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Abstract. We study the asymptotic behaviour of a multidimensional random

walk in a general cone. We find the tail asymptotics for the exit time and prove

integral and local limit theorems for a random walk conditioned to stay in a
cone. The main step in the proof consists in constructing a positive harmonic

function for our random walk under minimal moment restrictions on the incre-

ments. For the proof of tail asymptotics and integral limit theorems we use a
strong approximation of random walks by the Brownian motion. For the proof

of local limit theorems we suggest a rather simple approach, which combines

integral theorems for random walks in cones with classical local theorems for
unrestricted random walks. We also discuss some possible applications of our

results to ordered random walks and lattice path enumeration.

1. Introduction, main results and discussion

1.1. Motivation. Random walks conditioned to stay in cones is a very popular
topic in probability. They appear naturally in many situations. Here we mention
some of them:

• Non-intersecting paths, which can be seen as a multidimensional random
walk in one of Weyl chambers, are used in modelling of different physical
phenomena, see Fisher [22]. There are also a lot of connections between
non-intersecting paths and Young diagrams, domino tiling, random ma-
trices and many other mathematical objects, for an overview see König
[35].

• Random walks in the quarter-plane reflected at the boundary are often
used in the queueing theory. For diverse examples see monographs written
by Cohen [13], by Fayolle, Iasnogorodski and Malyshev [23] and a paper
by Greenwood and Shaked [32].

• Asymptotic behaviour of branching processes and random walks in ran-
dom environment is closely connected to the behaviour of random walks
conditioned to stay positive, which are one-dimensional cases of a random
walk conditioned to stay in a cone, see [1] and references therein.

The main purpose of the present paper is to propose an approach which de-
termines the asymptotic behaviour of exit times and allows one to prove limit
theorems for a rather wide class of cones and under minimal moment conditions on
the increments of random walks. For that we use a strong approximation of mul-
tidimensional random walks with multidimensional Brownian motion. This allows
to extend the corresponding results for the Brownian motion to the discrete time
setting and to study the asymptotic behaviour of random walks.
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For Brownian motion the study of exit times from cones was initiated by Burkholder.
In [10] he proposed necessary and sufficient conditions for the existence of moments
of exit times. Later on, using these results, DeBlassie [14] found an exact formula
for P(τx > n) as an infinite series. This formula allowed him to obtain tail asymp-
totics for exit times. These results were obtained by Banuelos and Smits [3] under
more general conditions. Garbit [27] defined a Brownian motion started at origin
and conditioned to stay in a cone.

For random walks in discrete time much less is known. A corresponding gen-
eralisation of Burkholder’s results was obtained by McConnell [38]. Namely he
found necessary and sufficient conditions for the existence of moments of exit times.
Varopoulos [47, 48] derived upper and lower bounds for the tail probability under
an additional assumption that the increments of the random walk are bounded.
Moreover, he showed that this upper bound remains valid for Markov chains with
zero drifts and bounded increments. MacPhee, Menshikov and Wade [39] gave cri-
teria for the existence of moments of exit times from wedges for Markov chains
with asymptotically zero drifts and bounded increments. The exact asymptotic
behaviour for the exit times of a random walk is known only in some special cases.
Shimura [45] and Garbit [28] obtained the asymptotics of the tail and some limit
theorems for two-dimensional random walks. There are many results in the litera-
ture on random walks in Weyl chambers. We shall mention them later, in a special
paragraph devoted to Weyl chambers.

1.2. Notation and assumptions. Consider a random walk {S(n), n ≥ 1} on Rd,
d ≥ 1, where

S(n) = X(1) + · · ·+X(n)

and {X(n), n ≥ 1} is a family of independent copies of a random variable X =
(X1, X2, . . . , Xd). Denote by Sd−1 the unit sphere of Rd and Σ an open and con-
nected subset of Sd−1. Let K be the cone generated by the rays emanating from
the origin and passing through Σ, i.e. Σ = K ∩ Sd−1.

Let τx be the exit time from K of the random walk with starting point x ∈ K,
that is,

τx = inf{n ≥ 1 : x+ S(n) /∈ K}.

In this paper we study asymptotics for

P(τx > n), n→∞,

construct a random walk conditioned to stay in the cone K and prove limit theorems
for this random walk.

The essential part of the proof is a coupling with the Brownian motion. Hence
we extensively use related results for the Brownian motion. Let B(t) be a standard
Brownian motion on Rd and let τ bmx be the exit time of B(t) from the cone K,

τ bmx = inf{t ≥ 0 : x+B(t) /∈ K}.

The harmonic function of the Brownian motion killed at the boundary of K can be
described as the minimal (up to a constant), strictly positive on K solution of the
following boundary problem:

∆u(x) = 0, x ∈ K with boundary condition u
∣∣
∂K

= 0.
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If such a function exists, then, see [14] and [3], one can show that

P(τ bmx > t) ∼ κ
u(x)
tp/2

, t→∞. (1)

The function u(x) and constant p can be found as follows. If d = 1 then we
have only one non-trivial cone K = (0,∞). In this case u(x) = x and p = 1.
Assume now that d ≥ 2. Let LSd−1 be the Laplace-Beltrami operator on Sd−1 and
assume that Σ is regular with respect to LSd−1 . With this assumption, there exists
a complete set of orthonormal eigenfunctions mj and corresponding eigenvalues
0 < λ1 < λ2 ≤ λ3 ≤ . . . satisfying

LSd−1mj(x) = −λjmj(x), x ∈ Σ (2)

mj(x) = 0, x ∈ ∂Σ.

Then
p =

√
λ1 + (d/2− 1)2 − (d/2− 1) > 0.

and the harmonic function u(x) of the Brownian motion is given by

u(x) = |x|pm1

(
x

|x|

)
, x ∈ K. (3)

We refer to [3] for further details on exit times of Brownian motion.
Unfortunately we are not able to determine the asymptotic behaviour of exit

times for random walks for such a general class of cones. More precisely, we will
use the following additional conditions on the cone K:

• We assume that there exists an open and connected set Σ̃ ⊂ Sd−1 with
dist(∂Σ, ∂Σ̃) > 0 such that Σ ⊂ Σ̃ and the function m1 can be extended
to Σ̃ as a solution to (2).

• K is either convex or starlike (there exists x0 ∈ Σ such that x0 +K ⊂ K
and dist(x0 +K, ∂K) > 0) and C2. (Every convex cone is also starlike, for
the proof see Remark 15.)

It is known that if m1 can be extended then the boundary ∂Σ should be piecewise
real-analytic. Furthermore, if ∂Σ is real-analytic, then m1 is extendable, see, e.g.,
Theorem A in Morrey and Nirenberg [41].1 Since the boundary of every two-
dimensional cone consists of two points on the unit circle, one can always extend
m1 to a bigger cone in R2. Furthermore, it is clear that we can extend u(x) to a
harmonic function in the cone K̃ generated by Σ̃ using (3). We impose the following
assumptions on the increments of the random walk:

• Normalisation assumption: We assume that EXj = 0,EX2
j = 1, j =

1, . . . , d. In addition we assume that cov(Xi, Xj) = 0.
• Moment assumption: We assume that E|X|α < ∞ with α = p if p > 2

and some α > 2 if p ≤ 2.

1.3. Tail distribution of τx and a conditioned limit theorem. Let

Kε = {y ∈ Rd : dist(y, x) < ε|x| for some x ∈ K}.

1We are grateful to Professor Ancona for pointing out the reference.
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This new region is a cone. It follows from our assumptions that we can pick a
sufficiently small ε > 0 which will ensure that K ⊂ K4ε ⊂ K̃. Recall that u(x) is
harmonic on a bigger cone K̃ and, therefore,

u(x) is harmonic on K4ε.

Having u we define a new function

v(x) =
{

u(x), x ∈ G
|x|p−a, otherwise

where
G = Kε ∩

(
K ∪ {x ∈ Kc : dist(x, ∂K) ≤ |x|1−a}

)
.

We will pick a sufficiently small constant a > 0 later.
Let

f(x) = Ev(x+X)− v(x), x ∈ K. (4)
Note that if v(x+ S(n)) is a martingale, then f(x) = 0. Then let

V (x) = v(x)−Ev(x+ S(τx)) + E
τx−1∑
k=0

f(x+ S(k)). (5)

It is not at all clear if function V (x) is well defined. More precisely, one has to show
that v(x+ S(τx)) and

∑τx−1
k=1 f(x+ S(k)) are integrable. Furthermore, one has to

show that V does not depend on choice of a and ε from the definition of G.
Finally we define

K+ := {x ∈ K : there exists γ > 0 such that for every R > 0

there exists n such that P(x+ S(n) ∈ DR,γ , τx > n) > 0} ,
where DR,γ := {x ∈ K : |x| ≥ R,dist(x, ∂K) ≥ γ|x|}.

Theorem 1. Assume the normalisation as well as the moment assumption hold.
Then, for sufficiently small a, the function V is finite and harmonic for the killed
random walk {S(n)}, i.e.,

E[V (x+ S(1)), τx > 1] = V (x). (6)

The function V (x) is strictly positive on the set K+. Moreover, as n→∞,

P(τx > n) ∼ κV (x)n−p/2, x ∈ K, (7)

where κ is an absolute constant.

Our moment assumption is optimal in the sense that the asymptotic behaviour
of P(τx > n) is in general different if E|X|p = ∞. Indeed, consider a cone with
p > 2 and let X be of the form X = Rξ, where R is a non-negative random variable
with

P(R > u) ∼ u−α, α ∈ (2, p)
and ξ takes values on the unit sphere with some positive density on Σ. Clearly,
E|X|p = ∞, i.e. the moment assumption is not fulfilled. It follows from the
structure of X that

P(x+X ∈ D√n,γ) ∼ n−α/2P(ξ ∈ Σ ∩D0,γ) ≥ cn−α/2

for some positive c and all sufficiently small γ. Then

P(τx > n) ≥ P(x+X(1) ∈ D√n,γ)P
(

max
k≤n−1

|S(k)| < γ
√
n

)
≥ cn−α/2,
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where in the last step we used the functional central limit theorem. Therefore,
the tail of τx is heavier than that of τ bmx . We conjecture that this lower bound is
precise, that is,

P(τx > n) ∼ θEτxn−α/2.
Behind this relation is the well-known principle of one big jump: in order to stay
up to large moment of time n inside the cone, it is sufficient to make one big (of
order

√
n) jump into the inner part of the cone K near time 0.

We note that assumptions EX2
j = 1, j = 1, . . . , d and cov(Xi, Xj) = 0 do not

restrict the generality. More precisely, if they are not fulfilled and the covariance
matrix of X is positive-definite, then there exists a matrix M such that Y = MX
satisfies these conditions. (If the covariance matrix is not positive-definite, then the
random walk lives on a hyperplane.) Therefore, we have a random walk confined to
a new cone M(K) = {Mx, x ∈ K}. In the following example we show the influence
of the correlation on the tail behaviour of τx.

Example 2. Consider a two-dimensional random walk with zero mean, EX2
1 =

EX2
2 = 1 and cov(X1, X2) = ρ ∈ (−1, 1). Let K be the positive quadrant, i.e.,

K = R2
+. In order to apply Theorem 1 we first need to find a matrix M such

that the coordinates of the vector Y = MX become uncorrelated. Let ϕ solve the
equation sin 2ϕ = ρ. Then the matrix

M =
1√

1− ρ2

(
cosϕ − sinϕ
− sinϕ cosϕ

)
leads to uncorrelated coordinates. Therefore, M(K) has opening arccos(−ρ). Then,
as it has been shown by Burkholder [10], p = π/ arccos(−ρ). If E|X|π/ arccos(−ρ) is
finite, then, according to Theorem 1, we have

P(τx > n) ∼ V (x)n−π/2 arccos(−ρ) as n→∞.
It is worth mentioning that the minimal moment condition depends on the covari-
ance between X1 and X2.

If V is harmonic for the random walk MS(n) in the cone M(K), we have also
a harmonic function for S(n) in K. Indeed, one can easily verify that V (Mx)
possesses this property.

We now turn to the asymptotic behaviour of S(n) conditioned to stay in K. To
state our results we introduce the limit process. For the d-dimensional Brownian
motion with starting point x ∈ K one can define a Brownian motion conditioned
to stay in the cone via Doob’s h-transform. For that we make a change of measure
using the harmonic function u:

P̂(u)
x (B(t) ∈ dy) = P(x+B(t) ∈ dy, τ bmx > t)

u(y)
u(x)

.

This is possible since u(x) > 0 inside the cone and u(x+B(t∧τ bmx )) is a martingale.
Similarly we define a random walk conditioned to stay in the cone K by

P̂(V )
x (S(n) ∈ dy) = P(x+ S(n) ∈ dy, τx > n)

V (y)
V (x)

, x ∈ {x : V (x) > 0}.

This is possible due to Theorem 1, where harmonicity of V is proved. We note
also, that if we choose the starting point in K+ then S(n) under P̂(V )

x lives on {x :
V (x) > 0}, since this measure does not allow transitions to the set {x : V (x) = 0}.
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Theorem 3. Assume that the normalisation as well as the moment assumption
are fulfilled, then

P
(
x+ S(n)√

n
∈ ·
∣∣∣τx > n

)
→ µ weakly, (8)

where µ is the probability measure on K with the density H0u(y)e−|y|
2/2, where H0

is the normalising constant.
Furthermore, for every x ∈ K, the process Xn(t) = S([nt])√

n
under the probability

measure P̂(V )

x
√
n

converges weakly in the uniform topology on D[0,∞) to the Brownian

motion under the measure P̂(u)
x .

