

Using a timestep of t∗ = 0.01, the system was then allowed to run under constant-

volume, constant-energy conditions (NVE ensemble) for 105 steps in order to create

an isotropic, gaseous configuration, with with DL_POLY_2 generating initial veloci-

ties based on an initial system temperature of T ∗ = 1. Due to the fully deterministic

nature of DL_POLY_2 and the inability to provide a different generator seed to the ini-

tial assignment of molecular velocities, distinct molecular trajectories were generated

by repeating this step multiple times, with the configuration after each sequence of

105 timesteps recorded. Each of these configurations were used to provide a different

isotropic arrangement for use as a starting state for a subsequent simulation trajectory.

To perform a simulation run, we switched a low-density isotropic configuration to

to constant-pressure, constant-temperature conditions (NPT ensemble) at a pressure

of P ∗ = 0.15 and a temperature of T ∗ = 1, using a Nosé-Hoover thermostat and

barostat. This compressed the system into an isotropic liquid phase below any onset
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of liquid crystal behaviour. Systems were then equilibrated under these conditions for

106 timesteps.

Compression runs were performed by increasing the system barostat pressure in dis-

crete steps. At each interval the pressure was increased by a fixed amount and the sys-

tem allowed to re-equilibrate under the new pressure for 106 timesteps. The number

density of the system was monitored to ensure that the system volume had equilibrated

and any occuring phase transitions had finished. If the value had not settled, another

106 timesteps were performed until the value fluctuated around a constant value. A

production run was then performed over the next 106 timesteps. Due to the poten-

tially vast amount of data generated in a simulation run, the trajectory was sampled

every 104 timesteps and the entire molecular configuration of bead position and veloc-

ities recorded, providing 100 samples per production run for analysis. Each resulting

molecular configuration was used as the initial configuration for the next increase in

pressure, and the procedure repeated until all the desired phase behaviour had been

observed or the system had crystallized.

3.3 Results for N = 512 molecules

To begin, initial simulations were performed using systems of 512 11-bead molecules.

This is the closest approximation to L/D = 5 possible using a molecule composed of

beads – this value being used by Lansac et al. in the generation of their comprehen-

sive phase diagram in Ref. [71]. This allows us to test the validity of our choice of

mesogenic model.

Simulation runs were conducted for ten different types of 11-bead molecule, each with



CHAPTER 3. 11-BEAD BENT-CORE MOLECULES 71

a different bend angle in the interval 170◦ ≤ θ ≤ 110◦, all at a constant temperature

of T ∗ = 1. In each instance, a minimum of five different starting configurations were

used to ensure that any phase behaviour exhibited was not specific to a unique molec-

ular configuration. This also provides error estimates for calculated parameters across

independent molecular trajectories. Each simulation comprised of a total of 5,632 in-

teracting potentials, and each run was conducted using a single core of an Intel Xeon

1.86 GHz CPU, taking approximately four hours to perform 106 molecular dynamics

timesteps. Including the equilibration and production run for each pressure increment,

a single compression sweep took approximately five days of CPU time.

As an initial overview to the results of the simulations performed, the mean values for

the uniaxial order parameters Q2
00 with respect to the reduced pressure P ∗ are shown

for several of these runs in Fig. 3.4.

Although the uniaxial order parameter alone is insufficient for analysing phase be-

haviour, two broad concepts can be drawn from this plot. Firstly, it can be seen

that the transition from a isotropic phase at low pressure, to a non-isotropic system

with a degree of alignment, occurs at increasingly higher pressures as the bend an-

gle between the two arms is decreased. Secondly, systems of molecules in the range

140◦ ≤ θ ≤ 170◦ have final uniaxial order parameter values of Q2
00 > 0.75, indicating

a high level of alignment, whilst systems with bend angles of θ < 140◦ exhibit low but

non-zero levels of levels of uniaxial alignment, with Q2
00 < 0.5. In the context of these

two observations, we will now examine the phase behaviour of the θ = 160◦, 140◦ and

130◦ compression runs in more detail, in order to characterize the different types of

phase behaviour observed.
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3.3.1 θ = 160◦

Five separate trajectories were used to track the phase behaviour of θ = 160◦molecules.

Fig. 3.5 shows the equation of state for a system of 160◦ molecules as they were com-

pressed from an initial isotropic phase at a pressure of P ∗ = 0.17, along with a the-

oretical liquid phase curve from Eqn. (2.31). The uniaxial and biaxial nematic order

parameters are shown in Fig. 3.6. A sequence of snapshots from a single trajectory run

are presented in Fig. 3.7.

The equation of state shows that the system is initially a good fit for the theoretical

liquid density. As the system is compressed from its isotropic state (Fig. 3.7a), it

undergoes its first phase transition in the interval 0.35 < P ∗ < 0.52, transitioning to a
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Figure 3.4: The change in the uniaxial order parameter Q2
00 with increas-

ing pressure P ∗ for six different systems of N = 512 11-bead molecules.
Legend values correspond to the molecular bend angle θ. Small error bars
for θ > 130◦ are omitted for clarity.
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Figure 3.5: The equation of state for a system of N = 512 11-bead, θ =
160◦ molecules on compression. The dotted line indicates the theoretical
liquid equation of state. Error bars are smaller than symbol size.
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Figure 3.6: The uniaxial order parameter (filled symbols) and biaxial order
parameter (hollow symbols) for a system of N = 512 11-bead, θ = 160◦

molecules on compression.
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(a) P ∗ = 0.35 (b) P ∗ = 0.52

(c) P ∗ = 1.39 (d) P ∗ = 1.56

Figure 3.7: Snapshots from a compression run of N = 512 11-bead
molecules with a bend angle of θ = 160◦, showing isotropic (a), uniax-
ial nematic (b and c) and smectic-like layered phases (d). Molecules in (d)
have their “apex” bead differentiated in order to visualise their layering.
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uniaxial nematic (Fig. 3.7b). There is a sharp increase in the uniaxial order parameter

Q2
00 from less than 0.1 to over 0.8, whileQ2

22 remains under 0.1, confirming that one set

of molecular axes have aligned strongly while the other two have not. As the barostat

pressure is increased through the uniaxial nematic phase, the global alignment director

rotates towards a longer free axis of the cubic periodic simulation cell, i.e. between

two opposite corners, as shown in Fig. 3.7c.

A second more distinct transition occurs as the pressure is increased through the in-

terval 1.39 < P ∗ < 1.56. The resulting phase has a slightly higher level of uniaxial

alignment than the nematic phase, but a large jump in reduced density as the degree

of molecular packing increases sharply. The biaxial nematic order parameter averaged

across the five trajectories also has a considerable increase, but its value remains be-

low 0.5 and with very large variation between the runs. The pair correlation function

between the central beads of the molecules at P ∗ = 1.56 (coloured blue in Fig. 3.7d)

is shown in Fig. 3.8. The height of the first peak and significant subsequent peaks in-

dicates that this is a phase with a degree of long-range ordering. Visual inspection of

the phase shows that the system consists of a number of poorly organised smectic-like

layers, with “clusters” of smectic-like alignment offset by a single arm length, approx-

imately half the length of the long axis of the molecule. Visually, this presents itself as

the the extremeties of the arms of two molecules meeting together within the “knuckle”

of another molecule, rather than all the knuckles aligning together.

This clustering behaviour also explains the small climb and broad range of values for

Q2
22. As the biaxial order parameter is effectively a measure of the level of alignment of

the short axes of the molecules, these clusters give rise to a number of polarized groups,

all sharing a common short axis alignment director. However, this director differs

between clusters, and so the resulting value of Q2
22 can vary significantly depending on
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the number and average short axis alignment of these clusters. It is possible that, if the

system size were increased to incorporate more clusters, the net short axis alignment

would average out and the biaxial order parameter would not deviate so far from zero

in this phase.

The formation of these clusters can potentially be attributed to two things. The first

is insufficient equilibration, and that smaller pressure steps may allow for better align-

ment of the formed layers. The second more likely explanation is the relatively small

size of the simulation cell. From Fig. 3.7d it can be seen that three full smectic layers

cannot fit in the cubic simulation box at this density. The rotation of the nematic phase

to line up along the longest free axis of the box (Figs. 3.7b and 3.7c) also indicates

that the box is not large enough for the lowest energy configuration to fit regardless of

orientation within the simulation cell. It is likely that the dislocation of these smectic

layers into offset clusters pays a relatively low free energy cost. Therefore there is a

danger that the self-interaction of molecules across the periodic boundary conditions

is distorting proper formation of whatever true smectic-like phase exists at this density.

In other MC based works from initially aligned crystal states, a cuboidal box is used,
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Figure 3.8: The pair correlation function between the molecules of a sys-
tem of N = 512 11-bead, θ = 160◦ molecules at a pressure of P ∗ = 1.56.
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sized exactly in order to fit the expected number of smectic layers with a predetermined

uniaxial orientation vector. As our simulations are from isotropic initial conditions, the

system cannot be forced to select a specific global director without the introduction of

an external field or force, negating the purpose of using a cuboidal simulation cell. To

increase the space for allowing smectic layers to form in a cubic cell requires a much

larger number of molecules, and the simulation of far larger systems.

Overall, the presence of isotropic, a wide uniaxial nematic and a third phase with

smectic-like traits indicates that the same phases are being seen here at a bend angle of

160◦ as in Fig. 3.2, and fits with the results reported in the work by Camp et al. [67]

3.3.2 θ = 140◦

Phases for systems of θ = 140◦ molecules under compression were obtained through

simulation of eight independent trajectories. Fig. 3.9 shows the values for the equa-

tion of state from an initial pressure of P ∗ = 0.17, along with the theoretical liquid

density curve. Calculated values of the Q2
00 and Q2

22 order parameters are presented in

Fig. 3.10.

As compression begins, the first transition from an isotropic to a uniaxial nematic

occurs between 0.69 < P ∗ < 0.87, a higher pressure than for molecules with a bend

angle of 160◦. This is also shown by the values of the equation of state remaining

close to the theoretical liquid curve for a larger range of pressures. This is expected,

as the relative length of the short axis to the long axis has increased, and therefore

so has the biaxiality of the molecules. The higher density of the isotropic–nematic

transition for molecules with a higher biaxiality is shown in the phase diagrams in

Refs. [22] and [69]. The value of the uniaxial order parameter is also noticeably lower,
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Figure 3.9: The equation of state for a system of N = 512 11-bead, θ =
140◦ molecules on compression. The dotted line indicates the theoretical
liquid equation of state. Points in the fully equilibrated uniaxial nematic
phase are hollow. Error bars are smaller than symbol size.
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Figure 3.10: The uniaxial order parameter (filled symbols) and biaxial
order parameter (hollow symbols) for a system of N = 512 11-bead, θ =
140◦ molecules on compression.



CHAPTER 3. 11-BEAD BENT-CORE MOLECULES 79

(a) P ∗ = 0.69 (b) P ∗ = 0.87

(c) P ∗ = 1.21 (d) P ∗ = 1.39

Figure 3.11: Snapshots from a compression run of N = 512 11-bead
molecules with a bend angle of θ = 140◦, showing isotropic (a), uniaxial
nematic (b) and smectic-like layered phases (c and d). Molecules in (c) and
(d) have their “apex” bead differentiated in order to visualise their layering.
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reaching Q2
00 ≈ 0.6 just after the transition, compared to Q2

00 > 0.8 for wider angled

molecules. It continues to climb all the way to the second phase transition, indicating

the possibility of a wide, more continuous phase.

On increasing the pressure further, the system undergoes a second transition from

the uniaxial nematic to the offset smectic layering mentioned previously for the 160◦

molecules. A snapshot of such a phase is shown in Fig. 3.11c. Neither Q2
00 or Q2

22 can

distinguish this phase change with any clarity. Aided by the theoretical liquid curve, it

can be seen that there is a small phase where the values of the equation of state do not

match the liquid density curve (hollow points) before having another discontinuity at

the second phase transition (Fig. 3.9). The pair correlation function in Fig. 3.12 shows

the distinction between the two phases most clearly, with a strongly enhanced first
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Figure 3.12: The pair correlation function between the molecules of a
system of N = 512 11-bead, θ = 140◦ molecules at a pressure of P ∗ =
0.87 (bottom, blue), P ∗ = 1.21 (middle, black) and P ∗ = 1.39 (top, red).
The plots have been offset for clarity, and the peak of the P ∗ = 1.39 line
at a value of 11.6 (19.6 on the offset axis) has been truncated.
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peak showing a greater level of short-range ordering compared to the uniaxial nematic

phase.

As the pressure is increased further, another jump in the equation of state occurs as the

short axes of the molecules align. A snapshot at P ∗ = 1.39 in Fig. 3.11d shows the

arrangement of the offset smectic-like clusters which the phase is comprised of. The

pair correlation function indicates a significant degree of longer range ordering, and

the low but broad range of values for Q2
22 arises once again from the polarization of

the short axes in the clusters.

A significant difference from the order parameter behaviour of the 160◦ systems is that

there is both a significant uncertainty on Q2
00, and that it declines after the transition.

This arises due to the offset nature of the layers. When the lower arm of a molecule

is aligned with the upper arm of a molecule in the layer below, the bend angle of

the molecule dictates how the half-offset molecule in the next layer aligns itself. The

tighter angle in these molecules means that the alignment of each half-layer is forced

to deviate further from the average global alignment director, before righting itself in

the next layer in a “zig-zag” fashion. As the pressure continues to increase, the ability

for molecules to relax back to the global director is reduced and the deviations are

enhanced. Again, much of this behaviour is due to the nature of the offset smectic

layers, which may be an artefact of simulation cell size as previously mentioned.

The increased pressure required to transition from the isotropic to the uniaxial nematic

phase compared to 160◦, as well as the reduced width of the nematic phase, are both

consistent with the phase diagram in Fig. 3.2.
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3.3.3 θ ≤ 130◦

The behaviour of molecules with a bend angle θ < 140◦ is distinctly different from

those where θ ≥ 140◦, as illustrated in Fig. 3.4. Here, simulation results averaged

across nine different trajectories of systems of molecules with a 130◦ bend angle are

presented. The equation of state and order parameters for these systems are shown in

Figs. 3.14 and 3.14 respectively.

The equation of state shows that there is only one significant transition, occuring at a

slightly lower pressure window between 1.04 < P ∗ < 1.21, indicated by the small

deviation from the theoretical isotropic liquid curve.

The values of Q2
00 and Q2

22 also demonstrate the existence of only one phase transition,

with both values increasing simultaneously. The uniaxial order parameter eventually

settles at Q2
00 < 0.5, indicating a very poor level of alignment.

Snapshots from a trajectory at P ∗ = 1.04 and P ∗ = 1.39 are shown in Fig. 3.15, which

reveals the absence of a global orientation director. Instead, the molecules form small

clusters with significant ordering of both their long and short axes, but only on a local

scale. At narrower bend angles of θ = 120◦ the size of these clusters decreases, as

shown in the snapshots in Fig. 3.20.

