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Abstract 
Title: Identification of Weak Areas and Worst Served customers for Power Quality 

Issues Using Limited Monitoring and Non-Deterministic Data Processing Techniques 

Mr Nick C Woolley ,The University of Manchester, 2012 

The current international trend in distribution networks is towards increased monitoring. 

This trend is being driven by distribution network operators (DNOs) who hope that 

through increased monitoring, they will be able to optimise capital and operational 

expenditure and thus operate a more efficient networks.  

One of the key areas of focus relating to the increased interest in distribution network 

monitoring is power quality. Power quality disturbances affect consumers by 

interrupting equipment or halting industrial processes and can result in very significant 

financial losses. DNOs are also financially impacted by power quality issues if they 

breach regulatory limits or contractual arrangements. To extract value from power 

quality monitoring, DNOs must process and then interpret data from a variety 

monitoring devices placed at different locations all potentially measuring different 

quantities. The challenge of how best to extract useful and practical power quality 

information from disparate monitoring devices is the subject of this thesis. 

This thesis describes and develops monitoring techniques for two power quality 

phenomena: voltage sags and unbalance. The research presents new techniques which 

can graphically identify the weakest areas and the worst served customers for voltage 

sags and unbalance. All the developed techniques utilise non-deterministic methods 

(such as statistics and artificial intelligence) to deal robustly with network and 

measurement uncertainties. This thesis can be dissected into four areas: voltage sag 

monitoring, optimal power quality monitor placement, voltage unbalance monitoring 

and identification of the weakest areas and worst served customers for both issues.  

The first section of this thesis is dedicated to voltage sags. This section introduces a 

multi-step process to identify and estimate the impacts of voltage sags within networks. 

The first stage in this process is classification and detection where several different 

classification methods (including immune inspired techniques) are compared to 

determine which algorithms work best under the context of limited monitoring. The 

research then proposes a novel robust method for performing fault location and voltage 

sag profile estimation using multiple monitors. The method pays particular attention to 

the errors in measurement inputs and identifies the most likely location for both the 

fault location and the voltage magnitude using statistical methods. The voltage sag 

monitoring research concludes by defining the probable impacts of voltage sags on 

customers, and by introducing a new measure known as the sag trip probability. 

The second major section covered by this thesis is optimal monitor placement. This 

thesis presents a comprehensive methodology which enables network operators to place 

monitors in locations best suited for voltage sag monitoring based on future likely 

topological and loading changes.  

The third major section covered by this thesis is unbalance monitoring. A three phase 

distribution system state estimation model is developed which can estimate the location 

and impact of unbalance within the network, without assuming the loading is balanced. 

The final section of this thesis shows how the worst served customers and the weakest 

areas of the network can be identified presents for both voltage sag and unbalance using 

limited monitoring and the developed techniques. The results are presented graphically 

using a series of topological heat maps, and these show visually how the techniques 

could work to monitor a distribution network.  
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1 Introduction 

The motivation for this research is to gain a greater understanding of power quality 

issues (specifically unbalance and voltage sags) through intelligent monitoring. It is 

hoped that this will help improve customer service, facilitate the implementation of 

power quality contracts, reduce maintenance, guide the implementation of mitigation 

solutions and help obtain visibility of power quality issues throughout the network.  

The scope of this research is specifically limited to distribution networks where there is 

a keen interest in power quality monitoring and a requirement for intelligent  

monitoring. 

The current level of power quality monitoring within distribution networks is such that 

distribution network operators (DNOs) and customers do not have visibility over power 

quality issues on many 33kV and 11kV sections of network. An understanding of the 

level of power quality throughout a network will allow DNOs to pro-actively maintain 

their networks and mitigate power quality issues where they are not adequate. Through 

intelligent monitoring, DNOs, regulators and customers should be able to obtain greater 

visibility of issues to help plan maintenance, implement mitigation solutions and 

comply with power quality contracts and regulations. 

1.1 Background 

The term power quality in relation to the supply of electricity in a network refers to the 

compatibility of the power available at a particular busbar of the network with the 

equipment connected to that busbar[1]. Incompatibilities between the electricity supply 

and the load can lead to significant negative effects, including tripping of devices, over-

heating of machinery, premature aging of electrical assets and significant financial 

losses for both the end-user and the network operator [1, 2]. 
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Power quality issues can be categorized into a number of different areas including 

harmonics, voltage sags and swells, voltage unbalance, over voltages and under-

voltages, surges, transients and voltage flicker.  

This thesis will cover two of these areas: voltage sags and voltage unbalance. 

1.1.1 The Importance of Power Quality 

The primary concerns of electricity consumers were traditionally cost and reliability. 

Over the past twenty years or so, power quality has become more important. Industrial 

customers with sensitive electromagnetic equipment are concerned by a voltage sag or 

significant unbalance if it causes a costly interruption to an industrial process. 

The compatibility between loads and the network to power quality disturbances can be 

broadly described using Fig. 1.1 (adapted from [1]). 

 

Fig. 1.1. The planning and compatibility levels for power quality events. Adapted from [1].
3
 

Fig. 1.1 shows the electro-magnetic coordination between disturbances in a network and 

locally attached equipment. In theory, devices (such as motors, adjustable speed drives, 

switched mode power supplies, etc.) are capable of withstanding disturbances up to the 

electro-magnetic compatibility level (shown as the right hand bar in Fig. 1.1). Networks 

are designed such that disturbances are emitted below the planning level (shown as the 

left hand bar in Fig. 1.1). The designed distribution of site disturbances is shown as the 

far left hand curve in Fig. 1.1. If the observed distribution of site disturbances is high 

                                                 
3
 Note that there is no reason why the two distributions shown here should follow the Gaussian normal 

distribution. The statistical distribution will vary depending on network and equipment parameters. 
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enough (as shown in the middle curve of Fig. 1.1), it can overlap with the distribution of 

disturbances which can be tolerated by local electrical devices (as shown by the right 

hand curve of Fig. 1.1). The level of overlap between the two probability distributions 

indicates probable negative consequences which are often manifested in the form of 

trips. 

The recent relevance and importance of power quality arises from structural and 

operational changes currently occurring in power networks world-wide:  

 Increasing numbers of power electronic loads and generators are being installed 

which are more sensitive to power quality disturbances than traditional power 

system loads. These newer load types are more likely to cause power quality 

disturbances themselves, as is the case with several types of power convertors. 

 The regulatory environments are increasing operational pressure on utilities to 

reduce interruptions and improve the quality of electrical supply. For example, 

under UK regulation (ofgem’s Distribution Price Control Review 5 (DPCR5)), 

the number and length of all customer interruptions above 3 minutes are 

routinely monitored, as well as the quality of service provided by call centres. 

The objective of power quality monitoring, and this thesis to a certain extent, is to 

ascertain the probability distribution for site disturbances, to ensure that they match 

planning and compatibility limits. By using an intelligent monitoring system, this thesis 

will aim to process standard power quality monitoring information (such as voltages 

and currents) to obtain probabilistic estimates for the power quality performance of the 

network. 

1.1.2 The Effects of Poor Power Quality 

Poor or inadequate power quality impacts on end users and network operators in 

different ways. 

End users will be severely affected if a power quality issue causes an industrial process 

to be interrupted. The impact of a process interruptions may include lost or wasted work 

in progress, costs caused by idle staff who are no longer able to work, process slow 

down, equipment damage, costs associated with restarting the process, potential 

penalties due to late delivery of finished goods and decreased competiveness [1]. 

Across the European Union, the total annual costs attributable to power quality related 

issues were estimated at €150bn [3]. In 2008 / 2009, voltage sags (and faults) caused an 
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average of 0.73 interruptions per customer and contributed to an average of 76 customer 

minutes lost (CMLs) over the course of a one year period. These interruptions cause 

different impacts to different customers. For example, a momentary interruption for a 

large customer is estimated to cost £216k, whereas a 4 hour interruption on a residential 

customer is estimated to cost only £4.78 [4]. If these figures are scaled across the UK, 

the costs of these interruptions are equivalent to economic losses of £3.7bn
4
 [2, 5].  

Unbalance causes losses in the network, trips (if it is severe enough, and in a critical 

position), overheating of assets and de-rating of equipment. There were no research 

surveys available on the exact level of unbalance within the UK network so it is not 

possible to determine the exact amount of unbalance in the UK network. Unbalance 

close to the regulatory limit of 2% adds additional losses to network operation, which 

although negligible, can be quantified [1]. For example, induction motors rated above 

100kW and exposed to 2% unbalance generate additional losses of 2.4% [1], 

synchronous generators rated above 100kW generate additional losses of 4.2% and 

transformers generate losses between 1% and 4% [1]. Losses generated in transformers 

are roughly 1/3 of all technical network losses [6] in the UK network. Therefore 

assuming 2% unbalance is widespread in UK distribution networks, the extra losses 

caused by unbalance through transformers could be equivalent to between 63GWh and 

250GWh
5
 for the entire UK [7]. Using a loss incentive of £50 / MWh (as stipulated in 

DPCR5 [7]), this equates to loss incentives worth between £3.2m and £12.6m. 

Distribution network operators (DNOs) are impacted when power quality causes them 

to breach quality of supply contracts with end users and regulators. DNOs must ensure 

that their network is maintained to limit power quality disturbances, for example, by 

cutting tress, maintaining switchgear, washing insulators and maintaining assets. If the 

level of power quality does not meet the correct regulatory or contractual requirements 

then DNOs may be required to spend money addressing these requirements, for 

example by installing FACTS devices [8], adding harmonic filters, rebalancing loads or 

replacing utility assets. Costs are also incurred as DNOs deal with end user power 

quality complaints. It should be noted that there is no overall general requirement for a 

particular level of power quality; although there are often specific requirements which 

may be set for interruptions, harmonics and the level of unbalance. 

                                                 
4 Based on the average CML / customer of 1hour / customer, 92% domestic, 6% commercial and 2% industrial customers, 29mln 

customers. Inflation adjusted between 1996 & 2010. 
5 Total distribution network losses of 18,777GWh in 2009-2010 (available from ofgem loss report). 
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1.1.3 Why Should a DNO Monitor Power Quality? 

Intelligent monitoring could help to improve customer service by reducing complaints 

and increasing customer satisfaction. Monitoring should also help to facilitate 

improvements in network efficiency by reducing losses, optimising maintenance and 

reducing interruptions. 

Network wide knowledge of power quality issues also presents a large opportunity for 

DNOs to potentially make money from new power quality contracts. This will enable 

DNOs to profit from selling both highly reliable and less-reliable power quality zones 

[2]. High quality power zones are almost non-existent in the UK [2], but they appeal to 

international industrial customers where the impact of a power quality issue generates 

significant financial consequences. In France, distribution and transmission companies 

offer all customers the ability to be able to contract for extra power quality requirements 

which are then overseen by the regulator. Networks are also becoming increasingly 

interested in selling lower quality power as an alternative to network expansion. For 

example, the Electricity North West Capacity to Customers (C2C) project [9] is seeking 

to re-use existing network capacity and connect major energy users on less reliable 

contracts. The results of power quality monitoring will help to quantify the level of 

unreliability these customers can expect on their new connections. 

With intelligent monitoring network operators will also be able to gauge the 

performance of their network against European regulatory standards such as EN50160 

[10] and national regulators. Close monitoring of regulatory limits could even generate 

extra income for DNOs, as high power quality performance is often incentivised by the 

regulator. 

1.2 Voltage Sags 

Voltage sags (voltage dips) are short (typically half a cycle to several seconds) 

reductions in the RMS voltage at buses in a power system network [11, 12]. They are 

often caused by faults, large motors starting, transformers energizing and loose and 

defective wiring. Voltage sags form the most significant component of power quality 

problems in distribution networks [13] both in terms of gross numbers of events and the 

high associated costs to end users [11, 14-16]. A study for the European Union 

estimated that voltage sags and short interruptions contributed to an annual loss of 

€86bn [3]. 
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Voltage sags are most often characterized by two features: firstly, the voltage sag 

magnitude that defines the magnitude of the retained RMS voltage (expressed in per 

unit or as a percentage) and secondly the duration that defines the length of time that 

the voltage remains below a specified threshold (typically 0.9 per unit). They are 

stochastic in nature as they are influenced by the a variety of random factors, including 

fault type, position and pre-fault voltage [17].  

The effects of a voltage sag is also dependent on two other important factors, in addition 

to magnitude and duration. The first is the phase angle shift which is defined by the 

difference of the pre-sag voltage angle and post sag voltage angle. The second factor 

relates to the point on the wave at which the voltage sag starts. This refers to the 

instantaneous voltage drop caused when the voltage sag starts [11], which varies 

dependent on the sag. 

A typical three phase voltage profile for a voltage sag is shown in Fig. 1.2: 

 

Fig. 1.2. A voltage sag. Adapted from [2]. 

The impact of voltage sags on end-user equipment is highly dependent on the types of 

loads connected to the electrical supply. Modern manufacturing processes involve sets 

of cascaded machinery which can be disrupted if only one of the devices attached to the 

process is interrupted [18]. Both equipment and processes may be interrupted if the 

voltage sag is severe enough. 

The ultimate consequence of a trip caused by a voltage sag is economic losses. The 

losses from process interruptions can be extremely high, ranging from €250,000 for the 

glass industry to €3,800,000 for semiconductor production [19]. Financial losses arise 

from a variety of factors including lost output revenue, lost opportunities, reduced asset 

operating life time, product damage, repairs and lost productivity [20]. 
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1.3 Voltage Unbalance 

Voltage unbalance is caused by the asymmetric operation of multi-phase electrical 

power networks. It is regarded as a significant problem which negatively affects both 

distribution network operators (DNOs) and electrical consumers [21]. 

IEC 61000 [22] defines voltage unbalance as a condition in multi-phase power systems 

where the magnitude of phase to earth voltages and angles are not equal. The voltage 

unbalance factor (VUF) is defined as shown in equation (1.1). 

100)1()2(  VVVUF

 

(1.1) 

Where V
(2)

 is the complex negative sequence voltage, and V
(1)

 is the complex positive 

sequence voltage. The VUF quantifies the level of negative sequence voltage unbalance 

normalized to the size of the positive sequence voltage.  

Voltage unbalance is generated through the emission of zero and negative sequence 

current at sources throughout the network. Emission sources include asymmetric un-

transposed or partially transposed transmission lines [23], single phase and dual-phase 

loads and unbalanced three phase loads.  

Voltage unbalance is a steady-state phenomenon [22], and is separate from the 

unbalance that arises during asymmetric short circuit faults. 

Where there is a path for zero sequence current to flow through the network, it is also 

possible to observe zero-sequence unbalance. Zero-sequence unbalance is controlled by 

network system design, rather than emission limits [22]. Zero-sequence unbalance can 

be problematic where there exists a path for zero-sequence currents to flow up or down 

voltage levels within a network. However, most networks naturally control zero-

sequence current flow through blocks in the current path, such as Δ-Y transformers. 

From a DNO’s perspective, it is important to have a strong understanding of the level of 

unbalance within the network as this will affect three phase customers, network losses, 

heating, operational limits (of three phase machines, cables and lines) and influence 

customer minutes lost (CML). The DNO also has a regulatory requirement to operate 

their network within statutory unbalance limits (<2% in the UK [10]). It is important for 

the DNO to understand whether the unbalance is being generated from within its own 

network, or from unbalanced customer loads. 

From a consumer’s perspective, the effects of unbalance include three phase equipment 

trips, heating of industrial machinery (caused by increased negative and zero sequence 

currents) and torsional oscillations. Unbalance creates additional heating on electrical 
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equipment which results in a shortened in-service time for equipment installations. This 

ultimately means the equipment operator may have to replace their equipment earlier 

than expected; for example, 2.3% earlier for transformers and 9.1% for induction 

motors both operating at 2% unbalance [1]. The presence of significant unbalance may 

also necessitate that three phase machinery is de-rated to operate at less than full load. 

1.4 Equipment Immunity 

Equipment immunity defines the ability of an electrical or electronic device to be able to 

withstand a power quality disturbance. Process immunity defines the ability of a process 

involving interrelated electrical machinery to withstand power quality disturbances. 

It is important to maintain electromagnetic compatibility between the equipment 

immunity of loads in the network and network itself. This includes ensuring that loads 

do not introduce intolerable disturbances into the network and that they are able to 

function satisfactorily during power quality events within regulatory limits. 

1.4.1 Equipment Immunity to Voltage Sags 

The immunity of information technology (IT) and process control equipment to voltage 

sags is often represented using the Information Technology Industry Council (ITIC) 

[20] or Computer Business Equipment Manufacturers Association (CBEMA) [20] 

curve. The ITIC curve is shown in Fig. 1.3. 
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Fig. 1.3. The ITIC voltage sag immunity curve. 

The aim of the ITIC curve is to define the operation of equipment after it is exposed to 

RMS voltage variations with different magnitudes and durations. The curve splits the 
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operating zone into a safe middle operating zone where no trips are likely to occur, and 

two upper and lower zones where trips are likely. IT equipment can withstand small 

voltage sags of a short duration because the internal voltage regulator (principally a 

capacitor) within many switch mode power supplies can maintain a constant DC voltage 

for a short length of time across a wide range of input voltages. Another curve which is 

similar in representation to the ITIC curve is the SEMI F-47 [24] curve. SEMI F-47 

defines the voltage sag immunity of semiconductor manufacturing equipment.  

Other types of devices such as contactors, induction motors and adjustable speed drives 

are also sensitive to voltage sags [25]. Contactors and electromechanical relays are used 

to control loads, such as motors [20]. Contactors have been found to open when the 

voltage drop is between 50% and 70% of nominal operating voltage [26]. They are also 

sensitive to the point-on-wave of sag initiation [25]. The response of an induction motor 

during a voltage sag will depend on the torque speed characteristic of the motor and the 

amount of mechanical load it is currently serving. A voltage sag of the correct 

magnitude, duration, phase angle jump and type can cause an induction motor to stall 

[20]. Adjustable speed drives can be severely affected during voltage sags if the drive 

protection acts to prevent damage to the device, if the controller fails, or if post-sag 

over-currents blow fuses protecting power electronics components [25]. 
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Fig. 1.4. The area of uncertainty associated with voltage sag operation  

The immunity of each of these types of equipment to a voltage sag can be summarised 

using a curve defined in a similar way to Fig. 1.4. Fig. 1.4 describes an area of 

uncertainty where the operation of the equipment after the sag will be uncertain. This 

may be caused by factors such as manufacturing tolerances or un-monitored variables 

such as the point-on-wave of initiation of the sag. The main area of interest in Fig. 1.4 is 

the region of uncertainty [2], and the core focus of equipment immunity studies is to 

define this as accurately as possible. 
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More detailed information on equipment immunity to voltage sags can be found in [20]. 

1.4.2 Equipment Immunity to Unbalance 

The sensitivity of electrical equipment to voltage unbalance varies across different 

devices. In contrast to voltage sags it is predominantly only three phase electrical 

equipment that is directly affected by unbalance. The concept of an immunity curve is 

also not defined for unbalance in the same way as for voltage sags. 

Induction motors are affected in three ways by voltage unbalance [1]. The first 

consequence is that the motor may not be able to operate at full torque. This is caused 

because the negative sequence voltage applied to the terminals of the induction motor 

under unbalanced conditions generate a rotating elliptical (rather than circular) magnetic 

field and applies a braking torque on the motor. Under unbalanced conditions, the motor 

also suffers from increased mechanical wear on the bearings of the device, because 

torque components are introduced at double the system frequency. The last consequence 

is that the stator and the rotor of the motor are heated through the rotating magnetic field 

of the negative sequence components. If the level of unbalance is large, induction 

motors must be derated according to the NEMA machine derating curve (as shown in 

Fig. 1.5). 

 

Fig. 1.5. The NEMA derating curve [27] for induction motors.  

The main consequence of unbalance applied to synchronous machines is overheating in 

the windings. Synchronous machines are usually protected from excessive heating by 

local protection devices, whose settings are specified dependent on the protection device 

and the machine. 

Transformers are affected as unbalance generates negative sequence currents which 

subsequently cause extra heating and losses through the transformer. Transformers can 

be additionally affected by unbalance if the transformer has a delta (Δ) winding. A delta 
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winding traps a circulating zero sequence current and causes extra heating and losses as 

the current circulates in the transformer windings. If the amount of heating is severe 

enough, the transformer may need to be derated. 

Other loads such as electronic power convertors are also affected by unbalance. The 

presence of unbalance at the terminals of an electronic power convertor can create 

harmonic distortion. Network components such as cables, lines and transformers are 

also affected by unbalance as the flow of worthless negative sequence current generates 

extra losses and heating on those devices. This limits their capacity to carry useful 

positive sequence currents. 

1.5 Regulatory Limits and Standards for Voltage Sags and Unbalance 

European standard EN 50160 [10] specifies that the number of voltage sags in LV
6
 and 

MV networks should be less than 1000 per year. Some countries, notably Norway, 

impose tighter limits on voltage sags. The Norwegian regulator specifies that the 

maximum number of voltage sags which can occur in MV and LV networks must not 

exceed 24 in any 24 hour period [28]. In HV networks, the maximum number of voltage 

sags cannot exceed 12 in any 24 hour period [28]. The requirements of regulators such 

as Norway, Hungary and France already enforce more stringent standards than those 

presented in EN501060 [1]. 

EN 50160 [10] define that the voltage unbalance factor should be less than 2% for LV 

and MV networks, and less than 1% for HV network, measured in 10-minite period, 

with an instantaneous maximum of 4%. IEC 61000-2-2 [29] and IEC 61000-2-12 [30] 

define that voltage unbalance can be up to 2% in LV and MV networks. The IEC does 

not define compatibility levels for HV and EHV networks. The Norwegian regulator 

again implements a stricter standard of unbalance regulation than EN50160, by 

stipulating that the level of unbalance must not exceed 2% for any 10 min period in LV, 

MV or HV networks [28], thus removing the 95
th

 percentile requirement.  

1.6 Addressing Power Quality Issues 

1.6.1 Mitigating Voltage Sags 

Voltage sags are most often caused by faults in the network. Their effects can be 

reduced at the network level by reducing the number of faults in the system, reducing 

                                                 
6
 In this thesis LV is defined phase to phase nominal RMS voltage that does not exceed 1kV, MV 

concerns phase to phase nominal RMS voltages between 1kV and 35kV and HV concerns voltages above 

35kV. 
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fault duration of faults and reducing the magnitude of sags by re-configuring the 

network to change its impedance.  

Voltage sags can also be mitigated at a customer’s site. Equipment immunity of AC 

drive and power electronic devices can be improved by adding capacitance. The 

immunity of DC drives to voltage sags can be improved by improving the algorithms 

which control those drives. Power electronic FACTS devices can also be installed at a 

customer site to minimise the impact of voltage sags during a fault [8]. 

1.6.2 Removing Voltage Unbalance 

Voltage unbalance is ultimately removed by re-balancing loads or removing asymmetric 

network conductors [31]. Re-balancing loads can be achieved by manually or 

automatically reconfiguring the network. Voltage regulators and power electronic 

devices such as FACTS devices can also be installed to help rebalance three phase 

circuits. 

Transposing overhead cables can help to reduce the effects of unbalance, as un-

transposed transmission lines can be a cause of unbalance in a network [31]. Better 

tower design can also help to limit the effects of electromagnetic induction between 

conductors [32]. 

1.7 Power Quality Monitoring 

Power quality monitors were historically installed close to customers experiencing 

power quality problems to troubleshoot specific issues relevant to important customers 

[33]. The devices were often installed on a temporary basis and removed once the 

problem had been identified and rectified. 

DNOs are placing increasing emphasis on power quality data-collection to obtain 

greater visibility of power quality events [1] beyond monitoring a limited group of large 

important customers. Through network wide monitoring, the level of power quality 

within a network can be quantified in terms of both events and costs and important 

current problems can be identified. Monitoring allows a DNO to perform reliability 

benchmarking, monitor power quality contracts and plan predictive maintenance [33]. A 

DNO’s monitoring investment decision is also driven by other factors such as new 

initiatives like the Smart Grid, changes in the regulatory environment, concerns about 

customer retention and new competition within the utility sector. The Electric Power 

Research Institute (EPRI) lists forecasting and short circuit analysis as the two main 
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reasons for monitoring alongside permanent power quality monitoring [33] for 

monitoring in future power networks. 

The following list provides a summary of the reasons why power quality monitoring 

devices are being installed in distribution networks [34]:  

 Identifying power quality problems, and troubleshooting issues 

 Obtaining information on network performance for DNOs and customers 

 Speeding up the resolution of new issues by matching similar issues against a 

history of past events 

 Optimising maintenance schedules by guiding operatives to problem areas 

through localisation of issues 

 Helping to guide pro-active maintenance 

 Analysing the cause of black outs and other interruptions 

 Helping to tweak protection settings (for example, in the case of long voltage 

sags) 

 Monitoring power quality contracts 

 Ensuring that regulatory standards are adhered to, and providing a convenient 

basis for reporting back regulatory information 

 Providing equipment manufacturers with network based information (on the 

numbers and types of events) to formulate standards required for end-user 

equipment compatibility with the network 

It is important to note that information obtained from power quality monitors needs to 

be intelligently processed by an operator or an algorithm before it can be used by a 

DNO to fulfil any of the tasks listed above. Different tasks require different levels of 

processing; for example, issue localisation requires measurements to be algorithmically 

processed into an event location before it can be used to optimise maintenance. Building 

an intelligent picture of the network is further complicated (and might need to be 

estimated) if monitoring is not available at every customer or busbar within the 

network. 

The following section outlines a high level description of how metering information is 

collected and processed by the network operator. 

1.7.1 Power Quality Monitoring Structure 

Data for a power quality monitoring system is collected by monitoring instruments 

which typically measure voltage and current [35]. Power quality monitors are installed 
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at locations which are selected by the DNO or a partner organisation (such as EPRI for 

example [33]) and could include important substations or customers. The locations of 

these monitors are not generally selected based on any rigorous comparative analysis of 

the quality of different monitoring locations. Typically the DNO will either install 

monitors at most locations of a certain voltage level within the network (as is the case 

for [36]) or be guided by engineering judgement and locate monitors in sensible 

locations, such as the secondary side of 33kV/11kV primary substations. 

A distribution management system (DMS) or central database server typically collates 

monitoring information before it is interpreted by a network operator. Information is 

sent to the DMS over a communications system, such as the telephone network, mobile 

network, or utility owned communications infrastructure. Power quality event 

information is processed by a DMS and published for operators in formats including 

summary reports, graphs and tables. The broad structure of a power quality monitoring 

system is described in Fig. 1.6, which is adapted from [33]. 
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Fig. 1.6. The structure of a typical power quality monitoring system [33]. 

1.7.2 Distribution Management Systems 

Power quality monitoring systems are likely to end up augmenting or fully integrating 

with DMS systems which are already installed in most utility networks. DMSs 

originally started as an extension of the supervisory control and data acquisition 

(SCADA) system [37], and have advanced to cover a variety of applications. 

Commercial examples include GE’s GENe [38] and ABB’s Network Manager SCADA 

/ DMS [39]. 

One of the applications covered by a DMS is fault detection, isolation and service 

restoration (FDIR) [40]. FDIR algorithms automatically restore service to the maximum 

number of customers using intelligent optimization restoration algorithms [41-43]. A 
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DMS can provide approximate information on fault location [40], and pre-empt network 

issues by highlighting overloaded cables and transformers. FDIR significantly improves 

the reliability of networks by reducing fault restoration time from several hours to a few 

minutes [37]. Although not strictly a power quality issue, voltage sags are often the end 

result of faults, and the results of voltage sag analysis can often be useful for FDIR, and 

conversely, FDIR can help with the localisation of voltage sag issues.  

DMSs also contain functionality to assist with several offline processes which 

ultimately help DNOs plan network reinforcements and maintenance in a structured and 

informed manner [40]. Contingency and short circuit analysis evaluates the performance 

of the network given certain outage conditions [37]. DMSs can also help plan the 

optimal placement of voltage reinforcement devices by performing offline studies and 

optimizing the network wide voltage profile for maximal loss reduction. Understanding 

the power quality performance of circuits will also feed into these studies; voltage sags 

can be mitigated through the installation of FACTS devices and pro-actively re-

balancing circuits with high unbalance will reduce losses. 

The current body of research around DMSs suggests that future commercial DMSs will 

include further functionality to reduce the operational expenditure of network operators 

and advanced techniques to defer long term infrastructure investment and operate the 

network closer to stability boundaries. Power quality analysis tools are likely to be 

added to future commercial DMSs as these types of issues become increasingly 

important. 

For power quality monitoring of steady state issues such as unbalance and potentially 

harmonics, it is likely that increased monitoring of customers (through the deployment 

of an Advanced Metering Infrastructure (AMI) [44]) and DNO assets (through 

increased monitoring of in-accessible units such as pole top transformers) will enable 

significant advances in the accuracy of a distribution system state estimator [45, 46]. 

Load estimation and load modelling algorithms are likely to significantly enhance in 

accuracy, utilising accurate recordings from meters installed at customer premises and 

the wider network [37].  

The overall reliability of the network could also be enhanced through a DMS’s 

advanced FDIR techniques which cover optimization of complicated network 

topologies [37], potentially utilising advanced algorithmic techniques [47], such as 

artificial intelligence. Fault and voltage sag localization using short circuit analysis may 

be available through the DMS using impedance based fault location algorithms [48]. 
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Fault location and classification techniques are already available in the commercially 

available power quality software PQView [49], and marketed as important in order to 

reduce the time to restoration after faults. 

The increase in power quality network monitoring will allow DNOs to assess system 

wide power quality issues such as voltage sags [11], unbalance [11], harmonics and 

flicker, and estimate their resulting impacts on consumers [36]. The core function of the 

DMS will be to supply accurate historical data which will allow DNOs to analyse the 

effects of new loads and generation such as PHEVs and distributed generation. 

The information architecture of a DMS is likely to incorporate greater use of 

visualisation incorporating DNO geographical information systems (GIS). It is also 

likely to integrate securely and more fully into other DNO systems such as outage 

management systems (OMS) (such as [50]) and meter data management (MDM) 

systems (for example, [51] or [52]). 

1.7.3 Global Pervasiveness of Monitoring Devices 

The amount of power quality monitoring conducted by a DNO varies internationally, 

and is largely dependent on historical interest in power quality monitoring at the 

national and regulatory level. The number of monitoring devices installed in distribution 

networks is likely to increase significantly in the future, as new devices are installed to 

cater for new initiatives such as Smart Grid [53] and tighter power quality regulations 

come into force along with increased interest in commercial power quality contracts. 

In the United States (US), the Electric Power Research Institute (EPRI) has maintained 

a significant interest in power quality monitoring over the last 15 years. Between 1993 

and 1995 the EPRI power quality monitoring project installed 277 monitors in 

distribution systems at sites between 4.16kV and 34.5 kV. The monitor locations were 

chosen to represent a wide geographic sample of the US’s rural, suburban and urban 

networks [54]. One-third of the monitors were located at substations just down line 

from the feeder circuit breaker, while the remaining monitors were randomly placed 

along three-phase sections of the feeder primary. Over 5961 hours of voltage and 

current data was collected. The objectives of the study were to understand system 

performance for power quality issues, characterize specific problems and check 

contractual arrangements within high quality power zones. 

More recent power quality monitoring deployments include the French DNO creating 

the MAGIQ national power quality database [55] and Enel’s in Italy [35, 36].  
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The French power quality monitoring survey started in 2002 and will complete in 2012 

[55]. The French DNO plans to install one power quality monitoring device per 

transformer in all HV/MV
7
 substations as well as a selection of power plants, important 

industrial consumers, renewable installations and some commercial locations [56]. The 

instrument transformer attached to each monitoring device was capable of monitoring to 

an accuracy class of 0.1 (0.1% error at rated current). All of the power quality 

information is collated in a national database. The information collected from the 

monitoring deployment includes RMS voltage and currents, harmonics, flicker, active, 

reactive power, frequency and unbalance. The objective of the study was to verify 

adherence to the EN50160 power quality standards and to obtain a “macroscopic view 

of the MV” [55] network.  

The Italian power quality survey started at the end of 2005 with monitors being installed 

on the MV busbars of 360 HV/MV substations and 89 MV/LV substations [35]. This 

covers 11% of the MV busbars in ENEL’s network, which is still some way short of full 

network monitoring at all MV busbars. The monitor locations were chosen to give a 

good geographical dispersion of rural and urban locations across the whole of Italy’s 

distribution network. A full set of power quality performance characteristics were 

recorded including supply voltage variations, voltage sags and swells, short voltage 

interruptions, voltage harmonics, flicker, voltage unbalance and rapid voltage changes. 

In the UK, power quality monitors have been installed at some 33kV/11kV substations 

where specific power quality issues have been recorded. For example, Western Power 

Distribution
8
 (WPD, a UK DNO) installed 6 power quality monitors at a single 

geographic location to monitor power voltage unbalance. The monitoring locations were 

selected based on engineering judgement. The monitors record 3 phase voltage and 

current waveforms and RMS voltages on all three phases on both the primary and 

secondary side of the transformer using the Sub.net monitoring device [57]. In this 

specific example, the power quality monitors cover just over 50% of the 33kV/11kV 

substations in a 10 substation section of network. The overall density of monitors in the 

wider WPD distribution network is much less than 50% due to the limited number of 

power quality monitoring deployments undertaken thus far. This style of monitoring 

will give good visibility at 33kV, but only covers the start 11kV substations at the 

beginning of 11kV feeders. 

                                                 
7
 In this thesis LV means phase to phase nominal RMS voltage that does not exceed 1kV, MV concerns 

phase to phase nominal RMS voltages between 1kV and 35kV and HV concerns voltages above 35kV. 
8
 Information obtained through conversations with Western Power Distribution engineers. 
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In another UK example, SSE
9
 has installed power quality monitors which monitor the 

secondary side of transformers across 30% of the 33kV to 11kV substations in the 

network. The secondary side of a 33kV to 11kV transformer may feed between 3 and 10 

11kV circuits. An added advantage of installing monitors in these substations is that 

they can be used to perform additional activities such as measuring circuit breaker 

performance. Scottish Power’s future plans are to install a further 700 power quality 

meters across their network. The installation of power quality monitors is an ongoing 

process that is currently taking place across many UK distribution networks.  

The objectives of all of the power quality monitoring deployments discussed in this 

section can be generalised and broadly broken down into the following areas: 

Performance 

o Improving MV distribution network power quality performance  

o Characterisation of specific problems 

o Troubleshooting specific issues 

Research 

o Testing hypotheses; for example, the correlation of power quality events 

with network structure, correlation of power quality events with short circuit 

power 

Contractual 

o Testing the feasibility of introducing contractual arrangements for power 

quality 

Regulatory 

o Publishing power quality performance of the MV network 

o Testing the feasibility of introducing new regulatory limits for power quality 

o Adjusting regulatory limits for power quality 

1.7.4 Monitoring Summary  

Some important conclusions can be drawn from this review of international power 

quality monitoring deployments which are pertinent for the literature study which 

follows. 

The first point to note is that the numbers of monitors being installed within distribution 

networks is much less than would be required to make the network fully observable 

[58]. To achieve observability of all three phase currents and voltages within a radial 

                                                 
9
 Information obtained through conversations with SSE engineers. 
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fully loaded MV network, every other busbar would have to be monitored. With the 

exception of some pockets of the UK network, this is not the case for power quality 

monitoring. Therefore, it is likely that some form of interpolation and / or power quality 

estimation would be required to obtain the power quality performance of non-monitored 

busbars. It will also be important to be able to quantify the accuracy of estimation and 

monitoring deployments.  

Beyond data collection, there will be a requirement for the information from power 

quality monitors to be synthesised to yield results which align to the DNO’s objectives 

for power quality monitoring. It will therefore be important that the DNO has tools 

available to interpret the information from power quality monitors beyond simple 

statistics such as voltage, current or the number of interruptions at monitored busbars. 

Estimation techniques are likely to be study specific and focus on the DNO’s objective 

for the study; for example, fault localisation could be used to improve network 

maintenance performance. 

It is important to note that the locations where monitors have been installed were pre-

dominantly selected using engineering judgement. The quality of these monitoring 

locations may depend on several factors including the power quality issue being 

monitored (for example, harmonics, sags, unbalance etc.), their location, the accuracy of 

the monitors, and the objective of the study. As more monitors are placed in the 

network, it will be important to understand what constitutes a good location for a power 

quality monitor and whether the location of power quality monitors could be optimised. 

The large numbers of power quality monitors being installed now and in the future will 

also create a significant volume of power quality information. The data will need to be 

processed and stored before it can be interrogated. There will therefore be a requirement 

for tools such as data mining, statistics and visualisation tools to help extract knowledge 

from large datasets. It will also be important to be able to understand the accuracy of 

research based on power quality datasets, by quantifying the error in processed power 

quality information. 

These conclusions can be summarised into a series of research questions:  

 How can measurements from power quality monitors be synthesised to yield a 

holistic picture of the network for voltage sags and unbalance? 

 What algorithms are required to process monitoring from power quality meters 

into information that aligns with the DNO’s monitoring objectives?  
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 What constitutes a good location for a power quality monitor, and can advanced 

optimisation techniques yield better results than engineering judgement?  

 Are advanced computational techniques (such as statistics and artificial 

intelligence) required to synthesise data from power quality monitors and draw 

reliable conclusions? 

 How should power quality issues be incorporated and visualised through the 

DMS to allow operators to interpret the topological variation in power quality? 

 What are the quantifiable economic benefits of power quality monitoring? 

1.8 Power Quality Performance Indices 

It is common practice for utilities to process the information obtained from power 

quality monitoring into performance information relating to their network. The sources 

of power quality issues can be considered as weak areas and the customers affected can 

be regarded as the worst served customers. The goal of a power quality performance 

index is to help reveal where the worst served customers or the weakest areas are 

located. 

1.8.1 Worst Served Customers 

Identifying the worst served customers for unbalance and voltage sags should 

summarise the resultant impact of both sags and unbalance at a particular location in the 

network. This is synonymous with understanding the power quality performance of a 

specific bus in a network. The most common way of identifying the worst served 

customers in the network is to record power quality indices for voltage sags and 

unbalance independently.  

The number of voltage sags at a busbar, for example, could be represented by the 

System Average RMS (Variation) Frequency Index (SARFI) index [11], or a 

Generalized Sag Table (GST) [59]. The SARFI index was developed as part of the 

EPRI power quality monitoring survey undertaken in the mid 1990s [33]. The SARFI 

index defines the historical average number of voltage sags of a specific magnitude at a 

customer’s busbar. The SARFI index is represented with a suffix: for example, SARFI50 

represents the number of voltage sags recorded where the minimum voltage was less 

than 50%. The GST [59] exploits the similarity in voltage magnitude of two of the three 

phases during a voltage sag. The GST divides the magnitude and duration of voltage 

sags into discrete regions and represents them in a 2-dimensional table showing two 
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similar phases against the other phase. A greater level of detail of voltage sag 

performance is available through the GST compared with the SARFI index. 

Voltage unbalance is measured as the ratio of the negative to the positive sequence 

voltages (in %) and called the voltage unbalance factor. The voltage unbalance factor is 

calculated using RMS voltages averaged over 10 minute intervals [10]. DNOs are 

particularly interested in recording the amount of time that the voltage unbalance factor 

exceeds a regulatory limit, such as 1% for transmission networks and 2% for 

distributions networks (in the UK) [60]. 95
th

 percentile readings are also important, as 

EN50160 stipulates that LV and MV networks must maintain voltage unbalance factors 

of less than 2% (or 3% in some locations) for 95% of the week. Other useful unbalance 

metrics include the percentage of nominal losses caused by unbalance [1], and the level 

of machine derating [27]. 

A common consequence of both voltage sags and / or unbalance is an equipment trip. 

Unbalance trips are localized to three phase machinery and defined by local protection 

settings. Voltage sags affect single phase and three phase loads, and their impacts can 

spread throughout the network. The resultant impact of both these power quality issues 

can be summarised by estimating the expected number of customer interruptions (CIs) 

at a busbar. If information about the duration of the sag or unbalance is available, the 

total customer minutes lost (CML) can also be found. CIs and CML can also be 

segmented by customer type, to identify which types of customers are being affected 

most severely. 

The resultant impact of a trip is that electrical energy is not supplied to an area of 

network for a period of time. The total amount of electrical energy not supplied (EENS) 

is the total CML multiplied by the size of the load. Using additional knowledge of the 

types of customers attached to a busbar and therefore the average cost of an interruption 

for a given customer type, EENS, CML and trips can be combined to obtain the total 

economic cost of the interruption [2]. 

Identifying the worst served customers within the network is important from a 

regulatory and planning perspective. Regulators are interested in power quality 

performance metrics to ensure customers are being delivered a high quality service. 

Network planners are keen to understand potential power quality issues before new 

loads are connected to the network. 
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1.8.2 Weakest Areas of the Network 

The most basic way of assessing the weakest areas of the network for voltage sags and 

unbalance is to identify the areas within the network with the highest fault rate (or other 

sag causing disturbances) and the areas with the most unbalanced loads. This analysis 

can be improved by considering the resultant impact of the voltage sags or unbalance in 

terms of customer interruptions (CIs), customer minutes lost (CML) or economic costs 

to either the DNO or the customer. By assigning the impact of the power quality issue to 

its source, the relative strength of the network can be assessed. 

Identifying the weak areas in a network is most relevant to DNOs. It is important for 

DNOs to be able to identify weak areas so they can plan their re-enforcement strategy. 

Weak area analyses could also be used to help identify the root cause of specific 

problems impacting on one or a number of customers in a specific area of a network. 

1.9 Overview of Past Research 

The process of synthesising power quality monitoring information into knowledge on 

voltage sag and unbalance performance can be considered as an estimation process. For 

voltage sags the process of estimating the state of a power system is known as voltage 

sag (profile) estimation [25, 61]. The level of unbalance is defined as the ratio of two 

voltages, and thus can be determined using three phase state estimation. 

1.9.1 State Estimation 

The traditional way of determining the operating state of a power system is to use single 

phase state estimation. The operating conditions of a power system can be completely 

determined if voltage magnitude and angle of every busbar is available and if a suitably 

accurate model for the network is known [62, 63]. If all of the voltages and angles are 

known at every busbar in the network, the network is said to be observable, as 

demonstrated in [62] and [64].  

The process of state estimation in power systems can be conducted using single phase 

[62] or three phase models [45, 46, 65] of the power system. With single phase state 

estimation, an assumption is made that the network operation is balanced and 

symmetric. This assumption is clearly not valid for unbalance, where the focus of the 

study is to estimate the imbalance between all three phases. Three phase state estimation 

enables the voltages and currents in all three phases to be known throughout the 

network. For voltage sag estimation studies, the state of the network prior to a fault is 
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often assumed to be balanced, and thus single phase state estimation models should 

suffice. 

A notable example of three phase state estimation applied to the specific task of 

estimating the level of unbalance in a power network is [65]. In [65], the authors 

considered sources of unbalance as either unbalanced loads and unbalanced network 

topologies and proposed a three phase state estimator able to estimate three phase 

voltages and currents. [65] uses the weighted least squares optimization procedure. The 

method of least squares is the same optimization procedure used for most single phase 

state estimation implementations, including [63] and [62]. The main difference with the 

three phase approach proposed in [65] and other single phase approaches, is that the 

Jacobian, state and measurement matrices (see [62]) must cover all three phases, and 

thus include two additional dimensions. 

The outputs from a three phase state estimator are directly applicable to unbalance 

studies as they can be directly used to derive the voltage unbalance factor. The output of 

a state estimator is also relevant to voltage sag state estimation algorithms such as [25] 

and as they require a pre-fault voltage estimate of the system to accurately estimate the 

post-fault system state. Pre-fault voltages are discussed as an additional cause of 

uncertainty for the proposed voltage sag estimation algorithm presented in [25], but no 

method is proposed to help alleviate this problem. 

1.9.2 Distribution System State Estimation 

The core assumption in traditional state estimation is that the number of monitors 

available within the network is sufficient to make the network observable [58, 62, 64]. 

The discussion presented earlier in this chapter demonstrates that the number of power 

quality monitors deployed in most modern power networks is much less than required to 

make the network fully observable. This problem has been overcome in past research by 

using Distribution System State Estimation (DSSE) [46].  

Using DSSE, missing data at non-monitored busbars can be filled in using pseudo-

measurements [45, 46, 66] enabling the state of an unobservable system to be estimated. 

The number of measurements available to estimate the state of the system can then be 

less than the number of measurements required to fully observe [58] the network. DSSE 

overcomes observability issues by making use of estimated measurements [46, 67-69]. 

Like traditional state estimation, DSSE is usually performed under the assumption that 

the network is balanced and can be represented as a single phase equivalent [67, 70]. 
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[45] and [46] are notable exceptions, where the authors estimate the three phase state of 

a system using a DSSE formulation. 

DSSE is very similar to the process of performing probabilistic load flow. Probabilistic 

load flow studies are focussed on establishing long term variation in network 

parameters whilst DSSE aims to establish a system’s current state. Both techniques use 

Newton’s method and both aim to estimate the statistical variation of parameters based 

on uncertainty. Notable works on this topic include [71], where the authors define the 

structure for three phase load flow and [72] where the authors estimate the variation in 

network parameters when exposed to uncertain wind generation. [72] is particularly 

relevant to unbalance studies as the focus of this study was to establish the maximum 

and 95
th

 percentiles of the unbalance factor. 

An important aspect of three-phase DSSE and three phase probabilistic load flow 

studies for unbalance studies is the correlation between measurement errors. In [46] the 

authors touched upon the correlative nature of three phase DSSE measurement errors. 

Correlation in multi-phase networks is covered in more detail in [71-73], where the later 

reference describes how probabilistic three phase load can be used to estimate the 

probabilistic distribution of voltage unbalance. Correlation of measurement errors could 

be incorporated into a three-phase DSSE formulation using a generalised least squares 

(GLS) approach [74]. References in this area are limited, and the current body of 

research lacks a rigorous method to incorporate three phase correlated measurement 

errors into a real-time DSSE. 

1.9.2.1 Locating Sources of Unbalance 

Locating all of the multiple interacting emission sources is not a straightforward task 

[75], but it can be achieved using techniques such as [76] which decomposes the level 

of unbalance made by asymmetrical lines and loads in a section of the Australian 

network. The authors of [76] identify the relative contributions of lines and loads to 

each of the unbalances in the network. However, there has been limited research into 

real-time identification of unbalance sources and their associated effects in distribution 

networks. There is therefore a gap in the current body of research for a real-time state 

estimator which can statistically identify sources of unbalance in the network. 

1.9.3 Voltage Sag Estimation 

The sag performance of a monitored busbar can be obtained by using historical data 

recorded directly at the busbar. If there is no monitor present, the sag performance of a 
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busbar must be estimated. The process of estimating the sag performance of a network 

is known as voltage sag (profile) estimation (VSPE), and this can be accomplished 

using algorithms such as those described in [17, 25, 61]. These algorithms aim to re-

construct the voltage profile at all buses in the network during a voltage sag using a set 

of monitors much smaller than the number of buses in the network. 

The method of fault positions is the most common method used to determine the 

theoretical sag performance of a network. The fault position method works by defining 

a series of fault positions across the network, and simulating single line to ground, 

double line to ground, line to line and three phase faults at each position with an 

associated probability, as demonstrated in [18, 77, 78] and [79]. 

Examples of past work  which use statistical reliability data to estimate the sag 

performance of a network include [18, 77, 78] and [79]. The reliability statistics could 

be obtained from multiple sources, including data recorded in a small portion of the 

target network, data compiled from power quality surveys (in the same network or other 

networks) or data compiled from reliability studies and models. Using reliability 

information is fast (as relatively small amounts of monitoring data are required to study 

a network), and it also allows the building of robust statistical performance estimates 

which can be used for network performance and economic analysis (as in [77]).  

Reliability information provides an estimate for the expectation of failure or a 

distribution for the expected failure rate based on historical information. Although 

component failure rates may tend towards their expected failure rate, the failure rate in a 

specific section of a network will vary dependent of several conditional factors, 

including proximity to trees, weather patterns, ground water content (for cables) and 

cable condition, which may or may not be included in the reliability studies used as the 

basis of the fault studies. 

In contrast, the approach taken by [25] for voltage sags and other sag (fault) location 

techniques such as [80, 81] and [82] uses data recorded at monitoring sites across the 

network and does not require reliability statistics to estimate the sag performance of a 

network. The approach presented in [25] implicitly calculates the reliability of the 

network through monitored data. The main drawback of performing voltage sag 

performance estimation using real monitoring information is that the monitors need to 

be installed for a number of years before they can accurately estimate the sag 

performance of the network. Reference [11] stipulated that at 1 fault per week, 7 years 
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of fault information would be required to obtained voltage sag performance information 

accurate to 10%. 

An important work which proposes a solution to the problem of estimating the voltage 

sag performance of a network using a limited number of monitors is presented in [25]. 

A limitation of [25]’s technique is that it doesn’t quantify how measurement or 

modelling errors affect the accuracy of the estimation procedure. This is an important 

consideration for DNOs who will be interpreting the results and drawing conclusions 

from limited monitoring. 

1.9.3.1 Fault Detection and Classification (for Voltage Sag Estimation) 

The voltage sag estimation technique proposed in [25], and other fault localisation 

techniques such as [81], assume that the type of the fault (e.g. single line to ground, line 

to line etc.) is known before the algorithm is applied. Therefore, there is a requirement 

for the fault to be detected and classified before voltage sag estimation can be carried 

out. 

Fault classification techniques can be split into two groups: techniques which try to 

classify the outage-cause of a fault, and those which try to identify its technical 

characteristics. Fault classification techniques such as [83-85] and [86] are examples of 

techniques which try to identify the causes of faults in power networks. For example, 

[86] uses a hybrid artificial immune based neural network to estimate the number of 

faults caused by animals. The artificial immune recognition system (AIRS) [87] 

algorithm is used in [84] to classify the causes of faults as caused by either lightning, 

animals or trees. 

In contrast to outage-cause identification, techniques such as [88] attempt to detect and 

subsequently classify the type of fault (as line to line, single line to ground, double line 

to ground or three phase). It is shown in [88] that fault classification can be 

accomplished with nearly 100% accuracy using a random forest algorithm [89] and high 

frequency measurements taken from one end of a transmission line. 

Artificial intelligence (AI) based classification algorithms are ideally suited to fault 

classification as they are capable of generalising the relationship between a large 

number of features and a set of discrete classes. AI based classification techniques are 

common to many fault detection and classification algorithms (such as [86, 88] and 

[84]). Notable examples of artificial immune based algorithms applied to fault 

classification and detection are [84] and [86].  
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It is worth considering that artificial immune system inspired algorithms may be of 

particular relevance for fault classification and detection in the voltage sag estimation 

problem, and potentially optimal monitor placement. Artificial immune systems (AIS) 

are inspired by understanding the concepts involved in the adaptive immune 

system[90]. 

The immune system exhibits many important features that are attractive to 

computational scientists: 

 Ability to defend the body from unknown diseases 

 Highly parallel and distributed in operation 

 Adaptive 

 Capable of pattern recognition and classification 

 Ability to recognise dangerous invaders and uncreative body cells  

These ideas have inspired a number of AIS algorithms, including optimization 

algorithms , classification algorithms [87] and clustering algorithms [91]. 

Applying AIS algorithms to tackle power systems problems is largely unexplored in the 

current body of AIS and power systems research. There are some notable examples such 

as [84], [92] and [93]. However, the total number of papers applied to the field is still 

relatively small. 

AIS algorithms have been successfully applied to areas such as anomaly detection [85, 

94, 95], pattern recognition [96] and data mining [97, 98]. AIS algorithms have been 

used to solve data clustering problems in the past [91, 99], and [91] demonstrated that 

for some data sets an AIS algorithm can outperform other clustering algorithms. Similar 

niches could be exploited and the algorithms successfully applied to power systems 

research. It is important to stress that the best applications of AIS and other AI 

techniques are where there was a suitable requirement for their application. 

There are several areas where the current body of research on fault detection and 

classification could be extended for voltage sag profile estimation. Most studies do not 

consider fault classification and detection using a limited set of monitors, or the impact 

of erroneous measurement information. It is important to understand how 

misclassifications will occur with a limited set of monitors and ensure that detection and 

classification algorithms are robust to monitor error. Although [88] suggests that 

random forest algorithms can produce accurate results, it would be useful to compare 

the quality of a variety of techniques to establish the best methods for voltage sag 
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profile estimation. It would be interesting to compare the performance of random forest 

against the AIRS algorithm [87] (used in [84]), as this is a popular immune inspired 

technique [96]. 

1.9.3.2 Fault Location (for Voltage Sag Estimation) 

The task of fault detection is closely related to voltage sag estimation. Voltage sags are 

most often caused by faults [2] and locating the fault which caused the sag is an 

intermediary step which is required before the sag performance of the whole network 

can be established. 

The aim of a fault location algorithm is to estimate the source of a fault through 

measurements taken throughout a power system network. Fault location is often a non-

trivial process: algorithms may work well in simulations, but care must be taken to 

ensure practical implementations are robust to measurement error and unbiased when 

integrating information from a broad variety of monitoring devices. 

There are two main approaches to fault location which have been widely explored in 

power systems research. The first approach estimates a fault location by using voltage 

and current measurements taken at the power system’s fundamental frequency [81]. The 

second approach uses high frequency transient components of the voltage and current 

waveform recorded during a fault [100]. These two approaches can be further sub-

divided into single-ended and double-ended methods. Single-ended methods estimate 

the location of the fault using information from one monitoring device usually placed at 

the start of a feeder or line [81, 101]. Double-ended methods use measurements from 

two locations, commonly between two ends of a feeder or line [81]. 

The main disadvantage of using a high frequency approach is the requirement for high 

sample rate monitors (in the order of several MHz [102]) to trace the voltage and 

current waveform. This restricts the information input to a fault locator to a limited 

number of high frequency monitoring devices. In contrast, steady state methods (such as 

the impedance based approach proposed in [81]) can use information from lower sample 

rate monitors. The main drawback of impedance based methods is that they can produce 

several estimates for a fault location when multiple impedance paths cause the same 

voltage drop [82, 102]. This is a common problem in distribution networks where the 

number of monitors is often much less than required to make the network fully 

observable [62]. This problem was solved for symmetrical faults on feeders with single 

and two-phase laterals in [82], but no solution was presented for asymmetrical faults. To 
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a certain extent, this issue can be overcome by taking the intersection of fault location 

solutions [48]. However, there are no details in [48] on how to deal with solutions 

which don’t overlap because measurement errors or network parameter sensitivities 

cause the solutions from different monitors to separate.  

The main challenge of developing a fault location algorithm for voltage sag profile 

estimation is how to eliminate errors caused by lack of knowledge of the fault’s 

characteristics. Voltage sags are stochastic in nature as they are influenced by the a 

variety of random factors including, fault type, position, fault impedance and pre-fault 

voltage [17]. The method proposed in [25] assumes that fault type, pre-fault voltage, 

fault type and fault impedance are all known. Other fault location techniques (for 

example [81]) either eliminate the variables entirely or provide assumptions to cover 

other variables. There is a lack of guidance in the body of existing research on how 

these assumptions affect the results of voltage sag profile estimation. 

The process by which [81] deals with uncertainty in fault characteristics can be 

explained by considering each type of fault. For three phase and line to line faults, the 

fault impedance must be assumed to be entirely real, and pre-fault voltages must be 

estimated. The assumption of real fault impedance is shown in [103] to be a valid 

approximation. Reference [81] and [79] approximates pre-fault voltages at the fault 

location to 1 per unit. This leads to small errors (typically around 2% for the specific 

test network in [81]) in the estimated fault location [81]. For double line to ground 

faults a solution to the fault location equations (of [81]) can be found through a single 

assumption of an entirely real fault impedance. Using the fault location equations shown 

in [81] for single line to ground faults, no assumptions on pre-fault loading or fault 

impedance are required to carry out voltage sag profile estimation. In other words, the 

equations in [81] for single line to ground faults are insensitive to fault impedance and 

pre-fault loading. 

The algorithmic approach to fault location undertaken by a DNO ultimately depends on 

the number of and quality of the monitoring devices installed. [104] describes how 

distribution network substations commonly contain a number of monitoring devices 

including remote terminal units (RTUs) and protective relays which feed information 

such as voltages, real and reactive power flows, feeder currents and frequency towards a 

centralized SCADA measurement system. The continued interest in smart grids [104] is 

encouraging further deployment of monitoring devices such as power quality meters, 

digital protection relays, smart meters, advanced automation devices, condition 
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monitors and digital fault recorders. DNOs are therefore interested in synthesising as 

much information as possible for fault location. This is not typically the focus of fault 

location algorithms; instead the algorithms tend to focus on locating faults using either 

one or two monitors. 

One of the most important references on fault location using a limited monitoring 

number of variably accurate monitors is [105]. In the paper, the authors develop a 

method which is capable of locating faults using measurements taken from any two 

locations in the power network. They also propose an optimal estimation procedure 

which is based on similar principles to the method of least squares and state estimation. 

The method is also able to identify the presence of bad monitoring data, using the chi-

squared statistical test. 

