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Abstract. Among the single-valued solution concepts studied in cooperative game theory and economics,

those which are also positive projections play an important role. The value (e.g., [1],[6],[13]), semivalues (e.g.,

[2],[7],[8],[23],[26]), and quasivalues (e.g., [1, Chapter12], [14]-[16], [27]) of a cooperative game are several

examples of solution concepts which are positive projections. These solution concepts are known to have

many important applications in economics. In many applications the specific positive projection discussed

is represented as an expectation of marginal contributions of agents to “random” coalitions. Usually these

representations are used to characterize positive projections obeying certain additional axioms. It is thus

of interest to study the representation theory of positive projections and its relation with some common

axioms. We study positive projections defined over certain spaces of nonatomic Lipschitz vector measure

games. To this end, we develop a general notion of “calculus” for such games, which in a manner extends the

notion of the Radon-Nykodim derivative for measures. We prove several representation results for positive

projections, which essentially state that the image of a game under the action of a positive projection can

be represented as an averaging of its derivative w.r.t. some vector measure. We then introduce a specific

calculus for the space CON generated by concave, monotonically nondecreasing, and Lipschitz continuous

functions of finitely many nonatomic probability measures. We study in detail the properties of the resulting

representations of positive projections on CON and especially those of values on CON . The latter results

are of great importance in various applications in economics.

1. Introduction

The study of payoffs in systems of interacting players is one of the most basic issues and interests of

economic theory. In many applications it is frequently necessary to study payoffs in games that involve a

large number of individually insignificant players. This setting is usually modeled by assuming that the

players form a nonatomic continuum, as first considered by Aumann and Shapley [1]. This model is usually

referred to as nonatomic games.
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Studying payoffs in the setting of nonatomic games has a long and rich history. Usually, the payoff

is required to fulfill certain properties, or axioms. Among the different kinds of payoffs studied in the

setting of nonatomic games we may find the value (e.g., [1],[6],[13]), semivalues (e.g., [2],[7],[8],[23],[26]),

and quasivalues (e.g., [1, Chapter12], [14]-[16], [27]).

The payoffs mentioned above have a certain common property - they are positive projections, namely

they obey the linearity, positivity and projection axioms: linearity that the payoff map is linear; positivity

means that the payoff map of a monotonic game is monotonic; and projection means that the payoff map

is an idempotent.

There has been a tremendous advancement in the study of payoffs in “differentiable” games. However,

the advancement almost stopped once the differentiability assumption was removed. The reason for that

halt was the lack of a general representation theory for positive projections; in every case mentioned above

the payoff could be represented as an aggregation of the game’s derivative - an adaptation of the marginal

contribution to the nonatomic setting. In fact, devising such a representation for a payoff is one of the

basic steps (and sometimes, goals) of its study.

The idea of finding such a representation has also proved to be useful in some examples of spaces of

“nondifferentiable” games (e.g., [12, 13]). Thus, it seems productive to initiate the study of representations

of positive projections in general. In this paper we make the first steps in this direction. Namely, we

first construct a theory of “differential calculus” for certain spaces of games which consist of the linear

combinations of Lipschitz continuous vector measure games. This “calculus” may be viewed as an extension

of the well–known integral and Radon–Nikodym derivative in measure theory, and it is quite different from

the traditional notion of the derivative of a game which is found in the literature. We obtain various

representation results for positive projections on spaces which admit such a calculus. That is, we prove

that any positive projections on such a space which admits a calculus may be written as the expectation

(w.r.t. some vector measure) of the game’s “derivative”. We then construct a calculus for the space

CON , generated by concave, monotonically nondecreasing, and Lipschitz continuous functions of finitely

many nonatomic probability measures, and study the properties of the resulting representations of positive

projections on this space, and those of values especially. The latter results have already played an important

role in settling the age–old problem of characterizing the value on spaces of market games with a finite–

dimensional core (see [9]-[10]).
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2. Definitions and Main Results

2.1. Basic definitions. Let (I, C) be a standard1 measurable space. I is the set of players, and C is the

σ-algebra of coalitions. A game is a real valued function v : C → R with v(∅) = 0. A game v is:

(1) finitely additive if v(S ∪ T ) = v(S) + v(T ) whenever S, T ∈ C are mutually disjoint;

(2) monotonic if v(S) ≤ v(T ) whenever S ⊆ T ; and,

(3) of bounded variation if it is the difference of two monotonic games.

If Q is a space of games we denote by Q+ its subset of monotonic games, and Q1 = {v ∈ Q+ : v(I) = 1}.

We denote the space of all games of bounded variation by BV . The variation of a game v ∈ BV is the

supremum of the variation of v over all increasing chains S0 ⊆ S1 ⊆ ... ⊆ Sm in C, or equivalently

‖v‖BV = inf
{
u(I) + w(I) : u,w ∈ BV +, v = u− w

}
.

‖·‖BV is a norm on BV (see [1]). Denote by FA the subspace of BV of finitely additive games, and by

NA its subspace of all non-atomic and countably additive measures. A game v is Lipschitz continuous iff

there are K > 0 and λ ∈ NA1 s.t. |v(S) − v(T )| ≤ Kλ(S4T ) for every S, T ∈ C. In this case we denote

v � λ. Denote by LIP the space of all Lipschitz continuous games. Obviously LIP ⊆ BV .

For x ∈ Rk let x = 1
k

k∑
i=1

xi. For any k ≥ 1 let

Zkλ =

{
µ ∈

(
NA1

)k
: µ� λ,

dµ

dλ
∈ L∞(λ)

}
.

Given a space of vector measure games2 Q, denote by Qλ its subspace consisting of games of the form f ◦µ

with µ ∈ Zkλ for some k ≥ 1.

Denote by Θ the group of measurable automorphisms of (I, C). Each θ ∈ Θ induces a linear mapping θ∗

of BV onto itself by (θ∗v)(S) = v(θS). A set of games Q ⊆ BV is symmetric if θ∗Q = Q for each θ ∈ Θ.

For λ ∈ NA1 denote by Θ(λ) ≤ Θ the group of λ-preserving automorphisms. Denote by B(I, C) the space

of real valued bounded measurable functions on (I, C), and by B1
+(I, C) its subset consisting of χ ∈ B(I, C)

with 0 ≤ χ ≤ 1.

Given a linear space of games Q, a projection Ψ : Q → FA is a linear map satisfying the projection

axiom, namely, Ψ(µ) = µ whenever3 µ ∈ FA ∩Q. If Q is symmetric then4 Ψ is a value iff it is linear and

satisfies the following list of axioms:

1Namely, (I, C) is isomorphic to ([0, 1],B), where B is the Borel σ-algebra on [0, 1].
2Namely, each v ∈ Q may be represented as v = f ◦ µ with f : Rk+ → R and µ ∈

(
NA1

)k
, for some k ≥ 1

3See [17].
4Following Aumann and Shapley [1].
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(1) efficiency- Ψ(v)(I) = v(I) for every v ∈ Q;

(2) symmetry- θ∗Ψ(v) = Ψ(θ∗v) for every θ ∈ Θ, v ∈ Q; and,

(3) positivity- v ∈ Q+ ⇒ Ψ(v) ∈ FA+.

2.2. Calculus on Spaces of Vector Measure Games. From now on we shall limit ourselves to massive

spaces of vector measure games Q ⊆ BV , namely we assume that NA ⊆ Q and that for every v ∈ Q there is

a vector measure
(
NA1

)k
and a function f : Rk+ −→ R with v = f ◦µ, respectively. A set Q̂ =

{
Q̂λ

}
λ∈NA1

is a game data of Q if each Q̂λ is a linear space generated by formal linear combinations (over R) of pairs

(f, µ) with µ ∈ Zkλ and f : Rk+ −→ R for some k ≥ 2 (these are the generators of Q̂λ), and the linear map

Q̂λ
σλ7→ Qλ given by

n∑
i=1

ai(fi, µ
i)

σλ7→
n∑
i=1

aifi ◦ µi is onto for each λ ∈ NA1. The map σλ induces a partial

order relation on Q̂λ by h ≤ h′ ⇔ σλ(h) ≤ σλ(h′).

For every k ≥ 2 denote by ∆k the (k − 1)-dimensional simplex in Rk, by ei ∈ Rk the 1 ≤ i ≤ k unit

vector, and let 1k =
k∑
i=1

ei. The diagonal of Rk is given by Dk = {t1k : t ∈ R}, and its perpendicular

sphere is given by5 Sk⊥ =
{

x
‖x‖2

: x ∈ Rk, x = 0
}

. For each µ ∈
(
NA1

)k
let AF (µ) denote the affine space

generated by the range of µ, R(µ). Denote by Λµ the set
(
R(µ) \Dk

)
t
(
[0, 1]1k + Sk⊥ ∩AF (µ)

)
endowed

with a topology Tµ that makes it homeomorphic to [0, 1]1k +
{
x ∈ (1k)

⊥ : ‖x‖2 ∈ [1, 2] ∪ {0}
}
∩AF (µ) via

the homeomorphism %µ that satisfies

%µ(x) = x1k +

(
1 +

‖x− x1k‖2
d2(∂R(µ), x1k)

)
x− x1k
‖x− x1k‖2

(2.1)

for x ∈ R(µ) \Dk, and %µ
∣∣
[0,1]1k+Sk⊥∩AF (µ)

= id.

A generalized direction space with perspective λ ∈ NA1 is a compact Hasudorff space Ωλ s.t. there is an

injective map B1
+(I, C)

iλ
↪→ Ωλ, and for every µ ∈ Zkλ there is a mapping πµ : Ωλ → Λµ s.t. the following

diagram is commutative:

B1
+(I, C) Ωλ

Λµ

.................................................................................................................................................................................... ............
iλ

....................................................................................................................... ........
....

µ

..........................................................................................................................
....
............

πµ

where µ(y) =
∫
I y(s)dµ(s).

A Radon-Nikodym calculus (a calculus for short) for Q w.r.t. a data set Q̂ is a set of 4-tuples C ={
Cλ = 〈Ωλ, ∂Qλ, ∂λ,

∫
λ〉
}
λ∈NA1 s.t. Ωλ is a generalized direction space with perspective λ, ∂Qλ is a linear

5The convention 0k
0

= 0k is used.
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subspace6 of B(Ωλ, L
∞(λ)) containing the constant functions, ∂λ : Q̂λ → ∂Qλ is a linear map and

∫
λ :

∂Qλ → Qλ is surjective linear map s.t. the following conditions hold for each λ ∈ NA1:

1.
∫
λ is order preserving;

2. for every constant function g,
(∫
λ(g)

)
(S) =

∫
S g(x)(s)dλ(s) for every x ∈ Ωλ;

3. ∂λ((f, µ))(x) = d(f◦µ)
dλ for every x ∈ Ωλ whenever f ◦ µ ∈ NA; and,

4. the following diagram is commutative:

Q̂λ ∂Qλ

Qλ

............................................................................................................................................................................................................. ............
∂λ

.......................................................................................................................... ........
....