While this phase may possibly the resolved through more intensive equilibration, it is

more important to note the lack of a uniaxial nematic. The melting simulations by both

Lansac et al. [71] and Dewar and Camp [77] indicate that, above a critical angle, their

systems see no uniaxial nematic liquid crystal phases, and instead see direct transitions

from the smectic phase to the isotropic phase. We propose that the phase observed

here is driven by the same mechanism that transitions a nematic to a smectic. The
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Figure 3.13: The equation of state for a system of N = 512 11-bead, θ =
130◦ molecules on compression. The dotted line indicates the theoretical
liquid equation of state. Error bars are smaller than symbol size.
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Figure 3.14: The uniaxial order parameter (filled symbols) and biaxial
order parameter (hollow symbols) for a system of N = 512 11-bead, θ =
130◦ molecules on compression.
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(a) P ∗ = 1.04 (b) P ∗ = 1.39

Figure 3.15: Snapshots from a compression run of N = 512 11-bead
molecules with a bend angle of θ = 130◦, showing (a) isotropic and (b)
clustered behaviour.

(a) P ∗ = 1.04 (b) P ∗ = 1.39

Figure 3.16: Snapshots from a compression run of N = 512 11-bead
molecules with a bend angle of θ = 120◦, showing (a) isotropic and (b)
clustered behaviour.
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inhibition of the alignment of the long axes, due to the increased molecular biaxiality,

prevents a global direction vector from being formed. When the smectic-like behaviour

is spontaneously induced, the resulting layers or clusters have no uniform direction,

and the phase seen reflects this lack of global long-axis ordering.

The “jamming” of this system at molecular bend angles θ ≤ 130◦ corresponds with

the lack of a uniaxial phase in Fig. 3.2 for bend angles θ ≤ 135◦. Therefore, while

this model can be linked to the Lansac phase diagram, it also means that it is highly

unlikely that the biaxial nematic phase would be obtainable with this model system.

3.3.4 Decompression simulations

In order to validate the location of these phase transitions with respect to pressure,

the final molecular configurations obtained from the previous compresion runs were

used as the initial input for a reversed series of decompression runs. The simulation

methodology was the same as already discussed, but instead decreasing the barostat

pressure by a fixed quantity at each step.

Comparsions between the average Q2
00 order parameters during compression and de-

compression are shown in Fig. 3.18 for the θ = 160◦, 140◦ and 130◦ systems described

in the previous sections.

The fit between the two set of Q2
00 values for the 160◦ systems is extremely good,

with values calculated in all three of the smectic, uniaxial nematic and isotropic phases

matching to within error. The only deviation of any significance is at the point of the

smectic–nematic transition, where the difference in values shows that the long axes of

the molecules remain well organised for slightly longer on decompression.
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The 140◦ systems show similar behaviour, with the order parameter giving an excellent

fit between the values in both the smectic and isotropic phases. The smectic phase

extends downwards slightly further on these runs, with the transition to the nematic

occuring within the 0.87 < P ∗ < 1.04 range, which narrows the nematic phase slightly

further.

In contrast, the decompression values for 130◦ molecules show distinctly different be-

haviour around the phase transition. As the system is decompressed, the value of Q2
00

climbs significantly from 0.49 at P ∗ = 2.61 to 0.61 at P ∗ = 1.21, before dropping

away towards its isotropic value. A comparison for the equation of state on compres-

sion and decompression is shown in Fig. 3.18, where it can be seen that the systems

retain a higher density as they are decompressed, with ρ∗ = 0.056 at P ∗ = 1.21 on
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Figure 3.17: The uniaxial order parameter for systems of N = 512
11-bead molecules on both compression (hollow symbols, dashed lines)
and decompression (filled symbols, solid lines). Values are shown for
molecules with internal bend angles of θ = 160◦ (black circles), θ = 140◦

(red squares) and θ = 130◦ (blue triangles). Errors have been omitted for
clarity.
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compression and ρ∗ = 0.062 at the same pressure on decompression. Fig. 3.19 shows

the difference in the pair correlation functions for these two systems. The enhanced

height of the first peak, along with a significant second peak on decompression indi-

cates that there is considerably more short range correlation on decompression.

Snapshots of the system at this pressure are presented in Fig. 3.20. The large blue

cluster is developing a significant amount of smectic ordering, as nearby clusters rotate

into place and begin to align to a mutual director. This indicates that the smectic phase

described in other works is most likely the underlying phase here, and could potentially

be achieved with extended cycles of compression and decompression.

3.4 Results for N = 4096 molecules

While the locations of the phase transitions identified from the simulations ofN = 512

systems are compatible with previous literature, the actual phases themselves show

a number of differences, particularly in the offset smectic-like layering beyond the

uniaxial nematic phases for θ ≥ 140◦, and the clustered systems without a global

director for θ ≤ 130◦. One strong possibility is that the relatively small size of the

simulation cell is preventing more than two smectic layers from forming, and that

molecules are self-interacting due to finite size problems with the periodic boundary

conditions.

In order to examine whether the phases seen in the N = 512 simulations are represen-

tative of bulk system behaviour, a set of much larger N = 4096 runs were conducted

for sets of molecules with bend angles in the range 170◦ ≤ θ ≤ 120◦, and their

phase behaviour compared to the smaller systems. Due to the much larger number of
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Figure 3.18: The equation of state for a system of N = 512 11-bead,
θ = 130◦ molecules. Hollow black squares are from a compression run,
while filled red circles are from a subsequent decompression run.
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Figure 3.19: The pair correlation function g(r) for a system of N = 512
11-bead, θ = 130◦ molecules at P ∗ = 1.21 on a compression run (bottom,
black) and a decompression run (top, red). Lines are offset vertically for
clarity.
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Figure 3.20: Front and side snapshot views at P ∗ = 1.21 during a de-
compression run of of N = 512 11-bead molecules with a bend angle of
θ = 130◦.

interacting potentials in these systems (45,056), the simulations are much more com-

putationally expensive. A set of 106 timesteps of these systems, performed in parallel

across four cores of an Intel Xeon 1.86 GHz CPU using DL_POLY_2, took between

18–36 hours. As such, only a single system trajectory was conducted for each bend

angle. Therefore, proper error estimates across multiple runs for the order parame-

ters and equation of state were not possible with this data, as the only errors are those

associated with time-averaging the values across a single run.

In order to ensure better equilibration, the simulation procedure was also changed from

that used in Sec. 3.3. The default size of the pressure step increment was halved to

P ∗ ≈ 0.08. After each production run, the Q2
00 and equation of state were checked

for evidence of a phase change between PA ≤ P ∗ ≤ PB. If one had occured, the

system was rewound to the final configuration at the end of the run for PA, the pressure

step reduced to one-fifth of its size, and the next five pressure steps conducted at a

higher resolution. After the transition had occured, the original pressure step size was

re-established.
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As in Sec. 3.3, the aggregated Q2
00 values for a subset of these runs are shown in

Fig. 3.21 in order to provide an overview of the phase behaviour exhibited. The gradual

increase in pressure required to induce the isotropic-uniaxial nematic phase transition

for molecules θ > 140◦ is clearly visible, and the isotropic–nematic phase transition

pressure windows for all the simulated N = 4096 systems on compression are given

in Table 3.1. Discontinuities in the equation of state for these systems were used to

obtain values for the nematic–smectic transition windows, also given in Table 3.1.

3.4.1 θ = 160◦

Comparisons between the two nematic order parameters for 160◦ 11-bead molecule

systems in the N = 512 and N = 4096 simulations are given in Fig. 3.22. The change

in the size of the system has not notably affected the transition pressures, with both

transitions occuring in the same windows. The increase of the Q2
22 order parameter

after the second transition indicates that the system still has a net polarization. The

equation of state in Fig. 3.23 indicates that the densities of the system after the sec-

ond phase transition are larger in the N = 4096 system, and the molecules are more

efficiently packed, giving the greatest evidence for differing phase behaviour.

A snapshot of the system at P ∗ = 1.47 is given in Fig. 3.24, showing clear smectic

layering, with some small smectic clusters offset by half a molecule length visible

in the bottom left of the snapshot. Combined with the non-zero polarization given

by Q2
22, this configuration is determined to be a polar smectic phase. Examination

of the pair correlation function shows no splitting of the second peak at this point,

which is typically representatve of hexagonal packing, and so this is most likely a polar

smectic A phase. Although there is a small degree of molecular tilt, it is not uniform
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Figure 3.21: The change in the uniaxial order parameter 〈Q2
00〉 with in-

creasing pressure P ∗ for six different systems of N = 4096 11-bead
molecules. Legend values correspond to the molecular bend angle θ.

θ → N → Sm
170◦ 0.312 – 0.330 1.181 – 1.199
165◦ 0.347 – 0.365 1.372 – 1.399
160◦ 0.382 – 0.400 1.399 – 1.473
155◦ 0.433 – 0.452 1.399 – 1.473
150◦ 0.521 – 0.538 1.337 – 1.355
145◦ 0.608 – 0.694 1.215 – 1.302
140◦ 1.215 – 1.302

Table 3.1: The isotropic–nematic and nematic-smectic transition windows
for systems of N = 4096 11-bead molecules on compression.
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across layers. A strongly tilted smectic phase as reported in other works [73, 77] is not

observed, but this may exist further towards the crystallization point.

It is worth noting at this point that the assembly of larger smectic layers did not occur

in all N = 4096 simulations. The peak and sharp fall in Q2
00 for θ = 150◦ (shown in

Fig. 3.21) is due to the same reasons as given for the θ = 140◦ systems in Sec. 3.3.2,

whereby the formation many half-offset layers do not give a highly aligned global

director overall. The equation of state of this system is given in Fig. 3.25, where

the transition from nematic to smectic is actually seen to consist of two very close

transitions. There is a metastable state between the points where the molecules have

formed their offset layers but are not yet packed densely enough to strongly align the

short axes of the molecules, which in turn would push the long axes of the clusters

away from the global director. As the phase consisting of offset smectic clusters is

likely an artefact of finite system size, further simulations of different trajectories at

this system size would be required to find whether this pair of phase transitions is

worth investigating.



CHAPTER 3. 11-BEAD BENT-CORE MOLECULES 93

0.5 1 1.5 2

P*

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

Figure 3.22: Order parameters for θ = 160◦ 11-bead systems on com-
pression. Filled red circles and filled blue squares are the Q2

00 and Q2
22

order parameters for a system of N = 4096 molecules, while hollow cir-
cles and hollow squares are the order parameters for systems of N = 512
molecules.
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Figure 3.23: Equation of state for θ = 160◦ 11-bead molecules on com-
pression, in systems of N = 4096 molecules (filled red) and N = 512
(hollow black).
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Figure 3.24: Snapshot from a compression run of N = 4096 11-bead
molecules with a bend angle of θ = 160◦ at P ∗ = 1.47. Central beads are
coloured blue to visualise smectic layering.
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Figure 3.25: Equation of state forN = 4096, θ = 150◦ 11-bead molecules
on compression. The dotted line indicates the theoretical liquid equation of
state. Four distinct phase branches are visible, with two close yet separate
transitions in the high density region.
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3.4.2 θ = 140◦

Similar to how the smectic clusters for the 160◦ systems are resolved into full smectic

layers with a larger system size, the clusters in the 140◦ systems demonstrate the same

behaviour as the system size is increased to N = 4096 molecules. Fig. 3.26 shows the

levelling-off of the Q2
00 order parameter and small increase in Q2

22 after the nematic-

smectic transition, and visual inspection of the system shows the presence of smectic

A layers.

The isotropic–nematic transition is actually hindered by the increased system size of

the N = 4096 system, as shown by the depressed values of Q2
00 compared to those

for the N = 512 system. As the pressure of the system is increased, the nematic

phase begins with localized areas of mutual alignment. As the pressure of the system

is increased, the growth of these regions results in the entire system eventually aligning
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Figure 3.26: Order parameters for θ = 140◦ 11-bead systems on com-
pression. Filled red circles and filled blue squares are the Q2

00 and Q2
22

order parameters for a system of N = 4096 molecules, while hollow cir-
cles and hollow squares are the order parameters for systems of N = 512
molecules.
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to a common director. In the smaller systems, there are fewer localized regions and so

the mutual alignment is achieved more rapidly, while the competing nematic regions

in the larger system continue to grow before one dominates the system.

The onset of this behaviour begins at P ∗ ≈ 0.78, and the system is a fully aligned uni-

axial nematic phase by P ∗ ≈ 1.13. In this window, multiple regions are competing for

the global nematic alignment – a snapshot during this period is shown in Fig. 3.27 at a

pressure of P ∗ = 0.96. Different regions of nematic alignment are visible by common

colours, with the dominant region being blue-green and the smaller competing region

being red-yellow.

The difficulty with which the system achieves a common global director in the nematic

phase for θ = 140◦ strongly suggests that the loss of a nematic phase for narrower

bend angles is linked to the decline of the relative length of the long axis to the short

axis of the molecules. Without a single clear molecular director, no one choice of

alignment dominates the system at lower pressures. Separate regions of the simulation

cell have short-range nematic alignment, but the propagation of this alignment through

the system is low. Global mutual alignment is not achieved regardless of how long the

simulation is run for, indicating it is unlikely to be a simple equilibration issue.
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Figure 3.27: Snapshot from a compression run of N = 4096 11-bead
molecules with a bend angle of θ = 140◦ at P ∗ = 0.96. Molecules are
coloured based on the orientation of their long axis.
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3.4.3 θ = 130◦

The “jammed” structure of the θ = 130◦ systems mentioned in Sec. 3.3.2 is not re-

solved through a bigger system size or narrower pressure steps. Both the Q2
00 and Q2

22

order parameters remain low, and are lower than the values obtained for N = 512

systems due to the averaging of more clusters. A snapshot of the system at P ∗ = 1.31

is shown in Fig. 3.29, showing the number and assorted orientations of the long axes

of the molecules within these clusters.

The pair correlation functions given in Fig. 3.28 show the level of structural ordering

within the clustered systems at the same pressure between the different system sizes.

The higher first peak for the N = 4096 system indicates that the typical size of the

formed clusters is larger, similar to the formation of larger smectic groups in systems

with wider molecular bends.
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Figure 3.28: Pair correlation functions for θ = 130◦ 11-bead molecules at
P ∗ = 1.39, in system sizes of N = 512 (bottom, black) and N = 4096
(top, red). Lines have been vertically offset for clarity.
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As shown with the decompression of smaller systems in Sec. 3.3.4, better equilibration

may be achieved by repeated decompression and compression around the transition

pressure. However, the presence of the clusters in the larger system, even with smaller

pressure steps, suggests that the smectic phases are not achievable with compression

alone.
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Figure 3.29: Snapshot from a compression run of N = 4096 11-bead
molecules with a bend angle of θ = 130◦ at P ∗ = 1.31. Molecules are
coloured based on the orientation of their long axis.
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3.5 Conclusions

In this chapter we have used molecular dynamics simulations to study the phase be-

haviour of systems of 11-bead bent core molecules under compression, and compared

the results to existing theory. A range of molecular bend angles have been used, and

the effects of finite system size have been studied by performing a small number of

simulations using a greatly increased number of molecules.

For molecules with a bend angle of θ ≥ 140◦, phase behaviour including isotropic,

uniaxial nematic and smectic A phases have been observed. The pressure at which

these phases spontaneously appear depends on the angle between the molecular arms,

which governs the level of biaxiality of the molecule. As the level of biaxiality in-

creases, the nematic phase becomes narrower and the pressure required to reach the

isotropic–nematic phase transition increases. At θ = 140◦, the molecules are close

to the threshold where the uniaxial nematic phase is no longer exhibited, and consid-

erably higher pressures are required for systems to undergo a transition to a single,

well-aligned uniaxial nematic phase.

For those systems that have a uniaxial nematic phase on compression, a smectic A

phase follows, with strong in-layer polarization seen for bend angles of θ = 160◦ and

θ = 140◦. The formation of the smectic layers depends strongly on the size of the

simulation cell, and too small a simulation cell can result in many smectic clusters

offset by half a molecule length in order to optimize packing.