Reference [105] could be enhanced if the approach was extended so that operators can 

use measurements from an arbitrarily accurate selection of installed monitoring devices, 

including relays, power quality meters, disturbance recorders, phasor measurement 

(PMUs) devices and revenue meters. This would require the method to be altered such 

that it could cope with more than two monitoring devices. This may yield a higher 

degree of accuracy and could be more robust than simply calculating the fault location 

using one or two monitoring devices (as presented in [81]). This extension may also 

help to overcome issues caused by multiple impedance paths, by reducing the number 

of fault locations to those that are the most feasible. 

Reference [105] could also be extended by formulating the fault location estimate as a 

statistical distribution whilst taking into account the errors of monitoring devices within 

the network. This would give network operators a distribution for the area which was 

likely to contain their fault. This is not possible using the analytical equations (such as 

those presented in [81] or [105] as these algorithms yield a single deterministic solution.  

1.9.4 Power Quality Impact Assessment 

The ultimate objective of unbalance or voltage sag estimation is often to estimate the 

effects of power quality issues on customers.  

The effect of a voltage sag can be defined technically in terms of a number of trips [20], 

or economically in terms a monetary impact on the customer [4]. The technical impact 

of a voltage sag is assessed by comparing the voltage sag disturbance (using a voltage 

sag profile estimation such as [25]) against equipment or process immunity (as 

described in Fig. 1.1). The local equipment immunity level can be defined 
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deterministically (for example in terms of trip / no trip) or probabilistically using 

statistical distributions [18, 20, 106]. Assessing the economic impact of voltage sags on 

customers can be accomplished by combining information on the technical impact of 

the voltage sag with the associated economic costs of an interruption for that specific 

customer [4]. 

One of the most notable developments in equipment immunity modelling is described in 

[18, 106], where the authors generalised the equipment immunity curve as a 

probabilistic distribution. The equipment immunity for various types of equipment 

including programmable logic controllers (PLCs), adjustable speed drives (ASDs), 

personal computers (PCs) and contactors were all defined as generalised distributions. 

The authors also described how these generalised probability distributions can be 

combined to develop a model for process sensitivity. The analysis in [18, 106] was 

ultimately used to rank different the different network topologies in terms voltage sag 

performance. This technical approach was extended into the economics of voltage sag 

events in [4, 18, 77] and [1] to calculate the economic impact of voltage sags to 

individual customers and complex industrial processes. 

An important aspect missing from the current body of research on the impacts of 

voltage sags is the combination of statistical techniques such as those proposed in [18, 

106] with measurement uncertainty. The probabilistic equipment immunity approach 

taken in [106] could be combined with measurement uncertainty and used to estimate 

confidence bounded trips and economic results. 

There is no analogous concept of an immunity curve for unbalance. Three phase 

machines, power electronic convertors, three phase drives and single phase lighting 

loads are discussed in [21] and [1] as sensitive to unbalance. Reference [1] defined the 

economic impacts resulting from unbalance as a linear summation of incorporating 

costs caused by additional losses, overheating, pre-mature aging of assets, reactive 

power compensation and replacement of light sources. 

The end result of high levels of unbalance applied to three phase machinery may 

ultimately result in a customer trip [21], in the same way as defined for voltage sags. 

However, whether or not a specific device trips will depend on the specific protection 

settings for the specific three phase machine. The compatibility standards IEC-61000-2-

2 [29], IEC-61000-2-12 [30] and EN50160 [10] provide some guidance on the 

unbalance limits which manufacturers use to design their equipment [31]. 
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It would be useful to gather experimental evidence and survey exact level of equipment 

immunity to unbalance across a variety of devices including ASDs, power electronic 

devices, three phase drives, and induction machines. This would define the immunity of 

equipment to unbalance in the similar way to voltage sag immunity. This would enable 

the effects of high levels of unbalance to be more easily quantified.  

Further research could also be conducted on quantifying the impact of unbalance using 

statistical techniques. Economic analysis (such as [1]) or technical analysis (NEMA 

curves [27], for example) could be combined with measurement and equipment 

uncertainty to generate a statistical picture of the affect of unbalance on consumers. 

1.9.5 Optimal Placement Techniques 

Optimal monitor placement algorithms are used by DNOs to guide the deployment of 

monitors in their network. Techniques have been developed to optimally monitor power 

networks on a wide range of topics including for state estimation [107, 108], power 

system stability [109, 110] and power quality [17, 111]. 

Optimal placement algorithms for state estimation largely focus on placing phasor 

measurement units (PMUs) in transmission networks to obtain full system observability. 

This objective is usually accomplished using integer programming optimisation 

techniques [108, 112, 113]. PMUs are not typically installed in distribution networks 

because the cost of the device is usually too high to warrant their installation. 

The methods used to place monitors in the network vary from integer programming 

[108, 112, 113] to heuristic search methods such as genetic algorithms [114] and 

immune inspired techniques [115-118]. Heuristic population based search techniques 

are advantageous because they reduce the time to achieve a near-optimal solution. This 

is useful when a searching through a large search space, dealing with a wide range of 

uncertain future scenarios [92], or achieving the best trade-off between competing 

objectives [114]. [92] exploited this aspect of an immune inspired based search 

technique to derive a series of sub-optimal solutions for dominance analysis and power 

system planning. 

Most monitor placement techniques focus on placing monitors using a single stage 

implementation process. A notable example of a multi-stage approach which is [119], 

which uses mixed integer linear programming to place PMUs to maximise the 

observability of the system. Uncertainty is often present when considering monitoring 

deployments over long periods of time because the economic value of a chosen 
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monitoring solution is not precisely known over all time periods. Placing monitors 

whilst considering the uncertainty inherent in network topology and loading is an 

important aspect which is worthy of further research. 

For power quality, optimal monitoring techniques have been developed for harmonic 

state estimation [111], distribution system state estimation [69] and also voltage sag 

estimation [17, 120]. The techniques developed for distribution system state estimation 

are most relevant to unbalance estimation. 

The methods developed to optimally place monitors for voltage sag estimation in [17, 

120] and fault location observability analysis in [48] used a branch and bound integer 

programming technique to place monitors able to detect events occurring anywhere in 

the network. The authors of [120] developed a concept known as the monitor reach area 

(MRA) which defines the area of the network which each power quality monitor covers. 

The optimal monitoring locations were used in [120] to estimate the voltage sag profile 

across the whole network. The objective of the optimisation method in [48] was to 

ensure that faults (or voltage sags) occurring anywhere in the network could be 

observed by all monitors.  

There are several areas where the research presented for optimal monitor placement for 

voltage sags could be enhanced. Both [48] and [120] assume that the objective of 

monitor placement is to observe all faults within the network. It may also be useful to 

develop a method which can best observe faults with a limited set of monitoring, or take 

account of existing monitoring devices in the network. There is scope to change the 

objective function used by [120] and [48] to focus on accurately estimating the impacts 

that voltage sags have on customers, rather than just focussing on detection (through 

thresholds) [120] or localization [48]. A further enhancement not covered in the existing 

body of research could be to test the quality of the optimal monitoring solutions across a 

range of uncertain scenarios. This may require a heuristic search technique such as a 

genetic algorithm or artificial immune system. 

Monitor placement optimisation for unbalance is similar to monitor placement for 

traditional state estimation. The key differences are that the monitor locations must be 

selected to ensure three phase (rather than single phase [62]) observability of the 

system. Once this modification has been made, the linear programming optimisation 

problem [121] can be formulated and optimised in the same way as single phase state 

estimation. 
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Unbalance monitor placement optimisation studies further differ from traditional state 

estimation techniques if the constraint of complete observability is relaxed. In this 

scenario, the optimal placement problem focuses on optimally placing monitors for 

distribution system state estimation. In distribution system state estimation, the relative 

difference in accuracy between pseudo-measurements and real monitoring devices 

becomes a critical factor in the resulting accuracy of the state estimate. This problem 

was formulated and solved for single phase systems in [69] and [122]. The focus of the 

two papers was subtly different; in [69] the objective of the optimisation was to reduce 

the overall error at every bus in the network, whereas the objective in [122] was to 

ensure that the network could be operated and controlled effectively. 

The research on meter placement for DSSE could be extended by incorporating all three 

phases of the power system into the optimisation and also re-focussing the objective 

function to monitor the network for regulatory breaches at the 2% voltage unbalance 

factor level. It would also be interesting to research the possibility of placing monitors 

to optimally estimate the sources of unbalance, rather than estimating the effects.  

1.10 Problem Statements 

The review of past research frames the current lines of thought in both industry and 

academia. A series of problem statements can now be defined which describe the key 

problems which will be addressed in this thesis. 

The problem statements are as follows: 

 Distribution system state estimation models have been used in the past to create 

three phase and single phase models of distribution networks. Limited 

monitoring in future distribution networks require models to be developed which 

specifically estimate the three phase state of the network for both unbalance (and 

voltage sags) whilst taking into account the correlated nature of three phase 

loads. 

 Voltage sag estimation algorithms have been developed to estimate sag 

performance at monitored and non-monitored busbars. There is a requirement 

for new sag profile estimation algorithms which can quantify the sensitivity of 

estimates to measurement (and model) error, limited measurements and 

algorithm choice. 

 Existing fault classification algorithms use artificial intelligence methods to 

classify the cause and type of fault occurring in a network to a varying degree of 
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accuracy. It is important to understand if these techniques will work under the 

context of limited monitoring, where misclassifications occur and what are the 

best classification algorithms. 

 Fault location is a core aspect of voltage sag estimation and there are many 

existing techniques which are able to perform this function by collating 

information from typically one or two error free measurement devices. 

Extracting knowledge from increased measurement information available in 

future networks will require techniques that can synthesise all information from 

an arbitrary collection of monitors whilst addressing measurement error 

uncertainty. 

 Statistical methods have been proposed which generalise the immunity of 

equipment and processes to voltage sags as statistical distributions. To obtain 

information on the accuracy of any analysis, there is also a requirement to define 

both the disturbance level and the electromagnetic compatibility assessment as 

distributions which incorporate measurement error and all other uncertainties. 

 Optimal monitor placement techniques have been proposed which can perform 

sag estimation and DSSE to estimate the magnitude of voltage sags and 

unbalance. As more monitors are added to power networks, there will be a 

further requirement for methods which are able to sequentially and optimally 

place additional monitors to best estimate the impacts of power quality events on 

customers and network operators. 

1.11 Objective, Hypotheses & Aims of this Research 

The main objective of this research is to present new techniques which are capable of 

identifying the weakest areas and the worst served customers for voltage sags and 

unbalance of a generic distribution network using a limited set of power quality 

monitors. 

To address the problem statements, the following hypotheses can be asserted. 

1. Simple measurements from a limited number of variable accuracy metering 

devices measuring properties such as voltage magnitude, reactive power and real 

power can be synthesised to yield an intelligent customer centric picture of the 

power network in terms of its performance for voltage sags, and unbalance. 
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2. Performance estimation for voltage sags and unbalance can be quantified to 

optimise the monitoring locations of any arbitrary number of monitors, perhaps 

much less than the number of nodes in a network. 

3. Artificial immune system heuristic based techniques are required to monitor the 

state of the power network for voltage sags and unbalance and can help with 

monitor placement in the networks. 

This research aims to address the issues that have not been satisfactorily resolved in past 

research and answer the problem statements, along with investigating the hypotheses. 

The main aims of the research can be summarised as follows: 

1. To present a methodology which is capable of classifying faults in distribution 

networks using a limited number of monitors. 

2. To compare the performance of a variety of artificial intelligence fault 

classification techniques and identify where they miss-classify faults, and which 

methods work best. 

3. To develop a method which is capable of localising faults within distribution 

networks using a statistical approach which accounts for monitor error and 

which can work with an arbitrary number of devices. 

4. To develop a method which is able to estimate the statistical distribution of a 

voltage during a voltage sag using all information available from monitors 

within the network. 

5. To develop a new criterion to assess the impact of voltage sags on customers 

based on the physical behaviour of equipment and the statistical distribution of 

the disturbance. 

6. To demonstrate and experimentally validate that an artificial immune system 

(AIS) optimization methodology is an appropriate, high quality tool for the 

optimal monitor placement problem. 

7. To assess the suitability of artificial immune systems (AIS) for power systems 

research. 

8. To present a practical and robust methodology capable of optimally locating 

monitors to observe the effects of voltage sags on customers in a generic 

distribution network across a range of future uncertain loading scenarios. 

9. To provide a framework for performing three phase state estimation in a network 

where measurement information is incomplete, and must be estimated. 
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10. To highlight how the results of DSSE can be used to statistically estimate the 

location, level and impacts of unbalance on a typical distribution network, and 

thus ultimately help fix unbalance related issues. 

11. To demonstrate how the voltage sag and unbalance performance of a network 

can be combined and presented to identify the worst served and weakest areas of 

the network for these issues. 

1.12 Major Contributions of This Research 

The research presented in this thesis has contributed to several areas in the field of 

power quality monitoring, voltage sags and unbalance. Note that the references used in 

this section are pre-fixed with a “G” which have been published as part of this research. 

A full list of journal and conference papers can be found in Appendix G. 

The culmination of this research is a comprehensive methodology which is able to 

simultaneously estimate the impacts of voltage sags and unbalance on customers within 

a network using a limited amount of monitoring information and realistic set of 

measurement inputs.  

The main contributions of this thesis can be summarized as follows:  

 The development of practical methodologies which are able to synthesize 

information from a number of arbitrarily accurate monitors placed anywhere in a 

power network and combine this information to statistically estimate the value 

of network parameters at non-monitored busbars [G2][G3][G8][G11]. 

 The proposal of a new set of consumer focused statistical frameworks which are 

able to estimate the impact of sags and unbalance on equipment whilst taking 

into account both measurement and model uncertainties [G2][G3][G8][G9]. 

 The design of a new method for improving the performance of both voltage sag 

monitoring using an immune inspired optimization algorithm and an objective 

function which focuses on enhancing a DNO’s visibility of voltage sag issues 

[G2][G6][G7][G9]. 

The following sub-sections review specific contributions of this thesis. 

A Method to Detect and Classify Voltage Sags 

In contrast to existing techniques, the detection and classification method developed in 

this research is capable of classifying and detecting the occurrence and the type of fault 

in a distribution networks and shown to work under the context of limited monitoring 
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with high levels of accuracy. The method also pays attention to errors which might be 

present in measurement data. 

Development of Probabilistic Fault Location & Voltage Sag Estimation  

The probabilistic fault location and voltage sag profile estimation developed in this 

research and presented (to a certain extent in [G6] and significantly extended) in [G11] 

has several advantages which haven’t been explored by existing techniques. It 

synthesises all information using statistical distributions. This allows the method to 

integrate an arbitrary set of monitors, deal effectively with errors in measurements and 

overcome sensitivity issues with traditional fault location equations. The developed 

approach can be easily augmented with new monitoring information, uses all the 

information from power quality monitors in the network and can identify faulty 

monitoring devices. This approach is different to existing techniques on voltage sag 

localization, as it focuses on estimating the voltage at non-monitored busbars, rather 

than just locating the source of a fault. 

Development of a Statistical Impact Estimation Framework 

A new framework for estimating the impact of a voltage sag in terms of a simple to 

interpret measure known as the sag trip probability which defines the probability that 

equipment will trip given a voltage sag is proposed in this research [G2][G9]. The 

general formulation of the STP is flexible and configurable and can be used with 

different equipment sensitivities, different process sensitivities and arbitrary sets of 

monitors. This measure consolidates existing research on the topic by incorporating the 

error inherent in the voltage sag profile estimation process (and hence measurement 

error).  

A Four Step Process for Estimating the Impacts of Voltage Sags 

A major contribution to the existing research on voltage sags is the development of a 

four step process which can estimate the impacts of voltage sags using limited 

monitoring. The process defines how a DNO could practically and effectively monitor 

their network for voltage sags. This involves methods presented in a variety of research 

related publications including [G3], [G6], [G7], [G9] and [G10]. 

A New Optimal Placement Method for Voltage Sag Monitoring 

A new method which optimises the placement of monitors with the objective of 

estimating the likelihood of equipment trips during voltage sags rather than focusing on 

estimating the voltage sag profile itself is proposed in this research [G2]. The method is 
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different from existing optimisation techniques as it uses an immune inspired B-cell 

optimisation algorithm which is capable of developing a strong set of monitoring 

solutions which are effective over a range of uncertain future network loads and 

topologies. 

A Comparison of the Performance of AIS Based Techniques 

Artificial immune system based classification and optimisation methods were used in 

this research [G1][G5][G10][G2] and compared against a variety of other more 

traditional methods. It was shown that the artificial immune recognition system (AIRS) 

provided no benefit over other techniques [G1][G5], whilst immune inspired 

optimisation for optimal monitor placement may be worthy of future research [G2]. 

These two conclusions could be used to assist future research on artificial immune 

systems applied to power systems. 

Development of a Method to Identify the Source, Location and Impacts of 

Unbalance 

A new method which can estimate the source, location and impacts of unbalance was 

proposed in this research [G3][G8]. The research extends existing concepts on 

distribution system state estimation by building a three phase measurement model 

which incorporates correlated measurements, dealing with incomplete and erroneous 

information and also estimating the level, source and location of unbalance. 

1.13 Thesis Overview 

Chapter 1 provides the background and context to the research. It builds the case for the 

problems which will be solved in later chapters in the thesis. Particular attention is paid 

to the current state of power quality monitoring in power networks and a review of 

current research on identifying the worst served and weakest areas of the network for 

voltage sags and unbalance. 

Chapter 2 describes the fundamental models and the simulation techniques that will be 

used as the foundation for analysis in later chapters. The chapter begins by discussing 

monitoring in power systems and then outlining the inputs which will be used for the 

techniques developed throughout the rest of this thesis. The focus then moves onto 

model and simulation tool development, with careful attention being applied to 

modelling assumptions. Chapter 2 is largely theoretical in content and most of the 

material discussed within this chapter can be found in textbooks on power systems, 

notably [63] and [11] [123]. 
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Chapter 3 describes some of the intelligent processing techniques which are used as 

tools throughout this thesis. The following techniques are described in detail: 

 Artificial Immune Recognition System (AIRS) for classification (immune 

inspired) 

 Support Vector Machine (SVM) for classification 

 k-Nearest Neighbours (kNN) for classification 

 Random Forest for classification 

 Unsupervised Artificial Immune Classifier (UAIC) for clustering 

 B-Cell Algorithm (BCA) for optimization (immune inspired) 

 Statistical analysis 

Chapter 4 introduces the multi-step process used to build a holistic picture of voltage 

sags within distribution networks and then subsequently focuses on detection and 

classification of voltage sags. Chapter 4 is the first of three sequential chapters which all 

focus on a new overall method which is capable of estimating the impact of voltage sags 

on customers within the distribution network. 

The chapter presents a comparison of four classification algorithms applied to classify 

faults within a 295 bus generic distribution network. The results are presented as a 

series of confusion matrices and also visualised on a 295 bus generic distribution 

network. To test the performance of the algorithms under limited monitoring, the 

number of monitors in the network is varied from 1 through to 12 monitors. 

Chapter 5 focuses on the voltage sag localization and voltage sag profile estimation. In 

this chapter, a robust method for performing fault location and voltage sag profile 

estimation using multiple monitors is developed. The method uses statistical analysis to 

solve the fault location equations and find the most likely location for both the fault 

location and the best estimate for the voltage profile throughout the whole network 

during a fault. The method draws on and significantly advances existing research 

developed in [81]. 

Chapter 6 follows on from chapters 4 and 5 with a method which estimates the impact 

of voltage sags on customers within the network. A new criterion to assess the impact of 

voltage sags on customers based on the physical behaviour of equipment is developed 

which defines the probability of a trip from a voltage sag as the sag trip probability 

(STP). The STP is illustrated using simulations of single line to ground faults on the 295 

bus generic distribution network. 
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Chapter 7 presents a methodology which can be used to optimally place power quality 

monitors into a distribution network to monitor the network for voltage sags. The 

chapter starts by explaining what makes a good monitoring set, and thus how an 

optimisation methodology should be configured. The chapter follows on by defining a 

new way of optimising the location of monitors based on equipment trip probabilities: 

the sag trip probability (STP), from Chapter 6. The proposed optimisation method is an 

artificial immune system (AIS) based B-Cell algorithm. This technique is tested on a 

295 bus generic distribution network with load growth over 15 years and topological 

variation against a range of other optimisation techniques. The chapter concludes by 

reviewing the quality of the performance of the B-Cell algorithm compared with other 

techniques.  

Chapter 8 develops a three phase DSSE model which can estimate the location and 

impact of unbalance within the network, without assuming the loading is balanced. The 

chapter presents a framework for performing 3 phase state estimation with incomplete 

measurements. The framework is shown to be capable of identifying the location, level 

and impacts of unbalance as statistical distributions within the power system network. 

The DSSE model developed deals with the correlative nature of three phase DSSE 

measurement errors which are critical to understand how a three phase phenomenon like 

unbalance spreads throughout the network. 

Chapter 9 presents an overview of how the methods presented in this thesis can be 

synthesised into a illustrative picture of the power network which is capable of 

identifying the worst served and the weakest areas of the network. The chapter 

illustrates the techniques developed in the thesis using both a full and a limited set of 

monitors. The key results of the chapter are presented using a series of topological heat 

maps. The worst served customers are identified by assessing the percentage of the 24 

hour period where unbalance exceeded 2%, the number of trips caused by unbalance 

and the number of trips caused by voltage sags. The weakest areas of the network are 

assessed by considering the sources of unbalance, sources of unbalance which caused 

the most customer interruptions, and the sources of voltage sags which caused the most 

interruptions. The chapter concludes by globally ranking the worst served and weakest 

areas of the network. 

Chapter 10 outlines the major conclusions of this thesis and suggest areas for future 

research. 

.
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2 Power System 

Modelling 

2.1 Introduction 

A power system model is a mathematical representation of the physical operation of a 

power system. A good model will accurately represent reality, but also generalise and 

simplify the complex inner workings of a system. Once a model is constructed, 

simulations can be performed on the model to test the system’s response to changes in 

input parameters. In the context of this thesis, the model inputs are measurements at 

monitoring devices in the power network and the outputs are unbalance and voltage sag 

performance results. 

The goal of this thesis is to present a series of tools which can be used to identify the 

worst served customers for two power quality phenomena; voltage sags and unbalance. 

Model inputs, power system models and simulation tools form a tripartite foundation 

which can be used to validate if this thesis’ proposed techniques are theoretically and 

practical applicable to power networks.  

This chapter describes the model inputs and the fundamental models and techniques that 

will be used for analysis in later chapters. The chapter begins by discussing monitoring 

in power systems and defining the inputs which will be used for the techniques 

developed throughout the rest of this thesis. The focus then moves onto model 

development, with careful attention being applied to modelling assumptions, for both 

voltage sags and unbalance.  

This chapter is largely theoretical in content and most of the material discussed within 

this chapter can be found in textbooks on power systems, notably [63], [11] and [123]. 
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2.1.1 Power Quality Measurements 

The two fundamental components required for power quality monitoring are voltages 

and currents [34]. Voltages are measured through voltage transformers (VTs) and 

currents are measured through current transformers (CTs), both collectively known as 

instrument transformers. Instrument transformers are often used for multiple 

applications including protection, automatic voltage control, automation, control, 

visualisation, and operator analysis. 

Most incumbent remote monitoring takes place within distribution networks as part of 

the supervisory control and data acquisition (SCADA) network and is typically recorded 

for only one phase. More advanced power quality monitors are being installed, and 

these devices tend to be installed to monitor all three phases. Power quality monitors 

and SCADA devices send information back to a central control system for processing. 

The following two sub-sections review the availability and accuracy of information 

from incumbent monitoring devices and newer power quality monitors. 

2.1.1.1 Single Phase SCADA Monitoring 

The SCADA system is a computer and measurement system which is present within 

most distribution networks. The information collected by the SCADA system is relevant 

to some aspects of power quality analysis including providing information on pre-

disturbance system state, and providing information on the level and pattern of loading 

in the network. 

Table 2.2 shows the measurements which are routinely collated by the SCADA system 

of a UK distribution network. The table shows that all feeders from 11kV upwards are 

monitored using single phase voltage and current measurements. Voltages are measured 

using VTs which are connected line to line, and current is measured using CTs which 

are typically connected to the yellow phase. The network’s operation is assumed to be 

balanced. Information on power and reactive power is available on the secondary side of 

transformers with a secondary winding greater than 11kV. Although 11kV feeders are 

monitored, 11kV customers and 11kV to LV distribution transformers (and thus LV 

loads) are not typically monitored using anything more than a maximum demand CT. 

Table 2.2 also highlights that more advanced monitoring is being installed into 

distribution networks across 33kV, 11kV and LV voltage levels. The Schneider 

PM710[124] is being used to monitor a number of LV customers and the EMS Sub.net 

[57] is being used for higher voltage levels. 
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The accuracy of SCADA measurements ultimately depends on the accuracy of the 

instrument transformer recording the measurement. IEC Standard [125] lists various 

classes for current transformer ranging from class 0.1 to class 3. The class of a CT 

translates into a percentage error for the measurement device. 

The resolution of SCADA measurements stored centrally in the DNO’s control room 

depends upon the digitisation capabilities at the point of measurement. Some UK 

SCADA networks have a resolution per byte of approximately 0.12kV across a voltage 

range of 0 to 12.5kV. This means each measurement will be resolved to within 

approximately 0.5V (i.e. 120V / 2
8
 = 0.47V). 

2.1.1.2 Three Phase Power Quality Monitoring 

The current international trend towards power quality monitoring device installation 

(which was discussed in the introduction) typically involves devices which monitor all 

three phases and a variety of power system information including (but not limited to) 

voltage, current, real and reactive power, harmonics, flicker and unbalance. The types of 

measurements available and the measurement error of a meter will vary depending on 

the quality of the meter installed. 

Table 2.1 highlights the measurement accuracy of three power quality monitors from 

Siemens [126], Embedded Monitoring Systems (EMS) [57] and General Electric (GE) 

[127]. The meter from EMS is shown as this is known to be undergoing field trials in a 

section of the UK distribution network. The Siemens and GE meters are shown as 

popular comparisons. 

TABLE 2.1. THE MEASUREMENT ACCURACY OF VARIOUS POWER QUALITY MONITORS. 

Meter Symmetrical Voltage Current Voltage Power Demand GPS 

Synchronisation Magnitude Phase Magnitude Magnitude Real Reactive 

Siemens 9610 

[126] 

0.2% of full 

scale 

0.2% of 2π 

(±0.004π at 

50Hz) 

0.1% 0.1% 0.2% 0.2% ±1ms 

±0.1π at 50Hz 

EMS Sub.net [57] 0.1% of full 

scale 

0.1% of full 

scale 

0.1% of full 

scale 

0.1% of full 

scale 

0.1% of 

full scale 

0.1% of 

full scale 

±1μs 

±1×10-4π at 50Hz 

GE EPM9650 

[127] 

Not quoted Not quoted 0.025% of 

full scale 

0.01% of 

full scale 

0.04% of 

full scale 

0.04% of 

full scale 

±1ms 

±0.1π at 50Hz 
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TABLE 2.2. THE MONITORING AND MEASUREMENTS WHICH ARE RECORDED IN A TYPICAL UK DISTRIBUTION NETWORK 

Point in the 

Network 

Pervasiveness of 

Measurements 

Types of 

Measurements 

Voltage 

Reference and 

Number 

Current 

Measurements and 

Numbers 

No. of Power 

Measurements 

Primary side of 

132kV:XkV 

Transformer 

100% |S|, |V|, |I|, P* 

,Q* 

1 mostly line to 

line (some line to 

ground) 

1 phase (typically 

yellow) 

1 phase 

Secondary side 

of XkV:33kV 

Transformer 

100% |S|, |V|’, |I|, P* 

,Q* 

1mostly line to 

line (some line to 

ground) 

1 phase (typically 

yellow) 

1 phase 

Secondary side 

of XkV:11kV 

Transformer 

100% |S|, |V|’, |I|, P* 

,Q* 

1mostly line to 

line (some line to 

ground) 

1 phase (typically 

yellow) 

1 phase 

Secondary side 

of XkV:6.6kV 

Transformer 

100% |S|, |V|’, |I|, P* 

,Q* 

1 mostly line to 

line (some line to 

ground) 

1 phase (typically 

yellow) 

1 phase 

33kV Feeders 100% |S|, |V|’, |I| 1 mostly line to 

line (some line to 

ground) 

1 phase (typically 

yellow) 

1 phase 

11kV Feeders 100% |S|, |V|’, |I| 1mostly line to 

line (some line to 

ground) 

1 phase (typically 

yellow) 

1 phase 

Monitored 

33kV and 11kV 

Feeders 

<10% (EMS 

Sub.net [57]) 

P, Q, |S|, |V|, |I| 3 line to line or 3 

phase to ground 

3 phases 3 phases 

LV Network No metering sent 

back to control 

centre 

Maximum demand indicators are installed on the majority of the LV network 

transformers. These are periodically read and recorded in central databases by operators. 

Monitored LV 

Network and 

Customers 

Sites 

<10% (Ad-hoc 

Schneider PM710 

[124] monitors) 

P, Q, |S|, |V|, |I| 3 phase to 

ground 

3 phases 3 phases 

Notes: 

* The value of P and Q is calculated using phasor line to line measurements taken from all three phases, but the information sent 

back to the central control room only describes 1 phase. 

‘ Voltage transformers are sometimes not present, thus the voltage measurement is taken to be the nominal voltage at that busbar. 

The information shown in Table 2.2 was collected from conversations with engineers working at a UK distribution network in the 

UK. 

Many of the measurement errors listed in Table 2.1 are described as a percentage error 

of full scale. A signal is said to be at full scale when it has reached its maximum 

representable value. 

In this research, all power quality meters were assumed to follow the error properties of 

the Siemens 9610 monitor, unless otherwise stated. Voltages were assumed to be 

accurate to 0.1% of 1 per unit for all line to line and line to ground measurements, and 

0.2% of 1 per unit for all symmetrical component magnitudes. Symmetrical voltage 



Chapter 2: Power System Modelling 

 
64 

phase angles were assumed to be accurate to ±0.004π. The standard deviation for the 

symmetrical voltage magnitude and phase measurements was therefore 0.067 per unit 

and 0.0013π radians respectively [67]. 

Table 2.1 also describes the accuracy of the GPS synchronisation within the monitoring 

device. If the voltage angles between two separate locations within the network are to 

be measured, then measurements must be taken relative to a global time stamp, such as 

a GPS signal. The accuracy at which the GPS signal is synchronised will affect the 

accuracy of the relative phase angle measurement between two locations. In the 

discussions within this thesis, it will be assumed that all measurements can be 

synchronised to a global GPS time signal. 

2.1.2 Measurement Errors 

Monitor measurement errors can modelled as a series of independently distributed 

normal distributions [8, 11]. Given a calibrated percentage error for a monitoring device 

(%error), a monitor’s error can be modelled as a normal distribution with a standard 

deviation (i) as defined in (2.1), given a measurement at ith bus zi. 

1003

%






errorzi
i

 

(2.1) 

2.1.3 Summary of Monitoring Assumptions 

There are several assumptions that will be made throughout this thesis when 

considering the measurements taken at monitoring devices.  

The assumptions relevant to the use of incumbent SCADA measurements within the 

network are: 

 Single phase measurements are available at all substations on the secondary 

windings of 11kV transformers 

 Measurements from the SCADA system are single phase 

 The SCADA network measurements implicitly assume that the network’s 

operation is balanced 

Other general measurement assumptions include: 

 The measurement error of the magnitude and phase of a measurement device are 

independent 

 The error of a device follows a normal distribution as modelled by equation 

(2.1) 
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 The grounding of voltage transformers is an accurate representation of the true 

earth reference 

 The error properties of the Siemens 9610 power quality monitor will be used 

unless otherwise stated 

2.2 3-Phase Voltages, Currents and Powers 

Voltage measurements are recorded using a VT with reference to another line in the 

system (line to line) or with reference to earth (line to ground), or a neutral conductor 

(line to neutral). The reference for the voltage has important implications for both 

unbalance and voltage sag monitoring. CTs record the value of the current flowing in 

each phase (line) separately. 

The voltage and current waveforms in an alternating current (AC) power systems are 

made up of a fundamental component at 50Hz, and potentially high frequency transients 

and harmonics. In power system dynamics and harmonic analysis, it is important to 

consider the oscillatory nature of the power system. In this thesis, voltage, current and 

power measurements always concern root mean square (RMS) values at 50Hz. A phasor 

representation will be used for all voltages, currents and powers. 

Throughout this thesis, voltages will be referred to as either line to line or line to 

ground. Line to line voltages will be described using the notation V
(ab)

, V
(bc)

 and V
(ca)

, 

with the superscript (i,j) denoting the voltage in phase i relative to phase j. Phase 

voltages will always be referenced to ground (rather than neutral), and use the notation 

V
(a)

, V
(b)

 and V
(c)

 to describe phases A, B and C. Line to line sequence voltages will be 

referenced to phases A and B and notated using V
(0LL)

, V
(1LL)

 and V
(2LL)

 for zero, positive 

and negative sequences. Line to ground sequence voltages will be referenced to phase A 

and notated using V
(0)

, V
(1)

 and V
(2)

 for zero, positive and negative sequences. The 

current flowing in each phase will be denoted as I
(a)

, I
(b)

 and I
(c)

. 

The different sets of technical measurements that are typically collected at a substation 

can be split into the following groups: 

1. Line to ground voltages 

2. Line to line currents 

3. Line currents 

4. Real and reactive power consumption 
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Depending on the availability of monitoring at a substation, some, none, or all of these 

parameters might be monitored. Other information may also be collected including (but 

not limited to) temperature and asset condition related measurements. 

2.2.1 Line to Ground Voltages 

The set of three phase to earth voltages, V
(a)

, V
(b)

 and V
(c)

, can be converted into positive 

negative and zero sequence components V
(0)

, V
(1)

 and V
(2)

 by using the well known 

Fortescue [128] transformation. This is shown in equation (2.2): 
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where 
32ea  . 

2.2.2 Line to line voltages and Line Currents 

The Fortescue transform [128] can be applied to convert a set of three phase line to line 

voltages, V
(ab)

, V
(bc)

 and V
(ca)

, into a set of sequence components, V
(0LL)

, V
(1LL)

 and V
(2LL)

. 

This is shown in equation (2.3): 
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Since V
(ab)

, V
(bc)

 and V
(ca)

 form a closed triangle and V
(ab)

+V
(bc)

+V
(ca)

=0, the value of 

V
(0LL)

 is also zero. Line to line voltages therefore have no zero sequence components. 

Using V
(1LL)

 and V
(2LL)

 it is possible to determine V
(1)

 and V
(2)

 through equations (2.4) 

and (2.5). V
(0)

 cannot be determined from line to line voltages alone.  

2)1()1( 1 aVV LL   (2.4) 

2)2()2( 1 aVV LL   (2.5) 

2.2.3 Line Currents 

Line currents can be transformed into their symmetrical components using the Fortescue 

transform[128] as shown in equation (2.6). 
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2.2.4 Power Consumption in Three Phase Networks 

The total power consumption in a three phase network is defined as shown in equation 

(2.7).  

)*()()*()()*()(

3

ccbbaa IVIVIVS   (2.7) 

The power consumption can also be segmented across each of the three lines in the 

network, as described in equations (2.8), (2.9) and (2.10). 

)*()()( aaa IVS   (2.8) 

)*()()( bbb IVS   (2.9) 

)*()()( ccc IVS   (2.10) 

If all line to ground voltages and line currents are known for a location in a network, it 

is possible to determine the total three phase power flow. 

Power consumption can also be defined in the sequence domain, as shown in (2.11) in 

per unit as: 

*)2()2(*)1()1(*)0()0(

3 IVIVIVS   (2.11) 

Again, this can be segmented into each sequence as shown in equations (2.12), (2.13) 

and (2.14). 

)*0()0()0( IVS   (2.12) 

)*1()1()1( IVS   (2.13) 

)*2()2()2( IVS   (2.14) 

A full set of phase to earth voltages fully defines the power flowing in any line and any 

sequence. 

With line to line voltages, the power flowing in each line cannot be determined because 

the zero sequence component of the voltage cannot be defined. However, positive and 

negative sequence power (equations (2.13) and (2.14)) can be derived. 

2.2.5 Zero Sequence Assumptions 

The magnitude of the zero sequence voltage can be determined at certain locations 

within a network where there is no path for a zero sequence current to flow.  

The propagation of zero sequence current is halted by certain types of transformers. 

Zero sequence currents are halted by Y-Y transformers with one neutral ungrounded, Y-

Δ transformers and Δ-Δ transformers. This knowledge can help to define the zero 

sequence voltage magnitude at certain locations within a network. 
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Consider the case where an unbalanced (asymmetric) fault occurs and zero sequence 

currents are injected on the low voltage (LV) side of Y-Δ transformer, as shown in Fig. 

2.1. The zero sequence voltage on the high voltage (MV) side of the transformer will be 

zero, as long as the following assumptions are not violated: 

 Any loads connected at MV or above do not inject zero sequence currents 

into the network, and are therefore balanced. 

 Any loads connected to the MV network through Y-Y grounded 

transformers do not inject zero sequence currents into the network. 

 The MV network is uncoupled in the sequence domain, with no mutual 

coupling between positive and zero sequences or negative and zero 

sequences. 

If these assumptions can be made at the MV transformer, then they can also be made for 

all busbars connected on the HV side of the transformer.  

MV Feeders

HV to MV 

Transformer

Zline

Zload

MV to LV 

Transformer

HV busbar

MV busbar

Injected zero 

sequence 

currents

 

Fig. 2.1. A three phase load connected to an arbitrary power network. 

The case of an unbalanced asymmetric fault is a specific case where zero sequence 

currents are injected into the network. This type of network operation is synonymous 

with voltage unbalance. In both situations, the key point is that progress of zero 

sequence currents are halted by certain types of transformers. 

2.3 Test Power Systems 

There are two power networks which shall be used throughout this thesis. The first is a 

295 bus generic distribution which does not physically exist, but was designed to be 

representative of a typical UK distribution network [8]. The second network is a 24 bus 

distribution network which is based on a physical section of the UK’s distribution 

network. The physical location of the network not specified for commercial reasons. 
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2.3.1 295 Bus Generic Distribution Network 

The 295 bus distribution network [8] comprises four 275kV transmission in-feeds, 

132kV and 33kV sub-transmission networks (which are mostly meshed) and a 

distribution network which pre-dominantly operates at 11kV, but also has some small 

sections at 3.3kV (and is mostly radial). There are 295 buses, 276 over-head lines and 

underground cables and 37 transformers with various winding connections. The average 

X/R ratio of 11kV, 33kV and 132kV cables and lines are 0.62, 2.58 and 4.13 

respectively. All lines vary in length from 50 m to 11 km and resistance from 

0.002Ω/km for 132kV underground to 0.66 Ω/km for 11kV overhead lines. 

The single line diagram for the network can be found in Chapters 5 and 7. Full details of 

the network’s system parameters and loading can be found in [129]. 

2.3.2 24 Bus Section of UK Distribution Network 

The 24 bus distribution network is a model of a real section of UK distribution network. 

The network comprises 14 33kV busbars and 10 11kV busbars. The 33kV network is 

meshed (in an N-1 formation) whilst the 11kV network busbars feed a series of 

independent feeders. The 11kV feeders are not modelled individually. 

A single line diagram for the topology of this network can be found in Chapter 8 and the 

network’s system parameters and loading can be found in Appendix B. 

2.4 3-Phase Power System Component Modelling 

Three phase modelling of the network is required for both voltage sag and unbalance 

analysis. A three phase model of the system is required because both voltage sags and 

unbalance asymmetrically affect network operation, and thus simplified single phase 

models are not sufficient. 

2.4.1 Lines and Cables 

Lines and cables were modelled using the equivalent  model. All cables and lines 

were assumed to be uncoupled in the sequence domain.  

Uncoupled transmission lines can be represented as a set of two 3×3 component 

matrices YL, and YS [123]. 
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Fig. 2.2. 3 phase component model for transmission line. 

Each element of YL and YS can be derived from knowledge of the zero (y
(0)

), positive 

(y
(1)

) and negative (y
(2)

) sequence components. The negative sequence impedance of a 

line was assumed to be the same as positive sequence impedance, and the zero sequence 

was assumed to be three times the positive sequence impedance (unless otherwise 

stated). Equation (2.15) describes the sub-component matrix in the sequence domain for 
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seq

SY can be derived in a similar manner from the single phase equivalent of the shunt 

component of the line. Both seq

LY and seq

SY can be converted into the phase domain by 

applying the Fortescue transformation: 
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2.4.2 Generators 

All of the networks modelled in this research are distribution networks with a single in-

feed from a higher voltage network. The in-feed is modelled as a generator, but its 

model will vary depending whether voltage sag (fault studies) or unbalance (load flow 

and state estimation) studies are being conducted. 

For three phase load flow and state estimation, generators are modelled using as an ideal 

voltage source infinite bus. The system is always modelled under steady state conditions 

and source of the distribution network is assumed to be able to supply as much power as 

required. The generator terminals were always assumed to supply a balanced three 

phase set of voltages (unless otherwise stated). 

For short circuit studies, the point of common coupling at the in-feed is modelled as an 

ideal voltage source (E) behind a series sequence resistance (R) and sub-transient 

sequence reactance (Xd”). This is shown in Fig. 2.3.  
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The sub-transient reactance was selected as this determines the current in the first few 

cycles after a fault and the performance of the network in this time frame is relevant to 

voltage sag studies. 

jXd”

PCC

R

E

 

Fig. 2.3. The generator model at the point of common coupling (PCC) for the in-feed of the 

distribution network. 

2.4.3 Loads 

Load models are important and can significantly affect the results of dynamic 

simulations [8]. In this research, a constant impedance load model was used to perform 

fault analysis for voltage sag studies. This has been shown to be a justifiably accurate 

approximation for fault studies [129]. Unbalance is a steady state phenomenon, and 

therefore all loads were assumed to be constant power, when subjected to small 

perturbations in voltage. This assumption is justified for unbalance because unbalance is 

always judged over periods of time, typically much greater than 5 minutes. Over long 

enough periods, it is reasonable to assume that most loads will adapt to changes in 

voltage by drawing more current to maintain a constant power output. 

The equivalent impedance for a constant impedance load was calculated using: 

*

2

)( jQP

V
jXR


  (2.17) 

where P and Q are the active and reactive power demand at the busbar, and V is the 

complex voltage before the fault. 

2.4.4 Transformers 

All of the transformers modelled in this thesis are either solidly grounded Y-Y 

transformers or solidly grounded Y-Δ transformers. 

The nodal admittance matrix for a three phase transformer is a 6×6 component block 

and can be constructed by formulating a connection matrix (C) and a primitive 

admittance matrix (Yprim) and combining them using equation (2.18): 

CYCY primnode

*  (2.18) 
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where C* is the transpose of the connection matrix and Ynode is the transformers nodal 

admittance matrix. 

The connection matrix for a solidly grounded Y-Y and solidly ground Y-Δ transformer 

can be derived by considering the connections between the primary and the secondary 

coils [123]. The connection matrices for a Y-Y (C
Y-Y

) and Y-Δ (C
Y-Δ

) transformer are 

shown below in equations (2.19) and (2.20): 
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where I(N×N) is an N×N identity matrix, 0(N×N)is an N×N matrix of zeros. The factor of 

3/1 is necessary to cater for the turns ratio of the delta windings. It should be noted 

that Δ-Y transformers can be created by swapping the CΔ and I(3×3) components of the 

connection matrix. 

The primitive admittance matrix (Yprim) for a transformer can be derived by considering 

the transformer admittance in the sequence domain. The primitive admittance matrix of 

a transformer with leakage admittance y~ , zero sequence admittance
0

~
my and magnetising 

admittance 
my~ [130] is shown in (2.22): 
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The magnetising admittance is often neglected and was thus ignored for all of the case 

studies in this thesis. This is a valid approximation so long as the transformer is not 

highly saturated [130]. The saturation of transformers becomes important when 

transformer energizing is the cause of a voltage sag, but this type of sag was not 

considered in this research. 

The primitive admittance matrix in phase coordinates can be obtained by applying the 

Fortescue transformation to each three by three element of the primitive admittance 

matrix in the sequence domain as shown in (2.24): 
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2.4.4.1 Tap Changing Transformers 

Transformer taps were modelled by incorporating a primary tap ratio α into the 6×6 

nodal admittance matrix Ynode. This can be achieved as shown in the following 

equation: 
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(2.25) 

where YI, YII and YIII are formed from partitioning the Ynode matrix into four three by 

three blocks. Transformer tap positions were modelled at discrete intervals dependent 

on the tap positions of the transformer. 

More information on three phase transformer models can be found in [130] and [123] 

[130]. 

2.4.5 Admittance Matrix 

The component matrices are the building blocks of the three phase admittance matrix. 

The set of N×N component matrices can be combined into a single three phase 

admittance matrix [123] using the same rules required to generate a single phase 

admittance matrix [63]. The diagonal elements of the matrix are equivalent to the self-

admittances and are the sum of all three by three sub-component matrices attached to 

that node. The off-diagonal elements are the mutual admittances, and these are 

equivalent to the negated sum of all the N×N admittance matrices between those two 

nodes. It should be noted that forming the admittance matrix in this way only works if 

all of the components have been reduced into sub-components such that there is no 

mutual coupling between any two sets of sub-component. 

Once the three phase admittance matrix for components have been developed, these can 

be used to perform three phase power flow studies. Further details on the formulation of 

the three phase admittance matrix can be found in [123] and [65]. 

2.4.6 Summary of Three Phase Component Modelling Assumptions 

Throughout this thesis, the following assumptions were made regarding 3-phase 

component models: 



Chapter 2: Power System Modelling 

 
74 

 All transformers are assumed to be either Y-Y or Y-D and solidly grounded at 

both star points 

 The magnetising impedance of transformers was neglected [130] 

 All three phase components were assumed to be uncoupled in the sequence 

domain 

 Negative and positive sequence impedances were assumed to be equal 

 Zero sequence impedances were assumed to be 3 times the positive sequence 

impedance [129] 

2.5 Voltage Sag Modelling 

The primary purpose of all of the voltage sag research discussed within this thesis is to 

show that voltage sag performance can be measured using a limited monitor set. To 

achieve this objective, it is assumed that a voltage sag can be simplified and 

characterised by two properties: magnitude and duration.  

In reality, the characterisation of a voltage sag into these two parameters is an 

approximation. The transient evolution of a voltage sag is complex [11], but this 

approximation has been used extensively in research before [25, 48, 81] and should 

suffice in this research.  

Fig. 2.4 shows how the transient waveform of an arbitrary voltage sag is approximated 

into magnitude and duration, for each of the three phases in the network. 

 

Fig. 2.4. Voltage magnitude per phase for an example voltage sag. 

Fig. 2.4 shows how the power system’s operation can be split into three regions (A, B 

and C). All three regions can be modelled by representing voltages as phasors.  
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Regions A and C are defined by the pre-fault and post-fault loading of the system and 

can be determined through load flow [63]. If the pre-fault and post-fault loading is 

assumed to be unchanged, then these two regions are identical. 

Region B concerns the state of the system during a voltage sag. The residual voltages in 

region B can be determined by conducting a fault study. 

2.5.1 Stochastic Properties of Faults 

Voltage sags are modelled in this thesis using fault studies. Faults are stochastic in 

nature, and their characteristics are influenced by a number of important factors.  

The factors that influence the characteristics of the fault that will be modelled in this 

thesis include: 

 Fault type (for example, three phase, single line to ground, line to line or double-

line to ground) 

 Fault location 

 Fault impedance 

 Fault duration 

Considering fault type is important since different types of fault will generate different 

impacts in the network. An asymmetric fault in one phase may only impact on 

customers in one (or two) of the three phases, whilst a three phase fault affects 

customers in all three phases. Where the fault is physically located will determine which 

customers are affected by the fault. Customers very close to the fault will be influenced 

to a much higher degree than those further away. The impedance of the fault affects the 

severity of the fault, as a fault with low fault impedance will cause a higher severity sag. 

The fault’s duration is important when considering the resultant impact of in terms of 

customer trips in a network: a longer duration sag will be more likely to cause 

customers to trip. 

Another factor which affects the characteristic of the fault being studied is the 

configuration of protection systems which influences both fault clearing time and 

reclosing time. Protection systems ultimately influence the duration of the fault. The age 

and wear of network assets is a very important factor as this influences the reliability of 

components and hence affects the fault rate. External factors such as the weather can 

also heavily influence the fault rate in the network, as different types of components 

have different fault rates in different weather conditions. The dynamic response of 
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equipment such as induction motors, and synchronous machines will also affect the 

exact depth and duration of a voltage sag. 

Fig. 2.5 illustrates the different types of stochastic causes of faults using data recorded 

in a UK distribution network. The largest numbers of faults are attributed to 

deterioration due to ageing or wear (excluding corrosion). A significant number of 

faults are also classified as unknown. 

 

Fig. 2.5. The fault outage causes of faults recorded in a UK 

distribution network between 2007 and 2009. 

TABLE 2.3. FAULT OUTAGE CAUSE KEY. 

Acronym Description 

OT All Other Faults 

LI Lightning Faults 

WG Wind and Gale (excluding 

windborne material) 

TR Growing or Falling Trees (not 

felled) 

DA Wilful Damage, Interference 
or Theft 

BI Birds (including Swans and 

Geese) 

VE Vermin, Wild Animals and 

Insects 

AP Accidental Contact, Damage 
or Interference by private 

Individuals (excluding 49 and 

56) 

AT Accidental Contact, Damage 

or Interference by unknown 

Third Parties 

AD Accidental Contact, Damage 

or Interference by private 

Developers or their 
Contractors 

AO Accidental Contact, Damage 

or Interference by Other 

Third Parties 

FA Faulty Installation or 

Construction 

AG Deterioration due to Ageing 

or Wear (excluding 

corrosion) 

OS Operational or Safety 

Restriction 

UN Cause Unknown 
 

2.5.2 Fault Studies 

Short circuit fault studies enable the response of the network during short circuit 

conditions to be analysed. In this thesis, fault studies will be conducted with three phase 

(LLL), single phase to ground (SLG), line to line (LL) or double line to ground (LLG) 

faults. Faults can occur anywhere on lines cables or busbars. 

The derivation of the fault equations are best illustrated by considering Fig. 2.6. Fig. 2.6 

shows a fault occurring on the lth line connecting the pth and qth buses. The pre-fault 

voltages may be estimated or measured at the pth and the qth busbars. The fault 

equations will be derived so that the values of the short circuit currents during a fault 

can be calculated. 

OT 
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LI 
0.77% WG 
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BI 
0.54% 
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0.39% 
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1.60% 

AD 
2.80% 

AO 
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1.26% 
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4.33% 
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23.89% 

Number of Faults in a UK Distribution Network Between 
October2007 to April 2009 
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NETWORK

lth line

r 
(fault location)

p q

Ml (1-Ml)

k
  kth bus.    

Pre-fault voltages 

estimated at the qth bus.

Pre-fault voltages 

estimated at the pth bus.

 

Fig. 2.6. A fault occurring at position r, a distance Ml along the lth between the pth and the qth 

busbar. 

In order to calculate the during fault voltages throughout the network, the bus 

impedance matrix is required. The bus impedance matrix for a general system can be 

defined as Z’bus
(k)

 [63], where the notation Z’ij
(k)

 represents the element contained within 

the ith row and the jth column of the kth sequence bus impedance matrix (Z’bus
(k)

) [63]. 

The bus impedance matrix can be derived either from the direct Z bus building [131], or 

by directly inverting the three phase admittance matrix. 

The bus impedance matrix can be readily modified to add a new temporary faulted 

busbar r. Let the bus impedance matrix with the temporary busbar r added be Zbus, and 

element Zkr
(i) 

be the element contained in the kth row and rth column and the ith 

sequence. This matrix can be built using the method of adding an extra busbar to the 

busbar impedance matrix described in [63]. The Zbus impedance matrix (with the 

additional rth busbar) will be used in the equations that follow. 

2.5.3 Fundamental Equations for all Types of Fault 

The zero (Vk
(0)

), positive (Vk
(1)

) and negative (Vk
(2)

) sequence voltages during a fault are 

defined in equations (2.26) to (2.28): 

)0()0()0(
fkrk IZV   (2.26) 

)1()1()'1()1(
fkrkk IZVV   (2.27) 

)2()2()2(
fkrk IZV   (2.28) 

where If
(0)

, If
(1)

 and If
(2) 

are the zero, positive and negative sequence fault currents at the 

fault point [63], and Vk
(1)’

 is the positive sequence pre-fault voltage. 

2.5.4 3-Phase Faults 

For a three phase symmetrical fault, the fault current in each of the three sequences can 

be defined as follows: 
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0)2()0(  ff II  (2.30) 

where Rf is the fault impedance, and can be assumed to be entirely real [103]. The zero 

and negative sequence currents during a three phase faults are assumed to be zero, as the 

flow of current is assumed to be balanced. 

2.5.4.1 Single Line to Ground Faults 

For a phase A to ground fault, If
(0)

= If
(1)

=If
(2)
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2.5.4.2 Line to Line Faults 

For a phase B to C fault, If
(1)

=-If
(2)

, If
(0)

=0. 
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2.5.4.3 Double Line to Ground Faults 

For a double line to ground fault, the fault current equations are as follows [63]: 
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2.5.5 Summary of Assumptions for Fault Studies 

Where fault studies are performed in this thesis, the studies are always performed under 

a series of assumptions. These modelling assumptions can be summarised as follows: 

 The system is composed of lines, transformers, generators and buses 

 All line, transformer and generator impedances are assumed to be free from 

error 
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 Transformers and lines are modelled with no coupling between sequence 

impedances 

 System loading is assumed to be balanced prior to the occurrence of a 

disturbance 

 Transformers are assumed to be solidly grounded, through a negligible 

impedance 

 Fault impedance can be assumed to be entirely real [103] 

 Fault type, fault location, fault duration and fault impedance are all modelled for 

every fault simulation 

 The dynamic response of equipment is not considered when simulating faults 

2.6 Unbalance Modelling 

As described in Chapter 1, voltage unbalance is caused by the asymmetric operation of 

multi-phase electrical power networks. The voltage unbalance factor is the ratio of the 

complex negative sequence voltage (V
(2)

) to the complex positive sequence voltage 

(V
(1)

) as described by (1.1). 

Emission sources can include asymmetric un-transposed or partially transposed 

transmission lines [23], single phase and dual-phase loads and unbalanced three phase 

loads. The scope of this thesis will focus on identifying the source and affects of 

unbalanced loads only. Unbalanced network components will be largely ignored, 

although some of the later case studies will show how the models can be adapted to 

model the effects of unbalanced network components. 

The nature of unbalance will be assumed to be time-invariant, and treated only as a 

steady-state phenomenon, rather than a transient phenomenon. 

2.6.1 Summary of Assumptions for Unbalance Modelling 

Where unbalance is modelled in the network, the following assumptions are made: 

 The injection of unbalance into the network is assumed to be invariant over time 

 Unbalance is assumed to originate from unbalanced loads, rather than 

unbalanced cables, lines or network assets 

 Transient unbalance generated by short circuit asymmetric faults are ignored 

2.7 Three Phase Load Flow 

The object of a load flow study is to calculate the steady state operating characteristics 

of a power system network given a certain level of network load and generation. The 
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principal information obtained from a load flow study is the voltages and angles at all 

buses in the network. This allows operators to calculate the amount of power flowing 

throughout the network, losses within the network and the level of power consumed and 

absorbed at all buses. It also enables operators to subsequently perform further studies 

based on specific phenomena such as stability, faults or power quality. 

The results of load flow are used to calculate the pre-fault and post-fault voltages for all 

of the research on voltage sags discussed in Chapters 4, 5 and 6. Several components of 

the three phase load flow formulation are also used for distribution system state 

estimation, including the Jacobian, the three phase power injection equations and the 

admittance matrix. 

2.7.1 Formulation 

A power flow study can be solved by iteratively solving the equation shown in (2.39) 

[63]: 

F(x)z   (2.39) 

where z is a vector of real and reactive power values, x is a vector of voltages and 

angles and F(x) is a set of equations which describe all real and reactive power 

injections throughout the network. The 3-phase power injection equations are shown in 

equations (2.40) and (2.41). These equations show the real and reactive power injection 

at the ith bus in the pth phase. 
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where the pth or the mth phase is either, a (1
st
 index), b (2

nd
 index) or c (3

rd
 index), pm

ijG

is the real i,jth element of the three phase admittance matrix Ybus, and
pm

ijB is the 

imaginary i,jth element of Ybus. 
pm

ij is the angle in radians between the ith bus pth 

phase and the jth in the mth phase. 

The load flow equation can be solved iteratively, using the Newton-Raphson method 

[63]. The update equations are defined in equation (2.42). 

)]([1 kkk xFzFxx x   
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where xk+1 is the estimate for the voltages and angles at the (k+1)th iteration. Fx is the 

Jacobian matrix whose elements are derived in the same way as for distribution system 

state estimation. 

To build the Jacobian matrix, the derivatives of the load flow equations are evaluated 

with respect to each state variable of the system. This is achieved through sequential 

differentiation of equations (2.40) and (2.41). The elements of the Jacobian matrix are 

fully derived in Appendix A. 

2.7.1.1 Slack Bus Model 

Both the 295 bus and 24 bus network are fed from a single generation source, modelled 

as a slack bus. For all load flow (and distribution system state estimation analysis) the 

slack bus was assumed to be a fixed magnitude and out of phase by exactly 120. Thus, 

the slack bus was always assumed to be completely balanced. 