This is an extension of the classical theorems for one-dimensional random walks
conditioned to stay positive by Iglehart [33] and Bolthausen [6]. Shimura [45] and
Garbit [28] have proven similar results for two-dimensional random walks in convex
cones.

Remark 4. It is worth mentioning that one can prove Theorems 1 and 3 for more
general cones if one restricts themselves to a smaller class of random walks. If the
jumps of {S(n)} are bounded, then the possibility to extend u to a bigger cone is
superfluous. In this situation one can show that V is harmonic for arbitrary starlike
cone if we define v by the relation

v(x) = u(x∗ + x) for an appropriate x∗ ∈ K.
(For details see Subsection 2.3.) Having constructed the harmonic function V , the
proofs of all asymptotic statements from Theorems 1 and 3 do not require any
change. As a result we get an asymptotic counterpart of the results proven by
Varopoulos [47, 48]. He derived upper and lower bounds for probabilities P(τx >
n) and P(x + S(n) = y, τx > n) in terms of the harmonic function u. All his
bounds have the right order in n. In order to obtain these estimates he constructs
superharmonic and subharmonic functions for {S(n)} in terms of u. (It is equivalent
to construction of super- and submartingale from {S(n)}.) And in order to obtain
asymptotic results we construct a harmonic function (martingale) for the random
walk. This is the main difference between our approach and that of Varopoulos. �

1.4. Local limit theorems. In this paragraph we are going to determine the
asymptotic behaviour of local probabilities for random walks conditioned to stay in
a cone. As it is usual in studying local probabilities, one has to distinguish between
lattice and non-lattice cases. We shall consider lattice walks only, and analogous
results for non-lattice walks can be proved in the same way. The reason to choose the
lattice case is an application of the local limit theorems we prove here to lattice path
counting problems, which are very popular in combinatorics. Another interesting
application of local limit theorems could be the study of the asymptotic behaviour
of the Green function for random walks in a cone. This, combined with the Martin
boundary theory, will allow to find all harmonic functions.

• Lattice assumption: X takes values on a latticeR which is a non-degenerate
linear transformation of Zd. Furthermore, we assume that the distribution
of X is strongly aperiodic, that is, for every x ∈ R, the smallest subgroup
of R which contains the set

{y : y = x+ z with some z such that P(X = z) > 0}
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is R itself.
We first state a version of the Gnedenko local limit theorem.

Theorem 5. Assume that the assumptions of Theorem 1 and the lattice assumption
hold. Then

sup
y∈K

∣∣∣∣np/2+d/2P (x+ S(n) = y, τx > n)− κV (x)H0u

(
y√
n

)
e−|y|

2/2n

∣∣∣∣→ 0. (9)

To prove a local limit theorem in the one-dimensional case, i.e. for random walks
conditioned to stay positive, one starts usually from the Wiener-Hopf factorisation,
see [9, 11, 49]. Our approach is completely different, and uses the integral limit
theorem for conditioned random walks (Theorem 1) and a local limit theorem for
unconditioned random walks. Therefore, it works in all dimensions and all cones,
where Theorem 1 holds. In particular, our method gives simple probabilistic proofs
of local limit theorems for random walks conditioned to stay positive.

We next find asymptotic behaviour of P (x+ S(n) = y, τx > n) for fixed y. (Note
that Theorem 5 says only that this probability is o(n−p/2−d/2).)

Theorem 6. Under the assumptions of the preceding theorem, for every fixed y ∈
K,

P (x+ S(n) = y, τx > n) ∼ %H2
0

V (x)V ′(y)
np+d/2

, (10)

where V ′ is the harmonic function for the random walk {−S(n)} and

% = κ2

∫
K

u2(w)e−|w|
2/2dw.

Furthermore, for every t ∈ (0, 1) and any compact D ⊂ K

P
(
x+ S([tn])√

n
∈ D

∣∣∣∣τx > n, x+ S(n) = y

)
→ Qt(D), (11)

where Qt is the measure on K with the density
1

ρ(2π)d
1

(t(1− t))p+d/2
u2(z)e−|z|

2/2t(1−t)dz.

In the next two subsections we mention some interesting applications of this
theorem.

1.5. Application to lattice paths enumeration. Starting from the classical
ballot problem, counting of lattice paths confined to a certain domain, attracts
a lot of attention. For lattice paths in Weyl chambers associated with reflection
groups one often uses a generalisation of the classical reflection principle of Andre,
which has been proved by Gessel and Zeilberger [29]. Unfortunately the latter
result can be applied only to some special random walks which are not allowed
to jump over the boundary of the chamber. Additionally, the set of all possible
steps should be invariant with respect to all reflections. Grabiner and Magyar [31]
give the complete list of all random walks to which the reflection principle can be
applied. Recently, the reflection principle of Gessel and Zeilberger has been slightly
generalised by Feierl [25]: He derived a new version of the reflection principle for
random walks with steps which are at most finite combinations of steps from the
list of Grabiner and Magyar. Another very popular cone is the positive quadrant
in Z2. Here we mention papers of Bousquet-Melou [7] and of Bousquet-Melou and
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Mishna [8], where the authors obtained exact results for some random walks with
bounded steps in the quarter plane. Raschel [43] and Kurkova and Raschel [37]
also considered a two-dimensional random walk in the quarter plane, and proved
some asymptotic results for the exit position. All these papers are based on the
analytical approach suggested in the book of Fayolle, Iasnogorodski and Malyshev
[23]. This method works for random walks on Z2 that can jump only to the nearest
neighbours.

We next show how one can determine the asymptotic behaviour of the number
of walks with endpoints x and y confined to a cone from our results.

Consider lattice paths with the step set S = {s1, s2, . . . , sN}. We assume that
the corresponding random walk on Zd is strongly aperiodic.

If the vector sum of all si is not equal to zero, one has to perform the Cramer
transformation with an appropriate parameter. For R(h) = N−1

∑N
i=1 e

(h,si) we
set

P(Y = si) =
1

NR(h)
e(h,si).

If there exists h0 such that EY = 0, then we have the following formula for the
number of walks with endpoints x and y

Nn(x, y) = Nn(R(h0))ne(h0,x−y)P

(
x+

n∑
k=1

Y (k) = y, τx > n

)
.

It is clear that EY = 0 if and only if R(h) attains its minimum at h = h0. A
necessary and sufficient condition for the existence of the global minimum for R is
that the step set is not contained in a closed half-space.

There exists a linear transformation with matrix M such that X = MY has
uncorrelated coordinates and

P(x+
n∑
k=1

Y (k) = y, τx > n) = P(Mx+ S(n) = My, τx > n).

Since the number of possible steps is finite, we have a random walk with bounded
jumps. Therefore, we may use our results in any starlike cone, see Remark 4.
Applying Theorem 6 to the random walk S(n) and cone MK, we obtain

Nn(x, y) = C(x, y)(NR(h))nn−p−d/2(1 + o(1)) as n→∞. (12)

It is worth mentioning that not only C(x, y) but also p may depend on h. This
means that p depends not only on the cone K but also on the step set S. An
essential disadvantage of this approach is the fact that we cannot give an explicit
expression for the function C(x, y) and, therefore, we can only determine the rate
of growth of Nn(x, y). Nevertheless, for large values of x and y inside the cone one
can obtain an approximation for C(x, y) from the relation V (x) ∼ u(x).

We also note that upper bounds for Nn(x, y) can be obtained from the estimates
due to Varopoulos. It follows from (0.7.4) in [47] that C(x, y) from (12) can be
bounded from above by Cu(x+x0)u(y+x0) with some appropriate x0. An essential
advantage of this bound consists in the fact that u is more accessible than V .

Finally we mention that our derivation of (12) is purely probabilistic, since we
use a strong approximation to prove Theorem 3. And it is not at all clear how
to prove (12) by combinatorial methods. The only case known in the literature
are random walks with small steps in the quarter plane: Fayolle and Raschel [24]
deerived a version of (12) by means of the kernel method.
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1.6. Random walks in Weyl chambers. As it has already been mentioned,
random walks in Weyl chambers have attracted a lot of attention in the recent
past.

Let us first consider the chamber of type A, that is,

WA := {x ∈ Rd : x1 < x2 < . . . < xd}.

In this case one has u(x) =
∏
i<j

(xj − xi) and p = d(d− 1)/2. WA is convex and u is

harmonic on the whole space Rd. Therefore, we may apply all our theorems to all
random walks satisfying normalisation and moment conditions. If one additionally
assumes that the coordinates of X are exchangeable, or even independent, then
f(x) = 0. This has been shown by König, O’Connell and Roch [34]. Therefore,

V (x) = u(x)−Eu(x+ S(τx)). (13)

This form of the harmonic function has been suggested by Eichelsbacher and König
[20]. It is worth mentioning that if the coordinates of X are independent, then the
moment condition from the present paper is not optimal. It is shown in [16] that all
the statements in Theorems 1 and 3 remain valid under the condition E|X|d−1 <∞.
For two further Weyl chambers

WC := {x ∈ Rd : 0 < x1 < x2 < . . . < xd}

and

WD := {x ∈ Rd : |x1| < x2 < . . . < xd}

and random walks with independent coordinates König and Schmid [36] have proven
versions of Theorems 1 and 3 under moment conditions which are weaker than
E|X|p <∞. However, they have imposed an additional symmetry condition. More
precisely, they have assumed that some odd moments of the distribution of coordi-
nates are zero. This has been done in order to make u(x+ S(n)) a martingale and
f(x) = 0. As a result, they had the harmonic function of the form (13). One can
verify that all the statements of [36] remain valid without the symmetry condition
mentioned above, if one takes the harmonic function from our Theorem 1. (One has
first to show that this function is well-defined under the moment condition imposed
by the authors of [36].)

We next note that if our random walk has independent coordinates, then The-
orems 5 and 6 are valid for Weyl chamber under weaker moment assumptions.
Indeed, as we have already mentioned, one needs an integral limit theorem for the
conditioned random walk. Therefore, the moment conditions from [16] and [36] are
sufficient for the validity of the local limit theorems. Applying (11) to the Weyl
chamber of type A, we then see that the distribution of the excursion at time tn
converges to the measure determined by the density

1
ρ(2π)d

1

(t(1− t))p+d/2

∏
i<j

(zj − zi)

2

e−|z|
2/2t(1−t)dz, z ∈WA,

which is known to be the density of the distribution of eigenvalues in GUE. This
result corresponds to Theorem 1 of Baik and Suidan [2].
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1.7. Description of our method. In the one-dimensional case we have only two
cones: positive and negative half-axis. To determine the behaviour of P(τ0 > n) in
this classical case one uses the Wiener-Hopf factorisation. For an arbitrary starting
point x inside one of the half-axis one has P(τx > n) ∼ H(x)P(τ0 > n), where
H(x) is the renewal function based on ladder heights. And one can easily infer that
H(x) is harmonic. It is worth mentioning that the Wiener-Hopf method is quite
powerful as one does not need to impose any moment conditions on the random
walk.

Unfortunately, there are no general versions of the Wiener-Hopf factorisation for
the multidimensional case. We have found only two such attempts in the literature.
First, Mogulskii and Pecherskii [40] proved some factorisation identities for random
walks on semigroups. However it is not clear how to get asymptotics for exit times
from these identities. The second one is the paper by Greenwood and Shaked [32],
where a factorisation over a family of two-dimensional cones is performed. As a
consequence the authors determined the asymptotic behaviour of some special first
passage times.

The first step in the proof of Theorem 1 consists in the construction of the
harmonic function V , see Section 2. Here we use the universality idea and construct
V from the harmonic function u for the Brownian motion:

V (x) = lim
n→∞

E [u(x+ S(n)); τx > n] , x ∈ K.

An additional difficulty arises from the fact that although u(x + B(t ∧ τ bmx )) is a
martingale the sequence u(x + S(n ∧ τx)) is not. This explains correction terms
f(x+S(k)) in Lemma 11. Another difficulty is that in general we have x+S(τx) /∈
∂K with positive probability. This is the reason for introducing the extendability
condition on the cone K.

The second step of the proof is a coupling with the Brownian motion. Although
this idea is quite natural, its naive application (starting from the beginning) gives
only rough asymptotics:

P(τx > n) ∼ n−p/2+o(1), n→∞.
To obtain exact asymptotics one has to wait until the random walk moves far from
the boundary of the cone. In Lemma 14 we show that this happens with a high
probability. Then in Lemma 20 we couple out random walk with the Brownian
motion using an extended version of Sakhanenko’s coupling, see Lemma 17. This
allows us to obtain the exact asymptotics when starting at y far from the boundary,

P(τy > n) ∼ κu(y)n−p/2.

Section 4 is the final step of the proof of Theorem 1. We use the Markov property
at the first time νn when the random walk is far from the boundary and the formula
we obtained from the coupling in Lemma 20. Informally, this results in

P(τx > n) ≈
∫

P(τx > νn, Sνn ∈ dy)P(τy > n)

≈ κ
∫

P(τx > νn, Sνn ∈ dy)u(y)n−p/2

≈ κV (x)n−p/2.

These relations are proved in Lemmas 21, 24. Proof of Theorem 3 uses the same
ideas.
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It is worth mentioning, that the method of constructing harmonic functions for
random walks described above works also for Markov processes in discrete time.
After the first version of the present paper was finished we applied our approach to
the following two problems.

