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Structured Matrix Nearness Problems: Theory and Algorithms

In many areas of science one often has a given matrix, representing for example
a measured data set and is required to find a matrix that is closest in a suitable
norm to the matrix and possesses additionally a structure, inherited from the model
used or coming from the application. We call these problems structured matrix
nearness problems. We look at three different groups of these problems that come
from real applications, analyze the properties of the corresponding matrix structure,
and propose algorithms to solve them efficiently.

The first part of this thesis concerns the nearness problem of finding the nearest
k factor correlation matrix C(X) = diag(In − XXT ) + XXT to a given symmetric
matrix, subject to natural nonlinear constraints on the elements of the n× k matrix
X, where distance is measured in the Frobenius norm. Such problems arise, for
example, when one is investigating factor models of collateralized debt obligations
(CDOs) or multivariate time series. We examine several algorithms for solving the
nearness problem that differ in whether or not they can take account of the nonlinear
constraints and in their convergence properties. Our numerical experiments show that
the performance of the methods depends strongly on the problem, but that, among
our tested methods, the spectral projected gradient method is the clear winner.

In the second part we look at two two-sided optimization problems where the
matrix of unknowns Y ∈ R

n×p lies in the Stiefel manifold. These two problems come
from an application in atomic chemistry where one is looking for atomic orbitals
with prescribed occupation numbers. We analyze these two problems, propose an
analytic optimal solution of the first and show that an optimal solution of the second
problem can be found by solving a convex quadratic programming problem with box
constraints and p unknowns. We prove that the latter problem can be solved by
the active-set method in at most 2p iterations. Subsequently, we analyze the set of
optimal solutions C = {Y ∈ R

n×p : Y TY = Ip, Y
TNY = D} of the first problem for N

symmetric and D diagonal and find that a slight modification of it is a Riemannian
manifold. We derive the geometric objects required to make an optimization over
this manifold possible. We propose an augmented Lagrangian-based algorithm that
uses these geometric tools and allows us to optimize an arbitrary smooth function
over C. This algorithm can be used to select a particular solution out of the latter
set C by posing a new optimization problem. We compare it numerically with a
similar algorithm that, however, does not apply these geometric tools and find that
our algorithm yields better performance.

The third part is devoted to low rank nearness problems in the Q-norm, where the
matrix of interest is additionally of linear structure, meaning it lies in the set spanned
by s predefined matrices U1, . . . , Us ∈ {0, 1}n×p. These problems are often associated
with model reduction, for example in speech encoding, filter design, or latent semantic
indexing. We investigate three approaches that support any linear structure and
examine further the geometric reformulation by Schuermans et al. (2003). We improve
their algorithm in terms of reliability by applying the augmented Lagrangian method
and show in our numerical tests that the resulting algorithm yields better performance
than other existing methods.
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Chapter 1

Introduction

1.1 Emergence of Matrix Nearness Problems

1.1.1 Modelling of Complex Systems

The fundamental principle of science is to understand complex systems and their

interactions that exist in nature and that influence our daily lives. In order to obtain

a better insight into these systems researchers are trying to reduce the complexity by

simplifying these systems through models that allow them to observe their principles

and to predict eventually their behaviour. Having understood these systems one can

improve current technologies that make our lives easier or open new opportunities

for our human society. For instance to construct modern planes or bridges of large

dimensions certainly one cannot avoid the usage of models to understand the physics

behind and to eventually build them in such a way that they show stable behaviour,

even under extreme weather conditions.

To find the appropriate model that is as simple as possible, but still reflects

the main characteristics of these complex systems is often a hard problem. This is

obviously what Albert Einstein meant when he said:

‘Any intelligent fool can make things bigger, more complex, and more

violent. It takes a touch of genius – and a lot of courage – to move in the

opposite direction.’

1.1.2 Determination of Model Parameters

Once the underlying model has been specified the determination of the corresponding

model parameters is required, which can be an equally hard problem. Not seldom

these parameters are found by means of solving a structured matrix nearness problem.

15
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The reason of using matrix nearness problems is that many problems in science can

easily be represented by minimizing a distance between two matrices. Moreover, there

exists a well established theory about matrices and their properties and highly efficient

algorithms are available to operate on them. Hence, methods can be developed that

determine the corresponding model parameters efficiently. Furthermore, matrices are

flexibly usable and allow to represent large data sets in an intuitive manner, which

is another reason why applications of matrix nearness problems are more than wide-

ranging and are present in all areas of science as we will see later in this thesis.

The matrices that appear in these nearness problems often have an additional

structure that comes from the application and needs to be considered when devel-

oping algorithms that solve these problems. The aim is to exploit the structure of

the underlying system to make these algorithms highly efficient in terms of perfor-

mance and storage usage. Structure refers thereby to an additional property that the

matrices need to satisfy. For example matrices may be required to be symmetric or

orthogonal or more general to lie in an additional constraining convex set, depending

on the application.

1.1.3 Structured Matrix Nearness Problems

We generally define a structured matrix nearness problem as follows. Let A ∈ R
n×p

be a given matrix and X ⊂ R
n×p be the set that describes the structure of the matrix

of interest. Then the problem is to find a matrix X∗ ∈ X that is an optimal solution

of

min
X∈X
‖A−X‖ , (1.1)

where ‖·‖ can be any induced norm in R
n×p. In most of our problems ‖·‖ will be the

Frobenius norm

‖A‖
F
=

√∑

i,j

a2ij.

However, we will also look at some weighted norms that are introduced in Section 1.3

and popular to take in many practical applications.

1.1.4 Examples Where Matrix Nearness Problems Occur

Structured matrix nearness problems arise for instance when one is looking for an

optimal orthogonalization of a given matrix. This problem appears for example in

aerospace computations where a direction cosine matrix needs to be determined, de-

scribing the rotation of a coordinate system relative to a reference system. This

matrix is computed by solving an ordinary differential equation but often due to the

solver used the computed matrix is not orthogonal. Therefore one is required to solve
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a structured nearness matrix problem to obtain a matrix that is orthogonal and clos-

est to the computed matrix [66, Section 2.6], [94]. Other structured matrix nearness

problems arise for instance in biometrics identification where one needs to compare

two data sets. This comparison is carried out by posing a Procrustes problem [58,

Section 14.1.5], which is a structured matrix nearness problem. Similar problems

appear also in molecular biology [34] or in image processing for point-to-point reg-

istrations [22], [85], [11]. In finance a large number of models has been proposed to

analyze the financial market and to estimate the risk of financial instruments. In

Chapter 2 we will introduce a model that is used to investigate asset returns [35,

Section 3.5], collateralized debt obligations (CDOs) [8], and multivariate time series

[88]. We will see that the determination of the model parameters is equivalent to

solving a structured matrix nearness problem where in this case the matrix of in-

terest enjoys a k factor structure. Another application is introduced in Chapter 4

that arises in atomic chemistry and requires to solve again a matrix nearness prob-

lem. In Section 1.7 we will mention more applications of structured matrix nearness

problems, in particular those where the corresponding matrix is related to the sets

of matrix structures that we will introduce throughout this chapter.

1.2 Goal of Thesis

In this thesis we look at different structured matrix nearness problems that all come

from applications in different areas of science. Our goal is to investigate their matrix

structure and propose algorithms that solve the corresponding nearness problems

efficiently by exploiting the structure.

In the first part of this thesis we will consider nearness problems that lead to

optimization problems over closed convex sets whereas in the second part we will

move to problems where the optimization is performed over Riemannian manifolds.

Introductorily to the topic of this thesis we start in this chapter with considering

the set X in (1.1) to be the intersection of a finite number of closed convex sets. In this

case there exists a well established theory that deals with the corresponding nearness

problems. Particularly we will look at two closed convex sets and their corresponding

nearness problems due to their frequent occurrence in science but also because of

their importance in the subsequent chapters: the set of linearly structured matrices

and the set of positive semidefinite matrices. As we consider their corresponding

nearness problems with respect to weighted norms that are popular to take we begin

with introducing the Q-weighted norm and two important variants in Section 1.3.

We will then explain in Section 1.4.1 why (1.1) is a well posed problem if X is an

intersection of closed convex sets. In addition, we will introduce a popular method
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in the subsequent Section 1.4.2 that guarantees convergence to an optimal solution

of the corresponding nearness problem and is easy to implement: the alternating

projections method. Thereafter we focus on the two sets that we mentioned above.

We will look at the set of linearly structured matrices and discuss the corresponding

nearness problem in Section 1.5. Subsequently we concentrate on the set of positive

semidefinite matrices and its nearness problem in Section 1.6. Eventually, some

applications of these problems are introduced in Section 1.7. In the subsequent

Section 1.8 we will then explain more in detail which particular matrix structures

and nearness problems we investigate in this thesis and where the applications come

from. We will also mention at the end of this chapter in Section 1.9 which parts of

the thesis are new contributions to science and what has been achieved throughout

this thesis.

1.3 The Q-Weighted Norm

Before introducing the Q-weighted norm in the space R
n×p with n ≥ p let us first

define the operator vec : Rn×p 7→ R
np that stacks the columns of a matrix into a

long column vector. Then the Q-norm is defined for Q ∈ R
np×np symmetric positive

definite as

‖A‖
Q
:=
√
vec(A)TQvec(A)

for A ∈ R
n×p and is induced by the inner product

〈A,B〉Q := vec(A)TQvec(B)

for A,B ∈ R
n×p. Note that for n and p large computing the Q-norm can become

computationally expensive, in particular solving the corresponding nearness problem.

Therefore we also consider two special choices of the Q-norm.

The first is the H-weighted Frobenius norm, which is defined for an arbitrary

matrix A ∈ R
n×p as

‖A‖
H
:= ‖H ◦ A‖

F
(1.2)

where ◦ denotes the Hadamard product: A ◦B = (aijbij) and H is a matrix in R
n×p

with hij 6= 0 for i = 1, . . . , n and j = 1, . . . , p. The latter property ensures that (1.2)

fulfills the conditions of a norm and is thus well defined. The H-norm is induced

from the inner product

〈A,B〉H := trace((H ◦B)T (H ◦ A)) (1.3)

for A,B ∈ R
n×p.
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The second weighted norm can only be defined for n = p and is

‖A‖
W

:= ‖W 1/2AW 1/2‖
F
, (1.4)

whereW ∈ R
n×n is a symmetric positive definite matrix andW 1/2 denotes the square

root of W defined as

W 1/2 = P T diag(λ
1/2
i )P.

Here, P TΛP is the spectral decomposition ofW and Λ = diag(λi) is the matrix of the

eigenvalues of W where diag : Rn 7→ R
n×n is an operator with diag(a) the diagonal

matrix with the elements of a ∈ R
n on its diagonal. We denote the norm in (1.4) by

the W -norm. Let us now prove that both the H- and the W -norm are special cases

of the Q-norm.

Lemma 1.3.1. The H- and the W -weighted norms are special cases of the Q-norm.

Proof. We first prove the claim for the H-weighted norm. Let H ∈ R
n×p with hij 6= 0

for all i = 1, . . . , n and j = 1, . . . , p. Then we define Q as Q := diag(vec(H ◦ H)).

Since hij 6= 0, Q is symmetric positive definite and thus, well defined. The claim

follows then for A ∈ R
n×p from

‖A‖2
H
= ‖H ◦ A‖2

F
= vec(H ◦ A)Tvec(H ◦ A) = vec(A)TQvec(A) = ‖A‖2

Q
.

Let us now look at the W -weighted norm. Let W ∈ R
n×n be a symmetric posi-

tive definite matrix. Then by using the properties of the Kronecker product, see

Appendix A.1, it follows for Q := W ⊗W and A ∈ R
n×n that

‖A‖2
W

= ‖W 1/2AW 1/2‖2
F
= trace(WATWA) = vec(A)Tvec(WAW )

= vec(A)T (W ⊗W )vec(A) = ‖A‖2
Q
,

which implies that Q is positive definite and thus, verifies the claim.

