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Abstract

Over 750 extrasolar planets have been discovered, but none of them have detected
moons around them. From recent studies, the applications of transit exoplanet
detection techniques called Transit Timing Variation (TTV) and Transit Timing
Duration (TDV) have been proposed to use for exomoon detection. Furthermore,
from the success of the Kepler mission, the number of transiting exoplanets has
increased rapidly. Therefore, investigating the detectability of exomoons via TTV
and TDV with the Kepler mission is timely. In this dissertation, the detectabil-
ity of a habitable-zone exomoon orbiting around a giant planet in M-Dwarf system
is investigated. Light curves of 146,410 systems with various configurations were
simulated around M-Dwarf hosts of mass 0.5 M� and radius 0.55 R�. Jupiter-like
giant planets which offer the best potential for hosting habitable exomoons were
considered with rocky Earth-mass moons. The detectability is measured by using
the phase-correlation between TTV and TDV signals. The Kepler photometric noise
is all accounted for in the analysis in order to find the exomoon detectability. From
simulation results, super-Earth-size habitable exomoons in M-Dwarf systems may be
detectable with Kepler. The detectability depends on the intensity of the TDV sig-
nal more than the TTV signal. High-mass moons orbiting low-mass planets should
be the best candidates for detection. However, under certain conditions, aliasing in
between the planet period and the moon period may prevent exomoon detection,
due to incomplete moon phase information.

University of Manchester,
Supachai Awiphan

Master of Science
The detectability of habitable exomoons with Kepler

23 August 2012
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Chapter 1

Introduction

Today the search for and study of exoplanets is one of the most dynamic research

fields of modern astronomy. Over the last decade, our knowledge of extrasolar

planets has grown rapidly, not only in the development of different methods to

detect them, but also in the understanding of their formation and evolution. The

number of detected exoplanets continues to increase steadily. At present, more than

750 planets have been confirmed1. As the number of detected exoplanets continues

to grow, the potential for detecting satellites orbiting them has become of increasing

interest. The best instrument up to this challenge is Kepler which is designed to

detect small transiting exoplanets with its highly sensitive photometric camera.

In this work, the detectability of habitable exomoons with Kepler is assessed.

The structure of the dissertation is as follows. In Chapter 2, a historical background

of habitable extrasolar planets and moons with various detection techniques, such

as radial velocity, transit and microlensing is provided. In Chapter 3, the transiting

exoplanet detection technique with its application to detect exomoons is described.

The light curve of an exoplanet with an exomoon is described in Chapter 4. The last

part of the Chapter is dedicated to analysing the detectability of habitable exomoons

with Kepler using a detailed numerical simulation. In Chapter 5, simulation results

are presented and analysed. Finally, conclusion and further work are discussed in

Chapter 6.

1See http://exoplanet.eu/
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Chapter 2

Habitable exoplanets and

exomoons

2.1 Historical background

Exoplanets (planets outside the Solar System) are objects of interest for as-

tronomers, because of the potential that living things exist on them. More than 750

planets have been detected by both ground-based and space-based telescopes, in-

cluding some super-Earth planets (planets with masses between 1 and 10 M⊕) which

have potential to support life. After NASA launched the Kepler space telescope in

2009, the number of planet candidates increased further. The Kepler Science Team

announced more than 1,200 planet candidates in early 2011 (Borucki et al., 2011a)

and added more than 1,000 additional candidates in 2012 (Batalha et al., 2012).

The first published, confirmed discovery was made in 1992 by Wolszczan & Frail.

They announced the discovery of planets around a pulsar, PSR 1257+12 (Wolszczan

& Frail, 1992). In 1995, Mayor & Queloz announced the first exoplanets orbiting a

solar-type star, 51 Peg, using the radial velocity method (Mayor & Queloz, 1995).

The first low-mass planets orbiting a solar analogue were found in 2004, 55 Cnc e

(8.3M⊕) (McArthur et al., 2004) and µ Ara c (10.5 M⊕) (Santos et al., 2004).

Following on from the discoveries in the 1990s, several different methods have

18



CHAPTER 2. HABITABLE EXOPLANETS AND EXOMOONS 19

been developed to discover exoplanets, including gravitational microlensing and di-

rect imaging. To date, the majority of the detected exoplanets have been found

using the radial velocity technique. However, the radial velocity method can only

obtain orbital parameters and minimum mass. In order to obtain physical parame-

ters, such as exact mass, radius and mean density, additional data from transit and

the other methods are often used (Udry & Santos, 2007).

One of the main aims of studying extra-solar planets is to discover habitable

exoplanets or exomoons. Habitable planets or moons may be located in the habitable

zone (HZ) which was proposed for the first time by Huang (1959). At present, super-

Earths located in HZ have been detected, e.g. Gliese 581c (Udry et al., 2007), Gliese

581d (Mayor et al., 2009), HD 85512b (Pepe et al., 2011) and Kepler 22b (Borucki

et al., 2012).

2.2 Exoplanet detection methods

Exoplanets are objects which are very difficult to detect because they have ex-

tremely low emission light compared to their host stars. In order to detect exoplan-

ets, a number of techniques have been developed.

In this work, the detection techniques are separated into three main groups,

methods of detecting hot planets, methods of detecting cold planets and other de-

tection methods, such as pulsar timing and astrometry. We define hot and cold

planets by using the snow line. The snow line is a particular distance from the star

where solid ice grains condense from hydrogen compounds. It divides the system

into two regions. On the inside of the snow line, there is a volatile-poor (lack of

substances with a low boiling-point) region with rocky planets, and outside of it, a

volatile-rich region filled with icy components. Therefore, the snow line can be used

to define the boundary between the hot rocky planets and cold gas giant planets

(Lin, 2008).
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Figure 2.1: Original data of 51 Peg shows variation in orbital motion due to 51 Peg
b’s gravitational interaction (Mayor & Queloz, 1995).

2.2.1 Methods of detecting hot planets

Radial velocity

Radial velocity is a technique which detects the star wobble around the system

centre-of-mass due to the gravitational interaction of nearby planets. The motion

of the star produces the change in velocity along the line-of-sight of the star which

causes the periodic shift of absorption lines in the star’s spectrum. It favours massive

planets which have a short orbital period, because of the higher amplitude of the

radial velocity signal. The amplitude of the radial velocity signal, K∗, of a star of

mass M∗ with planet of mass Mp orbiting around with period Pp, is defined by,

K∗ =
Mp sin ip

M∗

2πap

Pp

, (2.1)

where ap is the planet separation and ip is the orbital inclination of planet.

The radial velocity technique has a disadvantage of not being able to provide all

information about planets, because it cannot determine the true mass of planets,

but can estimate their minimum mass, Mp sin ip. However, this method has proven
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to be a successful extra-solar planet detection technique, because it has detected

most of the exoplanets discovered from the ground. Since the first detection of an

exoplanet via radial velocity in 1995, 51 Peg b, more than 400 planets have been

discovered by using this method (Figure 2.1) (Mayor & Queloz, 1995).

Nowadays, with improvements in the sensitivity of the technique and instru-

ments, it can reach a precision of 1 m.s−1 which can detect close-in planets with

masses less than 2 M⊕ and it will detect sub-Earth mass planets in the near future

(Mayor et al., 2011).

Transit

Transit photometry is a method which looks for a periodic dip in the stellar

light curve. When a planet passes in front of its host star in the direction of the

observer line-of-sight, the star flux temporarily decreases due to blocking by the

planet (Section 3.1).

From transit observations, not only orbital parameters but also physics parame-

ters are obtained. However, the transit technique has the problem of a large number

of false-positive detections caused by grazing eclipsing binaries, low-mass stellar ob-

jects or blended stellar systems (Dı́az et al., 2011). In 2000, Charbonneau et al. and

Henry et al. detected the first transit exoplanet, HD 209458b, which is a hot-Jupiter

(Figure 2.2) (Charbonneau et al., 2000; Henry et al., 2000).

2.2.2 Methods of detecting cold planets

Gravitational microlensing

Gravitational microlensing was proposed by Mao & Paczynski in 1991. It is the

only known method capable of discovering planets at truly great distances from the

Earth. It can find planets orbiting stars near the centre of the Galaxy, thousands

of light-years away, whereas radial velocity and transit methods can detect planets

only in our galactic neighbourhood. Microlensing is most sensitive to cold planets,

in outer regions of systems beyond the snow line (Kennedy & Kenyon, 2008; Lecar
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Figure 2.2: Observational data of the photometric dimming of HD 209458, the first
transit exoplanet system (Charbonneau et al., 2000).

et al., 2006). Furthermore, microlensing is the only method which can detect free-

floating planets.

Microlensing is based on the gravitational lens effect. A microlensing event

occurs when a lensing star moves in front of the source star in the direction of the

observer line-of-sight. The light paths of the source are bent by the lensing star and

focused by the lensing which can magnify and demagnify the image of the source

star. If the lensing star has a planet orbiting around it, the planet can perturb the

light and lead to additional spikes in the light curve (Mao & Paczynski, 1991).

The first planet which was discovered using microlensing was OGLE 2003-BLG-

235/MOA 2003-BLG-53 in 2004 (Bond et al., 2004). Currently, more than 15 planets

have been detected using this method, including a Neptune mass ratio planetary

companion to the lens star (Gould et al., 2006). However, the number of planet

detections using microlensing will increase in the future due to the ongoing main

microlensing surveys, MOA (Bond et al., 2002) and OGLE (Udalski et al., 2008).

Direct imaging

Direct imaging is a one of the oldest techniques which directly detects planets

through an image. It seems to be the easiest technique, but in reality, it is one of
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Figure 2.3: The first image of an extra-solar planet, 2M1207b, orbiting 2MASSWJ
1207334-393254 brown dwarf star (Chauvin et al., 2004).

the hardest techniques. It is challenging for two main reasons. First, the planets are

extremely faint light sources compared to their host stars. Second, the planets are

generally located very close to their parent stars. Currently, special techniques such

as coronography and adaptive optics are used to implement this method. They are

sensitive to distant hot planets around young, nearby stars which are uncommon

(Masciadri & Raga, 2004; Nielsen et al., 2008).

The advantage of direct imaging is it provides interesting information about

the planet, including the planet’s exact orbital parameters and surface properties.

Spectroscopic data could yield information about the chemical composition of the

planet’s atmosphere or even biological activity.

Chauvin et al. (2004) discovered the first directly imaged exoplanet, 2M1207b,

orbiting brown dwarf, 2MASSWJ 1207334-393254 (Figure 2.3). The planet has a

mass of 5 Jupiter mass with temperature in the range 1100-1300K (Chauvin et al.,

2005). Currently, this technique has detected more than 30 planets, including a

multi-planet system, HR 8799 (Marois et al., 2008).
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Figure 2.4: Data of pulsar, PSR 1257+12, shows the variation in period due to the
interaction of the first two detected exoplanets (Wolszczan & Frail, 1992).

2.2.3 Other detection methods

Pulsar Timing

The first detection of exoplanets, PSR 1257+12B and PSR 1257+12C was made

in 1992 by using pulsar timing (Figure 2.4) (Wolszczan & Frail, 1992). Although this

method was not originally designed for the detection of planets, it has a capability

to detect smaller planets down to less than Earth’s mass.

The pulsar timing method uses the changing position of the pulsar, as a result of

gravitational interaction. The change causes the distance and light travelling time

between the pulsar and observer to change periodically and creates the change in

time-of-arrival (TOA). TOA can be expressed as,

∆TOA =
apMp

cM∗
sin ip , (2.2)

where ap is planet’s semi-major axis and c is the speed of light in the vacuum.

However, since planets orbiting a pulsar are exotic objects and are presumably very

rare, the chance of finding large numbers of planets with it seems small.
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Astrometry

Astrometry is one of the oldest astronomical techniques to search extrasolar

planets. Ordinarily, it is used for detecting binary stars. This method uses the idea

that the gravitational interaction between star and planet causes the star and planet

to orbit around their barycentre. It measures a periodic variation in the position

of the star on the plane of the sky, subtracting out the star’s apparent motion due

to the yearly parallax motion and the projection of its real proper motion through

space.

The main advantage of the astrometry method is that it provides an accurate

estimate of a planet’s mass. The relation between the variation in the sky position,

αa, can be written as,

αa =
Mpap

M∗D
, (2.3)

where D is the distance from the Earth to the star. However, it is most effective

when the orbital plane is ”face on”, or perpendicular to the observer’s line of sight.

Strand (1943) and Reuyl & Holmberg (1943) announced the first planet orbiting

the stars, 61 Cyg and 70 Oph, by using astrometry. However, the recent ground-

based astrometry observation results show that the evidence for planets around 61

Cyg and 70 Oph has been proved incorrect (Heintz, 1978). Nowadays, there are

some exoplanets that have their mass determined via the astrometry technique: GI

876b (Benedict et al., 2002) HD 136118b (Martioli et al., 2010) and HD 38529c

(Benedict et al., 2010). However, the first extrasolar planet has been successfully

detected astrometrically in 2010 (Bean et al., 2010b; Pravdo & Shaklan, 2009).

For future astrometry missions, SIMLite (Space Interferometry Mission), a NASA

astrometric space-based observatory, has been developed to identify exoplanets via

the astrometric technique (Unwin et al., 2008). However, in 2010, this mission was

not recommended for development in this decade.
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2.3 Habitable exoplanets

Over the past decade, more than 750 planets have been detected and analysed

and more than 2,300 candidate planets have been added to the list by the Kepler

space mission. In the next decade, attention will be switched from finding exoplanets

to characterising them, such as searching for exomoons and analysing planetary

atmospheres.

2.3.1 Habitable zone

The first definition of habitable zone (HZ) was defined by Huang (1959). The

classical definition of circumstellar HZ was defined by Kasting et al. in 1993 as

an annulus around a star where a terrestrial planet with an atmosphere can sustain

large amounts of liquid water on its surface, a condition necessary for photosynthesis

(Kasting et al., 1993).

For a HZ, the planet has to be located close enough to its host to maintain

a surface temperature above 273 K and not be too close to initiate a runaway

greenhouse condition. Additionally, its location should allow photodissociation of

water vapour into hydrogen and oxygen, and loss of hydrogen into space.

If the HZ is defined simply as the distance of a star where the effective temper-

ature is in the range of 0◦C to 100◦C, the planet’s effective temperature, Tp, can be

defined as,

L∗ = 4πa2
pσT 4

p , (2.4)

where L∗ is the star’s bolometric luminosity and σ is Stefan-Boltzmann constant.

For Earth-like planets in orbit around a Sun-like star, the HZ will persist for orbital

distance between 0.7 and 1.2 AU. From a recent model of HZ proposed by Selsis

et al. (2007), the inner rin and outer rout boundaries of the HZ in AU units are given

by,
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rin = (rin� − ainT? − binT
2
? )

(
L

L�

) 1
2

, (2.5)

and

rout = (rout� − aoutT? − boutT
2
? )

(
L

L�

) 1
2

, (2.6)

where rin� is inner boundaries of the present Solar HZ, rout� is outer boundaries

of the present Solar HZ, T∗ is star effective temperature, L∗ is star luminosity, L�

is luminosity of the Sun, ain = 2.7619× 10−5 AU.K−1, bin = 3.8095× 10−9 AU.K−2,

aout = 1.3786× 10−4 AU.K−1, bout = 1.4286× 10−9 AU.K−2, and T? = T∗ − 5700 K

(Selsis et al., 2007).

However, there are a number of factors which can alter the boundaries of HZ,

such as chemical cycles or the greenhouse effect. This effect can be seen on Venus,

which orbits at a distance of 0.72 AU and falls within the Sun’s HZ, but it has an

average surface temperature above 700K (Kasting et al., 1993).

Due to stellar evolution, the host star becomes brighter and hotter which shifts

the HZ outward. The continuously habitable zone, which is the region located in the

HZ for longer than 1 Gyr, is interesting because planets located in this region can

sustain liquid water long enough for life to form and evolve (Kasting et al., 1993).

For high-mass stars, their HZs are much further and broader which could be

the best candidates for finding habitable planets. However, emission in the far

ultraviolet (FUV) band which is potentially damaging to life is observed in high-

mass stars. Then, solar-like stars which have reasonably broad HZs and do not emit

FUV are the best candidates. For low-mass stars, red dwarfs, they have the longest

lifetimes. However, in their early age, they have strong magnetic activity and HZ

planets could be tidally locked with their hosts. Therefore, if they can hold on to

their atmosphere in the early age and are not tidally locked, planets around them

could be habitable (Joshi et al., 1997).

Finally, the Galactic Habitable Zone (GHZ) proposed by Gonzalez et al. (2001).

is considered. The GHZ is the region where planets can retain liquid water in the
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Figure 2.5: The GHZ in the disk of the Milky Way. The white contours encompass
68% (inner) and 95% (outer) of potentially suitable planetary systems (Lineweaver
et al., 2004).

Milky Way galaxy. From a recent study, 10% of stars in the Milky Way are in the

GHZ which defined as an annular region between 7 and 9 kpc from the galactic

centre (Figure 2.5) (Lineweaver et al., 2004).

2.3.2 The Earth Similarity Index (ESI)

In 2011, Schulze-Makuch et al. proposed two classification schemes of exoplanet

habitability called the Earth Similarity Index (ESI) and the Planetary Habitabil-

ity Index (PHI) (Schulze-Makuch et al., 2011). We will focus only on the ESI

classification due to lack of information on exoplanet PHI parameters. ESI is a

multi-parameter measure of Earth-likeness as a number between 0 (no similarity)

and 1 (Earth). The basic ESI expression is

ESI% =

(
1−

∣∣∣∣%− %0

% + %0

∣∣∣∣)w

, (2.7)

where % is planetary properties (mean radius, bulk density, escape velocity and
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surface temperature), %0 is a terrestrial reference value, w is a weight exponent (0.57

for the mean radius, 1.07 for the bulk density, 0.7 for the escape velocity and 5.58

for the surface temperature) and ESI% is the similarity. ESI can be separated into

two values, interior (mean radius and bulk density) and surface (escape velocity

and surface temperature) similarity. The single ESI value is obtained by using the

geometric mean. The planets with an ESI value over 0.8 can be considered as

Earth-like planets.

2.3.3 The possibility of habitable exoplanets

In 2007 the first terrestrial exoplanet in the HZ, Gliese 581c (5.34 M⊕), was

detected (Forveille et al., 2011; Udry et al., 2007). Its equilibrium temperature

would be -3 ◦C, if its albedo is 0.64 (Venus-like), and 40 ◦C for an Earth-like albedo,

in which core liquid water may exist (Udry et al., 2007). However, if it has runaway

greenhouse effect, its temperature should be over 500 ◦C (von Bloh et al., 2007). In

2009, in the same system, Mayor et al. announced that planet Gliese 581d (6.06

M⊕) is located in the HZ (Forveille et al., 2011; Mayor et al., 2009). Currently,

60 candidates have been found by Kepler in the temperature range suitable for

habitation (Borucki et al., 2011a), including Kepler-22b, the planet found to orbit

in the habitable zone of a star similar to our Sun (Figure 2.6) (Borucki et al., 2012).

