C-reactive protein in intracerebral hemorrhage: Time course, tissue localization, and prognosis

Mario Di Napoli, Daniel Agustin Godoy, Veronica Campi, et al.

Neurology; Published online before print August 1, 2012;
DOI 10.1212/WNL.0b013e318264e3be

This information is current as of August 13, 2012

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://www.neurology.org/content/early/2012/08/01/WNL.0b013e318264e3be
C-reactive protein in spontaneous intracerebral hemorrhage

Time course, tissue localization, and prognosis

ABSTRACT

Objectives: We examined the C-reactive protein (CRP) response after spontaneous intracerebral hemorrhage (sICH) and its relationship to outcome. We additionally characterized early brain localization of CRP.

Methods: In this prospective, multicenter, international, collaborative, longitudinal study with cross-sectional immunohistochemical analysis of brain tissue, 223 patients (M/F: 132/91) were recruited during the 2010 calendar year. CRP was evaluated at admission (median 93 minutes from symptom onset), 24 hours, 48 hours, and 72 hours after sICH. Brains of 5 subjects with sICH were compared to brains of 2 aged controls without evidence of brain pathology and 7 patients with ischemic stroke. Plasma CRP was measured over 72 hours following sICH and its relationship to 30-day mortality and functional outcome at 30 days (Glasgow Outcome Scale) was determined. CRP immunostaining patterns were analyzed in samples of sICH autopsy brains.

Results: Plasma CRP increased over the 48 hours from admission and was significantly (p < 0.001) related to hematoma volume at later time points. The predictive utility of CRP for morbidity and mortality were maintained when adjusted for other risk factors and improved at 48 hours and 72 hours when compared with admission values. Although an early CRP localization was present in both ischemic and hemorrhagic lesions, an intense and diffuse neuropil staining was only present in sICH patients and particularly evident proximal to the hemorrhagic areas.

Conclusions: Plasma CRP production increases markedly over the 48 hours to 72 hours period following sICH and is related to outcome. CRP is also present in large amounts around the hemorrhagic lesion and within neurons and glia of patients who died within 1.2 hours of sICH. Neurology® 2012;79:690–699

GLOSSARY

AUC = area under receiver operator characteristic curve; CI = confidence interval; CRP = C-reactive protein; GCS = Glasgow Coma Scale; GOS = Glasgow Outcome Scale; HR = hazard ratio; IL-6 = interleukin-6; IVH = intraventricular extension; LR = likelihood ratio; oICH = Hemphill’s original ICH score; sICH = spontaneous intracerebral hemorrhage.

Experimental and clinical studies indicate that inflammation is involved in the progression of brain injury after spontaneous intracerebral hemorrhage (sICH). These pathologic mechanisms include immunologic, endothelial dysfunction, and coagulopathy, contributing to morbidity and mortality.3

Increased C-reactive protein (CRP) has been shown previously to relate to poor outcome after sICH.4–6 However, direct pathophysiologic evidence that it participates in local inflammatory response is lacking.3 Potential limitations of previous studies of inflammatory markers in sICH include the possibility that the systemic acute-phase response may have been attributable to accompanying infection in some cases, and that the inflammatory and CRP response...
could still be evolving. Additionally, changes in CRP levels beyond the initial 24 hours after sICH have not been analyzed in detail, yet these may be more reflective of the inflammatory response to sICH. Therefore, the primary aim of our study was to evaluate the kinetics of plasma CRP concentrations after acute sICH, up to 72 hours, and the relationship with clinical outcomes. To investigate a possible role of CRP in local inflammatory responses, we examined CRP localization by performing immunohistochemical studies on brain specimens obtained from patients who died within 12 hours after sICH.

METHODS Participants were included in a prospective, multicenter international observational collaborative project, the aims of which are to study the pathophysiology of the inflammatory response and to determine the prognostic value of inflammatory biomarkers after sICH. Details of the study methodology are given in the supplemental Subjects and Methods on the Neurology® Web site at www.neurology.org.

Briefly, patients admitted with a diagnosis of sICH within 24 hours of symptom onset had baseline clinical data recorded on an electronic form, including demographic data, medical history, risk factors, presence of comorbidities, physical examination findings, Glasgow Coma Scale (GCS) after resuscitation, Hemphill’s original ICH (sICH) score, standard routine laboratory panels, and CT scan findings.

Of the participants recruited during 2010 (n = 384), only patients with serial blood samples within the first 72 hours and complete clinical and neuroradiologic variables were considered eligible for the current analysis (figure e-1). To avoid confounding effects, we excluded patients with a history of acute or chronic infections in the 4 weeks before sICH or those with clinical evidence of acute infection at admission, as well as those with other concurrent inflammatory comorbidities (n = 62). A further 99 patients were also excluded for other reasons (figure e-1). Following this screening procedure, 223 patients were included.