2.7.2 Summary of Assumptions for Three Phase Load Flow Analysis 

The following modelling assumptions are made when performing load flow analysis: 

 The network is operating in a steady state, unaffected by small perturbations in 

voltage or frequency 

 All loads can be modelled as a constant active and reactive power demand 

 All line, transformer and generator impedances are assumed to be free from 

error 

 Dynamic concepts of load modelling are not considered 

2.8 Distribution System State Estimation 

Distribution system state estimation (DSSE) can be considered as an extension of the 

standard load flow equations which makes them solvable within the context of a 

practical power system. The objective of DSSE is to establish the current state of the 

network by minimising the least square error in a set of measurements and estimates 

taken from a network. The output from a DSSE algorithm is a set of voltages and angles 

which define the state of the network. 

There are several important differences between DSSE and load flow. In DSSE, the 

number of equations which describe the system may be more than the number of state 

variables. This is described as an over-determined system, and it has the result of 

making the Jacobian matrix rectangular. Unlike load flow, the set of equations for 
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DSSE may also include line flows, voltages, and currents. A DSSE Jacobian matrix 

therefore also includes derivatives of real and reactive line flow, voltage or current. The 

DSSE equations can also be weighted by the accuracy of the measurements, whilst load 

flow implicitly assumes that each power and reactive power measurement is equally 

accurate. 

DSSE algorithms are applied in this research to establish pre-fault voltages in voltage 

sag profile estimation (Chapter 5) and also to estimate the level of unbalance within a 

distribution network (Chapter 8). 

2.8.1 3-Phase Distribution System State Estimation 

The state estimation problem is defined mathematically by equation (2.44). 

H(x)ze   (2.44) 

where z is a vector of measurements, H(x) s a non-linear set of equations that describes 

the true state of the power system with state variables x, and e is a vector of errors 

between the observed measurements and true state of the system. e~N(0,R), where R is 

the covariance matrix of the measurement errors (e). 

In this research, the weighted least squares (WLS) and the generalized least squares [74] 

(GLS) state estimation technique were used. The objective function of the GLS / WLS 

estimation problem is shown in equation (2.45). 
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The state estimation equations can be solved iteratively, using the Newton-Raphson 

method. The update equations are defined in equation (2.46). 

)]([)( 111

1 kxXX xHzRHHRHxx  



T

kk  (2.46) 

x

)H(x
H k

x



  (2.47) 

where xk+1 is the estimate for the state variables at the (k+1)th iteration. Hx is the 

Jacobian matrix. 

Unlike weighted least squares (WLS) [62], GLS does not assume that the measurements 

within the covariance matrix are uncorrelated. R’s off diagonal elements are non-zero, 

and incorporate the correlation between pairs of measurement errors. The GLS method 

is relevant in 3 phase systems where measurement estimates (pseudo-measurements) are 

often correlated across all 3 phases. Like WLS, each diagonal element of R is the 

reciprocal of the measurement error variances.  
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The DSSE equations are formulated to solve for the state vector x. The state vector x 

fully defines the state of the system [65]. It typically contains a set of voltages for all 

buses in the network; angles and magnitudes or real and imaginary components. The 

measurement vector z can be configured to include any measurement such as three 

phase active and reactive power demands, three phase active and reactive power flows, 

as well as voltage magnitudes, and currents. 

2.8.2 Non-Linear Power Flow Equations 

The non-linear power flow equations describe the set of equations in H(x). 

There are 5 different types of measurements: real )( )( p

iP  and reactive power )( )( p

iQ , 

voltage magnitude | )(|
)( p

iV , real power flow )( )( p

ijP  and reactive power flow )( )( p

ijQ  in a 

line. Each of these measurements can be formulated in terms of magnitude and phase of 

the voltage at all buses within the network. 

Equations (2.48) and (2.49) describe the line flow equations, where Gp,m and Bp,m are 

elements of 3×6 line admittance matrices GL and BL relating voltage 
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(2.49) 

2.8.2.1 Jacobian Matrix 

To build the Jacobian matrix (2.47), the derivatives of the measurement equations are 

evaluated with respect to each state of the system in exactly the same way as for load 

flow. The derivative of equations (2.40), (2.41), (2.48) and (2.49) are shown in full in 

Chapter 8. 

2.8.3 DSSE Measurements 

The accuracy of a DSSE formulation is dependent on the quality of the measurements 

available in the power system. Both real measurements and estimated measurements 
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can be incorporated into a DSSE formulation. Estimated measurements can be sub-

divided into two further groups known as virtual measurements and pseudo-

measurements. To work accurately, a DSSE formulation must be fed with accurate 

estimates of the expected error distributions of real virtual pseudo-measurements. 

2.8.3.1 Real Measurements 

Real measurements cover all measurements taken by monitoring devices. This can 

include real and reactive power consumption, voltage and current. The standard 

deviation of a real measurement is dependent on the accuracy of a monitoring device 

and can be modelled using equation (2.1). 

2.8.3.2 Virtual Measurements 

Virtual measurements are used when the value of a measurement is known with almost 

near certainty. For example, if there are no loads connected to a busbar, then it is 

possible to say with certainty that the injected power at the busbar is zero. Virtual 

measurements can be modelled with a very low standard deviation (for example, 2×10
-7

 

[69]).  

2.8.3.3 Pseudo-Measurements 

Pseudo-measurements are estimates for the value of a parameter based on some model 

of system behaviour. For example, it may also be possible to predict the load at certain 

busbars by building a model based on historical analysis. The electrical load profile 

follows a fairly predictable pattern which can be estimated through knowledge of 

external factors such as ambient temperature, weather conditions, time of year, day of 

the week, and the types of customers connected to a busbar. Voltages can also be 

predicted to within certain ranges if voltage control equipment is installed at a busbar. 

In this research pseudo-measurements are limited to estimates of the real and reactive 

power injected at a busbar. 

A good pseudo-measurement should have a number of properties. A pseudo-

measurement should add information to the state estimator to enable full system 

observability. Pseudo-measurements should have a low standard deviation, and a 

standard deviation which can be quantified. The error of a pseudo-measurement should 

(ideally) be uncorrelated with other pseudo-measurement errors, and follow a normal 

distribution (as the WLS / GLS procedure assumes that measurement errors are 
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normally distributed). It is also convenient if the pseudo-measurement can be easily 

estimated using a statistical model, or engineering judgement. 

Constructing pseudo-measurements for three phase state estimation is further 

complicated by the intrinsic correlation in three phase systems. Correlated random 

variables can be used to take account of this problem [71, 73]. 

The reported percentage errors for single phase pseudo-measurement models in [69] 

was between 20% to 50%. This is equivalent to a standard deviation of between 7% and 

17%. The multiple linear regression model discussed in [132] was able to estimate 

loading with an error of between 0.2% and 18.7% for any half hour interval. The 

knowledge based expert system in [132] predicted loading with an error of between 

0.1% and 2.5%. 

The pseudo-measurement models developed in [69] and [132] are single phase, and do 

not take into account the correlation between pseudo-measurements. In Chapter 8, the 

pseudo-measurement models will be developed in more detail to take into account the 

error correlation between measurements. 

2.8.4 Building the Covariance Matrix R 

The covariance matrix is different depending on whether the WLS or GLS estimation 

procedure is used. The covariance matrix contains the information relating to the 

accuracy of measurements used in a DSSE formulation. 

2.8.4.1 Weighted Least Squares (WLS) 

The covariance matrix for WLS is diagonal. The diagonal elements of the matrix R are 

described in equation (2.50). 

2

iiir   (2.50) 

where rii is the ith diagonal element of R and i is the standard deviation of the ith 

measurement. With WLS, all measurement errors are assumed to be independent. 

2.8.4.2 Generalised Least Squares (GLS) 

To build the covariance matrix for the GLS formulation, the correlation between 

pseudo-measurement errors must be taken into account. Real measurements are always 

assumed to be uncorrelated from one another. The correlative nature of pseudo-

measurements can be explored through historical analysis of measurement data. 
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Full details on the construction of the covariance matrix for GLS can be found in 

Chapter 8. 

2.8.5 Output from Distribution System State Estimation 

The output of the distribution system state estimator is a set of voltages and angles at all 

of the buses in the network. 

A distribution for the voltage and angle at a busbar can be obtained if the error 

properties of the measurements are known. The state estimator can be run repeatedly 

using a set of measurements which are taken from within the distribution of the 

measurement errors. This generates a set of solutions to the state estimator which can be 

plotted as a probability distribution. Care must be taken to ensure that any correlation 

between pseudo-measurement errors is also taken into account. 

2.8.6 Summary of Assumptions for Distribution System State Estimation 

The assumptions for DSSE include all of the assumptions discussed in the previous 

section for three phase load flow. The following additional assumptions must also be 

made: 

 The error in the accuracy of all measurements (both pseudo and real) is assumed 

to follow a normal distribution 

 Measurement error information for both pseudo and real measurements is 

assumed to be accurate 

Additionally, if the WLS technique is used (as opposed to GLS), then the following 

extra assumptions must also be made: 

 All pseudo-measurement and real measurement errors must be assumed to be 

uncorrelated 

2.9 Summary  

This chapter presented some of the fundamental modelling techniques which will be 

used throughout the rest of this thesis.  

The chapter started by discussing model inputs and describing the error properties and 

availability of single and three phase measurements. The modelling concepts of three 

phase systems were then introduced by discussing technical aspects surrounding three 

phase voltages, currents and powers as well as introducing three phase models for the 
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power system. The chapter then discussed the models and assumptions surrounding 

voltage sags and unbalance modelling. 

The chapter also introduced the equations required to conduct fault studies, perform 

load flow and estimate the three phase state of the system. These fundamentals will be 

used and built upon in the chapters which follow. 

The following chapter expands on the modelling techniques developed in this chapter 

by introducing some of the advanced computational techniques which will be used in 

combination with these power system models. 
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3 Advanced 

Computational 

Techniques 

3.1 Introduction 

This chapter introduces some of the advanced computational techniques which have 

been used in this thesis to help identify of the worst served and weakest areas of the 

network. The algorithmic techniques described in this chapter include classification, 

clustering and optimization algorithms. These types of techniques can be loosely 

described as artificial intelligence (AI) techniques. Statistical methods are also used 

extensively through this thesis, and they are introduced at the end of this chapter.  

Two important AI techniques are supervised classification and unsupervised clustering. 

Classification is supervised, as the data is pre-labelled into a series of nominal groups. 

The aim of a classification algorithm is to build a generalised model (through training) 

of a dataset. The classifier can then be applied to data points which have not been 

previously used for training, to test the classifier’s performance. Clustering is described 

as unsupervised as it operates on datasets which are not pre-labelled into nominal 

groups. The purpose of clustering algorithm is to split a dataset into a set of groups 

(clusters) by maximising some measure of dissimilarity between data points.  

One of the objectives of this research was to assess the suitability of artificial immune 

systems (AIS) for power systems research. AIS are a new computational technique. 

They are based on the metaphors gained by theoretical and empirical knowledge of the 
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natural invertebrate immune system. The algorithms selected for use in this thesis 

therefore include a number of immune inspired techniques. 

The following clustering, classification, optimization and other techniques were used in 

the research presented in this thesis: 

 Artificial Immune Recognition System (AIRS) for classification (immune 

inspired) 

 Support Vector Machine (SVM) for classification 

 k-Nearest Neighbours (kNN) for classification 

 Random Forest for classification 

 Unsupervised Artificial Immune Classifier (UAIC) for clustering 

 B-Cell Algorithm (BCA) for optimization (immune inspired) 

 Statistical analysis 

The rest of this chapter describes the details of each of the algorithms and methods. 

3.2 Classification Algorithms 

The aim of a classification algorithm is to partition observations into a sub-population 

on the basis of a general set of rules which have been constructed (or learnt) by the 

classification algorithm upon exposure to a set of training data. The classification 

algorithm processes a set of training data typically constructed from past observations 

of important variables related to the specific field of study.  

A key advantage of classification algorithms is their ability to generalise and discover 

important and complicated predictive relationships between variables which may not be 

immediately obvious to a human operative. Classification algorithms are also able to 

identify relationships across hundreds of dimensions, making them particularly relevant 

in power systems. 

3.2.1 AIRS with kNN Classification 

AIRS is an immune inspired instance creation algorithm [87, 96]. The objective of the 

AIRS algorithm is to generate a set of points in   dimensional feature space (memory 

cells) from exposure to a set of training data (antigens). The memory cells describe the 

dataset in a generalised form.  Typically, at the end of training, the memory pool of 

AIRS contains 50% of the number of cells presented to AIRS at the outset of the 

algorithm [133]. 
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The immunological inspiration for AIRS is largely based on the principle of the clonal 

selection that was first described in [134]. Clonal selection describes the process of how 

B-cells within the immune system become activated, proliferate and produce antibodies 

that target an invading antigen. During the process B-cells are cloned and then undergo 

somatic hyper-mutation [135] to produce antibodies which specifically target an 

invading antigen.  Some of the B-cells also develop into long-lived memory cells which 

are capable of recognising the same antigenic stimulus long after a first exposure. A 

more detailed overview of the immune system and its uses in immune inspired 

algorithms can be found in [136] and [137] and specifically for AIRS in [96]. 

To classify data, AIRS requires the use of a classification algorithm [87]. The 

classification algorithm used in the original design of the AIRS algorithm (as described 

in [87]) was the k nearest neighbour classification algorithm. The k nearest neighbour 

algorithm was also selected as the classification algorithm in this research. 

The following section provides a brief overview of the AIRS algorithm. More details on 

the AIRS algorithm can be found in [87], [138], [139] and [96]. 

The data that is presented to the AIRS algorithm comprises a set of labelled N 

dimensional feature vectors. In this research, AIRS is being used for supervised 

classification; therefore each of the feature vectors also has a class label. Each 

individual feature vector is modelled as an antigen. The set of all antigens is known as 

training data. 

Along with training data, there are two other pools of cells which are modelled in the 

AIRS algorithm, namely, the memory cell pool (MC) and the artificial recognition ball 

(ARB) pool. MC becomes important at the end of the algorithm, as it represents the 

generalised model for the dataset. The ARB pool on the other hand, is a transient pool 

which is refined during the algorithm. An ARB itself is an abstract concept that 

represents a number of similar or identical recognition cells. 

AIRS comprises the following 5 key processes. These are: 

1) Initialisation 

2) Training / learning 

3) Competition for resources 

4) Memory cell selection 

5) Classification 
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3.2.1.1 Initialisation 

Initialisation is a pre-processing step before the core of the AIRS algorithm. During 

initialization, the training data is normalised in the range [0, 1]. MC and the ARB pool 

are seeded during initialization by randomly selecting a number of instances from the 

training data. Lastly, the affinity threshold (AT) (shown in equation (3.1)) of the 

training data is calculated. This is simply the mean affinity within the training data. 

                   
                   

 
     

 
   

        
 (3.1) 

Where T is the total number of antigens in the training set and agp represents the pth 

antigen, and affinity represents a function that defines a measure of closeness or 

similarity between two antibodies or antigens. Small affinity values indicate strong 

affinity between two objects. Euclidean distance is often selected as the affinity measure 

in the AIRS algorithm [96]. 

3.2.1.2 Training / Learning 

Training and learning is accomplished using several immune inspired processes, 

including clonal expansion and somatic hyper-mutation. Training takes place by using a 

one-shot process: AIRS only passes over the entire training dataset once. During 

training, each antigen is exposed to the memory cells one at a time, stimulating each cell 

within the memory pool.  Each memory cell is allocated a stimulation value which is 

inversely proportional to its affinity with the training antigen: 

                                (3.2) 

where     represents training on the  th antigen,       is a memory cell. The 

memory cell which is stimulated the most is labelled        .   

Mutated clones of         are generated (through the process of clonal expansion and 

somatic hyper-mutation) in proportion to the stimulation of         with the presented 

antigen.  The number of mutated clones (                
) generated is governed 

by: 

                
                                          (3.3) 

Both the hyper-mutation rate (          ) and the             are user defined 

parameters.  The mutated clones are then added to the ARB pool.  
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3.2.1.3 Competition for Resources 

The ARBs within the ARB pool then undergo their own process of clonal expansion 

and somatic hyper-mutation under a resource limited environment. This process is 

known as competition for limited resources[87]. During this process, mutated clones are 

generated in proportion to the stimulation of each       to    : 

                                     (3.4) 

Resources are also allocated to each of the        in proportion to the stimulation of 

the    with    . The total amount of resources in the ARB pool is limited by the user 

defined configuration parameter known as                . After each of the ARBs in 

the ARB pool have been stimulated by    , the least stimulated ARBs are removed 

from the ARB pool by allocating resources to the most stimulated ARBs in the pool first 

until all the resources have been allocated. 

The development of the ARB pool is finished when the mean user defined 

                      reaches a pre-defined level. 

3.2.1.4 Memory Cell Selection 

The penultimate step in AIRS is memory cell selection.  Memory cell selection selects 

the best antibodies from the ARB pool to potentially join   .  The most stimulated 

ARB in the ARB pool is called            . If             is more stimulated than 

       , a check is made to see if         should be removed.          will be 

removed if the                               is less than       .  Otherwise, 

            will be added to   . 

3.2.1.5 Classification 

The final stage of the AIRS algorithm is to classify the dataset. This is achieved using 

an instance based classification algorithm such as k nearest neighbour (which is 

described later in this chapter). 

3.2.2 More Information on AIRS 

More details on the AIRS algorithm can be found in [87], [138], [139] and [96]. 

3.2.3 SVM Classification Algorithm 

Support vector machines (SVMs) are a classification technique based on statistical 

analysis.  They aim to separate a   dimensional continuous feature space into two 
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classes.  SVMs represent this problem by formulating a separating hyperplane.  This 

hyperplane can then be represented as shown below: 

        (3.5) 

where   is a   dimensional vector of weights,   is a bias vector and   is a point in   

dimensional space. Depending on whether a point lies above or below this plane 

determines to which class the point belongs. 

Class 1

Class 2

Maximum 

Margin

 

Fig. 3.1 - Two possible linear discriminants to separate the circles from the crosses 

Fig. 3.1 shows the construction of two hyperplanes that separate the linearly separable 

classes: class 1 and class 2. The aim of the SVM is to construct a maximum margin 

hyperplane that separates the two classes. The construction of the maximum margin 

hyperplane can be formulated as an optimisation problem. 

The SVM can be easily adapted to work for non-linear classification problems. In this 

instance, the training examples are mapped into a higher dimensional space and a 

maximum margin linear hyperplane constructed to classify the data.  If      defines a 

mapping such that             where      the support vector machine dual 

optimisation [140] becomes: 

 

   
 

 
 

 
                    

 
       

 
   

 
    

             
   

              

   (3.6) 

where       are Lagrange multipliers and     . 

The inner product between certain sets of two functions can be calculated without ever 

knowing the individual mapping.  This leads to a replacement of            with 

         where          is a kernel function.  When the data is not linearly separable, 

then a penalization parameter C is introduced.  The parameter C represents the trade-off 

between minimizing the training set error and maximizing the margin. 

There are several choices of kernel function available.  The polynomial kernel and the 

radial basis function are two such examples. It has been shown that given sufficient 

tuning (of its parameters) the polynomial kernel function is a special case of the radial 
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basis function [141].  The kernel function selected for this study is therefore the radial 

basis function. 

               
       

 

   
   (3.7) 

The parameter   affects the above kernel function and also influences the ability of the 

support vector machine to accurately classify data. 

The choice of values for C and   will affect the classification performance of the 

classifier.  To obtain a high level of classification accuracy, C and   should be chosen 

carefully and optimised where possible.  The other main variable in the SVM is the 

kernel function. 

Support vector machines are often used for two class classification problems.  However, 

the method can easily be extended to multi class problems by considering a multi-class 

problem as a set of two class classification problems. 

More information on SVM algorithms can be found in [140]. 

3.2.4 Random Forest Classification Algorithm 

A Random Forest is a classifier consisting of a collection of tree classifiers where each 

tree classifier casts a unit vote for the most popular class given an input x [89].  

Decision trees are a nonparametric learning technique. They are built by creating sets of 

tests that split the data between classes. For example [142], a test   may be defined as: 

        (3.8) 

Where      and   is the number of features in a voltage profile,    is the voltage at 

the  th bus and    is the optimal threshold to split the feature    into two classes. In the 

random forest algorithm, n input features are selected for each of the N random tree 

classifiers. The decision trees are then grown by sampling P cases from a set of P 

observations in the training set with replacement. Each tree is grown to the largest 

extent possible with no pruning. 

Both the total number of features per tree (n) and the total number of decision tress 

generated (N) are parameter configuration variables which must be selected carefully to 

ensure the random forest algorithm works effectively. 

The random forest algorithm has several key advantages appropriate for this study. 

Firstly, the algorithm has been shown to have high classification performance compared 

with other algorithms. Secondly, they can run efficiently on large datasets. Thirdly, it is 

possible to interrogate the random forest to identify the most important features of the 
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classifier and hence identify important monitors and measurements. Lastly, they are 

robust against over-fitting. 

3.2.5 k Nearest Neighbours (kNN) Classification Algorithm 

The k nearest neighbours algorithm (kNN) works by performing a majority vote on the 

k closest training examples to a test vector in the feature space [143]. The class assigned 

to a test vector is the most prominent class contained within the set of the k nearest 

neighbours (as defined by some distance metric). 

The kNN algorithm was included in this study as a simple comparison to the support 

vector machine and the AIRS classification algorithm. It is especially relevant as a 

comparison with AIRS since they both share the same procedure for classification. 

3.3 Clustering 

The aim of a clustering algorithm is to assign a set of data points into groups (called 

clusters) so that the data points within each group are more similar to each other than 

other data points outside of these groups.  

The similarity between groups of data points can be customised depending on the target 

problem. The similarity measure should be defined in such a way so that the distance 

between similar items is relatively small, and the distance between dissimilar items is 

relatively large. Appendix F describes the application of a clustering algorithm to a 

transmission network, and a custom distance measure is used to group similar data 

points. 

3.4 Unsupervised Artificial Immune Classifier (UAIC) 

The unsupervised artificial immune classifier (UAIC) algorithm is an unsupervised 

immune inspired algorithm that is capable of performing clustering on a dataset. The 

algorithm was proposed in [91] to classify areas of hyper-spectral remote sensing 

images into areas describing land use: for example road, town, vegetation or sea.  It is 

largely based on ideas first presented in the AIRS algorithm in [87]. UAIC differs from 

AIRS being an unsupervised rather than supervised algorithm. The full description of 

the UAIC algorithm can be found in [91]. 

3.4.1 Immune Components of the UAIC 

The UAIC algorithm is based on the principle of immune clonal selection [134]. Like 

AIRS, the significant immunological inspiration for the UAIC comes from the idea of 
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clonal selection [134]. The processes of clonal expansion and somatic hyper-mutation 

[135] are both modelled within the algorithm along with the concept of a long lasting 

population of memory cells. 

The UAIC also exhibits a form of immune system metadynamics [144]. This process is 

modelled in the algorithm as the continuous changing of the antibody population 

through antibody proliferation and death. In the UAIC, low affinity antibodies are 

continuously removed from the population to ensure that only the best selection of 

antibodies is maintained. 

Antigens, antibodies and memory cells are all modelled in UAIC as feature vectors in N 

dimensional feature space. Antigens are input into the algorithm from a dataset. 

Antibodies are cloned and mutated during the UAIC algorithm and represent candidate 

clustering centres. Memory cells are selected as the final locations which most 

accurately represent the dataset, based on rules defined within the UAIC algorithmic 

process. 

3.4.2 UAIC Algorithmic Process 

The clustering procedure of the UAIC algorithm is configured to find a pre-defined 

number of clusters (Nc) in a dataset. 

The UAIC algorithm initializes by generating a memory cell population (MC) using the 

Kaufman initialization procedure [145] which generates memory cells sequentially. The 

first memory cell is assigned to the location in the centre of the most number of 

antigens. The subsequent memory cells are placed to minimize the distance between the 

remaining antigens and the set of memory cells. This process continues until Nc memory 

cells have been positioned. Each memory cell in the set of cells is assigned a different 

label corresponding to the cluster it represents. The antibody pool AB is also initially 

seeded with the contents of MC. 

After initialization, the algorithm enters the processing phase. The first stage of the 

processing phase is to present the antigens to the algorithm. During this procedure, the 

order of the antigens is randomized and then presented to the algorithm sequentially.  

The following steps are then performed on each training antigen: 

1) Antigen Presentation: Each antigen is assigned to the cluster of the nearest 

memory cell based on a calculation of affinity with all other memory cells: 
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                 (3.9)
10  

where       is a memory cell from the population of memory cells   ,     

is the  th presented antigen and                  is a measure of similarity (or 

closeness) between the ith antigen and the selected memory cell.            is the 

best matching memory cell of the cluster  . 

2) Clonal Expansion: The antibody population of the antigen’s cluster then 

undergoes a form of clonal expansion.  A number of strong affinity antibodies are 

selected and are cloned rapidly.  The number of clones generated depends on the 

clonal rate and the affinity between the antigen and the antibody. 

Where    is number of clones generated,    is the clonal rate defined for the 

algorithm and            is an antibody from the population of antibodies 

   labelled with the same cluster   as      . 

3) Affinity Maturation: The clones are then subjected to affinity maturation.  They 

are mutated at a rate inversely proportional to their affinity with the training 

antigen.  Stronger affinity antibodies are mutated less than those with a weak 

affinity. 

4) Memory Cell Selection: Each of the matured antibodies in the pool is then 

evaluated against the original best classifying memory cell to decide if the new 

memory cell should be accepted for inclusion into the memory pool.  The best 

new memory cell is found by searching the pool of antibodies: 

                                              (3.11) 

Memory cell selection requires the use of the                           (   ) 

which is a user configured parameter for the UAIC algorithm and the 

                   (  ) which is defined as described in equation (3.1).  If 

            is a better match (has a smaller affinity) to the antigen than         

then             is considered for inclusion as part of the memory cell population 

(  ).  If this is the case,             is added to the memory cell population if 

                                      otherwise, if        

                              the memory cell will replace        . 

                                                 
10  In [91], this is a maximization; however it is defined as a minimization here to align with AIRS. 
11  In [91], this is defined as a multiplication, but it is defined as a division here to align with AIRS. 

           
  

                   
 

 

   

 (3.10)
11
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5) Displace Antibody Pool: The antibody pool is pruned and regulated by using a 

displace rate which displaces a percentage of the worst matching antibodies from 

the pool.    percent of the worst matching antibodies from the antibody pool 

(   ) are replaced with the same number of  best matching memory cells (of the 

antigen’s class). 

After training on all the antigens is complete, a termination condition is checked 

and if it is not satisfied, the algorithm will restart and begin training across the set 

of antigens once again.  The algorithm terminates when the number of antigens 

changing clusters, from one iteration to the next, reaches a minimum threshold 

value.  

There are several configuration parameters in the UAIC algorithm. The 

                         12 is used to decide whether a newly created antibody will 

be added to the memory pool (as shown in step 4 below). The clonal rate    defines the 

number of cloned antibodies injected into the antibody pool during each training 

iteration. The displace rate   defines the percentage of antibodies that will be displaced 

on each iteration (as shown in step 5 below).  The defined         13 (or         ) 

function is also a user-defined function and it is often tailored to the specific clustering 

problem [91]. 

3.4.3 Similarity between the UAIC Algorithm and AIRS 

There is a large degree of similarity between the core algorithmic procedure of UAIC 

and the AIRS algorithm. AIRS was the first algorithm to be developed, and the UAIC 

algorithm was developed from ideas present in AIRS and other algorithms. 

Both algorithms clone and mutate a set of antibodies which are ultimately selected to 

become part of a memory cell population using identical procedures. Both algorithms 

also select antibodies to become part of the memory cell population by considering the 

                   of the dataset as a whole. The output from both algorithms is also 

a set of memory cells which generalises the training data. 

The two algorithms differ most significantly in initialization and termination.  AIRS 

initializes by randomly seeding a number of memory cells from the dataset while the 

UAIC uses the Kaufman initialization procedure.  AIRS terminates after one run over 

the dataset whilst UAIC is configured to terminate when the number of antigens 

                                                 
12 In the original implementation of UAIC, a distance threshold scalar (DTS) is defined, rather than an affinity threshold scalar (ATS).  ATS was 

described in this research to enable a straightforward comparison between UAIC and AIRS algorithm (which uses an ATS). 
13 The original implementation of UAIC referred to affinity as “inversely proportional to distance”. AIRS defines affinity in proportion to distance.  

The description of UAIC in this paper keeps with the definition of affinity as outlined in the AIRS algorithm. 
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changing clusters between iterations reaches a pre-configured value i.e. after several 

iterations. 

Furthermore, the AIRS algorithm is often applied as a pre-processing algorithm used 

prior to supervised classification by another algorithm (for example k nearest 

neighbours). The UAIC algorithm on the other hand, is designed specifically for 

unsupervised clustering, and cannot be used with supervised data. 

TABLE 3.1. COMPARISON OF UAIC ALGORITHM AND AIRS 

Process Difference or Similarity UAIC AIRS 

Initialization Different Kaufman initialization 

procedure. 

Random selection of antigen from 

training data. 

Core Algorithm Process Similar Training / learning, resource consolidation, memory cell selection. 

Termination Different User configured based on the 

number of antigens switching 

cluster per iteration. 

One-shot algorithm.  Terminates 

after one run over the dataset. 

Data Representation Similar Ideas Antigens, memory cells & antibodies (or ARBs in AIRS). 

Mutation Similar Immune inspired somatic hyper-mutation. 

Cloning Similar Immune inspired clonal expansion. 

Memory Cell Selection Similar Use affinity threshold, user configured affinity threshold scalar and 

candidate and best matched memory cells. 

Typical Usage Different Clustering / Unsupervised 

Classification Only 

Classification 

Competition for 

Resources 

Different Antibody are displaced using a 

displace rate. 

Resource limited artificial 

recognition ball (ARB) pool. 

Consolidation of 

Resources 

Similar Ideas Memory cells with identical 

session data are merged to limit 

the memory cell population 

growth. 

The artificial recognition ball 

(ARB) model to ensure identical 

antibodies aren’t represented twice. 

3.5 Optimization 

3.5.1 The B-Cell Algorithm 

The B-cell algorithm [146] is an immune inspired optimisation algorithm. The 

algorithm is inspired by the immunological process of clonal selection [134]. The 

immune system itself is able to track a series of ever changing pathogenic material that 

enters the body. The B-cell algorithm has been shown to perform strongly when 

compared with other immune inspired optimisation algorithms on problems that 

involved dynamic optimisation in [147]. In [148] it was compared against a hybrid 

genetic algorithm (HGA) and shown to be more effective at tracking fixed points in a 

changing landscape. The B-cell algorithm was also compared against a HGA in a static 
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environment in [146], and shown to outperform the HGA in terms of number of 

evaluations. 

The B-cell algorithm is unique in that it operates using a unique mutation operator 

known as contiguous somatic hyper-mutation. The inspiration for this operation comes 

from two immunological research sources in [149] and [150]. 

In the original B-cell algorithm, each B-cell is encoded as an N-dimensional vector of 

64–bit strings (v). By encoding each solution in this manner, the B-cell algorithm is able 

to perform continuous function optimization for an objective function with any number 

of dimensions.  Each B-cell belongs to the population of B-cells,   (   ). The 

objective function of the chosen optimization problem can be evaluated for any of the 

B-cells, by computing     . 

An immune inspired optimization algorithm has particular advantages when considering 

the optimal monitor placement problem. Immune inspired algorithms such as the BCA 

are able to maintain a diverse range of near optimal solutions [92]. This is not possible 

with traditional combinatorial optimization techniques which tend to locate one single 

optimum solution. This will be explored and exploited in more detail in Chapter 7. 

There are two key advantages to identifying a range of solutions. Firstly, the optimum 

solution may be extremely sensitive to small changes in the operating conditions of the 

monitoring solution. A near optimal solution may be more robust when small changes 

in operating conditions are considered. The second advantage of a diverse range of 

solutions is that it adds flexibility into the decision making process. A DNO can choose 

from a wide range of similarly effective solutions before adopting a monitoring 

solution. The final selection could be based on additional criteria which may not be 

directly correlated with sag or unbalance monitoring while still achieving high accuracy 

of power quality performance assessment. 

The B-cell algorithm has been shown to perform strongly when compared with other 

immune inspired optimization algorithms on problems that involved dynamic 

optimization in [147]. In [148] it was compared against a hybrid genetic algorithm 

(HGA) and shown to be more effective at tracking fixed points in a changing landscape. 

The B-cell algorithm was also compared against a HGA in a static environment in 

[146], and shown to outperform the HGA in terms of number of evaluations. 



Chapter 3: Advanced Computational Techniques  

 
101 

The algorithm begins by seeding a random number of B-cells, as defined by the user-

configured total population size (Pmax). The objective function for each of the B-cells is 

then evaluated. Each of the B-cells is then cloned Cmax times and a clonal pool Ci is 

created for the ith B-cell. Cmax is a user-configured variable and is often set to be equal 

to Pmax.  To maintain a level of diversity in the candidate solutions (and to mirror the 

immune process of metadynamics), one B-cell clone in each of the clonal pools is 

selected and each element is mutated randomly, subject to a probability. 

The next process on the clonal pool involves mutation. Each B-cell in the clonal pool is 

mutated by using contiguous hyper-mutation. This mutation operation works by first 

selecting a random location (locr) on the vector to be mutated. A random length is then 

chosen between 1 and the length of the vector (lenr).  These two values define a region 

on the B-cell that will undergo the mutation operation as shown in Fig. 3.2. 

Hotspot

Random length

Vector of monitoring locations 

arranged such that similar locations 

are adjacent to one another

 
Fig. 3.2. The contiguous somatic hyper-mutation operation. 

The B-cell algorithm terminates when a stopping criterion is fulfilled. The stopping 

criterion used is problem dependent. 

3.6 Statistics 

Statistical techniques cannot be defined as classification, clustering or optimization 

algorithms. They are mentioned here as they are used extensively in this thesis to 

intelligently process monitoring data. They are therefore similar to data mining or 

machine learning techniques, as they help power system operators extract knowledge 

from information associated with their network.  

The application of statistical techniques often has advantages over more complicated 

machine learning and artificial intelligence algorithms. Statistical methods are often 

simpler to implement, and they require no specialist knowledge of the techniques to 

interpret the results. They are also widely applicable to a variety of problem areas, and 

backed up by rigorous mathematical research. 
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Statistical methods are used extensively throughout this thesis. For example, in Chapter 

5 they are used to formulate a probabilistic estimate for the location of a voltage sag, in 

Chapter 8 they are used statistically estimate the distribution of voltage unbalance. 

3.7 Algorithm Implementation: Weka Machine Learning Environment 

All of the classification algorithms applied in this research were tested using WEKA 

machine learning environment [151]. The UAIC clustering algorithm and the B-Cell 

optimisation was implemented using bespoke code developed in MATLAB by 

following the algorithmic procedure outlined in [91] and [146] respectively. Statistical 

methods were also implemented in MATLAB using standard toolbox functions. 

3.8 Summary 

This chapter described the core computational techniques which will be used to help 

identify the worst served customers and weakest areas of the network for power quality 

issues. 

The selected techniques included classification, clustering, optimization and statistical 

analysis. Particular emphasis was placed on selecting immune inspired artificial 

immune systems (AIS). AIS algorithms were selected so that they could be evaluated 

against other methods. 

A summary of the reasons for selecting each of the algorithms is described in Table 3.2. 

Supervised classification techniques are used in Chapter 4 to detect and classify voltage 

sag events in distribution networks and also in Appendix F to classify voltage stability 

issues and overloaded lines in transmission networks. In both case studies, the 

performance of the AIS algorithms was compared against other more standard 

techniques, to try and discover whether they have any particular advantage for power 

system problems. Appendix F also describes the application of an immune inspired 

unsupervised clustering algorithm. Clustering is a powerful technique which can be 

applied to data which is unlabelled. By grouping similar modes of failure, the clustering 

algorithm is able to generalise scenarios which will fail in a similar manner. 

Immune inspired optimisation algorithms are applied in Chapter 7 to optimally place 

monitors for voltage sag performance monitoring. In Chapter 7 the immune inspired 

techniques were compared against other optimisation results and their performance 

evaluated. 
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TABLE 3.2. AN OVERVIEW OF THE ADVANCED COMPUTATIONAL TECHNIQUES USED THROUGHOUT THIS THESIS 

Name Application Description Reasons for Selection 

AIRS Classification Immune inspired classifier  Popular immune inspired algorithm 

 AIRS has been shown to outperform the kNN classifier 
[133] 

 Shown to be an effective classifier across a variety of 
data sets [96]; outperforms learning vector quantisation 

in [133] 

 Limited applications in power systems; exceptions 
include [83] 

SVM Classification14 Popular classifier based on 

statistics 

 Statistical and mathematically based approach 

 Easy to visualise their operation 

 Widespread implementations available in environments 
such as MATLAB & Weka[151] (with LibSVM [152])  

kNN Classification Popular simple classifier  Simple to understand and implement 

 Very popular 

 Widespread implementation in machine learning 
environments such as MATLAB & Weka[151] 

 Same classifier as the AIRS algorithm, so useful for 

performance comparisons with AIRS 

Random Forest 

Algorithm 

Classification Strongly performing widely 

implemented classifier based 

on decision trees 

 Run effectively on large datasets 

 Robust against over-fitting 

 High classification performance against other 

algorithms 

 Widespread implementation in machine learning 

environments such as MATLAB & Weka[151] 

UAIC Clustering Immune inspired clustering 

algorithm based on AIRS 

 Similar immune inspiration to AIRS; AIRS equivalent 
clustering algorithm 

 Straightforward and documented implementation [145] 

B-Cell 

Algorithm 

Optimization    Population based optimisation able to maintain a set of 

sub-optimal solutions 

 Creates a robust set of solutions 

 Creates flexibility in the decision making 
process 

 Performs strongly on dynamic optimisation problems 

[147] 

 Shown to outperform other population based 

techniques such as a hybrid genetic algorithm [146] 

 

                                                 
14

 Support vector machines can also be used for linear regression and clustering. 
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4 Voltage Sags: 

Detection and 

Classification 

4.1 Introduction 

Gaining a holistic view of voltage sags within distribution networks can be considered a 

multi-stage procedure as shown in Fig. 4.1: 

Detection & 
Classification

Localization
Voltage Sag Profile 

Estimation
Voltage Sag Impact 

Estimation

1 2 3 4

 

Fig. 4.1. The process of gaining an overview of voltage sags within a power network (stage 1). 

Detection and classification is the process of detecting that a voltage sag has occurred, 

and then subsequently classifying the type of sag which has occurred. Localization is 

the process of identifying the region where the sag occurred. Voltage sag profile 

estimation synthesizes the results of the earlier stages into a during fault voltage profile 

for the whole of the network. Voltage sag impact estimation is the process of identifying 

the impacts of the voltage sags on each of the consumers in the network. 

Algorithms must be developed to deal with each of the stages described in Fig. 4.1. The 

developed algorithms must be able to synthesize information from a range of arbitrary 

monitoring devices to produce reliable outputs that can be fed into the next stage of the 

process. 
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The following three chapters describe a series of techniques and case studies to tackle 

each of the stages defined in the process of Fig. 4.1. This chapter covers the detection 

and classification of voltage sag events using artificial intelligence algorithms to assist 

with the detection process (as shown as the highlighted box in Fig. 4.1).  

4.1.1 Aims 

Voltage sag detection, localization and estimation have all been tackled before. One of 

the most important works on this topic was [25], which tackled the optimal monitoring 

problem for voltage sag detection, localization and estimation using monitors as 

threshold monitoring devices. In [25], it was assumed that each power quality monitor is 

able to register a fault if the voltage magnitude if the worst affected phase descended 

below a pre-determined threshold level. This led to the development of the concept of a 

monitor reach area (MRA) for each monitor. Monitoring programs designed in this way 

assume that power quality meters act autonomously, each covering their particular area 

of the network. Reference [25] also assumed that the type of fault (e.g. three phase or 

double line to ground) that had caused the voltage sag event was known a priori. 

Determining the type of fault is an important requirement of the detection stage and 

required to achieve accurate localization and estimation.  

Classifying the type of fault before performing fault location or voltage sag profile 

estimation is an important aspect which is absent from the existing body of research 

relating to voltage sag estimation, but covered as part of broader research on fault 

classification and detection (in papers such as [88] and [89] which were described in the 

introduction). Fault classification and detection is a necessary pre-requisite before the 

voltage sag estimation algorithms which are discussed in Chapters 5 and 6 can be 

applied to locate faults and estimate their impact on the network. 

In contrast to [25], the research developed in this chapter is a centralised technique. It is 

assumed that data from monitoring devices can be assimilated to a central location, and 

then processed together to determine the type of fault. 

The principle aim of the research described in this chapter is to develop a method 

capable of detecting and classifying faults using a realistic set of erroneous monitors 

installed at practical locations whose number is much less than required to observe the 

whole network. The objective of the voltage sag classification process is to group 

together faults into similar types; for example, single line to ground (SLG), line to line 
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(LL), double line to ground (LLG) and three phase (LLL), using a set of measurements 

available from realistic monitoring devices. 

A secondary aim of the research described in this chapter is to test and compare the 

performance of the developed algorithm whilst varying the internal classification 

algorithm used to classify the sags.  

A high performing algorithm will exhibit a number of qualities. The algorithm should 

be able to continually discriminate between faulted operating scenarios and normal 

power system operation whilst minimizing the number of false alarms and missed 

faults. Both the detection and classification accuracy of the algorithm must be near 

perfect, to ensure that the localization, estimation and impact estimation phases of the 

voltage sag monitoring process are not erroneous. The algorithm must have a high 

immunity to noise, and be able to work with ad-hoc arrangement of monitors installed at 

different locations potentially measuring different parameters with varying degrees of 

accuracy. 

The research discussed in this chapter contributes and adds to the existing body of 

research on fault location, classification and voltage sags by providing a viable method 

based on artificial intelligence algorithms to identify the type of fault which occurred in 

the network. The research rigorously tests a variety of established artificial intelligence 

algorithms, and identifies which algorithms are most likely to provide promising results. 

The developed method can be considered as a pre-processing stage to the techniques 

discussed in [25], [81] and the algorithms developed later in this thesis. Unlike [25] and 

[81], the method’s discussed in this chapter (and this research) are shown to be capable 

of handling noisy measurements, which is a key requirement of a practical monitoring 

solution. It is also hoped that the results presented in this chapter will highlight the 

suitability of artificial immune systems for the task of voltage sag classification and 

detection. 

4.2 The Aim of a Voltage Sag Profile Classifier 

The aim of the voltage sag classifier is to partition measurements recorded by monitors 

into five separate sub-populations: 

1) Normal (N) 

2) Single line to ground (SLG) fault 

3) Double line to ground (LLG) fault 

4) Line to line (LL) fault 
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5) Three phase (LLL) fault 

Four types of classification algorithm were used to build classifiers capable of detecting 

steady state operating conditions and classifying the type of fault; namely, an artificial 

immune recognition system [96] (AIRS), a support vector machine[140] (SVM), a 

random forest (RF) [89] and k-nearest neighbour (kNN) [143]. 

Artificial immune recognition system (AIRS) was selected for its consistent 

performance across a wide range of classification problems [96]. A support vector 

machine (SVM) and the random forest algorithms were selected due to their success in 

classifying data in other power system related problems, such as [142], where they were 

used to identify critical transmission lines and their proper compensation rate with 

respect to voltage stability. The random forest in particular was selected because its 

proven success of classifying faults as LL, SLG, LLG and LLL in [88] with near 100% 

accuracy using measurements taken from one of a transmission line. The k-nearest 

neighbour (kNN) was selected primarily because it is a popular and conceptually simple 

classifier which often yields comparable results to more complicated methods.  

It is particularly important to compare the kNN algorithm’s performance with AIRS 

because AIRS can be considered as a specialisation of the kNN algorithm. AIRS 

principle function is to pre-process a data set before presenting it to the kNN algorithm 

for classification. If AIRS is enhancing the classification process, the classification 

performance of AIRS should be greater than that of kNN alone. 

4.3 Method 

The aim of the study is to develop and test the performance of an algorithm capable of 

detecting and classifying voltage sags. The test methodology is summarised in Fig. 4.2. 

Data Generation
Train Classification 

Model

1 3

Test Classification 
Model

4

10 FCV

Tune Classification 
Algorithm 
Paramters

2

 

Fig. 4.2. Methodology for testing detection and classification performance.  

The first step of the methodology is data generation. During the data generation phase, a 

dataset was constructed which covers a realistic set of inputs and therefore incorporates 

variation in pre-fault voltage, fault impedance, fault location, measurement accuracy 

and number of measurements.  
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In the second step of the methodology, the classification algorithms are tuned. Each of 

the algorithms has a variety of configurable parameters and these must be selected in 

such a way to yield the best possible performance. 

The third step of the testing methodology is to build a classification model. The 

classification model was built by feeding in a training data set into the classification 

algorithm. 

The last step is to classify the test data set into the trained classification algorithm and 

record the results. The classification algorithm was tested using a technique known as 

ten-fold cross validation [154]. 

4.3.1 Data Generation 

The input for the classification algorithms was prepared during the data generation 

phase by generating a fault dataset of faulted and non faulted scenarios [8]. The output 

of the data generation phase is a tuning dataset and testing dataset which will be used to 

tune and then subsequently train and test the classifiers. 

Each dataset must incorporate variation in pre-fault voltage, fault location, fault 

impedance, measurement accuracy, measurement location and the number of 

measurements. A series of fault studies were conducted to incorporate the variation in 

each of these parameters. 

Pre-fault voltages were varied by creating by creating 6 pre-fault loading scenarios 

derived from loading the 295 bus network at 50%, 60%, 70%, 80%, 90% and 100% of 

the maximum expected half hourly load. The load was raised and lowered evenly across 

all buses ensuring that the power factor remained constant. For each fault study, the 

load was picked from one of these 6 scenarios. 

Fault location was varied by simulating faults at 4 fault positions along each of the 278 

lines in the network. Each fault was simulated at a per unit distance of either 0.01, 0.337 

0.663 or 0.99 along each line. Fault location was configured as a fixed series of 

locations (rather than random locations) to ensure that the results evenly covered all 

areas of the network. 

Fault impedance was modelled as a uniformly distributed random variable between 0Ω 

and 100Ω. For each fault simulation, the fault resistance was selected from this 

distribution. 
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The accuracy of the installed measurement devices depends on the actual devices 

installed within the network. At monitored buses, voltages are measured through a 

voltage transformer. The accuracy of the measurement will vary depending on the 

quality of the monitoring device
15

.  

Measurement errors were modelled using the expression presented in Chapter 2, 

equation (2.1). In this research, an error of 0.2% of the true value was assumed for all 

symmetrical component magnitudes and 0.2% of 2π for phase measurements. The 

standard deviation for the voltage magnitude and phase was therefore σ|v|=0.067% and 

σϕ=0.0013π radians respectively. 

Both the locations for the monitors and the numbers of monitors were selected by 

considering a mixture of previous research defining optimal monitoring locations for 

voltage sag monitors [25] in a distribution network and engineering judgement. Left 

unconstrained, the number of possible locations for monitoring devices in the network is 

a combinatorial problem with a high number of possible solutions (for example, 

5.4×10
80

 ways of placing 100 monitors into the 295 bus network). It is therefore 

important to constrain monitors to positions representative of locations where 

monitoring devices are likely to be installed.  

The optimal monitoring research discussed in [25] presents a method for placing 

monitors within a network based on a pre-defined voltage threshold. In this research, a 

set of 12 monitors known as the MRA monitor set was found by applying the method 

presented in [25] to the 295 bus network and setting the voltage threshold to 0.9 per 

unit. This is the minimum number of monitors required to detect the presence of all 

faults in the 295 bus network with 100% accuracy (assuming perfect error free 

measurements) using the threshold method. Fault detection is accomplished using the 

method presented in [25] by simply noting whether the voltage in the worst affected 

phase dips below 0.9 per unit. The 12 monitor MRA solution is shown in Fig. 4.3 with 

monitors installed at buses 289, 288, 287, 286, 285, 247, 63, 179, 240, 38, 121 and 137. 

The ordering of the MRA list of monitors ranks buses in ascendance of the number of 

faults that they can each independently observe. Twelve different sets of monitoring 

locations were selected from the MRA set, each consisting of the last N monitors in the 

list. 

                                                 
15 The Siemens 9610 Power Quality meter for example, quotes an accuracy of ±0.2% for symmetrical component magnitude and 

phase at full scale of 0 to 106volts and -π to π. 
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Although 12 monitors are required to detect all SLG, LL, LLG and LLL faults, only 4 

monitors at buses 137, 121, 38 and 240 are required to detect LLL faults alone. This is 

an important point which will be drawn upon in the analysis of results section which 

follows later. 

In the case where a distribution network operator does not utilise an optimal monitor 

placement algorithm, monitors are likely to be installed at accessible locations based on 

the engineering judgement of operators. It would be reasonable to assume that monitors 

would be installed at the start of 11kV and 33kV feeders on the secondary side of a 

transformer, as existing SCADA single phase monitors tend to be installed in these 

locations. In the 295 bus network, there are 10 33kV and 11kV feeders. The results that 

follow also include a comparison of the classification and detection performance of the 

algorithms using these 10 monitors installed at buses. 

The full testing dataset contains 10008 voltage magnitudes and angles for each type of 

fault, giving a total of 50040 fault voltage profiles. The 10008 voltage profile consists 

of 9 randomly selected combinations of pre-fault loading, fault resistance simulated at 4 

locations across all 278 lines. The testing dataset was further reduced to 5004 profiles, 

by randomizing the data set and selecting 10% of the data. The dataset was reduced to 

~5000 instances to ensure that training the classification algorithms within the Weka 

machine learning environment could be carried out within a feasibly short length of 

time (<1 hour on a Pentium 4 2.8GHz PC). 

The tuning dataset contains 100 randomly selected voltage profiles for each type of 

fault, giving a total of 500 fault voltage profiles. 

Each of the instances contained within the training and tuning dataset were labelled with 

SLG, LL, LLG, LLL or N, depending on the type of fault simulated. 

4.3.2 Optimising the Parameters of the Classification Algorithms 

Each of the classification algorithms have parameters which can assume a variety of 

values. These parameters influence the accuracy of the classification algorithm’s 

performance, and it is therefore important to tune the algorithms to ensure that the 

selected parameter values are optimal, before building the classification model across 

the whole dataset. The algorithmic parameters were tuned by running the algorithm 

across the tuning dataset comprising 500 points, with 100 points selected randomly 

from each of the 5 fault classes.  
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Fig. 4.3. The 295 bus network showing the monitor locations which will be used to test the 

classification and detection performance of the algorithms. The two highlighted zones represent 

regions where faults were miss-classified by the random forest and the SVM classification 

algorithms. 
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The optimal parameter values for each algorithm were determined by defining a series 

of ranges and intervals for each parameter, and varying all parameters until every 

possible combination of parameter had been searched. For each set of parameter values, 

a classification model was built and tested using 10 fold cross validation. The best set of 

parameter values was then noted, ready to be used for classification on the testing 

dataset. 

The following sections describe the parameter selection process for each of the 5 

algorithms. 

4.3.2.1 Optimising the Parameters of the SVM Algorithm 

The parameters C and σ featuring in the SVM algorithm were optimised using cross 

validation and a grid search algorithm. C was chosen to range from 2
-3

 to 2
15 

whilst   

was chosen to range from 2
-15

 to 2
3
. The step interval for the exponent of the parameters 

was set to 0.1. Selecting the parameters in the ranges describes above describes a grid of 

parameters where the SVM algorithm can be tuned [155] for the specific classification 

problem. All the tests were run using LibSVM [152]. 

The best value of C was found to be C=17559 (2
14.1

), and the best value of σ was found 

to be σ=0.04419 (2
-4.5

). 

4.3.2.2 Optimising the Parameters of the AIRS Algorithm 

There are several user configurable parameters available for AIRS. These include: 

 Clonal rate (CR) 

 Hyper-mutation rate (HR) 

 Total resources (TR) 

 Stimulation threshold (ST) 

 k value for the k nearest neighbour algorithm (k) 

Parameter tuning for the AIRS algorithm was accomplished taking each parameter in 

turn and finding the best value for that parameter alone within its specified range. The 

next parameter was then selected and tuned by varying this parameter within its 

specified range. This method does not search all the possible combinations of 

parameters, but it does ensure that a set of locally optimised set of parameters were 

discovered.  

The parameters ranges were selected based on the suggested values discussed in [87] 

and [139]. Table 4.1 shows the optimum parameter values selected for the AIRS 

algorithm. 
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TABLE 4.1. PARAMETER OPTIMISATION OF AIRS ALGORITHM FOR FAULT CLASSIFICATION. 

Parameter Name Start Min Max Step Optimum 

Clonal Rate 10 5 15 1 7 

Hyper-mutation Rate 2 1 3 0.5 1.5 

Total Resources 150 100 500 50 150 

Stimulation Threshold 0.9 0.7 0.98 0.2 0.98 

kNN 3 1 30 1 1 

It is worth explaining the low value of k=1, for the kNN classifier. This value can be 

explained by considering that the AIRS algorithm generalises the 500 point dataset into 

a set of 81 classification memory cells. The number of cells in each of the classes varies 

from 27 representative memory cells for double line to ground faults, to 1 representative 

cell for normal operating conditions. With only 1 memory cell representing normal 

operating conditions, using a k value greater than 1 will cause this entire subset to be 

miss-classified, and limit the classification accuracy to a maximum of 80%. Setting k=1 

ensures that normal operating conditions have a chance of being classified correctly. 

4.3.2.3 Optimising the Parameter of the Random Forest Algorithm 

The two configuration parameters for the random forest algorithm are the number of 

features per decision tree (n), and the number of trees to generate (N). A grid search was 

performed to find the optimum parameters with n varied between 1 and 30 in intervals 

of 2 and N varied between 2 and 30 in intervals of 2. 

The optimum values of the configuration parameters was found to be n=9 and N=26. 

4.3.2.4 Optimising the Parameter of the k Nearest Neighbours Algorithm 

The only variable parameter in the k nearest neighbour classifier is the value of k. 

Values of k were tested in the range from 1 to 30. 30 was the maximum tested value of 

k, since this represents a large percentage (6%) of the dataset being used for the 

majority voting classification procedure. 

The highest performing value of k was found to be k=3. 

4.3.3 Training the Classification Model 

The classification model was built using Weka [151] from 10 randomly selected sets of 

90% of the full testing dataset and setting the parameters as described during the tuning 

process. The algorithms were then tested using the remaining 10% of the testing 

dataset. This technique is known as 10 fold cross validation. 
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4.3.4 Testing the Classification Performance of the Classification 

Algorithms 

The goal of the voltage sag detection and classification algorithm is to successful detect 

when a fault occurs and then subsequently classify operating conditions into five 

classes: SLG (single line to ground faults), LL (line to line faults), LLG (double line to 

ground faults), LLL (three phase faults), and N (normal operation). 

The detection accuracy (D) of a classification algorithm can be calculated by 

considering the total number of faults of type SLG, LL, LLG and LLL correctly 

classified as either SLG, LL, LLG or LLL (NCF), over the total number of faults (NF) of 

type SLG, LL, LLG or LLL. The distinction between of the type of fault is arbitrary, 

since detection performance is related to splitting the dataset into two classes only: one 

containing all faults (SLG, LL, LLG or LLL) and one containing normal operating 

conditions (N). Detection accuracy is summarised in equation (4.1): 

100 FCF nnD
 (4.1) 

The classification accuracy (C) of a classification algorithm can be calculated from the 

number of correctly classified instances of all types (nC=nLLLCLLL+nSLGCSLG 

+nLLGCLLG+nLLCLL+nNCN, where nLLLCLLL is the denotes the number of “LLL” instances 

classified as “LLL”) over the total number of instances of all types (nI=nLLL+nSLG 

+nLLG+nLL+nN, where nN is the total number of instances in that class). This is defined 

in equation (4.2). 

100 IC nnC
 (4.2) 

The detection and classification accuracy of the classifier can be further validated by 

considering the false alarm (FA) rate and the missed fault (MF) rate of each classifier. 

False alarms are triggered when the classification algorithm incorrectly assigns a normal 

operating condition (N) to one of the four fault types (SLG, LL, LLG and LLL). Missed 

faults are caused when the classification algorithm fails to detect faults in the system 

and classifies a fault as a standard operating point (N). Both the FA rate and the MF rate 

are defined as percentages, and can be considered as the rate at which the algorithm 

misclassifies faults and normal operating conditions. They are defined in equations (4.3) 

and (4.4). 

100)(  INCLLGNCLLNCSLGNCLLL nnnnnFA
 (4.3) 

100)(  ILLGCNLLNCNSLGCNLLLCN nnnnnMF  (4.4) 
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4.3.4.1 Classification Performance Required for a Practical Monitoring 

Deployment 

It is worth considering the detection, classification, false alarm and missed fault rates 

which would be acceptable for a practical monitoring deployment.  

It was noted previously that the MRA method [25] can perform the process of fault 

detection, and with 12 monitors this method can detect 100% of faults anywhere in the 

network using a threshold of 0.9 per unit on the worst affected phase. A detection rate 

of close to 100% is therefore the target for the proposed classification algorithm in this 

study. 

Classification performance, false alarm and missed fault targets can be obtained by 

reviewing the expected fault rates for each type of fault (shown in Table 4.2). 