First, in [18] we found asymptotics for P(τx,y > n), where τx,y = min{n ≥ 1 :
x+ny+

∑n
k=1 S(k) ≤ 0} and S(k) is a driftles random walk with E|S(1)|2+δ <∞.

The process
∑n
k=1 S(k) is not markovian, but one can obtain the Markov property

increasing the dimension of the process. More precisely, (
∑n
k=1 S(k), S(n)) is a

Markov chain and, consequently, τx,y becomes the exit time from the cone R+×R.
Second, in [15], our joint paper with Dima Korshunov, we investigated the as-

ymptotic behaviour of the stationary distribution for a positive recurrent Markov
chan on R+ with asymptotically zero drift. The crucial step was again a construc-
tion of harmonic functions for a chain killed at leaving an interval [x0,∞), x0 > 0.

Based on these two examples we conjecture that our approach should work for
a wide class of Markov chains, which converge, after an appropriate scaling, to
diffusion processes.

2. Finiteness and positivity of V

This section is devoted to the construction of the harmonic function V . We
consider first the case d ≥ 2. The one-dimensional case will be considered in
Subsection 2.4.

2.1. Finiteness. We first derive some properties of the functions v(x) and f(x).

Lemma 7. Let u be harmonic on K4ε and |u(x)| ≤ c|x|p, x ∈ K4ε. Then we have
the following estimates for the derivatives

|uxi | ≤ C|x|p−1, x ∈ K3ε∣∣uxixj ∣∣ ≤ C|x|p−2, x ∈ K2ε∣∣uxixjxk ∣∣ ≤ C|x|p−3, x ∈ Kε. (14)

Here and throughout the text we denote as C, c some generic constants.

Proof. Since u is harmonic on K4ε all its derivatives are harmonic as well. Let
y ∈ K3ε. It immediately follows from the definition of the cone K4ε that the ball
B(y, η|y|) ⊂ K4ε for η = ε/(1 + 3ε). Indeed, let x be such that dist(y, x) ≤ 3ε|x|.
Then, since |y| ≤ (1 + 3ε)|x|, for z ∈ B(y, η|y|),

dist(z, x) ≤ dist(z, y) + dist(y, x) < η|y|+ 3ε|x| < 4ε|x|.
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Hence we can apply the mean-value formula for harmonic functions to function uxi
and obtain

|uxi | =

∣∣∣∣∣ 1
V ol(B(y, η|y|))

∫
B(y,η|y|)

uxidx

∣∣∣∣∣
=

∣∣∣∣∣ 1
|η|y||dα(d)

∫
∂B(y,η|y|)

uνids

∣∣∣∣∣
≤ dα(d)(η|y|)d−1

|η|y||dα(d)
max

x∈∂B(y,η|y|)
u(x)

≤ c d

η|y|
(1 + η)p|y|p = c

d(1 + η)p

η
|y|p−1.

Here α(d) is the volume of the unit ball and we used the Gauss-Green theorem. In
the second line of the display νi is the outer normal and integration takes place on
the surface of the ball B(y, η|y|).

The higher derivatives can be treated likewise. The claim of the Lemma imme-
diately follows.

�

Next we require a bound on f(x).

Lemma 8. Let the assumptions of Lemma 7 hold and f be defined by (4). Let the
moment and normalisation assumptions hold. Then, for some δ > 0,

|f(x)| ≤ C|x|p−2−δ for all x ∈ K with |x| ≥ 1.

Furthermore,

|f(x)| ≤ C for all x ∈ K with |x| ≤ 1.

Proof. Let x ∈ K be such that |x| ≥ 1. Put g(x) = |x|1−a, where we pick constant a
later. Fix some η ∈ (0, ε) satisfying η+η1/(1−a) ≤ 1. Then, for any y ∈ B(0, ηg(x)),
the sum x+ y ∈ G. By the Taylor theorem,∣∣∣∣∣∣u(x+ y)− u(x)−∇u · y − 1

2

∑
i,j

uxixjyiyj

∣∣∣∣∣∣ ≤ R3(x)|y|3.

The remainder can be estimated by Lemma 7

R3(x) = max
z∈B(x,ηg(x))

max
i,j,k
|uxixjxk(z)| ≤ C(1 + η)p−3|x|p−3,

which will give us∣∣∣∣∣∣u(x+ y)− u(x)−∇u · y − 1
2

∑
i,j

uxixjyiyj

∣∣∣∣∣∣ ≤ C|x|p−3|y|3. (15)
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Since v = u on G we can proceed as follows

|f(x)| = |E (u(x+X)− u(x)) 1(|X| ≤ ηg(x))|
+ |E (v(x+X)− v(x)) 1(|X| > ηg(x))|

≤

∣∣∣∣∣∣E
∇u ·X +

1
2

∑
i,j

uxixjXiXj

 1(|X| ≤ ηg(x))

∣∣∣∣∣∣
+ C|x|p−3E

[
|X|31(|X| ≤ ηg(x))

]
+ CE [|x|p + max(|X + x|p, 1))1(|X| > ηg(x))] .

Here we used also the bound |v(z)| ≤ C max{1, |z|p}.
After rearranging the terms we obtain

|f(x)| ≤

∣∣∣∣∣∣E
∇u ·X +

1
2

∑
i,j

uxixjXiXj

∣∣∣∣∣∣
+

∣∣∣∣∣∣E
∇u ·X +

1
2

∑
i,j

uxixjXiXj

 1(|X| > ηg(x))

∣∣∣∣∣∣
+ C|x|p−3E

[
|X|31(|X| ≤ ηg(x))

]
+ CE [(|x|p + max(|X + x|p, 1))1(|X| > ηg(x))] .

Now note that the first term is 0 due to EXi = 0, cov(Xi, Xj) = 0 and ∆u = 0. The
partial derivatives of the function v in the second term are estimated via Lemma 7.
As a result,

|f(x)| ≤ C
(
|x|p−1E [|X|; |X| > ηg(x)] + |x|p−2E

[
|X|2; |X| > ηg(x)

]
+ |x|p−3E

[
|X|3; |X| ≤ ηg(x)

]
+ |x|pP(|X| > ηg(x))

+ E [max(|X|p, 1); |X| > ηg(x)]
)
.

Hence, from the Markov inequality and

E [max(|X|p, 1); |X| > ηg(x)] ≤ E [|X|p; |X| > ηg(x)] + |x|pP(|X| > ηg(x))

we conclude

|f(x)| ≤ C |x|p

η2g2(x)
E
[
|X|2; |X| > ηg(x)

]
+ C|x|p−3E

[
|X|3; |X| ≤ ηg(x)

]
+ CE [|X|p; |X| > ηg(x)] . (16)

Now recall the moment assumption that E|X|2+2δ < ∞ for some δ > 0. The first
term is estimated via the Chebyshev inequality,

|x|p

η2g2(x)
E
[
|X|2; |X| > ηg(x)

]
≤ |x|p

η2+2δg2+2δ(x)
E|X|2+2δ.

The second term can be estimated similarly,

|x|p−3E
[
|X|3; |X| ≤ ηg(x)

]
≤ |x|p−3η1−2δg1−2δ(x)E|X|2+2δ.

Choosing a sufficiently small, we see that the expectations in the first line of (16)
are bounded by C|x|p−2−δ. In order to bound the last term in (16) we have to
distinguish between p ≤ 2 and p > 2.
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If p ≤ 2, then, by the Chebyshev inequality,

E [|X|p; |X| > ηg(x)] ≤ 1
(ηg(x))2+2δ−pE

[
|X|2+2δ

]
≤ C|x|p−2−δ

for all a sufficiently small.
In case p > 2 we have, according to our moment condition, E[|X|p] < ∞.

Consequently,
E [|X|p; |X| > ηg(x)] ≤ C.

The second statement follows easily from the fact that v(x) is bounded on |x| ≤ 1
and the inequality E[v(x+X)] ≤ C(1 + E[|X|p]). �

Lemma 9. For any x /∈ K,

|v(x)| ≤ C(1 + |x|p−a).

Proof. If x /∈ G, then the inequality follows from the definition of v. Assume now
that x ∈ G \ K. If |x| ≤ 1, then |v(x)| is clearly bounded. But if |x| > 1, then
dist(x, ∂K) ≤ |x|1−a. And it follows from the Taylor formula (recall that v|∂K = 0)
and Lemma 7 that

|v(x)| ≤ C|x|p−1dist(x, ∂K) ≤ C|x|p−a. (17)

Thus, the proof is finished. �

Lemma 10. For every β < p we have

E[τβ/2x ] ≤ C(1 + |x|β) (18)

and
E[Mβ(τx)] ≤ C(1 + |x|β), (19)

where M(τx) := maxk≤τx |x+ S(k)|.

This is the statement of Theorem 3.1 of [38]. One has only to notice that e(Γ, R)
in that theorem is denoted by p in our paper.

Next we need to define an auxiliary process. Let

Y0 = v(x);

Yn+1 = v(x+ S(n+ 1))−
n∑
k=0

f(x+ S(k)), x ∈ K,n ≥ 0. (20)

Lemma 11. The sequence Yn defined in (20) is a martingale.

Proof. The integrability of the sequence Yn is immediate from the bound u(x) ≤
C|x|p and from Lemmas 8 and 9. Further,

E [Yn+1 − Yn|Fn] = E [(v(x+ S(n+ 1))− v(x+ S(n))− f(x+ S(n))) |Fn]

= −f(x+ S(n)) + E [(v(x+ S(n+ 1))− v(x+ S(n))) |S(n)]

= −f(x+ S(n)) + f(x+ S(n)) = 0,

where we used the definition of the function f in (4). �

Lemma 12. For sufficiently small a > 0, the function V from (5) is well-defined.
Furthermore,

V (x) = lim
n→∞

E [u(x+ S(n)); τx > n] , x ∈ K. (21)
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This equality implies that V does not depend on the choice of a and ε in the defi-
nition of G.

Proof. First, using (20) we obtain,

E [v(x+ S(n)); τx > n] = E[Yn; τx > n] +
n−1∑
l=0

E[f(x+ S(l)); τx > n]

= EYn −E[Yn; τx ≤ n] +
n−1∑
l=0

E[f(x+ S(l)); τx > n].

Since Yk is a martingale, EYn = EY0 = v(x) and E[Yn; τx ≤ n] = E[Yτx ; τx ≤ n].
Using the definition of Yn once again we arrive at

E[v(x+ S(n)); τx > n] = v(x)−E[v(x+ S(τx)), τx ≤ n]

+ E

[
τx−1∑
l=0

f(x+ S(l)); τx ≤ n

]
+
n−1∑
l=0

E[f(x+ S(l)); τx > n].

Combining Lemmas 9 and 10, we obtain

E|v(x+ S(τx))| ≤ EMp−a(τx) ≤ C(1 + |x|p−a). (22)

Then the dominated convergence theorem implies that

E[v(x+ S(τx)), τx ≤ n]→ Ev(x+ S(τx)). (23)

To estimate the third and fourth terms it is sufficient to prove that

E

[
τx−1∑
l=0

|f(x+ S(l))|

]
≤ C(1 + |x|p−δ). (24)

Indeed, the dominated convergence theorem then implies that

E

[
τx−1∑
l=0

f(x+ S(l)); τx ≤ n

]
→ E

[
τx−1∑
l=0

f(x+ S(l))

]
and ∣∣∣∣∣

n−1∑
l=0

E[f(x+ S(l)); τx > n]

∣∣∣∣∣ ≤ E

[
τx−1∑
l=0

|f(x+ S(l))|; τx > n

]
→ 0

since τx is finite a.s.
Hence it remains to prove (24). Consider first the case p > 2. Assuming that

δ < p− 2 and using Lemma 8, we get

E

[
τx−1∑
l=0

|f(x+ S(l))|

]
≤ CE[τxMp−2−δ(τx)].

Applying Hölder’s inequality with p′ < p/2 and q′ < p/(p− 2− δ) and Lemma 10,
we obtain

E

[
τx−1∑
l=0

|f(x+ S(l))|

]
≤
(
Eτp

′

x

)1/p′ (
EMq′(p−2−δ)(τx)

)1/q′

< C(1 + |x|p−δ).

Such a choice of p′ and q′ is possible since (p/2)−1 + (p/(p − 2 − δ))−1 < 1. This
proves (24) for p > 2.
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Next consider the case p ≤ 2. We split the sum in (24) into four parts,

E

[
τx−1∑
l=0

|f(x+ S(l))|

]
= f(x) +

∞∑
l=1

E [|f(x+ S(l))|; τx > l]

= f(x) +
∞∑
l=1

E [|f(x+ S(l))|; |x+ S(l)| ≤ 1, τx > l]

+
∞∑
l=1

E
[
|f(x+ S(l))|; 1 < |x+ S(l)| ≤

√
l, τx > l

]
+
∞∑
l=1

E
[
|f(x+ S(l))|; |x+ S(l)| >

√
l, τx > l

]
=: f(x) + Σ1 + Σ2 + Σ3.

