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Abstract

The international community is in agreement that a lepton collider in the TeV

centre of mass energy range is required to leverage discoveries made at the Large

Hadron Collider and expand the physics programme. Two future colliders are pro-

posed. The International Linear Collider (ILC) will collide electron and positron

bunches at a centre of mass energy of 500 GeV, upgradable to 1 TeV. The Compact

Linear Collider (CLIC) is designed to reach 3 TeV.

This thesis investigates the wakefields, which degrade the beam quality, and

beam dynamics in the main linacs of the ILC, presenting the first direct comparison

of beam dynamics for linacs made up of the alternative high gradient supercon-

ducting cavity designs - the Reentrant and Ichiro cavities. Higher order modes of

the electromagnetic field in the cavities, which will be excited by the passage of

the bunches, are calculated using finite di↵erence and finite element techniques. A

trapped dipole mode in the Ichiro cavity at 2.4498 GHz is identified.

These modes are used as the basis for the beam dynamics studies. These simula-

tions have demonstrated that ILC linacs made up of the new high gradient cavities,

with targeted damping, would meet wakefield requirements for delivering high qual-

ity beams for particle physics studies. This result is important since any upgrade

of the ILC from 500 GeV to 1 TeV centre of mass energy would make use of one of

these high gradient cavity designs in the extension to the linacs.

Beam dynamics in the CLIC beam delivery system (BDS), are also detailed.

Simulations included deflecting mode Crab Cavities required to maximise collision

luminosity when there is a crossing angle, and verify analytic results for the required

deflecting voltage and tolerances to phase di↵erences. The tolerance to crab cavity

roll angle is found to be extremely tight, at 5.9 millidegrees. Additionally, results in

this thesis uncover a problem with the BDS magnet layout which must be addressed.
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Chapter 1

Introduction

1.1 High Energy Colliders

The Twentieth Century saw the development and construction of a succession of

particle accelerators which have increased the centre of mass energy available for

collisions and expanded the Physics programmes possible, allowing for discovery

and confirmation of Standard Model predicted leptons, quarks, neutrinos1, bosons

and gluons.

These accelerators have had necessarily limited life-spans with new generations

replacing the older technology. The beginning of the 21st century saw the final years

of data taking at LEP and at Tevatron and the construction and completion of

the LHC . The LHC has delivered 5.61 fb�1 integrated luminosity to the ATLAS

experiment in 2011 and physics analyses continue around the world [3].

The expansion of the world’s collider programme is necessary in order to further

develop our understanding of fundamental Physics. In particular, for the LHC , to

test the theorised existence of a Higgs Boson. Interaction with a Higgs Boson is one

possible explanation for the origin of mass in the fundamental particles.

1Non-collider and cosmic ray fixed target experiments have played a significant role in this case

also.
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1.1.1 Why a Linear Collider?

In order to continue the expansion of the physics programme and make best use of

discoveries made at LHC the international community is in agreement that a lepton

collider in the TeV centre of mass energy range is required [4]. The LHC is a proton -

proton machine in which the energy is divided between three quarks in each proton,

as well as constituent gluons. In this case the identity of the particles involved in

the central system of a particular event must be inferred from the resulting shower

of particles in a detector. This introduces significant background e↵ects and raises

uncertainty in particle physics calculations.

In contrast the interaction between an electron and its anti-particle provides

a clean environment, in which the central system is known. Further, the energy

involved in the collision is much more precisely determined since it is not shared

between more fundamental sub-particles. A lepton collider has the ability to make

extremely precise measurements which will test theoretical models available and will

have distinct discovery channels not available at LHC , particularly when polarised

beams are employed [5].

To date the highest energy lepton collider was the LEP machine which operated

at CERN until 2000. In its final months the maximum centre of mass energy reached

was 205 GeV. The LHC now occupies the 27.1 km tunnel which was dug for LEP .

While building another synchrotron machine like LEP is possible and would reduce

the engineering and technical challenges it is not practical to build a TeV centre of

mass electron storage ring since the losses due to synchrotron radiation are too high.

The synchrotron radiation generated in a complete turn, assuming uniform bend-

ing radius in the magnets, is given by [6]:

�E =
4⇡

3
r0mc2�3�4

⇢
=

e2

3✏0

�3�4

⇢
, (1.1)

where r0 is the classical radius of the electron. Taking � as essential unity for high

energy rings we have:

�E / E4

m4⇢
, (1.2)

where E is the particle energy, ⇢ the radius of the ring and m the rest mass of
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the particle. Clearly the overhead involved at LHC is insignificant compared to an

electron machine operating at the same energy in the same tunnel, since the proton

is approximately 2000 times more massive than an electron. In order to avoid the

very large civil engineering costs of producing a tunnel with a su�ciently large radius

the choice of a linear collider has been made. In the case of a linear collider the

losses due to synchrotron radiation are not significant, although the design does

introduce a multitude of new technical challenges such as the single-pass problem

and the necessity for high gradients in the main linac cavities.

1.1.2 Normal Conducting and Superconducting Linear Col-

liders

The design of a linear collider is dominated by the technology chosen for the main

linac system. The linacs are the largest cost driver after the tunnel construction

costs and great consideration was given to the two major options: superconducting

cavities of the TESLA type and normal conducting copper cavities of SLAC / KEK

design.

The most significant properties of a linac cavity are its accelerating gradient and

shunt impedance, since these determine the length of the machine and the transfer

e�ciency of RF power to the beam. Normal conducting cavities have a significant

advantage in the first area, having demonstrated gradients of the order of 100 MV/m,

albeit without demonstrating the required wakefield suppression, in comparison to

the ⇠ 30 MV/m achievable with TESLA technology and the ⇠ 50 MV/m which

has already been achieved for superconducting cavities with newer designs, as will

be described in Chapter 5. The RF power to beam e�ciency, ⌘RF!beam, can be

calculated as follows:

⌘RF!beam =
IEaccLt

b

PRFtRFpulse

. (1.3)

Taking the ILC Reference Design Report (RDR) nominal parameters, accelerating

gradient Eacc = 31.5 MV/m, cavity length L = 1.038 m, beam train length t
b

=

2625 ⇥ 369.2 ns = 969 µs, RF pulse energy P.E. = 293.7 kW ⇥ 1.565 ms = 459.6 J

and beam current I = Nq

tbs
⇡ 9 mA, gives a final e�ciency ⌘RF!beam ⇡ 60%. A cor-
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responding calculation for the normal conducting CLIC machine yields ⌘RF!beam ⇡

28.5% [7].

The full comparison is rather more involved and includes all systems of the

collider, availability of klystron power supplies at the desired frequency, damping

ring considerations and wakefield e↵ects, for example. Indeed large documents are

available detailing the specifications for full machines of each type operating at

500 GeV [8]. Colliders operating using either technology would have an e�ciency

of around the 10% mark once all systems have been taken into account, though the

superconducting case remains slightly more e�cient [9].

Following a global e↵ort and full analysis by the International Linear Collider

Technical Review Committee it was recommended in 2004 that superconducting

cavities based on the TESLA design would be the technology choice for the Linear

Collider [8, 10].

Beyond 1 TeV centre of mass energy there is CLIC - the Compact Linear Col-

lider [11]. The CLIC project is being spearheaded by CERN and currently comprises

a 3 TeV design achieved through very high gradient normal conducting cavities op-

erating at 12 GHz. Details of ongoing e↵orts to mitigate transverse wakefield e↵ects

as well as breakdown issues through novel design and optimisation of cavity shapes

are detailed in Khan [12]. Work continues in all areas, including the beam delivery

system design which incorporates a crab cavity system (see Chapter 9).

1.2 Luminosity and Wakefields

In operation a linear collider will accelerate a train of many bunches, with each

bunch containing of the order of 1010 electrons or positrons.

A collider’s luminosity L measures the rate and quality of collisions at the in-

teraction point. A high luminosity is desirable since the event rate increases with

luminosity and rare physics processes can only be properly investigated with large

samples. For a train of Gaussian bunches the luminosity can be approximately

determined by:

L =
n
b

N2frep

4⇡�
x

�
y

(1.4)
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where n
b

is the number of bunches in a train, N the particles per bunch, frep the

repetition frequency and �
x

, �
y

are the horizontal and vertical bunch sizes at the

interaction point [6].

The beam power can be written in terms of the repetition frequency frep and the

centre of mass energy ECM:

Pbeam = n
b

NfrepECM. (1.5)

This is related to the beam energy used in Equation 1.3 through the repetition

frequency and the number of cavities in the linac. Considering the numerators in

Equations 1.4 and 1.5 we express the luminosity in terms of the beam power as:

L =
(ECMn

b

Nfrep) N

4⇡�
x

�
y

ECM

=
⌘RFPRFN

4⇡�
x

�
y

ECM

. (1.6)

Therefore, for a given ECM the luminosity is proportional to the RF power. For

the LEP synchrotron machine the repetition frequency was 44 kHz compared with

just 5 Hz for ILC i.e. a factor of 8800 in luminosity is lost immediately moving to

the single pass system. In order to achieve the very high luminosity required it is

necessary to reduce the beam cross section at the interaction point.

The vertical beam size is given by �
y

= (�
y

✏
y

/(1 + ↵2))1/2, where � is known as

the beta function, determined by the focussing quadrupole magnets, ↵ is the beam

divergence and ✏ is the emittance. The emittance is a measure of the area occupied

by the bunch ensemble in phase-space (y, y0) and can be calculated from a sum of

the second order moments of each particle about the bunch centroid - the details will

be further discussed in Chapter 8. As shown in Figure 1.1, for a Gaussian bunch,

the ensemble describes an ellipse in phase space.

According to Liouville’s Theorem under the action of conservative forces the

phase space area will remain constant, this is the case when considering simple lattice

elements like dipole and quadrupole magnets. However there are many elements in

the lattice which act non-linearly and cause the emittance to increase. Clearly this

has a direct impact on the luminosity and great care must be taken to eliminate

sources of emittance dilution in order to preserve the low emittance beam produced

by the injector system. In the main linacs the primary source of emittance dilution

22



1.2. Luminosity and Wakefields Chapter 1. Introduction

Figure 1.1: Bunch distribution in x � x0 phase space with inscribed ellipse.

Adapted from [13].

is transverse wakefields in the accelerating cavities. The concept of a wakefield will

be briefly described below and further expanded in Chapter 4.

1.2.1 Wakefields

The passage of a charged particle bunch through the linacs will excite a wake-

field [14]. It is formed from the interaction and scattering of the bunch’s electro-

magnetic field with the discontinuities in the environment around it, in particular

with the walls of the accelerating cavities. Any analysis can be split into considera-

tion of a short-range wake which acts to distort the shape of a bunch, thus increasing

the emittance and a long-range wake which describes the e↵ect of a leading bunch on

the bunches trailing behind. The transverse long-range wakefield deflects bunches

o↵ the linac axis which increases the projected emittance for the whole bunch train

and can lead to multi-bunch beam break up (BBU). This severe e↵ect, first observed

at the SLAC linac [15], results in a loss of useful beam at the interaction point. In

extreme cases a bunch could impact the beamline and cause damage to the vacuum

line, cavities or other components.
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1.3 Summary

This thesis details simulation work undertaken to calculate the long range wakefields

due to higher order modes in the superconducting accelerating cavities of the ILC

main linacs, as well as a study of the CLIC crab cavity beam dynamics. Novel high

gradient cavity designs from Cornell and KEK are modelled and then beam dynam-

ics are simulated. This research is important in making the case that wakefields

generated by the new designs can be su�ciently damped so that these cavities could

be used for the future ILC upgrade to 1 TeV. The crab cavity system is crucial to

maintaining high luminosity at CLIC.

Chapter 2 presents an overview of the ILC’s main systems and operating param-

eters. In Chapter 3 CLIC is introduced and the main di↵erences between the ILC

and CLIC are outlined.

In Chapter 4 we will introduce the terms wakefield, wake potential, delta wake,

loss factor and kick factor using their formal definitions.

Chapter 5 gives a brief description of the physics of superconductivity and details

the designs for the various superconducting main linac cavities studied in this thesis.

Their elliptical shape is governed by competing demands for high gradient operation

with very low losses. Three main cavity types are considered, the baseline TESLA

design developed at DESY , the Reentrant design from Cornell and the Ichiro cavity

design from KEK .

The electromagnetic fields produced by the cavities were simulated using the

parallel code GdfidL which employs the finite di↵erence method. The foundations

of this technique are discussed in Chapter 6 as well as the limitations and errors

which are expected when making use of a numerical method to approximate the

fields.

Chapter 7 presents the detailed eigenmode results obtained for the cavities. The

cavity modes are also used to calculate long-range wakefields for each cavity type.

The beam dynamics codes LIAR (“Linear Accelerator Research code”) and Lu-

cretia have been employed to calculate the emittance growth resulting from con-

structing the ILC main linacs from Reentrant and Ichiro cavities. These results are
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presented in Chapter 8.

Chapter 9 details interesting results from another regime - that of the CLIC

beam delivery system. Here similar techniques and codes have been employed in

order to investigate the tolerances and required performance of a crab cavity system

at CLIC.

Chapter 10 discusses the results obtained and limitations in the simulation work.

Further work to be carried out in the future to ensure that ILC operates at the

required luminosity is suggested.
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Chapter 2

ILC machine layout and operation

The collider consists of many independent systems which transport the beam

from its creation to the interaction region and on to the beam dumps. In this chapter

we will introduce each of the major systems and give an overview of the machine

layout as described in the Reference Design Report for the ILC. Further, we will also

describe the operating state of the machine systems in collider operation - i.e. give

an indication of what level of performance is required, in particular from components

in the damping ring and main linacs. As we will show, these systems have competing

design requirements and the final machine is a compromise between what is desirable

from an engineering perspective, performance or luminosity requirements and the

final cost.

2.1 Overview

The ILC baseline design is aimed to obtain a maximum centre of mass energy of

500 GeV and a peak luminosity of 2 ⇥ 1034 cm�2s�1. The major sub-systems and

their location in the overall layout of the ILC are shown in Figure 2.1 and can be

briefly summarised as follows [16]:

• A polarized electron source based on a photocathode DC gun.

• An undulator-based positron source, which is driven by the 150 GeV main

electron beam.
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Figure 2.1: Schematic of ILC layout at the time of the RDR. The damping rings,

ring to main linac, main linacs and IP regions are displayed, from

[16]. The service tunnel has since been eliminated from designs.

27



2.2. Pre-linac systems Chapter 2. ILC machine layout and operation

• The 5 GeV electron and positron damping rings (DR), which are housed in a

common tunnel at the ILC complex and have a circumference of 6.7 km.

• The beam transport from the damping rings to the main linacs, which are

followed by the bunch compressor system.

• The two main linacs, each 11 km long, which contain superconducting radio

frequency (SCRF) cavities.

• The beam delivery system, which brings the two beams into collision at the

interaction point (IP). The beams have a 14 mrad crossing angle.

The total length of the ILC is 31 km. If an upgrade of the machine to a centre

of mass of 1 TeV was desired the linacs and the beam transport lines would have to

be extended by approximately another 11 km each. Some other components in the

delivery system would also need to be replaced or augmented.

2.2 Pre-linac systems

2.2.1 Electron source

It is desirable from a particle physics perspective to have a high degree of polarization

in the electron beam. The ILC electron source is, therefore, designed to give a stable

train of 2625 bunches of 2 ⇥ 1010 electrons at 5 Hz and with polarization greater

than 80%. This is achieved by making use of a DC gun with a laser illuminated

photocathode.

The electron source is placed on the positron linac side of the damping rings.

Two independent laser systems providing 790 nm wavelength light, housed in a

surface building, are available to provide redundancy. The laser system is based

on Ti:sapphire technology. Their light is directed down evacuated light pipes to

the two DC guns located in the underground tunnel. Photocathode material is

the subject of ongoing research but it has been well established that GaAs/GaAsP

superlattice structures can provide the necessary performance, yielding at least 85%

polarization and a quantum e�ciency greater than 0.5% [17, 18]. The optimum
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preparation technique for the photocathode surface is yet to be determined, though

a strong candidate can be found in Chanlek’s work at the Cockcroft Institute [19].

The DC guns are based on the SLC gun designs, however, significant advances

have been made in the intervening years and these will be incorporated into the

ILC gun design. It has been optimized to operated at a peak current of 4.5 - 5 A

(4.5 nC / 1 ns), limited by space charge e↵ects. This peak current provides su�cient

overhead to compensate losses that may occur in the later sections, for example in

the bunching system.

Bunching is achieved by two subharmonic bunchers operating at 216.7 MHz and

433.3 MHz respectively, followed by an L-band 5 cell travelling wave buncher. This

later system is based on the one in operation at the FLASH facility at DESY. Next,

two 50 cell, normal conducting, travelling wave cavities accelerate the bunches to

76 MeV. Details of the bunching system can be found in reference [20].

Later sections provide energy collimation, diagnostics and then match to a

booster section consisting of 21, main linac style, cryomodules which accelerate

the beam to 5 GeV. The booster linac to damping ring (LTR) beam line provides

spin rotation and energy compression functions by providing an arc and solenoid

magnetic field. The first bend in the LTR can be switched o↵ to direct the electron

source beam to a dump, otherwise the beam is transported to the damping ring

entrance.

2.2.2 Positron Source

The positron source is required to deliver 2 ⇥ 1010 positrons per bunch at the IP.

The ILC uses photoproduction to generate positrons which are produced with a

polarization of about 30%. The electron beam is accelerated to 150 GeV and then

diverted into a 150 m long superconducting helical undulator which produces a

photon beam of 10 MeV. This photon beam is transported to the target hall where

it hits a Ti-alloy target thus producing electromagnetic showers of electrons and

positrons. The electrons and the remaining photons are separated from the positrons

and dumped, while the positrons are accelerated to 400 MeV and transported 5 km
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through the electron main linac tunnel to the central damping ring complex. Here

they are boosted to 5 GeV using superconducting L-band RF and then injected into

the positron damping ring.

The positron source also includes a low intensity auxiliary (called Keep Alive

Source) source that can be injected into the superconducting L-band linac. This

allows for commissioning and tuning of the positron systems while the high energy

electron beam is not available. The Keep Alive Source is designed to produce 10%

of the nominal positron beam by using a 500 MeV electron beam impinging on a

tungsten-rhenium target. The positrons are captured and then accelerated using the

same linac as the primary sources to accelerate the beam from 400 MeV to 5 GeV.

2.2.3 Damping Rings

The damping rings (DR) must accept electrons and positrons with large transverse

and longitudinal emittances, compensate for beam incoming beam jitter and produce

very low emittance beams for high luminosity collisions downstream.

A main constraint on the DR is the main linac bunch spacing. The DR must be

capable of holding the whole bunch train at one time - up to 6000 bunches depending

on the parameter set chosen (see Section 2.5.1). The collider operates with a repeti-

tion rate of 5 Hz, leaving just 200 ms for the damping ring to complete the damping

process of those 6000 bunches from their large emittance entry to the ultra low

vertical emittance required. This fast damping is achieved using superconducting

wigglers, approximately 200 m long, in each 6.7 km damping ring.

Timing is a major consideration and it is expected that during ongoing design

and feasibility studies the main linac bunch spacing and damping ring circumference

will change slightly to find the optimum fill pattern.

The relatively large main linac bunch spacing imposes constraints on the DR

extraction system also. If the damping rings contained the whole bunch train at

the linac spacing they would require a circumference much larger than the 6.7 km

in the current design. This can be seen from considering the main linac bunch

spacing in distance, approximately 100 m, multiplied up by the ⇠ 3000 bunches in
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the train. The DR extraction kickers must, therefore, enable a fast extraction of a

single bunch without disturbing the remaining bunches in the ring. The e↵ective

kicker field pulse width must be less than twice the bunch spacing, ensuring that

both the immediately upstream and downstream bunches see negligible field.

2.2.4 Ring to Main Linac and Bunch Compressors

The Ring to Main Linac (RTML) transports the electron and positron beams from

the damping rings to the upstream of their respective linacs. It also needs to col-

limate the beam halo generated at the damping rings and perform any rotation of

the spin polarization that might be required at the IP for physics studies. Finally,

compression of the long damping ring bunch by a factor in the range from 30 to

45 is required to provide the short bunches required by the main linac. In addition

the RTML is also designed to provide diagnostics and feedback systems as well as

su�cient instrumentation to preserve and tune the beam quality.

The RTML systems start with a long low emittance transport from the DP,

followed by the collimation section, the spin rotator and the bunch compression

system. A two-stage compression system has been chosen in order to provide not just

the required compression factor but also some degree of flexibility in the final bunch

length but also flexibility to balance the longitudinal and transverse tolerances.

The linacs in both compressor stages use standard SCRF cryomodules and RF

power similar to that used in the Main Linac. In the first stage stronger focussing

is required to mitigate the higher wakefields and cavity-tilt e↵ects resulting from

the longer bunch length. The initial bunch length of 9 mm is reduced to 1 mm

before entrance into the second bunch compressor which provides the momentum

compaction required for compression. The bunch compressor delivers a final beam

of bunch length 0.3 mm with an energy of 15 GeV.