Below a critical angle of θ ≈ 130◦, the uniaxial nematic phase does not appear upon

compression. Instead, the short axes of the molecules drive the formation of clusters,

without a common global alignment vector between the clusters. Decompression sim-

ulations indicate that a smectic phase might be achieveable with repeated increases
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and decreases in the system pressure, but it appears to be very difficult to reach using

compression alone.

With the exception of the inability to reach a smectic phase directly from the isotropic

phase below a critical angle, these results fit very well with the phase behaviour seen

by Lansac et al. in their phase diagram for the melting of hard spherocylinder dimer

crystals with arm length of L/D = 5 [71], despite using a soft, composite model and

completely different simulation technique.

The disappearance of the nematic phase at θ ≈ 130◦ suggests that the existence of

the biaxial nematic cannot be achieved using this exact model, as the theoretical phase

diagram indicates that we need the uniaxial nematic to extend towards the region of

θ ≈ 110◦. As the theoretical phase diagram for the biaxial nematic is in the Onsager

limit of L � D, the ratio L/D likely plays a large importance in the width of the

liquid crystal phases across both pressure and angle.

By varying the number of beads within our molecules, we can easily adjust the effec-

tive L/D ratio of the arms of our molecules in discrete units. Simulations that explore

the effect of changing this number of beads will be explored in the following chapter.



Chapter 4
Effect of arm length on bent-core

mesogen phase behaviour

In the previous chapter we used a fixed size of bent-core mesogen to determine how

the bend angle θ between the two arms of the molecule affects the resulting phase

behaviour. A strong relationship between the two was demonstrated, with a loss of a

uniaxial nematic phase for angles of θ > 135◦. As mentioned at the start of Chapter 3,

excluded volume theories for molecules with an arm length of L� D suggest that the

uniaxial nematic phase should be seen right the way up to the biaxial nematic phase

bounary, close to θ = 110◦ [69]. It is therefore clear that the L/D ratio must play a

large part in the phase behaviour of bent-core mesogens.

We can compare the effect of modifying L/D to our results from Chapter 3 by making

alterations to our choice of mesogenic model as previously defined in Sec. 3.2.1. By

adding or removing beads to the molecule, the L/D ratio of the arms can be changed.

An example of a 7-bead molecule is shown in Fig. 4.1, shaded in grey.

104
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Reducing the L/D ratio of the arms affects the overall biaxiality of the molecule. The

dashed circles in Fig. 4.1 show the difference between an 11-bead molecule and a 7-

bead molecule. The ratio of the long axis to the short axis of the molecule (a : b) is

not affected by the reduction in the number of beads. However, the ratio of the short

axis to the thickness of the molecule (b : c) is decreased, and therefore the deviation

from cylindrical rotational symmetry is reduced.

In order to perform a systematic study of the combined effects of arm length and bend

angle, in this chapter we will present the phase behaviour exhibited by systems of 9-,

7- and 5-bead bent-core mesogens.

Figure 4.1: A front and side view of a 7-bead bent-core molecular model
assembled out of spherical potentials, showin in grey. The dotted circles
show the effect of changing the L/D ratio of the molecule by adding more
potentials.

4.1 Background

The effect of the L/D ratio on the phase behaviour of linear mesogenic molecules

has been well-studied. The earliest molecular dynamics works in the 1950s by Alder,

Wainright, Wood and Jacobson [36, 37] were effectively a study of molecules with
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L/D = 0, showing the presence of isotropic liquid and crystalline solid phases. Even

earlier theoretical work in the 1940s by Lars Onsager showed that thin needle-like

particles (where L � D) were capable of an isotropic to nematic phase transition at

sufficiently high densities [83].

Monte Carlo simulations of linear molecules with more reasonable values of L ∼ D

began with the work of Vieillard-Baron [84]. Simulations were performed on sys-

tems of hard spherocylinders with a ratio of L/D = 2, in order to test the validity of

the predictions made by scaled-particle theory [85]. It was found that the isotropic–

nematic transition densities predicted by the theory were too low, and their simulations

remained in the isotropic state.

A range of L/D ratios for the hard spherocylinder mesogen were first simulated by

Stroobants et al. They indicated that nematic, smectic and columnar mesophases all

had some degree of metastability depending on the molecular ratio [86], albeit with the

mesogens unable to rotate from a perfectly parallel alignment. Veerman and Frenkel

examined a range of hard spherocylinder systems with ratios between 0 and 5 with the

addition of free rotation, and found that the onset of nematic and smectic mesophases

regions occurs in the 3 ≤ L/D ≤ 5 range of ratios [87]. A more detailed study by

McGrother et al. determined that, within the 3 ≤ L/D ≤ 5 window, the I–SmA–solid

triple point occured at a lower L/D ratio than the I–N–Sm triple point [62]. A finer

detailed study by Bolhuis and Frenkel established that the onset of smectic and nematic

phases occurs at L/D = 3.1 and L/D = 3.7 respectively [88]. A reproduction of their

phase diagram is shown in Fig. 4.2

They also predicted that the stability of the nematic phase relative to the smectic phase

increased with larger L/D, with the transition density between the isotropic and ne-

matic phases dropping significantly with increased elongation. They also suggested
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that two solid behaviours would be observed as L/D → ∞ – at lower ratios, the tips

of the molecules between crystal layers would interdigitate and the layers would be off-

set slightly. This behaviour changes in favour of the spherocylinders lying end-to-end

at higher elongations.

Besides hard spherocylinders, other molecular models have also been studied. de

Miguel and coworkers have studied the phase behaviour of Gay-Berne molecules with

a 3 : 1 aspect ratio in some depth, and have and accurately mapped out the phase

diagram to include nematic and smectic B mesophases [89, 90, 91]. Brown et al. per-

formed a more systematic study over a range of Gay-Berne aspect ratios, and showed

that a small region of smectic A stability occurs for aspect ratios of 3.2 : 1 and up-

wards [92]. They also note that there is no obvious transition between the smectic B

Figure 4.2: A reproduction of the phase diagram of number density against
L/D ratio for hard spherocylinders by Bolhuis and Frenkel [88]. Labelled
regions are isotropic (I), nematic (N), smectic (Sm), crystal solid (S) and
plastic solid (P).
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and crystal phases upon melting, indicating that they may be the same phase.

There have also been a number of studies on elongated molecules constructed from

fused spherical components. Vega et al. studied systems of rigid linear molecules

assembled from between 3 and 7 hard spheres [93]. For systems of less than 5 spheres,

no liquid crystal mesophases were observed; for 5 to 6 bead molecules, a smectic A

mesophase was observed; and both nematic and smectic phases were observed for

systems of 7 bead molecules.

Equivalent models constructed out of hard spheres include the work of Perera and

Sokolic [94] and Galindo et al. [95]. The work of Perera and Sokolic used molecules

assembled from 2, 3 and 5 Lennard-Jones potentials fused at a separation of 0.5σ

(such that the minimum of one potential was located at the center of its neighbour).

These were equivalent to L/D ratios of 0.5, 1 and 2 respectively. No mesophases were

seen, only isotropic and ordered solid phases [94]. Galindo et al. used Lennard-Jones

potentials with a separation of σ, fused into rigid linear chains of 3 and 5 potentials (ef-

fective L/Ds of 2 and 4), and equally saw no liquid crystal mesophases [95]. Longer

chains constructed from WCA potentials have been shown to give nematic and smectic

mesophases as studied by Cinacchi et al. [96], using 9 potentials separated by 0.6σ,

equivalent to an L/D ratio of ≈ 4.8. The early work by Paolini et al. showed the pres-

ence of nematic and smectic behaviours with linear repulsive molecules constructed

from 11 beads with a separation of 1.2σ, giving a ratio closer to L/D ≈ 12 [76].

There has been little work to systematically study the effects of arm lengths on a bent-

core mesogen using a single type of interaction potential. Camp et al. [67] examined

phase behaviour of a number of different bend angles using hard spherocylinder dimers

with individual ratios of L/D = 2 per arm, while Lansac et al. [71] mapped out the

entire phase diagram for dimers with L/D = 5 per arm. Dewar and Camp have also
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studied the mesophases of composite molecules assembled from seven Lennard-Jones

potentials at a selection of bend angles [77].

In this chapter, we extend the results from Chapter 3 for our model of a bent-core meso-

gen. Using molecular dynamics simulations, we study a parameter space increased to

include the number of beads per mesogen arm. For each variant of molecule, we per-

form a sweep of both bend angle and pressure values.

4.2 Simulation method

Results in this chapter are obtained from a similar method to that outlined in Sec. 3.2.3.

Molecules were constructed by assembling either 5, 7 or 9 WCA spherical potentials

(see Eqn. (3.2)) along two intersecting arm vectors ê1 and ê2, as demonstrated in

Fig. 4.3. Individial beads are placed such that they are a distance of σ apart. The

arrangement of beads within the molecule remain fixed relative to the two arm vectors,

resulting in a molecule that is entirely rigid in shape.

As the overall shape of the molecule does not change, the same set of orthogonal

vectors were used as the molecular frame of reference regardless of size, where â, b̂

and ĉ are defined by Eqns. (3.1). The direction of the long axis of the molecule is the

straight vector between the centers of the two “tip” beads, and the short axis director is

the vector perpendicular to the long axis that passes through the middle of the central

bead.

Systems were initialized by placing 512 identical molecules of a common arm length

and bend angle on the sites of an expanded primitive cubic lattice. Lattice spacings

were set such that the initial molecular density was ρ∗ ∼ 0.001, large enough to allow
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free initial rotation without collision or overlaps.

Simulations were conducted using the DL_POLY_2 [82] molecular dynamics package

using cubic periodic boundary conditions, velocity Verlet integration and the Nosé-

Hoover thermostat and barostat, at a fixed temperature of T ∗ = 1. The initial arrange-

ment was run under NVE conditions with a timestep of t∗ ∼ 0.01, and sampled every

105 timesteps to provide pseudorandom isotropic gaseous starting configurations.

Each of these configurations were used to begin a compression simulation run, where

they were switched to an NPT ensemble and compressed to an isotropic liquid state

below the onset of any mesophases. Equilibration was performed for 106 timesteps. A

compression sweep then consisted of increasing the barostat by a fixed pressure step;

equilibrating for 106 timesteps; checking that values for order parameters and densities

had settled; then either equilibrating further, or sampling the system configuration 100

Figure 4.3: A representation of 9-bead (top), 7-bead (middle) and 5-bead
(bottom) bent-core molecules, with a set of common orthogonal frame vec-
tors. The centres of the spherical potentials along an arm vector are sepa-
rated by a distance σ.
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times over the next 106 timesteps. Each sequential pressure step was initialized using

the final molecular configuration generated by the previous run.

4.3 9-bead molecules

Simulations using 9-bead molecules were conducted for a range of different bend an-

gles in the interval 160◦ ≤ θ ≤ 130◦. The thermostat temperature was fixed at T ∗ = 1

while the system was compressed from an initially isotropic state at a pressure of

P ∗ = 0.17. In each instance, five distinct trajectories were used in order to obtain

error estimates for calculated parameters, and to ensure any observed phase behaviour

was not unique to a specific configuration.

To broadly summarize the results obtained from these simulations, a plot of the uniaxial

order parametersQ2
00 is shown in Fig. 4.4. This illustrates the mean values forQ2

00 with

respect to the reduced pressure P ∗ for the bend angles of θ = 160◦, 150◦, 140◦ and

130◦.

This plot is similar in appearance to Fig. 3.4, in that it illustrates two main points.

Firstly, the transitions from an isotropic phase to a non-isotropic mesophase with a

degree of common alignment occur at increasingly higher pressures as the bend angle

of the mesogen is reduced. In addition, the final values of the Q2
00 order parameters are

split at high pressures. The θ = 130◦ systems reach a maximum value of Q2
00 < 0.5,

while the high pressure Q2
00 values for the θ > 130◦ systems reach maximum values

of Q2
00 > 0.9. This indicates that the final arrangements of the θ = 130◦ simulations

have a significantly decreased level of uniaxial alignment in their final configurations,

compared to those for θ > 130◦.
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There are a number of significant differences between the 11-bead and 9-bead plots

in Figs. 3.4 and 4.4 respectively. The first is that a noticeably higher pressure re-

quired to induce the first transition from an isotropic to a non-isotropic mesophase for

the θ > 130◦ systems – for example, the θ = 160◦ system at P ∗ = 0.5 appears to

be isotropic in the 9-bead systems, while the systems have already transitioned to a

uniaxial nematic in the 11-bead simulations. Although unclear from the Q2
00 values

alone, the second “bump” in the values corresponding to the nematic–smectic transi-

tion is also at a significantly higher pressure, increasing from P ∗ < 1.5 for 11-bead

molecules while P ∗ > 2 for the 9-bead systems. Finally, the Q2
00 values are slightly

lower in the region corresponding to the uniaxial nematic phases for the 11-bead sys-

tems. This indicates that there is a lower level of orientational alignment in the uniaxial

nematic phase in the 9-bead systems.
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Figure 4.4: The change in the uniaxial order parameter Q2
00 with increas-

ing pressure P ∗ for four different systems of N = 512 9-bead molecules.
Legend values correspond to the molecular bend angle θ.
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We will now show direct comparisons between the results for our simulations of 11-

bead and 9-bead molecules at identical bend angles for the θ = 160◦, 140◦ and 130◦

systems.

4.3.1 θ = 160◦

The values for the equations of state in both the 9-bead and 11-bead systems are shown

in Fig. 4.5, while their uniaxial and biaxial nematic order parameters Q2
00 and Q2

22 are

compared in Fig. 4.6. Due to the different molecular sizes, the isotropic liquid phases

are fitted to two different curves determined from Eqn. (2.31). As predicted by theory,

the smaller molecules reach higher numerical densities for the same pressure, and as

such the isotropic liquid phases are not coincident.

As with the 11-bead molecules, the equation of state for the 9-bead molecules shows

two phase branches beyond the initial isotropic phase. The first transition occurs in

the pressure window 0.52 < P ∗ < 0.69, where the points break from the isotropic

liquid theory. This is accompanied by a sharp increase in the uniaxial order parameter

from Q2
00 < 0.1 to Q2

00 ≈ 0.7, while the biaxial order parameter Q2
22 remains low.

This indicates the presence of a uniaxial nematic phase – a snapshot of a system at

P ∗ = 0.69 is shown in Fig. 4.7a.

A second phase transition occurs as the pressure is increased through the range 1.74 <

P ∗ < 1.91. A snapshot of a system at a pressure of P ∗ = 1.91 is shown in Fig. 4.7b.

There is a small bump in the upward trend of Q2
00 at this point, while the Q2

22 be-

gins to increase from Q2
22 < 0.1 towards 0.7 at the highest pressures. This is the

same transition to a smectic-like offset layered phase as seen for the simulations of

11-bead molecules. Comparisons of the 11-bead and 9-bead pair correlation functions
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Figure 4.5: The equations of state for systems of 512 9-bead (circles) and
11-bead (crosses) θ = 160◦ molecules on compression. The lines indicate
the theoretical liquid equations of state for the 9-bead (dashed) and 11-bead
(dotted) systems. Error bars are smaller than symbol size.
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Figure 4.6: The uniaxial (circles) and biaxial (squares) order parame-
ters for systems of 512 9-bead (filled) and 11-bead (hollow) θ = 160◦

molecules on compression. Errors bars have been omitted from the 11-
bead points for clarity.
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(a) P ∗ = 0.69 (b) P ∗ = 1.91

Figure 4.7: Snapshots from a compression run of 512 9-bead molecules
with a bend angle of θ = 160◦, showing (a) nematic and (b) smectic-like
mesophases.
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Figure 4.8: The pair correlation function between 512 θ = 160◦ molecules
in a system of 9-bead molecules at P ∗ = 1.91 (bottom, black) and of 11-
bead molecules at P ∗ = 1.56 (top, red). The plots have been vertically
offset for clarity.