σλ

......................................................................................................................
....
............

∫
λ

The space ∂Qλ is a space of derivatives w.r.t λ. Every game datum h ∈ Q̂λ is attached to a Radon-

Nikodym derivative by the operator ∂λ s.t. if h, h′ ∈ Q̂λ satisfy σλ(h) = σλ(h′) = v then
(∫
λ ◦∂λ

)
(h) =(∫

λ ◦∂λ
)

(h′) = v.

If Q and R are massive spaces with data sets Q̂ and R̂ respectively, then Q̂ is a subdata set of R̂, and

denote Q̂ � R̂, iff Q̂λ ⊆ R̂λ for each λ ∈ NA1 (which also implies Q ⊆ R). Given massive spaces Q and R

with data sets Q̂ � R̂ respectively, and a calculus C of R w.r.t. R̂, denote ∂RQ̂λ =
{
h ∈ ∂Rλ :

∫
λ(h) ∈ Qλ

}
,

and let
∫ Q̂
λ =

∫
λ

∣∣
∂RQ̂λ

, and ∂Q̂λ = ∂λ
∣∣
Q̂λ

. Denote CQ̂λ = 〈Ωλ, ∂R
Q̂
λ , ∂

Q̂
λ ,
∫ Q̂
λ 〉, and CQ̂ =

{
CQ̂λ

}
λ∈NA1

. The

calculus C of R w.r.t. R̂ is inductive iff CQ̂ is a calculus of Q w.r.t. Q̂ whenever7 Q̂ � R̂.

In many applications it is necessary to consider positive projections which are symmetric w.r.t. a nontrivial

subgroup of Θ. For this end we now introduce a notion of symmetry to our definitions. Suppose that for

some λ ∈ NA1 we have a group action of a subgroup Hλ ≤ Θ(λ) on Ωλ. For each x ∈ Ωλ and θ ∈ Hλ

denote θx for the action of θ on x. This group action induces group action of Hλ on B(Ωλ, L
∞(λ)) by

the linear transformations Aθ(g)(x) = g(θx) ◦ θ for each θ ∈ Hλ, g ∈ B(Ωλ, L
∞(λ)), and x ∈ Ωλ. Let C

be a calculus of Q w.r.t. a data set Q̂. Then θ∗
(

n∑
i=1

ai(fi, µ
i)

)
=

n∑
i=1

ai(fi, θ
∗µi) defines a linear group

action of Hλ on Q̂λ. We say that Cλ is symmetric w.r.t. Hλ iff for every θ ∈ Hλ we have πθ∗µ = πµ ◦ θ,

∂λ ◦ θ∗ = Aθ ◦ ∂λ, and
∫
λ ◦Aθ = θ∗ ◦

∫
λ. The calculus C is symmetric w.r.t. {Hλ ≤ Θ(λ)}λ∈NA1 iff Cλ is

symmetric w.r.t. Hλ for each λ ∈ NA1. The calculus C is symmetric iff it is symmetric w.r.t. {Θ(λ)}λ∈NA1 .

2.3. Representations of Positive Projections on Massive Spaces of Vector Measure Games. A

massive space of vector measure games Q is Radon-Nikodym differentiable (differentiable for short) iff it

attains a calculus C w.r.t. some data set Q̂. A positive projection Ψ : Q → FA on a differentiable space

6B(X,Y ) stands for the space of bounded measurable functions from X to Y .
7This is equivalent to the property that the range of ∂Q̂λ is ∂RQ̂λ for every massive subspace Q ⊆ R with Q̂ � R̂.
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Q with a calculus C w.r.t. a data set Q̂ is representable w.r.t. C iff there is a set of finitely additive vector

measures {Pλ}λ∈NA1 , the representing measures of Ψ w.r.t. C, s.t. for every λ ∈ NA1 the vector measure

Pλ is a Borel measure on Ωλ with values in L
(
L∞(λ), L2(λ)

)
of bounded semi-variation8, for every coalition

S ∈ C the vector measure PSλ = 〈Pλ, χS〉 is positive, regular, and countably additive of bounded variation,

and for every g ∈ C(Xλ, L
∞(λ)) ∩ ∂Qλ we have for every S ∈ C

Ψ

(∫
λ
(g)

)
(S) =

∫
S

(∫
Ωλ

g(x)dPλ(x)

)
(s)dλ(s) =

∫
Ωλ

g(x)dPSλ (x).(2.2)

If no confusion regarding the calculus C may result we shall refer to each Pλ as the representing measure

of Ψ w.r.t. λ.

Given representing measures {Pλ}λ∈NA1 of Ψ w.r.t. the calculus C, and S ∈ C, define the cover of the repre-

sentation w.r.t. S (or the cover w.r.t. S for short) as the set of linear functionals Γ̂S =
{

Γ̂Sλ : B(Ωλ, L
∞(λ)) −→ R

}
λ∈NA1

s.t. for each λ ∈ NA1

Γ̂Sλ(g) =

∫
Ωλ

g(x)dPSλ (x).(2.3)

The cover w.r.t. S will prove useful in the study of symmetric positive projections.

2.4. Main Results. We first establish a connection between the existence of a calculus and representations

of positive projections on massive spaces of Lipschitz vector measure games.

Theorem 2.1. Let Q be a differentiable massive space of Lipschitz vector measure games. If C is a calculus

for Q w.r.t. a data set Q̂ of Q, then every positive projection on Q is representable w.r.t. C.

We shall also prove a result which strengthens Theorem 2.1 and Equation (2.2):

Theorem 2.2. Let Q be a differentiable massive space of Lipschitz vector measure games, and let C be a

calculus for Q w.r.t. a data set Q̂ of Q. If {Pη}η∈NA are representing measures of a positive projection

Ψ : Q −→ FA w.r.t. C and g ∈ ∂Qλ is 〈1, P Iλ 〉-a.e. continuous on Ωλ then for every S ∈ C

Ψ(

∫
λ
(g))(S) =

∫
Ωλ

g(x)dPSλ (x).(2.4)

Our third theorem is a symmetric version of the previous theorems:

Theorem 2.3. If Ψ in Theorem 2.1 is symmetric w.r.t. an Abelian subgroup G ≤ Θ(λ) and C is a calculus

s.t. Cλ is symmetric w.r.t. G, then the representing vector measure Pλ may be chosen to satisfy

Γ̂τSλ = Γ̂Sλ ◦Aτ(2.5)

8i.e. |Pλ|(Xλ) <∞. See Appendix A for details.
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for every τ ∈ G.

While these results establish a connection between the existence of a calculus and representability of

positive projections, they do not prove, however, the existence of representable positive projections. In

section 4 we turn to proving the existence of an inductive symmetric calculus for the space CON , whose

subspaces are of great importance in many economic applications.

For k ≥ 2 let CONk
+ be the positive cone of Lipschitz continuous, monotonically nondecreasing, and

concave functions f : Rk+ → R with f(0k) = 0, and let CONk be the linear space of differences of members

of CONk
+. Let CON be the linear space of games of the form f ◦ µ with f ∈ CONk and µ ∈

(
NA1

)k
for

some k ≥ 2. We choose canonically ĈON λ to be the linear space generated by formal linear combinations

of pairs (f, µ) with f ∈ CONk
+ and µ ∈ Zkλ for some k ≥ 2. The definition of ĈON follows. For k ≥ 2

denote by HMk
+ the positive cone generated by the functions fC(x) = min

c∈C
c · x with C ⊆ ∆k compact and

strictly convex, and by HMk the space of differences of members of HMk
+. The space HM and its data

set ĤM will be defined in a similar manner to CON and ĈON , respectively.

Theorem 2.4. ĈON admits an inductive symmetric calculus

D = {Dλ = 〈Xλ, ∂CON λ, ∂λ,Φλ〉}λ∈NA .

Combining that with Theorems 2.1-2.2 we obtain

Corollary 2.5. If Q ⊆ CON is a massive space with a data set Q̂ � ĈON , and Ψ : Q→ FA is a positive

projection then Ψ is representable w.r.t. DQ̂. Furthermore, if {Pη}η∈NA1 is a set of representing measures

of Ψ w.r.t. Q̂ and g ∈ ∂CON Q̂
λ is 〈1, P Iλ 〉-a.e. continuous on Xλ then for every S ∈ C

Ψ(Φλ(g))(S) =

∫
Xλ

g(x)dPSλ (x).(2.6)

We shall finally turn our efforts to study representations of positive projections, especially values9, on

symmetric massive subspaces Q ⊆ CON w.r.t. DQ̂, where Q̂ � ĈON . This is done in section 5. We shall

prove various results concerning the geometric and measure theoretic symmetries of such representations.

Our main result in this section is:

Theorem 2.6. Suppose Ψ is a value on a symmetric massive space Q with data set Q̂ satisfying ĤM �

Q̂ � ĈON . Then there are representing measures {Pη}η∈NA1 of Ψ w.r.t. DQ̂ s.t. for every coalition S ∈ C,

9I.e. linear, efficient, symmetric, and positive maps.
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and every g ∈ ∂CON Q̂
λ

Ψ(Φλ(g))(S) =

∫
Xλ

g(x)dPSλ (x).(2.7)

3. Representations of Positive Projections

Throughout this section we assume that Q ⊆ BV is a massive10 space of Lipschitz vector measure games,

and that Ψ : Q→ FA is a positive projection.

3.1. Proof of Theorem 2.1.

Remark 3.1. If f ∈ B(Ωλ, L
∞(λ)) then for every x ∈ Ωλ we have f(x) ∈ L∞(λ) and thus we write ‖f(x)‖∞

for the L∞(λ) norm of f(x). We further denote ‖f‖∞ = sup
x∈Ωλ

‖f(x)‖∞. By our assumption ‖f‖∞ < ∞

and this norm induces the uniform convergence topology on B(Ωλ, L
∞(λ)).

Lemma 3.2. For every v ∈ Q with v � λ we have Ψ(v)� λ and dΨ(v)
dλ ∈ L2(λ).

Proof. As v + aλ ∈ Q+ for any large enough a > 0 and as Ψ is a projection, it is sufficient to prove the

lemma for the case v ∈ Q+. Choose Kv > 0 s.t. w = Kvλ− v ∈ Q+. Therefore, as v is monotonic and Ψ

is a positive projection we obtain (in BV )

0 ≤ Ψ(v) ≤ Kvλ.(3.1)

Therefore Ψ(v)� λ and

0 ≤ dΨ(v)

dλ
≤ Kv,(3.2)

where the inequalities above hold in L1(λ). �

The operator γλ : ∂Qλ → L2(λ) given by

γλ(g) =
dΨ(

∫
λ(g))

dλ
,(3.3)

is well defined. As the maps
∫
λ and Ψ are linear and positive then so is γλ. By definition the constant

functions are contained in ∂Qλ, thus ∂Qλ is, by definition, a massive11 subspace of B(Xλ, L
∞(λ)) as every

g ∈ ∂Qλ is bounded by ‖g‖∞. Therefore, by Kantorovich’s theorem (Theorem A.1, in the Appendix) γλ

can be extended to a positive linear operator Γλ : B(Ωλ, L
∞(λ))→ L2(λ).