The diagnostics, correction and operational requirements of the RTML are in-

tegrated into the design of the entire beamline. For example three emittance mea-

surements are performed. The first before the collimation section, the second prior

to entrance into the bunch compressor and the third between the compressor and
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the linac.

2.3 Main Linac

The main linacs, one for each of the positron and electron lines, are the largest

single system in the ILC. They consist of 14,560 superconducting cavities and 1680

focussing quadrupole magnets. The accelerating cavities are arranged into cryomod-

ules, which contain 8 or 9 cavities, quadrupole magnets are included in place of the

fifth cavity in some cryomodules, surrounded by a helium vessel which maintains

the temperature required for superconducting operation. High power RF is fed

from klystrons (see Section 2.3.1) through waveguides into the cryomodule and to

the cavities via power couplers. The details of the cavity design will be discussed in

Section 2.3.2 and Chapter 5. The cavities operate at 1.3 GHz and must be carefully

synchronised with the RF systems in the earlier parts of the machine. Should the

RF frequency or the phase begin to shift from the nominal then bunches entering

the main linac will not receive the correct acceleration, an error in the energy is in-

troduced. The main linac magnet lattice is designed for a particular progression in

bunch energy, errors in the energy can lead to emittance dilution since the bunches

are no longer correctly focussed.

The choice of frequency is the result of a trade o↵ between the higher cost

associated with lower frequency (larger cavity dimensions) and increased surface

resistivity at higher frequencies which leads to a lower sustainable gradient. The two

main linacs have a combined length of 23 km and accelerate the beams from their

injected energy of 15 GeV to 250 GeV. They use superconducting technology, with

9 cell standing-wave niobium cavities of approximately 1 m in length, which operate

at an average gradient of 31.5 MV/m. The cavities are immersed in a saturated

Helium bath in order to keep the temperature at 2 K. The nominal parameters of

the linacs are summarised in Table 2.1.

The power source for the accelerating cavities is a 10 MW klystron. The details

of the power source arrangement are discussed in section 2.3.1.
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Parameter Value Units Parameter Value Units

Initial beam energy 15 GeV Initial �✏
x

8.4 µm

Final beam energy 250 GeV Final �✏
x

9.4 µm

Particles per bunch 2 ⇥ 1010 Initial �✏
y

24 nm

Beam current 9.0 mA Final �✏
y

34 nm

Bunch spacing 369 ns �
z

0.3 mm

Bunch train length 969 µs Initial �
E

/E 1.5 %

Number of bunches 2625 Final �
E

/E 0.14, 0.10 %

Pulse repetition rate 5 Hz Beam phase 5 �

Table 2.1: Nominal parameters of the Main Linacs of the ILC.

2.3.1 Power sources

The baseline design specifies 10 MW multi-beam klystrons (MBK) which have high

e�ciency (65%) by making use of multiple low space charge beams. They will

operate at 1.3 GHz as required by the main linac cavities, further parameters are

listed in Table 2.2.

560 klystrons are required for the two main linacs. Each will feed an “RF unit”

consisting of three cryomodules, see Figure 2.2.

Figure 2.2: RF Unit layout, from [16].

The klystrons are partnered with low level RF systems and modulators in order

to ensure stable operation and to regulate the cavity fields. At the time of the

RDR the design incorporated the power supply systems housed in a parallel service
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Parameter Specification

Frequency 1.3 GHz

Peak Power Output 10 MW

RF Pulse Width 1.565 ms

Repetition Rate 5 Hz

Average Power Output 78 kW

E�ciency 65 %

Saturated gain � 47 db

Instantaneous 1 db BW 3 MHz

Cathode Voltage  120 kV

Cathode Current  140 A

Power Asymmetry � 1%

Lifetime >40,000 hours

Table 2.2: Klystron Parameters.

tunnel in order to reduce radiation exposure and facilitate maintenance, however,

the separate service tunnel has since proven too costly an option [21].

2.3.2 Cavities

The main linacs cavities are superconducting niobium cavities made up of 9 cells.

They are known as TESLA cavities, their design is an evolution of that used in the

FLASH (“the Free-Electron Laser in Hamburg”) light source at DESY. FLASH was

previously named the TESLA Test Facility and, as the name suggests, it was the

technology test bed for the proposed “TeV Energy Superconducting Linear Accel-

erator” from which the cavities get their name. The cavities are asymmetric due to

the presence of an input coupler and two higher order mode (HOM) couplers, which

serve to damp higher order modes excited by the passage of the beam. Further, to

avoid HOM trapping, the end cells are of di↵erent designs, as shown in Figure 2.3.

Chapter 5 contains a detailed discussion of the factors influencing the design of the

TESLA cavities, as well as the alternative design candidates, the Reentrant and the
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Figure 2.3: Photograph of a TESLA cavity. Adapted from [23].

Ichiro cavities.

Prior to installation each cavity is evaluated in a vertical test stand. Cavities

must reach a stable gradient of 35 MV/m and a Q value in excess of 0.8 ⇥ 1010.

Ensuring a high yield in industrial fabrication of these cavities is the subject of

significant ongoing research around the world. A major part of the move to industrial

processes is the construction of XFEL at DESY (“the European X-ray Free Electron

Laser”). XFEL will be a high frequency light source based on a linac containing

⇠ 800 TESLA cavities [22].

2.3.3 Focussing

Each of the 1680 quadrupole magnets of the main linac has horizontal and vertical

dipole correctors and a cavity beam position monitor, operating in the L-Band1, in

order to enable focussing of the beam. The main linac lattice uses weak focussing

FODO optics with a quad spacing of about 38 m, which corresponds to one quad

per RF unit. The lattice functions are not perfectly regular, due to the aperiodicity

of the cryogenic system, and there is a mean phase advance per cell of 75� and 60�

in the horizontal and vertical plane respectively. The tune split of 15� between the

horizontal and vertical planes reduces the coupling of the horizontal polarization of

the cavity dipole mode kicks into the vertical plane, thus preserving the very low

emittance ✏
y

required [25].

The main linacs do not have equipment for intra-train trajectory control neither

is the energy or energy spread measured in the main linacs. Both, the trajectory

1See details of an example design from the CEA Saclay group [24].
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control implementation and the energy diagnostics are performed at the beginning

and end of the linac and around the undulator. Dispersion, which is caused by

misaligned quadrupole magnets and pitched RF cavities, produces increased emit-

tance. This is corrected through local steering algorithms with additional correction

achieved through local orbit distortions, which produce measured amounts of dis-

persion in a given phase. These are called “dispersion bumps” [26]. Dispersion

matching and suppression at the beginning and end of the linac and around the un-

dulator are achieved by supplying additional excitation to small umbers of correctors

in “dispersion bumps” configurations.

2.4 Post-linac systems

2.4.1 Beam delivery system

The beam delivery system (BDS) must transport electrons with energies in the

range 100 to 250 GeV from the end of the main linac through to the final focus. It

must preserve the low emittance and orientate each bunch so that they collide with

the maximum luminosity. Further, the beam delivery system must include some

feedback mechanism to ensure collisions occur despite beam jitter, ground motion

etc.

The main subsystems of the BDS are the diagnostics region, which links to the

main linacs, the fast extraction and tune up beamline, the betatron and energy

collimation, the final focus, the interaction region and the extraction line.

The diagnostics region starts at the end of the main linac and is responsible for

measuring and correcting the properties of the beam before collimation. It contains

a skew correction section, emittance diagnostic section and polarimeter with energy

diagnostics. The tune up and extraction systems will detect errant beams and

remove them, thus protecting the systems downstream.

The collimation system removes background produced by particles in the beam

halo. It has a betatron collimator section as well as energy collimators. They can

survive two hits by an errant bunch of 250 GeV or one hit by a 500 GeV beam.

36



2.4. Post-linac systems Chapter 2. ILC machine layout and operation

The system also includes a muon shield to stop muons produced by electromagnetic

showers created by primary particles.

2.4.2 Final focus, interaction region

The final focus system must reduce the beam to the required size at the interaction

point, which is a horizontal length of approximately 639 nm and about 5.7 nm in the

vertical direction. Figure 2.4 shows the final focus optics system. It creates a large

and almost parallel beam at the entrance of the final duplet of strong quadrupoles.

Particles of di↵erent energies will have a di↵erent focal point and therefore a small

energy spread causes significant dilution of the beam size. Hence a series of correc-

tions need to be applied. The final focus is designed to cancel chromaticity of the

final doublet using sextupoles. Synchrotron radiation from the bending magnets re-

sults in emittance dilution so the bending radius must be minimized, particularly at

higher energies. To do this the final focus has su�cient magnets for a centre of mass

energy of 500 GeV. In order to perform all the diagnostics and corrections required

the final focus system includes, besides the final doublet and chromaticity correc-

tions, an energy spectrometer, additional absorbers for the particles which scape the

collimator, tail folding octupoles, the crab cavities and additional collimators which

protect the machine.

Figure 2.4: Final focus optics, from [16].
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Crab Cavities

At the ILC the electron and positron beam lines meet at the IP with a 14 mrad

crossing angle. This is necessary so that the disrupted post-collision beams can be

extracted safely, without passing through each other’s final focussing quadrupole

doublets. In this configuration the collider luminosity is unacceptably reduced by

more than 10% relative to the head-on collision case. This loss can be recovered by

rotating the bunches, in flight, such that they are aligned at the IP [27].

The bunch rotation is achieved by using a deflecting mode RF cavity phased

correctly to provide the rotation without the change in transverse position - a crab

cavity. This is operated at the first dipole mode frequency rather than the monopole

longitudinally accelerating mode. Further details can be found in Chapter 9, where

results of beam dynamics studies including crab cavities at CLIC are presented.

2.5 Collider operating parameters

The ILC will operate with a centre of mass energy in the range 200 � 500 GeV and

with a peak luminosity of 2 ⇥ 1034cm�2s�1. Operational experience from existing

and decommissioned accelerators and colliders suggests that there will be problems

in reaching this ambitious luminosity goal. The RDR, therefore, sets out a number

of parameter sets which, taken together, form a parameter plane for the collider

operation. Each subsystem has been designed such that the machine can be oper-

ated at any point on the plane. Should problems arise with one machine system

which limits its performance another system can be “pushed” harder, tensioning the

system, but enabling the collider as a whole to meet the luminosity goal. Table 2.3

lists the beam parameters for the nominal case alongside the three extreme cases,

(Low N, Large Y and Low P).

2.5.1 “Low N”

Low N refers to the bunch population, N = 2 ⇥ 1010 in the nominal case. While a

larger bunch population is attractive since it increases the luminosity, according to
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Parameter Symbol/Units Nominal Low N Large Y Low P

Repetition rate f
rep

(Hz) 5 5 5 5

Number of particles per bunch N (1010) 2 1 2 2

Number of bunches per pulse n
b

2625 5120 2625 1320

Bunch interval in the Main Linac t
b

(ns) 369.2 189.2 369.2 480.0

in units of RF buckets 480 246 480 624

Average beam current in pulse I
ave

(mA) 9.0 9.0 9.0 6.8

Normalized emittance at IP �✏⇤
x

(mm·mrad) 10 10 10 10

Normalized emittance at IP �✏⇤
y

(mm·mrad) 0.04 0.03 0.08 0.036

Beta function at IP �⇤
x

(mm) 20 11 11 11

Beta function at IP �⇤
y

(mm) 0.4 0.2 0.6 0.2

R.M.S beam size at IP �⇤
x

(nm) 639 474 474 474

R.M.S beam size at IP �⇤
y

(nm) 5.7 3.5 9.9 3.8

R.M.S bunch length �⇤
z

(nm) 300 200 500 200

Disruption parameter D
x

0.17 0.11 0.52 0.21

Disruption parameter D
y

19.4 14.6 24.9 26.1

Beamstrahlung parameter ⌥
ave

0.048 0.050 0.038 0.097

Energy loss by beamstrahlung �
BS

0.024 0.027 0.017 0.055

Number of beamstrahlung photons n
�

1.32 1.48 2.18 1.64

Luminosity enhancement factor H
D

1.71 1.48 2.18 1.64

Geometric luminosity L
geo

1034 cm�2s�1 1.20 1.35 0.94 1.21

Luminosity L 1034 cm�2s�1 2 2 2 2

Table 2.3: Beam and IP parameters for 500 GeV centre of mass.

Equation 1.4, intense bunches pose problems in the machine. High bunch popula-

tions may cause microwave instabilities in the damping rings and raise the possibility

of single bunch short range wakefield problems in the main linacs. Further, at the IP

a large disruption parameter can cause a kink-instability or undesirable beam-beam

e↵ects - a problem for both IP feedback and for the extraction systems. In such

cases operational conditions may require reducing the bunch population.

In the Low N set the N is reduced to 1⇥1010 with a corresponding shrink in the

length of the bunches and is compensated by doubling the number of bunches in a

train, with half the bunch spacing. The beam current is kept constant. Stronger
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focussing at the IP maintains the nominal luminosity.

In this parameter set the reduced bunch spacing places higher demands on the

damping ring extraction kicker as well as the bunch compressor section. Multi-bunch

collective e↵ects are also enhanced.

2.5.2 “Large Y”

Large Y refers to operating with the vertical emittance, ✏
y

, at the IP greater than

the 4 ⇥ 10�8m · rad specified in the nominal case. Tuning problems in the damping

ring or beam delivery system may result in an increased emittance. Main linac

wakefields also have the potential to cause emittance dilution and will be discussed

in detail in Chapter 4. The design luminosity is recovered with stronger focussing

in the horizontal plane at the interaction region and by increasing the bunch length

to o↵set increased beamstrahlung.

2.5.3 “Low P”

Problems achieving the required beam power can be overcome by compensating

reduced beam current with increased IP focussing. Tight focussing is required in

both horizontal and vertical planes, this removes the possibility of increasing the

bunch length to o↵set beamstrahlung, as a result detector backgrounds will likely

be increased in this scenario.

2.6 Summary

This chapter has detailed the various systems required to produce and maintain a

high quality beam for the ILC, as described by the ILC Reference Design Report.

Section 2.5 shows that the operational state of the collider will be the result of

continual luminosity optimization by tensioning the various collider systems against

each other. In this way the optimal luminosity will be delivered at all times.

In the next chapter the systems of the CLIC machine will be briefly introduced

and major di↵erences highlighted.

40



Chapter 3

CLIC Overview

The Compact LInear Collider (CLIC) is an international collaboration hosted at

CERN and has been under R&D for over 20 years. The project proposes a Linear

Collider that will operate at higher energies than the ILC, being designed to reach

a centre of mass energy of 3 TeV.

The current design includes 42 km of main linacs equipped with normal con-

ducting copper cavities operating at a frequency of 12 GHz which can achieve an

accelerating gradient of 100 MV/m. Such high accelerating field gradients present

technological challenges; the cavity structures are highly susceptible to electrical

breakdown and long-range wakefield e↵ects. Initial studies showed that a high oper-

ating frequency would allow for very high gradients [28, 29] and hence an operating

frequency of 30 GHz was first proposed. However, the di�culties in sourcing power

to achieve 3 TeV, which would require several thousand klystrons steered the project

towards a novel scheme - Two Beam Acceleration (TBA) [30, 29]. In this scheme a

low energy high current beam called the drive beam is decelerated in order to extract

energy to accelerate the main beam. Studies performed at the CTF3 (CLIC Test

Facility), located at CERN, and data collected from NLC/JCL on cavity and related

beam parameters were used to determine the best RF frequency and gradient to be

used at CLIC. This optimisation process established a gradient of 100 MV/m and a

frequency in the vicinity of 14 GHz. In order to be able to use the testing facilities at

CFT3 [31] and to benefit from the R&D already performed for the abandoned NLC

and JLC it was decided to choose a frequency of 11.9942 GHz. All other subsys-

tems and parameters were chosen to be consistent with this requirements. Table 3.1
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Parameter Symbol Value Unit

Centre of mass energy E
CMS

3000 GeV

Main Linac RF frequency f
rf

11.994 GHz

Luminosity L 5.9 ⇥ 1034 cm�2s�1

Luminosity (in 1% of energy) L99% 2 ⇥ 1034 cm�2s�1

Linac repetition rate f
rep

50 Hz

Number of particles per bunch N 3.72 ⇥ 109

Number of bunches per pulse N
b

312

Bunch separation �t
b

0.5 (6 periods) ns

Bunch train length ⌧
train

156 ns

Beam power / beam P
b

14 MW

Unloaded / loaded gradient G
un/l

120/100 MV/m

Overall two linac length l
linac

42.16 km

Total Beam delivery length l
BD

48.4 km

Total site AC P
tot

582 MW

Table 3.1: Overall CLIC parameters [7].

summarises the main parameters for CLIC .

3.1 Comparison with ILC

Figure 3.1 shows a schematic of the overall CLIC machine layout for the 3 TeV case.

While many systems are familiar from the ILC design, see Figure 2.1, there are a

number of novel systems. The bulk of the new systems concern the Drive Beam

creation and the power extraction and transfer structures (PETS). The low energy

but high current drive beam is created by interleaving and combining sub-pulses,

using the Delay Loop and Combiner Rings into single large, highly intense, bunches.

The drive beam is generated at the centre of the complex and sent via long transfer

lines to the end of the main linac. The beam consists of 24 short bunch trains of

243.7 ns length with a spacing of 60 cm. The total length of the drive beam for
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Figure 3.1: Schematic of the overall layout of CLIC for 3 TeV centre of mass

[32].

one acceleration is 140 µs and the total current at this stage is 4.2 A. This pulse is

input into the delay loop where even and odd buckets of the bunches are separated

using an rf deflector. Each even bunch is delayed with respect to the following odd

bunch by 240 ns. A second rf deflector recombines the bunches thus producing a

final bunch whose intensity is increased by a factor of two. This process is shown in

Figure 3.2. A similar process takes place on the combiner rings where interleaving

the bunches finally leads to an increase by a factor of four. In this way a low energy

high current (101 A) beam is available at the linac entrance to power the main

accelerating structures.

RF power is extracted from the beam by Power Extraction and Transfer Struc-

tures (PETS). When the beam passes through an RF structure it will excite RF

fields in this structure, thus losing some of its kinetic energy. The beam excited

field in the PETS is sent via waveguides to the accelerating structures in the main

beam. Each of the 35,784 PETS is designed such that it extracts 136 MW peak

power, enough to feed two accelerating structures.

On the Main Beam side, the beam which is used for particle physics studies, the

arrangement is closer to that of the ILC, although there is an extra Pre-damping
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Figure 3.2: Full drive beam complex (not to scale)[7].

ring [33]. Electrons and positrons with energy of 2.4 GeV are injected into the two

sets of damping rings, the pre-damping and the damping rings in order to reduce

bunch emittance. Then the beams pass through the bunch compressor where bunch

lengths are reduced in a two stage process. At the entrance to the main linac the

bunches have a length of 44 µm and an energy of 9 GeV.

The operating regime is very di↵erent to that of the ILC. The CLIC cavities

operate at 12 GHz and have iris sizes of just 4 mm, compared to 35 mm for TESLA

cavities. The bunch train consists of 312 bunches separated by 0.5 ns. Compared

to ILC’s 2625 bunches and 369 ns spacing. In the CLIC regime the reduced iris

dimension results in a much more intense wakefield (see Chapter 4). Equally the

very short spacing between bunches necessitates very strong higher order mode

damping in order to suppress the long range wakefields.

The beam delivery system is similar in design to that of the ILC, bringing the

low emittance bunches to an interaction point with a crossing angle of 20 mrad. The

presence of the crossing angle in the design leads to the inclusion of a crab cavity

system to rotate the bunches prior to collision, just as in the ILC. Crab cavities are

discussed in more detail in Chapter 9.
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3.2 Summary

This chapter has presented a brief overview of the CLIC main systems, su�cient

to point out the major di↵erences with respect to the ILC. In the next chapter

wakefields are described in detail. This is the theory which underpins the results

presented in this thesis.
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Chapter 4

Wakefields

Wakefields have the potential to seriously degrade the quality of a charged parti-

cle beam by deflecting particles o↵-axis. Adequate control of cavity wakefields during

acceleration is essential to maintaining a low emittance, high luminosity beam for

future linear colliders. Here we introduce the theory underpinning the research pre-

sented in this thesis. Calculations of the wakefields described here will be presented

in Chapter 7.

4.1 Introduction to Wakefields

An observer situated at a distance b perpendicular to the trajectory of a point charge

q moving in free space with velocity v near the speed of light will measure a Lorentz

contracted electromagnetic field. The longitudinal and transverse components of

the field carried by this relativistic point charge can be expressed as [34]:

Ek(b, t) = � q

4⇡✏0

�vt

[b2 + (�vt)2]2/3
ek,

E?(b, t) =
q

4⇡✏0

�b

[b2 + (�vt)2]2/3
e?,

B?(b, t) =
1

c2
v ⇥ E?(b, t),

where the relativistic factor � is defined by � = 1p
1�(v/c)2

, E is the electric field,

B the magnetic, e? and ek are unit vectors perpendicular and parallel to the beam

axis z.
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Figure 4.1: A charge q moving with velocity v crosses the observation point O

at a distance b.