According to Theorem 6.2 of [21],

sup
z∈Rd

P(|S(n)− z| ≤ 1) ≤ Cn−d/2. (25)

By Lemma 8, |f(y)| ≤ C for |y| ≤ 1. From this bound and (25), we obtain

Σ1 ≤ C
∞∑
l=1

P(|x+ S(l)| ≤ 1, τx > l)

≤ C
∞∑
l=1

P(τx > l/2) sup
y

P(|y + S(l/2)| ≤ 1)

≤ C
∞∑
l=1

l−d/2P(τx > l/2)

≤ CE[τ (p−δ)/2
x ]

∞∑
l=1

l−d/2−(p−δ)/2 ≤ C(1 + |x|p−δ),

where the sum is convergent due to d ≥ 2.
Second, by Lemma 8,

Σ2 ≤ C
∞∑
l=1

E
[
|x+ S(l)|p−2−δ; 1 ≤ |x+ S(l)| ≤

√
l, τx > l

]

≤ C
∞∑
l=1

√
l∑

j=1

E
[
|x+ S(l)|p−2−δ; j ≤ |x+ S(l)| ≤ j + 1, τx > l

]
≤ C

∞∑
l=1

√
l∑

j=1

jp−2−δP(j ≤ |x+ S(l)| ≤ j + 1, τx > l).

Now we note that

P(j ≤ |x+ S(l)| ≤ j + 1, τx > l) ≤ P(τx > l/2) sup
y

P(|y + S(l/2)| ∈ [j, j + 1]).

Covering the region {z : |z| ∈ [j, j + 1]} by Cjd−1 unit balls and using (25), we get

P(j ≤ |x+ S(l)| ≤ j + 1, τx > l) ≤ Cjd−1l−d/2P(τx > l/2).
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Then,

Σ2 ≤ C
∞∑
l=1

√
l∑

j=1

jp−2−δjd−1l−d/2P(τx > l/2)

≤ C
∞∑
l=1

lp/2−1−δ/2P(τx > l/2)

≤ CE[τ (p−δ)/2
x ] ≤ C(1 + |x|p−δ),

by Lemma 10.
Third, by Lemma 8 and the fact that p ≤ 2,

Σ3 ≤ C
∞∑
l=1

E
[
|x+ S(l)|p−2−δ; |x+ S(l)| >

√
l, τx > l

]
≤ C

∞∑
l=1

l(p−2−δ)/2P(τx > l)

≤ CE[τ (p−δ)/2
x ] ≤ C(1 + |x|p−δ).

�

2.2. Positivity. In this paragraph we show that V is strictly positive on K+ and
prove some further properties of this function.

Lemma 13. The function V possesses the following properties.
(a) For any γ > 0, R > 0, uniformly in x ∈ DR,γ we have V (tx) ∼ u(tx) as

t→∞.
(b) For all x ∈ K we have V (x) ≤ C(1 + |x|p).
(c) The function V is harmonic for the killed random walk, that is

V (x) = E [V (x+ S(n0)), τx > n0] , x ∈ K,n0 ≥ 1.

(d) The function V is strictly positive on K+.
(e) If x ∈ K, then V (x) ≤ V (x+ x0), for all x0 such that x0 +K ⊂ K.

Proof. To prove the part (a) it suffices to note that t−pu(tx) = u(x), infx∈DR,γ u(x) >
0, and use bounds (22), (24). These inequalities together with |u(x)| ≤ C|x|p give
the part (b).

It suffices to prove (c) for n0 = 1, since for bigger values of n0 one can then use
the Markov property of S(n). It is clear that

E[u(x+S(n+1)), τx > n+1] =
∫
K

P(x+S(1) ∈ dy, τx > 1)E[u(y+S(n)), τy > n].

According to Lemma 12, E[u(y + S(n)), τy > n]→ V (y) for every y ∈ K. Further-
more, it follows from (22), (24) that E[u(y + S(n)), τy > n] ≤ C(1 + |y|p). This
allows one to apply the dominated convergence theorem, which gives

V (x) = lim
n→∞

E[u(x+ S(n+ 1)), τx > n+ 1] =
∫
K

P(x+ S(1) ∈ dy, τx > 1)V (y).

To prove the positivity of V (x) assume that x ∈ K+. Then for every R > 0
there exists n0 = n0(R) such that P(x + S(n0) ∈ DR,γ , τx > n0) > 0 with some
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γ = γ(x). According to the first part of the lemma there exist R > 0 such that
infy∈DR,γ V (y) > 0. Consequently,

V (x) = E[V (x+ S(n0)); τx > n0]

≥ E [V (x+ S(n0)), x+ S(n0) ∈ DR,γ , τx > n0] > 0.

To prove (e) we first show that the same property holds for u(x). Indeed, if x0

is such that x0 +K ⊂ K, then{
τ bmx > t

}
⊂
{
τ bmx+x0

> t
}

for all x ∈ K, t > 0.

Then, in view of (1),

κu(x) = lim
t→∞

tp/2P(τ bmx > t) ≤ lim
t→∞

tp/2P(τ bmx+x0
> t) = κu(x+ x0).

Applying now Lemma 12, we get

V (x) = lim
n→∞

E [u(x+ S(n)); τx > n]

≤ lim
n→∞

E [u(x+ x0 + S(n)); τx+x0 > n] = V (x+ x0).

Thus, the proof is finished. �

2.3. An alternative construction of a harmonic function for random walks
with bounded jumps. In this paragraph we show that V remains well-defined
and a strictly positive harmonic function for random walks with bounded jumps if
we take v(x) = u(x+ x∗).

Assume that P(|X| ≤ R) = 1 and let x∗ satisfy the condition

dist(x, ∂K) > R for every x ∈ K∗ := x∗ +K.

(One can choose x∗ = t∗x0 with sufficiently large t∗.) Therefore, f(x) = Ev(x +
X)− v(x) is well-defined and the statement of Lemma 8 is valid with δ = 1. This
implies, by the same arguments as in the proof of Lemma 12, that

E

[
τx−1∑
l=1

|f(x+ S(l))|

]
< C(1 + |x|p−δ).

To show that v(x+ S(τx)) is integrable, we assume that

u(x) ≤ C|x|p−δdist(x, ∂K).

(If K is convex, then this inequality holds with δ = 1, see [47, formula (0.2.3)].)
Since dist(x∗ + x+ S(τx), ∂K) is bounded, then, in view of Lemma 10

Ev(x+ S(τx)) ≤ CE|x+ S(τx)|p−δ < C(1 + |x|p−δ).

Thus, V is well-defined. Repeating the derivation of (21), we obtain

V (x) = lim
n→∞

E[u(x+ x0 + S(n)); τx > n].

This relation implies that V is harmonic. The positivity follows from Lemma 13.
Formally, V might depend on x∗. But one can show, using the coupling with the

Brownian motion from the next section, that V is independent of x∗. It is sufficient
to note that one can replace u(y) ∼ u(x∗ + y) under the conditions of Lemma 20
below.
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2.4. Construction of harmonic function in the one-dimensional case. If
d = 1 then K = (0,∞). Random walks confined to the positive half-line are well
studied in the literature. The main tool is the Wiener-Hopf factorisation. This
method allows one to construct the harmonic function for any oscillating random
walk. It turns out that the ladder heights renewal function is harmonic for S(n)
killed at leaving (0,∞).

For the sake of completeness we indicate how our method works for one-dimensional
random walks.

The harmonic function for the killed Brownian motion is u(x) = x1R+(x). We
extend it to a harmonic function on the whole axis by putting u(x) = x, x ∈ R.
Since u(x+ S(n)) is a martingale, the corrector function f ≡ 0. Therefore,

V (x) = u(x)−E [u(x+ S(τx))] .

This function is strictly positive on K. It is well-defined provided that the expec-
tation E|u(x+ S(τx))| is finite. The latter property can be shown by constructing
an appropriate positive supermartingale. Namely, put

h(x) =

{
(R+ x)1−a , x > 0
|x| , x ≤ 0.

Then, after some computations, one can show that for sufficiently large R and
sufficiently small a the process h(x+S(n∧τx)) is a positive supermartingale provided
E|X(1)|2+δ <∞ for some δ > 0. Hence, by the optional stopping theorem

E|x+ S(τx)| ≤ (R+ x)1−a.

This shows the finiteness of E|u(x+S(τx))|. In addition, this estimate implies that
V (x) ∼ x as x→∞.

3. Coupling

Let ε > 0 be a constant and let

Kn,ε = {x ∈ K : dist(x, ∂K) ≥ n1/2−ε} (26)

Define
νn := min{k ≥ 1 : x+ S(k) ∈ Kn,ε}.

Lemma 14. There exists a positive constant C such that, for every ε > 0,

P(νn > n1−ε, τx > n1−ε) ≤ exp{−Cnε}.

Proof. Set, for brevity, bn = [n1/2−ε], where a is a positive number.
Clearly,

P(νn > n1−ε, τx > n1−ε) ≤ P(x+ S(b2n), x+ S(2b2n), . . . , x+ S([nε]b2n) ∈ K \Kn,ε)

≤

(
sup

y∈K\Kn,ε
P(y + S(b2n) ∈ K \Kn,ε)

)[nε]

.

It follows from the scaling property of the cone that

sup
y∈K\Kn,ε

P(y + S(b2n) ∈ K \Kn,ε) = sup
y∈K\K1,ε

P
(
y +

S(b2n)
n1/2−ε ∈ K \K1,ε

)
.

Therefore, it is sufficient to show that the right-hand side is separated from 1.
To this end recall that there exists x0 with |x0| = 1 such that x0 + K ⊂ K and
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dist(x0 +K, ∂K) > 0. Then, by the scaling property of cones, for sufficiently large
t0, the distance dist(t0x0 +K, ∂K) ≥ 1. Hence, t0x0 +K ⊂ K1,ε.

Let d(x) = dist(x + K,Kc). Since the boundary of the cone is continuous this
function is continuous. We assumed that d(x0) > 0. Therefore, the set K0 = {x :
d(x) > 0} is open and non-empty. Since K is a cone the set K0 is a cone as well.
Since K0 +K ⊂ K, we have y +K0 ⊂ K for every y ∈ K. Consequently,

t0x0 + y +K0 ⊂ t0x0 +K ⊂ K1,ε

for all y ∈ K. This relation yields

sup
y∈K\K1,ε

P
(
y +

S(b2n)
n1/2−ε ∈ K \K1,ε

)
≤ 1−P

(
S(b2n)
n1/2−ε ∈ t0x0 +K0

)
.

Further, by the central limit theorem,

lim
n→∞

P
(
S(b2n)
n1/2−ε ∈ t0x0 +K0

)
= P (B(1) ∈ t0x0 +K0) .

Since K0 is open, the probability P (B(1) ∈ t0x0 +K0) is strictly positive. This
completes the proof of the lemma. �

Remark 15. We used in the proof of the last lemma that every convex cone is
starlike. Now we prove this fact. Fix some x0 ∈ Σ. Then, due to convexity, x0+K ⊂
K. Assume that there exists y ∈ K such that dist(x0 + y, ∂K) < dist(x0, ∂K). Let
x ∈ ∂K satisfy dist(x0 + y, ∂K) = dist(x0 + y, x). Using the convexity of K once
again, we see that there exists a hyperplane H(x) such that H(x) ∩ K = ∅ and
dist(x0 + y,H(x)) < dist(x0, ∂K). But then dist(x0 + y,H(x)) < dist(x0, H(x)),
and this implies that the half-line {x0 + ty, y > 0} cuts H(x) and leaves the cone
K, what contradicts the fact that x0 +K ⊂ K.

Lemma 16. For every ε > 0 the inequality

E[u(x+ S(n1−ε)); νn > n1−ε, τx > n1−ε] ≤ C(x) exp{−Cncε}
holds.

Proof. Since νn > n1−ε and τx > n1−ε,

dist(x+ S(n1−ε), ∂K) ≤ n1/2−ε.

Therefore, applying Taylor formula (and recalling that u vanishes on the boundary),
we obtain

u(x+ S(n1−ε)) ≤ C|x+ S(n1−ε)|p−1dist(x+ S(n1−ε), ∂K)

≤ C|x+ S(n1−ε)|p−1n1/2−ε.

Hence, by the Hölder inequality,

E[u(x+ S(n1−ε)); νn > n1−ε, τx > n1−ε]

≤ Cn1/2−εE[|x+ S(n1−ε)|p−1; νn > n1−ε, τx > n1−ε]

≤ Cn1/2E[|x+ S(n1−ε)|p](p−1)/pP(νn > n1−ε, τx > n1−ε)1/p.

An application of Lemma 14 and a classical martingale bound

E|S(n1−ε)|p ≤ Cnp/2

gives the required exponential bound. �
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We start by formulating an estimate of the quality of the normal approximation
of high-dimensional random walks which follows from a result of Götze and Zaitsev
[30], see Theorem 4 there.

Lemma 17. If E|X|2+δ < ∞ for some δ ∈ (0, 1), then one can define a random
walk with the same distribution as S(n) and a Brownian motion B(t) on the same
probability space such that, for any γ satisfying 0 < γ < δ

2(2+δ) ,

P
(

sup
u≤n
|S([u])−B(u)| ≥ n1/2−γ

)
≤ Cn2γ+γδ−δ/2. (27)

Proof. According to Theorem 4 and (1.13) of [30] one can construct on a joint prob-
ability space a copy of S(n) and a standard gaussian random walk W (n) satisfying

P
(

max
k≤n
|S(k)−W (k)| ≥ 1

2
n1/2−γ

)
≤ C

(
1
2
n1/2−γ

)−(2+δ)

nE|X(1)|2+δ

≤ Cn2γ+γδ−δ/2.

