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Abstract We introduce ideas and methods from distribution theory into value
theory. This new approach enables us to construct new diagonal formulas for
the Mertens value [5] and the Neyman value [6] on a large space of non-
differentiable games. This in turn enables us to give an affirmative answer to
the question, first posed by Neyman [6], whether the Mertens value and the
Neyman value coincide “modulo Banach limits”? The solution is an interme-
diate result towards a characterization of values of norm 1 of vector measure
games with bounded variation.

Keywords Nonatomic Games · Shapley value

1 Introduction

One of the most basic solution concepts of cooperative game theory is the
Shapley value [8]. It was first introduced in the setting of n-players games,
where it can be viewed as the players’ expected payoffs. It has a wide range
of applications in various fields of economics and political science (e.g., [1,
Chapters 32–34]). In many such applications it is necessary to consider games
that involve a large number of “individually insignificant” players. Among the
typical examples are voting among stockholders of a corporation and markets
with perfect competition. In such cases it is fruitful to model the game as a
cooperative game with an underlying standard nonatomic space of players,
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i.e., as a nonatomic game. Aumann and Shapley [2] extended the definition
of the value to nonatomic games. The value was defined using the axioms of
additivity, efficiency, symmetry, and positivity.

Once a solution concept on a space of games is defined, it is natural to ask
whether this solution exists and is unique. The core of a cooperative game, the
nucleus, and the Shapley value are examples of solution concepts of cooperative
games whose existence and uniqueness is guaranteed under certain conditions.
Aumann and Shapley [2] proved that the value exists and is in fact unique on
some spaces of “differentiable” nonatomic games.

However, the problem of existence of a value on spaces of “nondifferen-
tiable” games remained open for a long time after many trials. An example
is the space generated by all market games, and of special interest are the
“n-gloves” games. Tauman [9] proved the uniqueness of the value on the space
Qn, i.e., the minimal symmetric space spanned by “n-gloves” games that are
functions of finitely many nonatomic and mutually singular probability mea-
sures. Tauman [9] also proved that this value can be extended to the minimal
symmetric space generated by Qn and pNA, the space of games that are
“smooth” functions of finitely many nonatomic measures. But it was still un-
known whether there is a value on larger spaces, such as the space generated
by market games. In fact, it was not even known whether there is a value on
the space generated by the union of the Qn-s.

Mertens [5] solved this problem and introduced a value on a very large space
of games containing, among others, the space generated by market games.
Neyman [6] introduced yet another value on the space spanned by games that
are functions of finitely many measures.1 It is straightforward, due to the
use of Banach limits in Neyman’s construction, that the value is not unique
on the space of games on which the Neyman value was constructed. Yet,
Neyman [6] asked whether the value is unique “modulo Banach limits,” i.e.,
whether there is a unique value of norm 1 on the space of games for which
the Neyman value exists without the use of a Banach limit. This problem
has proven to be extremely difficult. Consequently, Neyman [6] introduced an
intermediate problem, namely, do the Mertens value and the Neyman value
coincide “modulo Banach limits.”

It is straightforward that the values coincide on subspaces of the intersec-
tion of their domains on which the value is known to be unique.2 It is some-
what less obvious that these values coincide on the space generated by vector
measure market games, as was proved by Neyman [6, Proposition 4]. In fact,
Neyman [6, Proposition 5] proved that these values coincide on the space gen-
erated by games that are concave functions of finitely many nonatomic prob-
ability measures. However, the proof becomes extremely difficult for games
that exhibit even the slightest singularities. For example, proving that these
values coincide on the space LPS of piecewise smooth vector measure games

1 That are also NA-continuous at the empty and the grand coalitions.
2 E.g., the space of “differentiable” games pNA, and the space bv′NA.
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(introduced by Neyman and Smorodinsky [7]) will immediately expose much
of the difficulty inherent in the more general problem.

The main obstacle arises from the different methods used to construct both
values. Essentially, Mertens’ construction averages the marginal contribution
of a coalition to some “infinitesimal” random perturbation of the diagonal
s.t. the random perturbations are made to be independent of the computa-
tion of the marginal contribution. In contrast, Neyman’s construction makes
the random perturbations and the computation of the marginal contribution
heavily dependent on each other. Another substantial difference is that while
Mertens’ construction takes the average over “infinitesimal” random pertur-
bations, Neyman’s construction considers an average on rather “large” pertur-
bations. Thus, Neyman’s [6] second question has an appealing interpretation.
In effect, he asked whether the way in which the marginal contributions are
computed and aggregated might influence the value. Nevertheless, the differ-
ences between the Mertens value and the Neyman value have the effect of
turning even a rather simple exercise, like proving that the values coincide on
the space LPS of piecewise smooth vector measure games, into a tedious and
involved task. In fact, these major differences are the reason that the answer
to Neyman’s second question was assumed to be negative.

The present paper concentrates on Neyman’s second question. Our ap-
proach to this problem is to develop “diagonal formulas” for games that lie in
the intersection of the domains of both values, for which the Neyman value
exists without the use of Banach limits. This task, which may seem hopeless
at a first glance, is accomplished by an application of methods and ideas from
distribution theory. As a consequence we prove the surprising result that the
Merten value and the Neyman value coincide “modulo Banach limits,” which
yields an affirmative answer to Neyman’s second question. Our result may
considered to be a first step towards a general characterization of values of
norm 1 on spaces consisting of vector measure games with bounded variation,
namely, to Neyman’s [6] first question.

2 Background and Basic Definitions

2.1 Basic Definitions.

Let (I, C) be a standard measurable space. The members of I are called players
and the members of C are called coalitions. A game is a real valued function
v : C → R with v(∅) = 0. A game v is:

1) finitely additive if it is bounded and v(S ∪ T ) = v(S) + v(T ) whenever
S, T are two disjoint coalitions. We denote the space of all finitely additive
games by FA, and its subspace of all nonatomic and countably additive
measures by NA;

2) monotonic if v(T ) ≥ v(S) whenever S ⊆ T . It is of bounded variation if it
is the difference between two monotonic games. We denote the space of all
games of bounded variation by BV .
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The variation of a game v ∈ BV is the supremum of the variation of v along
all increasing chains S0 ⊆ S1 ⊂ ... ⊆ Sm in C, or equivalently

‖v‖BV = inf {u(I) + w(I) : u,w are monotonic games s.t. v = u− w} .

‖·‖BV is a norm on BV , under which BV is a Banach algebra (see [2]).
Denote by Θ the group of measurable automorphisms of (I, C); i.e., bi-

jections θ : I → I s.t. both θ and θ−1 are measurable. Each θ ∈ Θ induces
a linear mapping θ∗ of BV onto itself by (θ∗v)(S) = v(θS). A set of games
Q ⊂ BV is symmetric if θ∗Q = Q for each θ ∈ Θ. Given a set of games Q we
will denote by Q+ its subset containing all monotonic games, and by Q1 the
subset {v ∈ Q+ : v(I) = 1}.

Let Q be a symmetric space. A map Ψ : Q → BV is called positive iff
Ψ(Q+) ⊂ BV +. It is symmetric iff θ∗Ψ = Ψθ∗ for each θ ∈ Θ, and efficient iff
Ψ(v)(I) = v(I) for each v ∈ Q.

Definition 1 Let Q be a symmetric linear subspace of BV . A value on Q is
a symmetric, positive, and efficient linear map Ψ : Q −→ FA.

Denote by B(I, C) the space of bounded measurable real-valued functions
on (I, C) and let B+

1 (I, C) = {f ∈ B(I, C) : 0 ≤ f ≤ 1} be the space of
ideal coalitions. We endow B(I, C) with the supremum norm. A function v̄ on
B+

1 (I, C) is a constant sum if v̄(f) + v̄(1 − f) = v̄(1) for every f ∈ B+
1 (I, C).

It is monotonic if for every f, g ∈ B+
1 (I, C) with f ≥ g, v̄(f) ≥ v̄(g). It is

finitely additive if it is bounded and for every f, g ∈ B+
1 (I, C) with f + g ≤ 1,

v̄(f +g) = v̄(f) + v̄(g). It is of bounded variation if it is the difference between
two monotonic functions, and its variation norm ‖v̄‖IBV is the supremum of
the variation of v̄ along all increasing sequences 0 ≤ f1 ≤ f2 ≤ ... ≤ fm ≤ 1 in
B+

1 (I, C). The group Θ acts on B+
1 (I, C) by (θ∗f)(s) = f(θs).