The amplitude of the transverse electric field, as seen by the observer, is an even

function of time and it reaches its peak value when the particle crosses the point O,

which is labelled t = 0 in Figure 4.1

E?(b, 0) =
q

4⇡✏0

�

b2
e?, (4.2)

which is dependent on the relativistic factor.

The longitudinal field is an odd function of time and it reaches its peak value for

the time interval

�t ⇡
p

2

2

b

�v
. (4.3)

The value of the maximum amplitude is

Ek(b,�t) =
q

4⇡✏0

2
p

2

33/2b2
ek, (4.4)

which is independent of the relativistic factor �. Therefore the opening angle of

the resultant electric field, ✓, is given by

tan ✓ =
Ek

E?
(4.5)
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Figure 4.2: Electric field associated with a relativistic point charge moving in

free space with velocity v.

and hence for relativistic particles, � � 1, this angle is of the order of 1/�.

In the ultra-relativistic limit, when v ! c and hence � ! 1 the field becomes a

Dirac - delta distribution with a magnetic and an electric component in the trans-

verse direction

E =
q

2⇡✏0r
�(z � ct)e?, B =

1

c
E. (4.6)

The electromagnetic distribution described in Equation 4.6 is the distribution

produced by a charged particle travelling in free space. The field is perpendicular

to the trajectory with no field either in front or behind the charge. Therefore, a

second particle, or a bunch, moving behind on the same or a parallel trajectory

within an small distance will experience no forces from the fields produced by the

leading charge.

When the charged particles are not moving in free space the situation changes.

In the linacs of the ILC electron and positron beams travel through accelerating

cavities. The field produced by the first charge, the driving charge, is scattered
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Figure 4.3: Wakefield generated when a Gaussian bunch passes a change in ge-

ometry. Shown at three di↵erent times. This figure was produced

using the code ECHO-2D [36].

by geometrical discontinuities in the cavity. The particles travelling behind, the

trailing particles, are then a↵ected by the scattered radiation. These scattered

fields, examples of which are shown in Figure 4.3, are defined as wakefields and have

both longitudinal and transverse components [14].

There can be other sources of wakefields besides geometric discontinuities. The

non-vanishing resistivity of the walls of the cavities gives rise to resistive wake-

fields [35]. In a perfect conductor the transverse electric field lines terminate on

surface charges on the walls, and these charges move in synchronism with the driv-

ing charge. The resistivity of the metallic walls means that the surface charges will

lag slightly behind. The magnetic field and the surface currents will di↵use into the

cavity walls and hence a↵ect the passage of the trailing both in the transverse and

longitudinal direction. The integrated e↵ects of these wakefields over a given path

for the trailing charges give rise to longitudinal and transverse wake potentials.

4.2 Causality and The “Catch-up” Distance

The e↵ects of the wakefield produced by scattering from discontinuities in the cavity

walls on the trailing charges will depend on the distance separating the driving and

test particles and their velocity.

The wakefield produced by an ultra-relativistic particle (v ⇡ c) by scattering

from a small metallic obstacle is shown in Figure 4.4. For a test particle, moving a

distance s behind the driving charge, to experience the radiated wakefield it has to
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Figure 4.4: Field of a relativistic particle moving along the z�axis and field

scattered by a perturbing metallic object.

reach position z
c

. This “catch-up” distance is given by [14]

z
c

⇡ b2 � s2

2s
(4.7)

and for a small distance s it can be significantly large. At the ILC, taking s to

be the RMS bunch length of 300 µm and b = 35 mm, the beam pipe radius at the

entrance to an accelerating cavity, the catch-up distance z
c

= 2.04 m. This implies

that fields scattered due to the head of the bunch will not interact with the tail of

the bunch until the bunch has exited the cavity itself.

Causality implies that there can be not disturbance ahead of a charged particle

traveling at the speed of light [37]. However, for particles moving with a speed

v < c an electromagnetic field exits ahead of the driving charge. The wake potential

derived for a particle moving at speed v = c can be practical for ultra-relativistic

particles with a relativistic factor � large enough so that over the times of interest the

distance traveled the radiation ahead of the charge is small compared to the bunch

lengths [35]. Thus, taking into account the finite nature of �, one can calculate the

distance for the scattered radiation to catch up to the exciting charge itself, which

is given by:

b2 + z2
c

= z2
c

/�2 (4.8)
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or,

z
c

⇡ �b. (4.9)

4.3 Wakefield e↵ects and Wake potentials

In the study of beam dynamics one is normally more interested in the integrated

e↵ect of the wakefield produced by the driving charge on the trailing particles as they

both pass through a structure, than in the details of the wakefields themselves. These

integrated e↵ects are defined as the wake potentials. The e↵ects of the transverse

and longitudinal wake potentials are usually studied separately since the motion

of charged particle in the transverse and longitudinal planes is, to a very good

approximation, decoupled [38, 39].

The longitudinal wake potential is the integrated e↵ect of the electric field cre-

ated by a driving charge on a unit trailing charge. The transverse potential is the

transverse momentum kick experienced due to the deflecting fields. These potentials

are sometimes referred in the literature as wake functions or delta wake potentials,

defined as the wake potential per unit charge, which defines a Green’s function for

the potential (see Appendix A).

The e↵ects of the wakefields on the trailing particles depends on the distance

between the driving and the test particle, as illustrated in Section 4.2. In the linacs

of the ILC particles are grouped in bunches, with bunches separated by ⇠ 100 m.

Hence, at small distances one is looking at the e↵ect of the driving charge on the

charges within the same bunch. This is what is called the short-range wakefield and

it mainly a↵ects the shape of the bunch producing an increase in the emittance.

Long-range wakefields a↵ect the bunches trailing behind the leading bunch and will

be the main concern of the work presented in this thesis.
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4.3.1 Longitudinal Wake potential

The integrated longitudinal field seen by a test charge at a distance s behind a

driving charge q is given by:

Wk(r, r
0, s) = �1

q

Z
z2

z1

dz E
z

(r, z, t)
t=(z+s)/c , (4.10)

where r, r0 represent the transverse o↵set of the test and driving charge respectively

and both particles are moving parallel to the z axis. The driving charge enters the

cavity at z = 0 and exits at z = L and the test particle enters at z = z1 and exits

at z = z2.

This potential represents the response to a point a charge and can be used as the

Green’s function to calculate the potential within and behind a line density charge

distribution with charge density �(s) (see Appendix A) [14]

Vk(s) =

Z 1

0

ds0 �(s � s0) W
z

(s0) =

Z
s

�1
ds0 �(s0) Wk(s � s0) (4.11)

This longitudinal bunch potential is used to calculate the total energy lost by

the driving charge to the wakefield

�U =

Z 1

�1
ds �(s) Vk(s) =

Z 1

�1
d⌧ I(⌧) Vk(⌧), (4.12)

where ⌧ = s/c = t � z/c and I(⌧) = c�(s) is the current flow within the charge

distribution. It is usual to define the loss factor, which represents the energy lost

per unit charge square:

k
�

=
�U

q2
. (4.13)

The wake potential can be calculated by solving Maxwell’s equations either in

the time or in the frequency domain. Because the wakefield in the time domain far

behind the bunch requires significantly increased computational e↵orts the frequency

domain is usually chosen. A method for calculating the wakefields in a charge free

cavity was introduced by Condon [40] and has been widely used. In the Condon

method the vector and scalar potentials for the driving charge are expanded in terms
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of the potentials for the normal modes of the cavity using the Coulomb gauge. The

details of the Condon method are shown in Appendix B. Using this method one

finds the following expression for the wake potential and the loss factor :

Wk(s) = A
X

�

k
�

cos(
!
�

s

c
)

8
>>><

>>>:

A = 0 s < 0

A = 1 s = 0

A = 2 s > 0

(4.14)

with

k
�

=
|V

�

|2

4U
�

. (4.15)

4.3.2 Transverse wake potential

The transverse wake potential is defined as the transverse momentum kick experi-

enced by a test charge moving a distance s behind a driving charge q following the

same path.

W?(r, r0, s) =
1

q

Z
z2

z1

dz (E? + c(e
z

⇥ B)
t=(z+s)/c (4.16)

As in the case of the longitudinal potential W? can be used as a Green’s function

for transverse momentum kick per total charge within an ultrarelativistic bunch

V?(s) =

Z 1

0

ds0 �(s � s0) W?(s0) =

Z
s

�1
ds0 �(s0) W?(s � s0) (4.17)

The transverse quantity analogous to the loss factor is the transverse impulse

factor defined by:

k? =
1

q2

Z 1

�1
ds �(s) V?(s) (4.18)

The total momentum kick experience by the charge distribution is p? = q2k?/c.

Similarly to the case of the longitudinal potential the Condon method can be

used to obtain an expression of the transverse wake potential in terms of the sum

of the eigenmodes of the cavity:
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W?(s) = A
X

�

k
�

!/c
sin(

!
�

s

c
)

8
>>><

>>>:

A = 0 s < 0

A = 1 s = 0

A = 2 s > 0

(4.19)

Panofsky and Wenzel, in 1956, provided another method of calculating the trans-

verse wakefield [41]. The result is outlined in Appendix C. With it we can derive

the transverse fields directly from the longitudinal wake, this technique is employed

in many simulation codes.

It is worth noting that the potential experienced by the driving charge due to the

fields it induces is not equal to that experienced by the trailing charges or bunches.

The two are related by the Fundamental Theorem of Beam Loading, derived in the

following section.

4.3.3 Fundamental Theorem of Beam Loading

The fundamental theorem of beam loading relates the energy lost by a charge passing

through a cavity to the electromagnetic properties of modes of the cavity. Super-

position tells us that the beam induced voltage in a cavity is independent of the

presence of a generator voltage component, and therefore this theorem can be used

to calculate the e↵ective voltage acting on a bunch when both a generator voltage

and a beam induced voltage are present.

Consider two charges traveling through a cavity separated by a distance equal to

half the wavelength of the cavity. The driving charge q crosses an unexcited cavity

and generates a voltage. After the charge has passed a beam induced voltage V
b

and

a corresponding stored energy remain in each mode.

V
c

= �V
b

, (4.20)

where V
c

is the cavity voltage. By energy conservation the energy lost by the particle

must be equal to the work done (W ) by the induced voltage on the charge.

W = qV
b

(4.21)
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The induced stored energy is:

U = ↵V 2
b

(4.22)

where ↵ is a proportionality constant. Assuming that the potential experienced by

the driving charge itself, V
e

, is some fraction, f , of the induced voltage V
b

V
e

= fV
b

(4.23)

we obtain

U = ↵V 2
b

= W = qfV
b

(4.24)

Half a period later when the second charge enters the cavity the voltage induced

by the driving charge has changed it phase by ⇡ so now V
c

= V
b

and therefore no

stored energy will remain in the cavity. The voltage induced by the trailing particle

( V
b2) adds to the first induced voltage to give a total voltage seen by the second

charge. Assuming as before that the charge experiences a fraction f of its induced

voltage V
b

W2 = �qfV
b2 + qV

b

(4.25)

Applying conservation of energy and taking into account that V
b

= V
b2 we get:

W1 + W2 = �qfV
b

� qfV
b

+ qV
b

= 0 (4.26)

which gives f = 1/2 and thus

V
e

=
V
b

2
. (4.27)

The fundamental theorem of beam loading tells us that the potential, V
e

, experi-

enced by the driving charge, or bunch, is half of that the seen by the trailing charge,

or bunch.

In the next section we will consider the details of the fields acting on trailing

particles with a bunch.
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4.3.4 Short-Range Wakefields

The wake potential induced by the driving charge of a bunch a↵ects the trailing

charges within the bunch, this is the e↵ect of the short-range wakefield or intra-bunch

wakefield. The bunch will experience both longitudinal and transverse fields. The

longitudinal short-range wakefield changes the energy of the charges. An increase of

the energy spread of the bunch results from the longitudinal wakefield’s dependence

on the charge positions. The transverse wakefield tends to deform the shape of the

bunch and the combined e↵ects of the fields lead to an increased emittance and

hence to a decrease in the luminosity.

The main contributions to the transverse wakefield come from dipole modes

and are inversely proportional to the square of the average aperture radius of the

accelerating cavities [42, 43]. For quadrupole modes the field will depend on the

fourth power [44].

At the short time and distance intra-bunch scales accurately calculating the

wakefield according to Equation 4.19 requires knowledge of a very large number of

modes, to very high frequency. In all but the simplest cases we must employ codes

to calculate these modes numerically, so the computational demands are extreme.

Further, as we will see in Chapter 6, the solution accuracy degrades as modes become

higher in frequency, for a fixed mesh size. If we must work in the frequency domain

then the lower part of the mode spectrum, calculated with e.g. a finite di↵erence

code can be supplemented with high-frequency dependence derived from the Optical

Resonator Model due to Sessler and Vaynstein as described in [45, 46]. This is an

application of theory used extensively in laser physics [47] to describe the di↵raction

of light trapped between two mirrors - the resonator. Here the analogous system is

the array of cavity irises and the wake function has been calculated by Bane [48].

Its application is beyond the scope of this thesis and the reader is directed to the

book by Zotter [49].

Intra-bunch e↵ects are of particular concern where the catch-up distance is small,

such as in collimator structures. Here the bunch passes extremely close to the metal

surface and the frequency domain, modal summation, approach is not appropriate.
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The solution here, as for the previously mentioned cavity case in the high frequency

limit, is make use of a time domain code and calculate the wakefield response to

the passage of a charged bunch directly. Many codes are available, notably GdfidL,

ECHO [36] and ABCI [50].

In the next section we will consider the wakefield e↵ect of one bunch on the

following bunches.

4.3.5 Long-Range Wakefields

The power law described in the previous section marks the di↵erence between physics

in the ILC linacs and in CLIC for example. With an iris radius of 35 mm for TESLA

cavities and the order of 4 mm for CLIC 12 GHz cavities the wakefields are much

more intense in the case of CLIC [51]. However, there is another factor to consider.

At CLIC bunch trains have approximately 100 bunches, compared to ILC’s nominal

of 2625 bunches in a single train. Bunches are separated by 369 ns (110.7 m) at

ILC leading to a beam train which, unwrapped, would be 290 km long. This truly

is the regime of the bunch-to-bunch long-range wakefield where a limited number

of dominant modes contribute. The vast majority, adding with arbitrary phases,

approximately cancel each other out [49].

To ease calculation and to provide a more natural measure we often work with

dipole mode “kickfactors” K. This has units of V/C/m/m and is quoted per unit

length of iris radius, per unit length of the cavity in V/C/mm/m. The kickfactor is

defined thus:

K =
|V |2

4U !

c

Lr2
(4.28)

For s > 0 Equation 4.19 now becomes [52]:

W?(s) = 2
X

�

K
�

sin
⇣!

�

s

c

⌘
exp

✓
�!

�

s

2Q
�

c

◆
(4.29)

where we have also taken account of damping due to natural losses and external

coupling. Q
�

is the quality factor for the mode � given by the ratio of the energy

stored in the mode to the energy lost in a single cycle (multiplied by 2⇡).

For superconducting cavities these quality factors can be extremely large, of

the order of 106. This is beneficial for the e�ciency of the collider in the case of
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the fundamental operating mode (Q is even higher here at 1010) but high Qs for

deflecting modes can cause serious problems, including beam break up (BBU) [52].

The leading bunch dumps energy into the cavity, exciting the continuum of dipole

modes, and then exits to continue down the linac. The modes excited continue to

‘ring’ in the cavity with their distinct frequency. Trailing bunches arrive some time

later, in principle many cycles for the dipole modes, but energy remains in the

transverse fields.

Another useful quantity often quoted for dipole modes is the R/Q. It is related

to the loss factor and kick factor and quoted in units of Ohms per cm2:

R

Q
=

1

r2

2kloss(r)

!
(4.30)

The next chapter introduces the designs for the Reentrant and Ichiro accelerating

cavities, as well as the nature of the superconducting Niobium material which leads

to their particular geometry. The perturbations to the beam line which these cavities

represent are responsible for generating the wakefields discussed above.
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Chapter 5

Superconducting Cavity Design

Superconducting cavity technology o↵ers significant advantages over the normal

conducting room temperature copper cavities, however, the nature of the super-

conducting material Niobium requires careful work to produce an optimal cavity

geometry and required surface morphology. Cavities which maximise the accelerat-

ing gradient despite the limitations which will be discussed in this chapter. Here

we will discuss the properties of Niobium, fabrication techniques, emission of elec-

trons from cavity walls due to high surface electric field, localized temperature rise

and quenching. The cavity designs of particular interest in this thesis, namely the

TESLA , Ichiro and Reentrant cavities, have arisen when focus on one or more of

the above e↵ects has driven the design process.

5.1 Superconductivity in Niobium

At room temperature Niobium metal is a poor electrical conductor but cooling

the metal to below a critical temperature, T
C

= 9.2 K, allows superconducting

behaviour according to the BCS theory [53]. At this temperature electrons near

the Fermi surface experience an attractive force due to the interaction with the

lattice, which binds them in pairs, called Cooper pairs [54]. These pairs can be

regarded as new particles with boson-like properties, rather than fermions which

must obey the Pauli exclusion principle, and thus the pairing opens a gap in the

energy spectrum of the electrons, �(0). This energy gap inhibits the interactions

which cause electrical resistivity and therefore for su�ciently low temperatures,
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i.e. temperatures such that the thermal energy is less than the band gap, the

material exhibits zero resistivity. Since the number of unpaired electrons decreases

exponentially with temperature according to the BCS theory the surface resistance

in the proximity of the critical temperature can be expressed as [55]:

RBCS(T ) = A
s

!2 exp

✓
��(0)

k
B

T

◆
, (5.1)

where A
s

is related to the properties of the specific material, ! is the operating

frequency and k
B

is the Boltzmann constant.

In the superconducting state the DC (direct current) resistance is zero however

there is still an AC (alternating current) resistance. The source of this resistance

is an interaction between the superconducting Cooper electron pairs and their nor-

mal counterparts in the metal surface which dissipates energy and it is therefore

dependent on the operating temperature. It can be expressed as the sum of the

temperature dependent resistance, R
BCS

, and a temperature independent residual

surface resistance:

R
s

(T ) = R
BCS

+ R0, (5.2)

The residual surface resistance R
s

depends on the residual magnetic field and

the purity of the material. Impurities in the material a↵ect not only its resistivity

but also its thermal conductivity. A parameter used to indicate the purity of a

superconductor is the Residual Resistivity Ratio (RRR), which is defined as the

ratio of the resistivities at room temperature to that at liquid helium temperature

(4.2 K)

RRR =
⇢300K

⇢4.2K

. (5.3)

The higher the value of RRR the higher the purity of the material.

The thermal conductivity, � of niobium at cryogenic temperatures varies with

RRR as:

�(4.2K) ⇡ 0.25 RRR, (5.4)
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The thermal conductivity is strongly dependent on the temperature, decreasing

by about an order of magnitude for a temperature change from 4 K to 2 K. A good

thermal conductivity is important in the choice of material since the heat produced

at the inner cavity surface has to be evacuated to the helium bath. A niobium purity

of RRR = 300 was chosen for the ILC cavities [16].

Another important feature of the behaviour of superconducting materials suc-

cessfully explained by the BCS theory is the Meissner e↵ect [56, 57]. Magnetic field

is expelled by material which is superconducting but only up to a critical field limit.

Once the field limit is reached the superconductivity breaks down and the material

becomes normal conducting once more. Large electric currents, induced by the RF

field in the cavity, then cause Joule heating in this normal conducting region, which

warms the surrounding material - again causing superconductivity to break down.

In this way a critical loss of superconductivity rapidly occurs - this is known as a

“quench”. For a typically prepared Niobium sample this critical surface magnetic

field (H
crit

) is observed experimentally in the range 165 to 185 mT, though the

theoretical limit is higher at 230 mT [58].

5.2 Figures of Merit

The primary aim for all physicists and engineers designing accelerating cavities for

the ILC is to maximise the accelerating gradient E
acc

. The length of the main linac

tunnel and the number of cavities required to generate the 250 GeV beams is the

main cost driver for ILC. Therefore, even a modest improvement in reproducible

accelerating gradient could represent a significant cost saving.

The peak surface electric field (E
pk

) and the peak magnetic field on the surface

(H
pk

) are the factors limiting the achievable gradient [55]. Both quantities increase

proportional to the maximum E
acc

. The geometry of the cavity determines the

constant ratios E
pk

/E
acc

and H
pk

/E
acc

- these are the figures of merit used.

The TESLA cavity shape was optimized, in the first instance, to minimize

E
pk

/E
acc

to reduce field emission of electrons, which rises exponentially with E
pk

.