CHAPTER 4. EFFECT OF ARM LENGTH ON BENT-CORE PHASES 116

are shown in Fig. 4.8, which illustrates similar molecular structure for as far as g(4),

the distance from the central bead to the outer extent of a 9-bead molecule’s arm. The

slowly increasing Q2
22 parameter is again related to the polarization of the clusters,

which becomes more pronounced as the system is compressed and the “knuckles” fit

inside one another. The larger value of the parameter indicates that the relative polar-

ization is larger, due to the smaller number of clusters that occur when using a smaller

molecule size but the same quantity of molecules in total.

Overall, we can see that the 11-bead and 9-bead 160◦ molecules share similar phase

behaviour. However, the onset pressure for the emergence of a uniaxial nematic phase

is increased, as is the transition pressure to a smectic-like phase. The main modification

to the phase behaviour with shorter 160◦ molecules is that the uniaxial nematic phase

has been broadened slightly.

4.3.2 θ = 140◦

The equations of state for 9-bead and 11-bead molecules with an internal bend angle of

140◦ are shown in Fig. 4.9 along with their respective theoretical liquid density curves.

Their Q2
00 and Q2

22 order parameters are simultaneously shown in Fig. 4.10.

There are again two phase transitions observed through the equation of state for the

9-bead molecules. The first is relatively small and occurs in the pressure window

1.39 < P ∗ < 1.56. The change in density is quite small, and is only observable from

the fact that the calculated values no longer fit to the theoretical isotropic liquid curve.

There is then a much stronger phase transition as the system is compressed slightly

further, occuring in the range 1.91 < P ∗ < 2.08.
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Figure 4.9: The equations of state for systems of 512 9-bead (circles) and
11-bead (crosses) θ = 140◦ molecules on compression. The lines indicate
the theoretical liquid equations of state for the 9-bead (dashed) and 11-bead
(dotted) systems. Error bars are smaller than symbol size.
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Figure 4.10: The uniaxial (circles) and biaxial (squares) order parame-
ters for systems of 512 9-bead (filled) and 11-bead (hollow) θ = 140◦

molecules on compression. Errors bars have been omitted from the 11-
bead points for clarity.
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The first of these transitons is from the isotropic to the uniaxial nematic, as shown by

the increase in the Q2
00 order parameter. The value of the parameter does not increase

in one large jump, but is instead a slower increase, similar to the behaviour observed in

large systems of 11-bead, θ = 140◦ mesogens as described in Sec. 3.4.2. A snapshot

of a system in the nematic phase at P ∗ = 1.56 is shown in Fig. 4.11a, showing the

system with a moderate level of nematic ordering.

The more distinct second transition to a offset smectic is indicated by a sudden jump

in the uniaxial order parameter to Q2
00 > 0.9, as well as a sharp increase in the biaxial

nematic order parameter due to the polarization of the small number of clusters. This

phase is shown in Fig. 4.11b. The large spread in values is due to the variation in

cluster sizes and orientations across different trajectory runs.

Both the Q2
00 and Q2

22 values show higher degrees of alignment in the 9-bead system

(a) P ∗ = 1.56 (b) P ∗ = 2.08

Figure 4.11: Snapshots from a compression run of 512 9-bead molecules
with a bend angle of θ = 160◦, showing (a) nematic and (b) smectic-like
mesophases.
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compared to the 11-bead system. In Sec. 3.3.2 the decreasing value of Q2
00 at high

pressure was attributed to the “zig-zag” fashion in which neighbouring clusters aligned,

dictated by the angle at which the upper arm of a molecule is aligning with the lower

arm of the next layer. As the 9-bead molecules are shorter, neighbouring arms are not

pushed so far from the global alignment director in order to align, and so the overall

uniaxial alignment of the system is improved.

As with the 9-bead, θ = 160◦ molecules, the phase behaviour is not notably different

from the 11-bead phase behaviour. The slower increase of the Q2
00 order parameter is

observed in the larger simulations of 4096 11-bead molecules, and is indicative that the

long axis of the molecule is close to the shortest limit in which it can induce a nematic

phase by itself. Both transitions occur at much higher pressures for 9-bead molecules

than for 11-bead molecules.

4.3.3 θ = 130◦

Figures 4.13 and 4.14 show the equations of state and order parameters respectively

for systems of 512 11-bead and 9-bead, θ = 130◦ molecules upon compression. The

9-bead systems show the presence of only a single phase transition, occuring in the

pressure window 1.74 < P ∗ < 1.91. The values of Q2
00 and Q2

22 remain low after

the transition, indicating a very similar level of alignment compared to the 11-bead

molecules at the same bend angle.

Visual inspection of the phase at P ∗ = 2.08 (Fig. 4.12) indicates that the molecules

are beginning to align into clusters through their short axes, in the absence of a global

long axis director. This is the same as the “jammed” smectic phase behaviour observed

in Sections 3.3.3 and 3.4.3 for 11-bead systems of 512 and 4096 θ = 130◦ molecules,
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corresponding to the isotropic–smectic transitions determined in melting simulations

by Lansac et al. [71]. Once again, the phase behaviour is nearly identical to that of 11-

bead molecules, with the exception that the transition pressure has been significantly

elevated.

Figure 4.12: Snapshot of a compression run of 512 9-bead molecules with
a bend angle of θ = 130◦ at a pressure of P ∗ = 2.08.
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Figure 4.13: The equations of state for systems of 512 9-bead (circles) and
11-bead (crosses) θ = 130◦ molecules on compression. The lines indicate
the theoretical liquid equations of state for the 9-bead (dashed) and 11-bead
(dotted) systems. Error bars are smaller than symbol size.
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Figure 4.14: The uniaxial (circles) and biaxial (squares) order parame-
ters for systems of 512 9-bead (filled) and 11-bead (hollow) θ = 130◦

molecules on compression. Errors bars have been omitted from the 11-
bead points for clarity.
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4.3.4 Summary

Table 4.1 summarizes the transition pressure windows for the phase behaviour seen in

simulations of 9-bead molecules in the range 160◦ ≤ θ ≤ 140◦, of which the 160◦ and

140◦ systems have been more fully explained. Intermediate bend angles were analysed

in similar ways and their phases determined to be the same, showing isotropic, nematic

and offset smectic layers.

Overall, there is little effect on the relationship between bend angle and phase be-

haviour when reducing the mesogen size from 11 beads to 9 beads. Bend angles of

θ ≥ 140◦ still exhibit isotropic, uniaxial nematic and offset smectic layer phases on

compression of systems of 512 molecules. Similarly, the absence of a uniaxial ne-

matic phase for bend angles of θ ≤ 130◦ persists, resulting in the formation of clusters

with short range alignment, but without a common global alignment vector. On the

other hand, the relationship between phase behaviour and pressure is greatly changed,

with much higher system pressures being required to induce spontaneous alignment

between molecules. The overall width of the nematic phase is also altered. Towards

more linear molecules the nematic phase is seen to broaden, while the width of the

phase remains relatively constant for bend angles of θ ≈ 140◦.

θ → N → Sm
160◦ 0.52 – 0.69 1.74 – 1.91
155◦ 0.69 – 0.87 1.74 – 1.91
150◦ 0.69 – 0.87 1.91 – 2.08
145◦ 1.04 – 1.21 1.91 – 2.08
140◦ 1.39 – 1.56 1.91 – 2.08

Table 4.1: The transition windows to nematic and smectic-like phases for
systems of N = 512 9-bead molecules on compression.
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4.4 7-bead molecules

Simulations of systems of 7-bead molecules were conducted using a range of different

bend angles in the interval 160◦ ≤ θ ≤ 130◦ using a fixed thermostat temperature of

T ∗ = 1. Due to the elevated transition pressures that occured as a consequence of

shortening the molecule in the previous section, we increased the starting pressure of

the simulations to P ∗ ≈ 0.27 and increased the size of the pressure step likewise. All

simulations still began from an initially disordered isotropic liquid state. Error esti-

mates on calculated values were determined by averaging across the results obtained

from five distinct trajectories.

The mean values for the uniaxial order parameters Q2
00 against reduced pressure P ∗

for each set of bend angle runs are shown in Fig. 4.15. As with both the 11-bead and

9-bead molecules, the high-pressure behaviours are split into two regions, one of high

uniaxial alignment in the region Q2
00 > 0.9, and a second of reduced alignment where

Q2
00 < 0.5. The pressures required to induce the initial alignment changes are elevated

once again – the first significant uniaxial ordering of the θ = 160◦ systems does not

occur until pressures in excess of P ∗ = 1.5.

The most significant change is that the θ = 140◦ systems no longer show a good level

of uniaxial alignment, and the value of Q2
00 remains below 0.5 at pressures as high as

P ∗ = 4. There is also significant error on the results, indicating an inconsistent level

of alignment between systems.

The equation of state for the systems of 7-bead θ = 140◦ molecules is shown in

Fig. 4.16, fitted against the theoretical liquid equation of state for 7-bead polymers

from Eqn. (2.31). It should be noted that the equation is no longer such a good fit for

the data at low pressures – it appears to slightly overestimate the number density for
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the range 1 < P ∗ < 3. However, it still provides a clear indication of the branching of

the equation of state as the system undergoes a phase transition in the pressure window

3.28 < P ∗ < 3.54.

The presence of a single branch at high pressure indicates that there is a loss of a

liquid crystal phase compared to the 9-bead and 11-bead, 140◦ systems. This branch

occurs at the upper end of our pressure sweep, which could suggest that further phases

could exist beyond the pressures explored. However, a comparsion between the pair

correlation functions for the 9-bead and 7-bead systems is shown in Fig. 4.17, just

after the first phase transition in each system. Small differences in the pair correlation

functions indicate the presence of different phase behaviour – the 7-bead system has a

much more strongly enhanced first peak at r ≈ σ in comparison to that of the nematic
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Figure 4.15: The change in the uniaxial order parameter Q2
00 with increas-

ing pressure P ∗ for four different systems of N = 512 7-bead molecules.
Legend values correspond to the molecular bend angle θ.
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Figure 4.16: The equations of state for a systems of 512 7-bead θ = 140◦

molecules on compression. The dotted line indicate the theoretical liquid
equation of state. Error bars are smaller than symbol size.
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Figure 4.17: The pair correlation function between 512 θ = 140◦

molecules in a system of 7-bead molecules at P ∗ = 3.54 (top, red) and
of 9-bead molecules at P ∗ = 1.56 (bottom, black). The plots have been
vertically offset for clarity.
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phase for the 9-bead system, while the presence of a small peak at r ≈ 2σ indicates

the presence of a small degree of repeating structure.

Snapshots from a system at P ∗ = 3.54 are shown in Fig. 4.18, coloured two separate

ways in order to highlight the long axis orientation and positions of the central beads

of the molecules. It it not immediately obvious that this is not just a uniaxial nematic

phase with lower alignment from simply observing the system configuration. However,

the colouring on the right of Fig. 4.18 indicates that the central beads of the molecules

are beginning to arrange into smectic-like clusters, as seen with narrower bend angles

at larger molecule sizes.

For the simulations of 150◦ and 160◦ 7-bead molecules, the presence of two mesophases

perseveres. The equation of state for the 160◦ molecules on compression is shown in

Fig. 4.19, and indicates the presence of a first phase transition in the region 1.36 <

P ∗ < 1.63, followed by a second phase transition in the pressure window 2.73 <

Figure 4.18: Snapshots of a system of 512 7-bead molecules with a bend
angle of θ = 140◦ and a pressure of P ∗ = 3.54. Two different colourings
are used of the same system, either coloured based on long axis orientation
(left) or to highlight the location of the central bead (right).
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P ∗ < 3.00, corresponding to uniaxial nematic and smectic phases respectively. Simi-

lar analysis on the equation of state for the 150◦ simulations reveals transitions between

1.91 < P ∗ < 2.19 and 3.28 < P ∗ < 3.54. Snapshots of both systems just after their

nematic–smectic transitions are shown in Fig. 4.20.

Interestingly, the quality of the smectic ordering across the two systems is quite dif-

ferent. For the 150◦ molecules the offset smectic layers remain, and the size of the

individual clusters is smaller than for 9-bead and 11-bead systems. However, the 160◦

systems show completely distinct smectic layers without any arm length offsets what-

soever. A comparison of the pair correlation functions for these two snapshots is shown

in Fig. 4.21. The split second peak for the 160◦ simulations indicates that the system is

in the hexagonally packed smectic B phase immediately after transition, which is not
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Figure 4.19: The equations of state for a systems of 512 7-bead θ = 160◦

molecules on compression. The dotted line indicate the theoretical liquid
equation of state. Error bars are smaller than symbol size.



CHAPTER 4. EFFECT OF ARM LENGTH ON BENT-CORE PHASES 128

(a) θ = 160◦, P ∗ = 3.00 (b) θ = 150◦, P ∗ = 3.54

Figure 4.20: Snapshots from compression runs of 512 7-bead molecules
with a bend angles of (a) θ = 160◦ and (b) 150◦, at pressures just after the
nematic–smectic transition.
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Figure 4.21: The pair correlation function between the molecules of sys-
tems of N = 512 7-bead molecules of θ = 150◦ and 160◦ just beyond their
respective nematic–smectic transitions. The 150◦ system (bottom, black)
is at a pressure of P ∗ = 3.54, while the 160◦ system is at a pressure of
P ∗ = 3.00. The plots have been vertically offset for clarity, and the peak
of the 160◦ line at a value of 18.9 (26.9 on the offset axis) has been trun-
cated.
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true for the 150◦ systems. It is likely that at this size of molecule, the bend angle is suf-

ficiently small that the mesogen now acts more like a linear molecule. The thickness

to short axis ratio (see Fig. 4.1) is approximately 1 : 1.52 for the θ = 160◦ molecules,

while the ratio is approximately 1 : 1.78 for the θ = 150◦ molecules. For the 9-bead

molecules, these ratios are 1 : 1.7 and 1 : 21 respectively.

4.4.1 Summary

The change in the relationship between bend angle and phase behaviour is more no-

table when moving from a 9- to a 7-bead molecule, than the difference between the

phase behaviours of the 11- and a 9-bead systems. Once again, the pressures required

to induce the phase changes are increased, and the width of the nematic phase is broad-

ened for the systems that demonstrate a uniaxial nematic phase. The uniaxial nematic

phase disappears for θ = 140◦, resulting in only isotropic and the clustered phase, with

no global long axis alignment as seen for θ ≤ 130◦ systems in with longer molecules.

The loss of a uniaxial nematic phase for the systems of 140◦ 7-bead molecules is not

unexpected. Previous work by Dewar and Camp [77] on the Monte Carlo melting of

7-bead bent-core molecules constructed from Lennard-Jones potentials has also noted

the absence of a uniaxial nematic phase at a bend angle of 140◦, while the phase was

present for their systems of molecules with bend angles of 160◦. At this point the ratio

of the thickness of the molecule compared to the length of the short axis has become

comparable, and the biaxiality of the molecule is reduced. This lessened biaxiality

means that the molecules act more like linear mesogens and do not experience their

arms becoming “trapped” within the knucles of neighbouring molecules.
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4.5 5-bead molecules

Simulations of systems of 5-bead molecules were conducted using molecules with

bend angles of θ = 160◦, 150◦ and 140◦, and a fixed thermostat temperature of T ∗ = 1.