2.2 Cauchy Distributions

The Cauchy distribution with parameter α > 0 is the distribution on R with
density α

π(α2+x2) . If X and Y are independent Cauchy random variables with

parameters α and β respectively and a, b ∈ R s.t. a2 + b2 6= 0, then aX + bY
is a Cauchy random variable with parameter |a|α + |b|β. The characteristic
function of the Cauchy distribution with parameter α is ψ(t) = exp(−α|t|).

Recall that given a vector measure µ ∈
(
NA1

)k
we defined µ = 1

k

k∑
i=1

µi.

The µ semi-norm of y ∈ Rk is given by

‖y‖µ =

∫
|
k∑
i=1

(dµi/dµ)yi|dµ.

Denote the range of µ by R(µ), and denote the affine space generated by R(µ)
by AF (µ). By [6, Lemma 1] the function φµ : Rk −→ R given by φµ(y) =
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exp(−‖y‖µ) is the characteristic function of a probability distribution Pµ on
AF (µ), Pµ is absolutely continuous w.r.t. the Lebesgue measure on AF (µ),
and its density ξµ is a C0(AF (µ)) function.

In [5] it is proved that the collection3
{
Pµ ◦ µ−1 : µ ∈

(
NA1

)k
, k ≥ 1

}
defines a cylindric set measure on B(I, C). We denote this measure by P .

2.3 The Mertens Value

Definition 2 An extension operator is a linear and symmetric map ψ from
a linear symmetric space of games to real-valued functions on B+

1 (I, C), s.t.
(ψv)(χS) = v(S) for every S ∈ C, (ψv)(0) = 0, (ψv)(1) = v(I), ‖ψv‖IBV ≤
‖v‖, ψv is finitely additive whenever v is finitely additive, and ψv is a constant
sum whenever v is a constant sum.

Mertens [5] proved the existence of an extension operator φM on a large
symmetric space EXT . The Mertens extension φM (v) of the game v can be ex-
tended to a function ṽ on the spaceB(I, C) by ṽ(χ) = φM (v)(max{0,min{1, χ}}).
Notice that, indeed, for every χ ∈ B+

1 (I, C) we have ṽ(χ) = φM (v)(χ). In the
same paper he defined a value on a large space of games QM in the following
way:

1) Map every game v ∈ BV to the constant sum game φC(v)(S) = 1
2 (v(S)− v(Sc) + v(I)).

2) Let Q be the space of all games with φC(v) ∈ EXT . For v ∈ Q let v =

φ̃C(v).
3) Define QD ⊆ Q as the space of all games v ∈ Q for which the following

integral and limit exist:

(ΨDv)(χ) = lim
τ↘0

1∫
0

v(t+ τχ)− v(t− τχ)

2τ
dt.

4) For every w ∈ ΨD(QD) and every ξ, χ ∈ B(I, C) let

[w]ξ(χ) = lim
τ↘0

w(χ+ τξ)− w(χ− τξ)
2τ

.

Next, let QM be the closed symmetric space generated by all games v ∈ QD
s.t. either ΨD(v) ∈ FA or ΨD(v) is a function of finitely many nonatomic
measures.

Theorem 1 [5, Section 2], Let v ∈ QM . Then for every ξ ∈ B(I, C) the
derivative [ΨD]ξ(χ) exists for P almost every χ and is P -integrable in χ. In
particular the map ΨM : QM → FA given by

ΨM (v)(S) =

∫
[ΨD(v)]S(χ)dP (χ),

is a value of norm 1 on QM .

3 We extend the vector measure µ to B(I, C) via µ(χ) =
∫
χdµ.
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2.4 The Neyman Value

Let Q(µ) be the space of all bounded variation games of the form f ◦µ, where

µ ∈
(
NA1

)k
for some k ≥ 1, and f is continuous at 0k and at µ(I) = 1k. For

any Rk-valued nonatomic measure µ define a map Ψ δµ from Q(µ) to BV as
follows. For δ > 0 let Iδ(t) = I(3δ ≤ t < 1 − 3δ). For every sufficiently small
δ > 0, x ∈ AF (µ) with δx ∈ 2R(µ)− µ(I), and S ∈ C, let

Ff,µ(δ, x, S) =

1∫
0

Iδ(t)
f(tµ(I) + δ2x+ δ3µ(S))− f(tµ(I) + δ2x)

δ3
dt. (1)

Let P δµ be the restriction of Pµ to the setBδµ =
{
x ∈ Rk : δx ∈ 2R(µ)− µ(I)

}
.

The function x 7→ Ff,µ(δ, x, S) is continuous and bounded (see [6, Lemma 5]),
and, therefore,

Ψ δµ(f ◦ µ, S) =

∫
AF (µ)

Ff,µ(δ, x, S)dP δµ (2)

is well defined.

The space Q(µ) is neither symmetric nor mappable by Ψ δµ to FA; its map-
ping is neither efficient nor symmetric, nor does its restriction to Q(µ)∩Q(ν)
necessarily coincide with Ψ δν . However, these violations of the value axioms
diminish as δ −→ 0, and Ψ δµ(f ◦ µ) − Ψ δν (g ◦ ν) −→ 0 as δ −→ 0+ whenever
f ◦ µ = g ◦ ν. This remains true even if the limit exists only as some Banach
limit L (see [6, Section 3.2] for a detailed construction of L). Let QN =

⋃
Q(µ).

Given the Banach limit L, Neyman [6] defined

ΨN (f ◦ µ)(S) = L(Ψ δµ(f ◦ µ, S)). (3)

It turns out that Ψ is a value of norm 1 on QN (hence also on its closure; see
[6, Proposition 1]).

The value on QN is obviously not unique, due to the use of Banach limits
in Neyman’s construction. However, Neyman [6] asked whether the value is
unique “modulo Banach limits.” Namely, let Q′N be the linear space consisting
of games v ∈ QN for which the limit on the right-hand side of Equation (3)
exists in the usual sense. Neyman asked [6, Section 4.5] whether there is a
unique value of norm 1 on Q′N or even on a large subspace of it. This question
was left unanswered. A natural question in this context is whether the Mertens
and Neyman values coincide on Q′N ∩ QM . This question was also raised by
Neyman [6, Section 5.2]. Yet, despite the fact that Neyman had obtained
a positive answer for smaller subspaces [6, Propositions 4–5], the question
remained open in general.



Values of Nondifferentiable Vector Measure Games 7

2.5 Statement of the Main Results

The present paper concentrates on Neyman’s second question, i.e., whether the
Mertens and Neyman values coincide on the space Q0 = QM ∩Q′N . Although
there are many reasons to suspect that the Mertens and Neyman values do
not coincide on Q0, we prove the following surprising theorem:

Main Theorem ΨM = ΨN on Q0.

Our solution utilizes ideas and methods from distribution theory. This is
a new approach to the study of the value, and especially to the study of the
notion of the derivative of a game. We consider games to be “distributions” á
la Schwartz, and think of the derivative of the games as a directional derivative
in the sense of distributions. The proof is then obtained by devising “diagonal
formulas” for the Mertens and Neyman values on Q0.

Unrigorously, we prove that for every game f ◦ µ ∈ Q0 with µ of full
dimension n ∈ N, and every coalition S ∈ C, there is a family of infinitely
differentiable functions on Rn with a compact support

(
ξδµ
)
δ>0

and a family of

measures (ζδ(f, µ(S)))δ>0 on Rn that are interpreted as follows: every function

ξδµ is approximately (depending on δ) the density of the averaging measure Pµ
appearing in the Neyman value, and every measure ζδ(f, µ(S)) is the average
“distributional” directional derivative of the game f ◦µ in the direction of the
coalition S in some small neighborhood (depending on δ) of the diagonal. As
a result we get the following formulas for the values:

Proposition I The Neyman value admits the following representation on
games f ◦ µ ∈ Q0 with µ of full dimension:

ΨN (f ◦ µ)(S) = lim
δ→0+

∫
ξδµ(x)dζδ(f, µ(S))(x), (4)

and

Proposition II The Mertens value admits the following representation on
games f ◦ µ ∈ Q0 with µ of full dimension:

ΨM (f ◦ µ)(S) = lim
δ→0+

∫
ξδµ(x)dζδ(f, µ(S))(x). (5)

As every v ∈ Q0 can be represented as v = f ◦ µ with µ of full dimension,
the Main Theorem is easily deduced.

