Interaction of Metals with Suspended Graphene Observed by Transmission Electron Microscopy

Recep Zan, Ursel Bangert, Quentin Ramasse, and Konstantin S. Novoselov

School of Physics and Astronomy and School of Materials, The University of Manchester, Manchester, M13 9PL, United Kingdom

SuperSTEM Laboratory, STFC Daresbury, Daresbury WA4 4AD, United Kingdom

ABSTRACT: In this Perspective, we present an overview of how different metals interface with suspended graphene, providing a closer look into the metal–graphene interaction by employing high-resolution transmission electron microscopy, especially using high-angle dark field imaging. All studied metals favor sites on the omnipresent hydrocarbon surface contamination rather than on the clean graphene surface and present nonuniform distributions, which never result in continuous films but instead in clusters or nanocrystals, indicating a weak interaction between the metal and graphene. This behavior can be altered to some degree by surface pretreatment (hydrogenation) and high-temperature vacuum annealing. Graphene etching is observed in a scanning transmission electron microscope (STEM) under high vacuum and 60 kV electron beam acceleration voltage conditions for all metals, except for Au. This unusual metal-mediated etching sheds new light on the metal–graphene interaction; it might explain the observed higher frequency of cluster nucleation for certain transition metals and might have implications regarding controlled nanomanipulation, that is, for self-assembly and sculpturing of future graphene-based devices.

Due to its large surface area, chemical stability, and low cost, graphene is a highly desirable support for metal catalysts. However, due to the chemical inertness of graphene, there are two barriers to overcome, which affect the metal–graphene interaction, the stabilization of nanoparticles, and achievement of uniform distributions. Introducing vacancies and applying strain in the graphene sheet are ways of stabilizing metal clusters. Vacancies behave like traps for metal atoms and clusters due to the presence of dangling bonds, thus increasing the reactivity of graphene. The other method consists of functionalizing graphene in solution (graphene oxidation), which also allows one to obtain chemically processable graphene. During chemical functionalization, oxy-functional groups are introduced, which act as nucleation sites and facilitate seeding and growth of metal nanoclusters. However, it should be noted that the metal behavior on modified graphene is governed by the chemical method used and can therefore vary.

Graphene has furthermore been used as an ideal transparent support for transmission electron microscopy (TEM) studies directly focused on nanoparticles (i.e., gold and cobalt). Metals on graphene were found to induce a large enhancement of the Raman signal. A correlation has been recently found between the enhancement factor and the G band splitting for a different number of layers.

Several scanning tunnelling microscopy (STM) studies have been performed to investigate electrical and structural properties of...
Cluster arrays on graphene. However, all reported STM studies are performed on graphene on a substrate; therefore, substrate effects have to be taken into consideration, in particular, when compared to TEM studies, which are conducted on suspended graphene.26–22 Metals are also used for graphene tailoring, that is, for cutting graphene sheets into nanoribbons.23–25 However, the respective experiments are mainly conducted at elevated temperature in gas environments and do not present a controllable way of slicing graphene yet. Metal graphene composites are furthermore used for practical applications, for example, in transistors,26 electronic catalysis,27 biosensors,28 solar cells,29 and batteries.30