But, in view of the classical Lévy construction of the Brownian motion, we may
assume that there is a Brownian motion B(t) on the same probability space with
the property B(k) = W (k), k ≥ 0. Therefore,

P
(

max
k≤n
|S(k)−B(k)| ≥ 1

2
n1/2−γ

)
≤ Cn2γ+γδ−δ/2. (28)

Moreover,

P
(

sup
u≤n
|B(u)−B([u])| ≥ 1

2
n1/2−γ

)
≤ nP

(
sup
t≤1
|B(t)| ≥ 1

2
n1/2−γ

)
≤ dnP

(
sup
t≤1
|B1(t)| ≥ 1

2
√
d
n1/2−γ

)
≤ 4dn√

2π

∫ ∞
n1/2−γ/2

√
d

e−u
2/2du. (29)

In the last step we used the reflection principle and the bound

P
(

sup
t≤1
|B1(t)| ≥ x

)
≤ 2P

(
sup
t≤1

B1(t) ≥ x
)
.

By the triangle inequality,

P
(

sup
u≤n
|S([u])−B(u)| ≥ n1/2−γ

)
≤ P

(
max
k≤n
|S(k)−B(k)| ≥ 1

2
n1/2−γ

)
+P

(
sup
u≤n
|B(u)−B([u])| ≥ 1

2
n1/2−γ

)
.

Applying (28) and (29), we complete the proof. �

Lemma 18. There exists a finite constant C such that

P(τ bmx > t) ≤ C |x|
p

tp/2
, x ∈ K. (30)
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Moreover,

P(τ bmx > t) ∼ κ
u(x)
tp/2

, (31)

uniformly in x ∈ K satisfying |x| ≤ θt
√
t with some θt → 0. Finally, the density

bt(x, z) of the probability P(τ bmx > t, x+B(t) ∈ dz) is

bt(x, z) ∼ κ0t
−d/2e−|z|

2/(2t)u(x)u(z)t−p (32)

uniformly in x, z ∈ K satisfying |x| ≤ θt
√
t and |z| ≤

√
t/θt with some θt → 0.

These statements can be derived from estimates in [3].

Proof. According to Theorem 1 of [3],

P(τ bmx > t) =
∞∑
j=1

Bj

(
|x|2

2t

)aj/2
1F1

(
aj
2
, aj +

d

2
,
−|x|2

2t

)
mj

(
x

|x|

)
, (33)

where

aj :=

√
λj +

(
d

2
− 1
)2

− d

2
+ 1

and

Bj :=
Γ
(
aj+d

2

)
Γ
(
aj + d

2

) ∫
Σ

mj(θ)dθ.

By the definition,

1F1 (a, b, z) = 1 +
a

b

z

1!
+
a(a+ 1)
b(b+ 1)

z2

2!
+ . . . (34)

Then, for all x ∈ K with |x|2 ≤ t, we have

1F1

(
aj
2
, aj +

d

2
,
−|x|2

2t

)
≤ e|x|

2/2t ≤ e1/2.

Furthermore, in view of Lemma 5 of [3],

|mj(θ)| ≤
C√

Iaj−1+d/2(1)
m1(θ) ≤ C2aj/2

√
Γ(aj + d/2)m1(θ), θ ∈ Σ, (35)

where Iν(x) =
∑∞
m=0

1
m!Γ(m+ν+1) (x/2)ν+2m is the modified Bessel function. Ap-

plying (34) and (35) to the corresponding terms in (33), we obtain

P(τ bmx > t) ≤ Cm1

(
x

|x|

) ∞∑
j=1

Bj2aj/2
√

Γ(aj + d/2)
(
|x|2

2t

)aj/2
.

Using the Stirling formula and (2.3) from [3], one can easily get

Bj2aj/2
√

Γ(aj + d/2) ≤ Cλd/4j .

Consequently,

P(τ bmx > t) ≤ Cm1

(
x

|x|

) ∞∑
j=1

λ
d/4
j

(
|x|2

2t

)aj/2
.

According to the Weyl asymptotic formula, see [12, p.172],

cj2/(d−1) ≤ λj ≤ Cj2/(d−1).
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This implies that
∞∑
j=1

λ
d/4
j

(
|x|2

2t

)aj/2
≤ C

(
|x|2

2t

)a1/2

for all x satisfying |x|2 ≤ t. Therefore,

P(τ bmx > t) ≤ Cm1

(
x

|x|

)(
|x|2

2t

)a1/2

= C
u(x)
tp/2

, |x|2 ≤ t. (36)

This immediately implies that (30) holds.
The same arguments give also
∞∑
j=2

Bj

(
|x|2

2t

)aj/2
1F1

(
aj
2
, aj +

d

2
,
−|x|2

2t

)
mj

(
x

|x|

)
≤ Cm1

(
x

|x|

)(
|x|2

2t

)a2/2

.

Since a2 > a1,

P(τ bmx > t) ∼ B1

(
|x|2

2t

)a1/2

1F1

(
a1

2
, a1 +

d

2
,
−|x|2

2t

)
m1

(
x

|x|

)
uniformly in |x| ≤ θt

√
t. Noting that 1F1

(
a1
2 , a1 + d

2 ,
−|x|2

2t

)
→ 1 uniformly in

|x| ≤ θt
√
t, we get (31).

According to Lemma 1 from [3],

bt(x, z) =
e−(|x|2+|z|2)/2t

t|x|d/2−1|z|d/2−1

∞∑
j=1

Iaj−1+d/2

(
|x||z|
t

)
mj

(
x

|x|

)
mj

(
z

|z|

)
.

From the assumptions |x| ≤ θt
√
t and |z| ≤

√
t/θt we get uniform convergence as

|x||z|
t → 0. Recalling the definition of the Bessel functions and using (35), we obtain

bt(x, z) ∼
1

Γ(a1 + d/2)
e−(|x|2+|z|2)/2t

t|x|d/2−1|z|d/2−1

(
|x||z|

2t

)a1−1+d/2

m1

(
x

|x|

)
m1

(
z

|z|

)
uniformly in |x| ≤ θt

√
t and |z| ≤

√
t/θt. Simplifying this expression, and recalling

the definitions of p and u, we get

bt(x, z) ∼ κ0u(x)u(z)e−(|x|2+|z|2)/2tt−p−d/2.

Noting that e−|x
2|/2t → 1, we obtain (32). �

Lemma 19. If K is convex then there exists a finite constant C such that

u(y) ≥ C (dist(y, ∂K))p , y ∈ K.

If K is starlike and C2, then

u(y) ≥ C|y|p−1dist(y, ∂K), y ∈ K.

Proof. It is clear that

{τ bmy > t} ⊃ {sup
s≤t
|B(s)| < dist(y, ∂K)}.

Using the scaling property, we obtain

P(τ bmy > t) ≥ P
(

sup
s≤1
|B(s)| < dist(y, ∂K)√

t

)
.
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If K is convex, then it has been proved in [47], see Theorem 1 and (0.4.1) there,
that

P(τ bmx > t) ≤ Cu(x)
tp/2

, x ∈ K, t > 0. (37)

Using this bound with t = (dist(y, ∂K))2, we get

u(y)
(dist(y, ∂K))p

≥ CP
(
τ bmy > (dist(y, ∂K))2

)
≥ CP

(
sup
s≤1
|B(s)| < 1

)
.

Thus, the first statement is proved. The second one follows easily from (0.2.1) in
[47]. �

Using the coupling we can translate the results of Lemma 18 to the random
walks setting when y ∈ Kn,ε.

Lemma 20. For all sufficiently small ε > 0,

P(τy > n) = κu(y)n−p/2(1 + o(1)), as n→∞ (38)

uniformly in y ∈ Kn,ε such that |y| ≤ θn
√
n for some θn → 0. Moreover, there

exists a constant C such that

P(τy > n) ≤ C |y|
p

np/2
, (39)

uniformly in y ∈ Kn,ε, n ≥ 1. Finally, for any compact set D ⊂ K,

P(τy > n, y + S(n) ∈
√
nD) ∼ κ0u(y)n−p/2

∫
D

dze−|z|
2/2u(z) (40)

uniformly in y ∈ Kn,ε such that |y| ≤ θn
√
n for some θn → 0.

Proof. For every y ∈ Kn,ε denote

y± = y ±R0x0n
1/2−γ ,

where x0 is such that |x0| = 1, x0+K ⊂ K and R0 is such that dist(R0x0+K, ∂K) >
1. Note also that this choice of R0 ensures that R0x0n

1/2−γ ⊂ Kn,γ .
If we take γ > ε, then for any ε′ > ε there exists n(ε′) such that y± ∈ Kn,ε′ as

soon as n ≥ n(ε′) and y ∈ Kn,ε.
Define

An =
{

sup
u≤n
|S([u])−B(u)| ≤ n1/2−γ

}
,

where B is the Brownian motion constructed in Lemma 17. The choice of R0

ensures that τ bmy+ > n on the set {τy > n} ∩An. Then, using (27), we obtain

P(τy > n) = P(τy > n,An) + o
(
n−r

)
≤ P(τ bmy+ > n) + o

(
n−r

)
, (41)

where r = r(δ, γ) = δ/2− 2γ − γδ. In the same way one can get

P(τ bmy− > n) ≤ P(τy > n) + o
(
n−r

)
. (42)

If |y| ≤ θn
√
n then |y±| ≤ θn

√
n+R0x0n

1/2−γ = θ′n
√
n. Therefore, by Lemma 18,

P(τ bmy± > n) ∼ κu(y±)n−p/2.

It follows from the Taylor formula and Lemma 7 that

|u(y±)− u(y)| ≤ C|y|p−1|y± − y| ≤ Cnp/2−γ (43)
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for all y with |y| ≤
√
n. If K is convex, then, according to the first part of Lemma

19,
u(y)n−p/2 ≥ C (dist(y, ∂K))p n−p/2 ≥ Cn−pε, y ∈ Kn,ε. (44)

If K is not necessarily convex but C2, then we may apply the second part of Lemma
19, which gives the same estimate u(y) ≥ Cnp(1/2−ε).

Combining (43) and (44), we obtain for γ > pε an estimate

u(y±) = u(y)(1 + o(1)), y ∈ Kn,ε, |y| ≤
√
n.

Therefore, we have

P(τ bmy± > n) = κu(y)n−p/2(1 + o(1)).

From this relation and bounds (41) and (42) we obtain

P(τy > n) = κu(y)n−p/2(1 + o(1)) + o
(
n−r

)
.

Thus, it remains to show that

n−r = o(u(y)n−p/2) (45)

for all sufficiently small ε > 0 and all y ∈ Kn,ε with |y| ≤
√
n.

Using (44), we see that (45) will be valid for all ε satisfying

r = δ/2− 2γ − 2γδ > pε.

This proves (38). To prove (39) it is sufficient to substitute (30) in (41).
The proof of (40) is similar. Define two sets,

D+ = {z ∈ K : dist(z,D) ≤ (|x0|+ 1)n−γ}
D− = {z ∈ D : dist(z, ∂D) ≥ (|x0|+ 1)n−γ}.

Clearly D− ⊂ D ⊂ D+. Then, arguing as above, we get

P(τy > n, y + S(n) ∈
√
nD) ≤ P(τy > n, y + S(n) ∈

√
nD,An) + o

(
n−r

)
≤ P(τ bmy+ > n, y+ +B(n) ∈

√
nD+, An) + o

(
n−r

)
≤ P(τ bmy+ > n, y+ +B(n) ∈

√
nD+) + o

(
n−r

)
. (46)

Similarly,

P(τy > n, y + S(n) ∈
√
nD) ≥ P(τ bmy− > n, y− +B(n) ∈

√
nD−) + o

(
n−r

)
. (47)

Now we apply (32) and obtain

P(τ bmy± > n, y± +B(n) ∈
√
nD±) ∼ κ0u(y±)

∫
√
nD±

dze−|z|
2/(2n)u(z)n−

d
2 n−p

= κ0u(y±)
∫
D±

dze−|z|
2/2u(z)n−p/2.

It is sufficient to note now that

u(y±) ∼ u(y) and
∫
D±

dze−|z|
2/2u(z)→

∫
D

dze−|z|
2/2u(z)

as n→∞. From these relations and bounds (46) and (47) we obtain

P(τy > n, y + S(n) ∈
√
nD) = (κ0 + o(1))u(y)

∫
D

dze−|z|
2/2u(z)n−p/2 + o

(
n−r

)
.

Recalling (45) we arrive at the conclusion. �
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4. Asymptotics for P(τx > n)

We first note that, in view of Lemma 14,

P(τx > n) = P(τx > n, νn ≤ n1−ε) + P(τx > n, νn > n1−ε)

= P(τx > n, νn ≤ n1−ε) +O
(
e−Cn

ε
)
. (48)

Using the strong Markov property, we get the following estimates for the first term∫
Kn,ε

P
(
x+ S(νn) ∈ dy, τx > νn, νn ≤ n1−ε)P(τy > n) ≤ P(τx > n, νn ≤ n1−ε)

≤
∫
Kn,ε

P
(
x+ S(νn) ∈ dy, τx > νn, νn ≤ n1−ε)P(τy > n− n1−ε). (49)

Applying now Lemma 20, we obtain

P(τx > n; νn ≤ n1−ε)

=
κ + o(1)
np/2

E
[
u(x+ S(νn)); τx > νn, |x+ S(νn)| ≤ θn

√
n, νn ≤ n1−ε]

+O

(
1

np/2
E
[
|x+ S(νn)|p; τx > νn, |x+ S(νn)| > θn

√
n, νn ≤ n1−ε])

=
κ + o(1)
np/2

E
[
u(x+ S(νn)); τx > νn, νn ≤ n1−ε]

+O

(
1

np/2
E
[
|x+ S(νn))|p; τx > νn, |x+ S(νn)| > θn

√
n, νn ≤ n1−ε]) . (50)

We now show that the first expectation converges to V (x) and that the second
expectation is negligibly small.