TABLE 4.2. THE NUMBER OF FAULTS PER YEAR FOR DIFFERENT TYPES OF FAULTS WITHIN THE 295 BUS GENERIC 

DISTRIBUTION NETWORK [131]. 

LLL SLG LLG LL Type Voltage Level 

0.0032  0.0584 0.0136 0.0048 Bus All 

0.348 6.35 1.479 0.522 Overhead Line 11kV 

0.1482 2.7012 0.6288 0.222 Overhead Line 33kV 

0.0240 0.438 0.102 0.036 Overhead Line 132kV 

0.1962 3.5772 0.8328 0.294 Cable 11kV 

0.1482 2.7012 0.6288 0.222 Cable 33kV 

0.024 0.438 0.102 0.036 Cable 132kV 

During a typical year, it is expected that that there will be 1287 SLG faults, 106 LL 

faults, 300 LLG faults and 4 three phase faults. The number of normal operating points 

(N) will depend on the number of events presented to the classification algorithm. It was 

assumed that in a typical year, 50% of the events logged by the monitoring system 

represent normal operation and 50% were faults, leaving a total of 1697 normal 

operating points. 

It can be concluded from these fault rates that high levels of detection performance can 

be achieved by discriminating between two groups only:  

Asymmetric Faults:  SLG, LL and LLG faults 

Symmetric Faults:  LLL faults and N (normal operation) 

This conclusion asserts that three phase faults (LLL) are largely irrelevant, since they 

are very unlikely to occur. Indeed, if an algorithm were to be able to discriminate 100% 

of the time between asymmetric and symmetric whilst consistently misclassifying LLL 

faults, a detection performance of 99.7% could be achieved. However, LLL faults are 

important since the small ratio of LLL to N will disproportionately detrimentally affect 

the false alarm rate. 
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The key factor of an algorithm’s classification performance will be correct 

classifications within the asymmetric group and symmetric group. The classification 

performance required ultimately depends on the objective of the study being performed. 

For example, if the classification results are subsequently used for fault location and 

then given to a maintenance team to investigate, it is critical that the correct type of fault 

is identified. It would be reasonable to assume a classification accuracy of around 1 

error in 100 faults, or 99%. If however, the fault classification results are being used for 

historical analyses to obtain a general (rather than a specific) understanding of network 

voltage sag performance, then classification performance is less important. An accuracy 

of around 1 error in 20 faults (or 95%) would provide a reasonable guide to network 

wide voltage sag performance. 

Similar arguments can be put forward for both the false alarm (FA) and missed fault 

(MF) rate. For fault location, a FA and MF rate of less than 1% would be desired and 

less than 5% for more general studies. 

4.4 Results 

Detection accuracy, classification accuracy, FA rate, and MF rate were all recorded for 

each of the 4 algorithms. Inter-class misclassifications were analysed using a confusion 

matrix. All the results were obtained using the testing dataset for all twelve 

combinations of monitors in the MRA set and also the ten monitors in the ENG monitor 

set. 

4.4.1 The Performance of the Algorithms using the MRA Monitor Set 

Fig. 4.4 to Fig. 4.15 show graphs of classification and detection performance as well as 

the confusion matrices for each of the four algorithms using the MRA monitor set. 

Fig. 4.4 shows the classification performance of the SVM algorithm. Between 4 and 12 

monitors, the algorithm detects 99.9% of faults, misclassifies 1.5% of the operating 

scenarios with a missed fault rate of almost ~0.05% and a false alarm rate of 3% or less. 

For less than 4 monitors, the classification and detection performance of the algorithm 

deteriorates, finishing at a classification rate of almost 88% with 1 monitor installed.  
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Fig. 4.4. Percentage detection, classification, false alarm (FA) and missed fault (MF) rates for the 

SVM algorithm. 

SLG LL LLG LLL N 
 Pred. 

True 

99.59 0.41 - - - SLG 

1.13 96.33 2.42 - - LL 

- 1.53 98.55 - - LLG 

- - - 91.05 9.07 LLL 

- - - 5.60 94.32 N 
 

SLG LL LLG LLL N 
 Pred. 

True   

93.52 6.42 0 - - SLG 

12.65 84.71 2.62 - - LL 

- 13.46 87.00 0.20 - LLG 

- - - 48.97 51.74 LLL 

- - - 18.39 81.36 N 
 

Fig. 4.5. Confusion matrix (in %) for the SVM 

algorithm using 12 monitors. 

Fig. 4.6. Confusion matrix (in %) for the SVM 

algorithm using 1 monitor. 

The confusion matrices (Fig. 4.5 and Fig. 4.6) for the SVM algorithm show 

classification errors between SLG compared with LL, LLG compared with LL and LLL 

compared with N. Fig. 4.6 shows that with one monitor, the SVM algorithm 

additionally starts to miss-classify between LLL compared with LLG, albeit at low 

rates. For 12 monitors, Fig. 4.5 shows the highest levels of misclassification are caused 

where LL are misclassified as LLG and LLL are misclassified as N. Fig. 4.6 shows that 

with one monitor, the highest levels of misclassification are caused when LLL are 

misclassified as N and vice versa 

 

Fig. 4.7. Percentage detection, classification, false alarm (FA) and missed fault (MF) rates for the 

AIRS algorithm. 
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Fig. 4.7 shows that the detection performance of the AIRS algorithm is almost 100% as 

the number of monitors is moved between 1 and 12. The classification performance of 

the algorithm varies between 60%-70%, and is invariant to the number of monitors. The 

missed fault rate is close to zero due to good discrimination between asymmetric and 

symmetric faults, whilst the false alarm rate ranges between 15% and 22%. 

SLG LL LLG LLL N 
 Pred. 

True 

53.76 42.94 0.51 - - SLG 

41.38 57.46 3.79 - - LL 

1.38 14.12 84.14 - - LLG 

- - - 43.34 55.68 LLL 

- - - 35.08 65.52 N 
 

SLG LL LLG LLL N 
 Pred. 

True   

56.69 8.70 14.45 - - SLG 

22.22 86.27 23.18 - - LL 

13.99 19.47 68.28 0.04 - LLG 

- - - 54.47 46.16 LLL 

- - - 40.31 59.12 N 
 

Fig. 4.8. Confusion matrix (in %) for the AIRS 

algorithm using 12 monitors. 

Fig. 4.9. Confusion matrix (in %) for the AIRS 

algorithm using 1 monitor. 

The confusion matrices of Fig. 4.8 and Fig. 4.9 shows high levels of misclassification 

between SLG, LL and LLG faults, as well as confusion between LLL faults and N. 

 

Fig. 4.10. Percentage detection, classification, false alarm (FA) and missed fault (MF) rates for the 

random forest algorithm. 

Fig. 4.10 shows that with 5-12 monitors the detection and classification performance of 

the Random Forest algorithm remains above 99%, with a false alarm rate always 

virtually zero, and a missed fault rate of less than 0.5%. With 4 monitors and less, the 

algorithm performance declines, finishing with a classification performance around 80% 

when one monitor is used to classify all faults. 

Fig. 4.11 shows that there is greatest misclassification between where LL faults are 

miss-classified as LLG (3.69% of LLG faults), and LLL faults are misclassified as N 

(4.49% of LLL faults). As the number of monitors is reduced, Fig. 4.12 shows that the 

level of misclassification grows significantly between LLL and N faults (to almost 35% 

of all LLL and N faults), and also between LL, LLG, and SLG faults. It is interesting to 
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note that there are no misclassifications between SLG and LLG faults using the Random 

Forest algorithm and 12 monitors. 

SLG LL LLG LLL N 
 Pred. 

True 

99.79 0.20 - - - SLG 

1.03 95.11 3.69 - - LL 

- 0.10 99.90 - - LLG 

- - - 95.58 4.49 LLL 

- - - 0.29 99.70 N 
 

SLG LL LLG LLL N 
 Pred. 

True   

90.33 9.38 0.19 - - SLG 

12.65 85.22 3.98 - - LL 

0.21 1.43 98.45 - - LLG 

- - 0.10 66.76 33.60 LLL 

- - - 23.21 76.47 N 
 

Fig. 4.11. Confusion matrix (in %) for the 

random forest algorithm (12 monitors). 

Fig. 4.12. Confusion matrix (in %) for the 

random forest algorithm (1 monitor). 

 

Fig. 4.13. Percentage detection, classification, false alarm (FA) and missed fault (MF) rates for the 

kNN algorithm. 

Fig. 4.13 shows that the kNN algorithm’s performance is largely invariant as the 

number of monitors is changed from 1 to 12 monitors. Its detection performance is 

always almost 100%, its classification performance varies between 70% and 80%, with 

virtually no missed faults and a false alarm and missed fault rates of between 12% and 

18%. 

SLG LL LLG LLL N 
 Pred. 

True 

69.86 29.87 - - - SLG 

35.19 61.16 3.78 - - LL 

- 1.22 98.84 - - LLG 

- - - 49.46 51.25 LLL 

- - - 33.82 65.70 N 
 

SLG LL LLG LLL N 
 Pred. 

True   

74.49 24.06 1.16 - - SLG 

29.73 63.61 6.60 - - LL 

10.70 9.58 80.80 0.20 - LLG 

- - - 56.24 44.37 LLL 

- - - 34.12 65.40 N 
 

Fig. 4.14. Confusion matrix (in %) for the kNN 

algorithm using 12 monitors. 

Fig. 4.15. Confusion matrix (in %) for the kNN 

algorithm using 1 monitor. 

The confusion matrices shown in Fig. 4.14 and Fig. 4.15 show misclassifications 

between SLG, LL, LLG faults, as well as misclassifications between LLL faults and N 
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(normal operating points). Fig. 4.14 shows that there are no misclassifications between 

LLG and SLG faults when 12 monitors are used to classify faults, however, 

misclassifications are present between LLG, SLG and LL as well as LLL and N. 

4.4.2 The Performance of the Algorithms using the ENG Monitor Set 

As well as comparing the performance of the algorithms using the MRA monitor set 

and varying the number of monitors, the algorithms were also compared using the ENG 

monitor set (as shown in Fig. 4.3). 

Table 4.3 shows the variation in performance across each of the four algorithms using 

the ENG monitor set. The random forest algorithm yields the highest level of 

performance, although the SVM algorithm is very close in performance to the random 

forest. 

TABLE 4.3. DETECTION AND CLASSIFICATION PERFORMANCE AND FALSE ALARM AND MISSED FAULT RATES FOR THE SVM, 

AIRS, RANDOM FOREST AND KNN CLASSIFICATION ALGORITHMS USING THE ENG MONITOR SET. 

Algorithm Detection 

Performance 

Classification 

Performance 

False Alarm Rate Missed Fault Rate 

SVM 99.95% 91.66% 7.53% 0.03% 

AIRS 99.90% 70.14% 17.30% 0.05% 

Random Forest 99.99% 99.78% 0.00% 0.01% 

kNN 99.88% 67.98% 19.19% 0.06% 

Fig. 4.16 to Fig. 4.19 shows the confusion matrices for each of the four classification 

algorithms. All of the algorithms miss-classify the faults in two distinct groups 

consisting of asymmetric network conditions (SLG, LL and LLG) and symmetric 

network operation (LLL and N).  

The best performing algorithms were the SVM algorithm (Fig. 4.16) and the random 

forest algorithm (Fig. 4.18). The most significant difference between these algorithms’ 

confusion matrices is the higher level of misclassifications that occur between LLL 

faults and N for the SVM algorithm. For the random forest, the average classification 

performance between LLL and N is 93%, whilst the classification performance of the 

SVM algorithm between these two groups is 81%. 
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SLG LL LLG LLL N 
 Pred. 

True 

99.38 0.61 - - - SLG 

1.44 94.80 3.59 - - LL 

- 4.69 95.54 - - LLG 

- - - 77.97 22.33 LLL 

- - - 14.85 84.95 N 
 

SLG LL LLG LLL N 
 Pred. 

True   

74.49 24.06 1.16 - - SLG 

29.73 63.61 6.60 - - LL 

10.70 9.58 80.80 - - LLG 

- - - 56.24 44.37 LLL 

- - - 34.12 65.40 N 
 

Fig. 4.16. Confusion matrix (in %) for the 

SVM algorithm using 10 monitors installed 

at 33kV and 11kV sub-stations. 

Fig. 4.17. Confusion matrix (in %) for the AIRS 

algorithm using 10 monitors installed at 33kV and 

11kV sub-stations. 
 

SLG LL LLG LLL N 
 Pred. 

True 

99.79 0.10 0.10 - - SLG 

0.51 95.11 3.78 - - LL 

- 0.61 99.42 - - LLG 

- - 0.10 87.71 12.36 LLL 

- - - 1.28 98.70 N 
 

SLG LL LLG LLL N 
 Pred. 

True   

70.47 29.26 - - - SLG 

40.74 54.23 5.14 - - LL 

- 1.73 98.35 0.04 - LLG 

- - - 50.84 49.85 LLL 

- - - 37.86 61.62 N 
 

Fig. 4.18. Confusion matrix (in %) for the 

Random Forest algorithm using 10 monitors 

installed at 33kV and 11kV sub-stations. 

Fig. 4.19. Confusion matrix (in %) for the kNN 

algorithm using 10 monitors installed at 33kV and 

11kV sub-stations. 

4.5 Discussion of Results 

The results highlight a wide variation in the classification and detection accuracy of 

each of the tested algorithms. The best performing algorithm is the Random Forest, 

whilst the worst performance is obtained with either the kNN or AIRS algorithms. 

It is anticipated that both the SVM algorithm and the random forest algorithm could be 

used in practical monitoring deployment to detect and classify faults. With 12 monitors, 

both algorithms correctly detect almost 100% of faults, and can further classify over 

99% of faults into one of the 5 types. With only 5 monitors in a 295 bus network, the 

classification accuracy of the random forest is still 99.3% and classification accuracy of 

the SVM is 98.8%. The false alarm rate and missed fault rate of both algorithms 

increases sharply as the number of monitors is reduced below four. 

If the classification results are weighted by the expected fault rate for each type of fault, 

and considered in absolute terms, the results for the random forest algorithm are even 

more compelling. Fig. 4.20 and Fig. 4.21 show confusion matrices for the random forest 

algorithm whilst classifying 1697 faults and 1697 normal operating points; the same 

numbers expected during a typical year. The algorithm detects all 1697 faults in both 

cases, and the algorithm only misclassifies 13 events with 12 monitors and 24 events 
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with 5 monitors. There are no missed faults, and there are only 5 false alarms with 12 

monitors and 5 false alarms with 5 monitors. All of these results are well within the 

level of targeted level of accuracy for a practical monitoring deployment. 

SLG LL LLG LLL N 
 Pred. 

True 

1284 3 - - - SLG 

1 101 4 - - LL 

- - 300 - - LLG 

- - - 4 - LLL 

- - - 5 1692 N 
 

SLG LL LLG LLL N 
 Pred. 

True   

1282 5 - - - SLG 

1 101 4 - - LL 

- 2 298 - - LLG 

- - - 4 - LLL 

- - - 12 1658 N 
 

Fig. 4.20. Confusion matrix (absolute numbers 

of faults / year) for the random forest algorithm 

for 12 monitors. 

Fig. 4.21. Confusion matrix (absolute numbers 

of faults / year) for the random forest algorithm 

for 5 monitors. 

Classification errors for both the random forest and SVM algorithm can be visualised 

using the network diagram shown in Fig. 4.3. Fig. 4.3 shows several zones where 

simulated faults (of type SLG, LL, LLG or LLL) were misclassified by either the SVM 

or the random forest algorithm. The zones for both algorithms correlate strongly, 

indicating that both algorithms miss-classify faults when they are simulated in certain 

locations of the network. Most of the zones are contained within the 11kV network 

(although there is one zone in the 33kV network), and they are generally fairly close to 

the secondary side of 33kV to 11kV transformers. It is interesting to note that some 

misclassifications overlap with monitored busbars, which would not intuitively be 

expected. These misclassifications are caused between LLG and LL faults, where the 

during fault voltage profile at the busbars are very similar. 

All of the algorithms are strong at separating asymmetric faults from symmetrical 

network operation. This is reflected in the near 100% detection performance for all of 

the algorithms. For example, even with just one monitor, Fig. 4.15 shows that the poorly 

performing kNN algorithm only misclassifies 2 out of a 5004 operating conditions 

(0.03%) as symmetric, where the true classification was asymmetric.  

Within the asymmetric and symmetric groups, there are also some common trends 

across all of the algorithms. The highest degree of misclassification occurs between 

three phase faults (LLL) and normal operating conditions. These misclassifications 

severely impact on detection accuracy, false alarm rate and missed fault rate, because 

high detection performance requires accurate discrimination between the LLL and N 

groups. This is shown Fig. 4.10 and Fig. 4.12 for the random forest algorithm; as the 

number of monitors is decreased, the detection performance decreases whilst the false 
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alarm rate and missed fault rate both rise due to misclassifications between LLL faults 

and N. 

Misclassifications between the LLL and N group could be overcome by utilising the 

threshold detection method of the MRA algorithm. As all of the algorithms separate 

asymmetric and symmetric faults with near 100% accuracy, therefore a threshold 

detection algorithm could be used to subsequently classify symmetrical operating points 

as either LLL or N. If an operating point is symmetric and the voltage in the worse 

affected phase at one monitor or more is below 0.9 per unit, then logically, there must 

have been a LLL fault. Using this extension, the random forest algorithm’s performance 

would further improve and it would be expected to misclassify a total of 8 faults per 

year (classification accuracy of 99.8%) with 12 monitors and 12 faults per year 

(classification accuracy of 99.6%) with 5 monitors, with no missed faults, false alarms 

and a detection accuracy of 100%. Note that this procedure could only be applied if 

monitors were installed such that the monitor reach area of each monitor covers the 

whole network for three phase faults [25]. All MRA monitor sets with 4 or more 

monitors and the ENG monitor set satisfy this criterion. 

The worst performing algorithms are the kNN and AIRS classifiers. Fig. 4.7, Fig. 4.13, 

Fig. 4.4, Fig. 4.7 and Table 4.3 show that kNN and AIRS perform consistently poorly 

regardless of the monitor location or number. The detection accuracy for either 

algorithm never exceeds 90%, and the average classification accuracy languishes 

around 75%. An average false alarm rate of around 7% and an average missed fault rate 

of close to 10% would cause an impractically high number of errors if the algorithm 

was to be implemented in a practical monitoring deployment. 

The effect of monitor location can be considered by comparing the results using the 10 

monitor MRA set with the ENG monitor set. Table 4.4 highlights the salient differences 

in terms of detection and classification and detection performance for all of the 

algorithms. Both the SVM and the random forest algorithms perform marginally better 

using the MRA monitor set, whilst the AIRS and the kNN algorithm perform better 

using the ENG monitor set. For the SVM and random forest algorithms, these results 

indicate that using an optimal monitoring algorithm to place monitors is important, and 

can yield higher performing results. The random forest algorithm would be a practical 

algorithm to use with either the MRA or ENG monitor set, as it exceeds the target 

performance of 99% classification accuracy in both situations, whilst the SVM would 

only be suitable if the MRA monitor locations were used. 
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TABLE 4.4. A COMPARISON OF THE CLASSIFICATION AND DETECTION PERFORMANCE OF ALL ALGORITHMS USING THE ENG 

AND THE MRA MONITOR SETS. 

 10 Monitors MRA Monitor Set 10 Monitors ENG Monitor Set 

Algorithm Detection Accuracy Classification 

Accuracy 

Detection Accuracy Classification 

Accuracy 

SVM 99.98% 99.59% 99.95% 91.66% 

AIRS 99.86% 62.17% 99.90% 70.14% 

Random Forest 99.99% 99.78% 99.97% 99.07% 

kNN 99.88% 71.52% 99.88% 67.98% 

4.5.1.1 Comparison of the Algorithms Performance 

Although the algorithms yield different levels of detection and classification 

performance, it is important to establish whether or not the results are statistically and 

scientifically significant. This can be achieved by attempting to reject a null hypothesis 

which can in general be described as follows: 

“Algorithm A and Algorithm B yield the same distribution of classification performance 

when classifying faults using the methodology described in this study on the 295 bus 

power system network.” 

This hypothesis can be statistically analyzed by applying the Mann-Whitney-Wilcoxon 

non-parametric rank-sum test [156] which tests whether or not one of two samples of 

independent observations tends to have larger values than the other. The aim of the test 

is to ascertain rejection of the null hypothesis; that each of the algorithms has identical 

distributions and medians of performance. In this research, a significance level of 5% 

was used and a p-value of <5% shows that the null hypothesis may be rejected. 

Scientific significance attempts to measure the magnitude of the differences in 

classification performance between the tested algorithms. Given a large enough sample 

size it is often possible to show a statistical significance. A non-parametric measure 

such as the Vargha-Delany A statistic[157] assesses whether or not the effect is 

scientifically significant.  The A value ranges between 0 and 1. 0.5 indicates a non-

existent effect whilst values closer to 0 or 1 indicate an increasingly large effect size. An 

effect size of <0.36 or >0.64 is taken as a guide from [157] to indicate scientific 

significance. 

The input datasets to the statistical hypothesis tests were four datasets consisting of each 

of the algorithm’s classification performance across the 13 sets of monitoring locations. 

http://en.wikipedia.org/wiki/Sampling_(statistics)
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Table 4.5 shows the results of the attempted rejection of the 6 null hypotheses. It also 

shows an overview of whether or not the size of any statistical significance is 

scientifically significant. 

TABLE 4.5. THE STATISTICAL (STAT.) AND SCIENTIFIC (SCI.) SIGNIFICANCE OF CLASSIFICATION PERFORMANCE WHEN 

COMPARING THE SVM, AIRS, RANDOM FOREST AND KNN ALGORITHMS. 

Hypothesis 

Number 

Comparison Rank-sum   

Value 

Vargha-Delany 

[157] A Statistic 

Statistical 

Significance 

Scientific 

Significance 

Hypothesis 1 SVM to AIRS 1.65×10-5 1 Yes  Yes 

Hypothesis 2 SVM to Random 

Forest 

0.0120 0.7929 Yes Yes 

Hypothesis 3 SVM to kNN 1.65×10-5 1 Yes Yes 

Hypothesis 4 AIRS to Random 

Forest 

1.65×10-5 1 Yes Yes 

Hypothesis 5 AIRS to kNN 2.32×10-5 0.99 Yes Yes 

Hypothesis 6 Random Forest to 

kNN 

1.65×10-5 1 Yes Yes 

The results show that the difference in classification performance for each of the 6 

hypotheses and algorithmic comparisons are both scientifically and statistically 

significant. The effect size is smallest for the comparison between the SVM and the 

Random Forest algorithm, although it is still classed as a scientifically significant result 

since A>0.64. 

Although both the AIRS and the kNN algorithm deliver similarly poor results in terms 

of detection and classification performance, the statistical and scientific significance 

tests show rejection of the hypothesis that both algorithms produce the same distribution 

of classification performance at the 5% significance level. This suggests that the AIRS 

and kNN classification processes are distinct, even though they are algorithmically very 

similar as they share the same k-nearest neighbour classification process. 

4.6 Summary 

The first aim of this research was to develop a method capable of detecting and 

classifying faults using a realistic set of erroneous monitors installed at practical 

locations whose number is much less than required to observe the whole network. The 

method developed in this chapter was shown to be capable of detecting voltage sags 

with a nearly 100% level of accuracy and subsequently discriminating sags into two 

distinct groups: asymmetrical operating conditions and symmetrical operating 

conditions. The best performing classification algorithms were shown to be able to 

correctly classify over 99% of three phase, single phase to ground, double line to 

ground and line to line faults expected during the normal course of distribution network 



Chapter 4: Voltage Sags: Detection and Classification 

 
126 

operation. The developed method is practical, and the results of all the algorithms 

showed resilience to measurement noise, fault impedance variation, pre-fault load 

variation and as well as working with monitors installed at different locations within the 

network.  

The second aim of the research was to test and compare the performance of the 

developed method using a range of internal classification algorithms. Although all the 

algorithms were capable of detecting faults, it is anticipated that only support vector 

machine (SVM) and the random forest algorithms could yield high enough 

classification rates (in excess of 99%) to be used for fault location or voltage sag profile 

estimation. Both of these algorithms should perform comparably in terms of 

performance and also when considering where in the network faults were most likely to 

be misclassified. It is anticipated that the random forest algorithm would be the best 

choice of fault location algorithm, since this yielded consistent performance when the 

number of monitors was reduced or the location of monitors was altered. This 

corroborates with the findings of [88], which also found that a random forest can be 

used to accurately classify faults using measurements at one end of a feeder. 

The research discussed in this chapter adds to the existing body of research on the 

voltage sag monitoring within distribution networks. Some of the advantages of this 

research include: 

 Classification of faults using very few monitors (5 in a 295 bus network; note 

that this ratio of monitors to busbars might be specifc to this network, and other 

topological variations may change the results) 

 Classification of faults with a high performance (>99% faults correctly 

classified) 

 Ability to confidently use erroneous measurement data as input to the algorithm 

 Robustly classify faults using monitors installed in a range of locations with 

varying fault impedances and pre-fault loading conditions 

 Flexible centralised technique which can utilise measurements from all 

monitoring devices located anywhere in a distribution network 

The research also quantifies the performance of several popular artificial intelligence 

techniques, and assesses their viability for future studies involving fault classification. 

The results support the conclusion that using the artificial immune recognition (AIRS) 

system is not the best choice for this style of classification problem. 
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The next two chapters describe how the results from classification and detection can be 

used to perform fault location, voltage sag profile estimation and then subsequently 

estimate the impact of voltage sags on consumer equipment. The classification and 

detection stage is a fundamental pre-requisite for all of the research that follows. 
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5 Voltage Sags: 

Localisation & 

Estimation of 

Voltage Magnitude 

5.1 Introduction 

Classification and detection of voltage sags gives a power system operator visibility on 

the numbers and types of voltage sags occurring in a network. Voltage sag (and fault) 

Localization uses the classification results to identify the source of the fault, and 

Voltage Sag Profile Estimation subsequently estimates how other buses and customers 

in the network were affected by the fault. These two processes are highlighted in Fig. 

5.1. 

Detection & 
Classification

Localization
Voltage Sag Profile 

Estimation
Voltage Sag Impact 

Estimation

1 2 3 4

 

Fig. 5.1. The process of analysing voltage sags within a power network (stages 2 and 3). 

The aim of a voltage sag localisation (or a fault location) algorithm is to estimate the 

source of a fault through measurements taken throughout a power system network. Fault 

location is often a non-trivial process: algorithms may work well in simulations, but 

care must be taken to ensure practical implementations are robust to measurement error 
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and unbiased when integrating information from a broad variety of monitoring devices. 

Voltage sag profile estimation (VSPE) involves taking the fault location and using this 

information to estimate the voltage sag depth (and hence the technical impact) of the sag 

at non-monitored. 

Existing works on fault location [81] and voltage sag profile estimation [25] often 

assume that error free measurements are available from monitoring devices. This is 

never practically the case, as small errors will be introduced from monitors when 

readings are taken. If the equations (such as those presented in [81]) are highly sensitive 

to errors, it is feasible that their practical application will significantly diminish. It is 

therefore important to ascertain the sensitivity of the fault location equations (in [81]) to 

small changes in inputs parameters and also consider how the equations can be modified 

to cope with errors to return the best available estimate for the voltage sag profile across 

the network. 

The most notable existing research on the impacts of measurement error on fault 

location estimation is [105]. In [105] the authors proposed an approach which was 

capable of minimising the impact measurement errors in the fault location process for a 

double circuit transmission line and subsequently identifying the presence of a faulty 

monitoring device. However, [105] did not consider how information from multiple 

monitoring devices could be combined to yield a distribution (rather than a point 

estimate) for the most likely location for a fault. The example presented in [105] also 

did not consider the situation where the number of monitors was much less than 

required to obtain a single unique fault location estimate. 

In this chapter, a robust method for performing fault location and voltage sag profile 

estimation using multiple monitors is developed. The method uses statistical analysis to 

solve the fault location equations and find the most likely location for both the fault 

location and the best estimate for the voltage profile throughout the whole network 

during a fault. It comprehensively tackles both measurement error sensitivity and 

collating information from a range of disparate devices. The method draws on and 

significantly adds to existing research developed in [81] and [105].  

The developed method has several advantages over existing techniques. Firstly, it 

allows power system operators to formulate a robust statistical estimation for both the 

fault location and voltage sag profile whilst taking into account the errors of monitoring 

devices within the network. This would not normally be possible if the analytical 

equations (such as those presented in [81]) were used alone. 
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Secondly, the method is independent of the accuracy of the monitoring device, so 

operators can utilise measurements from an arbitrarily accurate selection of installed 

monitoring devices, including, relays, power quality meters, disturbance recorders, 

phasor measurement (PMUs) devices or revenue meters. 

Lastly, the method synthesises a fault location using all available information from an 

arbitrary number of devices. By using information from all available monitors, both the 

fault location and voltage profile estimate are more accurate than the single or double 

ended approaches presented in [81]. There is also an added advantage of being able to 

isolate bad data [63] at a single monitoring device. It also goes some way to overcoming 

issues caused by multiple impedance paths, by reducing the number of fault locations to 

those that are the most feasible. 

5.2 Impedance Based Voltage Sag Localisation and Profile Estimation 

Impedance based fault location algorithms utilize the impedance of the network and the 

observed voltage drop to arrive at an estimated fault location. Impedance based methods 

may be transient, or steady state, and single-ended or double-ended. This research 

focuses and advances the steady state single-ended impedance based algorithms 

developed in [81] by extended their application so they can be applied with any number 

of monitoring devices. 

Although the algorithm developed in this research builds on the single-ended equations 

from [81], it should not be strictly considered either single-ended or double-ended. The 

proposed approach can be thought as arbitrarily-ended since it utilizes information from 

all available monitors in the network, regardless of their locations. The approach is also 

independent of the number monitoring devices, since any number from one upwards can 

be used to establish a fault location.  

The single-ended fault location equations developed in [81] calculate the fault location 

using measured data from one or two monitoring devices. The equations require pre-

fault voltage measurements at the monitored bus (Vk
(i)’

) and at the ends of the faulted 

line (Vp
(i)’

 and Vq
(i)’

), as well as during fault voltage measurements at the monitored 

busbar (Vk
(i)’

). The equations can be shown to be independent of fault resistance (Rf), if 

the fault resistance is assumed to be entirely real. 
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5.2.1 The Aim of the Voltage Sag Localisation Equations 

The aim of the voltage sag localisation equations can be illustrated by returning to Fig. 

2.6 which was first introduced in Chapter 2. Fig. 5.2 extends Fig. 2.6 by showing an 

arbitrary un-monitored bus i. The objective of the equations is to locate the fault at 

position r along the lth line and then subsequently perform voltage sag profile 

estimation at a non-monitored bus i. 

NETWORK

lth line

r
p q

Ml (1-Ml)

i k

Voltage sag profile estimation 

performed at the ith bus.

Voltage measurements 

taken at the kth bus.

Pre-fault voltages 

estimated at the qth bus.

Pre-fault voltages 

estimated at the pth bus.

 

Fig. 5.2. A representation of the estimated and monitored buses required to perform fault location 

and voltage sag profile estimation in an arbitrary power network. 

Assuming the network’s impedance parameters can be derived accurately, the accuracy 

of the fault location equations will depend upon the values of the measured pre-fault 

voltages at the kth busbar and the estimated pre-fault voltage at the ends of the lth line. 

The accuracy of the measurement at the kth busbar is dependent on the installed 

monitor’s accuracy, and this may vary depending on the device that is installed. Unless 

there happens to be a monitor at either the pth or the qth busbar, these voltages must be 

estimated through distribution system state estimation (DSSE) (as described in Chapter 

2). The accuracy of the DSSE voltage estimates will directly depend on the accuracy of 

the pseudo-measurements used to estimate the load throughout the network. 

The descriptions of the fault location equations that follow focuses on identifying which 

of the variables will be subject to errors, which variables are estimated and how the 

statistical properties of both errors and estimates can be determined.  

5.2.2 Fundamental Equations for all Types of Fault 

The equations developed in this section build upon the equations (2.26) to (2.35) 

developed in Chapter 2 and [81]. Without shunt capacitances, the following equations 

can be derived [81]: 

l
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where Zkr
(i)

 and Zrr
(i)

 are the k,rth and r,rth elements respectively of the Z
’
bus impedance 

matrix which includes the rth busbar. The parameters Bk
(i)

, Ck
(i)

, A0
(i)

, A1
(i)

and A2
(i)

 are 

network dependent and are derived from elements in the Zbus impedance matrix (which 

excludes the rth busbar), measured at the monitored bus (k) (details of their derivation 

are shown in [81] and in the following section). Ml is the distance in per unit along the 

faulted line l. Each of the network parameter (Bk, Ck, A0, A1 and A2) are assumed to be 

known and free from error. 

It is often convenient to formulate the voltage at the fault point (Vr
(i)

) in terms of the 

voltages at each end of the faulted lines. This is described in equation (5.3) (again, 

ignoring shunt capacitance): 

))1(( )'()'()( i
qll

i
p

i
r VMMVV   (5.3) 

where Vp
(i)’

 and Vq
(i)’

 are the pre-fault voltages at each ends of the faulted line (buses p 

and q). 

5.2.2.1 Derivation of Bk(i) and Ck(i) 

The constants Bk
(i)

 and Ck
(i)

 are the same as those described in [81]. If Z’bus
(i)

 is the well 

documented bus impedance matrix [8] for the ith sequence (without an added extra 

busbar for the fault location r), then: 
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where z’pk
(i)

 is the pth, kth element of the Z’bus
(i)

 impedance matrix, with p, k and q as 

shown in Fig. 2.6.  

5.2.2.2 Derivation of A0(i), A1(i) and A2(i) 

A0
(i)

, A1
(i) 

and A2
(i)

 were first defined [81]. If Z’bus
(i)

 is the well documented bus 

impedance matrix [8] for the ith sequence (without an added extra busbar for the fault 

location r), then: 
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where zL
(i)

 is the impedance of the line, between buses p and q. 

5.2.3 Three Phase Symmetrical Faults 

For three phase faults, combining (2.29) with (2.27) yields: 
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Substituting (5.1), (5.2) and (5.3) into (5.14) yields the following fault location 

equation: 
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where Vk
(1)’

 is the pre-fault voltage at the monitored bus k, and Vp
(1)’

 and Vq
(1)’

 are the 

pre-fault voltages at each end of the line. The fault location Ml on the lth line can be 

found by splitting (5.15) into real and imaginary parts [81], and solving the imaginary 

side of the equation for Ml. The fault impedance Rf can be found through back 

substitution into the real side of equation (5.15), using the solved value of Ml. 

Solving the quadratic equation (5.15) results in two possible values for Ml, which may 

be complex numbers. Values of Ml between 0 and 1 are feasible, and indicate that the 

fault occurred on the lth line. 

The accuracy of the solved values of Ml and Rf will be dependent the accuracy of the 

state estimation estimates Vq
(1)’

 and Vp
(1)’

 and also the accuracy of the measured value 

Vk
(1)’

. The accuracy of Ml is also dependent on the validity of the assumption that the Rf 

is entirely real. 

5.2.4 Single Line to Ground Faults 

Noting that If
(0)

= If
(1)

=If
(2)

 for a phase A to ground fault, the ratio of equations (2.28) and 

(2.26) can be taken and combined with (5.1) to find the fault location. This is shown in 

equation (5.16). 
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where Gk is the ratio of the negative sequence voltage to the zero sequence voltage 

(Vk
(2)

/Vk
(0)

) as measured at bus k.  
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By considering the function shown in (5.16), it is possible to gain an understanding of 

how small errors in voltage measurement propagate to errors in the fault location Ml. 

Equation (5.17) shows Gk as a function of Ml. 
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For single line to ground faults, Ml can be solved independently of Rf and pre-fault 

voltage estimates. The accuracy of Ml is dependent only on the accuracy of 

measurements at the monitored bus k (Vk
(2)

 and Vk
(0)

). 

5.2.5 Line to Line Faults 

For phase B to C line to line faults, If
(1)

=-If
(2)

 and If
(0)

=0. An equation for positive 

sequence fault current during a fault was shown in (2.33). Equation (2.33) can be 

combined with (5.3) to yield (5.18) [81], and then this can be combined with (2.27) to 

yield (5.19). 
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Through the substitution of equations (5.1) and (5.2) into equation (5.19), the fault 

location for a line to line fault can be found by solving the following quadratic fault 

location equation: 
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Equation (5.20) is solved by splitting the equation into real and imaginary parts and 

solving the resultant quadratic equation in the same way as for three phase faults [81].  

The solved values of Rf and Ml are dependent on the accuracy of the monitor at the kth 

busbar, and the pre-fault voltages at buses p and q obtained through DSSE. Ml will also 

be dependent on the validity of the assumption that the fault impedance can be assumed 

to be entirely real. 

5.2.6 Double Line to Line to Ground Faults 

For phase B to C line to line to ground faults, the solution for the fault location Ml 

involves solving a quartic polynomial.  

For a line to line to ground fault, the ratio of equations (2.37) and (2.38) yields: 
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In a similar way to single line to ground faults, the fault location equations are solved by 

considering the ratio of the negative to the zero sequence voltages as a complex quantity 

Gk as measured at the kth busbar. 

Equation (5.22) can be derived by combing (2.26) and (2.28) into (5.21) and then (5.1) 

and (5.2) to yield: 
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Rf can be eliminated from the equation by noting that the equation can be split into real 

and imaginary parts.  

The accuracy of the estimate for the fault location Ml is dependent on the accuracy of 

the measured values of the negative and zero sequence voltages at the kth busbar. Like 

three phase and line to line faults, the accuracy of Ml is also dependent on the validity of 

the assumption that the fault impedance is entirely real. If this assumption cannot be 

made then equation (5.22) cannot be solved. In this situation, two linearly independent 

fault location equations can be combined using two monitoring locations to eliminate Rf 

and then subsequently solve for Ml. 

5.2.7 Calculating Voltage Sag Depth at Non-Monitored Busbars 

The calculated values of the fault location Ml can be used to calculate the during fault 

voltage drops at the ith unmonitored busbar. The during fault voltage drops at bus i can 

be considered by re-writing equations (2.26) to (2.28) as functions of the fault location 

and the measured voltage at bus k only. The during fault voltage drops in the sequence 

domain are expressed in equations (5.23), (5.24) and (5.25): 
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(5.25) 

Note that the second superscript (k) in Vi
(s)(k)

 (equations (5.23), (5.24) and (5.25)) 

denotes that Vi
(s)

 is calculated from measurements taken from the kth monitor (where s 

is an arbitrary sequence). Equations (5.23), (5.24) and (5.25) are independent of pre-
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fault voltage estimates and fault impedance. However, Ml may be dependent on pre-

fault voltage estimates and / or and fault impedance, depending on the type of fault (as 

discussed in the previous sections). 

5.2.8 Uncertain Quantities in the Voltage Sag Localisation Equations 

5.2.8.1 Errors in Measured Voltages 

The voltage sag localisation equations use measurements from monitoring devices 

which may be subject to errors to synthesise a fault location. At monitored buses, 

voltages are measured through a voltage transformer. The accuracy of the measurement 

will vary depending on the quality of the monitoring device 
16

 [126].  

Measurement errors were modelled as a series of independently distributed normal 

distributions [8, 11] as described in Chapter 2 and equation (2.1). An error of 0.2% of 

the true value was assumed for all symmetrical component magnitudes and 0.2% of 2π 

for phase measurements. The standard deviation for the voltage magnitude and phase 

was therefore σ|v|=0.067% and σϕ=0.0013π radians respectively [67]. 

To define the distribution of the voltage completely, the mean of the voltage magnitude 

(|V|) and phase () is required. Since each measurement is taken at a unique point in 

time, there is only one measurement available to estimate the mean. The best estimate 

for the mean at the kth busbar is therefore the measured value itself, ||
)(s

kV and )(s
k , in an 

arbitrary sequence s. Equations (5.26) and (5.27) define the probability distributions of a 

measurement at the kth bus in an arbitrary sequence s. Both |Vk
(s)

| and ϕk
(s)

 are assumed 

to be independent. 
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5.2.8.2 Errors in Pre-Fault Voltage Estimates 

Pre-fault voltages can either be obtained by direct measurement, or alternatively by 

estimating the voltage using DSSE. If the pre-fault voltages are obtained using a 

monitor, the voltages can be assumed to be distributed as defined by equations (5.26) 

and (5.27). 

DSSE was used to estimate the pre-fault voltages at non-monitored busbars. DSSE 

estimates voltages by minimising the summed squared differences between a set of 

                                                 
16 The Siemens 9610 Power Quality meter for example, quotes an accuracy of ±0.2% for symmetrical component magnitude and 

phase at full scale of 0 to 106volts and -π to π. 
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measurements when applied to a non-linear model which represents the power system. 

The measurement inputs into the DSSE model are comprised of both measurements 

from physical monitoring devices and also pseudo-measurements.  

Physical measurement inputs to the distribution system state estimator were modelled 

using the measurement model described in equations (5.26) and (5.27), assuming 

independence between monitoring devices. Pseudo-measurements are estimates for both 

real and reactive power at a non-monitored bus based on some knowledge of the 

customer type and load profile at that bus. Pseudo-measurements were modelled by 

assuming that the value of the real and reactive power injection (load) at each busbar 

can be estimated based on historical knowledge of the load profile. A percentage error 

of 20% was selected for all load estimation pseudo measurements (as in [69], and 

mentioned in Chapter 8) resulting in a pseudo-measurement standard deviation 

equivalent to 7% of the true value. The output of the distribution system state estimator 

is a set of pre-fault voltages.  

Running DSSE to generate a set of correlated output voltages is a computationally 

intensive task as it involves the solution of many sets of load flow equations. To 

overcome this computational issue, the output voltages were fitted to a correlated 

multivariate normal distribution. Using this distributional approximation, tens of 

thousands of random numbers can be quickly generated to simulate the results of 

performing DSSE. Equation (5.28) describes the multivariate distribution of a random 

variable vector X whose elements are represented by the magnitudes and angles of the 

voltages calculated by DSSE. 

),(~ ΣμX N

 

(5.28) 

where  is a set of mean voltages and angles and  is the covariance matrix obtained 

through fitting a multivariate distribution to the results of distribution system state 

estimation.  

The accuracy of the pre-fault voltage estimates obtained using DSSE can be illustrated 

using a simple example. The standard deviation for pseudo-measurements was set to 7% 

(as described above) and the standard deviation of real measurements was set to 0.2% 

(as described above), with both assumed to follow a normal distribution. Using the three 

monitors as shown in Fig. 5.3, the maximum standard deviation for the voltage 

magnitude of a non-monitored bus ranges between 1.5% (or ~0.015 per unit) and 4.3% 

(or ~0.043) of the true voltage magnitude. (Note that the use of standard deviation here 

assumes that the output voltages accurately approximate a normal distribution. For 
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small variations in input measurements (<10%), this was found to be an accurate 

approximation.) This is as at least 3% more accurate than the pseudo-measurement 

inputs (which have a standard deviation of 7%) but far less accurate than measuring the 

voltage using physical monitors (where the standard deviation is 0.2%).  

5.2.9 Difficulties Using the Voltage Sag Localisation Equations 

The voltage sag localisation equations are extremely powerful, but they introduce some 

difficulties when used in a practical monitoring deployment.  

A general difficulty with fault location and voltage profile estimation arises when the 

set of monitors being used to calculate a fault location is not able to unambiguously 

observe all the voltages within the network. In this scenario, multiple fault location 

solutions can occur where the same sets of voltages and currents can be observed for 

multiple locations within the network [158]. Reference [48] tackled this issue by 

estimating the fault location as the intersection of several monitors’ fault location 

estimates. There is no guidance however for how close fault locations should be before 

they are considered to overlap. 

A further difficulty with the fault location equations involves faulty monitoring devices. 

As there is no redundancy in the fault location estimate provided with one or two 

monitors in the methodology proposed in [48], there is no way of identifying a faulty 

monitoring device. 

The equations also involve complex numbers and therefore if any of the measurements 

are slightly erroneous, the fault location may be two dimensional. The application in 

[81] of the equations proposed in did not provide guidance on how to deal with complex 

solutions, which are often possible if measurements are slightly in error. 

Perhaps the most important issue with the fault location equations is their sensitivity to 

small changes in input measurement changes. Even small errors in inputs to the 

equations may result in large changes in the estimated output, and solutions to the 

equations which may diverge into the complex plane. 
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Fig. 5.3. The 100 buses connected to feeder L on the 295 bus network. 
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5.2.9.1 Sensitivity of the Equations 

The sensitivity of the equations can be demonstrated by considering an example. Fig. 

5.3 shows a generic 295 bus distribution network {zhang}, with feeder L highlighted. 

Consider the situation where a single monitor is installed at bus 232 which observes a 

single phase to ground fault in phase A between buses 147 to 146 (with zero fault 

resistance). During the fault, the voltages at bus 232 drop to 0.62, 0.94 and 0.98 per unit 

in phases A, B and C respectively. 

Fig. 5.4 shows contour lines representative of introducing a constant percentage error in 

the zero or negative sequence voltage magnitude only. The figure also shows valid 

values for G232 (where the value of Ml is between 0 and 1 – and not complex) along 

lines connecting buses 147 to 146 and 146 to145. 

 
Fig. 5.4. Contours of constant G232 for errors in voltage magnitude in either zero or negative 

sequence. 

Fig. 5.5 highlights that even a small error of 0.1% in a magnitude measurement could 

lead to the fault location solution being assigned to the incorrect line. Indeed, an error of 

this magnitude could place the fault anywhere on the line between buses 147-146 and 

up to half the distance along the line connecting buses 146-145. To localise this fault 

within 10% of the length of the line, a monitor at 232 would need to be accurate to 

within 0.01% of the true voltage magnitude. This is a very high level of precision for a 

distribution network monitoring device. 
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Fig. 5.5 shows how these errors map into solutions for M147-146 using equation (5.16). 

The diamond sign in Fig. 5.5 illustrates the difficulty of formulating a solution for M147-

146 based on erroneous measured voltages. The example solution (Me) is only in error by 

0.1%, but the solution to the fault location equations is now complex. A basic estimate 

for the fault location could be achieved by either taking the real part of Me (Re{Me}, as 

used in {liao EPSR paper})  or the magnitude of Me (|Me|). Both of these methods result 

in solutions which are above 1 (1.5 for Re{Me} and 1.58 for |Me|). Thus it would be 

concluded incorrectly that the fault did not occur on the line. A more advanced 

approach would be to consider the possibility that the measurement was erroneous, and 

predict a fault location given a known measurement error distribution. In Fig. 5.5 a 

dotted line (labelled “closest”) shows most likely position for the fault (Me=1) which 

maps Me to the closest point on the valid line of solutions for M147-146. 

 
Fig. 5.5. The range of true and erroneous solutions for M147-146 given a constant error in zero or 

positive sequence voltage magnitude. 

There are two problems which are shown by this brief analysis, which are not covered 

in the existing body of research. Firstly, it is clear that the fault location equations are 

highly sensitive to even small measurement errors. If measurement error cannot be 

robustly eliminated, this will limit the usefulness of an impedance based approach using 

these equations in a practical monitoring deployment. Secondly, when the fault location 

equations are subjected to small errors they generate complex solutions. Although the 

only physically meaningful solutions for equation (5.16) are real, it is also important to 

consider the likelihood of a complex solution given some measurement error.  
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It should be noted that the examples in Fig. 5.4 and Fig. 5.5 are purposely simplistic to 

aid illustration; the analysis only considers variation in one dimension, namely zero or 

negative voltage magnitude. In practice, magnitude and / or phase of all voltages may be 

in error, thus creating a more complicated four dimensional error space. The shape of 

this space will be explored briefly in the later case studies. 

5.2.10 Summary 

The impacts of the problems with the voltage sag localisation equations on voltage sag 

profile estimation accuracy can be successfully minimised by extending the fault 

location equations to incorporate the statistical properties of erroneous measurements 

and bad data. Using similar ideas to state estimation [63], the rest of this chapter will 

propose a statistical maximum likelihood method of determining the probability 

distribution for the fault location and voltage sag profile estimate. The proposed 

technique incorporates readings from all monitors to establish a more accurate estimate 

than could be achieved with one monitor alone. With redundant estimates, bad data can 

be eliminated by performing statistical tests on the data. Fault location aliasing will 

never be eliminated entirely, unless the monitor set is fully observable. A probabilistic 

approach however, means that fault locations are converted from discrete deterministic 

points into distributions, therefore identifying the most likely fault location and therefore 

the best estimate for the voltage sag profile. 

5.3 A Probabilistic Approach to Voltage Sag Localisation & Estimation 

5.3.1 Probabilistic Fault Location 

The aim of probabilistic fault location is to find a probability density function (fF) for 

the fault location F, conditional that a fault occurred on a line within the network. To 

estimate a fault location for a given type of fault, the fault location equations are solved 

for each of the lines in the network. Solutions to the fault location equations at customer 

sites are not considered. 

Solving the fault location equations yields a solution for Ml: the location of the fault 

along the lth line. The values of Ml which are physically meaningful are located on the 

real axis, between 0 and 1. Errors in the fault location equation’s variables may cause Ml 

to move off the real axis and into the complex plane. Note that a fault at a busbar is 

equivalent to a value of Ml equal to 0 or 1, and is thus covered by considering fault 

location solutions in the range [0,1]. 
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It should be noted that Ml is a random variable because it is a function of erroneous 

voltage measurements and estimates. At an arbitrary point ml along the lth line, for a 

specific monitor k, the kth monitor’s measurement errors (and the errors of estimates 

performed using DSSE) can be used define the probability distribution of Ml as

)( )(
)(

k
lM

mf k
l

, where the superscript 
(k)

 indicates that the distribution of Ml is formulated 

from measurements at the kth monitor only. 

Since each monitor measurement and pre-fault estimate can be considered as 

independent, the value of a multivariate probability density function can be calculated 

as shown by (5.29).  

)()(...)()()...( )()2()1()3()2()1(

...
)()2()1()()2()1( lM

N
lMlMlMlllMMM

mfmfmfmfmmmf
l

N
lll

N
lll

  (5.29) 

If it is noted that )(
jjl lM mf is only of interest where mlj is real and between 0 and 1, the 

distribution of Mlj can be re-written as a conditional distribution as shown in (5.30). 
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[0,1] is a line in the complex plane along the real axis between 0 and 1. Equation (5.30) 

describes the probability distribution for the fault location along the lth line conditional 

that the fault occurred along the lth line in the network.  

Equation (5.30) can be extended to a multi-line system to find the probability density 

function for the fault location Ml on a specific line l contained within a set of all lines L 

(lL). 
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(5.34) 

Equation (5.31) describes the probability of the fault location being found on the ljth 

line in the network. Equation (5.32) shows that if each function is summed and 

integrated over all fault locations in all lines, the resulting integral is equal to unity. The 

probability density function which describes the fault location, F, is given by (5.33), as 
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a set of continuous functions for each of the lines in the network. In (5.34) the same 

probability density function is shown for only one specific monitor k. 

5.3.2 Probabilistic Voltage Sag Profile Estimation 

Voltage sag profile estimation involves estimating the resulting voltage sag profile from 

a limited number of monitors. This is accomplished by calculating the voltage at a non-

monitored bus i using equations (5.23) to (5.25). 

The voltage sag profile estimation equations calculate sequence voltages (Vi
(0)(k)

, Vi
(1)(k)

 

and Vi
(2)(k)

) which can be transformed into the phase voltages by applying the Fortescue 

transformation. The aim is to calculate the distribution of the magnitude of the phase 

voltages (|Vi
(a)(k)

|, |Vi
(b)(k)

| and |Vi
(c)(k)

|), )(
))((

))((

kj
iV

vf kj
i

, where },,{ cbaj . 

Since each monitor is independent, a multivariate probability distribution can be formed 

for the voltage magnitude at the ith bus as shown in (5.35). 
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The PDF )(
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)(

s
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vf s
i

 describes the voltage magnitude at the ith bus in the sth sequence 

estimated using information from all of the monitors within the network. 

5.3.3 Estimating the PDFs for Fault Location and Voltage Sag Profile 

The PDF distribution of fF and )(
)(

)(

j
iV

vf j
i  

can be estimated by performing a Monte 

Carlo simulation with non-parametric kernel density estimation [12]. For each monitor, 

the Monte Carlo simulation is run by drawing zero, positive and negative sequence 

voltages from the distributions shown in equations (5.26) and (5.27). For each busbar 

where the voltage was estimated using DSSE, voltages are drawn from the distribution 

shown in equation (5.28). It should be noted that the pre-fault voltages found from 

DSSE may be correlated. 

5.3.3.1 PDFs for Fault Location 

Each time the voltages are drawn, the fault location equations are solved. The 

simulation generates a set of fault location estimates for each of the monitors in the 

network. Although the fault location solution should always be between 0 and 1, it is 

mathematically possible (and indeed likely) that the solution may be complex, exceed 

the bounds of 0 to 1 or be found in multiple positions on the same or other line. In the 

case where a monitor’s set of solutions are not entirely real, the probability density 
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function can be estimated using bi-variate kernel density estimation [12]. If the 

solutions are entirely real, kernel density estimation in a single dimension will suffice. 

The total PDF for the fault location, fF, can be calculated by multiplying together the 

kernel density estimated PDFs for all of the monitors.  

5.3.3.2 PDFs for Voltage Sag Profile Estimation 

The probability density function of the voltage magnitude at the ith bus, in the jth phase, 

measured by the kth monitor, across all lines ( )( ))((
))((

kj
pV

Vf kj
p

) can be found by using the 

results of fault location. Firstly, the probability density function of the fault location, 

)( )(]1,0[
)(

k
lM

mf k
L

, is used to generate values of Ml
(k)

 by selecting random values from this 

distribution. Next, during fault voltages Vk
(s)(k)

 and pre-fault voltages Vk
(s)(k)’ 

are selected 

using the distributions shown in equation (5.26) and (5.27). Thirdly, the selected values 

are used to compute a set of during fault voltage estimates using equations (5.23) to 

(5.25). Lastly, a probability density function can be estimated by using bivariate kernel 

density estimation. The combined PDF for the voltage sag profile, )(
)(

)(

j
iV

vf j
i

, can be 

calculated by multiplying together the kernel density estimated PDFs for all of the 

monitors. 

5.3.4 Identifying a Faulty Monitoring Device 

If one of the monitors is faulty, the fault location and voltage sag profile estimates could 

be detrimentally affected. The location of a faulty monitoring device can be identified 

by considering the statistical properties of the errors. 

A single faulty monitor can be identified through a multi-step process. The first stage is 

to run a test to establish the presence of bad data in a set of monitor readings. This test 

is initially carried out using all information available from all monitors in the network. 

If this test fails, the test is run again using Nm-1 measurements from Nm sets of monitors 

where the members of the Nm sets each include a different combination of monitors. If 

one of these tests passes, then it can be deduced that the faulty monitor is the device 

absent from this test.  

These two tests are outlined in the following flow chart: 
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Fig. 5.6. The two tests required to identify a faulty monitor. 

In both tests, a statistical test is performed which looks for overlap between the 95% 

confidence interval of a measured voltage magnitude, ))((ˆ ms
mV  and an estimated voltage, 

)')((ˆ Ms
mV , obtained through probabilistic voltage sag estimation without using the 

measurements from the mth monitoring device. If the confidence intervals don’t 

overlap, this implies that either the true value of the voltage, )(s
mV , falls outside the 95% 

confidence interval of one or both of ))((ˆ ms
mV and )')((ˆ Ms

mV  or alternatively, that there was 

some other bias or error introduced into the measured or estimated voltages.  

A set of overlapping confidence intervals does not necessarily imply that )(s
mV  

definitely resides within the 95% confidence interval of both estimates. With a large 

sample of two independently identically distributed normal random variables, two 95% 

confidence intervals will overlap 99.4% of the time [159], and not overlap 0.6% of the 

time. It the case of VSPE, the measured voltage is normally distributed, but the 

estimated voltage typically follows a non-parametric distribution. To provide an 

indicative guide for the likely overlap rate when performing VSPE, test number one was 

run using a set of 1000 measurements picked from a distribution which follows the 

expected error of each of the monitors shown in Fig. 5.3. This test was found to fail 16 

times, indicating that the test is likely to provide false alarms roughly 1.5% of the time. 

Higher failure rates should indicate that there may be a problem with one of the 

monitors. 

The aim of the second test is to identify which of the monitors is most likely to be 

faulty. The second test assumes that only one of the monitors is faulty. If more than one 

monitor is faulty, the test is likely to end in an inconclusive result (shown in purple in 
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Fig. 5.6). It also assumes that only one set of monitors will pass the overlap test; which 

is a significant assumption since it is possible to pass the overlap test without the )(s
mV

being within  95% confidence interval of )')((ˆ Ms
mV or ))((ˆ ms

mV . Despite these two 

assumptions, the test works, and it will be shown to correctly identify a faulty monitor 

in the results which follow. 

5.4 Case Studies 

A section of the 295 bus distribution network can be used to illustrate the concept of 

probabilistic fault location and probabilistic voltage sag profile estimation. Fig. 5.3 

shows the section of network chosen. It covers a total of 100 busbars connected to 

feeder L. 