10Namely, NA ⊆ Q.
11See Appendix A for the definition.
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If we restrict our attention to the subspace C(Xλ, L
∞(λ)) of B(Xλ, L

∞(λ)), then by the Dinculeanu-

Singer theorem (Theorem A.4 in the Appendix) we obtain12 that there exists a unique positive, finitely

additive vector measure Pλ of bounded semi-variation defined on the Borel sets of Ωλ with values in

L(L∞(λ), L2(λ)), s.t. for every g ∈ C(Ωλ, L
∞(λ))

Γλ(g) =

∫
Ωλ

g(x)dPλ(x).(3.4)

By Remark A.5 (in the Appendix) the positivity of the operator Γλ yields the positivity of the vector

measure Pλ. By property (i) of the Dinculeanu-Singer theorem (Theorem A.4 in the Appendix) for every

S ∈ C the vector measure PSλ = 〈Pλ, χS〉 is a positive, regular, and countably additive vector measure

on the Borel subsets of Ωλ with values in L(L∞(λ),R)) ∼= (L∞(λ))∗, and by definition it has a bounded

variation. Now, if g ∈ C(Xλ, L
∞(λ)) ∩ ∂Qλ and S ∈ C then

Ψ

(∫
λ
(g)

)
(S) =

∫
S
γλ(g)(s)dλ(s) =(3.5) ∫

S

(∫
Ωλ

g(x)dPλ(x)

)
(s)dλ(s) =

∫
Ωλ

g(x)dPSλ (x),(3.6)

where the first equality in line (3.5) follows from the definition of γλ, the second equality in that line

follows from Equation (3.4), and the equality in line (3.6) follows from property (iii) of the Dinculeanu-

Singer theorem (Theorem A.4 in the Appendix). This proves Equation (2.2) and completes the proof of

Theorem 2.1.

3.2. Proof of Theorem 2.2. Suppose g ∈ ∂Qλ is 〈1, P Iλ 〉-a.e. continuous, i.e., there is A ⊆ Ωλ with

〈1, P Iλ 〉(A) = 0 s.t. g is continuous on Ωλ \ A. Notice first that the positivity of the vector measure Pλ

entails that 〈1, PSλ 〉(A) = 0 for every S ∈ C. There is a l.s.c. function g− and an u.s.c. function g+ on Ωλ

with g− ≤ g ≤ g+, and the inequalities hold as equalities on Ωλ \A. By Proposition A.9 (in the Appendix)

there are bounded sequences
(
gn−
)∞
n=1

,
(
gn+
)∞
n=1
⊆ C(Ωλ, L

∞(λ)), s.t. gn− ≤ g−, and g+ ≤ gn+ for every

n ≥ 1, and gn−, g
n
+ −→n→∞ g pointwise on Ωλ \A (w.r.t. the L∞(λ) norm). By the positivity of Γλ and Pλ we

have

Γλ(gn−) ≤ Γλ(g) ≤ Γλ(gn+)⇒

∀S ∈ C,
∫

Ωλ

gn−(x)dPSλ ≤
∫
S

Γλ(g)(s)dλ(s) ≤
∫

Ωλ

gn+(x)dPSλ .(3.7)

12Notice that in this case every positive linear operator A : C(Ωλ, L
∞(λ)) → L2(λ) is bounded; indeed, for every f ∈

C(Ωλ, L
∞(λ)) and every x ∈ Ωλ we have −‖f‖∞ ≤ f(x) ≤ ‖f‖∞, thus −‖f‖∞ ≤ f ≤ ‖f‖∞. Now A(f) is a member of

the Banach lattice L2(λ). By the positivity of A we obtain |A(f)| ≤ ‖f‖∞ |A(1)| in the Banach lattice L2(λ) and therefore
‖A(f)‖2 ≤ ‖A(1)‖2 ‖f‖∞. Hence A is bounded.
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As
∫
S Γλ(g)(s)dλ(s) = Ψ

(∫
λ(g)

)
(S) we obtain

Ψ

(∫
λ
(g)

)
(S) =

∫
Ωλ

g(x)dPSλ (x),(3.8)

where the equality in line (3.8) follows by applying the bounded convergence theorem (Theorem A.3 in the

Appendix) to the inequality in line (3.7), and Theorem 2.2 follows.

Remark 3.3. Notice that we have in fact also proved that if g ∈ ∂Qλ is lower semi-continuous then for

every S ∈ C

Ψ

(∫
λ
(g)

)
(S) ≥

∫
Ωλ

g(x)dPSλ (x).(3.9)

If g is upper semi-continuous the inverse inequality holds.

3.3. Proof of Theorem 2.3. Denote by F the set consisting of the extensions of the operator γλ to a

positive linear operator from B(Ωλ, L
∞(λ)) to L2(λ). Notice that every φ ∈ F is bounded with norm13

1, thus F is norm bounded. It is also a closed subset, in the operator weak∗ topology14, of the space Oλ
of bounded linear operators from B(Ωλ, L

∞(λ)) to L2(λ). Hence, by Theorem A.6 (in the Appendix) we

deduce that F is also compact in this topology. Furthermore F is convex.

Define a group action of G on Oλ by

∀τ ∈ G,φ ∈ Oλ, h ∈ B(Ωλ, L
∞(λ)), (τ, φ)(h) = φ(Aτ (h)) ◦ τ−1(3.10)

This group action maps F to itself. Indeed for every τ ∈ G and φ ∈ F , (τ, φ) is a positive linear operator

from B(Ωλ, L
∞(λ)) to L2(λ), and for every g ∈ ∂Qλ we have

(τ, φ)(g) = φ(Aτ (g)) ◦ τ−1 = γλ(Aτ (g)) ◦ τ−1 =
dΨ
(∫
λ(Aτ (g))

)
dλ

◦ τ−1 =(3.11)

dΨ
(
τ∗
∫
λ(g)

)
dλ

◦ τ−1 =
dΨ
(∫
λ(g)

)
dλ

= γλ(g),(3.12)

where the last equality in line (3.11) follows as, by assumption,
∫
λ(Aτ (g)) = τ∗

∫
λ(g) and the first equality

in line (3.12) follows from the symmetry axiom. Hence G(F) ⊆ F . Notice now that for τ ∈ G the map

φ 7→ (τ, φ) defined on Oλ is continuous. Indeed, if φβ −→
β∈B

φ is a net in Oλ converging to φ ∈ Oλ in the

weak∗ operator topology, then for every h ∈ B(Ωλ, L
∞(λ)) and χ ∈ L2(λ) we have 〈(φβ − φ)(h), χ〉 −→

β∈B
0,

13Indeed, as in footnote 11 on page 12 we have ‖φ(g)‖2 ≤ ‖φ(1)‖2 ‖g‖∞. Since φ(1) = γλ(1) = 1 then ‖φ‖ = 1.
14Namely, the weakest topology on Oλ s.t. the maps

φ
g7→ φ(g), φ ∈ Oλ, g ∈ B(Ωλ, L

∞(λ))

are continuous for every g ∈ B(Ωλ, L
∞(λ)).
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hence

〈((τ, φ)− (τ, φβ))(h), χ〉 = 〈(φ− φβ)(Aτ (h)) ◦ τ−1, χ〉 =(3.13)

〈(φ− φβ)(Aτ (h)), χ ◦ τ〉 −→
β∈B

0.

Now, the action of G induces a commuting family of continuous linear mappings on Oλ which maps its

compact and convex subset F to itself. Hence by Markov-Kakutani fixed point theorem (Theorem A.8 in

the Appendix) there is some φ0 ∈ F with (τ, φ0) = φ0 for every τ ∈ G. Take Γλ = φ0 in the proof of

Theorem 2.1 and let Pλ be the representing measure of the restriction of this operator to C(Ωλ, L
∞(λ))

(given by Equation (3.4)). For every g ∈ C(Ωλ, L
∞(λ)), every S ∈ C, and every τ ∈ G we thus have∫

Ωλ

g(x)dP τSλ (x) =

∫
Ωλ

Aτ (g)(x)dPSλ (x).(3.14)

For h ∈ B(Ωλ, L
∞(λ)) take a uniformly bounded sequence (gm)∞m=1 ⊆ C(Ωλ, L

∞(λ)) converging 〈1, P Iλ 〉-

a.e. to h. By applying the bounded convergence theorem (Theorem A.3 in the Appendix) to Equation

(3.14) we obtain for every τ ∈ G and S ∈ C as m→∞∫
Ωλ

h(x)dP τSλ (x) =

∫
Ωλ

Aτ (h)(x)dPSλ (x).

Hence

Γ̂τSλ = Γ̂Sλ ◦Aτ ,

which proves the theorem.

4. An Inductive and Symmetric Calculus for CON

4.1. Superdifferentials of Lipschitz Continuous Concave Functions. Given a function f ∈ CONk
+,

a point x ∈ Rk++, and y ∈ Rk, the directional derivative df(x, y) of f at x in the direction y is given by

df(x, y) = lim
ε↘0

f(x+ εy)− f(x)

ε
.(4.1)

The limit exists as f is concave. The limit in line (4.1) thus also exists for every f ∈ CONk.