3 Preliminaries

3.1 Some Distributional Calculus

Denote by C∞c (Rn) the space of test functions (i.e., infinitely differentiable
functions with compact support) on Rn and by λ = λn the Lebesgue measure.



8 Omer Edhan

For every test function φ ∈ C∞c (Rn) and z ∈ Rn denote the directional deriva-
tive of φ in the direction z by ∂zφ. Now let f : Rn → R be some function and
assume that its directional derivative f ′z in direction z ∈ Rn exists λ-a.e. For

every η > 0 and x ∈ Rn denote Fη(x; z) = f(x+ηz)−f(x)
η . Denote by Ty the

translation operator (i.e., (Tyg)(x) = g(x+ y)).

Lemma 1 Let φ ∈ C∞c (Rn). Suppose that f ′z exists and f is bounded λ-a.e.
on supp(φ), and that Fη(·; z) is uniformly bounded λ-a.e. on supp(φ) for any
sufficiently small η > 0 (i.e., there are some C = C(supp(φ)) > 0 and η0 > 0
s.t. for each 0 < η < η0 we have λ({x ∈ supp(φ) : |Fη(x, z)| > C}) = 0).
Then ∫

f ′z(x)φ(x)dλ(x) = −
∫
f(x)∂zφ(x)dλ(x).

Proof Denote K = supp(φ) and let ‖·‖K be the L∞(λ) norm on K. By our
assumptions there exist some C = C(K) > 0 and η0 > 0 s.t. for each 0 < η <
η0 ‖Fη(·; z)‖K ≤ C. Thus

|Fη(x; z)φ(x)| ≤ C|φ(x)|

for λ-a.e. x ∈ K for every sufficiently small η > 0. As f ′z(x) = lim
η→0+

Fη(x; z)

for λ-a.e. x ∈ K and C|φ| ∈ L1(K,λ) we deduce, by applying the dominated
convergence theorem, that∫

f ′z(x)φ(x)dλ(x) = lim
η→0+

∫
Fη(x; z)φ(x)dλ(x). (6)

By the additivity of the integral and a change of variables x 7→ x + ηz we
obtain that∫

Fη(x; z)φ(x)dλ(x) =

∫
f(x+ ηz)− f(x)

η
φ(x)dλ(x) =∫

f(x)
φ(x− ηz)− φ(x)

η
dλ(x),

and hence

lim
η→0+

∫
Fη(x; z)φ(x)dλ(x) = lim

η→0+

∫
f(x)

φ(x− ηz)− φ(x)

η
dλ(x). (7)

But as φ ∈ C∞c (Rn) we have φ(x−ηz)−φ(x)
η = −

1∫
0

∂zφ(x − sηz)ds, and hence∣∣∣φ(x−ηz)−φ(x)η

∣∣∣ ≤ ‖∂zφ‖∞ for every x ∈ Rn. Together with our assumption on

the a.e. boundedness of f on K, we deduce that for every sufficiently small
η > 0, ∣∣∣∣f(x) · φ(x− ηz)− φ(x)

η

∣∣∣∣ ≤ ‖f‖K ‖∂zφ‖∞ <∞
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for λ-a.e. x ∈ K. Notice that lim
η→0

φ(x−ηz)−φ(x)
η = −∂zφ(x) and that for any

sufficiently small η > 0 the integration on the right-hand side of Equation (7) is
supported on the compact set K+B(0, ‖z‖). Thus by applying the dominated
convergence theorem to Equation (7) and combining that with Equation (6),
we obtain ∫

f ′z(x)φ(x)dλ(x) = −
∫
f(x)∂zφ(x)dλ(x),

and the lemma follows. ut

Let f : Rn → R and z ∈ Rn. A function g : Rn → R is the directional
distributional derivative of f in the direction z iff for each φ ∈ C∞c (Rn), we
have ∫

f(x)∂zφ(x)dλ(x) = −
∫
g(x)φ(x)dλ(x).

Thus Lemma 1 actually proves that if f is λ-a.e.-bounded on any compact set
K ⊂ Rn, if the directional derivative f ′z in the direction z exists and is bounded
λ-a.e. on any compact set K ⊂ Rn, and if Fη(·; z) is uniformly bounded for any
sufficiently small η > 0 on any compact setK ⊂ Rn, then f has a distributional
directional derivative in the direction z, and this distributional directional
derivative equals λ-a.e. to f ′z. We shall denote this distributional directional
derivative by ∂zf .

Lemma 2 For each y ∈ Rn the distributional directional derivative of Tyf in
the direction z ∈ Rn is Ty ◦ ∂zf .

Proof We compute

〈∂z(Ty ◦ f), φ〉 = −〈Tyf, ∂zφ〉 = −
∫

(Tyf)(x)∂zφ(x)dλ(x) =

−
∫
f(x+ y)∂zφ(x)dλ(x) = −

∫
f(x)∂zφ(x− y)dλ(x) =∫

f ′z(x)φ(x− y)dλ(x) =

∫
f ′z(x+ y)φ(x)dλ(x) = 〈Ty ◦ ∂zf, φ〉 ,

and the lemma follows. ut

3.2 A Smooth Approximation with Compact Support of the Measures Pµ

Recall that Pµ is the measure on AF (µ) whose Fourier transform is φµ =
exp(−‖y‖µ). We shall from now on suppose that µ is of full dimension4; hence
AF (µ) = Rn. Denote by ξµ the density of Pµ w.r.t. the Lebesgue measure.
It is well known that ξµ ∈ C0(Rn) (see [6]). We wish to approximate Pµ by
measures Qεµ with densities in C∞c (Rn). Our first step is the following lemma:

4 This is assumed in Propositions I and II.



10 Omer Edhan

Lemma 3 For each µ we have ξµ ∈ C∞0 (Rn).

Proof For h : Rn → R let ĥ be its Fourier transform, whenever it is defined.
For each multi-index α, the function gαµ (y) = 2πi · yαφµ(y) is in L1(Rn, λ).
Thus by [3, Theorem 8.22] and the Fourier inversion theorem ([3, Theorem
8.26]) we have

∂αξµ = ĝαµ ∈ C0(Rn),

and the lemma follows. ut

Recall that Bεµ = 1
ε (2R(µ)− µ(I)). Our next step is to prove that ξµ can be

approximated in the L1(Rn, λ) norm by nonnegative functions ξεµ ∈ C∞c (Rn)
that coincide with ξµ on some open sets U εµ ⊂ Bεµ whose diameter tends to
infinity as ε→ 0+ and which satisfy ξεµ ≤ ξµ.

Lemma 4 For any sufficiently small ε > 0 there are open sets U εµ, V
ε
µ ⊂ Rn

with U εµ ⊂ V εµ ⊂ Bεµ ⊂ Rn and a function ξεµ s.t. diam(U εµ), diam(V εµ ) −→
ε→+
∞,

supp(ξεµ) ⊂ V εµ , ξµ(x) = ξεµ(x) for each x ∈ U εµ, ξεµ ≤ ξµ, and
∥∥ξµ − ξεµ∥∥1 −→ε→0+

0.

Proof For sufficiently small ε > 0 choose open sets U εµ, V
ε
µ ⊂ Rn with U εµ ⊂

V εµ ⊂ Bεµ s.t. d
(
U εµ, (B

ε
µ)c
)
, d
(
V εµ , (B

ε
µ)c
)
∈ (
√
nε, 2
√
nε). First notice that

indeed diam(U εµ), diam(V εµ ) −→
ε→0+

∞. Also, by the smooth Urison Lemma

([3, Lemma 8.18]) there is a function hεµ ∈ C∞c (Rn) s.t. supp(hεµ) ⊂ V εµ ,
0 ≤ hεµ ≤ 1, and hεµ|Uεµ = 1. Define ξεµ = ξµh

ε
µ. Then ξµ(x) = ξεµ(x) for each

x ∈ U εµ, ξεµ ≤ ξµ, and

∥∥ξµ − ξεµ∥∥1 =

∫
(Uεµ)

c

|(ξµ − ξεµ)(x)|dλ(x) ≤ 2

∫
(Uεµ)

c

|ξµ(x)|dλ(x) −→
ε→0+

0,

and the lemma follows. ut

Denote by Qεµ the measure on Rn, whose Radon–Nikodym derivative w.r.t.
the Lebesgue measure is ξεµ.