The H- and W -norm are popular to take as a distance measurement between two

matrices A,B. One reason is certainly that the H-norm weights the distance between

A,B element-wise so that the effect of the weighting is intuitive and clear and thus,

easily adjustable to the needs in applications. The advantage of the W -norm is that

the weighting preserves the inertia and symmetry of the matrices A and B, which,

as we will see later in Section 1.6.2, makes this weighted norm attractive to use.
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1.4 Structured Matrix Nearness Problems for X

Closed Convex

1.4.1 The Problem and its Properties

Now we look at the nearness problem in (1.1) when X is an intersection of closed

convex sets in the Q-norm. Let A ∈ R
n×p be a given matrix and C1, . . . , Cm be m

closed convex sets. Then we are trying to solve

min
X∈C1∩···∩Cm

1

2
‖A−X‖2

Q
. (1.5)

Let X be defined as X := C1∩· · ·∩Cm. Since C1, . . . , Cm are closed and convex X is also

closed and convex. If X is also nonempty an optimal solution of the corresponding

nearness problem (1.5) exists and is also unique [68, Chapter 3]. This allows us to

define an operator ΠX : Rn×p 7→ X that maps a matrix A ∈ R
n×p onto the optimal

solution of (1.5). This operator is called the projection of A onto X in the Q-norm.

In many applications the projection onto X is not known or available but the

projection onto the individual sets C1, . . . , Cm is readily applicable, see for example

the nearest correlation matrix problem in Section 1.7. In this case the alternating

projections method can be applied. We introduce this method in the next section as

it is a popular method that is easy to implement, flexibly usable and thus, widely

applicable, and most importantly it guarantees to converge to the optimal solution.

Looking at our two particular sets, we will see that we can project onto the set of

linearly structured matrices and also onto the set of positive definite matrices in the

W -norm separately but to compute the projection onto the intersection of both sets

is a hard problem. In this case the alternating projection method provides us with

tool to find the intersection point that minimizes the objective function in (1.5) in

the W -norm.

1.4.2 Alternating Projections Method

The idea of the alternating projections method is to project the input matrix A in

(1.5) iteratively onto the closed convex sets C1, . . . , Cm that is repeating the operation

A←− ΠC1 · · ·ΠCm(A).

For each convex set, unless it is an affine subspace, it is necessary to incorporate a

judiciously chosen correction of Boyle and Dykstra [25] to every projection to obtain

convergence to optimal points. Then the method converges at best at linear rate.

Note that the correction can be interpreted as a normal vector to the corresponding
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convex set [65]. See Deutsch [42] for a survey regarding the alternating projections

methods.

The convex sets C1, . . . , Cm incorporate the desired properties of the final out-

come matrix. Hence, modifications of the convex sets allow to obtain the solution

of different nearness problems. The assumption is only that the convex sets have a

point in common and the projections onto the individual convex sets under the norm

considered exist. Therefore the alternating projections method is a powerful tool to

solve difficult problems by transforming them into ‘less’ difficult problems.

Let us now look at a specific closed convex set that is the set of linearly structured

matrices.

1.5 Set of Linearly Structured Matrices L

1.5.1 Definition of L

Let U1, . . . , Us ∈ {0, 1}n×p be s given matrices. Then we define the set of linearly

structured matrices as

L(U1, . . . , Us) :=

{
X : X =

s∑

i=1

xiUi, and xi ∈ R for all i = 1, . . . , s

}
. (1.6)

Note that for simplicity we will write only L if it is clear to which matrices U1, . . . , Us

we refer to. Before we introduce some examples of L for different matrices U1, . . . , Us

in Section 1.7 let us illustrate how this set can look by a member of L when n = p = 3



x1 + x2 x1 0

x2 x3 x1

0 x2 x1 + x3


 .

The set L is a subspace of Rn×p, consisting of all linear combinations of the matrices

U1, . . . , Us, which implies that it is closed and convex.

Let U be defined as

U := [vec(U1) · · · vec(Us)]. (1.7)

Then X ∈ L can be written as vec(X) = Ux with x = (x1, . . . , xs)
T . We will use

this notation later. Note that if (U1, . . . , Us) is a basis in R
n×p then L describes the

entire space R
n×p.

As we have seen in Section 1.4 solving the nearness problem for closed convex sets

is equivalent to projecting onto the space. Since L is closed and convex the projection

onto L is well defined.
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1.5.2 Projection onto L

We consider now how to compute ΠL. Thus, we need to solve for A ∈ R
n×p

minx∈Rs f(x) := 1
2
‖A−∑s

i=1 xiUi‖2Q , (1.8)

where ΠL(A) is then
∑s

i=1 x
∗
iUi for x∗ = (x∗1, . . . , x

∗
s)

T an optimal solution of (1.8).

Note that the objective function f(x) of (1.8) is convex but may not be strictly convex

therefore the optimal solution of (1.8) might not be unique, depending on U1, . . . , Us

as we will see below.

Due to the convexity of f it is sufficient to determine the zeros of the derivative

of f to find the optimal solution. Differentiating f and setting it to zero leads to a

linear system Fx = b with

F =




〈U1, U1〉Q . . . 〈U1, Us〉Q
...

. . .
...

〈Us, U1〉Q . . . 〈Us, Us〉Q


 , b =




〈U1, A〉Q
...

〈Us, A〉Q


 . (1.9)

The matrix F has the well known form of a Gram matrix so it is always positive

semidefinite. Moreover, if the matrices U1, . . . , Us are chosen to be linearly indepen-

dent the matrix is nonsingular, implying a unique solution of (1.8).

If the chosen inner product is the inner product defined in (1.3) inducing the H-

weighted Frobenius norm the problem (1.8) is equivalent to the linear least squares

problem

min
x∈Rs
‖D(Cx− d)‖2

2
(1.10)

with C = U ∈ R
np×s and U as defined in (1.7) with the rank of U less than or equal

to min{np, s}, D = diag(vec(H)), and d = vec(A) ∈ R
np. It is well known that (1.10)

has always a unique minimal 2-norm solution

x = (DC)+Dd (1.11)

[19, Theorem 1.2.10] with (DC)+ the Moore-Penrose pseudo-inverse of DC. If the

weights vary widely in size computing the solution (1.11) directly can become nu-

merically instable. An example where these difficulties occur is given in [19]. To

overcome this problem, the author in [19] proposes to transform the matrix DC

first into a block triangular form by means of Gaussian elimination, resulting in a

well-conditioned linear least squares problem.

The problem (1.8) can also be reformulated as a linear least squares problem when

the W -weighted inner product is considered. In this case p = n and D can be chosen

as the identity matrix, C as the matrix

C = [vec(W 1/2U1W
1/2), . . . , vec(W 1/2UsW

1/2)] ∈ R
n2×s
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and d = vec(W 1/2AW 1/2) ∈ R
n2

in (1.10).

Now, we consider the set of symmetric positive semidefinite matrices.

1.6 Set of Positive Semidefinite Matrices S
+
n

1.6.1 Definition of S+
n

Let Sn be the set of n-by-n symmetric matrices so that for all A ∈ Sn it holds that

AT = A. Then a matrix A ∈ Sn is called positive semidefinite if for all x ∈ R
n:

xTAx ≥ 0. We denote the set of all symmetric positive semidefinite matrices by S+
n .

This set is again closed and convex so that we can define the projection of square

matrices onto this set.

1.6.2 Projection onto S
+
n

Let us first consider the projection ΠS+n with respect to the W -norm.

Projection w.r.t. W -norm

A key property, which makes the W -norm popular to use and allows e.g. the fast

computation of the nearest correlation matrix in this norm, see Section 1.7, is the

existence of an explicit form for the projection ΠW
S+n

under the W -norm. Let (·)+ :

Sn 7→ S+
n be the operator with (S)+ = P T diag(max{λi, 0})P where P TΛP = S is

the spectral decomposition of S. The projection of A onto S+
n is then the solution of

min
X∈S+n

1

2
‖A−X‖2

W
(1.12)

for A ∈ R
n×n and given by

ΠW
S+n (A) := W− 1

2 (W
1

2 sym(A)W
1

2 )+W
− 1

2 (1.13)

[65, Theorem 3.2], [21, Theorem 4.9.1], where sym(A) = (A+AT )/2 is the symmetric

part of A.

Projection w.r.t. H-norm

Unfortunately, such a closed form solution does generally not exist for the H-norm

and thus also not for the Q-norm. In [75, Corollary 2.2] the authors show that for

square, symmetric and positive semidefinite H a sufficient condition for a matrix

X ≥ 0 to be the projection X = ΠH
S+n

(A) of A ∈ R
n×n onto the set of positive

semidefinite matrices is

H ◦X = (sym(A ◦H))+. (1.14)
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Note that the actual statement of the corollary in [75] is misleading since it claims

that (1.14) is a necessary condition for X to be the projection. However, this does not

hold in general as shown in [112] and illustrated by the following counter example.

Let

A =

[
1 2

2 1

]
and H =

[
1 0.2

0.2 1

]
.

Then from (1.14) X = (A ◦H)+ ◦ Ĥ = A and thus is not positive semidefinite where

Ĥ is the Hadamard inverse with ĥij = 1/hij for i, j = 1, . . . , n. Hence the matrix

X that satisfies (1.14) is not the projection ΠH
S+n

(A). The sufficiency result of [75,

Corollary 2.2] is easily derived from (1.12) and (1.13). Let X∗ be the projection

in the H-norm. As X∗ and the matrix H are positive semidefinite the product

H ◦X∗ is also positive semidefinite [74, Section 3.1]. Hence, from (1.13) we have that

‖H ◦ A− (sym(H ◦ A))+‖F ≤ ‖H ◦ A−H ◦X∗‖F = ‖A−X∗‖H . As from (1.14)

there exists a positive semidefinite X with H ◦X = (sym(H ◦A))+ it follows that X

is the projection onto the set of positive semidefinite matrices in the H-norm.

If H is symmetric positive semidefinite with positive entries and of rank 1 then

according to [117, Theorem 2.7] the Hadamard inverse Ĥ is also positive semidefinite.

Hence, the matrix computed as

X = (sym(A ◦H))+ ◦ Ĥ (1.15)

is positive semidefinite and therefore satisfies the sufficient condition to be the projec-

tion in theH-norm. This gives a condition onH so that the projection can be directly

computed via (1.15). As in this case, the matrix H can be written as hij =
√
wiwj

for i, j = 1, . . . , n and w a vector with positive entries this result can also be derived

by observing that the H- and W -norm coincide with W = diag(w).

Projection w.r.t. Q-norm

Note, to compute the projection onto S+
n in the Q-norm one could apply the spectral

projected gradient method [18] that we will discuss more in detail in Section 2.5. In

general this method minimizes a smooth function f over a closed convex set C by

using the projection onto this convex set with respect to the defined inner product

in the space. Therefore in order to determine the projection onto S+
n in the Q-norm

one could apply the spectral projected gradient method by setting f to f(X) :=
1
2
‖A−X‖2

Q
and by using the projection in (1.13) to project onto the set S+

n .
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1.7 Applications

Let us now introduce some applications of the nearness problems that we discussed

in Section 1.5 and 1.6. As the set of linearly structured matrices can describe matrix

sets with various different structures and patterns, depending on the chosen matrices

U1, . . . , Us, these problems are of interest in a large number of applications in many

areas of science. Therefore we will only look at a selection of these applications.

1.7.1 Correlation Matrices

One example is the problem of the nearest correlation matrix under weighted norms,

which has recently been studied [65], [110], [61]. A correlation matrix is a symmetric

matrix that is positive semidefinite and has unit diagonal. In 2002 Higham [65] pro-

posed to use the alternating projections method that we introduced in Section 1.4.2

to find the nearest correlation matrix in the W -norm. The idea is to project alter-

nately onto the set of positive semidefinite matrices and the set of symmetric matrices

having unit diagonal. This algorithm converges at best linearly. More recently faster

algorithms were investigated. In [110] Qi and Sun introduced a semismooth quadrat-

ically convergent Newton algorithm which computes the nearest correlation matrix

in the W -norm. Later they also dealt with the corresponding problem under the

H-norm and proposed an augmented Lagrangian approach [112].

Correlation matrices often occur also in patterns that can be described by the set

L. In Section 2.2 we will come across one example, in which the correlation matrix

depends only on one parameter. In this case the corresponding nearness problem

enjoys many applications in finance. Other linear structures that arise in connection

with correlation matrices are mentioned in [74, pp. 240-242]. In these examples the

matrices are often divided into blocks where the elements of one block have the same

value. Therefore these matrices are of linear structure. The corresponding nearness

problem (1.5) is then of interest in combination with the alternating projections

method when one needs to determine the nearest correlation matrix that is of one of

these patterns.

