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Abstract

PRACTICAL ASPECTS OF AUTOMATED

FIRST-ORDER REASONING

Kryštof Hoder
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2012

Our work focuses on bringing the first-order reasoning closer to practical applica-
tions, particularly in software and hardware verification. The aim is to develop tech-
niques that make first-order reasoners more scalable for large problems and suitable
for the applications.

In pursuit of this goal the work focuses in three main directions. First, we develop
an algorithm for an efficient pre-selection of axioms. This algorithm is already being
widely used by the community and enables off-the-shelf theorem provers to work with
problems having millions of axioms that would otherwise be overwhelming for them.
Secondly, we focus on the saturation algorithm itself, and develop a new calculus for
separate handling of propositional predicates. We also do an extensive research on
various ways of clause splitting within the saturation algorithm.

The third main block of our work is focused on the use of saturation based first-
order theorem provers for software verification, particularly for generating invariants
and computing interpolants. We base our work on theoretical results of Kovacs and
Voronkov published in 2009 on the CADE and FASE conferences. We develop a
practical implementation which embraces all the extensions of the basic resolution and
superposition calculus that are contained in the theorem prover Vampire. We have
also developed a unique proof transforming algorithm which optimizes the computed
interpolants with respect to a user specified cost function.
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Chapter 1

Introduction

Our work focuses on bringing first-order reasoning closer to practical applications, par-
ticularly in software and hardware verification. The aim is to develop techniques that
make first-order reasoners more scalable for large problems, and make them suitable
for the applications.

The history of automated reasoning in first-order logic dates to the early 1950s.
For a long time, almost until the year 2000, the problems given to first-order reasoners
came mainly from the attempts to formalize mathematics. They would usually consist
of a few quantified axioms (such as an axiomatization of groups) and of a conjecture
to be proved. In the recent years, however, together with the developments of large
ontologies such as [NP01, SKW07] and, more importantly, with the use of automated
theorem proving in software and hardware verification, the problems passed to the
first-order provers have become different. They grew in size significantly, even though
large parts of the problems would not involve quantifiers and/or would be irrelevant to
the conjecture that is to be proved.

These differences lead to several challenges which we are trying to address:

1. Size The usual size of first-order problems coming from the formalization of
mathematics was in the order of tens or hundreds of axioms. The Problems
coming from ontologies can have millions of axioms. In the area of verification
it is not uncommon to have problems with thousands of axioms.

2. Difficulty There are problems which are difficult to be solved by the resolution
calculus, for example, those that lead to the introduction of long clauses. These
can be very expensive to handle; for example, to check whether one clause sub-
sumes another can take time exponential in the length of the clauses.

14
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3. Interpolation Obtaining a proof of unsatisfiability is often not sufficient for ver-
ification tools. Many verification techniques, for example the predicate abstrac-
tion [FQ02], require the output of an interpolant. Furthermore, for a single prob-
lem it may be possible to generate many different interpolants. This opens the
question of generating the interpolants that are best suited for the use in verifica-
tion.

These three challenges determine the three main directions in which our work fo-
cuses.

To tackle the first challenge of the problem size, we develop a new efficient algo-
rithm for the pre-selection of axioms that are likely to be relevant to proving a given
goal. This algorithm is already being widely used by the community and enables off-
the-shelf theorem provers to work with problems having millions of axioms that would
otherwise be too difficult for them.

In the second challenge, we focus on the saturation algorithm itself. As satisfiabil-
ity checking for first-order logic is undecidable, there will always be problems that are
too difficult for any solving algorithm. There are, however, problems that are difficult
for the resolution calculus, but can be dealt with by other techniques.

Problems coming from software and hardware verification have often many ground,
or even propositional atoms. Checking for propositional satisfiability, as well as for
satisfiability of ground formulas with equality is a decidable problem and there are
efficient decision procedures for it. We develop a calculus that separates reasoning
on propositional formulas, so that it can be handed over to a dedicated tool such as a
SAT solver. We also do an extensive investigation of splitting techniques which are
beneficial particularly for reasoning with ground atoms.

For the third challenge of providing an interface useful for verification tools, we
base our work on existing theoretical results given in [KV09a] and [KV09b]. We de-
velop a practical implementation which embraces extensions of the resolution and su-
perposition calculus that are contained in the theorem prover Vampire. We also develop
a unique proof transforming algorithm which optimizes the computed interpolants with
respect to a user specified cost function.

In the remaining sections of this introduction we give a brief overview of first-
order theorem proving and techniques used for software and hardware verification. In
the end of this chapter we present a more detailed discussion of the contributions of
this work.



16 CHAPTER 1. INTRODUCTION

1.1 Automated First-Order Theorem Proving

The main aim of automated first-order theorem proving is to determine satisfiability of
a set of formulas, and possibly provide a certificate of the result, either in the form of
a derivation of a false formula, or some representation of a model satisfying the input
formulas.

Many first-order theorem proving algorithms do not provide a general way of ob-
taining models when the set of formulas is shown to be satisfiable. An alternative to
this (serving still as a verifiable certificate) can be a saturated set of formulas, where
no new formula can be derived using some complete saturation algorithm.

A well known and generally best performing family of first-order proving algo-
rithms are those based on various extensions of the calculus of ordered resolution and
superposition described in [NR01].

The idea of resolution theorem proving comes from the seminal paper of Robinson
[Rob65]. The basic resolution rule is

A∨C ¬B∨D
(C∨D)σ

where σ is a most general unifier of A and B. The resolution rule is accompanied by a
factoring rule which can be expressed as

A∨B∨C
(A∨C)σ

where σ is a most general unifier of A and B.

In a pure resolution calculus, the equality can be handled by axiomatizing it as a
congruence relation. Reasoning with such axiomatization is however inefficient, and
therefore the practical calculi use specialized rules for equality reasoning.

The first general method for equality reasoning based on the paramodulation was
according to [DV01] proposed by Robinson and Wos in [RW69]. Their paramodulation
rule can be written as

C[s] l = r∨D
(C[r]∨D)σ

where σ is the most general unifier of s and l.

The proof search in a saturation theorem prover is conducted by repeated applica-
tions of inference rules such as the above. Each application of the above rules increases
the size of the set of clauses, and therefore increases the search space in which the
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prover tries to find the contradiction. A significant effort has been made to restrict the
applicability of the rules while preserving completeness of the calculus. Such restric-
tions prune the search space without the danger of losing the chance to find a solution.
The restrictions used in the saturation provers today are based on simplification order-
ings and were introduced in [Pet83] and [PP91]. To illustrate the restrictions, we show
a possible formulation of a restricted paramodulation rule:

L[s]∨C l = r∨D
(L[r]∨C∨D)σ

where

. σ is the most general unifier of l and s

. s is not a variable

. rσ is not greater than lσ in the used simplification ordering

. (l = r)σ is maximal (wrt. the simplification ordering) in the clause (l = r∨D)σ

. L[s]σ is maximal (wrt. the simplification ordering) in the clause (L[s]∨C)σ.

To form a complete calculus, the presented paramodulation rule would have to be
accompanied by other rules such as the resolution, factoring or the equality resolution.
Full set of the rules for such calculus is given in the Chapter 2 or in [NR01].

Apart from restrictions on the rules that generate new clauses, another important
principle in saturation theorem proving is redundancy elimination. It allows us to
remove clauses that are already derived, but not necessary for the completeness of the
saturation algorithm. The general notion of redundancy is that a clause C is redundant
in a set of clauses S if each of its ground instances C′ is implied by the ground instances
of the clauses in S that are smaller than C′ with respect to a simplification ordering.

The redundancy as stated above is difficult to be tested in practice. However, there
are several simpler tests which can identify some classes of redundant clauses. The
most well known is probably the subsumption rule, which removes the clauses that
are super-multisets of instances of other clauses. This rule was introduced by Robin-
son in [Rob65], even before the general notion of redundancy was introduced. The
subsumption rule can be written as

C ���
��D1∨D2
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if there exists a substitution σ such that Cσ is identical to D1. For details on the concept
of redundancy and simplification rules we refer to [NR01].

1.1.1 First-Order Theorem Provers

Along with the calculus used for reasoning, there are other aspects important when
implementing a theorem prover. Davis and Putnam [DP60] proposed that the input
formula passed to a first-order theorem prover should be preprocessed using skolem-
ization to eliminate existential quantifiers and then converted to clausal normal form
(CNF). This general preprocessing scheme has proven to be successful and is used by
modern theorem provers, even though other preprocessing steps may be put into the
clausification process to make the obtained set of clauses simpler.

The formulations of reasoning calculi are given in a declarative way, with state-
ments such as that having clauses C1 and C2 of a certain form, we can infer a clause
D, or perhaps show that one of the premise clauses is redundant. To have a complete
reasoning system, one often needs to ensure that the inferences are applied in a fair
way (that every possible non-redundant inference will eventually be performed). Satu-
ration based theorem provers generally use the so called given clause algorithm which
we describe in the Chapter 2.

Efficient retrieval of all possible inference candidates from a set of clauses is a
problem that can be addressed by term indexing. Use of term indexing in theorem
proving was mentioned in [OL80], and in today’s first-order provers, some form of
advanced indexing is almost a necessity to gain a reasonable performance. In this
thesis, Chapter 10 focuses on a particular indexing algorithm called substitution trees
and the use of unification algorithms within it.

Another important aspect of the area of automated first-order theorem proving is
the evaluation of theorem proving systems. This is done on an empirical basis, by
comparing the number of solutions a prover can find for problems from a certain set
of benchmarks within a given time limit. A widely used collection of benchmarks is
called TPTP (Thousands of Problems for Theorem Provers) [Sut09]. There is also an
annual competition of theorem provers CASC [SS06] which uses problems from this
library to compare the state-of-the-art theorem provers.

A more detailed overview of the history of reasoning tools is given in [Dav01] and
[Bun99].
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1.2 Software and Hardware Verification

Software and hardware verification are areas which offer many practical applications
of automated reasoning. According to [Jan11], an estimated annual cost of software
and hardware bugs to the US economy alone is 20 to 60 billion dollars. This makes
the area of verification interesting not only to academia, but also to industrial compa-
nies. Companies such as Microsoft or Intel regularly use tools based on verification
techniques as part of their product development.

Majority of verification tools use propositional reasoning (SAT) or ground rea-
soning modulo theories (SMT). There has been a significant amount of research in
algorithms for SAT and SMT solving, and in many practical cases these offer good
scalability and robustness.

By scalability we mean a rather vague notion that if a system is able to solve a
small instance of a problem, it should not struggle too much to solve larger instances
which are not qualitatively different. In the area of verification, one can see it as the
transition from verifying toy examples to verification of practical code with thousands
lines of code or more.

By robustness we mean that a small change in an irrelevant part of a problem should
not have a large influence on the ability of the solver to find a solution. This is impor-
tant for practical verification, as further modifications of the verified code are likely
to happen. It is undesirable that after a minor change, large part of the verification
work has to be re-done because the solver is no longer able to find the solution it found
earlier.

In the area of SAT solving, there has been an intensive development since the
1990s. These developments enabled SAT solvers to solve significantly harder prob-
lems, and brought the scalability that allows one to verify problems of an industrial
size. An example of this can be the use of SAT solvers for equivalence checking in
[GPB01], or a propositional model checking tool IC3 [Bra11] which uses repeated
calls to a SAT solver.

Together with the advances in SAT solving, the area of satisfiability modulo theo-
ries (SMT) started developing in the end of 1990s. The DPLL(T) technique [NOT04]
suggests to look at a ground SMT problem as at a SAT problem with additional con-
straints imposed by its underlying theory. There are several theories, motivated mostly
by the area of software verification. The most common are the theory of equality
and uninterpreted functions [NO05], linear arithmetic [Dd06], arrays and bit-vectors
[GD07]. Many software verification and testing tools (e.g. [BCD+05] or [TS06]) use
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modern SMT solvers such as Z3 [dMB08] for reasoning about possible program exe-
cutions.

Apart from checking the satisfiability of a formula, the users of propositional and
SMT solvers often need a richer interface, for example output of a model, of an unsat-
isfiable subformula, of a proof or of an interpolant.

Our work focuses on the area of first-order reasoning. Compared to SAT and SMT
solving, our disadvantage is that first-order logic is undecidable. On the other hand, the
practice shows that there are many complex problems that can be solved by automated
first-order reasoning, and the higher expressive power of the first-order logic allows for
more straightforward problem encoding that better reflects the structure of the original
problem. Our aim in the work is to bring the first-order theorem provers closer to the
applications which currently use propositional or SMT reasoning, and to make them
more appealing to those applications that will benefit from the higher expressive power.

1.3 Contributions

The contributions of our work are in four main areas:

. the Sine algorithm for selection of relevant axioms, addressing the first challenge
of the growing problem size;

. techniques for splitting and reasoning with propositional predicates — these fo-
cus on the second challenge of problems difficult for resolution provers;

. the use of local proofs to generate invariants and optimized interpolants, which
aims at the third challenge of interfacing with the verification tools;

. the implementation of the Vampire theorem prover itself to bring the presented
techniques to an actual practical use.

The work in these areas lead to seven papers published in proceedings of international
conferences including POPL, IJCAR or TACAS.

1.3.1 Selection of Relevant Axioms

To address the challenge of the growing problem size, we develop an axiom selection
algorithm Sine. The algorithm has attracted a significant interest in the first-order
theorem proving community, and is being used by many provers such as Vampire, E
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[Sch02] and iProver [Kor08]. The algorithm is described in [HV11] which is included
in this thesis as Chapter 3.

We also evaluate the benefits of the Sine axiom selection for proving problems
coming from libraries formalizing mathematics. This work is presented in [UHV10]
and is included as Chapter 4.

1.3.2 Splitting and Propositional Variables

Tackling the challenge of problems difficult for resolution theorem provers, we in-
vestigate techniques for splitting first-order clauses within a saturation algorithm, and
develop a new calculus for separate handling of propositional predicates. The split-
ting work builds on [RV01a] and [Wei01]. It describes and evaluates decisions which
need to be taken when combining splitting with saturation theorem proving (such as
which clauses to split and when to do it). The newly developed calculus RePro allows
to separate reasoning about propositional symbols from first-order reasoning, and to
delegate it to a more suitable tool such as a SAT solver. This work has not yet been
submitted for publication and is described in Chapter 9.

1.3.3 Local Proofs, Interpolation and Invariant Generation

For the problem of interaction between first-order provers and verification tools, we
build a practical implementation of the interpolation and invariant generation algo-
rithms based on local proofs described in [KV09b] and [KV09a]. The implementation
is built inside Vampire and it is compatible with many of its advanced techniques such
as splitting, which are not dealt with in the original papers. The implementation is
described in [HKV10] which is included as Chapter 7.

We also extend [KV09b] with a technique for non-local proof transformations
which optimizes the size of generated interpolants with regard to a specified cost func-
tion. We prove NP-hardness of this optimization problem and use a state-of-the-art
SMT solver Yices [Dd06] to perform this optimization. The work is described in
[HKV12] which is included in this thesis as Chapter 5.

Another part of [HKV12] and of Chapter 5 is our work on proof localization. We
develop an algorithm which can transform an arbitrary proof into a local proof in the
sense described in [KV09b], under the assumption that the only colored symbols are
constants. This is a reasonable assumption which is common to hold in applications of
interpolation.
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And finally, we implement a program analysis tool in the Vampire prover that uses
our results on invariant generation described in the Chapter 7. A description of this
work was published in [HKV11b] and [HKV11a] which are included as Chapters 6
and 8.

1.3.4 Vampire Theorem Prover

Last but not least, we developed almost an entirely new version of the theorem prover
Vampire. Within more than 160,000 lines of C++ code it contains implementation
of several first-order reasoning algorithms. Along with the variations of saturation
proving there is also an engine using the InstGen calculus [Kor09a] and a finite model
finding loop based on [BFdNT09]. Together with the first-order reasoning procedures,
it contains also propositional tools such as BDDs, an incremental SAT solver and var-
ious procedures using and-inverter graphs.

During the implementation, we performed an extensive benchmarking of the use
of unification algorithms within the term and literal indexes inside a first-order prover.
We created a set of benchmarks for unification algorithms and used it to compare
several well known unification algorithms as well as our modification of the Robinson
algorithm [Rob65] which avoids the exponential complexity of the original algorithm.
The work is described in [HV09] which is included as Chapter 10.

Along with the publications, the contribution of the work carried out is also wit-
nessed by the successes of the Vampire prover in the theorem prover competition
CASC [SS06].

To date, the new version of the Vampire prover has participated in three of the an-
nual CASC competitions, CASC–22 [Sut10], CASC–J5 [Sut11] and CASC–23 [Sut12].
At the CASC–22, the new version of Vampire entered the competition as a combina-
tion with an older version of the Vampire prover [RV02]. The combination has won
the FOF division (general first-order formulas), while the old Vampire itself ranked
as the third. It also won the LTB division which focuses on the problems with large
axiomatizations.

For CASC–J5, the new version of Vampire entered on its own, and won both of the
main divisions, FOF and CNF (problems presented in clausal normal form), together
with the LTB division.

Unfortunately, the performance in the latest competition, CASC–23 was hindered
by a bug introduced during the last-minute modifications. Despite this, the new version
of Vampire won the LTB division, and the FOF division was won by the earlier version
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of Vampire which entered the previous year’s CASC-J5.



Chapter 2

Preliminaries

The chapters 3 and onward of this work are separate publications, each of them having
their introduction where the necessary preliminaries are given. However, in this chap-
ter we include some elementary definitions that are important for the resolution first-
order theorem proving in general. We base our definitions on those given in [NR01]
and [BG01].

2.1 Terms, Atoms, Formulas and Clauses

Definition 2.1.1 Signature is a triple Σ = 〈Σ f ,Σp,arity〉 where Σ f is the set of func-
tion symbols, Σp set of predicate symbols and arity : Σ f ∪Σp→N a function assigning
symbols their arity. We assume the sets Σ f and Σp to be disjoint. Function symbols
with zero arity we call constants and predicate symbols with zero arity are proposi-
tional constants. When there is no chance of ambiguity, we may refer to the set of all
symbols Σ f ∪Σp as to Σ.

Having defined the signature, we define terms that use symbols from the signature
together with the variables from a given set.

Definition 2.1.2 Let X be a set of variable symbols such that X ∩Σ is empty. The set
of first-order terms over Σ and X , denoted by T (Σ,X ), is the smallest set containing
X such that f (t1, . . . , tn) is in T (Σ,X ) whenever f ∈ Σ f , arity( f ) = n and t1, . . . , tn ∈
T (Σ,X ). Syntactic equality of two terms will be written as s≡ t. We denote T (Σ, /0) =

T (Σ) to be a set of ground terms over Σ.

Note that if there is no constant symbol in Σ f , T (Σ) is an empty set. In the further
we will assume that there is at least one constant symbol in Σ f .

24
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Definition 2.1.3 Equality is an unordered pair of terms (s, t). It can be denoted
as s = t or equivalently as t = s. The set of atomic formulas over a signature Σ and
variables X denoted as A(Σ,X ) is the smallest set that contains equalities s = t for all
s, t ∈ T (Σ,X ), and p(t1, . . . , tn) whenever p∈ Σp, arity(p) = n and t1, . . . , tn ∈ T (Σ,X ).

Definition 2.1.4 The set A(Σ, /0) of the ground atoms over Σ can be referred to also as
the Herbrand universe. A subset of Herbrand universe I is a Herbrand interpretation if
the equality atoms form a congruence relation on the terms, and if for each p∈ Σp with
arity(p) = n it holds that for all s1, . . . ,sn, t1 . . . , tn such that {s1 = t1, . . . ,sn = tn} ⊂ I

we have p(s1, . . . ,sn) ∈ I if and only if p(t1, . . . , tn) ∈ I. A Herbrand interpretation I

assigns > to the all atoms A such that A ∈ I and ⊥ to all other atoms, i.e. to all A such
that A ∈ A(Σ, /0)\ I.

Definition 2.1.5 A substitution σ is a total map from the variables X to the terms
T (Σ,X ). We denote applications of substitution with a post-fix notation, e.g. xσ is σ

applied on the variable x. The range of a substitution can be extended to terms the usual
way: tσ denotes the result of simultaneously replacing in t every x ∈Dom(σ) by xσ. A
substitution can be written as a set of pairs x 7→ t where x is a variable and t is a term.
For the variables that are not explicitely specified by this notation, the substitution is
an identity. We say that a term t matches a term s if sσ ≡ t for some σ. Then t is
called instance of s. If t is ground, it is ground instance of s and the substitution σ is
a grounding substitution. If a substitution is injective and its range is X , we call it a
variable renaming.

Definition 2.1.6 A term t is unifiable with a term s if sσ≡ tσ for some substitution
σ. A substitution σ is called a most general unifier of s and t and denoted mgu(s, t) if
sσ≡ tσ and for every unifier θ of s and t it holds that sθ≡ sσσ′ ≡ tθ≡ tσσ′ for some
σ′. It is a well known result that the mgu(s, t) is unique up to a variable renaming.

It is possible to view a term (or an atom) as a set of all its ground instances. The re-
sult of unifying terms s and t then represents the intersection of the sets of their ground
instances. If the sets of ground instances for some terms do not have an intersection,
these terms do not have a unifier.

We discuss the unification and unification algorithms in more detail in the Chapter
10 of this thesis.

Definition 2.1.7 The set of all formulas over a signature Σ and variables X , denoted
as F (Σ,X ) is the smallest set that contains >, ⊥, A(Σ,X ), and for all ϕ,ρ ∈ F (Σ,X )

and x∈X it contains the negation ¬ϕ, conjunction ϕ∧ρ, disjunction ϕ∨ρ, implication
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ϕ→ ρ, equivalence ϕ↔ ρ, universal quantification ∀x : ϕ and existential quantifica-
tion ∃x : ϕ. The connectives ∧, ∨ and ↔ are associative and commutative, and the
connective→ is associative.

There are two subclasses of formulas which are of a particular interest to the first-
order theorem proving — the literals and the clauses. The usual architecture of theorem
provers first performs the clausification, converting the general formulas to clauses, and
only after that runs the main solving algorithm on the set of clauses.

Definition 2.1.8 We call a literal either an atomic formula or its negation, and we
refer to the set of all literals over a signature Σ and variables X as to L(Σ,X ). The
atomic formula of a literal L can be denoted as atom(L). A clause we define as a
finite multiset of literals. The set of all clauses we denote as C (Σ,X ). We may write a
clause {L1, . . . ,Ln} as L1∨ . . .∨Ln and view it as a formula which is a disjunction of
the literals of the clause. We will denote the multiset of atoms present in the clause C

as atoms(C) and the multiset of literals as literals(C). We define the result of applying
a substitution σ to a clause C (denoted as Cσ) to be a clause C′ which for each literal
A ∈C contains Aσ with the same multiplicity as the literal A in C.

We define the semantics of clauses using the Herbrand interpretations:

Definition 2.1.9 A ground clause C ∈ C (Σ, /0) is true in a Herbrand interpretation I

if either one of its positive literals appears in I, or one of its negative literals is not in I.
A non-ground clause C is true in an interpretation I if all its ground instances (obtained
by applying all the grounding substitutions to C) are true. Set of clauses S is satisfiable

if there exists an interpretation I such that all the clauses in S are true in I. If this does
not hold, we call the set of clauses unsatisfiable.

2.2 Orderings and Literal Selection

In the rest of this chapter we will focus on the notions useful particularly for the reso-
lution and superposition theorem proving.

We will use the square bracket notation to denote subterms. Writing u[s] means a
term u with a subterm s (possibly also u ≡ s). If there is no danger of ambiguity, we
may later write u[t] which will mean the term u[s] with one occurrence of the term s

replaced by t. Similarly, one may write A[s] for atoms, L[s] for literals, C[s] for clauses
or ϕ[s] for formulas.

Definition 2.2.1 A strict partial term ordering � is a transitive and irreflexive binary
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relation on the terms. An ordering is stable under substitutions if s� t implies sσ� tσ

for any two terms s, t and a substitution σ. Ordering fulfils the subterm property if
u[s]� s for all terms u and their subterms s such that u 6≡ s. The ordering is total on the
set of ground terms T (Σ) if for all ground terms s, t it holds that either s≡ t, s� t or t �
s. An ordering � on terms is monotonic if for every function symbol f with the arity n

it holds that si � t implies f (s1, . . . ,si−1,si,si+1, . . . ,sn)� f (s1, . . . ,si−1, t,si+1, . . . ,sn).
An ordering is well-founded if every set of terms has a minimal element in the ordering.

Definition 2.2.2 A rewrite ordering is a monotonic ordering stable under substitu-
tion. A reduction ordering is a well-founded rewrite ordering. A simplification order-

ing is a rewrite ordering with the subterm property.

There are several well know simplification orderings such as lexicographic path

ordering [KL80], recursive path ordering or Knuth-Bendix ordering [KB70]. The
last, often referred to as KBO, is the ordering most commonly used in the first-order
provers, and our prover Vampire uses it as well.

Term orderings are often defined as total on the ground terms, and then lifted for
the terms that contain variables, so that they remain stable under substitutions. This
means that for the terms s, t that are not ground it holds that s � t if and only if for
all grounding substitutions σ it holds that sσ � tσ. Term orderings have usually an
associated atom ordering. This can be extended to an ordering on literals and clauses
in the following way:

For literals L1 and L2 it holds that L1 � L2 either if atom(L1) 6≡ atom(L2) and
atom(L1)� atom(L2), or if L1 ≡ ¬A and L2 ≡ A for some atom A.

For clauses C and D it holds that C � D if and only if C 6= D and for each literal
L1 ∈ literals(D) \ literals(C) there is a literal L2 ∈ literals(C) \ literals(D) such that
L2 � L1.

The literal selection is a concept closely related to simplification orderings. It al-
lows us to restrict the proof search space by excluding some literals from the inferences
which generate new clauses.

Definition 2.2.3 A literal selection algorithm is an algorithm that takes a clause C

together with the state of the theorem prover as an input, and outputs its subset C′. A
requirement on the selection algorithm is that once it gives a particular selection for
a clause, any time in the future when it is given the same clause, the answer of the
algorithm must be the same.

A literal selection algorithm is called complete with respect to a simplification or-

dering � if whenever there is no negative literal in the selected subset C′, C′ contains
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all the positive literals of C that are maximal in the ordering �.

We do not define literal selection algorithm to be a simple function C 7→ C , as
for the literal selection we may use also the state of the saturation algorithm. For
example, we may attempt to select such literals that the number of inferences a clause
may participate in is minimal, for which we need to know the other clauses that may
participate in the inferences. However, to maintain completeness, it may be necessary
that the algorithm always gives the same response when the same clause is given to it.
This may be achieved by a simple caching of the results for clauses that the algorithm
has already seen.

Also, the behavior of our literal selection is slightly different than the one of
[BG01] — our selection function can select positive or negative literals, while in
[BG01] only the negative literals are selected. Our definition can, however, capture
the behavior of the selection in Vampire, as its selection functions can select positive
literals even in the presence of negative ones.

2.3 Saturation

Definition 2.3.1 Saturation calculus is a set of generating, simplifying and deleting
rules (altogether called inference rules).
A generating rule is a rule that takes as premises clauses C1, . . . ,Cn, and if a specified
formula ϕ[C1, . . . ,Cn,C′] holds, it derives a new clause C′. An inference is sound if,
whenever for some C1, . . . ,Cn,C′ the formula ϕ[C1, . . . ,Cn,C′] holds, the C′ is a logical
consequence of C1, . . . ,Cn. A generating inference can be written as

C1 . . . Cn

C′ ϕ

A simplifying rule is a rule that has premise clauses C1, . . . ,Cn, a reduced clause D and a
consequence clause D′. Simplification is performed if a specified formula ϕ[C1, . . . ,Cn,D,D′]

holds. It makes the clause D redundant and adds a new conclusion clause D′. It can be
written as

C1 . . . Cn ��D
D′ ϕ

A deleting rule is a rule that has premise clauses C1, . . . ,Cn and a reduced clause D.
Deletion is performed if a specified formula ϕ[C1, . . . ,Cn,D] holds. The reduction
makes clause D redundant. It can be written as
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C1 . . . Cn ��D ϕ

Definition 2.3.2 A generating (simplifying) inference is sound if whenever it is per-
formed, the consequence logically follows from the premises (and from the reduced
clause in case of a simplifying inference). A simplifying (deleting) rule preserves

completeness with respect to a simplification ordering � if the reduced clause logi-
cally follows from the premises (and from the consequence in the case of a simplifying
inference), and if the reduced clause is larger than the premise clauses (and than the
consequence in a simplifying inference).

Definition 2.3.3 Saturation sequence is a possibly infinite sequence of sets of clauses
S0, . . . such that S0 is the set of input clauses, and for each i > 0, Si is obtained from
Si−1 by applying an inference rule of a calculus. If a saturation sequence is finite with
the last set of clauses SN , generating inferences applied to SN can produce only clauses
that are consequences of clauses in SN that are smaller in the ordering �.

The property of interest on a saturation sequence is whether it derives an empty
clause at some point. If an empty clause is derived, from the soundness of the calculus
rules we know that the original set of clauses is unsatisfiable.

To be able to say something on the sequences which do not derive empty clauses,
we need the notion of fairness and completeness.

Definition 2.3.4 For a saturation sequence S0, . . . we define the set of infinitely

occurring clauses S∞ to be set of clauses C such that for some i ≥ 0 it holds that
∀ j ≥ i : C ∈ Si. A saturation sequence is fair if it is finite, or if all non-redundant
generating inferences in S∞ are eventually performed.

Definition 2.3.5 A calculus is complete if for every unsatisfiable set of clauses S and
every fair saturation sequence starting with S, it eventually derives an empty clause.

2.3.1 Resolution calculus

Below we present the base resolution and superposition calculus used in our theorem
prover Vampire. We do not include the proof of completeness of this calculus; such
proof can be found for example in [NR01]. Furthermore, the implementation in the
Vampire prover has several extensions beyond what is described here. Probably the
most important extension, splitting, is discussed in the Chapter 9.
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Generating Rules

Binary Resolution is the following rule:

A∨C1 ¬B∨C2

(C1∨C2)θ

where θ is the most general unifier of A and B. The underlining of literals A and
¬B means that they are selected in their clauses.

Factoring is the following rule:

A∨B∨C
(A∨C)θ

where θ is the most general unifier of A and B.

Superposition is one of the following rules:

l = r∨C1 L[s]∨C2

(L[r]∨C1∨C2)θ or

l = r∨C1 t[s] = t ′∨C2

(t[r] = t ′∨C1∨C2)θ

where

. θ is the most general unifier of l and s

. s is not a variable

. rθ 6� lθ

. (the first rule only) L[s] is not an equality literal

. (the second rule only) t ′θ 6� t[s]θ

Equality resolution is the following rule:

s 6= t ∨C
Cθ

where θ is the most general unifier of s and t.
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Equality factoring is the following rule:

s = t ∨ s′ = t ′∨C
(s = t ∨ t 6= t ′∨C)θ

where

. θ is the most general unifier of s and s′.

. tθ 6� sθ

. t ′θ 6� θ

Simplifying Rules

Duplicate literal deletion is the following rule:

((((
(L∨L∨C

L∨C

Trivial non-equality removal is the following rule:

���
��t 6= t ∨C

C

Demodulation is the following rule:

l = r ���
��L[lθ]∨C

L[rθ]∨C

where lθ� rθ.

Subsumption resolution is one of the following rules:

A∨C ���
�¬B∨D

D or
¬A∨C ���B∨D

D

such that for some substitution θ we have Aθ≡ B and Cθ⊆ D.

Deleting Rules

Subsumption is the following rule:

C ��D
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if there exists a substitution θ such that Cθ is a submultiset of D.

Tautology deletion is one of the following rules:

(((
(((A∨¬A∨C or ((

(((t = t ∨C

2.4 Given Clause Algorithm

Having a complete calculus, we still need to perform its inferences in a fair manner.
The generally used approach is called a “given clause algorithm.”

This algorithm maintains clauses in two sets — a passive and an active set. In the
beginning, all input clauses are in the passive set, and it is an invariant of the algorithm
that all possible inferences between the clauses in the active set have been performed.

If there are no more passive clauses, we terminate having shown the input set of
clauses is satisfiable. Otherwise, we select one clause from the passive set (we refer
to the clause as given, hence the given clause algorithm), and perform all possible
inferences between this clause and the clauses in the active set. First, we attempt to
delete or simplify the clause using simplifying and deleting rules of the calculus. If we
cannot do that, we try to use the given clause to simplify or delete the active clauses.
Finally, we perform generating inferences between the given clause and all of the active
clauses. Conclusions of these inferences are added into the passive set. Finally the
given clause is added among active and we carry on selecting another passive clause
to become given.



Chapter 3

Sine Qua Non for Large Theory
Reasoning

Authors: Krystof Hoder, Andrei Voronkov

One possible way to deal with large theories is to have a good selection method
for relevant axioms. This is confirmed by the fact that the largest available first-order
knowledge base (the Open CYC) contains over 3 million axioms, while answering
queries to it usually requires not more than a few dozen axioms. A method for axiom
selection has been proposed by the first author in the Sumo INference Engine (SInE)
system. SInE has won the large theory division of CASC in 2008. The method turned
out to be so successful that the next two years it was used by the winner as well as by
several other competing systems. This paper contains the presentation of the method
and describes experiments with it in the theorem prover Vampire.

3.1 Introduction

First-order theorem provers traditionally were designed for working with relatively
small collections of input formulas, for example, those based on a small axiomatisa-
tion of a class of algebras, or some axiomatisation of a set theory. Recently, several
very large first-order axiomatisations and problems using these axiomatisations have
become available. Problems of this kind usually come either from knowledge-base
reasoning over large ontologies (such as SUMO [NP01] and CYC [Len95]) or from
reasoning over large mathematical libraries (such as MIZAR [Rud92]). Solving these
problems usually involves reasoning in theories that contain thousands to millions of
axioms, of which only a few are going to be used in proofs we are looking for.

33
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Reasoning with very large theories expressed in first-order logic requires radical
re-design of theorem provers. For example, a quadratic time preprocessing algorithm
(such algorithms were routinely used in the past) may become prohibitively expensive
when the input contains a million formulas.

