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Abstract

We investigate global pattern-switching effects in 2D cellular solids in which

the voids are arranged in a square lattice. Uniaxial compression of these

structures triggers an elastic instability which brings about a period-doubling

transformation of the void shapes at a critical strain εcr. Specifically, a square

array of circular voids forms a pattern of mutually orthogonal ellipses and a

similar effect is observed for diamond-shaped voids. The onset of instability

is governed by the void fraction Φ and size-effects are found for the experi-

mental samples. We establish empirical laws (εcr ∝ (Φmax−Φ)2, for example)

which characterise the stiffness, strength and stability of cellular structures

comprising square arrays of circular voids. A comparison of these with pre-

dictions from a discrete model implies underestimation of the resistance of

the lattice to buckling, although the size effects are replicated. We find simi-

lar pattern-switching effects in the cubic lattice, which is a three-dimensional

porous cube. The effect of buckling in this system is to produce a 2D pat-

tern in one plane of voids. In two-phase granular crystals, rearrangement of

a square lattice of particles results in a new, period-doubled, structural pat-

tern. This switch can occur via an intermediate phase depending on the size

ratio of the particles as shown in experiments and numerical simulations.
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Chapter 1

Introduction

The results of experimental investigations into the response of complex elastic

structures to compression are presented in this thesis. The ideas which have

inspired this work are highlighted here, and this is followed by an overview

of the subsequent chapters.

1.1 Cellular Structures

One of the simplest, and indeed most powerful, approaches to scientific re-

search is to first develop an understanding of naturally-made physical sys-

tems and then use this knowledge to drive innovation. Research into cellular

solids, which comprise a network of enclosed spaces separated by material

boundaries, provides an excellent test case for this approach. There are, for

example, interesting similarities between the polystyrene foam used to min-

imise heat loss in a take-away coffee cup and the complex network of struts

and nodes which make up cancellous bone [3].
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Figure 1.1: Examples of regular 2D cellular structures. The hexagonal (a), trian-

gular (b) and Kagomé (c) lattices have been the basis of a range of experimental

and numerical studies.

The focus of this study is an altogether simpler system than those listed

above, namely a regular two-dimensional (2D) cellular structure. Some ex-

amples of these systems have been sketched in Figure 1.1. Arguably the

most familiar is the hexagonal-celled honeycomb (Figure 1.1 (a)) which has

attracted the attention of scientists within research fields ranging from biol-

ogy to engineering [3, 5, 7–13] . Strikingly regular in form, the bee’s habitat

is a strong, lightweight structure [3], and the tesselation of cells is an efficient

packing arrangement in the 2D plane [14]. There is a significant amount of

research into this class of materials [3], with lattices of hexagonal, triangu-

lar (Figure 1.1 (b)) or square cells forming the basis of many numerical and

experimental studies [15–19]. More complex structures such as the Kagomé

lattice, which comprises a mixture of hexagonal and triangular cells arranged

in the regular, repeating pattern shown in Figure 1.1 (c), have also been com-

prehensively studied [20,21].
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1.2 Deformation Mechanisms

A particular feature of the mechanics of two-dimensional cellular structures

which has been extensively researched is their behaviour under deviatoric

(uniaxial) and hydrostatic (biaxial) loading conditions [3, 5, 13, 22]. The re-

sponse of these systems to compression can be divided into two sub-classes

[3, 23]. In bending-dominated cellular structures, compression causes the rel-

ative rotation of the struts about the node at which they meet. Stretching-

dominated structures differ in that the macroscopic deformation manifests

itself as the axial compression of the struts. These contrasting mechanisms

have consequences for the elastic properties of the lattice, where stretching-

dominated structures are generally observed to be the stronger and stiffer of

the two [3].

According to the Maxwell criterion for rigidity in two-dimensional struc-

tures [24] the connectivity Z - the number of struts meeting at each node

- is definitive in distinguishing between bending- and stretching-dominated

structures. A simple demonstration of the role played by connectivity in this

context has been given by Deshpande et al [1] where the action of load F on

the top and bottom vertices of a diamond-shaped frame is considered. The

addition of a transverse strut to the frame as shown in Figure 1.2 prevents its

collapse by rotation about the joints, and instead the structure must deform

via axial compression.

In two-dimensional structures, Z = 4 is a significant connectivity value

and provides a necessary condition for rigidity in frames, however it is not a
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Figure 1.2: The end loaded frame. The struts will undergo relative rotation when

a load F is applied to the frame (a). Addition of the transverse strut (b) prevents

this from occurring and as such the frame is stronger and stiffer. This image has

been reproduced from [1].
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sufficient condition as states of self-stress, for example, must be accounted for

[1]. Generally, in cellular solids with Z < 4 (e.g. hexagonal-celled lattices),

bending of the cell walls tends to dominate, and where Z ≥ 4 (triangular-

celled lattices) the structure will preominantly deform via axial stretching

and thus be more rigid in comparison to the former. The elastic properties

of the Kagomé lattice (Z = 4) are highly sensitive to imperfections such as

missing struts [21] which reduce the average connectivity and therefore cause

the system to switch from a stretching- to a bending-dominated structure.

1.3 Pattern-Switching in Cellular Structures

As discussed in Section 1.2, the shape of the cells in a 2D cellular structure

plays a a key role in determining its response to compression. Indeed, shape

is one of three variables which do so; the remaining two are the size of the

cell relative to its spacing from its nearest neighbours (Gibson and Ashby

highlight this as the defining variable [3]) and the material used to construct

the solid walls. It is cell shape which is the focus of the research presented

here. Specifically, we consider the effect of uniaxial compression on cellular

structures which possess circular, diamond or square cells arranged on a

square lattice.

The cellular geometries described above have received increasing attention

in the last decade. In 20061, Mullin et al [2] showed that uniaxial compression

1In the same year, Triantifyllidis et al showed in simulations that this pattern switch

can be caused by triggering a microscopic instability in the porous structure when it is

loaded biaxially [22].
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Figure 1.3: Pattern-switching in the square lattice of circular voids. In the ex-

perimental (a - d) and numerical (e - h) images the cellular structure is shown

to undergo a novel pattern transformation. The sample is compressed along its

vertical axis and increased deformation results first in the onset of the pattern and

then its accentuation at higher strain. These images are reproduced from [2].

33



of a square lattice of circular voids brings about a pattern-switching effect

which is both reversible and repeatable. Interestingly, the initial experiments

were conducted as a by-product of an unconnected piece of work. The au-

thors manufactured cylindrical discs of a photoelastic polymer in order to

assess the pressure distribution under piles of grains [25]. As a result of this,

they were left with an intact porous frame which, when compressed, showed

novel and eye-catching behaviour.

The pattern switch in the cellular structure is illustrated in Figure 1.3.

The images were taken from experiments (left-hand column) and finite ele-

ment simulations (right-hand column) and are of the central section of the

sample at increasing amounts of macroscopic deformation. The voids were

initially circular (Figure 1.3 (a) and (e) respectively) and formed a diamond

plate pattern of mutually orthogonal ellipses which became further accentu-

ated with increased compression. The qualitative experimental features were

also captured in two simulations using the nonlinear finite element software

ABAQUS [26]. The first was of the finite sample, for which boundary effects

were included. The second was of a representative volume element (RVE)

using periodic boundaries and plane strain condition. The pattern onset was

found at a higher degree of compression in the former simulation type [2].

The switch in the structural geometry was a result of an elastic instabil-

ity [26] triggered by the action of load on the top surface of the structure.

The instability onset occured above a critical load value and the switch in the

geometry was rapid and global. Mullin et al showed that the same pattern-

34



switching effect occurs when the shape of the voids is changed to an ellipse,

although the onset was associated with a different degree of compression de-

pending on the aspect ratio of the voids and the direction of compression [2].

The quantitative data recorded by Mullin et al is presented in Figure 1.4.

There are two distinct compression regimes in the plot and these can be linked

to the shape of the cells during the experiment. The first is a linear stress-

strain phase, during which the cellular pattern was homogeneous throughout

the sample (A in Figure 1.4). The onset of the elliptical pattern (B in Figure

1.4) was in turn associated with a plateau regime of near constant stress.

This two-phase behaviour is commonly found in studies of cellular structures

under compression [3, 5]. During the initial phase of compression, cellular

structures undergo uniform deformation which manifests itself as Hookean

stress-strain behaviour [3, 27] and this is true regardless of the dominant

observed deformation mechanism. The levelling-off of the data results from

the collapse or failure of the structure, either in the form of plastic effects

(i.e. permanent stretching of the ligaments or rotation at the nodes), brittle

failure (breaking of the ligaments) or, as was the case here, elastic buckling

(reversible deformation).

1.4 Elastic Buckling

According to Von Mises [28] a circular void in an elastic sheet will form either

a vertical or horizontal ellipse upon its collapse under hydrostatic loading.

The square lattice of circular voids is a coupled system which forms a periodic

mixture of these two states upon buckling. The instability which gives rise
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Figure 1.4: The stress-strain curves taken by Mullin et al. In both the experiments

(bold line) and the simulations (dashed), the data can be broken up into two

phases which were associated with the cellular pattern. The qualitative features

are characteristic of those found in compression experiments performed on cellular

structures [3] and the inset images of are the experimental sample before (A) and

after (B) the pattern switch. This figure is reproduced from [2].
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to this is similar to that found in the classical problem of the end-loaded

Euler-Bernoulli column [3, 29]. In this, an initially upright column (length

L) becomes unstable at a critical value of the applied load called the Euler

buckling load FCR [30] which is given by

FCR =
π2EI

(kL)2
(1.1)

In equation (1.1) E is the Young’s modulus of the column (Pa) and I is

its second moment of inertia about its central axis (kgm2). The constant k

specifies the boundary conditions (e.g. if the column is pinned at one/both

end(s)), and is used to define the effective length of the column, kL. The onset

of instability causes the column to assume a new stable state - a half-wave -

which is its first buckling mode as illustrated in Figure 1.5 (a). Theoretically,

there are an infinite number of solutions to the Euler-Bernoulli problem [30].

The first mode has the largest spatial wavelength and the lowest associated

critical load; it is therefore the first to be triggered when the applied load F

is incremented from zero. As such, the new buckled state of the column is

observed when F > Fcr.

The Euler-Bernoulli column is a common example of a system which

undergoes a symmetry-breaking pitchfork bifurcation from its initial stable

configuration. The perfect pitchfork bifurcation diagram is shown in Figure

1.6 (a) where the variable x represents the state of a nonlinear system and

r is a control parameter. The stable states of the system are marked by the

bold lines in Figure 1.6 and the unstable ones by dashed lines.
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Figure 1.5: The buckling states of nonlinear systems. The end-loaded Euler-

Bernoulli column (a) will buckle either to the left or to the right above a critical

load. Triggering the elastic instability in the square lattice (b) causes the circular

voids to transform into either horizontally- or vertically-aligned ellipses.
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Figure 1.6: Perfect (a) vs imperfect (b) pitchfork bifurcation diagrams. The bold

black lines in each panel represent the stable states of the system and the dashed

black lines the unstable states. The effect of the perturbation is to disconnect the

branches in (a) such that they form one continuous branch and a saddle-node.

This figure has been reproduced from [4].

The trival stable state (x = xo) of the system exchanges stability with

two nontrivial equilibrium states when the control parameter r attains the

critical value r∗. The nontrivial branches of the system are the possible sta-

ble states of the system with r > r∗ and these are symmetric. The effect

of a perturbation on the perfect pitchfork bifurcation diagram is shown in

Figure 1.6 (b). The perturbation causes the stable branches of the system to

become disconnected and there exists one primary state which forms along

a continuous branch as r is increased. The other state is terminated by a

saddle node which connects one unstable and one stable branch [4, 29, 31].

The sharp transition from the xo state to the nontrivial branch in the perfect

system is smoothed out by this effect, and the larger the magnitude of the
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perturbation, the greater the extent of the disconnection.

In the Euler-Bernoulli problem, the state variable x is the deflection of

the column from its central axis and the control parameter r is the applied

load F . The column is upright (i.e. undeflected) in the trivial state, whereas

in the untrivial states the structure buckles either to the left or to the right as

shown in Figure 1.5 (a). For a perfect column, there is an equal probability

that it will buckle to either the left or the right. In the real world, however,

the column will buckle to one side, meaning that it has a preferred buckling

state. This effect is brought about by imperfections in the column which have

the same effect as a perturbation in the pitchfork bifurcation problem. The

cumulative effect of imperfections is to create a pair of states, one continuous

and one disconnected.

1.4.1 Elastic Buckling in Square Arrays

It is possible to compare the behaviour of the square lattice of circular voids

under compression with that of the Euler-Bernoulli column. The similarities

between the systems are clear; both structures become unstable above a crit-

ical load and this causes a marked change in their respective geometries. In

the cellular structure, the pattern of mutually orthogonal ellipses represents

its first buckling mode. Other modes exist and these are triggered at higher

values of the applied load [26], resulting in the onset of patterns other than

the repeating arrangement of orthogonal ellipses.

In the first elastic buckling mode,the cellular structure must assume one
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of the states illustrated in Figure 1.5 (b). This has been shown by mod-

elling the voids in the cellular structure as dislocation dipoles which interact

through linear elastic forcing [32]. The onset of instability neccessitates that

in the new cellular pattern the voids must be oriented by a rotation of 90o

relative to their immediate neighbours. This therefore allows for two possible

states, in which an initially circular void will become either a vertical or hori-

zontal ellipse when the pattern is formed. In experiments there are numerous

sources of imperfection in the manufacturing (e.g. hole size distribution) and

testing (uneven application of applied load) processes. The cumulative effect

of these is to bias the system to one orientation of the pattern in the buckled

state, just as the Euler-Bernoulli column will buckle to one particular side.

1.4.2 Global and Local Modes

Whilst the pattern-switched state was experimentally observed by Mullin et

al, other buckling modes exist and these have been explored using numerical

simulations. Triantifyllidis et al [22] and later Boyce and Bertoldi [26] have

demonstrated the existence of both global and local buckling modes of the

porous structure. In the former, the onset of instability leads to a new equi-

librium state characterised by a large wavelength compared to the unit cell

of the trivial equilibrium state. In one such global state the whole structure

forms a half-wave pinned at its top and bottom edges and no elliptical pattern

formation. Where such an instability occurs, this results from macroscopic

failure of the structure, whereas the pattern formation described in Section

1.3 results from its microscopic failure under compression [22]. Both events

are caused by the attainment of a critical loading and there is a competition
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between these; whichever critical load value is attained first in the monotonic

compression process will lead to the associated state.

By using distinct techniques it has been possible in numerical studies to

distinguish between the two aforementioned buckling types. The macroscopic

buckling point can be calculated in FEM studies by detecting the point at

which the homogenised tangent moduli of the structure lose ellipticity [22,

26]. This approach involves performing a classical eigenvalue analysis of the

finite elastic structure and therefore incorporates boundary effects. More

recently, a Bloch wave analysis method has been developed which can be

used to predict the microscopic failure point, and this involves considering

the evolution of the unit cell as opposed to the whole structure. The Bloch

method uses the assumption that, in its compressed state any spatial function

Ψ of the structure evalulated at point X will be symmetric under translation

i.e.

Ψ(X) = Ψ(X + piai); i = 1, 2 (1.2)

where in equation (1.2) pi are indices which describe the translational period-

icity of the structure as it undergoes deformation and ai are the basis vectors

of the structure. According to the Bloch condition [33], the spatial function

is associated to a wavelength k0 (and hence an energy) which is calculated

by assuming that

e[ik0.piai] = 1 (1.3)
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The periodicity of the structure is calculated by solving an eigenvalue prob-

lem in k0. Bertoldi and Boyce have shown [26] that, the k0 = 0 state is

associated with unitary periodicity in both planar directions i.e. p1 = p2 =

1. This is the case found to be prior to the bifurcation, meaning that the

periodicity of the lattice remains constant as the compression continues. At

the bifurcation point, post bifurcation, a new state emerges with p1 = p2 =

2, and this is the lowest energy stable solution for the structure. This new

periodicity characterises the state observed by Mullin et al [2].

It has been possible to compare the predictions of micro- and macroscopic

approaches described above. For finite arrays of two-dimensional square ar-

rays of circular voids, Triantyfillidis et al [22] have shown that microscopic in-

stabilities dominate the structure. The shorter wavelength instability comes

in at a lower critical load than te long wavelength solution, and the critical

points associated with the respective buckling types diverge as the compress-

ibility of the material increases. By considering the effect of biaxial loading,

2D macroscopic and microscopic failure surfaces have been constructed, with

the latter lying within the former, i.e. the micro-buckled state occurs first.

For infinite arrays of square voids, Bertoldi and Boyce [26] have demon-

strated the strength of the Bloch method for predicting the equilibrium state

post-bifurcation. In their study, two different approaches to modelling infi-

nite structures were used. In the first (a refined Eigen Analysis, in which

macroscopic instabilities were monitored), several n × n RVE square arrays
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were simulated and periodic boundary conditions applied to these. It was

found that for even n values, the first bifurcation led to the familiar elliptical

pattern observed by Mullin; for odd-n values, new modes with inconsistent

wavelength values were activated. In addition to this, the critical load value

fluctuated as the size of the RVE was changed, meaning that the form taken

by the structure as a result of the instability onset was dependent on how

the the smallest repeating unit of the structure was defined when formulat-

ing the problem. Whilst this was an issue when considering the homogenised

approach, it was not a factor in the Bloch analysis as only the evolution of

the unit cell of the trivial state needs to be considered. It remains to be seen

how size effects effect experimental pattern formation, however it should be

assumed that simply increasing a structure size should not affect the domi-

nant buckling mode, and in that case the Bloch wave analysis appears to be

best suited to the study of this system.

1.4.3 Buckling in Other Cellular Structures

In hexagonal cell honeycombs, the collapse of the lattice has been observed

to occur locally within one band of cells and then spread throughout the

remainder of the structure [5, 13, 34]. An example of localised buckling in a

honeycomb is shown in Figure 1.7 where the data taken by Papka et al has

been plotted [5]. It is highlighted here that the effects observed by Papka were

induced plastically in an aluminium honeycomb structure and the original

lattice geometry was not recovered upon relaxation. Howver, these experi-

ments provide an excellent example of the phenomena of localisation, which
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is not exclusively a symptom of plastic deformation.

Whilst the main features of the quantitative data are similar to those

measured by Mullin et al [2,26], the buckling initialises in one of the middle

rows of cells and is not a global feature. The localised effect results from

imperfections in the construction of experimental samples which cause local

weakened resistance to buckling, and hence localised deformation patterns.

The same effect has been found by Chung and Waas [35] in hexagonal packed

arrays of cylinders. The cells become sheared from side-to-side in a herring

bone pattern [26, 36] which propagates from row to row as the structure is

compressed [35, 37]. By incorporating the imperfections distributed in the

experimental system into simulations (each “circle” had an aspect ratio of

approximately 1.10 as opposed to 1.00 in the perfect system), localised onset

of the pattern was observed and good qualitative agreement with the exper-

iments was found.

In experiments conducted in parallel to those on the square array of cir-

cular cells, Bertoldi et al [26] showed that the herring bone pattern can be

induced globally. Localisation of the pattern occurred in the experiments

after the buckling event, which may have been because the strains associated

with the pattern onset were high (approximately 12 % compared to 4 % for

the square lattices [26]). The instability in both systems was the same, al-

though in the oblique lattice this initiated shearing of the cells. As with the

square lattice, the new cellular pattern in the oblique system could take one

of two possible forms, with a row of cells sheared either to the left or to the
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right.

As discussed above, imperfections are always present in experimental sys-

tems. It has been found that in commercially-made honeycombs, imperfec-

tions (missing/wavy cell walls, blocked cells, for example) of the order 5%

are required in order to accurately simulate these materials using numerical

models [12]. These imperfections tend to cause localisation of the patterns

which form. Therefore, the novelty of the pattern switch described by Mullin

et al lies in the global nature of the switch observed in the structure [2,26,32].

All of the ligaments in the structure buckle in the same sense, with the re-

sult that, under uniaxial loading conditions, no localised pattern formation is

observed. There must be imperfections in the system in order to determine

the preferred buckling state of the structure. However, the highly connected

geometry appears to reduce the likelihood of localisation in this system.

1.4.4 Pattern-Switching as a Useful Tool

Whilst the initial studies of the square lattice of circular cells were con-

ducted at the millimeter length scale, the pattern-switching phenomenon

discovered by Mullin et al has been shown to persist over a range of length

scales [2, 38, 39]. This has, for example, been achieved by swelling circular

pores on a polydimethylsiloxane (PDMS) substrate upon exposure to tuo-

lene [38]. This, along with the robust nature of the switch as highlighted

above, has encouraged studies which have assessed the application of the

pattern switch in practical devices such as phononic [40] and photonic [41]

crystals. In both of these system types, the pass band structure is governed
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Figure 1.7: The stress-strain data taken by Papka et al on a hexagonal-cell honey-

comb. The same qualitative trends are shown as found in Figure 1.4, however the

buckling of the structure was characterised by local effects. The inset images show

the spreading of buckling through the rows of the honeycomb sample, which causes

the small bumps in the stress-strain data in the plateau phase of compression. This

figure has been reproduced from [5].

by their structural geometry. Bertoldi and Boyce [40] have shown that the

switch in cellular geometry can open new band gaps in porous acoustic de-

vices, whereas enhanced transmission has been reported in optical devices

comprising columns of orthogonal elliptical voids [42].

There is great potential for exploiting the instability-driven pattern switch

because it is straightforward to control; it can be locked in by using elasto-

plastic coatings [43], or locally imprinted by partial exposure of microframes
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to acrylic acid [36]. The switching mechanism has also been used as a pat-

terning tool, depositing nanoparticles onto photoresist substrates using the

swelling techniques described above, as shown by Zhang et al [44]. The ap-

plication in these systems is, therefore, two-fold: it can be used to imprint

patterns on the surfaces of structures possessing dimensions on a wide range

of length scales [39], or to create tunable devices which respond to an exter-

nal stimulus by changing their geometry in a global, predictable manner.

One avenue of research which has sparked particular interest is the ef-

fect of the pattern switch on the width of the structure cellular structure.

Whereas typically solids expand transversally a a result of axial compression,

there is a class of materials which counter-intuitively contract under the same

loading conditions. These materials are called auxetics and are notable as

they possess a negative Poisson’s ratio, which leads to high fracture strengths

and indentation resistances [45]. Since the discovery of the auxetic effect by

Lakes [46], negative Poisson’s ratios have been shown to be associated with

complex structural geometries or multi-staged manufacturing techniques.

Bertoldi et al [6] have shown in both experiments and simulations that the

onset of the pattern in the square lattice of circular cells is linked to an auxetic

effect in the structure as shown in Figure 1.8. During the linear compression

regime the structure behaves as a conventional solid with Poisson’s ratio ≈

0.2 [47]2 but this rapidly decreases to a negative value when buckling occurs.

In practice, the cellular structure can be viewed as an interpretation of the

2For the purpose of comparison, steel has a Poisson’s ratio of 0.3 [46]. In cork ν = 0.0,

which makes it able to withstand high pressures in bottles
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Figure 1.8: The auxetic effect. In (a - c) the experimental sample is shown at

increased degrees of compression. The onset of a negative Poisson’s ratio is directly

linked to the pattern transformation and this was calculated by measuring the

inter-void distances as shown in (d). This figure is reproduced from [6].
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hinged models used to explain this counterintuitive effect, which rely on

the interplay between rotating rectangular units [48, 49]. The effect comes

about from the coupling of the inter-ligament connectors and no advanced

manufacturing techniques are required to achieve this. The images in Figure

1.8 illustrate the simplicity of the structure required to create the auxetic

effect.

1.5 Structure of the Thesis

Whilst the square lattice of circular voids is an apparently simple system,

it shows striking behaviour which has application in various fields. In this

thesis, the fundamental properties of the pattern switch are explored using

primarily experimental techniques. The work is presented with the following

structure:

The apparatus used in compression experiments is described in Chapter

2 alongside examples of the measurements made using it. Particular empha-

sis is placed on the procedures followed in obtaining estimates of the elastic

properties of the bulk material used in the manufacture of the experimental

samples.

In Chapter 3, the results of experiments performed on a square lattice

of circular cells are documented. An image analysis method is described

which allowed the aspect ratio of voids in the experimental sample to be

monitored, thus providing a microscopic measure of the effect of compres-

sion on the structure. Analysis of the variation of this parameter with strain
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allowed the identification of a critical point at which the cellular pattern

changed. This, combined with the stress-strain data, enabled information

to be gathered as to the stability, strength and stiffness of the structure. A

stable secondary state is also shown to exist and this became unstable on

unloading. In Chapter 4, the analysis of Chapter 3 is expanded to further

experimental samples and in particular the effect of the size of the voids rel-

ative to their spacing on the critical point was analysed. The experimental

data is compared with predictions of a discrete model and we establish em-

pirical stability, stiffness and strength relationships which suggest that the

square array of circular cells is a stretching-dominated structure. This part

of the study is concluded by considering the role played by void shape on

porous 2D structures under compression.