Corollary 1
∥∥Pµ −Qεµ∥∥1 −→ε→0+

0.

3.3 The Measures ζδ(f, µ(S))

Here we introduce a family of measures that will be used in the proof of our
Main Theorem. We begin with a lemma that is an analogue to [6, Lemma 4].
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Lemma 5 Suppose that µ is of full dimension. Let ε > 0, ω ∈ B(I, C), and
0 < η ≤ 1. Then there exist δ0 = δ0(ε, ‖ω‖) s.t. for every 0 < δ ≤ δ0, and
γ ≥ δ ‖ω‖,

sup
x∈Bεµ

∣∣∣∣∫ Iγ(t)
f(tµ(I) + δx+ δηµ(ω))− f(tµ(I) + δx)

δη
dt

∣∣∣∣ ≤
‖f ◦ µ‖ (‖ω+‖+ ‖ω−‖).

Remark 1 It is sufficient to prove the lemma only for ω ≥ 0. Let ω = ω+ −
ω−. If γ ≥ δ ‖ω‖, then γ ≥ δ ‖ω±‖, and thus by the triangle inequality,∣∣∣∣∫ Iγ(t)

f(tµ(I) + δx+ δηµ(ω))− f(tµ(I) + δx)

δη
dt

∣∣∣∣ ≤∣∣∣∣∫ Iγ(t)
f(tµ(I) + δx+ δηµ(ω+))− f(tµ(I) + δx)

δη
dt

∣∣∣∣+∣∣∣∣∫ Iγ(t)
f(tµ(I) + δ(x+ ηµ(ω)) + δηµ(ω−))− f(tµ(I) + δ(x+ ηµ(ω)))

δη
dt

∣∣∣∣ .
As Bεµ + ηµ(ω) ⊂ Bε/(1+η‖µ(ω)‖)µ , the claim follows.

Furthermore, if we take δ′ = δ
ε , ω′ = εω, x′ = εx, and γ′ = εγ, it will be

sufficient to prove that if ω′ ≥ 0, then there is some δ′0 = δ′0(‖ω′‖) > 0 s.t, for
every 0 < δ′ ≤ δ′0,

sup
x′∈B1

µ

∣∣∣∣∫ Iγ′(t)
f(tµ(I) + δ′x′ + ηδ′µ(ω′))− f(tµ(I) + δ′x′)

δ′η
dt

∣∣∣∣ ≤
‖f ◦ µ‖ ‖ω′‖ .

We return now to the proof of Lemma 5.

Proof Following Remark 1, choose δ0(‖ω‖) > 0 s.t. for every 3δ0 ‖ω‖ < t <
1− 3δ0 ‖ω‖ we have

tµ(I) + δ0(1 + ‖µ(ω)‖µ)Bµ ⊂ R(µ).

Thus for every 0 < δ ≤ δ0, γ ≥ δ ‖ω‖, 3γ < t < 1 − 3γ, and 0 < η ≤ 1, we
have

tµ(I) + δ(1 + η ‖µ(ω)‖µ)B1
µ ⊂ R(µ).

Let 0 < δ ≤ δ0, γ ≥ δ ‖ω‖, and let M be the smallest integer s.t. 3γ +
Mδ ‖ηω‖ > 1− 3γ. For every 1 ≤ m ≤M define Imδ : [0, 1]→ R as

Imδ (t) = 3γ + I ([(m− 1)δη ‖ω‖ ,mδη ‖ω‖)) .

Let ξ ∈ B1
+(I, C) be s.t. 2µ(ξ) − µ(I) = x. For every s ∈ [0, δη ‖ω‖) and

every integer 0 ≤ m ≤ 2M consider the increasing chain of ideal coalitions gsm,
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where gs0 = 3γ + s+ δ(2ξ − 1), gs2m+1 = gs2m + δηω, and gs2m = gs0 +mδη ‖ω‖.
Then ∣∣∣∣∫ Iγ(t)

f(tµ(I) + δx+ δµ(ηω))− f(tµ(I) + δx)

δη
dt

∣∣∣∣ ≤
1

δη

1∫
0

(
M∑
m=1

Imδ (t) |f(tµ(I) + δx+ δµ(ηω))− f(tµ(I) + δx)|

)
dt =

1

δη

δη‖ω‖∫
0

(
M∑
m=1

∣∣∣f(µ(gt2m−1))− f(µ(gt2(m−1)))
∣∣∣) dt ≤

1

δη

δη‖ω‖∫
0

‖f ◦ µ‖ dt = ‖f ◦ µ‖ ‖ω‖ .

δ0(‖ω‖) is independent of the particular choice of x; therefore, the lemma
follows by taking the supremum over B1

µ. ut

Remark 2 Notice that by Lemma 5, for any sufficiently small δ > 0 the

function x 7→ 1
δ2

∫ 1

0
Iδ(t)f(tµ(I) + δ2x)dt is Lipschitz continuous on Bδµ whose

Lipschitz constant5 can be bounded by some K(f, µ) > 0 that is independent of

the choice of the sufficiently small δ > 0. Indeed, notice that B1
µ +B1

µ = B
1/2
µ .

By Lemma 5 there is δ0 > 0 s.t. for every w ∈ B(I, C) with ||w|| = 2, δ < δ0,
and η ∈ (0, 1] (taking γ = δ there)

sup
z∈B1/2

µ

∣∣∣∣∣∣
∫ 1

0

Iδ(t)
f
(
tµ(I) + δz

2 + ηδ
2 µ(w)

)
− f

(
tµ(I) + δz

2

)
δη

dt

∣∣∣∣∣∣ ≤ (8)

2 ‖f ◦ µ‖ .

For any choice of x 6= y ∈ AF (µ) take w = w(x, y) ∈ B(I, C) with ||w|| = 2,

s.t. µ(w) ∈ ∂B1/2
µ has the same direction as y − x and define q(x, y) > 0 by

y − x = q(x, y)µ(w). If δ < δ0 and x 6= y ∈ Bδµ, then δq(x, y) =
‖δ(y−x)‖2
‖µ(w)‖2

≤ 1

since δ(y−x) ∈ B1/2
µ has the same direction as µ(w) ∈ ∂B1/2

µ . Thus, by setting

η = δq(x, y), z = δ(x+ y) ∈ B1/2
µ , and w = w(x, y) in Equation (8) we obtain∣∣∣∣∣

∫ 1

0

Iδ(t)
f(tµ(I) + δ2y)− f(tµ(I) + δ2(x+y)

2 )

δ2
dt

∣∣∣∣∣ ≤ 2q(x, y) ‖f ◦ µ‖ . (9)

Now q(x, y) ≤

(
max

z∈∂B1/2
µ

1
‖z‖2

)
‖y − x‖2 =

(
max
z∈∂B1

µ

1
2‖z‖2

)
‖y − x‖2. Thus, the

remark follows, with K(f, µ) ≤ max
z∈∂B1

µ

2‖f◦µ‖
‖z‖2

, by exploiting the symmetry of y

and x in Equation (9) and combining it with the triangle inequality.

5 W.r.t. the Euclidian norm.
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Remark 3 By assumption, the affine space generated by Bδµ is Rn. Thus, by
combining Remark 2 with the McShane-Whitney extension theorem (e.g., [4,
Theorem 1]), for any sufficiently small δ > 0 we may extend the function

x 7→ 1
δ2

∫ 1

0
Iδ(t)f(tµ(I) + δ2x)dt, x ∈ Bδµ, to a Lipschitz continuous function

Gδ on Rn with a Lipschitz constant bounded by K(f, µ).

Proposition 1 For every game f ◦ µ ∈ Q0 with µ ∈
(
NA1

)n
and AF (µ) =

Rn, every sufficiently small δ > 0, and every S ∈ C, there is a measure
ζδ(f, µ(S)) on Rn(= AF (µ)) that is uniquely determined by f and µ(S) s.t.∫

Gδ(x)∂µ(S)φ(x)dλ(x) = −
∫
φ(x)dζδ(f, µ(S))

for every φ ∈ C∞c (Rn).