Recent work by Mayor et al. shows that about half of solar-type stars are host

to low-mass planets (<30 M⊕). Furthermore, the planetary rate of 3-10 Earth-mass

planets is estimated to be 10-16% in the ηEarth survey and the HARPS-CORALIE

survey (Mayor et al., 2011). From this result, low-mass planets seem to be very

frequent around solar analogues, although few habitable extrasolar planets have

been detected (Mayor et al., 2011; Pepe et al., 2011). Therefore, more habitable

exoplanets should be detected in the future.

2.4 Exomoon background and detection methods

An exomoon is a natural satellite that orbits around an extrasolar planet. None
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Figure 2.6: The diagram compares the Solar System to Kepler-22 system. The
image is courtesy of NASA.

have been discovered to date. The information from the Solar system shows that

many of the planets of the Solar system host satellites. In order to detect exo-

moons, several methods have been developed. Most possible methods for detecting

exomoons are extensions of the exoplanet detection technique.

Transit

The exomoon transit detection method is a method which detects the dip in

stellar light curve due the moon passing in front of a host star (Simon et al., 2007).

However, it is very challenging to confirm the exomoon signal from the observational

data, because the dip may occur due to some form of photometric noise or star

spot (Sartoretti & Schneider, 1999). Moreover, when the transit events occur, the

exomoon could be behind or in front of the planet. Therefore, in order to detect an

exomoon via the transit method, multiple transits events are required.

Although, exomoons are difficult to detect using transit method. TTV and TDV

techniques which are the extensions of the transit method have been proposed to de-

tect exomoon systems (Section 3.3). Exomoons should be detected with Kepler using
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Transit Timing Variation (TTV) and Transit Duration Variation (TDV) methods

from the simulation result by Kipping et al. (2009) (Section 3.5).

Direct imaging

Direct imaging of exoplanets is extremely challenging due to the difference in

brightness between host star and planet. Detecting exomoons using the direct imag-

ing technique is more difficult, due to a tiny angular separation between the planet

and moon. For the Earth-moon system at distance 10 pc, the separation is 0.5

milliarcseconds which is very small compared to the current best interferometric

precision, around 25 milliarcseconds (Baines et al., 2007).

Microlensing

Han & Han (2002) proposed that extrasolar moons could be detected using

the microlensing technique. However, the problem that microlensing events cannot

repeat poses a problem for this technique.

Pulsar timing

The first exoplanet was discovered through the pulsar timing method. In 2008,

Lewis et al. proposed that this technique should be able to detect a stable exomoon

orbiting a pulsar planet. They applied this method to the case of PSR B1620-26b

and found that exomoons with mass larger than 5% of the pulsar planet and a

planet-moon separation of 2% of star-planet separation could be detected (Lewis

et al., 2008).

2.5 Habitable exomoons

The interest in exomoons comes from the proposition that moons are a factor that

improves the probability of the existence of intelligent life on their host planets and

the moons themselves also have a potential to host life. The Moon has a stabilising

effect on Earth’s axis and causes the tides on the Earth. Without the Moon, life

on the Earth may be restricted to less complex forms (Laskar et al., 1993). A large
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enough moon that can lock the planet and moon together may prevent tidal locking

to the star. Moreover, if the mass of a moon is larger than 0.12 M⊕, it could be

habitable itself (Williams et al., 1997).

In 1997, Chyba and Williams et al. proposed the possibility of habitable ex-

omoons. They posited that moons orbiting around giant gas planets’ Hill sphere

(the region of orbital stability) could host life (Chyba, 1997; Williams et al., 1997).

Although moons orbiting giant planets at 1 AU from a solar analogue would be-

come tidally locked within a few billion years after they form, their orbital period

on timescales of a few days to a few months could cause temperature fluctuations

on them.

Habitable moons need to be large enough to retain water and atmosphere. Al-

though, the moons formed from the planetary disk are unlikely to be greater than

0.01% the mass of the host planet, the moons formed from captures or impacts

(Triton and the Moon) have no limit on their mass (Canup & Ward, 2006). Barnes

& O’Brien proposed that habitable exomoons should be Earth-like mass moons or-

biting around habitable-zone Jupiter-like planets around M-dwarf stars (Barnes &

O’Brien, 2002).

The HZ of exomoons can be defined simply as the distance where planets receive

the same energy as the Earth, rhab,

rhab =

√
L∗

L�
AU. , (2.8)

where L� is the Sun’s luminosity (Kipping et al., 2009). Furthermore, the moon

can be lost from the planet due to three-body instability if the distance between the

planet and moon is too large. To be retained by the planet, the moon must have an

orbit that lies within the region called the Hill sphere. The Hill sphere approximates

the gravitational sphere of influence of a smaller body, the planet. The radius of the

sphere called the Hill radius (RH) is found by solving the three-body problem and

is equal to the distance of the L1 and L2 Lagrangian points, which lie along the line

of centres of the two bodies.
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RH = ap(
Mp

3M∗
)
1/3

. (2.9)

For exomoon orbital eccentricity, em, and planetary eccentricity, ep, Barnes &

O’Brien (2002) and Domingos et al. (2006) approximated the stability for prograde

moons as,

am = 0.36RH , (2.10)

and

am = 0.4895RH(1.0000− 1.0305ep − 0.2738em) , (2.11)

and for retrograde moons as

am = 0.50RH , (2.12)

and

am = 0.9309RH(1.0000− 1.0764ep − 0.9812em) . (2.13)

However, the Hill sphere is only an approximation, and other forces can eventu-

ally perturb an object out of the sphere. Therefore, in order to investigate habitable

exomoons, the moons have to be stable long enough for life to form. The moons’

orbits slowly change due to the perturbation on the orbits caused by the tidal bulge

of the planets. On the moon with mass Mm and semi-major axis am, the tidal bulge

causes the torque,

τp−m =
3

2

k2pGM2
mR5

p

Qpa6
m

sgn(np − nm) , (2.14)

where G is gravitational constant, Rp is planet radius, k2p is the tidal Love

number of the planets, Qp is tidal dissipation parameter, sgn is the Signum function,

np is the angular velocity of the planet’s rotation and nm is the angular velocity of
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the moon’s orbit (Murray & Dermott, 1999). For a Jupiter-like system, Qp and k2p

are around 105 and 0.5 respectively (Barnes & O’Brien, 2002; Kipping et al., 2009).

Additionally, the total lifetime of a moon, Tp−m is defined by the time necessary

for the moon orbit in the region between the critical semi-major axis (acrit) and the

planet’s surface (am) (Barnes & O’Brien, 2002).

Tp−m =
2

13
(a

13/2
crit − a13/2

p )
Qp

3k2pMmR5
p

√
Mp

G
. (2.15)

In a recent study, Porter & Grundy used the Kocai Cycle and Tidal Friction

model to simulate captured exomoons around giants and found that exomoons could

stabilise in a few million years, which is very short relative to the life time of the

stars (Porter & Grundy, 2011).



Chapter 3

Transiting exoplanet technique

and application

3.1 Transiting exoplanets

The first exoplanet transit event was first announced in 2000 with the transit

observation of the planet HD 209458b (Charbonneau et al., 2000; Henry et al.,

2000). After the first detection, a large proportion of exoplanet detections have been

discovered using the transit method though ground-based transit searches, such as

OGLE, WASP and HAT. Nevertheless, major transit discoveries are expected from

space, such as the Kepler mission, which has discovered more than 70 confirmed

exoplanets and 2,300 planetary candidates to date.

The transit method consists of detecting the dip in a stellar light curve when a

planet crosses the line of sight towards its host star. Therefore, the perfect align-

ment between the observer, the planet and the star is required. In the case of a

transiting system, edge-on planetary systems are observed. Therefore, transiting

observational data provides a great number of physical exoplanet parameters: mass,

radius, density and surface gravity.

To investigate the detectability of a transiting exoplanet, the probability of de-

tecting transit events, Ptran, is defined. This probability relates to the star’s radius

and the distance between star and planet (Borucki & Summers, 1984). For elliptical

35
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Figure 3.1: Transiting light curve with four contact points and three main parame-
ters: transit depth, transit duration, and ingress and egress durations.

orbit, the geometric probability can be written as,

Ptran =
R∗

ap(1− ep cos ftp)
, (3.1)

where R∗ is star radius and ftp is planet true anomaly. Therefore, the close-in

planet could have high probability of detection.

The dip in stellar light curve produced by planetary occultation is described

by three main parameters: transit depth, transit duration, and ingress and egress

durations. These three parameters depend on the size of star and planet, planetary

inclination and separation (Figure 3.1).

Transit depth

The depth of the transit is given by the ratio of projection area of the planet

radius, Rp, and the star, R∗,

δ = (
Rp

R∗
)2 . (3.2)
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Transit duration

The transit duration is the duration between the first contact and last contact.

For circular orbit, the duration is defined by,

τ̄ = TIV − TI =
Pp

π
arcsin(

√
1− b2

(ap/R∗)2 − b2
, (3.3)

where Pp is planet period and b is impact parameter (Seager & Mallén-Ornelas,

2003). For eccentric orbit, the transit duration is more challenging. A number of

models have been proposed, such as Tingley & Sackett (2005) and Winn (2010).

Ingress and egress durations

The shape of the dip is defined by ingress (τing) and egress durations (τegr) which

are the duration between first and second contact time and third and fourth contact

time, respectively. The ingress and egress are equal in circular orbit,

τing = τegr = TII − TI = TIV − TIII = τ̄
Rp

R∗

√
1− b2 . (3.4)

However, τing and τegr are unequal for an eccentric orbit because of the variation

in projected speed (Winn, 2010).

3.2 Timing variation detection techniques

Transit Timing Variations (TTV)

The Transit Timing Variations (TTV) is an exoplanet detection technique which

measures the variations in the timing of transit of planet which was proposed by Sar-

toretti & Schneider (1999). The transits of a planet in a Keplarian orbit around its

host are exactly periodic. however, in a multi-planet system, the presence of a third

body in the system causes the change in planetary orbit. The time between transits

varies because the transiting planet and other planets exchange energy and angular

momentum. This gravitational interaction perturbs the orbit of the transiting planet

and causes a short-period oscillation of the semi-major axes and eccentricities. For

a given transiting planet, the TTV signal depends on seven unknown parameters
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of the perturbing planet; mass, semi-major axis, eccentricity, inclination, nodal and

periapse longitudes and orbital phases of both planets for a given epoch (Holman &

Murray, 2005).

TTV provides the capability to discover additional planets around stars with

a transiting planet, even if it does not transit the star. Moreover, TTV is a very

powerful method for searching for low-mass planets down to Earth-size planets be-

cause very small changes in planet’s orbital elements can be measured by timing

transits. The first detection using TTV was Kepler-19c which was found from the

time variation of the transiting planet, Kepler-19b (Ballard et al., 2011).

Transit Duration Variation (TDV)

Similar to the TTV method, Transit Duration Variation (TDV) measures the

variation of transit duration due to the mutual gravitational interaction between

two or more objects. The TDV signal is predicted to be 90 degrees out-of-phase

with TTV which helps us to prove the reliability of the TTV signal (Figure 3.2)

(Kipping, 2009a).

3.3 TTV and TDV exomoon detection techniques

In section 2.4, most possible methods for detecting exomoons are described, such

as transit (Simon et al., 2007), direct imaging (Baines et al., 2007) and microlensing

(Han & Han, 2002). However, the TTV and TDV techniques are focused in this

dissertation since they could detect small exomoons.

3.3.1 Transit Timing Variation (TTV)

TTV was presented by Sartoretti & Schneider (1999). They assumed that both

the planet and moon have circular orbits and the planet-moon orbital plane is co-

aligned with the planet-star orbital plane. The displacement of the planet from the

planet-moon barycentre is given by,
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Figure 3.2: Variation of TTV and TDV signals due to planet (gray spheres) and
moon (black spheres) positions.
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apb = (
Mm

Mp

)am , (3.5)

where apb is the semi-major axis of the planet around the planet-moon barycentre.

The peak-to-peak amplitude of the TTV signal (∆tTTV ) can be written as,

∆tTTV ∼ 2amMmM−1
p × Pp(2πap)

−1 . (3.6)

In the case of eccentric orbits, the waveforms are not sinusoidal. The root-mean-

square (RMS) amplitude is used due to validation for all waveforms. The RMS

amplitude of the TTV signal is given by,

δTTV =
1√
2

a
1/2
p amMm(Mp + Mm)−1√

G(M∗ + Mp + Mm)

ζT (em, $m)

Υ(ep, $p)
(3.7)

δTTV ∝ Mmam , (3.8)

where

ζT =
(1− e2

m)1/4

em

√
e2

m + cos(2$m)(2(1− e2
m)3/2 − 2 + 3e2

m) , (3.9)

Υ = cos[arctan(
−ep cos $p

1 + ep sin $p

)].

√
2(1 + ep sin $p)

1− e2
p

− 1 , (3.10)

where $p and $m are the positions of pericentre of planet and moon respectively

(Kipping, 2009a). For edge-on circular orbit, the TTV RMS amplitude can be

written as,

δTTV =
amMmPp

apMp

√
2π

. (3.11)

From studies by Holman & Murray (2005) and Agol et al. (2005), the TTV

technique has a sensitivity to detect low-mass planets down to sub Earth-mass. In

a recent study, Earth-mass exomoons around Neptune-mass exoplanets could be

detected by Kepler (Kipping, 2009a).
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Figure 3.3: The side-on view of the star-planet-moon system shows the distance
perturbation of the planet (two grey spheres) caused by the moon.

Figure 3.4: The value of Υ−1 versus the planet’s position of pericentre, $p. The
black, blue, green and red lines represent planetary eccentricities (ep) of 0, 0.3, 0.6
and 0.9 respectively (Kipping, 2009a).
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Unfortunately, TTV can also be induced by a multitude of phenomena, includ-

ing general relativistic precession of the orbit, stellar peculiar motion and parallax

effects.

3.3.2 Transit Duration Variation (TDV)

TDV is the periodic change in the transit duration over many measurements

caused by the apparent velocity of the planet which increases and decreases due to

the planet-moon interaction. In 2009, Kipping showed that exomoons should induce

not only the TTV effect but also the TDV effect on their host planets (Kipping,

2009a).

For the planet’s inclination of 90 degrees and the moon’s orbit which is coplanar

with planet-star orbit case, the TDV amplitude can be written as,

δTDV =

√
ap

am

.

√
M2

m

(Mp + Mm)(M∗ + Mp + Mm)
.

τ̄√
2

ζD(em, $m)

Υ(ep, $p)
(3.12)

δTDV ∝ Mma−1/2
m , (3.13)

where

ζD =

√
1 + e2

m − e2
m cos(2$m)

1− e2
m

, (3.14)

where τ is the duration of a transit (τ ∝ 1/vp⊥). For the systems with non-

coplanar orbits, the TDV effect can be separated into two main constituents, a

velocity (V) component and a transit impact parameter (TIP) component (Kipping,

2009b). The V-component is caused by the variation in velocity of the planet due to

the moon’s gravity. The TIP-component is affected by the planet moving between

high and low impact parameters. The function of the impact parameter of the

transit, b, is defined by,
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b =
rp cos(ip)

R∗
=

q

R∗
. (3.15)

Where em = 0 and Euler angles of the moon orbit with respect to the star-planet

plane (α, β and γ) are equal to zero, the RMS amplitude of the TDV signal is given

by,

δTDV = [
apbap cos2 i

(R∗ + RP )2 − a2
p cos2 i︸ ︷︷ ︸

TIP−Component

± 2πapb

Pm

1

vB⊥︸ ︷︷ ︸
V−Component

].
τ̄√
2

, (3.16)

where Pm is moon period and vB⊥ is the projected velocity of the planet-moon

barycentre across the face of the star during transit. The positive sign refers to

prograde moon orbits and the negative sign refers to retrograde orbits. In the system

with 90 degrees orbital inclination and circular orbit, the TDV-TIP component will

be zero and the RMS amplitude of the TDV signal is

δTDV = τ̄
amMmPp

apMpPm

√
2π

, (3.17)

where

τ̄ =
Pp

π
arcsin [(

R∗

ap

)2] . (3.18)

The TDV technique cannot detect habitable exomoons alone because the TDV

signals are relatively weak compared with the TTV signals (Porter & Grundy, 2011).

However, combined with the TTV signals, the orbital separation and mass of exo-

moons can be obtained by using equation (3.8) and (3.13) and the signals have π
2

phase difference which provide a unique exomoon signature (Figure 3.5).

The TDV signal can also be induced by parallax effects. This effect should

be taken into account for high-precision, long timeline transit observations (Scharf,

2007).
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Figure 3.5: The TTV and TDV signal simulated from 1 Earth-mass exomoon orbit-
ing GJ436b. TTV leads TDV by a π/2 phase difference. The solid line represents
ep = 0, the dashed line ep = 0.3 and the dotted line ep = 0.6 (Kipping, 2009a).

3.4 Exoplanet transit surveys

At present, a great number of exoplanet detection surveys have been started or

will be started in the near future. From the previous section, exomoons could be

detected by using the TTV and TDV techniques in addition to the transit technique.

Therefore, in this section, transit missions are focused upon. Both current ground-

based and space-based surveys are described. Furthermore, potential future space-

based missions are discussed.

3.4.1 Ground-based surveys

WASP

The WASP (Wide Angle Search for Planets) is the United Kingdom’s leading

exoplanet detection program via the transit technique. The WASP observatories

consist of two eight lens robotic telescopes located at both hemispheres. Each tele-

scope has a field of view 7.8 × 7.8 degrees. In the north hemisphere, the telescope

(SuperWASP-North) is located at the Observatorio del Roque de los Muchacho, La

Palma. SuperWASP-South is located at the South African Astronomical Observa-

tory (SAAO), South Africa. Each night, the two SuperWASP telescopes survey 6-8
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fields at similar declination covering one hour in right ascension (Pollacco et al.,

2006). In 2010, the first WASP public data was released. This data contains light

curves, raw and calibrated images of the first three observing seasons (2004-2008)

containing more than 30 detected exoplanets (Butters et al., 2010).