Three monitors were assumed to be installed in the network. The monitoring locations 

chosen corresponded to a subset of the optimal monitoring locations found through 

monitor placement optimisation (which are derived in Chapter 7). It should be noted 

that the positions of monitors for this study are not important; the probabilistic fault 

location method could be applied to any arbitrary set of monitors. All the monitors were 

assumed to measure three phase voltage, real power and reactive power.  

Three fault case studies were chosen; one for a single line to ground fault between buses 

147 and 146, a second for a three phase fault between buses 147 and 146 and a third 

with a three phase fault between buses 194 and 195. All three faults were simulated at 

m=0.206 along the line. Fig. 5.3 shows the location of all three case studies. 

The aim of the first two case studies is to predict the voltages at buses 141, 143, 145, 

146 and 147 during the fault. Table 5.1 shows the during fault voltages for both case 

studies for each of these 5 buses. For the first case study, the results will also highlight 

how bad data from a faulty monitoring device can be identified. 

The aim of the third case study is to show how the proposed probabilistic approach to 

voltage sag localisation helps to eliminate multiple fault location estimates. 
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TABLE 5.1. DURING FAULT VOLTAGES FOR CASE STUDY 1 & 2. 

Bus Case Study 1: SLG Fault Between Bus 147 & 146 Case Study 2: 3 Phase Fault Between Bus 147 & 146 

Phase A Phase B Phase C Phase A Phase B Phase C 

Bus 147 0.117 0.956 1.293 0.0122 0.0122 0.0122 

Bus 146 0.129 0.956 1.305 0.0010 0.0010 0.0010 

Bus 145 0.130 0.956 1.304 0.0006 0.0006 0.0006 

Bus 143 0.130 0.956 1.303 0.0004 0.0004 0.0004 

Bus 141 0.131 0.954 1.302 0.0002 0.0002 0.0002 

5.5 Results 

The following two case studies illustrate the probabilistic fault location and voltage sag 

profile estimation algorithms in the 295 bus generic distribution network. 

5.5.1 Case Study 1: Single Line to Ground Fault between Bus 147 & 146 

For the single line to ground fault, the key parameter in equation (5.17) is the ratio of 

the zero sequence voltage measurement to the negative sequence voltage measurement, 

G. Fig. 5.7 shows a plot of G232 (equation (5.17)) which shows how the measured value 

of G232, the true value (representing M232=0.206), and the expected variation in G232 

around the measured point. The contour lines represent the lines of constant probability. 

The variation of Ml in the complex plan is represented by the sections of lines shown for 

each of four power lines of interest.  

The probability distribution for the fault location fl
(232)

 is shown in Fig. 5.8. This is a 2-

dimensional representation of the height of the contours in Fig. 5.7 as they cut through 

the G plane with different values of Ml along each of the 4 lines. 

Fig. 5.8 highlights that a monitor at bus 232 cannot accurately locate the fault between 

bus 147 and 146. Indeed, fl
(232)

does not vary significantly across all of the lines, and the 

peak between bus 146 and 145 does not correspond to the true fault location. This 

evidence suggests that a monitor at bus 232 is poor at locating faults within this section 

of the power network. 

Fig. 5.9 and Fig. 5.10 show G130 and fl
(130)

 for a monitor placed at bus 130 whilst Fig. 

5.11 and Fig. 5.12 show G204 and fl
(204)

 for a monitor placed at bus 204. The distribution 

of fl
(130)

 and fl
(204)

 are now very tight, and the fault is accurately localised at m232=0.206 

along the line between buses 146 and 147. The variation of the error in G130 and G204 

relative to the solutions for G along the line connecting buses 147 to 146 is relatively 

small, and markedly different to the relative variation for bus 232. The error distribution 

for both G130 and G204 cuts the line at almost exactly m=0.2.  
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There is a significant difference between the solutions of G130 and G204 along the lines 

connecting buses 146 to 141. The monitor at bus 204 sees the lengths of these 

connections as negligibly short distances when compared to the length of the line 

connecting bus 147 to 146. In practical terms, this means a monitor placed at bus 204 

will not be able to accurately localise faults between buses 146 to 141, or near to the end 

of the line connecting buses 147 to 146. 

 

Fig. 5.7. The range of expected values of G for V(0)/V(2) for a monitor placed at bus 232. 

 

Fig. 5.8. The probability distribution of the fault location when using a monitor at bus 232 to locate 

the fault. 

As well as estimating the location of a fault using a single monitor, the proposed 

method is able to combine multiple monitoring solutions into a single estimate for the 

fault location. Table 5.2 highlights medians, 50% and 95% intervals for the fault 

location using each monitor and subsequently combing the estimates from every 

monitor. A 95% interval correctly spans the true fault location for all three monitors 
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whereas the 50% interval only spans the correct location for a monitor placed at bus 

204. The combined estimate for the fault location is much closer to the fault point than 

any of the other monitors, and the intervals are approximately 45% narrower than for 

the best performing individual monitor. (Note that taking intervals across the dataset is 

only valid if the lines are adjacent to one another. If the considered lines are not 

adjacent, then intervals should be taken on a line by line basis because there is no reason 

to believe that the PDF will be a continuous function.) 

 

Fig. 5.9. The range of expected values of G for V
(0)

/V
(2)

 for a monitor placed at bus 130. 

 

Fig. 5.10. The probability distribution of the fault location when using a monitor at bus 130 to 

locate the fault. 
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Fig. 5.11. The range of expected values of G for V
(0)

/V
(2)

 for a monitor placed at bus 204. 

 

Fig. 5.12. The probability distribution of the fault location when using a monitor at bus 204 to 

locate the fault. 

TABLE 5.2. VARIATION IN THE VALUES OF M FOR DIFFERENT MONITORS FOR A FAULT BETWEEN BUS 146 AND 145. 

Monitor Median M 50% of the Data 95% of the Data 

Upper M Lower M Range M Upper M Lower M Range M 

Bus 232 1.235 (Line 146 to 145) 2.337 0.833 1.504 3.653 0.101 3.552 

Bus 130 0.213 (Line 147 to 146) 0.219 0.207 0.012 0.230 0.196 0.034 

Bus 204 0.197 (Line 147 to 146) 0.203 0.191 0.012 0.214 0.180 0.034 

All Monitors 0.208 (Line 147 to 146) 0.211 0.205 0.006 0.2180 0.199 0.0190 

The values of M in the table are shown between 0 and 1, 1 to 2, 2 to 3 and 3 to 4 for lines connecting buses 147 to 146, 146 to 145, 

145 to 143 and 143 to 141 respectively.  

The accuracy of the fault location estimate directly impacts on the accuracy of a voltage 

sag profile estimate for a non monitored bus (as described in equations (5.23) to (5.25)). 
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The probability distributions for the fault location were used to build an estimated 

probability distribution for the voltage at each of the five monitored buses. Fig. 5.13 

illustrates the shape of the estimated probability density functions for the voltage in 

phase A at bus 146 using each of the three monitors individually ( )130)((
146

a
V

f , )204)((
146

a
V

f  and

)232)((
146

a
V

f , equation (5.35))and the estimated probability density function using all the 

monitors combined ( )( )(
)(

146

a
kV

vf a ). The density function for all monitors is clearly more 

accurate than either of the individual monitors, narrowing in on the true value of 0.129 

per unit. The inaccuracy in fault location using only a monitor at bus 232 is apparent in 

)232)((
146

a
V

f , whose distribution peaks at around 0.19 per unit, 0.06 per unit from the true 

during fault voltage.  

 

Fig. 5.13. The estimated probability distribution of the voltage magnitude in phase A at bus 146 

using measurements from bus 130, 204, 232 and all buses combined for a single phase to ground 

fault. 

Fig. 5.14, Fig. 5.15 and Fig. 5.16 show the distribution of the estimated phase voltage 

for each of the five buses. Placing a monitor at bus 232 yields the most inaccurate 

estimate for the during fault voltages at each of the 5 buses. For example, the 95% 

confidence interval for the voltage magnitude at bus 141 is almost 0.6 per unit using a 

monitor at bus 232 and approximately 0.02 per unit using a monitor at bus 130 or 204. 

This large range of inaccuracy in voltage magnitude estimation will have a significant 

impact if the data was to be used to estimate whether or not equipment attached to that 

bus tripped during the sag. 
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Fig. 5.14. The probability distribution of the voltage magnitude in phase A (left), phase B (middle) 

and phase C for buses 147, 146, 145, 143 and 141, estimated using a monitor placed at bus 232. 

   

Fig. 5.15. The probability distribution of the voltage magnitude in phase A (left), phase B (middle) 

and phase C for buses 147, 146, 145, 143 and 141, estimated using a monitor placed at bus 130. 

   

Fig. 5.16. The probability distribution of the voltage magnitude in phase A (left), phase B (middle) 

and phase C for buses 147, 146, 145, 143 and 141, estimated using a monitor placed at bus 204. 

Fig. 5.17 shows the estimated distribution of the voltage when all 3 monitors are used to 

predict the voltage magnitude at each of the 5 buses. As for fault location, the accuracy 

improvement is significant: for phase A at bus 147, the width of the 95% confidence 

interval is 50% smaller the best performing single monitor. 

   

Fig. 5.17. The probability distribution of the voltage magnitude in phase A (left), phase B (middle) 

and phase C for buses 147, 146, 145, 143 and 141, estimated using all monitors to estimate the 

voltage. 
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5.5.2 Case Study 2: Three Phase Fault between Bus 147 & 146 

Fig. 5.18 to Fig. 5.21 shows the PDFs for the fault location (fl) using each monitor 

individually and all monitors together to locate the fault. The most accurate estimate for 

the fault location is obtained using data from a monitor placed at bus 232 whilst the 

least accurate monitor estimate is formulated using data from a monitor at bus 130. 

 
 

Fig. 5.18. The PDF of the fault location when using a monitor at bus 130 to locate the fault. 

 

Fig. 5.19. The PDF of the fault location when using a monitor at bus 204 to locate the fault. 

 

 

Fig. 5.20. The PDF of the fault location when using a monitor at bus 232 to locate the fault. 
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Fig. 5.21. The PDF of the fault location when using all monitors to locate the fault. 

The shapes for each of the PDFs shown in Fig. 5.18 to Fig. 5.21 can be explained 

qualitatively by considering the network topology and monitor’s location with respect to 

the fault.  

A three phase fault with zero fault resistance between bus 146 and bus 147 causes all 

phase voltages to drop to approximately zero downstream of the fault location. When 

solving for Ml using a monitor at bus 130 (Fig. 5.18), the sensitivity of equation (5.15) 

is increased and the fault location estimate is consequently uncertain.  

Fig. 5.19 shows that the solutions for m using a monitor at bus 204 yield solutions on 

both the line connecting buses 146 to 147 and the line connecting buses 146 to 145. 

This can be explained by noting bus 204 nearest connection to the network section of 

interest is via bus 146. Solving equation (5.15) therefore yields two solutions, which 

both represent identical impedance paths between bus 204 and the fault location. The 

line connecting buses 146 to 145 has over twice the impedance of the line connecting 

buses 146 to 147. This causes the fl
(204)

to peak in Fig. 5.19 at approximately m=0.1 

along the line connecting bus 146 to 147. The PDF still correctly overlaps the true fault 

location on the line connecting bus 146 to 145 at m=0.206, but the equation which 

governs the line connecting bus 146 to 145 is non-linear and sensitive such that 

equation (5.15) yields solutions outside of the length of the line, thus reducing the 

overall area of the PDF on the line. 

Fig. 5.20
 
shows the results of using a monitor at bus 232 to locate the fault. The PDF 

peaks at 0.2, and there are no aliased fault locations on other lines. Bus 232 is connected 

to the primary in-feed for this area of the network, and is thus a relatively strong bus; it 

experiences a drop in voltage magnitude of 64% compared with the near 100% drop in 

voltage magnitude at bus 130. Equation (5.15) is therefore relatively insensitive to 

errors in monitoring and an accurate estimate for the fault location is calculated. 
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Fig. 5.22 shows the results of voltage sag profile estimation when using each of the 

monitors to estimate the voltage magnitude at bus 146. Using information from a 

monitor placed at bus 232 yields the best performance, with a monitor at bus 204 also 

correctly pin-pointing the voltage within the 0 to 0.02 per unit range. Although the 

voltage profile predicted by a monitor at bus 130 covers a large range between 0 and 0.3 

per unit, any of these voltages would definitely cause serious disruption to equipment 

attached to bus 146 and the error is therefore insignificant in practical terms. 

 

Fig. 5.22. The estimated probability distribution of the voltage magnitude in all three phases at bus 

146 using measurements from bus 130, 204, 232 and all buses combined for a three phase fault. The 

inset shows a zoomed diagram of voltages less than 0.01 per unit. 

Fig. 5.23 shows the 5%, 95% and median of the voltages for each of buses147, 146, 

145, 143 and 141 in phases A, B or C. It is clear from Fig. 5.23 (C) and Fig. 5.23 (D) 

that estimating the voltage sag profile using a monitor placed at bus 232 or 204 yields 

good results, because the range distribution of the voltage magnitudes is contained 

within a tight range. Fig. 5.23 (A) shows that using monitoring information from bus 

130 provides the worst results, whilst the results which synthesise information from all 

monitors are the best. 
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Fig. 5.23. The probability distribution of the voltage magnitude in all phases for a three phase 

fault for buses 147, 146, 145, 143 and 141, estimated using a monitor placed at (from top left to 

bottom right) bus 130, 204, 232 and all of these monitors. 

It is interesting to note that the best monitor at predicting the during fault voltages for 

this specific single line to ground faults was a monitor at bus 130 and the worst was a 

monitor at bus 232. The results would also be the same if the single line to ground fault 

was in phase B or C. For three phase faults, the converse is true. This could be due to 

the asymmetry of single phase to ground faults which means that higher during fault 

voltages will be registered in some phases of bus 130 during a single phase to ground 

fault compared with a three phase fault. It indicates that the best location to detect single 

line to ground faults is not necessarily the same as the best location for three phase 

faults. 

5.5.3 Case Study 3: Eliminating Multiple Voltage Sag Location Estimates 

The benefits of using the proposed method to identify a unique solution for the source 

of the voltage sag can be explored by considering a three phase fault simulated between 

bus 194 and 195 (as shown in Fig. 5.3). This section of network is shown in more detail 

in Fig. 5.24. 
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Fig. 5.24. A three phase fault simulated between buses 194 and 195. Monitors are buses 204, 130 

and 232 observe the voltage sag. 

Solving the three phase fault location equations for each monitor independently yields a 

probabilistic solution for the fault location, as observed by each monitor alone. The 

probability distribution for each of the three monitors and the combined distribution of 

all three monitors is shown in Fig. 5.25. 

 
Fig. 5.25. The probability density across 6 lines for a three phase fault at 0.2 per unit along the line 

connecting bus 194 to bus 195. 

Fig. 5.25 shows that each of the three monitors predict that the fault could have 

occurred at multiple locations within the network. For example, the density function for 

the monitor installed at bus 130 shows three peaks in the PDF for the fault location on 

the lines connecting buses 197 to 198, buses 194 to 197 and buses 194 to 195. The 

monitor at bus 130 observes the network upstream of the fault and sees two impedance 

paths beyond bus 194; one to bus 197 and one to bus 195 (see Fig. 5.24). The monitor at 

bus 130 can’t distinguish between these two paths, and this ambiguity is reflected in the 

multiple peaks of the probability distribution shown in Fig. 5.24. The PDF for the 
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monitor at bus 232 also shows ambiguity in the fault location because it also observes 

multiple impedance paths from upstream of the fault location. Fig. 5.24 also shows 

multiple peaks in the PDF for the monitor at bus 204. This is caused because the 

monitor sees two similar impedance paths from bus 198 to bus 196 and from bus 198 to 

bus 199. 

The strength of the proposed technique at helping to eliminate multiple voltage sag 

location solutions is highlighted in the combined graph for all monitors shown in Fig. 

5.25. By using the information available from all monitors, the PDF shows only one 

peak at the true fault location. 

5.5.4 Identifying a Faulty Monitoring Device 

The methodology for finding a faulty monitoring device can be demonstrated through 

the results of the first case study. Suppose that the monitor at bus 204 measures the 

voltages in the positive, negative and zero sequence with a fixed offset error of 0.005 

per unit. Simulating the same single line to ground fault between bus 147 and 146, with 

the added error in monitor 204 voltage measurements causes the estimated fault location 

to shift by approximately 0.1 from m=0.2 to m=0.1.  

Running the first test for the presence of bad data generates the 95% confidence 

intervals shown in Fig. 5.26. Although the mean difference in the estimated and 

measured voltages is always small, the 95% intervals don’t overlap which indicates 

there could be a problem. 

   

Fig. 5.26. The 95% confidence intervals for bus 130, 204 and 232 (left to right) when predicted 

using their own measurements independently (left hand series) and measurements at buses 204 & 

232, 130 & 232 and 130 and 204 respectively whilst introducing at 0.005 per unit offset error at bus 

204. 

Upon the failure of the first test for a faulty monitor, the second test highlights which 

monitor is faulty. Fig. 5.27 shows the 95% confidence interval for each of the three sets 

of Nm-1 monitors selected in the first loop of the second test. The first four graphs Fig. 

5.27 all involve measurements from bus 204, and each of these tests has at least one set 
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of positive sequence voltages that do not overlap. The right hand two graphs of Fig. 

5.27 show the 95% confidence intervals overlapping. This evidence suggests that there 

is a fault with the measurements from bus 204. 

Confidence Intervals without Using 
Measurements from Bus 130 

 

Confidence Intervals without Using 
Measurements from Bus 232 

  

Confidence Intervals without Using 
Measurements from Bus 204 

  

Fig. 5.27. The 95% confidence intervals for buses 130, 204 and 232 and the results of the second test 

which identifies a faulty monitor in the network. 

5.6 Summary 

This chapter presented a comprehensive method to identify a statistical distribution for 

both the fault location and the during sag voltage profile using only a small selection of 

arbitrarily accurate monitors. The method takes into account the potential variability of 

device measurements, and integrates relevant information from all monitoring devices 

in a network into a single statistical estimate. The method can be applied to three phase, 

single line to ground, line to line and double line to ground faults. Unlike existing 

techniques for fault location and voltage sag profile estimation, the method estimates 

probability distributions for both the fault location and voltage profile.  

It was also hoped that the method would be able to work with less monitors than 

required for full observability. The results validated this aspiration, showing that the 

method was capable of estimating the probability distribution for the fault using only 3 

monitors in a 94 bus section of a large 295 bus distribution network.  

The research presented has several advantages over existing techniques. Some of the 

advantages of the method include: 

 The ability to use information from one or more monitoring devices to produce a 

statistical estimate for the location or depth of a voltage sag 

 The ability to integrate the accuracy of monitoring devices into a statistical 

estimate 

 The flexibility to add newer and more accurate monitoring devices 
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 The capability to deal with the sensitivity of the fault location equations 

 Increased accuracy versus traditional single or double ended fault equations 

techniques by synthesising information from more than two monitors 

 The ability to eliminate multiple fault location estimates 

 The ability to identify faulty monitors using statistical tests 

The research presented in this chapter focuses on estimating the technical impact of a 

voltage. From a customer perspective, it is important to be able to identify how 

customers are being affected by voltage sags, and which customers are the worst served 

within the network. The next chapter discusses how the statistical estimation techniques 

for a voltage sag voltage profile estimation discussed in this chapter can be used to 

estimate the impact of voltage sags on customers. 
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6 Voltage Sags: 

Estimation of 

Impact on End Users 

6.1 Introduction 

In Chapter 4 and 5, two methods were developed which firstly classify and detect 

voltage sags and secondly locate and estimate their technical impact within a network. 

The next natural step for this process is to estimate the impact of voltage sags on 

customers within the network. This process is defined as Voltage Sag Impact Estimation 

as shown in Fig. 6.1. 

Detection & 
Classification

Localization
Voltage Sag Profile 

Estimation
Voltage Sag Impact 

Estimation

1 2 3 4

 

Fig. 6.1. The process of gaining an overview of voltage sags within a power network (stage 4: 

Voltage Sag Impact Estimation). 

The overall theme of all the research presented in this thesis is the intelligent monitoring 

using a limited monitoring set. In the previous chapter, the discussion focussed on 

building a statistical model for both the location of a fault and its voltage sag magnitude 

profile across the network, using an arbitrary set of monitors. The statistical distribution 

of the depth of a voltage sag is a purely technical representation of the sag and it only 

presents a partial interpretation of the sag performance of a network. In order to present 

a full picture, the impact of sags on customers and their effects on consumer equipment 
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must be considered, whilst taking into account the inaccuracies of using data from an 

arbitrary set of monitors. 

The principal aim of the research presented in this chapter is to introduce a new 

criterion to assess the impact of voltage sags on customers based on the physical 

behaviour of equipment. To accomplish this aim, the method must satisfy a number of 

requirements including: 

1. Working with an arbitrary set of monitors 

2. Dealing with uncertainty in attached equipment 

3. Dealing with uncertainty in voltage sag characteristics 

The research will build on the probabilistic approach for VSPE discussed in the 

previous chapter, to arrive at an overall statistical measure for the impact of voltage sags 

on customer equipment. The approach will be tested on the 295 bus network to validate 

its effectiveness. 

6.2 Problem Definition 

To consider how best to estimate the impact of a voltage sag, it is worth re-considering 

its characterisation. As described in the introduction, voltage sags are most often (if not 

exclusively in current industrial practice) characterized by two parameters: firstly, the 

voltage sag magnitude that defines the magnitude of the retained RMS voltage 

(expressed in per unit or as a percentage) and secondly the duration that defines the 

length of time that the voltage remains below a specified threshold (typically 0.9 per 

unit). Other voltage sag characteristics (previously discussed in the introduction) are 

excluded from this analysis as they typically do not feature in current industrial practice. 

Voltage sags themselves are stochastic in nature as they are influenced by a variety of 

random factors including, fault type, position and pre-fault voltage [17]. Though voltage 

sags can be caused also by motor starting, load variation and transformer energizing 

these were considered to be much less frequent causes of voltage sags and are excluded 

from the analysis in this research. 

To incorporate the impact of voltage sags on consumers, the model developed in chapter 

5 must be extended to include voltage sag duration to fully characterise a voltage sag. 

With duration added, the problem of estimating the impact of a voltage sag on customer 

equipment can be tackled by understanding the tolerance of  equipment to voltage sags 

using equipment immunity curves. 
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6.3 Equipment Voltage Sag Tolerance Curves 

The Information Technology Industry Council (ITIC) curve [160] is the most frequently 

used graphical metric that highlights the ability of connected equipment to withstand 

voltage sags. The ITIC curve defines acceptable and unacceptable power quality 

operating regions in terms of sag duration and sag magnitude (Fig. 6.2). 
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Fig. 6.2. ITIC power acceptability curve. 

The ITIC voltage sag tolerance curve provides a valuable guide of equipment tolerance 

to voltage sags. Although powerful, the ITIC curve also has some important limitations 

and assumptions which should be considered here as they are particularly relevant to 

power quality studies. The curve assumes that equipment tolerance to voltage sags can 

be crisply divided into acceptable and unacceptable regions based on the historical and 

experimental performance of information technology equipment when exposed to sags 

of different magnitudes and durations. However, not all loads follow this precise 

acceptability curve [18, 161, 162] (also known as an immunity curve). Adjustable speed 

drives (ASDs), personal computers (PCs) and programmable logic controllers (PLCs) 

all have different responses when considering their immunity to voltage sags [106]. 

Differences in equipment, applications, years of use and operating conditions will also 

affect a device’s voltage sensitivity [162]. A further limitation of the curve is that it is 

only strictly applicable to single phase loads. 

Fig. 6.3 shows the general region of uncertainty for PCs, ASDs and programmable logic 

controllers (PLCs) [18]. The graph indicates that a sag deeper than Vmin with a longer 
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duration than Tmax will cause equipment to trip. However, there is a region (shaded area 

in Fig. 3) where it is uncertain as to whether the equipment will trip or not. The 

uncertainty in Fig. 6.3 is caused because the model is built from two types of equipment 

each with different immunity curves. This technique can be extended to combine all 

types of loads connected to a busbar to form a single immunity curve. 

Fig. 6.3 also shows a shaded circle defining the expected range of duration and 

magnitude of a single sag event. The sag event is shown as a fuzzy region, since the 

exact depth of the sag is uncertain due to measurement error. The duration of the sag 

will also be uncertain. The bound for the duration will be defined predominantly by the 

protection devices located within the network section experiencing a voltage sag, 

though load dynamics (e.g. the presence of large numbers of induction motors) can also 

contribute to varying sag duration. 

 

Fig. 6.3. The region of uncertainty as defined for sensitivity curves of PCs, PLC and ASDs[18]. The 

shaded region represents where it is uncertain whether equipment will trip. 

At the network level, the expected number of trips caused by voltage sags is 

complicated by a number of factors. The distribution of expected sag durations at 

individual busbars in the network will vary, depending on the voltage of network 

section being studied (e.g. medium voltage (MV, 11kV in the UK
17

), high voltage (HV, 

33kV in the UK
17

), extra high voltage (EHV, 132kV in the UK
17

)) [11]. The total 

maximum expected sag duration at each location in the network will be typically 

defined by protection system setting. Each bus bar will have a diverse range of attached 

equipment which implies a different power acceptability curve [161], or even an 

uncertain combined acceptability curve [106]. The point on the wave at which a sag is 

applied as well as the phase angle jump during the sags are also important (though to a 
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lesser extent than sag magnitude and duration), and will affect the number of trips 

registered at busbar [106]. The depth of the voltage sag will ultimately be affected by 

the strength of the network surrounding the fault, the location of the fault, and the type 

of fault which caused the sag. 

6.4 A New Metric for VSPE Accuracy: Sag Trip Probability 

The uncertainty in equipment immunity, sag depth and sag duration can be all combined 

into a single measure which can be used to assess the impact of voltage sags on a 

network. It is proposed that sag trip probability (STP) can be defined as the probability 

that equipment attached to a busbar will trip given a sag. STP aims to incorporate all of 

the observations on equipment and network intricacies highlighted previously. It is a 

physically meaningful measure and not simply a relative index that is hard to interpret. 

STP can be derived by considering sag immunity curves and utilizing knowledge of sag 

depth and duration. It can also be generalised over multiple events, by taking into 

account the likely durations and magnitudes of voltage sags across a population of 

events. The mathematical definition of the STP will now be given.  

Let the sag duration be defined as a random variable D and the duration at which 

equipment will trip as a random variable DTrip (DT for short). Let the voltage magnitude 

at a busbar (in per unit) be defined as a random variable V and the voltage magnitude at 

which the equipment will trip as a random variable VTrip (VT for short). 

The STP is defined mathematically as follows: 

)Pr( TripTrip VVDDSTP Ç  (6.1) 

which mathematically describes the probability that the random variable D is greater 

than DTrip and V is greater than VTrip. Physically, equation (6.1) describes the chance that 

equipment will trip at a busbar during a sag. 

The immunity of a group of devices to voltage sags can be defined through an immunity 

curve, or more generally as a probability distribution. Let ),( vdf
TTVD

define the joint 

probability density function of both the sag depth and duration at which the equipment 

will trip. For the function ),( vdf
TTVD

, d is generally not independent from v, although 

they may be independent for defined regions of the immunity curve. If ),( vdf
TTVD

is the 

joint probability density function, then ),( vdF
TTVD

can be defined as the joint cumulative 

distribution function, equal to Pr(DT≤d,VT≤v). Defined in words, ),( vdF
TTVD

describes 
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the probability that the random variables VT and DT take on a values less than v and d 

respectively. ),( vdF
TTVD

is shown in equation (6.2): 

 
max max

0 0

),(),Pr(),(

v d

VDTTVD dddvvdfvVdDvdF
TTTT

 (6.2) 

where dmax and vmax are suitable upper limits for the integration which can be taken as 2 

per unit for voltage magnitude and >20 seconds for the duration. Over these limits the 

probability of a trip will be almost certain. 

The CDF ),( vdF
TTVD

is a function of attached load (type of equipment), the point on the 

wave at which the voltage sag hit, phase angle jump during the sag and the overall 

uncertainty in the immunity of equipment to any of the above. 

Whether or not a device will trip will depend on the severity of the voltage sag event (or 

events). Let fD(d) describe the expected range of durations for the voltage sag(s) and let 

fV(v) describe the expected range of voltage magnitude drop(s) for the voltage sag(s). By 

considering duration and magnitude as two separate distributions implies that event 

duration is independent of magnitude. This seems like a reasonable assumption, since 

duration and magnitude are influenced by different factors: duration is strongly 

dependent on local protection settings and magnitude depends on fault type, proximity 

and network impedances. Both fD(d) and fV(v) are functions of the voltage level at the 

attached bus, the protection system covering the section of the network, and the 

maximum time a sag can remain in the network. 

By combining the immunity model and event characteristics, the STP can be defined 

more specifically: 

dddvvfdfvdFVVDDSTP VD

v d

VDTripTrip TT
)()(),()Pr(

max max

0 0

 Ç  (6.3) 

Equation (6.3) can be visualised as quantifying the amount of the thick shaded area 

shown in Fig. 6.3 which overlaps the area of uncertainty defined by the equipment’s 

immunity curve. 

6.4.1 Process Trip Probability 

Industrial processes use many pieces of sensitive equipment. Whether or not a process 

is interrupted by a voltage sag is dependent on both the mutual connections between 
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equipment within the process [18], as well as the equipment sensitivities of the 

individual devices. The overall probability of a process trip can be written as: 

 
max max

0 0

),(),( ),(),(

v d

jiVDjiVD dddvvdfvdF
TTTT

 (6.4) 


























  

 

m

i

n

j

jiVDVD vdFvdF
TTPTPT

1 1

),( ),(11),(  (6.5) 

where ),(),( vdF jiVD TT
is a cumulative probability density function (CDF) of the jth 

equipment of the ith serially connected equipment group. m is the number of series 

connected pieces of equipment and n is the number of parallel pieces equipment in the 

ith equipment group. ),(),( vdf jiVD PTPT
is the PDF that describes the duration at which the 

jth equipment in the ith serially connected group will trip. ),(),( vdf jiVD PTPT
describes the 

CDF of a process trip given a sag of duration d and magnitude v. The random variable 

DPT and VPT is similar to DT and VT respectively; however they now describe the 

duration at which a process, rather than an individual piece of equipment, will trip. 

Equations (6.4) and (6.5) can be combined with Fig. 6.3 to form an overall equation for 

process STP (PSTP) where there is knowledge about the underlying process involved as 

shown in equation (6.6). In a similar way to the STP, the PSTP is defined as the 

probability that a process at a busbar will trip (or be interrupted), given a sag. 

dddvvfdfvdFVVDDPPSTP VD

v d

VDVTPT PTPT
)()(),()(

max max

0 0

 Ç  (6.6) 

Note: The overall process sensitivity to voltage sags, however, depends on Process 

Immunity Time (PIT) as defined in [30]. If the PIT is rather short, typically less than 4 

seconds, the overall process sensitivity depends on the combined sensitivity of the 

equipment that controls it. 

6.4.2 The CDF for the ITIC Immunity Curve 

By considering the ITIC immunity curve model as a crisp boundary, the cumulative 

probability density function, F(dT,vT), for the both, the upper and lower portion of the 

ITIC curve can be defined as follows: 

1),( TTVD vdF
TT

 

 

syv 10 and 9.0   (Region A) 

(6.7) 

syv 100.5s and 8.0   (Region B) 

syv 5.020ms and 7.0   (Region C) 

syv 5.0 and 1.1   (Region D) 

msyv 30.5 and 2.1 

 

(Region E)
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 0 ,otherwise  (Safe, No Trip Region) 

where the values for the limits of the inequalities are determined from the ITIC curve, 

and approximating region D into a rectangle, rather than a trapezium. Regions A, B and 

C are defined in the lower curve of Fig. 6.2 and regions D and E are defined in the 

upper half of the curve. 

The STP can therefore be defined by summing the probability that the voltage sag 

occurred in any of the five regions (note that the trip regions D and E would be 

effectively caused by voltage swell or short overvoltage): 

E)Pr(Region D)Region Pr()CPr(Region  B)Pr(Region A)Region Pr(   

)Pr(



Ç TripTrip VVDDSTP

 

(6.8) 
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max max

1.1 5.0

)()()DRegion Pr(

v d

VD dvddvfdf

 

(6.12) 

 



max max

32.1 103.0

)()()ERegion Pr(

v d

VD dvddvfdf

 

(6.13) 

6.4.2.1 Assumptions Required when Using the ITIC STP Analysis 

In the examples that follow, the ITIC curve will be used to calculate STP and PSTP 

(described in (6.3) and (6.6) respectively). Using the ITIC curve at all buses assumes 

that all equipment attached is voltage sensitive as described by the ITIC curve [161]. 

This is often not the case, as the curve only describes the immunity of computer 

equipment, and it is unlikely that all the equipment can be de divided into precisely 

acceptable and unacceptable regions. The ITIC curve is also only relevant to loads 

connected to one phase only. Three phase machine immunity is likely to be different to 

the ITIC curve. 

6.4.3 Sag Duration Models 

The probability distribution used to model the duration of a voltage sag event, fD(d), can 

be defined for a single event or a group of events. 

For a single event, with a defined event duration the simplest model for the fD(d) is: 
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)()( eventD tdf 
 

(6.14) 

where tevent is the duration of the voltage sag event. 

Where there is no information about the specific duration of an event or group of events, 

an approximate model for fD(d) can be built by considering empirical evidence. 

Reference [34] highlights the results of a study which show the durations of voltage 

sags from sites in the EHV, HV and MV networks.  

The evidence from [34] was combined into a single probability distribution by fitting a 

lognormal distribution to the data by minimizing the squared sum of the residuals. The 

resulting model was estimated as a lognormal distribution with parameters = -2.4 and 

=0.75. This distribution was assumed to be constant throughout all of the network’s 

voltage levels. This distribution is shown in Fig. 6.4. For example, 80% of the sags will 

last less than 0.18 seconds and almost all sags will last less than 0.5 seconds (as shown 

highlighted on Fig. 6.4). 

 

Fig. 6.4. The cumulative probability distribution of sag durations. 

The mathematical equation for fD(d) is therefore: 
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6.4.4 Number of Trips from the STP 

Upon calculating the STP at a busbar, the number of trips across a series of events can 

be estimated. If the kth busbar experiences a number of independent sag events S1 to SN, 

each with STP A1 to AN, the expected number of trips is defined as: 
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6.5 The STP for a Specific Event 

Both STP and PSTP can be used for VSPE. In the descriptions that follow, the equations 

use STP only. PSTP could, if required, be interchanged for STP where there is 

knowledge about the underlying process at a busbar. 

The STP can be illustrated by considering the case of the single phase fault discussed in 

the previous chapter. Consider again a SLG fault between bus 147 and 146 as shown in 

Fig. 6.5. 

Fig. 6.5 shows three monitors observe the fault at buses 130, 204 and 232 (as shown 

highlighted with thick purple squares in Fig. 6.5). The network is loaded according to 

the base loading as described in [129]. It was assumed that the duration of the fault 

follows the distribution described in equation (6.15). 

The aim is to estimate the impact of the fault at buses 138, 225 and 174 (as shown with 

highlighted using thick black circles in Fig. 6.5) by calculating the sag trip probability 

(STP) at each bus. To illustrate how the STP can be calculated using limited 

information, it was first calculated using each monitor independently, and then using 

information from all the monitors combined.  

To illustrate the impact of uncertainty in voltage magnitude and duration, 1000 samples 

of voltage magnitude (in each phase) and duration were sampled from the distribution 

from a distribution of voltage magnitude and duration. These points were then overlaid 

on the ITIC curve. The PDF for the voltage magnitude was calculated using the 

techniques discussed in the previous chapter. The PDF for sag duration was modelled 

using equation (6.15). 
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Fig. 6.5. The 96 buses connected to feeder L on the 295 bus network. 
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6.6 Results 

Fig. 6.6 to Fig. 6.14 shows the distribution of each phase for the SLG fault using each of 

the monitors independently estimating the voltage and duration of the fault. 

   

Fig. 6.6 (left), Fig. 6.7 (middle) and Fig. 6.8 (right). The ITIC curve and distribution of |V
(a)

|, |V
(b)

|, 

|V
(c)

| against duration at bus 225 (left), 138 (middle) and 174 (right) for a SLG fault between bus 

147 and 146, overlaid on ITIC using a monitor at bus 130. 

   

Fig. 6.9 (left), Fig. 6.10 (middle) and Fig. 6.11 (right). The ITIC curve and distribution of |V
(a)

|, |V
(b)

|, 

|V
(c)

| against duration at bus 225 (left), 138 (middle) and 174 (right) for a SLG fault between bus 

147 and 146, overlaid on ITIC using a monitor at bus 232. 
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Fig. 6.12 (left), Fig. 6.13 (middle) and Fig. 6.14 (right). The ITIC curve and distribution of |V
(a)

|, 

|V
(b)

|, |V
(c)

| against duration at bus  225 (left), 138 (middle) and 174 (right) for a SLG fault between 

bus 147 and 146, overlaid on ITIC using a monitor at bus 204. 

It is possible to conclude that monitor 130 provides the most information about the 

voltage sag depth, closely followed by a monitor at bus 204. This conclusion can be 

formulated by reviewing the vertical size of each of the distributions shown in Fig. 6.6 

to Fig. 6.14, which are much smaller for bus 130 and 204 compared with bus 232. This 

corroborates with the results in the previous chapter, which found that the monitors at 

bus 130 and 204 were the best at estimating voltages in other areas of the 295 bus 

network.  

The distribution of the blue crosses is always within the safe section of ITIC curve, 

indicating any of the monitors would predict a STP of 0 for all locations in phase B. 

This is an interesting point, as it shows that any of the monitors are equally good at 

estimating the impact of voltage sags in phase B, even though monitor 130 and 204 are 

both technically better at voltage sag profile estimation. 

Fig. 6.10 and Fig. 6.11 show the results of bus 232 predicting the voltage in all three 

phases at buses 138 and 174 respectively. The spread of the distribution of the voltage 

in phase A and C is large when compared with bus 130 (Fig. 6.7 and Fig. 6.8) or bus 

204 (Fig. 6.13 and Fig. 6.14). However, large uncertainties in the voltage may or may 

not impact on the STP calculation since STP is a function of the expected number of 

points in the safe and non-safe regions of the ITIC curve. This is highlighted in Table 

6.1 which shows that the STPs estimated in phase A using a monitor bus 232. Table 6.1 

shows that the STPs estimated using a monitor at bus 232 were 0.983 at bus 225, 0.934 

at bus 138, and 0.963 at bus 174; all very similar to the result for all monitors which 

were 0.983, 0.934 and 0.963 for buses 225, 138 and 174 respectively. Thus it could be 
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concluded that although bus 232 is a poor estimator of voltage sag magnitude, it is still a 

high quality estimator of the probability of a trip (STP). Using information from either a 

monitor at bus 232 or information from all monitors in the network results in the same 

conclusion that equipment attached to phase A at buses 225, 174 and 138 were very 

likely to trip. 

TABLE 6.1. THE SAG TRIP PROBABILITIES FOR BUSES 225, 138 AND 174 OBSERVED FROM BUSES 130, 232 AND 204 

Monitor Bus 225 Bus 138 Bus 174 

Phase A Phase B Phase C Phase A Phase B Phase C Phase A Phase B  Phase C 

Bus 130 STP 0.983 0 0 0.983 0 0.691 0.983 0 0.985 

Bus 232 STP 0.983 0 0 0.934 0 0.862 0.963 0 0.94 

Bus 204 STP 0.983 0 0 0.983 0 0.632 0.983 0 1 

All Mon. 

STP 

0.983 0 0 0.983 0 0.771 1 0 1 

The smallest probability of a trip in Table 6.1 is recorded for phase C of bus 138. Using 

all monitors, the probability of a trip at bus 138 is 0.771. If the estimate taken using all 

monitors is considered a best estimate for the true probability of a trip, then the 

information from bus 232 overestimates the likelihood of a trip, and bus 204 and 130 

underestimates the likelihood of a trip at this busbar. 

Fig. 6.15 to Fig. 6.17 show the distribution of the voltage magnitude and duration when 

all of the monitors are used together to predict the voltage magnitude. All of the plots 

show a much narrower spread for the voltage magnitude, as the information from all 

devices eliminates some of the uncertainty. Table 6.1 shows that the reduced variation 

has a minimal impact on the STP as the STP for all monitors is very similar to the STP 

for monitors 130 and 204. 

   

Fig. 6.15 (left), Fig. 6.16 (middle) and Fig. 6.17 (right). The ITIC curve and distribution of |V
(a)

|, 

|V
(b)

|, |V
(c)

| against duration at bus 225 (left), 138 (middle) and 174 (right) for a SLG fault between 

bus 147 and 146, overlaid on ITIC using monitors at bus 130, 232 and 204. 
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6.7 Summary 

The research presented in this chapter introduces a new method for estimating the 

probability of a trip from a voltage sag, namely, the sag trip probability (STP). The 

general formulation of the STP is can be configured to be used with different equipment 

sensitivities, different process sensitivities and arbitrary sets of monitors. The STP is 

formulated using statistics which allows uncertainties in equipment and voltage sag 

characteristics to be robustly accommodated. 

As well as formulating the STP, a generalised derivation for a process trip probability 

(PSTP) was also presented. This allows network operators to gauge the potential impact 

of voltage sags on important industrial processes within their network. 

The presented method was validated by illustrating how the STP can be calculated for a 

single phase to ground fault within the 295 bus network. The results illustrated that 

estimating the impact of a voltage sag on a consumer using the STP does not always 

require a precise estimate for voltage sag depth. Indeed the results that the STP can be 

estimated with a high level of precision, even if there is large uncertainty in voltage sag 

depth. It could therefore be concluded that estimating the STP to a defined relative level 

of accuracy is more straightforward than estimating the voltage sag magnitude to the 

same relative level of accuracy. In the following chapter, this point will be used to guide 

the placement of monitoring devices to best estimate the STP and hence most accurately 

estimate the resultant impact of voltage sags on consumers in the network. 

Using the STP approach, this chapter also described a method whereby the number of 

trips caused by voltage sags could be estimated over a series of events during a defined 

time period. This aspect of the STP will be re-visited in Chapter 9 when the number of 

trips will be estimated over a period of time. 
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7 Optimal Placement 

of Monitors for 

Voltage Sag 

Monitoring 

7.1 Introduction 

The previous three chapters have focussed on techniques for voltage sag monitoring 

with a limited number of monitors. As well as monitoring a network using pre-existing 

monitors, it is also important to consider how best to optimise their locations to enhance 

the observability of a network for voltage sag issues. 

The purpose of the following chapter is to introduce a methodology which can be used 

to optimise the placement of monitors for voltage sag monitoring in a distribution 

network. The developed methodology allows distribution network planners to specify 

budgetary requirements and future loading forecasts and determine a robust set of 

monitoring locations for voltage sag performance monitoring. 

Existing research on optimal monitoring for voltage sags focuses on placing monitors 

throughout the network to either detect or localize faults that cause voltage sags. In [25], 

the author defines the concept of a monitor reach area that defines an area in a network 

where a monitor can detect all sags of a defined magnitude. In [48], the authors place 

monitors to localize faults within the network. 
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An added complexity of the optimal monitor placement problem which has not been 

considered in existing research is that DNOs must deal with a large degree of 

uncertainty when deciding where to install monitors in their network. This uncertainty is 

present because the economic value of a chosen monitoring solution is not precisely 

known over all time periods. Load growth forecasts and cyclical demand levels are two 

factors that influence the estimated loading on the network. 

The focus of the research presented in this chapter is different to existing optimal 

placement methodologies in two key ways. The first difference is the objective function 

of the optimization algorithm. The optimization uses the STP (described in the previous 

chapter) to assess the suitability of monitoring positions. This is an important 

contribution, as it ensures monitors are placed where they are best able to estimate the 

impacts of voltage sags, rather than simply estimating voltage magnitudes. 

The second important difference is that the optimization process is based on an immune 

inspired (AIS) optimization algorithm [146], known as the B-Cell Algorithm (BCA) 

which was first introduced in Chapter 3. This allows a diverse range of near-optimal 

monitoring solutions to be developed based on minimization of the error in expected 

equipment trips at a busbars throughout the network. This increases the robustness of 

solutions and gives power system operators’ choice over monitor locations. 

There are two aims for the research presented in this chapter: 

 To present a practical and robust methodology capable of optimally locating 

monitors to observe the effects of voltage sags on customers in a generic 

distribution network across a range of future uncertain loading scenarios. 

 To demonstrate and experimentally validate that an artificial immune system 

(AIS) optimization methodology is an appropriate, high quality tool for the 

optimal monitor placement problem.  

These aims will be accomplished by testing the optimization methodology against 

different monitoring sets selected from existing optimal placement research and 

engineering judgement. The monitoring sets will be evaluated and compared to identify 

which monitoring sets can most accurately monitor the network for trips. 

The monitor sets which are developed in this chapter are used throughout this thesis to 

test the methods developed for unbalance and voltage sag monitoring. It should be 

noted that the optimization techniques developed in this chapter are aimed at sag 
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monitoring only, but this does not exclude the data from power quality voltage sag 

monitors being used for unbalance or any other power systems monitoring. 

7.2 What Makes a Good Monitoring Set? 

A high quality voltage sag monitoring set must be able to perform voltage sag 

performance estimation as outlined in Chapters 4 to 6. The ultimate objective of voltage 

sag monitoring is to estimate the resultant impact of voltage sags on customers. 

The complexities of locating monitors which can accurately estimate the number of trips 

at a busbar can be explained by considering Fig. 7.1. Fig. 7.1 shows a busbar which is 

exposed to two voltage sag events. Both of these events occur in the region of the 

immunity curve where an equipment trip is certain (P(trip)=1). 

 

Fig. 7.1. The uncertainty in both equipment immunity and measurements.  

Fig. 7.1 also shows the area of voltage sag profile estimation uncertainty described by 

variation in both voltage magnitude and duration for the two voltage sags. The error in 

the estimation process for both of the sags is identical (as shown by equal diameter 

circles). For the 1
st
 voltage sag, the estimation uncertainty will not impact on the 

estimated probability of a trip since the entire region of uncertainty is contained within 

the region with P(trip)=1. However, for the 2
nd

 voltage sag, the same amount of 

estimation uncertainty causes P(trip)≠1. Therefore, accurate estimation is preferential 

near the immunity curve boundary and less important elsewhere. 

The accuracy of the estimation process is heavily influenced by the location of power 

quality monitors in the network. Existing optimal monitor placement methodologies 

(such as [25] and [48]) focus on accurately estimating the during sag voltage magnitude 

at non monitored busbars rather than considering the resulting impact of voltage sags on 

customer equipment. These techniques optimise monitor locations by minimising the 
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three phase error in voltage magnitude across all monitored and un-monitored buses in 

the network. Another similar approach could involve minimising the error in 

generalized sag table [59] (GST) estimation for all monitored and un-monitored 

busbars. If the GST could be predicted accurately, the voltage sag performance of a 

busbar in terms of customer trips could also be estimated. 

Both the voltage magnitude and the GST approach have a common deficiency: their 

objective functions optimise monitor locations in proportion to absolute errors in 

voltage magnitude estimation whilst ignoring the resultant impact of the sag on end user 

equipment. A correct assessment of voltage sags needs to consider magnitudes, 

expected durations and equipment immunity. A 40% voltage sag is somewhat similar to 

a 20% voltage sag (of similar duration); both cause serious disruption to equipment 

connected to those buses in the network. However, a 90% voltage sag is very different 

from a 70% voltage sag (of the same duration). The 90% sag may not cause equipment 

to trip. Therefore, when estimating trips, it is more important to estimate the difference 

between a 70% and 90% voltage sag than the difference between a 20% and 40% 

voltage sag.  

The rest of this chapter will focus on a method capable of positioning monitors in such a 

way to maximise their accuracy of estimation on the equipment immunity curve 

boundary. 

7.2.1 STPs for Optimal Monitor Placement 

The STP defines the probability of equipment tripping at the busbar given a sag. The 

STP is a probability, and as such it will always range between 0 and 1. The STP is made 

up from uncertainty in equipment immunity and uncertainty in voltage sag profile 

estimation. Uncertainty in the STP can be reduced by improving the voltage sag 

estimation procedure by placing the monitors in high quality locations. 

Let STPtrue represent the value for the STP which would be obtained if the during fault 

voltage magnitude could be estimated with full monitoring and no error, but whilst still 

considering uncertainty in equipment immunity curves. Let STPest represent the value 

for the STP obtained when using voltage sag profile estimation (VSPE, as described in 

Chapter 5). Both STPest and STPtrue are calculated using (6.3). Equation (7.1) defines the 

quality of a VSPE estimate based on the STPest and STPtrue. 
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esttrueesttrue STPSTPvvu ),(  (7.1) 

u(vtrue,vest) defines the absolute difference in STPs for the estimated voltage profile, vest 

and true voltage profile, vtrue (obtained assuming no estimation or measurement error). 

In other words, u(vtrue,vest) this is the difference in the probable number of equipment 

trips estimated using a limited monitoring set, and the probable number estimated using 

a full monitoring set. 

A false alarm (FA) can be defined where the algorithm estimates a high STP (STPest), 

but the real STP (STPtrue) is low. A missed trip (MT) is where the algorithm estimates a 

low STP, but the real STP is high. For example, if the estimated STP is zero, and the 

real STP is 1, then we can be certain we have missed a trip. Indeed, if the difference 

between these two probabilities is high (say 0.95), then we can be almost certain that a 

false alarm or missed trip has occurred. The two equations that define false alarms and 

missed trips across all N buses in a network for a fault f are shown in (7.2) and (7.3). 
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(7.3) 

Where STPtrue,f,i is the true STP at bus i for an arbitrary fault f and STPest,f,i is the 

estimated STP at bus i for the same arbitrary fault f.  

The definition of MTs and FAs will be used as the basis of an optimal monitor 

placement algorithm in the methodology which follows. MTs and FAs will be integrated 

into an objective function which will optimize the position of monitors using a B-cell 

algorithm (as described in Chapter 3) to estimate sag performance over a range of 

uncertain loading scenarios. 

7.3 Methodology 

The overall methodology was designed to satisfy both of this chapter’s aims. The 

methodology is broadly split into 4 stages as shown in Fig. 7.2: 
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Fig. 7.2. The 4 stages of the methodology used in this paper. 

The first set of results will be used to compare the STP optimization methodology with 

other optimal monitoring techniques. The second set of results will evaluate the 

robustness of the BCA optimal monitoring solutions over a range of uncertain future 

operating scenarios. 

7.3.1 Data Generation 

Data was generated for the study based on a proposed load growth model for the next 

15 years. In this scenario, load is expected to average between 60% and 270% of the 

original system loading (lb), as shown in Fig. 7.3. Simulated data is required to firstly 

find through optimization a wide variety of near optimal monitoring locations and 

secondly to test the quality of these solutions when projected into an uncertain future. 

The actual load growth scenarios, however, do not influence the methodology 

qualitatively, thought quantitative results may be different for different assumed future 

load growth patterns. 

7.3.1.1 Modelling Future Network Uncertainties 

The future loading of the network was modelled using a Monte Carlo simulation [92]. 

The oscillatory nature of the power system loading was modelled using a sinusoidal 

oscillation that spans a time period of 365 days. Random variation was added into the 

model by adding Gaussian noise at each time interval. 

Equations (7.4) and (7.5) describe the long term load growth model used in this 

research: 

piirip  )()(  (7.4) 
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p(i) is a vector which describes the power system demand at every node in the power 

network at the  th time interval. r(i) is a function which describes the long term seasonal 

oscillation in demand of the power system. p(i) depends on both p(i) and pi where the 

later is a Gaussian random variable normally distributed with a mean of 0 and standard 

deviation of pi. At the ith time interval, pi was set to 0.2% of the total power demand, 

scaled by a factor of r(i)/r(0).  

It is important to note that sinusoidal oscillations were selected due to the ease of 

application without any loss of generality. Over a 365 day period, the electrical load 

profile in the UK broadly correlates with the number of hours of daylight (due to limited 

air conditioning load in the summer). Therefore, a model which follows a sinusoidal 

pattern with additional random variation in the form of Gaussian noise reasonably 

covers the range of expected variation in electrical demand. Different functional forms 

r(i) could be modelled without affecting the proposed methodology. 

Fig. 7.3 shows 10 Monte Carlo simulations generated with a load growth of 5% per year 

over the next 15 years. 

 
Fig. 7.3. 10 runs to generate Monte Carlo samples across a period of 15 years based on a load 

growth model of 5% per year and oscillations in the yearly loading of the network. 

The developed load growth model used in this research assumes that the power factor 

remains constant at the base power factor. The base power factor is the set of power 

factors specified by the loads in the generic distribution network at the default (or base) 

operating load. At the base operating load, the base power factor ranges between 0.95 

(lagging) and unity, as one would expect to be the case at 11kV and 33kV buses in 

modern distribution network. The average base power factor across all buses in the 
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network is 0.98. In this research, power factors were assumed to be largely invariant 

over the 15 year study period and therefore kept constant at the base power factor.  

Varying the power factor significantly will create variation in pre-fault voltages 

throughout the network, which will in turn affect the accuracy of the fault location 

estimate (Ml) derived using equations (5.15) and (5.20) (for three phase and line to line 

faults respectively). The equations for single line to ground and double line to ground 

faults (equations (5.17) and (5.22) respectively) are not functions of pre-fault voltage, 

and are therefore insensitive to changes in the power factor. The during fault voltage 

drops for all faults are ultimately calculated using equations (5.23) to (5.25), which are 

independent of pre-fault voltages at non-monitored busbars. 

Voltage support devices such as capacitor banks, and tap-changing transformers were 

not modelled in the data sets which were generated in this study, as they were not 

present in the test 295 bus network. Capacitor banks change the circuit impedance and 

consequently alter the voltage magnitude at buses where they are connected as well as 

to a lesser extent at surrounding busbars. If these devices were present, they would add 

more operating points to the set of generated operating conditions generated by load 

variation and variations in network topology. Variation in network topology can also be 

included in the uncertainty analysis. Fig. 7.5 shows the location of 4 open points 

(positioned based on [163]) that connect various feeders in the 295 bus distribution 

network. The network in Fig. 7.5 is assumed to operate for 96% of the time with the 

open points (OP1, OP2, OP3 and OP4 in Fig. 7) open. However, for 1% of the time, it is 

expected that each of the 4 open points will be closed independently. Thus, there are 5 

different topologies on which the network could operate. It should be noted that there 

are often many permutations of topologies on which a network can operate. In this 

study, only the 5 most common topologies are considered to illustrate the methodology. 

7.3.1.2 Datasets for the Optimization Procedure 

For the optimization section of this study 42 datasets (OptD) were generated. To 

thoroughly test the robustness of the proposed methodology, variations in fault position, 

loading conditions, topology, fault type and fault impedance must all be considered. 

Each dataset represents the results of short circuit analysis on the power system network 

with load divided equally between 60% and 270% of the base system load in 5% 

intervals on the base network topology. The load variation at each of the buses was kept 

consistent with the base load, and the power factor kept as the base power factor. 1668 
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fault positions (6 faults for each of 278 lines) were selected and a single line to ground 

(asymmetrical) fault simulated at each of the locations.  

To optimise the monitor locations, 5475 datasets (TestD) were generated; one dataset for 

each day over a 15 year period (365×15). Variation in network topology was 

incorporated by randomly selecting 55 datasets (1% of all datasets) for each of the four 

new topologies. Each new topology is created by closing one of the four normally open 

points. The remaining 96% of the TestD datasets operate using the default network 

topology. All the datasets consist of the results of simulating 1668 single line to ground 

faults (6 fault locations on each of the 278 lines). The pre-fault voltages for the fault 

studies were assigned randomly according to a Monte Carlo simulation which models 

5% annual growth and stochastic variation in daily load, for the next 15 years. 

Single line to ground faults are by far the most common type of fault, accounting for 

perhaps as much as 80% of all recorded faults [164]. Because of their prevalence, the 

monitor placement optimization performed in this chapter used data generated from 

single line to ground fault simulations only. 

7.3.2 BCA Optimization 

7.3.2.1 Optimization Problem 

Determining the location of monitors for VSPE can be defined as an optimization 

problem. For a given VSPE algorithm A, a network topology n, a network loading lL, 

a selection of monitors mM, and a set of fault positions F, an objective function can be 

formulated as: 
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where C is a function that describes the computation of U for the given combination of 

m,A,n,l and F and g1 is a function that represents the cost of installing a selected 

monitoring solution. A simple way of describing U is the percentage of the network 

where missed trips and false alarms occur at less than 1% of the buses in the network. ai 
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represents the cost of installing a monitor at bus i and mi{1,0} is 1 if a monitor is 

installed at the ith bus. N is the number of buses in the network (295 in this study), and 

NF is the total number of simulated faults (1668 in this study). 

g2 is a function that ensures that the number of false alarms and missed trips at the ith 

bus is kept below a certain threshold level. This is useful when there are important 

industrial processes operating in a network which must be monitored. 

In this research, the cost associated with installation and maintenance of a monitor at a 

given location is assumed to be constant (ai=1  i=[1...N] unit per monitor). Practically 

this would incorporate the cost of the monitoring device, communications infrastructure 

costs, cyber-security costs, and other bespoke installation requirements. Information on 

the pre-fault voltages in the network is also assumed to be available from load flow 

study. 