Surgical treatment was performed according to local protocols at participating institutions based on the guidelines of the Stroke Council of the American Heart Association and European Stroke Initiative.

CRP measurements. In all patients the first plasma CRP concentration (CRP₁₂₄₅₆) was determined immediately after admission. The second CRP measurement was done at 24 hours (CRP₂₄₅₆), the third at 48 hours (CRP₄₈₅₆), and the fourth at 72 hours (CRP₇₂₅₆₆) after symptom onset. CRP analysis was performed locally using high-sensitivity immunoturbidimetric assays with similar performance characteristics.

Neuroradiologic analysis. The initial CT brain scan after admission was reviewed and classified according to site of sICH (basal ganglia, thalamic, lobar, pontine, cerebellar, or other), volume of hematoma measured using the ABC/2 method, midline shift (by measuring the displacement of the septum pellucidum from the midline), intraventricular extension (IVH), and presence of hydrocephalus. Investigators who read CT scans were blinded to clinical information.

Neuropathology: processing of tissue specimens and immunohistochemistry. To analyze early CRP brain localization after sICH, formalin-fixed, paraffin-embedded archived brain tissue blocks containing both lesional and perilesional areas were selected from 5 sICH patients who died within 12 hours (mean 8; range 4–12 hours). Seven ischemic stroke patients who died within 12 hours (mean 7; range 4–12 hours) and 2 subjects without brain pathology were used as controls. All brain tissue samples were obtained from patients recruited in the Clinic of Neurology (University of Medicine and Pharmacy, Craiova, Romania).

Immunohistochemistry was performed using anti-CRP monoclonal antibody (mouse antihuman, Clone 1, IgG₂b, Genetex, 1:100) recognizing human CRP. Negative controls showed no abnormal crossreactivity. Double immunofluorescence was performed for anti-CRP and anticolonagen IV (rabbit antihuman, Novus Biologicals, 1:1,000).

Outcome measurements. The primary outcome was 30-day mortality. The secondary outcome was 30-day functional outcome assessed using Glasgow Outcome Scale (GOS) dichotomized into “poor” (GOS scores 2–3, or death) or “good” (GOS 4–5). For patients in whom 30-day outcome was not available from medical records (n = 21), follow-up data were obtained from visits using a standardized questionnaire. The cause of death was confirmed by available medical records and no patients were lost to follow-up. Information regarding inflammatory markers was not used to modify treatment during in-hospital and follow-up periods.

Statistical analyses. All values are given as mean and SD or median and interquartile range, according to manner of distribution. Differences between 2 groups were assessed with independent t tests, the Fisher exact test, or the Wilcoxon test, as appropriate. The differences between CRP₁₂₄₅₆, CRP₂₄₅₆, CRP₄₈₅₆, and CRP₇₂₅₆₆ were analyzed using a 1-way analysis of variance with Bonferroni correction if the overall test was significant. p Values were corrected for sphericity violation when appropriate.

For the calculation of Pearson correlation coefficients, we logarithmically transformed positively skewed CRP data to obtain a normal distribution. CRP increase was defined as 1 log₁₀ unit/1 increase between 2 measurements.

CRP concentrations were divided into tertiles to identify nonlinear effects of the CRP and provide more stable risk estimates. We used Kaplan-Meier survival curves to compare event-free survival between groups of patients defined by tertiles of CRP and compared curves with log-rank trend tests.

We used Cox regression analysis to calculate unadjusted hazard ratios (HR) and 95% confidence intervals (95% CI) per log₁₀ unit increase in CRP levels. Logarithmic transformation of the CRP measurement was entered into the Cox regression analysis. To evaluate the impact of study variables and the different time-dependent CRP concentrations on 30-day mortality and poor outcome, we built 2 multivariate Cox regression models, adding variables sequentially that were associated in univariable analysis, keeping those variables that significantly improved the fit of the model (likelihood ratio [LR] test p < 0.05). When the model...
was complete, we tested the proportional hazards assumption and its goodness of fit. We looked for first order interactions of CRP levels with other variables in the final model by adding multiplicative terms.

C-statistics (area under receiver operator characteristic curves [AUC]) were calculated to estimate predictive discriminability ability by a nonparametric method for each CRP time point. The 95% CIs were constructed using DeLong variance estimate. Sensitivity and specificity to predict the primary and secondary endpoints were calculated at various cutoff points to identify the best Youden index (J) of diagnostic test for a comparison among the different CRP time points. The CRP time point performance was computed using the cutoff values that generated the best J. A calculated difference of \(p < 0.05 \) was considered significant.