HATNet

The HATNet (Hungarian-made Automated Telescope Network) was developed in

1991 by Hungarian astronomers. The network of 6 small fully automated telescopes

(4 at Fred Lawrence Whipple Observatory, Arizona, and 2 at Mauna Kea, Hawaii)

was established in 2003 (Bakos et al., 2004, 2011). Since 2009, the HAT-South

project, with 2 identical telescopes sited at Las Campanas, Chile and Siding Springs,

Australia, along with the HESS site in Namibia, have been operational (Bakos

et al., 2009). HATNet discovered its first transiting exoplanet in 2006, HAT-P-

1b (Bakos et al., 2007). To date, HATNet has discovered about 100 confirmed

transiting exoplanets (Bakos et al., 2011).

3.4.2 Space missions

CoRoT

The CoRoT (Convection, Rotation and planetary Transits) is a space-based

project focused on asteroseismology of variable stars. However, after the discovery

of the first hot Jupiter, CoRoT now includes exoplanet detection in the programme.

The 27-cm telescope with a 2.8 × 2.8 degrees camera was launched in December

2006. The telescope has 4 CCDs, two are for the exoplanet program and two are

for the seismology program. CoRoT can detect stars with magnitude between 12th

and 16th. At present, CoRoT has detected more than 15 exoplanets (Hébrard et al.,

2011), including the first transiting super-Earth, CoRoT-7b (Léger et al., 2009).
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Figure 3.6: The Kepler photometer instrument mounted on the Kepler spacecraft.
The image is courtesy of NASA.

Kepler

Kepler is a NASA space mission designed to determine the frequency of extra-

solar planets, their characteristics and association with host star characteristics using

the transit method. It is a 0.95-metre telescope with 42 CCDs (field of view of 105

deg2) and was launched in March 2009. It can detect star-planet systems brighter

than V=14. In February 2011, the Kepler mission released data for 156,453 stars,

including 1,235 planetary candidates in 997 systems. 68 candidates are Earth-size

planets (Rp < 1.25R⊕) and 288 planets are super-Earth size (1.25R⊕ ≤ Rp < 2R⊕)

(Borucki et al., 2011a). In early 2012, more than 1,000 additional candidates were

announced (Batalha et al., 2012). These results provide a better understanding of

exoplanets. At present, more than 25 Kepler exoplanets, including Kepler-22b, have

been confirmed (Borucki et al., 2012).

Euclid

Euclid is an ESA observatory probe to understand dark matter and dark energy

which will be launched in 2019. However, Euclid has sensitivity for detecting exo-

planets using transit and microlensing techniques. Euclid will have two instruments,

a visual instrument (VIS) and a near infrared instrument (NISP). The VIS will be
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Figure 3.7: Planet detection capability of Euclid. The contours indicate the number
of detections using transit (left) and microlensing (right) techniques, assuming one
planet per star at each point in the planet mass-semi-major axis plane. The yellow
dots are published planet detections and the red dots are the published Kepler
candidates (McDonald & et al, 2012; Penny et al., 2012).

equipped with 36 CCDs in broad band (R+I+Z) which will be used for measuring

the shape of galaxies. The NISP is equipped with 16 HgCdTe NIR detectors with

Y, J, H bands and a field of view of 0.55 deg2, and a resolution better than 0.3

arcseconds. There are two primary cosmology surveys in this mission, a wide survey

which covers 15,000 deg2 of extragalactic sky and a deep survey which covers 40 deg2

at ecliptic poles. The additional science surveys, including a microlensing exoplanet

survey, can be added. In this survey, Euclid could detect not only microlensing

exoplanets, but also transiting exoplanets (Laureijs et al., 2011).

WFIRST

The WFIRST (Wide-Field Infrared Survey Telescope) is a NASA mission de-

signed to detect exoplanets using the gravitational microlensing technique and dark
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energy with weak lensing. WFIRST will be a 1.5-metre class wide field space tele-

scope. It will have a potential to detect exoplanets with masses greater than 0.1

M⊕ at distances more than 0.5 AU using the microlensing technique, which will de-

velop upon exoplanet statistics from the Kepler mission. In this mission, transiting

exoplanets could also be detected (Green et al., 2011).

PLATO

The PLATO (PLAnetary Transit and Oscillations of stars), an ESA Medium

class mission, has been proposed for M2 and M3 launch slots for the Cosmic Visions

2015-2025 programme. It has a primary goal to discover and characterize exoplanets

with high precision using 34 wide-field telescopes. It can be detected planets down to

Earth-size orbiting F to M main sequence stars in their habitable zone. Moreover, it

can determine the radius and mass of the host stars and the planets with accuracy

of 1% and the age of the systems with accuracy better than 10% (Catala et al.,

2011).

EChO

The Exoplanet CHaracterisation Observatory (EChO) is an ESA M-class candi-

date mission for the Cosmic Vision 2015-2025 programme. The mission has a main

aim to investigate exoplanetary atmospheres. The 1-metre telescope will observe

the exoplanets at different points in their orbit to determine the spectrum of the

planetary atmosphere. The main target list for the mission includes Jupiter-size to

super-Earth sized planet orbiting F to M type stars (Tinetti et al., 2011).

3.5 The detectability of exomoons with Kepler class

photometry

The Kepler mission is a space mission designed to detect habitable exoplan-

ets (Section 3.4.2). In order to calculate the detectability of exomoons, TTV and
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Figure 3.8: The TTV detectability of a 0.2 M⊕ exomoon in G2V system around a
Jupiter, Saturn and Neptune-like planet. The vertical lines show the stability limit
of Barnes & O’Brien (Barnes & O’Brien, 2002) and horizontal line shows the 8-σ
confidence level.(Kipping et al., 2009).

TDV signal amplitudes, times of transit minimum and transit duration errors and

confidence of detection were studied by Kipping et al. (2009).

In order to define detectable exomoons, Kipping used an 8-σ confidence level.

From his simulation result, Jupiter’s exomoons are the hardest to detect and Saturn’s

exomoons are the easiest because of its low density (Figure 3.8). For exomoons

around a Saturn-like planet, the minimum habitable exomoon mass which could be

detected with Kepler around an M5V star would be 0.09 M⊕ (the stable mass limit

from Barnes & O’Brien (2002) is 0.008 M⊕) and 0.18 M⊕ for M2V star systems

(the stable mass limit is 0.41 M⊕). Due to the limitation of Kepler target stars, the

minimum detectable habitable exomoon mass with Kepler is 0.2 M⊕ (Figure 3.9).
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Figure 3.9: The lowest detectable exomoon mass orbiting a Saturn-like planet. The
solid line shows the mass stability limit from Barnes & O’Brien (Barnes & O’Brien,
2002) and the dot line shows the magnitude limit to 25% of the exomoons in the
sample (Kipping et al., 2009).



Chapter 4

Generating and analysing light

curves of an exoplanet with

exomoon

4.1 Planet-moon orbit

In this section, the coordinate system and fundamental parameters which form

the basis of exomoon light curve calculations are defined. Transiting exoplanets are

detected from the variation in the light curve of the host stars. Information from

transit light curves helps astronomers to obtain direct estimates of the exoplanet

mass and radius which reveal the physical nature of the exoplanet, such as its av-

erage density and surface gravity. A very high precision light curve can be used to

detect multi-planetary systems or star spots (Charbonneau et al., 2007). Moreover,

perturbations in the timing of exoplanet transits may be used to detect the planet’s

satellites or additional planets (Sartoretti & Schneider, 1999).

The first step to generating a transiting exomoon light curve is to define the

planet and moon positions with respect to the host star. However, the star, planet

and moon are a three-body problem which has no exact analytical solution. There-

fore, in this work, the planet’s orbit and moon’s orbit are created using a Keplerian

orbit of star-planet and planet-moon, separately, and then perturbing the planet’s

51
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position with planet-moon interaction.

Firstly, a planetary orbit with a centre at the origin of an (x1, y1, z1) co-ordinate

system is considered. The position of the planet can be written as,

x1 = apep + rp cos ftp ,

y1 = rp sin ftp ,

z1 = 0 , (4.1)

where ap is planet’s semi-major axis, ep is planet’s eccentricity, rp is the distance

of planet from the origin,

rp =
ap(1− e2

p)

1 + ep

cos(ftp) , (4.2)

and true anomaly, ftp, is defined by,

tan(
ftp

2
) =

√
1 + ep

1− ep

. tan(
fmp

2
) . (4.3)

fmp is the mean anomaly which may be written as a function of the time elapsed

since the planet’s periapsis, t− tp,

fmp − ep cos fmp =
2π

Pp

(t− tp) . (4.4)

In the second step, the coordinates (x1, y1, z1) are transformed to star planet

barycentre coordinates (x2, y2, z2) lying at (apep, 0, 0) in the (x1, y1, z1) co-ordinate

system:

x2 = rp cos(ftp) ,

y2 = rp sin(ftp) ,

z2 = 0 . (4.5)
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Figure 4.1: Euler angles where x− y − z system (Blue) is fixed, X − Y − Z system
(Red) is rotated and N (Green) is the reference direction (Kipping, 2009b).

Figure 4.2: Orbital elements of a transiting planet-star system.
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From Figure 4.1 and 4.2, the orbital arrangement of the planet is rotated by

the Euler angles, α (Longitude of ascending node, Ωp), β (Inclination, ip) and γ

(Argument of periapsis, ωp), with respect to the plane of reference (the reference

direction lies at x = +∞) which can be written as,

x3 = rp [cos(Ωp) cos(ωp + ftp) + sin(ip) sin(Ωp) sin(ωp + ftp)] ,

y3 = rp [sin(Ωp) cos(ωp + ftp) + sin(ip) cos(Ωp) sin(ωp + ftp)] ,

z3 = rp [cos(ip) sin(ωp + ftp)] . (4.6)

If the planet has a moon, the moon’s orbit can be defined in a similar manner

to the planet’s orbit. From here onwards, unless otherwise stated, quantities with

subscript p denote planet parameters and those with subscript m denote moon

parameters. The presence of the moon perturbs the planetary orbit. The planet’s

reflex motion from the moon’s perturbation can be written as,

rbpMp = rbmMm , (4.7)

where rbp and rbm are distance between planet-moon barycentre and planet and

moon, respectively (where hereafter bold typeface denotes a vector). Finally, the

position of the planet and moon with respect to star-planet reference plane, rsp and

rsm, are

rsp = rp + rbp , (4.8)

rsm = rp + rbm . (4.9)

For an observer at z = +∞, Ωp has no effect on the transit since the light curve

is defined by the separation only. The planet position can be defined as,
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xp = rp cos(ωp + ftp)

−rbp cos(ωm + ftm) cos(ωp + Ωm)

+rbp sin(im) sin(ωm + ftm) sin(ωp + Ωm) , (4.10)

yp = rp cos(ip) sin(ωp + ftp)

+rbp sin(ip) cos(im) sin(ωm + ftm)

−rbp cos(ip) sin(im) sin(ωm + ftm) cos(ωp

+Ωm)− rbp cos(ip) cos(ωm + ftm) sin(ωp + Ωm) , (4.11)

zp = rp sin(ip) sin(ωp + ftp)

−rbp cos(ip) cos(im) sin(ωm + ftm)

−rbp sin(ip) sin(im) sin(ωm + ftm) cos(ωp + Ωm)

−rbp sin(ip) cos(ωm + ftm) sin(ωp + Ωm) , (4.12)

and moon position can be written as,

xm = rp cos(ωp + ftp)

+rbm cos(ωm + ftm) cos(ωp + Ωm)

−rbm sin(im) sin(ωm + ftm) sin(ωp + Ωm) , (4.13)
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ym = rp cos(ip) sin(ωp + ftp)

−rbm sin(ip) cos(im) sin(ωm + ftm)

+rbm cos(ip) sin(im) sin(ωm + ftm) cos(ωp + Ωm)

+rbm cos(ip) cos(ωm + ftm) sin(ωp + Ωm) , (4.14)

zm = rp sin(ip) sin(ωp + ftp)

+rbm cos(ip) cos(im) sin(ωm + ftm)

+rbm sin(ip) sin(im) sin(ωm + ftm) cos(ωp + Ωm)

+rbm sin(ip) cos(ωm + ftm) sin(ωp + Ωm) . (4.15)

The star-moon sky-projected distance (Ssm), the star-planet sky-projected dis-

tance (Ssp) and the separation between the planet and the moon (Spm) can be

written as,

S2
sm =

x2
m + y2

m

R2
∗

, (4.16)

S2
sp =

x2
p + y2

p

R2
∗

, (4.17)

S2
pm =

(xp − xm)2 + (yp − ym)2

R2
∗

, (4.18)

where R∗ is star radius.

4.2 Planetary transit light curve

In order to generate light curves of transiting systems, the limb darkening effect

of the host star which causes the star’s surface brightness peak at the centre is
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Figure 4.3: Geometry of limb darkening.

considered. The nonlinear limb-darkening in a transit light curve which is first

presented by Mandel & Agol (2002). The function of the star’s intensity, I, with

nonlinear limb-darkening is defined by,

I(r) = 1 +
4∑

n=1

cn(1− µn/2) , (4.19)

where cn are coefficients and µ is the normalised radial coordinate of the star,

µ = cos θ = (1− r2)1/2, 0 ≤ r ≤ 1 , (4.20)

where θ is the angle between a line normal to the stellar surface and the line of

sight of the observer and r is radial distance from the centre of the star. In this

dissertation, the quadratic limb darkening, I(r) = 1− γ1(1− µ)− γ2(1− µ)2, where

γ1 + γ2 < 1, is used. From equation 4.19, the constant cn in the quadratic limb

darkening model can be written as,

c1 = 0

c2 = γ1 + 2γ2

c3 = 0

c4 = −γ2 , (4.21)

and
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c0 ≡ 1− c1 − c2 − c3 − c4 . (4.22)

In what follows, R∗ is the star radius, Rp is the planet radius, d is the center-

to-center distance between the star and the planet, z = d/R∗ is the normalized

separation, and p = Rp/R∗ is the size ratio. The light curve with quadratic limb

darkening of the system can be written as,

F = 1− 1

4Ω
{(1− c2)λ

e + c2[λ
d +

2

3
Θ(p− z)]− c4η

d} . (4.23)

where Ω =
∑4

n=0 cn(n + 4)−1 and Θ(p− z) is heaviside step function,

Θ(p− z) =


0, p− z < 0 ,

1
2
, p− z = 0 ,

1, p− z > 1 ,

(4.24)

and λe is defined by

λe(p, z) =



0, 1 + p < z ,

1
π
(p2κ0 + κ1 − κ2), |1− p| < z ≤ 1 + p ,

p2, z ≤ 1− p ,

1, z ≤ p− 1 ,

(4.25)

κ0 = cos−1 −1 + p2 + z2

2pz
, (4.26)

κ1 = cos−1 1− p2 + z2

2z
, (4.27)

κ2 =

√
4z2 − (1 + z2 − p2)2

4
. (4.28)

Finally, the value of λd and ηd are defined in Table 4.1 and Equation 4.29 (Mandel

& Agol, 2002).
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Table 4.1: Limb-darkening occultation (Mandel & Agol, 2002).

Case p z λd(z) ηd(z)

1 (0,∞) [1 + p,∞) 0 0

0 [0, ∞) 0 0

2 (0,∞) ( 1
2 +|p− 1

2 |, 1+p) λ1
η1

3 (0, 1
2 ) (p, 1− p) λ2

η2

4 (0, 1
2 ) 1− p λ5

η2

5 (0, 1
2 ) p λ4

η2

6 1
2

1
2

1
3 −

4
9π

3
32

7 ( 1
2 ,∞) p λ3

η1

8 ( 1
2 ,∞) [|1− p|, p) λ1

η1

9 (0, 1) (0, 1
2 − |p−

1
2 |) λ2

η2

10 (0, 1) 0 λ6
η2

11 (1,∞) [0, p− 1) 1 1

λ1 =
1

9π
√

pz
([(1− b)(2b + a− 3)− 3q(b− 2)] K(k))

+
4pz

9π
√

pz
(z2 + 7p2 − 4)E(k)− 3

9π
√

pz

q

a
Π(

a− 1

a
, k)),

λ2 =
2

9π
√

1− a

[
q2K(k−1) + (1− a)(z2 + 7p2 − 4)E(k−1)

]
+

2

9π
√

1− a

[
(1− 5z2 + p2

]
− 2

3π
√

1− a

[
q

a
Π(

a− b

a
, k−1)

]
,

λ3 =
1

3
+

16p

9π
(2p2 − 1)E(

1

2k
)− (1− 4p2)(3− 8p2)

9πp
K(

1

2k
),

λ4 =
1

3
+

2

9π

[
4(2p2 − 1)E(2k) + (1− 4p2)K(2k)

]
,

λ5 =
2

3π
cos−1(1− 2p)− 4

9π
(3 + 2p− 8p2),

λ6 = −2

3
(1− p2)

3
2 ,

η1 =
1

2π

[
κ1 + 2η2κ0 −

1

4
(1 + 5p2 + z2)

√
(1− a)(b− 1)

]
,

η2 =
p2

2
(p2 + 2z2) , (4.29)

where E(k), K(k) and Π(n, k) is the complete elliptic integral of the first kind,

second kind and third kind, respectively.
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E(k) =

∫ π
2

0

1√
1− k2 sin2(x)

dx (4.30)

K(k) =

∫ π
2

0

√
1− k2 sin2(x)dx (4.31)

Π(n, k) =

∫ π
2

0

1

(1− n sin2(x))
√

1− k2 sin2(x)
dx (4.32)

4.3 Planet-moon transit light curve

The algorithms of Kipping (2011) are used to create planet-moon light curve. For

the moon which transit the star with the area, Am,t, its actively transit component

is assumed to equal to the actively transit component of the planet with equal area.

Therefore, the flux due to the planet-moon projection, Ftransit, can be written as,

Ftransit = Fplanet − Am,t
Farea

Ftotal

, (4.33)

where Fplanet is the flux of planetary transit and Ftotal is the total stellar flux,

Ftotal =

∫ 1

0

2rI(r)dr

= 1−
4∑

n=1

ncn

n + 4

= 1− 1

5
c1 −

1

3
c2 −

3

7
c3 −

1

2
c4 , (4.34)

where I(r) is the intensity at the center-to-center distance between the star and

the planet, r. The value of area flux, Farea, and ratio of area, Am, depend on the

moon-star separation (Table 4.2).

Case I

If the moon is outside the star. The area flux and ratio of area are set to be zero.
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Case II

If the moon is in the ingress or egress portion, 1− s < Ssm < 1 + s, then,

Farea,II =

∫ 1

Ssm−s

2rI(r)dr

= (am − 1)(c1 + c2 + c3 + c4 − 1)

+
4

5
c1(1− am)

5
4 +

2

3
c2(1− am)

3
2

+
4

7
c3(1− am)

7
4 +

1

2
c4(1− am)2 , (4.35)

where am = (Ssm − s)2 and s = Rm/R∗ is the moon size ratio.