There is, however, no known critical limit to the surface electric field at which su-
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perconductivity breaks down. Multiple cavities have been operated since 1992 with

E
pk

in excess of 100 MV/m [59, 60, 61]. Practical, repeatable control of field emis-

sion has been achieved through improved cavity preparation “recipes”. Processing

includes high pressure water rinsing to remove surface particulate contamination

[62] and electropolishing to achieve an ultra-smooth inner surface [63].

Designs which seek to reduce H
pk

have become common since 2002. Reports

from Cornell proposed a Reentrant shape [64, 65] and separately a “Low Loss”

shape was proposed by JLAB for the upgrade to the CEBAF linac [66]. Although

operating at a di↵erent frequency the geometry has been scaled down to match 1.3

GHz dimensions and forms the basis for the Ichiro design.

Emax

acc

=
H

crit

H
pk

/E
acc

(5.5)

Equation 5.5 relates the maximum achievable accelerating gradient to the critical

surface magnetic field and the ratio H
pk

/E
acc

determined by the cavity geometry.

We can either increase the critical field sustainable, by switching a di↵erent material

such as Nb3Sn, or change the cavity geometry such that H
pk

/E
acc

is reduced.

5.3 TESLA cavity

Cavity shape parameter Symbol Midcup Endcup1 Endcup2

Equator radius R
equat

103.3 101.3 103.3

Iris Radius R
iris

35 39 39

Radius of circular arc R
arc

42.0 40.3 42

Horizontal half axis a 12 10 9

Vertical half axis b 19 13.5 12.8

Length l 57.7 56.0 57.0

Table 5.1: Half cell shape parameters for the TESLA cavity. Dimensions are in

mm.

The TESLA cavity is made up of three types of elliptical cell. Of the 9 full cells,

the inner 16 half-cells are identical. The dimensions are listed in Table 5.1 under the
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title “Midcup”. The outer half-cells at each end of the cavity are custom designs

and leave the cavity longitudinally asymmetric in order to promote dipole mode

damping.

The contour of each cell is made up of a circular arc at the equator (the widest

part of the cell) and an elliptical section at the iris (the narrowest). The two curves

are smoothly linked by a straight section which is tangent to both curves.

The contour is sketched in Figure 5.1. The TESLA cavities are the base-line for

Figure 5.1: Sketch showing the contour of the TESLA cavity cells.

the ILC, operating with a peak gradient of 35 MV/m and sustained performance of

31.5 MV/m.

5.4 Reentrant cavity

There are multiple Reentrant cavity designs for 1.3 GHz operation. The design

simulated in this thesis originates from a paper by Luk, Shemelin & Myakishev

[67]. The cell parameters are listed in Table 5.2. This is a longitudinally symmetric

design, with iris radius matching that of the TESLA cavity at 35 mm. The contour

is shown in Figure 5.2.

The major feature of the Reentrant designs is that the tangent section present

in the TESLA and Ichiro contours has been eliminated. The contour is made up of

two conjugate ellipses, smoothly matched into each another.
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Cavity shape parameter Symbol Midcup Endcup

Equator radius R
equat

98.710 98.710

Iris Radius R
iris

35 35

Horizontal half axis A 51.56 53.53

Vertical half axis B 36.22 42.79

Horizontal half axis a 9.16 4.59

Vertical half axis b 11.92 7.743

Length l 57.652 56.238

Table 5.2: Half cell shape parameters for the Reentrant cavity. Dimensions are

in mm.

Figure 5.2: Sketch showing the contour of the Reentrant cavity cells. From [67].

In addition, the design simulated in this thesis contained modified end cells in

which the beam pipes had been expanded to 50 mm to improve HOM extraction.

This technique had also been used in the design of the two-cell cavity for the ERL

injector at Cornell [67].

Single cell cavities fabricated at Cornell and KEK have demonstrated gradients

in excess of 47 MV/m.

5.5 Ichiro cavity

The Ichiro cavity contour is displayed in Figure 5.3.
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NEW SHAPES AND RF DESIGN
The discussion of reducing by cavity shape

optimization for a higher potential gradient was published
in 2002 [12][13]. A re-entrant shape consisted of two con-
jugated elliptical arcs was proposed. The reference shape
is that of the center cells of the TTF cavity [4]. A group of
1.3 GHz re-entrant shapes with a reduction in of
up to 13% were given. A graphical comparison of the
re-entrant shape, which has a 10% reduction in ,
and the reference TTF shape is given in Fig. 1. The
iris aperture of the re-entrant shape is 70 mm, identical to
that of the TTF shape. This keeps the wakefield the same.
Simulation studies predicted the existence of a soft two-
point multipacting barrier, very similar to that of the TTF
shape. There is another re-entrant shape design which has
a smaller aperture of 60 mm [14]. The is 35.4
Oe/(MV/m), which is 15% lower than that of the reference
TTF shape.
The so-called “low-loss” shape was initially proposed

in 2002 for the 1.5 GHz cavities for CEBAF 12 GeV up-
grade [15]. It was originally optimized for a higher shunt
impedance ( ) and geometry factor ( ), which means a
lower power dissipation on the cavity surface for the same
cavity voltage and hence a lower cryogenic loss (reason for
dubbing the shape low-loss). The low-loss shape was re-
examined in 2004 as a geometry for higher gradients be-
cause of its lower [10]. The design of the 1.3
GHz low-loss cavity (see Fig.2) was reported shortly at the
first ILC workshop in 2004 [16]. A more comprehensive
report was published in 2005 [17]. Like the TTF shape, the
low-loss contour is consisted of two elliptical/circular arcs

TTF

Re-entrant

3771004-005

Figure 1: Half-cell geometry comparison of a re-entrant
shape and the TTF shape. of the re-entrant shape
is 10% lower.

Low-loss

3770206-001

TTF

Figure 2: Half-cell geometry comparison of the low-loss
shape and TTF shape.

(one at equator and the other at iris) and a straight line seg-
ment in between. Compared to the TTF shape, the low-loss
shape has a smaller (60 mm) aperture and the straight line
segment is more perpendicular to the beam axis.
There is a re-entrant variant called “half re-entrant”

shape [18] [19]. In this case, the single cell is composed
of two asymmetric half cells, one being the TTF/low-loss
type and the other being the re-entrant type. Two half re-
entrant shape designs were proposed, one has a 70mmaper-
ture and the other 58 mm. The half re-entrant shape has an
improved technical advantage of easing the fluid flow and
avoiding gas pockets during the cavity processing, as com-
pared to the re-entrant shape.
RF parameters of the TTF shape and the new shapes are

summarized in Table 1. In summary, as compared to the
TTF shape, the new shapes lower the by 9-15%
at the price of a 10-35% higher .

SINGLE-CELL CAVITY EXPERIMENTAL
RESULTS

Single-cell re-entrant cavity
Cornell University has been conducting experimental

studies of single-cell re-entrant cavities since 2003 [20].
The first 70 mm aperture single cell cavity was built by us-
ing the regular fabricationmethods. Deep-drawn cups were
post purified (boosting the residual resistance ratio of the
niobium from 250 to about 500). Trimmed half cells and
beam tubes were joined at the equator and irises by elec-
tron beam welding. The cavity RF surface was processed
by electropolishing, which is followed immediately by high
pressure water rinsing (HPR). HPR was repeated typically

Figure 5.3: Sketch showing the contour of the Ichiro (Low Loss) cell compared

to TESLA (TTF). From [68].

In this case both the equator region and the iris are defined by ellipses. The two

curves are joined by a straight section perpendicular to the longitudinal axis of the

cavity. The 8 inner cells of this design are identical while the matching end cells

di↵er. The cell parameters are listed in Table 5.3.

Cavity shape parameter Symbol Midcup Outer End Cup Inner End Cup

Equator radius R
equat

98.151 98.835 98.835

Iris Radius R
iris

30 40 30

Horizontal half axis A 50.052 50.052 50.052

Vertical half axis B 34.222 34.906 34.906

Horizontal half axis a 7.60 7.60 7.60

Vertical half axis b 9.945 10.0 9.945

Length l 57.652 57.652 57.652

Table 5.3: Half cell shape parameters for the Ichiro cavity. Dimensions are in

mm.
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5.6 Future Designs

Optimization of the achievable gradients, higher order mode properties and surface

fields continues at various research centres around the world, including the Univer-

sity of Manchester. N. Juntong has developed a “New Low Surface Field” cavity

(NLSF), complete with HOM coupler design, which has improved accelerating mode

bandwidth as well as the crucial low surface fields [69].

5.7 Summary

In this chapter the designs for the ILC baseline accelerating cavities as well as the

alternative high-gradient designs have been described. Namely, the TESLA, Reen-

trant and Ichiro cavities. The properties of the superconducting Niobium material

have been introduced, linking the required performance to the particular cavity con-

tours through the figures of merit used for the optimization. These designs give the

specifications required for electromagnetic field simulations.

In the next chapter the Finite Di↵erence Method is introduced - this is the

technique used to simulate the fields present within the cavities, since no analytic

form is available for such geometries.
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Chapter 6

The Finite Di↵erence Method

The Finite Di↵erence Method is one of many numerical techniques developed

in order to solve problems cast in partial di↵erential equations. In this chapter

the basic techniques used to approximate field derivatives will be introduced and

then applied to Maxwell’s Equations in order to calculate frequencies of waveguide

modes and eigenmodes of a Pillbox Cavity in an axis-symmetric coordinate system.

A major part of the results described in this thesis (see Chapter 7) were calculated

using the code GdfidL which makes use of the Finite Di↵erence Method to calculate

electromagnetic fields in both the frequency and time domains. This chapter serves

as a primer to the method as well as highlighting important areas such as boundary

conditions which must be handled carefully.

In the finite di↵erence method an approximate solution is achieved by represent-

ing the solution domain with a structured mesh of discrete points. The discretization

of the governing equations produces a linear system of simultaneous equations which

may be solved in order to generate the solution value at each point in the mesh. In

contrast with the Finite Element Method the field or solution value is only available

at each mesh point.
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A

B

P

x0 - Dx x0 x0 + Dx

Figure 6.1: Estimated derivatives for the function f(x) at point P .

6.1 Introduction to the Finite Di↵erence Approx-

imation

Originally developed in the 1920s by A. Thom [70] in order to solve nonlinear hydro-

dynamics problems the Finite Di↵erence method has been enthusiastically embraced

as a numerical technique since the arrival of programmable computing systems. The

accuracy of a finite di↵erence solution is related to the mesh spacing employed thus,

as computing power has increased, scientists have become able to model finer detail

to a greater degree of accuracy and in a shorter time. Over time new extensions have

been proposed and newly developed codes have surpassed the performance of their

predecessors but each example is generally based on the numerical approximation

of first and second order derivatives as will be described in this section.

Consider a general, continuous, di↵erentiable function f(x), shown in Figure 6.1.

Three points on the curve A, B and P are marked. We can simply approximate the

derivative of f at the point P by calculating the gradient of the arc AB. This results

in the central di↵erence formula Equation 6.1:

f 0 (x0) ' f (x0 +�x) � f (x0 ��x)

2�x
. (6.1)
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The second derivative of f(x) can also be estimated at point P as

f 00 (x) ' f 0 (x0 +�x/2) � f 0 (x0 ��x/2)

�x

=
1

�x


f (x0 +�x) � f (x0)

�x
� f (x0) � f (x0 ��x)

�x

�
, (6.2)

or more compactly:

f 00 (x0) ' f (x0 +�x) � 2f (x0) + f (x0 ��x)

(�x)2 . (6.3)

The above are first order finite di↵erence approximations to the derivatives of f (x).

Alternatively, a Taylor series expansion of f can be used to obtain higher order

approximations. Although a higher order approximation would improve accuracy

for a given discretization this chapter will be restricted to first order for clarity. In

contrast, the code GdfidL [71] makes use of a higher order scheme (see Chapter 6.5).

In computational problems the function f can be determined in a given range if

the boundary conditions are known. The computation proceeds from the boundary

and calculates the solution at each neighbouring point according to the governing

partial di↵erential equation.

The method described above can be easily extended to two or more dimensions.

6.1.1 Solutions in two dimensions

Consider a new function f (x, t) which has two independent variables. By decom-

posing the solution region of the x � t plane into a series of equal sized square

units, a mesh, the partial derivatives can be calculated a points separated by �x

or �t. Applying the central di↵erence approximation, the derivatives at a point

P (x = x0, t = t0) are

f
x

' f (x1, t) � f (x�1, t)

2�x
(6.4a)

f
t

' f (x, t1) � f (x, t�1)

2�t
(6.4b)

f
xx

' f (x1, t) � f (x0, t0) + f (x�1, t)

(�x)2 (6.4c)

f
tt

' f (x, t1) � f (x0, t0) + f (x, t�1)

(�t)2 (6.4d)
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From the above primitives the finite di↵erence form of a di↵erential equation, such

as the wave equation, can be formed. From this “explicit form” the solution at

a neighbouring point Q can be derived from the value at point P and the whole

region can be solved beginning from the boundary conditions. Meshing involving

square or rectangular cells will easily and accurately model simple geometries made

themselves of rectangular sections. All finite di↵erence meshing techniques will

introduce errors when applied to complex geometries involving curved boundaries,

the computational volume solved will either be too large or, more likely, too small

with the boundary approximated as a “staircase”. The simplest solution is to reduce

the mesh spacing to more accurately map the curve of the boundary at the expense

of a larger computational problem.

In the following sections the above method is illuminated by solving simple Elec-

tromagnetic problems closely related to major e↵ort of this thesis. In Chapter 7

GdfidL has also solved Maxwell’s equations to return fields and modal frequencies

just in three dimensions rather than the simpler case of 2D.

6.2 Maxwell’s Equations

The electromagnetic field in an evacuated cavity or waveguide bounded by perfectly

conducting surfaces, on which there are no surface charges, is governed by Maxwell’s

Equations [34]:

✏0
@E

@t
= r ⇥ H, (6.5a)

r · E = 0, (6.5b)

µ
o

@H

@t
= �r ⇥ E, (6.5c)

r · H = 0, (6.5d)

where ✏0 and µ0 are the permitivity and permeability of free space respectively.

Taking the curl of Equation 6.5c gives

µ0
@

@t
r ⇥ H = �r ⇥ r ⇥ E, (6.6)
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and then using Equation 6.5a to replace the magnetic field gives

µ0✏0
@2E

@t2
= �r ⇥ r ⇥ E. (6.7)

Imposing harmonic fields of the form E = Eei!t��z then Equation 6.7 becomes

µ0✏0!
2E = r ⇥ r ⇥ E . (6.8)

Making use of the vector identity:

r ⇥ r ⇥ V = r (r · V ) � r2V , (6.9)

and dropping the divergence term as required by Equation 6.5b we now have the

Helmholtz or Wave Equation

r2E + µ0✏0!
2E = 0. (6.10)

The following sections will detail the discretization of this wave equation for two

physical problems.

6.3 Rectangular Waveguide Modes

Here we consider a cross-section through an evacuated rectangular waveguide. The

section forms the x-y plane and it is perpendicular to the z-axis. In this case we are

solving for a single field component, either H
z

for Transverse Electric (TE) modes

or E
z

for Transverse Magnetic (TM) modes. We will refer to a single field quantity

� in the following discussion, thus the governing equation becomes

r2�+ k2� = 0, (6.11)

where the wavenumber k is given by

k2 = µ0✏0!
2 � �2. (6.12)

Equation 6.11 describes an eigenvalue problem in which k and � are to be deter-

mined. Each cut-o↵ wavelength �
c

= 2⇡/k
c

has a corresponding eigenmode solution

�
c

which represents the field configuration.
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Figure 6.2: Square 4⇥4 mesh for a waveguide cross-section. The node number-

ing scheme is illustrated.

Solution of this eigenvalue problem with the finite di↵erence method requires

that we discretize the cross-section. Figure 6.2 illustrates the smallest mesh which

will allow demonstration of the key features, a 4 node by 4 node square mesh.

The value of the field at each node �
i

will be determined by solution of the

eigenvalue problem for �. Applying the central di↵erence approximation described

in Equation 6.3 to the cartesian expansion of Equation 6.11 gives

� (i + 1, j) + � (i � 1, j)

+� (i, j + 1) + � (i, j � 1) (6.13)

�
�
4 � h2k2

�
� (i, j) = 0

where �x = �y = h is the mesh spacing and i and j refer to the position of a

particular node within the mesh. For example, the node in the lower left corner of

Figure 6.2 which is at position x = 0, y = 0 has field value �0 = � (0, 0). The node

to its right �1 = � (1, 0) and so on. The above Equation 6.13 applies for the interior

nodes, boundary conditions must be specified separately.
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6.3.1 Boundary Conditions

For TM modes we are solving for E
z

, therefore, on the boundary nodes the field

must be zero since the boundary is a perfect conductor.

�boundary = 0. (6.14)

This is a Dirichlet boundary condition. Similarly, for TE modes in which we are

solving for H
z

there is a Neumann boundary condition on �:

@�

@n
= 0, (6.15)

where n corresponds to the normal derivative across the boundary. Consider Fig-

U

D

RL

Figure 6.3: Lower mesh boundary.

ure 6.3 in which the node �2 on the lower boundary is marked and surrounded by

its neighbours �
L

,�
R

,�
U

,�
D

. Each node has a corresponding index form � (i, j)

except for �
D

which is a virtual node outside the problem domain. For this lower

boundary the Neumann condition Equation 6.15 implies that �
D

= �
U

so that the

virtual node can be eliminated from Equation 6.13 to give

�
R

+ �
L

+ 2�
U

�
�
4 � h2k2

�
�2 = 0. (6.16)

The boundary equation for nodes on the left, right and upper boundaries can be

similarly determined.
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6.3.2 Eigenvalue problem

Applying Equations 6.13 and 6.16 or 6.14 to the mesh results in a system of m

simultaneous equations, where m is the number of nodes. These m equations are

formed from the m components in the solution vector � = (�0,�1,�2, . . . ,�m

) and

can be expressed as an eigenvalue problem

A� = ��, (6.17)

where � is the eigenvalue and � is the eigenvector for the m ⇥ m matrix A to

be solved. Clearly the governing equations defined above for a node n specify the

elements in row n of the matrix A i.e.

AT
n

· � = ��
n

(6.18)

and from this and Equations 6.13, 6.16, 6.14 the A matrix can be filled row by row.

In the TM case the rows corresponding to boundary nodes are set to zero across the

row. This implies that, for non-spurious eigenvalues, �boundary = 0 as required by

Equation 6.14. The leading diagonal in A is set to 4 with up to four other elements

in a particular row equal to unity according to Equation 6.13. For the case of a

4 ⇥ 4 mesh, as illustrated in Figure 6.2 the 16 ⇥ 16 element matrix A is shown in

Figure 6.4. Although many of the rows have been set to zero it is still possible

to make out the sparse and banded nature of the matrix. This is a characteristic

feature of finite di↵erence and finite element discretizations.

Having populated the matrix A it can then be passed to a standard eigensolver

package in order to determine the eigenvalues. There are a two major types of

eigensovler in wide spread use, direct solvers and iterative solvers. Direct solvers

will return all possible eigenvalues for the system i.e. for the described 16 ⇥ 16

matrix there will be 16 eigenvalues returned. However, for a given limited mesh size

the accuracy of the numerical solutions will drop after the most dominant modes.

Further, particularly for the TM case where the Dirichlet boundary condition un-

derconstrains the eigenvalue problem there will be spurious solutions which must be

filtered out.
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Figure 6.4: Matrix A showing the sparse banded system resulting from finite

di↵erence discretization of a square mesh.

Figure 6.5 displays the longer wavelength eigenmodes which are calculated by a

direct solver method for a 25⇥ 25 node discretization of a 1.4 cm square waveguide.

The TM modes are o↵set from the TE modes due to the presence of modes with

zero eigenvalues. The cuto↵ wavelength for a mode, TM
lm

or TE
lm

, in a rectangular

waveguide, sized a by b, can be analytically calculated according to the following

expression:

1

�2
c

=

✓
l

2a

◆2

+
⇣m

2b

⌘2

, (6.19)

where l and m are integers 0, 1, 2, 3 . . .. Table 6.1 contrasts the finite di↵erence

calculated cuto↵ wavelengths for the first few longest wavelength TE and TM modes

with the analytical solutions from Equation 6.19. The finite di↵erence solutions are
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Figure 6.5: TE (blue) and TM (red) mode wavelengths in a 14 mm square

waveguide section. The o↵set between the two spectra is related to

the number of spurious eigenvalue solutions in the underconstrained

TM problem.

in good agreement for this relatively fine mesh.

Figure 6.6 shows the field distribution corresponding to the TM11 mode which

also displays the correct properties, in particular that the E
z

field is zero on the

metal boundaries.

6.4 Pillbox Cavity Monopole Modes

We now consider the simple example of a closed axis-symmetric cylindrical pillbox

cavity. This can be easily treated in cylindrical polar coordinates with the finite

di↵erence method in order to find the most dominant eigenmode. In a pillbox

cavity this takes the form of an azimuthally symmetric “monopole” mode. In this
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Mode Analytical(cm) FD(cm)

TE01 2.800 2.802

TE10 2.800 2.802

TE11 1.9799 1.9813

TE21 a b

Mode Analytical(cm) FD(cm)

TM11 1.9799 1.9813

TM21 1.9799 1.9813

Table 6.1: TE and TM eigenmodes from finite di↵erence approximation and

with the analytical solutions for a 1.4cm square waveguide discretized

with a 25 ⇥ 25 node mesh.