For f ∈ CONk
+ and x ∈ Rk++, p ∈ Rk is a supergradient of f at x iff

∀y ∈ Rk+, f(y)− f(x) ≤ p · (y − x).(4.2)
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The set of all supergradients of f at x is denoted by ∂f(x). It is well known (e.g. [22, Theorem 23.4]) that

for every x ∈ Rk++ and y ∈ Rk

df(x, y) = min
p∈∂f(x)

p · y.(4.3)

For every f ∈ CONk
+ and x ∈ Rk++ the function df(x, ·) is concave. The set of supergradients of df(x, ·) at

y ∈ Rk is

[∂f(x)]y =

{
p′ ∈ ∂f(x) : p′ · y = min

p∈∂f(x)
p · y

}
.(4.4)

Thus the directional derivative of df(x, ·) at y ∈ Rk in the direction z ∈ Rk given by

df(x, y, z) = lim
ε↘0

df(x, y + εz)− df(x, y)

ε
,(4.5)

exists, and

df(x, y, z) = min
p∈[∂f(x)]y

p · z.(4.6)

Remark 4.1. Let χ : I → Rk. For every x ∈ Rk++ and y ∈ Rk denote by df(x, y, χ) the function from I to

R given by

∀s ∈ I, df(x, y, χ)(s) = df(x, y, χ(s)).(4.7)

Remark 4.2. Let W be a subspace of Rk with W ∩ Rk++ 6= ∅. For every function f ∈ CONk denote

fW = f
∣∣
Rk+∩W

. Then fW is Lipschitz continuous. By Rademacher’s theorem fW is Fréchet-differentiable

a.e. in Rk+ ∩W w.r.t. the Lebesgue measure on W , i.e. for a.e. x ∈ Rk+ ∩W there is (a unique) ∇fW (x)

with dfW (x, y) = ∇fW (x) · y for every direction y ∈ W . We denote the set of differentiability points of

fW in Rk+ ∩W by DfW . Furthermore, if x ∈ Rk+ ∩W and Lx(v) is the half line through x in direction15

v ∈ Sk−1 ∩W in W (i.e. Lx(v) = {x+ tv : t ∈ R+}) then for a.e. direction v ∈ Sk−1 ∩W (w.r.t. the Haar

measure on the sphere Sk−1∩W ) the set {t ∈ R+ : x+ tv ∈ (DfW )c} is of Lebesgue measure 0 (in R). This

follows immediately from the fact that W ∩ Rk+ =
⋃

v∈Sk−1∩W

(
Lx(v) ∩Rk+

)
and Lx(v) ∩ Lx(v′) = {x} for

v 6= v′ ∈ Sk−1, as the set
(
Rk+ ∩W

)
\DfW is of Lebesgue measure 0 (in W ).

4.2. The Direction Space Xλ and its Properties. Let NA∗ =
∞⋃
k=1

(
NA1

)k
and for λ ∈ NA1 let

Z∗λ =
∞⋃
k=1

Zkλ . For every µ ∈ NA∗ with µ ∈
(
NA1

)m
denote k(µ) = m. Recall that for every µ ∈ NA∗ we

denoted by Λµ the set
(
R(µ) \Dk(µ)

)
t
(

[0, 1]1k(µ) + Sk(µ)
⊥ ∩ (AF (µ)

)
endowed with a topology Tµ which

15Where Sk−1 is the Euclidean unit sphere in Rk.
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makes it homeomorphic to16

[0, 1]1k(µ) +
{
x ∈ (1k(µ))

⊥ : ‖x‖2 ∈ [1, 2] ∪ {0}
}
∩AF (µ)

with its Euclidean topology. Let

Zλ =
∏
µ∈Z∗λ

Λµ(4.8)

be endowed with the product topology. Every z ∈ Zλ has the form

z = (z(µ))µ∈Z∗λ ,

where for every µ ∈ Z∗λ we have z(µ) ∈ Λµ.

Let Yλ be the topological space with the underlying space B1
+(I, C) and the weakest topology s.t. the

map T : Yλ → Zλ, given by T (y) = (µ(y)))µ∈Z∗λ
, is continuous. For matters of consistency with future

notation, we let y(µ) = µ(y).

Choose the closure Xλ of T (Yλ) in Zλ to be the direction space with perspective λ. Every vector x ∈ Xλ

is therefore of the form (x(µ))µ∈Z∗λ
with x(µ) ∈ Λµ for every µ ∈ Z∗λ.

Denote

X⊥λ =
{
x ∈ Xλ : ∀µ ∈ Z∗λ, x(µ) ∈ [0, 1]× Sk(µ)

⊥

}
.(4.9)

As T (t) ∈ X⊥λ for every t ∈ [0, 1] we have X⊥λ 6= ∅. In fact, this set is much more vast; for m ≥ 1

and x ∈ Rm denote17 Υm(x) = x−x1m
‖x−x1m‖2

. If (yβ)β∈B ⊆ Yλ is a net with T (yβ) −→
β∈B

x ∈ Xλ then for

any t ∈ [0, 1) we can construct a net (ztβ,τ = t + τyβ)(β,τ)∈B×(0,1−t) s.t. for every µ ∈ Z∗λ, T (z(β,τ))(µ)

converges to t1k(µ) + Υk(µ)(x(µ)) ∈ [0, 1]1k(µ) + Sk(µ)
⊥ . Hence T (z(β,τ)) converges to a nontrivial element in

X⊥λ whenever x(µ) 6∈ Dk(µ) for some µ ∈ Z∗λ. Obviously the spaces Xλ and X⊥λ are compact and Hausdorff.

4.3. Calculus for CON . For every f ∈ CONk
+, µ ∈ Zkλ , and ξ ∈ L∞(λ) define g(f, µ, ξ) : Xλ → L∞(λ)

as follows: If dim(AF (µ)) = 1, let

gλ(f, µ, ξ)(x) = df

(
x(µ) + (1− sign

(
x(µ)

)
)1k,

dµ

dλ

)
(4.10)

16Consult p. 4 for further details.
17The convention 0m

0
= 0m is used.
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for every x ∈ Xλ. Otherwise, let

gλ(f, µ, ξ)(x) =


ξ, x(µ) ∈ Dk

df
(
x(µ), dµdλ

)
, x(µ) ∈ R(µ) \Dk,

df
(
x(µ)1k,Υ

k(x(µ)) + (1− sign
(
x(µ)

)
)1k,

dµ
dλ

)
, otherwise.

(4.11)

Obviously gλ(f, µ, ξ) is well defined.

Remark 4.3. Notice that gλ(f, µ, ξ)(x) ∈ L∞(λ) for every x ∈ Xλ. Indeed, let K ⊆ Rk be a compact set

s.t. dµdλ (s) ∈ K λ-a.e., and let M be the Lipschitz constant of f (w.r.t. the `k1 norm). Then for every x ∈ Xλ

we have

‖gλ(f, µ, ξ)(x)‖∞ ≤ max

{
M

k∑
i=1

∥∥∥∥dµidλ

∥∥∥∥
∞
, ‖ξ‖∞

}
.

Remark 4.4. Notice that if f ∈ CONk
+, µ ∈ Zkλ , and ξ ∈ L∞(λ) then:

(1) If dim(AF (µ)) = 1 then for every y ∈ Y with µ(y) > 0

gλ (f, µ, ξ) (T (y)) = df

(
µ(y),

dµ

dλ

)
.(4.12)

(2) If dim(AF (µ)) ≥ 2 then for every y ∈ Y with µ(y) 6∈ Dk

gλ (f, µ, ξ) (T (y)) = df

(
µ(y),

dµ

dλ

)
.(4.13)

Let ∂CON λ be the linear space spanned by the functions gλ(f, µ, ξ) with f ∈ CONk
+, µ ∈ Zkλ , and

ξ ∈ L∞(λ). For every
n∑
i=1

aigλ(fi, µ
i, ξi) ∈ CON λ define

Φλ

(
n∑
i=1

aigλ(fi, µ
i, ξi)

)
=

n∑
i=1

aifi ◦ µi.(4.14)

Remark 4.5. We shall denote gλ(f, µ) = gλ

(
f, µ, df

(
1k,

dµ
dλ

))
. As one may assume, we shall choose

∂CON λ as our space of “derivatives” w.r.t. λ. One may wonder why not consider the space generated be

the functions gλ(f, µ)? It will turn out in section 5 that our choice yields several desirable properties for

the representing measures {Pλ}λ∈NA1 .

In the following, for every f1 : Rk → R and f2 : R` → R define f1⊕ f2 : Rk ×R` → R by (f1⊕ f2)(x, y) =

f1(x) + f2(y).

Lemma 4.6. The map Φλ is well defined and linear.
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Proof. It is sufficient to prove that the map is well defined. Let h =
n∑
i=1

aigλ(fi, µ
i, ξi) ∈ ∂CON λ, with

fi ∈ CONki
+ , µi ∈ Zkiλ , ξi ∈ L∞(λ), and ai ∈ R for every 1 ≤ i ≤ n. Let k =

n∑
i=1

ki, F =
n⊕
i=1

aifi,

and µ = (µ1, ..., µn). Then F ∈ CONk, µ ∈ Zkλ , and hence F ◦ µ ∈ CON . It is sufficient to prove that

F ◦ µ is determined by the values of h alone on T (Yλ). Recall that FAF (µ) denotes the restriction of F to

AF (µ) ∩ Rk+, and that DFAF (µ)
denotes the set of x ∈ Rk+ ∩AF (µ) where FAF (µ) is Fréchet differentiable.

Suppose y ∈ Yλ satisfies µ(y) ∈ DFAF (µ)
and µi(y) 6∈ Dki whenever dim(AF (µi)) ≥ 2. Then

F (µ(y)) = FAF (µ)(µ(y)) =

∫ 1

0
dFAF (µ)(sµ(y), µ(y))ds =(4.15) ∫ 1

0
∇FAF (µ)(sµ(y)) · µ(y)ds =

∫ 1

0

(∫
I
∇FAF (µ)(sµ(y)) · dµ

dλ
(t)y(t)dλ(t)

)
ds =(4.16) ∫ 1

0

(∫
I
dFAF (µ)

(
sµ(y),

dµ

dλ
(t)

)
y(t)dλ(t)

)
ds =

∫ 1

0

∫
I

(
n∑
i=1

dfi

(
sµi(y),

dµi

dλ
(t)

))
y(t)dλ(t)ds =(4.17)

∫
I

(
n∑
i=1

∫ 1

0
gλ(fi, µ

i, ξi)(T (sy))(t)ds

)
y(t)dλ(t) =(4.18)

∫
I

(∫
{
s∈[0,1]:sµ(y)∈DFAF (µ)

} h(T (sy))ds

)
(t)y(t)dλ(t),

where the last equalities in lines (4.15) and (4.16) above follow as µ(y) ∈ DFAF (µ)
, the equality in line

(4.17) follows by combining Fubini’s theorem, the definition of gλ(fi, µ
i, ξi), Remark 4.4, and the choice of

y ∈ Yλ, and the equality in line (4.18) follows as the set
{
s ∈ [0, 1] : sµ(y) ∈ DFAF (µ)

}
is, by the choice of

y, of measure 1. We have thus proved that h determines the values of the F ◦ µ on the set

E(µ, F ) ={
y ∈ Yλ : µ(y) ∈ DFAF (µ)

}
∩
{
y ∈ Yλ : ∀1 ≤ i ≤ n, dim(AF (µi)) ≥ 2→ µi(y) 6∈ Dki

}
.