However, there is a lack of electron microscopy studies, in particular, of high-resolution TEM, and this is limiting the understanding of the metal–graphene interaction. In this Perspective, we present an overview of stationary mode TEM and scanning mode TEM, that is, STEM, of metal–graphene interfaces, providing a closer look into the metal–graphene interaction. Regardless of the production method, whether produced by exfoliation3 or CVD growth,30 suspended pristine graphene is known to react strongly with hydrocarbons. These most probably arise from air exposure and/or remnants of adhesives used during extraction, transfer, and handling of graphene (Figure 1a). Although the microscope column has a relatively high vacuum (~10−8 Torr), traces of CO, CO2, and H2O can be present inside of the instrument itself. Clean graphene areas (free from residue) vary in size from a few nm2 to a few hundred nm2; these areas are surrounded by worm-like hydrocarbon contamination (Figure 1a). Prior to metal deposition (in our case, via evaporation) onto the graphene and consecutive TEM investigations, the number of graphene layers was identified. The most convenient method to do this is via electron diffraction by comparing first- and second-order diffraction spots with intensities (inset Figure 1a).31 To begin with, one of the most convenient heavy metals, Au, has been studied. Gold atoms and clusters are mainly observed on hydrocarbon contamination, as previously reported.22,33 The cluster sizes vary from about 1 to 5 nm in diameter (Figure 1b), and the clusters are not equally distributed on the graphene surface (Figure 1b). As a result of surface treatment, in our case, by exposing pristine graphene samples to a cold hydrogen plasma34 for one, two (~30 min), and four cycles (~60 min), the cluster distributions and sizes are affected, although clusters remain on hydrocarbon contamination.28 Gold cluster distributions become more uniform in hydrogenated samples (Figure 1c and d), and cluster sizes become similar, in particular, after four-cycle hydrogenation. Coalescence of gold clusters is observed for both pristine and hydrogenated samples as a result of long electron beam exposure. However, it is much more pronounced in hydrogenated samples. Coalescence is observed within a few seconds on hydrogenated samples, whereas it takes longer (50 s) in pristine samples. Another way to study metal clusters on graphene is to anneal them either in a gas environment or in vacuum at elevated temperature. In situ annealing and imaging in the microscope in high vacuum is a feasible way to investigate gold cluster stability at high temperatures. As previously observed by our group, annealing pristine samples at ~700 °C in high vacuum is sufficient to eliminate most of the hydrocarbon contamination from the graphene surface. As can be seen in Figure 2a, as the clean graphene areas increase due to evaporation of hydrocarbon contamination during high-vacuum annealing, the gold clusters, which reside in the hydrocarbons, are forced to move toward each other. However, coalescence has not been observed yet at this temperature (Figure 2a and b). As a next step, the annealing temperature was increased to 950 °C, where gold clusters agglomerated, almost melted, and, as a result, have flattened, and no contamination was observed (Figure 2c). Lastly, for comparison, few-layer graphene with the same amount of gold was annealed at 700 °C in high vacuum (Figure 2d). It was found that gold cluster sizes became bigger, and their distributions were less uniform than on monolayer graphene, resulting in much more open space, free from residue, on the graphene surface.

Figure 1. (a) Bright field (BF) image of pristine monolayer graphene. The inset shows the diffraction pattern and intensity profile along the red line in the diffraction pattern. BF image of 2 Å gold evaporated on (b) pristine, (c) two-cycle-hydrogenated, and (d) four-cycle hydrogenated monolayer graphene. The scale (5 nm) is chosen to be same in all images for accurate comparison.
143 gold and few-layer graphene in this experiment might be
144 attributed to the higher number (>5) of graphene sheets with
145 subsurface layers making a significant contribution to the
146 bonding, whereas the BN flake was thinner (<5 layers).
147 Gold has never been observed to introduce any damage into
148 graphene; this conclusion can be drawn with high certainty
149 from STEM studies,33 where a 60 kV acceleration voltage has
150 been used for imaging, an energy which is known to be well
151 below the displacement threshold for graphene.36 In contrast,
152 damaging of graphene has been observed in the presence of Al,
153 Ti, Cr, Pd, and Ni, although their interaction with graphene
154 varies; for example, Al, Cr, and Ti are much more reactive than
155 Pd and Ni. Except for a few rare instances, clusters of all of
156 these metals are found to reside on hydrocarbon chains, as for
157 the case of Au. However, observation during repeated STEM
158 scans shows that smaller clusters and individual atoms are
159 drawn out of their initial positions, that is, from the middle of
160 contamination patches to the edge of the contamination. As
161 soon as metals reach the border between the hydrocarbon and
162 clean graphene, they interact with the clean graphene surface.
163 Initially, point defects (vacancies) are created, and this pro-
164 cess repeats itself as long as new metal atoms are supplied to
165 the emerging vacancy clusters from nearby metal clusters.
166 Atomic-resolution high-angle annular dark field (HAADF)-

STEM imaging has been employed to study individual
adatoms on graphene. The scattering probability here follows
an approximate Z^2 law, where Z is the atomic number, which
makes single-atom impurity detection (especially of impurities
heavier than carbon) possible, and the interpretation of the
images is rather straightforward.

Figure 2. BF images of 2 Å gold (a) evaporated onto monolayer graphene and annealed at 700 °C with the diffraction pattern as the inset, (b) showing a magnified image of (a), (c) as (a) but annealed at 950 °C, and (d) on few-layer graphene and annealed at 700 °C with the diffraction pattern as the inset. The scale bar is the same in (a) and (d), 50 nm, and it is similar in (b) and (c), 20 nm.

Figure 3. BF images of 2 Å gold evaporated onto few-layer (a) graphene and (b) boron nitride. The corresponding FFTs are shown as insets. The scale bar is the same in (a) and (b), 1 nm.