RESULTS

Patient characteristics.
A total of 132 men and 91 women (M/F ratio: 1.45; mean age, 67.4 ± 11.8 years) were included in this study (figure e-1 and table 1). Plasma samples were available from all 223 patients on admission, but from only 126 at 72 hours. Forty-four (19.7%) patients underwent surgical hematoma evacuation; 22 (50%) of them at admission, a further 16 within 24 hours, and the others within the first 52 hours after sICH onset. At 30 days, 68 (30.5%) patients were dead. Deaths were attributable to the initial sICH or rebleeding in 55 cases (80.9%) and systemic complications in 13 cases (19.1%). After 30-day follow-up, 49% (n = 109) of the patients showed a good functional outcome (GOS 4 and 5).

CRP kinetics.
The median time from symptom onset to the admission CRP measurement was 93 minutes (48–275 minutes). CRP concentration increased significantly \((p < 0.0001, \text{analysis of variance}) \) from the median value of 7.9 mg/L (4–12 mg/L) at admission to 88.3 mg/L (22–216.4 mg/L) after 72 hours (figure e-2). Post hoc analysis revealed a significant difference between CRP_{Adm}, CRP_{24 hours}, CRP_{48 hours}, or CRP_{72 hours} \((p < 0.0001, \text{for all comparisons}) \). CRP concentration increased from 24 to 48 hours \(\text{(p = 0.0016)} \) and from 24 to 72 hours \(\text{(p = 0.0004)} \), but not from 48 to 72 hours \(\text{(p = 0.424)} \). Relative to CRP_{Adm}, CRP_{24 hours} decreased in 12 patients (5.4%), increased in 190 (85.2%), and remained stable in 13 (5.8%). CRP peak was reached in 52 patients (23.3%) at 24 hours, 60 patients (26.9%) at 48 hours, and 46 patients (20.6%) at 72 hours.

Neuroradiologic findings.
The median hematoma volume was 18 mL (8–37). The hematoma volume was larger in patients with an unfavorable outcome \((44.5 \text{ mL} \ [20.5–82.5] \text{ vs } 12 \text{ mL} \ [8–23]; \ p < 0.0001) \) and with a worse functional outcome \((30 \text{ mL} \ [15–60] \text{ vs } 10 \text{ mL} \ [6–18]; \ p < 0.0001) \). Increased CRP concentration significantly correlated with a larger initial hematoma volume only for the later measurements. The Pearson correlation coefficients for the relationship between hematoma volume and the natural logarithm of CRP at the different time points were CRP_{Adm} \(r = 0.1 \text{(p = 0.1416)} \); CRP_{24 hours} \(r = 0.43 \text{(p < 0.0001)} \); CRP_{48 hours} \(r = 0.51 \text{(p < 0.0001)} \); CRP_{72 hours} \(r = 0.45 \text{(p < 0.0001)} \).

Neuropathologic findings.
General neuropathologic evaluation in sICH patients confirmed petechial or large hemorrhages surrounded by softened cerebral discolored, edematous brain tissue, ventricular blood inundation, and asymmetric enlargement. All cases presented fresh hemorrhages, without any glotic surrounding reactions. Ischemic lesions were characterized by cavitation and surrounding gliosis.

CRP was detected to different extents and patterns in sICH and ischemic stroke patients (table e-1). Thus, for the immediate perihemorrhagic areas, a diffuse neuropil staining was present, together with almost all cells’ silhouettes taking up the stain (figure 1A). Further away from the hemorrhagic core, the diffuse staining pattern diminished, but with some neurons clearly retaining an affinity for the antibody. Although distant from the hemorrhage, white matter fiber tracts showed relatively intense staining for CRP, especially those surrounding intracallosal vessels (figure 1B). Focal intravascular staining sometimes was observed (figure 1C), and only on occasion were microglia-like cells immunoreactive for CRP (figure 1D).

In the region immediately surrounding an ischemic liquefaction area, a high number of gemistocytic astrocytes was noted (figure 1E), while further away from the lesion core numerous neuronal silhouettes were observed (figure 1, F–H). On occasion, diffuse staining could be noted along the white matter tracts and blood vessels. Vascular walls and sometimes plasma inside the vessel were again stained, and this observation seemed to be constant for the respective area of the lobe.

In the control brain, and in the hemispheres contralateral to the lesion, only occasional neuronal silhouettes were stained, with their respective densities being clearly lower compared to the lesioned (ipsilateral) hemispheres (figure 1, I and J). By immunofluorescence, CRP could be clearly localized inside blood vessels (figure 1K), and in the cytoplasm of activated astrocytes (figure 1L) and neurons (figure 1M).