The set E(µ, F ) is dense18 in Yλ (w.r.t. the norm topology) and F ◦µ is continuous on Yλ (w.r.t. the norm

topology). Thus F ◦µ is determined on Yλ by the values of h and the choices19 of µ and F . Notice that for

different choices of F, F ′, µ, µ′ the set E = E(µ, F ) ∩ E(µ′, F ′) is dense20 in Yλ (w.r.t. the norm topology)

18By Remark 4.2 the set
{
x ∈ R(µ) : x ∈ DFAF (µ)

}
is dense in R(µ) and therefore

{
y ∈ Yλ : µ(y) ∈ DFAF (µ)

}
is dense in Yλ

(w.r.t. the norm topology). Indeed, the set
{
y ∈ Yλ : ∀1 ≤ i ≤ k, dim(AF (µi)) ≥ 2→ µi(y) 6∈ Dki

}
is the intersection of Yλ

with the complement of a union of finitely many proper subspaces (as dim(AF (µi) ≥ 2 for at least one 1 ≤ i ≤ n) of B(I, C),
hence it is an open dense set in Yλ (w.r.t. the norm topology), which proves that E(µ, F ) is dense.
19Namely, the choices of µ1, ..., µn, f1, ..., fn, and a1, ..., an.
20That follows using Remark 4.2 and footnote 18 above.
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and for every y ∈ E we have F ◦ µ(y) = F ′ ◦ µ′(y) by combining Equations (4.15)-(4.18). Therefore F ◦ µ

is determined by the values of h alone. �

Lemma 4.7. The map Φλ is order preserving.

Proof. Let h =
n∑
i=1

aigλ(fi, µ
i, ξi) with fi ∈ CONki , µi ∈ Zkiλ , ξi ∈ L∞(λ), and ai ∈ R for every 1 ≤ i ≤ n.

Let k =
n∑
i=1

ki, F =
n⊕
i=1

fi, and µ = (µ1, ..., µn). Then F ∈ CONk and µ ∈ Zkλ .

Recall that FAF (µ) denotes the restriction of F to AF (µ) ∩ Rk+ and that DFAF (µ)
denotes the set of

x ∈ Rk+ ∩ AF (µ) where FAF (µ) is Fréchet differentiable. By Remark 4.2 if x ∈ AF (µ) ∩ Rk+ then for a.e.

x′ ∈ AF (µ) ∩ Rk+ with x′ 6= x we have z ∈ DFAF (µ)
for a.e. z ∈ [x, x′]. Thus, for a.e. x′ ∈ AF (µ) ∩ Rk+ it

holds that for a.e. z ∈ [x, x′] we have for every y ∈ AF (µ).

dFAF (µ)(z, y) = ∇FAF (µ)(z) · y.(4.19)

Choose y, y′ ∈ Yλ with y ≤ y′ and ‖µ(y′ − y)‖2 > 0. For every ` ≥ 1 there is21 some y′` ∈ Yλ s.t. the

following properties hold:

i. µ(y) 6= µ(y′`), and y′` − y ≥ −
1
` ;

ii. ‖µ(y′`)− µ(y′)‖2 ≤
1
` ;

iii. Equation (4.19) holds for a.e. z ∈ [µ(y), µ(y′`)]; and

iv. µi(y′`) 6∈ Dki whenever dim(AF (µi)) ≥ 2.

Thus

F (µ(y′`))− F (µ(y)) = FAF (µ)(µ(y′`))− FAF (µ)(µ(y)) =(4.20) ∫ 1

0
dFAF (µ)(µ(y) + tµ(y′` − y), µ(y′` − y))dt =(4.21) ∫ 1

0
∇FAF (µ)(µ(y) + tµ(y′` − y)) · µ(y′` − y)dt =∫ 1

0

(∫
I
∇FAF (µ)(µ(y + t(y′` − y))) · dµ

dλ
(s)(y′` − y)(s)dλ(s)

)
dt =(4.22) ∫ 1

0

(∫
I
dFAF (µ)

(
µ(y + t(y′` − y)),

dµ

dλ
(s)

)
(y′` − y)(s)dλ(s)

)
dt =

21Choose some 0 < ε` < min
{

1

2
√
k`
, 1

4
√
k
‖µ(y′)− µ(y)‖2

}
and consider the set E` = µ (y′) + ε`R(µ) ⊆ AF (µ). Let x = µ(y)

and let A(x) be the set of points w ∈ AF (µ) s.t. 1. Equation (4.19) hold for a.e. z ∈ [x,w], and 2. wi 6∈ Dki whenever

dim(AF (µi)) ≥ 2 (where w = (w1, ..., wn) ∈
n∏
i=1

Rki). Then A(x) is dense in AF (µ). As E` has a nonempty relative interior

in AF (µ), there is a point x′ = µ(y′) + ε`µ(z`) ∈ E` ∩ A(x) with z` ∈ Yλ and µ(z`) 6= 0k. Set y′` = y′+ε`z`
1+ε`

. By the choice of

ε` and y′` we have 0 ≤ y′` ≤ 1, y′` − y ≥ −2ε` ≥ − 1
`
, ‖µ(y′`)− µ(y′))‖2 ≤

1
`
, and µ(y) 6= µ(y′`). As (1 + ε`)µ(y′`) = x′ ∈ A(x)

then µi(y′`) 6∈ Dki whenever dim(AF (µi)) ≥ 2 and Equation (4.19) holds for a.e. z ∈ [µ(y), µ(y′`)], and we are done.
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0

∫
I

(
n∑
i=1

dfi

(
µi(y + t(y′` − y)),

dµi

dλ
(s)

)
(y′` − y)(s)

)
dλ(s)dt =(4.23)

∫ 1

0

∫
I

(
n∑
i=1

gλ(fi, µ
i, ξi)(T ((1− t)y + ty′`))(s)(y

′
` − y)(s)

)
dλ(s)dt =

∫ 1

0

∫
I

(
h(T ((1− t)y + ty′`))(s)(y

′
` − y)(s)

)
dλ(s)dt ≥(4.24)

−1

`

∫ 1

0

∫
I
h(T ((1− t)y + ty′`))(s)dλ(s)dt,(4.25)

where the equalities in lines (4.21)-(4.22) follow as Equation (4.19) holds for a.e. z ∈ [µ(y), µ(y′`)], the

equality in line (4.23) follows by combining the definition of gλ(f, µi, ξi) with Remark 4.4 and the fact

that the interval [µi(y), µ(y′`)] intersects Dki in at most one point whenever dim(AF (µi)) ≥ 2, and the

inequality in line (4.24) follows by combining the fact that h ≥ 0 with property (i) of y′` above. As F is

continuous and the sequence
(∫ 1

0

∫
I h(T (y + t(y′` − y)))(s)dλ(s)dt

)∞
`=1

is bounded, the lemma follows by

taking the limit `→∞ in Equations (4.20)-(4.25). �

Remark 4.8. Notice that for every f ∈ HMk
+, every µ ∈ Zkλ , and every ξ ∈ L∞(λ) we have gλ(f, µ, ξ) ∈

C(Xλ, L
∞(λ)), the space continuous functions from Xλ to L∞(λ) with its strong topology (see Appendix

A for details). If dim(AF (µ)) = 1 then this immediately follows. If dim(AF (µ)) ≥ 2, then gλ(f, µ, ξ) =df
(
1k, x(µ), dµdλ

)
, x(µ) 6∈ Dk

ξ, x(µ) ∈ Dk.

As (y 7→ df(1k, y, z))z∈K is a family of equicontinuous function on Λµ\Dk

for every compact K ⊆ Rk+, Dk ∩ Λµ is a connected component of Λµ, and x 7→ x(µ) is continuous on Xλ

it follows that gλ(f, µ, ξ) ∈ C(Xλ, L
∞(λ)).

4.4. Proof of Theorem 2.4. For each λ ∈ NA1, Xλ is a compact Hausdorff space. By its construction,

for every µ ∈ Zkλ the diagram

B1
+(I, C) Xλ

Λµ

.................................................................................................................................................................................... ............
T

....................................................................................................................... ........
....

µ

..........................................................................................................................
....
............

πµ

is commutative, hence Xλ is a generalized direction space with perspective λ. Notice that for θ ∈ Θ(λ),

(θx)(µ) = x(θ∗µ) defines a group action of Θ(λ) on Xλ s.t. πθ∗µ = πµ ◦ θ.
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By construction Φλ is surjective and by Lemma 4.7 it is order preseving. Define ∂λ : Q̂λ → ∂CON λ by

∂λ(
n∑
i=1

ai(fi, µ
i)) =

n∑
i=1

aigλ(fi, µ
i). This linear map is well defined and as

Φλ ◦ ∂λ

(
n∑
i=1

ai(fi, µ
i)

)
=

n∑
i=1

aifi ◦ µi,(4.26)

it follows that Φλ ◦ ∂λ = σλ. If θ ∈ Θ(λ), f ∈ CONk
+, µ ∈ Zkλ , and ξ ∈ L∞(λ) then Aθ(gλ(f, µ, ξ)) =

gλ(f, θ∗µ, θ∗ξ), hence

Φλ(Aθ(gλ(f, µ, ξ))) = θ∗(f ◦ µ),(4.27)

and

∂λ(θ∗(f, µ)) = Aθ(gλ(f, µ)).(4.28)

As ∂λ(f, µ) = d(f◦µ)
dλ whenever f ◦ µ ∈ NA, and Φλ(ξ)(S) =

∫
S ξ(s)dλ(s) for every ξ ∈ L∞(λ) and S ∈ C

we have thus proved that D is a symmetric calculus for CON w.r.t. ĈON .

Suppose that Q ⊆ CON is a massive subspace with data set Q̂ � ĈON . In order to prove that DQ̂ is

a calculus for Q w.r.t. Q̂ it is sufficient to verify that the range of ∂Q̂λ is contained in ∂CON Q̂
λ for each

λ ∈ NA1 (see footnote 7 on p. 6). Indeed, if (f, µ) ∈ Q̂λ then Φλ(gλ(f, µ)) = f ◦ µ ∈ Qλ, and hence

∂λ((f, µ)) ∈ ∂CON Q̂
λ . Thus D is also inductive and the theorem is proved.

5. Properties of the Representing Measures for CON

Throughout this section we assume that Q ⊆ CON is a massive subspace with Q̂ � ĈON .

5.1. General Properties. We begin with the following observations:

Remark 5.1. Notice that if ĤM ⊆ Q̂ then for every µ ∈ Zkλ with dim(AF (µ)) ≥ 2 we have 〈1, Pλ〉(
{
x ∈ Xλ : x(µ) ∈ Dk

}
) =

0. Indeed, choose f ∈ HMk
+, and consider g0 = ∂(f, µ, 0), and g1 = ∂(f, µ, 1). Then g0, g1 ∈ ∂Qλ ∩

C(Xλ, L
∞(λ)). As Φλ(g0) = Φλ(g1) we obtain Ψλ(g0) = Ψλ(g1). As g0 = g1 outside of the set{

x ∈ Xλ : x(µ) ∈ Dk
}

we thus obtain from Remark 4.8 and Equation (2.2)

〈1, Pλ〉(
{
x ∈ Xλ : x(µ) ∈ Dk

}
) = 〈0, Pλ〉(

{
x ∈ Xλ : x(µ) ∈ Dk

}
) = 0.