The focus of Chapter 5 is on the buckling of three-dimensional cellular

structures whose geometry comprised the superposition of two square lat-

tices of circular cells onto one another. The results of this study implied

that the two-dimensional instability dominated the structure and resulted in

the formation of a planar pattern regardless of the relative sizes of the two

sets of voids within the lattice. The instability of a secondary state in these

structures was investigated and it is demonstrated that the effect of imperfec-

tions in this system is similar to in the 2D case although the extent is greater.

The final results chapter is Chapter 6, where we present the research

conducted on a 2D granular crystal. This system, which was made up of

discrete grains of contrasting size and elastic properties arranged on a regu-
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lar lattice, exhibited similar pattern-switching phenomena as in the cellular

structures described in the previous chapters and so provides an interesting

foil to fully connected cellular systems.

The research is summarised in Chapter 7 and a description of potential

routes of further work is given. Three Appendices are included in order

to add completeness to this piece of work. In Appendix A, the paper

“Negative Poissons Ratio Resulting from an Elastic Instability” has been

included. This is one of three publications which have stemmed from the

research presented here. In Appendix B the manufacturing techniques

used in making the experimental samples are given. Lastly, in Appendix C

the mathematical formulation of the discrete model described in Chapter 4

is fully detailed.
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Chapter 2

Experimental Method

A description of the apparatus used to collect experimental data is presented. Ex-

perimental samples were uniaxially compressed using one of two loaders attached

to a compression machine. The load-displacement data recorded by the machine

was converted into stress and strain measures and the effects of the compliance

of the machine and offset load calculations were included. The materials used to

make the cellular structures were addition-curing elastomers. In tests on calibra-

tion samples these were shown to exhibit negligible rate dependence under uniaxial

loading conditions but significant hysteresis when unloaded. This effect was re-

duced by applying a lubricating layer of Vaseline to the top and bottom surfaces

of the samples. The stress-strain behaviour of the material was shown to be well

approximated by the Mooney-Rivlin elasticity model and its Young’s modulus Es

was determined by fitting this model to experimental data.
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2.1 Experimental Samples

The goal of the experiments was to assess the behaviour of various elastic struc-

tures under uniaxial loading conditions. The structural geometries and typical

dimensions of the experimental samples are summarised in Table 2.1 and more in-

depth descriptions of these structures can be found in the results chapters which

follow. The samples were made using moulds on the millimetre scale. A descrip-

tion of the manufacturing process for each structure type is presented in Appendix

B. The calibration samples described in the bottom line of Table 2.1 were used

to determine the elastic properties of the bulk material used to make the cellular

structures. Further details of this aspect of the experimental work are given in

Section 2.4.

2.2 Compression Setup

2.2.1 Compression Machine and Load Cell

An Instron 55691 machine was used to perform controlled compression tests on

the experimental samples. A 2525-806 Series Drop-through load cell capable of

measuring applied loads up to 1kN was slotted into a platform on the compres-

sion machine and fastened into place using three screws. An external loader was

attached to the chassis of the load cell. The platform was raised and lowered by

means of a motor-driven pulley system within the compression machine and its

location could be adjusted by using the control panel on the machine. Loading

tests were performed by lowering the platform at a constant speed from its initial

position; unloading tests consisted of the same process in the reverse direction. It

was possible to conduct cyclic tests which comprised both of these processes.

1Instron, High Wycombe, UK
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Name Description (Typical Dimensions)

csa-lattice n × m square array of circular cells cut from 2D

sheet of elastomer (50 mm × 50 mm × 8 mm)

dsa-lattice n × m square array of diamond cells cut from 2D

sheet of elastomer (50 mm × 50 mm × 12 mm)

ssa-lattice n × m square array of square cells cut from 2D

sheet of elastomer (50 mm × 50 mm × 12 mm)

cubic lattice Two sets of cylindrical voids arranged on a square

lattice aligned to cross one another within a 3D

cube of elastomer (70 mm × 70 mm × 70 mm)

granular crystal Ordered arrangement of soft and rigid cylindrical

particles (100 mm × 100 mm × 10 mm)

calibration sample Cylindrical block of elastomer (10 mm × 10 mm

× 10 mm)

Table 2.1: Description of the experimental samples. The aim of the study

was to determine the compression behaviour of the structures described here.
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The load cell measured the load applied by the compression machine in order

to compress the sample at a constant displacement speed. This was calculated

according to the change in output voltage across a Wheatstone Bridge electrical

circuit bonded to strain gauges within the cell. The load values were measured

once every 100 ms during experiments and logged, along with the instantaneous

displacement of the platform from its starting position, using the Bluehill software

on a PC connected to the machine.

2.2.2 Perspex Loader and Housing

During the initial tests the loader consisted of a Perspex sheet (width 100.10 ±

0.05 mm, thickness 9.68 ± 0.09 mm) attached to an aluminium clamp. When

using the Perspex loader the samples were placed in a housing rig to ensure that

they stood upright throughout the tests. The housing comprised an aluminium

U-shaped frame and base which attached to the compression machine using four

screws. Two Perspex plates were screwed to the frame. These were the front and

back plates of the housing and the spacing between them was 10.1 ± 0.1 mm.

There was a clearance of 0.7 ± 0.1 mm between the loader and housing when the

setup was assembled and the front plate was removable to allow access to the ex-

perimental sample where necessary. The experimental samples were dusted with

flour prior to the test so as to reduce frictional effects.

A schematic of the experimental setup incorporating the loader (transparent),

platform (dark grey), load cell (black) and the frame (light grey) is shown in Figure

2.1. The Perspex loader and housing were used for all experiments on csa-lattices

and for the experiments conducted on granular crystals described in Chapter 6.

Where the Perspex loader is referred to it is implied that the experimental samples
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Figure 2.1: Schematic of the experimental setup used to test a csa-lattice (not to

scale). The sample (blue) sat in the housing during testing and the Perspex loader

(transparent) was used to transmit load across its top surface. This was attached

by means of a clamp to the chassis of the load cell (black). The load cell was

fastened to the movable platform (dark grey) on the 5569 machine (not shown).

57



stood in the Perspex housing during that test.

2.2.3 Aluminium Loader and Base

An alternative loader was manufactured to accommodate free-standing experimen-

tal samples which possessed a greater surface area than the csa-lattices. This was a

circular aluminium loader (radius 91.53 ± 0.05 mm) which was used when conduct-

ing experiments on the dsa-, ssa-lattices, cubic lattices and calibration samples.

During these tests the samples stood on a flat aluminium base. Both of these

components attached to the compression machine in the same manner as those

described in Section 2.2.2. Where the aluminium loader is referred to it is implied

that the experimental samples stood on the aluminium plate throught the test.

An image of the aluminium loader and base taken during a test on a calibration

sample is shown in Figure 2.2.

2.2.4 Camera

Images were taken of the experimental samples during tests using a Nikon D100

digital camera (resolution 6.1MP). The camera was synchronised to the compres-

sion machine such that images were taken at regular successive displacement inter-

vals, typically 0.1 mm. A red laminate screen was placed behind the experimental

sample when images were taken. The contrast between the sample and its sur-

roundings as well as the high resolution of the images taken allowed image analysis

using edge detection algorithms from the MATLAB: Image Processing Toolbox.

This aspect of the work is described in Chapter 3.
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Figure 2.2: The aluminium loader. This component of the experimental apparatus

had a circular cross section and was used in the calibration experiments as shown

here.

2.3 Data Acquisition and Analysis

The load-displacement data recorded during compression experiments was con-

verted into stress and strain measures respectively. The steps and precautions

taken during this process are described in the following sections.

2.3.1 Alignment and Positioning

The compression setup was assembled for each test such that the loader was level

and covered the surface area of the experimental sample, which ensured that during

tests the load was distributed evenly across the surface of the sample. When using

the Perspex loader, care was taken such that no contact was made between the

loader and the housing as friction between these two surfaces would affect the

experimental readings. Before commencing the test the equilibrium position of the
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Figure 2.3: The compliance curves for the Perspex (blue) and aluminium (red)

loaders. These were measured by compressing the rigid bottom surface of the

experimental setup. The bold curves are the experimental data and the dashed

ones are the fits of equation (2.1) to this.

platform was set such that the bottom of the loader was situated approximately

1 mm above the top of the sample. This region of space is referred to here as

the offset region. Beginning the compression test at a point where the loader

was visibly above the surface of the sample ensured that the sample was not pre-

strained prior to recording the data and allowed checking for frictional effects.
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2.3.2 Compliance Correction

The reaction force exerted by the experimental sample on the loader during the

test necessitated a correction to the displacement readings recorded by the load

cell. This was calculated by considering the compliance of the experimental setup,

which was obtained by running a compression test without any experimental sam-

ple in place. The loader was lowered such that it came into contact with the bottom

surface of the apparatus. A compression test was initiated and the displacement-

load data taken during this constituted the compliance curve of the experimental

setup. By compressing the rigid bottom surface of the apparatus it was ensured

that the loader was not displaced during the test. Non-zero displacement values

observed in the test arose from bending of the strain elements within the load cell

as well as compression of the loader itself.

It was necessary to perform compliance tests for both of the loaders used in the

experiments. Compliance curves taken using the Perspex (blue) and aluminium

(red) loaders respectively are plotted in Figure 2.3. In both cases a linear increase

in measured displacement D with applied load L was observed. The loading range

was restricted to 100 N as this was the maximum load value reached during the

experiments on the elastic structures. The dashed lines are least-square fits to

each data set of the form

D = cL+ d0 (2.1)

where c is the compliance of the setup (mmN−1) and d0 (mm) is the offset contact

term. As shown in Figure 2.3 the Perspex loader (c = 1.153 × 10−3 mmN−1) was

approximately an order of magnitude more compliant than the aluminium loader

for which c = 0.15 × 10−3 mmN−1. This is because the former is made from a
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material with Young’s modulus E ≈ 0.3 GPa which is less stiff than the latter

(E ≈ 50 GPa). For both loaders it was observed that the contact offset term was

non-zero (d0 ≈ 2.2 × 10−3 mm and 0.5 × 10−3 mm for the Perspex and alumnium

loaders respectively). This meant that the compliance corrections were taken into

consideration even when only slight contact is made between the loader and ex-

perimental sample.

The adustment to the displacement readings arising from compliance effects

within the compression setup was typically between 0.001 and 0.100 mm. This

was less than 1 % of the typical sample height. However, it was necessary to

subtract the compliance readings from the output of the load cell when conducting

the compression tests in order to give the true extent of the compression of the

sample.

2.3.3 Offset Load

The data taken within the offset region was used to define the offset load l0 which

was a systematic non-zero load reading detected by the load cell. This resulted

from small vibrations from the experimental apparatus, residual dust on the sur-

face of the loader or incorrect calibration of the load cell. Calculation of l0 was

required in order to calibrate the load readings and determine the precise point

at which contact between the loader and experimental sample was made. The

data taken during this region also gave an indication of the extent of the noise

fluctuations within the readings given by the load cell.

The load-displacement data taken during the first 1.5 mm of a sample com-

pression test is shown in Figure 2.4. When viewed on a scale appropriate for the

entire range used, the load values measured in the offset region are nearly con-
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Figure 2.4: The load-displacement data taken during the offset region. This was

used to identify background loading effects and determine the precise starting point

of the compression test. The initial load values (inset) show a noisy signal l0 = -

0.0030± 0.0037 N which originated from mechanical vibrations in the experimental

setup. The axis labels on the inset plot are the same as the larger plot. The black

circle marks the point at which contact with the sample was made.
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stant and approximately equal to zero. The load values shown in the inset figure,

which is plotted on an expanded scale, indicate that they actually fluctuate about

a non-zero average value during the initial compression range. For this data set

the mean offset load was l0 = −3.0 × 10−3 N and the standard deviation from

this value was 3.7 × 10−3 N. As no contact was made between the loader and

sample during this phase of loading, l0 was subtracted from the load readings to

give a more accurate load value and it is assumed that this effect was systematic

throughout the loading process.

The point of contact with the sample was deemed to be the true starting point

of the experimental test. This was calculated by considering the least-square fit of

the load data to a constant l0 value and inferring that contact was made at the point

where the deviation of the load value from this l0 exceeded the aforementioned

standard deviation. In the data set shown in Figure 2.4 this was observed at a

displacement of 0.92 mm from the starting position. All load values measured

from this point on were considered to represent the region of contact between the

sample and the loader.

2.3.4 Stress and Strain

The experimental load-displacement data was corrected by including the effects of

the compliance and offset loads. This was then converted into the nominal stress

σ and strain ε according to the definitions shown below.

ε =
∆h

h
(2.2)

σ =
L

A
(2.3)
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In equation (2.2) ∆h (mm) is the magnitude of the displacement of the top sur-

face of the structure and h is its original height (mm). In equation (2.3) L (N) is

the load applied to the top surface of the experimental sample and A (m2) is the

undeformed area of its top surface.

In the data sets reported in this thesis compressive strain and stress mea-

sures are defined as positive values. The stress values are typically expressed in

units of kPa and are normalised by the Youngs modulus Es of the material from

which the sample was made. This was performed in order to allow comparison of

the strengths and stiffness of experimental samples made from different types or

batches of material. Although the strain and normalised stress are dimensionless

quantities, their units shall be expressed as mm/mm and kPa/kPa respectively so

as to preserve their meaning.

2.4 Elastic Materials

The experimental samples were manufactured using the elastic materials2 Sil AD

Spezial, which was blue in colour, and Sil AD Soft (pink). The materials differed

in their elastic properties but were prepared in exactly the same way: by mixing

two fluids, a polyvinyl base and a siloxane catalyst in a 50:50 volume ratio. The

fluids were separately decanted into 10 ml syringes to allow accurate measure-

ment of their respective volumes, injected into a glass beaker and mixed using an

aluminium stirrer. In order to manufacture the experimental samples, the fluid

mixtures were allowed to set for an hour in the moulds described in Appendix B.

2Feguramed GmbH, Buchen, Germany
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As stated in Section 2.3, the stress values were normalised by the Young’s mod-

ulus of the bulk material Es. It was necessary to determine this from experiments

on the calibration samples using the aluminium loader. It was also possible from

these tests to assess the sensitivity of the material’s response to the speed at which

compression tests were performed, material hysteresis effects and the influence of

lubrication on the stress values.

2.4.1 Calibration Samples

Three calibration samples were made each time a new batch of the material was

prepared. The manufacturing process consisted of pouring the fluid elastomer into

cylindrical aluminium moulds (diameter 10.00 ± 0.05 mm, height 10.03 ± 0.06

mm) and allowing this to set for the same time as the main sample. This was

deemed necessary as, although care was taken to ensure the correct measurement

and thorough mixing of the fluid volumes, it was found that batches of material

were not identical. Hence, the stiffness of the bulk material varied slightly between

batches.

2.4.2 Rate Dependence and Hysteresis

Each calibration sample was compressed to a strain of approximately 0.25 mm/mm

as this encompassed the strain ranges considered during tests on the main exper-

imental samples. The stress-strain data taken during cyclic compression tests

performed at 1.00 mms−1 (blue), 0.10 mms−1 (red) and 0.01 mms−1 (black) on

a calibration sample of Sil AD Spezial have been plotted in Figure 2.5 (a). The

arrows above and below the data sets indicate the loading (increasing ε) and un-

loading (decreasing ε) phases of the tests. The materials showed a rate-dependence

which decreased as the compression speed was decreased; reducing the speed by a

factor of 100 caused an average reduction of the σ values by 15 %. However, there
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is a 3 % discrepancy between the loading phases of the red and black data sets.

This observation is consistent with experimental observations that there is a finite

response time in rubbery materials to high strain compression. This manifests

itself as increased stress when compressed at high speeds [50,51]. Another notable

feature in the data taken at high speeds was a slight increase in σ as the direction

changed, an effect which was not observed at lower speeds.

It is noteworthy that during the unloading phase of each of the data sets the

stress values lie below those values recorded during the loading phase. These effects

were reduced by applying a layer of Vaseline to the top and bottom surfaces of the

calibration sample. In Figure 2.5 (b) a comparison between the calibration sample

with unlubricated (green) and lubricated (pink) boundaries loaded and unloaded

at a compression speed of 0.01 mms−1 has been presented. The hysteresis in the

data taken on the lubricated sample has reduced from ≈ 10 % to less than 2 %,

and the stress values have been reduced by approximately 20 %. This implies that

the friction between the top and bottom surfaces of the sample and the loader and

base served to stiffen the structure by restricting its transverse expansion as it was

compressed.

Throughout the course of the experimental study, the compression tests were

generally performed at slow speeds between 0.001 and 0.010 mms−1 to allow the

acquisition of a large number of data points and to simplify sychronisation with

the camera. Where loading-unloading experiments were conducted, Vaseline was

applied to the sample as described in this section to allow accurate comparison

between the data taken in the loading and unloading phases. The calibration tests

for each test were performed at the same speed as the main test so as to completely

replicate the experimental conditions.
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Figure 2.5: The stress-strain behaviour of the calibration samples under uniaxial

compression. In (a) the data was taken at compression speeds 1.00 mms−1 (blue),

0.10 mms−1 (red) and 0.01 mms−1 (black). The two data sets plotted in (b) were

taken on an unlubricated (green) and a lubricated sample at 0.10 mms−1 (pink).
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2.4.3 Elastic Modulus

A standard technique for obtaining the Young’s modulus of elastic materials is

the fitting of stress-strain data to predictions arising from theoretical models of

elastic structures [30]. The data taken during tests on the calibration samples

was used to do this. Here, a comparison of three models - Hookean elasticity,

neo-Hookean elasticity and the two-term Mooney-Rivlin model - is presented. A

relationship between the axial stress σ and one-dimensional strain ε for isotropic,

homogenous, nearly incompressible elastic materials under uniaxial compression

has been derived from each model. The stress-strain relationship from the Hookean

(equation (2.4a)), neo-Hookean (equation (2.4b)) and Mooney-Rivlin (equation

(2.4c)) models are expressed as [30,52]

σ = Eε (2.4a)

σ = 2C1(1− ε− 1

(1− ε)2
) (2.4b)

σ = (2C1 + 4C2(1− ε+
1

(1− ε)2
− 3))((1− ε)2 − 1

1− ε
) (2.4c)

In equation (2.4) E (Pa) is the Young’s modulus which, along with C1 (Pa) and

C2 (Pa), was determined by fitting equations (2.4) to experimental data. By

considering the behaviour of equations (2.4b) and (2.4c) as ε→ 0, the neo-Hookean

and Mooney-Rivlin models reduce to

σ = 6C1ε (2.5)

and the Young’s modulus E is derived from both according to
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E = 6C1 (2.6)

The Young’s modulus was extracted from the calibration data by fitting equa-

tions (2.4) to the experimental stress-strain data collected during the tests on the

calibration samples using GnuPlot. Here, the results of fitting equations (2.4) to

the loading data for the unlubricated and lubricated calibration sample described

in Section 2.4.2 are considered to show the effect of the lubrication layer on the

stiffness of the material. The compression test was performed at 0.01 mms−1.

The plots in Figure 2.6 are used to demonstrate the range across which each of

the three proposed models replicates the experimental data, which is blue in each

plot. The top data set has been collected on the unlubricated sample and the bot-

tom on the lubricated sample. The results of fitting these data sets to equations

(2.4a, red), (2.4b, black) and (2.4c, green) show that the two-term Mooney-Rivlin

model provides the best approximation to the material behaviour across the full

strain range covered during the experiments. The neo-Hookean model is accurate

up to ε ≈ 0.20 mm/mm. The lack of agreement between the Hookean model and

the experimental data implies that there is only a small range of strain in which

the material can be considered linearly elastic under uniaxial compression. In the

calibration data, the average deviation of the models from the experimental data

was ≈ 50 % for the Hookean and ≈ 25 % for the neo-Hookean models. This dis-

crepancy reduced to ≈ 2 % for the Mooney-Rivlin model which is further evidence

of its appropriate fit.

In Table 2.2 the Young’s modulus of the bulk material as determined by fit-

ting the Hookean (EH), neo-Hookean (ENH) and Mooney-Rivlin (EMR) models
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Figure 2.6: Fitting elasticity models to the experimental data (blue). The stress-

strain equations proposed by Hookean (red), neo-Hookean (black) and Mooney-

Rivlin (green) models replicate the experimental measurements with a varying

degree of accuracy. Both the experimental data sets taken for the unlubricated

(top) and lubricated calibration sample are well captured by the Mooney-Rivlin

model. 71



EH (kPa) ENH (kPa) EMR (kPa)

Unlubricated 666.55 500.65 452.29

Lubricated 626.65 472.21 439.25

Table 2.2: The Young’s modulus values obtained by fitting equations (2.4a), (2.4b)

and (2.4c) to the experimental stress-strain data. The Young’s modulus is used to

normalise the stress values measured in later experiments.

to the experimental data have been recorded. Analysis of the results shows that

the application of Vaseline to the sample reduced the stiffness determined by each

model by approximately 5 %. There was a 10 % discrepancy between the stiff-

ness values calculated using equations (2.4b) and (2.4c) which suggests that both

models can be considered accurate in conveying the response of the bulk material

to uniaxial loading. However, the bulk material stiffness values quoted here will

be those calculated using the Mooney-Rivlin model because of its good agreement

with the experimental data over the full range of strain used in the experiments.

In this thesis, Es is an average value calculated across three calibration samples

and the error is the standard deviation from this mean value.

2.5 Summary

The experimental apparatus and techniques used during the study have been de-

scribed. Whilst the principle behind the experiments is simple, a number of pre-

cautions have been taken in order to ensure accuracy in the data measurements.

The calculation of the Young’s modulus of the material used in manufacturing

the experimental samples has provided a test-case for the procedures described

here. Using these techniques it has been shown that the material behaves as a

Mooney-Rivlin solid under uniaxial compression.
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Chapter 3

Elastic Buckling in a 2D

Cellular Structure

Uniaxial compression tests were performed on a regular two-dimensional cellular

structure. The structural geometry consisted of an 8 × 8 array of circular cells

arranged on a square lattice. A repeatable geometric transformation was observed

whereby the initially circular voids formed a pattern-switched state of mutually

orthogonal ellipses. Both the aspect ratio of the voids and the normalised stress

varied linearly with the strain applied to the sample prior to the switch in the

cellular geometry. In the pattern-switched state the aspect ratio had a square root

dependance on the applied strain, and the normalised stress was approximately

constant. The transition in the cellular geometry was shown to occur at a critical

stress-strain point and a secondary pattern-switched state was shown to exist. In

this state the ellipses were oriented orthogonally to their orientation in the primary

state and in unloading experiments this state became unstable.
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Figure 3.1: The csa-lattice. The cellular structure geometry comprised circular

voids (diameter d) cut from a sheet of elastic material (blue). The voids were

arranged on a square lattice with inter-hole spacing l in the x− and y− directions.

3.1 Two-Dimensional Cellular Structures

3.1.1 The csa-Lattice

The experiments described in this chapter were performed on a two-dimensional

cellular structure with a regular, repeating planar geometry. A sketch of this ge-

ometry is shown in Figure 3.1. In the sketch an array of circular voids of diameter

d in a sheet of elastic material (height h and breadth b) are shown. The centres

of neighbouring voids are separated by a distance l in both the x- and y- direc-

tions and these values are constant through the out-of-plane width w of the sample.

The cellular structure sketched in Figure 3.1 can be described in numerous

ways. For example, it can be considered to be a “square lattice (or array [2])
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of circular holes” which occupies a an “elastomeric matrix [6]”. The terms “grid

of circular voids” or “circular-cell honeycomb” are also equally apt. In giving a

name to the structure it was key that two aspects of its planar geometry were

conveyed. These were the circular shape of the cells and the fact that the spacing

was the same in each planar direction. However, another requirement was brevity,

particularly given that repeated references are made to the structure throughout

this thesis. For this reason, the naming convention adopted here was inspired by

that used to classify crystal geometries in solid-state physics [33]. The structure

depicted in Figure 3.1 shall be henceforth referred to as a csa-lattice, where the

initial c stands for “circular” (to reflect the cell shape) and, sa stands for “square

array” (to reflect the arrangement of the cells). This naming convention lends

itself to other 2D cellular geometries which will be discussed in Chapter 4.

3.1.2 Planar Geometry

The planar geometry of the csa-lattice shall be defined by three measures here.

The first are the number of rows n and columns m of voids in the structure. The

third is the void fraction Φ1 which is the proportion of the lattice volume taken

up by the circular voids. This is calculated as

Φ =
πd2

4l2
(3.1)

where d and l have the definitions given in Section 3.1.1 and no additional boundary

widths have been applied to the finite sample. This means that the void fraction

of the csa-lattice is equal to that of the unit cell, which has been highlighted by the

dashed box in Figure 3.1. The unit cell is a square of side l which, together with

1The void fraction should not be confused with the relative density ρ∗

ρs
which is the

proportion of the lattice made up of the solid material [3].
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the void it encloses, is the smallest repeating block which represents the planar

geometry. Henceforth, an experimental sample which has the geometry described

in this section will be referred to as an n × m csa-lattice (Φ).

3.1.3 Uncertainties

The experimental samples were made from addition-curing fluid elastomers using

the moulding technique described in Appendix B. The fractional uncertainty in

void fraction δΦ
Φ was estimated by adding the experimental errors in l and d (δl

and δd respectively) in quadrature. This yields

δΦ

Φ
= 2

√(
δl

l

)2

+

(
δd

d

)2

(3.2)

In the experiments the void size was fixed such that d = 8.79 ± 0.09 mm. l

had values ranging between 10.00 - 20.00 mm to allow different Φ values to be

considered and δl was approximately 0.2 mm. This meant that in the experimental

studies δΦ
Φ ≈ 0.03.