The first-order problems we will discuss in this paper consist of a very large (thou-
sands to millions) set Ax of axioms, plus a small number of additional assumptions

A1, . . . ,An and a conjecture G, sometimes also called a goal. We have to prove the con-
jecture from the axioms and assumptions. Since the set of additional assumptions is
normally small (and often empty), it will be convenient for us to assume that we have
a large set of axioms and a single goal A1∧ . . .∧An =⇒ G. When we discuss com-
plexity of algorithms in this paper, we assume that all axioms and the goal are small,
for example, have a size (number of symbols, connectives and quantifiers) bound by a
constant.

If the conjecture is provable from the axioms, then it is normally provable from a
very small subset of these axioms. For example, some of the CYC problems mentioned
above contain over 3,000,000 axioms, and all of these problems have proofs involving
only less than 20 axioms. If we only use the axioms occurring in such a proof instead
of all axioms, a proof will be found by any modern theorem prover in essentially no
time.

Provided that only a tiny subset T of axioms is sufficient for finding a proof, one
can try to select a small subset S ⊆ Ax of axioms, which is likely to contain T , and
search for a proof using a standard first-order theorem prover on the subset S instead of
Ax. It is common that the subset S we are trying to select consists of the axioms most

relevant to the goal. This paper describes an algorithm for axiom selection. The first
version of the algorithm was originally introduced by the first author and implemented
in the system SInE. The version and options described here are implemented in the
theorem prover Vampire [HKV10].

This paper is structured as follows. In Section 3.2 we discuss the problem of se-
lecting axioms relevant to a goal and the natural idea of symbol-based selection. Based
on this discussion, in Subsection 3.2.2 we introduce a definition of trigger-based se-

lection, which captures a special case of symbol-based selection. In Section 3.3 we
present the Sine selection algorithm as a trigger-based selection algorithm. In Sec-
tion 3.4 we discuss possible variations of this algorithm obtained by changing the trig-
ger relation to overcome potential shortcomings of Sine selection. We also describe
the Vampire parameters that can be used to invoke these variations.



3.2. SYMBOL-BASED SELECTION 35

Section 3.5 presents experimental results carried out over TPTP problems with
large axiomatisations. It shows the effect of various parameter values on the size of
the selected set of axioms, the number of iterations of the algorithm, and on the ability
to solve hard TPTP problems. Section 3.6 describes the use of our selection method
in the recent CASC competitions. In Section 3.7 we briefly overview other algorithms
used for selection of relevant axioms and other related work.

3.2 Symbol-Based Selection

3.2.1 Idea: Relevance

When one thinks of selecting axioms relevant to a goal, perhaps the most natural idea
is to use symbol-based selection. By a symbol we mean any predicate or function
symbol (including constants) apart from equality =. Symbol-based selection means
that axioms are selected based on symbols occurring in them. Let us call two symbols
neighbours if either they occur in the same axiom. Let us also call two symbols s1,s2

relevant if (s1,s2) belongs to the reflexive and transitive closure of the neighbour re-
lation. We will say that a symbol is relevant (to the goal) if it is relevant to a symbol
occurring in the goal. Likewise, we say that an axiom is relevant if it contains at least
one relevant symbol. Note that in an axiom containing at least one relevant symbol, all
symbols will be relevant too.

One possible way of axiom selection is to use all relevant axioms. However, for all
benchmark suites available to us, the set of relevant symbols is usually the set of all or
nearly all axioms. This is mostly due to the use of very general relations having occur-
rences in many axioms: as soon as any such relation is relevant, all axioms containing
this relation become relevant. We will refer to symbols having occurrences in many ax-
ioms as to common symbols. Typical examples of common symbols are “instance-of”
and “subclass” relations in ontologies: many ontologies consists almost exclusively of
axioms using these two relations (or similar relations, such as “subsumes”). Therefore,
any selection procedure that tries to avoid selecting nearly all axioms should solve the
problem of common symbols.

Another idea for selecting fewer axioms is not to use the full reflexive and transi-
tive closure of the neighbour relation but only a subset thereof, for example by only
allowing to make n steps of the computation of the transitive closure, for some (small)
positive integer n. Let us formalise the relevancy relation, so that we can refine it later.
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More precisely, we will deal with two relevancy relations, one for symbols and another
for axioms.

1. If s is a symbol occurring in the goal, then s is 0-step relevant.

2. If s is k-step relevant and occurs in an axiom A, then A is k+1-step relevant.

3. A is k-step relevant and s occurs in A, then s is k-step relevant, too.

Clearly, a symbol or an axiom is relevant, if it is k-relevant for some k ≥ 0. This
definition implies also that a k-relevant symbol or axiom is m-relevant for every m≥ k.

One can use this inductive definition to select either the set of all k-relevant, for
some fixed k, axioms, or the set of all relevant axioms. To compute the latter, we
can mark all relevant axioms until the inductive step does not select any new axiom.
Moreover, it is easy to implement this algorithm in the time linear in the size of the set
of all axioms.

Even better, assuming that the set of all axioms is fixed (which is a natural assump-
tion for applications), by preprocessing the set of axioms one can compute the set of
relevant (or k-step relevant) axioms in the time linear in the size of the computed set.
The key step is the second part of the inductive definition of relevance, as it refers to
all axioms in which a symbol occurs. To answer queries for all such axioms, it is suffi-
cient to index the set of all pairs (s,A) such that s is a symbol occurring in an axiom A

(of course, A can be represented as a reference in the index). This index can be imple-
mented by storing for every symbol the set of axioms in which it occurs. Let us show
that such an algorithm is indeed linear in the size of the computed set. To this end, let
us consider the set of pairs (s,A) inspected by this algorithm. Note that for every such
pair, A will be included in the output, and an axiom A occurs in the number of pairs
that is bounded by its length len(A). This implies that, for a given axiom A, pairs of the
form (s,A) can be inspected at most len(A) times. This shows that if axioms A1, . . . ,An

of the total size m = len(A1)+ . . .+ len(An) were selected, the run of the algorithm
inspected O(m) pairs, therefore its time complexity is also O(m).

Note that using k-step relevance instead of relevance does not solve the problem of
common relations, since they can already become relevant for very small values of k.
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3.2.2 General Scheme

We will introduce a class of symbol-based selection algorithms that generalise and
refine the idea of symbol-based selection. The only deviation from the previous defi-
nition is to add extra conditions for an axiom to be relevant. We will achieve this by
introducing a trigger relation as follows. Suppose that we have a relation trigger(s,A)

between symbols and axioms, such that this relation holds only if s occurs in A. If this
relation holds, we will also say that s triggers A.

Definition 3.2.1 [trigger-based selection]

1. If s is a symbol occurring in the goal, then s is 0-step triggered.

2. If s is k-step triggered and s triggers A, then A is k+1-step triggered.

3. A is k-step triggered and s occurs in A, then s is k-step triggered, too.

An axiom or a symbol is called triggered if it is k-triggered for some k ≥ 0.

It is easy to see that the introduction of the trigger relation can solve the problem of
common symbols. One can simply postulate that s triggers A only if s is not a common
symbol. Or, to be on a safe side, one can say that a common symbol s triggers A only
if all symbols of A are common. This would avoid excluding axioms like

subclass(x,y)∧ subclass(y,z) =⇒ subclass(x,z)

(transitivity of the subclass relation) or

instanceof (x,y)∧ subclass(y,z) =⇒ instanceof (x,z).

It is not hard to argue that if the set of all symbols s such that s triggers axiom A

can be computed in the time linear in the size of A, then the set T of all triggered (as
well as all k-step triggered) axioms can be computed in time linear in the size of T .
This is achieved by keeping a mapping from symbols to the sets of axioms which they
trigger.
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3.3 The Sine Selection

3.3.1 Idea

The Sine selection algorithm is a special case of trigger-based selection. It uses a
trigger relation that tries to reflect, in a certain way, the hard-to-formalise notions “s2

is defined using s1” or “s1 is more general than s2” on symbols.

It is not unreasonable to assume that large knowledge bases contain large hierarchi-
cal collections of definitions, where more general terms are defined using less general
terms. It is not easy to extract such definitions, since they can take various forms. It is
also not easy to formalise the relation “more general”. As a simple approximation to
“more general” one can consider the relation “more common”: a symbol s2 is consid-
ered more common than s1 if s1 occurs in more axioms than s2. Then, as a potential
approximation to “s2 is defined in terms of s1” we can consider the relation “s1,s2

occur in the same axiom A and s2 is a least common symbol in A.” This is, essentially,
the definition of the trigger function for the Sine selection.

Definition 3.3.1 [Trigger relation for the Sine selection] Let us denote by occ(s) the
number of axioms in which the symbol s appears. Then we define the relation trigger

as follows: trigger(s,A) iff for all symbols s′ occurring in A we have occ(s)≤ occ(s′).
In other words, an axiom is only triggered by the least common symbols occurring in
it.

3.3.2 Examples

Example 3.3.2 [Sine selection] In this example we will denote variables by capital
letters. The example illustrates the Sine selection and also a typical reason why it is,
in general, incomplete. Consider the following set of axioms:

subclass(X,Y) ∧ subclass(Y,Z) → subclass(X,Z)

subclass(petrol,liquid)

¬subclass(stone,liquid)
subclass(beverage,liquid)

subclass(beer,beverage)

subclass(guinness,beer)

subclass(pilsner,beer)

The following table gives, for every symbol s, the number of axioms in which it occurs.
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s occ(s)

subclass 7

liquid 3

beer 3

beverage 2

petrol 1

stone 1

guinness 1

pilsner 1

Using the occurrence table, we can compute the trigger relation as follows:

axiom symbols

subclass(X,Y) ∧ subclass(Y,Z) → subclass(X,Z) subclass

subclass(petrol,liquid) petrol

¬subclass(stone,liquid) stone

subclass(beverage,liquid) beverage

subclass(beer,beverage) beverage

subclass(guinness,beer) guinness

subclass(pilsner,beer) pilsner

Consider the goal subclass(beer,liquid). This goal is a logical consequence of
these axioms. However, the symbols from the goal subclass, beer, and liquid only
trigger the first axiom. The selection will terminate with only the first axiom selected,
which is insufficient to prove the goal. 2

Consider another example. This example illustrates how (small) changes in the
input set of axioms can influence selection.

Example 3.3.3 Let us remove the last axiom from the axioms of Example 3.3.2. This
changes the function occ as follows:

s occ(s)

subclass 6

liquid 3

beer 2

beverage 2

petrol 1

stone 1

guinness 1

This also changes the trigger relation as follows:
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axiom symbols

subclass(X,Y) ∧ subclass(Y,Z) → subclass(X,Z) subclass

subclass(petrol,liquid) petrol

¬subclass(stone,liquid) stone

subclass(beverage,liquid) beverage

subclass(beer,beverage) beverage,beer

subclass(guinness,beer) guinness

Consider the same goal subclass(beer,liquid) as in Example 3.3.2. Now the
symbols from the goal subclass, beer, and liquid trigger the first axiom as be-
fore plus the axiom subclass(beer,beverage). This results in adding beverage

to the list of triggered symbols. As a consequence, this addition triggers the axiom
subclass(beverage,liquid). This triggers no new symbols (since beverage was
already triggered before), and so selection terminates with the following subset of se-
lected axioms
subclass(X,Y) ∧ subclass(Y,Z) → subclass(X,Z)

subclass(beverage,liquid)

subclass(beer,beverage)

This collection of axioms is sufficient to prove the goal, contrary to Example 3.3.2.
Moreover, it is the minimal set of axioms sufficient to prove this goal. 2

This example also illustrates that removing some axioms from the input set can result
in selecting more axioms than before the removal.

3.3.3 The Selection Algorithm in More Detail

The algorithm runs in two phases. The first phase is goal-independent and only pre-
processes the set of all axioms. In this phase we do the following:

1. count, for each symbol, the number of axioms in which it occurs;

2. store the set of pairs (s,A) such that s triggers A.

Note that this phase can be implemented in the time linear in the size of the set of
axioms. It can be done by two traversals of the axioms (computing the trigger relation
needs the number of occurrences).

In the second phase (which depends on the goal) we build the set of all triggered (or
k-triggered, if k is given) axioms using the stored trigger relation. If the trigger relation
is indexed on the first argument, the time complexity of the second phase is linear in
the size of the resulting set of selected axioms and independent of the overall number
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of theory axioms. After the selection, the goal and the selected axioms are passed to a
first-order theorem prover.

Separating the two steps of the algorithm provides an efficient way to treat collec-
tions of problems that share a large number of theory axioms. After preprocessing the
shared theory axiomatisation, only the second phase is run on each of the problems,
which allows us to avoid repeated execution of the first phase.

3.4 Variations

To turn the Sine selection on, one uses Vampire with the option

--sine selection on

(the default value of this option is off). In the previous versions of Vampire we had two
values: axioms and included instead of on. The value axioms considered as axioms
the formulas marked as such in the TPTP language. The value included considered as
axioms formulas coming from included files.1 However, the value included is fragile
since simple preprocessing of the input can change which formulas are included. In
addition it turned out not to be good in practice, so in the current version we replaced
these two values by a single one.

In the rest of this section we consider several variations of Sine selection. Each of
these variations is implemented in Vampire as a parameter whose value can be set by
the user. We present experimental evaluation of these parameters in Section 3.5.

3.4.1 Tolerance

Since our selection algorithm is incomplete, we introduced parameters changing the
trigger function in various ways. One obvious problem with the selection is that it is
very fragile with the respect to the number of axioms in which a symbol occurs, as
already illustrated in Examples 3.3.2 and 3.3.3. Indeed, suppose a symbol s1 occurs
in (say) 7 axioms while s2 occurs in 8 axioms. One can argue that s1 and s2 are,
essentially, equally common. However, s1 can trigger an axiom in which both s1 and
s2 occur, while s2 cannot trigger it.

To cope with this problem, we introduced a parameter called tolerance. The value
of this parameter is a real number t ≥ 1. It changes the trigger relation as follows.

1The TPTP language classifies the input formulas into axioms, additional assumptions (hypotheses)
and conjectures. Formulas can also be included from files using the TPTP directive include().
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Definition 3.4.1 [Trigger relation with tolerance] Given the tolerance t ≥ 1, define
the relation trigger as follows: trigger(s,A) iff for all symbols s′ occurring in A we
have occ(s)≤ t ·occ(s′).

Compare this definition with Definition 3.3.1.

Example 3.4.2 [Sine selection with tolerance] Consider the set of axioms and the
goal of Example 3.3.2. Assume the tolerance value is 1.5. This changes the trigger
relation for two of the axioms as follows:
axiom symbols

subclass(X,Y) ∧ subclass(Y,Z) → subclass(X,Z) subclass

subclass(petrol,liquid) petrol

¬subclass(stone,liquid) stone

subclass(beverage,liquid) beverage,liquid

subclass(beer,beverage) beer,beverage

subclass(guinness,beer) guinness

subclass(pilsner,beer) pilsner

For the same goal subclass(beer,liquid), the set of selected axioms becomes

subclass(X,Y) ∧ subclass(Y,Z) → subclass(X,Z)

subclass(beverage,liquid)

subclass(beer,beverage)

This set is sufficient to prove the goal. 2

Note that the set of selected axioms is monotonic with regard to the value of tolerance:
if we increase the value, all previously selected axioms will also be selected. For
large enough values of tolerance, the set of selected axioms is simply the set of all
relevant axioms in the sense of Section 3.2.1, because axioms become triggered by
all the symbols that occur in them. For example, in Example 3.3.2 all axioms become
selected when t ≥ 3 and each symbol triggers all axioms in which it occurs when t ≥ 7.

Having a fixed value of the tolerance parameter, we may perform axiom selection
using the two-phase algorithm described in section 3.3.3. However, a likely scenario
is that we will want to run several proof attempts with different values of the tolerance
parameter. Using the basic two-phase algorithm, we would have to run the first phase
of the algorithm for each value of the tolerance parameter. At the cost of a slight
increase in the complexity, the algorithm may be modified, so that the first phase is run
only once, allowing selection with arbitrary tolerance values. During the first phase,
instead of storing a mapping from every symbol s to the set of axioms triggered by s,
we store a mapping from s to the list of all pairs (A1, t1), . . . ,(Am, tm) such that s triggers
Ai if t ≥ ti. This list is ordered by the values of the ti’s. Ordering such lists can take
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n · log(n) time, so the complexity of the first phase slightly increases. However, the
complexity of the second phase does not change: it is still linear in the size of selected
axioms, since we only inspect the sublist of (A1, t1), . . . ,(Am, tm) corresponding to the
trigger relation.

To change the value of tolerance from the default value 1 to t, one uses Vampire
with the option

--sine tolerance t

3.4.2 Depth Limit

One can restrict the number of steps in computing the set of selected axioms so that it
computes the set of all d-step triggered axioms. To this end, one can run Vampire with
the option

--sine depth d

The default value of sine depth in Vampire is ∞. Evidently, the set of selected axioms
is monotonic with regard to d: if we increase the value, all previously selected axioms
will be selected, too.

3.4.3 Generality Threshold

The last modification of Vampire is based on the following idea: if a symbol s occurs
in few axioms, then it triggers any axiom in which it occurs, even if the axiom contains
symbols with fewer occurrences. To implement this, we fix some positive integer value
g≥ 1 (called generality threshold) and modify the trigger relation as follows.

Definition 3.4.3 [Trigger relation with generality threshold] Given the generality
threshold g≥ 1, define the relation trigger as follows: trigger(s,A) iff either occ(s)≤ g

or for all symbols s′ occurring in A we have occ(s)≤ occ(s′).
To turn the generality threshold in Vampire on, one can run Vampire with the option

--sine generality threshold g

The default value is 0 and the set of selected axioms is, evidently, monotonic with
regard to g. If we set g to a large enough number, for example, the number of all ax-
ioms, then (similarly to setting a large value of the tolerance parameter) all the relevant
axioms will be selected.
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problems axioms atoms predicates functions
SUMO 298,420 323,170 20 24,430
CYC 3,341,990 5,328,216 204,678 1,050,014
Mizar 44,925 332,143 2,328 6,115

Table 3.1: Average problem size information

To use both a tolerance value t and a generality threshold value g, one should
define the trigger relation as the union of the corresponding trigger relations. Namely,
trigger(s,A) iff either occ(s)≤ g or for all symbols s′ occurring in A we have occ(s)≤
t ·occ(s′).

3.5 Experiments

All experiments described in this section were carried out using a cluster of 64-bit
quad core Dell servers having 12 GB RAM each.2 Each of the runs used only one
core and we never ran more than 3 tests in parallel on one computer to achieve the best
performance.

The experiments were run on three benchmark suites taken from the TPTP library
[Sut09]. The library contains three different classes of very large problems:3

1. problems from the SUMO ontology [NP01]: CSR075 to CSR109.

2. problems from the CYC knowledge base [Len95]; CSR025 to CSR074.

3. problems from the Mizar library [Rud92]: ALG214 to ALG234, CAT021 to CAT037,
GRP618 to GRP653, LAT282 to LAT380, SEU406 to SEU451, and TOP023 to TOP048.

Each of these classes contains several different axiomatisations. To evaluate the size
of the set of selected axioms and the number of iterations we only considered the
largest axiomatisations in each class (that is, SUMO problems with the suffix +3, CYC
problems with the suffix +6, and Mizar problems with the suffix +4. Table 3.1 contains
information about sizes of these problems.

2The cluster was donated to our group by the Royal Society.
3These classes correspond to categories of the LTB division in the CASC competition [Sut10].
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t = 1.0 t = 1.2 t = 1.5 t = 2.0 t = 3.0 t = 5.0
d = 1 29 1.17 35 1.09 41 1.05 47 1.02 60 1.02 72 1.01
d = 2 142 1.25 287 1.07 442 1.03 607 1.01 1027 1.00 1476 1.00
d = 3 505 1.32 937 1.13 1451 1.07 2484 1.02 5311 1.01 10482 1.01
d = 4 1784 1.41 3232 1.20 5716 1.10 11603 1.02 29963 1.01 69015 1.01
d = 5 4432 1.57 8870 1.27 16806 1.13 37599 1.03 110186 1.02 249192 1.04
d = 7 10698 2.16 25607 1.50 56337 1.21 150277 1.06 431875 1.09 832935 1.10
d = ∞ 36356 28.37 495360 3.33 1310965 1.34 1562064 1.20 1822427 1.12 2057597 1.07

Table 3.2: Selected formulas of CYC problems depending on the depth, tolerance and
generality threshold

3.5.1 Generality Threshold

Table 3.2 shows how the number of selected formulas depends on the generality thresh-
old. We considered the smallest possible value g = 0 and a sufficiently large value
g = 16. In every column of the table we show on the left the number of axioms se-
lected when g = 0 and on the right the number of axioms selected when g = 16 divided
by the value on the left. The numbers are average over all CYC problems. One can see
from the table that the largest increase (by the factor of 28.37) was achieved when the
depth was unlimited and tolerance equal to 1. Predictably, when the tolerance grows,
the percentage of additional axioms selected by the generality threshold value becomes
smaller, since some axioms selected due to the large value of generality threshold be-
come selected due to the high tolerance.

Our results have also shown that all the problems Vampire could solve, could also
be solved with the value g = 0, so for the rest of this section we will focus on the
remaining two options (depth and tolerance) and only consider the results obtained
when the generality threshold was not used, that is, when g = 0. Therefore, the con-
clusion we can draw is that, although the generality threshold parameter is intended
to cope with the problem of common relations, in practice it can be replaced by other
parameters.

3.5.2 Selected Formulas

Table 3.2 shows the average numbers of selected axioms for the CYC problems, and
table 3.3 shows these numbers for the Mizar and SUMO problems. Note that the
numbers for the Mizar problems are essentially different from the SUMO and CYC
problems. The number of selected Mizar axioms is large (over 4,000) even when the
depth limit is set to 1, while it is relatively small for the CYC and SUMO problems.
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d\t 1.0 1.2 1.5 2.0 3.0 5.0
1 4903 4911 4921 4936 4973 5038
2 5296 5395 5553 5823 6427 7743
3 6118 6451 7068 8280 10841 16337
4 6893 7556 9001 12176 18300 28878
5 7432 8517 11165 16945 26842 37284
7 7897 9991 15788 26203 36507 41443
∞ 8047 15987 28353 35345 39389 41762

d\t 1.0 1.2 1.5 2.0 3.0 5.0
1 12 13 14 16 21 28
2 70 82 115 158 272 654
3 188 230 372 762 1950 5980
4 316 470 942 3021 8720 23440
5 540 979 2417 8179 22644 52241
7 1027 2708 8517 24445 54958 97481
∞ 1116 8361 26959 57322 82379 107926

Table 3.3: The number of selected formulas for the Mizar (above) and SUMO (below)
problems

This is related to the fact that the Mizar problems usually have complex goals contain-
ing several assumptions and many symbols, while for the CYC and SUMO problems
the goal is simple and usually is just an atomic formula with very few symbols. This is
also one of the reasons why Mizar problems are much harder for all theorem provers
using the Sine selection.

3.5.3 Number of Iterations

The next question we are interested in is the number of steps required by Sine selection
to compute the set of all triggered relations. Table 3.4 contains statistics about the
number of iterations. To our surprise, in some cases this number is very large (135 for
CYC problems, 61 for Mizar problems, and 39 for SUMO problems). There is also no
obvious pattern on how this parameter depends on the value of tolerance.

3.5.4 Essential Parameters

For experiments described in this subsection we considered all (not only largest) SUMO,
CYC and Mizar problems.
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suite t = 1.0 t = 1.2 t = 1.5 t = 2.0 t = 3.0 t = 5.0
min 4 7 36 25 29 23

CYC avg 19.3 102.7 44.3 29.9 33.0 25.1
max 47 135 60 41 37 27
min 6 7 19 15 14 10

Mizar avg 9.5 27.5 25.4 19.7 15.0 12.3
max 15 61 33 23 18 14
min 3 5 4 6 13 11

SUMO avg 7.3 15.3 20.8 19.8 16.6 12.6
max 17 35 39 25 23 15

Table 3.4: The minimal, average and maximal number of steps required to build the
set of all triggered axioms as a function of tolerance

Since our main aim is to automatically prove (hard) theorems, the most important
questions related to the use of Sine selection are the following:

1. How powerful is the selection method?

2. Which of the parameters (and ranges of values for these parameters) are essential
in practice?

The first question cannot be answered in a simple way. On the one hand, we have
strong evidence that the method is very powerful. To support this, consider Table 3.5.
It shows the number of all the TPTP 4.0.1 CYC, Mizar, and SUMO problems solved
with some Sine selection and without it, depending on the size of the problem measured
as the number of atoms in it. The last row shows these numbers for the problems
having TPTP rating 1. A problem has TPTP rating 1 if it was previously unsolved
by all provers, including the previous versions of Vampire. For example, among the
problems having 80,000 or more atoms, 373 problems were solved by Vampire all
together. 187 problems could only be solved with the help of Sine selection, while
only 3 problems out of 373 could not be solved with Sine selection.

When a problem is not solved, we do not know why Vampire (or any other prover)
fails to prove it. This can be for at least the following three reasons, of which two are
directly related to the power of our selection method:

1. the set of selected axioms can be insufficient to prove the goal;

2. the set of selected axioms is too large, which prevents theorem provers from
success;
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atoms only with Sine only without Sine together
10,000 243 64 721
20,000 217 10 542
40,000 208 7 464
80,000 187 3 373

160,000 138 1 243
320,000 80 1 168
640,000 50 0 100

1,280,000 50 0 50
rating 1 232 25 402

Table 3.5: Problems solved with and without Sine selection

3. the problem is very hard even for small sets of axioms sufficient to prove the
goal.

Let us now investigate which parameters and their values are essential for Vampire.
As we pointed out, it turned out that the generality threshold parameter can be dropped
without any effect on the set of problems solved by Vampire. It turned out that both
the tolerance and depth limit are very essential. To show this, we used our database
of proofs found by Vampire, which was generated using about 70 CPU years of run
time and now contains about 575,000 results, of which over 43,000 are related to the
mentioned benchmark suite.

We selected problems having less than 10 solutions in the database. The reason
to use the number of solutions as a criterion was that problems with few solutions are
believed to be harder. Also, such problems can be solved only with a small subset of
possible values for the various Vampire parameters.

This selection resulted in 51 CYC problems, 231 Mizar problems and 12 SUMO
problems. For each of these problems we checked which parameter values solve these
problems. More precisely, we took their known solutions, changed the depth and toler-
ance parameters and checked which of the changes still solve the problem. The results
are summarised in Tables 3.6 and 3.7. The table cells show the number of problems
which can be solved by the given range of values. We do a projection on the possible
values of the parameter that is not present in the table (tolerance in the case of Table 3.6
and depth limit in Table 3.7). For example, the third row in Table 3.7 means that there
were 12 selected Mizar problems and 1 selected SUMO problem that could be solved
with some values of the depth limit and only with the values of tolerance between 1.0
and 1.5.
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range CYC Mizar SUMO
1−1 16
1−2 10
1−3 5
1−4 3
1−5 2
1−10 1
1−∞ 15 107 6
2−2 21
2−3 12
2−4 3
2−5 6
2−7 1
2−10 1
2−∞ 21 39 4
3−3 1
3−4 1
3−∞ 6 1 1
4−4 1
4−∞ 6
5−∞ 3
10−∞ 3 1
total 51 231 12

Table 3.6: The sine depth range for
solved hard problems

range CYC Mizar SUMO
1.0−1.0 3
1.0−1.2 4
1.0−1.5 12 1
1.0−2.0 17
1.0−3.0 19
1.0−5.0 49 155 11
1.2−1.5 2
1.2−2.0 1
1.2−3.0 1
1.2−5.0 2 1
1.5−5.0 1
2.0−2.0 1
2.0−3.0 7
2.0−5.0 1
3.0−5.0 3
5.0−5.0 2
total 51 231 12

Table 3.7: The sine tolerance range for
solved hard problems

Let us first analyse the depth limit in Table 3.6. For the evaluation we used the
following values of depth limit: 1, 2, 3, 4, 5, 7, 10 and ∞. The first observation is that
this parameter is, indeed, very important. For example, there were 39 Mizar problems
that could be solved with only one value of this parameter (1, 2, 3 or 4). For both
CYC and SUMO collections setting the depth to ∞ is always a good strategy. On the
contrary, only 147 out of 231 solved Mizar problems (and only 30 of 64 the largest
Mizar problems) could be solved with this setting.

Next, let us analyse the tolerance in Table 3.7. For the evaluation we used the
following values of tolerance: 1.0, 1.2, 1.5, 2.0, 3.0, 4.0, and 5.0. It turned out that
this parameter is also very important. However, the behaviour of solutions depending
on this parameter is more stable than for the depth parameter: only 6 Mizar problems
could be solved with exactly one value of the tolerance and 155 Mizar problems out of
231 were solved with all the values we tried. Among the largest hard Mizar problems,
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only 36 out of 64 were solved with all the tried values of tolerance. 11 out of 12
SUMO problems and 49 out of 51 CYC problems could be solved with any value of
the tolerance and all CYC problems could be solved with the value 1.2 or higher.

3.6 Competition Performance

Our axiom selection algorithm was used by several systems participating in the Large
Theory (LTB) division of recent CASC competitions.

The Sine selection was introduced in 2008, at the CASC-J4 [Sut08] competition.
The only participant that used our algorithm was the SInE theorem prover. It has won
the division by solving 88 out of 150 problems, which was 12 problems ahead of the
second best participant.

In 2009, at the CASC-22 [Sut10] competition, four out of seven participants were
using our selection algorithm, and these four participants ended up at the first four
positions, solving 69 to 35 problems out of 100, while the best participant not using
our algorithm solved only 18 problems.

In 2010, at the CASC-J5 competition, five out of seven systems were using our
algorithm as the only axiom selection algorithm, including the winner (Vampire). The
second best ranked system (Currahee) used our selection algorithm as one of possible
selection algorithms.

3.7 Related work

In our algorithm we maintain the set of selected axioms (starting from goal), and select
new axioms that are relevant to the goal step by step. The lightweight relevance filter-
ing algorithm [MP09] shares this approach, but instead of a trigger relation, which is
used by our algorithm, it selects an axiom if certain percentage of its symbols appears
in the already selected axioms. This method also penalizes common symbols—the
more often a symbol appears in the problem, the less impact its appearance in an ax-
iom has.

Several other algorithms use some measure of distance in a graph of axioms, in
order to determine which axioms are relevant to the goal. The contextual relevance
filtering [ARS09] and the syntactic relevance measure [SP07] compute the weighted
graph between axioms with weights based on the number of shared symbols (taking
into account their commonness). The latter does not use the distance from conjecture
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to select relevant axioms, but to order them for further (semantic) processing. The
relevance restriction strategy described in [PY03] connects two clauses in the graph if
they have unifiable literals. The paper also examines the suitability of different graph
distance measures.

Semantic algorithms are another group of axiom selection algorithms that use a
model of currently selected axioms to guide the selection of new ones. To this group
belong the Semantic Relevance Axiom Selection System [SP07] and the algorithm for
semantic selection of premises [Pud07].

Yet another approach is taken in the latent semantic analysis [ARS09], which uses a
technique for analysing relationships between documents. Each formula is considered
to be a document, and formulas with strong relationship toward the goal are selected.
The MaLARea system [USPV08] uses machine learning on previous proofs in the the-
ory to estimate which theory axioms are likely to contribute to proofs of new problems.

In [UHV10] the benefit of our axiom selection algorithm for reasoning on the Mizar
Mathematical Library [Urb06] is examined.

3.8 Conclusion

We defined the Sine selection used in the theorem prover Vampire and several other
theorem provers to select axioms potentially relevant to the goal. We formalised the
Sine selection as a family of trigger-based selection algorithms. We showed that all
the existing axiom selection parameters in Vampire can be formalised as a special case
of such algorithms.

We also discussed, using extensive experiments over all TPTP problems with large
axiomatisations, the effect of various parameter values on the size of the selected set
of axioms, the number of iterations of the algorithm, and solutions of hard TPTP prob-
lems.

We also added a new mode to Vampire to make others able to experiment with
our axiom selection. If Vampire is run in a new axiom selection mode, it does not
try to prove the problem but only selects axioms according to the user-given options
and outputs the selected axioms and the goal in the TPTP format. This mode can be
invoked by using vampire --mode axiom selection.
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Chapter 4

Evaluation of Automated Theorem
Proving on the Mizar Mathematical
Library

Authors: Josef Urban, Krystof Hoder, Andrei Voronkov

This paper investigates the strength of first-order automatic theorem provers (ATPs)
in proving theorems and lemmas from the Mizar proof assistant’s formal mathemat-
ical library. Several Mizar use-cases are described and evaluated, as well as various
ATP systems and strategies. The new version of the leading Vampire ATP system is
included in the evaluation, experiments with Mizar-specific strategy-selection are per-
formed with E the prover, and the Sine axiom selection is evaluated on large Mizar
problems with both E and Vampire. A rough mathematical division of the Mizar li-
brary is introduced, and the ATP performance is evaluated on it.

4.1 Introduction and Motivation

In the last five years there was a considerable increase of the use of fully automatic first-
order theorem provers as assistants to interactive theorem provers (ITPs). A number of
formal knowledge bases and core logics have been translated to first-order ATP formats
such as TPTP.1 For example, let us mention the related work on the Isabelle/Sledge-
hammer ATP link [MP09], and the export of the SUMO [PS07] and CYC [MJWD06]
real-world formal knowledge bases.2

1Thousands of Problems for Theorem Provers, see www.tptp.org
2www.ontologyportal.org and www.cyc.com
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One of the main goals of the MPTP3 project is to make the large Mizar Mathe-
matical Library4 (MML) accessible to ATP and AI experiments and techniques. The
particular value of MML/MPTP in comparison to the above mentioned related projects
is that this is a comparatively large library focused primarily on standard mathematics
as done by mainstream mathematicians (using first-order logic and set theory as the
foundations). The first-order setting allows a practically complete and reasonably ef-
ficient translation for first-order ATPs, which is harder to do for higher-order systems.
The size of the library and its consistency on the symbol-naming and theorem-naming
level also allows experimenting with all kinds of “knowledge-based” ATP/AI tech-
niques, which might be relevant for emulating the thinking of learned mathematicians,
and bringing new insights to the fields of ATP and AI.

The first inclusion of the MML/MPTP problems in ATP benchmarks (the TPTP
library) happened in 2006, when also the large-theory MPTP Challenge5 was an-
nounced. Since then the CASC6 Large Theory Batch (LTB) competition was intro-
duced, and run already twice in 2008 and 2009. This influences the performance and
tuning of existing ATP systems, and gives rise to new techniques and interesting meta-
systems.