The 295 bus generic distribution system (as shown in Fig. 7.5) has 10 primary 

substations at 11kV and 33kV. It was therefore decided that g1 should be constrained to 

10 monitoring locations. This allows the solutions generated by the optimization 

algorithm to be directly compared with an engineered solution (ENG) which represents 

installing a monitor at every 33kV and 11kV primary sub-station. g2 was left unset, 

except when optimizing to find the STP2 solution where it was set to 99.9% on the 

secondary side of feeder A (Fig. 7.5) to simulate an important 11kV customer.  

7.3.3 BCA Algorithm Details 

The optimization algorithm problem is tackled using the B-cell algorithm (BCA) and 

the OptD dataset. The BCA is described in detail in Chapter 3. For each of the 42 

datasets, the BCA is used to find a set SdS (d=[1,42], d=1:60% load, d=8:100% load, 

etc.) of 10 near-optimal monitoring solutions. 

7.3.3.1 Data Representation 

The BCA used in this paper was slightly adapted from the original work in [146] (and 

Chapter 3) to work with discrete function optimization rather than continuous function 

optimization using 64-bit strings. Instead of representing each B-cell as a series of 64-

bit strings, a different representation was employed in this research to represent each B-

cell.  Each B-cell was represented as an N-bit binary string. The N bits represents the N 

possible sites for monitors in the network. A   indicates that a site has a monitor 

installed, and a   indicates that the site has no monitor installed. 
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7.3.3.2 Configuration of the B-Cell Algorithm 

The BCA has two configurable parameters.  Firstly, the total number of B-cells in the 

population and secondly the number of clones for each B-cell produced on each 

iteration of the algorithm. The aim of the BCA in this research is to generate a wide 

variety of near-optimal monitoring solutions. 

The BCA was setup to maintain a population of 10 B-cells. The algorithm is often 

configured to run with the number of clones configured as the same as the population 

[146]. In this research, the number of clones was configured in a similar manner, with 

each B-cell producing 10 clones. 

7.3.3.3 Termination 

The BCA was configured to terminate when the best 20% of the B-cells (2 in this case) 

had reached a steady value for the last 10 iterations. Only 20% of the B-cell population 

was tested for convergence to ensure that the whole population did not simply converge 

to a single global optimum. 

7.3.3.4 Output of the BCA 

The output of the BCA was 42 sets of monitoring solutions, one for each network 

loading scenario. The best solution from S8 (the set of solutions at base load) was 

extracted for comparisons against the other optimization methods (as in the following). 

This solution is known as the STP1 solution.  

The set S was consolidated to remove any duplicated solutions found from each of the 

42 optimization runs. This formed a new set, known as S’. These solutions are required 

to test the robustness of the algorithm to network uncertainties. 

7.3.3.5 Output of the BCA 

A second STP solution known as STP2 was also generated from the BCA which is the 

result of optimizing monitoring locations with the constraint g2 activated at 99.9% on 

feeder A. 

7.3.4 Voltage Sag Impact Estimation 

Voltage sag profile estimation was performed by locating each fault using equation 

(5.16) (described in Chapter 5 and [81]) and then subsequently estimating the voltage 

during the fault at non-monitored busbars using equations (5.23) to (5.25). To reduce 
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the computational time required to run the optimization process, all simulations were 

assumed to be free from monitoring error. 

The localization accuracy of the fault location equations may be affected by fault 

impedance, fault type and pre-fault loading. The equations developed in Chapter 5 for 

single line to ground (SLG) faults either eliminate these variables entirely, or provide 

robust assumptions which limit the inaccuracy fault localization and subsequent voltage 

sag profile estimation.  

To estimate the voltage profile at non-monitored busbars, each monitor was tested in 

turn to determine a set of fault locations for each fault by solving equation (5.16) for all 

lines in the network. The monitor with the lowest number of locations was then 

selected. The voltage sag profile at all non-monitored busbars was then estimated using 

the selected monitor, each fault location solution and equations (5.23) to (5.25). These 

solutions were then averaged to obtain an estimate for the voltage at all non-monitored 

busbars. The reader is referred to equations to Chapter 5 for more information on the 

fault location and voltage sag profile estimation equations. Note that this method of 

VSPE is slightly different to the statistical approach incorporating monitoring errors 

outlined in Chapter 5. The key difference is that a single estimate for the during sag 

voltage magnitude is obtained rather than a statistical estimate, beacuse of the 

assumption that all monitors were free from measurement error. 

STPest was calculated using (6.1), the estimated during sag voltage profile estimate and 

assuming a sag duration model as shown in Fig. 6.4. STPtrue was calculated using a 

perfect during sag voltage profile and the same sag duration model. 

Using the equations in Chapter 5 (and [81]) for single line to ground faults, no 

assumptions on pre-fault loading or fault impedance are required to carry out fault 

localization and VSPE. In other words, the equations for single line to ground fault 

location are insensitive to fault impedance and pre-fault loading. Other types of faults 

such as three phase, double line to ground and line to line faults were not simulated in 

the results presented of this paper. Chapter 5 describes (and [81]) formulates equations 

for all types of faults, and any of these equations can be incorporated into the optimal 

placement methodology developed in this chapter.  

To use the equations for other types of faults, assumptions on fault impedance and pre-

fault voltages must be considered. For three phase and line to line faults, the fault 

impedance must be assumed to be entirely real, and pre-fault voltages must be estimated 

[165]. The assumption of real fault impedance is shown in [103] to be a valid 



Chapter 7: Optimal Placement of Monitors for Voltage Sag Monitoring 

 
189 

approximation. Pre-fault voltages can be estimated using distribution system state 

estimation as shown in Chapter 5. For double line to ground faults a solution to the fault 

location equations can be found through a single assumption of an entirely real fault 

impedance. The reader is referred to the equations in Chapter 5 for more details on the 

assumptions required to estimate during sag voltages at non-monitored busbars. 

It should be noted that the impact estimation equations described in Chapter 5 and 6 (or 

the algorithm described in [17] with correctly configured thresholds) are able to 

estimate a sag location with fewer monitors than required to make a network fully 

observable [166] (from a state estimation observability perspective). This is an 

important quality, as full observability requires more monitors and therefore 

necessitates higher associated deployment costs. A key advantage of the approach 

proposed in this research is its ability to estimate sag trip performance using much 

fewer monitors than required to make a network fully observable. 

7.3.5 Comparison of STP Optimization with Other Techniques 

The quality of the both STP1 and STP2 solutions were compared against three other 

monitor placement methodologies. Firstly, a solution (labelled LOC) was produced 

which is the result of running the BCA optimization algorithm with the objective 

function changed to minimizing the sum of absolute deviation in per unit voltage 

magnitude at all buses in the network. Secondly, a solution was created based on the 

monitor reach area placement method presented in [17] (labelled MRA). Lastly, a 

solution (known as ENG) was created where monitors were placed at primary sub-

stations on the secondary side of each 11kV and 33kV feeder. The ENG solution is 

representative of how DNOs are likely to place monitors in the network without the 

assistance of an optimal placement algorithm, and is thus un-optimized. 

Each of the optimizations utilized a constraint to limit the number of monitors installed. 

To provide some context for the results, an unconstrained optimization was also 

performed to determine the minimum number of monitors required to achieve full 

observability of all voltages in the network. This was accomplished using [167]. Full 

observability allows any voltage and hence any fault to be localized anywhere in the 

network. 

7.3.6 Testing Solutions with Future Network Uncertainties 

It is not feasible to exhaustively search every monitoring positioning, on every network, 

for all loadings and all fault positions. There are simply too many combinations to 
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search.  However, the quality of a proposed monitoring solution can be assessed using 

two figure of merit (FOM) functions. For a monitoring solution s’S’, the following 

FOM functions are defined: 

1. Across all scenarios, the total percentage area (sum of U) covered should be as 

high as possible. 

2. Across all scenarios, the range of U should be as small as possible. 

The FOM functions are shown algebraically in the following formulae: 
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Where U(TestD) is 5475 long vector with each element representing the computation of 

U for the different operating conditions in TestD. 

f1 and f2 can be analyzed by discovering the Pareto set of non-dominated solutions.  In 

terms of a maximization, a solution s’*S’ is said to be non-dominated if there exists no 

other solution s’S’ where the value of fi(s’*)fi(s’)i and for at least one i, 

fi(s’*)>fi(s’). The Pareto optimal set of solutions S’*, form a set of solutions which can 

be used to make the final engineering decision about the location of the monitors within 

the network. 

7.4 Results 

7.4.1 STP Monitor Placement Methodology 

The STP, LOC and ENG solutions were all compared to demonstrate the viability of the 

STP optimization methodology. Each of the solutions compared are shown in Fig. 7.5, 

for the specific case of 10 monitors. The LOC, STP1and STP2 solutions are all placed 

mainly in the 11kV network. These three solutions are also placed in an even density 

across each of the 11kV networks. 

The performance of each of the solutions was compared in terms of their ability to 

correctly estimate the STP. This can be measured in terms of false alarms (FAs) and 

missed trips (MT). 

Table 7.2 shows the mean number of missed trips and false alarms for a fault for each of 

the three monitoring solutions. It also shows the percentage of the network where faults 

can occur and the monitoring solution produces FAs and MTs at less than 1% of the 
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buses (U). A higher percentage value indicates a larger area of the network were the 

STP can be reliably estimated. This area is shown in Fig. 7.5 for the STP1 monitoring 

solution at base load. 

As a comparative benchmark, the number of monitors required to achieve full 

observability of the network were computed using [167]. It was found that 80 monitors 

were required to achieve full observability of all voltages in the network, and hence a 

value for U of 100%. The busbar monitor locations for the full observability solution is 

shown in Table 7.1. 

TABLE 7.1. OPTIMAL MONITORING SOLUTIONS 

Monitor Set Voltage 

Level 

Monitoring Locations 

Monitoring 

Solution for Full 

Observability 

11kV 5, 8, 11, 14, 18, 20, 23, 29, 31, 34, 36, 39, 42, 44, 47, 48, 52, 55, 56, 61, 64, 69, 71, 73, 74, 

77, 79, 83, 85, 89, 91, 95, 99, 100, 101, 105, 107, 109, 112, 117, 124, 127, 129, 131, 134, 

139, 141, 142, 146, 149, 150, 153, 155, 158, 160, 163, 166, 173, 175, 180, 183, 184, 187, 
188, 191, 194, 197, 201, 206, 212, 218, 226, 228 

33kV 242, 247, 250, 266, 269 

132kV 272 

275kV 294 

STP1 11kV 130 , 204, 217, 60, 27, 128, 291, 53, 221 

33kV 261 

STP2 11kV 289, 50, 122, 135, 149, 61, 5, 187, 206, 176 

LOC 11kV 28, 121, 68, 87, 60, 137, 204, 176 

33kV 237, 266 

ENG 11kV 289, 228, 229, 231, 230, 226, 227, 232 

33kV 248, 247 

TABLE 7.2. FAS AND MTS FOR ALL PLACEMENT METHODS 

Placement Method Mean FAs Mean MTs Mean MTs + Mean 

FAs 

Percent Network <1% 

FAs & MTs (U) 

STP1 6.61 1.97 8.59 78.06% 

STP2 4.35 5.44 12.05 76.80% 

LOC 7.19 1.98 9.16 75.90% 

MRA 3.40 11.10 14.50 51.74% 

ENG 9.38 10.37 19.75 53.0% 

Table 7.2 shows that the STP1 solution has the lowest number of missed trips and false 

alarms.  It also shows the STP1 solution to be the best in terms of the amount of network 

where missed trips and false alarms can be accurately estimated. 
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TABLE 7.3. FAS & MTS FOR 10 TO 20 MONITORS USING STP1 & LOC PLACEMENT 

Placement 

Method 

Percent Network <1% FAs & MTs (U) for Each No. of Monitors 

10 12 14 16 18 20 

STP1 78.6% 80.8% 80.2% 80.9% 83.9% 84.5% 

LOC 77.0% 79.1% 80.4% 82.3% 83.9% 83.5% 

Table 7.3 shows how U varies as the number of monitors is varied between 10 and 20 

monitors in the network. The table shows that for each increase in monitors, the 

performance (U) of the monitoring program increases. From an observability 

perspective, the number of buses where the voltage is observable for 2 to 20 monitors 

increases from 8% to 37% and 7% to 38% of busbars for STP1 and LOC respectively. 

Fig. 7.5 shows that the STP1 algorithm misses trips in the 132kV network, whilst false 

alarms occur at all voltage levels. This is probably understandable, given that the STP1 

monitoring has 9 monitors at 11kV, 1 monitor at 33kV and no monitors at 132kV, and 

there is no preference in the optimization algorithm as to which voltage level to place 

monitors. 

Fig. 7.5 also shows that the optimization algorithm has located a monitor on feeder A 

for the STP2 solution to accurately monitor the STP at the important customer. 

It is also worth comparing the accuracy of all the monitor placement solutions with 

regards to estimating voltages across the network.  It is expected that the LOC solution 

should perform best on this comparison since the objective of this placement method is 

to minimize the error in estimating voltages at non-monitored buses. Fig. 7.4 shows the 

per unit error in estimating voltages between 0 and 1.5 per unit. 

 

Fig. 7.4. The absolute error in estimating voltages at non-monitored buses for the three monitoring 

solutions split into 0.1 per unit intervals. 
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Fig. 7.5. The 3 best monitoring solutions: ENG, LOC and STP in the 295 generic distribution 

system network. The areas highlighted show the areas where if a fault occurs, the STP monitor will 

incorrectly label over 1% of the buses with missed trips or false alarms 
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The LOC, STP1 and STP2 solutions outperform the ENG solution across all ranges of sag 

magnitudes.  The LOC and the STP solutions are also very closely matched, and there is 

only a small amount (approx. ±10%) of difference in their performance for voltage 

magnitude estimation.  The MRA solution shows higher errors in voltage magnitude 

estimation at high and low voltages, although it does outperform all methods at around 

0.5 to 0.8 per unit. 

7.5 Future Network Uncertainties 

The second aim of this research is to show that by identifying a wide variety of near 

optimal solutions, there is a higher potential of finding a higher quality monitoring 

solution when considering future network uncertainties.  To establish whether or not 

this is the case, the 420 (10×42) solutions found by the BCA were compared against the 

other monitoring solutions across a range of network loading and topology 

uncertainties. 

Each solution found by the BCA in the S’ dataset was subjected to testing using the 

DTest  dataset to form a vector U  Each element of U represents the quality U of a 

solution s’S’ at a particular loading and topology. U vectors were also formed for the 

STP2, LOC, MRA and ENG monitoring solutions. 

Each set of solutions found by the BCA were then subjected to the Pareto optimality 

tests.  These tests yielded a set of solutions known as S’*. Nine Pareto optimal solutions 

were found. 
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Fig. 7.6. The distribution of U for all expected future network loading conditions. 
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Fig. 7.7. The distribution of U for all expected future network topologies where each network 

topology is equally likely to occur. 
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Fig. 7.8. The distribution of U for all expected future network topologies and loading conditions. 

Fig. 7.6, Fig. 7.7 and Fig. 7.8 shows the distribution of U for variations in network load, 

topology and both load and topology together. The figures clearly show that the Pareto 

solutions have a high mean and low range compared with all other monitoring solutions. 

These Pareto solutions are therefore the most insensitive to network loading changes 

and achieve the highest overall levels of performance.  

Fig. 7.7 shows a comparison of the solutions across all the topologies. In this figure, 

each topology is equally likely to occur. The results show large variations in all of the 

monitoring solutions performance, as evidenced by the long bars against each of the 

monitoring solutions. In this study, the base topology is expected to operate for 96% of 

the time. The results in Fig. 7.8 are therefore strongly influenced by loading, but only 

mildly influenced by topology changes. This is easy to see by comparing Fig. 7.8 with 
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Fig. 7.7 and noting that the bars in Fig. 7.8 are generally shorter than Fig. 7.7, although 

outliers can be seen in Fig. 7.8 caused by topology variation. 

7.6 Analysis of Results 

For the task of estimating sag trip probabilities (STPs), Table 7.2 shows that STP 

focused optimization procedure produces solutions of a higher quality than other 

monitor placement methods. Even when the optimization procedure is constrained (as in 

solution STP2), the STP optimized monitor set is better at predicting at which buses 

equipment are likely to trip than any of the other compared techniques. The difference 

in performance between the STP and the LOC methods is the smallest (as shown in 

Table 7.3), and in a practical sense, the difference between the methods would only 

result in a small difference in the total number of trips caused by voltage sags. Fig. 7.4 

also shows that the STP solutions are almost as good at estimating during fault voltages 

as monitoring solutions specifically designed for voltage profile estimation, such as 

MRA and LOC. It should be pointed out that although trips were the focus of this 

research, the number of trips may not always be the best criterion to use. Converting 

trips into economic costs might be more appropriate in some circumstances. 

The optimization methodology presented in this chapter uses a BCA optimization 

technique. It was hoped, that the BCA near optimal solutions would perform better than 

a single optimum solution over a range of network topology and loading uncertainties. 

Fig. 7.6, Fig. 7.7 and Fig. 7.8 clearly show that set of Pareto optimal solutions (S’*) 

derived from the BCA are the highest quality monitoring solutions, when both future 

load and topology are incorporated.  The results support the hypothesis that the best and 

most robust monitoring solution (in terms of future network uncertainties) is not 

necessarily the optimum solution at a particular operating scenario. Indeed, the Pareto 

solutions found by the BCA all have a smaller range (indicating they are more 

insensitive to future uncertainties) and higher median (indicating they predict STP better 

on average) than the optimal solution at base load and topology (STP1). All the Pareto 

solutions significantly outperform the other techniques, which show they are very 

sensitive to changes in loading and topology.  

Fig. 7.6, Fig. 7.7 and Fig. 7.8 also show that because all of the solutions in S’* are of 

high quality, any of these solutions could be selected as the chosen monitoring solution. 

This gives a DNO flexibility and freedom to choose from a variety of monitoring 

solutions rather than a single optimal solution.  This is important, as the selection made 
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by an operator can then also be based on other factors such as accessibility, 

communications infrastructure and physical security. 

Fig. 7.7 shows that certain monitoring solutions are strongly influenced by changes in 

network topology. However, the results also show that Pareto solutions STP-P1 to STP-

P6 all show robust performance when topology changes are considered. This 

demonstrates that the methodology can be successfully applied to produce robust 

monitoring solutions when network topology uncertainties are considered. 

7.7 Summary 

This chapter presented a new robust methodology for placing monitors within a 

distribution network. The optimized solutions were analyzed for robustness across a 

range of uncertain future network loading and topology scenarios. The results show how 

the methodology can be applied to a 295 bus generic distribution network to generate 

robust solutions in a network with uncertain load growth and topology over the next 15 

years. The results were tested against other techniques and shown to compare strongly. 

The task of robustly positioning monitors was achieved using an immune inspired B-

cell algorithm (BCA). The BCA was configured to optimize sag trip probabilities 

(STPs) that penalize reconstruction estimates based on the probability that equipment 

attached to a busbar will trip. The BCA generated a diverse pool of solutions which 

were optimized over future loading and topology uncertainties using a Pareto 

optimization procedure.  

The research showed a considerable promise for using an immune inspired BCA for 

optimal monitor placement. The solutions produced by the BCA were more robust at 

estimating STPs than those based on a single optimal monitoring solution. The 

development of a range of near optimal solutions also gives DNOs flexibility to choose 

from a suite of solutions rather than choose a single optimal solution. This is perhaps 

the single biggest advantage of using an immune inspired population based technique, 

and it is expected that this advantage could be exploited for other studies. 

In a unique advancement of existing research, the monitors were placed with the 

objective of estimating the likelihood of equipment trips during voltage sags rather than 

focusing on estimating the voltage sag profile itself. A second advancement shows how 

to obtain a robust set of monitoring solutions which are able to estimate the effects of 

voltage sags over future loading and topology uncertainties. 
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The methodology presented in this chapter is a practical and flexible way of placing 

monitors to estimate the affects of voltage sags. It takes into account future network 

loading and topology uncertainties and can be configured to work with the diverse range 

of customers and both equipment and process sensitivities. It focuses directly on the 

effects of voltage sags, rather than simply estimating voltages. 

The optimal monitoring results presented in this chapter are used throughout this thesis 

as the basis of the studies presented for voltage sags and unbalance. It should be pointed 

out thought that none of the techniques developed in this thesis require an optimal 

monitoring set. The results presented in this chapter however show that if one is 

available, it can enhance the performance of a monitoring algorithm. The following 

chapter explores how monitoring information from these monitoring sets can be used to 

estimate the source and effects of voltage unbalance in distribution networks. 
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8 Estimating the 

Source and Effects 

of Unbalance 

8.1 Introduction 

Voltage unbalance is generated through the emission of zero and negative sequence 

current at sources throughout the network. Voltage unbalance emission sources include 

asymmetric un-transposed or partially transposed transmission lines [23], single phase 

and dual-phase loads and unbalanced three phase loads. Locating all of the multiple 

interacting emission sources is not a straightforward task [75], but it can be achieved 

using techniques such as [76], which identify the level and contribution made by 

asymmetrical lines and loads towards voltage unbalance. There has been limited 

research however, into real-time identification of unbalance sources and their associated 

effects in distribution networks using a limited set of power quality monitors. 

In Chapter 2, the tool for distribution system state estimation (DSSE) was introduced to 

estimate the state of a power network. The DSSE approach used in Chapter 5 predicted 

pre-fault voltages at non-monitored busbars and assumed that the network was balanced 

and the pseudo-measurements were uncorrelated.  

In this chapter, a three phase DSSE model will be developed to estimate the location 

and impact of unbalance within the network, without assuming balanced loading. The 

DSSE model will deal with the correlative nature of three phase DSSE measurement 

errors [46] which is critical to understand how a three phase phenomenon like 

unbalance spreads throughout the network [71-73]. 
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An important aspect of three-phase DSSE is the correlation between measurement 

errors. In [46] the authors touched upon the correlative nature of three phase DSSE 

measurement errors. Correlation in multi-phase networks is covered in more detail in 

[71-73], where the later reference describes how probabilistic three phase load can be 

used to estimate the probabilistic distribution of voltage unbalance. References in this 

area are limited, and the current body of research lacks a rigorous method to incorporate 

three phase correlated measurement errors into a real-time DSSE. 

The research presented in this chapter advances the current body of research on DSSE 

and real-time unbalance detection. The developed methodology is able to locate and 

estimate the impact of unbalance on a real distribution network using statistical 

techniques. Correlated measurement errors are incorporated into a three phase DSSE by 

analysing the correlation between different types of estimates. The DSSE is formulated 

to make use of the diverse range of measurements available in a typical distribution 

network by performing case studies using a real network with some real data. 

In a similar way to the techniques developed for monitoring voltage sags, the DSSE 

techniques for unbalance monitoring must be able to synthesise data using real 

monitoring information. This includes being able to deal with a set of arbitrary devices 

at different locations, each reporting a variety of measurement inputs to a pre-defined 

level of accuracy. Specifically, for this case study, this will involve using information 

from single phase monitors to clarify three phase system behaviour. 

The research presented in this chapter has two principal aims: 

1. To provide a framework for performing three phase state estimation on a 

network where measurement information is incomplete, and must be estimated. 

2. To highlight how the results of DSSE can be used to statistically estimate the 

location, level and impacts of unbalance on a typical distribution network, and 

thus ultimately help fix unbalance related issues. 

8.2 Study Background 

The inspiration for the study network described in this chapter comes from 

conversations with engineers at a UK distribution network operator in the UK. A 

section of their network (shown in Fig. 8.1) was experiencing voltage unbalance. The 

network comprises 14, 33kV busbars, and 10 11kV busbars. The 11kV busbars are all 

loaded, whilst all of the 33kV busbars are unloaded. Each 11kV busbar is connected to 



Chapter 8: Estimating the Source and Effects of Unbalance 

 
201 

the 33kV network via a Δ-Y transformer, with an on load tap changer. The network’s 

topology is shown in Fig. 8.1. 

The most problematic busbar in the network in terms of unbalance was considered (by 

DNO network engineers) to be bus 15. The VUF at this busbar was directly measured at 

two different instances as 0.7% and 1.9%. The unbalance was causing tripping of 

industrial processes in customer facilities connected to this busbar. Buses 15 and 23 are 

the most heavily loaded busbars with 8-10 MVA, whilst the other busbars range in 

loading from 0.5 MVA to 3 MVA. Each busbar has an average of 2% industrial, 13% 

commercial and 85% residential customers. An accurate understanding of the source of 

the unbalance, its estimated impacts on customers and the wider network was required 

in order to fix the problems caused by unbalance in the network. 

The DNO’s plan was to install a series of three phase monitors into the network to 

monitor both the level and impact of the unbalance on customers within the network. It 

was hoped that these monitoring measurements would allow them to be able to 

ultimately fix the unbalance problem. 

At the time of writing this thesis, there were still no fully operational three phase 

monitors been installed in the network and therefore three phase monitoring data was 

not available. The case studies presented in this chapter are therefore manually 

synthesised simulations which take into account the likely location of both monitors and 

unbalance sources. Although three phase monitors were not available, the network did 

contain a series of single phase line to line meters which measured voltage magnitude, 

current magnitude and apparent power magnitude at 11kV. 

8.2.1 Network Description 

Fig. 8.1 shows that the network has ten single phase monitors installed which measure 

line to line voltage magnitude and current. Voltage magnitude, |V
(xy)

|, is measured 

through a VT between two arbitrary phases x and y at 11kV. Current flow magnitude is 

measured through a CT attached to an arbitrary phase z, |I
(z)

|. Using these two 

measurements, and assuming the network is balanced, an estimate for the total 3-phase 

apparent power consumption, S3ϕ, can be calculated. The angle between the voltage and 

current was not recorded.  

The topology and impedances of the network shown in Fig. 8.1 is described in detail in 

Appendix B. In the studies that follow, it was assumed that the topology of the network 

was balanced, implying no coupling between positive, negative or zero sequences. No 
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zero sequence current path exists in the 33kV network (shown as a purple in Fig. 8.1) 

since all transformers are ∆-Y connected, prohibiting the flow of zero sequence currents 

from 11kV to 33kV. This assumption is only valid if there are no 33kV loads or in-feeds 

which could inject zero sequence currents into the meshed 33kV network, and thus 

assumptions listed in Chapter 2 are not violated. 
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Fig. 8.1. The 24 bus section of the UK distribution network. 

8.2.2 Monitoring in the Network 

Fig. 8.1 shows the locations of two sets of monitors: Mi and Mo. These sets will be used 

alongside the single phase monitors to estimate the unbalance level, location and impact 

of unbalance in the network. Mi is representative of set of monitors which the DNO will 

install into the network in the near future. Mo represents a set of monitors which is able 

to observe the full state of the network using single phase state estimation [123]. All of 

the monitors in the Mi and Mo sets measures phase to neutral voltage magnitude, real 

power and reactive injections and real and reactive line flows in all three phases. 
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8.2.3 Voltage Unbalance Issues in the Network 

Like all DNOs in the UK, it is important for the operators of this network to have a 

strong understanding of the level of unbalance within the network as this will affect 

three phase customers, network losses, heating, operational limits (of three phase 

machines, cables and lines) and influence customer minutes lost (CML). The DNO also 

has a regulatory requirement to operate their network within statutory unbalance limits 

(<2% in the UK [10]). It is important for the DNO to understand whether the unbalance 

is being generated from within its own network, or from unbalanced customer loads. 

From a consumer’s perspective, the effects of unbalance include three phase equipment 

trips, heating of industrial machinery (caused by increased negative and zero sequence 

currents) and torsional oscillations. The presence of unbalance may also necessitate that 

three phase machinery is de-rated to operate at less than full load. 

The network shown in Fig. 8.1 consists of a mixture of single phase loads connected at 

415V and three phase loads connected at both low voltage and 11kV. Single phase loads 

are not affected by unbalance unless the unbalance causes over or under voltages which 

exceed statutory limits. The most sensitive loads to unbalance are three phase motors 

[168]. There is a large industrial customer with a three phase motor connected to bus 15 

(shown in Fig. 8.1). Simulated unbalance sources are shown in Fig. 8.1 as originating 

from unbalanced loading of three 11kV busbars. 

The methodology discussed in this chapter will help to tackle these problems by 

formulating a distribution system state estimator which can provide insight into the flow 

of negative sequence energy and the level of negative sequence currents and voltages. 

An accurate understanding of the source of the unbalance and its estimated impacts on 

customers and the wider network will be required to fix the unbalance problem in the 

network. 

8.3 Distribution System State Estimation 

Weighted least squares distribution system state estimation (DSSE) was introduced in 

Chapter 2. In this chapter, Chapter 2’s DSSE formulation will be extended to take into 

account all three phases, the extra information from single phase monitoring devices 

and the intrinsic correlation between sets of three phase pseudo-measurement estimates. 
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8.3.1 Power & Voltage Measurements 

All the three phase monitors in Mi and Mo (shown Fig. 8.1) were assumed to measure 

real and reactive power at all connected busbars in all three phases as well as the voltage 

magnitude in all three phases. Each real measurement was modelled with a standard 

deviation of 0.2% of the mean (or scheduled) value of the measurement. Measurement 

errors were assumed to be independent from one another and other types of 

measurements. Further details on the assumed measurement error model can be found in 

Chapter 2. 

8.3.2 Virtual Measurements 

Virtual measurements are used when the value of the real and reactive power injection 

at a busbar is defined. The real and reactive power injections at all unloaded busbars in 

Fig. 8.1 were modelled as virtual measurements. Virtual measurements were modelled 

with an absolute standard deviation of 2×10
-7

 [69]. Virtual measurement errors were 

assumed to be independent from one another and other types of measurements. 

8.3.3 Pseudo-Measurements 

Constructing pseudo-measurements for three phase state estimation is complicated by 

the intrinsic correlation in three phase systems. Correlated random variables can be used 

to take account of this problem [71, 73]. 

8.3.3.1 Scheduled Power (SP) 

The most basic form of a pseudo-measurement is to assume a value based on a 

historical average at that point in the network. Scheduled power (SP) has the advantage 

of being easy to estimate. However, the variances of the pseudo-measurement errors are 

high, and there is a high level of correlation between pseudo-measurements at different 

busbars (see Table 8.1). 

SP estimates can be used for three phase state estimation by assuming power 

consumption in each phase is balanced, and equal to a third of the overall three phase 

power. The power factor is also assumed constant across all phases. 

8.3.3.2 Load Estimation (LE) 

Load estimation (LE) concerns estimating the nodal load level [169, 170] at a bus. 

Many factors will influence the load profile at a bus including ambient weather 

conditions, time of day, season, and the types of customers (for example residential, 
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commercial or industrial) connected to a bus. Utilities store several pieces of 

information which can be used to estimate the load at a busbar including peak load data, 

customer billing data and load curves for different customer types [170]. 

In [67, 69] and [170] the load at a particular busbar was estimated by decomposing the 

load profiles into several customer classes. The load at a bus can then be estimated by 

proportionately combing the diversified load profiles of each customer type and scaling 

profile by the recorded maximum power consumption. 

In this research, load estimates were created using the method described in [69], with 

the assumption that the diversity (and hence power factor) of customers across all sites 

was constant, and distributed evenly across each phase. An estimate for the load profile 

was obtained by normalising a set of load profiles recorded at busbars with similar 

customer types to a maximum value of 1 per unit. The profiles were summed together 

and averaged, before being re-scaled by the maximum amount of loading at that busbar. 

The loading in each phase was assumed to be balanced; thus the pseudo-measurement 

estimate for the power consumption in each phase was assumed to be equal. 

8.3.4 Mixed Model (MM) Pseudo Measurements 

In some situations, a limited amount of monitoring may be available at a site. For 

example, as in the network shown in Fig. 8.1, monitors may be installed which measure 

power consumption in phase A only. In this scenario, a mixed model (MM) can be 

created using a mixture of real and estimated measurements. 

Knowledge of the power consumption in one phase can provide significant insight into 

the estimated power consumption in the other two. A distribution system that supplies 

only three phase loads will show a high level of correlation between real and reactive 

power in each phase. A system which supplies single phase loads will show lower levels 

of correlation between the phases. A real distribution system contains a mixture of 

single and three phase loads. 

In [171], a correlation model for real and reactive power was developed by assuming 

that power consumptions can be modelled as a set of jointly correlated Gaussian random 

variables. This assumption is valid as long as the number of electrical appliances 

supplied by the network is large enough, which is usually the case. 

In a similar way to [171], the expected level of correlation between real and reactive 

power can be estimated by considering the correlation between phases at a typical bus. 

Let P
(a)

, P
(b)

, P
(c)

, Q
(a)

, Q
(b)

 and Q
(c)

 be the real and reactive power respectively flowing 
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in each phase, with each measurement normalized by the factor required to make the 

mean power consumption in phase P
(a)

 and Q
(a) 

equal to 1MW and 1MVAr respectively. 

The aim is to construct a multi-variate normal distribution that encompasses 

dependencies of the variation of each of these variables. Using this distribution, the 

active and reactive power consumption in phase i (P
(i) 

and Q
(i)

 respectively) can be 

determined. The multi-variate normal distribution is defined in (8.1). 

),(~ ΣμX N  (8.1) 

where X is a vector of random variables,  is a vector of means, and  is the covariance 

matrix. 

Using these assumptions a six dimensional covariance matrix  was estimated using the 

random variables in the vector X (8.2). 

Taaccb QPQPP ],,,,Q ,[ )()()()((b))(X  (8.2) 

The covariance matrix should ideally be built using measured per phase data from 

several buses of representative size and customer type, averaged over a defined time 

interval. Estimating the covariance across several different buses ensures that the 

variation in fixed offset power consumption (where one phase is permanently loaded 

more than the other two) is incorporated into the covariance matrix estimate. 

The covariance matrix used in this research was estimated using data recorded over a 21 

day period at a 15MW bus. The dataset comprises 1007, 30 minute samples of all 6 

variables. Information on the data used to construct this model can be found in 

Appendix C. 

The mean vector  is represented as: 

Tccbb QPQP ]1,1,,,,[ )'()'()'()'(μ  (8.3) 

where )'(iP and )'(iQ are the mean real and reactive power consumptions in the ith phase. 

If there is no evidence of an individual phase being persistently overloaded,  will be 

very close to a unit vector. 

If a measurement is available for power consumption in one phase only (e.g. )(ˆ aP , )(ˆ aQ ), 

a conditional multivariate distribution [172] can be derived as

),(~]ˆ,ˆ[],[|( )()()()(
ΣμX NQPQP aaaa  , where μ and Σ  are shown in (8.4) and (8.5). 
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21

1

221211 ΣΣΣΣ
  (8.5) 

Tccbb QPQP ],,,[ )'()'()'()'(

1 μ
 

(8.6) 

T]1,1[2 μ  (8.7) 
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where 11, 12 and 22are regions of  (as shown in (8.8)). 

)(ˆ aP  and )(ˆ aQ are estimates for the power consumption in one phase, and may be 

derived from a load estimation or scheduled power pseudo-measurement (as described 

in Chapter 2) or a measurement from a real monitor. Fig. 8.2 illustrates the correlative 

model using two example values for the power in phase A. 

 

Fig. 8.2. Two Gaussian distributions obtained using the correlative model and data from the UK 

distribution network. The dashed lines represent the probability density function of Pb and Pc 

conditional on a value of Pa. 

8.3.5 Measurement Error Covariance Matrix: R 

The measurement error models can be incorporated into the state estimation equations 

(described in Chapter 2) by altering the measurement error covariance matrix R.  

The errors in the pseudo-measurement models described in Chapter 2 and the mixed-

pseudo measurement model developed in this chapter are all highly correlated. The 

correlation can be conceptualised by considering a simple example. Consider a 

scheduled power (SP) pseudo-measurement made at two busbars in an arbitrary 

network. At times of peak load, the SP pseudo-measurement is likely to under-estimate 
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estimate both loads. Thus, the errors in the pseudo-measurement error will be strongly 

correlated.  

It is therefore important to take into account the covariance of both inter and intra 

busbar measurement errors [46], as well as understanding their typical variance, and 

whether or not the errors are normally distributed. 

8.3.5.1 Analysis of the Pseudo Measurement Errors 

The scheduled power (SP), load estimation (LE) and mixed-model (MM) pseudo-

measurements were all analysed to assess 5 properties of the measurement errors: 

 Variance of errors in each phase: )(a
iX

 , )(b
iX

 and )(c
iX

  

 Real power error correlation, all phases, at bus i: ),( )()( m
i

p
i PP

eecorr  

 Reactive power error correlation, all phases, at bus i: ),( )()( m
i

p
i QQ

eecorr  

 Real and reactive power error correlation , all phases, at bus i: 

),( )()( m
i

p
i QP

eecorr  

 Real-real, reactive-real, reactive-reactive error correlation, at bus i, j: 

),( )()( m
j

p
i XX

eecorr  

The measurement models were tested using a combination of single phase and three 

phase data of real and reactive power demands recorded at four sites in the wider UK 

distribution network. Single phase data was recorded every 30 minutes for 10 days on 

phase A at all sites. Three phase data was available at one site over the same period. The 

load diversity of each site was comparable with each site comprising a mixture of 

industrial (1% to 2%), commercial (11% to 18%) and residential (77% to 88%) 

customers. 

The standard deviations of the measurement models are shown in columns 2 to 4 of 

Table 8.1. The inter-phase error correlations (columns 5 to 7) were obtained by 

averaging correlation coefficients of the measurement errors when applied to the three 

phase site data. The cross-busbar correlation coefficients (column 8) were obtained by 

averaging the correlation coefficients obtained when cross correlating the measurements 

errors of real and reactive power for phase A between two sites. The errors were tested 

for normality at the 5% significance level using the Anderson-Darling test [173] 

(column 9). 
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Table 8.1 shows that the SP, LE, and MM pseudo-measurements errors are highly 

correlated. There is also considerable correlation between the SP and LE models across 

different busbars (column 8 of Table 8.1). The SP measurement model failed the 

normality test, and the LE model passed the test for only 2 out of 4 sites. The properties 

of the errors shown in Table 8.1 can be used to form the covariance matrix for the state 

estimator. 

TABLE 8.1. MEASUREMENT ERROR VARIANCES AND CORRELATIONS OF THE DIFFERENCE TYPES OF PSEUDO-MEASUREMENT 

MODELS 

Pseudo-

Measurement Type 

a
iX



 

b
iX

  c
iX

  ),( m
i

p
i PP

eecorr

 

),( m
i

p
i QQ

eecorr  ),( m
i

p
i QP

eecorr

 

),( m
j

p
i XX

eecorr

 

Normally 

Distributed? 

As a percentage of 

scheduled 

 power at the 

busbar 

Real Measurements 0.02% 0.02% 0.02% 0 0 0 0 Yes 

Sch. Power (SP) 16% 16% 16% 0.99 0.96 0.78 0.87 No 

Load Est. (LE) 7% 7% 7% 0.93 0.61 0 0.52 Yes (2/4 

sites) 

Mixed Model (MM) 0.02% 10% 10% 0.98 0.96 0.78 0 Yes 

σ is the standard deviation, P and Q are real and reactive power measurements, X corresponds to an 

arbitrary real or reactive power measurement, p and m are arbitrary phases (a, b or c) and i, j are arbitrary 

busbars. 

8.3.6 Building a Correlated Measurement Error Covariance Matrix 

The correlation coefficient ρi,j defines the relationship between the covariance of the 

two measurements Xi and Xj normalized by the product of their standard deviations. 

This is described in (8.9) and (8.10). 

. 

jijiji XX  ),cov(, 

 
(8.9) 

2),cov(
ijji XX 

 
(8.10) 

The covariance matrix can be constructed using the correlation coefficients in Table 8.1. 

The diagonal terms are defined by the measurement type (either pseudo or real) and its 

associated standard deviation (columns 2 to 4 of Table 8.1). The off-diagonal terms are 

derived from the results in columns 5 to 8 of Table 8.1 and calculating the covariance 

using (8.10). 

The covariance matrix will also incorporate error estimates for voltage magnitude and 

line flow measurements. In this research, voltage magnitude and line flow 

measurements were only present when a monitor was available to monitor these 
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parameters. The errors in these measurements were therefore assumed to be independent 

of other pseudo or real measurements errors. 

8.3.7 Customer Types 

Each of the pseudo-measurement models discussed above will be influenced by the 

types of customers attached to each modelled section of network. Past analysis [67] of 

the UK distribution network divided the network into 4 customer types: domestic / 

unrestricted, domestic / economy, commercial and industrial. Each of these types of 

customers were found to have average lagging power factors of 0.95, 0.99, 0.98 and 

0.90 respectively [67].  

In this research, the data used to construct the pseudo-measurements models and target 

network to be studied have a broadly similar proportion of customer types attached to 

each busbar. It was therefore assumed that the average power factor would be roughly 

the linear combination of 1% industrial customers, 16% commercial and 83% 

residential (split 50% economy and 50% unrestricted). The modelled average power 

factor at every site was therefore 0.97. 

8.4 Methodology 

Three case studies were considered to illustrate the performance of the three phase 

distribution system state estimation approach.  

Firstly, the state of the network was estimated with full load on all busbars using an 

installed set of three phase monitors (Mi, representative of a set installed by a DNO) and 

single phase monitors (represented by MM pseudo-measurements) at all other 11kV 

busbars.  

Secondly, the state of the network was estimated at full load on all busbars using a set 

of three phase monitors (Mo) selected by single phase observability analysis along with 

single phase monitors (represented by MM pseudo-measurements) at all other 11kV 

busbars.  

Lastly, the state of the network was estimated over a 24 hour period using the Mi 

monitor set with each of the three types of pseudo-measurements at all non-monitored 

11kV busbars. 

The Mo monitor set was selected by performing single phase observability analysis on 

the network [58]. Mo was selected by evaluating single phase observability of the 

network for each of the 7

24...1
107.124  i

CiN combinations of monitors, and recording 
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the combination with the smallest number. Single phase observability analysis also 

reveals that the Mi cannot observe some sections of the 11kV and 33kV network (as 

shown in Fig. 8.1). Single phase observability analysis is representative of the kind of 

technique a DNO may use when considering where to place monitors in their network. 

Three phase observability analysis highlights that both the Mi and Mo monitor sets can’t 

observe three-phase voltages at unmonitored 11kV busbars. This is caused because the 

Δ-Y transformers halt the propagation of zero-sequence currents. With no knowledge of 

the zero sequence currents, their impact upon the level of unbalance on secondary side 

of the transformer is undefined. Single phase monitors and MM pseudo-measurements 

are required at all 11kV busbars to make the network three phase observable. 

In the third case study, the level of unbalance was estimated using the Mi monitor set. 

SP, LE and MM pseudo-measurements were added to all unmonitored 11kV busbars in 

a sequential fashion to create three separate sets of results. All of the busbars were 

loaded according the recorded historical data recorded over 24 hours on 1
st
 March 2008. 

Full details of the loading on each busbar can be found in Appendix B. 

Unbalance was simulated at 4 busbars in the network across all three case studies. 5% 

real and reactive power was added to the red phase (A) of busbars 17, 19 and 21, and 

15% real and reactive power on phase A of bus 15. This is shown in Fig. 8.1. 

The aim of the third study is to estimate the impact of unbalance on both the DNO and 

consumers over a longer period of time using each different pseudo-measurement 

model. This was evaluated by estimating the statistical distribution of the level of 

unbalance, the extra losses caused by unbalance, the expected duration that the level of 

unbalance exceeds statutory limits, and the expected derating of three phase machines in 

the network.  

A summary of the case studies is shown in the Table 8.2. 
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TABLE 8.2  PERFORMANCE OF EACH PAIR OF MONITORS WHEN MEASURING THE VUF 

Case Mon. PM Description Results 

1 Mi MM Estimate level and location of 

unbalance at peak load. 

Unbalance factor at buses 15, 20 & 21. 

Likely location of unbalance. 

2 Mo MM As above. As above. 

3.1 Mi MM Estimate the distribution of 

unbalance for a 24 hour time 
frame. 

Unbalance factor bus 21. 

Total losses. 
Regulatory limits (time >2%). 

Machine derating at bus 15. 

3.3 Mi
 

SP As above. As above. 

3.3 Mi
 

LE As above. As above. 

8.4.1 Monte Carlo Distribution State Estimation 

All of the results were obtained using a Monte Carlo simulation. 100 Monte Carlo 

scenarios were generated by running the state estimator with 100 sets of measurements 

each distributed as defined by their pseudo-measurement or real measurement error 

properties. 

8.5 Results & Analysis 

In each of the following case studies, a persistent level of load unbalance was added to 

buses 15, 17, 19 and 21. Fig. 8.3 shows the true level and location of the unbalance. 

Even though the emission of negative sequence energy is constrained to these four 

busbars, voltage unbalance was present at all of the buses in the network. 

 

Fig. 8.3. The magnitude of the VUF in % (light grey) and the magnitude of the injected negative 

sequence apparent power (white) at each bus in the network, with error bars representing the 

range of values of 90% mutual impedance errors. 

In all of the case studies it was assumed that the network was balanced and symmetric 

based on topological information obtained from the UK DNO. The effect of this 

assumption on the location and level of unbalance in the network was explored by 

adjusting the mutual impedance between phases AB, BC and CA in all lines in the 
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network to 90% of the mutual impedance between the other two phases [174]. The error 

bars in Fig. 8.3 show the range of variation which was observed whilst applying the 

asymmetric topologies. The purpose of this analysis is to highlight the variation in VUF 

and |S
(2)

|/|S
(1)

| caused by realistic network topology asymmetries. Fig. 8.3 shows that the 

asymmetry in topology causes the level of unbalance to vary by ±0.13% and also varies 

the magnitude of injected negative sequence apparent power by up to ±0.01%, both at 

bus 15. Thus, topological variations of this magnitude do not heavily influence either 

the location or level of unbalance for this study. 

Estimating the level and location of unbalance as close to the results shown in Fig. 8.3 

is the goal of the first two case studies. 

8.5.1 Case 1: Estimating Unbalance with Mi 

Fig. 8.4 (A), (B) and (C) highlight the results of the first case study by showing the 

VUF at important busbars (A), the percentage ratio of |S
(2)

|/|S
(1)

| (B), and its associated 

inter-quartile range (IQR) (C) (where S
(2)

=V
(2)

I
(2)*

 and S
(1)

=V
(1)

I
(1)* 

is the apparent 

negative and positive sequence power respectively). Fig. 8.4 (A) shows the distribution 

of the VUF at both buses 15 and 21 is fairly narrow, indicating a high level of accuracy 

in the VUF estimate. The spikes at 2.8% and 0.7% correspond with the true level of 

unbalance of 2.8% and 0.66% at buses 15 and 21 respectively.  

Fig. 8.4 (A) also shows the level of unbalance at bus 20. The unbalance here has a wider 

inter-quartile range than the other two busbars. This highlights that the monitor set was 

less ideally positioned to estimate the unbalance factor at this busbar. This was 

expected, since bus 21 resides within a single phase un-observable area of the network 

(see Fig. 8.1). 

Fig. 8.4 (B) shows that Mi was able to detect voltage unbalance appearing at buses 15, 

17 and 19 with a high level of certainty. However, there was ambiguity as to whether 

there was unbalance at bus 20, as indicated by the wide distribution at bus 20. This is 

highlighted in Fig. 8.4 (C), where a spike at bus 20 indicates that there was a large 

degree of uncertainty in the ratio of |S
(2)

|/|S
(1)

|.  

The ambiguity present at bus 20 means that the location of the unbalance source at bus 

21 was only loosely identified within a region of three buses (labelled 20, 21 and 22) 

using monitor set Mi. This information would be useful to a network operator to begin 

troubleshooting an unbalance problem, but more information (and hence more 

monitors) would be required to further define the exact unbalance source in the network. 
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It should be noted that this is not a deficiency of the proposed technique, but a 

validation that the method’s outputs depend on the quality of its inputs. 

8.5.2 Case 2: Estimating Unbalance with Mo 

Fig. 8.5 (A), (B) and (C) shows the results obtained with the Mo monitor set and MM 

pseudo-measurements at 11kV busbars. In contrast to Fig. 8.4 (A), the VUF 

distributions of Fig. 5 (A) are narrower, especially at bus 20. This is because unlike Mi, 

Mo has single phase observability over all busbars in the network. Fig. 8.5 (B) and (C) 

show that the uncertainty in the estimate of |S
(2)

|/|S
(1)

| at bus 20 is much reduced when 

compared with monitor set Mi. 

One interesting aspect of Fig. 8.5 (C) is the relatively high level of IQR at bus 21 when 

compared with other busbars. Bus 21 and its 33kV primary at bus 6 are not directly 

monitored. Their state estimates are made from multiple monitors (at buses 11 and 2) 

whose measurement errors compound together to increase the error at bus 21. If Mo is 

augmented to include an additional three phase monitor at bus 21, the inter-quartile 

range at bus 21 declines by a factor of 14 from 0.014% to 0.001%. This adds certainty 

that there is definitely an unbalance source at bus 21. This analysis highlights that in 

certain situations additional monitors may be required to increase precision. 

 

  

Fig. 8.4. Case study 1: estimating the level and location of unbalance using monitor set Mi (installed 

monitor set). 

0 

5 

10 

15 

20 

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 

P
ro

b
ab

ili
ty

 D
e

n
si

ty
 

Voltage Unbalance Factor (%) 

VUF at Bus 15 VUF at Bus 20 VUF at Bus 21 

(A) 

0.00 

0.10 

0.20 

0.30 

0.40 

1
5

 

1
6

 

1
7

 

1
8

 

1
9

 

2
0

 

2
1

 

2
2

 

2
3

 

2
4

 

|S
(2
) |

/|
S(
1)

| 
(%

) 

Bus 15 to 24 
(B) 

0 

0.01 

0.02 

0.03 

1
5

 

1
6

 

1
7

 

1
8

 

1
9

 

2
0

 

2
1

 

2
2

 

2
3

 

2
4

 

IQ
R

 |
S2

|/
|S

1
| 

Bus 15 to 24 
(C) 



Chapter 8: Estimating the Source and Effects of Unbalance 

 
215 

 

  
Fig. 8.5. Case study 2: estimating the level and location of unbalance using monitor set Mo (fully 

observable monitor set). 

8.5.3 Case 3: Estimating 24 Hours of Unbalance with Mi 

The last case study highlights the proposed method using each of the pseudo-

measurement types on an arbitrary winter day. The reported results for this case study 

focus on the distributions of the VUF at bus 21 and the impact of voltage unbalance on 

customers at bus 15.  

Bus 21 was analysed because it is single phase un-observable using the Mi monitor set 

and the accuracy of its state estimate will directly depend on the accuracy of the chosen 

pseudo-measurement model. Bus 15 was analysed because three phase machines 

connected to this busbar are highly sensitive to unbalance. 
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Fig. 8.6. VUF estimated over a 24 hour period using SP (graph A), LE(graph B) and MM (graph C) 

pseudo-measurements at bus 21. The dark line is the true VUF at bus 21 over 24 hours. 

 

 

 
Fig. 8.7. PDF of the VUF at bus 21 over 24 hours using SP (graph A), LE (graph B) and MM 

pseudo-measurement (graph C) with error bars showing the true range of VUF (0.4% to 0.66%) 

over the 24 hours. 

8.5.3.1 Unbalance Factor at Bus 21 

Histograms of the VUF at bus 21 over the 24 hour period using each of the pseudo-

measurement models are shown in Fig. 8.6 and Fig. 8.7. 
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The VUF at bus 21 varies from 0.40% to 0.66% throughout the 24 hour period. The 

MM pseudo-measurement ((C) of Fig. 8.6 and Fig. 8.7) model shows the tightest 

estimated distribution of the VUF of the three pseudo-measurement models. Fig. 8.6 

and Fig. 8.7 show that the estimated distribution for all of the pseudo-measurement 

models correctly overlaps the true VUF.  

Using any of the pseudo-measurement models, the right hand tails of the histograms of 

Fig. 8.7 (A), (B) and (C) all show that the VUF at bus 21 is not likely to exceed 1.5% 

within the 24 hour period. This information would allow a DNO to confidently predict 

that the level of unbalance at bus 21 did not exceed statutory limits over the past 24 

hours, using any of the three pseudo-measurement models. 

Fig. 8.7 (C) shows the expected distribution of the VUF is shifted roughly 0.1% lower 

than the true range of the VUF. This is shown again in Fig. 8.6 (C), where the 5% / 95% 

range for the mixed pseudo-measurement model consistently falls under the true VUF 

by approximately 0.1%. 

The under-estimation at bus 21 can be explained by analysing the estimated VUF at bus 

22. Like bus 21, bus 22 falls within a single phase un-observable island (as shown in 

Fig. 8.1) when using the Mi monitor set and no pseudo-measurements. The exact 

composition of the phase unbalance at these two busbars is therefore uncertain, and is 

estimated using pseudo-measurements. Unlike bus 21, bus 22 does not emit unbalance 

into the network. With no prior knowledge of the ratio of unbalance emissions between 

bus 21 and 22, the state estimator evenly apportions unbalance across both busbars. The 

level of unbalance in bus 21 is therefore underestimated (Fig. 8.7 (C)), and the level of 

unbalance at bus 22 is overestimated. The median VUF at bus 22 over the 24 hour 

period is 0.17%, whereas the estimated median is 0.23%; an overestimate of 0.06%. 

8.5.3.2 Total Losses Caused by Unbalance 

The fraction of losses caused by unbalance is shown in Fig. 8.8. The fractional losses 

are defined as in (8.11). 

100}/){(  bbifi PPPP  (8.11) 

where Pfi is the percentage fraction of losses caused by unbalance, Pi are the total real 

losses in the network with unbalanced loads and Pb are the total nominal losses in the 

network when each of the loads are perfectly balanced. 
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Fig. 8.8 shows that expected losses from unbalance vary from 0.3% to 0.8% of nominal 

losses for the 24 hour period. Fig. 8.8 also shows that the estimation of total network 

losses is minimally affected by the choice of pseudo-measurement model. 

Total losses of between 0.3% to 0.8% are slightly less than those reported in [1], which 

stated that losses caused by unbalance in a typical network could be between 1% to 4% 

of nominal losses. The loss profile in Fig. 8.8 would change significantly if the number 

of unbalanced loads increased or if the cables and lines involved in the network were 

also unbalanced. The transformers in the network also affect the overall unbalance 

losses. Δ-Y transformers stop the flow of zero sequence currents whilst generating 

losses through a circulating current in the Δ windings. 

It is expected that the loss estimates would be significantly affected by the choice of PM 

model if the single phase un-observable islands were larger or contained loads which 

with a higher MW rating. 

 

Fig. 8.8. The percentage losses caused by unbalance as a percentage of the total nominal losses for 

each of the pseudo-measurement models. 

8.5.3.3 Regulatory Limits: Estimated Time >2% 

2% voltage unbalance is an important regulatory limit for UK distribution networks. 

The state estimator can be used to estimate the expected time that the unbalance factor 

exceeds 2% for any busbar in the network using equation (8.12). 

dyyfYP )()2(

2






 

(8.12) 

where Y is a random variable that describes the VUF at an arbitrary busbar with 

probability density function f(y). Fig. 8.7 shows that at bus 21, P(Y>2)=0, as the 

distribution does not exceed 2% for the any of the pseudo-measurement models. 
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A similar calculation was performed at bus 15 which revealed that P(Y>2)=28%. This 

indicates that the DNO was in-violation of statutory limits for 28% of the day. 

8.5.3.4 Machine De-rating 

The state estimator can be used to statistically assess the impact of unbalance on three 

phase machinery placed anywhere within the network. For example, a three phase 

machine connected at bus 15 will have to be de-rated if the level of unbalance exceeds 

machine tolerances.  

Fig. 8.9 shows the probability density function for machine derating at bus 15. This was 

obtained by combining the probability density function of the VUF with the NEMA 

machine derating curve [175]. 

 

Fig. 8.9. PDF of machine derating at bus 15 during the 24 hour period. The highlighted bar 

indicates the median derating: 96% of full load. 

Fig. 8.9 shows that a three phase machine connected to bus 15 will have to be de-rated, 

perhaps by as much as 8% during some periods of the day. On average, it was found 

that the median machine derating at bus 15 during the 24 hour period was 0.96. This 

implies that a machine connected to this busbar will be de-rated by an average of 4%. 

Probability distributions for machine de-rating can also be obtained at busbars which 

are un-observable using statistical distributions such as those in Fig. 8.7. All of the 

pseudo-measurement models correctly predict that a machine connected to bus 20 or 21 

would not have to be de-rated during the 24 hour study period. 

8.6 Summary 

In this chapter, an online state estimator was developed which is capable of identifying 

the level, location and effects of voltage unbalance in a section of UK distribution 

network. 
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The first aim of this research was to develop a framework for performing three phase 

state estimation on a network where measurement information is incomplete. This aim 

was satisfied by developing a coherent methodology using distribution system state 

estimation (DSSE).  

Unlike the DSSE approach, developed in Chapter 2, the DSSE model in this chapter is 

three phase and incorporates the expected correlations between pseudo-measurement 

errors. The proposed methodology was shown to be practical, and gives guidance on 

how limited information from different monitoring sources (for example single phase 

monitors) can be pieced together to form a reliable three phase estimate for the state of 

the network.  

The second aim of this research was to estimate the level, location and impacts of 

unbalance on a typical distribution network. To achieve this goal, the methodology was 

validated on a section of the UK distribution network using real measurement data. It 

was shown to provide reliable statistical estimates for the level and location of 

unbalance and its effects on regulatory limits, losses and machine de-rating.  