3.2 Uniaxial Compression of a csa-Lattice

The results presented in this chapter were measured in compression experiments

performed on one particular experimental sample. Specifically, this was an 8 × 8

csa-lattice (Φ = 0.65).

3.2.1 The Pattern Switch

The images shown in Figure 3.2 are of the experimental sample at differing stages

of compression during a loading test performed at 0.005 mms−1. In Figure 3.2 (a)
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ε = 0.01 mm/mm and the voids have been compressed in the direction of load-

ing. During this pre-buckling phase of compression the voids in the sample will be

referred as possessing a homogeneous geometry. This represents the trivial state

of the csa-lattice, in which all of the voids have the same shape and orientation

relative to the applied load.

In Figure 3.2 (b) (ε = 0.05 mm/mm) each void has transformed into an el-

lipse. The symmetry of the homogeneous geometry has been broken by a switch

to an array of mutually orthogonal ellipses. This cellular pattern is repeated by a

translation over two cells in both the x- and y-directions, i.e. the unit cell has ex-

panded such that it encloses four voids. The cellular pattern is no longer invariant

upon reflection about two orthogonal axes with origin at the centre of the sample.

However, it remains rotation invariant. In terms of the symmetry operations of

the planar geometry, its invariance group reduces from the D4 (dihedral) group to

the Z4 (cyclic)2 group as a result of the pattern switch [53].

The top and bottom boundaries prohibited the pattern from forming fully close

to these points in the sample, but elsewhere the pattern was clearly defined. This

pattern switch was reversible and repeatable; recompression of the sample caused

each void to become an ellipse with the same orientation as in the initial compres-

sion test. The pattern-switched geometry described above characterised the form

of the csa-lattice during the post-buckling phase of compression.

The images shown in Figure 3.2 (c) and Figure 3.2 (d) are close-up views of the

sample where the central four voids are shown in detail. The white diamond shapes

represent the position and orientation of nine surrounding connectors at which the

2i.e. the number of elements in the group reduces from 8 to 4.
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Figure 3.2: The homogenous and pattern-switched geometries. The experimental

sample is shown at ε = 0.01 mm/mm in (a) and (c) and at ε = 0.05 mm/mm

in (b) and (d). The bottom images, (c) and (d), are of the central four voids.

The inter-ligament connectors (white) were observed to behave as rigid units and

rotation of these was associated with the pattern onset.
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vertical and horizontal ligaments meet in the csa-lattice. In the pre-buckling phase

the connectors were co-aligned, and the compression of the sample reduced their

separation in the y-direction. In the post-buckling phase the connectors rotated in

opposite senses to their neighbours and this was associated with the buckling of

the ligaments. This rigid-body rotation mechanism is an essential part of auxetic

behaviour in cellular structures [48,49], and the pattern switch described here has

been shown to exhibit negative Poisson’s ratio behaviour [6]. In the context of

experiments on the csa-lattice, this observation is made to highlight the fact that

the compression of the structure leads to high localised strains in the ligaments [26].

However, the dimensions of the connectors do not noticeably change as a result of

this process.

3.2.2 Aspect Ratio

The primary state of the csa-lattice was the equiliibrium state of the structure

which formed continuously with increased applied strain. In the experiments the

primary state was split up into two parts, which were the pre- and post-buckling

phases described in Section 3.2.1. It was desired to determine the precise point at

which the transition between these two phases, and hence the switch in the cellular

pattern, occurred. This point will henceforth be referred to as the critical point

of the csa-lattice. To find the critical point, the aspect ratio γ (mm/mm) of the

voids was monitored. This was defined as

γ =
a

b
(3.3)

where a (mm) and b (mm) were the major and minor diameters of the voids re-

spectively. For voids forming horizontal ellipses relative to the direction of loading,

a was its vertical diameter and b its horizontal diameter. The inverse was true for
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Figure 3.3: The image analysis method. The image of the sample (a) was anal-

ysed using the MATLAB : Image Processing Toolbox with a greyscale filter. The

coloured lines represent the four regions of voids which were considered in calcu-

lating the γ values. The cropped images were binarised as shown in (b) and the

subsequent analysis yielded the minor and major diameters of the voids.

voids which formed vertical ellipses.

The process for measuring γ is illustrated in Figure 3.3. A photo of the sample

under applied strain ε was binarised using the MATLAB : Image Processing Tool-

box by passing the image through a red/blue filter and then a greyscale filter. This

filter was typically 0.65 although this was dependent on the ambient lighting and

so required adjustment in some experiments. The image was cropped to contain

a central square array of voids and it was then inverted such that the voids were

white and the elastic material black. This process was performed on 8 × 8, 6 ×

6, 4 × 4 and 2 × 2 cell arrays as indicated by the coloured lines in Figure 3.3 (a).

The inverted image in Figure 3.3 (b) is of the 4 × 4 array.
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The MATLAB bwboundaries function was then used to detect the continuous

boundaries of the voids selected within the image. Statistical information was

thereby gained of the major and minor diameters of the voids, as well as their

orientation. The average aspect ratio was calculated using equation (3.3) for the

horizontal (γh) and vertical (γv) ellipses. This process was repeated for images

taken at strain intervals of 1.25 × 10−3 mm/mm in the range ε = 0.00 - 0.06

mm/mm to produce γ-ε plots for each orientation of the ellipses in the pattern-

switched geometry.

In Figure 3.4 γh-ε (circles) and γv-ε (triangles) have been plotted for the csa-

lattice. The sample was compressed at a speed of 0.005 mms−1 during this test.

Discussion of the exact form of the data will be given in Section 3.2.3. The γh and

γv values lie within their respective standard deviations and so it can be concluded

that the pattern switch affected the voids in the same way regardless of their ori-

entation in the switched geometry. For this reason γ, the mean of the γh and γv,

shall be presented in later plots.

The forms of all γ-ε plots were qualitatively similar although the γ values and

their standard deviation decreased as the number of cells was reduced. This was

because both the 8 × 8 (black, Figure 3.4 (a)) and 6 × 6 (blue Figure 3.4 (b))

arrays contained voids whose shape was affected by the fixed boundaries at the

top and bottom of the sample. This effect was reduced for the data taken on the

4 × 4 (red, Figure 3.4 (c)) and 2 × 2 (green, Figure 3.4 (d)) arrays of voids. For

the purpose of analysis, the 4 × 4 γ-ε data set was considered representative of

the change in the cellular geometry in the sample.
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Figure 3.4: The variation of γh (circles) and γv (triangles) with ε. The measures

were taken across 8 × 8 (black, a), 6 × 6 (blue, b), 4 × 4 (red, c) and 2 × 2 (green,

d) square arrays of voids.
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3.2.3 Pattern Onset

The γ-ε plot for the experimental sample is presented in Figure 3.5 (a) where the

experimental data is red. Two distinct regimes of behaviour were observed which

corresponded to the pre- and post-buckling phases of compression. During the

pre-buckling phase of compression, γ decreased linearly with ε according to the

function

γI = γ0 − ΓIε (3.4)

where the factor ΓI (mm/mm) linked the macroscopic deformation of the sample

to its local value and γ0 (mm/mm) was the initial aspect ratio of the voids. Fitting

equation (3.4) to the experimental data using GnuPlot yielded ΓI = 1.94 ± 0.15

mm/mm and γ0 = 1.006 ± 0.001 mm/mm. This value of γo was suitable given the

initially circular shape of the voids. The linear fit is demonstrated by the black

extrapolated curve in Figure 3.5 (a).

At higher values of ε there was a departure from the linear behaviour to an

approximate square-root γ-ε relationship. This characterised the change in γ in

the post-buckling phase and further compression of the sample caused the en-

hancement of the pattern, lowering the aspect ratio of the orthogonal ellipses.

The extrapolated γI function was subtracted from the γ values and the result of

this is shown in Figure 3.5 (b). The adjusted values had the form associated with

one equilibrium branch of an unperturbed pitchfork birfucation and the data was

approximated by the relationship

γ − γI = −ΓII
√
ε− εcr (3.5)
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Figure 3.5: Determining the critical point. (a) The γ-ε plot for the 8 × 8 csa-

lattice (Φ = 0.65) was initially linear. In the post-buckling phase the variation of

γ - γI (red) with ε was well-captured by equation (3.5) (blue) (b). The vertical

dashed line marks an estimate of onset of instability in the experiment.
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As with the measure ΓI in equation (3.4) ΓII gave an indication of the interaction

between large- and small-scale changes in the structural geometry of the sample. In

Figure 3.5 (b) a least-squares fit of equation (3.5) (blue) has been plotted alongside

the experimental data (red) and the two show excellent agreement. For the data set

considered here ΓII = 2.069 ± 0.015 mm/mm and εcr = 0.184 ± 0.001 mm/mm.

The vertical dashed line marks the critical strain εcr which is the boundary between

the pre- and post-buckling compression phases in the experiment.

3.2.4 Normalised Stress-Strain Data

The normalised stress-strain curve for the sample is shown in Figure 3.6. As

with the data described in Section 3.2.3, the plot can be divided into two distinct

phases. During the Hookean phase of compression (AB) σ
Es

increased linearly

with ε. In the plateau phase (CD) σ
Es

was near constant despite the increased

compression of the csa-lattice. These features of the data are common features of

numerical and experimental studies of cellular structures, where elastic buckling

of the structure has been observed to lead to two-phase normalised stress-strain

behaviour [2, 3, 5, 22,26].

The boundary between the two phases of loading is consistent with that de-

termined by analysis of the aspect ratio of the voids. The vertical dashed line

marks the εcr value (0.0184 ± 0.001 mm/mm) calculated using the curve-fitting

procedures described in Section 3.2.3. It is clear that the Hookean phase of load-

ing was associated with the homogeneous geometry of the voids whereas in the

plateau phase the voids had the pattern-switched geometry. The action of load on

the csa-lattice, therefore, is to cause the structure to buckle at the critical point,

and it is this buckling which causes the formation of the elliptical pattern.
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Figure 3.6: The normalised stress-strain data of the csa-lattice. The data exhib-

ited the two-phase behaviour which characterises the response of cellular structures

to compression tests. The vertical dashed line marks εcr and the horizontal dashed

line represents the normalised critical normalised stress σcr
Es

= 2.43 ± 0.02 × 10−3

kPa/kPa.
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Analysis of the normalised stress-strain data allowed identification of two mea-

sures which will be used characterise the response of the csa-lattice to uniaxial

loading. The normalised critical stress σcr
Es

is a quantitative measure of the strength

of the structure. It is the normalised stress value at the transition point i.e.

σcr
Es

=
σ(εcr)

Es
(3.6)

and this has been indicated in Figure 3.6 by the horizontal dashed line. The nor-

malised elastic modulus E
Es

of the structure was the gradient of the normalised

stress-strain curve in the Hookean phase [3]. This is used to evaluate the stiffness

of the csa-lattice under uniaxial compression. Here σcr
Es

= 2.43 ± 0.02 × 10−3

kPa/kPa and E
Es

= 1.45 ± 0.01 × 10−1 kPa/kPa.

The coordinates of the critical point3 (εcr,
σcr
Es

) are used to mark the onset

of instability in the csa-lattice. In the buckling of perfect 2D cellular structures

the critical and plateau stresses coincide and the boundary between the pre- and

post-buckling phases is sharp and well-defined [3]. It is neccessary to discuss here

the subtle difference between thebifurcation in the csa-lattice and its failure. The

onset of the bifurcation is defined as the point at which the microscopic (i.e., inner)

features of the cellular structure changde and it is this process which, ultimately,

leads to the failure of the structure. There is some delay between these two events

as the transition between the Hookean and plateau phases is rounded as opposed to

sharp.

In considering this point it is important to remember that the γ values have

only been measured across the central 4 × 4 square of voids in the structure for

3This is often referred to as the initiation point of the structure [5]
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accuracys sake whereas the stress values are measured across the sample, bound-

aries included. It should be expected, therefore, that some rounding effects will

occur as a result of the non-uniform pattern transformation in regions close to the

boundary and where imperfections may take their toll. As discussed by Bertoldi

and Boyce [26] in infinite structures the macroscopic and microscopic failure sur-

faces overlap and as such, it may possible in experiments on larger lattice sizes

that a sharper transition between the plateau and Hookean regimes occurs. Natu-

rally, in such a structure a larger proportion - if not all - of the constituent voids

could be considered in determining the bifurcation point. As described in Section

3.2.2 the aim of the analysis described here was to find an accurate experimental

analysis technique to estimate the instability onset in the finite csa-samples. This

would allow comparison with numerical simulations such as those carried out by

Bertoldi et al using eigenvalue analysis on a perfect planar geometry [6,26]. These

showed that pattern onset occurred prior to the commencement of plateau stress

behaviour and the results described here are consistent with these observations.

3.2.5 Repeatability, Rotation and Rate Dependence

The data analysed in Sections 3.2.3 and 3.2.4 was taken during one experimental

run at a compression speed of 0.005 mms−1. In Figure 3.7 the variation of σ
Es

(a) and γ (b) with ε measured during experiments at compression speeds 0.005

mms−1 (red), 0.010 mms−1 (blue) and 0.100 mms−1 (green) are shown. It is no-

table in Figure 3.7 that the normalised stress values associated with applied strain

decreased as the speed was increased. This is contrary to the previous observa-

tion in 2 that stiffness of the bulk material increases with the compression speed.

This softening may have come about by repeated compression of the material as

the experiments were performed in order of increasing speed. However, the devi-

ation between the norrmalised stress is less than 5% which is within acceptable
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Figure 3.7: Rate dependence of the experimental data. σ
Es

(a) and γ (b) have

been plotted with ε for experiments taken at different speeds. Both parameters

are rate invariant over the range 0.005 mms−1 - 0.100 mms−1.
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Figure 3.8: Rotation dependence of the pattern-switched geometry. The im-

ages are of the sample at ε = 0.03 mm/mm in the initial (a) and rotated (b)

configurations to demonstrate the rotation invariance of cellular geometry in the

post-buckling phase.

experimental error. As such the data is considered repeatable for the purpose of

calculating average εcr,
σ
Es

and E
Es

parameters for the sample. These were εcr =

0.0175 ± 0.0012 mm/mm, σ
Es

= 2.45 ± 0.02 × 10 −3 kPa/kPa and E
Es

= 1.47 ±

0.04 × 10 −1 kPa/kPa respectively.

The fourth data set (grey) shown in Figure 3.7 was taken on the sample when

rotated 90o about its centre and compressed at a speed of 0.010 mms−1. The

experimental data shows excellent agreement with that taken in the initial tests

which implies that the structure buckles at the same point regardless of its ori-

entation in the housing. In Figure 3.8 the sample is shown in its buckled state

at ε = 0.03 mm/mm in the initial (Figure 3.8 (a)) and rotated (Figure 3.8 (b))

configurations. The patterns are identical; where a void formed a horizontally

aligned ellipse in post-buckling phase of the primary state, it formed a vertical
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Figure 3.9: The primary (a) and the secondary (b) pattern-switched states. The

sample is shown at ε = 0.05 mm/mm in both images. Both states consist of

mutually orthogonal ellipses and are related to one another by a rotation of the

cells by 90o about their centres.

ellipse when the sample was rotated by 90o about its centre and recompressed.

3.3 Secondary State

The critical behaviour described in Section 3.2 related to the continuous primary

state of the csa-lattice. There was a secondary state in which each void formed

an ellipse during the post-buckling phase which was aligned orthogonally to its

orientation in the primary state. The sample is shown in Figure 3.9 at ε = 0.05

mm/mm during the post-buckling phase in both the primary (Figure 3.9 (a)) and

the secondary states (Figure 3.9 (b)). The two images are indistinguishable but

for the relative rotation of the cells by 90o about their centres.
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3.3.1 Methodology

It was not possible to achieve the secondary state via the continued increase of

applied strain to the sample from zero strain. This was because the secondary state

was the stable branch of a disconnected saddle node and could not be attained by

following the continuous equilibrium branch of the sample. Instead, the existence

and stability of this state was investigated by pre-straining the experimental sample

past εcr such that the switched geometry associated with the primary state was

formed. The secondary state was then induced by removing the front plate of

the housing and using tweezers to rotate one of the interstitial connectors in the

opposite sense to which it had already rotated. This caused the surrounding

connectors in the csa-lattice to switch their orientation by 90o in a avalanche event

which demonstrated the high degree of coupling of the ligaments in the sample.

Once the sample was in the secondary state, the front plate of the housing was

replaced and an unloading experiment was performed in order to determine its

stress-strain response in this state.

3.3.2 Primary vs Secondary State

In order to differentiate between the two states, the modified aspect ratio γ* is

introduced here. It is defined as

γ∗ = λ(1− γ) (3.7)

where

λ =

 +1 if the structure is in the primary state

−1 if the structure is in the secondary state

In Figure 3.10 (a), the variation of γ* has been plotted for two unloading experi-
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ments. Both tests were performed at a speed of 0.005 mms−1. This slow speed was

necessary in order to resolve the bifurcation structure of the csa-lattice to a high

degree and in order to reduce material hysteresis effects. In the first experiment

(blue in Figure 3.10) the primary state was unloaded; in the second (red), unload-

ing of the secondary state was investigated. The data sets presented in Figure 3.10

should be read from right to left as at the beginning of each test the applied strain

was ε = 0.06 mm/mm and at the end of the test ε = 0.00 mm/mm.

Unloading of the primary state showed the same behaviour found in the loading

experiments: relaxing the experimental sample caused a smooth transition from

the switched to the homogenous cellular geometry, the reverse of the behaviour

described in Section 3.2. In contrast to this, the secondary state became unstable

during the unloading experiment and the geometry switched to that of the primary

state.

The two data sets shown in Figure 3.10 have the common features of the per-

turbed pitchfork bifurcation diagram [4,31] which was introduced in Chapter 1.5.

The continuous branch is represented by the data taken during the primary state

unloading experiment and the blue data set is the stable branch of the disconnected

saddle node. The γ* values measured during the unloading secondary state exper-

iment dropped dramatically at ε = 0.021 mm/mm. At this strain value only one

equilbrium state of the structure existed and this was the primary state. Because

of this, the ellipses in the switched geometry of the secondary state flipped their

orientations by 90o about their respective centres. Further unloading of the csa-

lattice led to the transition back to the homogeneous cellular geometry as described

for the primary state. The switch from the secondary to the primary switched ge-

ometries occurred ≈ 0.003 mm/mm prior to the εcr value determined in Section
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Figure 3.10: The onset of instability in the secondary state. The γ-ε plots (a) are

similar to the perturbed pitchfork diagram with small imperfections. The states

are associated with different plateau stress levels (b) and the transition between

the secondary and primary state is marked by a decrease in the normalised stress.
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3.2.5 which implies that the imperfection which caused the primary state to be the

preferred buckling configuration observed in loading experiments was small [4,31].

The normalised stress-strain data taken during the two tests is shown in Figure

3.10 (b). The secondary state was associated with a higher normalised stress

than the primary state. The difference between the two sets increased as the

secondary state became unstable and this occurred over the region bound by the

two dashed lines in Figure 3.10. The switch to the primary state was accompanied

by a drop in σ
Es

which then led rapidly into a linear strain region. The switch

between the primary and secondary states was not reflected entirely by the data

sets shown in Figure 3.10 - the normalised stress and aspect ratio values for the

secondary data set did not overlap with those taken in the primary state unloading

experiment. It appears that the switching event induced a short-term plastic effect

in the structure. This caused the aspect ratio of the voids aspect ratios to be higher

than in the first experiment at the same level of compression, and this is associated

with a higher level of normalised stress across the surface of the sample.

3.4 Summary

The results of a series of experiments have shown the csa-lattice to be a highly

coupled nonlinear system in which pattern transformation is observed at a critical

degree of compression. The transition between the trivial and primary states was

evident in the variation of the aspect ratio of the voids and the stress across the

sample with strain respectively, and these trends were repeatable. The switch

is therefore a robust phenomenon which comes about from a reversible elastic

instability triggered by loading. It has also been shown that it is possible to access

the perturbed secondary state which was stable for a wide unloading range. This
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state was associated with a higher stress value and a direct transition back to

the primary state was observed coming in close proximity to the reversion of the

structure to the trivial state. In Chapter 4 the analysis is carried forward to other

csa-lattice geometries to gain a deeper understanding of the pattern-switching

mechanism.
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Chapter 4

Variation with Void Fraction

and Side Effects

The results of an experimental study of the csa-lattice geometry are presented. It is

established that the normalised critical stress, critical strain and normalised elastic

modulus of these structures vary with the void fraction according to simple scaling

laws. These imply that the structure deforms predominantly by axial stretching

of the inter-hole ligaments in the pre-buckling phase of compression. For samples

with a low number of rows a delay in the onset of the pattern-switching instability

was observed. This caused an increase in the normalised critical stress of the

experimental samples. It is also shown that a change in the cell shape to diamonds

causes a similar pattern to be induced, whilst localisation is found in square voids.

Discussion of these effects was motivated by consideration of a simple spring-link

model and predictions arising from this have been compared to the experimental

results.
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4.1 Introduction

In Chapter 3 the critical strain, normalised critical stress and normalised elastic

modulus of an 8 × 8 csa-lattice (Φ = 0.65) were measured. The focus in this

chapter is on determining these quantities for a range of csa-lattice geometries. In

particular, the relationship between the stability, strength and stiffness of these

structures to the parameters Φ, n and m is investigated.

4.1.1 Scaling Laws

The approach adopted here follows conventional studies [3,18,54] of two-dimensional

cellular structures under uniaxial compression. Accordingly, the main aim was to

determine empirical fits of the form

σcr
Es

=
σo
Es

(Φmax − Φ)α (4.1a)

εcr = εo (Φmax − Φ)β (4.1b)

E

Es
=
Eo
Es

(Φmax − Φ)γ (4.1c)

In equations (4.1) Φmax is the maximum void fraction of the csa-lattice. Whilst

for many 2D cellular structures Φmax = 1, the curvature of the circular voids

neccessitates that

Φmax =
π

4
≈ 0.785 (4.2)

where Φmax has been calculated using equation (3.1) and the condition that the

inter-hole distance l is equal to the void diameter d.
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As listed in Table 4.1, the exponents α, β and γ and the constants σo
Es

, εo and

Eo
Es

depend on the shape of the cells in regular 2D lattices [18]. The exponents

are used to distinguish between stretching- and bending-dominated structures. In

the former, α ≈ 3, β ≈ 1 and γ ≈ 2, whereas in the latter α ≈ 3, β ≈ 3 and

γ ≈ 0. The scaling laws shown in Table 4.1 have been derived by considering the

compression of the constituent struts within each lattice and are accepted as valid

for t
l < 0.25 [3], where t is the uniform thickness of each strut, l its length. The

scaling laws presented above are theoretical expressions which have been validated

in experiments and numerical simulations [3].

The curvature of the voids in the csa-lattice makes assessment of its connectiv-

ity non-trivial and the scaling laws expressed in equations (4.1) have not yet been

established for the csa-lattice. The square arrangement of cells indicates that its

behaviour will be similar to that of lattices in which the voids are square in shape.

Taking this comparison into consideration, it was expected that the exponents and

constants for the csa-lattice empirical relationships would have similar values to

those listed in the second line of Table 4.1.

The principal new aspect of this investigation is the parameter range over

which the experiments have been conducted. As discussed above, the scaling laws

presented in Table 4.1 are only valid for high Φ values to enable simple geometrical

models of these structures to be used. As well as this, according to Gibson and

Ashby [3] the definition of a porous structure as being a “cellular solid” is brought

into question when Φ < 0.71. There are two reasons for ignoring limitations on

Φ here. Firstly, the value of Φmax calculated in equation (4.2) combined with

Gibson & Ashby’s limit defines a range of Φ values outwith the bounds of the

1This limit is 0.8 according to the University of Virginia [55].
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Cell Shape Z σcr
Es

εcr
Eo

Es

Hexagon 3 1.50 (1 - Φ)3 0.10 0.14 (1 - Φ)3

Square 4 0.10 (1 - Φ)3 0.21 (1 - Φ)2 0.50 (1 - Φ)

Triangle 6 0.33 (1 - Φ)3 0.27 (1 - Φ)2 0.09 (1 - Φ)

Table 4.1: Scaling laws for 2D cellular structures. σcr
Es

, εcr and Eo
Es

for 2D cellular

structures vary according to the equations listed here The shape of the cell, and

hence the connectivity Z, determines the constant and exponents in each of the

relationships. The critical stress referred to here is often termed the elastic buckling

stress σel in order to differentiate it from the stress associated with plastic and

brittle failure.

manufacturing process as the maximum Φ value available using these methods

was 0.65. Secondly, it was desired to probe the prediction by Bertoldi et al that

global pattern-switching in the csa-lattice will not persist beyond a critical void

fraction value ΦB = 0.34 [6].