Proof Consider the following linear functional on C∞c (Rn):

Λδ(f, µ(S))(φ) =

∫
Gδ(x)∂µ(S)φ(x)dλ(x).

This functional is well defined. As φ(x+εµ(S))−φ(x)
ε is bounded for every x ∈ Rn

by
∥∥∂µ(S)φ∥∥∞ for any sufficiently small ε > 0, an application of the dominated

convergence theorem yields

Λδ(f, µ(S))(φ) = lim
ε→0+

∫
Gδ(x)

φ(x+ εµ(S))− φ(x)

ε
dλ(x).

Thus, by a change of variable x 7→ x+ εµ(S), we obtain

Λδ(f, µ(S))(φ) = − lim
ε→0+

∫
Gδ(x)−Gδ(x− εµ(S))

ε
φ(x) dλ(x). (10)

Consider 0 < ε ≤ 1. By Remark 3, for any sufficiently small δ > 0 the func-
tion Gδ is Lipschitz continuous with a Lipschitz constant bounded by K(f, µ)
(w.r.t. the Euclidian norm). Thus, for every x ∈ Rn∣∣∣∣Gδ(x)−Gδ(x− εµ(S))

ε

∣∣∣∣ ≤ K(f, µ) ‖µ(S)‖2 ≤
√
nK(f, µ).

Therefore for every x ∈ Rn we have∣∣∣∣Gδ(x)−Gδ(x− εµ(S))

ε
φ(x)

∣∣∣∣ ≤ √nK(f, µ)|φ(x)|,

and thus the family of functions
(
x 7→ Gδ(x)−Gδ(x−εµ(S))

ε φ(x)
)
ε∈(0,1]

is uni-

formly integrable on Rn w.r.t. λ. Hence by applying first Fatou’s lemma and
then Hölder’s inequality to Equation (10), we have

|Λδ(f, µ(S))(φ)| ≤
∫

lim sup
ε→0+

∣∣∣∣Gδ(x)−Gδ(x− εµ(S))

ε

∣∣∣∣ |φ(x)|dλ(x) ≤∥∥∥∥lim sup
ε→0+

∣∣∣∣Gδ(·)−Gδ(· − εµ(S))

ε

∣∣∣∣∥∥∥∥
∞
‖φ‖1 ≤

√
nK(f, µ) ‖φ‖1 .
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Thus Λδ(f, µ(S)) is a bounded linear functional on C∞c (Rn) ⊂ L1(Rn, λ) of
norm at most

√
nK(f, µ). As C∞c (Rn) is a dense subspace of L1(Rn, λ) (see

[3, Proposition 8.17]), it follows that Λδ(f, µ(S)) can be uniquely extended

to a bounded linear functional Λ̃δ(f, µ(S)) on L1(Rn, λ) whose norm is at
most

√
nK(f, µ). Hence there is a function Hδ(f, µ(S)) ∈ L∞(Rn, λ), uniquely

determined up to a set of Lebesgue measure 0, that represents Λ̃δ(f, µ(S)),

and we may write Λ̃δ(f, µ(S))(g) =
∫
g(x)Hδ(f, µ(S))(x)dλ(x) for each g ∈

L1(Rn, λ). Define dζδ(f, µ(S)) = Hδ(f, µ(S))dλ and we are done. ut

Recall that in Section 3.2, the density ξµ of Pµ was approximated by some
ξεµ ∈ C∞c (Rn) (see Lemma 4) and the measure Qεµ was defined as the mea-
sure whose Radon–Nikodym density w.r.t the Lebesgue measure is ξεµ. It is
well known that ξµ(x) = ξµ(−x). The following lemma gives a similar approx-
imate result for the densities ξεµ and also proves a symmetry result for the
distributional derivative of Gδ:

Lemma 6 The following hold for any sufficiently small δ > 0 for every S ∈ C:

(i) |
∫
ξεµ(−x)dζδ(f, µ(S))(x)−

∫
ξεµ(x)dζδ(f, µ(S))(x)| = o(1), as ε→ 0+.

(ii) ∀φ ∈ C∞c (Rn),
∫
Gδ(−x)∂µ(S)φ(x)dλ(x) =

∫
φ(−x)dζδ(f, µ(S))(x).

Proof The measure ζδ(f, µ(S)) is well defined for every sufficiently small δ > 0
for every S ∈ C.

(i) Recall that ξµ =
dPµ
dλn and ξεµ = ξµh

ε
µ for some hεµ ∈ C∞c (Rn) with

values in [0, 1] (see Section 3.2). As dPµ(x) = dPµ(−x), we deduce that
ξµ(−x) = ξµ(x), and hence ξεµ(−x) = ξµ(x)hεµ(−x). Denote gεµ(x) =
ξεµ(−x) − ξεµ(x) = ξµ(x)(hεµ(−x) − hεµ(x)). Hence, for every sufficiently
small δ > 0, we have for every S ∈ C∣∣∣∣∫ ξεµ(−x)dζδ(f, µ(S))(x)−

∫
ξεµ(x)dζδ(f, µ(S))(x)

∣∣∣∣ =∣∣∣∣∫ gεµ(x)dζδ(f, µ(S))(x)

∣∣∣∣ ≤ √nK(f, µ)
∥∥gεµ∥∥1 .

We compute

∥∥gεµ∥∥1 =

∫
|ξµ(x)(hεµ(−x)− hεµ(x)|dλ(x) =∫

Uεµ

|ξµ(x)(hεµ(−x)− hεµ(x)|dλ(x) +

∫
(Uεµ)

c

|ξµ(x)(hεµ(−x)− hεµ(x)|dλ(x) ≤

2

∫
(Uεµ)

c

|ξµ|dλ(x) = o(1)

as ε→ 0+.
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(ii) By a change of variable x 7→ −x we obtain∫
Gδ(−x)∂µ(S)φ(x)dλ(x) =

∫
Gδ(x)(∂µ(S)φ)(−x)dλ(x).

Now if we set ψ(x) = φ(−x), then ∂µ(S)ψ(x) = −(∂µ(S)φ)(−x), and
hence by combining Lemma 1 with the definition of ζδ(f, µ(S)) we get
that ∫

Gδ(x)∂µ(S)φ(−x)dλ(x) =

∫
φ(−x)dζδ(f, µ(S))(x),

which proves the lemma. ut

4 Proof of the Main Theorem

We are now ready to prove the Main Theorem. This is done in the follow-
ing subsections. We will actually do more than prove the theorem; we shall
prove “diagonal formula” representations for the Neyman and Mertens values,
namely, prove Propositions I and II.

Recall that Pµ is the measure on Rn with Fourier transform exp(−‖y‖µ)

and density ξµ, the measure P δµ is its restriction to Bδµ, and the measure Qδµ
is an approximate measure to Pµ with density6 ξδµ ∈ C∞c (Rn).

4.1 Proof of Proposition I

The main difficulty in the computation and application of the Neyman value is
that it lacks a good representation formula. Neyman [6, Lemma 10] proved the
following representation formula for the Neyman value for games7 in QN∩AC:

Lemma 7 [6, Lemma 10] If f ◦ µ ∈ QN ∩ AC, then for every y ∈ R(µ) the
directional derivative f ′y exists a.e. in the relative interior of R(µ), and for
every sufficiently small δ > 0 and every coalition S ∈ C,

ψδµ(f ◦ µ, S) =

∫ ∫
Iδ(t)f

′
µ(S)(tµ(I) + δ2x)dtdP δµ(x)

is well–defined and ∣∣ψδµ(f ◦ µ, S)− Ψ δµ(f ◦ µ, S)
∣∣ −→
δ→0+

0.

6 µ is assumed to be of full dimension.
7 AC is the space of games that are absolutely continuous w.r.t. some NA1 measure.



16 Omer Edhan

Proposition I is a generalization of Lemma 7. First, notice that QN ∩AC ⊂
Q0. Now, according to Lemma 7, if f ◦ µ ∈ AC ∩QN , then

ΨN (f ◦ µ)(S) =

∫ ∫ 1

0

Iδ(t)f
′
µ(S)(tµ(I) + δ2x)dtdP δµ(x) + o(1),

as δ → 0+. Notice that dζδ(f, µ(S))(x) =
(∫ 1

0
Iδ(t)f

′
µ(S)(tµ(I) + δ2x)dt

)
dλ(x),

and that
∥∥P δµ −Qδµ∥∥1 = o(1), as δ → 0+ (see Corollary 1). Thus we obtain

ΨN (f ◦ µ)(S) =

∫
ξδµ(x)dζδ(f, µ(S))(x) + o(1),

as δ → 0+.