The technique discussed in this chapter shares a number of similarities with the research 

developed for voltage sags in Chapters 4, 5 and 6. Like the voltage sag research, the 

developed methodology can work with any number of arbitrarily accurate monitoring 

devices. The output of the both the voltage sag profile estimation and the unbalance 

research are statistical distributions. The results of the unbalance and voltage sag profile 

estimation process can also be used to estimate the likely impact of these phenomena on 

customers within the network. 

In the next chapter, the techniques developed in this chapter will be merged with the 

earlier discussions on voltage sags. The aim will be to create a single impression of the 

network which can estimate the impact of both voltage sags and unbalance on 

customers within the network.  
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9 Weakest Areas & 

Worst Served 

Customers for Sags 

and Unbalance 

9.1 Introduction 

The discussion so far has focussed on how to independently monitor a network for 

voltage sags and unbalance. This chapter will draw the techniques together by showing 

how to identify both the weakest areas as well as the worst served customers for both 

phenomena with a single set of limited monitoring devices. 

The aim of this chapter is to demonstrate how the worst served customers and the 

weakest areas can be identified in feeder L of the 295 bus distribution network (Fig. 

4.3). This task will be accomplished using both a full and a limited set of monitors. The 

results presented in this chapter illustrates how the proposed approaches could be used 

to help distribution network operators (DNOs) plan infrastructure investment and 

optimise maintenance decisions, using only a limited set of monitors. 

It is expected that voltage sags (being the most prevalent power quality phenomenon) 

will contribute most towards negative effects on customers within the network. As 

unbalance detrimentally affects three phase machinery, it is expected to contribute less 

towards negative effects on customers. 
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9.2 Weakest Areas and Worst Served Customers 

Each of the techniques developed in this thesis have been shown to be capable of 

helping to identify the sources and impacts of both voltage sags and unbalance. The 

sources of power quality issues can be considered as weak areas and the customers 

affected can be regarded as the worst served customers. 

Chapters 4, 5 and 8 present techniques which can be used to identify weak areas whilst 

Chapters 6 and 8 present techniques which can be used to identify the worst served 

customers. 

9.2.1 Worst Served Customers 

Identifying the worst served customers for unbalance and voltage sags should 

summarise the resultant impact of both sags and unbalance at a particular location in a 

network. This is synonymous with understanding the power quality performance of a 

specific bus in a network. 

An ultimate common consequence of both a voltage sag and / or unbalance is an 

equipment trip. Trips due to unbalance are rarer and typically limited to three phase 

machinery. The configuration of the protection attached to a three phase machine 

determines whether or not it will trip during high levels of unbalance. Voltage sags 

however affect single phase and three phase loads, and their impacts can spread 

throughout the network. The resultant impact of both these power quality issues can be 

summarised by estimating the expected number of CIs at a busbar. If knowledge is 

available on the duration of an interruption caused by a sag or unbalance, it is then 

subsequently possible to determine the total customer minutes lost (CML). CIs and 

CML can also be segmented by customer type, to identify which types of customers are 

being affected most severely. 

The number of trips due to voltage sags can be determined using an immunity curve, for 

example the ITIC curve shown in Fig. 6.2. There is no equivalent immunity curve 

concept which defines when loads sensitive to unbalance sensitive will trip. It is 

reasonable to assume that trips are likely to start occurring after equipment has been 

exposed to a level of unbalance greater than regulatory limits (of say 2%), for greater 

than 10 minutes (as per EN50160 [10]). This concept is defined as a nominal trip. The 

unbalance immunity curve used to define nominal trips is shown in Fig. 9.1. 
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Fig. 9.1. The unbalance immunity curve used to define nominal trips. 

There are also other ways of defining the weakest areas of the network for both voltage 

sags and unbalance independently. For example, the number of sags at a busbar could 

be represented by the SARFI index [11], or a Generalized Sag Table [59]. The level of 

unbalance in % provides an indication of the severity of the unbalance problems at a 

busbar, as does amount of time unbalance exceeds a regulatory limit (such as 2%). The 

electrical loss caused by unbalance is another measure which DNOs would find useful 

when assessing the impact of unbalance in their network. 

The resultant impact of a trip is that electrical energy is not supplied to an area of 

network for a period of time. The total amount of electrical energy not supplied (EENS) 

is the total CML multiplied by the size of the load. Using additional knowledge of the 

types of customers attached to a busbar and therefore the average cost of an interruption 

for a given customer type, EENS, CML and trips can be combined to obtain the total 

economic cost of the interruption [2]. 

Identifying the worst served customers within the network is important from a 

regulatory and planning perspective. Regulators are interested in power quality 

performance metrics to ensure customers are being delivered a high quality service. 

Network planners are keen to understand potential power quality issues before new 

loads are connected to the network. 

9.2.2 Weakest Areas of the Network 

The most basic way of assessing the weakest areas of the network for voltage sags and 

unbalance is to identify the areas within the network with the highest fault rate and the 

areas with the most unbalanced loads. This analysis can be improved by considering the 

resultant impact of the voltage sags or unbalance in terms of customer interruptions 

(CIs), customer minutes lost (CML) or economic costs to either the DNO or the 
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customer. By assigning the impact of the power quality issue to its source, the relative 

strength of the network can be assessed. 

Identifying the weak areas in a network is most relevant to DNOs. It is important for 

DNOs to be able to identify weak areas so they can plan their re-enforcement strategy. 

Weak area analyses could also be used to help identify the root cause of specific 

problems impacting on one or a number of customers in a specific area of a network. 

9.3 Summary 

Table 9.1 summarises some of the metrics which can be used to assess the weakest 

areas and the worst served customers within the power network for voltage sags and 

unbalance. The bullet points highlighted in bold in Table 9.1 will be analysed in more 

detail on a case study network. 

TABLE 9.1. METRICS USED TO ASSESS A NETWORK’S WEAKEST AREAS AND WORST SERVED CUSTOMERS 

Power Quality 

Issue 

Worst Served Customers Weakest Areas of the Network 

Voltage Sags  Number of Trips (number) 

 Customer minutes lost (CML) 

 Economic impact of CML, no. of 

trips and energy not supplied (£) 

 SARFI Index 

 Generalized Sag Table  

 Source of Customer 

Interruptions (CIs) 

 Economic impact to the DNO (£) 

 Economic impact to the customer 

(£) 

 Customer minutes lost (CML) 

 Total MW not supplied (MW) 

Unbalance  Number of Nominal Trips 

(number) 

 Machine trips caused by unbalance 

(number) 

 Number of customer minutes lost 

due to unbalance nominal trips 

(CML) 

 Machine de-rating (MW not 

supplied) 

 Economic impact of CML, no. of 

trips and energy not supplied (£) 

 Level of VUF (%) 

 Time >2% VUF (time) 

 Asset damage caused by torsional 

oscillations and heating (£) 

 Source of Customer 

Interruptions (CIs) 

 Percent negative sequence energy 

injection S
(2)

/S
(1)

 (%) 

 Negative sequence energy injection 

(MVA) 

 Additional losses caused by 

unbalance (MW) 

 Asset damage caused by torsional 

oscillations and heating (£) 

 Customer minutes lost (CML) 

 Economic impact to the customer 

(£) 

 Total Economic impact to DNO (£) 

9.4 Case Study 

The aim of the case studies is to demonstrate how the number of trips, the number of 

CIs the level of unbalance and the location of unbalance (shown in bold in Table 9.1) 

can be obtained using limited monitoring and the techniques developed in this thesis. 
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9.4.1 Network 

It was proposed that the metrics described in Table 9.1 could be analysed using feeder L 

of the 295 bus generic distribution network (first described in Chapter 4). Feeder L 

consists of 95 11kV buses and 1 33kV busbar. The network was assumed to be fed 

through a balanced slack bus at 33kV modelled at bus 265.  

Feeder L was assumed to contain both residential and industrial customers. Three 

industrial customers were assumed to be connected to buses 137, 225 and 232, with the 

rest of the loads assumed to be a mixture of commercial and residential customers. 

Industrial loads were modelled to follow load profile 8 in Appendix D and residential 

and commercial loads were modelled to follow load profile 1 in Appendix D. The 

numbers and types of customer attached to each busbar are described in more detail in 

Appendix E. The power factor at each busbar was assumed to remain constant. 

9.4.2 Monitors 

Two sets of results were generated for each of the case studies. The first set assumes 

that monitors were installed at every bus in the network, whilst the second set assumes 

that only four monitors are installed in the network. The comparison of these two sets of 

results will highlight the accuracy of the techniques proposed in this thesis. 

Three phase power quality meters measuring 3-phase voltage magnitude (|V|) and real 

(P) and reactive power (Q) at each busbar were assumed to be installed at buses 130, 

204, 217 and 232. Single phase monitors were assumed to be installed at every busbar 

in the network which measure power consumption in one phase only. 

Three of the four monitors (130, 204 and 217) were derived from the optimal sag 

monitoring set determined in Chapter 7. An additional monitor installed on the 

secondary side of the primary substation (bus 232). This location was selected as an 

additional site for monitoring as DNOs have historically preferentially installed 

monitors at important substations to monitor both the busbars attached to 33kV to 11kV 

transformers. 

9.4.3 Unbalance 

The network was loaded for 24 hours (as described in Appendix B), with the exception 

of buses 130, 132, 163, 173, 209 and 220 where 5 times the 3 phase power demand was 

assumed to flow through phase A only. This modification was required to generate 

unbalance of greater than 2% in some areas of the network.  
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Unbalance was estimated using three phase and mixed model pseudo-measurements 

generated from three phase and single phase monitoring devices respectively. 

Unbalance was estimated using DSSE as outlined in Chapter 8. 

9.4.4 Voltage Sags 

Voltage sags were assumed to originate from single phase to ground (SLG) faults. 

Faults were simulated on 11kV overhead lines and cable. Three phase, line to line and 

double line to ground faults were not modelled because SLG faults are by far the most 

common type of fault, and to improve the interpretability of the results. 

Faults were simulated in proportion to the number expected to occur within a 24 hour 

period. Each cable was assumed to have a fault rate of 3.8×10
-2

 faults / day and each 

overhead line was assumed to have a fault rate 4.7×10
-2

 faults / day [129]. Each SLG 

fault was assumed to occur in the centre of each line, and modelled using the sag 

duration model described in section 6.4.3. 

It should be noted that by simulating faults in this way, the total number of faults 

recorded over the 24 hour study period will not be an integer number. The 24 hour study 

period was selected for this demonstration to simplify the loading of the network and 

eliminate factors which will otherwise complicate the results. Over a 24 hour period, the 

electrical load profile follows a broadly cyclical pattern. Over longer periods of time 

(such as a year), network loading is dependent on other factors which otherwise 

complicate the proposed study such as weather, time of year and type of day (e.g. 

holiday or working day). In reality, the performance of a network is more likely to be 

judged over a longer period of time. The objective of this study is to show that the 

proposed methods work accurately over short time periods so that they can be 

confidently applied to longer study intervals. 

Voltage sags were detected and estimated using the three phase monitoring devices and 

voltage sag profile estimation (as described in Chapter 4 to 6). 

9.5 Assessing the Worst Served Customers 

Worst served customer analyses focus on the customer who is most affected by the 

power quality issues. The worst served customers were assessed using three of the 

metrics shown in bold in Table 9.1: 

 Percentage of 24 Hour Period >2% VUF (Unbalance) 

 Number of Nominal Trips Caused by Unbalance 
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 Number of Trips Caused by Voltage Sags 

It should be noted that any of the metrics outlined in Table 9.1 could be used to identify 

the worst served customers for voltage sags and unbalance using the techniques 

presented in this thesis. The metrics presented in this chapter were chosen to illustrate 

the flexibility of the proposed methods. 

9.5.1 Percentage of 24 Hour Period >2% Unbalance 

The amount of time that each bus rose above 2% unbalance was estimated using DSSE 

and calculating the percentage of the 24 hour period when the level of unbalance was 

above 2%. This is important information which enables a DNO to asses which buses are 

violating regulatory limits and also provide information on which busbars would be 

likely to generate equipment trips. 

9.5.2 Number of Trips Caused by Unbalance 

The total number of trips caused by unbalance was estimated using DSSE (as described 

in Chapter 8). All residential loads were assumed to be immune to the effects of 

unbalance, since these customers were assumed to be connected to one phase only. It 

was also assumed that increases or declines in voltage caused by unbalance on any one 

phase were assumed to be lower than the threshold that would cause single phase 

equipment to fail or malfunction. The three phase industrial loads attached to buses 137, 

225 and 232 were assumed to trip if the level of unbalance at any of these busbars 

exceeded 2% for any 30 minute period. 

9.5.3 Number of Trips Caused by Voltage Sags 

The total number of trips caused by voltage sags was estimated using voltage sag 

impact estimation as described in Chapter 6. All residential and industrial loads were 

assumed to follow the ITIC immunity model outlined in Chapter 6. A trip was assumed 

if the voltage and duration violated the ITIC immunity curve in any of the three phases 

attached to a busbar. 

9.6 Assessing the Weakest Areas of the Network 

Weak area analyses focus on the source of the power quality issue: faults for voltage 

sags and unbalanced loads for voltage unbalance. Faults can be located using the 

techniques described in Chapter 5 and unbalanced loads can be found using the 

techniques described in Chapter 8.  
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Unbalance sources are not independent, and it is beyond the scope of this research to 

identify how the various sources of unbalance interact. The impacts of unbalance were 

assigned to unbalanced loads in proportion to the amount of negative sequence apparent 

power injected into the network and these results were visualised graphically. The 

unbalanced loads with the highest resultant impact on customers were defined as the 

weakest areas for unbalance. 

Voltage sags are independent stochastic events, and thus each sag incident can be 

clearly associated with a resultant impact (in terms of, for example, CIs, CMLs or 

economic costs). By locating the source of a voltage sag, and assigning its impact to its 

source, a map of the network was obtained showing the areas where sources of voltage 

sags were that generate the worst effects on customers. These areas were defined as the 

weakest areas for voltage sags. 

There were three metrics that were considered to identify weak areas of the network for 

voltage sags and unbalance: 

 Negative Sequence Energy Injection (Unbalance) 

 Sources of Customer Interruptions (CIs) Caused by Unbalance 

 Sources of Customer Interruptions (CIs) Caused by Voltage Sags 

Assigning an incident’s impact to its source is much more informative than simply 

describing the areas with the incident rate. By assigning the incident’s impact to its 

source, the weakest areas of the network are identified as regions where faults occur and 

subsequently affect the most customers. This idea can be extended to find the areas of 

the network with the faults which cause the highest economic impact on customers in 

the network. 

9.6.1 Sources of Negative Sequence Energy Injection 

The location of sources of negative sequence energy injection can be used to identify 

sources of unbalance in the network. The methodology from Chapter 8 and DSSE was 

used to estimate the median percentage ratio of negative to positive sequence apparent 

power (|S
(2)

|/|S
(1)

|) over the 24 hour period. 

9.6.2 Sources of Customer Interruptions (CIs) Caused by Unbalance 

CIs caused by unbalance were measured using the same method as defined for the worst 

served customer analysis. The CIs were then allocated to unbalanced loads in proportion 

to the estimated absolute level of negative sequence energy injection at each bus. 
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The analysis on the sources of negative sequence energy injection focussed on the ratio 

of |S
(2)

|/|S
(1)

| to locate potential sources of unbalance. |S
(2)

|/|S
(1)

| is a relative measure 

which is dependent on the size of the load. Therefore, it was decided that impacts (CIs) 

should be assigned in proportion to |S
(2)

|, rather than |S
(2)

|/|S
(1)

|. The results of this style 

of analysis should provide a DNO with a prioritised list of the areas which generate the 

most significant unbalance impacts on their network. 

9.6.3 Sources of Customer Interruptions (CIs) Caused by Voltage Sags 

CIs caused by voltage sag were assessed using the same procedure as defined to identify 

the worst served customers. Probabilistic fault location was applied (Chapter 5) to 

estimate each voltage sag’s location. The CIs for each voltage sag were then assigned to 

the estimated fault locations in proportion to the fault location’s probability for each line 

in the network. 

9.7 Results: Worst Served Customers 

9.7.1 Percentage of 24 Hour Period >2% Unbalance 

Fig. 9.2 and Fig. 9.3 show the percentage of the 24 hour period where the voltage 

unbalance factor (VUF) was estimated to be over 2%. Fig. 9.2 shows the results of the 

estimated time that unbalance was greater than 2%, whilst Fig. 9.3 shows the same 

metric estimated using limited monitoring. The areas with the most significant 

unbalance are located around the unbalanced loads. The unbalance located around bus 

209 propagates over the largest area, whilst the unbalance at buses 130 and 132 affects 

fewer customers for smaller amounts of time. 

The areas estimated using only four monitors (Fig. 9.3) are larger than those estimated 

using monitoring at every busbar (Fig. 9.2), highlighting only four monitors may not be 

an ideal solution. Nevertheless, the two maps of the network broadly match, in 

particular the critical areas with the highest unbalance, and both of the heat maps show 

that the level of unbalance is above 2% in a large area of the network. 

Both Fig. 9.2 and Fig. 9.3 show that the level of unbalance at the busbars with sensitive 

three phase industrial loads is only above 2% at bus 137 (shown in the bottom left 

corner of the network). Because single phase customers are not affected by voltage 

unbalance, the only customers likely to be impacted by unbalance in this network will 

be limited to the industrial customers attached to bus 137. 
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Fig. 9.2. A heat map of the 96 bus network showing the worst served customers in the network as 

described by the expected amount of time a bus is >2% unbalanced using monitors at all busbars in 

the network. 
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Fig. 9.3. A heat map of the 96 bus network showing the worst served customers in the network as 

described by the expected amount of time a bus is >2% unbalanced using monitors at 4 busbars in 

the network. 
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Insight into the uncertainty of the limited monitoring estimate can be obtained by 

reviewing the distribution of the voltage unbalance factor (VUF) as estimated at each of 

the busbars in the network at peak load. Fig. 9.4 shows the distribution of the voltage 

unbalance factor estimated using four monitors at peak load. The 90% interval for buses 

144 to 154, 225 and 232 are all contained below 2%, thus it is unlikely that a trip will 

ever occur at any of these busbars based on a 2% immunity model. Fig. 9.4 shows that 

the inter-quartile range for the VUF estimated at peak load ranges from 0.05% to 

0.86%. Fig. 9.4 confirms that the accuracy of the estimation results obtained using 

limited monitoring varies depending on which bus is being estimated. 

 

Fig. 9.4. The distribution for the voltage unbalance factor at all loaded busbars in the network 

estimated for a 30 minute interval at peak load. The boxes represent 25% to 75% percentiles, and 

the lines cover all data points that are not deemed to be outliers. 

9.7.2 Number of Trips Caused by Unbalance 

Unbalance trips are localised to sensitive three phase loads. The worst served customers 

for unbalance will always be three phase customers since single phase customers are 

generally not affected by unbalance (as discussed before). 

Fig. 9.5 and Fig. 9.6 show the expected number of trips caused by unbalance over the 

24 hour period. As expected, the trips are localised to bus 137 which is the only three 

phase load located within the region where the level of unbalance exceeds 2%.  

The estimated number of trips shown in Fig. 9.6 (obtained using 4 monitors) is very 

similar to the true number of nominal trips estimated with monitoring at every busbar. 

With 4 monitors, the estimated number of trips at bus 137 is 14.6, whereas with all 

monitors, this number increases to 17 trips in 24 hours. This supports the conclusion 

that four monitors can sufficiently accurately monitor this network for voltage 

unbalance. 
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Fig. 9.5. A heat map of the 96 bus network showing the worst served customers described by the 

number of customer interruptions caused by voltage unbalance over a 24 hour period using 

monitors at all busbars. 
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Fig. 9.6. A heat map of the 96 bus network showing the worst served customers described by the 

number of customer interruptions caused by voltage unbalance over a 24 hour period using 

monitors at 4 busbars. 



Chapter 9: Weakest Areas & Worst Served Customers for Sags and Unbalance  

 
233 

Information on the accuracy of the trip estimates obtained at bus 137 using limited 

monitoring can be obtained by reviewing the distribution of the estimated VUF at bus 

137 during the past 24 hours. This is the same technique which was applied in Chapter 8 

to estimate the level of unbalance in a 24 bus network.  

Fig. 9.7 shows the distribution of the voltage unbalanced factor estimated over the full 

24 hour period using 4 monitors. The average inter-quartile range across the period is 

0.35%. It can be concluded from Fig. 9.7 that any unbalance trips will be likely to occur 

between 6am and midnight, and unlikely to occur between midnight and 6am. 

 

Fig. 9.7. The distribution of the VUF at bus 137 over the 24 hour study period estimated using 4 

monitors.  

9.7.3 Number of Trips Caused by Voltage Sags 

Fig. 9.8 and Fig. 9.9 show the expected number of trips caused over a 24 hour period at 

each of the busbars in the network using monitors at all busbars and monitors only at a 

four busbars in the network. The number of trips can be broadly split into two sets of 

customers as shown by dotted red lines. These regions broadly separate customers into 

two groups: customers with more than 0.006 trips per day and customers with less than 

0.006 trips per day. The size of the group estimated with limited monitoring (Fig. 9.9 

where greater than 0.006 trips per day occur) is larger than the same group obtained 

using a complete set of monitors. The results in Fig. 9.9 highlight that limited 

monitoring can provide an accurate estimate for the voltage sag performance in a region 

of network where monitoring is incomplete. 
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Fig. 9.8. A heat map of the 96 bus network showing the worst served customers in the network as 

described by the expected number of trips caused by single line to ground faults over a twenty four 

hour period using monitors at all busbars. 
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Fig. 9.9. A heat map of the 96 bus network showing the worst served customers in the network as 

described by the expected number of trips caused by single line to ground faults over a twenty four 

hour period using monitors at 4 busbars. 
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Comparing Fig. 9.8 and Fig. 9.9 highlights the uncertainty inherent in estimating the 

number of trips using a limited monitoring set. Fig. 9.9 shows that the approximated 

estimate for the number of trips in the network matches closely to the true number of 

trips (Fig. 9.8). The median error across all busbars in number of trips was 4%. The 

largest inaccuracy in sag trip estimation was 17% at bus 148, where the number of 

interruptions was estimated as 2.3×10
-3

 trips per year, and with four monitors it was 

estimated as 2.7×10
-3 

trips per year. 

Further uncertainty analysis could be conducted by analysing the spread of the 

estimated during fault voltage profile using the techniques described in Chapter 6 and 7. 

9.8 Results: Weakest Areas of the Network 

9.8.1 Negative Sequence Energy Injection 

The level of negative sequence energy injected into the network can be visualised by 

estimating the ratio of negative to positive sequence energy injected at each of the nodes 

in the network. Fig. 9.10 shows the areas of the network which are the most likely 

sources of unbalance using 4 monitors. The more overlap there is between regions 

where the green unbalanced loads and red hot spots are, the better the estimation results. 

Fig. 9.10 correctly highlights the areas where there are likely sources of unbalance. All 

the methods developed in this research are statistical, so it is also important to assess the 

distribution of |S
(2)

|/|S
(1)

| unbalance at each busbar to narrow down where operators 

should start diagnosing problems. 

Fig. 9.11 shows the distribution of errors of the estimated |S
(2)

|/|S
(1)

| injections across the 

network for a single half hour interval. A single operating point (represented by a half 

hour interval) was chosen to ensure that only the variation in error of |S
(2)

|/|S
(1)

| was 

captured in the results. Selecting a longer period would introduce the natural variation 

of |S
(2)

|/|S
(1)

| which would make it difficult to discriminate between variation in error 

and natural variation. The highlighted busbars are those with unbalance. 

Upon reviewing Fig. 9.11 it is possible to discern that buses 163, 173, 220, 130 and 132 

all have relatively low inter-quartile ranges compared with other busbars but they still 

inject a reasonable level of unbalance into the network. This means the state estimator is 

more certain that these buses are a definite source of unbalance than other locations. 

These busbars would therefore be a good candidate to begin an investigation to 

ultimately rebalance the network. 
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Fig. 9.10. The median percentage |S
(2)

|/|S
(1)

| injected into the network as estimated by 4 monitors. 

 

Fig. 9.11. The distribution of percentage S
(2)

/S
(1)

 across all unloaded busbars. The boxes represent 

25% to 75% percentiles, and the lines cover all data points that are not deemed to be outliers. The 

unbalanced busbars are 130, 132, 163, 173, 209 & 220. 

9.8.2 Sources of Customer Interruptions Caused by Unbalance 

The sources of unbalance in the network interact together to produce trips at customer 

busbars. Fig. 9.12 and Fig. 9.13 show the areas in the network which are most likely to 

generate the most number of CIs. Fig. 9.12 and Fig. 9.13 both show that the load at bus 
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163 generates the most numbers of CIs. The weakest area of the network for unbalance 

can therefore be defined as bus 163, shortly followed by 173. 

Unlike Fig. 9.10, the estimated regions shown in Fig. 9.13 are limited to unbalanced 

loads. Although this suggests the limited monitoring techniques are more accurate at 

estimating |S
(2)

| rather than |S
(2)

|/|S
(1)

|, this result is caused because the unbalanced loads 

at busbars 132, 163, 209, 130, 220 and 173 are up to 4 times as larger than any of the 

other loads shown in Fig. 9.10. Thus, the level of |S
(2)

| dominates at these busbars. 
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Fig. 9.12. The estimated number of customer interruptions caused by unbalanced loads allocated in 

proportion to the estimated amount of |S
(2)

| at each load estimated using monitors at all busbars. 

9.8.3 Sources of Customer Interruptions (CIs) Caused by Voltage Sags 

The number of customer interruptions caused by voltage sags can be visualised by 

assigning the interruptions to their source. Fig. 9.14 and Fig. 9.15 show the number of 

customer interruptions estimated over the 24 hour period using monitors at all busbars 

and monitors at only four busbars. The total number of CIs caused by faults in the 

weakest areas of the network reaches 0.01 customer interruptions (CIs) per day. In the 

strongest areas of the network, this figure is averages 0.002 CIs per day. 
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Fig. 9.13. The estimated number of customer interruptions caused by unbalanced loads allocated in 

proportion to the estimated amount of |S
(2)

| at each load estimated using four monitors. 

In Fig. 9.14 and Fig. 9.15, the network has been divided into two sets of regions: strong 

areas and weak areas. Weak areas are broadly defined as regions where faults occur and 

subsequently cause more than 0.008 CIs. Strong areas are defined as regions where 

faults can occur and cause less than 0.002 CIs per day.  

Through visually analysing Fig. 9.15 and Fig. 9.14 it can be seen that they correlate 

strongly, and the same areas of the network are identified as weak. In both diagrams, the 

weakest region of the network is found in the centre of the network. It can be inferred 

that the stronger areas of the network are typically located at the end of long feeders. 

This conclusion can be explained by considering that faults occurring at the ends of 

feeders are likely to have only a limited localised effect, and thus only affect customers 

close to the fault. 

Uncertainty in the voltage sag weak area assessment will be caused by inaccuracies in 

trip estimation technique and inaccuracies fault location algorithm. 
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Fig. 9.14. A heat map of the 96 bus network showing the weakest areas of the network expected 

number of customer interruptions caused by single line to ground faults over a twenty four hour 

period using monitors at all busbars. 
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Fig. 9.15. A heat map of the 96 bus network showing the weakest areas of the network expected 

number of customer interruptions caused by single line to ground faults over a twenty four hour 

period using four monitors. 
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The accuracy of the fault location algorithm will vary depending on where the fault 

occurred in the network. For each fault, it is possible to determine the number of lines 

where the fault location estimated that the fault could have occurred with a probability 

of greater than 0.01. This is shown in the heat map of Fig. 9.16.  
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Fig. 9.16. The number of lines with a probability of > 0.01 where the fault location algorithm and 4 

monitoring devices estimated that faults could occur. 

Fig. 9.16 highlights two regions where if a fault occurs, they will be localised to around 

12 lines in the network. Fig. 9.16 provides a guide for where the results of weak area 

analyses with four monitors may be most unreliable. 

9.9 Globally Worst Served Customers & Weakest Areas 

The results presented in this chapter provide sufficient evidence to be able to identify 

the worst served customers and the weakest areas of the network for both unbalance and 

voltage sags together.  

When combining results, both measures must be on the same scale. One way of 

defining the globally worst served customers is to consider the busbars with the highest 

number of customer interruptions. Global weakest areas could be considered as source 

locations which generate the largest numbers of CIs. 
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9.9.1 Global Worst Served Customers 

For this case study, the globally worst served customers will be heavily dominated by 

the trips caused by unbalance (Fig. 9.12 and Fig. 9.13). This is because the immunity 

model assumed for the three phase load at bus 130 assumes that a trip will occur if the 

VUF exceeds 2% for a 30 minute period and could therefore reach a maximum of 48 

trips in a 24 hour period. Because unbalance trips were localised to bus 130, the number 

of trips caused in the rest of the network will follow the same pattern as observed for 

voltage sags (Fig. 9.8 and Fig. 9.9).  

Table 9.2 shows the top ten globally ranked buses as defined in terms of the number of 

trips for voltage sags and unbalance over a 24 hour period. 

TABLE 9.2. THE GLOBALLY RANKED TOP TEN WORST SERVED CUSTOMERS 

 
Unb. 

Trips 

Voltage Sag Trips 

Bus Ranking (All 

Monitors) 

137 205 206 207 208 209 204 175 176 177 

Number of Trips / 24 

Hours (All Monitors) 

17* 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0069 0.0069 0.0069 

Bus Ranking (4 Monitors) 137 172 171 219 205 203 206 217 208 174 

Number of Trips / 24 

Hours (4 Monitors) 

14.6* 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 

* Unbalance trips only affect three phase machinery. 

The locations of the buses ranked using 4 monitors are in similar locations to the buses 

ranked using monitors at every busbar. For example, buses 173 and 174 are very close 

to buses 175, 176 and 177. This result corroborates with the heat map for voltage sag 

trips shown in Fig. 9.9 which shows that a network wide estimation of the number of 

trips using 4 monitors discriminates the network wide variation in trip rates which can 

be picked up with full monitoring (Fig. 9.8). Table 9.2 also shows that the trip rates for 

voltage sag trips are very similar, which implies that it will be very difficult to obtain a 

perfect match between the bus ranking estimated using 4 monitors (when incorporating 

measurement errors) and the bus ranking obtained using all monitors. 

Using all monitors, the top 10 worst served customers are located in two distinct regions 

of the network at the end of two feeders: one section containing buses 205, 206, 207, 

208, 209 and 204 and the other section contains buses 175, 176 and 177. Using four 

monitors, the 10 worst served customers are located in broadly similar regions; the 5
th 

to 

7
th

 worst served customers in a region containing busbars 203 and 205, 206 and the 2
nd

, 

3
rd

, 4
th

, 7
th

 and 10
th

 buses are contained within a region containing buses 172, 171, 219, 
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217 and 174. Both of these two areas identified by the two monitor sets are towards the 

end of the two feeders shown on the far right of Fig. 9.8. 

Care must be taken when using these results to guide the deployment of new loads in 

the network. Although bus 130 is the busbar where trips are most likely to occur, trips 

will only occur if three phase machinery is attached to the network at this busbar. To 

overcome this issue, the worst served customers could be segmented by load type. 

9.9.2 Global Weakest Areas of the Network 

The global weakest areas of the network can be considered as the areas of the network 

which cause the greatest number of customer interruptions (CIs). Unlike worst served 

customers, the weakest area analysis takes into account the number of customers 

attached to each busbar and focus on the source of the power quality incident. 

In this case study, voltage sags were assumed to occur on lines whilst unbalance was 

simulated as originating from loads attached to busbars. To allow a comparison between 

these two sets of locations each fault location was moved from the centre of the line and 

evenly assigned to the bus at the start and end of the line. Thus, the locations for the 

weakest areas of the network were consistently defined in terms of areas defined by 

busbars. 

Table 9.2 shows the top ten globally ranked buses as defined in terms of the areas which 

are most likely to cause the largest number of customer interruptions. The number of 

CIs caused by voltage sags is much larger than the number of trips in Table 9.2, since 

the number of CIs also incorporates the numbers of customers attached to each busbar. 

TABLE 9.3. THE GLOBALLY RANKED TOP TEN WEAKEST AREAS IN THE NETWORK 

 Dominated by Unbalance CIs Dominated by Voltage Sag CIs 

Rank 1 2 3 4 5 6 7 8 9 10 

Bus (All Monitors) 209 163 173 220 130 132 146 153 155 156 

Number of CIs Caused by this 

Area / 24 Hours (All Monitors) 

3.02 2.85 2.44 2.39 2.36 2.33 0.081 0.077 0.076 0.076 

 Dominated by Unbalance CIs 

Bus (4 Monitors) 163 173 220 209 130 132 129 204 217 219 

Number of CIs Caused by this 

Area / 24 Hours (4 Monitors) 

3.52 2.15 1.33 1.25 0.90 0.74 0.24 0.22 0.20 0.18 

The top ten weakest areas were heavily dominated by unbalance, in the same way as the 

worst served customers were located at busbars sensitive to unbalance. This is because 
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the resultant number of trips caused by the negative sequence energy injections was 

much higher than any trips caused by voltage sags. 

The top four weakest areas for voltage sags are located in the central section of the 

network. These busbars can all be found in the ellipsoid area shown in Fig. 9.14 and 

Fig. 9.15. Although the busbars ranked using 4 monitors are different to those obtained 

using monitoring at all busbars, the buses are located in the same area , so both 

monitoring approaches can successfully identify the same important areas of the 

network whilst prioritising within that areas may be more difficult. 

9.10 Summary 

The aim of this chapter was to show how the approaches proposed in this thesis could 

be applied to help DNOs plan infrastructure investment and optimised maintenance 

decisions using only a limited set of monitors. It was hoped that a realistic case study 

would go some way to validating that the proposed approaches could be used in a 

practical manner. 

The worst served and weakest areas of the network were obtained by considering a 

number of power quality metrics. The metrics selected for this research were focussed 

on trips, and customer interruptions. The study focussed on these trips in order to limit 

the scope of the demonstration and also maintain its relevance to the previous 

discussion in this thesis. It is straightforward to see how a study focussing on trips could 

be extended to economic appraisal using economic interruption costs available in [2]. 

The results presented in this chapter show that even with a limited number of monitors, 

the worst served customers and weakest areas of the network for voltage sags and 

unbalance can be successfully identified. The results using a limited monitoring are not, 

nor can they be, as accurate as those that can be obtained with full monitoring. There is 

always more uncertainty in limited monitoring estimates and the estimates therefore 

include additional errors. 

The inaccuracy in limited monitoring metric estimates were found to either mask subtle 

parameter variations, or broaden the estimated regions where problems were likely to be 

found. When estimating the number of trips at each busbar caused by voltage sags, the 

limited monitoring results failed to pick out the variation across the network where trips 

were likely to occur. Applied to estimate the source of unbalanced loads, the limited 

monitoring estimates yielded results that spilled beyond the problem busbars. 
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The techniques proposed in this thesis are all probabilistic, and therefore a level of 

certainty can be assigned to each estimate of a parameter. This was used in the chapter 

to show how the worst served customers for unbalance could be identified. The existing 

body of power systems research mainly focuses on estimating metrics in a deterministic 

manner, thus, the ability to attach uncertainty to calculated metrics is an important 

advancement. By defining the level of uncertainty associated with a monitoring result, it 

should also be possible for DNOs to more accurately quantify the risk that intervention 

or investment is required. 

The study scenario considered in this chapter was fabricated based on the likely loading 

of a typical UK distribution network. It is therefore difficult to derive any reliable 

conclusions between the relative importance of unbalance and voltage sag power quality 

issues, other than noting that unbalance only typically affects three phase machinery and 

voltage sags affect all types of electrical load. Applying the techniques developed in this 

chapter (and thesis) to a real section UK distribution would provide further guidance on 

the extent to which these two power quality issues affect customers. 
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10 Conclusions & 

Future Work 

10.1 Conclusions 

The core objective of the research presented in this thesis was to formulate a series of 

new and novel techniques which are capable of identifying the weakest areas and the 

worst served customers for voltage sags and unbalance using a limited set of power 

quality monitors. Monitoring a power network with a limited set of monitors is a 

pertinent problem for modern distribution network operators, because of the current 

international trends towards tighter regulation, greater use of power quality and 

reliability contracts and the drive towards increased distribution network operational 

efficiency as part of the smart grid agenda. Monitoring for power quality issues such as 

voltage sags and unbalance is important because these issues cause significant economic 

losses to customers as well affecting a distribution network operator’s (DNO’s) 

operational and regulatory performance. By effectively managing these issues, a DNO 

has the potential to benefit from regulatory incentives, decreased losses, increased 

operational performance and greater return on investment. The key challenge from a 

research perspective is how to interpret the vast quantities of data emanating from 

distribution networks to yield knowledge about network performance that can guide 

network operation and investment.  

Though it is never possible to fully explore every aspect and detail of a research area 

within a limited time and scope project, the research presented in this thesis develops 

several new and novel techniques which advance the topic of power quality monitoring. 

The research goes some way to satisfying all of the aims and hypotheses which were 

identified at the start of the discussion. 
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The research presented in Chapters 4, 5 and 6 described a new way of processing 

monitoring information to interpret voltage sag performance in terms of customer trips. 

The aim of Chapter 4 was to demonstrate how voltage sags can be first detected and 

classified using artificial intelligence classification algorithms and a limited set of 

potentially erroneous monitors. The method was shown to work with very few monitors 

(less than 5 in a 295 bus network), achieve classification accuracies in excess of 99%, 

robustly deal with measurement error as well as working with varying fault impedances 

and pre-fault loading conditions. Chapter 4 also compared a variety of classification 

techniques and provided some evidence that the Artificial Immune Recognition System 

(AIRS) classifier is a poor classification algorithm when compared with other more 

conventional techniques. Understanding where new classification algorithms (like 

artificial immune systems) could be advantageously applied to power systems is an 

important current research topic, and the results shown in this thesis show areas where 

their application is less advantageous.  

The voltage sag research continues in Chapter 5 where a new technique was presented 

which can robustly localise and estimate the voltage sag profile using a limited set of 

monitors whilst dealing with measurement error. The method was shown to be able to 

formulate a statistical estimate for a voltage sag’s location and the voltage sag’s 

magnitude profile at non-monitored busbars. This is in contrast to existing voltage sag 

localisation and profile estimation techniques which tend to focus on producing a single 

deterministic estimate for both of these properties. The method further differentiates 

itself from existing techniques by being able to synthesize information from an arbitrary 

set of monitoring devices such as relays, power quality meters, disturbance recorders 

and phasor measurement units, all of which have potentially varying levels of accuracy. 

The developed technique also helps to eliminate the problem of multiple impedance 

path estimates by selecting the statistically most probable fault locations. A further 

useful aspect of the developed technique is its ability to identify potentially faulty 

monitors by using statistical tests. 

The final aspect of the voltage sag performance monitoring research was a method 

capable of estimating the impact of voltage sags on customers in the network (which 

was presented in Chapter 6). The method builds upon the voltage sag profile estimation 

algorithm (developed in Chapter 5) to yield a probabilistic assessment of the likelihood 

of a trip. A key contribution of this aspect of the research is a generalised measure 

known as the sag trip probability (STP) which defines the probability of an equipment 
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trip. The STP can be additionally used to derive the number of trips caused by voltage 

sags over a series of events or a defined time period. A key difference between the STP 

and other existing sag performance monitoring indices is that the measure takes into 

account both measurement and equipment uncertainties. Most existing measures for 

voltage sag performance deterministically measure the technical performance of a 

busbar without determining the impact of a sag on end users. 

One of the aims of this thesis was also to present a new method which would allow 

power system operators to be able to add new monitors to existing monitor deployments 

whilst taking into account future uncertain load and topology scenarios. Chapter 7 

presented a practical method which is capable of optimally locating monitors to observe 

the effects of voltage sags using the STP (developed in Chapter 6). The methodology 

used an immune inspired optimisation process (known as the B-Cell algorithm) which 

was shown to yield promising results. It was thought that the immune inspired 

technique was particularly suited to the task of optimal monitor placement because it is 

a population based algorithm which is capable of maintaining a range of near optimal 

solutions. This adds robustness into the optimisation solutions when they are exposed to 

topology and loading uncertainties and also gives network operators the flexibility to 

choose from a suite of locations for future monitor placements. Another novel aspect of 

the developed monitor placement technique was its ability to focus on accurately 

estimating impacts of voltage sags rather than simply estimating voltages. This is 

important, since it allows operators to place monitors in locations best able to estimate 

the economic impacts of voltage sags on end users. This topic is of particular relevance 

in a regulatory environment which is increasingly looking to holistically monitor 

voltage sag performance from the customer’s perspective. 

The voltage unbalance monitoring technique developed in this thesis used a newly 

developed distribution system state estimation (DSSE) method to provide a statistical 

estimate for the level, location and effects of unbalance in a network. This method was 

developed and tested on a generic distribution network and the results were presented in 

Chapter 8. In a similar way to the methods developed for voltage sags (in Chapters 4 to 

6), the framework was shown to work effectively even when measurement information 

was incomplete. Measurement information was estimated by creating pseudo-

measurements which took into account the correlated nature of three phase unbalanced 

loads and incorporated other measurement information such as single phase data. These 
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types of technique should play an important role in monitoring unbalanced distribution 

networks where monitoring information is limited. 

The last major component of the research presented in this thesis was a series of case 

studies demonstrating how all of the developed techniques could be applied to a generic 

section of a UK distribution network. The aim was to identify the globally worst served 

customers and the weakest areas of the network for both voltage sags and unbalance 

using a limited set of power quality monitors and then subsequently visualise the results 

using a set of heat maps. The results highlighted that weak areas and worst served 

customers could be identified effectively in a 100 bus network using only 4 monitors. 

Comparing the results obtained using limited monitoring with those obtained using full 

monitoring highlighted that limited monitoring can sometimes mask subtle variations in 

the results of unbalance and voltage sag analysis. The results demonstrated that 

although there is always a loss of accuracy with a limited number of monitors, the 

developed techniques can always identify the broad area where problems are found or 

customers are being affected. The case studies also demonstrate the power of the 

statistical nature of the developed techniques by showing that a level of certainty can be 

applied to each of the estimation results. The new way of visualising results using a heat 

map is a powerful vindication that the developed methods could be implemented to 

observe the power quality performance of modern distribution networks. 

All of the results presented in this thesis have validated using a 295 bus generic 

distribution network or a real 24 bus model of the UK’s distribution. The methods 

presented in this thesis are general in nature, and therefore can be applied to any type of 

network. However, the results of monitor placement, voltage sag profile estimation or 

unbalance estimation may vary depending on network topology, varying X/R ratios, line 

lengths or conductor types. 

Perhaps the best way to appraise the success of the research presented in this thesis 

would be to return to the original hypotheses, stated in the introduction. The following 

hypotheses were asserted: 

1. Simple measurements from a limited number of variable accuracy metering 

devices measuring properties such as voltage magnitude, reactive power and real 

power can be synthesised to yield an intelligent customer centric picture of the 

power network in terms of its performance for voltage sags, and unbalance. 
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2. Performance estimation for voltage sags and unbalance can be quantified to 

optimise the monitoring locations of any arbitrary number of monitors, perhaps 

much less than the number of nodes in a network. 

3. Artificial immune system heuristic based techniques are required to monitor the 

state of the power network for voltage sags and unbalance and can help with 

monitor placement in the networks. 

It is clear from the preceding discussion that the results for both voltage sags and 

unbalance strongly support the first hypothesis. Simple measurements such as voltage, 

current and power were used for all of the developed techniques and the methods were 

shown to be capable of producing a intelligent customer centric picture of the network. 

The second hypothesis is supported by the research on optimal monitor placement for 

voltage sags. This technique showed how the monitoring performance of a network 

could be enhanced and optimised through additional monitor placement. However, it 

should be noted that there is no comparable method presented for voltage unbalance 

monitor placement. This will be highlighted in the discussion on future work that 

follows. 

The last hypothesis asserted that artificial immune system heuristic based techniques are 

required for monitoring of power network for voltage sags and unbalance. Perhaps the 

most challenging aspect of this hypothesis is proving that a technique is definitely 

required to perform a certain task; artificial intelligence techniques are readily deployed 

to tackle all kinds of problems but it is often difficult to prove why they are required 

over more established conventional techniques. The methodology developed for 

classifying and detecting voltage sags highlighted a requirement for a classification 

algorithm, and therefore perhaps an artificial intelligence based classifier. However, the 

results showed that the selected immune inspired technique performed poorly when 

attempting to classify voltage sag events. Promising results were presented in Chapter 8 

where voltage sag monitor placement was optimised using an immune inspired 

algorithm. However, for the specific task of monitoring a power network, the results do 

not conclusively show that immune inspired techniques perform any better than more 

established algorithms. 

10.2 Future Work 

The path for future work which naturally follows on from this thesis can be split into 

two areas. The first of these is future academic work which adds to the ideas and 
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methods developed in this thesis. The second area is more practical, and concerns future 

research work which could be conducted in cooperation with a distribution network 

operator. 

There are plenty of academic research extensions which can be added to the ideas 

presented in this thesis. A valuable addition to the unbalance research would be the 

construction of an immunity curve which incorporated overheating, protection (for 

trips), losses, de-rating and the reduction in an asset’s life time. The unbalance state 

estimator could also be enhanced to cover the location of unbalanced lines and cables. 

An investigation into the time-scales associated with unbalance would also be useful. 

The development of algorithms which can place a limited number of monitors to 

optimally monitor a distribution network using three phase distribution system state 

estimation would also be of significant further value; such a technique would add to the 

current body of unbalance and state estimation research. 

The research on voltage sags could be extended by incorporating other causes of voltage 

sags into the methodology, such as transformer energizing and starting of induction 

motors. Dynamic load modelling would also provide additional insight into the effect of 

generators and motors on voltage sag profile estimation. Further research could also be 

conducted into voltage sag immunity curves to build a standardised probabilistic family 

of curves for each type of load and / or customer type. Probabilistic immunity curves 

could then be readily fed into the sag trip probability concept developed in this thesis. 

All of the algorithms developed in this thesis assume that the network’s impedance can 

be derived accurately. A significant further addition would be extensions to the 

developed techniques to take into account network topology and impedance 

uncertainties.  

It would be interesting to investigate the economic consequences of both unbalance and 

voltage sags on both customers and DNOs. Power quality (PQ) economic frameworks 

such as [1] and [2] allow the impacts of PQ events to be quantified in monetary terms, 

and it is a logical progression to combine these with the probabilistic approach proposed 

in this thesis. 

AIS provide a powerful paradigm, but it is unclear whether they have any specific 

advantages over simpler and more comprehensible techniques. AIS optimization 

algorithms proved that they may be of some merit for optimal monitor placement, 

although other population based techniques exist which exploit AIS’ advantage of 
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maintaining a range of sub-optimal solutions. Further investigation in AIS techniques is 

required to establish their viability for power systems research. 

Lastly, the project could be extended by broadening the statistical methodologies 

developed for sags and unbalance to other power quality phenomena, thus creating a 

universal power quality state estimator. Harmonics, flicker, transients, under-voltages 

and over-voltages are all serious power quality issues. It would be advantageous if these 

issues could be estimated in networks where measurement information is incomplete to 

understand the impacts of these problems on both customers and the DNO.  

Future research conducted in cooperation with a distribution network operator could 

consist of a pilot project to implement the algorithms developed in this project on a 

section of a distribution network. The pilot would probably need to cover a reasonable 

area of network, and be located in a network where a significant amount of monitoring 

was being planned. A pilot could have several objectives, including: 

 Estimating the maintenance efficiency gains (in £) which could be made from 

PQ monitoring for sags and unbalance. 

 Providing DNOs with visibility of regulatory breaches from unbalance, trips and 

sags.  

 Providing DNOs with insight into the impacts of sags and unbalance on their 

customers. 

 Creating a user friendly software application (with visualization software) to 

help identify PQ problems. 

 Validating the results of probabilistic estimation methods with the actual number 

of customer trips and customer complaints. 

 Building a UK power quality monitoring database for future research and 

development studies. 

 Practically validating the modelling assumptions used throughout this project. 

 Establishing the usefulness of multi-purpose methodologies (e.g. distribution 

system state estimation) for alternative purposes such as voltage / VAR control, 

load estimation, offline studies (e.g. power flow) and network planning. 

 Assessing the feasibility of integrating the developed methodologies within a 

DNO’s third party DMS.  
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12 Appendices 

Appendix A: Derivation of Distribution 

System State Estimation Equations 

The equations in this appendix describe the components the Jacobian required to solve 

three phase load flow or state estimation. 

In this research, the three phase equations were formulated using the real and imaginary 

components of the voltage, rather than voltage magnitude and angle. The real 

component of the voltage is defined in equation (12.1) and the imaginary component of 

the voltage is defined in equation (12.2): 

m

i

m

iV  cosm

ic   (12.1) 

m

i

m

iV  sinm

is   (12.2) 

The measurement vector z is made up of three types of quantities: 

 Real and reactive power injections 

 Real and reactive power line flows 

 Voltage magnitudes 

Real and reactive power injections are required for three phase load flow. In addition to 

power injections, distribution system state estimation can also utilise line flows and 

voltage magnitude. 

The Jacobian matrix (Hx) can be calculated by considering the partial differentiation of 

each of the state non-linear equations defining power injections, power flows and 

voltages with respect to the state variables in equations (12.1) and (12.2).  

The ith, jth element of the Jacobian matrix is defined as shown in equation (12.3): 
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Where )(xk)(iH is the ith equation defining the injections, line flows or voltages in the 

network and the x(j) is the jth state variable; either one of equation (12.1) or (12.2). 

The derivations that follow all of the elements needed to formulate a full three phase 

Jacobian matrix. 

A.1 Power Injections 

For both the real and reactive power injections, G and B are the real and imaginary 

components of the three phase admittance matrix Y. 

A.1.1 Real Power Injections 

Equation (12.4) describes real power flow in a transmission line: 
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iV  cosm

ic  and m
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iV  sinm

is  , then the real power injection equations can be 

re-written as: 
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(12.6) 

A.1.1.1 Real Power Injection Derivatives 

The derivatives with respect to real )( m

ic and imaginary )( m

is component of the voltage 

for real line flow are shown below: 
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A.1.2 Reactive Power Injections 

Equation (12.15) describes real power flow in a transmission line: 
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If m

i

m

iV  cosm

ic  and m

i

m

iV  sinm

is  , then the real power injection equations can be 

re-written as: 
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A.1.2.1 Reactive Power Injection Derivatives 

The derivatives with respect to real )( m

ic and imaginary )( m

is component of the voltage 

for real line flow are shown below: 
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A.2 Line Flow Equations 

For the line flow equations, Gp,m and Bp,m are elements of 3×6 line admittance matrices 

GL and BL relating voltage )],,,,,[( Tc
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i
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i VVVVVVV  and current 

)],,[( ,,,

Tc
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ji IIII   between buses i and j in the form ijij j VBGI LL )(  , where Iij is a 

3×1 vector representing the current flows in phases a, b and c from bus   to   and Vij is a 

6×1 vector representing the voltages at bus i in all three phases and the voltages in bus j. 

A.2.1 Real Power Flow 

Equation (12.26) describes real power flow in a transmission line: 
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If m

i

m

iV  cosm

ic  and m

i

m

iV  sinm

is  , then the power flowing in a line can be re-

written as: 

   
           

    
     

    
           

    
     

    
  

         

             
    

     
    

               
    

     
    

   
(12.27) 

A.2.2 Real Power Flow Derivatives 

The derivatives with respect to real )( m

ic and imaginary )( m

is component of the voltage 

for real line flow are shown below: 
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A.2.3 Reactive Power Flow 

Equation (12.26) describes real power flow in a transmission line: 
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If m

i

m

iV  cosm

ic  and m

i

m

iV  sinm

is  , then the reactive power flowing in a line can be 

re-written as: 
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A.2.3.1 Reactive Power Flow Derivatives 

The derivatives with respect to real )( m

ic and imaginary )( m

is component of the voltage 

for reactive line flow are shown below: 
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A.3 Voltage Equations 

Equation (12.46) describes the voltage magnitude in terms of its real and imaginary 

components: 
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A.3.1 Voltage Magnitude Derivatives 

The derivatives with respect to real )( m

ic and imaginary )( m

is component of the voltage 

for voltage magnitude measurements are shown below: 
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Appendix B: Description of 24 Bus Network 

B.1 Network Topology 

Fig 12.1 shows the topology of the 24 bus UK distribution network. 
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Fig. 12.1. The 24 bus UK Distribution network. 

All transformers are ∆-Y connected (primary to secondary). The secondary side of all 

transformers is 11kV and the primary side is 33kV (line to line). 

B.2 Loading 

Load data was recorded on 1
st
 March 2008. The load on the network on the 1

st
 March 

2008 was estimated by meters installed at each of the 10 11kV busbars which measured 

the line to line voltage and the current in one phase. From these two measurements, an 

estimate for three phase power was produced by assuming that the network loading was 

balanced, and by assuming a power factor based as advised by the team at the UK 

distribution network. The meters did not measure the angular difference between 

voltage and current, and therefore no measurement for the power factor was available. 