4.1.2 Methodology

The void fraction study was performed on two sets of csa-lattices. The 4 × 4

csa-lattices had Φ values increasing from 0.15 to 0.65 in steps of approximately

0.025 whereas the 8 × 8 samples had void fractions in the range 0.40 to 0.65. All

samples were made from Sil AD Spezial and tests were conducted at a compression

speed of 0.01 mms−1.
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Figure 4.1: The discrete model. (a) The coupling between the hinged rigid crosses

(red) in the frame means that a period-doubling pattern switch occurs when the

trivial state becomes unstable (b). By considering the Euler buckling of a sin-

gle tapered rod (c), it was possible to determine the rotation stiffness ρ of the

rotational springs (green) which are positioned at each hinge (d).
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4.2 Discrete Model

4.2.1 Model Description

The results of the experiments are compared with predictions made using the

spring-link model [56]. The model is illustrated in Figure 4.1. It comprises a skele-

tal frame of the csa-lattice which is made up of a series of rigid crosses (Figure

4.1 (a)) inter-linked by sprung hinges. The crosses have similar properties to the

interstitial connectors in the csa-lattice and they behave as rotating rigid units.

The crosses have height and breadth l which is equal to the inter-hole spacing of

the voids in the csa-lattice and they are arranged such that they form a square

lattice of n×m square cells.

In addition to this, where two crosses meet there is a hinge and this is posi-

tioned at the thinnest section of each of the horizontal (vertical) ligaments in the

csa-lattice. The result of the coupling and hinging of the rods is that when one

cross is deflected from its initial position by an angle α, the other crosses must

also move. The net effect is that the initially square cells transform in a period-

doubling pattern switch in both directions as shown in Figure 4.1 (b). The switch

in geometry is qualitatively similar to that observed in the experiments.

The model presented here represents a first step in modelling the pattern-

switching properties of the csa-lattice. It has been tailored such to accommodate

only the period-doubled mode of the lattice as opposed to other modes such as

the longer wave, global modes described in Chapter 1. Here, it is acknowledged

that other modes may prevail in the csa-lattice, particularly for structures with

low void fractions and large row numbers. In these limit it is foreseeable that the

structure will behave as a simple elastica (i.e., the voids become so small that their
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influence on the elastic matrix is reduced to nothing). In this limit, the structure

may assume a half-wave mode like that described in Chapter 1 and there is no

allowance, as yet, for this in the model.

The motivation behind the construction of this model is to provide a simple

alternative to the Bloch wave analysis for determining the critical stress of the csa-

lattice. Whilst the aforementioned numerical approach provides a comprehensive

method for exploring the various instability modes of the structure, it is time-

consuming and requires a knowledge and expertise of finite element simulations

to correctly implement [22, 26]. The advantage, therefore, of the discrete model

presented here is the relative simplicity of the mathematics associated with it. By

comparing the model to experimental data, the goal is to determine how appro-

priate it is to apply simple beam theory to predict the buckling loads of these

structures, as well as the effect of the boundaries on this property.

4.2.2 Spring Constants

The resistance to deformation in the model is provided by rotational springs (stiff-

ness ρ [Nmrad−1]) positioned at each of the hinges. In general ρ can be calculated

separately for horizontal (ρh) and vertical springs (ρv). However, this is only nec-

essary where the holes are elliptical and/or arranged on a rectangular lattice. The

spring stiffness is calculated by considering the elastic buckling of a tapered col-

umn (Figure 4.1 (c)) when it is subjected to an axial force F . A comprehensive

derivation of the spring constants is presented in Appendix C and only the per-

tinent points are highlighted here. The stiffness ρ is calculated according to the

following equation [56]
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ρ = 12wEs

(∫ l
2

−l
2

1

(2y(x))3
dx

)−1

(4.3)

where w is the out-of-plane and 2y(x) the in-plane width of the tapered column.

y(x) varies with the distance x along the central axis of the rod as

y(x) =


l
2 −

d
2

√
1− 4x2 if 0 < |x| < d

2

l
2 if d

2 < |x| <
l
2

In Figure 4.2 the variation of ρ is shown as a function of the void fraction (red).

As the voids become smaller, the amount of material, and hence the stiffness,

increases.

4.2.3 Boundary Conditions

The total strength of the model is calculated by adding together the contributions

of the rotational springs in each of the rows and columns. In order to reflect

the fixed boundary conditions used in the experiment, the stiffness of the vertical

springs in the upper- and lower-most rows of the model are increased by a rotation

stiffness factor 1
k , where k ≤ 1.0. This is qualitatively similar to the concept of

effective length kL in the Euler-Bernoulli column problem, whereby k assumes

different values depending on the boundary conditions (k = 0.5 where both ends

are clamped, for example, meaning that its length L is effectively reduced). It is

assumed that each of the crosses in the interior of the sample is free to translate

and rotate with no influence from the boundaries, meaning that k = 1.0 for the

majority of the rods in the discrete model.
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Figure 4.2: The variation of ρ with Φ. The rotational spring stiffness calculated

using the model decreases with increased void fraction.
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4.2.4 Critical Stress

The normalised critical stress can be calculated by considering the total energy

function of the structure, Π(α). The full details of the derivation can be found in

Appendix C. In outline, the total energy of the system is given by

Π(α) = Flmn cosα+ 2m(2n− 2)ρα2 +
4mρα2

k
(4.4)

where the first term represents the work done by an external force F in compressing

the structure. The remaining two terms are the energy stored in the rotational

springs. Linear stability analysis of equation (4.4) allows the calculation of a

critical force Fcr at which the trivial state (α = 0) becomes unstable. Fcr is given

by

Fcr =
8(1− 1

n)ρ

l
+

8ρ

nkl
(4.5)

The critical stress σcr
Es

can be calculated by dividing equation (4.5) by the area

over which it acts (A = wl). As ρ is linear in w and Es (equation (4.3)), these two

variables can be set to unity, yielding

σcr
Es

=
8ρ

l2

(
1 +

1

kn
− 1

n

)
(4.6)

as the predicted normalised critical stress of the cellular structure. It is noteworthy

that there are terms in equation (4.6) which depend on the number of cells which

make up the lattice. Specifically, there is an inversely proportional relationship

with n, which suggests that the smaller the number of rows, the greater the stress

at which the pattern onset will occur. This implies that the effect should be
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detectable in the experiments since the samples are small (i. e. less than 10 rows).

4.3 Experimental and Numerical Results

The strength, stability and stiffness curves for the csa-lattice are presented in the

following sections and a short description of some key experimental observations

is given in Section 4.3.1.

4.3.1 γ − ε and σ − ε Plots

The data shown in Figure 4.3 represents the general trends observed in the experi-

ments. The variation of σ
Es

(Figure 4.3 (a)) and γ (Figure 4.3 (b)) with ε has been

plotted for four 4 × 4 csa-lattices with different void fractions. Both the aspect

ratio- and normalised stress-strain measurements show the same qualitative be-

haviour described in Chapter 3 and this allowed the critical strain εcr, normalised

critical stress σcr
Es

and the normalised elastic modulus E
Es

to be measured. The

dashed vertical lines in each of the plots represent the average εcr value for that

particular structure, which was calculated over five successive tests. A comparison

of the data sets presented in Figure 4.3 is in accord with intuition in that samples

with smaller Φ were stiffer, stronger structures which buckled at a higher degree

of compression. The same trends were observed for the 8 × 8 experimental data

sets.

4.3.2 Strength

In Figure 4.4 the variation with Φ of the critical stress for the 4 × 4 (blue circles)

and 8 × 8 (red circles) csa-lattices has been plotted. The dashed curve in each of

the graphs in Figure 4.4 represents the best fit of equation (4.1a) to the data. For

the 4 × 4 samples, σo
Es

= 0.71 ± 0.15 and α = 2.60 ± 0.17. The 8 × 8 data set
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Figure 4.3: Example plots to show the trends of the experiments. The stress

(a) - and aspect ratio (b) - strain plots show the same qualitative behaviour as

described in Chapter 3 and the dashed lines are the critical strain.
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shows behaviour approximated by σo
Es

= 1.00 ± 0.10 and α = 2.94 ± 0.09. The

size of the structure influences the stress at which the pattern onset occurs: the

critical stress values presented in Figure 4.3 (a) are greater than those in Figure

4.3 (b). The dashed black line in Figure 4.4 marks (Φmax −ΦB) = 0.445 which is

the theoretical limit for pattern-switching predicted by Bertoldi et al [6]. In the

experiments, no pattern-switching was observed for Φ values less than ΦB.

In both graphs shown in Figure 4.3, the green curve represents the variation of

σcr
Es

calculated using the discrete model with k = 0.70, which is the stiffness factor

used when calculating the buckling stress of Euler-Bernoulli columns with one fixed

and one free boundary. The normalised critical stress calculated using the model is

less than the experimental measurements and this implies that the stiffness of the

springs has been underestimated. For the data shown in Figure 4.4 the deviation

of the critical stress calculated using the model is between 25% and 50% lower

than the experimental values. In Figure 4.4 the deviation is approximately 20 %,

which suggests that there is a slight improvement in the agreement between theory

and experiment as the sample size was increased. The black lines in Figure 4.3

represent the best fit of equation (4.6) to the experimental data, where for the 4

× 4 lattices k = 0.31 and for the 8 × 8 lattices k = 0.21.

4.3.3 Stability

The dependence of the critical strain εcr on Φ is shown in Figure 4.5 for the two

csa-lattice sizes. Again, the experimental data is represented by circles and the

dashed lines show the best fit of equation (4.1b.) to the data. As with the σcr
Es

values, there is a noticable decrease in εcr when the size of the lattice is increased.

This is reflected in the contrasting εo and γ values for the two data sets: for the

4 × 4 csa-lattice, εo = 0.82 ± 0.07 and β = 1.66 ± 0.07, whereas for the 8 × 8
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Figure 4.4: The variation of the normalised critical stress σcr
Es

with Φ. This

has been plotted for (a) the 4 × 4 and (b) the 8 × 8 experimental samples. The

experimental data has been plotted alongside the predictions from the model using

k =0.70 (green) and k = 0.31 (a) and k = 0.21 (b), which are represented by the

black lines in each plot. The dashed line is the empirical fit for each data set.
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Figure 4.5: The variation of the critical strain εcr with Φ. This has been plotted

for the 4 × 4 (blue) and 8 × 8 (red) csa-lattice. The dashed line is the empirical

fit for each data set.
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Figure 4.6: The variation of the normalised stiffness with Φ. For both the 4 × 4

(blue) and 8 × 8 (red) samples a linear form of equation (4.1c) provided a good

fit to the experimental data.

csa-lattice εo = 1.22 ± 0.07 and β = 2.12 ± 0.10. Again, no data points have been

plotted past the limit (Φmax−Φ) = 0.445, as pattern formation was not observed

here.

4.3.4 Stiffness

The change in the normalised elastic modulus of the csa-lattice with Φ is illustrated

in Figure 4.6. Here the variation of the normalised honeycomb stiffness with the

void fraction has been plotted. For both the 4 × 4 and 8 × 8 lattices a quasi-linear

112



dependence of E
Es

with (Φmax − Φ) was observed. Fitting equation (4.1c) to the

experimental data yielded Eo
Es

= 1.35 ± 0.07 and γ = 1.13 ± 0.06 for the 4 × 4

and Eo
Es

= 1.00 ± 0.06 and γ = 0.94 ± 0.04 for the 8 × 8 csa-lattices.

As highlighted in the previous sections, no pattern switch was observed for csa-

lattices with Φ < 0.40 and as a result no εcr or σcr
Es

measurements were presented

for these. Although instability onset was observed to only exist for high values of

Φ, it was possible to measure the honeycomb stiffness of these samples, which is

why the range of Figure 4.6 is larger than that of Figures 4.4 and 4.5 respectively.

For low Φ values the consequence of compression was these structures out of plane

at high ε values and when this occurred the experiment was brought to an end.

4.4 Size Effects

The results shown in Section 4.3 demonstrated a dependence on the finite sample

size. As was predicted by the model, the smaller n, the greater the normalised

stress at which the csa-lattice buckled. The influence of sample size (i.e. the role

played by n and m) on the strength, stability and stiffness of the csa-lattice was

investigated in the study which follows.

4.4.1 Methodology

Three batches of experimental samples with void fractions Φ = 0.65, 0.60 and 0.55

respectively were manufactured and then subjected to compression tests. Each

batch comprised eight samples with m = 8, and increasing n from 3 to 10. After

compression tests on these were complete, the samples were rotated by 90o about

their centres and the tests were repeated. In the initial phase of the experiments

it was therefore possible to investigate the effect of increased height of samples
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with fixed width, and vice versa in the latter phase. All experimental samples

were made from Sil AD Spezial and tests were conducted at a compression speed

of 0.01 mms−1.

4.4.2 Results

The effect of sample size on the elastic properties of the csa-lattice can be seen in

Figure 4.7. The data presented in the plots in Figure 4.7 (a - c) is used to show the

effect of n; the role played by m has been plotted in the graphs in Figure 4.7 (d -

f). In all panels the different Φ values are represented according to the following

colour scheme: 0.65 (red), 0.60 (blue) and 0.55 (green).

As can be seen in the plots (a) and (b) in Figure 4.7, n plays a key role in

determining the value of the critical point at which pattern onset occurs. The

shorter the structure, the greater the degree of compression required for the onset

of instability and the associated normalised stress increases. There is a clear inverse

proportional relationship with n displayed in Figure 4.7, whereas the stiffness of

the structure is unaffected (Figure 4.7 (c)). The bold line plotted for each of the

data sets is the function

σcr
Es

=
8ρ

l2
+
Ao
n

+Bo (4.7)

where ρ is the spring stiffness calculated using equation (4.3). Equation (4.7) is

a modified version of equation (4.6) which incorporates the term 8ρ
l2

as well as an

inverse dependence on n. The constants Ao and Bo have been found to depend on

the void fraction as displayed in Table 4.2. Whilst Ao increases with decreased Φ,

Bo is small ( |Bo|
Ao
≈ 10−2) and so its influence is negligible.
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Figure 4.7: Size effects in csa-lattices. The variation of σcr
Es

, εcr and E
Es

with n (a

- c) and m (d - f) has been plotted.
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Φ Ao Bo

0.65 0.0165 ± 0.007 -0.0015 ± 0.0002

0.60 0.0208 ± 0.046 -0.0009 ± 0.0010

0.55 0.0400 ± 0.050 -0.0001 ± 0.0010

Table 4.2: The parameters Ao and Bo for the three Φ values considered in the

study of size effects. These were calculated by fitting the experimental data to

equation (4.7).

Whilst the numbers of rows in the sample appear to influence two of the three

measurements plotted here (the normalised elastic modulus data presented in Fig-

ure 4.7 (c) is independent of n), m does not play such a role. By fixing n to 8

and increasing m there was no change in the parameters plotted in the graphs (d

- f) in Figure 4.7. As such the strength, stability and stiffness of the structure is

independent of the finite width of the sample as predicted by the discrete model.

4.5 Void Shape

The effect of cell shape was also investigated using 2D cellular structures with

square and diamond-shaped voids. These were made using the techniques de-

scribed in Appendix B. According to the naming convention described in Chapter

3 the structures are called ssa- and dsa-lattices, where the first initials stand for

the cell shape (square or diagonal respectively) and again sa stands for square

array. The geometry of the ssa- and dsa-lattices is illustrated in Figure 4.8. Little

experimental research exists on the mechanics of dsa-lattices although theoretical

models using tesselated hinged squares have been shown in theory to exhibit ideal

auxetic behaviour (i.e. Poisson’s ratio ν = -1) when they are compressed [48, 49].

The pattern which develops in the models is qualitatively similar to the elliptical
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Figure 4.8: The ssa- and dsa-lattice geometries. These consisted of square arrays

of square (a) and diamond (b) cells respectively.

pattern observed in the csa-lattice. Instead of ellipses, the diamond shaped voids

form rhombi which are oriented orthogonally to their neighbours.

4.5.1 Geometry

The ssa- and dsa-lattice geometries comprise an n × m array of cells and the

inter-hole spacing is l. The cells in the former are square-shaped with side a. The

void fraction Φ of these structures is calculated as

Φ =
(a
l

)2
(4.8)

For the dsa-lattice, in which the voids have diagonal c,

Φ =

(
c√
2l

)2

(4.9)
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4.5.2 Methodology

An ssa- and a dsa-lattice were manufactured as described in Appendix B such that

each was a 4 × 4 square array with Φ = 0.45. The lattices were made from Sil

AD Spezial and tested using the aluminium loader at a compression speed of 0.01

mms−1.

4.5.3 Elastic Buckling

Both the ssa- and dsa-lattices underwent elastic buckling when compressed uniax-

ially. However, the form taken by each of the structures in their respective buckled

states was qualitatively different. The ssa- and dsa-lattices are shown in the strain

states ε = 0.03 mm/mm and 0.10 mm/mm in the images in Figure 4.9. At lower

ε values the geometry of the cells in the ssa- and dsa-lattice is homogeneous (Fig-

ure 4.9 (a) and (b) respectively). Both structures buckled at a critical strain and

there is a clear difference between the response of the two lattice types as shown

in Figure 4.9 (c) and (d) respectively. The ssa-lattice buckles to the side such

that there is localised shearing of the voids in the top and bottom rows of the

structure. However, in the dsa-lattice the effect of compression is to create a new

cellular pattern. In this, the diamonds have transformed into an array of mutually

orthogonal rhombi and these are equivalent to the elliptical voids which form in

the csa-lattice. Again, the pattern is global and no localised effects were observed.

The comparison between the buckling states of the dsa- and ssa-lattices can

be used to illustrate the competition between global and local buckling modes as

discussed in Chapter 1. As can be seen in (c), the diamond voids change shape

according to a period-doubling transformation, whilst the ssa-lattice forms a half-

wave when it buckles. Similar phenomena was described by Rosen [57] in predicting

the microbuckling of elastic fibers. According to Rosen, two buckling modes exist
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for such composites [58], the first being an “extension” buckling mode, in which

each fibre buckles into a pinned wave-shape which is 180 degrees out of phase with

those directly adjacent to it, and the second being a “shear” mode in which the

fibres form in-phase waves with one another. The comparisons between these and

the buckled states observed for the ssa- and dsa-lattices are apparent on looking

at the images in Figure. According to Rosen’s work [57–59], the competition be-

tween different modes in complex systems and the dominance of one over the other

depends on the relationship between axial and shear stiffnesses. When viewed in

this respect, it seems that the short wavelength mode observed in the dsa- and

csa-lattices results from a high shear stiffness relative to the axial stiffness, whereas

in the ssa-lattice the opposite is true.

4.5.4 Comparing Cell Shapes

The normalised stress-strain curves plotted in Figure 4.10 (a) provide a quantita-

tive comparison of the ssa- (blue) and dsa- (red) lattices to uniaxial compression.

The green data sets were taken in a test on a csa-lattice with the same n, m and

Φ values as the dsa- and ssa-lattices, which allows assessment of the influence of

cell shape on the stress-strain characteristics of the square arrays of cells. The

data sets for each structure comprise Hookean and plateau phases as described

in Chapter 3. The dsa-lattice is the most compliant of the three which can be

seen by comparing its slight slope to that of the other two structures. During the

linear phase, the normalised stress-strain curves of the csa- and ssa-lattice samples

are nearly coincident, although the former structure buckles at a higher degree of

compression than the latter.

As the pattern switches in the csa- and dsa-lattices are qualitatively similar
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Figure 4.9: The buckled configuration of the ssa- and dsa-lattices. The samples

are shown at ε = 0.00 mm/mm (a and c) and 0.10 mm/mm (b and d) respectively.
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Figure 4.10: The variation of σ
Es

(a) and γ (b) for the dsa-(red), ssa-(blue) and

csa-(green) lattices. The critical strains for the lattices of diamond and circular

cells are marked by the dashed lines. The critical point of the ssa-lattice is marked

by the circle in (a).
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Cell Shape Square Diamond Circle

εcr 0.079 ± 0.002 0.066 ± 0.002 0.144 ± 0.004

σcr
Es

0.025 ± 0.005 0.011 ± 0.001 0.047 ± 0.003

Eo

Es
0.341 ± 0.022 0.203 ± 0.007 0.380 ± 0.008

Table 4.3: The critical strain, normalised critical stress and normalised stiffness

of the ssa-, dsa- and csa-lattice with n = m = 4 and Φ = 0.45.

it was possible to use the image analysis techniques described in Chapter 3 to

monitor the aspect ratio γ of the diamond shaped cells. For the dsa-lattice γ was

the ratio of the diagonals of each of the cells. The variation of γ with ε has been

plotted in Figure 4.10 (b) for the csa- and dsa-lattices respectively. The plots are

of the same form, comprising an initial linear decrease in the aspect ratio which

changes to a square root dependence beyond a critical strain value εcr. The critical

point of each lattice was determined by fitting equation (3.5) to the γ-ε data as

described in Chapter 3 and these values has been marked using the dashed lines on

Figure 4.10 (b). It was very difficult to determine the critical strain using image

analysis techniques on the ssa-lattice as the buckled pattern was not global. How-

ever, the coordinates of the critical point were estimated by fitting linear curves

to the data in the Hookean and plateau regions respectively to estimate the onset

of the buckling.

The εcr,
σcr
Es

and E
Es

measures for each of the samples have been presented in

Table 4.3. Each value in the table is the mean of five compression tests and the

error is the standard deviation. It is striking that for the same Φ value the csa-

lattice can be considered relatively strong in comparison to the other structures;

it has the highest εcr,
σcr
Es

and E
Es

values of the three samples considered here.

The dsa-lattice is far weaker and buckles at a far lower degree of compression,
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4 × 4 8 × 8

σcr
Es

0.71 ± 0.15 (Φmax − Φ)2.60±0.17 1.00 ± 0.10 (Φmax − Φ)2.94±0.09

Eo

Es
1.35 ± 0.07 (Φmax − Φ)1.13±0.06 1.00 ± 0.06 (Φmax − Φ)0.94±0.04

εcr 0.82 ± 0.07 (Φmax − Φ)1.66±0.07 1.22 ± 0.07 (Φmax − Φ)2.12±0.06

Table 4.4: The empirical laws for the csa-lattice. The data shows that size effects

are significant when compressing small structures.

approximately half of that of the csa-lattice.

4.6 Summary

It has been shown that Φ plays a crucial role in determining the strength, stability

and stiffness of the csa-lattice. The empirical fits which approximate the behaviour

observed in the experiments have been reproduced for the 4 × 4 and 8 × 8 exper-

imental samples in Table 4.4. There is a similarity in these scaling laws to those

for the square cell structure which implies the csa-lattice is a stretching-dominated

structure. The constants σo
Es

, Eo
Es

and εo are higher than those presented in Table

4.1, however there is good agreement in the exponents. It should be noted that

because Φmax 6= 1 for the csa-lattices, the empirical laws determined here cannot

be considered exact equivalents to those listed in Table 4.1. This is evident when

considering the asymptotic limit Φ = 0; Eo
Es

is not unity as should be expected.

What the relationships do provide, however, is a means for predicting the critical

points of csa-lattice samples possessing finite dimensions.

Whilst the void fraction has been the main focus of the study, the finite size

of the csa-lattice - specifically, the number of rows in the sample - has been shown

to influence experimental measurements. Discussion of this effect was motivated
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by the predictions arising from a discrete model which has been shown to be a

good approximation of the structure. It remains, however, to determine the exact

effect of the boundaries on the critical stress in this model. The results presented

in Section 4.4.2 imply that the coefficient of terms proportional to 1
n is dependent

on Φ and not a constant as was assumed in the model. It may also be the case

that the pinning at the boundary permeates through the rest of the structure. As

such, a nodal stiffness for the csa-lattice must be determined to fully capture this

effect.

The role of the boundaries is particularly interesting as it has a similar ef-

fect on the stability of the structure. The increased stress values associated with

csa-lattice possessing low row numbers is driven by a delay in the pattern onset

and not by increased stiffness of the structure, as shown in Figure 4.7. Further

evidence of this effect can be found in Figures 4.5 and 4.6 respectively. The εcr

values for the 4 × 4 samples are clearly higher than those of the 8 × 8 samples,

whereas there is little to differentiate between the E
Es

data sets. It is therefore no

surprise that there is some discrepancy between the empirical fits presented for

the two different sizes in Table 4.4 and noteworthy that α, β and γ tend towards

3, 1 and 2 respectively as the size of the lattice is increased.

The findings presented in Section 4.5 have shown that the period-doubling

transition also occurs in the dsa-lattice. This structure is weak in comparison to

the csa-lattice. This must be because of the relative thickness of the ligaments

in each of the structures; in the dsa-lattice these are far thinner than in the csa-

lattice. Non-uniform thickness appear central to the switching mechanism and

this has been shown by the fact that no such switching effects occurred in the

ssa-lattice.
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Chapter 5

Pattern Switching in 3D

Cellular Structures

Experiments were conducted to determine the buckling behaviour of a porous

elastic cube with two sets of cylindrical voids. The voids crossed one fanother

orthogonally and the load was applied at right angles to their plane of coincidence.

The primary buckling state of the structure was essentially two-dimensional with a

pattern switch in one direction and localisation in the other. The switch occurred

in the cylinder set with the highest planar void fraction and this occurred at the

same degree of compression as for the 2D csa-lattice. Where the two void sets

were of the same size relative to the inter-void spacing, imperfections caused one

of these to provide the preferred buckling mode of the structure. Pattern-switching

was induced in the second void set by pre-straining the sample in two directions

simultaneously. This secondary state was shown to become unstable in unloading

tests, which indicated that there were large imperfections in the sample.
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5.1 3D Cellular Structures

The central issue explored in Chapters 3 and 4 was the in-plane deformation of

two-dimensional solids which had a regular, repeating planar geometry. Here, the

uniaxial loading of regular three-dimensional (3D) cellular structures is considered.