Figure 6.6: Cross-section in x � y plane of E
z

field distribution for TE11 mode

in a 1.4 cm square waveguide section, calculated by finite di↵erence

method.

section we will illustrate the formation of the finite di↵erence problem from the

discretization of the cylindrical form of Equation 6.10 and in Section 6.4.4 present
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the calculated frequencies for the lower monopole modes and vector field plots.

Beginning from Equation 6.10 we are first required to expand the vector form of

the Laplacian operator on E.

r2E =

0

BBB@

r2E
r

� E
r

r2

0

r2E
z

1

CCCA

=

0

BBBBB@

1

r

@

@r

✓
r
@E

r

@r

◆
+

@2E
r

@z2
� E

r

r2
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1

r

@

@r

✓
r
@E

z

@r

◆
+

@2E
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@z2

1

CCCCCA

=

0

BBBB@

@2E
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@r2
+

1

r
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+

@2E
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r

r2

0

@2E
z

@r2
+

1

r

@E
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@r
+

@2E
z

@z2

1

CCCCA
=

0

BBB@

L
r

L
�

L
z

1

CCCA
. (6.20)

In Equation 6.20 the azimuthal dependence has been explicitly set to zero in order

to select monopole modes and the vector L = (L
r

, L
�

, L
z

) simply introduces a short-

hand. Note that there are no mixed derivatives and that the r and z components

are not coupled. Higher Order Modes can be calculated by reinstating these terms

with the correct order and functional form. In the case of dipole modes the variation

would be described by
@

@�
⇠ ei�. It is now necessary, as before, to discretize the

partial di↵erential equations for each field component.

6.4.1 Discretization

Tackling the z-component equations first we can discretize term by term, employing

the same central di↵erence approximations described in Section 6.1. Applying a

mesh similar to that displayed in Figure 6.2 except now orientated in the z�r plane

allows transformation from

L
z

=
@2E

z

@r2
+

1

r

@E
z

@r
+

@2E
z

@z2
,
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to the discretized form

L
z

=
E

z

(i + 1, j) � 2E
z

(i, j) + E
z

(i � 1, j)

(�z)2

+
1

r

E
z

(i, j + 1) � E
z

(i, j � 1)

2�r

+
E

z

(i, j + 1) � 2E
z

(i, j) + E
z

(i, j � 1)

(�r)2 , (6.21)

in which �r and �z are the mesh spacings in the r and z planes respectively.

Rearranging the above form by collecting the terms involving particular mesh points

gives:

L
z

= E
z

(i, j)


�2

(�z)2 +
�2

(�r)2

�

+ E
z

(i, j + 1)


1

(�r)2 +
1

r2�r

�
+ E

z

(i, j � 1)


1

(�r)2 � 1

r2�r

�

+
E

z

(i + 1, j)

(�z)2 +
E

z

(i � 1, j)

(�z)2 (6.22)

and again implies that computation at a particular mesh point is dependent on the

field at each of the neighbouring points. We can now write down the discretized

form of the wave equation for the z-component of the electric field:

E
z

(i, j + 1)


1 +

�h

2r

�
+ E

z

(i, j � 1)


1 � �h

2r

�

+ E
z

(i + 1, j) + E
z

(i � 1, j) +

E
z

(i, j)
⇥
k2 (�h)2 � 4

⇤
= 0, (6.23)

where �h = �z = �r and the equation has been simplified by multiplying through

by (�h)2. Computationally the value of r will be taken at the mesh point (i, j) and

given by r = �h · j. Applying the same procedure to the r-component equation

yields:

E
r

(i, j + 1)


1 +

�h

2r

�
+ E

r

(i, j � 1)


1 � �h

2r

�

+ E
r

(i + 1, j) + E
r

(i � 1, j) +

E
r

(i, j)

"
k2 (�h)2 � (�h)2

r2
� 4

#
= 0. (6.24)
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6.4.2 Boundary Conditions

There must not be any parallel component of electric field at a perfectly conducting

boundary, from Gauss’s Law. We must therefore set E
z

= 0 along the upper wall

of the cavity and E
r

= 0 along the left and right boundaries. These conditions will

be easily implemented by setting the corresponding rows in the problem matrix to

zero, as previously described. Of course, the orthogonal field component obeys a

Neumann condition as described in Section 6.3.1. Taking the left hand wall of the

cavity where the derivative of the z-component of electric field must be continuous.

Just as in the previous section a “computational molecule” is employed to setup

the equation which describes the field at mesh points on the left wall (see Figure

6.3). As before a phantom node,  
L

, outside the computational volume has been

used, the field at this node must equal the field at the inner node  
R

. The following

equation applies for this node,

E
zU


1 +

�h

2r

�
+ E

zD


1 � �h

2r

�
+ 2E

zR

+ E
zWall

⇥
k2 (�h)2 � 4

⇤
. (6.25)

Thus far the lower boundary has not been addressed. Since the problem is

axis-symmetric we choose to solve in the upper half of the z � r plane with the

lower boundary functioning as the axis of symmetry. The lower boundary must

therefore be considered “open” and Neumann conditions apply. Close examination

of Equations 6.23 and 6.24 suggests a further issue since there are 1
r

terms which will

result in a singularity along the lower boundary. The issue is neatly side-stepped

by enforcing the partial derivatives with r to be zero, since r = 0 is a turning point

for both E
r

and E
z

, and removing those terms from the boundary equations. The

r-component is fully constrained once a knowledge of the physical system is applied.

The fundamental monopole mode of a cavity such as used in RF accelerating cavities

provides no transverse kick to particles i.e. there is zero E
r

on axis. We are finally

left with just the second order derivatives from the r-component in Equation 6.20.
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6.4.3 Eigenvalue problem revisted

Equations 6.23 and 6.24 together with the boundary conditions described in Sec-

tion 6.4.2 are employed to setup the 2 ⇥ m simultaneous equations which describe

the field on a mesh of m nodes (m equations for each field component). This can,

again, be expressed as an eigenvalue problem.

As described in Section 6.3.2 there is a problem matrix A in which row n is

formed from the governing equations corresponding to node n in the mesh. Since

there are two field components there are in fact two rows in A for each mesh point,

one for each field component. The problem is simplified somewhat by the absence

of E
r

terms in the equations governing E
z

at a particular node and vice-versa. This

implies that a given row will be necessarily half-filled with zeroes. Presenting the

resulting matrix is somewhat di�cult in a compact form since for a 4⇥4 node mesh

matrix A is now sized 32⇥32. It is shown in two parts below. The matrix in Figure

6.7 shows the upper left quadrant and represents the matrix elements which govern

the z components of electric field. Figure 6.8 shows the matrix lower right quadrant

and represents the corresponding matrix elements governing E
r

.

6.4.4 Monopole mode

Figure 6.9 displays the computed electric field, as a vector, across the cavity. The ra-

dius and length of the cavity are 1.15 cm. The eigenmode frequencies for TM modes

in a pillbox cavity can be calculated using the analytic formula in Equation 6.26

[72].

f
mnp

=
c

2⇡
p

µ
r

✏
r

s✓
J
mn

R

◆2

+
⇣p⇡

L

⌘2

(6.26)

where J
mn

is the nth root of the mth Bessel function. R and L are the radius and

length of the cavity. For the TM010 mode, the fundamental mode of the cavity has

a frequency of 9.978 GHz.

Figure 6.10 shows the frequency determined by the eigensolver for successively

finer meshes. Using the ‘direct’ eigensolver employed by the toy code detailed here

it is not possible to use a mesh more detailed than 45 ⇥ 45 = 2025 cells. With 2025
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Figure 6.7: Upper left quadrant of matrix describing the eigenvalue problem for

finite di↵erence solution of pillbox cavity.

cells the frequency calculated is 9.9735 GHz.

6.5 Comment

As with all numerical methods the Finite Di↵erence method will only produce an

approximation to the system under study. In the simplest terms, a high accuracy

can be achieved with very fine meshes i.e. a very large problem size. Unfortunately

computational demands scale with N3 and in practice there is a limit the problem

size which can be solved on a given machine. Further, care must be taken to ensure
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Figure 6.8: Lower right quadrant of matrix describing the eigenvalue problem

for finite di↵erence solution of pillbox cavity.

that the particular algorithm chosen to attack the problem is convergent in the

required regime. Numerical errors can easily be introduced by a näıve choice of

algorithm, particularly in iterative time domain problems.

GdfidL employs multiple techniques, published and proprietary, to improve ac-

curacy and reduce computation time. This includes such things as “generalised

diagonal fillings” where many types of prism can be used in multiple orientations in

order to better approximate the boundary of the problem geometry [73] and more

exotic ‘tricks’ such as computing wake potentials in a moving frame in which the

problem domain (cavity) has been Lorentz contracted - thus reducing the computa-
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Figure 6.9: Electric field for TM010 mode in pillbox cavity. z and r components

are on the horizontal and vertical axes, respectively.

tional load [74].

In the next chapter the results of detailed eigenmode calculations, using GdfidL,

for the Reentrant and Ichiro accelerating cavities are presented. The techniques

and care with boundary conditions discussed above for the simple test cases apply

equally to the 3D simulations undertaken with the more sophisticated code for the

next chapter.

84



6.5. Comment Chapter 6. The Finite Di↵erence Method

 9.93

 9.935

 9.94

 9.945

 9.95

 9.955

 9.96

 9.965

 9.97

 9.975

 9.98

 0  0.0005  0.001  0.0015  0.002  0.0025  0.003  0.0035  0.004  0.0045

Fr
eq

ue
nc

y 
(G

H
z)

1 / (number of mesh cells)

Figure 6.10: Convergence plot for the TM010 mode frequency. The analytic

result, 9.978 GHz, is show in blue. The horizontal axis is the

reciprocal of the total number of mesh cells used.
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Chapter 7

Cavity Simulation Results

Finite di↵erence simulations of the electromagnetic fields in the Reentrant and

Ichiro cavities were performed using the code GdfidL. Section 7.1 presents simula-

tions of single cells, which give the dipole band structure while Section 7.2 details

simulations of the 9 cell cavities for each of the cavity shapes under test. The dis-

crete dipole modes from the 9 cell cavities are then employed in order to calculate

the long range wakefield over the ILC bunch train, see Section 7.4. The eigenmode

frequencies, kickfactors and wakefields calculated here are required as input to the

beam dynamics study detailed in the next chapter in order to incorporate the long

range wakefields due to the new cavity types.

All figures presented in this chapter were prepared by myself, unless labelled

otherwise.

7.1 Single Cell Results

The resonant modes of definite frequency within a cavity structure are arranged

in “bands”, where each mode has a characteristic phase also. If we consider an

infinite string of identical cells joined together, this mode frequency within a band

is a continuous function of the phase advance in the field across the single cell. The

field obeys periodicity criterion known as the Floquet condition:

E
z

(z + L) = E
z

(z)e�i� (7.1)
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where L is the cell length and � is the phase advance in the electric field E. By

performing a simulation in which the phase is prescribed as one of the boundary

conditions this continuous function - the dispersion curve - can be calculated for

each mode. Sets of modes are confined to pass-bands. The non-propagating regions

between pass-bands are known as stop-bands. Figure 7.1 shows the dispersion curve

for the fundamental mode of the Cornell University Reentrant cell. The lightline is

also plotted - notice that it intersects with the dispersion curve at 180� and 1.3 GHz

- this is by design.
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Figure 7.1: Dispersion curve for Monopole mode in single cell 35mm reentrant

cell, with lightline.

Since an electron bunch is ultra-relativistic, crossings with the lightline indicate

that the the mode is synchronous with the passage of the bunch. A mode operating

at this point will maximally transfer its energy to the beam. For the fundamental

mode, which does the accelerating, this is of course desired. There will be higher
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order modes which are also synchronous with the beam, in this case the possible

deflection is most severe and care must be taken to damp down the e↵ect.

Simulations of the deflecting dipole modes within single cell cavities were per-

formed for the Ichiro design cells and for the Reentrant design with cavity iris radius

of 35 mm and 30 mm. Dispersion curves for the dipole bands in these designs, up to

4 GHz are shown in Figure 7.2. Although the designs are quite similar and all are

optimized to accelerate a beam at 1.3 GHz in the ⇡-mode the slight variations cause

the higher order modes to be repartioned and the detailed e↵ects on the passage of

an electron bunch must be investigated. We note two features, firstly, that the two

30mm iris designs are quite closely matched. Despite the di↵erences in the geome-

tries of the ichiro and reentrant 30 mm designs, with the same iris dimension we

expect the same coupling between neighbouring cells and this drives the bandwidth

in the dispersion curves.

Secondly, that the fifth dipole band in each design shows a very low gradient

dispersion curve.

The gradient df

f�

is related to the group velocity, v
g

, via Equations 7.2 and 7.3.

� = 2⇡
L

�
= Lk, (7.2)

where � is the phase advance per cell of length L, � is the wavelength and k the

angular wavenumber. The group velocity is given by:

v
g

=
@!

@k
=

@!

@�

@�

@k
=

@!

@�
L (7.3)

and thus a very low gradient in the dispersion curve implies a group velocity close

to zero and the possibility of trapped modes in this band.

7.2 Higher Order Mode Simulations

7.2.1 Reentrant cavity

The Reentrant cavity geometry detailed in Section 5.4 and Figure 5.2 was modelled

in GdfidL, choosing a mesh cell spacing of, on average, 1 mm. This resulted in a
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Figure 7.2: Dispersion curve for dipole modes within single cell Reentrant 35mm

(blue), Reentrant 30mm (red) and Ichiro 30mm (yellow) designs.

total mesh size in excess of 18 million cells. In order to process this very large mesh

e↵ectively a parallel version of GdfidL was employed in which the computation can

be distributed across multiple machines. In this case we made use of 24 computing

nodes.
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Eigenmodes were computed in the range 1.5 GHz to 4 GHz. The electromagnetic

fields were then used to calculate the R/Qs and kickfactors according to Equations

4.30 and 4.28. By making use of the Floquet condition on the longitudinal com-

ponent of electric field the phase advance for each mode was calculated. This data

is usefully presented with the frequencies in the form of a Brillouin or dispersion

diagram. This is shown in Figure 7.10. The points correspond to the discrete cavity

modes while the curves correspond to a single cell with infinitely periodic bound-

ary conditions. The discrete modes for each band are expected to lie on the curves

although it is clear that 9 cells does not well approximate the infinite case. In partic-

ular, modes whose fields are localized towards the end cells of the cavity are expected

to be somewhat shifted from the curves. Likewise, notable exceptions observed in

Figure 7.10 are the beam pipe modes (see section 7.3). Modes located in regions

where the gradient of the dispersion curve is close to zero have very low group ve-

locity and may exhibit trapping. Such modes may not be adequately damped by

higher order mode couplers located outside the cavity and thus are a concern for

beam dynamics. Trapped modes are discussed in detail by Schuhmann & Weiland

[75] and investigations into a poorly damped mode observed at the TESLA Test

Facility are detailed by Baboi [13]. The R/Qs are displayed in Figure 7.3, in which

a comparison has been made between the modes of this structure and those calcu-

lated for an older design (see [1, 2]). We note a mode at 3.936 GHz which has a

significant R/Q ⇠ 2 Ohms/cm2 in contrast to the usual behaviour in which modes

beyond the third band have R/Qs orders of magnitude less.

7.2.2 Ichiro Cavity

The Ichiro cavity geometry discussed in Section 5.5 was also modelled using GdfidL.

In this case the mesh spacing was 0.8 mm, resulting in a mesh of more than 16

million cells for half of the longitudinally symmetric structure. The higher density

mesh here was achieved by halving the structure volume to be meshed. The complete

set of modes is recreated by performing two simulations, the first with a perfect

electric boundary condition in the reflection plane and the second with a perfect
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Figure 7.3: Cavity dipole R/Qs for the two Reentrant cavity designs. Red points

show modes from the original 35mm design. Blue are modes from

the redesigned, expanded beam pipe geometry. [1, 2]

magnetic boundary. The simulated geometry is displayed in Figure 7.4 with the

lowest frequency dipole mode electric field superimposed. Dipole modes in the range

Figure 7.4: Ichiro cavity geometry modelled in GdfidL and showing the first

dipole mode electric field which is strongly localized to the end cells.

1.5 GHz to 4 GHz were simulated. Their phases and frequencies are displayed in the

dispersion curves of Figure 7.11. In this figure note that there are waveguide modes
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Figure 7.5: Dipole mode loss factors for the Ichiro cavity calculated using GdfidL

(red) and MAFIA 2D (blue). The MAFIA results were prepared by

Burt [78].

shown as well, these are identified as being well separated from the cavity dispersion

curves with approximately 90o phase advance (See section 7.3). Loss factors for

each dipole mode were calculated, according to Equation 4.13. These results are

displayed in Figure 7.5. Superimposed are the modal frequencies and loss factors

calculated by the code MAFIA 2D [76, 77]. MAFIA is a finite di↵erence code

and, in this case, the 2D axis-symmetric system was discretized using 500,000 cells.

These latter calculations were performed by G. Burt [78]. The Ichiro cavity was also

simulated by J. de Ford & B. Held1 using the parallel finite element code Analyst,

before post-processing in Manchester. Figures 7.6 and 7.7 show the magnitude of

the electric field for the first dipole mode in the third dipole band (at 2.4498 GHz)

1from STAAR Inc. now part of AWR Corporation
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Figure 7.6: Magnitude of the electric field for the first dipole mode in the third

dipole band (at 2.4498 GHz) as calculated with the Analyst code.

Figure prepared by B. Held & J. de Ford.

and a multi-cavity mode in the region of the third dipole band (at 2.64203 GHz)

[78]. In this case an adaptively refined, second order finite element mesh, consisting

of more than 106 elements in two dimensions, was used. The modal frequencies

Figure 7.7: Magnitude of the electric field for a multi-cavity mode in the region

of the third dipole band (at 2.64203 GHz) as calculated with the

Analyst code. Figure prepared by B. Held & J. de Ford.

and R/Qs calculated by the various codes are tabulated in Tables 7.1 and 7.2 (see

also [78]).

7.2.3 Comparison of eigenmode results

As we have previously discussed in Chapter 6 we can expect the accuracy of a

numerical simulation on a given mesh to decrease as the frequency increases, in

particular as the wavelength approaches the mesh spacing. This e↵ect can be verified

by observing, in the above data, that as frequency increases the discrepancy between

the four codes gets larger. For example, the first band modes, presented in Table 7.1,

are no more than 1 MHz separated across the codes. Similarly, in the second band,

the Analyst and GdfidL results are separated by less than 1 MHz, while HFSS

di↵ers by at most 1.7 MHz and MAFIA results are displaced furthest at a uniform

displacement of ⇠ 3 MHz.

The third band demonstrates markedly di↵erent behaviour. The maximum dif-

ference between GdfidL and MAFIA has now increased to 7 MHz. HFSS shows a
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GdfidL GdfidL GdfidL GdfidL MAFIA MAFIA HFSS short Analyst Analyst

short !/2⇡ R/Q short long !/2⇡ long R/Q short !/2⇡ R/Qs !/2⇡ short!/2⇡ short R/Q

1.63035 0.385 1.63035 0.379 1.63094 0.342 1.63032 1.62941

1.63044 0.050 1.63045 0.086 1.63109 0.119 1.63062 1.62950

1.64907 0.039 1.64907 0.038 1.64927 0.045 1.64888 1.64816

1.66102 0.080 1.66102 0.070 1.66133 0.066 1.66097 1.66015

1.67769 0.202 1.67769 0.171 1.67812 0.150 1.67772 1.67687

1.69757 0.568 1.69757 0.690 1.69813 0.713 1.69777 1.69679

1.71897 3.639 1.71897 3.759 1.71971 3.713 1.71923 1.71826

1.73962 1.672 1.73962 1.529 1.74050 1.473 1.73994 1.73892

1.75578 0.002 1.75578 0.000 1.75680 0.000 1.75613 1.75511

1.88201 0.000 1.88201 0.001 1.88507 0.000 1.88367 1.88158

1.88522 1.615 1.88523 1.533 1.88830 1.541 1.88678 1.88480

1.89865 0.004 1.89865 0.044 1.90172 0.073 1.90004 1.89815

1.91403 3.041 1.91403 2.581 1.91709 2.380 1.91529 1.91343

1.92902 8.365 1.92902 8.283 1.93207 7.950 1.93007 1.92832

1.94216 5.705 1.94216 5.909 1.94519 6.079 1.94296 1.94135

1.95274 0.623 1.95274 0.801 1.95576 0.867 1.95348 1.95183

1.96044 0.082 1.96044 0.057 1.96343 0.040 1.96105 1.95943

1.96509 0.052 1.96509 0.047 1.96807 0.039 1.96564 1.96402

2.22302 0.174 2.20725 0.001 2.22185 0.083

2.22302 0.004 2.20725 0.032 2.22185 0.083

2.26551 0.099 2.36820 0.746 2.39381 1.097

2.26551 0.228 2.36822 0.745 2.39381 1.108

2.36660 0.128 2.36541 0.037 2.36822 15.739 2.39381 14.884

2.36660 1.499 2.36541 0.985 2.36822 9.588 2.39381 9.700

Table 7.1: Modal frequencies, !/2⇡ (GHz) and R/Qs (Ohms/cm2) for the first

two dipole bands, calculated using GdfidL, MAFIA, HFSS and An-

alyst. “Short” and “long” mark simulations made with 150 mm and

172 mm beam pipe sections, respectively.

similar, albeit smaller, frequency deviation from GdfidL. The modes from the An-

alyst simulations, which were performed with the highest resolution mesh, show an

unexpected behaviour.