Associations between CRP at different time points with death and poor outcome.
Survival of patients according to CRP_{Adm}, CRP_{24 hours}, CRP_{48 hours}, and CRP_{72 hours} tertiles is shown in figure 2. The relationship between CRP and mortality was determined to be nonlinear by the use of tertile analysis. The
Table 1 Baseline characteristics of sICH patients

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Total (n = 223)</th>
<th>30-day mortality (n = 68)</th>
<th>HR</th>
<th>95% CI</th>
<th>p Value</th>
<th>30-day poor outcome (n = 115)</th>
<th>HR</th>
<th>95% CI</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, y, mean (SD)</td>
<td>67.4 (11.8)</td>
<td>68.9 (12.5)</td>
<td>1.01</td>
<td>0.99-1.04</td>
<td>0.1572</td>
<td>69.0 (12.5)</td>
<td>1.02</td>
<td>1.01-1.03</td>
<td>0.0457</td>
</tr>
<tr>
<td>Male sex, n (%)</td>
<td>132 (59.2)</td>
<td>41 (60.3)</td>
<td>1.02</td>
<td>0.61-1.66</td>
<td>0.9304</td>
<td>72 (62.6)</td>
<td>1.14</td>
<td>0.79-1.66</td>
<td>0.4414</td>
</tr>
<tr>
<td>GCS score, median (IQR)</td>
<td>13 (9-19)</td>
<td>7 (4-10)</td>
<td>0.71</td>
<td>0.67-0.76</td>
<td><0.0001</td>
<td>10 (6-13)</td>
<td>0.75</td>
<td>0.71-0.79</td>
<td><0.0001</td>
</tr>
<tr>
<td>sICH score, median (IQR)</td>
<td>1 (0-3)</td>
<td>3 (2-4)</td>
<td>3.19</td>
<td>2.55-3.99</td>
<td><0.0001</td>
<td>3 (2-4)</td>
<td>2.44</td>
<td>2.09-2.85</td>
<td><0.0001</td>
</tr>
<tr>
<td>Vascular risk factors, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arterial hypertension</td>
<td>183 (82.1)</td>
<td>54 (79.4)</td>
<td>1.22</td>
<td>0.68-2.20</td>
<td>0.5042</td>
<td>94 (81.7)</td>
<td>1.07</td>
<td>0.67-1.73</td>
<td>0.7646</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>61 (27.4)</td>
<td>25 (36.8)</td>
<td>1.66</td>
<td>1.02-2.72</td>
<td>0.0434</td>
<td>35 (30.4)</td>
<td>1.32</td>
<td>0.89-1.97</td>
<td>0.1642</td>
</tr>
<tr>
<td>Alcohol abuse</td>
<td>58 (27.1)</td>
<td>23 (32.9)</td>
<td>1.51</td>
<td>0.91-2.50</td>
<td>0.1078</td>
<td>34 (29.6)</td>
<td>1.32</td>
<td>0.88-1.97</td>
<td>0.1787</td>
</tr>
<tr>
<td>Cigarette smoking</td>
<td>65 (29.2)</td>
<td>18 (26.5)</td>
<td>0.85</td>
<td>0.49-1.45</td>
<td>0.5406</td>
<td>36 (31.3)</td>
<td>1.06</td>
<td>0.72-1.57</td>
<td>0.7702</td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
<td>62 (27.8)</td>
<td>21 (30.9)</td>
<td>1.18</td>
<td>0.70-1.97</td>
<td>0.5335</td>
<td>31 (27.0)</td>
<td>0.99</td>
<td>0.66-1.50</td>
<td>0.9770</td>
</tr>
<tr>
<td>Use of antiplatelet/oral anticoagulant therapy</td>
<td>37 (16.6)</td>
<td>14 (20.6)</td>
<td>1.11</td>
<td>0.72-2.54</td>
<td>0.2498</td>
<td>19 (16.5)</td>
<td>1.10</td>
<td>0.67-1.80</td>
<td>0.7014</td>
</tr>
<tr>
<td>Biochemistry and vital signs on hospital arrival</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRP<sub>Adm</sub>, mg/L, median (IQR)</td>
<td>7.9 (4-12)</td>
<td>10.0 (5.9-19.1)</td>
<td>1.13</td>
<td>1.09-1.18</td>
<td><0.0001</td>
<td>8.6 (6.8-12.1)</td>
<td>1.04</td>
<td>1.02-1.06</td>
<td><0.0001</td>
</tr>
<tr>
<td>CRP<sub>24 hours</sub>, mg/L, median (IQR)</td>
<td>46 (12-99)</td>
<td>103.1 (50.0-384.0)</td>
<td>0.99</td>
<td>0.98-1.00</td>
<td>0.0776</td>
<td>170 (140-200)</td>
<td>1.00</td>
<td>0.99-1.01</td>
<td>0.0807</td>
</tr>
<tr>
<td>CRP<sub>48 hours</sub>, mg/L, median (IQR)</td>
<td>70 (18-192)</td>
<td>331.0 (189.0-726.0)</td>
<td>1.19</td>
<td>1.14-1.24</td>
<td><0.0001</td>
<td>90 (7.3-13.0)</td>
<td>1.17</td>
<td>1.12-1.21</td>
<td><0.0001</td>
</tr>
<tr>
<td>CRP<sub>72 hours</sub>, mg/L, median (IQR)</td>
<td>88.3 (22-216.4)</td>
<td>384.0 (150-768.0)</td>
<td>0.99</td>
<td>0.98-1.01</td>
<td>0.5047</td>
<td>70 (50-90)</td>
<td>1.07</td>
<td>0.98-1.00</td>
<td>0.0683</td>
</tr>
<tr>
<td>BG, mmol/L, median (IQR)</td>
<td>7.6 (6.1-10.6)</td>
<td>10.6 (8.2-13.3)</td>
<td>1.19</td>
<td>1.14-1.24</td>
<td><0.0001</td>
<td>8.6 (6.8-12.1)</td>
<td>1.04</td>
<td>1.02-1.06</td>
<td><0.0001</td>
</tr>
<tr>
<td>WBC, 10<sup>3</sup>/L, median (IQR)</td>
<td>8.1 (6.5-9.9)</td>
<td>9.9 (8.7-15.6)</td>
<td>1.19</td>
<td>1.14-1.24</td>
<td><0.0001</td>
<td>9.0 (7.3-13.0)</td>
<td>1.17</td>
<td>1.12-1.21</td>
<td><0.0001</td>
</tr>
<tr>
<td>SBP, mm Hg (IQR)</td>
<td>170 (150-200)</td>
<td>170 (130-200)</td>
<td>0.99</td>
<td>0.98-1.00</td>
<td>0.0776</td>
<td>170 (140-200)</td>
<td>1.00</td>
<td>0.99-1.01</td>
<td>0.0807</td>
</tr>
<tr>
<td>DBP, mm Hg (IQR)</td>
<td>100 (80-110)</td>
<td>100 (80-110)</td>
<td>0.99</td>
<td>0.98-1.01</td>
<td>0.2568</td>
<td>100 (80-110)</td>
<td>0.99</td>
<td>0.98-1.01</td>
<td>0.3342</td>
</tr>
<tr>
<td>PP, mm Hg (IQR)</td>
<td>80 (60-90)</td>
<td>70 (50-90)</td>
<td>0.99</td>
<td>0.98-1.00</td>
<td>0.0997</td>
<td>70 (50-90)</td>
<td>0.99</td>
<td>0.98-1.00</td>
<td>0.0683</td>
</tr>
<tr>
<td>Radiologic variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sICH localization, n (%)</td>
<td></td>
<td></td>
<td>0.79</td>
<td>0.38-1.66</td>
<td>0.5408</td>
<td>0.56</td>
<td>0.29-1.07</td>
<td>0.0786</td>
<td></td>
</tr>
<tr>
<td>Basal ganglia</td>
<td>74 (33.2)</td>
<td>25 (36.7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thalamic</td>
<td>61 (27.4)</td>
<td>18 (26.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lobar</td>
<td>57 (25.6)</td>
<td>17 (25.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pontine</td>
<td>11 (4.9)</td>
<td>4 (5.9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerebellar</td>
<td>19 (8.5)</td>
<td>3 (4.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>1 (0.4)</td>
<td>1 (1.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---Continued
estimated risk ratios for 30-day mortality and 30-day poor outcome rose sharply between second and third tertile of CRP (table 2).