1.7.2 Toeplitz and Hankel Matrices

Let n = p, s = 2n− 1, and in MATLAB notation Ui = diag(ones(i,1), n-i), and

Un+i = diag(ones(n-i,1),-i) for i = 1, . . . , n − 1, and Un = eye(n). Then the

projection onto L spanned by U1, . . . , Us is the projection onto the set of Toeplitz

matrices. Equivalently, the set of Hankel matrices can be described by flipping

U1, . . . , U2n−1 from left to right. In MATLAB notation this is Un = fliplr(eye(n)),
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Ui = fliplr( diag(ones(i,1),n-i)), and Un+i = fliplr( diag( ones(n-i,1),

-i)) for i = 1, . . . , n − 1. Accordingly, band and block Toeplitz matrices can also

be described by the set L. These block Toeplitz matrices occur, e.g., in [59] where

a homogeneous random field on a 2D domain with covariance function r(x, y) needs

to be sampled on a uniform rectilinear grid with equidistant grid spacing. Then the

relevant covariance matrix R has block Toeplitz structure. Realisations with this

desired covariance structure are then used to compute the expectation of nonlinear

functionals of random fields using a quasi-Monte Carlo method. Such realisations are

quickly computed by the FFT techniques where this covariance matrix needs first to

be embedded in a larger circulant matrix to apply FFT. Suitable padding values are

then determined to ensure the positive semidefiniteness of this matrix [44]. Instead of

using specified padding values one could also determine the nearest positive semidef-

inite circulant matrix having R as the leading part. This gives the motivation for the

matrix structure in the next subsection.

Toeplitz and Hankel matrices also play an important role in signal processing

where the underlying matrix of the system is of that structure. The low rank ap-

proximation of such systems, which we will consider in Chapter 5, often corresponds

to noise removal of incoming signals or model reduction.

Note that these matrix structures also appear in block form and similar algorithms

for the low rank approximation have been developed in [96], [122]. One example is the

block-row Hankel matrix structure arising in multiple-input multiple-output system

identification problems [122].

1.7.3 Circulant Matrices

A special form of Toeplitz matrices are the so called circulant matrices. These ma-

trices have the structure




x1 x2 x3 · · · x3 x2

x2 x1 x2 · · · x4 x3

x3 x2 x1 . . . x5 x4

...
. . .

...

x3 x4 x5 · · · x1 x2

x2 x3 x4 · · · x2 x1




and can thus, be described by the set L. We direct the interested reader to [36] to

find out more about the properties and applications of such matrices.
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1.7.4 Sylvester Matrices

Let p, q be two polynomials of degree n and m, respectively, with

p(x) = pnx
n + · · ·+ p0

and

q(x) = qmx
m + · · ·+ q0,

where pn, qm are nonzero. Then a Sylvester matrix associated with the two polyno-

mials p, q is a matrix S ∈ R
(m+n)×(n+m) with

S =




pn pn−1 . . . p0 0 . . . 0 0

0 pn . . . p1 p0 0 . . . 0
...

. . .
. . . . . .

. . .
. . .

. . .
...

0 . . . 0 pn . . . p1 p0 0

0 0 . . . 0 pn . . . p1 p0

qm qm−1 . . . q0 0 . . . 0 0

0 qm . . . q1 q0 0 . . . 0
...

. . .
. . . . . .

. . .
. . .

. . .
...

0 . . . 0 qm . . . q1 q0 0

0 0 . . . 0 qm . . . q1 q0




.

This matrix is of interest as the coefficients of the greatest common divisor of p and q

can be recovered from the Sylvester matrix [81, Theorem 3] within a constant factor by

performing only row operations to triangularize it to row echelon form. Determining

the greatest common divisor is a fundamental problem of computing theory and

is needed e.g. in computer algebra systems for simplifying rational functions [52,

Chapter 7]. It also arises in polynomial factorization or symbolic integration and in

the area of error-control coding and quantization error-free computation [143].

Another relation between the matrix S and the greatest common divisor of the

polynomials p and q is that the rank deficiency of S is equivalent to the degree of the

greatest common divisor [52, Theorem 7.3], [78, Theorem 2.3]. This property is used

if one is looking for two polynomials p̂ and q̂ that are closest to p and q, respectively

and have a greatest common divisor with a degree greater or equal than a predefined

number k ≤ min{m,n}. This is of interest if the coefficients of p, q are inexact and

the aim is to find the two closest polynomials that have a nontrivial greatest common

divisor. The problem can then be reformulated as a nearest low rank problem where

the output matrix is of Sylvester structure [78]. Many efficient algorithms have been

proposed to compute the greatest common factor by using the Sylvester matrix [52,

Chapter 7], [143], [15].
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1.8 Outline of Thesis

In this chapter we have introduced two closed convex sets: the set of linearly struc-

tured matrices and the set of positive semidefinite matrices and discussed projections

onto these sets under different weighted norms. In particular we looked at the H-

and W -norm that coincide with special choices for the matrix Q in the Q-norm. We

have seen that computing the projection onto the set of linearly structured matri-

ces corresponds to solving a linear system in all norms discussed. To determine the

projection onto the set of semidefinite matrices one can use an explicit formula in

the W -norm whereas in the H-norm or more general, in the Q-norm one requires to

apply optimization routines.

We also looked at the alternating projections method as it allows to compute the

intersection point of these sets that is nearest to a given matrix if the projections

onto the individual sets can be computed. Eventually we introduced some important

applications where these nearness problems arise.

In the next chapters we will look at different structured matrix nearness prob-

lems that come from real applications. In Chapter 2 we start with investigating a

particular structure of a correlation matrix called k factor structure and we look at

the corresponding nearness problem in the Frobenius norm. We will see that this

problem mainly arises in the area of finance when one is modelling assert returns or

multivariate time series. We will investigate several numerical methods for solving

this problem and compare their performance numerically. Note that most of the

material of Chapter 2 has already been published in [24].

As solving the structured nearness problems that we look at in the subsequent

chapters requires to optimize an objective function over a Riemannian manifold we

give for completeness an introduction to this topic in Chapter 3 where all geometric

objects that are needed for an optimization are presented. We also discuss two algo-

rithms that solve optimization problems over Riemannian manifolds: the nonlinear

CG method and the RBFGS method. For the latter method we will look at a limited

memory version.

In Chapter 4 we investigate two structured nearness problems that arise in atomic

chemistry. We specify an analytical solution of the first problem and reformulate the

second as a convex quadratic programming problem with inequality constraints. To

solve the latter problem we apply the active-set method. As the set of optimal

solutions of the first problem is generally not unique we consider to pose a new op-

timization problem over this set to find a particular solution out of it. By dropping

a few constraints we show that the remaining constraining set of the optimization

problem is a Riemannian manifold and develop all geometric objects to be able to
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optimize over this set. By using the optimization tools for Riemannian manifolds

we then apply the augmented Lagrangian method to consider the disregarded con-

straints. The result is a new algorithm that minimizes an arbitrary smooth function

over the set of optimal solutions of the first problem. At the end of this chapter we

investigate the performance of this algorithm numerically. Note that the material of

this chapter will be part of [20], which is currently in preparation.

The subsequent chapter concerns the problem of finding the low rank matrix that

is of a predefined linear structure and nearest to a given matrix. Our main interest

lies thereby in algorithms that are applicable to any linear structure and to any

symmetric positive definite weighting matrix Q in the Q-norm. We will see that

we can reformulate the problem as an optimization problem over the Grassmannian

manifold that allows to apply the augmented Lagrangian method.

Finally in the last chapter we draw the conclusion of our achievements throughout

this thesis and mention some future work. We subsequently list all main symbols

that we introduce throughout all chapters to give a better overview to the reader.

For completeness we define the Fréchet derivative and the Kronecker product in the

appendix and mention some properties of the latter as we make frequent use of it.

1.9 Main Research Contributions

To provide an easily accessible way for the reader to what is achieved throughout this

thesis we are finishing this chapter by listing all our main contributions to research.

• Chapter 2: When considering matrices with k factor structure C(X) = XXT −
diag(XXT−In) for X ∈ R

n×k and k ≤ n we first discuss constraints on X that give

necessary and sufficient conditions for C(X) to be a correlation matrix. Then we

look at a special one parameter case and derive an explicit solution of the nearness

problem. Thereafter we consider the one factor case k = 1 and obtain a rank result

for matrices with this structure. For the general nearness problem, which is in

contrast to the one parameter problem highly nonconvex, we derive the gradient

and the Hessian of the objective function so that first and second order iterative

algorithms can be applied. Also, when k = 1 an instructive result on the positive

definiteness of the Hessian is given.

We investigate several numerical methods for solving the nearness problem: the

alternating directions method; a principal factor method used by [8] which we

show is equivalent to the alternating projection method, projecting onto a convex

set and a nonconvex set in turn and hence lacks convergence results; the spectral

projected gradient method (SPGM) of Birgin, Mart́ınez, and Raydan; and Newton
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and sequential quadratic programming methods. The methods differ in whether

or not they can take account of the nonlinear constraints and in their convergence

properties. Since all methods are iterative methods we look at the effect of different

starting matrices, including a new rank one starting matrix, on the performance.

Our numerical experiments show that the performance of the methods depends

strongly on the problem, but that SPGM is the clear winner. In addition, we

demonstrate empirically for this method how the performance and the optimal

objective function value vary when k is increased.

• Chapter 3: The general purpose of this chapter is mainly to provide an intro-

duction to the optimization over Riemannian manifolds. We therefore consider

as contribution in this chapter only the discussion of how the algorithm of [101]

that efficiently computes the approximation of the Hessian times a vector in the

limited memory BFGS method can be generalized to Riemannian manifolds. We

propose the corresponding algorithm in Algorithm 3.9.2. However, we do not look

at convergence results for this method.

• Chapter 4: In this chapter our focus lies at two two-sided optimization problems

where we give an analytical optimal solution of the first problem. We show that

the second problem is equivalent to a convex quadratic programming problem with

box constraints that can be solved by the active-set method in at most 2p iterations

where p is the number of unknowns. We then concentrate on the set of optimal

solutions of the first problem, which is the set of matrices Y ∈ R
n×p and p ≤ n

that have orthonormal columns and satisfy Y TNY = D for a given symmetric

matrix N ∈ R
n×n and a given diagonal matrix D ∈ R

p×p with increasing diagonal

elements. We show that a slight modification of this set is a Riemannian manifold

and prove that for different input diagonal matrices D the corresponding analytical

optimal solutions that we have derived for the first problem are connected on this

manifold. We derive the tangent and normal space and propose a retraction for

this manifold. In particular, we consider how to efficiently compute the projection

onto the normal space, which corresponds to solving a linear system of order p2.

We show that it is enough to solve a linear system of order (p − 1)p/2 and prove

that the coefficient matrix of this system is sparse for p large. Numerical tests have

shown that this matrix is also better conditioned than the coefficient matrix in the

larger system.

As mentioned in Section 1.8 we then apply the augmented Lagrangian method to

incorporate the p dropped constraints, resulting in a new algorithm that minimizes

an arbitrary smooth function over the set of optimal solution of the first problem
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by using geometric optimization tools. We compare the performance of this algo-

rithm numerically with an augmented Lagrangian method that incorporates all the

constraints Y TNY = D by optimizing the corresponding augmented Lagrangian

function. By means of numerical tests we demonstrate that the new algorithm

outperforms the latter on all our test problems.

• Chapter 5: In this chapter we look at the problem of finding the nearest low rank

matrix to a given matrix in the Q-weighted norm where this low rank matrix is re-

quired to be of a predefined linear structure. We analyze three existing algorithms

in the literature that deal with this problem and look at the geometric approach

proposed in [121] more in detail, which involves minimizing an objective function

over the Grassmannian manifold. The authors in [121] propose an algorithms to

find a solution of the problem. However, they noticed that their algorithm can

break down. We discuss the reasons for these breakdowns and propose then to

apply the augmented Lagrangian method to the optimization problem that tackles

these breakdowns, resulting in an algorithm that is applicable for any linear struc-

ture. Unfortunately, we cannot guarantee convergence for this algorithm in gen-

eral. In order to apply the existing convergence theory for augmented Lagrangian

method one requirement is that the linear constraint qualification (LICQ) is satis-

fied at the optimal solution. We demonstrate by means of two examples that the

LICQ can but also cannot be satisfied, depending on the problem. Subsequently,

we investigate the performance of our algorithm by means of numerical tests and

compare it with other existing algorithms.