The frequencies of the lower four modes in the third band, which are in a low

group velocity region, are only deviated from the GdfidL results by 1 MHz. However,

this di↵erence between the GdfidL and Analyst result begins to rise from the fifth

mode and the final mode in the band is shifted by 26 MHz. A frequency shift of the

order of 10 MHz could usually be expected from a significant change in the cavity
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GdfidL GdfidL GdfidL GdfidL MAFIA MAFIA HFSS Analyst Analyst Analyst Analyst

short R/Q long long short R/Qs short short short long long

!/2⇡ short !/2⇡ R/Q !/2⇡ !/2⇡ !/2⇡ R/Q !/2⇡ R/Q

2.44882 13.393 2.44875 14.986 2.45610 0.154 2.45421 2.44978 0.078 2.44940 14.922

2.45507 12.229 2.45475 11.471 2.46210 1.370 2.46033 2.45609 1.324 2.45344 9.948

2.46556 0.020 2.46462 0.083 2.47221 0.271 2.47039 2.46671 0.184 2.45640 0.164

2.48040 1.129 2.47772 1.308 2.48654 0.297 2.48493 2.48176 0.327 2.45985 1.202

2.52290 0.188 2.49125 0.264 2.50509 0.351 2.50383 2.50135 0.273 2.46859 0.050

2.52290 0.443 2.50140 0.024 2.52765 0.001 2.52670 2.52542 0.014 2.48288 1.122

2.54957 0.265 2.51266 0.000 2.55351 0.170 2.55297 2.55350 0.197 2.50180 0.164

2.57804 0.016 2.53200 0.215 2.58107 9.126 2.58094 2.58363 0.168 2.52473 0.312

2.61523 0.222 2.55826 0.166 2.61877 0.020 2.61766 2.64203 2.54992 0.300

2.62637 0.096 2.58672 0.012 2.62793 0.002 2.66659 2.57189 0.000

Table 7.2: Modal frequencies, !/2⇡ (GHz) and R/Qs (Ohms/cm2) for the third

dipole band, calculated using GdfidL, MAFIA, HFSS and Analyst.

“Short” and “long” mark simulations made with 150 mm and 172

mm beam pipe sections, respectively.

geometry. In contrast, an 8 MHz shift is observed following a 1 mm change in the cell

radius at the equator due to electron-beam welding [79]. In order to investigate this

e↵ect further GdfidL simulations were commissioned in which the end cell geometry

was perturbed. Specifically, the horizontal half-axis of the ellipse which defines the

equator region was perturbed by 0.05 mm.

Under these perturbed conditions certain modes show significant sensitivity, in

particular the lowest two dipole modes in the first band shift by ⇠ 0.1 MHz. The field

for these two modes is strongly localized in the end cells and beam pipe region. The

di↵erence for the lowest lowest modes in the third dipole band was just 0.005 MHz

compared to the 0.2 MHz shift observed for the higher frequency modes in the band.

Figure 7.6 shows the electric field in the modes at 2.4488 GHz, which is trapped in

the inner cells of the cavity.

To contrast this trapped mode Figure 7.7 displays a mode which exists through-

out the cavity and through the region of the beam tubes. This latter mode is also

located in the region of the third band and can be described as a ‘multi-cavity’

mode. This type of mode exhibits a sensitivity to the length of the beam tubes used

in simulations and exposed a di↵erence in the geometries modelled by GdfidL and
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Analyst.

In the GdfidL simulations a beam pipe length of 172 mm was chosen, equivalent

to 1.5 cell lengths at either end of the cavity. In Tables 7.1 and 7.2 simulations with

the 172 mm pipes are referred to as “long”. In the Analyst case the beam pipes were

150 mm long, referred to as “short” in the Tables. We made additional simulations

in order to investigate the sensitivity to the beam pipe length. GdfidL simulations

were performed with 3 cell lengths of beam pipe attached to either end of the cavity

and while new Analyst calculations employed 4.5 cell lengths. As expected, those

modes whose field is well contained within the cavity revealed little sensitivity to the

pipe length. The first mode in the third dipole band, at 2.44882 GHz, for example,

shifted by approximately 70 kHz in the GdfidL simulations, the expected accuracy

is not expected to be better than several hundred kHz. Modes with significant field

in the end-cell and pipe region were, however, markedly e↵ected. The 9th mode in

the third dipole band shifted down in frequency by 57 MHz from 2.615 GHz. For

the Analyst result, with the longest beam pipes, the same mode shifted down by

92 MHz from 2.642 GHz.

The above results demonstrate that the electric field of the first mode in the

third dipole band, which has the largest R/Q, does not penetrate to the beam tube

region. This is significant since it may well not be damped e↵ectively by higher

order mode couplers located outside the cavity. Further, this mode is sensitive to

the exact end cell configuration. Small perturbations in the end cell geometry may

redistribute the field and allow the mode to be damped. The present asymmetric

design of the TESLA cavity is a response to a similarly poorly damped mode in the

previous generation in which the cavity was longitudinally symmetric [23].

7.3 Beam pipe modes

Figures 7.10 and 7.11 both show points marked in the “stop bands” i.e. between the

dipole band dispersion curves. The field pattern for these modes is strongly localised

to the region between the main cavity and the simulation boundaries. Very little

field is present in the central regions of the cavity. These modes are closely related
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to the modes present if a section of cylindrical pipe was simulated alone. In the same

manner that the transition to beam pipes perturbs the cavity modes away from those

expected if there was an infinite chain of cells, the boundary conditions imposed by

the presence of the cavity against the pipe section perturbs the waveguide modes.

For the dispersion diagrams the phase of the main cavity modes was calculated

using the Floquet condition on the field in the central region. For these modes, with

no field in the centre of the cavity, this algorithm is not valid and the modes were

reported with an “artificial” phase of ⇡/2 and hence appear in the centre of the

plots.

7.4 Long Range Wakefields

The transverse long range wakefield experienced by a bunch train is given by [52]:

W
T

(t) = 2
X

p

K
p

sin (!
p

t) e
� !pt

2Qp (7.4)

where !
p

/2⇡, K
p

and Q
p

are the modal frequencies, kick factors and damping Qs

respectively for the dipole modes p. The definitions of transverse wakefield and kick

factor were introduced in Chapter 4, see also Equation B.53. Consider the vertical

case, the wake can be both positive or negative implying a kick to the bunch either

upwards or downwards. In the operation of the linac we are equally concerned with

kicks in either direction and in particular the maximum amplitude of that kick,

hence we evaluate the absolute value of the sum in Equation 7.4 - the envelope of

the transverse wakefield, representing the maximum excursion in the amplitude of

the wakefield at a given t.

The envelope of the transverse wakefield is displayed in Figures 7.8 and 7.9 for

the reentrant and Ichiro cavities respectively. The black line shows the rapidly

varying wake, oscillating for each mode in the sum, while the red dots in each figure

mark the location of the bunches, i.e. the wake the bunch will see on arriving at the

cavity. A crucial aspect of the long range wakefield is the rate at which the wake

decays, these plots show the wake decaying through six orders of magnitude. To aid

the comparison between the cavities the wakes have been normalized with respect
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Figure 7.8: Envelope of the long range transverse wakefield for the Reen-

trant cavity with Q=105, and normalized with respect to W0 =

0.16V/pC/mm/m. Points show the locations of the bunches.

to the wake at the first bunch, 0.16 V/pC/mm/m and 0.147 V/pC/mm/m for the

reentrant and ichiro cavities respectively. For this work a, conservative, damping Q

of 105 has been applied to all modes. In both cases the figures show the wake has

decayed away through by six orders of magnitude in less than 75 km i.e. before the

700th bunch, for a bunch spacing of 369 ns. Contrast this with the 2625 bunches in

the complete ILC bunch train.

In e↵ect we have, at the exit of a cavity, measured the rapidly varying wakefield

e↵ect on the second bunch due to the first, on the third bunch due to the combined

e↵ect of the first and then second, and so on.

These transverse long range wakefields are also employed by the code LIAR in

order to calculate the beam dynamics properties and emittance growth resulting

from transporting the multibunch beam through the 16,000 main linac cavities of

the ILC. These beam dynamics simulations are discussed in detail in Chapter 8.
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Figure 7.9: Envelope of the long range transverse wakefield for the Ichiro cavity

with Q=105, W0 = 0.1472V/pC/mm/m. Points show the locations

of the bunches.
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Figure 7.10: Brillouin diagram showing the phase and frequency of Reentrant

cavity dipole(red) and sextupole(blue) modes. The solid curves are

the single cell dispersion curves.
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Figure 7.11: Dispersion curves showing dipole (red) and sextupole (green)

bands, with cavity modes (blue) for the Ichiro cavity.
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Chapter 8

Beam Dynamics Simulation Results

The main linacs could be a major source of degradation in the beam quality at

the ILC. Here the emittance can be diluted by a number of factors including energy

spread, phase jitter in cavities, beam position feedback errors, quadrupole magnet

misalignments and wakefield e↵ects. Here we focus on the dilution in the transverse

emittance due to transverse wakefields and in particular on long range wakefields

due to higher order modes in the accelerating cavities [14]. These wakefields have

been calculated from detailed simulations of the cavity eigenmodes, discussed in

Chapter 7, and are now utilized in beam dynamics codes which track multi-bunch

beams through the lattice of the main linac.

8.1 Emittance definition

The quantity emittance was first mentioned in the introduction. In a real accelerator

we are concerned with particle bunches and trains of bunches in a beam. We have

an ensemble of particles which have a range of positions and momenta (amplitudes

and phases in their orbit through the machine). The emittance of a bunch in a

particular plane, the vertical plane for example, is proportional to the area in phase

space y�y0 enclosing the beam. It can be calculated from the second order moments

of the particle distribution about the bunch centroid:

y2 =
1

q

X

i

q
i

(y
i

� y)2, y02 =
1

q

X

i

q
i

(y0
i

� y0)2 (8.1)
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and

yy0 =
1

q

X

i

q
i

(y
i

� y)(y0
i

� y0) (8.2)

as

✏
y

=

q
y2y02 � yy02 (8.3)

where the over-bars imply an average over the bunch. For a Gaussian bunch, a good

approximation at the entrance to the linac, the bunch occupies an ellipse in phase

space. Considering first just the drift spaces, bending dipole magnets and focussing

quadrupole magnets in the lattice we have a system in which the bunches are acted

on by conservative forces, that is, Liouville’s Theorem applies. The area in phase

space is conserved throughout the motion - one sees the ellipse rotate its axis, but

not shrink or grow. For the the main linac the act of accelerating the bunches is

non-conservative so we work with the “normalized emittance”, defined as;

✏
N

= �✏
y

(8.4)

which is conserved throughout acceleration. Here � is usual the relativistic factor.

During acceleration the particles undergo adiabatic damping, the angle of the par-

ticle y0 decreases since the longitudinal momentum increases while the transverse

momentum remains constant.

Electrons and positrons in the linac are governed by the equation of motion

[6, 39]:
1

�(s)

d

ds

✓
�(s)

dy

ds

◆
+ K

y

(s)y(s) =
1

⇢(s)

�p(s)

p(s)
(8.5)

where y is the o↵set from the design trajectory in the vertical plane at a given posi-

tion s. ⇢(s), p, �p and K
y

(s) are the bending radius, design momentum, momentum

deviation and the focussing strength of the magnets at position s, respectively.

Through linear elements of the lattice such as the drift spaces and focussing

quadrupole magnets “transfer matrices” can be used as a proxy for Equation 8.5

and provide the particle position and angle y0 resulting from transport from one

location to another: 0

@ y

y0

1

A

s2

= M12

0

@ y

y0

1

A

s1

. (8.6)
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The solution to Equation 8.5 can be written in terms of the Twiss Parameters, ↵,

� and phase µ [80]:

y(s) =

q
a2 ˆ�(s) cos(µ(s) � µ0), (8.7)

y0(s) =

s
a2

�̂(s)
(�↵(s) cos(µ(s) � µ0) � sin(µ(s) � µ0)). (8.8)

Here �̂(s) is the well known beta function and is a property of the lattice configura-

tion. The other parameters are derived from �̂. ↵(s) = �1/2 d�̂(s)/ds represents the

divergence of the bunch trajectory, while µ(s) =
R

s

0
ds/d�̂(s) is the betatron phase

advance. The particles execute betatron oscillations about the design orbit with

amplitude a. The Twiss parameters are further related through the Courant-Snyder

invariant:

�y2 + 2↵yy0 + �y02 = ✏
y

, (8.9)

where here � = 1+↵

2

�

, y0 = dy

ds

is the divergence angle and ✏ is the emittance. A rigor-

ous exposition of this area was delivered by Wolski from the Hamiltonian perspective

in his “Linear Dynamics” lectures to The Cockcroft Institute [81].

The beam tracking codes LIAR [82], Lucretia [83] and PLACET [84] simulate

particle motion under these equations, with representations for each magnet element

in the lattice. Further, they treat transverse wakefield e↵ects in cavities as pertur-

bations to this motion - each cavity in the lattice applies a transverse momentum

kick to the particles according to the prescribed wakefield. These codes make it

possible to investigate the behaviour of a particular lattice, the impact of short or

long range wakefields and the potential of various steering and correction algorithms

to mitigate issues arising from misalignments etc. Here we make particular use of

the capability to simulate the e↵ect of long range wakefields on multi-bunch beams.

8.2 Combined Systematic Frequency Shifts and

Detuning

A fictitious linac made up of identical cavities with identical modal frequencies would

impart the same kick coherently from cavity-to-cavity to the accelerated beam. This
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clearly would resonantly drive BBU and lead to severe emittance dilution. In con-

structing the ILC linacs approximately 16,000 cavities will be required. During

industrial fabrication of these cavities small manufacturing errors will inevitably oc-

cur. These will cause each cavity to exhibit slightly di↵erent modal frequencies and

e↵ectively interleave the resonances. Thus, errors in the frequencies of the modes

will occur as a natural consequence of fabricating these cavities and will allow BBU

and severe emittance dilution to be avoided. Nonetheless, there will still be emit-

tance dilution and we investigate this by subjecting the beam to an initial injection

o↵set of ⇠ �
y

/3 and tracking it down the complete linac.

The simulations detailed here incorporated the manufacturing errors by calcu-

lating 50 wakefields based on randomly detuned modal frequencies with an RMS

spread of 1 MHz, 3 MHz or 10 MHz and with, initially, a uniform damping Q of 106.

These 50 wakefields are then randomly distributed through the length of the linac,

i.e. between the cavities, by LIAR before beam tracking occurs. The results pre-

sented here are the average of 100 machines formed with di↵erent random number

seeds. The complete ILC beam consists of 2625 bunches and we utilised the USCold

lattice [85]. The projected emittance for the whole beam was recorded at the end

of the tracking procedure.

As shown in Equation 7.4 the amplitude of the wakefield depends on sin(!
p

t).

Random and systematic fabrication errors will alter the mode frequencies as de-

scribed earlier. The time t is determined by the bunch spacing. Should any modes

lie such that !t is close to ⇡/2 + 2n⇡ or 3⇡/2 + 2n⇡ (n = 0, 1, 2, ...) then resonant

BBU could occur. In this section we wish to investigate the e↵ect of a systematic

shift in the modal frequencies on emittance growth due to the long range wakefield.

Having calculated wakefields for cavities with random errors and provided these as

input for LIAR to track we make a simple transformation in order to make the

systematic shifts prior to tracking. The transformation is to vary the bunch spacing

by a small fractional amount (±0.1%) as a single input rather than recalculate all

the input wakefields i.e. to adjust the t rather than ! in !t.

Figure 8.1 contrasts the resulting emittance dilutions for linacs made up of Reen-

trant and Ichiro cavities and provided with uniform damping of 106 and random
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Figure 8.1: Emittance dilution as a function of deviation in the bunch spacing,

(Q = 106, 1 MHz RMS spread).

frequency spread of 1 MHz. The abscissa in all cases is fractional deviation in the

bunch spacing from the nominal design value of 369 ns. In order to assess the de-

pendence of emittance dilution on the spread in frequency errors we increased the

RMS random detuning of the higher order modes to 3 MHz and 10 MHz respec-

tively. These results are displayed in Figures 8.2 and 8.3. In all cases we see little

dependence on the specific value of the RMS introduced, as expected.

Damping of the Higher Order Modes will be provided by damping couplers

which, with careful design, should allow damping to a Q of 105 or below [86]. Fig-

ures 8.4 and 8.5 show the emittance dilution resulting in the case of 1 MHz and 3

MHz RMS spread and a uniform damping Q = 105 for all modes. It is interesting

to consider the case in which optimal damping of all modes has not been achieved

and while some are well damped, a limited number of modes remain poorly damped.

Such modes are often trapped away from the higher order mode couplers and end

cells. In Figure. 8.6 the case of sub-optimal damping is considered. Here Q = 105

has only been achieved for the five modes with largest kick factors, which are the

most destructive to the beam, the rest of the modes considered were simulated us-

ing Q = 106. This we refer to as targeted damping of the modes as we focus on
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Figure 8.2: Emittance dilution as a function of deviation in the bunch spacing,

(Q = 106, 3 MHz RMS spread).
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Figure 8.3: Emittance dilution as a function of deviation in the bunch spacing,

(Q = 106, 10 MHz RMS spread).

damping a limited number of modes properly. We investigate the implications on

emittance dilution of allowing the remaining modes to be non-optimally damped.

This simulation reveals that provided the modes with the highest kick factors are

well-damped the emittance dilution is well-contained it is below 10% in all cases.
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Figure 8.4: Emittance dilution as a function of deviation in the bunch spacing,

(Q = 105, 1 MHz RMS spread).
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Figure 8.5: Emittance dilution as a function of deviation in the bunch spacing,

(Q = 105, 3 MHz RMS spread).

8.3 Normally distributed frequency errors

The simulations detailed here undertaken using the Matlab-based code Lucretia in-

corporated the manufacturing errors by generating 100 sets of dipole mode frequen-
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Figure 8.6: Emittance dilution as a function of deviation in the bunch spacing,

(Targeted Damping, 1 MHz RMS spread).

cies in which each mode has been shifted by a random number generated according

to a Normal distribution, these define 100 di↵erent cavity types. These cavity types

are then randomly distributed throughout the linac before beam tracking occurs. In

this case we applied a 1 MHz spread to the dipole modes and a uniform damping Q

of 106. Trains of 500 bunches were then tracked through the linac with the nominal

bunch spacing of 369 ns [16], each bunch was injected with an o↵set of 6µm ⇠ �
y

.

Figure 8.7 shows the dilution in the projected emittance for the bunch train at

each beam position monitor position in the lattice that results from tracking down

40 machines, each with generated with a di↵erent random seed, made up of TESLA

(21%) cavities. Curves showing the mean and one standard deviation from the mean

are also displayed. Figures 8.8 and 8.9 present the results for machines consisting

of Reentrant (27%) and Ichiro (31%) cavities respectively.

Figure 8.10 displays a comparison of the mean value of the emittance dilution

for each cavity type.
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Figure 8.7: Emittance dilution simulated with Lucretia for 40 machines consist-

ing of TESLA cavities. The mean curve is displayed in red, with

one standard deviation dashed.

8.4 Summary

Taking the mode frequencies and kick factors calculated in Chapter 7 as input

to LIAR and Lucretia this chapter has described the first direct comparison of

beam dynamics in ILC linacs constructed with the Reentrant and Ichiro cavities

(Section 8.2).

The vertical emittance growth due to long range wakefields has been calculated in

multiple scenarios, showing that the collider is tolerant to random frequency errors

due to the fabrication process up to 10 MHz provided the modes are well damped.

It has been shown that targeted damping of the five most significant dipole modes to

Q = 105, while leaving the remainder sub-optimally damped at Q = 106, is su�cient

to reduce the emittance growth to less than 10% across a range of bunch spacings

(equivalent to systematic shifts in the modal frequencies) - see Figure 8.6.

At the nominal bunch spacing beam dynamics simulations with Lucretia were

undertaken, using the ILC2007b lattice, and built from a larger population of cavity
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Figure 8.8: Emittance dilution simulated with Lucretia for 40 machines consist-

ing of Reentrant cavities. The mean curve is displayed in red, with

one standard deviation dashed.