We shall now return to the proof of Proposition I.

Proof of Proposition I: Recall that Ty is the translation operator by a
vector y (see Section 3.1). Recall that8

Ψ δµ(f ◦ µ, S) =

∫
Ff,µ(δ, x, S)dP δµ(x).

By the definition of ξµ we obtain

Ψ δµ(f ◦ µ, S) =

∫
Bδµ

Ff,µ(δ, x, S)ξµ(x)dλ(x) =

∫
Bδµ

Ff,µ(δ, x, S)ξδµ(x)dλ(x) +

∫
Bδµ

Ff,µ(δ, x, S)(ξµ(x)− ξδµ(x))dλ(x) =

∫
Ff,µ(δ, x, S)ξδµ(x)dλ(x) +

∫
Bδµ

Ff,µ(δ, x, S)(ξµ(x)− ξδµ(x))dλ(x). (11)

In line (11) above no confusion should result from the omission of Bδµ in the

first summand, as the integrand is supported on an open subset of Bδµ.

Consider now the second summand in line (11). Recall that for a compact
setK ⊂ Rn we denoted by ‖·‖K the L∞(λ) norm onK (see the proof of Lemma
1). By applying first Hölder’s inequality and then Lemma 5, and keeping in

8 For the definition of Ff,µ(δ, x, S) and Ψδµ(f ◦ µ) see Equations (1)) and (2) respectively.
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mind that ξµ(x) = ξδµ(x) for every x ∈ U δµ and that 0 ≤ ξδµ ≤ ξµ, we obtain∣∣∣∣∣∣∣
∫
Bδµ

Ff,µ(δ, x, S)(ξµ(x)− ξδµ(x))dλ(x)

∣∣∣∣∣∣∣ ≤
‖Ff,µ(δ, ·, S)‖Bδµ

∫
Bδµ

|ξµ(x)− ξδµ|dλ(x) ≤ ‖f ◦ µ‖
∫
Bδµ

|ξµ(x)− ξδµ(x)|dλ(x) =

‖f ◦ µ‖
∫

Bδµ\Uδµ

|ξµ(x)− ξδµ(x)|dλ(x) ≤ ||f ◦ µ|| ·
∫

(Uδµ)
c

|ξµ(x)− ξδµ(x)|dλ(x) ≤

2 ‖f ◦ µ‖
∫

(Uδµ)
c

|ξµ(x)|dλ(x) = o(1)

as δ → 0+. Thus

Ψ δµ(f ◦ µ, S) =

∫
Ff,µ(δ, x, S)ξδµ(x)dλ(x) + o(1) (12)

as δ → 0+.
Recall that there is an open set V δµ ⊂ Bδµ s.t. supp(ξδµ) ⊂ V δµ and diam(V δµ ) −→

δ→0+

∞ (see Lemma 4). Notice that9 for each x ∈ V δµ we have x + δµ(S) ⊂ Bδµ.

Thus for each x ∈ supp(ξδµ) we obtain by the definition of the function Gδ (see
Remark 2)

Ff,µ(δ, x, S) =
Gδ(x+ δµ(S))−Gδ(x)

δ
; (13)

hence by Equations (12)–(13) we obtain

Ψ δµ(f ◦ µ, S) =

∫ (
Gδ(x+ δµ(S))−Gδ(x)

δ

)
ξδµ(x)dλ(x) + o(1), (14)

as δ → 0+. By a change of variable x 7→ x + δµ(S) in the right-hand side of
Equation (14) we obtain

Ψ δµ(f ◦ µ, S) =

∫
Gδ(x)

ξδµ(x− δµ(S))− ξδµ(x)

δ
dλ(x) + o(1) =

−
∫
Gδ(x)

 1∫
0

∂µ(S)ξ
δ
µ(x− sδµ(S))ds

 dλ(x) + o(1) =

−
∫ 1∫

0

Gδ(x)∂µ(S)ξ
δ
µ(x− sδµ(S))dsdλ(x) + o(1) (15)

9 By the choice of V δµ we have d
(
V δµ , (B

δ
µ)c
)
>
√
nδ
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as δ → 0+. By applying first Fubini’s theorem and then Proposition 1 in line
(15) we obtain

Ψ δµ(f ◦ µ, S) =

1∫
0

(
−
∫
Gδ(x)∂µ(S)ξ

δ
µ(x− sδµ(S))dλ(x)

)
ds+ o(1) =

1∫
0

∫
ξδµ(x− sδµ(S))dζδ(f, µ(S))(x)ds+ o(1) (16)

as δ → 0+. As sup
s∈[0,1]

∥∥ξδµ − T−sδµ(S) ◦ ξδµ∥∥1 −→δ→0
0 and as, by Proposition 1,

the measure ζδ(f, µ(S)) induces a bounded linear functional10 on L1(Rn, λ)
we have ∣∣∣∣∣∣

1∫
0

∫ (
T−sδµ(S)ξ

δ
µ(x)− ξδµ(x)

)
dζδ(f, µ(S))(x)ds

∣∣∣∣∣∣ ≤
1∫

0

∣∣∣∣∫ (T−sδµ(S)ξδµ(x)− ξδµ(x)
)
dζδ(f, µ(S))(x)

∣∣∣∣ ds ≤
√
nK(f, µ) sup

s∈[0,1]

∥∥ξδµ − T−sδµ(S) ◦ ξδµ∥∥1 −→δ→0
0. (17)

By combining Equations (16)–(17) we obtain

Ψ δµ(f ◦ µ, S) =

∫
ξδµ(x)dζδ(f, µ(S))(x) + o(1)

as δ → 0+, which proves Proposition I.

4.2 Proof of Proposition II

Recall that the Mertens value of a game with an extension v is given by (see
Section 2.3):

ΨM (v)(S) =

∫  lim
τ→0+

1∫
0

v̄(t+ τχ)− v̄(t− τχ)

2τ
dt


S

dP (χ).

It was already proved by Mertens [5] that if v = f ◦µ, then for every S ∈ C,

ΨM (v)(S) =

∫  lim
τ→0+

1∫
0

f(µ(t) + τx)− f(µ(t)− τx)

2τ
dt

′
µ(S)

dPµ(x).

The following proposition offers a variation of this result. The methods of the
proof are quite standard and the idea stems from the proof in [5].

10 Of norm ≤
√
nK(f, µ).
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Proposition 2 For every f ◦ µ ∈ Q0,

ΨM (v)(S) =∫  lim
τ→0+

1∫
0

I√τ (t)
f(µ(t) + τx)− f(µ(t)− τx)

2τ
dt

′
µ(S)

dPµ(x).

Proof For each χ 6= 0 in B(I, C), every 0 < τ < 9 ‖χ‖−2, and every t ∈
(3
√
τ , 1−3

√
τ) we have 0 < t± τχ < 1; thus max{0,min{1, t± τχ}} = t± τχ.

As for every χ ∈ B+
1 (I, C) we have v(χ) = 1

2 (f(µ(χ))− f(µ(1−χ)) + f(µ(1)))
we obtain

ΨD(v)(χ) = lim
τ→0+

( 1∫
0

I√τ (t)
f(µ(t) + τµ(χ))− f(µ(t)− τµ(χ))

4τ
dt+

1∫
0

I√τ (t)
f(µ(1− t)− τµ(χ))− f(µ(1− t) + τµ(χ))

4τ
dt+ (18)

3
√
τ∫

0

v̄(t+ τχ)− v̄(t− τχ)

2τ
dt+

∫ 1

1−3
√
τ

v̄(t+ τχ)− v̄(t− τχ)

2τ
dt
)
.