Lemma 21. Under the assumptions of Theorem 1,

lim
n→∞

E
[
u(x+ S(νn)); τx > νn, νn ≤ n1−ε] = V (x).

Proof. By the definition of Yn,

u(x+ S(νn)) = Yνn +
νn−1∑
k=0

f(x+ S(k)).

Consequently,

E
[
u(x+ S(νn)); τx > νn, νn ≤ n1−ε] = E

[
Yνn ; τx > νn, νn ≤ n1−ε]

+ E

[
νn−1∑
k=0

f(x+ S(k)); τx > νn, νn ≤ n1−ε

]
.

Recall that it was shown in Lemma 12 that

E
τx−1∑
k=0

|f(x+ S(k))| <∞. (51)

Then, since νn →∞,∣∣∣∣∣E
[
νn−1∑
k=0

f(x+ S(k)); τx > νn, νn ≤ n1−ε

]∣∣∣∣∣ ≤ E

[
τx−1∑
k=0

|f(x+ S(k))|; τx > νn

]
→ 0.
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Rearranging the terms, we have

E
[
Yνn ; τx > νn, νn ≤ n1−ε] = E

[
Yνn∧n1−ε ; τx > νn ∧ n1−ε, νn ≤ n1−ε]

= E
[
Yνn∧n1−ε ; τx > νn ∧ n1−ε]

−E
[
Yn1−ε ; τx > n1−ε, νn > n1−ε] . (52)

Recalling the definition of Yn, we get

E
[
Yn1−ε ; τx > n1−ε, νn > n1−ε] = E

[
u(x+ S(n1−ε)); τx > n1−ε, νn > n1−ε]

−E

n1−ε−1∑
k=0

f(x+ S(k)); τx > n1−ε, νn > n1−ε


The first term goes to zero due to Lemma 16, the second term vanishes by (51) and
by the dominated convergence theorem. Therefore,

E
[
Yn1−ε ; τx > n1−ε, νn > n1−ε]→ 0. (53)

Further,

E
[
Yνn∧n1−ε ; τx > νn ∧ n1−ε] = E [Yνn∧n1−ε ]−E

[
Yνn∧n1−ε ; τx ≤ νn ∧ n1−ε]

= EY0 −E
[
Yνn∧n1−ε ; τx ≤ νn ∧ n1−ε]

= u(x)−E
[
Yτx ; τx ≤ νn ∧ n1−ε] ,

where we have used the martingale property of Yn. Noting that νn ∧ n1−ε → ∞
almost surely, we have

Yτx1{τx ≤ νn ∧ n1−ε} → Yτx .

Then, using the integrability of Yτx , see (22) and (24), and the dominated conver-
gence theorem, we obtain

E
[
Yτx ; τx ≤ νn ∧ n1−ε]→ EYτx (54)

Combining (52)–(54), we obtain

E
[
u(x+ S(νn)); τx > νn, νn ≤ n1−ε]→ u(x)−EYτx = V (x).

This proves the lemma. �

In what follows we will use the Fuk-Nagaev inequalities several times. For the
reader convenience we state them in the following lemma.

Lemma 22. Let ξi be independent identically distributed random variables with
E[ξ1] = 0 and E[ξ2

1 ] <∞. Then, for all x, y > 0,

P

(
n∑
i=1

ξi ≥ x,max
i≤n

ξi ≤ y

)
≤ ex/y

(
nE[ξ2]
xy

)x/y
(55)

and

P

(
n∑
i=1

ξi ≥ x

)
≤ ex/y

(
nE[ξ2]
xy

)x/y
+ nP(ξ > y). (56)

The second inequality is (1.56) from Corollary 1.11 of [42]. The first one is not
directly stated there, but it can be found in the proof of Theorem 4 of [26]. There
are no proofs in [42] and we refer the interested reader to the original paper [26].
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Corollary 23. For all x, y > 0,

P
(
|S(n)| > x,max

k≤n
|X(k)| ≤ y

)
≤ 2dex/

√
dy

(√
dn

xy

)x/√dy
(57)

and

P(|S(n)| > x) ≤ 2dex/
√
dy

(√
dn

xy

)x/√dy
+ nP(|X(1)| > y). (58)

Proof. It is clear that

P
(
|S(n)| > x,max

k≤n
|X(k)| ≤ y

)
≤

d∑
j=1

P
(
|Sj(n)| > x√

d
,max
k≤n
|Xj(k)| ≤ y

)

≤
d∑
j=1

P
(
Sj(n) >

x√
d
,max
k≤n

Xj(k) ≤ y
)

+
d∑
j=1

P
(
Sj(n) < − x√

d
,min
k≤n

Xj(k) ≥ −y
)
.

Applying now (55) to every summand and recalling that E[(Xj(1))2] = 1, we get
(57). The bound (58) follows from (57) and inequality

P
(
|S(n)| > x,max

k≤n
|X(k)| > y

)
≤ P

(
max
k≤n
|X(k)| > y

)
≤ nP(|X(1)| > y).

�

Lemma 24. Under the assumptions of Theorem 1,

lim
n→∞

E
[
|x+ S(νn)|p; τx > νn, |S(νn)| > θn

√
n, νn ≤ n1−ε] = 0.

Proof. We take θn = n−ε/8. Let

µn := min{j ≥ 1 : |X(j)| > n1/2−ε/4}.

Since |S(νn)| ≤ n3/2 on the event {µn > νn, νn ≤ n1−ε} we arrive at the following
bound

E
[
|x+ S(νn)|p; τx > νn, |S(νn)| > θn

√
n, νn ≤ n1−ε, µn > νn

]
≤ Cnp(3/2)P(|S(νn)| > θn

√
n, νn ≤ n1−ε, µn > νn)

≤ Cnp(3/2)
n1−ε∑
j=1

P(|S(j)| > θn
√
n, µn > j).

Applying now (57) with x = θn
√
n = n1/2−ε/8, y = n1/2−ε/4 to every probability

term, we get

n1−ε∑
j=1

P(|S(j)| > θn
√
n, µn > j) ≤ 2d

n1−ε∑
j=1

(
(ed)j
n1−3ε/8

)nε/8/√d
≤ exp{−Cnε/8}.

As a result,

E
[
|x+ S(νn)|p; τx > νn, |S(νn)| > θn

√
n, νn ≤ n1−ε, µn > νn

]
→ 0. (59)
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Next,

E
[
|x+ S(νn)|p; τx > νn, |S(νn)| > θn

√
n, νn ≤ n1−ε, µn ≤ νn

]
≤ E

[
|x+ S(νn)|p; τx > µn, νn ≤ n1−ε, µn ≤ νn

]
≤
n1−ε∑
j=1

E
[
|x+ S(νn)|p; τx > j, νn ≤ n1−ε, j ≤ νn, µn = j

]
.

For each j, we split the sum S(νn) in 3 parts

|x+ S(νn)|p ≤ C(|x+ S(j − 1)|p + |X(j)|p + |S(νn)− S(j)|p).
Then,

n1−ε∑
j=1

E
[
|S(νn)− S(j)|p; τx > j, νn ≤ n1−ε, j ≤ νn, µn = j

]
≤
n1−ε∑
j=1

E|M(n1−ε)|pP(τx > j − 1, µn = j)

≤ C
n1−ε∑
j=1

n(1−ε)p/2P(τx > j − 1)P(|X(j)| > n1/2−ε/4)

= Cn(1−ε)p/2P(|X(1)| > n1/2−ε/4)
n1−ε∑
j=1

P(τx > j − 1).

The bound E|M(n1−ε)|p ≤ Cn(1−ε)p/2 holds due to the Doob and Rosenthal in-
equalities for p ≥ 2 and additionally Hölder’s inequality for p < 2.

There are two cases now. For p > 2, the sum
∞∑
j=1

P(τx > j) <∞,

since Eτx <∞. In addition, by the Chebyshev inequality,

n(1−ε)p/2P(|X| > n1/2−ε/4) ≤ n(1−ε)p/2 E|X|p

np(1/2−ε/4)
≤ n−pε/4E|X|p → 0.

Next, for p ≤ 2, we use the fact that E|X|2+δ <∞ for some δ > 0,

n(1−ε)p/2P(|X| > n1/2−ε/4) ≤ n(1−ε)p/2 E|X|2+δ

n(2+δ)(1/2−ε/4)
.

Since Eτp/2−βx <∞, for any β ∈ (0, p/2),
n1−ε∑
j=1

P(τx > j) ≤ Eτp/2−βx

n∑
j=1

1
jp/2−β

≤ Cn1−p/2+β .

Then,
n1−ε∑
j=1

n(1−ε)p/2P(τx > j − 1)P(|X| > n1/2−ε/4) ≤ Cn1−p/2+βn(1−ε)p/2n−(2+δ)(1/2−ε/4)

= Cnβ−ε(p−1)/2−δ(1/2−ε/4) → 0,
(60)



30 DENISOV AND WACHTEL

once we pick sufficiently small ε > 0 and β > 0. Therefore, in each case,

n1−ε∑
j=1

E
[
|S(νn)− S(j)|p; τx > j, νn ≤ n1−ε, j ≤ νn, µn = j

]
→ 0. (61)

Next, we analyse

n1−ε∑
j=1

E
[
|X(j)|p; τx > j, νn ≤ n1−ε, j ≤ νn, µn = j

]
≤
n1−ε∑
j=1

E
[
|X|p; |X| > n1/2−ε/4

]
P(τx > j − 1).

As above there are two cases: p > 2 and p ≤ 2. If p > 2 then we apply

∞∑
j=1

P(τx > j) <∞, E
[
|X|p; |X| > n1/2−ε/4

]
→ 0.

If p ≤ 2 then

n1−ε∑
j=1

E
[
|X|p; |X| > n1/2−ε/4

]
P(τx > j)

≤ Cn−p/2+β+1E|X|2+δn−(2−p+δ)(1/2−ε/4)

≤ Cnβ−δ(1/2−ε/4)+(2−p)ε/4 → 0

once we pick sufficiently small ε > 0 and β > 0. Therefore,

n1−ε∑
j=1

E
[
|X(j)|p; τx > j, νn ≤ n1−ε, j ≤ νn, µn = j

]
→ 0. (62)

Further,

n1−ε∑
j=1

E
[
|x+ S(j − 1)|p; τx > j, νn ≤ n1−ε, j ≤ νn, µn = j

]
≤ 2p|x|pP(µn ≤ n1−ε) + 2p

n1−ε∑
j=1

E [|S(j − 1)|p; τx > j, µn = j]

≤ 2p|x|pP(µn ≤ n1−ε) + 2p
n1−ε∑
j=1

E
[
|S(j − 1)|p; |S(j − 1)| > n1/2−ε/8, µn = j

]

+ 2p
n1−ε∑
j=1

E
[
|S(j − 1)|p; |S(j − 1)| ≤ n1/2−ε/8, τx > j, µn = j

]
(63)

Using the Chebyshev inequality, we obtain

P(µn ≤ n1−ε) ≤ n1−εP(|X| > n1/2−ε/4) ≤ dn−ε/2.
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For the second term in (63) we note that on µn = j the sum |S(j − 1)| ≤ n3/2.
Hence,

n1−ε∑
j=1

E
[
|S(j − 1)|p; |S(j − 1)| > n1/2−ε/8, µn = j

]

≤ n3p/2
n1−ε∑
j=1

P(|S(j − 1)| > n1/2−ε/8, µn = j)

≤ Cn3p/2+1 exp{−Cnε/8},
by the Fuk-Nagaev inequality (57). The third term,

n1−ε∑
j=1

E
[
|S(j − 1)|p; |S(j − 1)| ≤ n1/2−ε/8, τx > j, µn = j

]

≤
n1−ε∑
j=1

np(1/2−ε/8)P(τx > j, µn = j)

≤ np(1/2−ε/8)P(|X| > n1/2−ε/4)
n1−ε∑
j=1

P(τx > j − 1)→ 0,

as has already been shown in (60). Hence,
n1−ε∑
j=1

E
[
|x+ S(j − 1)|p; τx > j, νn ≤ n1−ε, j ≤ νn, µn = j

]
→ 0. (64)

Now the claim follows from equations (59), (61), (62) and (64).
�

Now we are in position to complete the proof of Theorem 1. It follows from the
lemmas and (48) and (50) that

P(τx > n) =
κV (x)
np/2

(1 + o(1)).

5. Weak convergence results

Lemma 25. For any x ∈ K, the distribution P
(
x+S(n)√

n
∈ ·|τx > n

)
weakly con-

verges to the distribution with the density H0e
−|y|2/2u(y), where H0 is the normal-

ising constant.

Proof. It suffices to show that, for any compact A ⊂ K,
P(x+ S(n) ∈

√
nA, τx > n)

P(τx > n)
→ H0

∫
A

e−|y|
2/2u(y)dy. (65)

Take θn which goes to zero slower than any power function. First note that, as in
(48) and (50),

P(x+ S(n) ∈
√
nA, τx > n)

= P(τx > n, x+ S(n) ∈
√
nA, νn ≤ n1−ε) +O

(
e−Cn

ε
)

= P(τx > n, x+ S(n) ∈
√
nA, |S(νn)| ≤ θn

√
n, νn ≤ n1−ε) + o(P(τx > n)).