Figure 4. Figure 4a shows a clean, intact graphene patch (black) surrounded by hydrocarbons (gray) with Al clusters (white). Various stages of hole formation are shown in Figure 4b–d, and Figure 4e shows the hole after etching has more or less ceased. In Figure 4b–d, the hole is decorated by newly arriving Al atoms, leading to enlargement, whereas no such atoms can be

Damaging of graphene has been observed in the presence of Al, Ti, Cr, Pd, and Ni, although their interaction with graphene varies.
Figure 4. HAADF images of graphene etching in the presence of an aluminum layer of 2 Å nominal thickness (a) before etching, (b) after the start of the hole formation, (c) after hole enlargement in subsequent scans, (d) after continued etching as a result of a sustained supply of Al atoms to the hole’s edge (some Al atoms are indicated by red arrows in (b–d)), and (e) after the etching process has almost stopped because the Al atom supply has ceased. (f) A lower magnification overview of the Al distribution and hole evolution. The scale bar is the same in (a–e), 1 nm.

Figure 5. (a) HAADF image (overview) of 2 Å titanium evaporated onto monolayer graphene, (b) a magnified image showing direct etching of the basal plane as a result of the strong interaction between Ti and graphene, (c and d) overview of Pd and Cr distributions on graphene, (e) magnified image showing hole initiation due to Cr at the border of hydrocarbon contamination as well as directly on the basal plane, and (f) coalescence of the holes in (e) after repeated scans.
observed in Figure 4e. An overview at smaller magnification of
an intermediate etching stage together with the aluminum
distribution is shown in Figure 4f. Figure 4 demonstrates clearly
that the etching progresses from the border of the contamin-
tion into clean graphene as long as metal atoms are present at
the hole; these appear to mediate the etching. In the absence of
metal atoms at the hole, no such progression of the etching is
observed.
This destructive behavior has been predicted by recent DFT
calculations of Ni, Al, Co, and Fe on graphene; these elements
lower the vacancy formation energy in graphene.37 The same
calculations for Au on graphene do not predict such behavior
because vacancy formation energies in this case were found to
be similar to those of pristine graphene. However, catalytic
oxidation38 or hydrogenation,26 of carbon atoms in the presence
of metal nanoparticles in graphene could be proposed as an
alternative mechanism for the etching process. The oxidation
mechanisms might be a more valid explanation for our obser-
vations as metals are likely to be oxidized during metal evapora-
tion or as a result of exposure to oxygen during handling or in
the hydrocarbon contamination. It should be noted that
the above cited studies were performed at high temperatures
(>650 °C), under gas flow on a substrate, whereas our experi-
ments are performed at room temperature under ultrahigh vacuum
conditions. However, although no heat was applied, the energy
transferred by the electron beam to the metal–graphene system
could be sufficient to activate the etching mechanism, bearing in
mind graphene’s large heat conductivity; postscanning overviews
at lower magnification revealed that holes have also formed in the
proximity, that is, outside of consecutively e-beam-scanned areas.
Titanium reacts even more strongly with graphene, as also
predicted by DFT calculations,38 which is reflected in the large
binding energy, and thus affects the Ti mobility on graphene.
This is confirmed by the appearance of atomic-size aggregates,
rather than clusters of Ti on graphene (Figure 5a). Ti has the
highest observed dispersion out of the metals studied here. For
this reason, Ti atoms do not need to be mobilized over larger
distances, and holes form already during the first scan.
Although, as in the case of the other metals, Ti is mainly
found on hydrocarbon chains, it sometimes resides on clean
graphene; this can be witnessed by the fact that etching does
not only occur on the border between clean graphene and
hydrocarbon deposits but also directly on the basal plane of
graphene (Figure 5b). Most recently, because of its thermal
stability, palladium has been used in graphene-based devices as
an electrical contact39 and for heterogeneous catalytic
applications.40 Pd has been predicted by recent DFT calcula-
tions to form three-dimensional clusters on graphene. This is an
indication of its weak interaction with graphene, as also
predicted for many other transition metals.7 We have evidenced
that Pd appears in cluster form rather than highly dispersed like
Al, Ti, and Cr (Figure 5c). Although the clustering behavior is
reminiscent of that of Au on graphene, in contrast to the latter,
Pd does etch graphene (not shown).
Chromium is also found to be very reactive with graphene, and,
similar to Ti, individual Cr adatoms have been observed on the
clean graphene surface. Etching is seen to commence directly in
the basal plane as well as at the border between clean graphene
and hydrocarbon contamination (Figure 5d). Coalescence of the
holes occurs during subsequent scans (Figure 5e).
In summary, we have shown how different metals interact
with suspended graphene. All studied metals favor sites on
hydrocarbon contamination rather than on the clean graphene

All of the metals studied herein favor sites on hydrocarbon con-
tamination rather than on the clean graphene surface and present nonuniform distributions, which indicates a weak interaction between the metal and
graphene.