Case III

If the moon is inside the star but does not cover the centre of the star, s < Ssm <

1− s, then,

Farea,III =

∫ Ssm+s

Ssm−s

2rI(r)dr

= (am − bm)(c1 + c2 + c3 + c4 − 1)

+
4

5
c1(1− am)

5
4 +

2

3
c2(1− am)

3
2

+
4

7
c3(1− am)

7
4 +

1

2
c4(1− am)2

−4

5
c1(1− bm)

5
4 − 2

3
c2(1− bm)

3
2

−4

7
c3(1− bm)

7
4 − 1

2
c4(1− bm)2 , (4.36)

where bm = (Ssm + s)2.

Case IV

If the moon is inside the star and cover the centre of the star, 0 < Ssm < s, then,
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Farea,IV =

∫ Ssm+s

0

2rI(r)dr

= −bm(c1 + c2 + c3 + c4 − 1)

+
4

5
c1 +

2

3
c2 +

4

7
c3 +

1

2
c4

−4

5
c1(1− bm)

5
4 − 2

3
c2(1− bm)

3
2

−4

7
c3(1− bm)

7
4 − 1

2
c4(1− bm)2 . (4.37)

Table 4.2: Moon active transit component (Kipping, 2011).

Case Condition Area flux (Farea) Ratio of Area (Am)

I 1 + s < Ssm < ∞ 0 0

II 1− s < Ssm < 1+ s Equation 4.35 Am,t/(π(1− am))

III s < Ssm < 1− s Equation 4.36 Am,t/(π(bm − am))

IV 0 < Ssm < s Equation 4.37 Am,t/(πbm)

The actively transiting area of moon

The actively transiting area of moon can be described by 3 parameters; Ssp, Ssm

and Spm. There are 27 principal cases including some unphysical cases which listed

in Table 4.3 (Kipping, 2011).
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Table 4.3: The actively transiting area of planet and moon (Kipping, 2011).

Case Ssp Ssm Spm Physical Ap,t Am,t

1 Ssp ≥ 1 + p Ssm ≥ 1 + s Spm ≥ p + s
√

0 0

2 Ssp ≥ 1 + p Ssm ≥ 1 + s p− s < Spm < p + s
√

0 0

3 Ssp ≥ 1 + p Ssm ≥ 1 + s Spm ≤ p− s
√

0 0

4 Ssp ≥ 1 + p 1− s < Ssm < 1 + s Spm ≥ p + s
√

0 αsm

5 Ssp ≥ 1 + p 1− s < Ssm < 1 + s p− s < Spm < p + s
√

0 αsm

6 Ssp ≥ 1 + p 1− s < Ssm < 1 + s Spm ≤ p− s × − −

7 Ssp ≥ 1 + p Ssm ≤ 1− s Spm ≥ p + s
√

0 πs2

8 Ssp ≥ 1 + p Ssm ≤ 1− s p− s < Spm < p + s × − −

9 Ssp ≥ 1 + p Ssm ≤ 1− s Spm ≤ p− s × − −

10 1− p < Ssp < 1 + p Ssm ≥ 1 + s Spm ≥ p + s
√

αsp 0

11 1− p < Ssp < 1 + p Ssm ≥ 1 + s p− s < Spm < p + s
√

αsp 0

12 1− p < Ssp < 1 + p Ssm ≥ 1 + s Spm ≤ p− s
√

αsp 0

13 1− p < Ssp < 1 + p 1− s < Ssm < 1 + s Spm ≥ p + s
√

αsp αsm

14 1− p < Ssp < 1 + p 1− s < Ssm < 1 + s p− s < Spm < p + s
√

αsp §Fewell

15 1− p < Ssp < 1 + p 1− s < Ssm < 1 + s Spm ≤ p− s
√

αsp 0

16 1− p < Ssp < 1 + p Ssm ≤ 1− s Spm ≥ p + s
√

αsp πs2

17 1− p < Ssp < 1 + p Ssm ≤ 1− s p− s < Spm < p + s
√

αsp πs2 − αpm

18 1− p < Ssp < 1 + p Ssm ≤ 1− s Spm ≤ p− s
√

αsp 0

19 Ssp ≤ 1 + p Ssm ≥ 1 + s Spm ≥ p + s
√

πp2 0

20 Ssp ≤ 1 + p Ssm ≥ 1 + s p− s < Spm < p + s
√

− −

21 Ssp ≤ 1 + p Ssm ≥ 1 + s Spm ≤ p− s
√

− −

22 Ssp ≤ 1 + p 1− s < Ssm < 1 + s Spm ≥ p + s
√

πp2 αsm

23 Ssp ≤ 1 + p 1− s < Ssm < 1 + s p− s < Spm < p + s
√

πp2 αsm − αpm

24 Ssp ≤ 1 + p 1− s < Ssm < 1 + s Spm ≤ p− s
√

− −

25 Ssp ≤ 1 + p Ssm ≤ 1− s Spm ≥ p + s
√

αsp πs2

26 Ssp ≤ 1 + p Ssm ≤ 1− s p− s < Spm < p + s
√

αsp πs2 − αpm

27 Ssp ≤ 1 + p Ssm ≤ 1− s Spm ≤ p− s
√

αsp 0

For some cases, the transiting areas are described by the area of intersection

between any two circles, α. The area of transit caused by an object of radius r

transiting an object of radius R, with separation S, is

α(R, r, S) = r2κ0(R, r, S) + R2κ1(R, r, S)− κ2(R, r, S) , (4.38)

κ0(R, r, S) = cos−1 S2 + r2 −R2

2Sr
, (4.39)

κ1(R, r, S) = cos−1 S2 − r2 + R2

2SR
, (4.40)
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κ2(R, r, S) =

√
4S2R2 − (R2 + S2 − r2)2

4
. (4.41)

Case 14 (Fewell case)

Case 14 is the most complicated case to consider, because the planet’s shadow

and moon’s shadow do not completely eclipse the star and there is possibility that

they overlap each other. Therefore, the transiting area is described by area of

intersection of three circles. Fewell (2006) presented the solution showing that the

intersection points of three circles can be written as,

Star-planet intersection

xsp =
1− p2 + S2

sp

2Ssp

. (4.42)

ysp =
1

2Ssp

√
2S2

sp(1 + p2)− (1− p2)2 − S4
sp . (4.43)

Star-moon intersection

xsm = x′sm cos θ′ − y′sm sin θ′ . (4.44)

ysm = x′sm sin θ′ + y′sm cos θ′ . (4.45)

where

x′sm =
1− s2 + S2

sm

2Ssm

. (4.46)

y′sm =
−1

2Ssm

√
2S2

sm(1 + s2)− (1− s2)2 − S4
sm . (4.47)

cos θ′ =
S2

sp + S2
sm − S2

pm

2SspSsm

. (4.48)
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Figure 4.4: Diagrams of cases 1-27 show star (white sphere), planet (gray sphere)
and moon (black sphere).
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Figure 4.5: Diagrams of cases 14 show star (white sphere), planet (gray sphere) and
moon (black sphere).

sin θ′ =
√

1− cos2 θ′ . (4.49)

Planet-moon intersection

xpm = x′′pm cos θ′′ − y′′pm sin θ′′ + Ssp . (4.50)

ypm = x′′pm sin θ′′ + y′′pm cos θ′′ . (4.51)

where

x′′pm =
p2 − s2 + S2

pm

2Spm

. (4.52)

y′′pm =
1

2Spm

√
2S2

pm(p2 + s2)− (p2 − s2)2 − S4
pm . (4.53)

cos θ′′ = −
S2

sp + S2
pm − S2

sm

2SspSpm

. (4.54)

sin θ′′ =
√

1− cos2 θ′′ . (4.55)
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Figure 4.6: Decision flow chart of Case 14. Gray boxes are the decision conditions
and white boxes are subcases of Case 14. The solid lines indicate a true statement
and the dashed lines indicate a false statement.

In order to calculate the transit area of the moon, there are seven conditions

that the simulation may take into account. The list of conditions is shown in Equa-

tion 4.56.

Condition 1 (xsp − Ssm cos θ′)2 + (ysp + Ssm sin θ′)2 < s2

Condition 2 Ssp > 1

Condition 3 (xsp − Ssm cos θ′)2 + (ysp − Ssm sin θ′)2 < s2

Condition 4 Ssm sin θ′ > ysm + ypm−ysm

xpm−xsm
(Ssm cos θ′ − xsm)

Condition 5 (xsm − Ssp)
2 + y2

sm < p2

Condition 6 (Ssm − s) < (Spm − p)

Condition 7 x2
pm + y2

pm < 1 (4.56)

The decision flow chart for calculating moon’s transiting area of Case 14 is shown

in Figure 4.6. In Table 4.4, the transiting areas of the moon in each subcase of Case

14 are listed.
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Table 4.4: Moon active transit component of Case 14 (Kipping, 2011).

Case Ratio of Area (Am)

14.1 αsm − αsp

14.2 πp2 − αpm − αsp + αsm

14.3 αsm − α14.3

14.4 αsm − α14.4

14.5 πs2 − αpm

14.6 0

14.7 αsm

14.8 αsm − αpm

α14.3 =
1

4

√
(c1 + c2 + c3)(−c1 + c2 + c3)(c1 − c2 + c3)(c1 + c2 − c3)

+
3∑

k=1

(R2
k arcsin

ck

2Rk

)− c1

4

√
4R2

1 − c2
1

−c2

4

√
4R2

2 − c2
2 −

c3

4

√
4R2

3 − c3
1 , (4.57)

and

α14.4 =
1

4

√
(c1 + c2 + c3)(−c1 + c2 + c3)(c1 − c2 + c3)(c1 + c2 − c3)

+
3∑

k=1

(R2
k arcsin

ck

2Rk

)− c1

4

√
4R2

1 − c2
1

−c2

4

√
4R2

2 − c2
2 +

c3

4

√
4R2

3 − c3
1 , (4.58)

where Rk is radius of object and ck is chord lengths,

c2
k = (xik − xjk)

2 + (yik − yjk)
2 . (4.59)

4.4 Kepler photometry

The Kepler mission has been observing a 105 square degree field of view (FOV) in
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Figure 4.7: Instrument noise (dashed), photon noise (dot-dashed), stellar variability
(dotted) and total noise (solid) of Kepler class photometry as a function of apparent
magnitude of stars (Kipping et al., 2009).

Cygnus in search for Earth-size transit planets in habitable zones of main-sequence

stars. The mission is designed to monitor 150,000 stars brighter than 16th magnitude

in Kepler the passband with 20 parts per million photometric precision at 12th

magnitude in 6.5 hours (Batalha et al., 2010; Caldwell et al., 2010b). In order to

meet this requirement, the estimated photon collection rate of Kepler is (Borucki

et al., 2005; Kipping et al., 2009; Yee & Gaudi, 2008),

Γph = 6.3× 108 h−1 10−0.4(m−12) photons/hours, (4.60)

where m is the apparent magnitude. However, Kepler photometry is also affected

by shot noise, background flux and instrumental noise.

Shot noise

Shot noise or Poisson noise comes from the discrete nature of photons. At 12th

magnitude, the largest noise component is the Poisson noise of the target (Caldwell

et al., 2010b). In order to generate this noise, the Poisson distribution is used in

this dissertation.
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Background flux

The background flux for Kepler comes from zodiacal light from the solar system

and diffuse starlight from background stars. In pre-launch prediction, the back-

ground flux is estimated at around 334 e− sec−1 or 22 magnitudes per square arc-

second (Caldwell et al., 2010b). However, in real observations, the background flux

varies across detectors and with orientation of the telescope. Therefore, the pre-

launch background flux is used to generate background flux of the light curves in

this work.

Instrumental noise

There are two main instrumental noises for Kepler: read noise and dark current.

From in-flight measurement, the read noise median value is 95 e− read−1 and dark

current is 0.25 e− pixel−1 s−1 which is quite low compared to the photons collected

from the targets (Caldwell et al., 2010a).

Table 4.5: Kepler photometry properties.

Parameter Value

Exposure time (s) 6.02 ∗

Plate scale (arcseconds/pixel) 3.98 †

Background flux (e− s−1) 334 †

Read Noise (e− read−1) 95 ‡

Dark Current (e− pixel−1 s−1) 0.25 ‡

∗ : Van Cleve & Caldwell (2009)
‡ : Caldwell et al. (2010a)
† : Caldwell et al. (2010b)

4.5 Modelling habitable exomoons

Although no exomoons have yet been discovered, there have been a number of

studies on habitable exomoons. In this work, the assumptions of Barnes & O’Brien

(2002) are followed. They proposed that habitable exomoons should be Earth-like
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mass moons orbiting around habitable-zone Jupiter-like planets around M-dwarf

stars.

4.5.1 Properties of the host star

In this analysis, M-Dwarf stars are selected to be the exoplanet host stars. Very

cool (late K and early M type) dwarf stars have become popular targets of planet

searches because of easy planet detection, because the amplitudes of the transits

generated by small planets in M-dwarfs are larger than those generated by hotter

stars (Bean et al., 2010a; Charbonneau et al., 2009; Mann et al., 2012; Vogt et al.,

2010). Therefore, the detectable planets in M-Dwarf systems can still orbit within

the HZ (Gaidos et al., 2007).

For the Kepler mission, a region of the extended solar neighbourhood in the

Cygnus region along the Orion arm centred in the 105 deg2 FOV is chosen. In this

region, there are about 0.5 million stars brighter than 16th magnitude in the Kepler

passband, however, only 105 stars with magnitude less than 16th were expected to

be exoplanet hosts. In 2010, the Kepler mission announced 150,000 highest priority

target stars, but only 2% of these target stars have effective temperature less than

3500 K which might be M-Dwarfs (Table 4.6) (Batalha et al., 2010), whereas > 70%

of all stars within 20 pc are M-Dwarfs (Chabrier, 2003; Henry et al., 1994; Reid et al.,

2004). However, in 2011, the team released additional exoplanet data, including 997

planet-candidate host stars in which 74 (> 5%) have effective temperature less than

4400 K in the Kepler Input Catalog (Batalha et al., 2010; Borucki et al., 2011b;

Brown et al., 2011).

Although, the statistics of planets around late-type stars remain poorly estab-

lished within the Kepler target list (Mann et al., 2012). Two important conclusions

can be drawn about late-type exoplanet hosts from recent Kepler results. First,

the frequency of stars with planets on close-in (Pp < 50 days) orbits decreases with

stellar effective temperature (Howard et al., 2012). More than 15% of dwarf hosts

have planets with orbital periods less than 50 days (Figure 4.8) (Howard et al., 2010,
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Table 4.6: The number of highest priority Kepler target stars as a function of effec-
tive temperature and apparent magnitude (Batalha et al., 2010).

Mag 10500 9500 8500 7500 6500 5500 4500 3500 Total
log g � 3.5

6.50 1 0 1 2 0 1 0 0 5
7.50 1 8 9 6 8 6 0 0 38
8.50 8 20 25 24 49 15 7 8 156
9.50 9 31 81 66 116 88 11 4 406
10.50 27 37 100 209 405 359 40 9 1186
11.50 24 58 171 398 1499 1356 158 37 3701
12.50 30 44 231 676 4146 4760 626 62 10575
13.50 34 53 170 747 9279 15866 2213 157 28519
14.50 3 0 0 0 4855 29352 4227 554 38991
15.50 7 4 0 0 4449 42627 12093 1961 61141
Total 144 255 788 2128 24806 94430 19375 2792 144718

log g < 3.5
6.50 0 0 0 0 0 0 0 0 0
7.50 0 0 1 1 2 2 7 0 13
8.50 0 0 1 2 2 9 80 2 96
9.50 0 0 2 15 2 27 220 1 267
10.50 1 0 5 21 7 99 452 2 587
11.50 0 0 1 25 11 186 674 2 899
12.50 0 0 1 12 14 347 626 62 1488
13.50 0 0 0 6 5 518 1403 0 1932
14.50 0 0 0 0 0 0 0 0 0
15.50 0 0 0 0 0 0 0 0 0
Total 1 0 11 82 43 1188 3950 7 5282

2012). Second, the number of planets per star increases with orbital period (Fig-

ure 4.9) (Howard et al., 2012). Therefore, researching M-Dwarfs planetary systems

is important.

The M-dwarf stars with mass 0.5 M� and radius 0.55 R� are chosen to be the

target in this work. Their effective temperature, microturbulent velocity and log g

are set to be 3500 K, 1 km.s−1 and 4.5, respectively. In order to calculate the limb

darkening coefficient, the metallicity of M-dwarfs has to be defined.

However, determining the metallicity of M-dwarfs is very difficult because of

the existence of many molecules in their cool atmospheres (Schlaufman & Laughlin,

2010). There have been several attempts to obtain the metallicity of M-Dwarfs using

their photometric properties. In 2010, Schlaufman & Laughlin used the calibration

samples of Bonfils et al. (2005) and Johnson & Apps (2009) to plot the distribution

of residuals between each model and observation. They found that the mean value

of the Bonfils et al. (2005) residuals is 0.12 dex with standard deviation 0.16 dex
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Figure 4.8: The occurrence of planets with period less than 50 days as a function of
stellar effective temperature (Howard et al., 2012).

Figure 4.9: The occurrence of planets with radii of 2-32 R⊕ as a function of orbital
period (Howard et al., 2012).
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Figure 4.10: Scatter plot between effective temperature and metallicity for neigh-
bouring stars and confirmed giant planet hosts (Schlaufman & Laughlin, 2011).

and the mean value of the Johnson & Apps (2009) residuals is -0.12 dex with stan-

dard deviation 0.12 dex (Bonfils et al., 2005; Johnson & Apps, 2009; Schlaufman &

Laughlin, 2010). In 2011, Schlaufman & Laughlin found that the host stars of the

Kepler planet candidates are preferentially metal-rich, including the low-mass stars

with small radius planet. In Figure 4.10, the plot between effective temperature

and metallicity for neighbouring stars and confirmed giant planet hosts are shown

(Holmberg et al., 2007, 2009; Schlaufman & Laughlin, 2011; Wright et al., 2011). In

conclusion, the solar-metallicity stars are chosen in this work.

Finally, in this work, a quadratic limb-darkening model is used. The values of

quadratic limb-darkening coefficients of host stars for the transmission curves of

Kepler are obtained from Claret & Bloemen (2011). For M-Dwarfs hosts, the value

of γ1 and γ2 are 0.4042 and 0.3268, respectively2.