The structures are free to buckle in two directions orthogonal to the loading, either

independently or simultaneously. Despite the increased structural complexity in-

herent in progressing from a two- to a three-dimensional cellular geometry it is well

known that the effect of compression is similar in both of these system types [3].

There is an initial linear compression regime which levels off to a plateau phase as

a result of the failure of the structure. Typically, failure in 3D systems causes the

emergence of localised collapse and densification regions as opposed to the global

behaviour described in Chapters 3 and 4 [3, 60,61].

The most common example of a three-dimensional cellular structure is a foam,

in which the cells have a random size distribution and connectivity, as well as

various cell wall types [3]. However, recent studies have concentrated on pattern

formation in ordered 3D structures. These have a geometry which is inspired by

naturally-occurring photonic structures which exist on the micron scale [62, 63].

The techniques required to mimic the structure of these systems exist [64, 65]

and as such there is the potential to create three-dimensional switching devices

which respond to external stimuli and change their optical and audio transmission

properties as a result.

5.1.1 Cubic Lattice

The particular structure under consideration in this chapter will be referred to as

a cubic lattice. A schematic of this structure has been provided in Figure 5.1, in
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Figure 5.1: The cubic lattice. The structure is a block of elastic material (side

length L) through which 2 sets of cylindrical voids permeate. The sets of voids

have diameters d1 and d2 respectively and are arranged on square lattices with

inter-void spacing l. The voids cross one another at right angles within the cube.

which three of its six faces are shown. The lattice is a cube of elastomer (side L)

through which two sets of cylindrical voids cross one another at regular spatial

intervals. The voids are oriented such that the central axes of the cylinders cross

one another at right angles and each set passes through two opposing faces of the

structure.

The porous planes of the cubic lattice possess the geometry of the csa-lattice

described in Chapter 3. The sets of voids are each of diameter d1 and d2 respec-

tively and are arranged in a 4 × 4 square array. The inter-void spacing l is the

same in each plane. The planes are characterised by their respective void fractions
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Φ1 and Φ2 and the 3D system will be henceforth labelled as a (Φ1 × Φ2) cubic

lattice. The convention used here is that, for void sets of contrasting size, d1 > d2

and hence Φ1 > Φ2. In order to draw comparison with 2D cellular structures, the

void sets are referred to here by the plane in which they enter the cubic lattice

For example, the effect of change in geometry on the void set where d1 > d2 is

described as a change in the geometry of the large void plane.

5.1.2 Porosity

The cubic lattices are characterised not only by the Φ values of the two void sets

but also by the porosity P [mm3/mm3] of the whole structure. The porosity is

the three-dimensional equivalent of the void fraction and is defined as the volume

of the voids relative to that of the whole cube, L3. At the outset of the study

it was assumed that, for higher P values, the decreased material presence in the

cubic lattices would result in lower normalised stress values at a particular degree

of compression. As with the definition of void fraction given in Chapter 3, the

porosity can be calculated for a representative unit cell of the structure which is

then used to characterise the whole system. The unit cell of the cubic lattice is

a cube of side l (volume V = l3) through which two cylindrical voids (length l)

cross. Accordingly, P is given by

P =
V1 + V2 − V12

V
(5.1)

where V1 and V2 are the respective volumes taken up by each of the cylinders in

the unit cell i.e.

Vi =
πd2

i l

4
= Φil

3 (5.2)
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for i = (1, 2). Derivation of the common volume of the cylinders V12 is a nontrivial

problem which has the solution [66]

V12(d1, k) =
d3

1

3

[
(1 + k2)E(k)− (1− k2)K(k)

]
(5.3)

In equation (5.3) k = d2
d1

and K(k) and E(k) are the complete elliptic integrals of

the first and second kinds respectively. Both can be expressed as power series in

k such that the common volume V12 reduces to1

V12 =
2d3

1

3
(5.4)

for k = 1, in which case the voids have the same diameter. The maximum porosity

Pmax of the cubic lattice is achieved when d1 = d2 = l and according to equations

(5.1) and (5.4) Pmax = π
2 −

2
3 ≈ 0.904.

5.1.3 2D Geometry Interactions

The aim of the experiments was to determine the behaviour of cubic lattices under

uniaxial loading compression by applying load to the top (non-porous) surface of

the structure. It was possible to manufacture two different cubic lattices using the

moulding techniques described in Appendix B: these were (0.60 x 0.41) and (0.60

x 0.60) cubic lattices for which P = 0.70 and 0.76 respectively.

It has been shown in Chapter 3 that pattern onset in the 2D csa-lattice geom-

etry comes about as a result of an elastic buckling instability which occurs at a

1This is a strikingly simple result which was known to Archimedes [67].
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critical strain εcr. The compression point at which the structure becomes unsta-

ble is proportional to (Φmax − Φ)2, i.e. the larger the diameter of the voids, the

lower the critical strain. The two cubic lattice geometries considered here were

made up of superimposed csa-lattice geometries and the void fractions were cho-

sen such that pattern-switching would be observed in 2D samples possessing these

respective arrangements of voids. However, it was unclear as to how the buckling

modes of the two sets of orthogonal voids would interact and what consequences

this would have for the cellular geometry of the structure.

If the two sets of voids act independently of one another, then 2D pattern-

switching in one of the planar directions was expected in the experiments. Incre-

menting the applied strain from ε = 0.00 mm/mm would cause the set of voids

with the greater Φ value to form the pattern of mutually orthogonal ellipses. The

primary buckling state of that void set would then dominate the 3D structure.

This is simple to comprehend in the case of the (0.60 × 0.41) cubic lattice, for

which pattern-switching in the Φ = 0.60 planar direction was expected, but it is

less clear for the (0.60 × 0.60) cubic lattice. In theory, buckling modes in each

set of voids would be triggered at the same level of compression, unless there are

structural imperfections which cause one direction to be preferred. If the above

description of the interaction between the voids were to prove appropriate, this

would be further evidence of the robust nature of the switching mechanisms de-

scribed in Chapter 3. However, there may exist other buckling modes of the cubic

lattice as the two void sets cannot necessarily be treated independently of one

another.

130



5.2 Methodology

5.2.1 Manufacture and Testing

The experimental samples were made from Sil AD Soft (Es ≈ 350 kPa). In its

initial fluid state this material is the least viscous of the addition-curing elastomers

used in the study. This made it suitable for pouring into the millimetre-sized gaps

which were present in the mould. The procedure followed in manufacturing the

cubic lattices is described in full in Appendix B.

As well as manufacturing the cubic lattice samples, two reference samples were

made using the same material. These were extended versions of the csa-lattice

geometries described in Chapter 3 with increased out-of-plane width w. The data

taken during experiments on these structures was required for comparison with

that measured for the two cubic lattices. The reference samples had 4 × 4 square

lattices of cylindrical voids which possessed the respective void fractions (Φ1 = 0.60

and Φ2 = 0.41) of the voids in the cubic lattice samples. The inter-void spacing

l was the same for all four experimental samples. The cubic lattice and refer-

ence samples were tested using the aluminium loader attached to the compression

machine and during the tests the compression speed was set to 0.01 mms−1.

5.2.2 Boundary Removal

The initial compression tests performed on the cubic lattices showed localised be-

haviour in the cylindrical voids. In the images in Figure 5.2, two faces of the (0.60

× 0.41) cubic lattice are shown in the strain state ε = 0.10 mm/mm. Within the

large diameter void plane (Figure 5.2 (a)) the effect of buckling was the side-to-

side shearing of the voids. The bottom row of voids in this plane were the most

strongly affected i.e. the deformation was locally manifested. The result of this
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was that the voids in the small void plane were sheared out-of-plane in an irregu-

lar manner. This is shown in Figure 5.2 (b), where, again the bottom row in the

small diameter void plane has undergone a greater degree of deformation than the

top rows. The same effect of in-plane deformation in on a dominant void set was

observed in experiments on the (0.60 × 0.60) cubic lattice.

These preliminary experiments showed that buckling within one plane was

the dominant effect on the cubic lattices. However, the form taken by these struc-

tures as a result of buckling gave no indication that the pattern-switching observed

within the csa- and dsa-lattices was to be expected in the cubic lattice. It has been

shown by Bertoldi et al [26] that the presence of thick side walls in the csa-lattice

can affect the global nature of switching mechanisms and it was hypothesised that

the faces of the cubic lattices may have played a similar role in the initial experi-

ments.

Each of the cubic lattices were therefore modified by the removal of the porous

cube faces using a sharp thin-bladed knife. These experimental samples possessed

a reduced breadth and width and each lattice of voids comprised a 4 × 2 square

array flanked by a column of four semi-circles on each side as a result. The side

walls were also removed from the reference samples at this stage to replicate the

alteration performed on the cubic lattice samples. As shall be documented in

the following sections, the effect of the boundary removal was profound for the

cubic lattices. All results presented henceforth were measured during experiments

performed on the modified experimental samples.
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Figure 5.2: Localisation in the initial experiments. In the large void plane of

the (0.60 × 0.41) cubic lattice (a) the voids underwent shearing as a result of the

structure buckling. The buckling was localised and was most pronounced in the

bottom layer of the voids. (b) The effect of the localised buckling in the large void

plane was the irregular shearing of the small voids out of plane.

5.3 Results

5.3.1 Pattern Transformation

Reference Samples

The compression experiments confirmed that the effect of elastic buckling of the

reference samples caused the initially circular voids to form mutually orthogonal

ellipses. The structures are shown prior to compression in Figure 5.3 (a) and

5.3 (b) and at ε = 0.09 mm/mm (Figure 5.3 (c)) and 0.15 mm/mm (Figure 5.3

(d)). As observed in Chapter 4, the necessary applied strain required to observe the

pattern-switching effect was higher for the reference sample with the lower Φ value.

A striking feature of the images shown in Figure 5.3 is that the in-plane rotation

of the interstitials was consistent along the axis of each of the voids. The coupling
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Figure 5.3: Pattern-switching in the reference samples. The Φ = 0.60 and 0.41

reference samples are shown prior to compression (a and c, ε = 0.00 mm/mm)

and after the respective buckling events (b, ε = 0.09 mm/mm and d, ε = 0.15

mm/mm).

between the connectors remained strong despite the increased out-of-plane width

and this was repeatable as described in Chapter 3. The experiments on the refer-

ence samples served to confirm that csa-lattices with the Φ values used to design

the cubic lattice samples would show pattern-switching on their own.

Cubic Lattices

The form taken by each of the cubic lattices during the compression tests has been

documented in Figures 5.4 and 5.5 respectively. In Figure 5.4 (a) the large void

plane of the (0.60 × 0.41) cubic lattice is shown prior to compression and in Figure

5.4 (b) the small void plane is shown in the same strain state. In the images in
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Figure 5.4: Pattern-switching in the (0.60 × 0.41) cubic lattice. The large (a)

and small (c) void planes are shown prior to compression. The images in (b) and

(d) are of the same planes at ε = 0.10 mm/mm, and the effect of buckling on the

respective void sets is clearly confined to one plane.
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Figure 5.5: Pattern-switching in the (0.60 × 0.60) cubic lattice. In the exper-

iments a pattern-switching plane (Plane 1) and a non-pattern-switching plane

(Plane 2) were shown to exist. Planes 1 and 2 are shown prior to compression in

(a) and (c) They are shown at a ε = 0.12 mm/mm in images (b) and (d).
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Figure 5.4 (c) and Figure 5.4 (d) these planes are shown at ε = 0.10 mm/mm,

which is after the buckling event occurred. The large void plane buckled into the

familiar pattern of mutually orthogonal ellipses (Figure 5.4 (b)). The small di-

ameter voids have become sheared out of plane (Figure 5.4 (d)); no evidence of

pattern formation was observed in this planar direction.

Similar behaviour was observed in compression tests performed on the (0.60 ×

0.60) cubic lattice. The images in Figure 5.5 are of each of the lattice planes prior

to compression (Figure 5.5 (a) and (c) and at ε = 0.12 mm/mm (Figure 5.5 (c)

and (d)). As was observed in the (0.60 × 0.41) cubic lattice, the pattern formation

was confined to one plane only. The consequence of this was that the other set of

voids was sheared out of plane as shown in Figure 5.5 (d) and this was observed in

repeated tests. For clarity, the planes of the (0.60 × 0.60) cubic lattice are labelled

as Plane 1 (in which pattern formation was observed) and Plane 2 (non-pattern

forming plane).

5.3.2 Normalised Stress-Strain Data

Reference Samples

The normalised stress-strain data measured in the uniaxial compression tests on

the two reference samples is presented in Figure 5.6. As described in Section 6.3.1,

both structures were observed to undergo elastic buckling and their normalised

stress-strain curves were of the characteristic form associated with the buckling of

cellular structures. Specifically, the response of the lattice to compression prior to

its buckling comprised a linear normalised stress-strain relationship and buckling

led to a plateau phase as in the 2D case. It is highlighted that strain softening

effects were observed for the Φ = 0.41 lattice, which is marked by the negative
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Figure 5.6: The normalised stress-strain data for the reference samples. Both

lattices were observed to buckle elastically and the experimental results agree with

those conducted on two-dimensional lattices.

slope of the normalised stress-strain curve post-buckling, whereas for the higher

void fraction the plateau phase was flat. In this study, the coordinates of the crit-

ical point (εcr,
σcr
Es

) were determined by approximating the normalised stress-strain

behaviour in each of the two phases as a linear relationship and finding the inter-

section of the two linear plots. These have been marked by the dashed black lines

on the plots in Figure 5.6, and the critical points have been highlighted by a circle

with the appropriate colour on each data set.

As observed in Chapter 3, the large void structure (Φ = 0.60) was the weaker

of the two, buckling at a low critical strain and normalised stress and with a lower

stiffness. The coordinates of the critical points and the elastic moduli of the two
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Φ 0.60 0.41

εcr [mm/mm] 4.74 ± 0.36 × 10−2 1.43 ± 0.04 × 10−1

σcr
Es

[kPa/kPa] 1.08 ± 0.03 × 10−2 6.87 ± 0.19 × 10−2

E
Es

[kPa/kPa] 2.29 ± 0.19 × 10−1 4.81 ± 0.23 × 10−1

Table 5.1: The critical strain, normalised critical stress and normalised elastic

modulus of the reference samples.

reference samples have been listed in Table 5.1. Each of the measures quoted in

the table are mean values determined from five repeated tests on each structure

and the error on these values is the standard deviation from this value.

Cubic Lattices

The normalised stress-strain data measured in uniaxial tests on the (0.60 × 0.41)

(red) and (0.60 × 0.60) (blue) cubic lattice samples has been plotted in Figure 5.7.

The modified structures exhibited a similar normalised stress-strain response to

the reference samples, and it was possible to identify an initial region of Hookean

elasticity which led into a plateau phase of compression. The (0.60 × 0.41) cubic

lattice was stiffer and stronger than the (0.60 × 0.60) cubic lattice and this can be

seen by comparing the normalised critical stress and normalised elastic modulus

values presented in Table 5.2. It was observed that both samples buckled at

approximately the same level of compression: εcr = 4.79 ± 0.09 × 10−2 mm/mm

and 4.78 ± 0.11 × 10−2 mm/mm respectively.

5.3.3 Critical Parameters

In Figure 5.8 the critical strain (Figure 5.8 (a)) normalised critical stress (Figure

5.8 (b)) and elastic modulus (Figure 5.8 (c)) have been plotted for the four experi-

mental samples considered here. In each of the plots in Figure 5.8 the independent

139



Figure 5.7: The normalised stress-strain data for the modified cubic lattice sam-

ples. The structures buckled under uniaxial compression at approximately the

same strain value. The critical points for the lattices are each marked by a circle

on the respective data sets.

(Φ1 × Φ2) (0.60 × 0.41) (0.60 × 0.60)

εcr [mm/mm] 4.79 ± 0.09 × 10−2 4.78 ± 0.11 × 10−2

σcr
Es

[kPa/kPa] 3.49 ± 0.15 × 10−3 1.61 ± 0.10 × 10−3

E
Es

[kPa/kPa] 7.30 ± 0.79 × 10−2 3.37 ± 0.71 × 10−2

Table 5.2: The critical strain, normalised critical stress and normalised elastic

modulus values for the cubic lattices.
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variable is the porosity P of the sample, which in the case of the reference samples

is simply the void fraction Φ.

The variation of εcr (red) confirms that the buckling of each of the cubic lat-

tices is dominated by the 2D instability in the Φ = 0.60 void set. In the reference

samples, the critical strain increased as the void fraction was decreased and this is

in agreement with the experimental observations described in Chapter 4. There is

a deviation of less than 1% between the critical strain values of the cubic lattices

and that of the Φ = 0.60 reference sample which shows that the three structures

buckled at the same degree of compression. This has been indicated by the dashed

red line in Figure 5.8 (a) which links the εcr values measured for the higher porosity

structures. This is particularly striking when considering the structural geometry

of the cubic lattice; the presence of the additional set of voids had no effect on the

onset of instability within the dominant void sets.

The strength and stiffness of the structures is affected by the presence of the

two void sets and this has been illustrated in the plots in Figure 5.8. Both σcr
Es

(blue) and E
Es

(green) showed a decrease with increased porosity. The decrease in

material presence served to weaken the cubic lattice as suggested in Section 5.1.2.

In the experiments on the (0.60 × 0.41) cubic lattice, for example, elastic buckling

was observed at twice the normalised stress as for the (0.60 × 0.60) cubic lattice.

5.4 Secondary State

The focus of the work on cubic lattices so far has been the effect of elastic buckling

on the structural geometry of these structures under uniaxial compression. The

buckling instability led to planar pattern-switching in one plane (Plane 1) and
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Figure 5.8: The variation with P of εcr (a), σcrEs
(b) and E

Es
(c) for the (0.60 × 0.41)

and (0.60 × 0.60) cubic lattices. The values are compared to the same measures

for the reference samples.
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out of plane buckling in the other (Plane 2). This can be considered to be the

evolution of the primary state of the cubic lattice. There will exist a secondary

state which forms in the same direction but where the pattern is shifted in phase

by one void, as discussed for the csa-lattice in Chapter 3.

In the cubic lattices the interaction between two perturbed pitchfork bifurca-

tions which describe the equilibrium states of the two respective void sets must

be considered. Secondary bifurcations have been shown in systems with multiple

bifurcation pointed to result in a rich bifurcation structure in which equilibrium

branches exchange stabilities under certain conditions [68]. This leads to the cre-

ation of new equilibirium states and a complex range of stabilities and instabilities.

In the cubic lattice, the dominant void set in the cubic lattice is chosen either as

a result of the contrasting void diameters (as observed in the (0.60 × 0.41) cubic

lattice), or by imperfections as was the case where the voids were of nominally

equal size. Intuition suggests that a stable state associated with pattern-switching

in Plane 2 of the (0.60 × 0.60) cubic lattice should exist and this is the focus in

this section. By performing the study it should be possible to estimate the extent

of the imperfections in the system which caused pattern formation in Plane 1 to

dominate the buckling of the 3D structure.

5.4.1 Methodology

A biaxial compression technique was used to induce the secondary state consisted

of pre-straining the cubic lattice in both axial and transverse compression direc-

tions. The steps taken to apply biaxial pre-strain to the cubic lattices are shown

in the schematic in Figure 5.9. Two Perspex sheets (42.0 mm × 50.0 mm) were

attached to a clamp and positioned either side of the cubic lattice (Figure 5.9 (a)).

A layer of Vaseline was applied to the surface of each of the plates to aid their
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Figure 5.9: The biaxial method. (a) The Perspex plates were aligned to apply

transverse strain to Plane 2 when they were tightened. The strain was increased

such that the pattern of mutually orthogonal ellipses was induced in Plane 2. (b)

The aluminium loader was lowered to apply axial strain to the top surface of the

experimental sample. (c) The Perspex plates were loosened and removed from the

experimental setup. The axial strain held the pattern in place. (d) The sample

was unloaded in a controlled manner at a constant speed of 0.005 mms−1 to test

the stability of the induced secondary state.
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removal at a later stage. The sample was oriented such that tightening the clamps

(Step 1) applied transverse strain (εtr = 0.065 mm/mm) to Plane 2 of the experi-

mental sample. This was sufficient to cause formation of the orthogonal elliptical

pattern in Plane 2 of the (0.60 × 0.60) cubic lattice.

The aluminium loader was then lowered (Step 2) onto the top surface of the

sample applying an axial strain ε. This reinforced the pattern which had formed

in the cubic lattice (Figure 5.9 (b)). The clamps were loosened and removed from

the setup by sliding them away from the experimental sample (Step 3). The cubic

lattice tended to switch to the primary state if this process was not performed

carefully and slowly. Having removed the plates the secondary state was held

in place by action of the axial compression (Figure 5.9 (c)). A minimum axial

strain (ε = 0.20 mm/mm) was required to ensure that the cubic lattice remained

in this state. The stability of the secondary state was tested by unloading the

structure at a constant speed (Step 4, Figure 5.9 (d)). As with the unloading

experiments described in Chapter 3, the speed of the unloading experiments was

lowered to 0.005 mms−1 in order to reduce material hysteresis effect and provide

a high resolution in the experimental data.

5.4.2 Results

In the plot in Figure 5.10 two normalised stress-strain data sets are shown. The

first is a loading (red) - unloading (blue) curve for the (0.60 × 0.60) cubic lattice.

For this data set it was observed that the features of the loading data were mim-

icked qualitatively by the unloading curve. During loading a transition between

the trivial and pattern-switched geometries in the switched state at a critical strain

εcr = 0.0481 mm/mm and densification of the voids is marked by the increase in

normalised stress values at high strains (ε > 0.20 mm/mm). These processes are
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Figure 5.10: The normalised stress-strain data for loading of the primary state

(red), the unloading of the primary state (blue) and the unloading of the structure

in the secondary state (black). The drop in the normalised stress value during

unloading of the secondary state occurred because the structure to the primary

state. (a) The cubic lattice is shown in the secondary state at axial strain ε =

0.21 mm/mm. (b) The structure is shown at ε = 0.18 mm/mm which is after the

secondary state became unstable.
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reversed by the unloading of the structure. The unloading curve lies slightly be-

low the loading curve as a result of the hysteresis of the material during unloading.

The black curve is the unloading curve of the secondary state induced using

the biaxial pre-strain technique described in Section 5.4.1. At the beginning of

the test (high ε values) the normalised stresses required to hold the secondary

state in place were higher than those associated with the unloading of the primary

state. This is a similar observation to that made in Chapter 3 when comparing

the normalised stress of the csa-lattice in the primary and secondary states; the

latter existed at a higher normalised stress value than the former.

A large drop in the normalised stress value in the unloading of the secondary

state experiment was observed at ε = 0.198 mm/mm. After this, there was excel-

lent agreement between the two unloading data sets. The cause of the reduction in

the normalised stress value at this point was the switching of the lattice from the

secondary to the primary state, which resulted from the secondary state becoming

unstable at this point. The result of the transition from the secondary to the

primary state of the (0.60 × 0.60) cubic lattice is shown in Figure 5.10. Plane 1 is

visible at ε = 0.21 mm/mm (Figure 5.10 (a)) and ε = 0.18 mm/mm (Figure 5.10

(b)) respectively. There was a dramatic switch in the geometry of the structure

between these points in the unloading experiment. The voids shown switched from

a planar pattern of mutually orthogonal ellipses to voids which have been sheared

out of plane. Within Plane 1 (not shown) the reverse is true.

Again, the behaviour observed here is similar to the 2D case considered earlier

in Chapter 3. However, there is a contrast in the apparent size of the imperfection.

In the experiments on the csa-lattice the secondary state was shown to become
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unstable in close proximity with εcr for the structure and this implied that the

imperfections in the system were small. Here, the difference between the strain

point at which the secondary state became unstable and the critical strain is ∆ε

≈ 0.15 mm/mm, which is large and implies that the primary and secondary states

are separated to a large extent despite the fact that the voids in each plane were

nominally the same size.

5.5 Summary

This study has provided an insight into the compression of elastic structures

through which two sets of circular voids arranged on a square lattice permeate.

The sets of cylindrical voids with the highest Φ values underwent pattern-switching

to an array of mutually orthogonal ellipses as a result of uniaxial compression.

When two such lattices were combined, the resulting three-dimensional structure

buckled into a primary state with planar pattern formation. In both structures

the degree of compression required to cause buckling agrees with that required

to cause pattern-switching in its dominant plane. These results suggest that the

instabilities in both sets of cylindrical voids competed with one another, with the

large diameter voids providing the buckling mode for the cubic lattice. The effect

of the second void set was simply to reduce the resistance to loading of the struc-

ture by reducing the material presence.