The purpose of the current paper is to evaluate the progress made over the past
five years in the area of reasoning in large formal mathematical theories, and par-
ticularly evaluate the strongest ATP systems and metasystems on sufficiently recent
MML/MPTP and the mathematical subfields contained in it.

4.1.1 Recent Evolution of Mizar and MPTP

Despite its age, Mizar is a living and evolving system with a number of users around
the world. Since the last published MPTP experiments done on MML version 938
(938 articles), a number of articles have been added to the library resulting in thou-
sands of new “Mizar theorems”7. These range from a number of standard calculus
results developing, e.g., the Riemann integral, to abstract algebra results like Sylow
theorems [Ric07], to formalization of special fields like BCI/BCK algebras [Din07]

3Mizar Problems for Theorem Proving
4www.mizar.org
5http://www.tptp.org/MPTPChallenge/
6The CADE ATP System Competition, see http://www.tptp.org/CASC/
7We put Mizar theorems in quotes at least once to deliver the message that only very few of these

“theorems” would be called a “theorem” by mathematicians. Large majority of these propositions are
lemmas useful and re-usable for proving further results, and this property makes them “theorems” in the
Mizar parlance.
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to results from mathematical theory of social choice like Arrow’s Impossibility Theo-
rem [Wie07].

At least the following developments have been tried/done with the Mizar system
between these two versions:

. The Mizar type system mechanisms (Horn-like mechanisms automatically in-
ferring monadic adjectives about the objects of the set-theoretical universe) have
been constantly strengthened, becoming one of the main automation tools in
Mizar.

. Experiments have been done with strengthening the matching/unification mech-
anisms in the Mizar kernel module.

. Identifications (i.e., registered automated equalities applied implicitly by the sys-
tem) have been introduced by Mizar and used in MML.

. Further elements of computer algebra have been introduced in the kernel module,
to allow automated normalization and solving of systems of linear equations.

The development of MPTP has to reflect the Mizar/MML changes. Also, as a
relatively young system, MPTP has a number of its own developments to do. Here is a
short summary of the recent ones:

. Probably the largest change is that initial methods for ATP-export of Mizar inter-
nal arithmetics have been implemented. This is a constant cat-and-mouse pursuit
with the experiments done with computer algebra in the Mizar kernel,8 however
it is now possible to do ATP experiments over Mizar problems containing arith-
metics. The export is correct, but not always complete.9 However, as can be
seen in Section 4.3, counter-satisfiability is detected only reasonably rarely in
practice by ATPs.

. MPTP changes in ATP problem creation, accommodating the new developments
in the Mizar type automations, and introduction of identifications.

. Changes making MPTP faster and more real-time, including:

8This is the main reason why we choose a version of MML that is not completely recent at the time
of writing this evaluation. The MML version 1011 that we choose for the evaluation here has now been
sufficiently tested, and the ATP-export of Mizar internal arithmetics sufficiently debugged. It would
be possible to experiment with a more recent MML version, however for a large-scale evaluation it is
preferable to use a reasonable recent version for which MPTP is known to work well.

9This also really depends on the particular version of the Mizar kernel.
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description proved countersatisfiable timeout or memory out total
E 0.9 4309 0 8220 12529
SPASS 2.1 3850 0 8679 12529
together 4854 0 7675 12529

Table 4.1: Reproving of the theorems from non-numerical articles by MPTP 0.2 in
2005

. More advanced (graph-like) datastructures to speed-up the process of selecting
necessary parts of the library for generating the ATP problems.

. Larger use of available Prolog indexing and the asserted database for various
critical parts of the code.

. Instead of working always with the whole loaded MML, MPTP was refactored
to allow working only with the (usually much smaller) part of the MML needed
for the newly processed article. This is specifically required for the new ATP-
for-Mizar (MIZAR) service running now in real time at the RU Foundations’
group server10 [US10].

The summary of data from previous experiments with SPASS (version 2.1) and E
(version 0.9) from 2005 on MML version 938 using MPTP 0.2 is given in Table 4.1
(see [Urb06] for details).

Note that these experiments have been done in 2005 only on “non-numerical” ar-
ticles (containing 12529 theorems/problems), i.e., on Mizar articles guaranteed not to
contain any arithmetical evaluations. The current experiments described in Section 4.3
are however performed on the whole MML, because a basic ATP-export of Mizar com-
puter algebra is now available.

4.2 Mizar data, experimental setup

The experiments described in Section 4.3 are performed on three classes of data,11

all coming from the proofs of all Mizar theorems from MML version 1011. There
are 51424 theorems in this MML version. The classes differ by the average number
of axioms (previous theorems and definitions from MML) included in the problems,
coming from different Mizar use-cases. The classes and use-cases are as follows:

10http://mws.cs.ru.nl/˜mptp/MizAR.html
11available at http://mws.cs.ru.nl/˜mptp/mptp_1011/noint/
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. SMALL: Problems with smallest number of included axioms. This use-case mod-
els a user who knows relatively well how a proof should proceed (what MML
knowledge should roughly be used). In the HOL Light (established for its IT-
P/ATP inventions) terminology: MESON TACTIC12 . The average size of an
MPTP problem in this class is 218 formulas. Many of these theorems have long
Mizar proofs - tens to hundreds of lines - and can contain nontrivial mathemati-
cal ideas. See the listings at these web pages.13

. ENVIRON: Problems that include all axioms contained in article’s environment
(that is: articles imported by the current article). This use-case models Mizar
authors who selected a particular combination of mathematical areas (previous
articles) to base their articles on, and thus limited the Mizar knowledge to a
smaller subset of MML. Inside this MML subset they however do not provide
any additional guidance to the ATPs. Such problems can already be very large:
their average size is 5830 formulas.

. ALL: Problems that include all of the Mizar knowledge available in the MML at
the time of proving a particular theorem. This models users who do not want to
limit their search to the articles imported in their environment, and provide no
guidance to ATPs. The price for such intellectual laziness is obviously a large
number of axioms in such ATP problems, the average size of a problem in this
class is 40898 formulas.

All these three use-cases are interesting and relevant. As mentioned above, the
SMALL case is used a lot in ITPs like HOL (Light) as a general method for solving a
goal once the user feels that it is sufficiently simply derivable from other established
premises. The Mizar system actually also works in a similar way (using a custom
weak theorem prover for the “by” inference), however, the emphasis there is not on
strength, but on capturing the notion of obvious inference [Dav81, Rud87]. Another
advantage of the SMALL case is that the 218 average formulas (which means much
less in a significant number of cases) can be reasonably attacked by existing standard
resolution and tableaux techniques, and ATPs based on them, without introducing any
novel techniques for dealing with a large number of axioms. Thus, for metasystems

12http://www.cl.cam.ac.uk/˜jrh13/hol-light/HTML/MESON_TAC.html. Actually, MPTP
does here more than MESON: it adds a lot of “background” formulas to the problem including knowl-
edge used implicitly by Mizar (reflexivity of ≤, etc.).

13http://mmlquery.mizar.org/mmlquery/fillin.php?filledfilename=mml-facts.
mqt&argument=number+102, and http://www.cs.ru.nl/˜freek/100/
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that combine custom axiom-selection methods with standard ATPs, the SMALL case
can be thought of as a benchmark for the ATP component of such metasystems, i.e.,
telling how good the performance of the whole metasystem could be, if the axiom-
selection component of the metasystem was perfect.

This is no longer true for the ENVIRON and ALL classes. As will be seen in Sec-
tion 4.3, using standard ATP techniques on these problems is currently not productive,
and axiom-preselection methods are necessary on the ENVIRON and ALL classes to
make use of ATPs.

There are other possible classes of data and divisions of the SMALL, ENVIRON

and ALL classes along various axes. A common objection to these three classes is
that they are too hard: for example, the data for testing Isabelle/Sledgehammer come
typically from goals that are easier than the “full Isabelle theorems”. The answer is that
using Mizar simple justifications (“by” steps – steps provable using the Mizar built-in
limited checker [Wie00]) has with the development of MPTP and ATP methods over
Mizar become too easy, and such data are no longer suitable as a Mizar/MPTP/ATP
benchmark. The success rate of various combined ATP/AI methods on large pieces of
“by” data is now around 99.9%, actually allowing for using such methods together with
the GDV [Sut06] ATP-based verifier (enhanced to handle TPTP proofs with Jaskowski-
like assumptions) to completely ATP-cross-verify large pieces of MML (see [US08]
for details). Other classes of problems that could come to mind are:

. Internal Mizar sublemmas that serve to prove another theorem/lemma, but are
not themselves “too easy” (i.e., are not proved by simple justification). Such
sublemmas could be considered an easier dataset than theorems, but harder than
the simple justifications.

. De-lemmatized theorems. This would be a dataset created from SMALL, where
the references (other theorems) used to prove a theorem are (recursively, to some
level of recursion) replaced by their own references, in the extreme case expand-
ing them all the way to axioms and definitions. Such de-lemmatized theorems
could be considered a harder dataset than the standard theorems.

The reason why it seems unnecessary to test also on such classes of data is that already
the theorem dataset provides a variety of both easy and hard data. There are a number
of Mizar theorems proved using a simple justification, and on the other hand, there are
theorems (like ROLLE:1 in [KRS90] - Rolle’s theorem) that take more than four hun-
dred lines and a large number of references to prove, i.e., the amount of lemmatization
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varies greatly across various Mizar articles and with various Mizar authors.

The ATP success rates reported in Section 4.3 on the SMALL theorem dataset in-
dicate that also from the practical “benchmark” point of having data that are not too
easy and not always very hard, this dataset seem to work well with current off-the-shelf
ATPs. Again, this is not yet true with the large ENVIRON and ALL datasets which, on
the other hand, can be considered to be hard benchmarks for ATP/AI metasystems that
complement standard ATP with systems for axiom selection.

Divisions along various further axes of these datasets are certainly possible. In
section 4.4 we attempt to define a “reasonable” crude mathematical categorization of
80% of MML articles, and provide an initial evaluation across this division.

4.3 Experiments

4.3.1 Overall Evaluation on SMALL problems

The large-scale experimental evaluation of the standard ATPs focuses on the SMALL

class of problems (for the reasons mentioned above in Section 4.2). The three main
evaluated ATPs are the latest versions of the SPASS [WDF+09] (version 3.7) system,
the E prover [Sch02] (version 1.1-004 Balasun), and the Vampire [RV02] prover (ver-
sion 0.6 - preliminary version for CASC-J5). SPASS and E are evaluated on the server
of the Foundations group at Radboud University Nijmegen (RU), which is eight-core
Intel Xeon E5520 2.27GHz with 8GB RAM and 8MB CPU cache. The time limit for
the evaluations is 30s,14 and the memory limit is 900MB for each problem. Vampire is
evaluated on computers at the laboratory of the University of Manchester (UM), each
of them being Intel Core2 Duo E7300 2.66GHz PC with 1G RAM and 3MB cache.
The time limits used are again 30s. The relative performances of the two hardware
platforms have been compared by evaluation on common ATP problems. The UM
platform turns out to be approximately 10% faster.15 No parallelization is used, each
problem is always run serially. The Table 4.2 shows the results. Note that there are
some counter-satisfiable problems (very likely arithmetical) however their number is
insignificant. It turns out that E, SPASS, and Vampire can in 30s together (that is: if
run in parallel) solve 44% of the MML SMALL problems.

14The experience from previous experiments with E and SPASS is that only a small fraction of prob-
lems is solved after 30s. This is obviously different with strategy-scheduling ATP systems like Vampire.

15This difference obviously does not translate to 10% more solved problems, however particularly
with strategy-scheduling ATP like Vampire, it is quite significant.
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description proved countersatisfiable timeout or memory out total
E 1.1-004 16191 4 35229 51424
SPASS 3.7 17550 12 33862 51424
Vampire 0.6 20109 0 31315 51424
together 22607 12 28817 51424

Table 4.2: Evaluation of E, SPASS, and Vampire on all SMALL problems in 30s

description proved countersatisfiable timeout or memory out total
SPASS 3.7-SOS 292 55 653 1000
SPASS 3.7 345 0 655 1000
together 377 0 623 1000

Table 4.3: Comparison of SPASS-SOS and SPASS on 1000 SMALL problems in 30s

In Table 4.3, the results of SPASS used in (the incomplete) SOS mode are shown,
and compared to the results of standard SPASS. This is done on randomly selected
1000 SMALL problems. The number of countersatisfiable results is not relevant for
SPASS-SOS however: it is incorrect when SPASS is used in SOS mode together with
ordering-based ATP techniques. SPASS-SOS turns out to be significantly worse than
SPASS on the same data (proving 345 of these 1000 problems), however the SOS
strategy is reasonably complementary to the standard one: together, the both methods
of running SPASS solve 377 problems from this dataset (Vampire solves 39% of these
problems).

4.3.2 Overall Evaluation on ENVIRON and ALL Problems, Sine

To a smaller extent (the above mentioned dataset of 1000 problems) we also evaluate
E and Vampire on the large ENVIRON and ALL problems, and focus on evaluation of
a new heuristic axiom pre-selector Sine.16

The Sine selection algorithm uses a syntactic approach based on symbol presence
in formulas of the problem. Sine builds a trigger relation between symbols and axioms.
Presence of a pair (s,A) in this relation represents the fact that the axiom A is (likely to
be) needed for reasoning with symbol s. One may say that axiom A gives symbol s “its
meaning.” In order to construct the trigger relation, for each symbol the number of
axioms in which it appears is computed, this number is called the commonness of the
symbol. Then each axiom is put into the trigger relation with the least general symbol

16SUMO Inference Engine - originally developed by the second author for reasoning in the large
SUMO knowledge base, described in more detail in the chapter 3 of this thesis.
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problems Vampire+Sine Vampire+Sine(-d1) E E+Sine E+Sine(-d1)
ENVIRON 181 205 65 135 161
ALL 84 141 21 64 153

Table 4.4: Evaluation of Vampire and E with Sine(-d1) on random 1000 ENVIRON
and ALL MML.1011 problems in 30s

it contains.17 After the relation is built, the actual axiom selection starts. All problem-
specific formulas are selected, and in each iteration the selection is extended by all
included formulas that are triggered by any of the symbols used in already selected
formulas.18 The iterating is done until the set of selected axioms becomes stable. The
stable set of formulas is then passed to a theorem prover.

This standard fixpoint algorithm however tends to give too many axioms on MML
problems.19 To deal with this, we have introduced a depth limit parameter — a limit on
the number of selection-extending iterations. With the depth limit equal to one (“-d1”
parameter), for example, only the included axioms immediately related to symbols in
the problem-specific axioms are included.

The Table 4.4 presents the results of evaluation of E and Vampire on 1000 EN-

VIRON and ALL problems run with 30s time limit on the UM PCs.20 Note that the
combination of Vampire and Sine run with -d1 solves 205 of the ENVIRON problems,
and the combination of E and Sine with -d1 solves 153 of the ALL problems. This is a
very good performance on problems with average size of 5830 formulas resp. 40898
formulas. E in this mode solves about half of the SMALL versions of the problems.
This is very likely also due to improved E heuristics for dealing with large problems.
The Sine preprocessing time needs to be added to the 30s given to E prover. For the
ENVIRON problems this time is on average 1s, and for the ALL problems, this is on
average 4s.

4.3.3 Evaluation of Strategy Selection and Combination

Design, selection and combination of sufficiently orthogonal useful ATP strategies has
been for some time a well known technique significantly raising performance of ATPs.

17If there are more symbols with lowest generality index, axiom is put in relation with all of them.
18Note that the tested implementation relies on reasonable presentation of large-theory problems us-

ing TPTP-includes. This can be easily changed if needed.
19The structure of MML significantly differs from KBs like SUMO and CYC. There are many more

nontrivial theorems in MML, while SUMO and CYC contain a lot of definitions.
20Vampire strategies use Sine automatically, thus we do not provide data for Vampire without Sine.
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Both Vampire and E use strategy selection and machine learning on the TPTP library
to select a collection of useful strategies. However, they use the found strategies in
different ways. Vampire selects sequences of strategies, while E selects one “best”
strategy when run in auto-mode. The effect of strategy combination in Vampire can
be estimated by comparing Vampire’s performance in shorter and longer times (here
in 5s and 30s on a random set of 1000 SMALL problems). For E and SPASS (running
a single strategy depending on the problem) this difference is relatively small. Only
41 problems out of 345 solved in 30s by SPASS are solved in time longer than 5s,
which is approximately 13% increase. For Vampire, this improvement is much more
significant: out of 384 problems solved in 30s, only 310 are solved in 5s, which gives
a 24% increase. This significant difference in comparison to SPASS is due to Vampire
running not only for a longer time, but also switching to a different strategy during
proof-search.

This clue leads to a strategy-evaluation experiment done with E again on this ran-
dom set of 1000 SMALL problems: Each of the 196 E strategies predefined by the E
developer Stephan Schulz is tested on this set of problems with a 5s time limit. It turns
out that the strategy selected by E as potentially the best solves 310 problems with the
30 seconds time limit, while the strategy that turns out to be the best in reality solves
317 problems with a 5s time limit.

This clearly demonstrates the potential of domain-based ATP strategy-tuning. All
the 196 E strategies together solve 386 of the 1000 problems. This confirms a previous
conjecture by the first author and the E developer that E with a suitably-tuned strategy
combination mode will be considerably stronger. It also demonstrates that strategy
combination is more robust on new problems. The strategies of E are defined using
smaller building blocks and a special (“programming”) language using a number of
parameters. Given the performance potential gained by this strategy-tuning, it would
be very interesting (and feasible) AI experiment to try to invent new E strategies by
AI methods for (e.g., genetic) parameter-optimization/programming. Particularly on
a large knowledge base like MML, this might lead to some surprising ATP-strategy
inventions, in the same way as combining ATPs with learning on MML sometimes
finds completely novel and significantly shorter proofs than those written by the Mizar
authors.
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4.4 Evaluation of ATPs on different mathematical do-
mains in MML

Formal mathematics can be clustered according to many aspects, and just thinking
about organizing mathematics can lead to all kinds of theoretical investigations in
Foundations, Category Theory, but also into practical investigations with various clas-
sification schemes like Mathematics Subject Classification 200021, and also into very
pragmatic classifications based on the shape of the formal theories, important for per-
forming automated reasoning in various domains22

For the purpose of ATP evaluation in this paper we attempt a manual division of
the MML articles into (currently) seventeen subdomains of main MML developments.
This is motivated by the curiosity to verify experimentally various intuitions devel-
oped over the years in the ATP field, like “algebra is ATP-easier than calculus”. As
mentioned above, there can be many approaches to this, and for example a proper
MathSC2000 classification would certainly serve even better than the coarse-grained
division started by us, however detailed classification of more than 1000 formal arti-
cles requires a non-trivial amount of work, and making fine-grained decisions would
be beyond our resources. The (evolving) division can be viewed at our web page23.
The categories and the numbers of articles in each category are shown in Table 4.5.
The categorization now includes 804 articles out of the total 1011.

To the extent to which MML is approximation of “real mathematics”, and to the
extent to which this rough categorization is valid, these seventeen large classes of
problems (with the three different problem sizes coming from the different use-cases
described in Section 4.2) express a large mathematically-oriented (and particularly
Mizar/MPTP-oriented) ATP benchmark.

The table indeed seems to confirm quite convincingly the “algebra is ATP-easier
than calculus” theory. The set-theoretical domain outperforms even the algebraic and
is the most ATP-friendly. This is quite likely because of two related factors:

. Set theoretical articles belong to the more basic ones, not much previous implicit
knowledge is included in the articles and their size is thus likely smaller, making
them easier for ATPs.

21See http://wiki.mizar.org/twiki/bin/view/Mizar/MathematicsSubjectClassification
for a so far 25%-successful attempt to classify MML according to MathSC2000.

22For example, the strategy-selection tuning typically works by defining suitable clustering based on
the term and formula structure of the problems.

23http://github.com/JUrban/MPTP2/raw/master/MMLdivision.1011
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description articles probs S E V All S % E % V % All %

Algebra 50 2798 1182 1086 1314 1481 42.24 38.81 46.96 52.93
Algebraic Topology 5 215 52 50 89 94 24.19 23.26 41.4 43.72
Arithmetic, Number theory 70 4095 1587 1515 1741 1943 38.75 37 42.52 47.45
Calculus (real, complex) 54 3255 585 538 651 783 17.97 16.53 20 24.06
Category theory 21 1023 298 305 406 455 29.13 29.81 39.69 44.48
Computers, Algorithms 81 3809 971 932 1120 1304 25.49 24.47 29.4 34.23
Functional analysis 30 1320 395 330 445 507 29.92 25 33.71 38.41
General Topology 65 3191 1199 1115 1441 1594 37.57 34.94 45.16 49.95
Geometry 36 1593 666 659 806 876 41.81 41.37 50.6 54.99
Graph theory,Finite structs 43 2756 1186 1094 1331 1455 43.03 39.7 48.29 52.79
Lattices 50 2434 707 570 764 917 29.05 23.42 31.39 37.67
Linear Algebra 32 1752 496 493 630 700 28.31 28.14 35.96 39.95
Logic, Model theory 52 2832 1042 1084 1196 1369 36.79 38.28 42.23 48.34
Probability and Measure 23 1123 348 274 448 489 30.99 24.4 39.89 43.54
Real plane,Euclidean spaces 84 4555 1018 897 1290 1439 22.35 19.69 28.32 31.59
Set Theory 74 4060 2412 2278 2570 2735 59.41 56.11 63.3 67.36
Universal Algebra 34 1093 391 372 434 502 35.77 34.03 39.71 45.93

together 804 41904 14535 13592 16676 18643 34.69 32.44 39.8 44.49

Table 4.5: Categorization of MML 1011, 804 articles covered, SPASS, E, Vampire,
and overall success rates on the categories.

. As the needed implicit knowledge (encoding e.g. the type system) gets more
involved in more advanced areas like calculus, the ATP-emulation of these Mizar
type mechanisms becomes more costly, and the ATP performance suffers.

There are a number of ways that these data can be further analyzed, providing useful
feedback to the MPTP algorithms and also to ATP (meta) systems.

4.5 Conclusions, Future Work

The most important message of this evaluation is that a combination of three recent
ATP systems can solve 44% of the MML theorems coming from many different parts
of mathematics, regardless of how much computer algebra is done in them. The lead-
ing Vampire ATP system alone can solve 39%. Another important message is that off-
the-shelf ATPs are still weak in large theories, however fast axiom-selection heuristics
like Sine can help them and improve this state very significantly. Other one-problem-
at-atime large-theory heuristic methods similar to Sine are used for axiom pruning
in Isabelle/Sledgehammer [MP09], and also for axiom ordering in the SRASS sys-
tem [SP07]. If these other methods could be run easily on arbitrary and large TPTP
problems, it would be interesting to evaluate and compare them on our benchmarks,
or at least in the CASC LTB competition which includes a small selection of the older
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MPTP problems in its MZR category. The problem of axiom selection in large theories
and the possible gains from good solutions seem to be sufficiently important to warrant
such benchmarking and further research in this field, possibly leading also to smarter
clause-selection algorithms implemented directly inside ATPs.

In this evaluation, axiom-selection methods that use transfer of knowledge between
problems (machine learning) like MaLARea [USPV08] are not considered. Methods
using learning are very interesting and quite novel in the ATP context, and we are
currently investigating various suitable methods for machine learning , characteriza-
tions of problems and proofs, and also suitable combinations with strategy-selection
and with other axiom-selection methods working in the one-problem-at-a-time setting
like Sine. We also plan to do a thorough strategy evaluation of a much larger set of
strategies available with Vampire, and their Mizar/MPTP-oriented tuning similar to
the current CASC-tuning of Vampire, possibly again with adding machine learning
technology.

An important future work is translation of ATP proofs to a presentable ITP for-
mat. The (technically certainly admirable) solution used by Isabelle/Sledgehammer
(and obviously also of HOL Light) is inclusion of a reasonably strong ATP system
directly into their cores. This is however against the philosophy of readable proofs and
“obvious inferences” of Mizar, and with strong external ATPs also potentially causing
all kinds of other problems: not all proofs can be internalized, and the hard internal-
ized proofs make the library refactoring slow and fragile.24 With the growing strength
of ATPs, a proper human-readable presentation of ATP proofs is a more and more
pressing (and also very interesting) AI task. Some previous work in this direction has
been done in the context of the Omega and ILF systems. A recent initial effort in this
direction is described in [VSU10].

24Note that this philosophy is no longer just Mizar’s: the Math Components project targeted at the
large formalization of Feit-Thompson theorem in Coq is avoiding Coq mechanisms that keep “too much
automation” inside proofs for very similar reasons as Mizar does.



Chapter 5

Playing in the Grey Area of Proofs

Authors: Krystof Hoder, Laura Kovacs, Andrei Voronkov

Interpolation is an important technique in verification and static analysis of pro-
grams. In particular, interpolants extracted from proofs of various properties are used
in invariant generation and bounded model checking. A number of recent papers stud-
ies interpolation in various theories and also extraction of smaller interpolants from
proofs. In particular, there are several algorithms for extracting of interpolants from
so-called local proofs. The main contribution of this paper is a technique of minimising
interpolants based on transformations of what we call the “grey area” of local proofs.
Another contribution is a technique of transforming, under certain common conditions,
arbitrary proofs into local ones.

Unlike many other interpolation techniques, our technique is very general and ap-
plies to arbitrary theories. Our approach is implemented in the theorem prover Vam-
pire and evaluated on a large number of benchmarks coming from first-order theorem
proving and bounded model checking using logic with equality, uninterpreted func-
tions and linear integer arithmetic. Our experiments demonstrate the power of the new
techniques: for example, it is not unusual that our proof transformation gives more
than a tenfold reduction in the size of interpolants.

5.1 Introduction

Interpolants extracted from proofs have several applications in verification and static
analysis, see e.g. [HJMM04, BHT06, JM07a, McM08, CGM+11]. Although inter-
polants are guaranteed to exist in some theories (for example, those having quantifier
elimination), interpolants extracted from proofs turn out to be smaller and more useful

66
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than those obtained by general interpolation algorithms, see, e.g. [JM07b]. For this
reason, recent papers [JM06, McM08, KV09b, DKPW10, KLR10, BKRW11, GLS11]
consider the problem of obtaining small interpolants for various theories.

In this paper we consider two related problems: extracting interpolants from proofs
and minimising such interpolants. Papers [McM05, KV09b] define algorithms for
extracting interpolants from so-called local proofs. Roughly, in local proofs some
symbols are colored in the red or blue colors and others are uncolored. Uncolored
symbols are said to be grey. A local proof cannot contain an inference that uses both red
and blue symbols. In other words, colors cannot be mixed within the same inference.

However, building local proofs may require substantial changes to a first-order
theorem prover or an SMT solver. In addition, local proofs do not necessarily exist.
One of the contributions of this paper is a technique for changing proofs into local ones
under some conditions. The ideas of this technique can be traced to an observation
made in [KMZ06, KV09b] that existential quantification of constants results in an
interpolant. We prove a simple result showing that this technique is correct and can be
applied to translate non-local proofs with colored constants into local proofs.

When we already have a local proof, one can extract an interpolant from it. This
interpolant is a boolean combination of (some) formulas occurring in the proof, if one
uses the algorithm of [KV09b]. More exactly, the interpolant is obtained as a boolean
combination of conclusions of some symbol-eliminating inferences: an inference hav-
ing at least one colored premise and a grey conclusion. The interpolation extraction
theorem of [KV09b] is not restricted to any particular theory. Essentially the only
condition on proofs is inference soundness, that is, the conclusion of any inference
is a logical consequence of its premises. This generality gives one a lot of freedom
since one does not have to follow rules of any specific calculus (such as resolution and
superposition) in building local proofs.

In this paper, we exploit the generality of [KV09b] by considering proof transfor-
mations that preserve both inference soundness and locality. It is interesting that such
transformations can drastically change the shape and the size of the extracted inter-
polant. The transformations we consider are always applied to grey formulas in the
proof, which inspired the title of this paper.

While the class transformations we consider (cutting off a grey formula) obviously
preserve inference soundness, they can violate locality. To preserve locality, we create
a SAT problem whose solutions encode all local proofs obtained by a sequence of cut-
offs. Further, we create a linear expression over the variables of the SAT problem that
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expresses some numeric characteristics of the interpolant, for example, the number
of different atoms in it. Thus, we are interested in the solutions of the problem that
minimise the linear expression: any such solution can be used to build a proof giving a
smaller (in some sense) interpolant. These solutions can be found using an SMT solver
or a pseudo-boolean optimisation tool.

The main contributions of our paper are summarised below.

. We present a new method of producing smaller interpolants from local proofs.
The methods is based on transformation of the “grey area” of proofs. It uses
the idea that proof locality can be expressed by a set of propositional formulas
whose models represent all local proofs obtained by such transformations (Sec-
tions 5.5.1-5.5.2).

. We present a method for changing proofs into local ones. This method is ap-
plicable to all proofs in which all colored symbols are uninterpreted constants
(Section 5.4).

. We define a transformation of interpolant minimisation problems into the prob-
lem of solving pseudo-boolean constraints (Section 5.5.4). Minimality is defined
with respect to various measures of the size of interpolants.

. We implemented our minimisation algorithm in the Vampire theorem prover
[RV02]. It uses the Yices SMT solver [Dd06] for solving pseudo-boolean con-
straints (Section 5.6.1). As Vampire cannot yet efficiently handle the combi-
nation of various theories, we generate proofs over SMT problems using Z3
[dMB08].

. We show experimentally that our method improves [KV09b] by generating con-
siderably better/smaller interpolants in the size, the total weight and the number
of quantifiers (Section 5.6).

The rest of this paper is structured as follows. Section 5.2 overviews relevant defi-
nitions and properties of first-order logic and interpolation. In Section 5.3 the notion of
colored and local proofs are introduced. Our result on translating non-local proofs into
local ones is formulated in Section 5.4. Section 5.5 details our approach to minimising
interpolants. We present experimental results in Section 5.6 and overview related work
in Section 5.7. Section 5.8 concludes the paper.
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5.2 Interpolation

We consider the standard first-order predicate logic with equality. We allow all stan-
dard boolean connectives and quantifiers in the language. We assume that the language
contains the logical constants > for always true and ⊥ for always false formulas.

Throughout this paper, we denote formulas by A,B,C,D,G,R, terms by r,s, t, vari-
ables by x,y,z, constants by a,b,c and function symbols by f ,g, possibly with indices.
Let A be a formula with free variables x̄, then ∀A (respectively, ∃A) denotes the for-
mula (∀x̄)A (respectively, (∃x̄)A). A formula is called closed, or a sentence, if it has no
free variables. We call a symbol a predicate symbol, a function symbol or a constant.
Thus, variables are not symbols. We consider equality = part of the language, that is,
equality is not a symbol. A formula or a term is called ground if it has no occurrences
of variables. A formula is called universal (respectively, existential) if it has the form
(∀x̄)A (respectively, (∃x̄)A), where A is quantifier-free. We write C1, . . . ,Cn `C to de-
note that the formula C1∧ . . .∧Cn =⇒ C is a tautology. Note that C1, . . . ,Cn,C may
contain free variables.

A signature is any finite set of symbols. The signature of a formula A is the set of
all symbols occurring in this formula. For example, the signature of b = g(z) is {g,b}.
The language of a formula A, denoted by LA, is the set of all formulas built from the
symbols occurring in A, that is formulas whose signatures are subsets of the signature
of A.

We recall the following theorem from [Cra57].

Theorem 5.2.1 [Craig’s Interpolation Theorem]Let A,B be closed formulas and let
A ` B. Then there exists a closed formula I ∈ LA∩LB such that A ` I and I ` B.

In other words, every symbol occurring in I also occurs in both A and B. Every formula
I satisfying this theorem will be called an interpolant of A and B.

We call a theory any set of closed formulas. If T is a theory, we write C1, . . . ,Cn `T

C to denote that the formula C1 ∧ . . .∧C1 =⇒ C holds in all models of T . In fact,
our notion of theory corresponds to the notion of axiomatisable theory in logic. When
we work with a theory T , we call symbols occurring in T interpreted while all other
symbols uninterpreted.

As proved in [KV09b], Craig’s interpolation also holds for theories in the following
sense:

Theorem 5.2.2 Let A,B be formulas and let A `T B. Then there exists a formula I

such that
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1. A `T I and I ` B;

2. every uninterpreted symbol of I occurs both in A and B;

3. every interpreted symbol of I occurs in B.

Likewise, there exists a formula I such that

1. A ` I and I `T B;

2. every uninterpreted symbol of I occurs both in A and B;

3. every interpreted symbol of I occurs in A.

The proof of this theorem in [KV09b] uses compactness, which is guaranteed when T

is axiomatisable.
In the sequel we will sometimes be interested in the interpolation property with

respect to a given theory T . We will use `T instead of ` and relativise all definitions
to T . To be precise, we call an interpolant of A and B any formula I such that A `T I,
I `T B, and every uninterpreted symbol of I occurs both in A and B.

If E is a set of expressions (for example, formulas) and constants c1, . . . ,cn do not
occur in E, then we say that c1, . . . ,cn are fresh for E. We will less formally simply say
fresh constants when E is the set of all expressions considered in the current context.

We call a reverse interpolant of A and B any formula I such that A `T I, I,B `T ⊥,
and every uninterpreted symbol of I occurs both in A and B.

Reverse interpolants for A and B are exactly interpolants of A and ¬B. More-
over, when B is closed, reverse interpolants are exactly interpolants in the sense of
[McM05, McM08]. Reverse interpolants are convenient when we use a refutation-
based inference system, such as resolution, for finding a proof of A =⇒ B that can
give us an interpolant: in this case one can search for a refutation from the set of
formulas A,¬B instead.

5.3 Local Proofs

In this section we recall some terminology related to inference systems. Inference sys-
tems are commonly used in the theory of resolution and superposition [BG01, NR01];
however we do not restrict ourselves to the superposition calculus. The material of this
section is based on [KV09b], adapting the terminology of [KV09b] to our setting.

We also introduce the notion of local proofs and recall results on extracting inter-
polants from local proofs as proved in [KV09b].
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Definition 5.3.1 An inference rule is an n-ary relation on formulas, where n≥ 0. The
elements of such a relation are called inferences and usually written as

A1 . . . An
A

.

The formulas A1, . . . ,An are called the premises of this inference, whereas the formula
A is the conclusion of the inference.

An inference system I is a set of inference rules. An axiom of an inference system
is any conclusion of an inference with 0 premises. Any inferences with 0 premises and
a conclusion A will be written without the bar line, simply as A.