4.5.2 Properties of the host planet

For the host planet, Jupiter-like giant planets which offer the best potential for

hosting habitable exomoons are considered (Barnes & O’Brien, 2002). Giant planets

2See http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/529/A75
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with masses ranging logarithmically from 15.0 to 150.0 M⊕ and with circular orbits

are chosen. In order to investigate habitable exoplanets and exomoons, the planet-

star separations are set to be in the HZ of an M-Dwarf, starting at a separation of

0.10 AU and increasing in logarithmic increments to a separation of 0.66 AU.

In 2007, Fortney et al. found that the radii of giant planets depend on their

masses, core masses and separations. For giant planets at 4.5 Gyr, their radii fall

between 1.0 and 1.2 RJ (Figure 4.11) (Fortney et al., 2007b). In conclusion, 1.2

Jupiter radius planets are chosen in the simulation.

Figure 4.11: Planetary radii of coreless planets (thin lines) and planets with a core
of 25 M⊕ of heavy elements (thick lines) at 4.5 Gyr as a function of orbital distance
from the Sun (Fortney et al., 2007b).

4.5.3 Properties of the exomoon

No exomoons have yet been discovered, therefore, the properties of Earth-like

planets in this work are used for the properties of a habitable exomoon. Rocky

planets with logarithmic mass between 1.0 and 10.0 M⊕ are chosen. The radius of

the moon is calculated from Fortney’s model, using rock mass fraction (rmf) equal

to 0.66 (Earth-like planet).
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Rm = (0.0592rmf + 0.0975)(log Mm)2

+0.2337rmf + 0.4938) log Mm + 0.3102rmf + 0.7932 , (4.61)

where Mm and Rm are the moon’s mass and moon’s radius in M⊕ and R⊕,

respectively (Fortney et al., 2007a,b). Finally, only a moon within the planet’s Hill

sphere with an orbital period between 1.00 to 3.16 days is considered. For simplicity,

circular orbits are assumed.

Figure 4.12: Planetary radii of rocky planets as a function of masses (Fortney et al.,
2007b).

4.6 Measuring TTV-TDV signals

In order to find the transit time of minima and transit duration, the simulated

light curves are fitted. The light curves are divided into phase bins using the period.

A straight line is fitted to every three points of phased data. The fits with minimum
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and maximum slopes are chosen to define the start and end of the transit. The

intersection between the median of data and the minimum and maximum slopes are

used to define ingress (ting) and egress (tegr) times, respectively (Figure 4.13). The

time of minimum light (t0) and the transit duration (τ̄) are defined as,

t0 =
ting + tegr

2
, (4.62)

and

τ̄ = tegr − ting . (4.63)

Using mid-transit time, the new ephemeris as a function of epoch is derived. The

new ephemeris is determined by fitting a linear function to the mid-transit points.

T0(n) = T0(0) + nP , (4.64)

where n is epoch and T0 is time of minimum light as a function of epoch. The

residual of transit time of minima and transit duration are used to be the TTV and

TDV signal of the system.

4.7 TTV-TDV correlation testing

Holman & Murray (2005) showed that planetary bodies could induce TTV on

a transiting planet. Therefore, the TTV signal alone cannot distinguish between

the effect of other planets and the effect of its satellite. In order to detect the

exomoon, TDV signals must also be detected. From Section 3.2, TTV and TDV

are sinusoidal functions and the TTV signal is 90 degrees out-of-phase with the

TDV signal. However, in coplanar systems, the TDV signal is produced by only the

TDV-V signal, because TDV-TIP does not exist (Section 3.3.2) (Kipping, 2009b).

Therefore, in theory, the plot between the square of the TTV signal and square of the

TDV signal should show a perfect linear relationship with negative slope. However,

there are other effects, such as star spots, instrument noise and observation cadence
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Figure 4.13: Light curves of a 15 M⊕ habitable-zone planet with a 10 M⊕ moon for
an M2 host star with planet period 89.35 days and moon period 2.24 days. Error
bars are shown at 1,000 times their true size. The fits show ingress time and egress
time of transit, and average flux (median of flux data).

which could perturb the transiting light curve and produce false positive TTV and

TDV signatures.

In this simulation, the instrument noise and observation cadence both affect the

TTV and TDV signal. Thus, the plot between TTV 2 and TDV 2 may not show a

clear linear relationship. In order to check this relationship, the Pearson product-

moment correlation coefficient was calculated to test the correlation between TTV 2

and TDV 2 and defined as a detectability coefficient. The coefficient is

χ =

∑n
i=1(TTV 2

i − TTV 2)(TDV 2
i − TDV 2)√∑n

i=1(TTV 2
i − TTV 2)2

√∑n
i=1(TDV 2

i − TDV 2)2

, (4.65)

where TTV and TDV are the TTV and TDV signal, respectively. The negative

coefficient is produced by an inverse or negative relationship between the two vari-

ables and a positive coefficient means there is a positive linear relationship between

the two variables.

The plots between TTV 2 and TDV 2 of a 10.0 M⊕ exomoon around 15.0-150.0

M⊕ exoplanet for M-Dwarf star, with planet period 89.35 days and moon period
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2.24 days, and their TTV and TDV signals are shown in Figure 4.14. The plots

with correlation less than -0.8 show stronger relationship between TTV 2 and TDV 2

signals which is good enough to provide reliable detection of exomoon.

In this study, the positive coefficient will be set to be zero, because the positive

slope of TTV 2 and TDV 2 plot means the TTV and TDV signal are not consistent

with sinusoidal functions with 90 degrees phase difference. After the processing, the

absolute values of coefficients are going to be considered.
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(a) 15.0 Earth-mass planet

(b) 18.9 Earth-mass planet

(c) 23.8 Earth-mass planet

(d) 29.9 Earth-mass planet

(e) 37.7 Earth-mass planet

Figure 4.14: TTV signal (left), TDV signal (middle) and the plots between TTV 2

and TDV 2 (right) of a 10.0 M⊕ exomoon around 15.0-150.0 M⊕ exoplanet for
M-Dwarf star, with planet period 89.35 days and moon period 2.24 days.
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(f) 47.4 Earth-mass planet

(g) 59.7 Earth-mass planet

(h) 75.2 Earth-mass planet

(i) 94.6 Earth-mass planet

(j) 119.1 Earth-mass planet

(k) 150.0 Earth-mass planet

Figure 4.14: Continued



Chapter 5

Results and discussion

5.1 Detectability of habitable exomoons

The light curves are generated with and without Kepler photometric noise. 11×

11×11×11×10 light curves are simulated with 11 values of each four variable input

parameters; planet mass, planet separation, moon mass and moon period, and 10

random initial phases. The host stars are assumed to be M-Dwarf stars of 12.5th

magnitude in Kepler pass-bands. The cadence of this simulation is 50 data point

per day (every 28.8 mins) which corresponds to Kepler long cadence (every 29.4

mins) (Gilliland et al., 2010). In order to simulate the current Kepler data, 3-years

simulation of a transiting giant extrasolar planet with a rocky extrasolar moon was

run to find out the detectability of an exomoon in the M-Dwarf habitable zone. The

details of physical parameters of the systems are listed in Table 5.1.

In this simulation, there are four variable parameters; planet mass, planet separa-

tion, moon mass and moon period. The correlation projected on to a two parameter

plane is plotted in order to find the relation between two variables. Light curves with-

out photometric noise (From Figure 5.1 to Figure 5.6) and with Kepler noise (From

Figure 5.7 to Figure 5.12) are simulated. The TTV and TDV signals of the light

curve with noise are more scattered and their correlations are lower than correlations

of noiseless light curves with the same input parameters. However, the correlation

contours of the light curves without photometric noise and the light curves based
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Table 5.1: Input parameters for the simulation.

Star parameters
Star mass (M�) 0.5

Star radius (R�) 0.55

Star apparent magnitude (Kp) 12.5

Quadratic limb-darkening coefficient 1 0.4042

Quadratic limb-darkening coefficient 2 0.3268

Planet parameters
Planet mass (M⊕) 15.0-150.0

Planet radius (R⊕) 10.97

Planet separation (AU) 0.10-0.66

Planet eccentricity 0.0

Planet inclination (degrees) 90.0

Planet argument of periapsis (degrees) 0.0

Planet longitude of ascending node (degrees) 0.0

Moon parameters
Moon mass (M⊕) 1.0-10.0

Moon radius (R⊕) Equation 4.61

Moon period (days) 1.00-3.16

Moon eccentricity 0.0

Moon inclination (degrees) 90.0

Moon argument of periapsis (degrees) 0.0

Moon longitude of ascending node (degrees) 0.0

Figure 5.1: Correlation (left) and variance of correlation (right) contours between
planet mass and moon mass of the light curves without Kepler photometric noise.
The contour is averaged over logarithmic planet separation and moon period. The
RMS amplitude of the TTV signal (dashed) and RMS amplitude of the TDV signal
(dot-dashed) in units of seconds are presented.
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Figure 5.2: Correlation (left) and variance of correlation (right) contours between
planet separation and moon period of the light curves without Kepler photometric
noise. The contour is averaged over logarithmic planet mass and moon mass. The
RMS amplitude of the TTV signal (dashed) and RMS amplitude of the TDV signal
(dot-dashed) in units of seconds are presented.

Figure 5.3: Correlation (left) and variance of correlation (right) contours between
planet mass and planet separation of the light curves without Kepler photometric
noise. The contour is averaged over logarithmic moon mass and moon period. The
RMS amplitude of the TTV signal (dashed) and RMS amplitude of the TDV signal
(dot-dashed) in units of seconds are presented.
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Figure 5.4: Correlation (left) and variance of correlation (right) contours between
moon mass and planet separation of the light curves without Kepler photometric
noise. The contour is averaged over logarithmic planet mass and moon period. The
RMS amplitude of the TTV signal (dashed) and RMS amplitude of the TDV signal
(dot-dashed) in units of seconds are presented.

Figure 5.5: Correlation (left) and variance of correlation (right) contours between
planet mass and moon period of the light curves without Kepler photometric noise.
The contour is averaged over logarithmic planet separation and moon mass. The
RMS amplitude of the TTV signal (dashed) and RMS amplitude of the TDV signal
(dot-dashed) in units of seconds are presented.
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Figure 5.6: Correlation (left) and variance of correlation (right) contours between
moon mass and moon period of the light curves without Kepler photometric noise.
The contour is averaged over logarithmic planet mass and planet separation. The
RMS amplitude of the TTV signal (dashed) and RMS amplitude of the TDV signal
(dot-dashed) in units of seconds are presented.

Figure 5.7: Correlation (left) and variance of correlation (right) contours between
planet mass and moon mass of the light curves with Kepler photometric noise. The
contour is averaged over logarithmic planet separation and moon period. The RMS
amplitude of the TTV signal (dashed) and RMS amplitude of the TDV signal (dot-
dashed) in units of seconds are presented.
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Figure 5.8: Correlation (left) and variance of correlation (right) contours between
planet separation and moon period of the light curves with Kepler photometric
noise. The contour is averaged over logarithmic planet mass and moon mass. The
RMS amplitude of the TTV signal (dashed) and RMS amplitude of the TDV signal
(dot-dashed) in units of seconds are presented.

Figure 5.9: Correlation (left) and variance of correlation (right) contours between
planet mass and planet separation of the light curves with Kepler photometric noise.
The contour is averaged over logarithmic moon mass and moon period. The RMS
amplitude of the TTV signal (dashed) and RMS amplitude of the TDV signal (dot-
dashed) in units of seconds are presented.
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Figure 5.10: Correlation (left) and variance of correlation (right) contours between
moon mass and planet separation of the light curves with Kepler photometric noise.
The contour is averaged over logarithmic planet mass and moon period. The RMS
amplitude of the TTV signal (dashed) and RMS amplitude of the TDV signal (dot-
dashed) in units of seconds are presented.

Figure 5.11: Correlation (left) and variance of correlation (right) contours between
planet mass and moon period of the light curves with Kepler photometric noise.
The contour is averaged over logarithmic planet separation and moon mass. The
RMS amplitude of the TTV signal (dashed) and RMS amplitude of the TDV signal
(dot-dashed) in units of seconds are presented.
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Figure 5.12: Correlation (left) and variance of correlation (right) contours between
moon mass and moon period of the light curves with Kepler photometric noise.
The contour is averaged over logarithmic planet mass and planet separation. The
RMS amplitude of the TTV signal (dashed) and RMS amplitude of the TDV signal
(dot-dashed) in units of seconds are presented.

on Kepler photometry show the same features. Therefore, the detectability of light

curves with Kepler noise can represent the detectability of noiseless light curves. In

order to investigate the detectability of the Kepler mission, only simulated Kepler

data is analysed in this work.

In Figure 5.7, the plot between planet mass and moon mass with Kepler photo-

metric noise shows that a high-mass moon hosted by a low-mass planet is likely to

be detected. This result agrees with the moon period versus planet mass and moon

mass plots (Figure 5.11 and Figure 5.12). However, in these two plots, the changes

in moon period do not affect the correlation. In Figure 5.8, the projection plot

between separation of planet and period of moon also does not show any significant

meaning.

Figure 5.9 shows the detectability coefficient plot between mass and separation

of the planet. Planets with high separation have higher detectability than close-in

planets with the same mass. This result correlates with the result of moon mass

versus planet separation plot (Figure 5.10) which shows that, in the systems with

equal satellite mass, the outer planet hosts have larger correlation coefficients. These

features may be produced by only a few transit events in high planet separation

systems, because, at 0.6 AU separations, only three transit events are detected in
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the simulation. Therefore, we now check the reliability of correlation.

The analysis of correlations is meaningful when the correlations are not domi-

nated by noise. The variance of correlation is plotted in order to check the reliability

of testing. From Figure 5.7 to Figure 5.12, the variance plots show that the systems

with a small number of transit events (high planet’s period systems) have higher

variance. However, the value of variance is still low compared to the correlation

coefficient.

From Figure 5.13 to Figure 5.18, we exclude zero-value correlations to investi-

gate only possible moon-detected systems. The filtered contours present the same

map structure as the contours which include zero-value. Thus, the structures of

the contours are also not affected by the non-detected systems. In conclusion, the

assumption that moons of outer planets should be easier to detect than moons of

inner planets is confirmed by our simulations.

The theoretical lines of RMS amplitude of the TTV and TDV signals are shown

to investigate the features of the contours. For the plot between the planet and their

satellite masses (Figure 5.7), the high amplitude of TTV and TDV signals produced

the high coefficient of detection with the same slope. Moreover, the features in

Figure 5.9 and Figure 5.10 are also well-correlated with TDV RMS amplitude signals

which can be explained by the relative weakness of TDV signals compared with TTV

signals. In conclusion, the detectability of exomoons is dominated by the amplitude

of TDV signals.

5.2 Analysing the correlation structure

The structures of correlation plots are explained by the magnitude of the TDV

signal. However, in Figure 5.9 and Figure 5.10, gap structures at planets’ semi-

major axes 0.4 and 0.5 AU are shown. The variance plots show that there is no

difference in variance between the area of background structures and gap structure.

Therefore the features in Figure 5.9 and Figure 5.10 are real. To solve the problem

of strange structures, the contours of all simulations are investigated separately.
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Figure 5.13: Correlation (left) and variance of correlation (right) contours between
planet mass and moon mass of the light curves with Kepler photometric noise,
excluding zero-value correlation. The contour is averaged over logarithmic planet
separation and moon period. The RMS amplitude of the TTV signal (dashed) and
RMS amplitude of the TDV signal (dot-dashed) in units of seconds are presented.

Figure 5.14: Correlation (left) and variance of correlation (right) contours between
planet separation and moon period of the light curves with Kepler photometric noise,
excluding zero-value correlation. The contour is averaged over logarithmic planet
mass and moon mass. The RMS amplitude of the TTV signal (dashed) and RMS
amplitude of the TDV signal (dot-dashed) in units of seconds are presented.
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Figure 5.15: Correlation (left) and variance of correlation (right) contours between
planet mass and planet separation of the light curves with Kepler photometric noise,
excluding zero-value correlation. The contour is averaged over logarithmic moon
mass and moon period. The RMS amplitude of the TTV signal (dashed) and RMS
amplitude of the TDV signal (dot-dashed) in units of seconds are presented.

Figure 5.16: Correlation (left) and variance of correlation (right) contours between
moon mass and planet separation of the light curves with Kepler photometric noise,
excluding zero-value correlation. The contour is averaged over logarithmic planet
mass and moon period. The RMS amplitude of the TTV signal (dashed) and RMS
amplitude of the TDV signal (dot-dashed) in units of seconds are presented.
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Figure 5.17: Correlation (left) and variance of correlation (right) contours between
planet mass and moon period of the light curves with Kepler photometric noise,
excluding zero-value correlation. The contour is averaged over logarithmic planet
separation and moon mass. The RMS amplitude of the TTV signal (dashed) and
RMS amplitude of the TDV signal (dot-dashed) in units of seconds are presented.

Figure 5.18: Correlation (left) and variance of correlation (right) contours between
moon mass and moon period of the light curves with Kepler photometric noise,
excluding zero-value correlation. The contour is averaged over logarithmic planet
mass and planet separation. The RMS amplitude of the TTV signal (dashed) and
RMS amplitude of the TDV signal (dot-dashed) in units of seconds are presented.
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The correlation plots of planet separation versus planet mass and planet separa-

tion versus moon mass contours are shown in Figure 5.19 and Figure 5.21. Systems

with high moon mass and low planet mass have a high value of correlation and the

features in these contours correspond to the projected contour’s features, including

the gap structures.

In Figure 5.19 and Figure 5.21, the maps with similar a moon period show gap

features at the same planet separation, but they shift with a different moon period.

The ratios between moon period and planet which produce the gap are calculated

(Table 5.2). The numbers in bold font indicate the ratios of planet period to moon

period where the gaps are produced. They are nearly-integer value. This means

the same moon orbital phase when transit events are detected. Therefore, the gap

structures can be explained by the resonance between planet and moon period which

produces the constant detected TTV and TDV signals. However, they also depend

on the number of detected transit events. In short period systems which have a

larger number of transits, the gap structures are more difficult to produce due to

the larger range of detected planetary phases.



CHAPTER 5. RESULTS AND DISCUSSION 95

F
ig

u
re

5.
19

:
T

h
e

co
rr

el
at

io
n

p
lo

ts
of

p
la

n
et

se
p
ar

at
io

n
ve

rs
u
s

p
la

n
et

m
as

s
co

n
to

u
r

of
th

e
li
gh

t
cu

rv
es

w
it

h
K

ep
le
r

p
h
ot

om
et

ri
c

n
oi

se
.



CHAPTER 5. RESULTS AND DISCUSSION 96

F
ig

u
re

5.
20

:
T

h
e

va
ri

an
ce

of
co

rr
el

at
io

n
p
lo

ts
of

p
la

n
et

se
p
ar

at
io

n
ve

rs
u
s

p
la

n
et

m
as

s
co

n
to

u
r

of
th

e
li
gh

t
cu

rv
es

w
it

h
K

ep
le
r

p
h
ot

om
et

ri
c

n
oi

se
.