Remark 5.2. Notice that for every E ∈ B(Xλ) and S ∈ C we have

〈χS , Pλ〉(E) = 〈1, Pλ〉(E)χS .
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Indeed, for every S, T ∈ C with λ(T ∩ S) = 0 we have

0 ≤ 〈χS , P Tλ 〉(E) ≤ 〈χS , P Tλ 〉(Xλ) =

∫
χS(s)χT (s)dλ(s) = 0⇒(5.1)

〈χS , Pλ〉(E) = 〈χS , Pλ〉(E)χS ,

where the second inequality in line (5.1) above follows from the positivity of Pλ and following equality

follows as Ψ is a projection. Hence

〈1, Pλ〉(E)χS = 〈χS , Pλ〉(E)χS + 〈χSc , Pλ〉(E)χS = 〈χS , Pλ〉(E).

Remark 5.3. For every φ ∈ L∞(λ) and E ∈ B(Xλ) we have

〈φ, Pλ〉(E) = 〈1, Pλ〉(E)φ.

Indeed, on the one hand the simple functions are dense in L∞(λ) (e.g. [11, Theorem 6.8]). Thus there is a

sequence (φn)∞n=1 of simple functions with lim
n→∞

‖φ− φn‖∞ = 0. By Remark 5.2 we deduce that for every

n ≥ 1 we have 〈φn, Pλ〉(E) = 〈1, Pλ〉(E)φn. On the other hand, the vector measure P Tλ has a bounded

variation for every T ∈ C, thus lim
n→∞

〈φn, P Tλ 〉(E) = 〈φ, P Tλ 〉(E). Hence we obtain

∀T ∈ C, 〈φ, P Tλ 〉(E) = lim
n→∞

〈φn, P Tλ 〉(E) = lim
n→∞

∫
φn(s)χT (s)〈1, Pλ〉(E)(s)dλ(s) =∫

φ(s)χT (s)〈1, Pλ〉(E)(s)dλ(s)⇒ 〈φ, Pλ〉(E) = 〈1, Pλ〉(E)φ.

5.2. Properties of Pλ when Ψ is a Value. Recall that for S ∈ C, the cover of Ψ w.r.t. S is the set{
Γ̂Sλ : B(Xλ, L

∞(λ))→ R
}
λ∈NA1

of linear functionals given by

Γ̂Sλ(g) =

∫
Xλ

g(x)dPSλ (x)(5.2)

for every g ∈ B(Xλ, L
∞(λ)). Recall that for every g ∈ B(Xλ, L

∞(λ), every θ ∈ Θ(λ), and every x ∈ Xλ

we defined Aθ(g)(x) = g(θx) ◦ θ, where θx is given by (θx)(µ) = x(θ∗µ) for every µ ∈ Z∗λ. Every Aθ is a

bounded linear map from B(Xλ, L
∞(λ)) to itself.

The following lemma shows that we can choose the representing measures {Pλ}λ∈NA1 in a manner which

entails a residue of the efficiency axiom.

Lemma 5.4. Let θ ∈ Θ(λ) be strongly λ-mixing and let Pλ be the representing vector measure of Ψ w.r.t.

λ satisfying Equation (2.5) w.r.t. θ. Then for every g ∈ ∂CON Q̂
λ we have

Γ̂Iλ(g) = Φλ(g)(I).(5.3)
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Proof. It is sufficient to prove the lemma for g = gλ(f, µ, ξ) with f ∈ CONk
+ and µ ∈ Zkλ for some k ≥ 2,

and ξ ∈ L∞(λ). By Remark 3.3 and the efficiency axiom we have

f(1k) = ΓIλ(g) ≥ Γ̂Iλ(g).(5.4)

We thus need to prove the inverse inequality. For every Borel set E ⊆ Xλ and φ ∈ L∞(λ) with∫
I φ(s)dλ(s) = 1 we have
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〈φ ◦ θn, P Iλ 〉(E) =

∫
I
φ(θn(s))〈1, Pλ〉(E)(s)dλ(s) −→

n→∞
(5.5) (∫

I
φ(s)dλ(s)

)(∫
I
〈1, Pλ〉(E)(s)dλ(s)

)
= 〈1, P Iλ 〉(E),

where the equality in the display (5.5) follows by combining Remark 5.3 with the definition of P Iλ , and the

limit follows as θ is strongly mixing. Hence, by Lemma A.7 (in the Appendix), for every 1 ≤ i ≤ k the

sequence of measures
(
νin = 〈dµidλ ◦ θ

n − 1, P Iλ 〉
)∞
n=1

converges to 0 in variation22. Also notice that by the

concavity and monotonicity of f we may write

g(x) ≥ f(1k) +

k∑
i=1

gi(x)

(
dµi
dλ
− 1

)
(5.6)

for every x ∈ Xλ, where gi : Xλ → R+ is bounded for every 1 ≤ i ≤ k.

Therefore, for every n ≥ 1

Γ̂Iλ(g) = Γ̂θ
nI
λ (g) =

∫
Xλ

Aθn(g)(x)dP Iλ (x) ≥(5.7)

f(1k) +
k∑
i=1

∫
Xλ

gi(θ
nx)d

〈(
dµi
dλ
◦ θn − 1

)
, P Iλ

〉
(x) =

f(1k) +
k∑
i=1

∫
Xλ

gi(θ
nx)dνin(x)(5.8)

where the second equality in line (5.7) follows by Theorem 2.3 and the next inequality follows by combining

Equation (5.6) with the positivity of the vector measure P Iλ . The lemma now follows by taking n→∞ in

Equation (5.8), as for every 1 ≤ i ≤ k the function gi is bounded on Xλ and νin −→n→∞ 0 in variation. �

We refer to any {Pλ}λ∈NA1 which obeys Equation 5.3 as a canonical representation measures of Ψ w.r.t.

DQ̂. We have thus proved that for every value Ψ on a massive symmetric space Q with Q̂ � ĈON there

exists a canonical representation of Ψ w.r.t. DQ̂. We are now ready to prove the main theorem of this

section.

Proof of Theorem 2.6. Let {Pη}η∈NA1 be canonical representation measures of Ψ w.r.t. DQ̂. To prove

the theorem, it is sufficient to consider h = gλ(f, µ, ξ) ∈ ∂CON Q̂
λ . As f ∈ CONk

+ for some k ≥ 2, then by

Remark 3.3 we have in this case for every S ∈ C

Ψ(Φλ(h))(S) ≥
∫
Xλ

h(x)dPSλ (x).(5.9)

22As we also have |νin|(E) ≤
(∥∥∥ dµidλ ∥∥∥∞ + 1

)
〈1, P Iλ 〉(E) for every Borel set E ⊆ Xλ.
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Thus for every S ∈ C

f(1k) = Ψ(Φλ(h))(I) = Ψ(Φλ(h))(S) + Ψ(Φλ(h))(Sc) ≥(5.10) ∫
Xλ

h(x)dPSλ (x) +

∫
Xλ

h(x)dPS
c

λ (x) =

∫
Xλ

h(x)dP Iλ (x) = f(1k),(5.11)

where the first equality in line (5.10) follows from the efficiency axiom and the last equality in line (5.10)

follows as Pλ is a canonical representation of Ψ w.r.t. λ. By combining Equations (5.9)-(5.11) we obtain

Ψ(Φλ(h))(S) =

∫
Xλ

h(x)dPSλ (x),(5.12)

and the theorem follows. �

A representing measure Pλ is diagonal iff it is supported on23 X⊥λ . Assuming that Pλ is diagonal may

seem to be restrictive, but in many important cases this assumption is valid. Our two final results will prove

that if the derivative space ∂CON Q̂
λ is rich enough then, essentially, a canonical and diagonal representing

measure is invariant under reflections and assigns a measure zero to hyperplanes. These fundamental

symmetries where shown to be important in many applications (e.g. [9],[12]-[13], [19]).

For any a, b ∈ ∆k and t ∈ (0, 1] let htab ∈ CONk
+ be given by htab(x) = min(a · x, b · x, t). Denote by

wab ∈ Sk⊥ the vector with direction b− a.

Lemma 5.5. Let η ∈ Zkλ with dim(AF (η)) ≥ 2. Suppose that ĤM � Q̂, that for every t ∈ (0, 1] the set

Atη =
{
wab : a, b ∈ ∆k, (htab, η) ∈ Q̂λ

}
has Haar measure 1 in Sk⊥, and that 0k ∈ Atη. Furthermore, suppose

that the representing measures {Pλ}λ∈NA1 are canonical and diagonal. Then for every t ∈ (0, 1] it holds

that for every E ∈ B(Sk⊥) we have for λ-a.e. s ∈ I with dη
dλ(s) 6∈ Dk

〈1, Pλ〉({x ∈ Xλ : x(η) ∈ [0, t]1k + E})(s) = 〈1, Pλ〉({x ∈ Xλ : x(η) ∈ [0, t]1k − E)})(s).

Proof. Notice first that for a, b ∈ ∆k, t ∈ (0, 1], and z, y ∈ Rk we have

dhtab(s1k, z + (1− sign(s))1k, y) =


a · y, wab · z > 0,

b · y, wab · z < 0,

min(a · y, b · y), wab · z = 0,

(5.13)

if s < t, and

dhtab(s1k, z, y) = 0(5.14)

23For the definition of X⊥λ , consult Equation (4.9).
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if s > t. By Remark 5.1 we have24 〈1, Pλ〉(
{
x : x(η) ∈ Dk

}
) = 0. It also follows from [17] that Ψ(htab ◦ η) =

t
2(a + b) · η. Furthermore, denote by F tη the subset of Atη s.t. w ∈ F tη ⇔ 〈1, P Iλ 〉({x : w · x(η) = 0}) =

0. Then F tη is of full Haar measure, and for every S ∈ C and for every w ∈ F tη it also holds that

〈1, PSλ 〉({x : w · x(η) = 0}) = 0. By combining Theorem 2.6, Equations (5.13)-(5.14), and the fact that, by

assumption, the vector measure Pλ is diagonal, we obtain that if wab ∈ F tη satisfies wab 6= 0k, then for every

S ∈ C

t

2
(a+ b) · η(S) = Ψ(htab ◦ η)(S) =

∫
Xλ

∂(htab, η)(x)dPSλ (x) =(5.15)

a · 〈dη
dλ
, PSλ 〉(

{
x ∈ X⊥λ : x(η) ≤ t, wab · x(η) > 0

}
)+

b · 〈dη
dλ
, PSλ 〉(

{
x ∈ X⊥λ : x(η) ≤ t, wab · x(η) < 0

}
).