Table 2 shows the association between CRP with mortality and poor outcome at different time points. In univariate analyses, CRP concentration at any time was associated with 30-day mortality and poor outcome. After adjusting the final model for confounders (demographic data [age and sex], risk factors [arterial hypertension, diabetes mellitus, alcohol abuse, hypercholesterolemia], markers of sICH severity [oICH score, GCS], neuroimaging abnormalities [ICH volume, IVH, hydrocephalus, midline shift], acute phase biomarkers [blood glucose and leukocytes at admission], therapy), there was still a significant association between mortality or poor outcome and increasing levels of CRP, although attenuated (table 2). Higher CRP concentrations were more strongly associated with death than with poor outcome (table 2).

In this cohort, patients in the highest tertile of CRP72 hours had a 4.74-fold increase in mortality risk compared with those with the lowest tertile, as well as an increased risk of poor outcome (HR 1.74). We added CRP concentration at different time points as continuous variables (in order of the strength of their association with mortality and poor outcome) to the model including demographic data, risk factors, markers of sICH severity, neuroradiologic findings, acute phase biomarkers, and therapy. This significantly improved the original model (LR test $\chi^2 = 160.43$): CRPAdm $\chi^2 = 164.98$; CRP24 hours $\chi^2 = 162.77$; CRP48 hours $\chi^2 = 176.29$; and CRP72 hours $\chi^2 = 172.93$. All final models, including CRP at different time points, fulfilled the proportional hazards assumption and fitted the data well.