A derivation in an inference system I is a tree built from inferences in I. If the root
of this derivation is A, then we say it is a derivation of A. A derivation of A is called
a proof of A if it is finite and all leaves in the derivation are axioms. A formula A is
called provable in I if it has a proof. We say that a derivation of A is from assumptions

A1, . . . ,Am if the derivation is finite and every leaf in it is either an axiom or one of the
formulas A1, . . . ,Am. A formula A is said to be derivable from assumptions A1, . . . ,Am

if there exists a derivation of A from A1, . . . ,Am. A refutation is a derivation of ⊥. 2

Note that a proof is a derivation from the empty set of assumptions. Any derivation
from a set of assumptions S can be considered as a derivation from any larger set of
assumptions S′ ⊇ S.

Let us now fix two sentences R (red) and B (blue). In the sequel we assume R and B

to be fixed and give all definitions relative to R and B. Denote by L the intersection of
the languages of R and B, that is the set LR∩LB. We call signature symbols occurring
both in R and B grey, symbols occurring only in R red and symbols occurring only in
B blue. A symbol that is either red or blue is also called colored. For a formula C,
we say that C is grey if C ∈ L , otherwise we say that C is colored. In other words,
grey formulas contain only grey symbols and every colored formula contains at least
one red or blue symbol. A colored formula that only contains red and grey symbols,
is called a red formula. Similarly, a blue formula is a colored formula containing only
blue and grey symbols. In the rest of this paper, red formulas will be denoted by R,
blue formulas by B, and grey formulas by G, possibly with indices.

Definition 5.3.2 [RB-derivation]Let us call an RB-derivation any derivation Π satis-
fying the following conditions.

(RB1) For every leaf C of Π one of the following conditions holds:

1. R `T ∀C and C ∈ LR or



72 CHAPTER 5. PLAYING IN THE GREY AREA OF PROOFS

2. B `T ∀C and C ∈ LB.

(RB2) For every inference

C1 . . . Cn
C

of Π we have ∀C1, . . . ,∀Cn `T ∀C.

We will refer to property (RB2) as soundness. 2

We will be interested in finding reverse interpolants of R and B. The case LR ⊆ LB is
obvious, since in this case R is a reverse interpolant of R and B. Likewise, if LB ⊆ LR,
then ¬B is a reverse interpolant of R and B. For this reason, in the sequel we assume
that LR 6⊆ LB and LB 6⊆ LR, that is, both R and B contain at least one colored symbol.

We are mostly interested in a special kind of derivation introduced in [JM06] and
called local (or sometimes called split-proofs). The definition of a local derivation is
relative to formulas R and B.

Definition 5.3.3 [Local RB-derivation]An inference

C1 . . . Cn
C

in an RB-derivation is called local if the following two conditions hold.

(L1) Either {C1, . . . ,Cn,C} ⊆ LR or {C1, . . . ,Cn,C} ⊆ LB.

(L2) If all of the formulas C1, . . . ,Cn are grey, then C is grey, too.

A derivation is called local if so is every inference of this derivation. 2

In other words, (L1) says that inferences cannot mix colors: no inference contains both
red and blue symbols. Condition (L2) is natural (inferences should not introduce irrel-
evant symbols) but it is absent in other works. Condition (L2) is however essential for
us since without it the proof of Theorem 5.3.4 does not go through [KV09b]. Note that
standard derivations produced by theorem provers often contain inferences violating
(L2), especially, in instantiation rules:

(∀x)A(x)
A(r)

,

where r is a red term. However, such inferences can be removed from derivations
without violating (L1).
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We will now formulate one of the main theorems of [KV09b] on the extraction of
interpolants from local proofs and explain the structure of interpolants obtained by the
algorithm of [KV09b].

Consider any RB-derivation Π. Note that by the soundness condition (RB2) we can
replace every formula C occurring in this derivation by its universal closure ∀C and
obtain an RB-derivation Π′ where inferences are only performed on closed formulas.
We will call such derivations Π′ closed and assume, for simplicity, that we are dealing
only with closed derivations.

We call a symbol-eliminating inference any inference that is

1. either a grey leaf G of Π such that R `T G.

2. or has the form

A1 · · · An
G

,

such that G is grey and and at least one of the formulas A1, . . . ,An is colored.

Any such inference “eliminates” at least one colored symbol. One could also call such
inferences color-eliminating. The following theorem is proved in [KV09b]:

Theorem 5.3.4 Let Π be a closed local RB-refutation. Then one can extract from Π

a reverse interpolant I of R and B. This reverse interpolant is a boolean combination of
conclusions of symbol-eliminating inferences of Π. 2

The proof of Theorem 5.3.4 in [KV09b] gives an algorithm for extracting an interpolant
from a refutation.

By a close inspection of the algorithm of [KV09b], we noted that not all conclu-
sions of symbol-eliminating inferences occur in the extracted interpolant. To charac-
terise the set of all formulas occurring in the interpolant, in this paper we introduce a
new notion, called the digest of a refutation, as given below.

Definition 5.3.5 [Digest]Consider a closed local RB-refutation Π with a formula G

which is a conclusion of a symbol-eliminating inference.

If the inference eliminates a red symbol, then it has the form:

· · · R0 · · ·
G
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Consider the path from G to the bottom formula of the refutation:

· · · R0 · · ·
G....
⊥

We say that G belongs to the digest of the refutation if either all formulas on the path
are grey or the first (closest to G) colored formula on the path is blue.

Likewise, for a blue symbol eliminating inference:

· · · B0 · · ·
G....
⊥

G belongs to the digest of the refutation if at least one formula on the path is colored
and the first (closest to G) colored formula on the path is red. 2

Note the slight asymmetry in Definition 5.3.5 between red and blue symbol elim-
inating inferences, which is due to the interpolant generation algorithm of [KV09b].
Using the notion of digest, we can now refine Theorem 5.3.4 as follows:

Theorem 5.3.6 Let Π be a closed local RB-refutation. Then one can extract from Π

a reverse interpolant I of R and B. This reverse interpolant is a boolean combination of
the formulas in the digest of Π. 2

In what follows we will refer to the reverse interpolant obtained from a refutation as
described in Theorem 5.3.6 as the interpolant extracted from Π.

5.4 Proof Localisation

Extracting interpolants from proof requires a special interpolating prover, or a prover
producing local proofs. While, as reported in [HKV10], the theorem prover Vampire
can search for local proofs only and hence the algorithm of [KV09b] can be used in
first-order resolution proofs, most provers and SMT solvers do not necessarily generate
local proofs.

One of the main motivations of this paper was to check how our minimisation
technique works on real-life examples taken from static analysis of software. Although
such benchmarks exist, they can only be solved using an SMT solver, which in general
produces non-local proofs.
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In is interesting that in real-life examples, especially those taken from bounded
model checking, all the colored symbols are normally uninterpreted constants repre-
senting state variables from intermediate states. In this section we show that for such
examples one can transform arbitrary proofs into local ones, at the cost of quantifying
some formulas in the proof. This idea has already appeared in [KMZ06, KV09b], see
Lemma 5.4.1 below.

The downside of this approach is that a ground refutation can become a non-ground
one, thus, the extracted interpolant may contain quantifiers. Once we have a local
proof, the number of such quantifiers can be reduced using the technique of Section 5.5
(line 18 of Algorithm 5.5.7).

Lemma 5.4.1 [KMZ06, KV09b] Consider two formulas A1(a) and A2 such that
A1(a) `T A2 and a is an uninterpreted constant not occurring in A2. Then, A1(a) `
(∃x)A1(x) and (∃x)A1(x) ` A2.

This lemma can be used to localise non-local derivations by quantifying away colored
constants that result in mixing colors.

Theorem 5.4.2 Given two formulas R and B such that R =⇒ B and all the colored
symbols of R and B are uninterpreted constant symbols. Then any proof Π of R =⇒ B

can be translated into a local proof Πl .

PROOF. Let us take a non-local refutation Π of R =⇒ B. This means, that Π contains
at least one inference that violates conditions (L1)-(L2) of Definition 5.3.3. The proof
is by induction on Π. We will eliminate all color conflicts one by one, starting from
the bottom of the proof. Thus, for every conflicting inference, we can assume that
the derivation below it is already local. In particular, the conclusion of the violating
inference cannot mix colors. Consider the case when the conclusion is blue (other
cases are similar). Then the violating inference has the form

R1 · · · Rn A1 · · · Am
A

,

where A,A1, . . . ,Am are either grey or blue and R1, . . . ,Rn are red. Let r1, . . . ,rk be all
the red constants occurring in this inference and formulas R′i are obtained from Ri by
replacing r1, . . . ,rk by fresh variables x1, . . . ,xk. Note that all of the R′i are either grey
or blue. The above non-local inference can then be replaced by:

(∃x1 . . .xk)(R′1∧ . . .∧R′n) A1 · · · Am

A
,
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(∀x1)(p(x1)∨q(x1,r1)) ¬p(b1)

q(b1,r1)

(∀x2)(s(x2)∨¬q(x2,r1)) ¬s(b1)

¬q(b1,r1)

⊥

(a)

(∀x1)(p(x1)∨q(x1,r1)) (∀x2)s(x2)∨¬q(x2,r1)

(∃y)
(
(∀x1)(p(x1)∨q(x1,y))∧ (∀x2)(s(x2)∨¬q(x2,y))

)
¬p(b1)

(∃y)
(
q(b1,y)∧ (∀x2)(s(x2)∨¬q(x2,y))

)
¬s(b1)

(∃y)
(
q(b1,y)∧¬q(b1,y)

)
⊥

(b)

Figure 5.1: Proof localisation of proof (a) into proof (b).

This inference does not contain the red color, and we are done. Note that the premises
of the formula (∃x1 . . .xk)(R′1 ∧ . . .∧ R′n) are given by the union of the premises of
R1, . . . ,Rn. The correctness of the transformation is guaranteed by Lemma 5.4.1.

The above transformation can also be applied on inferences where a premise con-
tains both a red and a blue symbol. The non-local inference is replaced by a local
inference at the cost of using existential quantifiers over the premise with colored sym-
bols.

2

This theorem gives us an algorithm for changing any non-local refutation to a local
one, provided that the condition on colored symbols is satisfied.

Figure 5.1 illustrates how the non-local proof given in Figure 5.1(a) is translated
into the local proof listed in Figure 5.1(b).

5.5 Playing in the Grey Area

This section presents the main idea of this paper. It is based on the following observa-
tion. One can change, sometimes considerably, the grey areas (that is, areas consisting
of grey formulas) of the proof without violating locality. In addition, such proof trans-
formations can change the extracted interpolant.

We will only consider one kind of proof transformations, called here grey slicing.
Other proof transformations can be proposed as well, but are beyond the scope of this
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paper.

Definition 5.5.1 [Grey slicing]Consider any derivation Π containing a subderivation
∆ of the form

A1 · · · An

An+1 · · · Am
A

A0
,

(5.1)

where n≥ 0.

We say that a derivation Π′ is obtained from Π by slicing off A in ∆ (or simply,
slicing off A) if Π′ is obtained from Π by replacing the subderivation ∆ by

A1 · · · An An+1 · · · Am
A0 (5.2)

When A is a grey formula, we will refer to this transformation as grey slicing. 2

Apparently, grey slicing preserves properties (RB1)-(RB2) of Definition 5.3.2, so
it transforms an RB-derivation into an RB-derivation. It is also easy to see that grey
slicing can violate the locality conditions (L1) of Definition 5.3.3. For example, slicing
off G1 in

B0

R0
G1

G0

yields a non-local derivation

B0 R0
G0

.

Consider now an example showing that grey slicing transformations can change
the digest, and hence the extracted interpolant.

Example 5.5.2 Take the following refutation Π:

R3

R1 G1
G3

B1 G2
G4

G5
G6

R4
G7
⊥
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The digest of this refutation is {G4,G7} and the extracted reverse interpolant is G4 =⇒
G7. Slicing off G4 in Π results in the refutation Π1:

R3

R1 G1
G3 B1 G2

G5
G6

R4
G7
⊥

with the digest {G5,G7} and the extracted reverse interpolant G5 =⇒ G7. Slicing off
now G5 in Π1 results in Π2:

R3

R1 G1
G3 B1 G2

G6
R4
G7
⊥

with the digest {G6,G7} and the extracted reverse interpolant G6 =⇒ G7. We can
slice off G7 in Π2 and obtain the refutation:

R3

R1 G1
G3 B1 G2

G6
R4
⊥

with the digest {G6}, and the reverse interpolant ¬G6.

However, if we slice off G3 in the original derivation Π, we obtain the refutation:

R3

R1 G1

B1 G2
G4

G5
G6

R4
G7
⊥

in which slicing off G4 would violate the locality of the resulting refutation.

Example 5.5.2 gives us the following observations:
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1. grey slicing can change the extracted interpolant, and sometimes considerably
(compare G4 =⇒ G7 and ¬G6).

2. a grey slicing step can prevent other grey slicing steps, thus preventing previ-
ously possible interpolants.

The main question we are going to answer in this section is how to use grey slicing
to obtain smaller, and even minimal, in some sense, interpolants. To this end we will
use the following ideas. First, we will introduce a set VΠ of propositional variables
expressing some properties of refutations obtained by grey slicing from a given proof
Π. Next, we will define propositional formulas PΠ of the variables VΠ that express
locality. Thus, every refutation obtained from Π by grey slicing is local if and only if it
satisfies PΠ. This means we can use a SAT solver to “compute” all local refutations that
can be obtained from Π by grey slicing. Finally, we introduce propositional formulas
expressing the digest of refutations. This set of propositional formulas allows us to use
an SMT solver or a pseudo-boolean optimisation tool to find refutations minimising
the digest in various ways.

Let us now formalise this idea. In the rest of this section, when we speak about
a formula from a derivation, we will normally mean a concrete node in the derivation
containing this formula (note that a tree-like derivation may contain more than one
node with the same formula). Later we will also discuss derivations in the dag form.
Nonetheless, for simplicity, for the moment we prefer to deal with trees instead of
dags.

The first thing to note is that every derivation is also a set of nodes occurring in
it and slicing off simply removes one node from this set. This means that a sequence
of slicing off transformations removes a subset of nodes. Every removed node G, at
the point of removal, is replaced by a set of other nodes occurring in the derivation
(namely, the premises of G at that point). Each of the nodes in this set can in turn be
removed (and replaced by other nodes) etc., so eventually the place of any removed
node will be taken by a set of nodes occurring in the final derivation. We will call this
set a trace of F and define it formally below.

Definition 5.5.3 [Trace]Let S = Π0, . . . ,Πk be a sequence of derivations such that
each member in the sequence except Π0 is obtained by slicing off a single grey node
from the previous one. For every grey node G in Π0 we define a set of formulas, call
trace of G (with respect to S), as follows:

1. If G was never sliced off, that is, it occurs in Πk, then trace(G)
def
= {G}.
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2. Suppose G was sliced off at some point, that is, G is the formula A as in Defini-
tion 5.5.1. Then trace(G)

def
= trace(An+1)∪ . . .∪ trace(Am). 2

Denote any sequence S of slicing off transformations with the initial derivation Π

and final derivation Π′ by Π 99K Π′. It is not hard to argue that the following lemma
holds.

Lemma 5.5.4 The trace of a node does not depend on the sequence of transforma-
tions S but only depends on the initial and the final derivation in S. That is, for every
two derivations of the form Π 99KΠ′ with the same initial derivation Π and final deriva-
tion Π′, and for every grey node G in Π, the trace of G is the same in both derivations.
2

In the rest of this section we will normally assume a fixed initial derivation Π and
various sequences Π 99K Π′. In view of this lemma we will simply speak about the
trace of G in Π′.

Suppose Π 99K Π′ is a sequence of transformations. Let us introduce some propo-
sitions characterising the behaviour of grey nodes in Π on this sequence.

. s(G): G was sliced off;

. r(G): the trace of G contains a red formula;

. b(G): the trace of G contains a blue formula;

. g(G): the trace of G contains only grey formulas;

. d(G): G belongs to the digest of Π′.

We define the set VΠ of propositional variables as consisting of all the variables s(G),
r(G), b(G), g(G), d(G) denoting these propositions. Later we will add to VΠ more
variables.

Then, for every sequence of transformations Π 99K Π′ and every grey node G in
Π, each of the above propositions is either true or false on this sequence. Therefore,
if we take any propositional formula built from these propositions, it is also either true
or false on this sequence.
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5.5.1 Expressing the Digest

Our next aims are to write down a propositional formula that expresses that Π′ is local,
and also represent the digest of any local refutation. To this end we will first intro-
duce propositional variables and formulas over grey nodes, then write down further
formulas of these propositions that are satisfied when Π′ is local, and finally show that
satisfiability of these propositions implies locality of Π′.

Propositions rc and bc. Take a local derivation Π with Π 99K Π′. For each grey
node G in Π we first introduce the propositions rc(G) and bc(G) expressing that G is
not sliced off and is a conclusion of a symbol-eliminating inference in Π with at least
one red (respectively, blue) premise. The propositional variables rc(G) and bc(G) are
added to VΠ.

We will only define rc(G), since the case of bc is symmetric.

Consider the following cases depending on the inference introducing G in Π.

1. G is introduced by an inference with only grey premises:

G1 · · · Gm
G

,

We then write:

rc(G)↔ (¬s(G)∧ (r(G1)∨ . . .∨ r(Gm))). (5.3)

The conditions on the traces of G1, . . . ,Gm ensure that G can be written as the
conclusion of a symbol eliminating inference with at least one red premise.
Namely, if r(Gi) holds, then by slicing off Gi and some of the grey nodes from
its derivation, G becomes the conclusion of a symbol eliminating inference with
at least one red premise.

2. G is introduced by an inference with at least one red premise:

R1 · · · Rn G1 · · · Gm
G

.

We then have:
rc(G)↔¬s(G). (5.4)
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3. G is introduced by an inference with at least one blue premise

B1 · · · Bn G1 · · · Gm
G

.

Due to the locality of derivations, we write:

¬rc(G). (5.5)

Equations (5.3)-(5.5) are added to the set of propositional formulas PΠ over VΠ.

Propositions rf and bf . We introduce the propositions rf (G) and bf (G) for every
grey node G, and add the corresponding variables to VΠ. These propositions are closely
related to the definition of digest. The proposition rf (G) holds iff on the path from G

to the root of Π either (i) all nodes are grey, or (ii) the first colored node is a blue one.
Likewise, the proposition bf (G) expresses that on the path from G to the root of Π,
there exists a colored node and the first colored node is a red one.

We will only write down properties of rf , the case of bf is similar. We define rf

“inductively”, starting from the root (the bottom formula) of the derivation Π.

1. If the successor of G in Π is a red formula, then we write

¬rf (G). (5.6)

2. If the successor of G in Π is a blue formula, then we write

rf (G). (5.7)

3. Finally, if the successor of G in Π is a grey node G1, then we write

rf (G)↔ (rf (G1)∨bc(G1))∧ ¬rc(G1). (5.8)

Equations (5.6)-(5.8) are added to PΠ.

Proposition d. By straightforward inspection of the definition of digest, it is not hard
to argue that d(G) can be expressed as follows:
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d(G)↔ (rc(G)∧ rf (G))∨ (bc(G)∧bf (G)). (5.9)

We add (5.9) to PΠ.

5.5.2 Expressing Locality

Take a local derivation Π and a grey node G in it. Depending on the inference intro-
ducing G, there are four possible cases:

1. G is a leaf of Π;

2. G is introduced by an inference with grey premises;

3. G is introduced by an inference with at least one red premise;

4. G is introduced by an inference with at least one blue premise. In this case, due
to the locality of Π, all premises in the derivation tree of G are either blue or
grey.

For each of these cases, we will show how to write down formulas expressing that
Π 99K Π′ results in a local derivation, that is, Π′ is local. Each below listed proposi-
tional formulas is added to PΠ.

General properties of grey nodes. Note that, if a node G is not sliced off, then its trace
is {G}, so we have g(G):

¬s(G) =⇒ g(G). (5.10)

We also know that a node which is sliced off cannot belong to the digest:

s(G) =⇒ ¬d(G). (5.11)

Observe that equations (5.10)-(5.11) do not make use of the assumptions that Π is
local. That is, (5.10)-(5.11) hold for arbitrary derivations.

Further, note that for local derivations the properties b, r and g are mutually exclu-
sive. Therefore, for every grey node node G we add the following properties expressing
mutual exclusion:



84 CHAPTER 5. PLAYING IN THE GREY AREA OF PROOFS

color(G)
def
= (b(G)∨ r(G)∨g(G)) ∧

(b(G) =⇒ ¬r(G)∧¬g(G)) ∧
(r(G) =⇒ ¬b(G)∧¬g(G)) ∧
(g(G) =⇒ ¬r(G)∧¬b(G)).

(5.12)

G is a leaf. In this case, G cannot be sliced off and we have:

leaf (G)
def
= ¬s(G)∧g(G) (5.13)

G is introduced by an inference with grey premises:

G1 · · · Gm
G

.

The locality of Π 99K Π′ implies that if the trace of any G1, . . . ,Gm contains a red
(respectively, blue) formula, then the traces of G1, . . . ,Gm cannot contain a blue (re-
spectively, red) formula. To further reason about the trace of G, consider the following
cases.

(i) If G is never sliced off in Π 99K Π′, then the trace of G is clearly grey. Whether
G is a conclusion of a symbol eliminating inference only depends on whether the trace
of some of the G1, . . . ,Gm contains either a blue or a red formula.

(ii) If G is sliced off, then the color of the formulas in the trace of G depend on the
color of the formulas from the traces of G1, . . . ,Gm.

Based on the above reasoning, we introduce the following formula capturing the
properties of the trace of G:

grey(G)
def
= (r(G1)∨ . . .∨ r(Gm) =⇒ ¬b(G1)∧ . . .∧¬b(Gm)) ∧

(b(G1)∨ . . .∨b(Gm) =⇒ ¬r(G1)∧ . . .∧¬r(Gm)) ∧
(s(G)∧ (r(G1)∨ . . .∨ r(Gm)) =⇒ r(G)) ∧
(s(G)∧ (b(G1)∨ . . .∨b(Gm)) =⇒ b(G)) ∧
(s(G)∧g(G1)∧ . . .∧g(Gm) =⇒ g(G)) ∧
(¬s(G) =⇒ g(G)).

(5.14)

G is introduced by an inference with at least one red premise:

R1 · · · Rn G1 · · · Gm
G

.
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In this case the locality of Π implies that the trace of G can contain only red and grey
formulas. Moreover, the color of the formulas from the trace of G only depends on
whether G is sliced off, as follows.

(i) If G is sliced off, then the trace of G depends on the traces of R1, . . . ,Rn,
G1, . . . ,Gm, and hence the trace of G contains at least one red formula. Also note,
that if G is sliced off, then G cannot belong to the digest of Π′.

(ii) If G is not sliced off, then trace(G) = {G}. Hence, the trace of G only con-
tains grey formulas. Moreover, note that G is the conclusion of symbol eliminating
inference. Thus, G also belongs to the digest of Π′.

We therefore introduce the below formula for G, capturing the properties of the
trace of G:

red(G)
def
= ¬b(G1)∧ . . .∧¬b(Gm) ∧

(s(G) =⇒ r(G))∧
(¬s(G) =⇒ g(G)).

(5.15)

G is introduced by an inference with at least one blue premise:

B1 · · · Bn G1 · · · Gm
G

.

Similarly to the previous case, we introduce the following formula:

blue(G)
def
= ¬r(G1)∧ . . .∧¬r(Gm) ∧

(s(G) =⇒ b(G))∧
(¬s(G) =⇒ g(G)).

(5.16)

This completes our construction of the propositional variables and formulas ex-
plained in the beginning of this section. Namely, the set of variables VΠ consists of all
variable s(G), r(G), b(G), g(G), rc(G), bc(G), rf (G), bf (G) and d(G), and the set PΠ

of formulas are all formulas (5.3)–(5.16).

Our construction clearly implies the following result.

Theorem 5.5.5 Let Π be a local derivation. Then a sequence Π 99K Π′ satisfies all
formulas (5.8)-(5.16) from PΠ if and only if Π′ is local. Moreover, the propositions
r(G), b(G), g(G), rc(G), bc(G), rf (G), bf (G) and d(G) have their intended meaning,
in particular, in every model Π′ of these formulas G belongs to the digest of Π′ if and
only if d(G) holds on Π′.
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5.5.3 Derivations as Dags

Refutations found by theorem provers are normally dags. Transforming a dag to a tree
can result in an exponential growth in size. Therefore, it is desirable to change our
technique to deal with dags. The modification is quite simple: we allow a formula in a
dag to be sliced off only if all the tree derivations corresponding to the resulting dag are
local. Note that this may result in a smaller choice of grey slicing transformations as
compared to refutations as trees and hence larger interpolants. Nonetheless, expanding
dags to trees may turn to be unfeasible. Therefore, our implementation uses dags.

To build propositional formulas expressing locality on dags, one should only mod-
ify the propositions rf (G) and bf (G).

Propositions rf and bf for dags. The proposition rf (G) holds iff on all paths from
G to the root of Π either (i) all nodes are grey, or (ii) the first colored node is a blue
one. Likewise, the proposition bf (G) expresses that on all paths from G to the root of
Π, the first colored node is a red one. The axiomatisation of these propositions is given
below, and (5.6)-(5.8) are replaced by the below formulas in PΠ.

We will only define rf , since the axiomatisation of bf is similar. It is defined
“inductively” starting from the root (the bottom formula) of the derivation Π.

1. Suppose at least one of the successors of G is a red formula. In this case we
write:

¬rf (G). (5.17)

2. Otherwise, all the successors of G are either grey or blue:

G
G1 · · · Gm B1 · · · Bk

.

In this case we write

rf (G) ↔((rf (G1)∨bc(G1))∧ . . .∧ (rf (Gm)∨bc(Gm))∧
¬rc(G1)∧ . . .∧¬rc(Gm)).

(5.18)

5.5.4 Minimising Interpolants in Local Proofs

Theorem 5.5.5 shows how one expresses locality and digest using the propositional
formulas PΠ. This allows us to introduce various measures of “quality” of interpolants
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and use these measures, together with an SMT solver, to find local proofs giving inter-
polants that are better in these measures.

As usual, we define a clause to be a disjunction, possibly empty, of literals, that
is, atomic formulas and their negations. Since most theorem provers and SMT solvers
present proofs as dags of clauses, apart from some preprocessing deriving a set of
clauses from R, B and the theory, we assume that the digest of a proof is a set of
clauses. If such a clause contains free variables, it is assumed to be implicitly univer-
sally quantified. We know that the interpolant extracted from a proof is a propositional
combination of clauses occurring in this proof. If a particular clause is a propositional
combination of smaller formulas, then the interpolant can be considered a proposi-
tional combination of these smaller formulas. The smallest formulas of this form are
well-studied in the automated deduction community and called components.

Definition 5.5.6 [Component] A component of a clause C is its non-empty subclause
such that it is the smallest possible, while for each variable that occurs in it, it contains
all the literals that contain the variable.

We define g-atom to be either a non-ground component, or a ground literal with
positive polarity.
For example, the clause p(x)∨a 6= 2∨q(x) has two components: p(x)∨q(x) and a 6= 2,
and two g-atoms: p(x)∨q(x) and a = 2. Note that we have the following equivalence:

∀x(p(x)∨a 6= 2∨q(x)) ≡ ∀x(p(x)∨q(x))∨¬(a = 2).

In general, the universal closure of every clause is a boolean combination of the
universal closures of its components. Therefore, the extracted interpolant is a boolean
combinations of g-atoms, which are components of the formulas in the digest.

The problem of generating minimal reverse interpolants can be thus reduced to the
problem of minimising, in some sense, the set of g-atoms used in the interpolants. As
minimality of interpolants is not well-understood, we introduce various measures for
minimising the size of interpolants. Namely, we are interested in minimising inter-
polants with respect to (i) the number of g-atoms and (ii) the total weight of g-atoms,
counted as a number of symbols. One can also argue that ground interpolants are
more useful than those containing quantifiers, so in addition, when the refutation is
non-ground, we can also minimise (iii) the number of quantifiers in the g-atoms.

For doing so, we use the fact that the digest of a derivation can be expressed using
propositional variables d(G) over grey nodes G and transform the minimisation prob-
lem to solving a pseudo-boolean optimisation problem over VΠ as explained below.



88 CHAPTER 5. PLAYING IN THE GREY AREA OF PROOFS

We consider a local refutation Π. For every component g of a grey clause G of Π,
we introduce a distinct propositional variable v(g). Intuitively, this variable will denote
that g occurs in the digest of the transformed proof Π′. For every grey node G in Π, let
g1, . . . ,gk be all g-atoms of G. We then introduce the following axiom:

d(G) =⇒ v(g1)∧ . . .∧ v(gk). (5.19)

In what follows, let g1, . . . ,gm be all g-atoms occurring in all grey nodes of Π. Let
w1, . . . ,wm be the total weights of these atoms, respectively. We denote by q1, . . . ,qm

the number of quantifiers used, respectively, in g1, . . . ,gm.

The problem of minimising interpolants is then reduced to the problem of minimis-
ing (one of) the following sums:

atomcost
def
= v(g1)+ . . .+ v(gm). (5.20)

weightcost
def
= w1v(g1)+ . . .+wmv(gm). (5.21)

quantifiercost
def
= q1v(g1)+ . . .+qmv(gm). (5.22)

Each of these sums is expressed as a pseudo-boolean constraint over the g-atoms
g1, . . . .gm. A solution to the minimisation problem of the left-hand side of (5.20)-
(5.22) gives us a subset of {g1, . . . ,gm}, such that the interpolant constructed from the
boolean combinations of the formulas in this subset is a smallest interpolant among all
interpolants that can be extracted from the various local Π′ resulting from grey slicing.

Minimisation of atomcost gives the smallest interpolant in the number of distinct
g-atoms. Likewise, the minimal values of weightcost and quantifiercost correspond to
the interpolant with the smallest total weight and the smallest number of quantifiers,
respectively. Algorithm 5.5.7 puts together the algorithm for minimising interpolants.

Algorithm 5.5.7 Minimising Reverse Interpolants
Input: Closed formulas R and B such that R =⇒ ¬B, and a refutation Π from R,B.
Output: Minimised reverse interpolants Iatom, Iweight, Iquant of R and ¬B

Assumption: All colored symbols of R and B are uninterpreted constants

1 begin

I. Proof Localisation.
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2 Compute local proof Πl from Π, using Theorem 5.4.2.

II. Expressing locality.

3 G := {}, PΠ := {}
4 for each grey node G in Πl do
5 Express d(G). Let PΠ := PΠ∪{(5.3), (5.4), (5.5), (5.17), (5.18), (5.9)}.
6 Express general properties. Let PΠ := PΠ∪{(5.10), (5.11), (5.12)}.
7 If G is a leaf, PΠ := PΠ∪{(5.13)}.
8 If G is introduced by an inference with only grey premises,

PΠ := PΠ∪{(5.14)}.

9 If G is introduced by an inference with a red premise,

PΠ := PΠ∪{(5.15)}.

10 If G is introduced by an inference with a blue premise,

PΠ := PΠ∪{(5.16)}.

11 Compute G = g1∨·· ·∨gk, where gi are g-atoms.
12 G = G ∪{g1, . . . ,gk}
13 endfor
14 PΠ := PΠ∪{(5.19)}
15 endfor

III. Minimising Interpolants.

16 min atomcost := {gi1, . . . ,gin}

:= min{gi1 ,...,gin}

(
∑gi∈G v(gi) ∧ PΠ

)
17 min weightcost := {gi1, . . . ,gin}

:= min{gi1 ,...,gin}

(
∑gi∈G wiv(gi) ∧ PΠ

)
where wi denotes the weight of gi

18 min quantcost := {gi1 , . . . ,gin}

:= min{gi1 ,...,gin}

(
∑gi∈G qiv(gi) ∧ PΠ

)
where qi denotes the number of quantifiers uses in gi
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19 Iatom = InterpolantR,B(min atomcost)

20 Iweight = InterpolantR,B(min weightcost)

21 Iquant = InterpolantR,B(min quantcost)

22 return {Iatom, Iweight, Iquant}.
23 end

Algorithm 5.5.7 uses the result of Theorem 5.4.2 and starts with translating the in-
put refutation Π of R,B into a local one Πl (line 2). Note that this step is only applied
when Π is non-local, more precisely, when the non-local steps of Π contain colored
constants. Further, the set G of g-atoms from Πl and the set PΠ of (pseudo-boolean)
constraints expressing locality of Πl are initialised (line 3). Next, for each grey node
G in Πl the constraints expressing locality conditions over the digest and inferences of
Πl are constructed, (lines 5-10). Note that the propositional formulas rf (G) and bf (G)

are expressed based on the dag-representation of proofs. The set of g-atoms of G is
extracted and added to G (lines 11-12). Then, the property whether G is in the digest
of Πl is expressed in terms of g-atoms and added to the constraint set PΠ (line 14).
As a result of these steps, at the end of line 15 of Algorithm 5.5.7, the constraint set
PΠ is expressed as a set of clauses ensuring the locality of Πl (Theorem 5.5.5). Next,
minimal interpolants wrt to the number of g-atoms (line 16), the total weight of g-
atoms (line 17), and the number of quantifiers in the g-atoms (line 18) are derived by
solving a pseudo-boolean optimisation problem over g-atoms. To this end, the inter-
polation procedure InterpolantR,B(. . .) of [KV09b] is called to generate interpolants
as boolean combinations of the derived minimal set of g-atoms (lines 19-21).

Theorem 5.5.8 Algorithm 5.5.7 is correct. That is, given two formulas R and B and
a refutation Π, Algorithm 5.5.7 returns the minimal interpolants of R and ¬B1 wrt the
imposed measures (5.20)-(5.22) among all interpolants extracted from proofs obtained
by grey slicing of Π.

We next show that finding minimal interpolants by Algorithm 5.5.7 is NP-hard.

Theorem 5.5.9 Given two formulas R and B and a refutation Π of R,B =⇒ ⊥.
Extracting a minimal reversed interpolant from Π by grey slicing is an NP-hard opti-
misation problem.

PROOF. We use a reduction from finding a maximal independent set of a graph
G(V,E) with a set of vertices V = {v1, . . . ,vm} and a set of edges E = {(u1,w1), . . . ,(un,wn)},
which is known to be NP-hard.

1i.e. reversed interpolants of R and B
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To fulfil conditions of Theorem 5.2.2, we first fix a background theory T . For each
vertex v ∈ V we introduce a propositional grey variable, also denoted by v, of weight
1. Further, for each edge (u,v) ∈ E we add u =⇒ v to the theory T .