Let us now look at our first main matrix structure and the corresponding nearness

problems.



Chapter 2

Nearness Problems of Correlation

Matrices with Factor Structure

2.1 Introduction

In many practical applications involving statistical modeling it is required to adjust

an approximate, empirically obtained correlation matrix so that it has the three

defining properties of a correlation matrix: symmetry, positive semidefiniteness, and

unit diagonal. Lack of definiteness can result from missing or asynchronous data

which, in the case of financial modeling, may be due to a company being formed or

ceasing to trade during the period of interest or markets in different regions trading

at different times and having different holidays. Furthermore, stress testing may

require individual correlations to be artificially adjusted, with subsequent value-at-

risk analysis breaking down if the perturbed matrix is not a correlation matrix [48],

[111]. In a variety of applications it is natural to replace the given empirical matrix

by the nearest correlation matrix in the (weighted) Frobenius norm [65], [113], [130],

[140]. This problem has received much attention in the last few years and can be

solved using the alternating projections method [65] or a preconditioned Newton

method [23], [110], the latter having quadratic convergence and being the method of

choice. Recently, a more general problem with additional inequality constraints has

been considered in [86] and a projected semismooth Newton method was proposed,

which has quadratic convergence.

In this work we are interested in the nearness problem in which factor structure

is imposed on the correlation matrix. Such structure arises in factor models of asset

returns [35, Section 3.5], collateralized debt obligations (CDOs) [8], [54], [73], and

32
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multivariate time series [88]. To motivate this structure we consider the factor model1

ξ = Xη + Fε (2.1)

for the random vector ξ ∈ R
n, where X ∈ R

n×k, F ∈ R
n×n is diagonal, and η ∈ R

k

and ε ∈ R
n are vectors of independent random variables having zero mean and unit

variance, with η and ε independent of each other. In the terminology of factor analy-

sis [98] the components of η are the factors and X is the loading matrix. With cov(·)
and E(·) denoting the covariance matrix and the expectation operator, respectively,

it follows that E(ξ) = 0 and hence

cov(ξ) = E(ξξT ) = XXT + F 2. (2.2)

If we assume that the variance of ξi is 1 for all i then cov(ξ) is the correlation matrix

of ξ and (2.2) gives
∑k

j=1 x
2
ij + f 2

ii = 1, so that

k∑

j=1

x2ij ≤ 1, i = 1: n. (2.3)

This model produces a correlation matrix of the form

C(X) = D +
k∑

j=1

xjx
T
j = D +XXT , (2.4a)

X = [x1, . . . , xk] =




yT1
...

yTn


 = Y T ∈ R

n×k, (2.4b)

D = diag(In −XXT ) = diag(1− yTi yi), (2.4c)

where In denotes the identity matrix in R
n×n. We say C(X) has k factor correlation

matrix structure. Note that C(X) can be written in the form

C(X) =




1 yT1 y2 . . . yT1 yn

yT1 y2 1 . . .
...

...
. . . yTn−1yn

yT1 yn . . . yTn−1yn 1




,

where yi ∈ R
k. While C(X) can be indefinite for general X, the constraints (2.3)

ensure that XXT has diagonal elements bounded by 1, which means that C(X) is

the sum of two positive semidefinite matrices and hence is positive semidefinite. In

1This model is referred to in [54] as the “multifactor copula model.”
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general, C(X) is of full rank; correlation matrices of low rank, studied in [61], [99],

[144], for example, form a very different set. The one factor model (k = 1) is widely

used [35], [51].

The problem of computing a correlation matrix of k factor structure nearest to a

given matrix is posed in the context of credit basket securities by Anderson, Sidenius,

and Basu [8], wherein an ad hoc iterative method for its solution is described. The

problem is also discussed by Glasserman and Suchintabandid [54, Section 5] and

Jäckel [73]. Here, we give theoretical analysis of the problem and show how standard

optimization methods can be used to tackle it.

We begin in Section 2.2 by considering a correlation matrix depending on just

one parameter, for which an explicit solution to the nearness problem is available.

The one factor (n parameter) case is treated in Section 2.3, where results on the

representation, determinant, and rank of C(X) are given, along with formulae for the

gradient and Hessian of the relevant objective function and a result on the definiteness

of the Hessian. In Section 2.4 we consider the general k factor problem and derive

explicit formulae for the relevant gradient and Hessian.

Several suitable numerical methods are presented in Section 2.5. We show that

the principal components-based method proposed in [8] is an alternating projections

method and explain why it cannot be guaranteed to converge. Other methods con-

sidered are an alternating directions method, a spectral projected gradient method,

and Newton and sequential quadratic programming (SQP) methods. We also derive

a rank one starting matrix that yields a smaller function value than X = 0. In Sec-

tion 2.6 we give numerical experiments to compare the performance of the methods

and to investigate different starting matrices and the effect of varying k. Conclusions

are given in Section 2.7.

Throughout, we will use the Frobenius norm ‖A‖F = 〈A,A〉1/2 on R
n×n, where

the inner product 〈A,B〉 = trace(BTA).

2.2 One Parameter Problem

We begin by considering a one parameter matrix C(w) that has unit diagonal and

every off-diagonal element equal to w ∈ R:

C(w) = (1− w)In + weeT = In + w(eeT − In), (2.5)

where e = [1, 1, . . . , 1]T . This matrix is more general than the special case C(θe)

of the one factor matrix considered in the next section because in that case w ≡
θ2 is forced to be nonnegative. This structure corresponds to a covariance matrix



CHAPTER 2. NEAREST MATRICES WITH FACTOR STRUCTURE 35

with constant diagonal and constant off-diagonal elements—a simple but frequently

occurring pattern [5], [67], [76, p. 55], [80], [129], [141].

Lemma 2.2.1. C(w) ∈ R
n×n (n ≥ 2) is a correlation matrix if and only if

−1
n− 1

≤ w ≤ 1. (2.6)

Proof. C(w) is a correlation matrix precisely when it is positive semidefinite. The

eigenvalues of C(w) are 1 + (n− 1)w and n− 1 copies of 1− w, so C(w) is positive
semidefinite precisely when (2.6) holds.

We can give an explicit solution to the corresponding nearness problem,

min{ ‖A− C(w)‖F : C(w) is a correlation matrix }. (2.7)

Theorem 2.2.2. For A ∈ R
n×n,

min
w
‖A− C(w)‖2F = ‖A− In‖2F −

(eTAe− trace(A))2

n2 − n
and the minimum is attained uniquely at

wopt =
eTAe− trace(A)

n2 − n . (2.8)

The problem (2.7) has a unique solution given by the projection of wopt onto the

interval [−1/(n− 1), 1].

Proof. We want the global minimizer of

f(w) := ‖A− (In + w(eeT − In))‖2F
= ‖A− In‖2F + w2‖eeT − In‖2F − 2trace((A− In)w(eeT − In))
= ‖A− In‖2F + w2(n2 − n)− 2w trace(AeeT − A− eeT + In)

= ‖A− In‖2F + w2(n2 − n)− 2w(eTAe− trace(A)).

Since f ′(w) = 2w(n2 − n) − 2(eTAe − trace(A)), f has a unique stationary point at

wopt given by (2.8). From f ′′(w) = 2(n2−n) > 0 it follows that f is strictly convex, so

wopt is a local and hence global minimizer. The last part follows from the convexity

of f .

It is known [65, Theorem 2.5] that if aii ≡ 1 and A has t nonpositive eigenvalues

then the solution to min{‖A − X‖F : X is a correlation matrix} has at least t zero

eigenvalues. By contrast, from Theorem 2.2.2 we see that for aii ≡ 1 the solution to

problem (2.7) has exactly one zero eigenvalue when wopt ≤ −1/(n−1) (i.e., eTAe ≤ 0),

and exactly n − 1 zero eigenvalues when wopt ≥ 1 (i.e., eTAe ≥ n2), and otherwise

the solution is nonsingular.



CHAPTER 2. NEAREST MATRICES WITH FACTOR STRUCTURE 36

A more general version of C(w) arises when variables in an underlying model

are grouped and separate intra- and intergroup correlations are defined [60]. The

correlation matrix is now a block m ×m matrix C(Γ ) = (Cij) ∈ R
n×n, where Γ ∈

R
m×m and

Cij =




C(γii) ∈ R

ni×ni , i = j,

γijee
T ∈ R

ni×nj , i 6= j,
(2.9)

with n =
∑m

i=1 ni. The objective function is, with A = (Aij) partitioned conformally

with C,

f(Γ ) = ‖A− C(Γ )‖2F =
m∑

i=1

‖Aii − C(γii)‖2F +
∑

i 6=j

‖Aij − γijeeT‖2F . (2.10)

The problem is to minimize f(Γ ) subject to C being in the intersection of the set of

positive semidefinite matrices and the set C of all patterned matrices of the form (2.9).

Both these sets are closed convex sets and hence so is their intersection. It follows

from standard results in approximation theory (see, for example, [91, p. 69]) that the

problem has a unique solution. This solution can be computed by the alternating

projections method, by repeatedly projecting onto the two sets in question. To obtain

the projection onto the set C we simply apply Theorem 2.2.2 to each term in the first

summation in (2.10) and for i 6= j set γij =
∑

(p,q)∈Sij
apq/|Sij|, where Sij is the set

of indices of the elements in Aij and |Sij| is the number of elements in Sij. The

latter projection can trivially be incorporated into Algorithm 3.3 of [65], replacing

the projection onto the unit diagonal matrices therein, without losing the algorithm’s

guaranteed convergence.

If the intergroup correlations are equal and nonnegative, say γij ≡ β ≥ 0, and

additionally all intragroup correlations satisfy γii ≥ β, the matrix C(Γ ) can be rep-

resented as an m + 1 factor correlation matrix C(X), with X ∈ R
n×(m+1) a block

m× (m+ 1) matrix X = (Xij) with Xij ∈ R
ni , where

Xij =





√
βe ∈ R

ni , j=1,
√
γii − βe ∈ R

ni , j=i+1,

0 otherwise.

To illustrate, we consider a small example where m = 2 and n1 = n2 = 2. Then X is

a block 2× 3 matrix and

XXT =




√
β
√
β

√
γ11 − β
√
γ11 − β

0

0
√
β
√
β

0

0

√
γ22 − β
√
γ22 − β







√
β

√
β

√
β

√
β√

γ11 − β
√
γ11 − β 0 0

0 0
√
γ22 − β

√
γ22 − β


 ,
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which simplifies to the desired form




γ11 γ11

γ11 γ11

β β

β β

β β

β β

γ22 γ22

γ22 γ22



.

2.3 One Factor Problem

We now consider the one factor problem, for which the correlation matrix has the

form, taking k = 1 in (2.4),

C(x) = diag(1− x2i ) + xxT , x ∈ R
n. (2.11)

The off-diagonal part of C(x) agrees with that of the rank one matrix xxT , so C(x)

is of the general diagonal plus semiseparable form [136].

We first consider the uniqueness of this representation.

Theorem 2.3.1. Let C = C(x) for some x ∈ R
n with p nonzero elements (0 ≤ p ≤

n). If p = 1 then C = In and C = C(y) for any y with at least n− 1 zero entries. If

p = 2 and xi, xj are the nonzero entries of x then C = C(y) for y = θxiei + θ−1xjej

for any θ 6= 0. Otherwise, C = C(y) for exactly two vectors: y = ±x.