Prediction of primary and secondary endpoints. AUCs of CRP concentration and the related measures of performance at different time points for 30-day mortality and 30-day poor outcome are given in table e-2. CRP24 hours (AUC 0.818), CRP48 hours (AUC 0.894), and CRP72 hours (AUC 0.910) showed a better prediction of 30-day mortality when compared with CRPAdm (AUC 0.601; all $p < 0.0001$; DeLong variance estimate). Similarly, later CRP measurements showed a better prediction of 30-day functional outcome, although were less reliable in poor outcome prediction (table e-2). Different cutoff values of CRP concentrations at different time points were tested to generate the highest J value for the diagnostic test; the best results were obtained at different cutoff values for the different time points. For both mortality and poor outcome, the best prediction was obtained with a CRP72 hours concentration of 94.5 mg/L. The J value indicates that the
CRP concentration was a reliable predictor for mortality but less reliable for predicting poor outcome.

DISCUSSION There are 3 major findings in the current study. First, sICH results in a rapid increase in plasma concentration of CRP, that evolves from within a few hours of symptom onset, and the magnitude of the response is related to hematoma volume. Secondly, higher levels of CRP are associated with a higher mortality and poor functional outcome at 30 days. This association is stronger for later CRP measurements than for CRP obtained at admission and is stronger for mortality than for poor functional outcome prediction. Finally, there is very early CRP localization in the brain tissue immediately surrounding the hematoma, suggesting the potential for an active role in the extent of tissue damage after sICH. At the cellular level, CRP seemed to be expressed in the cytoplasm of both neurons and glial cells.

Experimental data demonstrate that an acute inflammatory response to the hematoma can occur within 1 hour. Although a minority of patients (≈6%) showed an absent or minor inflammatory response after sICH, and a similar percentage of patients showed a reduction of CRP concentration within the first 24 hours (data not shown), the peak CRP concentration occurred mainly within 48 hours. It is plausible that this reflects an evolving response induced by those with greater tissue injury, and this may provide an explanation for the stronger relationship between hematoma size and the later CRP response.

sICH precipitates a complex cascade of both cerebral and systemic events. Not only does a local inflammatory response propagate from blood breakdown, but a systemic state of inflammation is also triggered. The acutely injured brain releases a great amount of interleukin-6 (IL-6), the extent of which correlates with severity of brain injury and prognosis. Furthermore, IL-6 is a major stimulus for hepatic production of acute-phase proteins, which is reflected by the elevated levels of CRP found in the systemic circulation of our sICH patients. The CRP immunostaining in brain tissue from patients who died acutely following sICH suggests another potential CRP interaction that may be important during the early phase. It would appear
that CRP is deposited or synthesized in situ within hours, while CRP plasma concentrations usually start to rise after an inflammatory stimulus within 8 to 10 hours. Similarly, in acute ischemic stroke the CRP response appears to be triggered quite rapidly. The presence of brain tissue CRP in early sICH could suggest rapid local synthesis stimulated by the influence of the hematoma or a conversion of the circulating, soluble, pentameric form of CRP to its insoluble, monomeric form.

The overall pattern of anti-CRP immunostaining in sICH was dominated by a diffuse staining throughout the neuropil and the cell bodies immediately surrounding the hematoma. With increasing distance, the diffuse neuropil staining diminished in intensity, but the expression remained elevated in some neurons, glial cells, along white matter tracts, and inside some blood vessels. Therefore we hypothesize that there are 2 sources of CRP in the brain after sICH: a constitutive CRP expression in neurons and astrocytes near the hematoma or damaged tissue and a diffusable CRP from plasma, which would seem likely to be largely independent of synthesis induced following sICH. While native CRP in the plasma is produced predominantly by hepatocytes, extrahepatic CRP production has been reported in neurons, atherosclerotic plaques, monocytes, lymphocytes, and adipocytes. CRP is also expressed in the CNS associated with amyloid plaques and neurofibrillary tangles in affected brain regions in AD, and associated with angiogenic microvessels in peri-infarcted regions of patients with acute ischemic stroke. At the cellular level, CRP seemed to be expressed in the cytoplasm of both neurons and glial cells. Some intensely positive reactive astrocytes, including those around the ischemic liquefaction cores, showed de-
From a clinical perspective, it is interesting to consider the different predictive impacts of the serial CRP measurements during the acute stages of sICH. We found that the initial CRP value within 5 hours of symptom onset showed a weak association with mortality and did not predict functional outcome after 30 days of follow-up. The present study indicates that CRP is a better predictor of mortality and unfavorable outcome than CRP measured in plasma at admission, and that this is improved further with determinations at 48 or 72 hours after sICH onset. On the basis of our results, we propose that measurement of CRP levels between 48 and 72 hours after sICH onset may provide a useful marker to estimate individual inflammatory responses and outcomes.