Introduce also a blue propositional variable b and a red propositional variable r.
Define B to be the blue formula v1∧·· ·∧vm∧b and R to be the red formula ¬v1∧·· ·∧
¬vm∧ r.

Further, for each edge (u,w) ∈ E we introduce the following derivation Πu,w:

B
u
w

Note that this derivation is sound in the underlying theory T . We next construct the
proof tree Π to be:

B
u1
w1 . . .

B
un
wn R

⊥

where the weight of ⊥ is considered to be zero. Observe that Π is a valid refutation
of R,B. Also note that building a minimal interpolant from Π reduces to finding a
derivation Π′ obtained from Π by grey slicing with a minimal number of g-atoms.

Let Π′ be any derivation obtained from Π by grey slicing. Denote by D′ the digest
of Π′. For every edge (u,w)∈ E, the subderivation Πu,w either remains a subderivation
of Π′, or u gets sliced off. In the first case we have u ∈ D′, in the second case w ∈ D′.
Therefore, either u 6∈V−D′, or w 6∈V−D′, which implies that V−D′ is an independent
set.

Using similar arguments, one can prove that every independent set S of vertices is
a subset of V −D′ for some digest D′ of a derivation obtained from Π by grey slicing.
As each set V −D′ is an independent set as well, for every maximal independent set S

there exists a digest D′ such that S is equal to V −D′. Therefore finding a digest of the
minimal size is equivalent to finding a maximal independent set. 2

Let us finally note that our method can be extended with other proof transforma-
tions and optimisation criteria (e.g., [DKPW10, JM07b]), to improve the quality of
interpolants. For example, many approaches use templates to identify predicates desir-
able to be used in invariants or interpolants. Algorithm 5.5.7, thanks to its generality,
can easily be modified to give preference to predicates matching predefined templates.
We therefore believe that our method is of an independent value, since one can first
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Interpolant size decrease
some 2−4 4−6 6−8 > 8 to 0

Symbols 1369 369 55 24 20 386
g-atoms 912 248 37 16 7 386

Table 5.1: Minimisation results on 6577 TPTP problems with non-trivial interpolants.

minimise the interpolant and then try to make it semantically better using other meth-
ods. Another important feature of our algorithm is that it optimises the proof globally:
that is, the optimal solution is not necessarily a sum of optimal solutions given by local
proof transformations. We believe this a very essential property of the algorithm not
shared by other known approaches to minimising interpolants.

5.6 Experimental Results

5.6.1 Implementation

We implemented our interpolant minimisation method in C++ and integrated it in ver-
sion 1.8 of the Vampire theorem prover [RV02]. For minimising the set of pseudo-
boolean constraints we used version 1.0.29 of the SMT solver Yices [Dd06].

Due to the lack of realistic verification benchmarks, that is examples coming from
some industrial project, we evaluated our method on the following two classes of prob-
lems. First, we took a collection of examples over first-order logic with equality from
the TPTP library [Sut09]. We minimised interpolants in the first-order proofs gener-
ated by Vampire. Second, we considered SMT benchmarks from the SMT-Lib library
[BST10] that come from bounded model checking. We analysed proofs generated by
the Z3 SMT solver [dMB08]. We used version 2.19 of Z3 without any modification.
However, for minimising interpolants from Z3 proofs, we implemented a parser for
processing and translating Z3 proofs into local proofs. To this end, we used our algo-
rithm for proof localisation (see proof of Theorem 5.4.2).

All experiments reported in this paper were carried out using a 64-bit 2.33 GHz
quad core Dell server with 12 GB RAM.
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0 < 5 5−9 10−19 20−49 50−99 100−199 ≥ 200
Before 3055 530 1099 1578 2035 991 260 84
After 3441 522 1225 1557 1882 766 166 73

Table 5.2: Number of symbols in TPTP benchmark interpolants, before and after min-
imisation.

5.6.2 First-Order Problems

For this part of the experiments, we took a collection of first-order problems from the
TPTP library. We started with annotating these problems with coloring information,
using the following coloring strategies.

(1) We order symbols by the number of their occurrences in the problem, and start-
ing with the symbols occurring the least number of times, we attempt to assign colors
to them. A color can be assigned to a symbol if the symbol does not occur in a for-
mula with a symbol that was already assigned with the opposite color. The colors are
being assigned in an alternating manner. If the last assigned color was red, we first
attempt assigning blue to the next symbol, and try to assign red only if this the blue
color ended in an unsuccessful assignment (i.e. an input formula with two different
colored symbols is obtained). We stop when we have attempted to assign a color to all
the symbols.

(2) The previous assignment strategy is more or less random. To use interpolants
in a more logical way, we used the following idea. Typically, TPTP problems come
with annotations classifying formulas from a problem into axioms, conjectures and
hypotheses. We have to prove the conjecture from the axioms and hypotheses. It is
commonly the case that axioms axiomatise some theory, so we have to prove that the
hypotheses imply the conjecture in the theory given by the axioms. This gives us the
following way of coloring the problem symbols. We assign blue color to symbols
appearing only in the formulas of the conjecture (i.e. formula B), and red color to
symbols occurring only in hypothesis (i.e. formula R). The symbols shared by the
conjecture and the hypotheses are considered grey, as well as the symbols occurring
only in the axioms.

Local proofs for the colored TPTP problems were generated using the interpola-
tion mode of Vampire [HKV10]. Altogether, we evaluated our minimisation method
on 9632 colored TPTP examples. Out of the 9632 problem instances, 3055 problems
had trivial interpolants, that is the interpolant was either > or ⊥. This left us with
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0 <5 5-9 10-19 20-49 50-99 100-199 ≥200
Symbolspre 112 3 149 150 82 90 321 1216
Symbolspost 112 5 168 158 56 87 323 1214
g-atoms 112 1558 303 114 9 0 0 0
Quantifiers 464 279 291 367 394 157 123 48

Table 5.3: Minimisation results on 2123 SMT benchmarks.

6577 problems with non-trivial interpolants. We were interested to see how our min-
imisation algorithm performs on these problems. To this end, for each of the 6577
problems, our minimisation method took the corresponding local proof generated by
Vampire and derived the smallest interpolants by minimising (i) the number of symbols
(i.e total weight) and (ii) the number of g-atoms in the interpolant. Table 5.1 gives a
summary on how the size of the interpolant decreases after minimisation, as compared
to the interpolant extracted from the original proof. Rows 1 and 2 of Table 5.1 show
respectively the changes in the interpolant size after minimising the number of sym-
bols, respectively the number of g-atoms in the interpolant. For each imposed measure,
column 1 of Table 5.1 lists the number of examples where the size of the interpolants
has decreased only by a small amount. The numbers shown in column 2 (resp. in col-
umn 3, column 4, and column 5) correspond to the number of those examples whose
interpolants became 2-4 (resp. 4-6, 6-8, and more than 8) times smaller after minimisa-
tion. Column 6 gives the number of examples whose interpolants became trivial after
minimisation, even though the non-minimised interpolants were non-trivial.

In Table 5.2 we report on the number of symbols in the interpolants before (row
1) and after (row 2) minimisation. Each column of Table 5.2 gives the number of
interpolants whose number of symbols satisfy the numeric constraint given in the first
cell of the column. That is, column 1 gives the number of trivial interpolants (the
number of symbols is 0), column 2 shows the number of interpolants with less than 5
symbols, column 3 reports shows the number of interpolants that contain between 5
and 9 symbols etc.

By analysing the results of Table 5.1, we note that for 854 (respectively 694) ex-
amples the number of symbols (respectively, the number of g-atoms) of the interpolant
decreased by at least a factor of 2. However, we also note that for 4354 (respectively
4971) problems out of the 6577 examples we tried minimisation did not improve the
size: these examples are omitted in Table 5.1. As the qualitative studies of interpolants
is a challenging topic, we believe that the experimental results reported in Table 5.1
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show the potential of our method in generating better interpolants.

In Figures 5.2 and 5.3 we show a colored proof of a TPTP problem before and
after minimization. Formulas appearing in the reverse interpolant are given in bold,
while other consequences of symbol eliminating inferences in italic. Red symbols in
the proof are underlined, whereas blue symbols are underbraced. Figures 5.4 and 5.5
show the proof before and after minimisation in a tree form. As mentioned, formulas
denoted by R (resp. by B or G) refer to red (resp. blue or grey formulas). The formulas
G814 and G41 appear in the original interpolant, but when G815, G45 and G41 are sliced
off by the minimisation algorithm, the new interpolant formulas are G853 and G86. This
is because the formula G853 is eliminating red symbols from the premises it received
as a result of the slicing. The formula G86 now appears in the interpolant because it
is an ancestor of a red symbol eliminating formula. Even though we still have two
formulas in the interpolant, its size decreased because G853 is a trivial formula ⊥.
When compared to Figure 5.4, note that the number of grey formulas in Figure 5.5 has
decreased due to grey slicing.

5.6.3 Experiments with SMT Problems

We used a set of SMT-Lib benchmarks coming from bounded model checking. Vari-
ables in these problems correspond to state variables representing various unrolling
steps of loops. These variables are typically indexed by integer constants, where the
integer index expresses the unrolling step to which the state variable belongs to.

Translating and localising Z3 proofs. We generated proofs of SMT problems by
using Z3. Z3 proofs are expressed in the sequent calculus, while our proof localisation
and minimisation algorithms work with resolution-style proofs. We therefore parsed
and translated Z3 proofs into our framework by using a simple Lisp parser. To this end,
we replaced conditionalised Z3 formulas of the form A1, . . . ,An ` F by implications
(A1∨ . . .∨An)→ F .

The coloring strategy we used for the SMT benchmarks was as follows. Except
the state variables, all other symbols were colored grey. We divided the set of state
variables into three parts. State variables corresponding to the middle loop unrolling
step were left grey, variables from earlier states were marked red and those from later
states were colored blue. In our experiment this coloring strategy turned out to be
successful, in 95% of all examples we tried input formulas have been translated into
formulas colored by at most one color.
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853. ⊥ [815,86]
815. ¬ udl(sK0,rl(sK0)) [814,45]
814. ¬ udl(x0,rl(x1)) ∨ ¬ udl(x0,x1) [813,17]
813. ¬ udl(x0,x1) ∨ lcl(x0,x1) ∨ ¬ udl(x0,rl(x1)) [15,17]
86. udl(x0,rl(x0)) [79,49]
79. udl(x9,x7) ∨ ¬ udl( pt p︸︷︷︸(x7,x8),x9) [61,42]

61. udl(x7, pt p︸︷︷︸(x6,x8)) ∨ ¬ udl(x7,x5) ∨ udl(x5,x6) [57,33]

57. ¬ udl(x5, pt p︸︷︷︸(x6,x7)) ∨ udl(x5,x6) [33,43]

49. udl( pt p︸︷︷︸(rl(x3),x4),x3) [38,43]

45. udl(sK0,rl(rl(sK0))) [30,41]
43. ¬ udl( pt p︸︷︷︸(x1,x2),x1) [25,24]

42. ¬ udl(x0,x0) [25,27]
41. udol(sK0,rl(sK0)) [6,7]
38. udl(x0,rl(x1)) ∨ udl(x0,x1) [input]
33. udl(x1,x2) ∨ ¬ udl(x0,x1) ∨ udl(x0,x2) [input]
30. ¬ udol(x0,x1) ∨ udl(x0,rl(x1)) [input]
27. eld(x0,x0) [input]
25. ¬ udl(x0,x1) ∨ ¬ eld(x0,x1) [input]
24. eld( pt p︸︷︷︸(x1,x0),x1) [input]

17. ¬ lcl(x0,x1) [input]
15. ¬ udl(x0,x1) ∨ lcl(x0,x1) ∨ ¬ udl(x0,rl(x1)) ∨ lcl(x0,rl(x1)) [input]
7. ¬ edol(sK0,rl(sK0)) [input]
6. udol(x0,x1) ∨ edol(x0,x1) [input]

Figure 5.2: Proof of the GEO269+3 problem from the TPTP library.

However, the usage of colors yielded non-local Z3 proofs in more than 90% of all
examples we tried. We translated non-local Z3 proofs into local ones by applying our
proof localisation algorithm. To this end, we always used existential quantification to
eliminate red symbols from non-local inferences. As the size of generated interpolants
depends on the introduced quantified formulas, we believe that a dynamic analysis over
the colored symbols to be eliminated, for example eliminate blue symbol instead of a
red one, is an interesting topic for further examination.

The result of proof localisation was further used to minimise interpolants.

Minimising local SMT proofs. Altogether, we used 4347 SMT benchmarks. Out
of these 4347 examples, we generated reverse interpolants for 2123 problems. We
analyse these interpolants below and summarize our results in Table 5.3.
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853. ⊥ [814,86,30,6,7]
814. ¬ udl(x0,rl(x1)) ∨ ¬ udl(x0,x1) [813,17]
813. ¬ udl(x0,x1) ∨ lcl(x0,x1) ∨ ¬ udl(x0,rl(x1)) [15,17]
86. udl(x0,rl(x0)) [79,49]
79. udl(x9,x7) ∨ ¬ udl( pt p︸︷︷︸(x7,x8),x9) [61,42]

61. udl(x7, pt p︸︷︷︸(x6,x8)) ∨ ¬ udl(x7,x5) ∨ udl(x5,x6) [57,33]

57. ¬ udl(x5, pt p︸︷︷︸(x6,x7)) ∨ udl(x5,x6) [33,43]

49. udl( pt p︸︷︷︸(rl(x3),x4),x3) [38,43]

43. ¬ udl( pt p︸︷︷︸(x1,x2),x1) [25,24]

42. ¬ udl(x0,x0) [25,27]
38. udl(x0,rl(x1)) ∨ udl(x0,x1) [input]
33. udl(x1,x2) ∨ ¬ udl(x0,x1) ∨ udl(x0,x2) [input]
30. ¬ udol(x0,x1) ∨ udl(x0,rl(x1)) [input]
27. eld(x0,x0) [input]
25. ¬ udl(x0,x1) ∨ ¬ eld(x0,x1) [input]
24. eld( pt p︸︷︷︸(x1,x0),x1) [input]

17. ¬ lcl(x0,x1) [input]
15. ¬ udl(x0,x1) ∨ lcl(x0,x1) ∨ ¬ udl(x0,rl(x1)) ∨ lcl(x0,rl(x1)) [input]
7. ¬ edol(sK0,rl(sK0)) [input]
6. udol(x0,x1) ∨ edol(x0,x1) [input]

Figure 5.3: Transformed proof of Figure 5.2 by slicing off formulas using weight
minimization.

The remaining 2224 SMT problems we could not fully process. This was due to
a 60s time limit which we imposed as the processing time of one problem, including
proof translation, coloring and localisation. In 102 cases the run was terminated by
reaching the time limit in translating and coloring Z3 proofs, in 1580 cases the timeout
was reached in the proof localisation phase, and for 542 benchmarks the time limit
was reached during the minimization phase (in constructing and minimising the set of
propositional formulas).

Among the 2123 interpolants, 112 interpolants were trivial, and 1659 contained
existential quantifiers introduced by proof localisation. The number of symbols in the
interpolants was decreased by our minimisation algorithm for 331 interpolants, out of
which 14 interpolants had a decrease by more than two times. The number of g-atoms
in the interpolant decreased for 83 interpolants, whereas the number of quantified vari-
ables was minimised for 7 interpolants. Table 5.3 shows the distribution of the number
of symbol occurring in interpolants before (row 1) and after minimization (row 2). The
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R6 R7
G41 G30

G45

R15 R17
R813 R17

G814
G815

G25 B24
B43 G33

B57 G33
B61

G25 G27
G42

B79

G25 B24
B43 G38

B49
G86

G853

Figure 5.4: Proof tree for Figure 5.2.

distribution of the number of g-atoms (row 3) and quantifiers (row 4) in interpolants
is shown only before minimization, because the effect of minimisation on these values
was not significant. Each column of Table 5.3 gives the number of interpolants whose
number of size/g-atoms/quantifiers are bounded by the numeric value given in the first
cell of the column. That is, for examples, the number of symbols in 168 (row 2, col-
umn 3) interpolants is between 5-9 after minimisation. The numbers given in column 1
of Table 5.3 correspond to the number of trivial interpolants.

The experiments show that our minimisation algorithm is not very efficient on this
benchmark suite compared to the first-order benchmarks. We believe that the problem
is not in the method but in the way Z3 produces proofs (since the produced proofs
were not intended for interpolation). It was often the case that the proofs contained
very large formulas, sometimes mixing colors in these formulas. The formulas are
then quantified by other algorithm and cannot further be removed from the proof, thus
spoiling the minimisation statistics. These formulas are normally large conjunctions or
if-then-else expressions, which can also be represented as conjunctions and could have
been split into smaller ones. This would not only replace large formulas by smaller
one, but also improve coloring of proofs and reduce (or eliminate) the necessity to
quantify formulas in them. We believe that our technique will work very well if SMT
solvers are modified to obtain proofs of a better quality. Moreover, once a proof is
found, post processing can also be done and one may try to change non-local parts of
the proof again by theorem proving.

5.7 Related Work

Interpolation has a number of application in formal verification, ranging from approx-
imating the set of reachable sets in predicate abstraction [JM06, JM07b] to invariant
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generation of loops [McM08]. Formal verification thus crucially depends to which
extent “good” interpolants can be automatically generated.

General criteria for comparing interpolants can be defined by the logical strength
of the interpolant, see e.g. [JM07b, DKPW10]. The approach described in [JM07b]
reorders the sequence of resolution steps in a proof to strengthen the derived inter-
polants. The main heuristic used for proof transformation is to make resolution steps
on red/blue variables before those on grey variables. The work of [DKPW10] extends
[JM07b] and gives a theoretical investigation on the logical strength of propositional
interpolants extracted from resolution proofs. The approach uses the notion of label-
ing functions, which essentially label literals by red, blue or grey labels. The dif-
ferences among the labeling functions come from how grey literals are labeled (red,
blue, or grey). The strength of the various labeling functions is compared, and weaker
or stronger interpolants are derived by changing the deployed labeling functions and
swapping some nodes in the derivation.

Examples of [DKPW10] emphasise that weaker interpolants might lead to better
performance, whereas experimental results of [JM07b] show that stronger interpolants
can speed up the convergence of a software model checker based on predicate abstrac-
tion. Optimising interpolants by only using the logical strength of the interpolant as a
selection criteria is thus not always the best way to go in designing efficient interpola-
tion algorithms.

The logical strength of the interpolant is also evaluated in [JM06, McM08], in the
context of verification of programs with loops. Although one can derive various pro-
gram properties by unwinding loop iteration, the resulting set of program properties
is a diverging sequence of non-inductive formulas. In [JM06] interpolants are gener-
ated by searching the proof space and avoiding divergence by deeper unwindings of
loop iterations. The method is further extended in [McM08] to infer quantified inter-
polants. It is shown that by bounding the behavior of the interpolating prover (e.g.
delaying inferences over colored or grey symbols), divergence is prevented and an
inductive invariant is eventually produced from quantified interpolants. A somehow
related approach is presented in [KV09b, HKV10], where quantified interpolants are
extracted from first-order local proof. These techniques generate interpolants by taking
the boolean combinations of the grey conclusions of the largest colored subderivations.

The works of [BKRW10, KLR10, BKRW11, GLS11] evaluate the quality of in-
terpolants by using, in some sense, a different selection criteria. These methods are
motivated to generate interpolants that are small in the number of their components,
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and describe interpolation procedures for the theory of linear integer arithmetic w/o
uninterpreted function and predicate symbols. The approach of [BKRW10] computes
ground interpolants that are exponential in the size of the proofs. The method is im-
proved in [KLR10] by restricting the logical power of the interpolating prover, and is
further extended in [BKRW11] by handling uninterpreted function and predicate sym-
bols. To this end, [BKRW11] shows that quantified interpolants are needed. However,
by using guarded quantifiers and divisibility predicates, the quantified interpolants can
be translated into equivalent quantifier-free formulas. A similar problem is addressed
and solved in [GLS11], where ceiling functions are used to avoid quantified inter-
polants and generate quantifier-free interpolants of quantifier-free formulas in linear
integer arithmetic. Ceiling functions are handled in the interpolating prover by replac-
ing every non-variable ceiling term by a fresh integer variable. Inequality constraints
over the newly introduced integer variables are added to capture the semantics of ceil-
ing terms. Whereas [BKRW10, KLR10, BKRW11, GLS11] show good performance
on experiments, due to the lack of realistic benchmarks, it is hard to draw broad con-
clusions whether the interpolants generated by these works are the “best” in size and
expressiveness.

Contrary to all aforementioned works, we define a set of pseudo-boolean con-
straints over the grey formulas of the proof. Any solution to this set of constraints
gives a different interpolant, and any interpolant can be expressed as a solution of the
constraint set. The proof transformations carried out in our approach use only slic-
ing off formulas that are logical consequences of other formulas. Furthermore, we
evaluate the logical strength of interpolants by minimising the size, the total weight
and the number of quantifiers. Unlike [JM06, JM07b, DKPW10, BKRW10, KLR10,
BKRW11, GLS11], our method can generate and minimise interpolants of quantified
formulas. When compared to [HKV10], our experiments show that we get better in-
terpolants then the ones of [HKV10] extracted from the largest colored subderiva-
tions. More generally spoken, our minimisation algorithm can be applied to any
input proof, provided that the input proof can be translated into an equivalent local
proof. A special case of such proofs are those whose only colored symbols are unin-
terpreted constants. Although such a condition might sound severe, it turns out that
in practice a large class of examples satisfy this imposed restriction: interpolation
benchmarks in the combined theory of uninterpreted functions, predicates and linear
integer arithmetic coming from the SMT community satisfy this coloring constraint
[BKRW10, KLR10, BKRW11, GLS11].
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Figure 5.5: Proof tree for the minimized proof of Figure 5.3.

5.8 Conclusion

We described how interpolants extracted from arbitrary proofs can be obtained and
minimised in various ways giving smaller interpolants. Our method (1) takes an arbi-
trary refutation proof, (2) translates it into a local one, provided that all colored sym-
bols are uninterpreted constants, (3) applies minimisation based on analysis of grey ar-
eas in the refutation, and (4) computes a minimal interpolant by using pseudo-boolean
optimisation.

Our method is very general and can be used with any theory and in conjunction
with any theorem prover that outputs refutation proofs of interpolation problems. The
evaluation of our method on first-order and SMT bounded model checking benchmarks
shows that, in many cases, minimisation considerably decreases the interpolant size.

We intend to integrate our method into concrete verification tools and evaluate our
approach on more realistic verification benchmarks. An interesting question we plan to
address in the future is how the quality of minimised interpolants effects the efficiency
of interpolation-based verification methods. Using a highly optimised pseudo-boolean
solver instead an SMT solver is left for further experiments.

We believe that our method opens a new avenue on research in interpolation-based
methods. Indeed, other proof transformation methods can be used as well. For ex-
ample, we can quantify away not only red, but sometimes also blue symbols or slice
off colored formulas. In addition, as we pointed out in Section 5.6 better proofs can
considerably improve the quality of interpolants.



Chapter 6

Invariant Generation in Vampire

Authors: Krystof Hoder, Laura Kovacs, Andrei Voronkov

This paper describes a loop invariant generator implemented in the theorem prover
Vampire. It is based on the symbol elimination method proposed by two authors of
this paper. The generator accepts a program written in a subset of C, finds loops in it,
analyses the loops, generates and outputs invariants. It also uses a special consequence
removal mode added to Vampire to remove invariants implied by other invariants. The
generator is implemented as a standalone tool, thus no knowledge of theorem proving
is required from its users.

6.1 Introduction

In [KV09a] a new symbol elimination method of loop invariant generation was intro-
duced. The method is based on the following ideas. Suppose we have a loop L with a
set of (scalar and array) variables V . The set V defines the language of L. We extend
the language L to a richer language L′ by a number of functions and predicates. For
every scalar variable v of the loop we add to L′ a unary function v(i) which denotes the
value of v after i iterations of L, and similar for array variables. Thus, all loop variables
are considered as functions of the loop counter. Further, we add to L′ so-called update

predicates expressing updates to arrays as formulas depending on the loop counter.
After that we automatically generate a set P of first-order properties of the loop in the
language L′. These properties are valid properties of the loop, yet they are not loop
invariants since they use the extended language L′.

Note that any logical consequence of P that only contains variables in L is also a
loop invariant. Thus, we are interested in finding logical consequences of formulas in
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P expressed in L. To this end, we run a first-order theorem prover using a saturation
algorithm on P in such a way that it tries to derive formulas in L. To obtain a satu-
ration algorithm specialised to efficiently derive consequences in L, we enhanced the
theorem prover Vampire [HKV10] by so-called colored proofs and a symbol elimina-

tion mode. In colored proofs, some (predicate and/or function) symbols are declared
to have colors, and every proof inference can use symbols of at most one color.

As reported in [KV09a], we tested Vampire on several benchmarks for invariant
generation. It was shown that symbol elimination can infer complex properties with
quantifier alternations. Symbol elimination thus provides new perspectives in automat-
ing program verification, since such invariants could not be automatically derived by
other methods.

As the method is new, its practical power and limitations are not well-understood.
The main obstacle to its experimental evaluation lies in the fact that program analysis
and generation of input for symbol elimination by a separate tool is error-prone and
requires full knowledge of our invariant generation method. The tool described in
this paper was designed with the purpose of creating a standalone tool implementing

invariant generation by symbol elimination. Vampire can still be used for symbol
elimination only, so that the program analysis is done by another tool (for example, for
experiments with variations of the method).

The purpose of this paper is to describe the program analyser and loop invariant
generator of Vampire, their implementation and use. We do not overview Vampire
itself.

6.2 Related work

Reasoning about loop invariants is a challenging and widely studied research topic.
We overview only some papers most closely related to our tool.

Automatic loop invariant generation is described in a number of papers, including
[GRS05, SG09, HP08, McM08, GR09, HHKR10]. In [SG09] loop invariants are in-
ferred by predicate abstraction over a set of a priori defined predicates, while [GR09]
employs constraint solving over invariant templates. Input predicates in conjunction
with interpolation are used to infer invariants in [McM08]. Unlike these works, we
require no used guidance in providing input templates and/or predicates. User guid-
ance is also not required in [GRS05, HP08], but invariants are derived using abstract
interpretation [GRS05, HP08] or symbolic computation [HHKR10]. However, these
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approaches can only infer universally quantified invariants, whereas we can also derive
invariants with quantifier alternation.

Our work is also related to first-order theorem proving [Sch04, WSH+07, Kor09b].
These works implement superposition calculi, with a limited support for theories.
However, only Vampire implements colored proofs and consequence removal essential
for the symbol elimination method.

A more complex and general framework for program analysis is given in, e.g.,
[BLS04, CCPS10]. Whereas in [BLS04, CCPS10] theorem proving is integrated in
a program analysis environment, we integrate program analysis in a theorem prov-
ing framework. Although our approach at the moment is limited to the analysis of
a restricted class of loops, we are able to infer richer and more complex quantified
invariants than [BLS04, CCPS10]. Combining our method with other techniques for
verification and invariant generation is left for further work.

6.3 System Implementation

To create an integrated environment for invariant generation, we implemented a simple
program analyser and several new features in Vampire. The workflow of the invariant
generation process is given in Figure 6.1.

The analyser itself comprises about 4,000 lines of C++ code (all Vampire is written
in C++). In addition to the analyser, we had to extend formulas and terms with if-
then-else and let-in constructs, implement colored proofs, automatic theory loading,
and the consequence removal mode. All together making Vampire into an invariant
generator required about 12,000 lines of code. Currently, the analyser only generates
loop properties for symbol elimination, but we plan to use it in the future for a more
powerful integration of program analysis and theorem proving.

6.3.1 Program analysis

The program analysis part works as follows. First, it extracts all loops from the input
program. It ignores nested loops and performs the following steps on every non-nested
loop.

1. Find all loop variables.

2. Classify them into variables updated by the loop and constant variables.
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Figure 6.1: Program Analysis and Invariant Generation in Vampire

3. Find counters, that is, updated scalar variables that are only incremented or
decremented by constant values. Note that expressions used as array indexes
in loops are typically counters.

4. Save properties of counters.

5. Generate update predicates of updated array variables and save their properties.

6. Save the formulas corresponding to the transition relation of the loop.

7. Generate a symbol elimination task for Vampire.

The input to the analyser is a program written in a subset of C. The subset consists of
scalar integer variables, array variables, arithmetical expressions, assignments, condi-
tionals and while-do loops. Nested loops are not yet handled.

6.3.2 Symbol Elimination and Theory Loading

The program analyser generates a set of first-order loop properties and information
about which symbols should be eliminated. A (predicate and/or function) symbol is
to be eliminated in Vampire whenever it is specified to have some color. The next
phase of invariant generation runs symbol elimination on the set of formulas gener-
ated by the analyser. Before doing symbol elimination, Vampire checks which theory
symbols (such as integer addition) are used and loads axioms relevant to these theory
symbols. Theory symbols have no color in Vampire. After theory loading, Vampire
runs a saturation algorithm on the theory axioms and the formulas generated by its
analyser. A special term ordering is used to ensure that symbol elimination is effective
and efficient.
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6.3.3 Consequence Removal

The result of the symbol elimination phase is a set of loop invariants. This set is
sometimes too large. For example, it is not unusual that Vampire generates over a
hundred invariants in less than a second.

An analysis of these invariants shows that some invariants are concise and natural
for humans, while some other invariants look artificial (this does not mean they are not
interesting and/or not useful). It is typically the case that the generated set of invariants
contains many invariants implied by other invariants in the set.

The next phase of invariant generation prunes the generated set by removing the
implied invariants. Checking whether each generated invariant is implied by all other
invariants is too inefficient. To remove them efficiently, we implemented a special con-
sequence removal mode. The output of the tool is the set of all non-removed invariants.

6.3.4 Availability

We implemented our approach to invariant generation in Vampire. The new version of
Vampire is available from http://www.vprover.org. The current version of Vam-
pire runs under Windows, Linux and MacOS.

6.4 Experiments

We evaluated invariant generation in Vampire using two benchmark suites: (1) chal-
lenging loops taken from [GRS05, SG09], and (2) a collection of 38 loops taken from
programs provided by Dassault Aviation. We used a computer with a 2GHz processor
and 2GB RAM and ran experiments using Vampire version 0.6. The symbol elimina-
tion phase was run with a 1 second time limit and the consequence removal phase with
a 20 seconds time limit.

For all the examples the program analyser took essentially no time. It turned out
that symbol elimination in one second can produce a large amount of invariants, rang-
ing from one to hundreds. Consequence removal normally deletes about 80% of all
invariants.



6.5. CONCLUSION 107

6.5 Conclusion

It is not unusual that program analysers call theorem provers or contain theorem provers
as essential parts. Having a program analyser as part of a theorem prover is less com-
mon. We implemented an extension of Vampire by program analysis tools, which
resulted in a standalone automatic loop invariant generator. Our tool derives logically
complex invariants, strengthening the state-of-the-art in reasoning about loops.



Chapter 7

Interpolation and Symbol Elimination
in Vampire

Authors: Krystof Hoder, Laura Kovacs, Andrei Voronkov
It has recently been shown that proofs in which some symbols are colored (e.g.

local or split proofs and symbol-eliminating proofs) can be used for a number of ap-
plications, such as invariant generation and computing interpolants.

This tool paper describes how such proofs and interpolant generation are imple-
mented in the first-order theorem prover Vampire.

7.1 Introduction

Interpolation offers a systematic way to generate auxiliary assertions needed for soft-
ware verification techniques based on theorem proving [JM06, KV09b], predicate ab-
straction [HJMM04, JM06], constraint solving [RSS07], and model-checking [McM03,
CGS08].

In [KV09a] it was shown that symbol-eliminating inferences extracted from proofs
can be used for automatic invariant generation. Further, [KV09b] gives a new proof
of a result from [JM06] on extracting interpolants from colored proofs:1 this proof
contains an algorithm for building (from colored proofs) interpolants that are boolean
combinations of symbol-eliminating steps. Thus, [KV09b] brings interpolation and
symbol elimination together.

Based on the results of [KV09a, KV09b] we implemented colored proof generation
in the first-order theorem prover Vampire [RV02]. Colored proofs form the base for

1Such proofs are also called local and split proofs, in this paper we will call them colored.
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our interpolation and symbol elimination algorithms.

The purpose of this paper is to describe how interpolation and symbol elimina-
tion are implemented and can be used in Vampire. We do not overview Vampire itself
but only describe its new functionalities. The presented features have been explic-
itly designed for making Vampire appropriate for formal software verification: symbol
elimination for automated assertion (invariant) synthesis and computation of Craig in-
terpolants for abstraction refinement. Unlike its predecessors, the “new” Vampire thus
provides functionalities which extend the applicability of state-of-the-art first theorem
provers in verification. To the best of our knowledge, it is the first theorem prover that
supports both invariant generation and interpolant computation.

The obtained symbol eliminating inferences and interpolants contain quantifiers,
and can be further used as invariant assertions to verify properties of programs manip-
ulating arrays and linked lists [McM08, KV09a]. We believe that software verification
may benefit from the interpolant generation engine of Vampire.

Implementation. The new version of Vampire is available from http://www.vprover.

org and runs under most recent versions of Linux (both 32 and 64 bits), MacOS and
Windows. Vampire is implemented in C++ and has about 160,000 lines of code.

Experiments. We successfully applied Vampire on benchmarks taken from recent
work on interpolants and invariants [JM05, YM05, GRS05, GT06, RSS07, JM07a] –
see Section 7.4 and the mentioned URL. Our methods can discover required invari-
ants and interpolants in all examples, suggesting its potential for automated software
verification.

Related work. There are several interpolant generation algorithms for various theo-
ries. For example, [McM03, HJMM04, JM06, CGS08] derive interpolants from res-
olution proofs in the combined ground theory of linear arithmetic and uninterpreted
functions. The approach described in [RSS07] generates interpolants in the combined
theory of arithmetic and uninterpreted functions using constraint solving techniques
over an a priori defined interpolants template. The method presented in [McM08]
computes quantified interpolants from first-order resolution proofs over scalars, arrays
and uninterpreted functions.