Again, due to the increasing pressures required to induce nematic phase behaviour in

the 7-bead molecules compared to the 9-bead, we raised the starting pressure and size

of the barostat pressure step to P ∗ = 0.38. Systems remained in a disordered isotropic

liquid phase at this pressure. Simulations were then conducted using pressure sweeps

up to P ∗ = 5.78.

Values obtained for the uniaxial order parameterQ2
00 for these three systems are shown

in Fig 4.22, while the equations of state for the three systems are shown relative to the

isotropic liquid curve in Fig. 4.23. At no point during the course of any of these simu-

lations did we see anything other than a disordered isotropic state, indicating the loss

of all liquid crystalline phases. It is not obvious that there are any particular phase

changes from the equations of state alone. Visual inspection of the systems revealed

a very low level of diffusion and molecular movement at the highest pressures. Snap-

shots of a 160◦ system at low and high pressures are shown in Fig. 4.24, demonstrating

no difference in alignment at the two ends of the simulation sweep.

The absence of any mesophases at this extent fits with the work of Galindo et al. [95],

whose studies of rigid chains of five Lennard-Jones potentials indicated the presence

of only solid and liquid phases. We therefore assume that, for a chain of five beads,

the relative elongation of the molecule is insufficient for common alignment to be

achieved between molecules. It is also worth noting that for a linear chain of five

atoms, the effective L/D ratio of the entire molecule is 4 – a larger value than for the

loss of nematic behaviour atL/D = 3.1 for hard spherocylinders as derived by Bolhuis
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Figure 4.22: The change in the uniaxial order parameter Q2
00 with increas-

ing pressure P ∗ for three different systems of N = 512 5-bead molecules.
Legend values correspond to the molecular bend angle θ.
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Figure 4.23: The equations of state for three systems of 512 5-bead
molecules on compression. Legend values correspond to the molecular
bend angle θ, while the dashed line corresponds to the theoretical liquid
equation of state.
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and Frenkel [88]. The relative softness of our mesogens therefore plays a much more

significant part in the phase behaviour of our systems for small mesogen sizes than for

our large ones, as the phase behaviour of our 11-bead molecules was a good match for

the hard spherocylinder bent-core phase diagram, as described at the end of Chapter 3.

(a) P ∗ = 0.38 (b) P ∗ = 5.73

Figure 4.24: Snapshots from two ends of compression run of 512 5-bead
molecules with a bend angle of θ = 160◦, showing isotropic behaviour
throughout.
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4.6 Conclusions

In this chapter we have studied the effects of modifying the number of beads from

which our bent-core mesogenic models are constructed, and how this alters the phase

behaviour of our simulated systems. By changing the number of beads, we are altering

the L/D ratio of the arms of our molecules, with fewer beads resulting in “thicker”

molecular arms.

There is little effect on the phase behaviour when moving from an 11-bead to a 9-

bead molecule, with the loss of the uniaxial nematic phase still occuring in the range

130◦ < θ < 140◦. Above this critical angle, uniaxial nematic and smectic A-like

phases are seen. For smaller angles we do not see the presence of a global alignment

director, and the same short-range clusters form as for the 11-bead molecules. The

pressures at which the transitions occur are not the same, with significantly higher

pressures required to induce phase transitions. In addition, the overall width of the

uniaxial nematic phase is increased for the more linear molecules, while the width of

the nematic phase changes little for angles closer to 140◦.

On moving from a 9-bead to a 7-bead molecule, the increase in pressure required to

induce a liquid crystal phase change is much more pronounced, with both the isotropic

and uniaxial nematic phases persisting to much higher pressures. The width of the

uniaxial phase is also significantly broadened throughout. We do see a small change in

the overall phase diagram, with the loss of the global director occuring in the 150◦ <

θ < 140◦ window and the 140◦ systems no longer able to achieve a uniaxial nematic

phase. The degree of smectic layer ordering becomes significantly improved for the

160◦ systems, as their biaxiality becomes less pronounced at smaller molecule sizes

and they behave more like linear chains.
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For molecule sizes of 5 linked beads, we see a total loss of any orientationally aligned

phases, with the molecular systems remaining in the isotropic phase throughout the

entire compression run. This is in agreement with the results by Galindo et al. [95],

who saw no liquid crystal phases for linear molecules constructed from five Lennard-

Jones potentials. At this point, the molecules are no longer sufficiently elongated to

form mutually aligned mesophases, and so no orientational ordering is found.

In terms of our goal of simulating a thermotropic biaxial nematic phase, we recall from

Fig. 3.1 that a bend angle of approximately 110◦ is required in the Onsager limit. From

the results of these simulations, we see that the angle at which we lose the uniaxial

nematic phase does not change much for the size modifications we have made in this

chapter, with the angle slowly getting wider as the molecule size is reduced. It is likely

that if the biaxial nematic was to be seen with a similar mesogenic model to ours, if it

all, it would require far longer molecular arms in order to approach anything close to

the L� D values required.

There are significant problems with simulating highly elongated molecules. Firstly, the

number of potentials required in our multi-bead models would be far larger than our

current models, and impossible to simulate for a reasonable time without vast amounts

of computational resources. Even if we used a model such as a spherocylinder or Gay-

Berne dimer, the fact that the mesophases live between the liquid and solid phases

means that any simulated system would need to be of sufficiently high density, and the

number of simulated molecules would have to be of the order 10 × (L/D)2. This is a

very large number for highly elongated molecules.

Therefore, we must consider an alternative method of achieving a biaxial nematic

through simulation. One way we can do this is by disrupting the polar smectic pack-

ing by somehow making molecules incompatible with one another so that they cannot
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pack so neatly within one another. By introducing more free space into the system with

non-tessellating shapes, we may be able to push back the onset of smectic behaviour

such that a biaxial nematic can form instead. In the next chapter, we look to achieving

this through the use of binary mixtures of bent-core mesogens.



Chapter 5
Binary mixtures of bent-core molecules

In Chapter 3 we explored the effect of bend angle on the liquid crystal phase behaviour

of bent-core mesogens. In Chapter 4, we extended this to include the effects of the arm

lengths of the molecules by varying the number of potentials that they are constructed

from. Between them we have obtained a good understanding of the phase behaviour

of monocomponent systems of our purely repulsive bent-core mesogens. However, we

have not seen the presence of a biaxial nematic phase, and we believe that to do so

with a monocomponent system would require molecules with arm lengths far larger

than can be reasonably simulated today.

By mixing together different variants of bent-core molecules we propose that we may

be able to manipulate where the phase transitions occur. We may even introduce new

liquid crystal phases not seen in monocomponent systems – potentially including a

biaxial nematic phase. In this chapter we explore the properties of a number of bi-

nary mixtures of bent-core mesogens, in order to understand how the phase behaviour

differs to that of monocomponent systems.

136
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5.1 Background

A binary mixture of two different mesogenic shapes was one of the earliest sug-

gested systems for forming a biaxial nematic phase. In terms of intrinsically biaxial

molecules, the biaxial nematic phase theoretically lies between the rod-like and plate-

like nematic phases (see Fig. 3.1). Early lattice-based simulations by Alben in 1973

suggested that a mixture of rod-like and plate-like mesogens would be capable of ex-

hibiting a biaxial nematic phase [97]. The plate-like mesogens were suggested to have

one nematic alignment director, and the rod-like mesogens would have their own dis-

tinct nematic director. The two components would then pack in such a way that the

two directors would be orthogonal.

Several other theoretical works followed, suggesting that biaxial nematic phases formed

by a mixture of plate-like and rod-like mesogens were possible [98, 99]. However, fur-

ther invesigation showed that a system comprised of mesogens that interacted purely

through repulsive potentials would separate into two phases, each rich in either plates

or rods [100]. Further lattice-based simulations where the mesogens were allowed

to translate as well as rotate also showed that phase separation was thermodynami-

cally preferable [101]. In order to encourage the two components to stay mixed, some

models have employed an attractive rod-disk potential, but repulsive disk-disk and rod-

rod potentials [102, 103]. It has been suggested that this may be possible to synthesize

using molecules with rod-like and disk-like mesogenic components, attached by a flex-

ible bond [104]. However, no spontaneous biaxial nematic has been seen using these

techniques, although it has been suggested external stresses such as electric fields or

shearing may be able to induce the phase [12].

Binary mixtures of similar but non-identical mesogens can also exhibit liquid crystal
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phases that are not present in monocomponent systems of either mesogen individu-

ally. Stroobants demonstrated this by extending the earlier Monte Carlo simulation

work on hard parallel spherocylinders [86] to binary mixtures of two spherocylin-

ders with differing lengths, one fixed at L1/D = 1 and the other at values between

1.3 ≤ L2/D ≤ 2.1 [105, 106]. It was found that as the ratio L2/D increased the

nematic–smectic transition was delayed until higher system densities, with a colum-

nar phase appearing at L2/D > 1.6, and the smectic phase disappearing entirely for

L2/D > 1.9. No phase separation of the two components was seen.

Further theoretical analysis by van Roij and Mulder [107] indicated that the phase

separation of the two components in these systems does not occur until the ratio of the

L/D values across the two molecules was greater than 5 : 1. At this point, the two

nematic phases of each component preferentially demix. Cinacchi et al. calculated

theoretical phase diagrams for a number of binary hard spherocylinder systems [108]

and found that the isotropic, nematic, and smectic phases remained mostly well-mixed

for systems where L1/L2 ≈ 1.4, but when L1/L2 ≈ 2 the two phases separate. No

smectic phase mixing was seen at all for mixtures where the mole fraction of the longer

component was any greater than 0.2. In all systems, as the mole fraction of the longer

molecule increased, the two smectic phases separated at progressively lower pressures.

Reducing the differences between the mesogens even further, it has been shown that a

degree of polydispersity in molecular size can also help stabilize and broaden biaxial

nematic phases in systems of board-like mesogens. By having a range of molecular

ratios, the onset of the smectic phase can be disrupted and allow more space for the

biaxial nematic phase to form [109]. van den Pol et al. undertook experimental work

on colloidal suspensions of board-like molecules with a : b ≈ b : c and each dimension

having a variation of ∼ 25% [110]. By aligning the molecules in a magnetic field
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to induce orientational ordering, they showed that a biaxial nematic phase was not

only possible, but the width of the phase was quite broad. Recently, theoretical work

by Belli et al. has shown that polydispersity in suspensions of board-like molecules

creates a large region of stability for the biaxial nematic liquid crystal phase [111].

In this chapter, we aim to study the phase behaviour of binary mixtures of bent-core

molecules. We suggest that, by mixing together variants of the same basic mesogenic

shape, we may be able to observe new phase behaviour and potentially disrupt the

smectic and smectic-like ordering that occurs. We will investigate two different types

of mixtures, as illustrated in Fig. 5.1. The first consists of two molecules with the same

bend angle but with different arm lengths. As the work of van Roij et al. showed

that hard spherocylinders remain mixed so long as the L2/L1 ratio remains less than 2

[107], we expect the two components to remain mixed in the uniaxial nematic phase. If

they remain mixed into the smectic phases, they may disrupt the ability of the smectic

layers to pack neatly and introduce gaps, as shown in Fig. 5.1a.

The second kind of mixture consists of molecules of the same arm lengths, but of

different internal bend angles, as shown in Fig. 5.1b. As the sizes of the molecules

are identical, we expect the miscibility of the two components to be improved relative

(a) (b)

Figure 5.1: The different binary mixtures examined in this chapter, con-
sisting of (a) molecules with the same bend angle but different arm length,
and (b) molecules with the same arm length but different bend angles.
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to that of mixtures of differing molecule sizes. The close packing of molecules in the

smectic phase may leave extra free space, as the molecules will be unable to tessellate

optimally. This extra free space may give the mesogens extra room to rotate around

their long axes, and prevent such strong alignment of their short axes.

5.2 Simulation method

Molecules used in this chapter are constructed in the same fashion as described in

Section 4.2. Systems were initialized by placing molecules of type A and type B on

the sites of an expanded primitive cubic lattice. As the number of molecules used was

not a cubic number, a larger lattice than necessary was used and the molecules placed

sequentially, with the A molecules filling up the layers first. Any free lattice points

were left unoccupied.

Simulations were conducted using the DL_POLY_2 [82] molecular dynamics package

with cubic periodic boundary conditions, velocity Verlet integration and the Nosé-

Hoover thermostat and barostats, using a fixed temperature of T ∗ = 1 and a timestep of

t∗ ∼ 0.01. In order to ensure that not only the positions and rotations of the molecules

were randomized, but that the two components were well-mixed, the initial NVE runs

were performed for an order of magnitude longer than with monocomponent systems.

Initial isotropic gaseous starting configurations were generated by sampling this initial

NVE run every 106 timesteps.

Each configuration obtained in this way was used as the beginning of a compression

simulation run, whereby the system was switched to an NPT ensemble and compressed
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to an isotropic liquid state. Equilibration was performed for 106 timesteps. A compres-

sion sweep then consisted of increasing the barostat by a fixed pressure step; equilibrat-

ing for 5 × 106 timesteps (longer than monocomponent systems due to the possibility

of phase separation); checking that the order parameters of each of the individual com-

ponents had settled; then either equilibrating further, or simulating for another 106

timesteps, during which the system would be sampled 100 times. The final molecular

configuration after this last set of timesteps was then used as the starting configuration

for the next sequential pressure step.
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5.3 Mixtures of different molecule sizes

In this section we present results for binary mixtures comprised from two molecular

types of different sizes – that is, assembled from a different number of WCA potentials,

nA and nB. The internal bend angle of the two molecules is kept the same, such that

θ = θA = θB. As we are looking for thermotropic phase behaviour, the number of

each type of molecule is fixed at NA = NB for all simulations conducted.

5.3.1 Mixtures of nA = 11, nB = 7

We begin by looking at the phase behaviour resulting from mixtures of nA = 11 and

nB = 7 molecules, with NA = NB = 512, for a total of 1024 molecules. The selection

of these two molecule sizes was made as the phase behaviour of each was character-

ized in Chapters 3 and 4 respectively. Both were seen to have uniaxial nematic and

smectic-like behaviour, with a loss of the nematic behaviour at different bend angles

for each size of molecule (θ = 130◦ for the 11-bead molecules, θ = 140◦ for the 7-bead

molecules). They are also sufficiently different in size that a transition to a smectic-like

phase would contain a large amount of free space if the two components are mixed.

Simulations for the nA = 11 and nB = 7 mixtures were conducted for a range of

different bend angles in the interval 160◦ ≤ θ ≤ 120◦. Systems were compressed from

an initially disordered, fully mixed isotropic state at a pressure of P ∗ = 0.053, with a

pressure step size of between 0.053 ≤ P ∗ ≤ 0.21.
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5.3.1.1 θ = 160◦

In monocomponent systems, both 11-bead, θ = 160◦ and 7-bead, θ = 160◦ bent-

core mesogens undergo phase transitions from isotropic to uniaxial nematic and then

to smectic phases on compression. The pressure windows are significantly different,

with the 7-bead molecules requiring much higher pressures.