Proof. Without loss of generality we can assume C = diag(1 − x2i ) + xxT has been

symmetrically permuted so that xi 6= 0 for i = 1: p and xi = 0 for i = p + 1: n. If

p = 1 then C = In and x1 is arbitrary, which gives the first part. Suppose p > 1. We

can write

C =

[
C1 0

0 In−p

]
, (2.12)

where C1 ∈ R
p×p has all nonzero elements. If p = 2 then c12 = x1x2 = θx1 · θ−1x2 ≡

y1y2 for any θ 6= 0 and C = C(y) with y3, . . . , yn necessarily zero. Assume p > 2 and

suppose C = diag(1 − y2i ) + yyT . Then, from (2.12), yi 6= 0 for i = 1: p and yi = 0

for i = p+ 1: n. From C = diag(1− y2i ) + yyT we have

ci,i+1ci,i+2

ci+1,i+2

= y2i , 1 ≤ i ≤ p− 2, (2.13)

which determines the first p−2 components of yi up to their signs, and yp is determined

by yp−2yp = cp−2,p and yp−1 by yp−1yp = cp−1,p. Finally, the equations c1j = y1yj,

1 ≤ j ≤ p, ensure that sign(yj), 2 ≤ j ≤ p, is determined by sign(y1).

Before addressing the nearness problem we develop some properties of C(x).
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Lemma 2.3.2. The determinant of C(x) is given by

det(C(x)) =
n∏

i=1

(1− x2i ) +
n∑

i=1

x2i

n∏

j=1

j 6=i

(1− x2j). (2.14)

Proof. Define the vector z(ǫ) by zi = xi + ǫ. For sufficiently small ǫ, z(ǫ) has no

element equal to 1 and D = diag(1 − z2i ) is nonsingular. Hence C(z) = D + zzT =

D(In +D−1z · zT ), from which it follows that

det(C(z)) = det(D)(1 + zTD−1z) =
n∏

i=1

(1− z2i ) ·
(
1 +

n∑

i=1

z2i
1− z2i

)
.

On multiplying out, the formula takes the form (2.14) with x replaced by z(ǫ), and

letting ǫ → 0 gives the result, since the determinant is a continuous function of the

matrix elements.

For the case xi 6= 1 for all i the formula (2.14) is a special case of a result in [119,

Section 2.1].

Corollary 2.3.3. If |x| ≤ e with xi = 1 for at most one i then C(x) is nonsingular.

C(x) is singular if xi = xj = 1 for some i 6= j.

The matrix C(x) is not always a correlation matrix because it is not always

positive semidefinite. We know from the discussion of the k factor case in Section 2.1

that a sufficient condition for C(x) to be a correlation matrix is that |x| ≤ e. This

condition arises in the factor model described in Section 2.1 and hence is natural in

the applications. The two extreme cases are when |x| = e, in which case C = xxT

is of rank 1, and when x = 0, in which case C = In has rank n. The next result

shows more generally that the rank is determined by the number of elements of x of

modulus 1.

Theorem 2.3.4. For C = C(x) ∈ R
n×n in (2.11) with |x| ≤ e we have rank(C) =

min(p+ 1, n), where p is the number of xi for which |xi| < 1.

Proof. By a symmetric permutation of C we can assume, without loss of generality,

that |xi| < 1 for i = 1: p and |xi| = 1 for i = p + 1: n. The result is true for p = n

by Corollary 2.3.3, so assume p ≤ n − 1. Partition x = [y, z]T , where y ∈ R
p; thus

|y| < e and |z| = e. Then

C =

[
C1 yzT

zyT zzT

]
,

where C1 ∈ R
p×p is positive definite. With XT =

[
I

−zyTC−1

1

0
I

]
we have

XTCX =

[
C1 0

0 S

]
,
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where

S = zzT − zyTC−11 yzT = zzT − (yTC−11 y)zzT = (1− yTC−11 y)zzT .

Hence rank(C) = rank(C1)+rank(S) = p+rank(S). Now C1 = diag(1−y2i )+yyT =:

D + yyT , where D is positive definite, and the Sherman–Morrison formula gives

C−11 = D−1 − D−1yyTD−1

1 + yTD−1y
.

So

yTC−11 y =
yTD−1y

1 + yTD−1y
< 1.

Since yTC−11 y 6= 1 and z 6= 0, S has rank 1 and the result follows.

Now we are ready to address the nearness problem. Consider the problem of

minimizing

f(x) = ‖A−
(
diag(1− x2i ) + xxT

)
‖2F , (2.15)

subject to |x| ≤ e, where A ∈ R
n×n is symmetric and we can assume without loss of

generality that aii = 1 for all i. For n = 2, f(x) = 0 is the global minimum, attained

at x = [θa12, θ
−1]T for any θ 6= 0. For n = 3, f(x) = 0 is again achieved; if aij 6= 0

for all i and j then there are exactly two minimizers. But for n ≥ 4 there are more

equations than variables in A = diag(1 − x2i ) + xxT and so the global minimum is

generally positive.

Note that because of Theorem 2.3.1 we could further restrict one element of x

to [0, 1]. We could go further and restrict all the elements of x to [0, 1] in order to

obtain a correlation matrix with nonnegative elements—a constraint that is imposed

in [125], [137].

The function f is clearly twice continuously differentiable, and we need to find its

gradient ∇f(x) and Hessian ∇2f(x). Setting Â = A− In and D = diag(xi), noticing

that âii ≡ 0, and using properties of the trace operator, we can rewrite f as

f(x) = 〈Â, Â〉+ 2〈Â,D2〉 − 2〈Â, xxT 〉

+ 〈xxT , xxT 〉 − 2〈xxT , D2〉+ 〈D2, D2〉

= 〈Â, Â〉 − 2xT Âx+ (xTx)2 −
n∑

i=1

x4i . (2.16)

Lemma 2.3.5. For f in (2.15) we have

∇f(x) = 4
(
(xTx)x− Âx−D2x

)
, (2.17)

∇2f(x) = 4(2xxT + (xTx)In − Â− 3D2). (2.18)



CHAPTER 2. NEAREST MATRICES WITH FACTOR STRUCTURE 40

Proof. We have ∇(xT Âx) = 2Âx and ∇2(xT Âx) = 2Â. Similarly, ∇(∑n
i=1 x

4
i ) =

4D2x and ∇2(
∑n

i=1 x
4
i ) = 12D2. It is straightforward to show that for h(x) = (xTx)2

we have ∇h(x) = 4(xTx)x and ∇2h(x) = 8xxT + 4(xTx)In. The formulae follow by

differentiating (2.16) and using these expressions.

Notice that at x = 0, ∇f(0) = 0 and ∇2f(0) = −4Â. For A 6= In, since Â is

symmetric and indefinite (by virtue of its zero diagonal), x = 0 is a saddle point of f .

Another deduction that can be made from the lemma is that if aii = 1 and |aij| ≤ 1

for all i and j then x = e is a solution if and only if A = eeT .

Denote a global minimizer of f by x. If f(x) = 0 then A = diag(1 − x2i ) +

xxT is precisely of the sought structure and we call A reproducible. We ignore the

constraint |x| ≤ e for the rest of this section. We now examine the properties of the

Hessian matrix at x for reproducible A and will later draw conclusions about the

nonreproducible case. Note that (2.18) simplifies to ∇2f(x) = 4((xTx)In + xxT −
2D

2
), where D = diag(xi). Therefore we consider the matrix

Hn = Hn(x) = (xTx)In + xxT − 2D2, x ∈ R
n. (2.19)

For example,

H4 =




x22 + x23 + x24 x1x2 x1x3 x1x4

x2x1 x21 + x23 + x24 x2x3 x2x4

x3x1 x3x2 x21 + x22 + x24 x3x4

x4x1 x4x2 x4x3 x21 + x22 + x23



.

We want to determine the definiteness and nonsingularity properties of Hn. Without

loss of generality we can suppose that

|x1| ≥ |x2| ≥ · · · ≥ |xp| > xp+1 = · · · = xn = 0, (2.20)

with p ≥ 1. If n = 4 and p = 3 then H4 has the form



x22 + x23 x1x2 x1x3 0

x2x1 x21 + x23 x2x3 0

x3x1 x3x2 x21 + x22 0

0 0 0 x21 + x22 + x23



= diag(H3, x

2
1 + x22 + x23).

In general,

Hn = diag(Hp, Dp), Dp = (x21 + x22 + · · ·+ x2p)In−p.

Dp has positive diagonal entries and hence the definiteness properties of Hn are

determined by those of Hp. So the problem has been reduced to the case of xi

nonzero.
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Theorem 2.3.6. Hn is positive semidefinite. Moreover, Hn is nonsingular if and

only if at least three of x1, x2, . . . , xn are nonzero.

Proof. From the foregoing analysis we can restrict our attention to Hp and assume

that (2.20) holds. Let W = diag(x1, x2, . . . , xp). Then H̃p = W THpW has the form

illustrated for p = 4 by

H̃4 =




x21(x
2
2 + x23 + x24) x21x

2
2 x21x

2
3 x21x

2
4

x22x
2
1 x22(x

2
1 + x23 + x24) x22x

2
3 x21x

2
4

x23x
2
1 x23x

2
2 x23(x

2
1 + x22 + x24) x21x

2
4

x24x
2
1 x24x

2
2 x24x

2
3 x24(x

2
1 + x22 + x23)



.

Thus H̃p is diagonally dominant with nonnegative diagonal elements and with equality

in the diagonal dominance conditions for every row (or column); it is therefore positive

semidefinite by Gershgorin’s theorem. Suppose H̃p is singular. Then λ = 0 is an

eigenvalue lying on the boundary of the set of Gershgorin discs (in fact it is on the

boundary of every Gershgorin disc). Hence by [69, Theorem 6.2.5], since H̃p has all

nonzero entries any null vector z of H̃p has the property that |zi| is the same for all

i. Hence any null vector can be taken to have elements zi = ±1. But it is easy to see

that no such vector can be a null vector of H̃p for p > 2. Hence H̃p is nonsingular for

p > 2. Since Hp is congruent to H̃p, Hp is positive definite for p > 2. For p = 1, 2,

Hp is singular. The result follows.

Since x is, by definition, a global minimizer and is usually one of exactly two

distinct global minimizers ±x, by Theorem 2.3.1, Theorem 2.3.6 does not provide

any significant new information about x. However, it does tell us something about

the nonreproducible case. For general A, Ĥn = 1
4
∇2f(x) can be written, using (2.18),

as

Ĥn =
(
(xTx)In + xxT − 2D2

)
+ (xxT − Â−D2) = Hn + En,

where Hn, defined in (2.19), is positive semidefinite by Theorem 2.3.6 and moreover

positive definite if at least three components of x are nonzero. Now En has zero

diagonal and in general is indefinite. Furthermore, En is singular at a stationary

point x since Enx = 0 by (2.17). We can conclude that at a stationary point x

having at least three nonzero components the Hessian ∇2f(x) = 4Ĥn will be positive

definite if ‖En‖F is sufficiently small, that is, if |(En)ij| = |xixj − aij| is sufficiently

small for all i and j. In this case x is a local minimizer of f .

2.4 k Factor Problem

Now we consider the general k factor problem, for which C(X) = D +
∑k

j=1 xjx
T
j as

in (2.4). We require that (2.3) holds, so that C(X) is positive semidefinite and hence
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is a correlation matrix.

As noted by Lawley and Maxwell [83], the representation (2.4) is far from unique

as we can replace X by XQ for any orthogonal matrix Q ∈ R
k×k without changing

C(X). This corresponds to a rotation of the factors in the terminology of factor

analysis. Some approaches to determining a unique representation are described in

[76], [83]. Probably the most popular one is the varimax method of Kaiser [77]. Given

an X defining a matrix C(X) with k factor structure, this method maximizes the

function

V (P ) =

∥∥∥∥
(
In −

1

n
eeT
)
(XP ◦XP )

∥∥∥∥
F

over all orthogonal P and then uses the representation C(XP ). Here the symbol “◦”
denotes the Hadamard product (A ◦ B = (aijbij)). The method rotates and reflects

the rows of X such that after squaring the elements of each column differ maximally

from their mean value, which explains the name varimax.

The nearness problem for our k factor representation is to minimize

f(X) = ‖A− (In +XXT − diag(XXT ))‖2F (2.21)

over all X ∈ R
n×k satisfying the constraints (2.3). As before, A ∈ R

n×n is symmetric

with unit diagonal and we set Â = A − In. We now obtain the first and second

derivatives of f .