32 DENISOV AND WACHTEL

In the last line we used the following estimates which hold by Markov property,
Lemma 20 and Lemma 24,

P(τx > n, |S(νn)| > θn
√
n, νn ≤ n1−ε)

≤ C

np/2
E
[
|x+ S(νn)|p; τx > νn, |S(νn)| > θn

√
n, νn ≤ n1−ε]

= o(n−p/2) = o(P(τx > n)).

Next,

P(τx > n, x+ S(n) ∈
√
nA, |S(νn)| ≤ θn

√
n, νn ≤ n1−ε)

=
n1−ε∑
k=1

∫
Kn,ε∩{|y−x|≤θn

√
n}

P(τx > k, x+ S(k) ∈ dy, νn = k)

×P(τy > n− k, y + S(n− k) ∈
√
nA).

Using the coupling and arguing as in Lemma 20, one can show that

P(τy > n− k, y + S(n− k) ∈
√
nA) ∼ P(τ bmy > n, y +B(n) ∈

√
nA)

uniformly in k ≤ n1−ε and y ∈ Kn,ε. Next we apply asymptotics (32) and obtain
that

P(τy > n− k, y + S(n− k) ∈
√
nA) ∼ κ0

∫
A

dze−|z|
2/2u(y)u(z)n−p/2

uniformly in y ∈ Kn,ε, |y| ≤ θn
√
n. As a result we obtain

P(x+ S(n) ∈
√
nA, τx > n) ∼

∫
A

dze−|z|
2/2u(z)n−p/2

× κ0E[u(x+ S(νn)), τx > νn, |S(νn)| ≤ θn
√
n, νn ≤ n1−ε]

∼ κ0

∫
A

dze−|z|
2/2u(z)n−p/2V (x),

where the latter equivalence holds due to Lemma 21 and Lemma 24. Substituting
the latter equivalence in (65) and using the asymptotics for P(τx > n), we arrive
at the conclusion. �

Now we change the notation slightly. Let

Px(S(n) ∈ A) = P(x+ S(n) ∈ A).

Lemma 26. Let Xn(t) = S([nt])√
n

be the family of processes with the probability mea-

sure P̂(V )

x
√
n
, x ∈ K. Then Xn converges weakly in the uniform topology on D[0,∞)

to the Brownian motion conditioned to stay in K with the probability measure P̂(u)
x .

Proof. To prove the claim we need to show that the convergence takes place in
D[0, l] for every l. The proof is identical for each l, so we let l = 1 to simplify
notation. Thus it is sufficient to show that for every functional f : 0 ≤ f ≤ 1
uniformly continuous on D[0, 1] with respect to the uniform topology,

Ê(V )

x
√
n
f(Xn)→ Ê(u)

x f(B) as n→∞.

We first show that
1

V (x
√
n)

E
[
V (x
√
n+ S(n)), |S(n)| > R

√
n
]
≤ g(R), (66)
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where g(R)→ 0 as R→∞. Using Lemma 13 (a) and (b), we have, for all R > 1,

1
V (x
√
n)

E
[
V (x
√
n+ S(n)), |S(n)| > R

√
n
]

≤ C

np/2

(
np/2P(|S(n)| > R

√
n) + E

[
|S(n)|p, |S(n)| > R

√
n
])

≤ C

np/2
E
[
|S(n)|p, |S(n)| > R

√
n
]
.

If p > 2 then

E[|S(n)|p; |S(n)| > R
√
n] = p

∫ ∞
R
√
n

zp−1P(|S(n)| > z)dz+Rpnp/2P(|S(n)| > R
√
n).

Choosing y = z/r in the inequality (58), we have

P(|S(n)| > z) ≤ C(r)
( n
z2

)r
+ nP(|X| > z/r).

Using the latter bound with r > p/2, we have

P(|S(n)| > R
√
n) ≤ C(r)R−2r + nP(|X| > R

√
n/r)

≤ C(r)R−2r +
r2

R2
E[|X|2, |X| > R] (67)

and ∫ ∞
R
√
n

zp−1P(|S(n)| > z)dz

≤ C(r)pnr
∫ ∞
R
√
n

zp−1−2rdz + np

∫ ∞
R
√
n

zp−1P(|X| > z/r)dz

≤ C(r)
p

2r − p
np/2Rp−2r + rpnE[|X|p, |X| > R

√
n/r]

≤ C(p, r)np/2
(
Rp−2r + E[|X|p, |X| > R]

)
(68)

for all sufficiently large n. This implies that (66) holds for p > 2.
If p ≤ 2 then, combining the Markov inequality and (68), we get, for any r >

1 + δ/2,

E[|S(n)|p; |S(n)| > R
√
n] ≤ (R

√
n)p−2−δE[|S(n)|2+δ, |S(n)| > R

√
n]

≤ C(2 + δ, r)np/2R2+δ−2r.

Thus, the bound (66) is valid for all p.
Fix also some ε > 0. It follows easily from Lemma 13 (a), (b) and the central

limit theorem that
1

V (x
√
n)

E
[
V (x
√
n+ S(n)), τx√n > n, |S(n)| ≤ R

√
n, dist(x

√
n+ S(n), ∂K) ≤ ε

√
n
]

≤ CP
(
dist(x

√
n+ S(n), ∂K) ≤ ε

√
n
)

≤ CP (dist(x+B(1), ∂K) ≤ ε) .

Since the distribution of B(1) is isotropic,

P (dist(x+B(1), ∂K) ≤ ε) ≤ Cε.
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Therefore,

1
V (x
√
n)

E
[
V (x
√
n+ S(n)), τx√n > n, |S(n)| ≤ R

√
n, dist(x

√
n+ S(n), ∂K) ≤ ε

√
n
]

≤ Cε. (69)

It is clear that similar bounds are valid for the Brownian motion. More precisely,

1
u(x)

E [u(x+B(1)), |B(1)| > R] ≤ g(R) (70)

and
1

u(x)
E
[
u(x+B(1)), τ bmx > 1, |B(1)| ≤ R,dist(x+B(1), ∂K) ≤ ε

]
≤ C(|x|+R)d−1ε. (71)

Define
Dn :=

{
|S(n)| ≤ R

√
n, dist(x

√
n+ S(n), ∂K) ≥ ε

√
n
}

and
Dbm := {|B(1)| ≤ R,dist(x+B(1), ∂K) ≥ ε} .

Using Lemma 13(a), one can easily get

1
V (x
√
n)

E
[
f(Xn)V (x

√
n+ S(n))1Dn , τx√n > n

]
= (1 + o(1))

1
u(x
√
n)

E
[
f(Xn)u(x

√
n+ S(n))1Dn , τx√n > n

]
= (1 + o(1))

1
u(x)

E
[
f(Xn)u

(
x+

S(n)√
n

)
1Dn , τx√n > n

]
.

We next note that u(x+ ·)f(·)1Dbm∩{τbmx >1} is bounded and its discontinuities are
a null-set with respect to the Wiener measure on D[0, 1] equiped with the Borel
σ-algebra induced by the uniform topology. Thus, due to the Donsker invariance
principle on D[0, 1] with the uniform topology,

lim
n→∞

1
V (x
√
n)

E
[
f(Xn)V (x

√
n+ S(n))1Dn , τx√n > n

]
=

1
u(x)

E
[
f(B)u(x+B(1))1Dbm , τ

bm
x > 1

]
.

For details on the invariance principle on D[0, 1] with the uniform topology and on
the Wiener measure on this space we refer to Billingsley’s book [4], Section 18.

From this convergence and bounds (66) – (71) we conclude that

lim sup
n→∞

∣∣∣Ê(V )

x
√
n
f(Xn)− Ê(u)

x f(B)
∣∣∣ ≤ 2g(R) + C(|x|+R)d−1ε.

Letting first ε→ 0 and then R→∞, we get

lim sup
n→∞

∣∣∣Ê(V )

x
√
n
f(Xn)− Ê(u)

x f(B)
∣∣∣ = 0.

Thus, the lemma is proved. �
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6. Proof of local limit theorems

6.1. Preliminary estimates.

Lemma 27. For all y ∈ K and all n ≥ 1,

P (x+ S(n) = y, τx > n) ≤ C

nd/2
P(τx > n/2) ≤ C(x)n−p/2−d/2. (72)

Proof. It follows easily from (25) that

P(S(j) = z) ≤ Cj−d/2, z ∈ Zd. (73)

Therefore, for m = [n/2] we have

P(x+ S(n) = y, τx > n)

=
∑
z∈K

P(x+ S(m) = z, τx > m)P(z + S(n−m) = y, τz > n−m)

≤
∑
z∈K

P(x+ S(m) = z, τx > m)P(z + S(n−m) = y)

≤ Cn−d/2P(τx > m).

But we know that P(τx > m) ≤ C(x)m−p/2. This completes the proof of the
lemma. �

Comparing (72) with the claim in Theorem 5 we see that (72) has the right order
for typical values of y, i.e., for y of order n1/2. But for smaller values of y that
bound is too rough.

Lemma 28. For all x, y ∈ K and all n ≥ 1,

P(x+ S(n) = y, τx > n) ≤ C(x, y)n−p−d/2. (74)

Proof. We first split the trajectory S(1), S(2), . . . , S(n) into two parts

P(x+ S(n) = y, τx > n)

=
∑
z∈K

P(x+ S(m) = z, τx > m)P(z + S(n−m) = y, τz > n−m),

where m = [n/2]. Then we reverse the time in the second part:

P (z + S(n−m) = y, τz > n−m)

= P (z + S(k) ∈ K, k = 1, 2, . . . , n−m− 1, z + S(n−m) = y)

= P

z + S(n−m)−
n−m∑
j=k+1

X(j) ∈ K, k = 1, 2, . . . , n−m− 1, z + S(n−m) = y


= P (y − S(k) ∈ K, k = 1, 2, . . . , n−m− 1, y − S(n−m) = z)

= P
(
y − S(n−m) = z, τ ′y > n−m

)
,

where τ ′y = min{k ≥ 1 : y − S(k) /∈ K}. Applying Lemma 27 to the random walk
{−S(n)}, we obtain

P(z + S(n−m) = y, τz > n−m) ≤ C(y)n−p/2−d/2.
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Consequently,

P(x+ S(n) = y, τx > n) ≤ C(y)n−p/2−d/2
∑
z∈K

P(x+ S(m) = z, τx > m)

≤ C(y)n−p/2−d/2C(x)n−p/2.

Thus the proof is finished. �

Lemma 29. There exist constants a and C such that, for every u > 0,

lim sup
n→∞

sup
|x−z|≥u

√
n

nd/2P (x+ S(n) = z) ≤ C exp{−au2} (75)

and
lim sup
n→∞

sup
x,z∈Mn,u

nd/2P (x+ S(n) = z, τx ≤ n) ≤ C exp{−au2}, (76)

where Mn,u := {z : dist(z, ∂K) ≥ u
√
n}.

Proof. Put again m = [n/2]. For x and z with |x− z| ≥ u
√
n we have

P (x+ S(n) = z) ≤P
(
x+ S(n) = z, |S(m)| ≥ u

√
n/2

)
+ P

(
x+ S(n) = z, |S(n)− S(m)| ≥ u

√
n/2

)
.

We first note that from the Markov property and (73) follows

P
(
x+ S(n) = z, |S(m)| ≥ u

√
n/2

)
≤ Cn−d/2P

(
|S(m)| ≥ u

√
n/2

)
.

Reversing the time, as it was done in the previous lemma, we infer that

P
(
x+ S(n) = z, |S(n)− S(m)| ≥ u

√
n/2

)
≤ Cn−d/2P

(
|S(n−m)| ≥ u

√
n/2

)
.

As a result we have

P (x+ S(n) = z) ≤ Cn−d/2
(
P
(
|S(m)| ≥ u

√
n/2

)
+ P

(
|S(n−m)| ≥ u

√
n/2

))
.

The first estimate in the lemma follows now from the central limit theorem.
To prove the second estimate we note that if dist(z, ∂K) ≥ u

√
n then, using the

Markov property, we obtain

P (x+ S(n) = z, τx ≤ n/2) ≤ max
n/2≤k≤n

sup
|y−z|≥u

√
n

nd/2P (y + S(k) = z) .

Furthermore, if dist(x, ∂K) ≥ u
√
n then, reversing additionally the time, we get

P (x+ S(n) = z, n/2 < τx ≤ n) ≤ max
n/2≤k≤n

sup
|y−x|≥u

√
n

nd/2P (y + S(k) = x) .

Applying (75), we complete the proof. �

6.2. Proof of Theorem 5. For simplicity we assume that X takes values on Zd.
We split the cone into three parts:

K(1) := {y ∈ K : |y| > A
√
n},

K(2) := {y ∈ K : |y| ≤ A
√
n, dist(y, ∂K) ≤ 2ε

√
n},

K(3) := {y ∈ K : |y| ≤ A
√
n, dist(y, ∂K) > 2ε

√
n}

with some A > 0 and ε > 0. Noting that

lim
A→∞

sup
y∈K(1)

u(y/
√
n)e−|y|

2/2n = 0
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and
lim
A→∞

lim
ε→0

sup
y∈K(2)

u(y/
√
n)e−|y|

2/2n = 0,

one can easily see that the theorem will be proved if we show that

lim
A→∞

lim sup
n→∞

np/2+d/2 sup
y∈K(1)

P(x+ S(n) = y, τx > n) = 0,

lim
A→∞

lim
ε→0

lim sup
n→∞

np/2+d/2 sup
y∈K(2)

P(x+ S(n) = y, τx > n) = 0

and

lim
ε→0

lim sup
n→∞

sup
y∈K(3)

∣∣∣∣np/2+d/2P (x+ S(n) = y, τx > n)

− κV (x)H0u

(
y√
n

)
e−|y|

2/2n

∣∣∣∣ = 0.