There are several methodologic strengths of our study. First, consecutive sICH patients with few exclusion criteria and with early baseline sampling and serial measurements of CRP were included. Second, attempts were made to avoid the potential confounding effects of preceding infection or previous inflammatory conditions on interpretation of CRP concentrations. Third, we used several overlapping methods to determine survival status and functional outcome at the end of the follow-up period for the whole cohort, and regular monitoring of data quality, either directly or by review of the medical and imaging records.

However, we also acknowledge that our study has limitations. The association between CRP concentration at the later timepoints and outcome excludes those patients not surviving beyond the initial 24–48 hours, limiting the generalizability of our findings. This, and the fact that we excluded patients with preceding or definite infection at baseline, has implications for the clinical utility of CRP measurements in predicting outcome in clinical practice, where early mortality (within first 48 hours) after sICH is significant, and infection not uncommon. To determine generalizability to other related settings requires external validation using a dataset of sufficient size. We measured plasma CRP as a representative inflammatory marker in this study. Measurement of multiple inflammatory biomarkers, such as uric acid, D-dimer, matrix metalloproteinases, proinflammatory effects. Hence, future immuno-histologic studies, using highly selective antibodies against pentameric CRP and monomeric CRP, would provide additional insight, while in situ hybridization could help to confirm the proposed local source of CRP.

Table 2

<table>
<thead>
<tr>
<th></th>
<th>Hazard ratio per unit increase (95% CI)</th>
<th>Hazard ratio comparing 75th to 25th centile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30-day mortality (n = 68, unadjusted)</td>
<td>30-day poor outcome (n = 115, unadjusted)</td>
</tr>
<tr>
<td></td>
<td>HR 95% CI p Value</td>
<td>HR 95% CI p Value</td>
</tr>
<tr>
<td>CRPAdm mg/L, median (IQR)</td>
<td>1.29 1.02–1.64 0.0330</td>
<td>1.36 1.03–1.80 0.0328</td>
</tr>
<tr>
<td>CRP24 hour mg/L, median (IQR)</td>
<td>1.98 1.67–2.35 <0.0001</td>
<td>1.84 1.57–2.17 <0.0001</td>
</tr>
<tr>
<td>CRP48 hour mg/L, median (IQR)</td>
<td>2.21 1.85–2.65 <0.0001</td>
<td>2.11 1.76–2.51 <0.0001</td>
</tr>
<tr>
<td>CRP72 hour mg/L, median (IQR)</td>
<td>2.21 1.86–2.63 <0.0001</td>
<td>1.86 1.58–2.21 <0.0001</td>
</tr>
<tr>
<td></td>
<td>Adjusted*</td>
<td>Adjusted</td>
</tr>
<tr>
<td>CRPAdm mg/L, median (IQR)</td>
<td>1.36 1.03–1.80 0.0328</td>
<td>1.19 0.98–2.25 0.0596</td>
</tr>
<tr>
<td>CRP24 hour mg/L, median (IQR)</td>
<td>1.24 0.94–1.63 0.1275</td>
<td>1.15 0.93–1.41 0.0586</td>
</tr>
<tr>
<td>CRP48 hour mg/L, median (IQR)</td>
<td>1.75 1.32–2.33 <0.0001</td>
<td>1.36 1.15–1.61 0.0003</td>
</tr>
<tr>
<td>CRP72 hour mg/L, median (IQR)</td>
<td>1.59 1.22–2.07 0.0005</td>
<td>1.33 1.13–1.57 0.0007</td>
</tr>
</tbody>
</table>

Abbreviations: CI = confidence interval; CRP = C-reactive protein; HR = hazard ratio; IQR = interquartile range.

*Final model adjusted for demographic data (age and sex), risk factors (arterial hypertension, diabetes mellitus, alcohol abuse, hypercholesterolemia), markers of spontaneous intracerebral hemorrhage severity (Hemphill’s original ICH score, Glasgow Coma Scale score), neuroradiologic findings (ICH volume, intraventricular extension, hydrocephalus, midline shift), acute phase biomarkers (blood glucose and white blood cells at admission), and therapy.

tailed staining of their processes. Although serum trapped inside blood vessels was sometimes highly reactive, only rarely did endothelial cells themselves express this pentraxin. Our staining results would therefore support the possibility of local production of CRP. As recently demonstrated, damaged cell membranes that are abundant in local inflammation can dissociate pentameric CRP into monomeric CRP, and monomeric CRP is highly active in activating complement. If this cellular staining represents local production of monomeric CRP, this could potentially amplify inflammation via its strong proinflammatory effects. Hence, future immuno-histologic studies, using highly selective antibodies against pentameric CRP and monomeric CRP, would provide additional insight, while in situ hybridization could help to confirm the proposed local source of CRP.