The void sets behaved independently of one another and this observation was

maintained even when the voids in each lattice are of the same size. In this case

imperfections caused the buckling of one void set to dominate the structure. It

has been shown that it is possible to induce a secondary state in the (0.60 × 0.60)

cubic lattice which consists of the formation of the elliptical pattern in Plane 2
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and out-of-plane shearing effects in Plane 1. An initially high level of axial strain

was required to induce the state and this became unstable within a small strain

range which caused a switch in lattice geometry back to the primary state. The

implications of these observations are that it is not possible for the two states to

co-exist: the elliptical pattern cannot form in both planes at the same time. In

addition, the cubic lattice is highly sensitive to imperfections in the manufacturing

process which have shown to have a considerable effect on the structure’s stability.
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Chapter 6

Pattern Formation in Granular

Crystals

A granular crystal comprising an ordered mixture of rigid and soft cylinders was

subjected to uniaxial compression tests. The cylinders were initially arranged on

a square lattice with the hard cylinders embedded in the soft array. A pattern-

switching mechanism was observed whereby the rigid cylinders fell through gaps in

the compressed crystal and formed vertically aligned pairs. The manner in which

the cylinders were rearranged and the reversibility of the deformation process were

primarily governed by the size ratio of the two cylinder sets. Good agreement was

found between the experimental results and those of finite element and molecular

dynamics simulations.
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6.1 Granular Crystals

6.1.1 Motivation

The experiments described in this chapter were conducted on an ordered two-phase

granular structure called a granular crystal. The inspirations for the study of this

system came from a wide range of scientific fields. Whilst granular media have

have been extensively studied [69] and are known to show interesting segregation

behaviour [70,71], research into ordered granular systems has been largely limited

to the use of one-dimensional granular chains as acoustic filters [72] and shock

absorbers [73,74]. The 2D granular crystal is an extension of this type of structure

and it possesses a structural geometry similar to that of martensitic crystals [75].

In these structures a stress-induced diffusionless solid-to-solid phase transition is

observed at the atomic scale and this is the basis of shape memory behaviour.

The geometry of the granular crystal is shown in the schematic in Figure 6.1.

The crystal comprises an array of large rubber cylinders (pink) embedded with

one of smaller PTFE cylinders (white) such that each rigid cylinder is surrounded

by four soft ones. The cylinders in the granular crystal are analogous to the parti-

cles in the martensitic crystal1, although the interactions between the constituent

particles in the two systems are markedly different. The goal of the experiments

was to determine whether uniaxial compression of the granular crystal could bring

about a coordinated transformation in its geometry similar to the martensitic tran-

sition [75]. If this were to occur, there would be potential for developing tunable

granular devices similar to those which utilise the pattern-switching properties of

the csa-lattice [40].

1For clarity, in this chapter the labels “particle” and “cylinder” shall be used inter-

changably when referring to the components of the granular crystal.
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Figure 6.1: The granular crystal. The structure comprised regular arrays of rigid

PTFE (white, radius r) and soft rubber (pink, radius R) cylindrical particles. The

centres of the neighbouring soft particles were aligned according to a right-angled

triangle of hypotenuse 2(r +R).
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There are similarities between the granular crystal and the cellular structures

considered in the previous chapters. For example, both systems possess a high

degree of symmetry in their uncompressed states and are comprised primarily of

elastomeric material. A clear contrast between the two systems is the mobility of

their constituent components. The cellular structure is a fully connected system

and compression of the experimental samples caused the voids to change shape in

a reversible and repeatable manner. In contrast to this, the granular crystal was

made up of discrete pieces which were free to move according to contact forces

exerted by neighbouring particles and it was an open question as to whether new

patterns would form in the structure under uniaxial loading conditions. If so, it

was unclear whether this would come about via global switching events similar to

those described in Chapters 3, 4 and 5 or if local effects would be observed.

6.1.2 Structural Geometry

The radii of the soft and hard cylinders in the granular crystal are R and r respec-

tively and the spacing between neighbouring soft cylinders is h in the horizontal

and v in the vertical planar directions. The granular crystal geometry is described

by two dimensionless parameters, which are defined because the experimental ob-

servations are independent of length scale but depend on relative measures. The

first of these is the particle size ratio χ which is defined as

χ =
r

R
(6.1)

and the second is the gap ratio ξ which is the ratio of the horizontal to vertical

gap sizes i.e.
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ξ =
h

v
(6.2)

In addition to χ and ξ, the geometry of the granular crystal is fully described by

the number of rows n and columns m of soft particles in the crystal. The rigid

particles are arranged on an (n− 1)× (m− 1) square lattice.

The focus here is on the compression of granular crystals in which the cylinders

were arranged in a square lattice, i.e. for geometries where ξ = 1. Appropriate

values of h and v were chosen to create the square lattice using the fact that the

centres of neighbouring particles were joined by a right-angled isoceles triangle

with hypotenuse 2(R + r) as shown in Figure 6.1. The spacings were calculated

using equation (6.3) below

h = v =
(√

2(1 + χ)− 2
)
R (6.3)

6.2 Methodology

6.2.1 Experimental Setup

In the experiments the soft particles (radius R = 5.05 ± 0.07 mm, length L =

10.05 ± 0.12mm) were made from Sil AD Soft (Es ≈ 350 kPa) using the cylindri-

cal moulds described in Appendix B. The rigid particles were cut to appropriate

lengths from PTFE rods (Ep ≈ 500 MPa) using a sharp thin-bladed knife. There

was an elasticity ratio
Ep

Es
≈ 103 between the two particle types.

Two sets of PTFE cylinders with radii r1 = 2.70 ± 0.05 mm and r2 = 3.10 ±

0.05 mm were used in the experiments. Hence, the behaviour of granular crystals
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Figure 6.2: The experimental setup. The granular crystal was housed in a mod-

ified version of the Perspex housing described in Chapter 2. This incorporated

Perspex sheets and aluminium spacers to reduce the internal width.

with size ratios χ = 0.53 and 0.61 respectively were studied. The spacings required

to achieve the square lattice were calculated using equation (6.3) and were 0.86

mm and 1.50 mm respectively.

The Perspex housing and loader were used in the experiments and compression

tests were performed at a range of speeds. The data presented in this chapter was

for a test with speed 1.00 mms−1, although the experimental observations were

rate-independent. Two rectangular Perspex sheets were put in place to reduce

the inner width of the housing (Figure 6.2) in order to accommodate the granular

crystal and provide a fixed boundary on either side of the sample. The width of

the experimental housing could be adjusted to suit the crystal dimensions by the

addition of aluminium spacers of thickness 1.50 ± 0.05 mm. The soft particles were

arranged in an 8 × 10 lattice in the experiments on the χ = 0.53 granular crystal
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Figure 6.3: The inter-particle distance. Dj
i,i+1 was calculated for neighbouring

rigid particles (i and i + 1) within column j. The coordinates of the centres of

each rigid particle were measured using image analysis techniques.

and in a 9 × 9 lattice for the χ = 0.61 crystal to suit the housing dimensions. The

crystals were built by hand prior to each experiment and the constituent particles

were covered in Vaseline to reduce friction effects. The width and the height of

the granular crystal was measured using Vernier callipers prior to the experiment.

6.2.2 Inter-Particle Distance

The image analysis technique described in Chapter 3 was used to calculate the

distance between the rigid particles in the granular crystal. A low black-white

threshold was required to differentiate between the white rigid components and

the darker soft cylinders when binarising the digital images. The distance Dj
i,i+1

between neighbouring rigid particles in rows i and i + 1 within column j was
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calculated as

Dj
i,i+1 =

√
(xji+1 − x

j
i )

2 + (yji+1 − y
j
i )

2 (6.4)

where x and y were the coordinates of the centres of each rigid particle. In equation

(6.4) the index j is the column number and i is the row number as sketched in

Figure 6.3. According to the naming convention used here the left-most column

of rigid particles has superscript j = 1 and the bottom row has subscript i = 1.

6.2.3 Simulations

Numerical simulations were performed alongside the experiments on the granular

crystals [76]. In the finite element simulations (FEM, [77]) the particles were mod-

elled using the commercial software ABAQUS as nearly compressible neo-Hookean

solids with the Young’s moduli and radii listed in Section 6.2.1. A small Coulomb-

type friction (µ = 0.01) was used to replicate the friction between the particles in

the experiments and plane strain conditions were applied in the calculations.

In addition to the FEM simulations, a two-dimensional soft molecular dynam-

ics (MD, [78]) model was constructed in which the inter-particle forcing f was

calculated as

f(δ) = k1δ + k2δ
α (6.5)

where δ is the geometrical overlap between particles. The contact parameters k1, k2

and α were determined from contact simulations between the different particle

types and varied for soft-soft, soft-hard and hard-hard interactions. The Coulomb-

type friction was also incorporated in the MD simulations and the same parameters
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Figure 6.4: The numerical crystals. In the MD (a) and FEM (b) simulations

of the granular crystal the geometry of the experimental sample and the testing

conditions were replicated.

were used as in the FEM study. The simulations are described in greater detail

elsewhere [76, 79]. The conditions of each experimental test - compression speed,

particle spacing, boundary conditions and lattice size - were replicated in each

numerical compression test. In Figure 6.4 the uncompressed χ = 0.61 granular

crystal is shown for the MD (Figure 6.4 (a)) and FEM (Figure 6.4 (b)) simulations

respectively. In the MD simulations, the soft particles are pink and the rigid

particles green, whereas in the FEM simulations they are blue and red respectively.

6.3 Pattern Switch

6.3.1 Experiments

Uniaxial compression of the granular crystal gave rise to a new pattern whereby

the rigid particles formed pairs with their nearest neighbours. To illustrate the

pattern switch, the χ = 0.53 granular crystal is shown in strain states ε = 0.00
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mm/mm and ε = 0.25 mm/mm in the images in Figure 6.5 (a) and (b). Compres-

sion of the crystal has caused the soft particles to form buckled chains and gaps

have been created between these. The initially isolated rigid particles have been

pushed into the gaps and have formed rigid particle pairs. These are aligned in the

direction of loading and are arranged throughout the structure in a chess-board

pattern. This switch in the crystal geometry was consistently achieved in experi-

ments on granular crystals with both of the size ratios used in the study.

The pattern switch described above was a period-doubling transformation of

the crystal’s structural geometry and is similar to that observed in experiments

on csa-lattices described in Chapter 3. In both systems, the unit cell which char-

acterised their respective planar geometries became enlarged as a result of the

formation of new pattern. Initially, the unit cell of the granular crystal was square

and enclosed one soft and one hard particle as illustrated in Figure 6.5 (c). In the

pattern-switched state the unit cell contained two of each particle type and this

has been sketched in Figure 6.5 (d).

6.3.2 Simulations

The advantage of the numerical approaches described in Section 6.2.3 was that

the components of the granular crystal did not have inconsistencies in construc-

tion since the particles were perfectly round and could be positioned precisely. The

images in Figure 6.6 are of the experimental (a, d), FEM (b, e) and MD (c, f)

crystals at ε = 0.25 mm/mm. Both sets of simulations show excellent qualitative

agreement with the experiments and replicate the pattern formation described in

Section 6.3.1. This is remarkable because, as described above, the effect of imper-

fections in the crystal is reduced significantly by conducting the numerical study.

In addition to this, there is little experimental control on friction in the experi-
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Figure 6.5: The pattern switch of the χ = 0.53 granular crystal. The planar

geometry evolved from the initial (a, ε = 0.00 mm/mm) to the pattern-switched (b,

ε = 0.25 mm/mm) state as a result of compression. The switch was characterised

by the expansion of the initially square unit cell (c) such that it enclosed two of

each particle type in the pattern-switched state (d).
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Figure 6.6: The granular crystals at ε = 0.25 mm/mm. The χ = 0.53 (a - c)

and χ = 0.61 (d - f) crystals underwent pattern-switching but in the simulations

the crystal with the higher size ratio exhibited some localised deformation (e and

f respectively).

ments and these can vary in each test. The simulations are also 2D, whereas the

experiments are 3D.

In the simulations of the crystal with χ = 0.53 (Figure 6.6 (b) and (c)) the fully

pattern-switched state of the crystal was achieved. The simulations of the χ = 0.61

crystal differ marginally from the experimental observations. As can be seen in the

images in Figure 6.6 (e, FEM) and (f, MD), localised chains formed and particles

became isolated as indicated by the dashed white box in each image. This came

about because of the contrasting deformation mechanisms in each crystal which

are described in Section 6.4. Despite this localised discrepancy, the majority of

the rigid particle pairs have been found to form pairs in both simulation types and

this is a striking result.
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6.3.3 Two Potential States

There were two possible outcomes for the rigid particles when the paired state was

formed. Each particle, other than those at the top and bottom boundaries of the

system, became either the top or bottom particle in a rigid particle pair. There

were therefore two branches which represent the motion of the individual particles

when the crystal was compressed. In Figure 6.7 the change in distance ∆D for a

triplet of rigid particles (i = 3, 4 and 5) in column j = 3 of the χ = 0.53 crystal

has been plotted. Specifically, ∆D3
3,4 (red) and ∆D3

4,5 (blue) have been plotted in

order to illustrate the two branches described above.

Prior to the transition, the distance between particle 4 and its neighbours above

and below decreases linearly. However, at ε ≈ 0.12 mm/mm the two data sets di-

verge. ∆D3
34 decreases whereas ∆D3

45 shows a steady increase. This is reflected in

the position of the particles in the paired state. Particles 4 and 5 formed a vertical

pair together, whereas particle 3 was the top particle in the pair below. The data

sets in Figure 6.7 show that the rigid particles follow contrasting paths as a result

of macroscopic compression. All of the particles are shifted in the direction of

loading but to different degrees. In this experiment, ∆D3
34 decreased by 6.5 mm

at the end of the test; ∆D3
45 increased by approximately 1 mm in the same strain

state.

A secondary state must exist in which the triplet is split up such that particles

3 and 4 form a pair, with particle 5 taking the position of bottom particle in the

pair above. In the inset illustrations in Figure 6.7 the two possible states have been

sketched to highlight this. The effects of the many sources of imperfections input

during the construction of the crystal will determine the final state of the crystal

and cause there to be a preferred stable branch which describes the evolution of

162



Figure 6.7: Monitoring inter-particle distances. ∆D3
3,4 (red) and ∆D3

4,5 (blue)

have been plotted to show the splitting of the three particles. The inset illustrations

are of the two possible configurations of the rigid particle triplet in the paired state.

the system’s geometry.

6.4 Switching Mechanisms

The switched state was a robust feature of the experiments. However, the precise

nature of the transition between the initial and final states was found to depend on

the size ratio χ. Two distinct switching mechanisms were observed: the first was

a gradual, direct change in the geometry whilst the second involved the creation

and destruction of shear bands of horizontally aligned rigid particle pairs. The

contrasting switching mechanisms were observed in the experiments and both sets

of simulations.
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Figure 6.8: The granular crystals at ε = 0.15 mm/mm. The representative images

of the crystal with χ = 0.53 (a - c) and χ = 0.61 (d - f) show the structure in the

experiments (left), FEM (middle) and MD (right) simulations.

6.4.1 Direct Transition

The formation of the rigid particle pairs where χ = 0.53 occurred uniformly across

the crystal. The initial effect of compression was to push the soft particles to-

gether into upright columns which were held apart by rigid particles. As the test

continued the soft columns buckled in plane, forming hexagonally-packed clusters

which enclosed two rigid particles. The vertical spacing between the rigid particles

within each cluster decreased as the crystal was compressed further until the fully

paired state was achieved at ε ≈ 0.23 mm/mm in the experiments. The gaps which

in the crystal and led to the pattern-switched are visible in the experiments and

simulations as shown in Figure 6.8 (a - c) respectively.
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6.4.2 Indirect Transition

In contrast to the simple pair formation described above, the creation of the paired

state where χ = 0.61 crystal occurred via an intermediate “mixed state”. This

consisted of vertically aligned pairs and localised shear bands which stretched di-

agonally across the sample. Particles within the shear bands formed loosely packed

horizontally aligned pairs with particles within neighbouring columns. The bands

were destroyed as the crystal was compressed further. This resulted in the forma-

tion of vertically aligned pairs arranged according to the pattern already estab-

lished within the bulk of the crystal.

The shear bands observed in the experiment are highlighted in Figure 6.8 (d)

by the white dashed lines. Two shear bands formed during this experiment and

each of these stretched diagonally downwards from left to right. Destruction of the

bands occurred simultaneously, with the right most particle in each pair dropping

down one row to become the top particle in a vertical pair. Shear bands were

consistently observed to form in this structure, although their location, size and

orientation varied in each experimental run.

As demonstrated in images (e) and (f) in Figure 6.8, shear bands were also a

feature of the simulations and again these have been highlighted by the dashed

white lines. In the FEM simulation (Figure 6.8 (e)) only one band formed, whereas

two formed in the MD crystal (Figure 6.8 (f)). These bands were destroyed in coor-

dinated switching events as in the experiments. The similarities between images of

the experimental and MD crystals in the ε = 0.15 mm/mm strain state is remark-

able: in both systems the bands are short and form in the corners of the sample.

As discussed in Section 6.3.2 the result of the destruction of the shear bands in the

numerical crystals led to local phenomena as opposed to global pattern-switching.
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However, the mechanisms within the systems are the same and the final state

within each comprises mainly vertical pairs.

6.4.3 Unloading

Cyclic experiments were performed on the samples in order to test the reversibility

of the pattern switch. Example images of the unloaded crystals are shown in Figure

6.9. There is a clear contrast between the two systems; in the χ = 0.53 crystal the

original geometry has been recovered which indicates that the transitition is almost

reversible, as shown in Figure 6.9 (a - c) where in each of the images the crystals

are shown in the relaxed state with ε = 0.00 mm/mm. In contrast to this, where

χ = 0.61 (Figure 6.9 (d - f)), a shear band has re-formed in the crystal during the

unloading process and the majority of soft columns have retained a hexagonally

packed form as opposed to becoming upright. The formation of shear bands in

the system is therefore an irreversible feature of the transition which prevents

recovery to its original form. Once more, the simulations capture the experimental

observations: the crystal with χ = 0.53 undergoes a reversible depairing process

as shown in Figure 6.9 (a - c), whereas the crystal with χ = 0.61 does not return

to the initial geometry and this is true for both simulation types.

6.5 Quantitative Measures

6.5.1 Particle Tracking

As discussed in the previous sections, a 15% increase in χ had a marked effect on

the pattern formation process. In the systems with the lower χ value, the transition

was direct and nearly reversible; an increase in χ caused the formation of shear

bands which reappeared in the relaxed system. These qualitative differences were
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Figure 6.9: The granular crystals in their relaxed states. Reversibility was a

feature of the experiments and simulations of the crystal χ = 0.53 (a - c). However,

this was not the case for the system where χ = 0.61 (d - f) as shear bands were

observed to re-form.
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demonstrated in the experiments by considering local variation in the inter-particle

distances Dj
i,i+1. Specifically, the distance ratio δji−1,i,i+1 was calculated for specific

rigid particle triplets. This is defined as

δji−1,i,i+1 =


Dj

i,i+1

Dj
i−1,i

if Dj
i,i+1 ≤ D

j
i,i−1

Dj
i,i−1

Dj
i+1,i

if Dj
i,i+1 ≥ D

j
i,i−1

in order to provide a measure of the relative growth of the distance of a particle in

row i from the particles above and below it. Where δji−1,i,i+1 was constant with ε,

the central particle in the triplet was equidistant from its nearest neighbours in the

column. Where δji−1,i,i+1 decreased with ε, the central particle was closer to one

particle than the other within the triplet and in the initial square configuration,

δji−1,i,i+1 ≈ 1. It was possible to predict the value of δ when each of the granular

crystals is in the pattern-switched state. Assuming non-compression of the soft

cylinders and that they formed a regular hexagon of side 2R in the pattern-switched

state, δfinal was predicted to be

δfinal =
χ

2 cos
(
π
6

)
− χ

(6.6)

and for the size ratios considered here δfinal ≈ 0.44 (χ = 0.53) and 0.54 (χ = 0.61).

In Figure 6.10 the variation of δ with ε has been plotted for each of the size

ratios considered in the study. The data set can be split up into a loading and

unloading phase and these are indicated by the arrows on the plots. In both

of the graphs in Figure 6.10, two remote triplets have been chosen in order to

demonstrate the global/local nature of the switching processes observed in the

experiments. The inset images show the location of the particles in each triplet at
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Figure 6.10: The variation of δ. In (a) it is shown that the variation of two local δ

values is uniform across the χ = 0.53 crystal. The formation of shear bands in the

χ = 0.61 crystal causes local pair formation which is reflected in the contrasting

variation of the two δ values shown in (b).
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ε = 0.00 mm/mm (top) and 0.25 mm/mm (bottom) and the number in the centre

of each highlighted particle is its row number i in the initial configuration.

In the upper-most graph (Figure 6.10 (a)), δ2
3,4,5 (red) and δ5

4,5,6 (blue) have

been plotted for the crystal with χ = 0.53. Both of the data sets show the same

behaviour throughout the experiment. The central particles in each triplet are

initially equidistant from their nearest neighbours above and below. At ε ≈ 0.12

mm/mm both δ values begin to decrease steadily. At ε ≈ 0.23 mm/mm the crystal

is in the fully paired state and δ2
3,4,5 ≈ δ5

4,5,6 ≈ 0.45 at this point. During relaxation

of the crystal, both δ values increase as the cylinders in each pair begin to separate.

However, whilst δ5
4,5,6 returns to approximately its original value, δ2

3,4,5 ≈ 0.88 in

the fully relaxed state. Permanent local deformation has therefore occurred such

that the central particle in the triplet in column 2 is closer to the particle above

than below it in the relaxed state.

In Figure 6.10 (b) δ3
4,5,6 (red) and δ7

5,6,7 (blue) have been plotted for the χ =

0.61 crystal and there is a clear contrast between these data sets. A sharp reduc-

tion in δ3
4,5,6 is observed at ε ≈ 0.11 mm/mm. This resulted from particles 4 and

5 forming a local vertical pair in column 3. In constrast, δ7
5,6,7 decreases steadily

until ε ≈ 0.18 mm/mm where it drops asymptotically. After this point (ε = 0.18

mm/mm) the crystal is in the fully paired state (δ3
4,5,6 ≈ δ7

5,6,7 ≈ 0.50) and the two

data sets agree during the remainder of the loading and the beginning of the un-

loading phases. The effect of unloading is to cause slight inter-particle separation

but neither δ measure reaches its initial value and the initial configuration is not

attained upon full relaxation of the sample.

The contrast between the two data sets shown in Figure 6.10 (b) is caused by
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the competing processes in the crystal. Specifically, particles 5 and 6 in column

7 occupied a shear band and were held in position until its eventual destruction.

This meant that δ7
5,6,7 was greater than δ3

4,5,6 until ε = 0.18 mm/mm in the loading

cycle. The other triplet (particles 4, 5 and 6 in column 3) became split up in a

direct process similar to that observed in the crystal with χ = 0.53. The increase

in size ratio therefore led to a pattern-switching mechanism which retained enough

order such that the final state was achieved despite the complexity observed in the

experiments.

6.5.2 Stress-Strain Data

The stress-strain data measured during experiments on the granular crystals (black)

has been plotted alongside the results of the MD (red) and FEM (green) simu-

lations in Figure 6.11. The arrows above and below the data sets indicate the

data taken in the loading (increasing ε) and unloading (decreasing ε) phases of

each plot. There is good qualitative agreement between the experimental and nu-

merical approaches, particularly in the loading compression phase. During this

phase the FEM simulations are in better accord with the experiments than the

MD approach: the former data set shows an average discrepancy of 20 % for each

crystal size ratio, where as for the latter this is approximately 30 %.

During the unloading phase, the experimental data sets were approximately

50% lower than during the loading phase, a hysteresis effect which came about

as a result of contact between housing and the soft particles which expanded out

of plane when compressed. This hysteresis was not captured in the MD or FEM

simulations as the calculations were made assuming plane strain in a 2D planar

system so that the three-dimensional aspects of the experiments were not included.

As such there is no quantitative agreement during this phase of the cycle. Plastic
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Figure 6.11: Stress-strain data for the granular crystals. This has been plotted

for experiments (black) the MD (red) and FEM (green) simulations respectively

for the χ = 0.53 (a) and 0.61 (b) granular crystals. The local peaks identified in

(b) correspond to the formation and destruction of shear bands in both the loading

and unloading phases of each data set.
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deformation was also observed in the experiments but not in the simulations and

can be seen in the plots in Figure 6.11. The height of both structures was reduced

by approximately 5 % by the end of the experiment.

The data shown in Figure 6.11 (a) was taken where χ = 0.53 and reflected

the gradual formation of the vertical pairs within the crystal plane. There are no

notable peaks in the data sets and the buckling of the columns does not occur

instantaneously as in the csa-lattices. The attainment of the fully paired state of

the crystal occurred at ε ≈ 0.17 mm/mm and 0.19 mm/mm in the MD and FEM

simulations respectively, the result of which was an increased stiffness of the crys-

tal owing to increased rigid-rigid particle contacts. In the experiments, the fully

switched state was achieved at ε ≈ 0.23 mm/mm and no change in the stress-strain

behaviour was detected at this point.

Each of the χ = 0.61 crystal data sets (Figure 6.11 (b)) were characterised

by localised peaks in both the loading and unloading phases. These have been

highlighted in the plot and were associated with the formation (E1) and destruc-

tion (E2) of the shear bands in the loading phase and the reformation of bands

on unloading (E3). Both in the experiments and the simulations these switching

events involved the coordinated rearrangement of the particles over short time

scales and manifested themselves as stress drops across the surface of the crys-

tal. It was noted that in the MD simulations two shear bands formed and were

destroyed in separate events (MD2a. and MD2b.) respectively, whereas in the

experiment documented here, two such bands were destroyed simultaneously. As

can be observed in the data sets in Figure 6.11 (b), the ε values at which the

bands formed and were destroyed varied for the different approaches and this was

true for repeated experiments. Despite the quantitative discrepancy between the
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approaches, there are qualitative details which are encouraging. In particular, the

large scale rearrangement in the χ = 0.61 crystal can be identified by the local

peaks in the loading and unloading phases of the system in both the simulations

and the experiments.