Our algorithm implemented in Vampire automatically extracts interpolants from
colored first-order proofs in the superposition calculus. Theories, such as arithmetic
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Figure 7.1: Interpolation and Symbol Elimination in Vampire.

or theories of arrays, can be handled by adding theory axioms to the first-order prob-
lem to be proved. Thus, interpolation in Vampire is not limited to decidable theories
for which interpolation algorithms are known. One can use arbitrary first-order ax-
ioms. However, a consequence of this generality is that we do not guarantee finding
interpolants even for decidable theories.

As far as we know, symbol elimination has not been implemented in any other
system. A somehow related approach to symbol elimination is presented in [McM08,
SG09] where theorem proving is used for inferring loop invariants. Contrarily to our
approach, the cited works are adapted to prove given assertions as opposed to generat-
ing arbitrary invariants. Using the saturation-based theorem prover SPASS [WSH+07],
[McM08] generates interpolants as quantified invariants that are strong enough to prove
given assertions. Paper [SG09] uses templates over predicate abstraction, and reduces
the problem of invariant discovery to that of finding solutions, by the Z3 SMT solver
[dMB08], for unknowns in an invariant template formula. Unlike [McM08, SG09], we
automatically generate invariants as symbol eliminating inferences in full-first order
logic, without using predefined predicate templates or assertions.

7.2 Colored Proofs, Symbol Elimination and Interpo-
lation

Colored proofs are used in a context when some (predicate and/or function) symbols
are declared to have colors. In colored proofs every inference can use symbols of at
most one color, as a consequence, every term or atomic formula used in such proofs
can use symbols of at most one color, too. We will call a symbol, term, clause etc.
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colored if it uses a color, otherwise it is called grey.

In symbol elimination [KV09a] we are interested in inferences having at least
one colored premise and a grey conclusion; such inferences are called symbol-elimina-

ting. Conclusions of symbol-eliminating inferences can be used to find loop invariants.
Symbol elimination can be reformulated as consequence-finding: we are trying to find
grey consequences of a theory including both colored and grey formulas. Note that,
unlike traditional applications of first-order theorem proving, we are not interested
in finding a refutation: symbol-eliminating inferences can be obtained by running a
theorem prover on a satisfiable formula, for which no refutation exists.

A formula I is called an interpolant of formulas L and R (with respect to a theory
T ) if the following conditions are satisfied:

(1) T ` L =⇒ I;

(2) T ` I =⇒ R;

(3) I uses only symbols occurring either in T or in both L and R.

Interpolation can be reformulated in terms of colors as follows: we assign one color
to symbols occurring only in L and another color to symbols occurring only in R:
then the last condition on interpolants can be reformulated as I is grey. For extracting
interpolants from colored proofs we use the algorithm described in [KV09b].

The notion of interpolant has been changed in the model-checking community
starting with [McM03]. Namely, the condition (2): T ` I =⇒ R has been replaced by
(2a): T ` I∧R =⇒ ⊥. To avoid any confusion between the two notions of interpolant,
in [KV09b] any formula I satisfying conditions (1), (2a) and (3) is called a reverse in-

terpolant of A and B. Clearly, reverse interpolants for L and R are exactly interpolants
of L and ¬R.

In the sequel, we reserve the notation L and R for the two formulas whose inter-
polant is to be computed.

7.3 Tool Overview

Vampire [RV02] is a general purpose first-order theorem prover based on the resolution
and superposition calculus. To implement symbol elimination and interpolation in
Vampire, we had to extend it by new functionalities, change the inference mechanism
to be able to generate colored derivations, and implement an algorithm for extracting
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vampire(symbol,function,a,0,left).
vampire(symbol,function,b,0,left).
vampire(symbol,predicate,q,1,left).
vampire(symbol,function,c,0,right).
vampire(option,show interpolant,on).

vampire(left formula).
fof(a1,axiom, q(f(a))).
fof(a1,axiom, ∼q(f(b))).

vampire(end formula).
vampire(right formula).

fof(a2,conjecture,
? [V] : (f(V)!=c)).

vampire(end formula).

Figure 7.2: Specification of Interpolation.

interpolants. The workflow of interpolation and symbol elimination in Vampire is
illustrated in Figure 7.1.

Annotated formulas. Vampire reads problems expressed in the TPTP syntax [Sut09]:
a Prolog-like syntax allowing one to specify input axioms and conjecture for theorem
provers. We had to extend the input syntax to make it rich enough to define colors
and interpolation requests. In fact, we had to extend it even more since in the appli-
cation of interpolation and symbol elimination the set of symbols that can occur in
the interpolants is not necessarily the intersection of the languages of L and R with
addition of theory symbols. We extended the TPTP syntax with Vampire-specific dec-
larations. Their use is illustrated in Figure 7.2 and detailed in Example 7.3.1 taken
from [McM08].

Example 7.3.1 [McM08] Consider the problem of computing an interpolant of q( f (a))

∧¬q( f (b)) (i.e. L) and ∃v( f (v) 6= c) (i.e. R).

The first three declarations shown in the left column of Figure 7.2 say that a,b are
constants (function symbols of arity 0) and q is a unary predicate symbol colored in
the “left” color (that is, in the language of L). Likewise, the fourth declaration in the
left column says that c is a constant colored in the “right” color (that is, in the language
of R). Finally, the left column contains an option that sets interpolant generation.
This option can also be passed in the command line. The declarations fof(..) are
TPTP declarations for introducing formulas. The vampire declarations left formula,
right formula and end formula are used to define L and R. If we have formulas not
in the scope of the left formula or right formula declarations, they are considered
as part of the theory T .

To use Vampire for symbol elimination, we can simply assign all symbols to be elim-
inated the left color and leave the right color unused. For concrete examples see
http:// www.vprover.org.



7.3. TOOL OVERVIEW 113

3. ? [X0] : c != f(X0) [input]
4. ˜? [X0] : c != f(X0) [negated conjecture 3]
6. ! [X0] : c = f(X0) [ennf transformation 4]
9. c = f(X0) (0:4) [cnf transformation 6]
10. f(X0) = f(X1) (1:5) [superposition 9,9]

1. q(f(a)) [input]
7. q(f(a)) (0:3) [cnf transformation 1]
2. ˜q(f(b)) [input]
5. ˜q(f(b)) [flattening 2]
8. ˜q(f(b)) (0:3) [cnf transformation 5]
17. q(f(X0)) (2:3) [superposition 7,10]
18. ˜q(f(X1)) (2:3) [superposition 8,10]
23. $false (2:0) [subsumption resolution 18,17]

Interpolant: ˜! [X1,X0] : f(X0) = f(X1)

Figure 7.3: Proof and an interpolant output by Vampire.

Colored proof generation. In order to support the generation of colored proofs, the
following had to be implemented.

1. We had to block inferences that have premises of two different colors.

2. We had to change the simplification ordering and literal selection, so that colored
terms are larger than grey ones, and that (when possible) grey literals are selected
only when there are no colored ones. To make colored terms bigger than grey,
we had to implement the Knuth-Bendix ordering with ordinals as defined in
[LW07] and make colored symbols to have the weight ω, while grey symbols to
have finite weights.

To output the conclusions of symbol eliminating inferences, we check premises of
each inference that produced a grey clause, and if one of the premises is colored, we
output the resulting clause.

Interpolants are generated from refutations by the algorithm described in [KV09b].
For instance, given the input shown in Example 7.3.1, Vampire discovers an interpolant
¬∀x∀y( f (x) = f (y)). On Figure 7.3 we show the proof from which the interpolant was
extracted. We reordered the proof steps to separate the reasoning done with different
colors. The first block of steps uses the symbol c which belongs to the R language.
Clause number 10 is a grey consequence of a symbol eliminating inference in this
block, and is used in the second block as a premise of clauses 17 and 18. These in
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Formulas Coloring Reverse Interpolant
L : z < 0∧ x≤ z∧ y≤ x
R : y≤ 0∧ x+ y≥ 0

left: z
right: - x < 0

L : g(a) = c+5∧ f (g(a))≥ c+1
R : h(b) = d +4∧d = c+1∧ f (h(b))< c+1

left: g,a
right: h,b c+1≤ f (c+5)

L : p≤ c∧ c≤ q∧ f (c) = 1
R : q≤ d∧d ≤ p∧ f (d) = 0

left: c
right: d p≤ q∧ (q > p∨ f (p) = 1)

L : f (x1)+ x2 = x3 ∧ f (y1)+ y2 = y3 ∧ y1 ≤ x1
R : x2 = g(b)∧ y2 = g(b)∧ x1 ≤ y1 ∧ x3 < y3

left: f
right: g,b x1 > y1 ∨ x2 6= y2 ∨ x3 = y3

L : c2 = car(c1)∧ c3 = cdr(c1)∧¬(atom(c1))
R : ¬(c1) = cons(c2,c3)

left: car,cons
right: - ¬atom(c1)∧ c1 = cons(c2,c3)

L : Q( f (a))∧ 6= Q( f (b))
R : f (V ) = c

left: Q,a,b
right: c ∃x,y : f (x) 6= f (y)

L : a = c∧ f (c) = a
R : c = b∧b 6= f (c)

left: a
right: b c = f (c)

L : True∧a′[x′] = y∧ x′ = x∧ y′ = y+1∧ z′ = x′

R : ¬(a′[z′] = y′−1)
left: x,y
right: - 1+a′[x′] = y′ ∧ x′ = z′

Table 7.1: Interpolation with Vampire.

the next step produce a contradiction. In accordance with the algorithm for extract-
ing interpolants given in [KV09b], the output interpolant ¬∀x∀y( f (x) = f (y)) is the
negation of the clause 10.

Symbol Elimination. To make Vampire output conclusions of symbol-eliminating
inferences, one should set the option show symbol elimination to on. As Vampire
is not supposed to terminate in the symbol-eliminating mode, it is wise to specify a
time limit when it is run in this mode.

Figure 7.4 shows part of the symbol eliminating problem for the Partition pro-
gram on of Table 7.2. We have replaced the TPTP arithmetic syntax by infix notation
for better readability. Formula iter def defines the iter predicate that holds for the
loop counter values. Formulas path1 and path2 represent the transition in the two
possible paths through the loop body and ineq i j expresses an invariant on the vari-
ables i and j that was discovered already by static analysis.2

The invariant generation outputs many formulas, among them are the following
four:

fof(inv68, claim, ![X0,X1,X2]: (X0 != X1 | aa(sK2(X0)) != X2 | 0 > X0 |

j <= X0 | bb(X1) = X2)).

fof(inv111, claim, sK2(0) > -1 | j = 0).

2The full examples in the TPTP format are available at http://www.vprover.org/symbol_
elimination_examples.zip.
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fof(inv128, claim, ![X19,X20]: (X19 <= X20 | X20+1 <= sK2(X19) |

j <= X19 | X19 <= 0)).

fof(inv192, claim, ![X21,X22]: (j <= X21 | i > X22 | X22 > sK2(X21) |

0 > X21)).

We will show that these formulas imply the desired invariant ∀x : 0 ≤ x < j =⇒
∃y : 0≤ y < i ∧ bb[x] = aa[y]. These formulas can be simplified into

∀x : 0≤ x < j =⇒ bb[x] = aa[sK2(x)]

j 6= 0 =⇒ sK2(0)≥ 0

∀x : 0 < x < j =⇒ sK2(x)≥ x

∀x : 0≤ x < j =⇒ i > sK2(x)

The last three formulas imply the following bounds on the sK2 function:

∀x : 0≤ x < j =⇒ 0≤ sK2(x)< i

which in turn can be combined with the first formula into

∀x : 0≤ x < j =⇒ 0≤ sK2(x)< i ∧ bb[x] = aa[sK2(x)]

sK2 is a Skolem function introduced in place of an existential quantifiers by Vam-
pire during the problem clausification. We can replace the Skolem function back by an
existential quantifier and obtain the desired invariant

∀x : 0≤ x < j =⇒ ∃y : 0≤ y < i ∧ bb[x] = aa[y]

7.4 Experiments

We have successfully ran Vampire on benchmark examples taken from recent literature
on interpolation and invariant generation. In this section we present two different sets
of experimental results that underline the effectiveness of our implementation. The
reported results were obtained on a machine with 2 GHz processor and 2GB of RAM.
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fof(iter_def,hypothesis,
! [I] : (iter(I) <=> (I>=0 & n>I))).

fof(path1,hypothesis,
! [I] : ( iter(I) =>

(
(aa(i(I))>=0 & m>i(I) )
=>
( bb(I+1,j(I)) = aa(i(I)) &
j(I+1) = j(I)+1 &
i(I+1)= i(I)+1 &
k(I+1) = k(I)

)))).
fof(path2,hypothesis,

! [I] : ( iter(I) =>
(
(aa(i(I))>=0 & m>i(I) )
=>
( cc(I+1,k(I)) = aa(i(I)) &
k(I+1) = k(I)+1 &
i(I+1)= i(I)+1 &
j(I+1) = j(I)

)))).
fof(ineq_i_j,hypothesis,
![I]: ( iter(I) => i(I)>=j(I))).

Figure 7.4: Part of the first-order symbol elimination problem for the Partition pro-
gram of Table 7.2.
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Interpolation. Table 7.1 summarises some of our results for computing reverse in-
terpolants on examples that have been used as motivating examples by previous tech-
niques [JM05, YM05, RSS07, McM08]. The first column of Table 7.1 presents the
input formulas L and R whose interpolants is going to be computed. The second col-
umn shows symbols declared colored, whereas the third column shows the reverse
interpolant generated by Vampire.

All interpolants given in Table 7.1 were computed by Vampire in essentially no
time (e.g. in less than 0.1 second). In the first four examples of Table 7.1 a simple
axiomatisation of arithmetic with the greater-than relation and successor function was
used. The fifth example of Table 7.1 uses the theory of lists, whereas the last example
of Table 7.1 uses the combined theory of arrays and arithmetic.

The last example of Table 7.1 originates from an example taken from [JM05], and
is a request to prove the infeasibility of the following one-path program annotated by
a pre- and a post-condition:

{>} a[x] := y;y := y+1;z := x {a[z] 6= y−1}.

Let x,y,z,a denote the initial and x′,y′,z′,a′ the final values of program variables.
Based on the bounded-model checking approach [McM03], proving infeasibility of the
above program path boils down to computing a reverse interpolant for the formulas>∧
T ({x,y,z,a}, {x′,y′,z′,a′}) and a′[z′] 6= y′− 1, where T ({x,y,z,a},{x′,y′,z′,a′}) ≡
a′[x′] = y∧x′ = x∧y′ = y+1∧ z′ = x′ is the transition relation defined by the program.
The reverse interpolant computed by Vampire proves that the program has no feasible
path from the initial state to the final state.

Symbol Elimination. Experiments with symbol elimination on array programs taken
from [GT06, JM07a] are summarised in Table 7.2. We ran Vampire in the symbol
elimination mode with a time limit of 10 seconds. We recall that each conclusion of a
symbol-eliminating inference is a loop invariant [KV09a].

For all examples of Table 7.2 we show in the rightmost column a desired invariant
that could be computed using other techniques. We were interested in the following: (i)
can Vampire generate the invariant itself and if not, (ii) can Vampire generate invariants
that would imply the desired invariant?

After running Vampire in the symbol-eliminating mode we sometimes obtain a
large set of invariants. The number of invariants (that is, the number of symbol-
eliminating inferences) is shown in the second column of the Table 7.2. To make them
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usable we did the following minimization: remove invariants that are implied by the
theory axioms or by other invariants. For the task we used Vampire itself. Obviously,
the problem whether an invariant is implied by other invariants, is undecidable, so we
ran Vampire with a time limit of 0.3 seconds once for each invariant, trying to prove
it from the remaining invariants and the theory axioms. The number of invariants that
could not be proved redundant is shown in the third column of Table 7.2.

7.5 Conclusion

We described how interpolant generation and symbol elimination are implemented and
can be used in the first-order theorem prover Vampire. Future work includes integrating
Vampire into software verification tools for automatically generating interpolants and
supporting the entire process of verification. Inferring a minimal set of invariants and
improving these invariants can also be done using theorem proving and remains an
interesting topic for further research.
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Loop ] of SEI ] of Min SEI SEI as Invariant
Initialisation [JM07a]

i = 0;
while (i < m) do
aa[i] = 0; i = i+1
end do

399 15 ∀x : 0≤ x < i =⇒ aa[x] = 0

Copy [JM07a]

i = 0;
while (i < m) do
bb[i] = aa[i]; i = i+1
end do

379 14
∀x : 0≤ x < i =⇒

bb[x] = aa[x]

Vararg [JM07a]

i = 0;
while (aa[i]> 0) do
i = i+1
end do

1 1 ∀x : 0≤ x < i =⇒ aa[x]> 0

Partition [GT06]

i = 0; j = 0;k = 0;
while (i < m) do
if (aa[i]>= 0)
then bb[ j] = aa[i]; j = j+1
else cc[k] = aa[i];k = k+1
end if;
i = i+1
end do

150 61
∀x : 0≤ x < j =⇒

∃y : 0≤ y < i ∧
bb[x] = aa[y]

Partition Init [JM07a]

i = 0;k = 0;
while (i < m) do
if (aa[i] == bb[i])
then cc[k] = i;k = k+1
end if;
i = i+1
end do

18 13
∀x : 0≤ x < k∧0≤ x < i

=⇒
aa(cc(x)) = bb(cc(x))

Table 7.2: Symbol Elimination with Vampire on Array Programs.



Chapter 8

Case Studies on Invariant Generation
Using a Saturation Theorem Prover

Authors: Krystof Hoder, Laura Kovacs, Andrei Voronkov

Automatic understanding of the intended meaning of computer programs is a very
hard problem, requiring intelligence and reasoning. In this paper we evaluate a pro-
gram analysis method, called symbol elimination, that uses first-order theorem proving
techniques to automatically discover non-trivial program properties. We discuss imple-
mentation details of the method, present experimental results, and discuss the relation
of the program properties obtained by our implementation and the intended meaning
of the programs used in the experiments.

8.1 Introduction

The complexity of computer systems grows exponentially. Many companies and or-
ganisations are now routinely dealing with software comprising several millions lines
of code, written by different people using different languages, tools and styles. This
software is hard to understand and is integrated in an ever changing complex environ-
ment, using computers, networking, various physical devices, security protocols and
many other components. Ensuring the reliability of such systems for safety-critical
applications is extremely difficult. One way of solving the problem is to analyse or
verify these systems using computer-aided tools based on computational logic.

In [KV09a] a new method, called symbol elimination, has been proposed to auto-
matically generate statements expressing computer program properties. The approach
requires no preliminary knowledge about program behavior, but uses the power of a

120
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saturation theorem prover to derive and understand the intended meaning of the pro-
gram. To undertake such a complex task, reasoning in the combination of first order
logic and various theories is required as program components involve both bounded
and unbounded data structures.

One can argue that automatic inference of program properties is a hard and cre-
ative problem whose solution improves our understanding of the relation between the
computer reasoning and the human reasoning. Indeed, given a computer program, one
can ask a computer programmer questions like “what are the essential properties of
this program” or “what is the intended meaning of this program?” Answering such
question requires intelligence. If the program is small and not highly sophisticated,
one can expect that the programmer will be able to give some answers. For example,
if the program copies one array into another, one can expect the programmer to say
that the intended meaning of the program is to copy arrays and that among the most
essential properties of this program are the facts that the two arrays will be equal and
the first array will not be modified. These two properties are first-order properties, that
is, they can be expressed in first-order logic.

The properties generated by the symbol elimination method are first-order proper-
ties, therefore one can ask a question of whether a computer program can generate such
properties and whether it can generate “the intended” properties (whatever it means).
This paper tries to answer this fundamental question by taking a program annotated
by humans, removing these annotations, generating program properties by a computer
program, and comparing the generated program properties with the intended proper-
ties.

The first implementation of symbol elimination was carried out in the first-order
resolution theorem prover Vampire [HKV10]. This implementation could be used for
symbol elimination, yet not for invariant generation. It was run on an array partitioning
program to demonstrate that it can generate complex loop invariants with alternating
quantifiers, which could not be generated by any other existing technique. Such com-
plex loop properties precisely capture the intended first-order meaning of the program,
as well as the programmer’s intention while writing the program.

However, the practical power of symbol elimination was not clear since it required
extensive experiments on programs containing loops. Such experiments were not easy
to organise since they involved combining several tools for program analysis and the-
orem proving. Designing such a combination turned out to be non-trivial and error-
prone. The first standalone implementation of program analysis in the theorem prover
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Vampire is described in the system abstract [HKV11b]. Experimental evaluation of the
method was however not yet carried out.

This paper undertakes the first extensive investigation into understanding the power
and limitations of symbol elimination for invariant generation. In addition to the fun-
damental AI problems mentioned above, we were also interested in the power of the
method for applications in program analysis, which can be measured by the following
characteristics:

1. [Strength] Is the method powerful enough to infer automatically invariants that
would imply intended loop properties?

2. [Time] Is invariant generation fast enough?

3. [Quantity] What is the number of generated invariants?

The method we use to answer these questions in this work is described below.

. We use the invariant generation framework of [HKV11b] implemented directly
in Vampire. Vampire can now accept as an input a program written in a subset
of C, find all loops in it, and generate and output invariants for each of the loops.
To this end, to make [HKV11b] practically useful, we extended the program
analyser of [HKV11b] with a C parser.

. We took a number of annotated C programs coming from an industrial software
verification project, as well as several standard benchmarks circulated in the ver-
ification community (for example, [GRS05, SG09]), and removed annotations
corresponding to loop invariants.

. We ran Vampire with various time limits and collected statistics relevant to the
questions raised above.

The main contribution of this paper is an experimental evaluation of the symbol elim-
ination approach, providing statistics and better understanding of the power of the
method.

Our experiments show that, at least for small (but far from trivial) programs a com-
puter program using the symbol elimination method turns out to generate in less than a
second properties that imply the annotated properties, that is, the intended properties.
Hence, symbol elimination confirms, in some way, the power of deductive methods in
computer reasoning. However, even for relatively simple programs it also generates
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Figure 8.1: Invariant Generation in Vampire.

many other properties, which shows that further investigation may be required to bring
the human and the computer understanding of the meaning of programs closer.

This paper is structured as follows. Section 8.3.1 overviews the program analysis
framework of Vampire. Given a program in a subset of C as an input, Vampire now
automatically generates a set of invariants for the loops occurring in the program.

Reasoning about programs requires reasoning in combined first-order theories,
such as arithmetic, uninterpreted functions, arrays, etc. Since invariant generation by
symbol elimination requires both theories and quantifiers, efficient handling of theo-
ries in Vampire was a major issue for us. We describe theory reasoning in Vampire in
Section 8.3.2.

Since loop invariants are to be used in proving program properties, it is important
that the generated set of invariants is not too large, yet powerful enough to imply impor-
tant program properties. A framework for removing invariants implied by other invari-
ants was introduced in [HKV11b], where invariants are removed in combination with
invariant generation. In our work we use [HKV11b], as described in Sections 8.3.3
and 8.3.4. We further give an experimental evidence that such a removal is in practice
“cheap” as compared to invariant generation (Section 8.4).

The “quality” of a set of automatically generated invariants refers to whether it
can be used to easily derive program properties required for program verification or
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static analysis. We discuss the quality of invariants generated by our technique in
Section 8.3.5.

The key section of this paper is Section 8.4 on experimental evaluation of the sym-
bol elimination method. The reported experimental results provide empirical evidence
of the power of symbol elimination for generating complex invariant.

We briefly consider related work in Section 8.5 and draw conclusions in Sec-
tion 8.6.

8.2 Preliminaries

Programs, Variables and Expressions. Figure 8.1 illustrates our approach to prac-
tical invariant generation in Vampire. Figure 8.1 extends [HKV11b] by the use of a
program parser. Hence, Vampire now can handle C programs over integers and ar-
rays using assignments, loops and if-then-else conditional statements with standard
(C language) semantics. Non-integer variables can also be considered but regarded as
uninterpreted.

We assume that the language expressions contain integer constants, variables, and
some function and predicate symbols. The standard arithmetical functions, such as +,
−, · are considered as interpreted, while all other function symbols are uninterpreted.
Likewise, the arithmetical predicate symbols =, 6=, ≤, ≥, < and > are interpreted
while all other predicate symbols are uninterpreted. As usual, the expression A[e] is
used to denote the element of an array A at the position given by the expression e. The
current version of Vampire does not handle nested loops. If the input program contains
such loops, only the innermost loops will be analysed.

The programming model for invariant generation in Vampire is summarized below.

while b do s1;s2; . . . ;sm end do (8.1)

where b is a boolean expression, and statements si (i = 1, . . . ,m) are either assignments
or (nested) if-then-else conditional statements. Some example loops for invariant gen-
eration in Vampire are given in the leftmost column of Table 8.3. Throughout this
paper, integer program variables are denoted by lower-case letters a,b,c, . . . , whereas
array variables are denoted by upper-case letters A,B,C, . . . .

Theorem proving and Vampire. The symbol elimination method described and in-
vestigated in this paper is essentially based on the use of a first-order theorem prover.
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Moreover, one needs a theorem prover able to deal with theories (e.g. integer arith-
metic), first-order logic, and generate consequences. Theorem provers using saturation
algorithms are ideal for consequence generation. Saturation actually means that the
theorem prover tries to generate all, in some sense, consequences of a given set of for-
mulas in some inference system, for example, resolution and superposition [RV01b].

In reality, saturation theorem provers use a powerful concept of redundancy elim-

ination. Redundancy elimination is not an obstacle to consequence generation, since
redundant formulas are logical consequences of other formulas the theorem prover is
dealing with.

All our experiments described in this paper are conducted using Vampire [RV02],
which is a resolution and superposition theorem prover running saturation algorithms.
Vampire is available from http://www.vprover.org.

8.3 Symbol Elimination and Invariant Generation in
Vampire

In a nutshell, the symbol elimination method of [KV09a] works as follows. One is
given a loop L, which may contain both scalar and array variables.

(1) In the first phase, symbol elimination tries to generate as many loop properties

as possible. This may sound as solving a hard problem using an even harder problem,
yet the method undertakes an easy way. First, it considers all (scalar and array) vari-
ables of L as functions of the loop counter n. This means that for every scalar variable
a, a function a(n) denoting the value of a at the loop iteration n is introduced. Like-
wise, for every array variable A a function A(n, p) is introduced, denoting the value of
A at the iteration n in the position (or index) p. Thus, the language of loop is extended
by new function symbols, obtaining a new, extended language. Note that some loop
properties in the new language are easy to extract from the loop body, for example,
one can easily write down a formula describing the values of all loop variables at the
iteration n+1 in terms of their values at an iteration n, by using the transition relation
of the loop. In addition to the transition relation, some properties of counters (scalar
variables that are only incremented or decremented by constant values in L) are also
added. Further, the loop language is also extended by the so-called update predicates

for arrays and their properties are added to the extended language. An update predi-
cate for an array A essentially expresses updates made to A and their effect on the final
value of A. After this step, a collection Π of valid loop properties expressed in the
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extended language is derived.

(2) Formulas in Π cannot be used as loop invariants, since they use symbols not
occurring in the loop, and even symbols whose semantics is described by the loop
itself. These formulas, being valid properties of L, have a useful property: all their
consequences are valid loop properties too. The second phase of symbol elimination
tries to generate logical consequences of Π in the original language of the loop. Any
such consequence is also a valid property of L, and hence an invariant of L. Logical
consequences of Π are generated by running a saturation theorem prover on Π in a
way that the theorem prover tries to eliminate the newly introduced symbols.

(3) The third phase of the method, added recently to symbol elimination [HKV11b],
tries to remove invariants implied by other generated invariants.

It is important to note that (the first phase of) symbol elimination can be combined
with other methods of program analysis. Indeed, any valid program property can be
added to Π, resulting hopefully in a stronger set of invariants.

The rest of this section describes the details of how these three phases are imple-
mented in Vampire.

8.3.1 Program Analysis in Vampire

In this section we briefly overview the program analysis phase of invariant generation
in Vampire, introduced in [HKV11b].

The analyser works with simple programs of the form described in Section 8.2, and
generates loop properties for the first phase of symbol elimination. The analyser works
as follows. First, it extracts from the program all non-nested loops and performs the
following steps on every such loop.

1. Find all loop variables and classify them into variables updated by the loop and
constant variables.

2. Find counters, that is, updated scalar variables that are only incremented or
decremented by constant values. Save properties of counters.

3. Generate update predicates of updated array variables and save their properties.

4. Save the formulas corresponding to the transition relation of the loop.

5. Create a symbol elimination task for Vampire by putting together all saved for-
mulas and marking symbols that have to be eliminated.
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Loops found: 1
Analyzing loop...
---------------------
while (a < m)

{
if (A[a] >= 0)

{
B[b] = A[a];
b = b + 1;

}
else

{
C[c] = A[a];
c = c + 1;

}
a = a + 1;

}
---------------------
Variable: B: (updated)
Variable: a: (updated)
Variable: b: (updated)
Variable: m: constant
Variable: A: constant
Variable: C: (updated)
Variable: c: (updated)

Counter: a
Counter: b
Counter: c
Path:
false: A[a] >= 0
C[c] = A[a];
c = c + 1;
a = a + 1;

Path:
true: A[a] >= 0
B[b] = A[a];
b = b + 1;
a = a + 1;

Counter a: 1 min, 1 max, 1 gcd
Counter b: 0 min, 1 max, 1 gcd
Counter c: 0 min, 1 max, 1 gcd
8. ![X1,X0,X3]:(iter(X0) & iter(X1) & X1>X0 & c(X1)>X3 & X3>c(X0))

=> ?[X2]:(iter(X2) & c(X2)=X3 & X2>X0 & X1>X2) [program analysis]
7. ![X0]:(iter(X0) => c(X0)>=c0) [program analysis]
6. ![X0]:(iter(X0) => c(X0)<=c0+X0) [program analysis]
5. ![X1,X0,X3]:(iter(X0) & iter(X1) & X1>X0 & b(X1)>X3 & X3>b(X0))

=> ?[X2]:(iter(X2) & b(X2)=X3 & X2>X0 & X1>X2) [program analysis]
4. ![X0]:(iter(X0) => b(X0)>=b0) [program analysis]
3. ![X0]:(iter(X0) => b(X0)<=b0+X0) [program analysis]
2. ![X0]:(iter(X0) => a(X0)=a0+X0) [program analysis]
1. ![X0]:(iter(X0) <=> (0<=X0 & X0<n)) [program analysis]

Figure 8.2: Partial output of Vampire’s program analysis on the Partition program of Table
8.3.

Example 8.3.1 Figure 8.2 shows the output of Vampire corresponding to the first
four steps of the program analysing process for the Partition program of Table 8.3.
In the output, ![X] (respectively ?[X]) denotes ∀X (respectively, ∃X). The full example
contains, apart from the loop shown in Figure 8.2, initialisation of some loop variables.

As shown in Figure 8.2, the program analyser of Vampire detects that variables B,
A, a, b, c are updated in the loop, variables A, m are constants, and the variables a, b, c
are counters.

Next, the path analysis of the program analyser reports that there are two program
paths (listed in two blocks starting with Path), depending on the value of the test
A[a] ≥ 0. The values min and max denote the maximal and the minimal increment
of the counter over all paths in the program. The value gcd is the greatest common
divisor of all such increments.

Formula on line denoted as 1 defines a predicate for loop iteration counter. Proper-
ties of counters are further generated on lines enumerated by 2-8 in the Figure 8.2. For
example, Vampire generates axiom 2 expressing the following property: for every loop

iteration X0, the value a(X0) of a at iteration X0 is given by a0+X0, where a0 denotes
the initial value of a.
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8.3.2 Theory Reasoning in Vampire

Standard resolution and superposition theorem provers are good in dealing with quan-
tifiers but lack any support for theories, such as those of integers, reals, arrays, lists,
etc. The standard way of adding a theory to such a theorem prover is by adding a
first-order axiomatisation of the theory. There is no complete axiomatisation for all the
above mentioned theories (assuming arbitrary quantifiers).

Adding incomplete axiomatisations is the approach used in [KV09a]. The new ver-
sion of Vampire [HKV11b] came further than [KV09a] and also added integers as a
data type in Vampire. The method of [HKV11b] is also the approach we follow in this
paper. This means that integers can be used directly instead of representing them us-
ing, for example, zero and the successor function. Vampire “knows” several standard
predicates and functions on integers: addition, subtraction, multiplication, successor,
division, and standard inequality relations such as ≤. Since Vampire’s users may not
know much about combining arithmetic and first-order logic, automatic loading of rel-
evant theories is taken care of by Vampire. For example, if the user uses the standard
integer addition function symbol +, then Vampire will automatically add an axiomati-
sation of integer linear arithmetic including axioms for +.

Generally, for loading existing theory axiomatisations of Vampire, the user should
add to the input (in the TPTP syntax) a Vampire-specific declaration binding an input
symbol to an interpreted theory symbol. For example, one can write:

vampire(interpreted symbol, geq, integer greater equal).

to declare that the input symbol geq denotes the inequality ≥ on integers. Given the
above declaration, Vampire will add some theory axioms for this symbol to the input
formulas. The user can also choose to use her own axiomatisation or to add more
axioms to the axiomatisation loaded by Vampire.

The results reported in Section 8.4 show that Vampire’s approach to reasoning with
integers is good enough for proving properties of simple loops. However, the research
into various approaches to reasoning with quantifiers and theories and their relative
strength is still in its infancy and hindered by a lack of publicly available benchmarks.

8.3.3 Symbol Elimination in Vampire

If one just adds a collection of formulas obtained by program analysis to a theorem
prover and expects the prover to generate consequences of these formulas using only a
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given subset of functions and predicates from the input, the result will most likely be
disappointing. For example, suppose that p is a symbol that cannot occur in invariants,
while q,r are symbols that can occur in them. Suppose that we are also given two
clauses p∨ q and ¬p∨ r. A theorem prover may decide to derive the invariant q∨ r

from these two clauses but may also decide not to do anything with them, depending
on the term ordering and literal selection it uses (e.g. q and r might be selected before
p).

The main ingredient of the symbol elimination technique in Vampire is the concept
of a well-colored derivation [McM08, HKV10]. To define well-colored derivations
(also called local proofs or split proofs) some predicate and/or function symbols are
declared to have colors, while other symbols are uncolored. A symbol, term, literal or
formula using a color are called colored, otherwise they are called grey. A derivation
is called well-colored if any inference can use symbols of at most one color. Any
inference having at least one colored premise and a grey conclusion is called a symbol

eliminating inference.
Following the symbol elimination approach of [KV09a], loop invariant generation

can be thus be addressed using colors, as follows. One and the same color is assigned to
all additional symbols introduced for formulating properties of loops (see Section 8.3),
for example, the loop counter. All other symbols, that is the loop variables and the
theory symbols, are grey. A loop invariant is then a grey formula describing a valid
loop property. Since one is guaranteed that any grey consequence of the input set of
formulas is a valid loop property, the problem of invariant generation reduces to the
problem of generating grey consequences of this set. This means, in a way, that the
colored symbols should be eliminated.