On the other hand, if wab = 0k then a = b and htab(x) = min(a · x, t), hence for every S ∈ C

ta · η(S) = a · 〈dη
dλ
, PSλ 〉(

{
x ∈ X⊥λ : x(µ) ∈ [0, t]1k + Sk⊥

}
)(5.16)

Hence, by passing25 to the Radon-Nikodym derivatives in Equations (5.15)-(5.16), we obtain (the equalities

are in L2(λ))

t

2
(a+ b) · dη

dλ
= a · 〈dη

dλ
, Pλ〉(

{
x ∈ X⊥λ : x(η) ≤ t, wab · x(η) ≥ 0

}
)+(5.17)

b · 〈dη
dλ
, Pλ〉(

{
x ∈ X⊥λ : x(η) ≤ t, wab · x(η) ≤ 0

}
),

whenever wab ∈ F tη satisfies wab 6= 0k, and

ta · dη
dλ

= a · 〈dη
dλ
, Pλ〉(

{
x ∈ X⊥λ : x(µ) ∈ [0, t]1k + Sk⊥

}
)⇒

〈1, Pλ〉(
{
x ∈ X⊥λ : x(µ) ∈ [0, t]1k + Sk⊥

}
) = t.(5.18)

By rearranging Equation (5.17) and recalling Equation (5.18) we obtain ,whenever t ∈ T and wab ∈ F tη,

wab · 〈
dη

dλ
, Pλ〉(

{
x ∈ X⊥λ : x(η) ≤ t, wab · x(η) > 0

}
) =(5.19)

wab · 〈
dη

dλ
, Pλ〉(

{
x ∈ X⊥λ : x(η) ≤ t, wab · x(η) < 0

}
)⇒

wab ·
dη

dλ
〈1, Pλ〉(

{
x ∈ X⊥λ : x(η) ≤ t, wab · x(η) > 0

}
) =(5.20)

wab ·
dη

dλ
〈1, Pλ〉(

{
x ∈ X⊥λ : x(η) ≤ t, wab · x(η) < 0

}
),

24As dim(AF (η)) ≥ 2
25Which is possible, as the choice of the full measure set on which Equation (5.13) holds was independent of S ∈ C
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where Equation (5.20) follows from Equation (5.19) by Remark 5.3. Denote

S0 =

{
s ∈ I :

dη

dλ
(s) ∈ Dk

}
.

Notice that for a.e. w ∈ Sk⊥ \ {0k} we have

λ

({
s ∈ Sc0 : w · dη

dλ
= 0

})
= 0.

Thus, by Equation (5.20) for a.e. w ∈ Sk⊥ \ {0k} we have for λ-a.e. s ∈ Sc0

〈1, Pλ〉(
{
x ∈ X⊥λ : x(η) ≤ t, w · x(η) ≥ 0

}
)(s) =

〈1, Pλ〉(
{
x ∈ X⊥λ : x(η) ≤ t, w · x(η) ≤ 0

}
)(s),

and therefore, for every S ∈ C with S ⊆ Sc0

〈1, PSλ 〉(
{
x ∈ X⊥λ : x(η) ≤ t, , w · x(η) ≥ 0

}
) =(5.21)

〈1, PSλ 〉(
{
x ∈ X⊥λ : x(η) ≤ t, w · x(η) ≤ 0

}
).

By [24, Lemma 2.3], Equation (5.21) implies that for every S ∈ C with S ⊆ Sc0 and every Borel set E ⊆ Sk⊥
we have

〈1, PSλ 〉(
{
x ∈ X⊥λ : x(η) ∈ [0, t]1k + E

}
) = 〈1, PSλ 〉(

{
x ∈ X⊥λ : x(η) ∈ [0, t]1k − E

}
).(5.22)

Passing to the Radon-Nikodym derivative in Equation (5.22) proves the lemma. �

Corollary 5.6. Let η ∈ Zkλ with dim(AF (η)) ≥ 2 and t ∈ (0, 1]. Suppose that ĤM � Q̂, that Atη ={
wab : a, b ∈ ∆k, (htab, η) ∈ Q̂λ

}
has Haar measure 1 in Sk⊥, and that 0k ∈ Atη. Further suppose that the

representing measure {Pλ}λ∈NA1 is canonical and diagonal.

For every non-empty J ⊆ {1, ..., k} with |J | ≥ 2 let

F tJ(η) =
{
x ∈ X⊥λ : x(η) ≤ t, x(η) 6= 0k,∀i, j ∈ J x(η)i = x(η)j

}
,

and

SJ(η) =

{
s ∈ I : ∀i, j ∈ J dµi

dλ
(s) =

dµj
dλ

(s)

}
.

Then for λ-a.e. s ∈ (SJ(η))c

〈1, Pλ〉(F tJ(η))(s) = 0.(5.23)
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Proof. For every i 6= j ∈ J denote htij = hteiej (x). As {Pλ}λ∈NA1 is a canonical and diagonal representation

of Ψ we have

t = htij(1k) = Ψ(htij ◦ η)(I) =

∫
X⊥λ

dhtij

(
1k, x(η),

dη

dλ

)
dP Iλ (x) =

〈dηi
dλ

, P Iλ 〉(
{
x ∈ X⊥λ : x(µ) ≤ t, x(η)i < x(η)j

}
)+

〈dηj
dλ

, P Iλ 〉(
{
x ∈ X⊥λ : x(µ) ≤ t, x(η)i > x(η)j

}
) + 〈min

{
dηi
dλ

,
dηj
dλ

}
, P Iλ 〉(F tij(η)).

By applying Lemma 5.5 to the set
{
x ∈ X⊥λ : x(µ) ≤ t, x(η)i < x(η)j

}
we obtain

t = 〈1
2

d(ηi + ηj)

dλ
, P Iλ 〉(

{
x ∈ X⊥λ : x(µ) ≤ t, x(η)i 6= x(η)j

}
)+

〈min

{
dηi
dλ

,
dηj
dλ

}
, P Iλ 〉(F tij(η)).

As 〈1, Pλ〉({x : x(η) = 0k}) = 0 and by Equation (5.16) 〈1, Pλ〉(
{
x ∈ X⊥λ : [0, t]1k + Sk⊥

}
) = t we obtain

〈1
2

d(ηi + ηj)

dλ
, P Iλ 〉(F tij(η)) = 〈min

{
dηi
dλ

,
dηj
dλ

}
, P Iλ 〉(F tij(η))⇒

〈
∣∣∣∣d(ηi − ηj)

dλ

∣∣∣∣ , P Iλ 〉(F tij(η)) = 0.

By Remark 5.3 we deduce that for λ-a.e. s ∈ I∣∣∣∣d(ηi − ηj)
dλ

(s)

∣∣∣∣ 〈1, Pλ〉(F tij(η))(s) = 0,

hence for λ-a.e. s ∈ (Sij(η))c we have

〈1, Pλ〉(F tij(η))(s) = 0⇒(5.24)

〈χ(Sij(η))c , Pλ〉(F tij(η)) = 0(5.25)

where Equation (5.25) follows from Equation (5.24) by Remark 5.3 and the equality in line (5.25) holds in

L2(λ).

Fix i ∈ J . Then (in L2(λ))

0 ≤ 〈χ(SJ (η))c , Pλ〉
(
F tJ(η)

)
=
∑
j∈J\i

〈χ(Sij(η))c , Pλ〉
(
F tJ(η)

)
≤(5.26)

∑
j∈J\i

〈χ(Sij(η))c , Pλ〉
(
F tij(η)

)
= 0,
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where the first inequality in line (5.26) follows from the positivity of the vector measure Pλ and the last

inequality in that line follows by combining the positivity of the vector measure Pλ with the fact that

F tJ(η) ⊆ F tij(η) for every i 6= j ∈ J . The lemma now immediately follows by Remark 5.3. �
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Appendix A. Rudiments of Functional Analysis

Here we give some functional analysis background which is needed to understand the proof of some of

our results. For further reading, one is advised to use the references.

A.1. Extension of Linear Operators. A Banach lattice Z is a Banach space which is also a lattice,

whose lattice structure is commensurable with its Banach space topology, i.e., if 0 ≤ x ≤ y then ‖x‖ ≤ ‖y‖.

A Banach lattice is a K-space if it is order complete, i.e., if every nonempty A ⊆ Z which is bounded from

above (below) has a least (greatest) upper (lower) bound.

Example: For every 1 < p ≤ ∞, every standard measure space (I, C), and every λ ∈ NA1 the space Lp(λ)

is a K-space. In fact, if X is a Banach lattice then X∗ with its positive cone

X∗+ = {x∗ ∈ X∗ : ∀x ∈ X+, x
∗(x) ≥ 0}(A.1)

is a K-space (see [3, p. 162]), and hence every reflexive Banach lattice is a K-space.

A subspace V of a Banach lattice Z is massive if for every z ∈ Z there is a v ∈ V s.t. z ≤ v. We will be

interested in extending positive linear operators from a subspace V ≤ Z into a Banach lattice Y to positive

linear operators from Z to Y . The following result solves this problem in the case that V is massive:

Theorem A.1 (Kantorovich). [18, Theorem 3.1.7] Let Z be a Banach lattice and Y a K-space. Then if

V is a massive subspace of Z and T : V → Y is a positive linear operator then T can be extended to a

positive linear operator T : Z → Y .

A.2. Vector Measures. A function F from an algebra F of subsets of a set Ω to a Banach space Z is

a finitely additive vector measure or simply a vector measure iff whenever E1, E2 ∈ F are disjoint then

F (E1 ∪ E2) = F (E1) + F (E2). If, in addition, F (
⋃∞
n=1En) =

∑∞
n=1 F (En) in the norm topology of Z for

all sequences (En)∞n=1 of pairwise disjoint members of F s.t.
⋃∞
n=1En ∈ F then F is termed a countably

additive vector measure or simply countably additive.

The strong variation of F is the function ‖F‖ : F→ R defined by

‖F‖ (E) = sup
π

∑
A∈π
‖F (A)‖ ,
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where the supremum is taken over all finite partitions of E into disjoint members of F. One may easily check

that ‖F‖ is a monotonic finitely additive measure. A measure F is of bounded variation if ‖F‖ (Ω) < ∞.

Furthermore,

Proposition A.2. [4, Proposition I.1.9] A vector measure of bounded variation is countably additive iff

its variation is countably additive.