Compressions runs were performed on binary systems comprised of equal parts of

each type of θ = 160◦ molecule. The values for the order parameters Q2
00 and Q2

22 for

the individual components are shown in Fig. 5.2. There are several features from this

graph that indicate the presence of multiple phase transitions. The first occurs in the

pressure window 0.42 < P ∗ < 0.64, where the value ofQ2
00 for both systems increases

simulataneously, indicating both phases transitioning to a uniaxial nematic. A snapshot
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Figure 5.2: The uniaxial order parameter Q2
00 (solid symbols) and biax-

ial order parameter Q2
22 (hollow symbols) on compression, for a mixture

of 512 11-bead molecules (red circles) and 512 7-bead molecules (black
squares) with a common bend angle of θ = 160◦.
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of this phase is shown in Fig. 5.3, with the 11-bead molecules in red-yellow and the

7-bead molecules in blue-cyan. This is slightly above the transition window for the

11-bead mesogens in a monocomponent system, but given the width of the windows,

it is probable that this transition has not moved significantly. The 7-bead molecules

have transitioned simultaneously, well below their monocomponent transition window

of P ∗ ∼ 1.5, and have been induced into a premature uniaxial nematic phase through

being mixed with the longer 11-bead molecules. The pair correlation functions for the

two types of molecules in isolation are shown in Fig. 5.4, with no long-range peaks

indicating the presence of a uniaxial nematic phase in both components.

As the pressure is increased further, a second phase transition in the range 2.13 <

P ∗ < 2.33 is then observed by the sharp rise in the Q2
22 order parameter and small

bump in the Q2
00 order parameter for the 11-bead molecules. There is no significant

change in the order parameters for the 7-bead molecules at this point. A snapshot of

a system at P ∗ = 2.33 is shown in Fig. 5.5, and the pair correlation functions for the

individual components are shown in Fig. 5.6.

At this pressure, the 11-bead molecules have undergone a transition to their smectic-

like behaviour, as shown by the alignment of their central atoms (yellow) in the snap-

shot, and by the presence of a secondary peak in the pair correlation function. The

shorter 7-bead molecules have not followed suit, and instead remain in the uniaxial ne-

matic phase, as seen by the absence of any long-range ordering in the pair correlation

function.

The elevated height of the first peaks for both components of the pair correlation func-

tions indicates that the distribution of molecules within the system has changed. These

peaks indicate that the system is beginning to demix, as the distribution of molecules

has changed such that the probability of finding two identical molecules next to one
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another (rij ∼ 1σ) is much higher than for the well-mixed nematic shown in Fig. 5.4.

The pressure at which this transition is induced is also much higher than that for the

smectic transition of the 11-bead, θ = 160◦ molecules in isolation, which occurs at

P ∗ ∼ 1.4. The mixing of the two molecules has a significant effect on the width of the

nematic phase for the longer molecules, extending it from 0.382 < P ∗ < 1.473 in the

monocomponent system, to 0.42 < P ∗ < 2.33 in the binary mixture.

The final transition of the 7-bead molecules to a smectic-like phase is less distinct, as

the aligned 11-bead molecules restrict space and common alignment cannot propagate

easily through the system. By P ∗ = 3.18 the 7-bead molecules have themselves tran-

sitioned to a smectic-like phase, as shown by the alignment of the central beads (cyan)

in Fig. 5.7. This is similar to the monocomponent 7-bead transition window which

occurs around 2.73 < P ∗ < 3.00. The pair correlation function in Fig. 5.8 shows the

presence of a second peak at this pressure, indicating a repeating smectic-like struc-

ture. A snapshot of the system along the main system director (shown in Fig. 5.7b)

shows that the two components are almost fully demixed at this point.
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Figure 5.3: Snapshot at P ∗ = 0.64 from a compression run of 512 11-bead
(red-yellow) and 512 7-bead (blue-cyan) molecules with a bend angle of
θ = 160◦, showing a well-mixed uniaxial nematic phase.
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Figure 5.4: The pair correlation for the individual components in Fig. 5.3,
showing 11-bead (top, red) and 7-bead components (bottom, black). The
plots have been vertically offset for clarity.
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Figure 5.5: Snapshot at P ∗ = 2.33 from a compression run of 512 11-bead
molecules (red-yellow) and 512 7-bead molecules (blue-cyan) with a bend
angle of θ = 160◦. The alignment of the yellow beads (the central atom of
the 11-bead molecules) indicates the presence of a smectic-like phase for
the longer molecules.
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Figure 5.6: The pair correlation for the individual components in Fig. 5.3,
showing 11-bead (top, red) and 7-bead components (bottom, black). The
plots have been vertically offset for clarity.
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(a) (b)

Figure 5.7: Snapshots at P ∗ = 3.18 from a compression run of 512 11-
bead (red-yellow) and 512 7-bead molecules (blue-cyan), with a mutual
bend angle of θ = 160◦. Snapshots are (a) perpendicular and (b) parallel to
the system director, clearly showing the demixing of the two components.
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Figure 5.8: The pair correlation for the individual components in Fig. 5.7,
showing 11-bead (top, red) and 7-bead components (bottom, black). The
plots have been vertically offset for clarity, and the peak of the 11-bead
line at a value of 13.6 (19.6 on the offset axis) has been truncated.



CHAPTER 5. BINARY MIXTURES OF BENT-CORE MOLECULES 149

5.3.1.2 θ = 140◦

When simulated individually, the 11-bead, θ = 140◦ and 7-bead, θ = 140◦ bent-core

mesogens have differing phase behaviours. The shorter molecules exhibit no uniaxial

nematic phase at this bend angle. In larger systems of 4096 11-bead molecules, the

formation of the uniaxial nematic phase was found to be slow, and unable to easily

select a global alignment director.

Compressions runs were performed on binary systems comprised of equal parts of

each type of θ = 140◦ molecule, 7-bead and 11-bead. The obtained values for the

order parameters Q2
00 and Q2

22 for each of the two components are shown in Fig. 5.9.

Unlike the θ = 160◦ binary mixture, the onset of the nematic behaviour in the 11-bead

molecules is considerably delayed, from P ∗ ∼ 0.6 to 1.27 < P ∗ < 1.49. A snapshot
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Figure 5.9: The uniaxial order parameter Q2
00 (solid symbols) and biax-

ial order parameter Q2
22 (hollow symbols) on compression, for a mixture

of 512 11-bead molecules (red circles) and 512 7-bead molecules (black
squares) with a common bend angle of θ = 140◦.
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of the system at P ∗ = 1.49 is shown in Fig. 5.10.

As a result of the two components being well mixed, a more interesting property arises.

The order parameters for the 7-bead molecules indicate that they too are in the uniaxial

nematic phase, despite not having such a phase in a monocomponent system. The pair

correlation functions in Fig. 5.13 confirm that both components are simultaneously in

the uniaxial nematic phase.

The width of the phase for the 11-bead mesogens is short-lived, and in the pressure

window 1.67 < P ∗ < 1.90 the molecules undergo another transition to a smectic-

like phase, shown by the snapshots in Fig. 5.12 and the pair correlation function in

Fig. 5.13. Again, this transition is at a significantly higher pressure than the mono-

component smectic transition at P ∗ ∼ 1.3 for the 11-bead, θ = 140◦ molecules.

The demixing of the two phases is more rapid than for the θ = 160◦ mixtures, and

the value of Q2
00 for the 7-bead molecules declines, indicating a loss of orientational

alignment. Visual inspection shows that the 7-bead mesogens have reverted to a near-

isotropic state, with a small degree of alignment (Q2
00 < 0.2) due to confinement by

the smectic phase of the 11-bead mesogens.

The extra “fluidity” provided by the isotropic 7-bead molecules allows the 11-bead

molecules to move more freely, and the offset smectic clusters seen in monocompo-

nent systems rearrange into full smectic layers. As the pressure is increased further,

both Q2
00 and Q2

22 increase to over 0.6 for the longer mesogens. The high value of Q2
22

is indicative of a strong level of polarization within the system, and is due to the ma-

jority of the 11-bead molecules adopting a common short axis alignment. The 7-bead

mesogens never transition to their “jammed” state with short-range alignment as seen

in monocomponent systems, due to confinement between the organized 11-bead layers.
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(a) (b)

Figure 5.10: Snapshots at P ∗ = 1.49 from a compression run of 512
11-bead (red-yellow) and 512 7-bead (blue-cyan) molecules with a mutual
bend angle of θ = 140◦. Snapshots are coloured according to (a) orienta-
tion and (b) kind.
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Figure 5.11: The pair correlation for the individual components in
Fig. 5.10, showing 11-bead (top, red) and 7-bead components (bottom,
black). The plots have been vertically offset for clarity.
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(a) (b)

Figure 5.12: Snapshots at P ∗ = 1.90 from a compression run of 512
11-bead (red-yellow) and 512 7-bead (blue-cyan) molecules with a mutual
bend angle of θ = 140◦. Snapshots are coloured according to (a) orienta-
tion and (b) kind.
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Figure 5.13: The pair correlation function for the individual components
in Fig. 5.12, showing 11-bead (top, red) and 7-bead components (bottom,
black). The plots have been vertically offset for clarity.
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5.3.1.3 θ = 130◦

In individual monocomponent simulations, neither the 11-bead nor the 7-bead θ =

130◦ mesogens exhibited a uniaxial nematic phase. Instead both formed short-range

aligned clusters along both their long and short axes, but with no overall global system

director. Compression runs were performed on binary systems comprised of equal

parts of each of these mesogens, and the obtained values for the order parameters Q2
00

and Q2
22 for each independent component are shown in Fig. 5.14. Neither component

shows a significant degree of uniaxial alignment at any pressure, with Q2
00 < 0.45 for

the 11-bead molecules and Q2
00 < 0.25 for the 7-bead molecules.

Given the relatively small system size, the rise in Q2
00 for P ∗ ≥ 1.49 for the 11-

bead molecules indicates that there is a transition of some kind. Fig. 5.15 shows the
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Figure 5.14: The uniaxial order parameter Q2
00 (solid symbols) and biax-

ial order parameter Q2
22 (hollow symbols) on compression, for a mixture

of 512 11-bead molecules (red circles) and 512 7-bead molecules (black
squares) with a common bend angle of θ = 130◦.
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pair correlation function for the 11-bead components for a range of pressures in the

interval 1.49 ≤ P ∗ ≤ 2.13. The increasing height of the first peak and emergence

of a second peak at r ∼ 2σ indicates the slow formation of an organised structure.

Snapshots of the system at either end of this pressure window are shown in Fig. 5.16.

At P ∗ = 1.49 a small aligned cluster is visible due to the alignment of the central

atoms for a small number of the 11-bead molecules. As the pressure is increased to

P ∗ = 2.13, more of these clusters form and the mixing of the 11-bead and the 7-bead

molecules is significantly reduced.

Surprisingly, the extra mobility afforded to the 11-bead clusters by the still-fluid 7-

bead component does not help in achieving a global uniaxial director, and the clusters

observed in monocomponent simulations remain. Further work using repeated decom-

pression and recompression (as described in Sec. 3.3.4) would be interesting, in order

to see whether a single smectic-like phase could be formed by the 11-bead molecules.

As with the θ = 140◦ binary mixtures, the 7-bead molecules do not achieve any aligned

state, and do not form similar clusters to the 11-bead molecules as they would in a

monocomponent system. Again, it is likely that the confinement between the 11-bead

clusters is reducing the amount of free space required for the molecules to align, and

prevents their transition to a clustered state.
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Figure 5.15: The pair correlation function for 512 11-bead θ = 130◦

molecules in a binary mixture with 7-bead θ = 130◦ molecules, at a selec-
tion of pressures. Legend values correspond to the reduced pressure P ∗,
and the plots have been vertically offset for clarity.

(a) P ∗ = 1.49 (b) P ∗ = 2.13

Figure 5.16: Snapshots from a compression run of 512 11-bead (red-
yellow) and 512 7-bead (blue-cyan) molecules with a bend angle of θ =
130◦.
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5.3.2 Mixtures of nA = 11, nB = 5

We now turn to the phase behaviour occuring in mixtures of nA = 11 and nB = 5

molecules, with equal parts NA = NB = 512 for a total of 1024 molecules. From

Chapter 4 we have seen that systems of 5-bead molecules do not exhibit any mesophases

in monocomponent systems. In addition, the size difference between the two molecules

is nA > 2nB, so we expect the 5-bead molecules to demix and act as an isotropic liquid

throughout.

Simulations for the nA = 11 and nB = 5 mixtures were conducted for a range of

different bend angles in the interval 160◦ ≤ θ ≤ 120◦. Systems were compressed

from an initially disordered, fully mixed isotropic state at a pressure of P ∗ = 0.06,

with a pressure step size of between 0.06 ≤ P ∗ ≤ 0.23, increasing as the simulation

progressed.

5.3.2.1 θ = 160◦

The values for the order parameters Q2
00 and Q2

22 obtained from compression runs of

11-bead and 5-bead θ = 160◦ molecules are shown in Fig. 5.17. From this plot, it can

be seen that the 11-bead molecules undergo two clear phase transitions. The first is

indicated by a sharp rise in the value of Q2
00 in the pressure window 0.48 < P ∗ < 0.72,

signifying the onset of orientationally ordered behaviour. The second transition occurs

in the range 1.68 < P ∗ < 1.91, with a small jump in Q2
00 and a large change in

Q2
00. These correspond to the isotropic–nematic and nematic–smectic phase transitions

respectively, which occur at P ∗ ∼ 0.4 and P ∗ ∼ 1.4 in monocomponent systems. The

value ofQ2
22 > 0.75 indicates that there is a high level of mutual alignment of the short

axes of the 11-bead molecules, much higher than for the nA = 11, nB = 7, θ = 160◦

mixtures.
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The most interesting property of the behaviour of the Q2
00 order parameters is the high

level of uniaxial alignment for the 5-bead molecules in the pressure range 0.72 ≤

P ∗ ≤ 1.68, coinciding with the uniaxial nematic phase of the 11-bead molecules.

Snapshots of the system at P ∗ = 1.68 are shown in Fig. 5.18. At this pressure the

two components remain well mixed, and the uniaxial nematic phase of the 11-bead

molecules has induced a similar nematic phase in the 5-bead molecules – a phase that

does not exist at all for monocomponent systems, regardless of bend angle.

As the system passes through the 1.68 < P ∗ < 1.91 pressure window and the 11-

bead molecules transition to a smectic phase, the two components completely demix,

as shown in Fig. 5.19. The 5-bead molecules suddenly revert to an isotropic liquid

phase, and the uniaxial order parameter falls from Q2
00 > 0.6 to Q2

00 < 0.2. The extra

fluidity in the system provided by the isotropic 5-bead molecules allows the 11-bead
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Figure 5.17: The uniaxial order parameter Q2
00 (solid symbols) and biax-

ial order parameter Q2
22 (hollow symbols) on compression, for a mixture

of 512 11-bead molecules (red circles) and 512 5-bead molecules (black
squares) with a common bend angle of θ = 160◦.
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molecules to form full, well-organized smectic layers, similar to the phase behaviour

of the nA = 11, nB = 7, θ = 140◦ systems in Sec. 5.3.1.2. As the pressure is increased

further, the 5-bead molecules remain in their isotropic state and undergo no further

transitions.
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(a) (b)

Figure 5.18: Snapshots at P ∗ = 1.68 from a compression run of 512
11-bead (red-yellow) and 512 5-bead (blue-cyan) molecules with a mutual
bend angle of θ = 160◦. Snapshots are coloured according to (a) orienta-
tion and (b) kind.