CHAPTER 5. RESULTS AND DISCUSSION 97

F
ig

u
re

5.
21

:
T

h
e

co
rr

el
at

io
n

p
lo

ts
of

p
la

n
et

se
p
ar

at
io

n
ve

rs
u
s

m
o
on

m
as

s
co

n
to

u
r

of
th

e
li
gh

t
cu

rv
es

w
it

h
K

ep
le
r

p
h
ot

om
et

ri
c

n
oi

se
.



CHAPTER 5. RESULTS AND DISCUSSION 98

F
ig

u
re

5.
22

:
T

h
e

va
ri

an
ce

of
co

rr
el

at
io

n
s

p
lo

ts
of

p
la

n
et

se
p
ar

at
io

n
ve

rs
u
s

m
o
on

m
as

s
co

n
to

u
r

of
th

e
li
gh

t
cu

rv
es

w
it

h
K

ep
le
r

p
h
ot

om
et

ri
c

n
oi

se
.



CHAPTER 5. RESULTS AND DISCUSSION 99

Table 5.2: The ratio between moon periods and planet periods.

Pm = 1.00 Pm = 1.12 Pm = 1.26 Pm = 1.41
Pp ratio Pp ratio Pp ratio Pp ratio

16.33 16.33 16.33 14.56 16.33 12.97 16.33 11.56
21.68 21.68 21.68 19.32 21.68 17.22 21.68 15.35
28.78 28.78 28.78 25.65 28.78 22.86 28.78 20.37
38.20 38.20 38.20 34.05 38.20 30.35 38.20 27.05
50.71 50.71 50.71 45.20 50.71 40.28 50.71 35.90
67.31 67.31 67.31 59.99 67.31 53.47 67.31 47.65
89.35 89.35 89.35 79.63 89.35 70.97 89.35 63.25
118.60 118.60 118.60 105.70 118.60 94.21 118.60 83.96
157.43 157.43 157.43 140.31 157.43 125.05 157.43 111.45
208.97 208.97 208.97 186.25 208.97 165.99 208.97 147.94
277.39 277.39 277.39 247.23 277.39 220.34 277.39 196.38

Pm = 1.58 Pm = 1.78 Pm = 2.00 Pm = 2.24
Pp ratio Pp ratio Pp ratio Pp ratio

16.33 10.31 16.33 9.19 16.33 8.19 16.33 7.30
21.68 13.68 21.68 12.19 21.68 10.87 21.68 9.68
28.78 18.16 28.78 16.18 28.78 14.42 28.78 12.86
38.20 24.10 38.20 21.48 38.20 19.15 38.20 17.06
50.71 32.00 50.71 28.52 50.71 25.42 50.71 22.65
67.31 42.47 67.31 37.85 67.31 33.74 67.31 30.07
89.35 56.38 89.35 50.25 89.35 44.78 89.35 39.91
118.60 74.83 118.60 66.70 118.60 59.44 118.60 52.98
157.43 99.33 157.43 88.53 157.43 78.90 157.43 70.32
208.97 131.85 208.97 117.52 208.97 104.74 208.97 93.35
277.39 175.02 277.39 155.99 277.39 139.03 277.39 123.91

Pm = 2.51 Pm = 2.82 Pm = 3.16
Pp ratio Pp ratio Pp ratio

16.33 6.50 16.33 5.80 16.33 5.17
21.68 8.63 21.68 7.69 21.68 6.86
28.78 11.46 28.78 10.21 28.78 9.10
38.20 15.21 38.20 13.55 38.20 12.08
50.71 20.19 50.71 17.99 50.71 16.04
67.31 26.80 67.31 23.88 67.31 21.29
89.35 35.57 89.35 31.70 89.35 28.25
118.60 47.22 118.60 42.08 118.60 37.51
157.43 62.67 157.43 55.86 157.43 49.78
208.97 83.19 208.97 74.15 208.97 66.08
277.39 110.43 277.39 98.42 277.39 87.72

5.3 Improving the detectability with long-term

observation

In section 5.1 and Section 5.2, the 1,000 days simulations with 50,000 data points

(every 28.8 minutes) are analysed. In theory a loner time baseline should produce

a better detectability coefficient, because of more transiting events. In 2012, Kepler
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has been approved for extension through to 2016. Therefore, 5-years photomet-

ric data from Kepler targets should be obtained. The 1,600 days simulation with

80,000 data points (every 28.8 minutes) is chosen to produce a sample of long-term

observation. The input parameters of this simulation are listed in Table 5.3.

Table 5.3: Input parameters for the long-term observation simulation.

Star parameters
Star mass (M�) 0.5

Star radius (R�) 0.55

Star apparent magnitude (Kp) 12.5

Quadratic limb-darkening coefficient 1 0.4042

Quadratic limb-darkening coefficient 2 0.3268

Planet parameters
Planet mass (M⊕) 18.9

Planet radius (R⊕) 10.973

Planet separation (AU) 0.10-0.66

Planet eccentricity 0.0

Planet inclination (degrees) 90.0

Planet argument of periapsis (degrees) 0.0

Planet longitude of ascending node (degrees) 0.0

Moon parameters
Moon mass (M⊕) 1.0-10.0

Moon radius (R⊕) Equation 4.61

Moon period (days) 2.51

Moon eccentricity 0.0

Moon inclination (degrees) 90.0

Moon argument of periapsis (degrees) 0.0

Moon longitude of ascending node (degrees) 0.0

In Figure 5.23 and Figure 5.24, the correlation and their variance contours from

5-years of observation are shown. The contours of two simulations show the same

structures, but the long-term simulation has a better detectability. From this result,

the number of detected exomoons should increase with length of observation. The

extension to the Kepler mission, possible additional space-based telescope missions

and long-term follow-up ground base surveys should allow the habitable exomoons

to be detected or their abundance constrained.
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Figure 5.23: Correlation (left) and variance of correlation (right) contours between
planet mass and planet separation of the long-term simulation light curves with
Kepler photometric noise. The contour is averaged over logarithmic moon mass and
moon period. The RMS amplitude of the TTV signal (dashed) and RMS amplitude
of the TDV signal (dot-dashed) in units of seconds are presented.

Figure 5.24: Correlation (left) and variance of correlation (right) contours between
moon mass and planet separation of the long-term simulation light curves with
Kepler photometric noise. The contour is averaged over logarithmic planet mass and
moon period. The RMS amplitude of the TTV signal (dashed) and RMS amplitude
of the TDV signal (dot-dashed) in units of seconds are presented.



Chapter 6

Conclusion and further work

6.1 Improvement to simulation

The simulation has been shown to successfully simulate transiting light curves

with exomoons. 146,410 systems are simulated and analysed in this work. The

number of simulation events is still low in order to investigate the relation between

TTV and TDV RMS signals with correlation and the inter-relationship between

planet and moon period. Increasing the number of light curves would increase the

statistical sample.

By making the simulations more realistic, the results can be more confidently

compared to real data. In this work, the planets and moons orbit around their

host with circular orbit and with 90-degrees inclination. Elliptical exoplanet and

exomoon orbits could make the simulations more realistic. Varying the inclination

should produce the TDV-TIP signal which was not included in this work.

For a long-term simulation, the number of transit events should increase which

means the statistical sample of data would increase and also planets with longer

period could be analysed. 3-years simulations give enough samples to investigate

planets in the HZ of an M-Dwarf. In solar-type host stars (G-type), the simulation

should last more than 5 years in order to produce sufficient samples to analyse the

HZ planets.

Moreover, this code can produce the light curves with Euclid photometric noise

102
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(both NISP and VIS instrument). In October 2011, the Euclid space mission was

selected by ESA to launch in 2019. An exoplanet survey is one of the primary

candidates of additional surveys. Although, the additional surveys should focus

on the exoplanet microlensing, the transiting exoplanet should also be detected by

Euclid. Therefore, investigating the detectability of habitable exomoons with Euclid

is of interest.

6.2 Conclusion

Since the first discovery of exoplanets in 1992, the studies of exoplanets have

fascinated by astronomers. A lot of missions, both ground-based and space-based

missions, have been launched and will be launched in the near future. To date,

more than 750 exoplanets have been confirmed. None of them have detected moons

orbiting around them. From Kipping et al. (2009), there is a potential to detect

exomoons with space missions, such as Kepler.

The light curves of a transiting exoplanet with an exomoon were successfully

implemented for the purpose of determining detectability of exomoons. The Kepler

photometric noise was added to the light curve in order to simulate the data from

Kepler. Measuring the detectability was done by phase-correlation between TTV

and TDV signals. TTV and TDV always exhibit a 90-degree phase shift, therefore,

the TTV2 signal is linear with the TDV2 signal. The Pearson product-moment

correlation coefficient was used to determine the detectability of signals.

3-year Kepler light curves of 146,410 systems with various configurations were

simulated. For each extrasolar planet system, the giant planets and their rocky

satellites were placed in the habitable zone of 0.5 M� dwarf stars. Their masses and

periods were selected logarithmically. For simplicity, edge-on circular orbits with 10

random initial orbital phases were used. From analysing simulated light curves, the

detectability of exomoons increase significantly with the moon’s mass and decrease

with increasing mass of planets. Moreover, the correlation coefficient of systems

with the same planet mass or moon mass decreases with the planet semi-major-axis
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which can be explained by the correlation between the detectability and intensity

of TDV signals which are weaker than TTV signals. Exomoon periods in resonance

with planetary orbital period may prevent detection due to the constant observed

planet orbital phase. For long-term observations of transit time, the detectability

clearly improves.

In conclusion, the detectability of habitable exomoons is dominated by the am-

plitude of the TDV signal and the ratio of planet period to moon period. There is a

possibility of detecting the first exomoon using the Kepler telescope. Exomoons in

the habitable zone of an M-Dwarf system can be detected by 3-years Kepler’s data

and the number of detected extrasolar moons should increase with the number of

detected transiting exoplanets in the near future.
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Appendix A

List of parameters

Table A.1 provides a list of the various key parameters used throughout this

dissertation.

Table A.1: List of important parameters used in this dissertation.

Parameter Definition

c Speed of light in the vacuum

G Gravitational constant

σ Stefan-Boltzmann constant

M∗ Mass of star

Mp Mass of planet

Mm Mass of moon

R∗ Radius of star

Rp Radius of planet

Rm Radius of moon

ap Semi-major axis of planet

am Semi-major axis of moon

apb Semi-major axis of planet around planet-moon barycentre

Pp Period of planet

Pm Period of moon

ip Inclination of planet

im Inclination of moon

Continued on next page
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Continued from previous page

Parameter Definition

Ωp Longitude of ascending node of planet

Ωm Longitude of ascending node of moon

ωp Argument of periapsis of planet

ωp Argument of periapsis of moon

$p Positions of pericentre of planet

$m Positions of pericentre of moon

T∗ Effective temperature of star

Tp Effective temperature of planet

L∗ Luminosity of star

L� Luminosity of the Sun

ep Orbital eccentricity of planet

em Orbital eccentricity of moon

ftp True anomaly of planet

ftm True anomaly of moon

fmp Mean anomaly of planet

fmm Mean anomaly of moon

t− tp Time elapsed since the planet’s periapsis

t− tm Time elapsed since the moon’s periapsis

xp X-component of position of planet

xm X-component of position of moon

yp Y-component of position of planet

ym Y-component of position of moon

zp Z-component of position of planet

zm Z-component of position of moon

Ssp Sky-projected star-planet separation

Ssm Sky-projected star-moon separation

Spm Sky-projected planet-moon separation

Ptran Transit probability

Continued on next page
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Continued from previous page

Parameter Definition

δ Transit depth

τ̄ Transit duration

τing Ingress duration

τegr Egress duration

ting Ingress time

tegr Egress time

t0 Time of minimum light

n Epoch

b Impact parameter

TI First contact time

TII Second contact time

TIII Third contact time

TIV Fourth contact time

TTV TTV signal

TDV TDV signal

∆tTTV Peak-to-peak amplitude of TTV signal

∆tTDV Peak-to-peak amplitude of TDV signal

δTTV RMS amplitude of the TTV signal

δTDV RMS amplitude of the TDV signal

vB⊥ Projected velocity of the planet-moon barycentre

rp Distance between star and planet-moon barycentre

rsp Distance between star and planet

rsm Distance between star and moon

rbp Distance between planet-moon barycentre and planet

rbm Distance between planet-moon barycentre and moon

I Intensity of star

cn Non-linear limb darkening coefficients

r Radial distance from the centre of the star

Continued on next page
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Continued from previous page

Parameter Definition

d Center-to-center distance between the star and the planet

z Ratio of star-planet distance to the stellar radius

p Ratio of the planet’s radius to the stellar radius

Ftotal Flux of star

Ftransit Flux of planet-moon transit

Fplanet Flux of planetary transit

Farea Flux of transit area

Ap,t Transit area of planet

Am,t Transit area of moon

Ap Ratio of transit area of planet

Am Ratio of transit area of moon

α The area of intersection between any two circles

Γph Photon collection rate of Kepler

m Apparent magnitude of star

RH Hill radius

rhab Distance where planets receive the same energy as the Earth

rin Inner boundary of the HZ

rout Outer boundary of the HZ

rin� Inner boundary of the present Solar HZ

rout� Outer boundary of the present Solar HZ

D Distance from the Earth to the star

K∗ Amplitude of radial velocity signal

∆TOA Change in time-of-arrival in pulsar timing technique

αa Variation in the sky position in astrometry technique

ESI Earth Similarity Index

% ESI planetary properties

%0 ESI terrestrial reference value

w ESI weight exponent

Continued on next page
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Continued from previous page

Parameter Definition

τp−m Torque between planet and moon

Tp−m Total life time of a moon

k2p Tidal Love number of the planets

Qp Tidal dissipation parameter

np Angular velocity of the planet’s rotation

nm Angular velocity of the moon’s orbit

acrit Critical semi-major axis

rmf Rock mass fraction

χ Pearson product moment correlation coefficient



Appendix B

Program

#Author: Supachai Awiphan (supachai.awiphan@student.manchester.ac.uk)

#Project: The detectability of habitable exomoons with Kepler

#University: University of Manchester

#Degree: MSc by Research (Astronomy and Astrophysics)

#Programming Language: Python 2.4

import string

import random

import numpy as np

import scipy as sp

import matplotlib as mpl

from scipy import integrate

from scipy.optimize import fsolve

from scipy.stats import pearsonr

””” ************************************************************* ”””

#Unit conversion

#AU to metres

def AUtoM ( AU ) :

metreAU = ( 1.49597870700e11 ) * AU

return metreAU

#Metres to AU

def MtoAU ( metreAU ) :

AU = metreAU / ( 1.49597870700e11 )

return AU

#Earth radius to metres

def RetoM ( Re ) :
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metreRe = ( 6371.00e3 ) * Re

return metreRe

#Solar radius to metres

def RstoM ( Rs ) :

metreRs = ( 6.955e8 ) * Rs

return metreRs

#Earth mass to kilograms

def MetoKg ( earthMass ) :

kgEarth = ( 5.9722e24 ) * earthMass

return kgEarth

#Kilograms to Earth mass

def KgtoMe ( kgEarth ) :

earthMass = kgEarth / ( 5.9722e24 )

return earthMass

#Solar mass to kilograms

def MstoKg ( sunMass ) :

kgSun = ( 1.988415861e30 ) * sunMass

return kgSun

#Kilograms to solar mass

def KgtoMs ( kgSun ) :

sunMass = kgSun / ( 1.988415861e30 )

return sunMass

#Days to seconds

def daytoSec ( day ) :

sec = day * 86400.0

return sec

#Seconds to days

def sectoDay ( sec ) :

day = sec / ( 86400.0 )

return day

#Years to seconds

def yeartoSec ( year ) :

sec = year * 86400.0 * 365.24222

return sec

#Seconds to years

def sectoYear ( sec ) :
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year = sec / ( 86400.0 * 365.24222 )

return year

#Degrees to radians

def degtoRad ( deg ) :

rad = deg * 2. * np.pi / 360.

return rad

#Speed of light in vacuum

c = 2.99792458e8

#Gravitational constant

G = 6.67428e - 11

””” ************************************************************* ”””

#Math function

#Elliptic integral of first kind

def K ( k ) :

result = integrate.quad ( lambda x: 1. / ( np.sqrt ( 1. - k * k * np.sin ( x ) * np.sin ( x ) ) ) , 0., np.pi / 2. )

return result [ 0 ]

#Elliptic integral of second kind

def E ( k ) :

result = integrate.quad ( lambda x: np.sqrt ( 1. - k * k * np.sin ( x ) * np.sin ( x ) ) , 0., np.pi / 2. )

return result [ 0 ]

#Elliptic integral of thrid kind

def PI ( n, k ) :

result = integrate.quad ( lambda x: 1. / ( ( 1. - n * np.sin ( x ) * np.sin ( x ) ) * np.sqrt ( 1. - k * k * np.sin

( x ) * np.sin ( x ) ) ) , 0., np.pi / 2. )

return result [ 0 ]

#Heaviside Step Function

def heaviside ( x ) :

if x < 0:

result = 0.

elif x = 0:

result = 0.5

elif x > 0:

result = 1.

return result

””” ************************************************************* ”””

#Mandel&Algol 2002
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#Mandel&Algol 2002 model

def modelMA ( z, p, gamma1, gamma2, zSP ) :

c1 = 0.

c2 = gamma1 + 2. * gamma2

c3 = 0.

c4 = - gamma2

c0 = 1. - c1 - c2 - c3 - c4

ohmega = c0 / ( 0. + 4. ) + c1 / ( 1. + 4. ) + c2 / ( 2. + 4. ) + c3 / ( 3. + 4. ) + c4 / ( 4. + 4. )

a = ( z - p ) * ( z - p )

b = ( z + p ) * ( z + p )

k = np.sqrt ( ( 1. - a ) / 4. / z / p )

q = p * p - z * z

k1 = np.arccos ( ( 1. - p * p + z * z ) / 2. / z )

k0 = np.arccos ( ( p * p + z * z - 1. ) / 2. / p / z )

#Evaluating lam e

if 1 + p < z:

lam e = 0.

elif abs ( 1 - p ) < z and z <= 1 + p:

lam e = ( 1 / np.pi ) * ( p * p * k0 + k1 - 0.5 * np.sqrt ( 4. * z * z - ( 1. + z * z - p * p ) * ( 1. + z * z -

p * p ) ) )

elif z <= 1 - p:

lam e = p * p

elif z <= p - 1.:

lam e = 1.

#Evaluating lam d and eta d

#Case1

if z >= 1. + p:

lam d = 0.

eta d = 0.

elif p = 0.:

lam d = 0.

eta d = 0.