All power factors were assumed to be 0.97. 
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TABLE 12.1. THE ACTIVE AND REACTIVE POWER DEMAND IN THE 24 BUS UK DISTRIBUTION NETWORK ON MARCH 1ST
 

2008 

T
im

e
 3 Phase Active Power (MW) 3 Phase Reactive Power (MVar) 

Bus Number 

15 16 17 18 19 20 21 22 23 24 15 16 17 18 19 20 21 22 23 24 
00:00 7.76 1.68 1.16 0.39 1.17 0.84 0.49 1.25 7.62 1.01 1.94 0.42 0.29 0.10 0.29 0.21 0.12 0.31 1.91 0.25 

00:30 8.50 1.79 1.36 0.58 1.45 1.00 0.52 1.56 7.99 1.24 2.13 0.45 0.34 0.15 0.36 0.25 0.13 0.39 2.00 0.31 

01:00 8.89 1.99 1.52 0.65 1.60 1.15 0.52 1.83 8.37 1.35 2.23 0.50 0.38 0.16 0.40 0.29 0.13 0.46 2.10 0.34 

01:30 8.73 1.97 1.53 0.65 1.64 1.23 0.52 1.99 8.37 1.35 2.19 0.49 0.38 0.16 0.41 0.31 0.13 0.50 2.10 0.34 

02:00 8.65 1.91 1.49 0.65 1.60 1.16 0.52 1.99 7.99 1.33 2.17 0.48 0.37 0.16 0.40 0.29 0.13 0.50 2.00 0.33 

02:30 8.50 1.93 1.44 0.65 1.57 1.16 0.52 1.95 7.99 1.35 2.13 0.48 0.36 0.16 0.39 0.29 0.13 0.49 2.00 0.34 

03:00 8.22 1.93 1.36 0.62 1.53 1.17 0.49 1.91 7.80 1.30 2.06 0.48 0.34 0.15 0.38 0.29 0.12 0.48 1.96 0.33 

03:30 8.02 1.81 1.34 0.62 1.45 1.17 0.50 1.81 7.43 1.21 2.01 0.45 0.34 0.16 0.36 0.29 0.12 0.45 1.86 0.30 

04:00 7.87 1.75 1.29 0.55 1.34 1.09 0.50 1.72 7.14 1.13 1.97 0.44 0.32 0.14 0.34 0.27 0.12 0.43 1.79 0.28 

04:30 7.83 1.75 1.25 0.55 1.30 1.09 0.46 1.68 7.05 1.08 1.96 0.44 0.31 0.14 0.33 0.27 0.11 0.42 1.77 0.27 

05:00 7.72 1.75 1.17 0.52 1.26 1.00 0.46 1.64 7.05 1.02 1.93 0.44 0.29 0.13 0.32 0.25 0.11 0.41 1.77 0.26 

05:30 7.77 1.74 1.18 0.53 1.23 1.03 0.49 1.63 7.29 1.01 1.95 0.44 0.30 0.13 0.31 0.26 0.12 0.41 1.83 0.25 

06:00 7.81 1.74 1.19 0.54 1.21 1.07 0.52 1.62 7.52 0.99 1.96 0.43 0.30 0.14 0.30 0.27 0.13 0.41 1.88 0.25 

06:30 7.89 1.82 1.26 0.48 1.29 1.15 0.55 1.65 7.99 1.05 1.98 0.46 0.32 0.12 0.32 0.29 0.14 0.41 2.00 0.26 

07:00 8.04 1.85 1.38 0.51 1.36 1.15 0.58 1.69 8.18 1.11 2.01 0.46 0.35 0.13 0.34 0.29 0.15 0.42 2.05 0.28 

07:30 8.19 1.91 1.39 0.52 1.40 1.16 0.75 1.66 8.37 1.08 2.05 0.48 0.35 0.13 0.35 0.29 0.19 0.42 2.10 0.27 

08:00 8.73 1.94 1.40 0.52 1.40 1.15 0.79 1.72 8.75 1.14 2.19 0.49 0.35 0.13 0.35 0.29 0.20 0.43 2.19 0.29 

08:30 8.81 2.04 1.42 0.54 1.48 1.15 0.77 1.88 9.12 1.24 2.21 0.51 0.35 0.14 0.37 0.29 0.19 0.47 2.28 0.31 

09:00 8.96 2.04 1.42 0.61 1.48 1.14 0.74 1.95 9.59 1.25 2.25 0.51 0.35 0.15 0.37 0.29 0.19 0.49 2.40 0.31 

09:30 9.20 1.97 1.42 0.57 1.48 1.06 0.73 1.95 9.68 1.25 2.30 0.49 0.35 0.14 0.37 0.27 0.18 0.49 2.43 0.31 

10:00 9.19 1.94 1.38 0.54 1.48 0.99 0.67 1.92 9.78 1.25 2.30 0.49 0.35 0.14 0.37 0.25 0.17 0.48 2.45 0.31 

10:30 9.08 1.74 1.40 0.49 1.48 0.99 0.70 1.69 9.87 1.25 2.27 0.44 0.35 0.12 0.37 0.25 0.18 0.42 2.47 0.31 

11:00 8.96 1.74 1.40 0.49 1.44 0.99 0.68 1.65 9.68 1.23 2.25 0.44 0.35 0.12 0.36 0.25 0.17 0.41 2.43 0.31 

11:30 9.00 1.75 1.36 0.49 1.45 0.92 0.55 1.88 9.31 1.11 2.26 0.44 0.34 0.12 0.36 0.23 0.14 0.47 2.33 0.28 

12:00 8.89 1.72 1.36 0.45 1.45 1.00 0.52 1.89 8.84 1.14 2.23 0.43 0.34 0.11 0.36 0.25 0.13 0.47 2.21 0.29 

12:30 8.81 1.72 1.34 0.49 1.40 1.01 0.52 1.87 8.56 1.14 2.21 0.43 0.34 0.12 0.35 0.25 0.13 0.47 2.14 0.29 

13:00 8.97 1.69 1.36 0.45 1.40 1.01 0.52 1.75 8.56 1.12 2.25 0.42 0.34 0.11 0.35 0.25 0.13 0.44 2.14 0.28 

13:30 8.89 1.59 1.31 0.42 1.36 0.92 0.49 1.70 8.27 1.07 2.23 0.40 0.33 0.10 0.34 0.23 0.12 0.43 2.07 0.27 

14:00 8.73 1.55 1.27 0.42 1.36 0.93 0.49 1.70 8.09 1.09 2.19 0.39 0.32 0.10 0.34 0.23 0.12 0.43 2.03 0.27 

14:30 8.65 1.55 1.29 0.42 1.29 0.93 0.46 1.68 8.09 1.07 2.17 0.39 0.32 0.11 0.32 0.23 0.11 0.42 2.03 0.27 

15:00 8.65 1.57 1.25 0.45 1.29 0.93 0.49 1.68 7.99 1.01 2.17 0.39 0.31 0.11 0.32 0.23 0.12 0.42 2.00 0.25 

15:30 8.81 1.63 1.29 0.49 1.33 1.01 0.49 1.72 7.71 1.07 2.21 0.41 0.32 0.12 0.33 0.25 0.12 0.43 1.93 0.27 

16:00 9.04 1.66 1.39 0.55 1.29 1.07 0.55 1.60 7.90 1.12 2.27 0.42 0.35 0.14 0.32 0.27 0.14 0.40 1.98 0.28 

16:30 9.20 1.79 1.53 0.57 1.29 1.15 0.62 1.48 7.99 1.26 2.30 0.45 0.38 0.14 0.32 0.29 0.15 0.37 2.00 0.32 

17:00 9.57 1.84 1.72 0.61 1.31 1.23 0.64 1.53 8.46 1.38 2.40 0.46 0.43 0.15 0.33 0.31 0.16 0.38 2.12 0.35 

17:30 9.58 1.94 1.89 0.68 1.44 1.30 0.71 1.35 9.03 1.49 2.40 0.49 0.47 0.17 0.36 0.33 0.18 0.34 2.26 0.37 

18:00 9.88 2.05 1.99 0.70 1.60 1.38 0.78 1.26 9.50 1.63 2.48 0.51 0.50 0.18 0.40 0.35 0.20 0.32 2.38 0.41 

18:30 10.31 2.07 2.07 0.70 1.69 1.40 0.85 1.30 10.06 1.74 2.58 0.52 0.52 0.18 0.42 0.35 0.21 0.33 2.52 0.43 

19:00 10.12 2.07 2.05 0.71 1.65 1.40 0.82 1.31 9.87 1.78 2.54 0.52 0.51 0.18 0.41 0.35 0.21 0.33 2.47 0.45 

19:30 9.90 2.01 1.99 0.71 1.61 1.33 0.83 1.29 9.49 1.69 2.48 0.50 0.50 0.18 0.40 0.33 0.21 0.32 2.38 0.42 

20:00 9.75 1.87 1.83 0.65 1.57 1.33 0.76 1.21 8.93 1.64 2.44 0.47 0.46 0.16 0.39 0.33 0.19 0.30 2.24 0.41 

20:30 9.35 1.87 1.72 0.65 1.68 1.24 0.75 1.16 8.74 1.59 2.34 0.47 0.43 0.16 0.42 0.31 0.19 0.29 2.19 0.40 

21:00 9.12 1.81 1.60 0.62 1.57 1.17 0.72 1.05 8.27 1.43 2.28 0.45 0.40 0.15 0.39 0.29 0.18 0.26 2.07 0.36 

21:30 8.97 1.69 1.57 0.62 1.49 1.09 0.69 1.05 8.09 1.42 2.25 0.42 0.39 0.16 0.37 0.27 0.17 0.26 2.03 0.35 

22:00 8.69 1.74 1.48 0.58 1.40 1.07 0.62 1.01 7.71 1.33 2.18 0.43 0.37 0.15 0.35 0.27 0.16 0.25 1.93 0.33 

22:30 8.42 1.68 1.43 0.48 1.36 1.01 0.62 0.96 7.52 1.25 2.11 0.42 0.36 0.12 0.34 0.25 0.15 0.24 1.88 0.31 

23:00 8.19 1.69 1.33 0.45 1.26 1.01 0.56 0.93 7.14 1.20 2.05 0.42 0.33 0.11 0.32 0.25 0.14 0.23 1.79 0.30 

23:30 7.95 1.63 1.21 0.42 1.14 0.94 0.52 0.86 6.77 1.10 1.99 0.41 0.30 0.11 0.29 0.23 0.13 0.21 1.70 0.28 

B.3 System Parameters 

All system parameters were based on data supplied from UK distribution network 

operators in the form of an IPSA+ model. 

B.3.1 Line Impedances 

Table 12.2 shows the impedances of the 24 bus network. All measurements are in per 

unit. 
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TABLE 12.2. THE IMPEDANCES OF THE 24 BUS UK DISTRIBUTION NETWORK 

From Bus To Bus r
(1)

  x
(1) b

(1) r
(0) x

(0) 
1 11 0.001 0.005 0 0.001 0.005 

11 10 0.102526 0.202248 0.000506 0.242922 0.569747 

10 9 0.060713 0.125964 0.001399 0.239232 0.511495 

9 6 0.01471 0.033768 0.000191 0.040016 0.151362 

9 2 0.081607 0.192149 0.000653 0.179262 0.894319 

2 3 0.141867 0.181301 0.001058 0.257722 0.687259 

2 14 0.079633 0.21864 0.00382 0.319168 0.699283 

2 14 0.108887 0.222799 0.00382 0.212509 1.06867 

2 4 0.290454 0.392972 0.000654 0.45775 1.70807 

4 5 0.249381 0.311469 0.000804 0.404292 1.41495 

5 7 0.206661 0.243562 0.000294 0.308075 1.07704 

5 13 0.09273 0.126109 0.000279 0.154289 0.540876 

13 8 0.123486 0.133079 0.00011 0.170987 0.503904 

13 12 0.129383 0.139371 0.000116 0.179152 0.527967 

12 2 0.151812 0.163516 0.00029 0.216645 0.616247 

12 11 0.232062 0.59124 0.000492 0.52087 1.63683 

11 2 0.23707 0.481094 0.001697 0.492347 2.31225 

B.3.2 Transformer Information 

All transformers are ∆-Y connected (primary to secondary). 

From 

Bus 
To Bus Type Voltage  r

(1) x
(1) r

(0) x
(0) 

14 15 ∆-Y 33kV:11kV 0.0442 0.995 10 20.6 

14 15 ∆-Y 33kV:11kV 0.0449 0.9917 10 20.6 

4 16 ∆-Y 33kV:11kV 0.1558 1.64 0 0 

4 16 ∆-Y 33kV:11kV 0.1588 1.612 Inf 0 

7 17 ∆-Y 33kV:11kV 0.09976 1.11338 0 11.4049 

5 18 ∆-Y 33kV:11kV 0.09351 1.06667 Inf 0 

8 19 ∆-Y 33kV:11kV 0.07192 1.08205 Inf 0 

3 20 ∆-Y 33kV:11kV 0.08 1.324 16.46 1.1916 

6 21 ∆-Y 33kV:11kV 0.27778 2.19667 0 1.97667 

10 22 ∆-Y 33kV:11kV 0.08996 1.06667 21 0.90667 

11 23 ∆-Y 33kV:11kV 0.04433 1.09115 Inf 0 

11 23 ∆-Y 33kV:11kV 0.04066 1.1039 Inf 0 

2 24 ∆-Y 33kV:11kV 0.10009 1.21102 Inf 0 

B.3.3 Types of Customers 

Table 12.3 shows the numbers and types of customers in the 24 bus network as 

classified by personnel at the UK distribution network. 

TABLE 12.3. THE NUMBERS AND TYPES OF CUSTOMERS IN THE 24 BUS NETWORK. 

Bus Number Number of Customers Percentage of Customers 

Commercial Domestic Industrial Total Commercial Domestic Industrial 

15 1326 7200 124 8650 15% 83% 1% 

16 379 1365 26 1770 21% 77% 1% 

17 381 2776 11 3168 12% 88% 1% 

18 255 1156 12 1423 18% 81% 1% 

19 418 1938 59 2415 17% 80% 2% 

20 290 1172 18 1480 20% 79% 1% 

21 Not available Not available Not available Not available Not available Not available Not available 

22 292 1489 36 1817 16% 82% 2% 

23 Not available Not available Not available Not available Not available Not available Not available 

24 277 2210 21 2508 11% 88% 1% 

Mean 452 2413 38 2904 16% 83% 1% 

Data for buses 21 and 23 was not supplied by personnel at the UK distribution network.
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Appendix C: Data for Covariance Model 

The three phase loading information can be found in a file attached to this thesis called 

“Data for Covariance Model.xlsx”. 
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Appendix D: Load Profiles Used in this Thesis 

Load profile loading information from the UK Energy Research Centre. 

 Profile class 1: Domestic Unrestricted (single rate)  

 Profile class 8: Non-Domestic Maximum Demand Customers with Load Factor 

>40% 

All profiles are taken from a weekday during the winter. 

 

Fig. 12.2. A load profile over a 24 hour period on a typical winter day. 
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TABLE 12.4. PROFILE CLASS 1 AND PROFILE CLASS 8 EXTRACTED FROM THE UK ENERGY RESEARCH CENTRE. 

Time Profile Class 1 Profile Class 1 

(norm.) 

Profile Class 8 Profile Class 8 

(norm.) 

00:30 0.33 0.36 17.95 0.63 

01:00 0.28 0.30 17.4 0.61 

01:30 0.25 0.27 17.17 0.60 

02:00 0.23 0.25 16.99 0.59 

02:30 0.22 0.24 16.76 0.59 

03:00 0.21 0.23 16.62 0.58 

03:30 0.21 0.23 16.63 0.58 

04:00 0.2 0.22 16.61 0.58 

04:30 0.2 0.22 16.63 0.58 

05:00 0.21 0.23 16.65 0.58 

05:30 0.22 0.24 16.94 0.59 

06:00 0.24 0.26 17.4 0.61 

06:30 0.31 0.34 18.21 0.64 

07:00 0.39 0.42 19.14 0.67 

07:30 0.52 0.57 20.8 0.73 

08:00 0.63 0.68 22.55 0.79 

08:30 0.62 0.67 24.61 0.86 

09:00 0.57 0.62 25.92 0.91 

09:30 0.52 0.57 26.9 0.94 

10:00 0.5 0.54 27.62 0.97 

10:30 0.49 0.53 27.77 0.97 

11:00 0.48 0.52 28 0.98 

11:30 0.47 0.51 28.37 0.99 

12:00 0.47 0.51 28.6 1.00 

12:30 0.49 0.53 28.56 1.00 

13:00 0.49 0.53 28.62 1.00 

13:30 0.47 0.51 28.47 0.99 

14:00 0.45 0.49 28.22 0.99 

14:30 0.44 0.48 27.79 0.97 

15:00 0.46 0.50 27.51 0.96 

15:30 0.47 0.51 27.2 0.95 

16:00 0.53 0.58 27.19 0.95 

16:30 0.64 0.70 27.37 0.96 

17:00 0.78 0.85 27.53 0.96 

17:30 0.89 0.97 27.45 0.96 

18:00 0.92 1.00 27.24 0.95 

18:30 0.92 1.00 26.93 0.94 

19:00 0.91 0.99 26.73 0.93 

19:30 0.88 0.96 26.54 0.93 

20:00 0.84 0.91 26.03 0.91 

20:30 0.8 0.87 25.08 0.88 

21:00 0.78 0.85 24.4 0.85 

21:30 0.77 0.84 23.76 0.83 

22:00 0.72 0.78 22.96 0.80 

22:30 0.67 0.73 21.81 0.76 

23:00 0.59 0.64 20.99 0.73 

23:30 0.49 0.53 20.15 0.70 

00:00 0.41 0.45 19.19 0.67 
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Appendix E: Customers Attached to the 295 

Bus Network 

Table 12.5 shows the numbers of customers assumed to be attached to each busbar in 

the 295 bus network. These customer numbers were obtained by assuming that 1 

industrial customer was attached to buses 136, 225 and 232. All of the other loads were 

assumed to comprise 80% residential customers and 20% commercial customers, 

divided in proportion to the total load. Each industrial and commercial customer was 

assumed to consume and average of 1kW. These numbers were based on the analysis of 

the 24 bus distribution network shown in Appendix B. Only loaded busbars are shown 

in Table 12.5. 

Full loading information on the 295 generic distribution network can be found in [129]. 

TABLE 12.5. THE NUMBER OF CUSTOMERS OF EACH TYPE CONNECTED TO FEEDER L IN THE 295 BUS NETWORK 

Busbar Residential Commercial Industrial 

152 728 182 0 

150 1608 402 0 

148 1512 378 0 

145 232 58 0 

144 232 58 0 

142 1704 426 0 

140 767 191 0 

132 2824 706 0 

133 1440 360 0 

134 1360 340 0 

137 0 0 1 

136 752 188 0 

225 0 0 1 

218 6312 1578 0 

220 4952 1238 0 

173 8928 2232 0 

175 2776 694 0 

177 2848 712 0 

214 2560 640 0 

193 1440 360 0 

197 1208 302 0 

195 680 170 0 

196 680 170 0 

199 1280 320 0 

200 1360 340 0 

201 1807 451 0 

203 1584 396 0 

204 600 150 0 

208 600 150 0 

209 3536 884 0 

190 376 94 0 

191 376 94 0 

192 376 94 0 

168 1600 400 0 

169 3120 780 0 

182 680 170 0 

184 912 228 0 

186 1520 380 0 

187 3184 796 0 

165 608 152 0 

162 2760 690 0 

163 10496 2624 0 
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164 383 95 0 

160 1464 366 0 

158 2784 696 0 

159 1624 406 0 

156 1016 254 0 

154 1648 412 0 

130 3448 862 0 

232 0 0 1 
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Appendix F: An Immune System Inspired 

Clustering and Classification Method to Detect 

Critical Areas in Electrical Power Networks 

F.1 Introduction 

Regulatory pressures and market conditions are causing power system networks to 

operate closer to their stability limits. In such a situation, unforeseen scenarios may 

arise which endanger a network’s integrity and lead to voltage instability and / or 

violation of load carrying limits of transmission lines. Increased monitoring of networks 

and the ability to predict potentially fatal failures allows for better utilisation of assets 

within the network. 

Power system operators must, through a set of available control actions, maintain all 

network parameters within acceptable limits by continuously monitoring critical 

parameters. The proximity of the network to voltage collapse and the loading of 

overloaded transmission lines are two crucial phenomena that must be monitored in 

order to avoid blackouts in the system. However, monitoring these phenomena is not a 

simple procedure as it requires substantial financial and manpower commitments in 

addition to the technical complexity of the task. The routinely collected parameters 

which describe the state of the network must be collected and processed to ensure that 

the network is not dangerously close to its stability or load-ability limit. 

Artificial Immune Systems (AIS) and other artificial intelligence (AI) techniques can 

successfully identify critical areas of the power network by virtue of developing an 

approximate model that takes account seemingly uncorrelated data and events and as 

such, enables the avoidance of catastrophic failures that might lead to blackouts. 

The idea of using classification and clustering algorithms to identify weak buses in 

the power system network has been explored before.  Research in both [176] and [177] 

uses a Kohonen self organizing map (SOM) to identify weak voltage buses within the 

power system network. The results in [177] were compared against those obtained from 

singular value decomposition of the load flow Jacobian. In [178] weak voltage buses 

were grouped together using a fuzzy clustering algorithm. In a similar way to these 

techniques, voltage weak areas and overloaded lines can be grouped together using an 

immune inspired AIS clustering algorithm. AIS algorithms have been used to solve data 

clustering problems in the past [91, 99], and [91] demonstrated that for some data sets 

an AIS algorithm can outperform other clustering algorithms. 

AIS algorithms can also be used to deal with labelled data as classifiers [96, 136].  

Classification algorithms work by building a model capable of labelling a set of 

previously unseen testing data. They are ideally suited to identifying critical areas of the 

power system network.  A popular AIS algorithm is the Artificial Immune Recognition 

System (AIRS) [96].  AIRS uses the classification method from the k nearest 

neighbours algorithm [143] (kNN) and immunological inspiration to arrive at a 

classification result.  Another popular machine learning classification algorithm is a 

Support Vector Machine (SVM), a supervised learning algorithm [140]. 

The research in this appendix describes a novel AIS algorithm based methodology, to 

identify voltage collapse prone buses and overloaded lines in the power system network. 

The output of the proposed methodology produces a reliable prediction of voltage weak 

areas and overloaded lines within the power system network. 
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The aims of the research in this appendix are therefore: 

1. Demonstrate and experimentally validate a methodology to assist with the 

quick identification of voltage stability issues and overloaded lines in a 

generic power system network. 

2. Show experimentally how AIS and other classification algorithms compare for 

voltage stability and overloaded line classification. 

The first aim is of specific interest to both applied AIS researchers and power system 

researchers. Addressing the second aim attempts to enhance the understanding of the 

merits of applied AI / AIS research in the power systems domain. 

The research in this appendix offers a comprehensive insight into the applicability of 

these methods to two challenging power systems problems and clarifies the extent to 

which the classification methods are actually producing statistically or scientifically 

significant results.  The experimental comparison presented in this research, in 

particular the comparison of AIRS (and kNN) and kNN alone, also provide further 

insight into the types of problems where AIRS and kNN can produce different levels of 

classification performance. 

F.2 Classification & Clustering Algorithms 

The methodology developed in this appendix uses the AIRS classification algorithm, 

an SVM classification algorithm, a kNN classification algorithm and an unsupervised 

artificial immune classifier (UAIC) clustering algorithm. Full details on the inner 

mechanisms involved in these algorithms can be found in Chapter 3, and they are not 

brevity. Chapter 3 also includes a review of some of the similarities between each of the 

algorithms. 

F.3 Problem Definition 

F.3.1 Monitoring Voltage Stability & Overloaded Lines with Simulated 

Data 

The first aim of this research is to use both clustering and classification to assist with 

quick identification of voltage stability issues and overloaded lines in a power system 

network.  In this study, three realistic power system networks were considered, a 30 bus 

network[179], 14 bus network[180] and a 9 bus network[181]. The 30 bus network is 

shown in Figure 1. 
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Figure 1 - 30 bus test network(adapted from [21]).  The identified 5 weakest voltage buses are enclosed in shaded 

rounded rectangles and the 5 most commonly overloaded lines are highlighted using thick grey dashed lines. 
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The power system is loaded according to realistic patterns of electrical demand.  This 

can be achieved by simulating a wide variety of loading scenarios on a power 

network
18

[182].   

For this study, sample data was generated by randomly raising the real and reactive 

power level across the whole network by up to 100% above the base system load.  The 

base system load on the network does not cause any of the lines to be overloaded, nor 

any bus voltage to be below the statutory limit of    .  Each load in the network was 

also randomly varied by up to ±20% of the original base load at that particular bus.  

This is mathematically shown by equation (1).  

              (1) 

where: 

  System load at given operating conditions 

    Base system load 

  Uniformly distributed random variable between 0 and 1  

  Row vector of uniformly distributed random numbers between [-0.2, 0.2] 

. Element by element multiplication of two vectors 

F.3.2 Homotopy Continuation Load Flow 

Voltage stability is an increasingly common issue in electrical power systems.  In 

simple terms, it is caused when the power demand of the network cannot be met by the 

generation capability connected to the network. Each of the buses (or nodes) in a power 

system network has a different loading limit after which the network voltages collapse. 

Understanding which of the buses in the network will fail first is of important 

consideration to power system operators.  This information gives system operators 

insight into which areas of the network are more vulnerable than others. 

A standard approach to establish the proximity to voltage collapse in a power system 

is to monitor the system load flow Jacobian matrix [183]. However, computing the 

voltage stability limit of a power system using the standard Newton-Raphson method 

(typically used to solve the load flow problem) causes divergence of the algorithm. 

Several methods have been discussed to establish the proximity of an individual bus 

voltage to voltage collapse, including regulating the step length on the Newton-Raphson 

iterations [184], performing sensitivity analysis on the converged Jacobian matrix [183] 

or using the homotopy continuation [185] method to trace the power voltage 

relationship at each bus. 

The voltage stability of a power system is assessed in this study by using homotopy 

continuation load flow analysis (HCLF)[185, 186]. HCLF analysis enables each of the 

buses (nodes) in the power system network to be assessed for their proximity to voltage 

collapse.  

The results of the (HCLF) analysis will be different depending on the loading 

conditions of the network.  Therefore, simulated data (as described in section 3.1) is 

required to determine each bus’ proximity to voltage collapse. 

The (HCLF) method can be described with reference to the standard Newton-

Raphson load flow algorithm[63]. A homotopy parameter   is added to the standard 

Newton-Raphson load flow to represent load growth. 

              (2) 

where       is the load / generation corresponding to an increase in lambda,     is 

the load / generation at current operating point      ,    is the loading and generation 

                                                 
18

 The simulated results were generated using MATPOWER. 
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that will lead to voltage collapse and   is the homotopy parameter or the load increase 

factor (load-ability). 

These equations can be combined with the standard load flow equations to form a 

homotopy function. 

                  (3) 

where   is a vector of voltage magnitudes and angles,      is the standard load flow 

equation for voltage magnitudes and angles   and         is the homotopy function. 

The homotopy equation can be shown to be equivalent to solving a differential 

equation [185, 186] in the following form. 

       
  

  
          (4) 

where    and    are the Jacobians of        with respect to   and  . 

The singularity of    causes problems at the maximum power point as the standard 

load flow Jacobian (  ) becomes singular.  To alleviate this problem, the load flow 

Jacobian can be augmented with an extra row and column. 

      
    
  

  (5) 

where    is a vector of modulus 1 with its kth element equal to unity. By carefully 

selecting  ,       becomes non singular. To determine the maximum power point on the 

power voltage curve the load flow equations are modified. The ith bus in the system is 

tested by amending the real and reactive power demand at this bus using: 

                 (6) 

                        (7) 

where           are the original active and reactive loads at bus i, and    is the power 

factor angle at bus i. 

The elements described above can be combined together to form a HCLF algorithm 

that will estimate the load-ability ( ) of each bus in the power network. The iterations of 

the continuation algorithm use a predictor corrector process. 

Firstly, a tangent vector ( ) is calculated by solving: 

 
    
  

     
   (8) 

A predicted solution is estimated using the computed tangent vector and a stepping size 

 . 

   
  
   

 
 
       (9) 

Where    and    represent predicted solutions.  These solutions are corrected using a 

modified Newton-Raphson load flow method where the equations have one additional 

state variable, namely  . 

During the algorithm, the step length   is rigorously controlled.  It is allowed to grow 

at a rate governed by equation (10), where   is the number of iterations taken by the last 
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correction of the Newton-Raphson method.  If divergence of the Newton-Raphson 

method is detected, then the step length is reduced using equation (11). 

          (10) 

         (11) 

The continuation parameter    is also closely monitored.  It is changed to the 

parameter that yields the largest tangent vector ( ) component. If ill-conditioning of the 

augmented Jacobian matrix is detected, the continuation parameter is also changed. 

The figure below shows predicted and corrected solutions when the continuation load 

flow method is applied to the 30 bus test network to measure the load-ability of bus 13.  

The continuation method is shown tracing the entire power-voltage (PV) characteristic 

which is not possible with a conventional load flow algorithm. 

Figure 2 - A trace of a power voltage characteristic curve with the maximum value of lambda highlighted 

on the graph.  This indicates the load-ability of that bus. 

Once each bus’ load-ability limit ( ) has been calculated for a given operating point, 

each bus in the network can be ranked. The bus with the lowest value of   is ranked as 

the weakest bus.  The weakest bus can also be described as the bus which can take the 

smallest amount of additional power before the voltage at that bus and ultimately the 

whole system collapses.  

F.3.3 Overloaded Lines 

In power systems, overloaded lines are defined as those lines where the apparent 

power rating (usually recorded in MVA) of the line has been exceeded.  The apparent 

power rating of a power line is defined as the maximum amount of apparent power that 

can flow through the line.  The current flowing in the line is proportional to the apparent 

power flowing in the line.   

To test a network for overloaded lines, each operating point must be inspected to find 

any lines in the network that are overloaded.  High levels of current flowing in power 

lines is the main cause of overheating due to the     losses that the current generates.  

For this reason, the apparent power must be closely monitored to ensure that no lines in 

the network are approaching their thermal limits. 

F.3.4 Summarised Problem Definition 

Analysing the voltage stability using the HCLF method and overloaded lines using 

apparent power analysis allows a network’s vulnerabilities to these phenomena to be 

identified. To keep the study realistic, a large number of possible operating conditions 

should be utilised that summarise various typical loadings levels in the network. The 

key aim of this assessment, is to identify which areas in the power network  are most 

likely to fail, and in what order. 
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F.4 Methodology 

The methodology developed in this research allows the vulnerability of the power 

system network to be assessed.  The aim is not only to present the methodology but also 

to show experimentally how a variety of AIS and machine learning classification 

algorithms compare.  The fulfilment of both of these objectives should create insight 

into the applicability of AIS classification algorithms in the power systems domain. 

The methodology developed here can be summarised into three key procedures: 

1) Data Generation 

Simulated data must be generated for each of the 3 power networks.  The 

simulated databases must represent a diverse and realistic set of operating 

conditions for the network. 

2) Clustering 

Clustering is performed on the simulated data by extracting voltage stability and 

overloaded line information from the dataset.  The dataset is clustered for 

overloaded lines and voltage weak buses independently, as the two phenomena 

are quite different.  The output of the clustering procedure is two sets of labels for 

the data set: one for voltage weak buses and one for overloaded lines. 

3) Classification 

Classification consists of a two step procedure.  Firstly, the chosen classification 

algorithm is optimised by selecting the configuration parameters for the algorithm 

which yield the best performance on the data set.  Secondly, the optimised 

classification algorithm is applied to the dataset.  The trained classification model 

should then be capable of placing previously unseen operating conditions into a 

group which represents its failure mode for both voltage weak buses and 

overloaded lines. The classification method is applied to both overloaded lines 

and voltage weak buses independently.  The classification algorithms were 

compared using statistical analysis. 

An overview of the experimental method employed for this study is shown in 

Figure 3. 
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Figure 3 – The salient points of the methodology employed in this study. 

F.4.1 Data Generation 

2500 operating points were generated for each of test networks in this study.  A 

further set of 100 sets of 100 operating points were generated on the 30 bus, 14 bus and 

9 bus networks and a further 500 sets of 100 operating points generated on the 9 bus 

network. 

The large (2500 operating point) data sets are required to test the overall classification 

accuracy of the developed methodology.  The smaller sets (100 sets of 100 operating 

points and 500 sets of 100 operating points) are used to compare statistical classification 

performance of the algorithms and to optimise model parameters. 

The database generation was carried out as described in section 3.1. 

F.4.2 Clustering 

The aim of the clustering procedure is to add two class labels to each of the simulated 

operating points within a dataset.  The clustering procedure achieves this by using an 

unsupervised strategy to group together similar operating conditions in terms of both 

voltage stability and overloaded lines.  In this way, the clustering algorithm is run over a 

dataset twice: firstly to group together similar operating points in terms of voltage 

stability and secondly to group together similar operating points in terms of overloaded 
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lines.  The voltage stability and overloaded line groupings that are formed will become 

class labels for the classification procedure used in the subsequent part of this 

methodology. 

Operating points with similar voltage stability conditions and overloaded line 

configurations were grouped together using an unsupervised artificial immune classifier 

(UAIC)[91]. 

Before the data can be presented to the UAIC, the simulated data must be pre-

processed to extract information into feature vectors.  For each clustering run (i.e. for 

voltage weak buses and overloaded lines), a feature vector of information is extracted 

for every simulated operating point.  Each feature vector contains only information 

necessary for each of the two clustering runs: voltage weak buses or overloaded lines. 

In the UAIC, each antigen that is presented to the algorithm, represents a feature 

vector of extracted information from a simulated operating point. Antibodies and 

memory cells represent the prospective and evolved cluster centres respectively. Table 1 

and Table 2 describe the mapping between the components in the AIS model and their 

power system equivalents. 

TABLE 1 - AIS AND POWER SYSTEM MAPPING FOR VOLTAGE STABILITY CLUSTERING 

AIS Power System 

Antigen Feature vector of bus ranks (extracted 

from the simulated operating point 

information) 

Antibody Prospective cluster centre 

Memory Evolved cluster centres 

TABLE 2 - AIS AND POWER SYSTEM MAPPING FOR OVERLOADED LINE CLUSTERING 

AIS Power System 

Antigen Feature vector of overloaded lines 

(extracted from the simulated operating 

point information) 

Antibody Prospective cluster centre 

Memory Evolved cluster centres 

The UAIC clustering algorithm was configured to find 4 clusters (    ) on both 

the run of the algorithm for voltage weak buses and the run for overloaded lines.  The 

UAIC algorithm was also configured with a                           of 0.1 and a 

termination switching cluster threshold of 5%, clonal rate (  ) of 20 and a displace rate 

( ) of 0.1 (10%).  These configuration parameters were determined through a series of 

tests on the algorithm whilst clustering the overloaded line dataset.  They were selected 

because to ensure each run of the algorithm converged in a reasonable number of 

iterations and that the clusters found were consistent from one run to the next. 

F.4.2.1 Clustering Weak Voltage Buses 

A feature vector that contains the rank of each bus (of a simulated operating point) is 

used as the antigen input for the voltage weak bus run of the UAIC algorithm.  The rank 

of a bus corresponds to an order representing the voltage weakness of each of the buses 

in the network.  The antigen representation is shown in Figure 4. 

Bus 1 Rank Bus 2 Rank Bus 30 Rank

Antigen
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Figure 4 - Antigen structure for clustering weak voltage buses 

The similarity between antigens is determined by applying a bespoke distance 

measure developed to compare similarly ranked operating points.  The distance measure 

defines the number of upwards or downwards movements that each bus would have to 

make to map one antigen’s rank to another’s.  For example, the antigen (vector) 

             of a hypothetical 4 bus system is a ranking distance of 6 away from   
          .  Bus 4 moves up 3, bus 1, 2 & 3 all move down 1, giving a total distance of 

6. 

F.4.2.2 Clustering Overloaded Lines 

A feature vector that contains the network’s overloaded lines is used as the antigen 

input for the second run of the UAIC algorithm.  The antigen representation is shown in 

Figure 5. 

Line 1 Overloaded Line 2 Overloaded Line N Overloaded

Antigen

 

Figure 5 - Antigen for overloaded line clustering 

Similarity between antigens was determined using the Manhattan distance measure, 

defined as[187]: 

                         
 

 
          

 

   

 (12) 

where   and   are points in   . 

F.4.2.3 Output of the Clustering Algorithm 

Running the UAIC algorithm on the dataset for voltage weak buses and overloaded 

lines groups the dataset into 2 separate sets of 4 clusters. These 2 sets of 4 clusters are 

used to label the dataset twice: once for voltage weak buses and once for overloaded 

lines. These two labels are used by the classification algorithms to perform supervised 

classification. 

F.4.2.4 Validity of the Clustering Algorithm 

The UAIC algorithm was selected for this study because of its promising results 

presented in [91]. Reference [91] also showed that the UAIC algorithm performed better 

than the simpler k-means algorithm for the chosen clustering task.  The clustering 

problem described in this appendix is similarly complex and will benefit from the added 

power of the UAIC algorithm. 

It should be noted that any clustering algorithm could be used at this stage of the 

presented methodology.  However, it should not be assumed that the UAIC algorithm 

will provide better levels of clustering performance when compared with other (perhaps 

simpler) methods such as k-means or a self organizing map (SOM). 

A rigorous comparison of the quality of the UAIC algorithm against other clustering 

algorithms is outside the scope of this appendix.  However, the validity of the UAIC 

algorithm can be explored for this methodology by comparing the UAIC against the k-

means algorithm on the overloaded line dataset.  The comparison was achieved by 

configuring k-means to find 4 clusters on the 9, 14 and 30 bus 2500 operating point 
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overloaded line datasets.  The k-means clusters were then compared against the clusters 

found by using the UAIC algorithm. 

The algorithms were compared by using Cohen’s kappa statistic[188], described as 

follows:  

  
           

       
  (13) 

where       the agreement among algorithms is,       is the hypothetical probability of 

a chance agreement using the data.    will equal 1 when there is perfect agreement 

between the two algorithms and <0 when there is no agreement.   

It is anticipated that if the UAIC algorithm conducts clustering operation in a similar 

manner to k-means, the kappa statistic should be high across all three datasets.  

Clustering techniques can only be compared in this way when it is predicted that the 

dataset will be split into the same set of clusters using both algorithms[189].  For this 

reason, the overloaded line dataset is more appropriate than the voltage weak bus 

dataset, as this dataset is simpler and more likely to split into obvious groups.  The 

comparison of Cohen’s kappa statistic across the 9, 14 and 30 bus overloaded line 

datasets is shown in Table 3. 

 
TABLE 3 – THE COMPARISON OF KAPPA STATISTIC FOR THE UAIC AND K-MEANS CLUSTERING ALGORITHM FOR THE 2500 

POINT OVERLOADED LINE DATASETS 

Dataset Kappa Statistic ( ) of 

UAIC vs. k-means 

9 Bus 2500 Operating Point 1 

14 Bus 2500 Operating Point 1 

30 Bus 2500 Operating Point 0.644 

The kappa statistics of 1 for both the 14 and 9 bus datasets indicate that k-means and 

UAIC are partitioning the dataset in exactly the same manner. A kappa statistic of 0.644 

for the 30 bus network shows that UAIC and k-means have good agreement in clusters 

that are formed. 

The purpose of this validity check is to show that the UAIC algorithm is capable of 

clustering simple datasets in a manner similar to k-means. The validity check shows 

UAIC to be a viable clustering method, and a suitable choice for clustering overloaded 

areas of a power system network. 

F.4.3 Classifying Critical Areas of the Network 

The performance of the three selected classification algorithms (AIRS, kNN and 

SVM) were compared in this study.  One of the aims of this research is to discover 

which algorithm yields the highest classification accuracy for the chosen problem.  This 

was evaluated by comparing the differences in classification performance between the 

three algorithms and checking for statistical [156] and scientific significance [157]. 

F.4.3.1 Inputs for Classification Algorithm 

The inputs for the classification of voltage weak buses and overloaded lines were a 

summary of network parameters representing the current load on the network. The 

parameters used were as follows: 

 Real power demand at each bus in the network 

 Reactive power demand at each bus in the network 

 Real power generation at each bus (node) in the network 

 Reactive power generation at each bus (node) in the network 

 Total real power losses in the network 

 Total reactive power losses in the network 
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On the 30 bus system a feature vector used for input into the classifier has 40 non-

zero attributes for real and reactive power demand, 12 non-zero attributes for real and 

reactive power generation and 2 attributes for real and reactive total power losses.  Each 

feature vector therefore has 54 attributes, excluding the class label. 

The class label attached to each of the feature vectors is either one of the 4 clusters 

created by clustering voltage weak buses, or one of the 4 clusters created by clustering 

overloaded lines.  Two runs of the selected classification algorithm are performed: one 

for voltage weak buses and one for overloaded lines. 

F.4.3.2 Optimising the Parameters of  the Classification Algorithms 

F.4.3.2.1 Optimising the Parameters of the SVM Algorithm 

The parameters   and   featuring in the SVM algorithm were optimised using cross 

validation and a grid search algorithm. The 10 fold cross-validated classification 

accuracy of the SVM algorithm was tested using the smaller 100 operating point 

databases across all sizes of network with labelling for overloaded line (OL) detection 

and voltage collapse (VC) limit detection.  The smaller 100 operating point databases 

are used rather than the large 2500 operating point database because performing a grid 

search on such a large database would take a prohibitively long length of time. 

Different pairs of values of   and   are chosen until the entire parameter range has 

been searched.    was chosen to range from     to     whilst   was chosen to range 

from      to   .  The step interval for the exponent of the parameters was set to 0.1.  

Selecting the parameters in the ranges describes above describes a grid of parameters 

where the SVM algorithm can be tuned[155] for the specific classification problem. 

All the tests were run using LibSVM [152] and all features contained within the data 

were normalised in the region of [-1, 1].  The results of the parameter optimisation 

procedure are shown in the Table 4. 

 
TABLE 4 – OPTIMISED PARAMETER VALUES FOR THE SVM CLASSIFICATION ALGORITHM. 

Size of Network and Labelling Scheme     

9 Bus Load-ability 32768 0.0004883 

9 Bus Overloaded Lines 128 0.5 

14 Bus Load-ability 32768 0.0019531 

14 Bus Overloaded Lines 32768 0.0004883 

30 Bus Load-ability 32768 0.0004883 

30 Bus Overloaded Lines 2048 0.0078125 

F.4.3.2.2 Optimising the Parameters of the AIRS Algorithm 

There are several user configurable parameters available for AIRS.  These include: 

 k value for the k nearest neighbour algorithm (k) 

 Clonal rate (CR) 

 Hyper-mutation rate (HR) 

 Total resources (TR) 

 Stimulation threshold (ST) 

The AIRS algorithm was tested using 10 fold cross validation on the 100 operating 

point databases across all sizes of networks and labelled for both overload line detection 

and voltage weak bus detection.  The optimum value of k for the kNN classifier was 

determined by using the default algorithm parameters and varying the value of k until 

an optimum was reached.  Each subsequent parameter was then taken in turn and tuned 

(within the specified range) until the best overall selected classification accuracy was 
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obtained. This method does not guarantee finding a globally optimal solution for the 

algorithm’s parameters, but ensured that locally optimised parameters were discovered. 

The ranges for the optimised parameters are shown in Table 5: 

 
TABLE 5 - PARAMETER OPTIMISATION RANGES FOR THE AIRS ALGORITHM. 

Parameter Name Min Max Step 

k Nearest Neighbour 1 30 1 

Clonal Rate 5 30 1 

Hyper-mutation Rate 1 3 0.5 

Total Resources 100 500 10 

Stimulation Threshold 0.7 0.98 0.1 
 

TABLE 6 – PARAMETER OPTIMISATION RANGES FOR THE AIRS AND KNN ALGORITHMS. 

Network & Labelling Scheme k (AIRS) K (kNN) CR HR TR ST 

9 Bus Load-ability 5 5 5 1 250 0.98 

9 Bus Overloaded Lines 6 6 10 2 400 0.9 

14 Bus Load-ability 25 14 10 2 100 0.92 

14 Bus Overloaded Lines 6 12 20 3 100 0.9 

30 Bus Load-ability 15 18 10 2 350 0.98 

30 Bus Overloaded Lines 20 12 10 1.5 300 0.96 

F.4.3.2.3 Optimising the Parameter of the k Nearest Neighbours Algorithm 

The only variable parameter in the k nearest neighbour classifier is the value of k.  

Different values of k were tested in the range from 1 to 30 using 10 fold cross validation 

on the 100 operating point datasets across all sizes of networks and labelled for both 

overloaded line detection and load-ability limit detection.  30 was the maximum tested 

value of k, since this represents a large percentage (30%) of the dataset being used for 

the majority voting classification procedure.  The optimum value of the k parameter was 

recorded as the value of k which gave the highest classification accuracy.  This value 

was selected and used for all further algorithm tests.  The optimal values for k in the 

kNN algorithm are shown in Table 7. 

F.4.3.3 Comparing the Classification Algorithms 

The comparative performance of the 3 selected classification algorithms was analysed 

by attempting to reject a series of null hypotheses.  The null hypotheses were 

formulated by creating 9 experiments that compare each of the three chosen algorithms 

against one another.  Each one of the 9 null hypotheses can be stated in a generalised 

form as follows: 

Algorithm A and Algorithm B yield the same distribution of classification 

performance when classifying voltage weak buses using the methodology described in 

this appendix on the X bus power system network. 

Algorithm A and B represent two of the three algorithms under comparison; for 

example, AIRS & SVM, or AIRS and kNN.  The X bus power network refers to one of 

the 9, 14 or 30 bus power system network described in section 3.1.  9 null hypotheses 

are generated each referring to a comparison of one of the 3 algorithms on each of the 3 

power networks. 

The statistical significance of the differences in classification performance was 

analysed by applying the Mann-Whitney-Wilcoxon non-parametric rank-sum test[156].  

The aim of the test is to ascertain rejection of the null hypothesis; each of the algorithms 

has identical distributions and medians of classification performance.  A significance 

level of 5% was used which ensures that we are 95% confident that the null hypothesis 

can be rejected.  A   value of <5% shows that the null hypothesis may be rejected. 
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Given a large enough sample size it is often possible to show a certain level of 

statistical significance between any two sets of experimental results.  However, whether 

any two sets of experimental results are different enough to be of scientific value 

depends on the magnitude of difference between the associated result distributions.  The 

magnitude of the difference in two sets of experimental results is known as effect size 

and this can be measured to assess the scientific significance of a pair of experimental 

results.   

The Vargha-Delany A statistic [157] is a non-parametric measure which assesses the 

corresponding effect size between two non-parametric distributions.  The A value 

ranges between 0 and 1.  0.5 indicates a non-existent effect size whilst values closer to 0 

or 1 indicate an increasingly large effect size.  An effect size of <0.36 or >0.64 is taken 

as a guide from [157] to indicate a scientifically significant effect size, and hence a 

result with some degree of scientific value. 

The statistical significance tests were run using the 100 dataset 100 operating point 

databases generated in the database generation phase. Only data labelled with clusters 

relating to voltage weak buses were tested during the statistical and scientific 

significance comparison. 

F.5 Results 

F.5.1 Data Generation 

Simulations were carried out on the 30 bus network (whose single line diagram is 

shown in Figure 1), a 14 bus test network [180] and a 9 bus network [181].  A 2500 

operating point dataset was generated for each of these three networks as described in 

section 3.1. 

F.5.2 Clustering Using the UAIC Algorithm 

The UAIC algorithm clustered each dataset once for voltage weak buses and once for 

overloaded lines.  The UAIC algorithm was set to find 4 clusters in each dataset.   

Each cluster does not necessarily contain identical rankings or overloaded lines, there 

may be some variation.  However, each cluster represents the best division of operating 

points achievable using the UAIC algorithm and distance similarity measures described 

in the previous section. 

Table 7 and Table 8 show the top 10 weakest buses and most prominent overloaded 

lines respectively for the 30 bus network with the UAIC finding 4 clusters in the 2500 

point dataset. The different ranks and lines produced in each of the 4 clusters are the 

most commonly occurring ranks or lines within that cluster. 
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TABLE 7 - VARIOUS OPERATING POINTS OF THE 30 BUS POWER NETWORK GROUPED INTO CLUSTERS DEPENDING ON THE 

RANKING OF (VOLTAGE WEAK) BUSES WITHIN THE NETWORK.  THE TABLE ALSO SHOWS THE TOP 10 WEAKEST BUSES BY 

CLUSTER FOR THE 2500 OPERATING POINT DATASET. 

Label / 

Cluster 

No. in Cluster Top 10 Weakest Buses 

1
st
 2

nd
  3

rd
  4

th
  5

th
  6

th
  7

th
  8

th
  9

th
  10

th
  

Cluster 1 761 30 8 26 7 19 21 14 17 12 15 

Cluster 2 526 8 30 26 7 19 21 17 14 12 24 

Cluster 3 610 30 8 26 7 19 17 21 24 12 14 

Cluster 4 603 30 8 26 7 19 21 14 17 24 12 

TABLE 8 - THE CLUSTERS FOR OVERLOADED LINES IN THE 30 BUS POWER SYSTEM NETWORK ON THE 2500 DATASET. 

Label / Cluster No. in Cluster No. Of Overloaded Lines Overloaded Lines 

Cluster 1 1624 2 overloaded lines Bus 6 to 8 & 21 to 22  

Cluster 2 188 0 or 1 overloaded lines Bus 6 to 8 

Cluster 3 412 5 or more overloaded lines Bus 6 to 8, 21 to 22, 1 to 

2, 2 to 6, 15 to 23 

Cluster 4 276 3 or 4 overloaded lines Bus 6 to 8, 21 to 22, 15 to 

23 & 1 to 2 

The single line diagram in Figure 1 shows both the 5 weakest buses and the 5 most 

overloaded lines that were found from this study. 

The 4 clusters found for voltage weak buses and overloaded lines (as shown in the 

label column of Table 7 and Table 8) were used to label the 2500 operating point dataset 

with 4 class labels (as described in section 4.2.3). 

F.5.3 Classification Performance of the SVM, AIRS and kNN Algorithms 

The performance of the parameter optimised SVM, AIRS and kNN classification 

algorithms were tested using the 2500 dataset using the classification analysis technique 

of 10 fold cross validation (10 FCV) [190]. In each experiment, the classification 

accuracy was measured. Classification accuracy is defined as the total number of 

correctly classified instances over the total number of instances that were attempted to 

be classified. In the 10 FCV experiment, 250 instances will be classified on each of 10 

runs of classification algorithm. The classification accuracy of the SVM, AIRS and 

kNN algorithms is shown in Table 9 for the 2500 operating point dataset for both 

voltage weak buses and overloaded lines. 

TABLE 9 - CLASSIFICATION ACCURACY COMPARISON OF THE 9 BUS, 14 BUS AND 30 BUS SUPPORT VECTOR MACHINE USING 

10 FOLD CROSS VALIDATION AND THE 2500 OPERATING POINT DATASET. 

Test Network SVM  AIRS kNN 

Overloaded Lines (9 Bus Network) 99.24% 97.4% 97.64% 

Ranking Voltage Weak Buses (9 Bus Network) 97.28% 75.32% 79.36% 

Overloaded Lines (14 Bus Network) 99.40% 96.16% 96.44% 

Ranking Voltage Weak Buses (14 Bus Network) 95.88% 79.12% 79.84% 

Overloaded Lines (30 bus network) 96.60% 90.06% 92.56% 

Ranking Voltage Weak Buses (30 bus network) 91.56% 48.88% 48.04% 

The results in Table 9 show the mean percentage classification accuracy of a 10 FCV 

experiment. For each of the 10 splits of the dataset in 10 FCV, a different percentage 

classification result will be obtained. The distribution of the classification accuracy for 

each of the 10 runs, across all algorithms on both datasets is shown in Figure 6 and 

Figure 7.   
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Figure 6 – The distribution of classification accuracy for each run of a 10 fold cross validation experiment with each 

classification algorithm on the 2500 operating point voltage weak bus dataset. 

 

Figure 7 – The distribution of classification accuracy for each run of a 10 fold cross validation experiment with every 

classification algorithm on the 2500 operating point overloaded line dataset.  

F.5.4 Statistical & Scientific Significance of Results 

The classification algorithms were compared as described in section 4.3.3 of the 

methodology.  The aim is to compare each of the algorithms to reject 9 null hypotheses 

which are described in general as: 

Algorithm A and Algorithm B yield the same distribution of classification 

performance when classifying voltage weak buses using the methodology described in 

this appendix on the X bus power system network. 

Table 11 shows the results of the attempted rejection of the 9 null hypotheses.  It also 

shows an overview of whether or not the size of any statistical significance is 

scientifically significant.  
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TABLE 11 – THE STATISTICAL (STAT.) AND SCIENTIFIC (SCI.) SIGNIFICANCE OF CLASSIFICATION PERFORMANCE WHEN 

COMPARING AIRS, SVM AND KNN TO CLASSIFY OVERLOADED AREAS ON THE POWER SYSTEM NETWORK. 

Hypothesis Number Network & 

Dataset 

Comparison Rank-sum   

Value 

Vargha-

Delany [157] 

A Statistic 

Statistical & 

Scientific 

Significance 

Hypothesis 1 9 Bus 100 

Database 

AIRS to 

kNN 

0.0975 0.4322 None 

9 Bus 500 

Database 

AIRS to 

kNN 
1.28 x       0.0466 Sci. & Stat. 

Hypothesis 2 9 Bus 100 

Database 

AIRS to 

SVM 
2.60 x       0.0403 Sci. & Stat. 

Hypothesis 3 9 Bus 100 

Database 

SVM to kNN 5.56 x       0.0502 Sci. & Stat. 

Hypothesis 4 14 Bus 100 

Database 

AIRS to 

kNN 
3.25 x       0.1762 Sci. & Stat. 

Hypothesis 5 14 Bus 100 

Database 

AIRS to 

SVM 
7.25 x       0.0120 Sci. & Stat. 

Hypothesis 6 14 Bus 100 

Database 

SVM to kNN 2.37 x       0.0460 Sci. & Stat. 

Hypothesis 7 30 Bus 100 

Database 

AIRS to 

kNN 
1.89 x      0.3240 Stat. 

Hypothesis 8 30 Bus 100 

Database 

AIRS to 

SVM 
1.05 x       0.0875 Sci. & Stat. 

Hypothesis 9 30 Bus 100 

Database 

SVM to kNN 4.01 x       0.1544 Sci. & Stat. 

The results show that the difference in classification performance for each of the 9 

hypotheses (and algorithm comparisons) is mainly both scientifically and statistically 

significant.  However, the differences in effect sizes between the AIRS algorithm and 

the kNN algorithm are much less than those experienced between SVM and AIRS / 

kNN.  This is also apparent in the classification results obtained on the larger 2500 

operating point database. 

 

Figure 8 – The classifiaction accuracy of AIRS, kNN and SVM algorithms achieved using 10 fold cross validation 

and 100 operating points on the 9 bus test network. 

Figure 8 describes the distribution of classification accuracy found when running 

simulations on all three algorithms.  The chart shows that the inter-quartile ranges of 

classification accuracy found when running the AIRS and kNN algorithms are very 

similar.  However, the distribution of classification accuracies found for the SVM 

algorithm are somewhat different. 
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F.5.5 Discussion of Results 

For the task of grouping together voltage weak buses and overloaded lines, the UAIC 

clustering algorithm was able to identify several uniquely different areas of the network 

that were overloaded.  This is shown in tables Table 7 and Table 8. 

The classification accuracy of the SVM algorithm outperformed both AIRS and the 

kNN algorithm for each of the tests across all networks (Table 9).  Support vector 

machines are often good at generalising high dimensional data sets like those presented 

in this study. kNN and AIRS both require a well populated feature space as they are 

instance based methods of classification.  The relatively high dimensional feature space 

(over 60 dimensions for the 30 bus network) coupled with a low number of instances 

(2500) may have caused difficulties for both the kNN and AIRS algorithms. 

As the number of dimensions (and the size of the network) in the feature space 

increased, all of the algorithms declined in classification performance (shown in Figure 

6 and Figure 7).  The most notable declines were for AIRS and kNN where 

classification performance fell to around 45% (Table 9) when attempting classification 

of the 30 bus voltage weak bus dataset.  The SVM algorithm remained able to classify 

reliably even with the high dimensions involved in the 30 bus network. 

The conclusion that could be drawn from these results is that the SVM algorithm is 

superior to either the kNN or AIRS when classifying overloaded areas of the power 

network in this manner.  There would also seem to be a strong divergence between the 

instance based methods and the SVM algorithm as the number of dimensions grew 

larger (as shown in Figure 6 and Figure 7).  This could mean that both AIRS and kNN 

don’t perform well on higher dimensional datasets.  For AIRS, this may be because the 

internal mechanisms of the algorithm do not operate well when the number of 

dimensions is high. 

The results also showed that the classification performance obtained with AIRS was 

very close to those obtained by the kNN algorithm.  In 5 out of the 6 tests on the 2500 

operating point database AIRS fell just short of the performance obtained by the kNN 

algorithm.  This corroborates with previous research by Secker et al. [191] that argued 

that AIRS was simply a pre-processor for a k nearest neighbour classification routine.  

Indeed the results obtained here show that AIRS performs worse than the kNN classifier 

on all tests. 

Overall, the SVM classification algorithm performed well across all of the conducted 

tests.  In each of 10 fold cross validation experiments (across different networks and for 

both overloaded lines and voltage weak buses) the overall classification accuracy of the 

algorithm was always in excess of 91%. 

F.5.6 Scientific & Statistical Significance of AIRS, kNN and SVM Classifiers 

In nearly all cases scientific and statistical significance were present when comparing 

the classification accuracy of all the algorithms.  Statistical and scientific significance 

only fell short when comparing AIRS and the kNN algorithm (see Table 11). 

These results may indicate the possibility that the best classification performance 

obtainable between AIRS and kNN for this type of problem will always be very similar.  

Table 11 shows that AIRS consistently performed in a very similar manner to the kNN 

algorithm, failing to register scientific significance in two tests and statistical 

significance in one test. 

The results presented in this research seem to show a selection of problems where 

AIRS has no real performance advantage over the simpler kNN algorithm.  However, 

the fact that there is (in some cases) no significant difference in performance may itself 
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be interesting.  AIRS is an instance creation algorithm that significantly compresses the 

original dataset into a smaller number of instances.  If the performance of AIRS is 

comparable with kNN, this may show that the internal mechanisms in AIRS are 

powerful at compressing the number of instances in a dataset and maintaining the 

accuracy of a kNN classifier. 

These results certainly add to the debate amongst the AIS community about where the 

power of the AIRS algorithm truly lies [192]. They are, however, also a counter 

example to the research presented in [133] which stated that the performance of AIRS 

(with the kNN classifier) is often higher than for the kNN classification algorithm alone. 

F.6 Conclusion 

In this appendix a Support Vector Machine (SVM), Artificial Immune Recognition 

System (AIRS) and k Nearest Neighbours (kNN) algorithm were used as part of a 

methodology developed to identify critical areas in power system networks, namely 

voltage collapse prone areas and overloaded transmission lines.   

The methodology described used an unsupervised artificial immune classification 

(UAIC) algorithm to identify groups (clusters) of voltage weak buses (voltage collapse 

prone areas in the network) and overloaded transmission lines. The UAIC algorithm is 

immune inspired and this research highlighted some of the common elements it shares 

with AIRS. The UAIC algorithm was shown to perform clustering reliably and to 

perform in a similar manner to the k-means clustering algorithm when applied to a very 

simple clustering problem. The clusters were used as labels for a supervised 

classification stage which utilised AIRS, kNN and SVM classification methods to build 

a model capable of identifying weak buses and overloaded lines in the network. The 

classification results were tested by comparing the SVM, AIRS and kNN classification 

performance using rigorous statistical methods. 

The research in this appendix had two aims: firstly to present a methodology capable 

of detecting overloaded areas of a generic power system network and secondly to show 

experimentally how the three selected classification algorithms compared when applied 

to this type of problem.   

The results show that the methodology is capable of identifying distinct regions 

within the power network which contain overloaded lines and voltage weak buses, thus 

satisfying the first aim.  Indeed, if the SVM algorithm was selected as the preferred 

classification method, overloaded areas in a 9 bus, 14 bus and 30 bus network can all be 

successfully identified with a level of classification accuracy exceeding 91%. 

The research presented in this appendix also aimed to present a rigorous comparison 

of SVM, AIRS and kNN classification methods when applied to detecting overloaded 

areas of the power system network.  The results showed that the SVM significantly 

outperformed both AIRS and the kNN algorithm.  They showed that AIRS and the kNN 

algorithm were in some cases statistically indistinguishable in terms of classification 

performance.  In the cases where AIRS and kNN showed a slight difference in 

classification performance, AIRS typically performed slightly worse than the kNN 

algorithm.  The results also showed that altering the number of dimensions in the 

problem did not significantly alter the performance difference between the kNN and 

AIRS algorithms.  However, increasing the number of dimensions did increase the gap 

in classification performance between the SVM and both AIRS / kNN. 

The research presented in this appendix demonstrated that the presented methodology 

is a viable and fast way of identifying voltage weak areas and overloaded lines of a 

power system network.  It could easily be applied to studies where the computationally 

intensive nature (due to the size of the power network) of performing a static voltage 

stability assessment and load flow is prohibitively expensive. 
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