(a) (b)

Figure 5.19: Snapshots at P ∗ = 1.91 from a compression run of 512
11-bead (red-yellow) and 512 5-bead (blue-cyan) molecules with a mutual
bend angle of θ = 160◦. Snapshots are coloured according to (a) orienta-
tion and (b) kind.
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5.3.2.2 θ = 140◦

The order parameters Q2
00 and Q2

22 for the components of a binary system of 11-bead

and 5-bead molecules with a mutual bend angle of θ = 140◦ are presented in Fig. 5.20.

In contrast to the results for nA = 11, nB = 5, θ = 140◦, there is only one notable

phase change for the 11-bead molecules, beginning at 1.43 < P ∗ < 1.68 where the

value of Q2
00 climbs from ∼ 0.2 to ∼ 0.8, in tandem with an increase in the Q2

22 to a

value of ∼ 0.4. There is also no sign of any ordering in the 5-bead molecules, with

both order parameters remaining below 0.1 throughout the course of the compression

run.

A snapshot of the system at P ∗ = 1.91 is shown in Fig. 5.21. From this it can be seen

that the 11-bead molecules have lost the uniaxial nematic phase and have transitioned

straight to the clustered phase, as seen with narrower bend angles such as θ = 130◦ in

monocomponent systems.

In monocomponent systems of 11-bead, θ = 140◦ molecules the uniaxial nematic

phase is narrow, and in the simulations of systems of 4096 molecules it was seen that

the system has difficulty in achieving a global system director amongst all molecules

simultaneously (see Sec. 3.4.2). It appears that the presence of 5-bead molecules is

preventing the formation of a uniaxial nematic by interfering with the propagation of

a single system director. As such, the “second” transition to a smectic phase (seen in

the monocomponent systems) occurs without a global system director already in place,

and the short-range clusters with both long and short axis alignment appear. The onset

of this transition at P ∗ ∼ 1.6 is higher than the equivalent transition to a smectic in a

monocomponent system of 11-bead molecules, which occurs at P ∗ ∼ 1.3.
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Figure 5.20: The uniaxial order parameter Q2
00 (solid symbols) and biax-

ial order parameter Q2
22 (hollow symbols) on compression, for a mixture

of 512 11-bead molecules (red circles) and 512 5-bead molecules (black
squares) with a common bend angle of θ = 140◦.

Figure 5.21: Snapshot at P ∗ = 1.91 from a compression run of 512 11-
bead molecules (red-yellow) and 512 5-bead molecules (blue-cyan) with a
bend angle of θ = 140◦.
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5.3.2.3 θ = 130◦

The values for the order parameters Q2
00 and Q2

22 for binary mixtures of θ = 130◦, 11-

bead and 5-bead molecules are much the same as for the θ = 140◦ molecules, and are

shown in Fig. 5.22. This system also has a single obvious phase transition at P ∗ ∼ 1.6

to short-range ordered clusters with no overall global alignment direction of the long

axes.

The significantly higher final value of the Q2
00 order parameter for this system (Q2

00 >

0.6) relative to the nA = 11, nB = 7, θ = 130◦ systems in Sec. 5.3.1.3 (Q2
00 < 0.4)

is due to the ease with which the two components separate. In the system containing

7-bead molecules, there are a significant number of 11-bead molecules that remain

mixed with the shorter mesogens and bring the value of Q2
00 down. This is not the case

in this system, where there are fewer “lone” molecules unattached to a cluster.
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Figure 5.22: The uniaxial order parameter Q2
00 (solid symbols) and biax-

ial order parameter Q2
22 (hollow symbols) on compression, for a mixture

of 512 11-bead molecules (red circles) and 512 5-bead molecules (black
squares) with a common bend angle of θ = 130◦.
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5.3.3 Summary

The complete set of Q2
00 order parameters for all systems simulated in this section are

presented in in Figs. 5.23 and 5.23 for the nA = 11, nB = 7 and nA = 11, nB = 5

binary mixtures respectively.

There are a number of interesting properties that can be observed from the results

of these simulations. Firstly, the two components of the systems remain well-mixed

on compression, in both the isotropic and the uniaxial nematic phases. When the

isotropic–nematic transition occurs in the 11-bead molecules, the transition is induced

simultaneously in the shorter molecules, despite occuring at a significantly lower pres-

sure than in monocomponent systems. In addition, the uniaxial nematic phase is in-

duced in systems that do not exhibit the phase at all in monocomponent simulations –

specifically, we see this in our nA = 11, nB = 7, θ = 140◦ and nA = 11, nB = 5, θ ≥

150◦ simulations.

As the 11-bead molecules undergo a second transition from nematic to smectic, the

two components of the system invariably demix. The shorter molecule then reverts to

its typical phase behaviour as observed in monocomponent simulations. If the shorter

molecule is able to maintain a uniaxial nematic phase by itself, then it remains aligned

until its own independent nematic–smectic transition at a higher pressure (observed in

the nA = 11, nB = 7, θ ≥ 150◦ simulations). If the shorter molecules lack a uniax-

ial nematic phase in monocomponent systems, but undergo a transition to a clustered

phase (e.g. 7-bead molecules of θ ≤ 140◦), this transition is not observed and the

shorter mesogens remain in the isotropic phase throughout.

The extra mobility added to the system by an isotropic phase of the shorter molecules

assists significantly in the formation of well-organized smectic layers of the longer
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molecules, rather than forming the half-offset smectic layers seen in monocompo-

nent simulations of the 11-bead molecules. These offset layers remain for the nA =

11, nB = 7, θ ≥ 150◦ systems, where the nematic phase of the 7-bead molecules does

not permit the same degree of movement. This extra freedom does not help with the

lack of a global alignment director for systems of θ < 140◦, 11-bead molecules, and

the clustered phases with no global alignment director remain.

In terms of attempting to achieve a biaxial nematic phase, mixtures of two different

lengths of molecule do not seem to help with the break-up of the smectic layering.

The large difference in the monocomponent nematic–smectic transition pressures for

molecules of two different sizes results in demixing when the first component tran-

sitions, and no “gaps” are opened up in the smectic layering as a result. In the next

section, we will look at mixing together two molecules with different bend angles,

which have much smaller differences in transition pressures and may experience im-

proved mixing after the nematic–smectic transition.
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Figure 5.23: The change in the uniaxial order parameter Q2
00 with increas-

ing pressure P ∗ for binary mixtures of 512 11-bead molecules (top) and
512 7-bead molecules (bottom). Legend values correspond to the mutual
bend angle θ.
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Figure 5.24: The change in the uniaxial order parameter Q2
00 with increas-

ing pressure P ∗ for binary mixtures of 512 11-bead molecules (top) and
512 5-bead molecules (bottom). Legend values correspond to the mutual
bend angle θ.
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5.4 Mixtures of different bend angles

In this section, we present results for binary mixtures of molecules with different bend

angles, θA and θB. The number of WCA potentials from which the molecules are

constructed, n, will be fixed such that nA = nB = 11. The number of each type of

molecule is fixed at NA = NB = 512 for all the simulations performed.

With the molecular size variation in Chapter 4, we were restricted to what we could

simulate due to the increasing number of interacting potentials as the mesogen size is

increased. The value of the molecular bend angle is a continuous variable and changing

its value does not increase simulation complexity. Therefore the parameter space that

can be sampled is effectively infinite. In Chapters 3 and 4 we restricted ourselves to

bend angle steps of 5◦ − 10◦, but this also results in a large parameter space that is

difficult to explore systematically.

In this section we present a number of results from an illustrative sampling of the avail-

able parameter space, in order to observe some of the characteristic of the interactions

between mesogens with different bend angles.

5.4.1 Mixtures of n = 11, θA = 150◦, θB = 130− 145◦

Compression runs were performed on a number of systems consisting of 1024 11-

bead bent-core molecules, 512 with a bent angle of 150◦ and the remaining 512 with a

bend angle of either 145◦, 140◦ or 130◦, depending on the system. These three values

were chosen as to give a angle difference between the two components of 5◦, 10◦ and

20◦ respectively. Pressure sweeps were performed at an initial barostat pressure of

P ∗ = 0.17, and the pressure was increased in steps of P ∗ ∼ 0.17.
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The uniaxial order parameters Q2
00 for the components of the three systems are shown

in Fig. 5.25. All three plots show the signs of a pair of phase transitions. An isotropic–

nematic transition occurs in the pressure window 0.52 < P ∗ < 0.69 for the θB = 145◦

and θB = 140◦ systems, while the transition is slightly delayed to 0.69 < P ∗ < 0.87

for the θB = 130◦ systems. A second transition then occurs at 1.21 < P ∗ < 1.39, or

1.39 < P ∗ < 1.64 for the θB = 130◦ systems, corresponding to the nematic–smectic

transition.

For the θB = 145◦ and 140◦ mixtures, both these transition windows match the pres-

sures at which phase transitions occur in 150◦ monocomponent systems, as shown in

Table 3.1. As with the binary mixtures of different lengths in the previous section,

the molecules with the higher monocomponent transition pressure (in this case, the

narrower molecules) undergo the transitions simultaneously.

Unlike the systems where nA 6= nB, both components in the θB = 145◦ and θB = 140◦

simulations undergo a simultaneous nematic–smectic transition. Snapshots of these

systems at P ∗ = 1.56 are given in Figs. 5.26a and 5.26b. These show that the systems

remain well-mixed, and the offset smectic layers seen in the monocomponent systems

return. While the difference in transition pressures between the two types of molecules

is small enough to allow them to remain mixed and not phase separate, the change in

bend angle is insufficient to prevent the appearance of the offset smectic layers.

The higher final values for the Q2
00 order parameters compared to their monocompo-

nent systems is due to a less pronounced “zig-zag” packing of the offset smectic layers

(see Sec. 3.3.2). The two slightly different bend angles introduces a small amount of

extra free space into the system in the smectic phase, and so the clusters are not forced

into this configuration as strongly.
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Figure 5.25: The change in the uniaxial order parameter Q2
00 with increas-

ing pressure P ∗ for binary mixtures of 11-bead molecules with different
bend angles. The θ = 150◦ molecules are shown with red symbols, while
the narrower molecules (145◦, 140◦, 130◦) have black symbols in each plot.
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(a) θB = 145◦ (b) θB = 140◦

(c) θB = 130◦

Figure 5.26: Snapshots at P ∗ = 1.56 of binary mixtures of 512 11-bead
θA = 150◦ molecules and (a) θB = 145◦, (b) θB = 140◦ and (c) θB = 130◦

molecules.
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We now look at the results of the θB = 130◦ simulations. In a monocomponent sys-

tem, 11-bead 130◦ molecules do not have a nematic phase, and the lack of a global

director results in smectic-like clusters with no overall direction. We have also seen

in Sec. 5.3.1.2 that if one component of a mixture undergoes a transition to a uniaxial

nematic phase, it can induce the same phase in a mesogen which does not exhibit it in

monocomponent simulations.

The Q2
00 order parameters for the θB = 130◦ simulations are shown in Fig. 5.26c.

The presence of three distinct phases for both components shows that this induction of

phases exists for mesogens with different bend angles too, with isotropic, nematic and

smectic behaviour present for both components.

Unlike the results in Sec. 5.3.1.2, the 130◦ molecules do not return back to an isotropic

state once the 150◦ molecules transition to a smectic phase. As monocomponent 130◦

molecules transition to a clustered phase at a similar pressure, they do not have the

opportunity to “relax” back to isotropic and undergo their own transition. However, as

they are already being held in nematic alignment, they also form an ordered smectic

with offset layers. A snapshot of this system at P ∗ = 1.56, beyond this second tran-

sition, is shown in Fig. 5.26c. From the snapshot, we can also tell that the two com-

ponents are not as well mixed as for the components separated by 10◦ and 5◦. There

is a level of phase separation occuring, with significant numbers of similar-coloured

central atoms clustering together.

5.4.2 Mixtures of n = 11, θA = 160◦, θB = 140◦

It is possible that the phase separation seen in the θA = 150◦, θB = 130◦ simula-

tions is arising from two different causes. As well as there being a 20◦ difference
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in the bend angles, the two mesogens in monocomponent systems exhibit different

phase behaviour. Therefore, we also performed simulations on binary mixtures of

n = 11, θA = 160◦, θB = 140◦. These two components also differ by 20◦, but both

exhibit nematic and smectic behaviours in monocomponent simulations.

Compression runs were performed using 512 θA = 160◦ and 512 θB = 140◦ molecules

from an initial pressure of P ∗ = 0.17 and a step size of 0.17. The uniaxial order

parametersQ2
00 for each of the components are shown in Fig. 5.27, once again showing

the expected three phases of isotropic, nematic and smectic phases. The transition

windows are the same as those for the θA = 150◦, θB = 145◦ and θA = 150◦, θB =

140◦ systems in the previous section. The onset of nematic behaviour occurs at a

slightly higher pressure than it occurs at in monocomponent 160◦ systems, 0.52 <

P ∗ < 0.69 compared to P ∗ ∼ 0.4. The onset of smectic behaviour occurs in the

pressure window 1.21 < P ∗ < 1.40, which is below the onset of smectic behaviour

for monocomponent 160◦ molecules but in line with the onset for 140◦ molecules. The

nematic phase is therefore of some intermediate width between the two components.

A snapshot of the system at P ∗ = 1.56 in the smectic phase is presented in Fig. 5.28.

As with the θA = 150◦, θB = 130◦ simulations, the formation of significant clusters

of similar molecules indicates that the system is wanting to demix into two separate

components, rather than remain in a fully mixed smectic phase.
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Figure 5.27: The change in the uniaxial order parameter Q2
00 with increas-

ing pressure P ∗ for binary mixtures of 11-bead molecules. 512 molecules
have a bend angle of 160◦ (red symbols), while another 512 have a bend
angle of 140◦ (black symbols).

Figure 5.28: Snapshot at P ∗ = 1.56 from a compression run of a binary
mixture of 512 11-bead θA = 160◦ molecules (red-yellow) and 512 11-
bead θB = 140◦ molecules (blue-cyan).
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5.4.3 Summary

In the previous section we examined the effects of mixing together two kinds of 11-

bead molecules with a number of pairs of different bend angles. There are notable dif-

ferences in the behavour of these systems compared to that of molecules with matching

angles but different arm lengths.

Firstly, the phase separation of the two components is far less pronounced. For differ-

ences in bend angles of 5◦− 10◦, both components remain well-mixed in the isotropic,

uniaxial nematic and smectic phases. For differences of 20◦ phase separation begins to

occur, although this is only observed as small groupings rather than complete demix-

ing into two distinct regions rich in a single component. This was observed in both the

160◦ − 140◦ mixtures as well as the 150◦ − 130◦ mixtures.

As with the differing length molecules, the mixing of the two components can induce

phase behaviour not seen in monocomponent systems. In the 150◦ − 130◦ mixtures,

a uniaxial nematic is induced in the 130◦ component which is not seen in isolation.

However, unlike the nA = 11, nB = 7 systems, the transition of the 150◦ molecules

to the smectic-like phase does not lead to the 130◦ molecules returning to an isotropic

phase. Instead, they too transition to the same smectic-like phase with offset layers.

This is likely due to the proximity of the transitions of the two systems in isolation –

by the time the 150◦ molecules have transitioned from a nematic to a smectic, the 130◦

molecules have also reached the pressure at which they undergo a transition. By being

mixed with the 150◦ molecules and held in a uniaxial nematic phase, they already have

a global director when they form their clustered phase, and can therefore transition to

a smectic phase with long axis alignment.