#Case2

elif z > 0.5 + abs ( p - 0.5 ) and z < 1. + p:

lam d = lam1 ( p, z, a, b, k, q )

eta d = eta1 ( p, z, a, b, k1, k0 )

#Case3

elif p < 0.5 and z > p and z < 1. - p:

lam d = lam2 ( p, z, a, b, k, q )

eta d = eta2 ( p, z )
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#Case4

elif p < 0.5 and z = 1. - p:

lam d = lam5 ( p )

eta d = eta2 ( p, z )

#Case5

elif p < 0.5 and z = p:

lam d = lam4 ( p, k )

eta d = eta2 ( p, z )

#Case6

elif p = 0.5 and z = 0.5:

lam d = 1. / 3. - 4. / ( np.pi * 9. )

eta d = 3. / 32.

#Case7

elif p > 0.5 and z = p:

lam d = lam3 ( p, k )

eta d = eta1 ( p, z, a, b, k1, k0 )

#Case8

elif p > 0.5 and z >= abs ( 1. - p ) and z < p:

lam d = lam1 ( p, z, a, b, k, q )

eta d = eta1 ( p, z, a, b, k1, k0 )

#Case9

elif p < 1. and z > 0. and z <= 0.5 - abs ( p - 0.5 ) :

lam d = lam2 ( p, z, a, b, k, q )

eta d = eta2 ( p, z )

#Case10

elif p < 1. and z = 0.:

lam d = lam6 ( p )

eta d = eta2 ( p, z )

#Case11

elif p > 1. and z <= p - 1.:

lam d = 0.

eta d = 0.5

if zSP >= 0.:

fluxModel = 1. - 1. / ( 4. * ohmega ) * ( ( 1. - c2 ) * lam e + c2 * ( lam d + 2. / 3. * heaviside ( p - z )

) - c4 * eta d )

else:

fluxModel = 1.

return fluxModel

#Mandel&Algol 2002 definition

def lam1 ( p, z, a, b, k, q ) :

lam = 1. / ( 9. * np.pi * np.sqrt ( p * z ) ) * ( ( ( 1. - b ) * ( 2. * b + a - 3. ) - 3. * q * ( b - 2. ) ) * K ( k )

+ 4. * p * z * ( z * z + 7. * p * p - 4. ) * E ( k ) - 3. * q / a * PI ( ( a - 1. ) / a, k ) )
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return lam

def lam2 ( p, z, a, b, k, q ) :

lam = 2. / ( 9. * np.pi * np.sqrt ( 1. - a ) ) * ( ( 1. - 5. * z * z + p * p + q * q ) * K ( 1. / k ) + ( 1. - a ) *

( z * z + 7. * p * p - 4. ) * E ( 1. / k ) - 3. * q / a * PI ( ( a - b ) / a, 1. / k ) )

return lam

def lam3 ( p, k ) :

lam = 1. / 3. + 16. * p / 9. / np.pi * ( 2. * p * p - 1. ) * E ( 1. / 2. / k ) - ( 1. - 4. * p * p ) * ( 3. - 8. * p

* p ) / 9. / np.pi / p * K ( 1. / 2. / k )

return lam

def lam4 ( p, k ) :

lam = 1. / 3. + 2. / 9. / np.pi * ( 4. * ( 2. * p * p - 1. ) * E ( 2. * k ) + ( 1. - 4. * p * p ) * K ( 2. * k ) )

return lam

def lam5 ( p ) :

lam = 2. / 3. / np.pi * np.arccos ( 1. - 2. * p ) - 4. / 9. / np.pi * ( 3. + 2. * p - 8. * p * p )

return lam

def lam6 ( p ) :

lam = - 2. / 3. * np.sqrt ( ( 1. - p * p ) * ( 1. - p * p ) * ( 1. - p * p ) ) ;

return lam

def eta1 ( p, z, a, b, k1, k0 ) :

eta1 = 1. / 2. / np.pi * ( k1 + 2. * eta2 ( p, z ) * k0 - 1. / 4. * ( 1. + 5. * p * p + z * z ) * np.sqrt ( ( 1. - a

) * ( b - 1. ) ) )

return eta1

def eta2 ( p, z ) :

eta2 = p * p / 2. * ( p * p + 2. * z * z )

return eta2

””” ************************************************************* ”””

#Kipping 2011

#Kipping 2011 model

def modelKP ( sP, sM, sPM, p, s, gamma1, gamma2, fluxModel, zSP ) :

c1 = 0.

c2 = gamma1 + 2. * gamma2

c3 = 0.

c4 = - gamma2

c0 = 1. - c1 - c2 - c3 - c4
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ohmega = c0 / ( 0. + 4. ) + c1 / ( 1. + 4. ) + c2 / ( 2. + 4. ) + c3 / ( 3. + 4. ) + c4 / ( 4. + 4. )

if zSP >= 0.:

#Case1, 2, 3, 10, 11, 12, 19, 20, 21

if sM >= s + 1.:

fluxModel = fluxModel

elif sM > 1. - s and sM < 1. + s:

#Case4, 5, 6

if sP >= p + 1.:

AreaM = alpha ( 1., s, sM )

FM = FII ( c1, c2, c3, c4, sM, s )

AM = AII ( sM, s, AreaM )

fluxModel = fluxModel - AM * FM

elif sP > 1. - p and sM < 1. + p:

#Case13

if sPM >= p + s:

AreaM = alpha ( 1., s, sM )

FM = FII ( c1, c2, c3, c4, sM, s )

AM = AII ( sM, s, AreaM )

fluxModel = fluxModel - AM * FM

#Case14 Fewell Case

elif sPM > p - s and sPM < p + s:

#Intersection12

x12 = ( 1. - p * p + sP * sP ) / ( 2. * sP )

y12 = 1. / ( 2. * sP ) * np.sqrt ( 2. * sP * sP * ( 1. + p * p ) - ( 1 - p * p ) * ( 1 - p

* p ) - sP * sP * sP * sP )

#Intersection13

x13a = ( 1. - s * s + sM * sM ) / ( 2. * sM )

y13a = - 1. / ( 2. * sM ) * np.sqrt ( 2. * sM * sM * ( 1. + s * s ) - ( 1 - s * s ) * ( 1 -

s * s ) - sM * sM * sM * sM )

cos13a = ( sP * sP + sM * sM - sPM * sPM ) / ( 2. * sP * sM )

sin13a = np.sqrt ( 1 - cos13a * cos13a )

x13 = x13a * cos13a - y13a * sin13a

y13 = x13a * sin13a + y13a * cos13a

#Intersection23

x23a = ( p * p - s * s + sPM * sPM ) / ( 2. * sPM )

y23a = 1. / ( 2. * sPM ) * np.sqrt ( 2. * sPM * sPM * ( p * p + s * s ) - ( p * p - s *

s ) * ( p * p - s * s ) - sPM * sPM * sPM * sPM )

cos23a = - ( sP * sP + sPM * sPM - sM * sM ) / ( 2. * sP * sPM )

sin23a = np.sqrt ( 1 - cos23a * cos23a )

x23 = x23a * cos23a - y23a * sin23a + sP

y23 = x23a * sin23a + y23a * cos23a

#Condition 1

if ( x12 - sM * cos13a ) * ( x12 - sM * cos13a ) + ( y12 + sM * sin13a ) * ( y12 + sM

* sin13a ) < s * s:
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#Condition 2

if sP > 1:

Alpha1 = alpha ( 1., s, sM )

Alpha2 = alpha ( 1., p, sP )

AreaM = Alpha1 - Alpha2

FM = FII ( c1, c2, c3, c4, sM, s )

AM = AII ( sM, s, AreaM )

fluxModel = fluxModel - AM * FM

else:

Alpha1 = alpha ( 1., s, sM )

Alpha2 = alpha ( 1., p, sP )

Alpha3 = alpha ( p, s, sPM )

AreaM = np.pi * p * p + Alpha1 - Alpha2 - Alpha3

FM = FII ( c1, c2, c3, c4, sM, s )

AM = AII ( sM, s, AreaM )

fluxModel = fluxModel - AM * FM

else:

#Condition 3

if ( x12 - sM * cos13a ) * ( x12 - sM * cos13a ) + ( y12 - sM * sin13a ) * ( y12 -

sM * sin13a ) < s * s:

cord1 = np.sqrt ( ( x12 - x13 ) * ( x12 - x13 ) + ( y12 - y13 ) * ( y12 - y13 ) )

cord2 = np.sqrt ( ( x12 - x23 ) * ( x12 - x23 ) + ( y12 - y23 ) * ( y12 - y23 ) )

cord3 = np.sqrt ( ( x13 - x23 ) * ( x13 - x23 ) + ( y13 - y23 ) * ( y13 - y23 ) )

r1 = 1.

r2 = p

r3 = s

#Condition 4

if sM * sin13a > y13 + ( y23 - y13 ) / ( x23 - x13 ) * ( sM * cos13a - x13 ) :

AreaOverlapA = 1. / 4. * np.sqrt ( ( cord1 + cord2 + cord3 ) * ( - cord1

+ cord2 + cord3 ) * ( cord1 - cord2 + cord3 ) * ( cord1 + cord2 - cord3 ) ) + r1 * r1 * np.arcsin ( cord1 / 2. / r1

) + r2 * r2 * np.arcsin ( cord2 / 2. / r2 ) + r3 * r3 * np.arcsin ( cord3 / 2. / r3 ) - cord1 / 4. * np.sqrt ( 4. * r1

* r1 - cord1 * cord1 ) - cord2 / 4. * np.sqrt ( 4. * r2 * r2 - cord2 * cord2 ) - cord3 / 4. * np.sqrt ( 4. * r3 * r3 -

cord3 * cord3 )

AreaM = alpha ( 1., s, sM ) - AreaOverlapA

FM = FII ( c1, c2, c3, c4, sM, s )

AM = AII ( sM, s, AreaM )

fluxModel = fluxModel - AM * FM

else:

AreaOverlapB = 1. / 4. * np.sqrt ( ( cord1 + cord2 + cord3 ) * ( - cord1

+ cord2 + cord3 ) * ( cord1 - cord2 + cord3 ) * ( cord1 + cord2 - cord3 ) ) + r1 * r1 * np.arcsin ( cord1 / 2. / r1

) + r2 * r2 * np.arcsin ( cord2 / 2. / r2 ) + r3 * r3 * np.arcsin ( cord3 / 2. / r3 ) - cord1 / 4. * np.sqrt ( 4. * r1

* r1 - cord1 * cord1 ) - cord2 / 4. * np.sqrt ( 4. * r2 * r2 - cord2 * cord2 ) + cord3 / 4. * np.sqrt ( 4. * r3 * r3 -

cord3 * cord3 )

AreaM = alpha ( 1., s, sM ) - AreaOverlapB

FM = FII ( c1, c2, c3, c4, sM, s )
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AM = AII ( sM, s, AreaM )

fluxModel = fluxModel - AM * FM

else:

#Condition 5

if ( x13 - sP ) * ( x13 - sP ) + y13 * y13 < p * p:

#Condition 6

if ( sM - s ) < ( sP - p ) :

Alpha1 = alpha ( p, s, sPM )

AreaM = np.pi * s * s - Alpha1

FM = FII ( c1, c2, c3, c4, sM, s )

AM = AII ( sM, s, AreaM )

fluxModel = fluxModel - AM * FM

else:

fluxModel = fluxModel

else:

#Condtion 7

if ( x23 * x23 ) + ( y23 * y23 ) < 1.:

Alpha1 = alpha ( 1., s, sM )

Alpha2 = alpha ( p, s, sPM )

AreaM = Alpha1 - Alpha2

FM = FII ( c1, c2, c3, c4, sM, s )

AM = AII ( sM, s, AreaM )

fluxModel = fluxModel - AM * FM

else:

AreaM = alpha ( 1., s, sM )

FM = FII ( c1, c2, c3, c4, sM, s )

AM = AII ( sM, s, AreaM )

fluxModel = fluxModel - AM * FM

#Case15

else:

fluxModel = fluxModel

else:

#Case22

if sPM >= p + s:

AreaM = alpha ( 1., s, sM )

FM = FII ( c1, c2, c3, c4, sM, s )

AM = AII ( sM, s, AreaM )

fluxModel = fluxModel - AM * FM

#Case23

elif sPM > p - s and sPM < p + s:

Alpha1 = alpha ( 1., s, sM )

Alpha2 = alpha ( p, s, sPM )

AreaM = Alpha1 - Alpha2

FM = FII ( c1, c2, c3, c4, sM, s )

AM = AII ( sM, s, AreaM )
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fluxModel = fluxModel - AM * FM

#Case24

else:

fluxModel = fluxModel

else:

#Case7, 8, 9

if sP >= p + 1.:

if sM > s:

AreaM = np.pi * s * s

FM = FIII ( c1, c2, c3, c4, sM, s )

AM = AIII ( sM, s, AreaM )

fluxModel = fluxModel - AM * FM

else:

AreaM = np.pi * s * s

FM = FIX ( c1, c2, c3, c4, sM, s )

AM = AIX ( sM, s, AreaM )

fluxModel = fluxModel - AM * FM

elif sP > 1. - p and sM < 1. + p:

#Case16

if sPM >= p + s:

if sM > s:

AreaM = np.pi * s * s

FM = FIII ( c1, c2, c3, c4, sM, s )

AM = AIII ( sM, s, AreaM )

fluxModel = fluxModel - AM * FM

else:

AreaM = np.pi * s * s

FM = FIX ( c1, c2, c3, c4, sM, s )

AM = AIX ( sM, s, AreaM )

fluxModel = fluxModel - AM * FM

#Case17

elif sPM > p - s and sPM < p + s:

if sM > s:

Alpha1 = alpha ( p, s, sPM )

AreaM = np.pi * s * s - Alpha1

FM = FIII ( c1, c2, c3, c4, sM, s )

AM = AIII ( sM, s, AreaM )

fluxModel = fluxModel - AM * FM

else:

Alpha1 = alpha ( p, s, sPM )

AreaM = np.pi * s * s - Alpha1

FM = FIX ( c1, c2, c3, c4, sM, s )

AM = AIX ( sM, s, AreaM )

fluxModel = fluxModel - AM * FM

#Case18
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else:

fluxModel = fluxModel

else:

#Case25

if sPM >= p + s:

if sM > s:

AreaM = np.pi * s * s

FM = FIII ( c1, c2, c3, c4, sM, s )

AM = AIII ( sM, s, AreaM )

fluxModel = fluxModel - AM * FM

else:

AreaM = np.pi * s * s

FM = FIX ( c1, c2, c3, c4, sM, s )

AM = AIX ( sM, s, AreaM )

fluxModel = fluxModel - AM * FM

#Case26

elif sPM > p - s and sPM < p + s:

if sM > s:

Alpha1 = alpha ( p, s, sPM )

ka0 = kappa0 ( p, s, sPM )

ka1 = kappa1 ( p, s, sPM )

ka2 = kappa2 ( p, s, sPM )

AreaM = np.pi * s * s - Alpha1

FM = FIII ( c1, c2, c3, c4, sM, s )

AM = AIII ( sM, s, AreaM )

fluxModel = fluxModel - AM * FM

else:

Alpha1 = alpha ( p, s, sPM )

AreaM = np.pi * s * s - Alpha1

FM = FIX ( c1, c2, c3, c4, sM, s )

AM = AIX ( sM, s, AreaM )

fluxModel = fluxModel - AM * FM

#Case27

else:

fluxModel = fluxModel

return fluxModel

#Kipping 2011 definition

def alpha ( R, r, S ) :

alpha = r * r * kappa0 ( R, r, S ) + R * R * kappa1 ( R, r, S ) - kappa2 ( R, r, S )

return alpha

def kappa0 ( R, r, S ) :

kappa0 = np.arccos ( ( S * S + r * r - R * R ) / ( 2. * S * r ) )

return kappa0
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def kappa1 ( R, r, S ) :

kappa1 = np.arccos ( ( S * S + R * R - r * r ) / ( 2. * S * R ) )

return kappa1

def kappa2 ( R, r, S ) :

kappa2 = np.sqrt ( ( 4. * S * S * R * R - ( R * R + S * S - r * r ) * ( R * R + S * S - r * r ) ) / 4. )

return kappa2

def FII ( c1, c2, c3, c4, sM, s ) :

resulta = integrate.quad ( lambda r: 2. * r * ( 1 - c1 - c2 - c3 - c4 ) + 2. * r * c1 * np.power ( 1. - r * r, 0.25

) + 2. * r * c2 * np.power ( 1. - r * r, 0.5 ) + + 2. * r * c3 * np.power ( 1. - r * r, 0.75 ) + 2. * r * c4 * ( 1. - r *

r ) , ( sM - s ) , 1 )

FII = resulta [ 0 ]

FII = FII / ( 1. - c1 / 5. - 2. * c2 / 6. - 3. * c3 / 7. - 4. * c4 / 8. )

return FII

def FIII ( c1, c2, c3, c4, sM, s ) :

resulta = integrate.quad ( lambda r: 2. * r * ( 1 - c1 - c2 - c3 - c4 ) + 2. * r * c1 * np.power ( 1. - r * r, 0.25

) + 2. * r * c2 * np.power ( 1. - r * r, 0.5 ) + + 2. * r * c3 * np.power ( 1. - r * r, 0.75 ) + 2. * r * c4 * ( 1. - r *

r ) , ( sM - s ) , ( sM + s ) )

FIII = resulta [ 0 ]

FIII = FIII / ( 1. - c1 / 5. - 2. * c2 / 6. - 3. * c3 / 7. - 4. * c4 / 8. )

return FIII

def FIX ( c1, c2, c3, c4, sM, s ) :

resulta = integrate.quad ( lambda r: 2. * r * ( 1 - c1 - c2 - c3 - c4 ) + 2. * r * c1 * np.power ( 1. - r * r, 0.25

) + 2. * r * c2 * np.power ( 1. - r * r, 0.5 ) + + 2. * r * c3 * np.power ( 1. - r * r, 0.75 ) + 2. * r * c4 * ( 1. - r *

r ) , 0, ( sM + s ) )

FIX = resulta [ 0 ]

FIX = FIX / ( 1. - c1 / 5. - 2. * c2 / 6. - 3. * c3 / 7. - 4. * c4 / 8. )

return FIX

def AII ( sM, s, AreaM ) :

am = ( sM - s ) * ( sM - s )

AII = AreaM / ( np.pi * ( 1 - am ) )

return AII

def AIII ( sM, s, AreaM ) :

am = ( sM - s ) * ( sM - s )

bm = ( sM + s ) * ( sM + s )

AIII = AreaM / ( np.pi * ( bm - am ) )

return AIII

def AIX ( sM, s, AreaM ) :
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bm = ( sM + s ) * ( sM + s )

AIX = AreaM / ( np.pi * bm )

return AIX

””” ************************************************************* ”””

#Insturmental flux

def magCal ( flux, mag, instru, n ) :

if instru = 1: #Euclid VIS

t = 540.

pixel = ( 0.1 * 3 ) * ( 0.1 * 3 )

zeroPoint = 25.58

readoutN = 4.5

thermalN = 0

darkN = 0.00056

bias = 380

back = 21.5

if instru = 2: #Euclid NISP Y

t = 90.

pixel = ( 0.3 * 3 ) * ( 0.3 * 3 )

zeroPoint = 24.25

readoutN = 7.5

thermalN = 0.26

darkN = 0.1

bias = 380

back = 21.3

if instru = 3: #Euclid NISP J

t = 90.

pixel = ( 0.3 * 3 ) * ( 0.3 * 3 )

zeroPoint = 24.29

readoutN = 7.5

thermalN = 0.02

darkN = 0.1

bias = 380

back = 21.3

if instru = 4: #Euclid NISP H

t = 54.

pixel = ( 0.3 * 3 ) * ( 0.3 * 3 )

zeroPoint = 24.92

readoutN = 9.1

thermalN = 0.02

darkN = 0.1

bias = 380

back = 21.4
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if instru = 5: #Kepler

t = 1765.5

pixel = ( 3.98 * 5 ) * ( 3.98 * 5 )

backN = 334.

zeroPoint = 25.1

readoutN = 95.

thermalN = 0.

darkN = 0.25

bias = 700.

fluxMag = np.power ( 10., - 0.4 * ( mag - zeroPoint ) ) * t

if instru < 5:

fluxNoise = np.random.poisson ( np.sqrt ( np.power ( 10., -0.4 * ( mag - zeroPoint ) ) * t + np.power (10.