“types” - a better approximation to the real situation in which all 16,000 cavities

would di↵er slightly (Section 8.3). These simulations have shown that the emittance

dilution across the three cavity types is of the same order and within the allowed

emittance budget for the main linacs, however the Ichiro design is the most sensitive

showing 31% growth.

In the next chapter beam dynamics results which demonstrate the importance

of the crab cavity system to maintaining high luminosity at linear colliders are

presented. In particular the optimal deflecting voltage is determined for the CLIC

beam delivery system and the combined e↵ect of the crab deflection and multipole

corrector magnets is considered.
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Figure 8.9: Emittance dilution simulated with Lucretia for 40 machines consist-

ing of Ichiro cavities. The mean curve is displayed in red, with one

standard deviation dashed.
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cavity type.
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Chapter 9

Beam dynamic simulations of the

CLIC crab cavity

Previous chapters have detailed the e↵orts and techniques used to provide high

quality low emittance bunches to the interaction region. After collision the bunches

are highly disrupted - the bunch shape has been distorted due to beamstralung

and there is a large energy spread. Further, positrons are now passing ‘backwards’

through the electron delivery magnets and vice versa. The technical considerations

required to safely extract these disrupted bunches to beam dumps lead to a collider

design incorporating a small crossing angle, 14 mrad in the case of the ILC [16] and

20 mrad for CLIC [7].

By introducing this crossing angle the achievable luminosity is reduced compared

to that of the optimal “head on” case [87]. This loss is intolerable for both the

ILC and CLIC designs as it would serve to make the colliders uneconomic and

unnecessarily delay Particle Physics analyses. A system to mitigate and reduce this

loss must be introduced. The leading system in both cases is that of a set of crab

cavities.

In this chapter the idea of a crab cavity is briefly introduced to provide context for

a series of beam dynamics simulation results which show the impact of the corrective

crab cavity system on achievable collision luminosity at CLIC. In particular the

collective e↵ect of the crab cavity and the high order multipole magnets in the

beam delivery system is investigated. This work has been published in the paper

Shinton et al. [88] in which the cavity design work by Burt was combined with beam
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Overall parameters Symbol Value

Centre of mass energy E
cm

3 TeV

Main linac frequency f
RF

11.994 GHz

Number of particles per bunch N
b

3.72⇥106

Number of bunches per pulse k
b

312

Bunch separation �t
b

0.5 (6 periods)

Bunch train length ⌧
train

156

Table 9.1: CLIC main linac parameters [89, 90]

dynamics simulations performed by the present author and I.R.R. Shinton. Main

linac parameters for CLIC are shown in Table 9.1, while Table 9.2 details the beam

parameters utilized by PLACET for the beam delivery system.

9.1 Crab Cavities

A crab cavity or cavity operating in a “crabbing mode” is a transverse mode RF

cavity distinct from the accelerating cavities discussed in detail earlier in this thesis.

The primary mode of operation is the TM110-like hybrid mode of an iris loaded

cavity [88]. The transverse electric and magnetic fields which compose this mode

act together to kick the head and tail of the bunch in opposite directions, within

the same plane - such that the bunches are rotated. Achieving this e↵ect requires

careful tuning of the crab cavities. Only when the phase is such that the centre of

the bunch passes through the centre of the cavity when the magnetic field is zero

will the desired rotation take place alone. Should there be some phase error the

bunch will be, overall, deflected transversely. This e↵ect is illustrated in Figures 9.1

and 9.2.

9.2 Analytic Estimations

The luminosity reduction factor due to the crossing angle can be estimated using

Equation 9.1, from [87]. For the current CLIC parameters where �
z

= 44 µm,
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Figure 9.1: Sketch showing the rotation achieved by the crab cavity field for a

bunch arriving on phase.
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Figure 9.2: Sketch showing the combined rotation and transverse kick applied

to a bunch with a phase o↵set, such that the bunch arrives early.
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= 45 nm and ✓
c

= 0.02 the reduction factor is 9.95% [89, 91].
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(9.1)

The deflecting voltage V? required from the crab cavity to correctly rotate the
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Beam delivery System plus IP Symbol Value

Crossing angle at IP ✓
c

20 mrad

Bunch length �
s

44

Initial RMS energy spread ��E/E

0.029

Horizontal IP beta function �⇤
x

6.9

Vertical IP beta function �⇤
y

0.068

Horizontal IP beam size before pinch �⇤
x

45

Vertical IP beam size before pinch �⇤
y

1

Transverse horizontal emittance (norm) �✏
x

660

Transverse vertical emittance (norm) �✏
y

20

Table 9.2: CLIC beam delivery system parameters [89, 90]

Figure 9.3: Schematic of the final 32 m section of the CLIC BDS, including the

location of the crab cavity.

bunches can also be estimated using Equation 9.2.

V? =
✓
c

E0c

4⇡fR12

, (9.2)

where E0 is the beam energy, f the operating frequency of the cavity, 12 GHz and

R12 is the element of the transfer matrix which relates the o↵set at the IP to the x0

at the crab cavity - see Equation 9.3 and Figure 9.3. For the current design R12 is

23.4 m [92], resulting in a required voltage of ⇠ 2.55 MV.

0

@ X

X 0

1

A

IP

=

0

@ R11 R12

R21 R22

1

A

0

@ x

x0

1

A

crab

(9.3)
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9.3 Finding the optimum crab cavity gradient and

tolerances

For a given accelerator lattice, bunch specifications, centre of mass energy and cross-

ing angle there will be an optimum setting at which the crab cavity acts to produce

the maximum luminosity [93, 92].

The simulations detailed here used PLACET [84] as the particle tracking code

and the code GUINEA-PIG [94, 95] to take the distorted beams from PLACET and

calculate the luminosity. Full details of the simulation setup and recent modifications

to PLACET to allow crab cavity elements to be accurately modelled are given in

[88].

Particle tracking commenced from the entrance to the CLIC beam delivery sys-

tem. The input bunches had idealised Gaussian distributions according to tables 9.2,

9.1 and were injected on axis. Neither wakefield nor synchrotron radiation e↵ects

were considered in these simulations.

Individual PLACET simulations take place in their own coordinate frames, de-

fined by the direction of acceleration. Thus, in order to mimic the crossing angle

which would exist at the interaction point (IP) in the physical collider the posi-

tion and momenta of bunches must be numerically transformed prior to passing to

GUINEA-PIG .

A straightforward rotation matrix in two dimensions is used, this matrix, R, is

defined in Equation 9.4. The vertical plane is not involved in the rotation.

R =

0

@ cos ✓ sin ✓

� sin ✓ cos ✓

1

A (9.4)

where ✓ is the angle of rotation.

In this case we rotate the electron bunches through the full 20 mrad, equivalent

to 10 mrad rotations of both the electron and positron bunches.

In Figure 9.4 the variation of luminosity with applied crab cavity voltage V0 is

displayed. A cubic spline fit has been applied [96]. The voltage which results in the
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Figure 9.4: Collision luminosity calculated by GUINEA-PIG for a range of crab

cavity voltages i.e. for a range of bunch rotations.

desired bunch rotation, and therefore the maximum luminosity, is given by the peak

of the curve as 2.58 MV. This figure agrees well with the estimate from Section 9.2

Having established the correct operating voltage the tolerances to phase di↵er-

ences between the cavities and to roll about the beam axis can be investigated.

9.3.1 Phase and Roll tolerance

Fixing the phase on the positron line and applying a varying phase o↵set to the

electron line crab cavity one can see the e↵ect on luminosity in Figure 9.5. The 98%

requirement results in a tolerance of ±0.02�. This value matches closely with that

expected from analytical considerations. Dexter et al. have estimated the tolerance

to a relative phase di↵erence between the electron and positron line crab cavities as

0.019� [92].

The roll tolerance measurement was performed in a similar fashion. Again the

positron line was kept fixed while a small roll was imparted to the crab cavity in the

electron line lattice. Roll about the beam axis changes the plane of crab rotation
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Figure 9.5: Luminosity as a function of phase o↵set applied to to the crab cavity

system.

from purely in the horizontal x�z plane into one having a component in the vertical

plane. It therefore leads to bunch o↵sets at the IP. The tolerance is determined to

be extremely tight at 5.9 millidegrees (0.1 mrad).

9.4 Unexpected Luminosity Degradation

When comparing with the nominal head on case, calculated with PLACET and

GUINEA-PIG in the same fashion, but with no crab cavity elements in the lattice,

an unacceptable drop in luminosity is observed. The luminosity with crossing angle

and crab cavity system is 10% lower than that of the head on case.

In Figure 9.6 the z � y bunch distribution at the IP is displayed in the form of

RMS value of the y displacement for each slice in z. The head on case and the crab

cavity rotated case are shown, in red and blue respectively. This vertical beam size

shows a slight increase in the rotated case, particularly at the head and tail of the

bunch.
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Figure 9.6: Here the RMS value of the y displacement is shown for individual

slices of the bunch in z. The head-on collision is shown in red and

the crab cavity corrected 20 mrad crossing angle case appears in

blue.

Similarly, Figure 9.7 shows a comparison of the y � y0 phase space of electron

bunches for each case. In the rotated case there has been some distortion in the

phase space. Recall that the crab operates in the x � z plane for a crab cavity

without roll angle and also that the emittance in the vertical plane must be kept

small to suppress beamstrahlung.

From the previously described figures the source of this increase in luminosity

is not readily identified. There are a number of nonlinear e↵ects that may be re-

sponsible and the other elements in the beamline must therefore be considered. In

particular the y�y0 distribution of Figure 9.7 which shows some correlation between

y and y0 for particles away from the core indicates the action of a sextupole magnet.

Two sextupoles are present in the lattice downstream of the crab cavities in order

to correct chromatic aberration at the IP. They impart a kick in the vertical plane
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Figure 9.7: Particle distribution in y�y0 space for the case of a head-on collision

(red). Overlaid with the, crab cavity corrected, 20 mrad crossing

angle case (blue).

dependent on the product of x and y displacements1:

�y = kxy. (9.5)

The crab rotation applies the greatest kick at the head and tail of the bunch in order

to correctly rotate the bunch, but solely in the x-plane. Figure ?? shows greater

displacement in the y plane at the head and tail of the bunch. It is likely that the

sexupole kick is translating the horizontal o↵set imparted by the crab in vertical

emittance degradation and luminosity reduction.

Simply removing the sextupoles from the lattice leaves the chromaticity uncor-

rected and the bunches reaching the IP are therefore much distorted. In simulation

it is possible to eliminate the chromatic e↵ects by reducing the bunch energy spread

to zero and performing the tracking again. The bunch remains highly distorted due

to the e↵ect of a decapole magnet, present in the lattice only to control multipole

1See the full equation of motion in Raubenheimer [26] or Chao’s book [97]
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Figure 9.8: Particle distribution in (x0 � y0) for the case of a head-on collision

(red). Overlaid with the, crab cavity corrected, 20 mrad crossing

angle case (blue). In this case tracking occurred with zero energy

spread and the sextupole and decapole magnets downstream of the

crab cavity have been turned o↵.

errors from the sextupoles. Finally we can deactivate that magnet’s e↵ect in the

lattice as well. This data is presented in Figure 9.8. Here there is no discernible

di↵erence between the case of head on collisions and the crab cavity rotated case.

In fact the luminosity is now equal for both cases.

9.5 Summary

Beam dynamics simulations of the 1.5 TeV CLIC beam were performed, tracking

through the beam delivery system to the IP, contrasting with the 250 GeV ILC
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main linac simulations considered elsewhere in this thesis. Analytic estimations of

the crabbing voltage required, di↵erential phase tolerance and roll tolerance have

been verified with PLACET simulations, see Sections 9.2 and 9.3.1. In particular,

it was shown that a crab cavity operating at 2.58 MV will act to rotate the bunches

through the 10 mrad angle required to maximise collision luminosity at the IP (in

the case of a 20 mrad crossing angle BDS design).

These studies entailed inserting the crab cavity into the CLIC beam delivery

system lattice and then performing multiple beam dynamics studies, passing the

tracked and rotated bunch populations to GUINEA-PIG which calculates the lumi-

nosity of the collisions, see Figure 9.5 for example.

An unexpected and intolerable degradation of the luminosity was observed even

when operating at the optimum crabbing voltage, i.e when the bunches had been

rotated correctly. Section 9.4 describes the investigation undertaken to track this

problem to the combined e↵ect of the crab deflection with the sextupole and decapole

magnets, placed in the lattice to correct chromaticity errors prior to the final focus.

The lattice should be modified to mitigate this issue.

In the next chapter a brief overview of the results contained in this thesis is presented

followed by some concluding remarks.
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Conclusion

This thesis details finite di↵erence electromagnetic simulations of two high gra-

dient accelerating cavity designs for the ILC. The eigenmodes calculated have been

used to calculate transverse wakefields and further employed in multiple beam dy-

namics simulations. The higher order mode damping required to achieve the nominal

emittance and luminosity required for the ILC has been verified. These simulations

have demonstrated that ILC linacs made up of the new high gradient cavities would

meet wakefield requirements for delivering high quality beams for particle physics

studies. This result is important since any upgrade of the ILC from 500 GeV to

1 TeV centre of mass energy would make use of one of these high gradient cavity

designs in the extension to the linacs.

A study of beam dynamics in the beam delivery system at CLIC has also been

detailed. These simulations included the crab cavity system and were compared to

estimates from geometric and analytic considerations as well as the expected and

required behaviour. The crab cavity is necessary in order to restore the luminosity

lost in the crossing-angle configuration due to collisions no longer occurring “head-

on” at the interaction point.

Dispersion curves for the Cornell designed Reentrant cavity have been produced.

Dipole modes up to 4 GHz were simulated for the full 9-cell cavity design, with

35 mm iris radius, using GdfidL. Having an iris radius equal to that of the TESLA

cavities the Reentrant shows a broadly similar pattern of modes, the highest R/Q

mode is present in the 3rd dipole band in both cases for example. We note, however,

a mode at 3.936 GHz which has a significant R/Q ⇠ 2 Ohms/cm2 (Section 7.2.1).
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If this mode is not well damped then unacceptable emittance dilution could occur

due to the long range wakefields generated.

Similarly, the Ichiro cavity, designed at KEK was simulated. A good agreement is

found between results from the GdfidL, MAFIA 2D, HFSS and Analyst simulation

packages. Where discrepancies were found beyond that which can be expected

simply from the di↵erent mesh discretizations further careful investigations were

carried out. These investigations led to the identification of certain modes which

do not show sensitivity to the applied boundary conditions. Notably the first 3rd

band dipole mode at 2.4498 GHz appears to be trapped, displaying little field in the

region of the end cells and showing negligible sensitivity to the boundary conditions

applied in simulation (Section 7.2.3).

In both cases modes have been identified which must be borne in mind while opti-

mizing the cavity end-groups and higher order mode couplers. TESLA cavities have

an asymmetric end cell design in order to improve damping of previously trapped

dipole modes. Modification of the end groups could be employed in a similar fashion

for both the Ichiro and Reentrant cavities, which are longitudinally symmetric, in

order to improve the coupling and damping of the modes described above.

The modes and wakefields described above, calculated from finite di↵erence sim-

ulations, were used as the basis for the first direct comparison of beam dynamics

in ILC linacs constructed with the Reentrant and Ichiro cavities (Section 8.2). The

vertical emittance growth due to long range wakefields was calculated in multiple

scenarios. It was demonstrated that targeted damping of the five most significant

dipole modes to Q = 105, while leaving the remainder sub-optimally damped at

Q = 106, is su�cient to reduce the emittance growth to less than 10% across a

range of bunch spacings, equivalent to systematic shifts in the modal frequencies.

At the nominal bunch spacing beam dynamics simulations with Lucretia, incor-

porating an improved approximation of the population of cavities within the linac,

were performed (Section 8.3). These simulations show that the emittance dilution

across the three cavity types is of the same order and within the allowed emittance

budget for the main linacs, however the Ichiro design is the most sensitive showing

31% growth.
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Both the LIAR and Placet simulations demonstrate the importance that random

fabrication errors have to the operation of the main linacs. If a linac was constructed

from 16,000 identical cavities the emittance dilution resulting from the transverse

wakefield generated would be catastrophic - beam break up would occur - driven by

the resonant superposition of identical kicks from each cavity in the linac. While

extreme care is taken during the construction and preparation of the superconduct-

ing cavities they are all di↵erent and each will require tuning to achieve the design

frequency of the fundamental mode (1.3 GHz). Each of the cavities will have ran-

dom errors in their higher order modes, leading to di↵ering long range transverse

wakefields. Rather than superpose constructively to cause BBU, the sin!t terms

from Eq. 7.4 all have slightly di↵erent phases and therefore the combined “detuned”

e↵ect is much reduced and BBU is avoided.

Future work in this area should include higher order modes from the latest cav-

ity designs (section 5.6) as well as Q factors measured from bench tests of newly

fabricated cavities. As is the case with all finite di↵erence and finite element work

the continued advance of Moore’s Law and the expansion of computing hardware

and memory available means that higher fidelity simulations will become possible,

this is to be encouraged.

This work has benefitted from the “open source” nature of the beam dynamics

codes Lucretia and PLACET . The authors of these codes have published exten-

sively on the techniques used as well as being responsive to questions from fellow

researchers. Further, the exact implementation of a particular physics process is

always available in the supplied source code, for inspection or modification. Sadly

this has not been the case for the electromagnetic field solvers which are commer-

cial codes and proprietary in nature. A finite element Maxwell solver developed in

house, even for axis-symmetric structures, would be beneficial. Such a code would

allow extremely accurate solutions to be rapidly determined even for large problem

geometries. In addition, the necessary customizations for geometry optimization,

calculation of quantities derived from the raw fields and other tasks usually left to

ine�cient post-processing could be built into the main tool. Much of the ground-

work has been done in other groups, for example the multi-physics finite element
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library oomph-lib has been developed at Manchester in the School of Mathematics

[98, 99].

Beam dynamics simulations of the beam delivery system at CLIC have shown

the impact of the crab cavity system in maintaining the luminosity of the collider

despite the crossing angle (Chapter 9). The required crab cavity voltage has been

determined as 2.55 MV, in line with that expected from analytic estimations. The

importance of incorporating the crab cavity e↵ect in the design of the BDS has

been emphasised by the unexpected 10% degradation in luminosity observed in

simulations despite operating at the optimum crabbing voltage. It was demonstrated

that responsibility lay with the combined e↵ect of the crab cavity deflection and

sextupole magnets present to correct chromatic errors. The BDS design must be

modified to mitigate this e↵ect.

The work presented in this thesis employed codes developed over the previous

15 years, running on desktops, servers and the Grid and touching upon numerical

methods for solving Maxwell’s equations, the physics of intense electron bunches in

superconducting accelerating cavities and the beam dynamics of multi-bunch beams

transported through thousands of beamline elements. Bunches have been tracked

from the start of the main linacs through to the interaction point, highlighting some

of the careful work which must be undertaken to produce a reliable linear collider

delivering a high energy, high luminosity beam for particle physics studies.
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Appendix A

Point Charge Wake function

Consider two particles, a driving particle q1 and a test particle q, traveling with

velocity v ⇡ c both with a trajectory parallel to the axis of a cavity as shown in

Figure A.1. The longitudinal and transverse position of the driving particle are z1

and r1 respectively. Similarly, the coordinates of the test particle q moving with the

same velocity a distance s behind are labeled z and r.

The electromagnetic fields E and B produced by the driving charge can be

derived by solving Maxwell’s equations with the proper boundary conditions.

r ⇥ B = µ0j +
1

c2

@E

@t
(A.1)

r · E =
1

✏0

⇢ (A.2)

r ⇥ E = �@B

@t
(A.3)

r · B = 0 (A.4)

For a point particle the charge and current density are written as

⇢(r, t) = �2(r � r1)�(z � vt), j(r, t) = v ⇢(r, t), (A.5)

where �2 denotes the delta function in two dimensions. The Lorentz force acting

on the test charge at a given position (r, z) is given by Equation A.6,
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Appendix A. Point Charge Wake function

Figure A.1: Coordinates of a driving and a test charge traveling parallel to the

z axis of a cavity.

F(r, z, t) = qE(r, z, t) + q v ⇥ B(r, z, t). (A.6)

Passage through the cavity produces changes in the energy and the transverse

momentum of both particles. The test particle is a↵ected by the fields generated by

the driving particle, while the latter is a↵ected by its interaction with the environ-

ment. The integrated forces along the length of the cavity, L will also depend on

the transverse position of the driving charge r1. Thus, the wake force acting on a

test charge is given by:

F(r, r1, z, t) = q[E(r, r1, z = vt � s, t) + v e
z

⇥ B(r, r1, z = vt � s, t)]. (A.7)

The total change in momentum after passage through the cavity is obtained by

integrating this wake force:

�p(r, r1, s) =

Z

L

dtF(r, r1, z, t). (A.8)

The variables s, z, and t are related and therefore the integration with respect
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to time can be replaced by an integration with respect to the longitudinal position

z of the driving charge, thus obtaining the following wake function:

W�(r, r1, s) =
1

q

Z 1

�1
dz [E(r, r1, z, t) + v e

z

⇥ B(r, r1, z, t)]t=(z+s)/v, (A.9)

where the superscript � refers to the �-function properties of the driving charge.