To make saturation more effective for deriving grey consequences, the Knuth-
Bendix term ordering used in Vampire was modified in [HKV10], so that symbol
weights are infinite ordinals and any colored ground term or atom is greater than any
ground grey term or atom.
Example 8.3.2 Consider the Partition program from Table 8.3. As presented in
Figure 8.2, the program analyser of Vampire generates the following valid loop prop-
erty:

a(X0)=a0+X0 for every loop iteration X0.

However, this property cannot be used as an invariant as it makes use of the additional
unary function symbol a(X0) denoting the value of the loop variable a at an iteration
X0. However, since we declare the unary symbol a colored, Vampire tries to eliminate
a(X0) from the set of valid properties generated by its program analyser, and derives,
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for example, the following grey formula by a symbol eliminating inference: 1

a-a0≥ 0, where the constant a denotes the value of a at the end of the loop.

This property is a loop invariant, as it uses only the grey symbols. Similarly,

B(X0,b(X0))≥ 0 for every loop iteration X0

is a valid loop property, but not an invariant. However, by making the unary symbol b
and the binary symbol B colored, Vampire generates the following invariant from this
and other loop properties:

0≤ X< b =⇒ B(X)≥ 0,

where the unary symbol B and the constant b are the corresponding grey symbols
denoting the final values of loop variables with the same names.

8.3.4 Pruning Generated Invariants

Symbol elimination can generate invariants implied by other generated invariants. For
example, any inference applied to two invariants gives an invariant. For this reason,
[HKV10] only stores invariants obtained by an inference having at least one colored
premise, that is, a symbol-eliminating inference. However, even among conclusions of
symbol-eliminating inferences there are typically many invariants implied by others.

To improve invariant generation, a new mode, called the consequence-elimination

mode, was added to Vampire in [HKV11b]. In this mode, Vampire obtains a set S of
clauses (i.e. invariants) as an input and tries to find its proper subset S′ equivalent to S.
In the process of computing S′, Vampire is run with a small time limit. Naturally, one
is interested in having S′ as small as possible.

In the experiments reported in this paper, we made use of [HKV11b] and ran Vam-
pire in the consequence elimination mode using four different strategies with a 20 sec-
onds time limit. Our experimental results show that typically between 80% and 90%
of all invariants obtained by symbol elimination are redundant, and hence discarded.
It is usually the case that all or nearly all of the discarded invariants are discovered in
a few milliseconds already by the first strategy.

1As described in [HKV10], for every program variable v two grey variables v0 and v are used,
denoting the initial and the final values of this loop variable. Further, a colored unary function symbol v
is introduced, such that v(X) denotes the value of the loop variable v at iteration X .



8.3. SYMBOL ELIMINATION AND INVARIANT GENERATION 131

Loop Symbol Elimination within 1s Symbol Elimination within 10s
] SEI ] Min SEI % Redundancy ∀-Inv ∀∃-Inv ] SEI ] Min SEI % Redundancy ∀-Inv ∀∃-Inv

Initialisation 15 5 67% yes no 40 5 88% yes no
Copy 24 5 79% yes no 25 5 80% yes no
Find 151 13 91% yes no 474 21 96% yes no
Vararg 1 1 0% yes no 1 1 0% yes no
Partition 166 38 77% yes yes 849 59 93% yes yes
Partition Init 168 24 86% yes yes 692 127 82% yes yes
Shift 41 12 71% yes no 111 16 86% yes no

Table 8.1: Symbol elimination on programs from [GRS05, SG09], by running Vampire
with 1 and 10 seconds of time limit.

8.3.5 Proving Invariants, Postconditions, and Assertions

The set of invariants and loop properties resulting from Vampire’s program analysis
and symbol elimination can be used to prove loop properties. Note that proving a loop
property can be done in at least two different ways.

(a) First, we can add the negation of the property to the formulas obtained by
program analysis and try to prove that the resulting set of formulas is unsatisfiable. It
is easier than invariant generation since one does not have to take care of colors and
can use arbitrary proofs, ordering and strategies, including goal-oriented ones.

(b) Second, one can prove that the property is an inductive invariant, which is a
much simpler problem and can be reduced to proving a few formulas with respect to
the theory.

However, both approaches assume that every loop is already annotated. Providing
such annotations manually requires a considerable amount of work by highly qualified
persons and thus often makes verification prohibitively expensive. Therefore, gener-
ation of invariants without using any annotations is invaluable in making verification
and static analysis of programs economically feasible.

Evaluating the quality of an invariant generation technique is not easy since it can-
not be measured using simple measures, such as the number of generated invariants or
the speed of their generation. One can say that such a technique is powerful, if the set
of invariants generated in small time implies the intended loop invariants, or invariants
that humans would use to annotate this loop for verification purposes.

To evaluate our method, we used annotated code both from academic benchmarks
and an industrial verification project. In this code every loop was annotated by its

intended property in the form of loop invariants and/or postconditions. So we ran
Vampire on the code as follows.

1. First, we generated a set of invariants using symbol elimination, as described in
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Loop Shape ] of Loops Average ] of SEI Average ] of Non-Redundant SEI % of SEI Redundancy ∀-Inv ∀∃-Inv
Simple 33 168 18 89.3% yes no

Multi-path 5 340 46 86.4% yes yes

Table 8.2: Symbol elimination on programs sent by Dassault Aviation.

Sections 8.3.1–8.3.4;

2. Then we checked, also using Vampire, whether the intended loop property is
implied by this set of invariants and whether the intended property described a
postcondition, if the latter was provided.

Example 8.3.3 In the fourth column of Table 8.3, we show one of the intended in-
variant of the Partition program. This invariant follows from the two invariants
generated by Vampire, which are presented in the fifth column of the table.

8.4 Experimental Results

The experiments described in this section were carried out using two benchmark suites.
One is a collection of 6 loops taken from various research papers (Tables 8.3 and 8.1).
The other one is a collection of 38 loops taken from programs provided by Dassault
Aviation. We used a computer with a 2 GHz Intel Core i7 CPU processor and 4GB
RAM, and ran experiments using the Vampire version 0.6. The consequence elimina-
tion phase of Vampire was run with a 20 seconds time limit.

To analyse C programs, we had to extend Vampire by a C parser. Inputs to the
parser are (large) C programs. After parsing, Vampire finds all loops in the program
and checks, for each loop, if it is as given in (8.1) and thus can be analysed. Vampire
outputs a set of loop invariants for each loop (8.1) under analysis. Figure 8.1 illustrates
the invariant generation process within Vampire.

To use Vampire for generating invariants of arbitrary C code, one should use it in
the program analysis mode as follows:

vampire --mode program analysis < filename.c

8.4.1 Challenging Benchmarks

Table 8.3 describes the effect of symbol elimination on 6 programs. The names of
the first 5 programs and their origins (that is, the papers where they were described)
are given in column 1. The program given in the last row of Table 8.3 is taken from
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our own case studies, and illustrates the possibility of generating invariants for loops
using read-and-write arrays. Columns 2 contains the number of invariants generated
in 1 second, while column 3 the number of invariants that remain after consequence
elimination.

Column 4 contains the intended invariant (or the invariant of interest): for this in-
variant we checked whether it is implied by invariants generated by Vampire, and if
yes, show (in column 5) the subset of the generated invariants that imply the intended
one. Checking that the intended invariant follows from the generated invariants was
done using Vampire, so clauses in column 5 are those extracted from the correspond-
ing Vampire proof. Invariants are generated by Vampire in a certain order. We used
this order to enumerate clauses in column 5, since it gives the reader an idea how fast
the required invariants were found. For example, inv81 for the Partition example
means that this invariant was the 82nd generated invariant (counting invariants starts
from 0). Note that some of the formulas in this column have skolem functions intro-
duced by Vampire’s clausifier. For example, sk1 denotes a skolem function. They can
be de-skolemised to give invariants with quantifier alternations.

For this benchmark suite, all the intended invariants turned out to be logical con-

sequences of the invariants generated by Vampire. However, one of the intended in-
variants could not be proved by Vampire. Namely, for the Shift example, Vampire
generated the invariant ∀x(x ≥ 0∧ x < a =⇒ A[x] = A[x+1]), while the intended in-
variant was ∀x(x ≥ 0∧ x ≤ a =⇒ A[x] = A[0]). These two invariants are equivalent
in arithmetic, however, to prove the intended one from the generated one in first-order
logic one needs induction. By adding a simple induction axiom, specific to the Shift

example, we could also prove the intended invariant.

We were also interested in checking the number of generated invariants depending
on the time spent on invariant generation. Table 8.1 contains statistics about invariant
generation with 1 and 10 seconds time limits on symbol elimination, respectively. It
also shows the percentage of generated invariants shown to be redundant. As one can
see, on the average over 80% of the generated invariants were proved to be redundant.
Moreover, Table 8.1 reports whether quantified invariants with only universal quantifier
(∀-Inv) and with quantifier alternations (∀∃-Inv) have been generated. The relative size
of the minimised set varies from example to example. Also, the intended invariant is
always implied by the invariants generated in the first second (as reported in Table 8.3).
For example, the intended (and rather complex) invariant for the Partition problem
is implied by invariants 1 and 81 (see Table 8.3), while the first 166 invariants are
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generated in 1 second (Table 8.1). This suggests that the symbol elimination method
generates increasingly sophisticated invariants, while natural and simple invariants are
generated quickly.

8.4.2 Industrial Examples

We also ran Vampire’s symbol elimination on 48 annotated array examples provided
by Dassault Aviation. Since Vampire does not deal with pointers, we safely replaced
pointers by arrays in 5 examples, and structures by arrays in 3 example loops. The
48 annotated array examples involve array copying, initialisation and shifts, and used
arithmetical operations (e.g. addition, minus, plus, multiplication) and comparisons
(e.g. greater, not equal) over the array content.

Vampire failed to find sufficiently strong invariants for 10 of these loops, for the
following reasons. 6 loops were nested (all related to sorting algorithms) and thus can-
not be analysed by the current version at all. Of the remaining 4 loops, two traversed
sorted arrays using a logarithm-time search, one accessed the array using logically
complex manipulation with array indexes, and the last one computed the sum of all
array elements.

The results for the remaining 38 loops are analysed in Table 8.2. The first row
of Table 8.2 shows the performance of Vampire on loops having only a single path,
whereas the second row gives the results for multi-path loops. The second column
shows the number of such loops. The third column gives the average number of invari-
ants generated by Vampire with a 1 second time limit. The fourth and the fifth columns
show, respectively, the number of invariants in the minimised set and the percentage of
invariants proved to be redundant. The last two columns show whether any quantified
invariants with universal quantifiers (∀-Inv) (respectively with quantifier alternations
∀∃-Inv) have been generated. We note that for all 38 examples the intended invariants

have been implied by the ones generated by Vampire.

8.4.3 Analysis of Experiments

By studying the minimised sets of generated invariants we discovered that it still con-
tains many redundancies and that many generated clauses could have been further
improved by a better theory reasoning or algebraic simplifications.

Example 8.4.1 For the Partition Init program, 692 invariants were generated in
10 seconds (see Table 8.1), out of which 127 invariants were kept in the minimised set.
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Loop ] SEI ] Min SEI Inv of interest Generated invariants implying Inv
Initialisation [SG09]
i = 0;
while (i < m) do
A[i] = 0; i = i+1
end do

15 5
∀x : 0≤ x < i =⇒

A[x] = 0

inv7:
∀x0,x1,x2 : 0 6= x0 ∨ x1 6= x2∨

A(x1) = x0∨
¬i > x2 ∨¬x2 ≥ 0

Copy [SG09]
i = 0;
while (i < m) do
B[i] = A[i]; i = i+1
end do

24 5
∀x : 0≤ x < i =⇒

B[x] = A[x]

inv8:
∀x0,x1 : A[x0] = B[x1]∨ x0 6= x1∨

¬i > x0 ∨¬x0 ≥ 0

Vararg [SG09]
i = 0;
while (A[i]> 0) do
i = i+1
end do

1 1
∀x : 0≤ x < i =⇒

A[x]> 0

inv0:
∀x0 : ¬i > x0 ∨¬x0 ≥ 0∨

A(x0)> 0

Partition [SG09]
i = 0; j = 0;k = 0;
while (i < m) do
if (A[i]>= 0)
then B[ j] = A[i]; j = j+1
else C[k] = A[i];k = k+1
end if;
i = i+1
end do

166 38
∀x : 0≤ x < j =⇒

B[x]≥ 0∧
∃y : B[x] = A[y]

inv1:
∀x0 : A(sk2(x0))≥ 0∨

¬ j > x0 ∨¬x0 ≥ 0

inv81:
∀x0 : ¬ j > x0 ∨¬x0 ≥ 0∨

A(sk2(x0)) = B(x0)

Partition Init [SG09]
i = 0;k = 0;
while (i < m) do
if (A[i] == B[i])
then C[k] = i;k = k+1
end if;
i = i+1
end do

168 24
∀x : 0≤ x < k =⇒

A[C[x]] = B[C[x]]

inv0:
∀x0 : A(sk1(x0)) = B(sk1(x0))∨
¬k > x0 ∨¬x0 ≥ 0

inv30:
∀x0,x1,x2 : sk1(x0) 6= x1∨

x0 6= x2 ∨¬k > x0∨
¬x0 ≥ 0∨C(x2) = x1

Shift
i = 0;
while (i < m) do
A[i+1] = A[i]; i = i+1
end do

24 5
∀x : 0≤ x≤ i =⇒

A[x] = A[0]

inv5:
∀x0,x1,x2 : x0 +1 6= x1∨

A[x0] 6= x2 ∨A[x1] = x2∨
¬i > x0 ∨¬x0 ≥ 0

inv13:
∀x0,x1 : A[0] 6= x0∨

x1 6= 1∨A[x1] = x0

Table 8.3: Invariant generation by symbol elimination with Vampire, within 1 second
time limit.

By further inspection of these 127 invariants, we noticed the following 2 invariants:

inv30:

∀x0,x1,x2 : sk1(x0) 6= x1∨ x0 6= x2∨¬c > x0∨¬x0 ≥ 0∨C(x2) = x1

inv677:

∀x0,x1 : C(x1) = sk1(x0 +2)∨0≥ x0∨ x0 +2 6= x1∨¬c > x0 +2

When running Vampire only on these two formulas (without symbol elimination
and consequence generation), Vampire proves in essentially no time that inv30 =⇒
inv677. Hence inv677 is redundant, but could not be proved to be redundant using
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the consequence elimination mode with a 20 seconds time limit.
The above example suggests thus that further refinements of integer reasoning in

conjunction with first-order theorem proving are crucial for generating a minimal set
of interesting invariants. We leave this issue for further research.

Based on the experiments described here, we believe that we are now ready to
answer the three questions raised in Section 8.1 about using symbol elimination for
invariant generation.

1. [Strength] For each example we tried, (i) Vampire generated complex quantified
invariants as conclusions of symbol eliminating inferences (some with quantifier
alternations), (ii) using the invariants inferred by Vampire, the intended invari-
ants and loop properties of the example could be automatically proved by Vam-
pire in essentially no time. Hence, symbol elimination proves to be a powerful
method for automated invariant generation.

2. [Time] Symbol elimination in Vampire is very fast. Within a 1 second time limit
a large set of complex and useful quantified invariants have been generated for
each example we tried.

3. [Quantity] Symbol elimination, even with very short time limits, can result in a
large amount of invariants, ranging from one to several hundred. By interfacing
symbol elimination with consequence elimination, one obtains a considerably
smaller amount of non-redundant invariants: in practice, about 80% of invari-
ants obtained by symbol elimination are normally proved to be redundant. We
believe that the generated minimised set of invariants makes symbol elimination
attractive for industrial software verification. It seems that the set of remain-
ing invariants can be further reduced by better reasoning with quantifiers and
theories.

8.5 Related Work

To the best of our knowledge, symbol elimination is a new approach that has not
been previously evaluated. A related approach to symbol elimination is presented in
[McM08] where theorem proving is used for generating interpolants as quantified in-
variants that imply given assertions. Predefined assertions and predicates are also the
key ingredients in [GT07, BHMR07, GMT08, SG09] for quantified invariant inference.
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For doing so, predicate abstraction is employed to derive the strongest boolean combi-
nation of a given set of predicates [GT07, GMT08], or invariant templates are used over
predicate abstraction [SG09] or constraint solving [BHMR07]. Abstract interpretation
is also used in [GRS05, HP08], where quantified invariants are automatically inferred
by an interval-based analysis over array indexes, without requiring user-given asser-
tions. Unlike the cited works, in our experiments with symbol elimination to invariant
generation, we generated complex invariants with quantifier alternations without using
predefined templates, predicates and assertions, and without using abstract interpreta-
tion techniques.

Quantified array invariants are also inferred in [HHKR10], by deploying symbolic
computation based program analysis over loops. Although symbolic computation of-
fers a more powerful framework than symbol elimination when it comes to arithmeti-
cal operations, all examples reported in [HHKR10] were successfully handled by using
symbol elimination for invariant generation. However, [HHKR10] can only infer uni-
versally quantified invariants, whereas our experiments show that symbol elimination
can be used to derive invariants with quantifier alternations.

8.6 Conclusions

We describe and evaluate the recent implementation of symbol elimination in the
first-order theorem prover Vampire. This implementation includes a program analysis
framework, theory reasoning, efficient consequence elimination, and invariant genera-
tion.

Our experimental results give practical evidence of the strength and time-efficiency
of symbol elimination for invariant generation. Furthermore, we investigated quantita-
tive aspects of symbol elimination.

We can answer affirmatively the question whether a computer program can auto-
matically generate powerful program properties. Indeed, the properties generated by
Vampire implied the intended properties of the programs we studied. However, our re-
search also poses highly non-trivial problems. The main problem is the large number
of generated properties. On the one hand, one can say that this is an accolade to the
method that it can generate many more properties than a human would ever be able to
discover. On the other hand, one can say that the majority of generated properties are
uninteresting. This poses the following problems that can help us understand computer
reasoning and intelligence better:
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1. what makes some program properties more interesting than others from the
viewpoint of programmers (or applications);

2. how can one automatically tell interesting program properties from other prop-
erties generated by a computer?

Answering these fundamental questions will also help us to improve program genera-
tion methods for the purpose of applications in program analysis and verification.
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The 481 Ways to Split a Clause and
Deal with Propositional Variables

Authors: Krystof Hoder, Andrei Voronkov

This chapter is in the form of a paper, but not yet submitted for publication.

It is often the case that first-order problems contain propositional variables and that
proof-search generates many clauses that can be split into components with disjoint
sets of variables. This is especially true for problems coming from some applications,
where many ground literals occur in the problems and even more are generated.

The problem of dealing with such clauses has so far been addressed using either
splitting with backtracking (as in Spass [Wei01]) or splitting without backtracking (as
in Vampire [RV02]). However, the only extensive experiments described in the litera-
ture [RV01a] show that on the average using splitting solves fewer problems, yet there
are some problems that can be solved only using splitting.

In view of importance of dealing with propositional and ground literals we tried to
identify essential issues contributing to efficiency in dealing with splitting in resolu-
tion theorem provers and enhanced the theorem prover Vampire with new options, al-
gorithms and datastructures dealing with splitting. This paper describes these options,
algorithms and datastructures and analyses their performance in extensive experiments
carried out over the TPTP library [Sut09].

Another contribution of this paper is a calculus RePro separating propositional
reasoning from first-order reasoning.

139
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9.1 Introduction

In first-order theorem proving, theorem provers based on resolution and superposition
caluli (in the sequel simply called resolution theorem provers) are predominant. This is
confirmed by the results of the last CASC competitions [Sut08]. Among the top three
theorem provers Vampire [RV02] and E [Sch02] are resolution-based, while iProver
[Kor08] implements both an instance-based calculus and resolution with superposition.

Resolution theorem provers use saturation algorithms. They deal with a search
space consisting of clauses. Inferences performed by saturation algoritms are of three
different kinds:

1. Simplifying inferences replace a clause by another clause that is simpler in some
strict sense.

2. Deletion inferences delete clauses from the search space.

3. Generating inferences derive a new clause from clauses in the search space. This
new clause can then be immediately simplified and/or deleted by other kinds of
inference.

On hard problems the search space is often growing fast and simplifications and dele-
tions consume a lot of time. Performance of resolution theorem provers degrades es-
pecially fast if it generates many clauses having more than one literal (multi-literal

clauses for short) and heavy clauses (clauses of large sizes). There are several reasons
for this degradation of performance:

1. The complexity of algorithms implementing inference rules depends on the size
of clauses. The extreme case are algorithms for subsumption and subsumption
resolutions. These problems are known to be NP-complete and algorithms im-
plementing them are exponential in the number of literals in clauses.

2. Heavy clauses require more memory to be stored. Moreover, every literal in a
clause (and sometimes every term occurring in such a literal) are normally added
to one or more indexes. Index maintenance may require a considerable space and
time and operations on these indexes slow down significantly when the indexes
become large.

3. Generating inferences applied to heavy clauses usually generate heavy clauses.
Generating inferences applied to clauses with many literals usually generate
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clauses with many literals. For example, resolution applied to two clauses con-
taining n1 and n2 literals normally gives a clause with n1 +n2−2 literals.

There are two ways of dealing with multi-literal and heavy clauses. One is simply
to start discarding them after some time, thus losing completeness as described in
[RV03]. Another one is to use splitting. There are two kinds of splitting described
in the literature: splitting with backtracking (as in Spass [Wei01]) or splitting without
backtracking (as in Vampire [RV02]).

9.2 Propositional Variables in Resolution Provers

Both kinds of splitting are implemented using introduction of propositional variables
denoting components of splitted clauses. When many such variables are introduced,
they give rise to clauses with many propositional literals. Such clauses clobber up
search space and slow down expensive operations, such as subsumption. Therefore,
the problem of dealing with propositional literals is closely related to splitting. Apart
from variables arising from splitting, propositional variables are common in many ap-
plications. They may also be introduced during preprocessing when naming is used to
generate small clausal normal forms.

The resolution and superposition calculus is very efficient for proving theorems in
first-order logic. In propositional logic, it is not competitive to DPLL. Suppose that we
have a problem that uses both propostional and non-propositional atoms. Then treating
propositional atoms in the same way as non-propositional one results in performance
problems. For example, if we use the code trees technique for implementing subsump-
tion [Vor95] and make no special treatment for propositional variables, it will work in
the worst case in exponential time even for a pair of propositional clauses, while the
best algorithms for propositional subsumption are linear.

9.2.1 The Calculus RePro

To address the problem of dealing with propositional variables, in this section we will
introduce a calculus RePro for dealing with clauses having propositional literals and
will illustrate some options of Vampire using this calculus. The calculus separates
propositional reasoning from non-propositional.

Let us call a pro-clause any expression of the form C | P, where C is a clause
containing no propositional variables and P is a propositional formula. Logically, this
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pro-clause is equivalent to C∨P, so the bar sign | can be seen as simply separating the
propositional and non-propositional parts of the pro-clause. We will consider a clause
containing no propositional variables as a special kind of pro-clause, in which P is a
false formula.

Note that a pro-clause C∨P is not necessarily a clause, since P can be an arbitrary
formula. Also, any propositional formula P can be considered a special case of a pro-
clause 2 | P, where 2 denotes, as usual, the empty clause. We will call any pro-clause
2 | P propositional.

The calculus RePro is parametrised by an underlying resolution calculus. That
is, for every resolution calculus on clauses we will define an instance of the calcu-
lus RePro based on this resolution calculus. However, since we are not varying the
underlying calculus in this paper, we will simply speak of RePro as a calculus.

Generating inferences. For every generating inference

C1 · · · Cn
C

of the resolution calculus the following is an inference rule of RePro:

C1 | P1 · · · Cn | Pn

C | (P1∨ . . .∨Pn)
.

Simplifying inferences. Let

C1 · · · Cn ��D
C (9.1)

be a simplifying inference of the resolution calculus. Speaking the theory of resolu-
tion, this means that C is implied by C1, . . . ,Cn,D and D is redundant with respect to
C1, . . . ,Cn,C. If P1∨ . . .∨Pn =⇒ P is a tautology, then the following is a simplifying
inference rule of RePro:

C1 | P1 · · · Cn | Pn ��
�D | P

C | (P1∨ . . .∨Pn)
.

(9.2)

Deletion inferences. Let

C1 · · · Cn ��D

be a deletion inference of the resolution calculus, that is, D is redundant with respect
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to C1, . . . ,Cn. If P1 ∨ . . .∨Pn =⇒ P is a tautology, then the following is a deletion
inference of RePro:

C1 | P1 · · · Cn | Pn ��
�D | P.

9.2.2 Completeness

It is not hard to derive soundness and completeness of RePro assuming the same prop-
erties of the underlying resolution calculus, however completeness here means some-
thing different from completeness in the theory of resolution. The reason for this differ-
ence is that RePro contains essentially no rules for dealing with the propositional part
of clauses. In the completeness theorem below, we assume knowledge of the theory of
resolution, as in [BG01, NR01]. Also, we do not specify the underlying calculus, for
example, the calculus used in Vampire can be used.

Theorem 9.2.1 [Completeness] Let S0,S1,S2, . . . be a fair sequence of sets of pro-
clauses such that S0 is unsatisfiable. Then there exists i≥ 0 such that the set of propo-
sitional pro-clauses in Si is unsatisfiable too.
The proof is omitted here. Note that this theorem implies that the proof-search in
RePro can be carried out by using any standard fair saturation algorithm to perform
RePro inferences corresponding to the rules of the underlying calculus plus unsatisfia-
bility checking for the propositional part. This is how it is implemented in Vampire.

To implement such an algorithm for RePro on top of a standard implementation of
the resolution calculus one needs to address the following questions:

(q1) representation of the propositional part of pro-clauses;

(q2) representation of propositional pro-clauses (which can be different from the rep-
resentation of the propositional part of pro-clauses);

(q3) unsatisfiability checking for sets of propositional pro-clauses;

(q4) efficient simplification rules for pro-clauses.

There are some other implementation details to be addressed. For example, the in-
ference selection process in saturation algorithms usually depends on the weights of
clauses (which is usually their size measured in the number of symbols). One can use
different size measures for pro-clauses, especially when their propositional parts are
not necessarily clauses. This adds one more question:
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(q5) pro-clause selection.

However, before discussing these solutions we will introduce some other rules that
can be used in RePro.

Propositional tautology deletion is a deletion rule of RePro formulated as follows:

��
�D | P,

where P is a tautology.

The merge rule of RePro is formulated as follows:

��
�C | P1 ��

�C | P2

C | (P1∧P2)

Note that so far this is the only rule that introduces propositional formulas other than
clauses.

The merge subsumption rule of RePro is formulated as follows:

C | P1 ��
��D | P2

D | (P1∧P2)
,

where C subsumes D. This rule can also introduce propositional formulas that are not
clauses.

9.2.3 The Calculus ReProR

One can also define simplifying rules on pro-clauses in an alternative way. Namely,
the modification is as follows. Consider a simplifying rule (9.1) of the underlying
resolution calculus. Then the following can be considered as a simplifying inference
rule:

C1 | P1 · · · Cn | Pn �
��D | P

C | (P1∨ . . .∨Pn) D | (P1∨ . . .∨Pn =⇒ P)
.

One can see that previously defined simplifying rule (9.2) is a special case of this
one, since, if P1 ∨ . . .∨Pn =⇒ P is a tautology, the second inferred clause can be
removed. One can also reformulate the deletion rules in the same way. We will denote
the resulting calculus ReProR (the refined RePro). Note that the simplification rules of
the refined calculus introduce non-clauses in the propositional part.
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The advantage of the alternative formulation of simplification and deletion rules is
that one clause can be simplified away into a tautology using a sequence of simpifying
or deletion rules impossible in the standard formulation of RePro. For example, a
clause A∨B | (p∧q) is redundant in the presence if A | p and B | q using the following
sequence of subsumption deletion rules:

B | q
A | p ((((

((((A∨B | (p∧q)

((((
((((

((((A∨B | (p =⇒ (p∧q))
A∨B | (q =⇒ (p =⇒ (p∧q)))

whose conclusion is a tautology.

9.3 Splitting

In very simple terms, splitting is based on the following idea. Suppose that S is a
set of clauses and C1 ∨C2 a clause such that the variables of C1 and C2 are disjoint.
Then the set S∪{C1∨C2} is unsatisfiable if and only if both S∪{C1} and S∪{C2} are
unsatisfiable. There is more than one way to implement splitting. Before discussing
them let us introduce some definitions.

Recall that a clause is a disjunction L1 ∨ . . .∨ Ln of literals, where a literal is an
atomic formula or a negation of an atomic formula. A literal or clause is ground if it
contains no occurrences of variables. In the context of splitting we consider a clause
as a set of its literals. In other words, we assume that clauses do not contain multiple
occurrences of the same literal and clauses equal up to permutation of literals are con-
sidered equal. Let C1, . . . ,Cn be clauses such that n ≥ 2 and all the Ci’s have pairwise
disjoint sets of variables. Then we say that the clause C def

= C1 ∨ . . .∨Cn is splittable

into components C1, . . . ,Cn. We will also say that the set C1, . . . ,Cn is a splitting of C.
For example, every ground multi-literal clause is splittable. There may be more than
one way to split a clause, however there is always a unique splitting such that each
component Ci is non-splittable: we call this splitting maximal. It is easy to see that a
maximal splitting has the largest number of components and every splitting with the
largest number of components is the maximal one. There is a simple algorithm for
finding the maximal splitting of a clause [RV01a], which is, essentially, the union-find
algorithm.

Splittable clauses appear especially often when theorem provers are used for soft-
ware verification and static analysis. Problems used in these applications usually have
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a large number of ground clauses (coming from describing properties of a program)
and a small number of non-ground clauses.

There are essentially two ways of using splitting in a first-order resolution theorem
prover. One is splitting with backtracking as implemented in Spass [Wei01] and an-
other splitting without backtracking [RV01a]. Each of them is described in the next
subsections, where we also point out potential efficiency problems associated with
each kind of splitting.

When we discuss the use of splitting in resolution theorem provers, it is very impor-
tant to understand how the use of splitting affects other components of such provers.
The efficiency and power of modern resolution theorem provers comes from two tech-
niques: redundancy elimination (see [BG01] for the theory and [RV03] for the imple-
mentation aspects) and term indexing (see [SRV01]). Another component important
for understanding efficiency is the saturation algorithm and especially the clause selec-
tion algorithm used to implement this algorithm.

Redundancy elimination. Unlike backtracking algorithms used in DPLL, saturation
algorithms are backtracking-free. When clauses are simplified or deleted, these sim-
plifications and deletions do not have to be undone. Use of some forms of splitting can
require backtracking.

Term indexing. Even when simplifications are used, the search space can quickly
grow to hundreds of thousands of clauses. To perform inferences on such a large
search space efficiently, theorem provers maintain several indexes storing information
about terms and clauses. These indexes make it easier to find candidates for inferences.
In some cases inferences can be performed only by using the relevant index, without
retrieving clauses used for these inferences. The number of different indexes in theo-
rem provers varies and can be as many as about 10. Frequent insertion and deletion in
an index can affect performance of a theorem prover. A typical example is when a the-
orem prover generates an equailty a = b between two constants and uses it to rewrite
a into b. For nearly all indexing techniques used in the resolution theorem provers,
every term and clause containing a must be removed from all indexes and a new term
containing b inserted in them again. Doing this single simplification step on an indexes
set with 100,000 clauses can take a very long time.

Clause selection. Selection of generating inferences in resolution theorem provers is
implemented using clause selection, see [RV01a] for details. For selection, clauses are
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put in one or more priority queues and selected based on their priorities. Normally, the
majority of selected clauses are taken from the clauses of the smallest weight.

The use of splitting may heavily affect all these parts of the saturation algorithm
implementation: redundancy elimination, term indexing and clause selection. Let us
discuss this in more detail in the rest of this section.

9.3.1 Splitting without backtracking

Splitting without backtracking [RV01a] can be implemented using a naming technique.
Suppose we have a splittable clause C1∨ . . .∨Cn with components C1, . . . ,Cn. We in-
troduce new propositional variables p1, . . . , pn−1 to “name” the first n−1 components.
That is, we introduce them together with definitions pi↔Ci. Then we use the rule

(((
((((C1∨ . . .∨Cn

C1∨¬p1 . . . Cn−1∨¬pn−1 Cn∨ p1∨ . . . pn−1

If the same components appear more than once in a splittable clause, their names can
be reused. In fact, they should be reused, as shown in [RV01a].

The advantage of this approach is that we do not need to perform any backtracking,
which spares us the costs of inserting and deleting clauses from indexes. The only
additional cost to the implementation of saturation is an index of components required
to reuse names.

Splitting without backtracking is very efficient on some problems but may also be
very inefficient, since it can introduce thousands of propositional variables and long
clauses containing these variables.

Another drawback of this method is that simplifying inferences are not being per-
formed “across branches.” For example, when we split clause f (a) = a∨ q(a), we
obtain f (a) = a∨ p, so we cannot use the equality f (a) = a to simplify expressions
such as q( f (a)) by demodulation. In the case of splitting with backtracking, we would
obtain the unit clause f (a) = a, and all the demodulation simplifications would be
performed (at the cost of having to backtrack them later).

9.3.2 Splitting with Backtracking

Splitting with backtracking is based on the idea of the DPLL splitting. It uses the
labelled clause calculus introduced in [FW09]. We will first describe the use of labels
and then show how it can be captured by a variation of the RePro calculus.
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When we have a splittable clause C1 ∨C, where C1 is a component, it is first re-
placed by its minimal component C1, and when we derive a contradiction that follows
from C1, we (well, almost) backtrack to the point of the split and introduce the rest of
the clause C. In the spirit of DPLL, we may also add ¬C1 | P′ at this point. (Whether
we do this is controlled by a Vampire option.)

To implement this technique, we assign a label to every split that we perform,
and augment each clause C by a set of split labels on which it depends. Each newly
derived clause depends on a set of labels that is the union of the sets belonging to its
parents. When a clause is deleted, we need to examine the labels of the clauses which
justified the deletion. If the deletion was justified by some labels on which the deleted
clause itself does not depend, we do not delete the clause, but rather keep it aside to be
restored if we backtrack the label that justified its deletion.