, -0.4 * ( back - zeroPoint ) ) * pixel * t + readoutN *9. + thermalN * t * 9. + darkN * t * 9. ) , 1 )

flux = ( flux * fluxMag ) + fluxNoise + bias

if instru = 5:

fluxNoise = np.random.poisson ( np.sqrt ( np.power ( 10., - 0.4 * ( mag - zeroPoint ) ) * t + readoutN +

thermalN * t + darkN * t * 25 + backN * t, 1)

flux = ( flux * fluxMag ) + fluxNoise + bias

return flux

””” ************************************************************* ”””

Main program

#Input file

print ”\n ********** \nFile\n ********** ”

fileName = raw input ( ”Input file name\t\t : ” )

data = np.loadtxt ( fileName, skiprows = 0 )

#Star Mass ( Ms )

massS = data [ :, 0 ]

#Planet Mass ( Me )

massP = data [ :, 1 ]

#Planet Period ( Day )

periodP = data [ :, 2 ]

#Star Radius ( Rs )

radiusS = data [ :, 3 ]

#Planet Radius ( Re )

radiusP = data [ :, 4 ]

#Planet Eccentricity

eccP = data [ :, 5 ]

#Planet Inclination ( Degree )

incP = data [ :, 6 ]

#Planet Argument of periapsis ( Degree )
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argP = data [ :, 7 ]

#Planet Ascending node ( Degree )

ascP = data [ :, 8 ]

#Limb darkening 1

gamma1 = data [ :, 9 ]

#Limb darkening 2

gamma2 = data [ :, 10 ]

#Moon Mass ( Me )

massM = data [ :, 11 ]

#Moon Period ( Day )

periodM = data [ :, 12 ]

#Moon Radius ( Day )

radiusM = data [ :, 13 ]

#Moon Eccentricity

eccM = data [ :, 14 ]

#Moon Inclination ( Degree )

incM = data [ :, 15 ]

#Moon Argument of periapsis ( Degree )

argM = data [ :, 16 ]

#Moon Ascending node ( Degree )

ascM = data [ :, 17 ]

#Magnitude

mag = data [ :, 18 ]

#Instrument

instru = data [ :, 19 ]

#Number of data

n = 50000

#Observe time ( Day )

ObsTime = 1000

#Default value

flux = np.zeros ( n )

mAnoP = np.zeros ( n )

tAnoP = np.zeros ( n )

mAnoM = np.zeros ( n )

tAnoM = np.zeros ( n )

rSB = np.zeros ( n )

rPB = np.zeros ( n )

rMB = np.zeros ( n )

xSM = np.zeros ( n )

ySM = np.zeros ( n )

zSM = np.zeros ( n )

xSP = np.zeros ( n )
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ySP = np.zeros ( n )

zSP = np.zeros ( n )

sP = np.zeros ( n )

sM = np.zeros ( n )

sPM = np.zeros ( n )

Z = np.zeros ( n )

fluxN = np.zeros ( n )

#Time generate ( Day )

time = np.linspace ( 0.0, ObsTime, n )

#Find semimajor axis ( m )

semiMajP = sp.power ( ( ( ( MstoKg ( massS ) + MetoKg ( massP ) ) * G * daytoSec ( periodP ) * daytoSec (

periodP ) ) / ( 4 * np.pi * np.pi ) ) , float ( 1 ) / 3 )

semiMajM = sp.power ( ( ( ( MetoKg ( massP ) + MetoKg ( massM ) ) * G * daytoSec ( periodM ) * daytoSec (

periodM ) ) / ( 4 * np.pi * np.pi ) ) , float ( 1 ) / 3 )

for i in range ( massS.size ) :

#Radius ratio

p = RetoM ( radiusP [ i ] ) / RstoM ( radiusS [ i ] )

s = RetoM ( radiusM [ i ] ) / RstoM ( radiusS [ i ] )

#Random initial planet phase and find planet phase

rand1 = random.random ( )

epochP = time / periodP [ i ] + rand1

phaseP = epochP%1.

Mp = phaseP * 2. * np.pi

#Random initial moon phase and find moon phase

rand2 = random.random ( )

epochM = time / periodM [ i ] + rand2

phaseM = epochM%1.

Mm = phaseM * 2. * np.pi

for j in range ( n ) :

#Solve mean anomaly from phase

mAnoPFunc = lambda x: x - eccP [ i ] * np.sin ( x ) - Mp [ j ]

mAnoP [ j ] = fsolve ( mAnoPFunc, Mp [ j ] )

tAnoP [ j ] = 2. * np.arctan ( np.sqrt ( ( 1. + eccP [ i ] ) / ( 1. - eccP [ i ] ) ) * np.tan ( mAnoP [ j ] / 2. ) )

#Solve mean anomaly from phase

mAnoMFunc = lambda x: x - eccM [ i ] * np.sin ( x ) - Mm [ j ]

mAnoM [ j ] = fsolve ( mAnoMFunc, Mm [ j ] )
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tAnoM [ j ] = 2. * np.arctan ( np.sqrt ( ( 1. + eccM [ i ] ) / ( 1. - eccM [ i ] ) ) * np.tan ( mAnoM [ j ] / 2. ) )

#Find star, planet and moon positions

rSB [ j ] = ( semiMajP [ i ] * ( 1. - eccP [ i ] * eccP [ i ] ) ) / ( 1. + eccP [ i ] * np.cos ( tAnoP [ j ] ) )

rMB [ j ] = ( semiMajM [ i ] * ( 1. - eccM [ i ] * eccM [ i ] ) ) / ( 1. + eccM [ i ] * np.cos ( tAnoM [ j ] ) )

rPB [ j ] = ( rMB [ j ] * massM [ i ] ) / massP [ i ]

xSM [ j ] = rSB [ j ] * np.cos ( tAnoP [ j ] + degtoRad ( argP [ i ] ) ) + rMB [ j ] * np.cos ( tAnoM [ j

] + degtoRad ( argM [ i ] ) ) * np.cos ( degtoRad ( argP [ i ] ) + degtoRad ( ascM [ i ] ) ) - rMB [ j ] * np.sin (

degtoRad ( incM [ i ] ) ) * np.sin ( tAnoM [ j ] + degtoRad ( argM [ i ] ) ) * np.sin ( degtoRad ( argP [ i ] ) +

degtoRad ( ascM [ i ] ) )

ySM [ j ] = rSB [ j ] * np.cos ( degtoRad ( incP [ i ] ) ) * np.sin ( tAnoP [ j ] + degtoRad ( argP [ i ] ) ) -

rMB [ j ] * np.sin ( degtoRad ( incP [ i ] ) ) * np.cos ( degtoRad ( incM [ i ] ) ) * np.sin ( tAnoM [ j ] + degtoRad

( argM [ i ] ) ) + rMB [ j ] * np.cos ( degtoRad ( incP [ i ] ) ) * np.sin ( degtoRad ( incM [ i ] ) ) * np.sin ( tAnoM

[ j ] + degtoRad ( argM [ i ] ) ) * np.cos ( degtoRad ( argP [ i ] ) + degtoRad ( ascM [ i ] ) ) + rMB [ j ] * np.cos

( degtoRad ( incP [ i ] ) ) * np.cos ( tAnoM [ j ] + degtoRad ( argM [ i ] ) ) * np.sin ( degtoRad ( argP [ i ] ) +

degtoRad ( ascM [ i ] ) )

zSM [ j ] = rSB [ j ] * np.sin ( degtoRad ( incP [ i ] ) ) * np.sin ( tAnoP [ j ] + degtoRad ( argP [ i ] ) ) +

rMB [ j ] * np.cos ( degtoRad ( incP [ i ] ) ) * np.sin ( degtoRad ( incM [ i ] ) ) * np.sin ( tAnoM [ j ] + degtoRad (

argM [ i ] ) ) + rMB [ j ] * np.sin ( degtoRad ( incP [ i ] ) ) * np.sin ( degtoRad ( incM [ i ] ) ) * np.sin ( tAnoM [ j ] +

degtoRad ( argM [ i ] ) ) * np.cos ( degtoRad ( argP [ i ] ) + degtoRad ( ascM [ i ] ) ) + rMB [ j ] * np.sin ( degtoRad (

incP [ i ] ) ) * np.cos ( tAnoM [ j ] + degtoRad ( argM [ i ] ) ) * np.sin ( degtoRad ( argP [ i ] ) + degtoRad ( ascM [ i ] ) )

xSP [ j ] = rSB [ j ] * np.cos ( tAnoP [ j ] + degtoRad ( argP [ i ] ) ) - rPB [ j ] * np.cos ( tAnoM

[ j ] + degtoRad ( argM [ i ] ) ) * np.cos ( degtoRad ( argP [ i ] ) + degtoRad ( ascM [ i ] ) ) + rPB [ j ] * np.sin

( degtoRad ( incM [ i ] ) ) * np.sin ( tAnoM [ j ] + degtoRad ( argM [ i ] ) ) * np.sin ( degtoRad ( argP [ i ] ) +

degtoRad ( ascM [ i ] ) )

ySP [ j ] = rSB [ j ] * np.cos ( degtoRad ( incP [ i ] ) ) * np.sin ( tAnoP [ j ] + degtoRad ( argP [ i ] ) ) +

rPB [ j ] * np.sin ( degtoRad ( incP [ i ] ) ) * np.cos ( degtoRad ( incM [ i ] ) ) * np.sin ( tAnoM [ j ] + degtoRad

( argM [ i ] ) ) - rPB [ j ] * np.cos ( degtoRad ( incP [ i ] ) ) * np.sin ( degtoRad ( incM [ i ] ) ) * np.sin ( tAnoM

[ j ] + degtoRad ( argM [ i ] ) ) * np.cos ( degtoRad ( argP [ i ] ) + degtoRad ( ascM [ i ] ) ) - rPB [ j ] * np.cos

( degtoRad ( incP [ i ] ) ) * np.cos ( tAnoM [ j ] + degtoRad ( argM [ i ] ) ) * np.sin ( degtoRad ( argP [ i ] ) +

degtoRad ( ascM [ i ] ) )

zSP [ j ] = rSB [ j ] * np.sin ( degtoRad ( incP [ i ] ) ) * np.sin ( tAnoP [ j ] + degtoRad ( argP [ i ] ) ) -

rPB [ j ] * np.cos ( degtoRad ( incP [ i ] ) ) * np.sin ( degtoRad ( incM [ i ] ) ) * np.sin ( tAnoM [ j ] + degtoRad (

argM [ i ] ) ) - rPB [ j ] * np.sin ( degtoRad ( incP [ i ] ) ) * np.sin ( degtoRad ( incM [ i ] ) ) * np.sin ( tAnoM [ j ] +

degtoRad ( argM [ i ] ) ) * np.cos ( degtoRad ( argP [ i ] ) + degtoRad ( ascM [ i ] ) ) - rPB [ j ] * np.sin ( degtoRad (

incP [ i ] ) ) * np.cos ( tAnoM [ j ] + degtoRad ( argM [ i ] ) ) * np.sin ( degtoRad ( argP [ i ] ) + degtoRad ( ascM [ i ] ) )

sM [ j ] = np.sqrt ( xSM [ j ] * xSM [ j ] + ySM [ j ] * ySM [ j ] ) / RstoM ( radiusS [ i ] )

sP [ j ] = np.sqrt ( xSP [ j ] * xSP [ j ] + ySP [ j ] * ySP [ j ] ) / RstoM ( radiusS [ i ] )

sPM [ j ] = np.sqrt ( ( xSP [ j ] - xSM [ j ] ) * ( xSP [ j ] - xSM [ j ] ) + ( ySP [ j ] - ySM [ j ] ) * ( ySP [ j

] - ySM [ j ] ) ) / RstoM ( radiusS [ i ] )

#Planetary transit component
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flux [ j ] = modelMA ( sP [ j ] , p, gamma1 [ i ] , gamma2 [ i ] , zSP [ j ] )

#Moon transit component

flux [ j ] = modelKP ( sP [ j ] , sM [ j ] , sPM [ j ] , p, s, gamma1 [ i ] , gamma2 [ i ] , flux [ j ] , zSP [ j ] )

#Add instrument noise ( Kepler )

flux [ j ] = magCal ( flux [ j ] , mag [ i ] , instru [ i ] , n )

#Find median of flux

fluxMedian = np.median ( flux )

#Find number of data in each transit event

period = periodP [ i ]

nTransit = int ( ObsTime / period ) + 1

nDataTransit = int ( period * n / ObsTime )

#Find new ephemeris from O - C diagram

tFlux = np.zeros ( 3 )

tTime = np.zeros ( 3 )

minSlope = np.zeros ( nTransit )

maxSlope = np.zeros ( nTransit )

igTime = np.zeros ( nTransit )

egTime = np.zeros ( nTransit )

shift = 0

for j in range ( nTransit ) :

if j < nTransit - 1:

for k in range ( nDataTransit - 3 ) :

for l in range ( 3 ) :

tFlux [ l ] = flux [ j * nDataTransit + shift + k + l ]

tTime [ l ] = time [ j * nDataTransit + shift + k + l ]

fitPara = np.polyfit ( tTime, tFlux, 1 )

slope = fitPara [ 0 ]

if slope > maxSlope [ j ] :

maxSlope [ j ] = slope

egTime [ j ] = ( fluxMedian - fitPara [ 1 ] ) / fitPara [ 0 ]

elif slope < minSlope [ j ] :

minSlope [ j ] = slope

igTime [ j ] = ( fluxMedian - fitPara [ 1 ] ) / fitPara [ 0 ]

if ( j + 1 ) * nDataTransit + shift < n and ( j ) * nDataTransit + shift > 0:

if abs ( time [ ( j + 1 ) * nDataTransit + shift ] - egTime [ j ] ) < 5. * ObsTime / n:

shift = shift + 5

elif abs ( - time [ ( j ) * nDataTransit + shift ] + igTime [ j ] ) < 5. * ObsTime / n:

shift = shift - 5
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if j = nTransit - 1:

nTransit = nTransit - 1

tt = np.zeros ( nTransit )

td = np.zeros ( nTransit )

for j in range ( nTransit ) :

tt [ j ] = ( egTime [ j ] + igTime [ j ] ) / 2.

td [ j ] = egTime [ j ] - igTime [ j ]

for j in range ( nTransit - 1 ) :

tt [ j + 1 ] = tt [ j + 1 ] - ( j + 1 ) * period - tt [ 0 ]

tt [ 0 ] = 0.

ep = range ( nTransit )

fitParafit = np.polyfit ( ep, tt, 1 )

period = period + fitParafit [ 0 ]

#Find new number of data in each transit event

nTransit = int ( ObsTime / period ) + 1

nDataTransit = int ( period * n / ObsTime )

#Find TTV and TDV signals

tFlux = np.zeros ( 3 )

tTime = np.zeros ( 3 )

minSlope = np.zeros ( nTransit )

maxSlope = np.zeros ( nTransit )

igTime = np.zeros ( nTransit )

egTime = np.zeros ( nTransit )

for j in range ( nTransit ) :

if j < nTransit - 1:

for k in range ( nDataTransit - 3 ) :

for l in range ( 3 ) :

tFlux [ l ] = flux [ j * nDataTransit + k + l ]

tTime [ l ] = time [ j * nDataTransit + k + l ]

fitPara = np.polyfit ( tTime, tFlux, 1 )

slope = fitPara [ 0 ]

if slope > maxSlope [ j ] :

maxSlope [ j ] = slope

egTime [ j ] = ( fluxMedian - fitPara [ 1 ] ) / fitPara [ 0 ]

elif slope < minSlope [ j ] :

minSlope [ j ] = slope
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igTime [ j ] = ( fluxMedian - fitPara [ 1 ] ) / fitPara [ 0 ]

if j = nTransit - 1:

nTransit = nTransit - 1

tt = np.zeros ( nTransit )

td = np.zeros ( nTransit )

for j in range ( nTransit ) :

tt [ j ] = ( egTime [ j ] + igTime [ j ] ) / 2. - ( j ) * period

td [ j ] = egTime [ j ] - igTime [ j ]

avgtt = tt.mean ( )

avgtd = td.mean ( )

for j in range ( nTransit ) :

tt [ j ] = tt [ j ] - avgtt

td [ j ] = td [ j ] - avgtd

#Find correlation

r = sum ( ( tt * tt - sum ( tt * tt ) / nTransit ) * ( td * td - sum ( td * td ) / nTransit ) ) / np.sqrt ( sum ( (

tt * tt - sum ( tt * tt ) / nTransit ) * ( tt * tt - sum ( tt * tt ) / nTransit ) ) * sum ( ( td * td - sum ( td * td ) /

nTransit ) * ( td * td - sum ( td * td ) / nTransit ) ) )

#Output

print ”\n ********** \nSystem information\n ********** \n”

print ”Star mass\t”, massS [ i ]

print ”Planet mass\t”, massP [ i ]

print ”Moon mass\t”, massM [ i ]

print ”Planet period\t”, periodP [ i ]

print ”Moon period\t”, periodM [ i ]

print ”Correlation coefficients:\t”, r