Since Â has zero diagonal we have 〈Â, diag(XXT )〉 = 0 and also 〈diag(XXT ) −
XXT , diag(XXT )〉 = 0. The function f can therefore be written

f(X) = 〈Â, Â〉 − 2〈ÂX,X〉+ 〈XXT , XXT 〉 − 〈XXT , diag(XXT )〉. (2.22)

The next result gives a formula for the gradient, which is now most conveniently

expressed as the matrix ∇f(X) = (∂f(X)/∂xij) ∈ R
n×k.

Lemma 2.4.1. For f in (2.21) we have

∇f(X) = 4
(
X(XTX)− ÂX − diag(XXT )X

)
. (2.23)

Proof. It is straightforward to show that ∇〈ÂX,X〉 = 2ÂX. Next, consider the

term h1(x) = 〈XXT , XXT 〉. Consider the auxiliary function g1 : R → R, given by

g1(t) = h1(X + tZ), for arbitrary Z ∈ R
n×k. Clearly, g′1(0) = 〈∇h1(X), Z〉. After

some algebraic manipulations we find that

g′1(0) = 2〈XTX,XTZ〉+ 2〈XTX,ZTX〉 = 4〈X(XTX), Z〉.

Therefore, ∇h1(X) = 4X(XTX). Similarly, we find that the gradient of h2(x) =

〈XXT , diag(XXT )〉 is ∇h2(X) = 4 diag(XXT )X. The result follows.
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Notice that when k = 1, (2.23) reduces to (2.17).

The Hessian of f is an nk×nk matrix that is most conveniently viewed as a matrix

representation of the Fréchet derivative L∇f of ∇f . Recall that the Fréchet derivative
Lg(X,E) of g : R

m×n → R
m×n at X in the direction E is a linear operator satisfying

g(X + E) = g(X) + Lg(X,E) + o(‖E‖) [66, Section 3.1] or Appendix A.2. We can

determine the Fréchet derivative of ∇f by finding the linear part of the expansion

for ∇f(X +E). For example, to find the derivative of the first term in (2.23) we set

f1(X) = X(XTX) and consider

f1(X + E) = f1(X) +X(XTE) +X(ETX) + E(XTX) +O(‖E‖2).

Hence Lf1(X,E) = X(XTE)+X(ETX)+E(XTX). For the third term, f3, we have,

similarly, Lf3(X,E) = diag(XET )X + diag(EXT )X + diag(XXT )E.

Lemma 2.4.2. For f in (2.21) we have

L∇f (X,E) = 4
(
X(XTE) +X(ETX) + E(XTX)− ÂE
− (diag(XET )X + diag(EXT )X + diag(XXT )E)

)
. (2.24)

2.5 Numerical Methods

The problem of interest is

minimize f(X) = ‖A− (In +XXT − diag(XXT ))‖2F (2.25a)

subject to X ∈ Ω :=

{
X ∈ R

n×k :
∑k

j=1 x
2
ij ≤ 1, i = 1: n

}
, (2.25b)

where A ∈ R
n×n is a given symmetric matrix. The set Ω is convex. However, since

the objective function f in (2.25a) is nonconvex we can only expect to find a local

minimum, though if we achieve f(X) = 0 we know that X is a global minimizer.

We consider several different numerical methods for solving the problem. We first

consider how to start the iterations. We will take a matrix of a simple, parametrized

form, optimize the parameter, and then show that this matrix yields a smaller func-

tion value than the zero matrix. Let λ be the largest eigenvalue of A, which is at least

1 if A has unit diagonal, which can be assumed without loss of generality. We take

for the starting matrix X(0) a matrix αveT whose columns are all the same multiple

of the eigenvector v corresponding to λ. The scalar α is chosen to minimize f(αveT )

subject to αveT staying in the feasible set Ω. Straightforward computations show

that the optimal α is

αopt = min

{(
(λ− 1)‖v‖22

k‖v‖42 − k
∑

i v
4
i

)1/2

,
1

k1/2 maxi |vi|

}
.
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This X(0) can be inexpensively computed by using the power method or the Lanczos

method to obtain λ and v. Moreover, it is guaranteed to yield a smaller value of f

than the zero matrix if λ > 1 since, from (2.22),

f(αoptve
T ) = 〈Â, Â〉 − 2α2

optk(λ− 1)‖v‖22 + α4
optk

2‖v‖42 − α4
optk

2
∑

i

v4i

= 〈Â, Â〉 − α2
optk

(
2(λ− 1)‖v‖22 − α2

opt

(
k‖v‖42 − k

∑

i

v4i

))

≤ 〈Â, Â〉 − α2
optk

(
2(λ− 1)‖v‖22 − (λ− 1)‖v‖22

)

= 〈Â, Â〉 − α2
optk(λ− 1)‖v‖22 < f(0).

As noted by Anderson, Sidenius, and Basu [8], and as we will see later for some

problem types, minimizing f without the constraint X ∈ Ω may yield a solution

of the constrained problem (2.25). This motivates us to consider first methods that

ignore or only partly incorporate the constraint. The first method is the alternating

directions (or coordinate search) method. Regarding f as a function of just xij we

have

f(xij) = const.+ 2
∑

q 6=i

(
aiq −

k∑

s=1

xisxqs

)2

,

so

f ′(xij) = 4
∑

q 6=i

(−xqj)
(
aiq −

k∑

s=1

xisxqs

)

= 4

(
−
∑

q 6=i

xqjaiq +
∑

q 6=i

xqjxijxqj + xqj
∑

s 6=j

xisxqs

)

= 4

(
xij
∑

q 6=i

x2qj +
∑

q 6=i

xqj

(∑

s 6=j

xisxqs − aiq
))

.

Hence f ′(xij) = 0 for

xij =

∑
q 6=i xqj

(
aiq −

∑
s 6=j xisxqs

)

∑
q 6=i x

2
qj

. (2.26)

We can therefore repeatedly minimize over each xij in turn using (2.26). If the new

xij is not in the interval [−1, 1] we project it back onto the interval by reducing

|xij| appropriately, since xij must lie in this interval if it is in Ω. Convergence of

this method to a stationary point of f can be proved under suitable conditions [79,

Section 8.1], [132]. After the projection step x may nevertheless lie outside Ω if k > 1,

but we do not project onto Ω because this may cause the method not to converge.
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Anderson, Sidenius, and Basu [8] propose another method to solve the k factor

problem. For F (X) = In − diag(XXT ) it iteratively generates a sequence {Xi}i≥0
with

Xi = argmin
X∈Rn×k

‖A− F (Xi−1)−XXT‖F . (2.27)

The minimizer of (2.27) is found by principal component analysis. Let P TΛP be

a spectral decomposition of A − F (Xi−1), with P orthogonal and Λ diagonal with

diagonal elements in nonincreasing order. Then the minimizer is (in MATLAB no-

tation) Xi = P (:, 1: k)Λ̃1/2, where Λ̃ = diag(max(λ1, 0), . . . ,max(λk, 0)). Thus just

the k largest eigenvalues and corresponding eigenvectors of A− F (Xi−1) are needed,

and these can be inexpensively computed by the Lanczos iteration or by orthogonally

reducing the matrix to tridiagonal form and applying the bisection method followed

by inverse iteration [133, pp. 227 ff.]. This method is also known as the principal

factors method [53, Section 10.4].

We note that this method is equivalent to the alternating projections method.

Recall from Section 1.4.2 that this method generates a sequence {Zi}i≥0 with Zi =

PS(PU(Zi−1)), where PS and PU are projection operators onto the sets

U := {W ∈ R
n×n : wij = aij for i 6= j},

S := {W ∈ R
n×n : W = XXT for some X ∈ R

n×k}.

The projection PS(Z) is formed by the construction described in the previous para-

graph. With Z0 = X0X
T
0 , the equivalence between the {Xk} and the {Zk} is given

by Zi ≡ XiX
T
i .

Although this method has been successfully used [8], [73] it is not guaranteed

to converge. The standard convergence theory [42] for the alternating projections

method is not applicable since the set S is not convex for k < n and the sets U and

S do not have a point in common unless the objective function f is zero at the global

minimum.

Since there is no guarantee that the final iterates of the alternating directions and

principal factors methods lie in the feasible set Ω, we project onto this set after the

computation. To project an n× k matrix Y with rows yTi onto Ω we simply replace

any row yTi such that ‖yi‖2 > 1 by yTi /‖yi‖2. We denote this projection by P (Y ).

The next method solves the full, constrained problem (2.25) and generates a

sequence of matrices that is guaranteed to converge r-linearly to a stationary point of

(2.25). Introduced by Birgin, Mart́ınez, and Raydan [16], [17], the spectral projected

gradient method aims to minimize a continuously differentiable function f : Rn → R

on a nonempty closed convex set. The method has the form xk+1 = xk + αkdk where

dk is chosen to be P (xk − tk∇f(xk)) − xk, with tk > 0 a precomputed scalar. The
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direction dk is guaranteed to be a descent direction [16, Lemma 2.1] and the scalar αk

is selected by a nonmonotone line search strategy. The cost per iteration is low for our

problem because the projection P is inexpensive to compute. An R implementation

of the method is available [139].

Our analysis in the previous sections suggests applying a Newton method to our

problem since the gradient and the Hessian are explicitly known and can be computed

in a reasonable time. As the constraints defining Ω in (2.25b) are nonlinear for k > 1

we distinguish here between the one factor case and the k factor case.

For k = 1 we use the routine e04lb of the NAG Toolbox for MATLAB [100],

which implements a globally convergent modified Newton method for minimizing a

nonlinear function subject to upper and lower bounds on the variables; these bounds

allow us to enforce the constraint (2.25b). This method uses the first derivative and

the Hessian matrix.

For k > 1 we apply the routine e04wd of the NAG Toolbox for MATLAB,

which implements an SQP method. This routine deals with the nonlinear constraints

(2.25b) but does not use the Hessian. In order to have an unconstrained optimization

method that we can compare with the principal factors method, we apply the function

fminunc of the MATLAB Optimization Toolbox [97], which implements a subspace

trust region method based on the interior-reflective Newton method. This algorithm

uses the first derivative and the Hessian. As for the principal factors method, if nec-

essary we project the final iterate onto the feasible set Ω to satisfy the constraints.

We will use the following abbreviations for the methods:

• AD: alternating directions method.

• PFM: principal factors method.

• SPGM: spectral projected gradient method.

• Newt1: e041b.

• Newt2: fminunc.

• SQP: e04wd.

We summarize the properties of the methods in Table 2.1.

2.6 Computational Experiments

Our experiments were performed in MATLAB R2007a using the NAG Toolbox for

MATLAB Mark 22.0 on an Intel Pentium 4 (3.20 GHz). In order to define the
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Table 2.1: Summary of the methods, with final column indicating the available con-
vergence results (see the text for details).

Method Required derivatives Constraints satisfied? Convergence?
AD none needs final projection for k > 1 yes
PFM none needs final projection for all k no result
SPGM gradient yes r-linear
Newt1 (k = 1) gradient, Hessian yes quadratic
Newt2 (k > 1) gradient, Hessian needs final projection for all k quadratic
SQP (k > 1) gradient yes quadratic

stopping criterion used in all the algorithms we first introduce an easy to compute

measurement of stationarity. We define the function q : Rn×k 7→ R
n×k by

q(X) = P
(
X −∇f(X)

)
−X.

It can be shown that a point X∗ ∈ Ω is a stationary point of our problem (2.25) if

and only if q(X∗) = 0 [45, (2.6)]. The stopping criterion is

‖q(X)‖F ≤ tol, (2.28)

where tol will be specified for the individual tests below. We use the same notation

and criterion when no constraints are imposed, in which case P is the identity and

q(x) reduces to the gradient −∇f(X).

Since the final iterates of these methods may not be in the feasible set Ω, prior to

our enforced projection onto it, we introduce a measurement of constraint violation

at a point X, given by the function v : Rn×k → R with

v(X) =
n∑

i=1

max
(
‖yi‖22 − 1, 0

)
, XT = [y1, . . . , yn]. (2.29)

Our test matrices are chosen from five classes.

• expij: The correlation matrix (e−|i−j|)ni,j=1 occurring in annual forward rate

correlations associated with LIBOR models [26, Section 6.9] and can be used

to calibrate the lognormal forward rate model as described in [6].