6.6 Summary

It has been shown that the 2D granular crystal, which comprises a mixture of soft

and rigid cylindrical particles arranged on a square lattice, undergoes a period-

doubling pattern switch when uniaxially compressed. The transition from the ini-

tial configuration to the paired state depends on the particle size ratio χ, although

the final state is robustly achieved. For χ = 0.53 the transition was observed to be

direct and near-reversible whereas an increase in χ to 0.61 caused it to occur via

an intermediate state. This comprised shear bands of horizontally aligned particle

pairs, whose presence caused the initial state not to be recovered on unloading.

One remarkable aspect of the experiments is the observation that the final state

has been robustly achieved in crystals with both of the χ values studied here de-

spite their contrasting size ratios leading to two contrasting deformation processes.

Some features of the stress-strain curves collected and the deformation pro-

cesses observed in the experiments have been well captured by MD and FEM

simulations. Although the pattern switch was not achieved globally in the numer-

ical experiments where χ = 0.61, the predominant observations of the physical

experiments have been captured by the simulations, i. e. the majority of the rigid

particles formed pairs. The quantitative discrepancy between the stress-strain data

sets suggests that the forcing between the particles has not been completely repre-

sented in the calculations and it may be that friction between the particles and the
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housing, which is one aspect of the experiments which is difficult to characterise in

the simulations plays an important role in the deformation process. This has led

to discrepancies in the quantitative output of the numerics in comparison with the

experiments. However, it appears that this does not affect the pattern-switching

phenomenon which is repeatable and shows sensitivity to the arrangement of the

constituent parts of the crystal.
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Chapter 7

Summary and Outlook

The results of a study of compression of two-phase elastic structures has been pre-

sented. In total, five systems - the csa-, ssa-, dsa- and cubic lattices and the gran-

ular crystal - have been considered. Whilst these possessed a range of geometries,

the underlying theme of the study has been the exploration of pattern-switching

behaviour using simple experiments.

7.1 Discussion of the Experiments

The csa-lattice was the main focus of the study and its behaviour under uniaxial

loading conditions allows a close comparison with the end-load Euler-Bernoulli

column. The primary equilibrium state of this structure comprises two types

of behaviour under compression. In the first the voids are compressed homoge-

neously and in the second a global pattern of orthogonal ellipses forms, which

is the pattern-switching behaviour observed by Mullin et al [2, 26]. The critical

point at which the transition between these two phases occurred was determined

by monitoring the aspect ratio γ of the voids. This measure decreased linearly in

the initial loading phase and then according to a square root dependence in the

176



second loading phase. This behaviour represents the continuous stable branch of a

perturbed pitchfork bifurcation. The second branch of the perturbed bifurcation

has also been shown to exist and in this state the pattern differed by a rotation of

the ellipses by 90o. This state was terminated at its lower end by a saddle node

bifurcation and only exists beyond a certain level of compression.

The critical parameters εcr and σcr
Es

, as well as the normalised elastic modulus

E
Es

have been measured for the csa-lattice. These have been used to aid comparison

with established results for 2D cellular structures [3]. In Chapter 4 the measures

were shown to vary according to scaling laws in (Φmax−Φ)n and these were similar

to those associated with stretching-dominated structures. The void fraction Φ is

therefore the principle factor in determining the strength, stability and stiffness

of the csa-lattice although the experimental samples exhibited size effects which

affected the scaling laws. In particular, εcr and σcr
Es

decreased as the number of

rows n the lattice was increased. The effect of the boundaries as the sample height

increased was to delay the onset of the pattern-switching instability and hence σcr
Es

increased as well. Using the discrete model it has been shown that these effects

can be reproduced using beam theory in a discrete model formalism. However,

development in the nodal stiffnesses and boundary conditions is required before

accurate quantitative with the experiments can be made.

The experiments discussed in Chapter 4 have shown that the pattern-switching

effects are not confined to the csa-lattice. The dsa-lattice showed the same pattern-

switching behaviour, whereas the ssa-lattice did not. A conclusion which may be

drawn is that the non-uniform width of the inter-void ligaments is central to onset

of the pattern switch. The ssa-lattice buckled laterally when compressed, causing

the voids to be sheared to the side; in both the csa- and dsa-lattices behaviour
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similar to a pitchfork bifurcation was observed. By incorporating non-uniform

ligament widths into the structure in a regular manner, the buckling phenomenon

results in a new global planar pattern. As discussed in Chapter 1, this behaviour

is not typically observed in oblique and hexagonal lattices, in which the struts

are thin and not curved. The dsa-lattice has the geometry of the hinged models

which are used to explain the auxetic effect and here we have shown that it is

possible to achieve this switching effect in a cellular structure and, moreover, that

it results from an elastic instability. In our system there are no hinges, simply

straight-edged cells and this is sufficient for the rotation mechanism to work.

In Chapter 5 the research was extended to three-dimensional cellular struc-

tures. The cubic lattices can be considered as comprising two super-imposed

csa-lattice geometries and the results showed that the two-dimensional planar in-

stability dominates the first buckling mode of these structures. When the holes

were made to be the same size, imperfections caused one of the planes to buckle

before the other. When incorporated in the 3D geometry of the cubic lattice the

instability onset is unaffected by the second orthogonal set of voids. Decreased

porosity of these systems does, however, reduce the stress values associated with

compression. Therefore, the additional void set is a means for reducing the load

required to cause the buckling instability onset in a 2D system without affecting

the pattern itself.

The granular crystal experiments demonstrated the existence of pattern switch-

ing effects in structures with other, perhaps more complex, planar geometries. The

system is sensitive to the size ratio of the constituent particles, however the period-

doubled patern switch is robust and is also found in the MD and FEM simulations.

The formation of the pattern-switched state in the granular crystal is a striking
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result given the discrete nature of the particles - the gaps which arise in the system

form a strikingly periodic pattern which is simimlar to that of the csa- and dsa-

lattice and this is despite the lack of connectivity between the particles. In addi-

tion, in the system with the large χ value the pattern became established in the

experiments despite there being an additional intermediate state of shear bands.

Once more, the square lattice is a feature of the system - this geometry eases the

motion of the rigid particles as they form the pairs with their nearest neighbours.

7.2 Future Work

There is great potential for using the experimental approach described in this the-

sis to explore the behaviour of cellular structures. In the first instance, a deeper

understanding of the geometry of pattern switching systems is required. What

is the link, for example, between the csa- and dsa- lattices? Moreover, why do

square cells not show the same switching behaviour? These are open questions

which require a comprehensive answer.

A particularly exciting study would be an analysis of the transition between

two contrasting cellular geometries and the effect this has on the buckling instabil-

ity therein. There are two obvious candidates for this. The first is the transition

from the square to the oblique array of circular cells (i.e. from the csa- to the coa-

lattice). It is known that the former buckles at a lower degree of compression than

the latter for the same void size and this is because of the increased connectivity

in the system. The contrasting connectivities are linked to the pattern formation

and lead to localised effects in the coa-lattice. What happens in-between is un-

clear. It would be possible to manufacture lattices in which there is a step-wise

179



change in the cellular arrangement from the csa- to the coa-lattice geometry and it

is envisaged that localised regions of patterns would tend to develop. The second

area in this theme is the transition from the ssa- to the dsa- lattice geometry. We

have seen that a rotation of 45o of square cells about their centres is sufficient to

create a pattern-switching lattice. Once more, the dsa-lattice buckles at a lower

degree of compression for the same void fration. An ineresting study would be

to determine the tolerance of this: is there a pattern-switching range of rotation

angles, and if so, why?

There is also an ambiguity in the role played by imperfections in the 2D cellular

structures considered here. As has been discussed in Chapters 1, 3 and 5, there

are imperfections in the cellular structures and these determine the form of the

pattern-switched state. The imperfections fall into two categories, those which are

unavoidable (bubbles which form in the material as it sets, for example) and those

which are controllable, such as cell size variation. One can envisage performing

experiments in which, for example, the voids in the csa-lattice are shifted locally or

where there is a size or aspect ratio distribution. The effect of this may be global

switching effects which occur more smoothly than described in the experiments

here, or indeed localised effects where the pattern onset is observed in some, but

not all, of the voids. Alternatively, imperfections may cause new pattern-switched

states to emerge as a result of compression.

The above suggestions could certainly be implemented experimentally using

the techniques used here. What would add a satisfying completeness to this would

be the implementation of a numerical approach to the studies and this is being

developed [80]. A numerical approach would also allow the investigation of the

birfurcation structure of the csa-lattice. Throughout this study, we have described
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the pattern switch as similar to the perturbed pitchfork bifurcation because of its

similarities in terms of the stable states which exist. This is, of course, an oversim-

plified picture: the bifurcation structure of the csa-lattice is certainly richer than

this and this has been shown by Bertoldi et al [26]. There exists a wide range of

buckling modes for the structure, however it is unclear whether these are stable

or attainable in experiments. This is where the experiments reach their limitation

and further investigation must be performed numerically. As we have highlighted

there are similarities between the dsa- and csa-lattice geometries and so there may

exist new patterns in diamond-shaped cells as well, and these require exploration.
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Appendix A

Negative Poisson’s Ratio

A.1 Introduction

In the following pages of the appendix the paper “Negative Poisson’s Ratio in-

duced by Elastic Instability” has been reproduced. The paper documents the

work completed in the first year of the PhD programme and the work is relevant

to understanding the current state of research into regular 2D cellular solids. The

experimental work which is contained in the paper was conducted by the author

of this thesis. The cellular structure was manufactured using a different mould

to that described in Appendix B. Part of the development made during the time

since the paper’s publication has been to refine the cellular structure manufac-

turing techniques to enable the study of a wide parameter range. However, the

majority of the principles and techniques used in the thesis originated as part of

this initial study which is a testament to the appeal of simple, careful scientific

experiments.
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Negative Poisson’s Ratio Behavior Induced by an
Elastic Instability

By Katia Bertoldi,* Pedro M. Reis, Stephen Willshaw, and Tom Mullin

When materials are compressed along a particular axis they are
most commonly observed to expand in directions orthogonal to
the applied load. The property that characterizes this behavior is
the Poisson’s ratio, which is defined as the ratio between the
negative transverse and longitudinal strains. The majority of
materials are characterized by a positive Poisson’s ratio, which is
approximately 0.5 for rubber and 0.3 for glass and steel. Materials
with a negative Poisson’s ratio will contract (expand) in the
transverse direction when compressed (stretched) and, although
they can exist in principle, demonstration of practical examples is
relatively recent. Discovery and development of materials with
negative Poisson’s ratio, also called auxetics, was first reported in
the seminal work of Lakes in 1987.[1]

There is significant interest in the development of auxetic
materials because of tremendous potential in applications in
areas such as the design of novel fasteners,[2] prostheses,[3]

piezocomposites with optimal performance[4] and foams with
superior damping and acoustic properties.[5] The results of many
investigations[6,7] suggest that the auxetic behavior involves an
interplay between the microstructure of the material and its
deformation. Examples of this are provided by the discovery that
metals with a cubic lattice,[8] natural layered ceramics,[9] ferro-
electric polycrystalline ceramics,[10] and zeolites[11] may all exhibit
negative Poisson’s ratio behavior. Moreover, several geometries
and mechanisms have been proposed to achieve negative values
for the Poisson’s ratio, including foams with reentrant struc-
tures,[1] hierarchical laminates,[12] polymeric and metallic
foams,[13] microporous polymers,[14] molecular networks,[15]

and many-body systems with isotropic pair interactions.[16]

Negative Poisson’s ratio effects have also been demonstrated at
the micrometer scale using complex materials which were
fabricated using soft lithography[17] and at the nanoscale with
sheets assemblies of carbon nanotubes.[18]

A significant challenge in the fabrication of materials with
auxetic properties is that it usually involves embedding structures
with intricate geometries within a host matrix. As such, the
manufacturing process has been a bottleneck in the practical
development towards applications. A structure which forms the
basis of many auxetic materials is that of a cellular solid and
research into the deformation these materials is a relatively
mature field[19] with primary emphasis on the role of buckling
phenomena on load carrying capacity and energy absorption
under compressive loading. Very recently, the results of a
combined experimental and numerical investigation demon-
strated that mechanical instabilities in 2D periodic porous
structures can trigger dramatic transformations of the original
geometry.[20,21] Specifically, uniaxial loading of a square array of
circular holes in an elastomeric matrix is found to lead to a pattern
of alternating mutually orthogonal ellipses. This results from an
elastic instability above a critical value of the applied strain. The
geometric reorganization observed at the instability is both
reversible and repeatable and it occurs over a narrow range of the
applied load. Thus, this behavior provides opportunities for
transformative materials with properties that can be reversibly
switched. Similar instability induced pattern transformations
have been observed also at the sub-micrometer scale.[22,23] These
observations pave the way for the development of a new class of
materials which take advantage of such behavior.

Here we exploit elastic instabilities to create novel effects
within materials with periodic microstructure. We show that the
pattern transformation leads to unidirectional negative Poisson’s
ratio behavior for the 2D structure, i.e., it only occurs under
compression. The uncomplicated manufacturing process of the
samples together with the robustness of the observed phenomena
suggests that this may form the basis of a practical method for
constructing planar auxetic materials over a wide range of
length-scales. Excellent quantitative agreement is found between
numerical and experimental results to illustrate the effect for a
specific sample. The numerical approach is subsequently used to
explore the effect of void fraction and we uncover a scaling law for
the phenomenon. Finally, we draw some conclusions and give
future perspectives for this simple yet novel auxetic material.

Our system comprised a square lattice of circular holes in an
elastomeric matrix which was subjected to uniaxial compression
using an Instron machine as described in the Experimental
Section. A representative sequence of images of the sample
during loading is presented in Figure 1, where the image shown
in Figure 1a corresponds to the undeformed sample, prior to
loading. During the initial response of the periodic structure, the
circular holes were observed to undergo a gradual and
homogeneous compression and this corresponds to a linearly
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elastic regime at low strains.[20] As will be discussed in detail
below, above a critical value of compressive nominal strain of
ec¼�0.047 a transformation to a pattern of alternating, mutually
orthogonal ellipses was observed and an example of the resulting
pattern switch is shown in Figure 1b where the image was taken
at e¼�0.06 nominal strain. Once formed, the new pattern
became further accentuated with increasing macroscopic
compressive strain as may be seen in the image shown in
Figure 1c taken at e¼�0.25 nominal strain. A feature, which is
clear in Figure 1c, is that the lateral boundaries of the sample
bend inwards, a clear signature of negative Poisson ratio behavior.

The experiments were performed on a silicone rubber cellular
solid, which was manufactured using the molding process
described in the Experimental section. The deformation of the
sample was monitored using a high-resolution digital camera (6
MPixels Nikon D100 SLR), which was synchronized with the
Instron. Quantitative estimates of the deformation of the holes in
the sample were made using purpose made image processing
software. In outline, at a particular value of nominal strain, the
(xi,j,yi,j) coordinates of the centroid of each void were determined
where 1< i< 10 and 1< j< 10 are the row and column indices,
respectively. Hence a particular index pair (i,j) is unique to each
specific hole. This part of the procedure was accomplished using
an edge detection algorithm (Matlab: Image Processing Toolbox),
which takes advantage of the high contrast between the bulk
regions in the sample and the voids. It became clear that the
deformation near the four edges of the specimen was strongly

influenced by the boundary conditions and hence, we focused on
the behavior of the central part of the sample where the response
was clearly more uniform. Thus we tracked the centroids of the
sixteen central voids (delimited by the dashed rectangle in
Figure 1b for holes with indices 4� i� 7 and 4� j� 7). The
horizontal and vertical controid-to-centroid distances were
calculated from the coordinates (xi,j,yi,j), i.e., Dxi,j¼ xiþ 1,j� xi,j
and Dyi,j¼ yi,jþ 1� yi,j, respectively. Prior to compression, the
value for both of these quantities was the center-to-center distance
between the undeformed circular holes, i.e., Dx(0)¼
Dy(0)¼ 11.95mm. A schematic diagram of the central region
under consideration illustrating the definitions of Dxi,j and Dyi,j is
shown in Figure 1d.

Numerical investigations were performed on both finite-sized
and periodic domains using the nonlinear finite element code
ABAQUS. Details of the method are provided elsewhere[21] and
here we highlight some of the parts of the numerical procedure
which are specific to the current investigation. Each mesh was
constructed using six-node, quadratic, hybrid, plane strain
elements (ABAQUS element type CPE6H) and the accuracy
was checked by mesh refinement. The material was modeled
using a two-term I1-based Rivlin model, which was modified to
include compressibility with a high bulk modulus[21] where the
material properties were determined by fitting the model to
experimental calibration data (see Experimental section). The
instabilities were initially investigated using a linear perturbation
procedure and the results confirmed that the observed pattern
transformation arose from an elastic instability, since it
corresponds to the lowest eigenmode of the structure. An
imperfection was introduced into the mesh in the form of this
eigenmode, which enabled load–displacement analysis for the
finite-sized structures. This procedure captured the instability
induced pattern transformation and boundary effects were
included so that direct comparison could be made with
experiment. Calculations were also performed on infinite
periodic structures and were used primarily for parametric
investigations of the phenomena since carrying out a similar
experimental study would have been impractical.

In Figure 2a we present the functional dependence of both
hDxi,ji/Dx(0) and hDyi,ji/Dy(0) on nominal strain, where the
angular brackets h.i denote ensemble average over the sixteen
holes (hence, nine values of Dxi,j and Dyi,j) under consideration
(4� i< 7 and 4� j< 7). The experimental data points are shown
in comparison with the numerically determined solid lines and it
can be seen that there is close agreement between the sets of
results. The normalized vertical centroid-to-centroid distance
shows a monotonic decrease from one (undeformed case) to
approximately 0.85 at a strain of e¼�0.1. On the other hand, the
horizontal centroid-to-centroid distance exhibits a non-
monotonic dependence on nominal strain. It first increases
during the initial linear elastic response of the periodic structures
and, once the pattern switch occurs (e¼ –0.047), it decreases.

The center-to-center distances of the holes were used to
calculate local values of the engineering strain Poisson’s ratio
using

ni;j ¼ �Dxi;j=Dxð0Þ
Dyi;j=Dyð0Þ

: (1)

Figure 1. a) Sample in the initial unstrained configuration; b) Sample
under compression of e¼ –0.06. The dashed rectangle represents 16-hole
region over which we perform the ensemble averaging. c) Sample under
compression of e¼�0.25. d) Schematic diagram of the central region with
16 holes. The position of the centroids of the holes is measured from image
analysis which allows for the determination of the vertical and horizontal
center-to-center distance between two consecutive holes.
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The ensemble average n¼hni,ji for the sixteen central voids
under consideration was computed. The experimental and
numerical estimates of n are plotted as a function of nominal
strain in Figure 2b where the error bars on the experimental
points were obtained from the standard deviation of the nine

values of ni,j used in the averaging. When e<�0.047, the
response of the sample is linear as in the stress strain plot in
Figure 2c. Over this range of strain, the numerically determined
estimate of the Poisson’s ratio is approximately constant at
n¼ 0.284� 0.014. The experimental data on the other hand lies
consistently below the numerical results at a value of
n¼ 0.221� 0.021 and shows a slight increase. Over this range
of strain, the deformation of the holes is very small and, hence, so
are Dxi,j and Dyi,j. Therefore, accurate measurements are difficult
to make, since small unavoidable alignment errors between the
sample and the camera will dominate.

It can be seen in Figure 2c that a plateau emerges in
the stress-strain curve for strains in excess of ec¼�0.047, i.e., the
total stress becomes independent of strain. This type of response
is generic for cellular solids under compression[19] and the initial
periodic structure is recovered upon removal of the strain so that
the change is reversible and repeatable. The strain ec¼�0.047
corresponds to the critical strain at which the pattern
transformation occurs and we have indicated this by a vertical
line, which runs through all parts of Figure 2. The Poisson’s ratio
starts to decrease above this point and eventually becomes
negative for strains in excess of e¼�0.053� 0.003. Interestingly,
the agreement between the experimental and numerical results
for estimates of the Poisson’s ratio, shown in Figure 2b, improves
considerably once the pattern transformation occurs and there is
an obvious distortion of the holes, as shown in Figure 1b. This
excellent agreement between the two sets of results can be seen
for further increase in strain and the minimum value of the
Poisson’s ratio found in the experiments was n¼�0.538 for
e¼�0.10. Beyond this value, the top and bottom edge of some
voids touched and determination of the position of the centroids
was problematic, although further contraction in the transverse
direction is evident as shown in Figure 1c.

The results reported thus far are for a particular value of the
void fraction, F¼ 0.5, where F is defined as the ratio of the total
area of voids divided by the surface area of the sample. The finite
element simulations are able to accurately reproduce the
experimental results and we now perform numerical investiga-
tions of the dependence of the auxetic properties on F. The
pattern switch, which underpins the auxetic behavior occurs
throughout the sample and is only marginally influenced by
the boundaries. Moreover, practical applications are likely to
involve samples of a large spatial extent. Consideration of both of
these points, directed our focus to considering infinite periodic
structures using representative volume elements (RVEs) and
numerically convenient periodic boundary conditions.[21] Two
different types of instability may occur[21] in infinite periodic
solids under compression: microscopic instabilities with a finite
wavelength and macroscopic instabilities characterized by a
wavelength much larger than the scale of the microstructure.
Although microscopic instabilities alter the original periodicity of
the solid, here they are investigated on the primitive cell
using Bloch wave analysis,[21] which provides both the point on
loading path where instability occurs and the periodicity of the
new structure. Macroscopic instability is also detected by
monitoring the loss of ellipticity of the homogenized tangent
modulus.[21]

Both microscopic and macroscopic instabilities were investi-
gated and the effect of the void volume fraction on the response

Figure 2. Quantitative comparison between experimental and numerical
results. a) Averaged dimensionless horizontal and vertical distances of
central 16 holes plotted as a function of the applied axial nominal strain
b) Poisson’s ratio as a function of the applied axial nominal strain and
c) Stress-strain response of the experimental sample (solid line) and
results from the finite element calculations (dashed line). In (a) and
(b), points correspond to experimental data and lines to the results of
the finite element calculations. The solid and dashed lines correspond to
the ensemble average and standard deviation, respectively, of the 16 central
holes considered (see text for details).
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was studied. The results reported in Figure 3a show that for
F< 0.34, a macroscopic instability is the first to occur along the
loading path. This leads to localized deformation in the form of a
collapsed band of holes normal to the direction of the applied load
as shown schematically in the top inset in Figure 3a. By way of
contrast, a microscopic instability was found to occur first for
F> 0.34. Here the mode of deformation is characterized by a
critical eigenmode consisting of mutually orthogonal ellipses as
shown in the inset in the lower left hand corner of Figure 3a and
consistent with the experiments. As for the finite-sized sample,
load-displacement analysis was performed for the infinite
periodic structures to capture the evolution of the Poisson’s
ratio during deformation. The Poisson’s ratio was calculated
directly from the numerical results on the RVEs using the
homogenized strains in axial and lateral directions. As a check, it
was also estimated from the images of the calculated patterns
using the distance between the centers of the voids as in the
experiments and negligible difference between the results
obtained using the methods was found.

Results for the evolution of the Poisson’s ratio as a function of
the applied nominal strain are presented in Figure 3b for various
values of void volume fraction and a strong dependency on this

parameter is evident. For F< 0.34 (where localization occurs
prior to the pattern transformation) the Poisson’s ratio is always
positive during loading. On the other hand, samples with
F> 0.34 are characterized by behavior analogous to the
experimental samples discussed above viz. positive Poisson’s
ratio up to a critical value of strain, ec, at which the instability
induced pattern transformation occurs and beyond which the
Poisson ratio decreases until it eventually becomes negative. It is
interesting to note that the lowest value of the asymptotic
Poisson’s ratio we were able to reach numerically was
n1¼ –0.904, which occurs for the highest value of void fraction
investigated F¼ 0.70.

It is striking that simply by increasing the void fraction,
samples can be constructed to attain increasingly negative values
of n in a pronounced way. In particular, the three quantities of
interest – the value of strain at which the pattern transformation
occurs, ec, the asymptotic value of the Poisson ratio and the rate at
which this asymptotic value is reached are – all strongly depend
on void fraction. We now explore the dependence of these
quantities on void fraction in detail. In Figure 4a we show the

Figure 3. Results of the numerical investigation on the effect of the void
volume fraction for an infinite periodic square array of circular holes in an
elastomeric matrix. a) Nominal strain at the onset instability as a function
of the void volume fraction. Inset schematics illustrate the instability type
for F< 0.34 (upper right: localization) and F> 0.34 (lower left: pattern
switch). b) Evolution of the Poisson’s ratio as a function of applied axial
nominal strain over the range of volume fraction investigated.