A.3. Integration w.r.t. a Measure with Values in L(Y,Z). Let F be a vector measure on an algebra

F of subsets of Ω with values in the Banach space L(Y,Z) of bounded linear operators from Y to Z, where

Y, Z are Banach lattices. Denote by SΩ,F(Y ) the set of simple functions on Ω w.r.t. F taking values in Y ,

i.e. the set of functions of the form
∑n

i=1 aiχEi where Ei ∈ F and ai ∈ Y for every 1 ≤ i ≤ n. The (Bartle)

integral of such a simple f =
∑n

i=1 aiχEi w.r.t. F is given by∫
fdF =

n∑
i=1

F (Ei)(ai).(A.2)

A measurable function f : Ω → Y is strongly F -integrable, or integrable for short, if for every increasing

sequence (fn)∞n=1 of simple functions fn : Ω → Y with fn −→
n→∞

f pointwise ‖F‖-a.e. the limit ν(E) =

lim
n→∞

∫
fnχEdF exists in the strong topology of Z for every E ∈ F and is independent of the choice of

(fn)∞n=1. In that case we denote ∫
E
fdF = lim

n→∞

∫
E
fndF.(A.3)

The following theorem is a version of the well-known Bartle bounded convergence theorem:

Theorem A.3 (Bartle bounded convergence theorem). Let (fn)∞n=1 be a uniformly bounded sequence of

integrable functions fn : Ω → Y , and suppose that F above is countably additive of bounded variation. If

(fn) converges ‖F‖-a.e. to f then f is integrable and

lim
n→∞

∫
fndF =

∫
fdF

in the strong topology of Z.

Proof. By Egorof-Lusin’s theorem [5, p. 520] for every ε > 0 there is a measurable subset E = E(ε) ⊆ Ω

s.t. ‖F (Ec)‖ < ε and (fn) converges uniformly to f on E. Let C > 0 be s.t. sup
x∈Ω
‖fn(x)‖ ≤ C for every

n ∈ N. Note that ∥∥∥∥∫
E
fndF

∥∥∥∥ ≤ C ‖F‖ (E)
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for every E ∈ F, where ‖F‖ denotes the variation of F . Let N ∈ N be s.t. for every m,n > N and every

x ∈ E, ‖fm(x)− fn(x)‖ < ε. Then for every m,n > N we have∥∥∥∥∫ fmdF −
∫
fndF

∥∥∥∥ ≤ ∥∥∥∥∫
E

(fm − fn)dF

∥∥∥∥+

∥∥∥∥∫
Ec

(fm − fn)dF

∥∥∥∥ <
ε ‖F‖ (E) + 2C ‖F‖ (Ec).

As F is countably additive of finite variation we have ‖F‖ (E(ε)c)→ 0 as ε→ 0+, hence

lim
m,n→∞

∥∥∥∥∫ fmdF −
∫
fndF

∥∥∥∥ = 0,(A.4)

proving that the integrals form a Cauchy sequence in Z and hence convergence in its strong topology. As

for every sequence of increasing functions (gn)∞n=1 converging pointwise to f and ε > 0 there is measurable

subset E and N ∈ N s.t. |fn(x)− gn(x)| < ε for every x ∈ E and n ≥ N , and as ‖gn(x)‖ ≤ ‖f(x)‖ ≤ C for

every x, we deduce in a similar manner that lim
n→∞

∫
fndF = lim

n→∞

∫
gndF , hence f is integrable, and the

rest of the theorem now easily follows. �

A.4. Representation of Bounded Linear Operators. Let Z, Y be Banach spaces, Ω a compact and

Hausdorff space. If G is a measure on the Borel σ-algebra BΩ of Ω taking values in L(Y, Z∗∗) then for

every z∗ ∈ Z∗ we define the measure Gz∗ : BΩ → Y ∗ by Gz∗(A)(y) = 〈G(A)(y), z∗〉 where 〈·, ·〉 is the usual

pairing. The semi-variation |G|(E) of G on E ∈ BΩ is given by |G|(E) = sup{‖Gz∗‖ (E) : ||z∗|| ≤ 1}.

Let T : C(Ω, Y ) → Z be a bounded linear operator. The following theorem, due to Dinculeanu and

Singer, is a fortification of the Riesz representation theorem:

Theorem A.4 (Dinculeanu-Singer). [4, p. 182] There exists a unique finitely additive measure G of

bounded semi-variation (i.e. |G|(Ω) <∞), defined on BΩ with values in L(Y, Z∗∗) s.t. T (f) =
∫

Ω f(ω)dG(ω)

and,

(i) Gz∗ is a regular and countably additive Borel measure for each z∗ ∈ Z∗;

(ii) the mapping z∗ 7→ Gz∗ of Z∗ into26 C(Ω, Y )∗ is weak∗ to weak∗ continuous;

(iii) 〈T (f), z∗〉 =
∫

Ω f(ω)dGz∗(ω), for every f ∈ C(Ω, Y ) and every z∗ ∈ Z∗.

Remark A.5. Notice that if T is positive then its representing measure G is also positive. Indeed, for every

E ∈ BΩ choose a sequence of continuous functions (fn)∞n=1 ⊆ C(Ω, [0, 1]) with fn −→
n→∞

χE pointwise. Thus

26This space isomorphic to the space of regular countably additive vector measures of bounded variation on BΩ taking values
in Y ∗.
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for every two positive elements y ∈ Y and z∗ ∈ Z∗ we have

〈G(E)(y), z∗〉 = lim
n→∞

∫
Ω

(fn(ω)y) dGz∗(ω) = lim
n→∞

〈T (fny), z∗〉 ≥ 0,(A.5)

where the first equality in Line (A.5) follows by combining property (i) of Theorem A.4 with the bounded

convergence theorem A.3 and the last inequality in that line follows from the positivity of T . Hence

G(E) : Y → Z∗∗ is a positive operator for every E ∈ BΩ.

A.5. Weak∗ operator topology. One useful notion in functional analysis is of the weak∗ topology. Here

we introduce the operator weak∗ topology. Let X,Y be Banach spaces and consider L(X,Y ∗). The operator

weak∗ topology on L(X,Y ∗) is the weakest topology in which for every x ∈ X the map U
x7→ U(x) from

L(X,Y ∗) to Y ∗ is continuous w.r.t. to the weak∗ topology of Y ∗. The following is a generalization of the

Banach-Alaoglu theorem

Theorem A.6. The unit ball of L(X,Y ∗) in the strong topology is compact in the operator weak∗ topology.

Proof. Denote the unit ball of L(X,Y ∗) by B. Consider the map ψ : L(X,Y ∗)→
∏
x∈X

Y ∗ given by

ψ(U) = (U(x))x∈X .(A.6)

This map is continuous w.r.t. to the operator weak∗ topology. It is injective as if ψ(U) = ψ(U ′) we have

U(x) = U ′(x) for every x ∈ X. Thus B is mapped to a subset W of∏
x∈X
{y∗ ∈ Y ∗ : ‖y∗‖ ≤ ‖x‖} .(A.7)

The set given in Equation (A.7) is compact in the product topology, where each Y ∗ is taken with its weak∗

topology. Notice that W is also closed, hence compact. Indeed, if ψ(Uβ) −→
β∈B

w is a converging net in W

with w ∈
∏
x∈X

Y ∗, then the mapping x
U7→ wx from X to Y ∗, is linear and is also bounded with ‖U‖ ≤ 1,

hence U ∈ B, and ψ(U) = w, hence W is closed. The inverse mapping from W onto B is also continuous.

Indeed, as ψ is injective it is sufficient to prove that ψ(V ) is open whenever V is a basic open set of B.

By the definition of the operator weak∗ topology, every basic open subset of B is a finite intersection of

B with sets of the form ψ−1(V ′) where V ′ is a basic open set of
∏
x∈X

Y ∗. But ψ
(
B ∩ ψ−1(V ′)

)
= V ′ ∩W

which is open in the topology induced on W by
∏
x∈X

Y ∗, hence ψ−1 is continuous. Now B = ψ−1(W ) is

the continuous image of a compact set, hence compact. �

A.6. Uniform convergence of measures.
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Lemma A.7. Let (I, C) be a measure space, (µn)∞n=1 a sequence of signed measures on (I, C), and ν a

positive measure on (I, C) s.t. for every n ≥ 1 and S ∈ C |µn|(S) ≤ ν(S), where | · | stands for the variation.

Suppose that for every S ∈ C we have µn(S) −→
n→∞

µ(S) for some signed measure µ on (I, C). Then (µn)∞n=1

converges to µ in variation.

Proof. Notice that |µn| � ν, and |µ| � ν. Denote fn = dµn
dν , f = dµ

dν . As µn(S) −→
n→∞

µ(S) we deduce that

fn −→
n→∞

f ν-a.e. and as |fn − f | ≤ 2 ν-a.e. we have by the dominated convergence theorem
∫
I |fn(s) −

f(s)|dν(s) −→
n→∞

0, which implies µn −→
n→∞

µ in variation. �

A.7. Markov-Kakutani fixed point theorem. Let X be a locally convex topological vector space. A

family F of linear endomorphisms of X is commuting if for every S, T ∈ F we have T ◦ S = S ◦ T . The

proof of the following well–known theorem may be found in [8, p. 456, Theorem 6]

Theorem A.8. Let K be a compact convex subset of X, and F be a commuting family of continuous linear

endomorphisms which map K to itself. Then there is p ∈ K with T (p) = p for every T ∈ F .

A.8. Lower and upper semicontinuous functions with values in a Banach lattice. Given a com-

pact Hausdorff space Ω and a Banach lattice X, a function f : Ω→ X is lower-semicontinuous (l.s.c. ) iff

for every a ∈ X the set Ua = {w ∈ Ω : f(w) > a} is open. It is upper-semicontinuous (u.s.c. ) iff for every

a ∈ X the set Va = {w ∈ Ω : f(w) < a} is open.

Proposition A.9. Suppose f : Ω→ X is a bounded l.s.c. (u.s.c. ). Then there is a sequence (fn : Ω→ X)∞n=1

of continuous functions s.t. fn ≤ f (fn ≥ f) for every n ≥ 1, and for every w ∈ Ω, fn(w) −→
n→∞

f(w) in X.

Proof. It is sufficient to prove the proposition under the assumptions that f is l.s.c. and 0 ≤ f ≤ b for

some b ∈ X. For any n ≥ 1 consider, for 0 ≤ k ≤ n − 1, the decreasing open sets Unk = f−1
({
x > kb

n

})
.

Define gn = b
n

n−1∑
k=0

χUnk . Then gn is l.s.c. and 0 ≤ f(w) − gn(w) ≤ b
n for each w ∈ Ω. For given n, k ≥ 1

choose an increasing sequence of continuous functions hmnk converging pointwise to χUnk . Now, for every

w ∈ Ω there is some M = M(n,w) ≥ 1 s.t. for every m ≥M we have 0 ≤ χUnk(w)− hmnk(w) ≤ 1
n for every

0 ≤ k ≤ n− 1. Thus for every m ≥M

0 ≤ f(w)− b

n

n−1∑
k=1

hmnk(w) ≤ 2b

n
.(A.8)

Denote gmn = b
n

n−1∑
k=1

hmnk. Then gmn is continuous with gmn ≤ gn ≤ f for every n,m ≥ 1. Arrange the

family of continuous functions (gmn )n,m≥1 in a sequence, say (rn)∞n=1. Choose fn = sup(r1, ..., rn) and we

are done. �
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