From a clinical perspective, it is interesting to consider the different predictive impacts of the serial CRP measurements during the acute stages of sICH. We found that the initial CRPAdm value within 5 hours of symptom onset showed a weak association with mortality and did not predict functional outcome after 30 days of follow-up. The present study indicates that CRP24 hour is a better predictor of mortality and unfavorable outcome than CRP measured in plasma at admission, and that this is improved further with determinations at 48 or 72 hours after sICH onset. On the basis of our results, we propose that measurement of CRP levels between 48 and 72 hours after sICH onset may provide a useful marker to estimate individual inflammatory responses and outcomes.

There are several methodologic strengths of our study. First, consecutive sICH patients with few exclusion criteria and with early baseline sampling and serial measurements of CRP were included. Second, attempts were made to avoid the potential confounding effects of preceding infection or previous inflammatory conditions on interpretation of CRP concentrations. Third, we used several overlapping methods to determine survival status and functional outcome at the end of the follow-up period for the whole cohort, and regular monitoring of data quality, either directly or by review of the medical and imaging records.

However, we also acknowledge that our study has limitations. The association between CRP concentration at the later timepoints and outcome excludes those patients not surviving beyond the initial 24–48 hours, limiting the generalizability of our findings. This, and the fact that we excluded patients with preceding or definite infection at baseline, has implications for the clinical utility of CRP measurements in predicting outcome in clinical practice, where early mortality (within first 48 hours) after sICH is significant, and infection not uncommon. To determine generalizability to other related settings requires external validation using a dataset of sufficient size. We measured plasma CRP as a representative inflammatory marker in this study. Measurement of multiple inflammatory biomarkers, such as uric acid, D-dimer, matrix metalloproteinases,
platelets, fibrinogen, and IL-6, may provide a more detailed measure of the inflammatory response after sICH. Similarly, inspecting the colocalization of CRP with complement in brain staining would also furnish further data in support of a direct pathophysiologic role of CRP in sICH and these studies are in progress. Finally, because of the few available brain autopsies and the few related blood samples, we were unable to correlate anatomopathologic CRP data with clinical data in a quantitative way.

We have demonstrated an association between higher levels of CRP mortality and poor outcome in patients after sICH together with a very early CRP localization in the brain tissue, immediately surrounding the hematoma. The CRP response evolves over the initial 72 hours and the association with mortality or poor outcome is stronger using later CRP measurements.

AUTHOR CONTRIBUTIONS

STUDY FUNDING

Supported in part by the Sectorial Operational Programme Human Resources Development, financed from the European Social Fund and by the Romanian Government under the contract number POSDRU/89/ 1.5/S/64109 to Dr. D. Pirici and grant agreement PN-II-ID-PCE-2011-3-0848, No 301, to Aurel Popa-Wagner.

DISCLOSURE

The authors report no disclosures relevant to the manuscript. Go to Neurology.org for full disclosures.

Received December 24, 2011. Accepted in final form March 28, 2012.

REFERENCES

21. Emsley HC, Smith CJ, Gavin CM, et al. An early and sustained peripheral inflammatory response in acute isch-

AAN Publishes Guideline Update on Infantile Spasms

The AAN has published evidence-based recommendations for the treatment of infantile spasms that update a 2004 guideline. “Evidence-based Guideline Update: Medical Treatment of Infantile Spasms,” published in the June 12, 2012, issue of Neurology®, suggests that the therapy adrenocorticotropic hormone, also known as ACTH, and the antiepileptic drug vigabatrin (VGB) may be effective in the treatment of infantile spasms in children.

To read the guideline and access PDF summaries for clinicians and patients, a slide presentation, and a clinical example, visit www.aan.com/go/practice/guidelines. For more information, contact Julie Cox at jcox@aan.com or (612) 928-6069.

It All Starts with an Idea.
What Do You Want to Change?

If you see an opportunity for positive change in the delivery of neurologic health care, the AAN wants you to apply for the Donald M. Palatucci Advocacy Leadership Forum to be held January 17–20, 2013, at the Rancho Bernardo Inn in San Diego, CA.

Only 30 AAN members will be accepted into this exclusive program that empowers neurologists to advocate for themselves, their patients, and their profession. Participants will be trained in critical skills to communicate effectively with the media and legislators, and gain an understanding of grassroots advocacy. Upon completion of the training, members will have developed an effective action plan, created a clear message to promote community awareness of their issue, and understood the dynamics of the legislative process.

Applications for this award-winning program are due by September 16, 2012. For more information, visit www.aan.com/view/2013PALF or contact Melissa Showers at mshowers@aan.com or (612) 928-6056.
C-reactive protein in intracerebral hemorrhage: Time course, tissue localization, and prognosis
Mario Di Napoli, Daniel Agustin Godoy, Veronica Campi, et al.
Neurology; Published online before print August 1, 2012; DOI 10.1212/WNL.0b013e318264e3be

This information is current as of August 13, 2012