Figure 4. RVE simulations. a) Dependence of the Poisson’s ratio on e� ec
(nominal strain above the instability), where ec was obtained from the Bloch
analysis (plotted in Fig. 3a). The circles correspond to the RVE simulations
and the red lines are exponentials. Each set of curves for different void
fraction (0.34, 0.39, 0.49, 0.59, 0.69). b) Parameters obtained from the
exponential fit as a function of void fraction: circles (left vertical axis) for the
asymptotic value of Poisson’s ratio, n1, and squares (right vertical axis) for
strain rate decay, eo. The lines are exponentials obtained from fitting the
experimental data to Equation 2.
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Poisson’s ratio dependence on e� ec for a range of void fractions.
We see that the results from the RVE simulations (circles) can be
accurately fitted (solid lines) by exponentials of the form

n ¼ n1 þ nc � n1ð Þ exp � "� "c
"o

� �
(2)

where, n1, is the asymptotic Poisson’s ratio, nc is the Poisson’s

ratio at the onset of the instability which occurs at a nominal

strain, ec, and the characteristic strain of decay, eo, measures the

speed the asymptotic value is reached.
The exponential fits are particularly good whenF< 0.56. Small

deviations are observed for F> 0.56 but the exponential
dependence of Equation 2 is nonetheless a satisfactory way to
describe the data from the RVE simulations. In Figure 4b, we plot
the dependence of the fitting parameters n1 and eo on void
fraction and the error bars were obtained from the statistical
errors in the fitting procedure. The asymptotic value of the
Poisson’s ratio, n1, is negative for all void fractions when
F> 0.34, i.e., where there was an instability induced pattern
transformation. Moreover, n1 exhibits a monotonic decrease with
two approximately linear regimes separated by a kink atF� 0.46.
On the other hand, the characteristic strain of decay, eo, first
increases to amaximum atF� 0.46, beyond which it decays. This
is significant of a larger rate of decay (1/eo) of n for high void
fractions. These results suggest that in order to maximize auxetic
properties, samples should be manufactured with the largest
possible void fraction.

We have shown that a cellular solid which comprises a solid
matrix with a square array of voids displays two-dimensional
negative Poisson’s ratio behavior. Unlike many other examples of
auxetic materials the effect is only found under compression and
above a critical value of an applied strain. The behavior arises as a
result of a pattern transformation, which has recently found
application at the micrometer scale in phononic/photonic
crystals.[24–26] The insight gained by performing a numerical
parametric exploration serves as an important design guideline in
fabricating practical materials towards applications. The over-
riding features of the system we have explored are the simplicity
of the construction and the robustness of the behavior. Each of
these aspects points to a more practical method for producing
negative Poisson’s ratio material, which can operate over a wide
range of scales.

Experimental

Material: Experiments were performed on samples made from the
addition curing silicone rubber ‘‘Sil AD Spezial’’ (SADS), manufactured by
‘‘Feguramed GmbH’’. The manufacture involved mixing equal measures of
two fluids, placing the individual component fluids under vacuum to
remove dissolved gases and allowing the mixture to set for an hour to
ensure proper curing.

Uniaxial compression and tension stress–strain tests were conducted to
characterize the behavior of the bulk material by measuring stress/strain
relationships for specifically designed solid blocks using a standard Instron
apparatus with a 1 kN load cell. We found that the elastomeric stress-strain
behavior is well captured using an incompressible two-term I1-based Rivlin

model [21], so that the nominal stress is given by

s ¼ l� 1

l2

� �
mþ 4c l2 þ 2

l
� 3

� �� �
(3)

where m is the initial shear modulus and l denotes the applied stretch,
l¼ eþ 1. The required material parameters were found by fitting
Equation 3 to the experimental data obtained from the calibration tests.
A Young’s modulus of 470.8� 1.6 kPa was determined so that
m¼ 156.9� 0.5 kPa and using c¼ 20.1� 0.4 kPa the material behavior
was found to be well captured up to a nominal strain of 0.6 both in tension
and in compression.

Rectangular Sample Manufacture: A batch of SADS mixture was poured
into an aluminum mould measuring 130mm� 130mm� 7.9mm.
Machined brass pins of diameter 10mm were screwed into the base of
the mould to create a square array of 100 holes with a center to center
spacing of 12.0mm. The mold was coated with a thin layer of vaseline to
help prevent sticking of the rubber to the metal. The mould was sealed and
the mixture was allowed to set at atmospheric pressure and room
temperature. The sample was removed from the mould after one hour and
two of the side walls were cut from the sample, leaving eight columns of ten
holes, flanked by a column of ten semi circles on either side. It was found
that a small amount of shrinkage had taken place. The rectangular sample
used in the experiments measured 128.7mm� 107.0mm� 7.9mm, with
a hole diameter of 9.95� 0.02 mm. Sample dimensions were measured
using digital calipers.

Compression Experiments: Compression tests were performed using an
‘‘Instron 5569’’ machine with a 1 kN load cell. The sample was held
vertically between two 8.1mm thick PMMA sheets which were held 9.4mm
apart in the machined slots on a metal base. The sample faces were dusted
with flour to reduce any frictional effects resulting from buckling during the
loading process. A PMMA sheet of thickness 8.1mm was mounted on
the lower face of the load cell and used to apply the load to the top of the
sample. It was ensured that the three PMMA sheets were parallel to one
another, and that the bottom of the loader was parallel to the top of
the sample. This allowed the even loading of the sample and prevented the
loader touching the outer faces of the housing.

The compression tests were performed by lowering the loader to rest on
to the top surface of the sample. The loader was then lowered further, at a
rate of approximately 0.01667mm s�1, to a final displacement of 30mm.
The results were independent of the rate of change of displacement for
slower speeds and hence a good approximation to the rate independent
conditions of the numerical investigation was obtained in the experiments.
The load associated with the displacement was recorded once per every
100ms and used to produce a stress-strain curve for the compression
process.
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Appendix B

Sample Manufacture

B.1 Two-Dimensional Cellular Structures

The two-dimensional cellular structures considered in the thesis were manufactured

by pouring the addition-curing fluid elastomers described in Chapter 2 into hand-

constructed moulds. To make these, a grid of the desired structure was drawn

using CorelDraw and inclusions were stuck to the printed grid using double-sided

tape. An aluminium frame was stuck to the boundary of the grid to complete the

mould. This process is described in detail for the csa-lattices in Section B.1.1. The

relevant details for the ssa- and dsa-lattices are given in Section B.1.2.

B.1.1 Circular Cells

The circular cell matrices were manufactured by pouring the fluid elastomer mix-

ture into hand-constructed moulds comprising cylindrical inclusions fixed to a

printed grid. The inclusions had been cut from a sheet of the photoelastomer

PSM-4 [2, 25] using a water-jet and possessed diameter d = 8.79 ± 0.09 mm and

height h = 6.66 ± 0.07 mm.
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Figure B.1: The 2D mould. As shown in (a), aluminium walls formed the bound-

ary. The inner dimensions of the mould were altered by changing the positions of

the walls. Here, a 4 × 4 (Φ = 0.60) lattice is being prepared for manufacture. The

unit cell was created by concentrically positioning a circle of diameter d on to a

square of side l. The unit cell is copied to form a grid of n columns of m unit cells

(b). The overall dimensions of the grid are nl and ml respectively.

To create the mould, a unit cell of the desired circular cell matrix was drawn

using the drawing software CorelDraw. The d value matched that of the cylindrical

inclusions and l was calculated according to the desired void fraction. This unit

cell was then copied and arranged into an n × m grid. An example of a printed

grid is shown in Figure B.1.1 (b).

The inclusions were fixed to the printed circles in the grid using double-sided

tape. Both the tape and the inclusions were transparent which aided this step of
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the process. The mould was completed by fixing four aluminium walls (12.96 ±

0.02 mm × 130.04 ± 0.04 mm) to the perimeter of the grid as shown in Figure

B.1.1 (a), in which the mould used to manufacture a 4 × 4 csa-lattice (0.60) has

been assembled. By changing the position of the walls it was possible to create a

boundary of flexible dimensions for the mould and therefore change the breadth

and height of the square honeycomb made using it. The fluid was left to set in the

mould for one hour, after which time the set structure was removed by detaching

the walls, followed by the inclusions and the base of the mould. This last step was

eased by applying a layer of Vaseline to the walls and inclusions at the outset of

the moulding process.

The moulding procedure was devised because the focus of the experiments was

the effect of geometry and size on the response of circular cell matrices to com-

pression. The inclusion-based mould offered the flexibility required in order to do

so, without having to rely on advanced moulding techniques. During the manu-

facturing process it was important to construct the mould and place the inclusions

as accurately as possible; the hand-made aspect of the moulds reduced the accu-

racy of the positioning of the voids within the circular cell matrices in comparison

with machined moulds. Whilst this is a prescient point, imperfections are ubiq-

uitous in cellular structures made using automated and accurate techniques and

sophisticated processes do not necessarily represent solution to this problem. The

moulding technique used here was a simple, accessible method which enabled a

variety of experimental samples to be made and was sufficient for the purposes of

this study.
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B.1.2 Square and Diamond Cells

The square and diamond cell lattices were made using the same technique as for

the circular cell matrices. Instead of the cylindrical inclusions, cuboid inclusions

were used to make the voids and this had to be considered when drawing the

printed geometry.

B.2 Cubic Lattices

The cubic lattices were made using a similar method to the 2D experimental

samples. The 3D geometry of these structures posed an additional problem which

was overcome by building up the mould in layers.

B.2.1 (0.60 × 0.41) Cubic Lattice

The mould used to manufacture 0.60 × 0.41 cubic lattice is shown in Figure

B.2a.The assembled system consisted of a cubic Perpex box (inner side L = 69.4±

0.3 mm) which held four layers of interlocking PTFE rods. Each layer was made

up of four small diameter (d1 = 12.54 ± 0.03 mm) and four large diameter (d2

=15.16 ± 0.07 mm) rods. Four holes which matched the diameter of the smaller

rods had been machined into each of the large diameter rods with a spacing of

17.20± 0.05 mm. The small rods slotted into these holes to create the platforms

which were held in place by means of holes in the faces of the Perspex cube. These

were arranged in a 4 × 4 square lattice with an inter-hole spacing of 17.20 ± 0.05

mm in each plane. In two opposite faces the voids accommodated the smaller

PTFE rods, and the remaining two faces the large diameter rods.

The procedure for manufacturing the cubic lattices samples involved construct-

ing the bottom PTFE platform within the mould and injecting Sil AD Soft into

192



Figure B.2: The 3D mould. (a) The mould consisted of a Perspex box which holds

four platforms of interlocking PTFE rods in place. The rods were of contrasting

diameter which enabled construction of the platforms. Experimental samples were

manufactured by injecting Sil AD Soft in to the gaps between the rods.It was

required to equalise the diameter of the two rod sets which was achieved by slotting

tapered copper rings onto the small diameter rods as shown in (b). These platforms

were used within the mould to manufacture the (0.60 × 0.60) cubic lattice

the gaps between the rods. This was performed using a syringe to assist the flow of

the fluid through small gaps in order to fill the mould. This process was repeated

for each of the four layers in succession until the mould was full and the material

was then allowed to set for one hour. The mould was dismantled by pushing the

small diameter rods out from the mould, followed by the large diameter rods. The

faces and base of the mould were then removed. As with the moulding procedure

described in Section B.1.1 the components of the mould were initially covered in

Vaseline to aid the dismantling process.

B.2.2 (0.60 × 0.60) Cubic Lattice

The procedure described above was sufficient to manufacture the (0.60 × 0.41)

cubic lattice. A modification was required to equalise the diameters of the rods
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in order to create the (0.60 × 0.60) cubic lattice sample. This was achieved by

slotting 48 tapered copper rings (inner diameter 12.65 ± 0.17 mm, outer diameter

15.12 ± 0.20 mm) onto the small diameter rods and positioning them between the

large diameter rods in each of the platforms. The rings were manufactured such

that they matched the curvature of the small diameter rods and maintained the

aforementioned inter-hole spacing of the platforms.

An image of a completed platform with the copper spacers in position is shown

in Figure B.2b. The mould was constructed, filled and dismantled in the same

way as described in Section B.2.1 when using the copper inserts. The copper rings

remained within the set material upon removal of the rods and so these components

were removed using tweezers at the end of the dismantling process.

B.3 Characterisation Samples

Samples of the bulk material were made every time a batch of the elastomeric

material was prepared. This was performed by pouring some of the mixture into

three cylindrical aluminium moulds (diameter 10.00 ± 0.05, height 10.03 ± 0.06

mm) and allowing it to set for the same time as the cellular structure which was

being made. These rod-shaped calibration samples of bulk material were required

in order to determine its elastic properties from compression tests. These are

described in further detail in Section 2.1 of this thesis.
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Appendix C

Discrete Model

A brief overview of the discrete model [56] used predict the buckling stress of

two-dimensional cellular structures was given in Chapter 4. Here, this model is

discussed in greater depth and this includes a full derivation of the spring constants

and the critical stress. Whilst the discussion of the model is primarily focussed

on the circular cell matrix, the formalism here can be applied to cells with square

and diamond shapes. It is assumed that, whatever the cell shape, the cells are

arranged on a square lattice.

The discrete model is constructed by replacing the square lattice of cells with

a skeletal frame of crossed rigid rods of length l. The rods form rigid crosses where

they overlap and meet at the thinnest part of the interstitial ligament within the

lattice. Where two crosses meet, they are attached by means of a hinge equipped

with a rotational spring. The stiffness of the springs is denoted ρ and in calculating

this value the resistance of the inter-hole ligaments to buckling is concentrated to

one point. The spring constants at the boundaries are half of those in the bulk

of the structure as they are half the width at this point. As described in Chapter

4, the vertical springs at the top and bottom boundaries are stiffened by a factor 1
k .
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In order to replicate the experimental conditions, the stress σ which is applied

uniformly across the top and bottom surfaces of the experimental sample must

be discretised. This is performed such that the applied load acts locally on the

top and bottom of the columns of rigid bars. It is assumed that this force F is

constant on each column with the exception of the two outermost columns where

F
2 is applied. The buckling of the discrete structure is manifested by the rotation

of each of the rigid crosses about an angle α from the initial position (α = 0). As

observed in Chapter 4, the form taken by the discrete model in this state mimics

accurately that of the csa-lattice in its buckled state.

C.1 Buckling

The buckling stress σcr of the lattice is calculated by considering the total energy

Π(α) of the structure . The work done by the external compressive load on each

of the inner n − 1 columns is Fml cosα. On the two outermost columns it is

F
2ml cosα according to the discretisation of the force described in Section ??. The

total work done Πw is

Πw(α) = Fnml cosα (C.1)

When the crosses rotate by an angle α about their centres the rotational spring be-

comes compressed by 2α. Therefore the potential energy stored in each rotational

spring is ρ(2α)2

2 . Within the n−1 inner columns there are m vertical springs and for

each of the m−1 inner rows there are n horizontally aligned rotational springs. As

described in Section ?? the rotational stiffnesses at the boundary of the structure

are halved and the vertical springs in the top and bottom rows become stiffened.
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Πrot(α) is the sum of the rotational energies

Πrot(α) = Πh(α) + Πv(α) (C.2)

where Πh(α) is the sum of the energy contributions from the initially horizontal

springs

Πh(α) = 2m
ρ

2

(2α)2

2
+ (n− 1)mρ

(2α)2

2

= nmρ
(2α)2

2

= 2nmρα2 (C.3)

and Πv(α) is the total energy contribution from the initially vertical springs

Πv(α) = (n− 1)(m− 1)ρ
(2α)2

2
+ 2(n− 1)

ρ

2

(2α)2

2
+ . . .

4ρ

2k

(2α)2

2
+ 2(m− 1)

ρ

k

(2α)2

2

= m(n− 1)ρ
(2α)2

2
+

2mρ

k

(2α)2

2

= 2m(n− 2)ρα2 +
4mρα2

k
(C.4)

Substituting equations (C.3) and (C.4) into equation (C.2) gives

Πrot(α) = 2nmρα2 + 2m(n− 2)ρα2 +
4mρα2

k

= 4nmα2 + 4mρα2

(
1

k
− 1

)
(C.5)

and the total energy Π(α) therefore has the form

197



Π(α) = Flmn cosα+ 4nmα2 + 4mρα2

(
1

k
− 1

)
(C.6)

where the only independent variable is the deflection angle α. In order to determine

the load value Fcr at which the structure buckles, it is necessary to differentiate

equation (C.6) with respect to α. The first derivative gives the equilibrium solu-

tions and the second derivative determines the point at which an initially stable

state will become unstable [4,31]. This is found by considering the neutral stabil-

ity condition, whereby the second differential is equated to 0 and using this it is

possible to find Fcr. Differentiating equation (C.6) twice with respect to α yields

d2Π(α)

dα2
= −Flmn cosα+ 8mnρ+ 8mρ

(
1

k
− 1

)
(C.7)

In order to determine the onset of instability of the structure in the trivial state α

is set to 0 and equation (C.7) must meet the neutral stability condition described

above. Applying these two conditions gives

d2Π(α)

dα2
|α=0 = −Fcrlmn+ 8mnρ+ 8mρ

(
1

k
− 1

)
= 0 (C.8)

where at the onset of instability F = Fcr. Rearranging equation (C.8) allows Fcr

to be calculated

Fcr =
8ρ

l
+

8ρ

nl

(
1

k
− 1

)
(C.9)

The final step in determining the critical stress of the structure is to convert Fcr

from a force to a stress value. Fcr acts locally on the top and bottom surfaces of
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the structure and so the total force on the surface is nFcr. The area over which

this acts is A = nlw where w is the thickness of the sample. The normalised

critical stress is calculated by dividing nF by A according to the definition of this

measure given in Section 3.2.4 i.e.

σcr
Es

=
nFcr
nlw

=
8ρ

wEsl2

(
1 +

1

kn
− 1

n

)
(C.10)

In the above expression Es and w can be set to unity as the spring constant ρ is

shown in the following sections to be linear in these variables, giving .

σcr
Es

=
8ρ

l2

(
1 +

1

kn
− 1

n

)
(C.11)

C.2 Spring Constants

The equations derived in Section C.1 are generic and the cell shape has not been

included in the derivations. In the following three sections ρ is derived for circular,

square and diamond cells. The stiffness ρ is calculated by considering the inter-

hole ligaments as single rods which are acted on by a bending moment M about

its central axis. ρ is calculated such that the springs provide the same resistance

to bending and hence the same angular deflection as the rod. From beam theory

I(x) =
(2y(x))3

12
(C.12)

where Es the Youngs modulus of the material from which the rod is made and

2y(x) is its thickness of the rod at a distance x along its central axis. This is specific
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to the shape of the cells and is given in the relevant sections. The curvature of the

beam is

κ(x) =
M

EsI(x)
(C.13)

and the total angular deflection between two ends of the rod is

θ =

∫ l
2

−l
2

κ(x)dx (C.14)

By equating the angular deflection in the original structure (θ) and that in its

discrete form (2α), and assuming that the bending moment M is the same in both

cases, the following expression for the rotational stiffness ρ is obtained

ρ = Es

(∫ l
2

−l
2

1

I(x)
dx

)−1

(C.15)

C.2.1 Circular Cells

For ease of calculation of the tapered beam stiffness, the origin is located at the

hinged point, the x-axis is oriented along the beams central axis and the y-axis is

orthogonal to this. The thickness of the tapered rod at position x is described as

y(x) =


l
2 −

d
2

√
1− 4x2

d2
if 0 < |x| < d

2

l
2 if d

2 < |x| <
l
2

In performing the integral over x it is noted that the single tapered rod is sym-

metrical about the x-axis.
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∫ l
2

−l
2

1

I(x)
dx = 2

∫ l
2

0

1

I(x)
dx

= 2

∫ d
2

0

1

I(x)
dx+ 2

∫ l
2

d
2

1

I(x)
dx

= 2

∫ d
2

0

12

w(2y(x))3
dx+ 2

∫ l
2

d
2

12

w(2y(x))3
dx

=
24

8w

∫ d
2

0

1

( l2 −
d
2

√
1− 4x2

d2
)3
dx+

24

8w

∫ l
2

d
2

1

( l2)3
dx

=
3

w

∫ d
2

0

1

( l2 −
d
2

√
1− 4x2

d2
)3
dx+

3

w

∫ l
2

d
2

1

( l2)3
dx

(C.16)

In order to determine the first term in equation (C.16) the integrand ξ = 2x
d is

introduced. The integral now takes the form

∫ d
2

0

1

( l2 −
d
2

√
1− 4x2)3

dx =
4

d2

∫ 1

0

dξ

(a−
√

1− ξ2)3
(C.17)

where a = l
d . The right hand side of equation (C.17) is expressed as 4

d2
[C(ξ)]10

where the term C(ξ) has the form

C(ξ) =
A5

2

C1(ξ) +

[
C2(ξ) + ξ

A (C3(ξ) + C4(ξ) + C5(ξ))
]

C6(ξ)

 (C.18)

where

A =
1√

a2 − 1
(C.19a)

C1(ξ) = 3a tan−1 (Aξ) (C.19b)
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C2(ξ) = 3a
(
(a2 + ξ2 − 1)2

)2
tan−1

(
Aξ√
1− ξ2

)
(C.19c)

C3(ξ) = 2a5 + 3a4
√

1− ξ2 (C.19d)

C4(ξ) = a3 − a2(1− ξ2)
3
2 (C.19e)

C5(ξ) = 3a(ξ2 − 1)− 2(1− ξ2)
3
2 (C.19f)

C6(ξ) =
(
a2 + ξ2 − 1

)2
(C.19g)

It can be seen that C(0) = 0 and only C(1) requires calculation in order to deter-

mine ρ. In this limit the equations (C.20) reduce to

C1(1) = 3a tan−1 (A)

C2(1) = 3a5
(π

2

)
C3(1) = 2a5

C4(1) = a3

C5(1) = 0

C6(1) = a4

and so C(1) has the form

C(1) =
A5

2

(
3a
(

tan−1 (A) +
π

2

)
+

1

A

(
2a+

1

a

))
(C.21)

The second term in equation (C.16) has the form

∫ l
2

d
2

1

( l2)3
dx =

4(l − d)

l3
(C.22)
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and the spring stiffness ρ is expressed as follows

ρ =
Esw

12

(
d2

C(1) + d2(l−d)
l3

)
(C.23)

C.2.2 Square Cells

The spring stiffness can be calculated for the square-celled lattice using equation

(C.15). For the square cells of side a, y(x) is given by

y(x) =


l−a

2 if 0 < |x| < a
2

l
2 if a

2 < |x| <
l
2

The integration over x in equation (C.15) can be split up in a similar manner to

the circular cell case

∫ l
2

−l
2

12

w(2y(x))3
dx = 2

∫ l
2

0

12

w(2y(x))3
dx

= 2

∫ a
2

0

12

w(2y(x))3
dx+ 2

∫ l
2

a
2

12

w(2y(x))3
dx

= 2

∫ a
2

0

12

w(l − a)3
dx+ 2

∫ l
2

a
2

12

wl3
dx

=
12a

w(l − a)3
+

12(l − a)

wl3

=
12
(
al3 + (l − a)4

)
w(l − a)3l3

(C.24)
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The stiffness ρ is calculated using equation (C.15).

ρ = Es

(∫ l
2

−l
2

1

I(x)
dx

)−1

=
Esw(l − a)3l3

12 (al3 + (l − a)4)
(C.25)

C.2.3 Diamond Cells

For the case of diamond shaped cells with diagonal b, y(x) has the form

y(x) =


l−b
2 + |x| if 0 < |x| < b

2

l
2 if b

2 < |x| <
l
2

Again, the spring constant can be calculated using equation (C.15).

∫ l
2

−l
2

12

w(2y(x))3
dx = 2

∫ l
2

0

12

w(2y(x))3
dx

= 2

∫ b
2

0

12

w(2y(x))3
dx+ 2

∫ l
2

b
2

12

w(2y(x))3
dx

= 2

∫ b
2

0

12

(w(l − b) + 2x)3
dx+ 2

∫ l
2

b
2

12

wl3
dx

=
2

−4

(
12

w(l − b+ b)2

)
− 2

−4

(
12

w(l − b)2

)
+

12(l − b)
wl3

= − 12

2wl2
+

12

2w(l − b)2
+

12(l − b)
wl3

=
6

w

(
−1

l2
+

1

(l − b)2
+

2(l − b)
l3

)
=

6

w

(
l3 + 2(l − b)3 − l(l − b)2

(l − b)2l3

)
(C.26)

Using equations (C.15) and (C.26) together it is found that
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ρ = Es

(∫ l
2

−l
2

1

I(x)
dx

)−1

=
w

6

(
Es(l − b)2l3

l3 + 2(l − b)3 − l(l − b)2

)
(C.27)

C.2.4 Comparing Cell Shape

The variation of the ρ values calulated using equations (C.23), (C.25) and (C.27)

for circular (blue), diamond (red) and square (green) voids has been plotted in

Figure C.1. This confirms the experimental observation that the csa-lattice is the

stiffer of the three types, however there is little difference between the dsa- and

ssa-lattices.
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Figure C.1: The variation of ρ with Φ for the csa-(blue), dsa-(red) and ssa-

(blue)lattices.
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[78] S. Luding and Fatih Göncü. Private Communication. Multi Scale Mechanics,

University of Twente,7500 AE Enschede, Netherlands.
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