Secondly, the effect of different bend angles seems to have little effect on the phase
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behaviour. In all instances, the same offset smectic-like layering is observed as the

final phase behaviour and the transition pressures are not significantly different from

those observed for the wider molecules in monocomponent systems. As the difference

between the two bend angles is increased, the transition from nematic to smectic is

not as sudden, but the molecules also appear to preferentially demix. This is true for

both the 150◦ − 130◦ and the 160◦ − 140◦ systems. The threshold of compatibility

between the two bend angles is seemingly between 10◦ − 20◦, at least for the bend

angle mixtures studied.
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5.5 Conclusions

We have examined the effects on the liquid crystal phase behaviour of bent-core meso-

gen systems when two distinct components are present, either with the same bend angle

and different molecular sizes, or with two equally sized molecules that have different

bend angles.

For the systems of molecules of different sizes, the components remain well mixed in

both the isotropic and uniaxial nematic phases. Mesogens that do not have a nematic

phase in isolation exhibit one when mixed with a component that does. However, at the

point where the first nematic–smectic transition occurs for either of the components,

the two systems are seen to completely demix. As the longer molecules transition

to a smectic phase, the extra mobility afforded to the system by the shorter molecules

allows the smectic layers to rearrange and reorganize better, and the half-offset layering

is reduced for the θ = 160◦ systems, and absent for the θ = 140◦ systems of nA =

11, nB = 7 molecules.

In cases where the shorter molecule would normally transition to a clustered phase

with no uniaxial alignment, the separation of the components reduces the amount of

space available and the clustering is supressed, with the shorter component remaining

in the isotropic phase. This is seen for all of the nA = 11, nB = 5 systems, as well as

the narrower bend angles for the nB = 7 systems. The “clustering” behaviour is not

supressed for the first molecule to transition, as seen in the θ = 130◦, nA = 11, nB = 7

simulations.

The mixtures of two differently sizes molecues do not assist us in our attempts to find

a biaxial nematic phase. The longer molecule still transitions to a smectic phase, and

the shorter components preferentially demix rather than stay combined and produce
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“gaps” in the layering. However, they do assist with the formation of better smectic

layering. It would be interesting to study a variety of component ratios other than 50 :

50 to see if the formation of better smectic layers can be improved with an increased

number of small molecules. It would also be interesting to see whether the supression

of the clustered behaviour of the short molecules ceases as their quantity increases.

Mixtures of molecules with the same size but differing bend angles show much greater

success in remaining mixed through the isotropic, nematic and smectic phases. For

bend angles of 5◦ − 10◦ similar phase behaviour is observed as it would be by the

wider molecule in isolation. However, improved mixing is likely due to the fact that

the molecules are not sufficiently different to significantly alter the resulting phase

behaviour. As the bend angle difference is increased to 20◦, the two components begin

to separate. Therefore, there is likely a degree of tolerance for different bend angles

while not affecting the phase behaviour or level of mixing.

In order to pursue this further, it would be very interesting to explore polydisperse

systems with a wide range of bend angles, varying continuously with no jumps greater

than 10◦. Through having no large differences in bend angles, it may be possible to

keep multiple repulsive molecules with very different angles mixed together, while

incompatibility in their bend angles would open up spaces in the smectic layering.



Chapter 6
Conclusions

In this thesis we have comprehensively explored the liquid crystal phase behaviour

that can be attained using a simple model of a bent-core mesogen, with a goal of

generating a biaxial nematic. Our mesogenic model was constructed from a number

of repulsive Weeks-Chander-Andersen potentials, arranged in a V-shape along two

molecular “arms”. The potentials were placed such that their centers were a distance σ

apart and formed a bend angle of θ between the two arms, with 180◦ defining a straight

rod. We studied the phase behaviour of systems of the molecules with a wide range

of both internal bend angles and relative arm lengths. In addition, we investigated the

effects of binary mixtures of molecules with either different bend angles or different

arm lengths. All of our simulations were conducted by compressing initially isotropic

systems using molecular dynamics simulation techniques.

In Chapter 3, we initially examined the phase behaviour of systems of bent-core meso-

gens constructed from 11 potentials at a wide variety of bend angles. We found that

there were two distinct regions of phase behaviour, above and below a critical angle

that lies in the range 130◦ < θ < 140◦. For molecules with an internal bend angle
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greater than this, isotropic, uniaxial nematic and smectic-like phases are seen as the

systems are compressed, with a strong degree of polarization of the short axes of the

molecules in the smectic phases. For smaller systems of 512 molecules, offset smectic

layers were seen, where the “upper” arms of the molecules of one layer aligned with

the “lower” arms of another layer. By reducing the pressure step size and increasing

the number of molecules to 4096, these offset layers diappear and smectic A phases

are generated. It is likely that these offset layers pay a relatively small free energy

price, and the level of layer dislocations increases as the internal bend angles of the

molecules become narrower.

For bend angles of θ ≤ 130◦, no global uniaxial alignment director was seen, and

the systems preferentially formed small clusters with strong levels of alignment along

both their long and short axes. Increasing the system size to 4096 molecules and

reducing the size of the pressure steps did not help resolve any different phases. Upon

attempting to melt the resulting configurations, a number of these clusters rotated to

mutually align their long axes and form larger, smectic-like groupings. However, the

systems transitioned back to an isotropic phase before a complete smectic phase could

be seen.

Overall, these results match well with the phase diagram obtained by Lansac et al.

[71] for hard spherocylinder dimers with L/D ratios of 5, in that there is no uniaxial

nematic phase for systems with bend angles of θ < 135◦. However, we do not see a

clear isotropic–smectic transition for molecules narrower than this. It appears repeated

decompression and recompression is required to generate a well-ordered smectic. Our

simulations suggest that this isotropic–smectic phase cannot be found directly on com-

pression.

We then extended our model in Chapter 4 to include the effects of changing the lengths
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of the arms of our mesogenic model. We studied a similar range of bend angles as with

our 11-bead simulations, but varied the number of beads from which the molecules

were constructed to include 9-, 7- and 5-bead variants. As the size of the molecule

was reduced to 9- and then to 7-bead models, the pressures required to induce uniaxial

nematic phases increased dramatically. For molecules closer to 180◦, the width of

the uniaxial nematic phase broadened and the organization of the smectic phase into

distinct layers was improved. No mesophases were seen at all for molecules consisting

of 5 beads, regardless of bend angle. This fits with the observations made by Galindo

et al. [95] on linear rods constructed of five Lennard-Jones potentials. As the size of

the molecules was reduced, the angle at which the uniaxial nematic phase disappears

was also seen to change, with the 7-bead molecules experiencing a loss of the phase in

the 140◦ < θ < 150◦ angle window.

In Chapter 5, we investigated the phase behaviour of binary mixtures of our bent-

core mesogenic models. Our mixtures consisted of mesogens of either differing bend

angles or differing molecule sizes. For molecules of different arm lengths but the same

bend angle, we observed that the two components of a system will remain well mixed

in the isotropic and uniaxial nematic phases. In addition, the longer molecule will

induce a uniaxial nematic phase in the shorter molecule at a lower pressure than it

would in isolation. The longer molecules can also induce nematic phases in molecules

that would not experience them at all in monocomponent systems. As the pressure

is increased further, the longer molecules transition to a smectic phase and the two

components comprehensively demix.

If the shorter molecules are able to maintain a uniaxial nematic phase by themselves

at this pressure, they too will undergo their own nematic–smectic phase transition.

Otherwise the shorter molecules revert to an isotropic state and experience no further
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mesophases. Instead they act as a liquid, allowing the longer molecules to move more

freely and form more well-organized smectic layers. The extra fluiditiy does not help

the formation of well-aligned smectic layers for 11-bead molecules of θ = 140◦, and

the clustered behaviour with no overall global alignment director remains.

For binary mixtures of molecules with different bend angles, the mixing of the two

types of mesogens is substantially improved for molecules with differences of up to

10◦, although no significantly different phase characteristics are seen. At bend angle

differences of 20◦ for the 11-bead molecules, the two components begin to demix at

the nematic–smectic phase transition.

6.1 Discussion and future work

We have successfully examined and characterized a large parameter space for repulsive

bent-core mesogens under compression using molecular dynamics simulations. To our

knowledge, we have also performed the first ever simulations of binary mixtures of

bent-core molecules. Through this, we discovered intruiging phase behaviour that is

very strongly linked to both the molecule size and the bend angle of the two individual

components.

In addition to this, we have validated our model against previous Monte-Carlo based

research. Therefore we are confident it can be used as a starting point for future molec-

ular dynamics simulations exploring the kinetics of the phase behaviours and the mech-

anisms of the phase transitions.

Despite exploring a wide region of the available parameter space, our simulations did

not reveal the presence of a biaxial nematic phase. This may be due to the difficulty in
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maintaining the uniaxial nematic towards the 110◦ region, where the biaxial nematic

phase has been predicted to exist by Tiexeira et al. [69] and Luckhurst [22]. In the

hunt for the bent-core biaxial nematic, there are a number of potential avenues which

would be interesting to explore in future research:

1. The theoretical predictions of the biaxial nematic at 110◦ are for L >> D, and

our results have shown that the angle at which the uniaxial nematic phase is

lost varies relatively slowly with molecule size. As such, it appears that much

longer molecules would be needed to approach this angle. Simulation using suf-

ficiently large quantities of linked spherical potentials are currently computation-

ally infeasible. It may be possible to simulate very long molecules by reverting

to spherocylinder dimer mesogens, and event-driven molecular dynamics may

prove useful in this regard. However, such simulations would still require a huge

number of molecules to sufficiently fill the space of the simulation cell, making

the systems slow to run and leading to long equilibration times.

2. The lack of demixing in bent-core binary systems with bend angle differences

of 5◦ − 10◦ may also prove fruitful. In a more polydisperse system, a entire

continuum of different bend angles may help keep narrower molecules in a uni-

axial nematic phase. If this can be done to induce nematic phases in molecules

as narrow as 110◦ and beyond, very different phase behaviour may be seen, in-

cluding plate-like nematics and the biaxial nematic. Larger systems would be

required in order to simulate a sufficiently large spread of bend angles, but not

vastly different from those conducted in previous chapters.
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3. Given our comprehensive search of the available parameter space, it is conciev-

able that the mesogenic model itself lacks the minimum characteristics needed

for the formation of a biaxial nematic. The recent work by Jócefowicz and Longa

[75] suggests a small degree of flexibility in the central bend angle may help in

the formation of a biaxial nematic using bent-core molecules with a bend angle

of≈ 140◦. By adding a small degree of flexibility to the core or even the arms of

our mesogenic model, we may be able to delay the onset of smectic behaviour

and obtain new phases – potentially including the biaxial nematic.

Final thought

With available computing resources growing exponentially year-on-year, there are al-

ways opportunities to simulate more and more complex systems of liquid crystals,

including fully atomistic models. However, the ability to simulate increasingly large

bulk systems of simplified mesogenic shapes will always be important in determining

the essential ingredients needed for the formation of thermotropic liquid crystal phases.
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Appendix A
Theoretical isotropic compressibility of

soft-potential polymers

A.1 Derivation

The compressibility of a system of hard spheres is given as

Z =
βP

ρ
= 1 + 2

3
πρσ3g(σ) (A.1)

where β is the thermodynamic value 1/kT , P is the pressure, ρ is the number density,

σ is the diameter of the sphere and g(σ) is the pair correlation function at the point

of contact [112]. Additionally, the modified Carnahan-Starling equation of state for

spherical WCA potentials is given as

Z =
1 + η + aη2 − bη3

(1− η)3
(A.2)
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where η = πρσ3/ 6 is the packing fraction of the spheres, and a and b are the fitting

constants a = 3.597 ± 0.087 and b = 5.84 ± 0.18 [64]. WCA spheres also have an

an “effective hard-sphere diameter” based on the temperature of the system, which is

given as

σeff =
21/6

(1 +
√
T )1/6

. (A.3)

If a polymer is constructed out of WCA potentials separated by σeff for the relevant

temperature, we make the assumption that the point-of-contact pair correlation func-

tion is also valid for them, despite being soft.

By equating, g(σeff) can be approximated as

g(σeff) = (Z − 1)
3

2πρσ3
eff

=
4η + (a− 3)η2 + (1− b)η3

(1− η)3
· 3

2πρσ3
eff

=
4 + (a− 3)η + (1− b)η2

4(1− η)3
.

(A.4)

From the SAFT theory of associating fluids [65], we know that the contribution to the

Helmholtz free energy of a system from the association of spherical potentials into

chains is given to a good approximation by

βAchain = −N(m− 1) ln g(σ) (A.5)

where N is the number of molecules and m is the number of potentials per molecule.
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Taking the partial derivative with respect to volume gives

βPchain = − ∂

∂V
[βAchain]

= − ∂η
∂V
· ∂
∂η

[βAchain]

=
η

V
·
[
−N(m− 1)

∂

∂η
ln g(σ)

]
=
−N(m− 1)η

V
· ∂
∂η

[
ln

(
4 + (a− 3)η + (1− b)η2

4(1− η)3

)]
=
−N(m− 1)η

V

[
a− 3 + 2η(1− b

4 + (a− 3)η + (1− b)η2
+

3

1− η

]
.

(A.6)

Finally, using Wertheim pertubation theory [66], we can express the compressibility for

the whole system as a sum of contributions from an ideal term, an excess contribution

from the monomers, and the chain contribution

βP = ρ+ βPmonomers + βPchain

= ρ+ β(Z − 1)ρmonomers + βPchain

=
N

V
+
Nm

V

[
4η + (a− 3)η2 + (1− b)η3

(1− η)3

]
+ βPchain

(A.7)

where ρmonomers is the number density of monomers and ρ is the number density of

polymers, such that ρ = ρmonomers/m. Finally,

Z = 1 +m

[
4η + (a− 3)η2 + (1− b)η3

(1− η)3

]
− (m− 1)η

[
a− 3 + 2η(1− b)

4 + (a− 3)η + (1− b)η2
+

3

1− η

] (A.8)
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A.2 Choice of fitting parameters a and b

In order to determine the most appropriate values for the fitting parameters a and b,

Eqn. (A.8) was plotted against a selection of simulation data from Chapter 3. The

hard-sphere values a = 1, b = 1 and the WCA values a = 3.60, b = 5.84 were

tested, as well as the Carnahan-Starling equation for a fluid of hard sphere monomers.

An example of these three curves is given in Fig. A.1, fitted to data obtained from a

simulation run of 4096 11-bead bent-core molecules with an internal bend angle of

140◦.

From validating against multiple simulation runs, we found that the hard sphere values

of a = 1 and b = 1 gave a very good fit, while the WCA fitting parameters a = 3.60

and b = 5.84 from Ref. [64] tend to slightly underestimate the isotropic liquid density.

Meanwhile, the curve obtained for a simple Carnahan-Starling hard sphere monomer

fluid severely underestimates the isotropic liquid densities. Therefore, we selected the

fitting parameters of a = 1 and b = 1 for all of our bent-core mesogen analysis.
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Figure A.1: The equation of state for 4096 11-bead bent-core molecules
with a bend angle of 140◦ (black circles), fitted to three choices of theoreti-
cal liquid density curve. The Carnahan-Starling equation of state is shown
in green, while the hard sphere and WCA fitting parameters for Eqn. (A.8)
are shown in red and blue respectively.
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