The backtracking splitting as we have implemented it can be captured by the RePro

calculus if we restrict the inferences that can be performed at any given point, and
introduce a different treatment for simplification inferences.

We do not use any of the RePro rules that would introduce non-clauses into the
propositional part. The propositional parts of pro-clauses are therefore clauses, and
their literals correspond to the labels that the clause has assigned in the labelled calcu-
lus.

We are maintaining a partial model M which is initially empty and to which we
add propositional literals corresponding to active splits. At each point we rescrict
inferences of the RePro calculus to the pro-clauses whose propositional part is not
satisfied by the model M.

The split labels are seen as fresh propositional variables and the label introduction
at splitting C1 ∨C can be viewed as naming C1 with a propositional variable. More
precisely, when we split C1∨C | P and use the name p1 for C1, we add pro-clauses C1 |
(¬p1∨P) and C | (p1∨P). We also make a note that p1 depends on every propositional
variable in P and add p1 into the partial model M.

At this point, the original clause C1 ∨C | P is subsumed by the newly introduced
C1 | (¬p1 ∨ P). Also, having added p1 into M keeps the clause C | (p1 ∨ P) from
participating in any inferences for now.

Clause simplification and restoring upon backtracking is the part that does not fit
well into the RePro calculus and for which we need to introduce a special treatment.
When a clause C | P is simplified with C1 | P1, . . ., Cn | Pn as premises, the restoration
of the simplified clause in the labelled calculus corresponds with the point when the
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formula F ≡ (P1∨ . . .∨Pn)→ P becomes no longer satisfied by the partial model M.
As a matter of fact, F is actually the propositional formula in one of the conclusions of
simplifying inferences in the ReProR calculus. One would be therefore tempted to use
the ReProR calculus to capture the splitting with backtracking. However, the problem
is that the formula F is not a clause, and the labelled calculus we use to implement
backtracking splitting does not easily capture general formulas using the clause labels.

We therefore rather check with each change of the model M whether the condition
for restoring any of the simplified clauses does occur, and if so, we put the clause back
into the saturation algorithm.

When we derive a propositional pro-clause 2 |Q, we select an atom p in the clause
Q≡Q′∨¬p so that no atom in Q′ depends on it (there will always be at least one such;
if there is several, we choose arbitrarily). Let us remind that there is only one pro-
clause with a positive occurrence of p — the clause C | (p∨P) which we introduced
after splitting C1 ∨C | P. This clause became inactive as we added p into the partial
model M, so it could not spread the literal p any further. Now we resolve the pro-
clauses C | (p∨P) and 2 | Q′ ∨¬p on the atom p to obtain C | (Q′ ∨P), delete the
clause C | (p∨P) and replace p in M with ¬p.

Note that we have removed p from M which means that the originally splitted
clause C1∨C | P is restored, even though just to become subsumed again by C | (Q′∨
P). Now there are two possibilities. If Q′ is an empty clause, C1 ∨C | P will never
be restored as it is subsumed by C | P which has the same propositional part.1 This
corresponds to the case when we have refuted the first branch of the split without any
additional assumptions. If Q′ is a non-empty clause, the original splitted clause may
be restored if some of the assumptions on which we refuted the split is backtracked.

It should be noted that while we can change the polarity of a propositional variable
in the model M from positive to negative, we never change it from negative to positive.
Therefore, once we assign false to a propositional variable, all pro-clauses that contain
it in a negative literal may be deleted.

Drawbacks. The disadvantage of this kind of splitting is that, upon backtracking,
we sometimes have to delete and restore many clauses. This leads to costly index
maintenance operations, and also a lot of work can be wasted.

For example, suppose we split a clause a= b∨C where the symbol b is the smallest
in the simplification ordering and does not appear anywhere else in the problem, while

1The restoration trigger for the simplified clause is P→ P which will never become unsatisfied.
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a has many occurrences. Splitting this clause will introduce a unit clause a = b and the
backward demodulation will replace every occurence of a by b, resuting in massive
updates in all indexes. Since b does not appear anywhere else, the equality will not
be helpful in any way, but all the rewritten clauses will depend on this split. Once
we reach a refutation using the rewritten clauses, we will have to restore all the clases
containing a, once again resulting in massive updates in all indexes. Also note that we
may end up doing a lot of repeated work as the proof search on the branch using a 6= b

will be likely similar to the one on the a = b branch.

9.4 Implementation and Parameters

In this section we describe various parameters implemented in Vampire and related to
splitting and/or use of propositional variables. We also discuss these parameters in the
context of the questions (q1)–(q5). These parameters and their values are summarised
in Table 9.1.

9.4.1 Splitting

The main parameter controlling splitting is splitting. It has three values: backtracking,
nobacktracking and off. All other options have two values: on and off.

Clauses may be split either eagerly, before they enter the passive container, or the
splitting can be postponed until a clause is selected for activation. This is controlled
by the option split at activation.

The set of split clauses can be restricted in several ways. Option split goal only

restricts splitting only to goal clauses and clauses that are derived from them. Enabling
split input only excludes derived clauses from splitting, allowing splits only on the
clauses which were initially passed to the saturation algorithm.

A different kind of restriction is to add a requirement that both split components
contain less positive literals than the original clause. Such splitting will lead to clauses
that are closer to the Horn form which allows only one positive literal per clause. This
setting is enabled by the split positive option.

Splitting with backtracking. The implementation is based on the description in
[Wei01]. We extended it by use of time stamps and reference counters on clauses. This
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option short values
general

backtracking,
splitting spl nobacktracking,

off
split add ground negation sagn on, off

what and when to split
split goal only sgo on, off
split input only sio on, off
split positive spo on, off
split at activation sac on, off

propositional pro-clauses
propositional to bdd ptb on, off
sat solver for empty clause ssec on, off
sat solver with naming sswn on, off

simplifications
sat solver with subsumption resolution sswsr on, off
empty clause subsumption ecs on, off
bdd marking subsumption bms on, off

clause and literal selection
nonliterals in clause weight nicw on, off
splitting with blocking swb on, off

Table 9.1: Option names, short names and values

allows us to implement the structure for restoring clauses upon backtracking more effi-
ciently — upon backtracking we only traverse the list of clauses that is to be restored,
and let the time-stamping ensure that we never restore the same clause twice.

If the option split add ground negation is enabled, upon backtracking caused
by splitting a ground literal L, we add its negation ¬L as a new clause. The param-
eter nonliterals in clause weight means that the weight of each clause will be
increased by the number of splits on which it depends.

9.4.2 Propositional Parts of Pro-Clauses

There are several possible implementations of pro-clauses with a clausal propositional
part. However, variants of RePro using non-clausal propositional parts quickly lead
to very complex formulas for which the only suitable data structure we could think of
was (ordered) binary decision diagrams [Bry86], or simply BDDs. Thus, we extended
the clause objects in Vampire by a reference to the BDD representing the propositional
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part of a pro-clause.

Since the refined calculus ReProR requires the use of arbitrary formulas, we also
used BDDs to implement this calculus. We hoped that it will be very efficient for
some problems since many more clauses will be simplified away. In reality ReProR

turned out to be almost disfunctional. The refined simplification rules created ever
more complex propositional formulas with very large BDDs. In many cases these
BDDs used all the available memory. It was also common that nearly all run-time of
Vampire was consumed by BDD operations. Therefore, we decided not to use ReProR

and report no results on it in this paper.

The option propositional to bdd (q1) chooses whether BDDs are used to store
propisitional parts of pro-clauses. If BDDs are not in use, we treat propositional liter-
als in the same way as all other literals. It is a separate issue how to deal with purely
propositional clauses. One can also treat them as ordinary clauses. However, one
can choose to pass them to a SAT solver instead. Since every propositional clause
can be considered as a pro-clause 2 | P with the empty non-propositional part, op-
tions for dealing with such clauses use empty clause in their names. In the option
sat solver for empty clause (q2,q3) is on, such clauses are passed to a SAT solver.

When we use BDDs for pro-clauses but not for propositional clauses, whenever
we obtain a BDD for a propositional clause, we must convert this BDD to a set of
clauses. The number of propositional clauses obtained from a BDD can be exponen-
tial. To cope with this problem, we added an option sat solver with naming (q2)
that would make conversion of BDDs to clauses almost linear time by introducing
new propositional variables. An alternative to sat solver with naming is the option
sat solver with subsumption resolution which uses subsumption resolution to
shorten the long clauses generated when converting BDDs to CNF without the introuc-
tion of new propositional variables.

If we decide to represent the propositional pro-clauses as BDDs, the transition
from a first-order pro-clause into propositional is straightforward. We keep at most
one propositional pro-clause by eagerly applying a propositional merging rule

��
�2 | P ��

�
2 | P′

2 | (P∧P′)

whenever obtain a new propositional pro-clause 2 | P′. This way we know that if
the set of propositional clauses becomes unsatisfiable, we will derive a propositional
clause with associated ⊥ BDD node.
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For the first-order pro-clauses we may decide to reflect the complexity of the
propositional part in the clause selection process. To this end, enabling the option
nonliterals in clause weight in presence of BDDs increases the size of clauses
by the depths of the BDD graphs of their propositional parts.2

When we derive a propositional pro-clause 2 | P, clauses C | P′ such that P =⇒ P′

become redundant. This follows from the RePro version of subsumption rule as an
empty clause subsumes any other clause:

2 | P ��
�C | P′ if P =⇒ P′

It would not be feasible to make an implication check between P and the proposi-
tional part of every pro-clause present in the saturation algorithm. We have implemeted
two incomplete checks for subsumption by propositional pro-clauses.

First of the checks focuses on the premises of the derived propositional pro-clause,
as there is a good chance that some of the ancestors will also have P as its proposi-
tional part. If we succeed with some of the premises, we carry on the check with their
premises and further on in the derivation graph, as long as we are succeeding. This
check is controlled by the option empty clause subsumption.

The second of the checks uses the shared structure of the BDDs. When we de-
rive a propositional pro-clause 2 | P, we set a subsumed flag in the BDD node cor-
responding to P. Whenever we see a first-order pro-clause to have a BDD node with
the subsumed flag, we know it is redundant and can be deleted. Moreover, our BDD
implementation is aware of this flag and attempts to “spread” the mark while perform-
ing other BDD operations. For example, when performing a disjunction operation, if
one of the operands has the flag set, it will be set also for the node representing the
disjunction of the operands. This subsumption algorithm is controlled by the option
bdd marking subsumption.

9.5 Evaluation

There are all together 481 different combinations of values for the Vampire parameters
related to splitting and propositional variables, so analysing the results was far from

2The DAG size of BDD graphs would probably better reflect the complexity of propositional formu-
las, but computing this measure is not a “local” operation on BDDs — one would need to traverse the
whole BDD subgraph to count the distinct nodes. The depth of a BDD graph can, however, be computed
by using just the depths of immediate successors. The tree size of a BDD can be computed locally as
well, however it can grow exponentially with the size of the BDD DAG.
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trivial. For simplicity, we will call them splitting parameters, though this name is a
bit misleading since some of them are actually related to dealing with propositional
variables.

As the set of benchmarks we used unsatisfiable TPTP problems having non-unit
clauses and rating greater than 0.2 and less than 1. Essentially, the rating is the per-
centage of existing provers that cannot solve a problem. For example, rating greater
than 0.2 means that less than 80% of existing theorem provers can solve the problem.
Likewise, rating 1 means that the problem cannot solved by the existing provers. How-
ever, the rating evaluation uses a single mode of every prover, so it is possible that the
same prover can solve a problem of rating 1 using a different mode. For this reason,
we also added problems of rating 1 and solvable by Vampire. We excluded very large
problems since for them it was preprocessing, but not other options, that affect results
the most. This resulted in 4,869 TPTP problems.

To conduct the experiments, we took a Vampire strategy that is believed to be nearly
the best in the overall number of solved problems, and generated the 481 variations of
this strategy obtained by setting the splitting parameters to all possible values. For
each of this variations, we ran it on the selected problems with a 30 seconds time limit.
This resulted in 2,341,989 runs, which roughly correspond to 1.5 years of run time on
a single computer.

We evaluated the experiments in two different ways. First, we looked at the best
overall strategies for the backtracking and non-backtracking splitting, and how may
problems they solve. However, the number of solved problems for a single (even
the best) setting of parameters is not the main criterion of importance for splitting
parameters.

The reason for this is that it is known that problems are normally best solved by
attempting them with a cocktail of strategies. The CASC [Sut08] version of Vampire
uses a sequence of strategies to solve a problem, and using such a sequence is also
a recommended mode for the users. Therefore in the second part of evaluation we
looked at the numbers of problems solvable only by particular settings of the splitting
parameters.

9.5.1 The Best and the Worst Strategies

Only 3,598 (about 74% of all problems) were solved by at least one splitting strategy.
The top-level results are summarised in Table 9.2. The best and the worst strategies



9.5. EVALUATION 155

splitting strategies worst average best
off 25 2708 2720 2737
backtracking 64 1825 2710 3143
non-backtracking 416 1756 2608 2929

Table 9.2: Problems solved by each setting of the splitting strategy.

worst best
splitting nobacktracking backtracking
propositional to bdd on
split at activation off on
split goal only off off
split input only off off
split positive off off
nonliterals in clause weight off off
bdd marking subsumption off
empty clause subsumption on
sat solver for empty clause off
split add ground negation on

Table 9.3: Best and worst strategies.

are shown in Table 9.3.3 As one can see, without splitting all strategies behave very
similar, which is expected, since problems normally contain few propositional sym-
bols. However, the use of splitting makes a very substantial difference, especially for
the best strategies. For example, the best strategy using splitting solved 3143 problems
versus 2737 problems solved without splitting. Another interesting point is a huge gap
between the performance of the worst and the best strategies using the same kind of
splitting. However, the biggest surprise for us was the fact that the best strategies used
splitting with backracking, as the anecdotal knowledge suggested that the splitting
without backtracking on the average performs better.

9.5.2 Importance of Particular Parameters

To determine the importance of various splitting options, we put the numbers of prob-
lems that can be solved only with a particular setting of an option into Table 9.4.

3Some of the option values in the table are left out because they do not make sense in a particular
configuration. E.g. for backtracking splitting we use labeled clauses, not BDDs, so the BDD related
settings are left out.
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Under (a) we show the number of problems that can be solved either only by back-
tracking or non-backtracking splitting. The number of problems solvable only without
any splitting at all is zero. This perhaps surprising result is due to the fact that split-
ting can be restricted using the options split input only, split goal only and
split positive to the extent that almost no splits are actually performed.

The cases (b)–(m) show the numbers of problems requiring a particular setting of a
parameter for some of the following cases: off, backtracking, nobacktracking or
all. In the first three cases, the numbers for columns off and on stand for the number
of problems which could be solved for the specified value of splitting only with the
option enabled or disabled.4 The row all gives numbers of problems where particular
option setting was required across all relevant splitting modes.

From the Table 9.4 (j) it can be seen that the use of naming in clausification of
BDDs is always a good thing to do, as none of the problems required to have this
setting disabled. From case (n) it can be seen that it is very rarely the case that adding
ground negations after refuting a splitting branch will harm, as only 6 problems are lost
by enabling this setting, however 191 problems required to have this setting enabled.
On the other hand, for many other options, having the possibility to enable or disable
them is important, as either setting can solve problems which cannot be solved by the
other.

9.6 Conclusion

We have implemented two variants of clause splitting in a first-order theorem prover,
and through extensive experiments we have shown that the backtracking splitting in
our setup gives the best performance. More importantly, we have also shown the im-
portance of keeping a large portfolio of strategies, because large group of problems can
be solved only by a variety of different approaches, not by having only one strategy,
even though performing well on average.

Aside of the extensive experimental evaluation, we also presented new families of
calculi RePro and ReProR which separate propositional from first-order reasoning.

All the described parameters are supported by the current version of the Vampire
theorem prover which is available for download at http://www.vprover.org.

4More precisely, e.g. for the column off of option A we give the number of problems for which
there existed setting of other options so that problem was solved with option A disabled, but for all the
combinations of parameters the problem was not solved when the option A was enabled.
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a) splitting

off 0
nobacktracking 128
backtracking 198

b) split at activation
on off

backtracking 147 73
nobacktracking 91 93
all 145 113

c) split goal only
on off

backtracking 31 155
nobacktracking 21 207
all 17 159

d) split input only
on off

backtracking 43 414
nobacktracking 67 302
all 33 384

e) split positive
on off

backtracking 37 262
nobacktracking 28 146
all 35 181

f) propositional to bdd
on off

off 62 45
nobacktracking 227 107
all 226 106

g) nonliterals in clause weight
on off

off 17 11
backtracking 55 45
nobacktracking 23 62
all 33 91

h) splitting with blocking
on off

nobacktracking 20 290

i) sat solver for empty clause
on off

off 8 5
nobacktracking 34 21
all 34 21

j) sat solver with naming
on off

off 2 0
nobacktracking 22 0
all 22 0

k) sat solver with
subsumption resolution

on off
off 2 1
nobacktracking 1 2
all 2 2

l) bdd marking subsumption
on off

off 62 45
nobacktracking 227 107
all 226 106

m) empty clause subsumption
on off

off 5 7
nobacktracking 18 46
all 18 46

n) split add ground negation
on off

backtracking 191 6

Table 9.4: Problems solved only by a single value of an option.
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First-Order Theorem Proving

Authors: Krystof Hoder, Andrei Voronkov

Unification is one of the key procedures in first-order theorem provers. Most first-
order theorem provers use the Robinson unification algorithm. Although its complexity
is in the worst case exponential, the algorithm is easy to implement and examples on
which it may show exponential behaviour are believed to be atypical. More sophis-
ticated algorithms, such as the Martelli and Montanari algorithm, offer polynomial
complexity but are harder to implement.

Very little is known about the practical performance of unification algorithms in
theorem provers: previous case studies have been conducted on small numbers of arti-
ficially chosen problem and compared term-to-term unification while the best theorem
provers perform set-of-terms-to-term unification using term indexing.

To evaluate the performance of unification in the context of term indexing, we made
large-scale experiments over the TPTP library containing thousands of problems using
the COMPIT methodology. Our results confirm that the Robinson algorithm is the
most efficient one in practice. They also reveal main sources of inefficiency in other
algorithms. We present these results and discuss various modifications of unification
algorithms.

158
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10.1 Introduction

Unification is one of the key algorithms used in implementing theorem provers. It is
used on atoms in the resolution and factoring inference rules and on terms in the equal-
ity resolution, equality factoring and superposition inference rules. The performance
of a theorem prover crucially depends on the efficient implementation of several key
algorithms, including unification.

To achieve efficiency, theorem provers normally implement unification and other
important operations using term indexing, see [RSV01, NHRV01]. Given a set L of
indexed terms, and a term t (called the query term), we have to retrieve the subset M

of L that consists of the terms l unifiable with t. The retrieval of terms is interleaved
with insertion of terms to L and deletion of them from L. Indexes in theorem provers
frequently store 105–106 complex terms and are highly dynamic since insertion and
deletion of terms occur frequently. Our paper is the first ever study of unification
algorithms in the context of term indexing.

The structure of this paper is the following. Section 10.2 introduces the unification
problem, the notion of inline and post occurs checks and several unification algorithms.
Section 10.3 presents implementation details of terms and relevant algorithms in the
theorem prover Vampire [RV02], explains the methodology we used to measure the
performance of the unification retrieval, and presents and analyses our results. To
this end, we measure the performance of four unification algorithms on hundreds of
millions of term pairs obtained by running Vampire on the TPTP problem library.

Section 10.4 discusses related work and contains the summary of this work.

Due to the page limit, we omit many technical details. They can be found in the
full version of this paper available at http://www.cs.man.ac.uk/\urltildahoderk/

ubench/unification\_full.pdf.

10.2 Unification Algorithms

A unifier of terms s and t is a substitution σ such that sσ = tσ. A most general unifier

of two terms is their unifier σ such that for any other unifier τ of these two terms there
exist a substitution ρ such that τ = ρσ. If two terms have a unifier, they also have a
most general unifier, or simply mgu, which is unique modulo variable renaming. The
unification problem is the task of finding a most general unifier of two terms.
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For all existing unification algorithms, there are three possible outcomes of unifi-
cation of terms s and t. It can either succeed, so that the terms are unifiable. It can
fail due to a symbol mismatch, which means that at some point we have to unify two
terms s′ = f (s1, . . . ,sm) and t ′ = g(t1, . . . , tn) such that f and g are two different func-
tion symbols. Lastly, it can fail on the occurs check, when we have to unify a variable
x with a non-variable term containing x.

Unification algorithms can either perform occurs checks as soon as a variable has
to be unified with a non-variable term, or postpone all occurs checks to the end. We
call occurs checks of the first kind inline and of the second kind post occurs checks.

When we perform unification term-to-term, the post occurs check seems to perform
well, also somehow confirmed by experimental results in [EIG88]. However, when we
retrieve unifiers from an index, we do not build them at once. Instead, we build them
incrementally as we descend down the tree performing incremental unification. In this
case, we still have to ensure that there is no occurs check failure. It brings no additional
cost to algorithms performing inline occurs check, but for post occurs check algorithms
it means that the same occurs check labour may have to be performed repeatedly. On
the other hand, postponing occurs check may result in a (cheap) failure on comparing
function symbols. Our results in Section 10.3 confirm that algorithms using the inline
occurs check outperform those based on the post occurs check.

In the rest of this paper, x,y will denote variables, f ,g different function symbols,
and s, t,u,v terms. We consider constants as function symbols of arity 0. All our
algorithms will compute triangle form of a unifier. This means a substitution σ such
that some power θ = σn of σ is a unifier and σn+1 = σn. We will denote such θ as σ∗.
When two terms have an exponential size mgu, it has a polynomial-size triangle form.

The Robinson Algorithm ROB. This is a simple unification algorithm [Rob65] with
the worst-case exponential time complexity. It starts with an empty substitution σ and
a stack of term pairs S that is initialized to contain a single pair (s0, t0) of terms s0 and
t0 that are to be unified. At each step, we remove a term pair (s, t) from the stack and
do the following.

1. If s is a variable and sσ 6= s, the pair (sσ, t) is put on the stack S; and similar for
t instead of s.

2. Otherwise, if s is a variable and s = t, do nothing.

3. Otherwise, if s is a variable, an occurs check is performed to see if s is a proper
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subterm of tσ∗. If so, the unification fails, otherwise we extend σ by σ(s) = t.

4. Otherwise, if s = f (s1, . . . ,sn) and t = f (t1, . . . , tn) for some function symbol f ,
the pairs (s1, t1), . . . , (sn, tn) are put on the stack S.

5. Otherwise, the unification fails.

When there is no pair left on the stack, σ∗ is an mgu of s0 and t0. The occurs check
is performed before each variable binding, which makes ROB an inline occurs check
algorithm.

The Martelli-Montanari Algorithm MM. We call a set of terms a multi-equation.
We say that two multi-equations M1 and M2 can be merged, if there is a variable x ∈
M1 ∩M2. The merge operation then replaces M1 and M2 by M = M1 ∪M2. A set of
multi-equations is said to be in solved form, if every multi-equation in this set contains
at most one non-variable term and no multi-equations in the set can be merged.

Let us inductively define the notion of weakly unifiable terms s, t with the disagree-

ment set E, where E is a set of multi-equations.

1. If s = t then s and t are weakly unifiable with the empty disagreement set.

2. Otherwise, if either s or t is a variable, then s and t are weakly unifiable with the
disagreement set {{s, t}}.

3. Otherwise, if s= f (s1, . . . ,sn), t = f (t1, . . . , tn) and for all i= 1, . . . ,n the terms si

and ti are weakly unifiable with the disagreement set Ei, then s and t are weakly
unifiable with the disagreement set E1∪ . . .∪En.

4. In all other cases s and t are not weakly unifiable.

It is not hard to argue that weak unifiability is a necessary condition for unifiability.
The Martelli-Montanari algorithm unifying terms s0 and t0 maintains a set of multi-

equations M , initially equal to {{s0, t0}}. Until M is in solved form, it merges all
multi-equations in M that can be merged, and for each multi-equation M ∈M con-
taining two non-variable terms s and t, if s and t are weakly unifiable with the disagree-
ment set E, we set M := (M \M)∪{M \ {t}}∪E. If they are not weakly unifiable,
the unification fails.

When M is in solved form, an occurs check is performed. A directed graph G is
built, so that its vertices correspond to multi-equations in M containing non-variable
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terms, and an edge is going from vertex M1 to M2 iff the non-variable term in M1

contains a variable in M2. The occurs check is successful if the graph G is acyclic.
When the occurs check succeeds, one can extract the triangle form of an mgu from M .
For a proof of correctness and termination in almost linear time, see [MM82].

In our implementation of the algorithm, we maintain and merge the variable parts
of multi-equations using the union-find algorithm [Tar75], and check that the graph G

is acyclic using the topological sort algorithm [Kah62]. The occurs check is performed
as the last step of the algorithm, which makes MM a post occurs check algorithm.

The Escalada-Ghallab Algorithm EG. In order to examine a post occurs check
algorithm that aims to be practically efficient, we implemented this algorithm presented
in [EIG88]. To make the algorithm competitive with inline occurs check algorithms on
the incremental unification problem, we made the EG occurs check incremental. The
details can be found in the full version of this paper.

PROB. Inspired by our experiments described below we implemented a modification
PROB of the Robinson algorithm having polynomial worst-case time complexity. It
provides an easy-to-implement polynomial-time alternative to ROB. In PROB, we keep
track of term pairs that previously occurred in the stack S. When we encounter such a
pair again, we simply skip it. In the occurs-check routine, we similarly maintain a set
of bound variables that have already been checked or are scheduled for checking. Such
variables are then skipped. In the implementation, we do not keep track of pairs that
contain an unbound variable at the top. Practical results have shown that this happens
frequently and that the cost of keeping track of such pairs does not pay off.

We modified all the above-mentioned algorithms to work on the substitution tree

index, we refer the reader to [RSV01] for its description. We also had to modify
algorithms to make them incremental so that the computed unifier can be refined to
unify new pairs of terms. These incremental algorithms can be implemented to retrieve
unifiable terms from a substitution tree as follows. We traverse the tree depth-first, left-
to-right. When we move down the tree to a node containing a substitution x = t, we
extend the currently computed substitution to be also a unifier of (x, t). When we
return to a previously visited node, we restore the previous substitution and, in the case
of MM, the previous value of M .
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10.3 Implementation and Experiments

We implemented four algorithms for retrieval of unifiers, corresponding to the unifi-
cation algorithms of Section 10.2. In this section, we describe the data structures and
algorithms used in the new version of Vampire [RV02].

We use shared Prolog terms to implement terms and literals. In Prolog, non-
variable terms are normally implemented as a contiguous piece of memory consisting
of some representation of the top symbol followed by a sequence of pointers to its
subterms (actually, in the reverse order). We add to this representation sharing so that
the same term is never stored twice. Besides conserving memory, this representation
allows for constant-time equality checking. Another difference with Prolog terms is
that, when an argument is a variable, Prolog stores a pointer pointing to itself, while
we store the variable number.

When performing an inference on two different clauses (and in some cases even on
two copies of the same clause), we must consider their variables as disjoint, although
some variables may be the same, that is, have the same number. To deal with this, we
use the idea of variable banks used in several theorem provers, including Waldmeister
[HBVL97], E [Sch02] and Vampire [RV02].

Terms whose variables should be disjoint are assigned different bank indexes. One
can view it as adding a subscript to all variables in a term — instead of terms f (x,y)

and f (y,a), we will work with terms f (x0,y0) and f (y1,a). In practice it means that
when it is unclear from which clause a term origins, we store a pair of the term and a
bank index instead of just the term.

Substitutions that store unifiers are stored as maps from pairs (variable number,
bank index) to pairs (term pointer, bank index). Those maps are implemented as double
hash tables[GS78] with fill-up coefficient 0.7 using two hash functions. The first one
is a trivial function that just returns the variable number increased by a multiple of the
bank index. This function does not give randomly distributed results (which is usually
a requirement for a hash function), but is very cheap to evaluate. The second hash
function is a variant of FNV. It gives uniformly distributed outputs, but is also more
expensive to evaluate. It is, however, evaluated only if there is a collision of results of
the first function.

The union-find data structures of EG and MM are implemented on top of these
maps. In EG, we use path compression as described in [EIG88]. In MM, it turned out
that the path compression led to lower performance, so it was omitted.
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Benchmarking Methodology. Our benchmarking method is COMPIT [NHRV01].
First, we log all index-related operations (insertion, deletion and retrieval) performed
by a first-order theorem prover. This way we obtain a description of all interactions
of the prover with the index and it is possible to reproduce the indexing process with-
out having to run the prover itself. Moreover, benchmarks generated this way can be
used by other implementations, including those not based on substitution trees, and we
welcome comparing our implementation of unification with other implementations.

The main difference of our benchmarking from the one presented in [NHRV01] is
that instead of just success/failure, we record the number of terms unifiable with the
query term. This reflects the use of unification in theorem provers, since it is used
for generating inferences, so that all such inferences with a given clause have to be
performed.

We created two different instrumentations of the development version of the Vam-
pire prover, which used the DISCOUNT [ADF95] saturation algorithm. The first in-
strumentation recorded operations on the unification index of selected literals of active
clauses (the resolution index). The second one recorded operations on the unification
index of all non-variable subterms of selected literals of active clauses (the superposi-

tion index).

Both of these instrumentations were run on several hundred randomly selected
TPTP problems with the time limit of 300s to produce benchmark data.1 In the end
we evaluated indexing algorithms on all of these benchmarks and then removed those
that ran in less than 50ms, as such data can be overly affected by noise and are hardly
interesting in general. This left us with about 40 percent of the original number of
benchmarks,2 namely 377 resolution and 388 superposition index benchmarks.

Results and Analysis. We compared the algorithms described above. Our original
conjecture was that MM would perform comparably to ROB on most problems and
be significantly better on some problems, due to its linear complexity. When this
conjecture showed to be false, we added the PROB and EG algorithms, in order to find
a well-performing polynomial algorithm.

On a small number of problems (about 15% of the superposition benchmarks and

1Recording could terminate earlier in the case the problem was proved. We did not make any dis-
tinction between benchmarks from successful and unsuccessful runs.

2This number does not seem to be that small, when we realise that many problems are proved in
no more than a few seconds. Also note that in problems without equality there are no queries to the
superposition index at all.
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none of the resolution ones), the performance of ROB and MM was approximately
the same (±10%), but on most of the problems MM was significantly slower. On the
average, it was almost 6 times slower on the superposition benchmarks and about 7
times slower on the resolution benchmarks. On 3% of the superposition benchmarks
and 5% of the resolution benchmarks, MM was more than 20 times slower.

The only case where MM was superior was in a handcrafted problem designed to
make ROB behave exponentially containing the following two clauses:

p(x0, f (x1,x1),x1, f (x2,x2),x2, . . . ,x9, f (x10,x10));
¬p( f (y0,y0),y0, f (y1,y1),y1, . . . ,y9, f (y10,y10),y11).

This problem was solved in no time by MM and PROB and in about 15 seconds by
ROB.

In general, PROB has shown about the same performance as ROB. It was only
about 1% slower, so it can provide a good alternative to ROB if we want to avoid the
exponential worst-case complexity of the ROB. EG did not perform as bad as MM, but
it was still on the average over 30% slower than ROB was.

Table 10.1 summarises the performance of the algorithms on resolution and super-
position benchmarks. The first two benchmarks in each group are those on which MM
performed best and worst relatively to ROB, others are benchmarks from randomly
selected problems. In the table, term size means the number of symbols in the term;
average result count is the average number of results retrieved by a query, and query

fail rate is the ratio of queries that retrieved no results. The last three numbers show
the use of substitutions in the index—the number of successful unification attempts,
failures due to symbol mismatch, and failures due to an inline occurs check.

To determine the reason for the poor performance of MM, we used a code profiler
on benchmarks displaying its worst performance. It turned out that over 90% of the
measured time was being spent on performing the occurs checks, most of it actually
on checking graph acyclicity. It also showed that the vast majority of unification re-
quests were just unifying an unbound variable with a term. Based on this, we tested an
algorithm performing the PROB occurs checks instead of the MM ones after such uni-
fications. This caused the worst-case complexity to be O(n2) but improved the average
performance of MM from about 600% worse than ROB did to just about 30% worse.

Our results also show empirically that the source of terms matters. For example, the
MM algorithm gives relatively better performance on the superposition index, than it
does on the resolution index. Other papers do not make such a distinction, for example
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[EIG88] just states “theorem proving” as the source of the benchmarked term pairs.

10.4 Related Work and Summary

There is another comparison of ROB and MM in [ACF+91], which presents a proof
that on a certain random distribution of terms the expected average (according to some
measure) number of steps of ROB is constant, while the expected number of MM steps
is linear in the size of terms. However, the use of random terms is essential for their
results. A practical comparison of ROB, MM and EG is undertaken in [EIG88], but
this comparison is not of much use for us since it is only done on a small number of
examples (less than 100 term pairs alltogether), many of them handcrafted, and uses
no term indexing.

There are several unification algorithms not considered here, which we did not
evaluate for the reasons explained below. The Paterson algorithm [PW76] has linear
asymptotic time complexity, but according to [EIG88], this benefit is redeemed by the
use of complex data structures to the extent that it is mainly of theoretical interest.
The Corbin-Bidoit algorithm [CB83] might look promising, as it uses an inline occurs
check, but it requires input terms to be dags modified during the run of the algorithm
which we cannot do because of term sharing. The Ruzicka-Privara algorithm [RP88],
which is an improvement of the Corbin-Bidoit one, suffers from the same problem,
and moreover uses a post occurs check.

Summary. We studied the behaviour, in the framework of term indexing, of four
different unification algorithms: the exponential time Robinson algorithm, the almost
linear time Martelli-Montanari and Escalada-Ghallab algorithms, and a polynomial-
time modification of the Robinson algorithm. To this end, we used the appropriately
modified COMPIT method [NHRV01] on a substitution tree index. The evaluation has
shown that the Martelli-Montanari and Escalada-Ghallab algorithms, although asymp-
totically superior in the worst case, in practice behave significantly worse than the other
two. The main cause of this behaviour was the occurs-check that verified acyclicity of
the substitution. On the other hand, the PROB algorithm turned out to perform com-
parably to the Robinson one, while having the advantage of being polynomial in the
worst case.

The benchmarks are available at http://www.cs.man.ac.uk/˜hoderk/.
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