By a change of variable t 7→ (1− t) in line (18) we obtain

ΨD(v)(χ) = lim
τ→0+

( 1∫
0

I√τ (t)
f(µ(t) + τµ(χ))− f(µ(t)− τµ(χ))

2τ
dt+

3
√
τ∫

0

v̄(t+ τχ)− v̄(t− τχ)

2τ
dt+

∫ 1

1−3
√
τ

v̄(t+ τχ)− v̄(t− τχ)

2τ
dt
)
. (19)

Notice that it is sufficient to prove that the sum in line (19) diminishes to
0 as τ → 0+ for each χ; if this is true then the substitution x = µ(χ) proves
the lemma. Denote this sum by Sτ (χ). Then by a change of variable t 7→ 1− t
in the second summand we obtain

Sτ (χ) =

3
√
τ∫

0

v̄(t+ τχ)− v̄(t− τχ)

2τ
dt+

∫ 3
√
τ

0

v̄(1− (t− τχ))− v̄((1− (t+ τχ))

2τ
dt =

3
√
τ∫

0

v̄(t+ τχ)− v̄(t− τχ)

τ
dt.
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Let χ = χ+ − χ− where χ± ≥ 0. Then

Sτ (χ) =
1

τ

3
√
τ∫

0

[(v̄(t+ τχ)− v̄(t+ τχ+)) + (v̄(t+ τχ+)− v̄(t)) + (20)

(v̄(t)− v̄(t− τχ−)) + (v̄(t− τχ−)− v̄(t− τχ)] dt.

Consider the first summand in Equation (20). Let m(τ) be the minimal
integer s.t. mτ ‖χ‖ ≥ 3

√
τ . Then∣∣∣∣∣∣∣

1

τ

3
√
τ∫

0

(v̄(t+ τχ)− v̄(t+ τχ+)) dt

∣∣∣∣∣∣∣ ≤ (21)

1

τ

m(τ)−1∑
i=0

(i+1)τ ||χ||∫
iτ ||χ||

|v̄(t+ τχ)− v̄(t+ τχ+)| dt =

1

τ

τ ||χ||∫
0

m(τ)−1∑
i=0

|v̄(t+ iτ ||χ||+ τχ)− v̄(t+ iτ ||χ||+ τχ+)|

 dt. (22)

Denote by V (τ, χ) the supremum of the variation of v̄ along all finite chains
Ω : g0 ≤ g1 ≤ ... ≤ g2`−2 ≤ g2`−1 ≤ 3

√
τ s.t.:

(a) g2i = ti + γiχ, and
(b) g2i+1 = g2i + γiχ−, where for every 0 ≤ i ≤ `− 1

(i) 0 < γi ≤ γi+1 ≤ τ , and
(ii) ti+1 − ti ≥ γi+1 ‖χ‖.

Thus, lines (21) and (22) above yield∣∣∣∣∣∣∣
1

τ

3
√
τ∫

0

(v̄(t+ τχ)− v̄(t+ τχ+)) dt

∣∣∣∣∣∣∣ ≤ V (τ, χ).

We shall prove that lim
τ→0+

V (τ, χ) = 0. Suppose, by contradiction, that we

find some c > 0 and a decreasing sequence of positive integers τn ↘ 0+ s.t
V (τn, χ) ≥ c for each n ∈ N. Choose n1 = 1 and given τn1 = τ1 choose
an increasing chain Ω1 : g10 ≤ g11 ≤ ... ≤ g12`1−2 ≤ g12`1−1 ≤ 3

√
τn1 of

the form g12i = t1i + γ1i χ, g12i+1 = g12i + γ1i χ−, where t1i and γ1i satisfy the
conditions (i) and (ii) above for each 1 ≤ i ≤ `1, and s.t. the variation V1
of v̄ along this chain is at least c

2 . Notice that g13 > t1 > 0; thus we may
choose n2 > n1 s.t. 3

√
τn2
≤ t1 < g13 . Continue in this manner to choose an

increasing sequence of integers {nk}∞k=1 s.t. for each k ≥ 1 there is an increasing
chain Ωk : gk0 ≤ gk1 ≤ .... ≤ gk2`k−1 ≤ 3

√
τnk of the form gk2i = tki + γki χ,

gk2i+1 = gk2i + γki χ−, where tki and γki satisfy conditions (i) and (ii) above
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for each 1 ≤ i ≤ `k, the variation Vk of v̄ along this chain is at least c
2 ,

and gk3 ≥ 3
√
τnk+1

. Consider now the variation V ′k of v̄ along the increasing

chain Ω′k : 3
√
τnk+1

≤ gk3 ≤ gk4 ≤ ... ≤ gk2`k−1 ≤ 3
√
τnk . Then lim

k→∞
V ′k =

0, as otherwise we may use the sequence of increasing chains {Ωk}∞k=1 to
construct11 a sequence of increasingly long chains along which the variation
of v̄ is unbounded, which yields a contradiction. Thus

lim inf
k→∞

3∑
i=1

|v̄(gki )− v̄(gki−1)| = lim inf
k→∞

(Vk − V ′k) ≥ c

2
> 0,

which contradicts the continuity of v̄ at 0, and hence lim
τ→0+

V (τ, χ) = 0. Ap-

plying the same reasoning to the rest of the summands that constitute Sτ (χ)
yields

lim
τ→0+

Sτ (χ) = 0,

which proves the proposition. ut

We are now ready to begin the proof of Proposition II. We start with the
following lemma, a version of a lemma from [5] which we specialize to suit our
own needs. The proof of the specialized version is a straightforward corollary
of the proof given in [5] together with Proposition 2. Nevertheless, we give the
proof here for the benefit of the reader.

Lemma 8 For every f ◦ µ ∈ Q0 and λ-a.e. x ∈ Rn,

∣∣∣∣∣∣∣
 lim
τ→0+

1∫
0

I√τ (t)
f(µ(t) + τx)− f(µ(t)− τx)

2τ
dt

′
µ(S)

∣∣∣∣∣∣∣ ≤ ‖f ◦ µ‖ .

Proof By Proposition 2 and [5, Theorem 2]

[
lim
τ→0+

1∫
0

I√τ (t) f(µ(t)+τx)−f(µ(t)−τx)2τ dt

]′
µ(S)

exists for λ-a.e. x ∈ Rn (as Pµ � λ). Let x ∈ Rn s.t. the directional derivative
above exists and 0 < η ≤ 1. Then by the triangle inequality we obtain for any

11 By simply concatenating them.
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sufficiently small τ > 0

1

2τη

∣∣∣ 1∫
0

I√τ (t)(f(µ(t) + τx+ ητµ(S))− f(µ(t)− τx− ητµ(S))−

f(µ(t) + τx) + f(µ(t)− τx))dt
∣∣∣ ≤

1

2τη

∣∣∣∣∣∣
1∫

0

I√τ (t) (f(µ(t) + τx+ ητµ(S))− f(µ(t) + τx)) dt

∣∣∣∣∣∣+
1

2τη

∣∣∣∣∣∣
1∫

0

I√τ (t) (f(µ(t)− τx− ητµ(S))− f(µ(t)− τx)) dt

∣∣∣∣∣∣ ≤ (23)

‖f ◦ µ‖ ,

where the inequality in line (23) follows for any sufficiently small τ > 0, which
may be chosen independently of η, by setting ε = inf

α∈[−1,1]
1

1+2||x+αµ(S)||µ in

Lemma 5. Hence, taking first τ → 0+ and then η → 0+ proves the lemma. ut

Recall that the density ξµ of Pµ was approximated by functions ξεµ ∈
C∞c (Rn) and that Qεµ was the measure whose density is ξεµ (see Section 3.2).
Let ε > 0. We first replace Pµ in Proposition 2 by its approximated measure
Qεµ and prove that the error term diminishes to 0 as ε→ 0+:

Lemma 9 For every game f ◦ µ ∈ Q0 and every coalition S ∈ C

ΨM (f ◦ µ)(S) =∫  lim
τ→0+

1∫
0

I√τ (t)
f(µ(t) + τx)− f(µ(t)− τx)

2τ
dt

′
µ(S)

dQεµ(x) + o(1)

as ε→ 0+

Proof Recall that by Proposition 2 we have

ΨM (f ◦ µ)(S) =∫  lim
τ→0+

1∫
0

I√τ (t)
f(µ(t) + τx)− f(µ(t)− τx)

2τ
dt

′
µ(S)

dPµ(x).