• corrand: A random correlation matrix generated by gallery(’randcorr’, n).

• corkfac: A random correlation matrix generated by A = diag(In − XXT ) +

XXT where X ∈ R
n×k is a random matrix with elements from the uniform

distribution on [−1, 1] that is then projected ontoΩ. Here the objective function

f is zero at the global minimum.
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• randneig: A symmetric matrix generated by A = 1
2
(B + BT ) + diag(In − B)

where B is the first matrix out of a sequence of random matrices with elements

from the uniform distribution on [−1, 1] such that A has a negative eigenvalue.

• cor1399: A symmetric, unit-diagonal matrix constructed from stock data pro-

vided by a fund management company. It has dimension n = 1399 and is highly

rank-deficient but not positive semidefinite. This matrix was also used in [23],

[65].

Let us prove that the matrix of the form of expij is always a correlation matrix.

The following theorem gives this result for a generalization of the class of matrices

described by expij.

Theorem 2.6.1. Let φ(x) be a continuous, nonnegative, even, and real function.

Let further φ(0) = 1 and let φ(x) be convex and monotonically decreasing on [0,∞].

Then the matrix

C := [φ(xi − xj)]ni,j=1

is a correlation matrix for any real numbers xi for i = 1, . . . , n.

Proof. Since Cii = φ(0) for all i = 1, . . . , n and Cij = Cji for all i, j = 1, . . . , n the

matrix C is symmetric and has ones on its diagonal. Further, it follows from [14,

Section 5.2.15 b] that the function φ is positive, i.e. for every positive integer N and

every choice of x = (x1, . . . , xN)
T ∈ R

N and y = (y1, . . . , yN)
T ∈ C

N :

N∑

i,j=1

φ(xi − xj)yrȳs ≥ 0

for all r, s = 1, . . . , N . This implies that yTCy ≥ 0 for every y ∈ R
n and hence, C is

a correlation matrix.

Corollary 2.6.2. The matrix

C = [e−|xi−xj |α ]ni,j=1

is a correlation matrix for x1, . . . , xn ∈ R and α ∈ (0, 1].

Proof. As for all α ∈ (0, 1] the function φ(x) := e−|x|
α

is one at zero, continuous,

nonnegative, even, and convex and monotonically decreasing on [0,∞] the matrix C

is a correlation matrix by Theorem 2.6.1. The latter property is true as the second

derivative of φ(x) is nonnegative on (0,∞).

Note that the Corollary 2.6.2 includes the case C = [e−|(i−j)|]ni,j=1 for xi = i and

i = 1, . . . , n. Note also that the result of Corollary 2.6.2 can be extended to α ∈ (0, 2]

as demonstrated in [14, Theorem 5.2.17].



CHAPTER 2. NEAREST MATRICES WITH FACTOR STRUCTURE 49

2.6.1 Test Results for k = 1

We first consider the one factor case. Each method was started with the rank one

matrix defined at the start of Section 2.5.

In Tables 2.2 and 2.3 we report results averaged over 10 instances of each of the

three classes of random matrices for n = 100 and n = 2000 with tolerance tol = 10−3

and tol = 10−6, respectively. Table 2.4 gives the results for the matrix cor1399 with

tolerance tol = 10−3. We use the following abbreviations:

• t: mean computational time (seconds).

• it: mean number of iterations.

• itsd: standard deviation of the number of iterations.

• dist0: mean initial value of f(X)1/2.

• dist: mean final value of f(X)1/2 after the final projection onto the feasible

set.

• nq0: mean initial value of ‖q(X)‖F .

• nq: mean final value of ‖q(X)‖F before the final projection onto the feasible

set.

• v: mean final value of v(X) before the final projection onto the feasible set.

For the method AD one iteration is defined to be a sweep over which the objective

function f is minimized over each coordinate direction in turn.

Several comments can be made on Tables 2.2–2.4.

• The values of v in (2.29) are all zero except for PFM on the randneig matrices,

where the final projection onto Ω causes dist for the accepted X to exceed that

for the other methods. Except in these cases the mean function values of the

final iterates of the methods do not differ significantly. In particular, for the

corkfac matrices the sequences appear to approach the global minimum. Except

for the randneig problems all the constraints are inactive at the computed final

iterates, so by Theorem 2.3.4 the matrices C(X) have full rank. For the randneig

problems about half the constraints are inactive, and this number is slightly

bigger for the matrix returned by PFM than for the other methods.

• None of the methods always outperforms the others in computational time.

The relative performance of the individual methods depends on the tolerance,

the problem size and the problem type. AD performs very well for tol = 10−3
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Table 2.2: Results for the random one factor problems with tol = 10−3.

t it itsd dist nq v t it itsd dist nq v

n = 100 n = 2000
corrand, dist0=5.6646, nq

0
=8e-2 corrand, dist0=26.006, nq

0
=5e-3

AD 0.22 110 78 5.6642 9e-4 0 3.3 5.2 1.5 26.006 9e-4 0
PFM 0.09 10 5.4 5.6642 8e-4 0 68 1.1 0.2 26.006 2e-4 0
Newt1 0.02 4.7 2.4 5.6643 3e-4 0 23 1.8 0.4 26.006 6e-4 0
SPGM 0.11 57 29 5.6642 6e-4 0 9.8 5.2 0.8 26.006 8e-4 0

corkfac, dist0=0.3697, nq
0
=6e0 corkfac, dist0=0.3718, nq

0
=3e1

AD 0.01 5.0 0.6 2.25e-5 4e-4 0 3.1 5.2 0.6 5.06e-6 4e-4 0
PFM 0.03 3.0 0 4.03e-5 6e-4 0 15 2.2 0.3 1.56e-6 1e-4 0
Newt1 0.01 2.0 0 1.45e-7 3e-6 0 16 2.0 0 1.5e-11 1e-9 0
SPGM 0.02 6.0 1.2 2.67e-5 3e-4 0 11 4.6 0.9 7.72e-6 4e-4 0

randneig, dist0=43.606, nq
0
=6e2 randneig, dist0=824.13, nq

0
=2e4

AD 0.01 5.9 0.3 40.398 3e-4 0 3.8 7.2 1.3 815.79 5e-4 0
PFM 0.03 3 0.2 40.418 6e-4 3 22 3.0 0 815.81 2e-6 15
Newt1 0.16 61.9 5.2 40.398 1e-4 0 4167 1222 22 815.79 2e-6 0
SPGM 0.02 6.0 0.0 40.398 5e-4 0 9.4 7.2 0.4 815.79 2e-4 0

Table 2.3: Results for the random one factor problems with tol = 10−6.

t it itsd dist nq v t it itsd dist nq v

n = 100 n = 2000
corrand, dist0=5.6646, nq

0
=8e-2 corrand, dist0=26.006, nq

0
=5e-3

AD 0.72 393 188 5.6642 9e-7 0 3938 7282 1653 26.006 9e-7 0
PFM 0.32 31 13 5.6642 8e-7 0 827 18 5.4 26.006 8e-7 0
Newt1 0.02 7.2 2.5 5.6643 2e-8 0 36 5.0 1.6 26.006 6e-7 0
SPGM 0.22 128 44 5.6642 6e-7 0 638 760 546 26.006 8e-7 0

corkfac, dist0=0.3632, nq
0
=6e0 corkfac, dist0=0.3718,nq

0
=3e1

AD 0.02 9.8 0.5 2.73e-8 4e-7 0 6.1 9.2 2.4 8.73e-9 7e-7 0
PFM 0.06 5.6 0.5 3.19e-8 4e-7 0 21 3.2 0.4 3.91e-9 3e-7 0
Newt1 0.01 3.0 0 1.8e-14 4e-13 0 15 2.0 0 1.5e-11 1e-9 0
SPGM 0.03 9.9 2.0 1.97e-8 2e-7 0 13 8.2 2.4 6.88e-9 3e-7 0

randneig, dist0=43.606, nq
0
=6e2 randneig, dist0=824.13, nq

0
=2e4

AD 0.02 8.6 0.5 40.398 4e-7 0 3.4 10.0 0 815.79 3e-7 0
PFM 0.06 5.0 0 40.418 2e-7 3 19.0 4.0 0 815.81 1e-9 15
Newt1 0.09 61 5.7 40.398 1e-7 0 4171 1222 22 815.79 2e-6 0
SPGM 0.02 9.0 0 40.398 1e-7 0 11 9.6 0.5 815.79 2e-7 0

Table 2.4: Results for the one factor problem for cor1399 with tol = 10−3 and tol =
10−6.

t it dist nq v t it dist nq v

tol = 10−3 tol = 10−6

cor1399, dist0=118.7753, nq
0
=9e0

AD 1.08 6.0 118.7752 2e-4 0 1.80 10.0 118.7752 5e-7 0
PFM 0.96 2.0 118.7752 6e-5 0 1.31 3.0 118.7752 2e-7 0
Newt1 8.16 2.0 118.7752 5e-10 0 8.16 2.0 118.7752 5e-10 0
SPGM 4.83 7.0 118.7752 2e-5 0 5.67 10.0 118.7752 9e-7 0
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but is the least efficient method for the corrand matrices with tol = 10−6.

Turning to the problem size, for tol = 10−3 an increased n gives a bigger time

advantage of AD over the other two methods, which is due to the remarkably

low number of approximately 4n2 operations taken by AD for each iteration,

compared with the Newton method Newt1, which requires O(n3) operations.

Finally, the efficiency of the methods depends on the matrix type, as can be

seen for n = 2000 in Table 2.3, where in execution time the first three methods

rank exactly in the reverse order for the corrand matrices compared with the

randneig matrices. For the latter matrices, many steps appear to be required

to approach the region of quadratic convergence for the Newton method.

• Interestingly, PFM, for which we do not have a convergence guarantee, shows

robust behavior in terms of the required number of iterations and is clearly the

best method on the cor1399 matrix. It satisfies the stopping criterion in these

tests in a few iterations for every problem instance. However, we found that

for small problem sizes PFM can show very poor convergence, as illustrated by

the matrix

A=





1.0000 1.0669 -1.0604 0.4903 0.9747

1.0669 1.0000 3.2777 0.3914 1.0883

-1.0604 3.2777 1.0000 1.1075 0.8823

0.4903 0.3914 1.1075 1.0000 1.0431

0.9747 1.0883 0.8823 1.0431 1.0000





. (2.30)

For the corresponding two factor problem PFM requires 11,415,465 iterations

to satisfy the stopping criterion (2.28) with tol = 10−3. This matrix was found

after just 22 function evaluations using the implementation mdsmax [63] of the

multidirectional search method of Torczon [131] to maximize the number of

iterations required by PFM. This is in contrast to maximizing the iterations

taken by SPGM for a two factor problem with the same problem size, yielding

after 2000 function evaluations in mdsmax a matrix requiring only 118 iterations.

2.6.2 Choice of Starting Matrix, and Performance as k Varies

Now we present an experiment that compares different choices of starting matrix and

also investigates the effects on algorithm performance of increasing k. Anticipating

the results of the next subsection, we concentrate on the SPGM method. We consider

four choices of starting matrix.

• Rank1mod: The matrix obtained from one iteration of the AD method start-

ing with the rank one matrix defined at the start of Section 2.5. The reason

for using the AD method in this way is that the rank one matrix alone is

prone to yielding no descent for k > 1.
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Figure 2.1: Comparison of different starting values for matrices of type randneig: k
against final objective function value (left) and time (right).

• PCA: This rank r matrix, where r is a parameter, is obtained by “modified

principal component analysis” as described, for example, in [108]. Let A =

QΛQT be a spectral decomposition with Λ = diag(λi) and λn ≥ λn−1 ≥ · · · ≥
λ1. The starting matrix is X0 = DQΛ1/2

[
Ir
0

]
∈ R

n×r, where the diagonal

matrix D is chosen such that every row of X0 is of unit 2-norm (except that

any zero row is replaced by [1, 0, . . . , 0]T ).

• NCM: The nearest correlation matrix, computed using a preconditioned New-

ton method [23], [110]. This choice of starting matrix is suggested in [87].