This is done in (77), (81) and (87) respectively.
We have

P(x+ S(n) = y, τx > n) = P(x+ S(n) = y, τx > n, |S(n/2)| ≤ A
√
n/2)

+P(x+ S(n) = y, τx > n, |S(n/2)| > A
√
n/2).

Using the Markov property and (73), we get, for all y ∈ K(1),

P(x+ S(n) = y, τx > n, |S(n/2)| > A
√
n/2)

≤ C(x)n−d/2−p/2P
(
|x+ S(n/2)| > A

√
n/2− |x|

∣∣∣τx > n/2
)
.

Applying now (8) in Theorem 3, we obtain, uniformly in y ∈ K(1),

lim
A→∞

lim sup
n→∞

np/2+d/2P(x+ S(n) = y, τx > n, |S(n/2)| > A
√
n/2)

≤ C(x) lim
A→∞

µ({z ∈ K : |z| > A/
√

2}) = 0.

Furthermore, applying Theorem 1 and (75), we get, for |y| > A
√
n,

P(x+ S(n) = y, τx > n, |S(n/2)| ≤ A
√
n/2)

≤ P(τx > n/2) sup
|y−z|>A

√
n/2

P(x+ z + S(n/2) = y)

≤ C(x)n−d/2−p/2 exp{−aA2/4}.
As a result we have

lim
A→∞

lim sup
n→∞

nd/2+p/2 sup
y∈K(1)

P(x+ S(n) = y, τx > n) = 0. (77)

We next consider y ∈ K(2). Set m = [n/2]. Using the time reversion from
Lemma 28 and the bound (72), we obtain

P(x+ S(n) = y, τx > n)

=
∑
z∈K

P(x+ S(m) = z, τx > m)P(y − S(n−m) = z, τ ′y > n−m)

≤ C(x)m−p/2−d/2
∑
z∈K

P(y − S(n−m) = z, τ ′y > n−m)

≤ C(x)n−p/2−d/2P(τ ′y > n−m).
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We want to show that

lim sup
n→∞

sup
y∈K(2)

P(τ ′y > n−m) ≤ g(ε) (78)

with some g(ε)→ 0 as ε→ 0. Using the same arguments as in (41), we have

P(τ ′y > n−m) ≤ P(τ bmy+ε
√
nx0

> n−m) + o(n−r),

and o(n−r) is uniform in y. Consequently, by the scaling property of the Brownian
motion,

sup
y∈K(2)

P(τ ′y > n−m) ≤ sup
z∈K:|z|≤A,dist(z,∂K)≤2ε

P(τ bmz+εx0
> 1/2) + o(n−r). (79)

Note that if dist(z, ∂K) ≤ 2ε then dist(z + εx0, ∂K) ≤ C∗ε.
The most standard way of bounding P(τ bmx > 1/2) is the use of the parabolic

boundary Harnack principle which gives

P(τ bmx > 1/2) ≤ Cu(x), (80)

see [47, page 336] and references there. If |x| is bounded and dist(x, ∂K) ≤ C∗ε,
then (78) is immediate from the definition of u.

But for convex cones there exists an elementary way of deriving (78) from (79),
which we present below.

If K is convex, then there exists a hyperplane H = H(z) such that dist(z +
εx0, H) ≤ 2C∗ε and K ∩H = ∅. If we set Tz := inf{t > 0 : z + B(t) ∈ H} then,
obviously,

P(τ bmz+εx0
> 1/2) ≤ P(Tz+εx0 > 1/2).

Due to the rotational invariance of the Brownian motion, the normal to H compo-
nent of B is a one-dimensional Brownian motion. As a result, we have

P(Tz+εx0 > 1/2) ≤ P
(

2C∗ε+ inf
t≤1/2

B1(t) > 0
)

uniformly in z satisfying dist(z, ∂K) ≤ 2ε. Applying finally the reflection principle,
we conclude from (79) that

P(τ ′y > n−m) ≤ Cε+ o(n−r)

uniformly in y satisfying dist(y, ∂K) ≤ 2ε
√
n.

Summarising,

lim
A→∞

lim
ε→0

lim sup
n→∞

nd/2+p/2 sup
y∈K(2)

P(x+ S(n) = y, τx > n) = 0. (81)

It remains to consider ’typical’ values of y, that is, y ∈ K(3). Set m = [ε3n]. We
start with the representation

P(x+ S(n) = y, τx > n)

=
∑
z∈K

P(x+ S(n−m) = z, τx > n−m)P(z + S(m) = y, τz > m). (82)
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Let K1(y) := {z ∈ K : |z − y| < ε
√
n}. Applying (75), we have∑

z∈K\K1(y)

P(x+ S(n−m) = z, τx > n−m)P(z + S(m) = y, τz > m)

≤
∑

z∈K\K1(y)

P(x+ S(n−m) = z, τx > n−m)P(z + S(m) = y)

≤
∑

z∈K\K1(y)

P(x+ S(n−m) = z, τx > n−m)Cn−d/2ε−3d/2 exp{−a/ε}

≤ CP(τx > n−m)n−d/2ε−3d/2 exp{−a/ε}

≤ CV (x)n−d/2−p/2ε−3d/2 exp{−a/ε} (83)

uniformly in y satisfying dist(y, ∂K) > 2ε
√
n.

If dist(y, ∂K) > 2ε
√
n and z ∈ K1(y), then dist(z, ∂K) > ε

√
n. Using (76), we

have ∑
z∈K1(y)

P(x+ S(n−m) = z, τx > n−m)P(z + S(m) = y, τz ≤ m)

≤
∑

z∈K1(y)

P(x+ S(n−m) = z, τx > n−m)Cn−d/2ε−3d/2 exp{−a/ε}

≤ CP(τx > n−m)n−d/2ε−3d/2 exp{−a/ε}

≤ CV (x)n−d/2−p/2ε−3d/2 exp{−a/ε} (84)

uniformly in y satisfying dist(y, ∂K) > 2ε
√
n.

Using the local limit theorem for unconditioned random walks, see Proposition
7.9 in Spitzer’s book [46], we have, uniformly in y,

Σ(y) :=
∑

z∈K1(y)

P(x+ S(n−m) = z, τx > n−m)P(z + S(m) = y)

=
∑

z∈K1(y)

P(x+ S(n−m) = z, τx > n−m)(2πnε3)−d/2 exp{−|y − z|2/2ε3n}

(85)

+O
(
n−d/2−p/2ε−3d/2e−a/ε

)
.

It follows from the integral limit theorem for {S(n)} conditioned to stay in K that

lim sup
n→∞

sup
y∈K(3)

∣∣∣∣ ∑
z∈K1(y)

P(x+ S(n−m) = z|τx > n−m) exp{−|y − z|2/2ε3n}

−H0

∫
˛̨̨
(1−ε3)1/2r− y√

n

˛̨̨
<ε

u(r)e−|r|
2/2e−|(1−ε

3)1/2r−y/
√
n|2/2ε3dr

∣∣∣∣ = 0

for every fixed ε. Set, for brevity,

I1(y, n, ε) :=
∫

˛̨̨
(1−ε3)1/2r− y√

n

˛̨̨
<ε

u(r)e−|r|
2/2e−|(1−ε

3)1/2r−y/
√
n|2/2ε3dr

and

I2(y, n, ε) :=
∫

˛̨̨
(1−ε3)1/2r− y√

n

˛̨̨
<ε

e−|(1−ε
3)1/2r−y/

√
n|2/2ε3dr.
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Since u(r)e−|r|
2/2 is uniform continuous, we have

lim sup
ε→0

sup
n≥1

sup
y∈K(3)

|I1(y, n, ε)− u(y/
√
n)e−|y|

2/2nI2(y, n, ε)|
I2(y, n, ε)

= 0.

Noting that

I2(n, y, ε) = (1− ε3)−d/2
∫
|r|<ε

e−|r|
2/2ε3dr

= (1− ε3)−d/2ε3d/2

∫
|r′|<ε−1/2

e−|r
′|2/2dr′

∼ ε3d/2

∫
Rd
e−|r

′|2/2dr′ = (2πε3)d/2,

we conclude that

lim sup
ε→0

sup
n≥1

sup
y∈K(3)

|I1(y, n, ε)− u(y/
√
n)e−|y|

2/2n(2πε3)d/2|
(2πε3)d/2

= 0.

Consequently,

lim sup
n→∞

sup
y∈K(3)

∣∣∣∣ ∑
z∈K1(y)

P(x+ S(n−m) = z|τx > n−m) exp{−|y − z|2/2ε3n}

−H0u(y/
√
n)e−|y|

2/2n(2πε3)d/2
∣∣∣∣ = o(ε3d/2).

From this relation and (85) we infer

lim
ε→0

lim sup
n→∞

sup
y∈K(3)

∣∣∣∣nd/2+p/2Σ(y)− κV (x)H0u(y/
√
n)e−|y|

2/2n

∣∣∣∣ = 0. (86)

Combining (82), (83), (84) and (86), we obtain

lim
ε→0

lim sup
n→∞

sup
y∈K(3)

∣∣∣∣np/2+d/2P (x+ S(n) = y, τx > n)

− κV (x)H0u

(
y√
n

)
e−|y|

2/2n

∣∣∣∣ = 0. (87)

6.3. Proof of Theorem 6. Set m = [(1− t)n] and write

P(x+ S(n) = y, τx > n)

=
∑
z∈K

P(x+ S(n−m) = z, τx > n−m)P(z + S(m) = y, τz > m)

=
∑
z∈K

P(x+ S(n−m) = z, τx > n−m)P(y + S′(m) = z, τ ′y > m), (88)

where S′ is distributed as −S.
We first note that, according to Theorem 1 and Lemma 27,

Σ1(A,n) :=
∑

z∈K:|z|>A
√
n

P(x+ S(n−m) = z, τx > n−m)P(y + S′(m) = z, τ ′y > m)

≤ C(x, y)n−p−d/2P(|S′(m)| > A
√
n− |y| |τ ′y > m).
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Therefore, in view of Theorem 3,

lim
A→∞

lim
n→∞

np+d/2Σ1(A,n) = 0. (89)

Applying (9) first to {S′(n)} and then to {S(n)}, we get

Σ2(A,n) :=
∑

z∈K:|z|≤A
√
n

P(x+ S(n−m) = z, τx > n−m)P(y + S′(m) = z, τ ′y > m)

= κ2 V (x)V ′(y)H2
0

(t(1− t))p/2+d/2
n−p−d

×
∑

z∈K:|z|≤A
√
n

u

(
z√
tn

)
u

(
z√

(1− t)n

)
exp

{
−|z|

2

2tn
− |z|2

2(1− t)n

}
+ o(Rn),

where

Rn = P(τx > n−m)m−p/2−d/2+(n(n−m))−p/2−d/2
∑

|z|≤A
√
n

u

(
z√
tn

)
exp

{
−|z|

2

2tn

}
.

Using Theorem 1 and noting that the sum is of order nd/2, we conclude that Rn ≤
Cn−p−d/2. Therefore,

Σ2(A,n) = κ2 V (x)V ′(y)H2
0

(t(1− t))p/2+d/2
n−p−d

×
∑

z∈K:|z|≤A
√
n

u

(
z√
tn

)
u

(
z√

(1− t)n

)
exp

{
−|z|

2

2tn
− |z|2

2(1− t)n

}
+ o(n−p−d/2).

Thus, it remains to compute the limiting value of the sum in the latter formula.
Using the homogeneity of u, we get

lim
n→∞

n−d/2
∑

z∈K:|z|≤A
√
n

u

(
z√
tn

)
u

(
z√

(1− t)n

)
exp

{
− |z|2

2t(1− t)n

}

=
1

(t(1− t))p/2

∫
w∈K:|w|≤A

u2(w)e−|w|
2/2t(1−t)dw. (90)

Consequently,

lim
A→∞

lim
n→∞

np+d/2Σ2(A,n)

= κ2 V (x)V ′(y)H2
0

(t(1− t))p+d/2

∫
K

u2(w)e−|w|
2/2t(1−t)dw. (91)

Combining (88), (89) and (91), we obtain

lim
n→∞

np+d/2P(x+ S(n) = y, τx > n)

= κ2 V (x)V ′(y)H2
0

(t(1− t))p+d/2

∫
K

u2(w)e−|w|
2/2t(1−t)dw. (92)

Substituting v = w/
√
t(1− t) we see that (10) holds with ρ = κ2

∫
K
u2(v)e−|v|

2/2dv.
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Repeating the derivation of (90), we obtain

lim
n→∞

np+d/2P
(
x+ S([tn])√

n
∈ D,x+ S(n) = y, τx > n

)
=

V (x)V ′(y)H2
0

(2π)d (t(1− t))p+d/2

∫
D

u2(w)e−|w|
2/2t(1−t)dw.

Combining this with (92), we get (11). Thus, the proof is finished.
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