By Lemma 8 we have

∣∣∣∣∣
[

lim
τ→0+

1∫
0

I√τ (t) f(µ(t)+τx)−f(µ(t)−τx)2τ dt

]′
µ(S)

∣∣∣∣∣ ≤ ‖f ◦ µ‖
for λ-a.e. x ∈ Rn, and by Corollary 1

∥∥Pµ −Qεµ∥∥1 = o(1) as ε → 0+. Hence,
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as Pµ, Q
ε
µ � λ, we obtain

ΨM (f ◦ µ)(S) =∫  lim
τ→0+

1∫
0

I√τ (t)
f(µ(t) + τx)− f(µ(t)− τx)

2τ
dt

′
µ(S)

dPµ(x) =

∫  lim
τ→0+

1∫
0

I√τ (t)
f(µ(t) + τx)− f(µ(t)− τx)

2τ
dt

′
µ(S)

dQεµ(x)+

∫  lim
τ→0+

1∫
0

I√τ (t)
f(µ(t) + τx)− f(µ(t)− τx)

2τ
dt

′
µ(S)

(dPµ(x)− dQεµ(x)) =

∫  lim
τ→0+

1∫
0

I√τ (t)
f(µ(t) + τx)− f(µ(t)− τx)

2τ
dt

′
µ(S)

dQεµ(x) + o(1)

as ε→ 0+. ut

Lemma 10 For every ε > 0 there is some V (f ◦ µ, ε) > 0 s.t.

sup
x∈Bεµ

∣∣∣∣∣∣ lim
τ→0+

1

2τ

1∫
0

I√τ (t)(f(µ(t) + τx)− f(µ(t)− τx))dt

∣∣∣∣∣∣ ≤ V (f ◦ µ, ε).

Proof Let x ∈ Bεµ and let ω ∈ B(I, C) be s.t. µ(ω) = 2x and ‖ω‖ ≤ 2
ε . Then∣∣∣∣∣∣

1∫
0

I√τ (t)
f(µ(t) + τx)− f(µ(t)− τx)

2τ
dt

∣∣∣∣∣∣ =

1

2

∣∣∣∣∣∣
1∫

0

I√τ (t)
f(µ(t) + τ(−x) + τµ(ω))− f(µ(t) + τ(−x))

τ
dt

∣∣∣∣∣∣ ≤ (24)

1

2
‖f ◦ µ‖ (‖ω+‖+ ‖ω−‖) ≤ ‖f ◦ µ‖ ‖ω‖ ≤

2 ‖f ◦ µ‖
ε

.
= V (f ◦ µ, ε),

where the inequality in line (24) follows for any sufficiently small τ (whose
choice depends on f ◦ µ, ‖w‖, and ε) by applying Lemma 5 (with η = 1). By
taking τ → 0+ and then the supremum we are done. ut

Proof of Proposition II: Let ε > 0. By Lemma 9 and the definition of
Qεµ and ξεµ we have

ΨM (f ◦ µ)(S) = (25)∫  lim
τ→0+

1∫
0

I√τ (t)
f(µ(t) + τx)− f(µ(t)− τx)

2τ
dt

′
µ(S)

ξεµ(x)dλ(x) + o(1)
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as ε → 0+. For convenience, let F (τ, x) =
1∫
0

I√τ (t) f(tµ(I)+τx)−f(tµ(I)−τx)2τ dt

and F (x) = lim
τ→0+

F (τ, x). By Lemma 8 we have

∣∣∣F ′µ(S)(x)
∣∣∣ ≤ ‖f ◦ µ‖

for λ-a.e. x ∈ Bεµ. By Lemma 10 we have

|F (x)| ≤ V (f ◦ µ, ε)

for λ-a.e. x ∈ Bεµ. By Lemma 5 and the triangle inequality we have

sup
x∈Bεµ

∣∣∣∣F (x+ ηµ(S))− F (x)

η

∣∣∣∣ ≤ 2 ‖f ◦ µ‖

for every sufficiently small η > 0. Thus F and F ′µ(S) are bounded λ-a.e. on

supp(ξεµ) ⊂ Bεµ and F (x+ηµ(S))−F (x)
η is uniformly bounded λ-a.e. for any suf-

ficiently small η > 0 on supp(ξεµ) ⊂ Bεµ. Hence by applying Lemma 1 to
Equation (25) we obtain

ΨM (f ◦ µ)(S) = −
∫
F (x)∂µ(S)ξ

ε
µ(x)dλ(x) + o(1) (26)

as ε → 0+. Using first the ‖·‖∞ boundedness of ∂µ(S)ξ
ε
µ and then applying

Lemma 10 we obtain∣∣F (τ, x)∂µ(S)ξ
ε
µ(x)

∣∣ ≤ |F (τ, x)| · ||∂µ(S)ξεµ||∞ ≤ 2V (f ◦ µ, ε) ·
∥∥∂µ(S)ξεµ∥∥∞

for any small enough τ , say τ < ε2, for every x. Thus, by applying the domi-
nated convergence theorem to the right–hand side of Equation (26) we obtain

ΨM (f ◦ µ)(S) = − lim
τ→0+

∫
F (τ, x)∂µ(S)ξ

ε
µ(x)dλ(x) + o(1) (27)

as ε→ 0+. As the integration is supported on Bεµ and we assume that τ < ε2,
then by the definition of G√τ (see Remark 2) we can substitute

F (τ, x) = G√τ (x)−G√τ (−x)

in Equation (27). Thus

ΨM (f ◦ µ)(S) = (28)

lim
τ→0+

1

2

[∫
G√τ (−x) · ∂µ(S)ξεµ(x)dλ(x)−

∫
G√τ (x) · ∂µ(S)ξεµ(x)dλ(x)

]
+ o(1)
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as ε→ 0+. Set δ =
√
τ . By applying part (ii) of Lemma 6 to the first summand

in Equation (28) and Proposition 1 to the second summand in Equation (28)
we obtain

ΨM (f ◦ µ)(S) =

lim
δ→0+

1

2

[∫
ξεµ(x)dζδ(f, µ(S))(x) +

∫
ξεµ(−x)dζδ(f, µ(S))(x)

]
+ o(1)

as ε→ 0+. Thus by part (i) of Lemma 6,

ΨM (f ◦ µ)(S) = lim
δ→0+

∫
ξεµ(x)dζδ(f, µ(S))(x) + o(1)

as ε→ 0+.But

lim sup
δ→0+

∣∣∣∣∫ (ξδµ(x)− ξεµ(x))dζδ(f, µ(S))(x)

∣∣∣∣ ≤ lim sup
δ→0+

√
nK(f, µ)

∥∥ξδµ − ξεµ∥∥1 =

√
nK(f, µ)

∥∥ξµ − ξεµ∥∥1 = o(1)

as ε→ 0+. Therefore

ΨM (f ◦ µ)(S) = lim
δ→0+

∫
ξδµ(x)dζδ(f, µ(S))(x) + o(1)

as ε→ 0+, which proves Proposition II, and our Main Theorem follows.

Acknowledgements The author would like to thank his Ph.D. advisor Professor Abraham
Neyman for his support and guidance and to Professor Dov Monderer for his valuable
comments. The author is also grateful to an anonymous subeditor and an anonymous referee
for their illuminating comments.

References

1. R.J. Aumann and S. Hart., Handbook of Game Theory, with Economic Applications,
Vol. III, North-Holland, 2002.

2. R.J. Aumann and L.S. Shapley, Values of Non-Atomic Games, Princeton University
Press, 1974.

3. G.B. Folland, Real Analysis: Modern Techniques and Their Applications, Weily-
Interscience, 1999.

4. E. J. McShane, Extension of range of functions, Bull. Amer. Math. Soc., 40:837–842,
1934.

5. J.F. Mertens, The Shapley value in the non-differentiable case, International Journal of
Game Theory, 17:1-65, 1988.

6. A. Neyman, Values of non-atomic vector measure games, Israel J. Math, 124:1-27, 2001.
7. A. Neyman and R. Smorodinsky, Asymptotic values of vector measure games. Mathe-

matics of Operations Research, 29:739–775, 2004.
8. L.S. Shapley, A value for n-person games, in H.W. Kuhn and A.W. Tucker, editors,

Contributions to the Theory of Games, Vol. II, pages 307-317, Princeton University Press,
1953.

9. Y. Tauman, Value on a class of non-differentiable market games, International Journal
of Game Theory, 10:155-162, 1981