This function describes the shock response of a cavity due to the field created by a

point like charged particle.

Consider now a line charge density � moving with constant velocity v in a tra-

jectory parallel to the z axis, (r = r1).

The wake potential at a distance s with respect to a particle inside the bunch is

obtained as follows:

W�(r, s) =

Z 1

�1
ds0 �(s0)W�(r, s � s0), (A.10)

where the charge density is normalised to unity,

Z 1

1
dz �(z) = 1 (A.11)

Hence, the wake function for a point like source is the Green’s function for the wake

potential of a line charge distribution.

The wake potential of a three-dimmensional bunch is calculated by superimpos-

ing the wake functions for di↵erent values of r1, weighted by the transverse charge

distribution �(r1).
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The Condon Method

Following the method laid out in the exposition by Bane et al [100], here we show

how to calculate the longitudinal and transverse wakefields from the eigenmodes of

electric field within an empty cavity. This rigorous approach is known as the Condon

Method [40]. Some sections are expanded to clarify the method while others, treated

in detail by Bane, are abridged.

B.1 Fields In A Cavity

We define a vector potential A(x, t) and a scalar potential �(x, t) and can now write

B = r ⇥ A

E = �@A

@t
� r�. (B.1)

We choose the Coulomb gauge and set r.A = 0. Using equations B.1 Maxwell’s

equation

r ⇥ B = µ0j +
1

c2

@E

@t
(B.2)

becomes

r2A = µ0j � 1

c2

@2A

@t2
� 1

c2
r
✓

@�

@t

◆
. (B.3)
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Restricting consideration to within a closed cavity which has perfectly conducting

walls we can expand the vector potential in terms of a complete and orthogonal set

of vectors a
�

thus

A(x, t) =
X

�

q
�

(t)a
�

(x) (B.4)

with

r2a
�

+
!2
�

c2
a
�

= 0 (B.5)

and r.a
�

= 0. Also a
�

⇥n̂ on the metallic surface since it is perfectly conducting.

The scalar potential is similarly expanded,

�(x, t) =
X

�

r
�

(t)�
�

(x) (B.6)

where

r2�
�

+
⌦2

�

c2
�
�

= 0, (B.7)

with �
�

= 0 on the metallic surface. The �
�

serve to account for any source

terms present in the cavity. Now, expanding the vector and scalar potentials within

Equation B.3 using Equations B.4 and B.6, we get

X

�

⇥�
q̈
�

+ !2
�

q
�

�
a
�

+ ṙ
�

r�
�

⇤
= µ0c

2j. (B.8)

Integrating over the cavity volume, using the orthogonality condition for the a
�

,

setting

✏0

2

Z

V

a
�

0 .a
�

dV = U
�

�
��

0 , (B.9)

we obtain

q̈
�

+ !2
�

q
�

=
1

2U
�

Z

V

j.a
�

dV. (B.10)
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When there is no current in the cavity the righthand side of Equation B.10 drops

to zero and the q
�

are governed by a simple harmonic relation. It is now possible to

write A as

A(x, t) =
X

�

C
�

a
�

cos(!
�

t + ✓
�

) (B.11)

where C
�

and ✓
�

are determined by the initial conditions which generated the

modes. The a
�

are eigenmodes of the cavity, when free from currents, with corre-

sponding resonant frequencies !�.

The r
�

can be found in a similar fashion starting from

r.E =
⇢

✏0

(B.12)

to get

r
�

=
1

2T
�

Z

V

⇢�
�

dV , (B.13)

with the �
�

normalized by

✏0

2

Z

V
r�

�

0 .r�
�

dV = T
�

�
��

0 . (B.14)

Putting this all together we can now write down the electric field

E = �
X

�

(q̇
�

a
�

+ r
�

r�
�

) (B.15)

and the magnetic induction

B =
X

�

q
�

r ⇥ a
�

. (B.16)

The stored energy can also be expressed as a sum

E =
1

2

Z

V
(✏0E

2 + B2/µ0)dV

=
X

�

(q̇2
�

U
�

+ !2
�

q2
�

U
�

+ r2
�

T
�

). (B.17)
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B.2 Longitudinal Wake-field

A particle with charge Q traverses with velocity v = c a closed, otherwise empty,

cavity which has perfectly conducting walls. Axes are arranged on this arbitrary

cavity such that the charge enters at z = 0 and at time t = 0. It leaves at z = L.

The longitudinal wake potential W
z

is obtained from the total voltage lost by a test

charge which follows at a distance s, divided by Q, where the following test charge

takes the same path as the driving charge Q and also travels at v = c. This voltage

is obtained from the line integral of the z component of electric field along the path

followed, thus

W
z

(s) = � 1

Q

Z
L

0

dzE
z

(z, (z + S)/c) (B.18)

where E
z

(z, t) is the z component of electric field E on the axis due to the

exciting charge. W
z

= 0 for all s < 0 since the signal can not propagate faster than

the speed of light and “over-take” the driving charge.

We must write down the source terms due to the exciting charge in order to

find the fields in the cavity and further calculate W
z

. Consider the charge Q as a

delta-function in x and y and advancing through the cavity along Z thus

⇢(x, t) = Q�(x)�(y)�(z � ct)

j(x, t) = ẑc⇢(x, t). (B.19)

These source terms can now be inserted into Equation B.10 to give

q̈
�

+ !2
�

q
�

=
Qc

2U
�

( 0 t < 0

a
�z

(0, 0, ct) 0 < t < L/c

0 t > L/c,

(B.20)

where we take the z component of a
�

. This second order di↵erential equation is

approached by variation of parameters1 and with the initial conditions determined

1The homogeneous equation is solved separately.
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by excluding fields from the cavity before the charge enters q(0) = q̇(0) = 0. B.20

then yields

q
�

(t) =
Qc

2U
�

!
�

Z min(t,L/c)

0

dt0 sin !
�

(t � t0) a
�z

(0, 0, ct0). (B.21)

Similarly, using Equation B.13 we get

r
�

(t) =
Q

2T
�

8
>>><

>>>:

0 t < 0

�
�

(0, 0, ct) 0 < t < L/c

0 t > L/c,

(B.22)

where �
�

depends on x, y and z. With the above expressions for q
�

and r
�

and

using Equations B.15, B.16 and B.17 we can now describe the electromagnetic fields

and stored energy due to the exciting charge at any time in terms of the empty

cavity solutions a
�

, �
�

, !
�

.

Equation B.17 is easily expanded using Equation B.21 and for times (t > L/c)

after the exciting charge has left the cavity the energy deposited is

E =
X

�

�
q̇2
�

+ !2
�

q2
�

�
u
�

= Q2
X

�

|V
�

|2

4U
�

, (B.23)

where

V
�

=

Z
L

0

dzei!�z/ca
�z

(0, 0, z). (B.24)

One now recognises the loss factor2 k
�

as

k
�

=
|V

�

|2

4U
�

(B.25)

and the stored energy can now be written in the simple form

E = Q2
X

�

k
�

. (B.26)

2This is the same quantity discussed in Chapter 4.
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The loss factor k
�

is the amount of electromagnetic energy deposited in mode

� by the exciting charge. From Equation B.9 we see that U
�

di↵ers from the total

energy stored in the mode by just a multiplicative factor. For a test charge traversing

the cavity along the z-axis at v = c the quantity |V
�

|2 is the square of the maximum

voltage gained from the mode, up to the same factor. Therefore, it is safe to use the

measured values directly in calculating the loss factors of a real cavity.

Using Equation B.15 the wake potential B.18 can now be expanded in terms of

the cavity eigenmodes to give

W
z

(s) =
1

Q

X

�

Z
L

0

dz


q̇
�

✓
z + s

c

◆
a
�z

(0, 0, z) + r
�

✓
z + s

c

◆
@�

�

@z
(0, 0, z)

�
. (B.27)

We now introduce the shorthand that a
�z

(z) represents a
�z

(0, 0, z) and substitute

for q
�

and r
�

from Equations B.21 and B.22 to get the result. There are clearly three

cases to consider, when the test charge enters after the exciting charge has left, when

both the charges are within the cavity and, finally, when the test charge enters in

advance of the exciting charge.

a) s > L: In this case we can set r
�

= 0 since there are no source terms. We

require q̇
�

and, using Equation B.21, take the time-derivative directly

q̇
�

(t) =
d

dt

"
Qc

2U
�

!
�

Z
L/c

0

dt0 sin !
�

(t � t0) a
�z

(ct0)

#

=
Qc

2U
�

!
�

Z
L/c

0

dt0!
�

cos !
�

(t � t0) a
�z

(ct0) (B.28)

and then, remembering that both charges are ultra-relativistic and that the test

charge traverses a distance s behind the exciting charge, make the change of variables

from time to position using the relation t � t0 = z+s

c

� z

0

c

to get

q̇
�

=
Qc

2U
�

Z
L

0

dz0 cos
!
�

c
(z + s � z0) a

�z

(z0). (B.29)

We now have

W
z

(s) =
X

�

I1�(s)

2U
�

s > L, (B.30)
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with

I1�(s) =

Z
L

0

dz

Z
L

0

dya
�z

(z)a
�z

(y) cos
!
�

c
(z + s � y) (B.31)

= Re
�
V ⇤
�

V
�

ei!�s/c
 

,

where we have made the change of variable z0 ! y to match the notation in

[100]. Equation B.30 can be rewritten as

W
z

(s) =
X

�

2k
�

cos
!
�

s

c
s > L. (B.32)

b) 0 < s < L: The source terms induced by the exciting charge must be consid-

ered here but it can be shown that the problem serendipitously reduces to

W
z

(s) =
X

�

I1�(s)

2U
�

=
X

�

2k
�

cos
!
�

s

c
0 < s < L. (B.33)

c) s < 0: From causality

W
z

(s) = 0 s < 0. (B.34)

The simple forms derived here are due to the assumption that the velocities are

c. For cases v 6⇡ c the scalar potential terms need to be evaluated and W
z

becomes

di�cult to deal with.

B.3 Transverse Wake-fields

The transverse momentum kick experienced by a test charge following on the same

path a distance s behind the driving charge Q defines the transverse wake potential

W? up to a factor of Q. Consider the same closed, empty, perfectly conducting

cavity traversed by the same pair of ultra-relativistic charges.
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W?(s) =
1

Q

Z
L

0

dz [E? + (v ⇥ B)?]
t=(z+s)/c

=
1

Q

Z
L

0

dz


r? (v · A) �

✓
@

@t
+ v · r

◆
A? � r?�

�

t=(z+s)/c

=
1

Q

Z
L

0

dz [cr?A
z

� r?�]
t=(z+s)/c

� 1

Q

Z
L

0

dz

✓
@

@t
+ v · r

◆
A?

�

t=(z+s)/c

. (B.35)

The second integral in Equation B.35 above can be evaluated directly remem-

bering the total derivative dA? and then transforming variables. For A?(x, y, z, t)

we have

dA? =
@A?

@x
dx +

@A?

@y
dy +

@A?

@z
dz +

@A?

@t
dt. (B.36)

The integral J can now be evaluated as follows

J =
1

Q

Z
L

0

dz

✓
@

@t
+ v · r

◆
A?

�

t=(z+s)/c

=
1

Q

Z
L

0

dz


@A?

@t
+ v

x

@A?

@x
+ v

y

@A?

@y
+ v

z

@A?

@z

�

=
1

Q

Z
L

0

dz


@A?

@t
+

dx

dt

@A?

@x
+

dy

dt

@A?

@y
+

dz

dt

@A?

@z

�
. (B.37)

Of course dz

dt

is just the velocity c and the integral now reduces such that

J =
1

Q

Z 
@A?

@t
cdt + c

@A?

@x
dx + c

@A?

@y
dy + c

@A?

@z
dz

�

=
c

Q

Z
dA?

=
c

Q
A?

�����

L

0

. (B.38)

Equation B.35 can now be written

W?(s) =
1

Q

Z
L

0

dz [cr?A
z

� r?�]
t=(z+s)/c � c

Q
A?

�����

L,t=(L+s)/c

0,t=s/c

. (B.39)
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For cavities with walls perpendicular to the z-axis where the charges enter and

exit the cavity the boundary terms in Equation B.39 are zero and can be dropped.

In their absence the treatment becomes neater but they can be added at the end.

Substituting Equations B.4 and B.6 into Equation B.39 to get

W?(s) =
1

Q

X

�

Z
L

0

dz


cq

�

✓
z + s

c

◆
r?a

�z

(z) � r
�

✓
z + s

c

◆
r

�

�
�

(z)

�
. (B.40)

Again, having substituted for q
�

, r
�

from Equations B.21 and B.22 the transverse

wakefield can now be solved in three parts.

a) s > L:

W?(s) =
X

�

cI 0
1�(s)

2U
�

!
�

s > L, (B.41)

and using the same notation that y stands for t0, I 0
1� is written

I 0
1�(s) =

Z
L

0

dz

Z
L

0

dy (r?a
�z

(z)) a
�z

(y) sin
!
�

c
(z + s � y) (B.42)

= Im{V ⇤
�

r?V
�

ei!�s/c}.

b) 0 < s < L: Here

W?(s) =
X

�

✓
c
I 0
1�(s) � I 0

2�(s)

2U
�

!
�

� K 0
1�(s)

2T
�

◆
0 < s < L, (B.43)

where

I 0
2�(s) =

Z
L�s

0

dz

Z
L

z+s

dy(r?a
�z

(z))a
�z

(y) sin
!
�

c
(z + s � y) (B.44)

and

K 0
1�(s) =

Z
L�s

0

dz(r?�
�

(z))�
�

(z + s). (B.45)

In the range �L < s < 0 we get the relation

W?(s) =
X

�

✓
c
I 0
3�(s)

2U
�

!
�

� K 0
2�(s)

2T
�

◆
= 0 � L < s < 0, (B.46)
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with

I 0
3�(s) =

Z
L

�s

dz

Z
z+s

0

dy(r?a
�z

(z))a
�z

(y) sin
!
�

c
(z + s � y)

= �
Z

L+s

0

dz

Z
L

z�s

dya
�z

(z)r?(y) sin
!�

c
(z + s � y) (B.47)

and

K 0
2�(s) =

Z
L

�s

dz(r?�
�

(z))�
�

(z + s)

=

Z
L+s

0

dz(r?�
�

(z � s))�(z). (B.48)

In general these integral terms cannot be simplified. However, there are certain

conditions of the geometry under which Equation B.43 can be simplified for 0 < s <

L.

c) s < 0: From causality we know

W?(s) = 0 s < 0. (B.49)

Observing the form of I 0
2�, I 0

3� and K 0
1�, K 0

2� we see that there is some similarity.

For a cavity with the geometry of a right cylinder with arbitrary cross-section, axis

aligned along the z-axis a
�z

can be written as

a
�z

(x, y, z) = f
�

(x, y)g
�

(z) (B.50)

and similarly �
�

. In this case

I 0
2�(s) = �I 0

3�(�s)

K 0
1�(s) = K 0

2�(�s)
0 < s < L, (B.51)

Utilizing Equation B.51 the form of W? for 0 < s < L reduces to the same form

as in the range s > L and we now have

W?(s) =
X

�

c
V ⇤
�

r?V
�

2U
�

!
�

sin
!
�

c
s > 0 (B.52)
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for cavities with translational symmetry along the z-axis.

Further, for infinitely repeating structures which are cylindrically symmetric

using cylindrical polar coordinates (r, ✓) - the modes depend on ✓ as eim✓ where m is

an integer. m = 0, 1, 2 refer to the longitudinal / monopole mode, dipole modes and

quadrupole modes respectively. The transverse wake component for modes m 6= 0

can be written, for s > 0 as

W?m

= m

✓
r0

a

◆
m ⇣r

a

⌘
m�1 ⇣

r̂ cos m✓ � ✓̂ sin m✓
⌘X

�

2k
m�

(a)

!
m�

a/c
sin

!
m�

s

c
(B.53)

where k
m�

is the loss factor calculated at r = a.
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Appendix C

Panofsky-Wenzel Theorem

There is a relation between the transverse and the longitudinal wake potential,

usually called the Panofsky-Wenzel theorem, which was published by Panofsky and

Wenzel in 1956 [41]. The derivation requires only the use of Faraday’s induction law

e
z

⇥ @

@t
B? =

@

@z
E? � r?E

z

(C.1)

and it relates the net transverse kick experienced by a test charge crossing a cavity

that contains electromagnetic fields derived form a vector potential. Applying the

above equation to the transverse wake potential in Equation 4.16 we obtain:

@
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. (C.2)

When the transverse field for a given s is equal at the beginning and the end of
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Appendix C. Panofsky-Wenzel Theorem

the cavity the last term on the right hand side will vanish and hence

@
s

W?(r?, s) = �r?Wk(r?, s) (C.3)

giving a relation between the longitudinal derivative of the transverse wake po-

tential and the transverse gradient of the longitudinal potential that allows for

the calculation, by integration, of the transverse potential once the longitudinal

is known.

143



References

[1] R.M. Jones & C.J. Glasman. Higher Order Mode Wake-field Simulations And

Beam Dynamics Simulations In The ILC Main Linacs. LINAC06, 2006.

[2] C.J. Glasman. Higher Order Mode Wake-fields in the Main Linacs of the

International Linear Collider. Thesis, University of Manchester, UK, 2006.

[3] https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResults.

[4] Statement on Linear Colliders. International Committee On Future Acceler-

ators, http://www.fnal.gov/directorate/icfa/icfa LCstatement.html, 1999.

[5] G. Moortgat-Pick. Impact of polarized e� and e+ beams at a future Linear

Collider and a Z-factory. Journal of Physics: Conference Series 298 (2011)

01200), 2011.

[6] Helmut Wiedemann. Particle Accelerator Physics. Springer, 2007.

[7] CLIC Conceptual Design Report. http://clic-study.org/ accelerator/CLIC-

ConceptDesignRep.php, 2011.

[8] ITRP Recommendation, http://www.fnal.gov/directorate/icfa/ITRP Report

Final.pdf, 2004.

[9] F. Zimmermann. Accelerators physics lectures, part 2. In Ambleside Linear

Collider School, 2009.

[10] International Committee On Future Accelerators, ICFA

endorses the Technology Recommendation Panel report,

http://www.interactions.org/cms/?pid=1014290, 2004.

144



REFERENCES REFERENCES

[11] A. Grudiev et al.. Optimum Frequency And Gradient For The CLIC Main

Linac. EPAC, CERN-AB-2006-028, 2006.

[12] V.F. Khan, A. D’Elia, R.M. Jones, A. Grudiev, W. Wuensch, G. Riddone,

and V. Soldatov. Wakefield and surface electromagnetic field optimisation of

manifold damped accelerating structures for CLIC. Nuclear Instruments and

Methods in Physics Research Section A: Accelerators, Spectrometers, Detec-

tors and Associated Equipment, V 657, 1 pp131, 2011.

[13] N. I. Baboi. Studies on Higher Order Modes in Accelerating Structures for

Linear Colliders. PhD Thesis, DESY-University of Hamburgh., 2001.

[14] P.B. Wilson. Introduction to wakefields and wake potentials. AIP Conference

Proceedings, 184(1):525–564, April 1989.

[15] W.K.H. Panofsky R.B. Neal. Electrons Accelerated to the 10-20 GeV Range.

Science, Vol. 152, p, 1353, SLAC-PUB-0197, June 1966.

[16] The International Linear Collider Reference Design Report, http://www.linear

collider.org/about/Publications/Reference-Design-Report, 2007.

[17] T. Nishitani et al. Highly polarized electrons from GaAsGaAsP and InGaAsAl-

GaAs strained-layer superlattice photocathodes,. J. Appl. Phys. 97, 094907,

2005.

[18] T. Maruyama et al. Systematic study of polarized electron emission from

strained GaAs/GaAsP superlattice photocathodes. Appl. Phys. Lett. 85, 2640,

2004.

[19] N. Chanlek. Quantum E�ciency Lifetime Studies using the Photocathode

Preparation Experimental Facility Developed for the ALICE Accelerator. The-

sis, University of Manchester, 2011.

[20] F. Zhou et al. Start-to-end transport design and multi-particle tracking for the

ILC. SLAC-PUB 12240, 2007.

145



REFERENCES REFERENCES

[21] The International Linear Collider, a Technical Progress Report,

http://www.linearcollider.org/about/Publications/interim-report.

[22] XFEL Technical Information, http://xfel.desy.de/technical information/.

[23] B. Aune, R. Bandelmann, D. Bloess, B. Bonin, A. Bosotti, M. Champion,

C. Crawford, G. Deppe, B. Dwersteg, D. Edwards, H. Edwards, M. Fer-

rario, M. Fouaidy, P.-D. Gall, A. Gamp, A. Gössel, J. Graber, D. Hu-
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