• Prevk rank1 and Prevk avge: These choices are applicable only when we solve

the problem for k = 1, 2, . . . in turn. We use the solution Xk−1 of the k − 1

factor problem as our starting matrix for the k factor problem by appending an

extra column. For Prevk rank1, the extra column is that given by Rank1mod

for k = 1 applied to the matrix A ← A − Xk−1Xk−1 + diag(Xk−1Xk−1); for

Prevk avge, the last column is obtained as the averaged values of each row

of Xk−1. Where necessary, the resulting matrix is projected onto the feasible

set.

With n = 500, we took the matrix expij and 10 randomly generated matrices of

type randneig and ran SPGM with each of the starting matrices, for a number of

factors k ranging from 1 to 280 for expij and from 1 to 30 for randneig. Figures 2.1

and 2.2 show the results for randneig (averaged over the 10 matrices) and expij, re-

spectively. The tolerance is 10−3 and the times shown include the time for computing

the starting matrix, except in the case of Prevk rank1 and Prevk avge.
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Figure 2.2: Comparison of different starting values for matrices of type expij: k
against final objective function value (left) and time (right).

For randneig, Prevk avge yields a larger final function value than the other start-

ing matrices, and one that does not decay with k. The best of the five starting

matrices for k > 1 in terms of run time and achieved minimum is clearly NCM;

interestingly, the cost of computing it is relatively small. For k = 1 the Rank1mod

matrix is as good a starting matrix as NCM and is less expensive to compute.

The time to solution as a function of k clearly depends greatly on the type of

matrix. These two examples also indicate that the minimum may quickly level off as

k increases (randneig) or may steadily decrease with k (expij).

2.6.3 Test Results for k > 1

We now repeat the tests from Section 2.6.1 with values of k greater than 1. The

starting matrix was NCM in every case. We averaged the results over 10 instances of

each of the three classes of random matrices for n = 1000 and k = 2, 6 and summarize

the results in Table 2.5 for tol = 10−3 and Table 2.6 for tol = 10−6. We make several

comments.

• The results for SQP are omitted from the tables because this method was not

competitive in cost, although it did correctly solve each problem. In every case

it was at least an order of magnitude slower than SPGM, and was about 2000

times slower on the corkfac matrices.

• As for k = 1, the values of v in (2.29) are all zero except for the randneig

problems, where these values for the methods disregarding the constraints (2.3)

(namely, AD, PFM, Newt2) are significantly greater than the convergence tol-

erance. For AD, therefore, projecting the components of x onto [−1, 1] does not
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Table 2.5: Results for the random k factor problems with tol = 10−3.

t it itsd dist nq v t it itsd dist nq v

k = 2 k = 6
corrand, dist0=18.29, nq

0
=7.93 corrand, dist0=18.29, nq

0
=13.6

AD 17 75 42 18.24 9e-4 0 95 114 60 18.13 9e-4 0
PFM 13 3.1 2.8 18.24 6e-4 0 8.2 3.2 0.6 18.13 5e-4 0
Newt2 11 9 2 18.24 7e-4 0 19 9 2.3 18.13 3e-4 0
SPGM 4 39 43 18.24 8e-4 0 4.6 45 19 18.13 8e-4 0

corkfac, dist0=8.54e-1, nq
0
=41.5 corkfac, dist0=1.57, nq

0
=46.2

AD 1.6 7 0 1.7e-5 7e-4 0 5.8 7 0 3.3e-5 8e-4 0
PFM 0.9 2 0 1.3e-5 4e-4 0 2.6 3 0 1.0e-6 2e-5 0
Newt2 2.0 2 0.6 4.9e-6 2e-4 0 3.1 3.9 0.3 1.6e-5 4e-4 0
SPGM 1.6 7 0 1.2e-5 3e-4 0 1.6 8 0.7 2.9e-5 5e-4 0

randneig, dist0=408.4, nq
0
=4.2e-1 randneig, dist0=408.0, nq

0
=2.8e-1

AD 101 431 156 408.7 9e-4 21.8 2.4e4 2.9e4 4.8e4 421.0 1e-3 121
PFM 4.2 5.0 0.9 408.7 2e-4 30.9 6.9 7.4 2.3 420.9 6e-4 127
Newt2 28 14 3.8 408.7 4e-4 30.9 121 28 10 420.9 3e-4 127
SPGM 161 1270 638 407.6 8e-4 0 71 783 447 407.3 9e-4 0

Table 2.6: Results for the random k factor problems with tol = 10−6.

t it itsd dist nq v t it itsd dist nq v

k = 2 k = 6
corrand, dist0=18.29, nq

0
=7.9 corrand, dist0=18.29, nq

0
=13.6

AD 1072 4540 4465 18.24 1e-6 0 1657 1982 1740 18.13 1e-6 0
PFM 127 24 20 18.24 8e-7 0 33 13 8.9 18.13 7e-7 0
Newt2 61 20 14 18.24 4e-7 0 49 18 9 18.13 7e-7 0
SPGM 52 507 513 18.24 8e-7 0 30 312 230 18.13 8e-7 0

corkfac, dist0=8.54e-1, nq
0
=41.5 corkfac, dist0=1.57, nq

0
=46.2

AD 2.8 12 0 1.1e-8 4e-7 0 10.0 12 0 2.0e-8 4e-7 0
PFM 1.5 4 0 1.3e-9 4e-8 0 3.1 4 0 2.2e-8 4e-7 0
Newt2 3.3 5 0.6 4.1e-9 1e-7 0 5.3 6.6 0.5 1.6e-8 3e-7 0
SPGM 2.0 10 1.3 8.0e-9 2e-7 0 2.1 13 0.7 1.7e-8 4e-7 0
SQP 788 44 12 1.4e-8 4e-7 0 3473 64 11 3.1e-8 5e-7 0

randneig, dist0=408.4, nq
0
=4.2e-1 randneig, dist0=408.0, nq

0
=2.8e-1

AD 195 826 318 408.7 9e-7 21 7e4 8.6e4 1.4e5 421.0 1e-6 121
PFM 7.3 8.6 2.1 408.7 4e-7 31 13 14 4.4 420.9 5e-7 127
Newt2 59 36 9.5 408.7 6e-5 31 165 48 16.4 420.9 1e-4 127
SPGM 454 2882 2514 407.6 8e-7 0 295 3205 1576 407.3 9e-7 0
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ensure feasibility. Moreover, the methods AD, PFM, and Newt2 return a final

iterate for k = 6 and randneig for which the mean function value is noticeably

greater than the mean initial function value, caused by the projection onto the

feasible set Ω at the end of the computation. This represents a serious failure of

the minimization and shows the importance of properly treating the constraints

within the method for the randneig problems.

• SPGM is clearly the preferred method in terms of efficiency combined with re-

liability.

2.7 Conclusions

We have obtained new theoretical understanding of the factor-structured nearest cor-

relation matrix problem, particularly through explicit results for the one parameter

and one factor cases. Our original motivation for studying this problem came from

the credit basket securities application in [8] and the knowledge that the principal

factors method has been used in the finance industry, despite the fact that it ignores

the nonlinear problem constraints (2.25b). Our experiments have shown that this

method, along with alternating directions and fminunc, often performs surprisingly

well—partly because the constraints are often not active at the solution. However,

all three methods can fail to solve the problem, as the randneig matrices show. More-

over, the principal factors method is not supported by any convergence theory. Our

conclusion is that the spectral projected gradient method is the method of choice. It

has guaranteed convergence, benefits from the ease with which iterates can be pro-

jected onto the convex constraint set, and because of the nonmonotone line search

strategy can avoid narrow valleys at the beginning of the convergence process.



Chapter 3

Riemannian Geometry and

Optimization

3.1 Introduction

This chapter gives an introduction to Riemannian manifolds and their geometric

objects required to optimize objective functions over these sets. This analysis will

lead to several minimizing algorithms that generate iterates on the corresponding

manifolds. Note that this chapter is introductory and is based on [33], [84] for the

general concept of a manifold and for the optimization part on [3], [49], [138] and

[46]. We also direct the reader to these references to obtain further insight into this

topic.

3.1.1 Motivation for Optimizing over Manifolds

Optimization over manifolds is a subject that has recently become more and more

popular in the optimization community. One reason is certainly that constrained

sets often satisfy the properties of a manifold—we will give the definition in Sec-

tion 3.2.1—and therefore by means of geometric tools and algorithms that have now

been developed, one can optimize an objective function within the constrained set.

Hence, all the iterates that are generated in these algorithms are feasible. There-

fore, especially for nonlinear constraints, these algorithms are more convenient to

use and make it easier to deal with the constraints. Moreover, these algorithms can

even perform better than state-of-the-art algorithms incorporating these constraints

conventionally [1], [3], [4], [142].

For instance the set of matrices in R
n×p, p ≤ n, with orthonormal columns forms

a manifold as we will see later in this chapter. To incorporate the property that

Y TY = Ip with Y ∈ R
n×p one has to consider p(p + 1)/2 nonlinear constraints.

56
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Hence for p large the optimization will be expensive. However, by exploiting the fact

that this constraint set is a manifold one can avoid increasing the number of free

variables, for example by introducing Lagrange multipliers.

Optimization over manifolds also allows one to deal with abstract objects that

is certainly another reason why these algorithms have become more attractive. One

class of the abstract manifolds is quotient manifolds, and these are of significant

importance. An example is the Grassmannian manifold that comprises the set of

all subspaces with dimension p of a higher dimensional space with dimension n. As

we will see in Chapter 5 it can be used to incorporate a rank constraint, which is

generally hard to deal with.

3.1.2 Applications

Applications for optimization algorithms over manifolds are wide-ranging and more

and more areas where their usage is of importance or unavoidable have become appar-

ent. Examples can be found in image processing where segmentation and registration

algorithms often rely on these optimization algorithms [40], [123]. Blind source sepa-

ration is another application where efficient algorithms were proposed [115]. See also

[7]. Low rank nearness problems are also candidates as they can be transformed into

optimization problem over manifolds [93]. An extension to tensors was proposed in

[71] where their algorithm achieves superlinear convergence. In Chapter 5 we will

propose a low rank algorithm for linearly structured matrices where we optimize our

objective function over the Grassmannian manifold. Other examples are the nearest

weighted low rank correlation matrix algorithm proposed in [61] or the algorithm de-

scribed in [138] for multilevel optimization of rank constraint matrix problems applied

to find the low rank solution of Lyapunov equations. A popular application is also to

compute the eigenvalues of a given matrix by minimizing the Rayleigh quotient over

the sphere in R
n, which is a manifold [3, Section 2].

3.1.3 Outline

If a manifold is smooth it can intuitively be considered as a structured set that can

locally be described as a linear vector space, however it can globally be very different.

One often compares it with a smooth surface in a higher dimensional space. In the

next Section 3.2 we give the definition of a smooth manifold. Then we consider smooth

functions on these manifolds and their properties in Section 3.3, before we investigate

manifolds that are embedded in another space in Section 3.4. After we briefly describe

the concept of quotient manifolds in Section 3.5 we clarify in the subsequent section

when a smooth manifold is a Riemannian manifold. We introduce then the geometric
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objects that allow us to optimize an objective function over these sets. In Section 3.8

particular attention is paid to two examples of smooth manifolds: the Stiefel and

the Grassmannian manifold. We present numerical methods to optimize over these

manifolds in Section 3.9 that we will use in later chapters. Our particular interest

lies in the RBFGS-method [109], [49] where we propose a limited memory version of

it.

3.2 Smooth Manifolds

3.2.1 Definition

LetM be a Hausdorff space with a countable basis where Hausdorff space refers to a

topological space with the property that for any two different points x, y with x 6= y

there exists an open neighbourhood Ux of x such that y 6∈ Ux. This definition prevents

that a convergent sequence inM can have several distinct limit points. Next we need

the definition of a chart, allowing us to describe the setM locally as a d-dimensional

Euclidean space. Note that the term homeomorphic function refers to a continuous

bijective function with a continuous inverse.

Definition 3.2.1. Let ϕ be a homeomorphic function mapping from an open subset

U ofM onto an open subset in R
d. The pair (U, ϕ) is called a chart.

Let us further assume that every point inM belongs to at least one chart domain.

By introducing these charts we impose a structure onM that allows us to specify a

coordinate system in the neighbourhood of every point inM. However, if one point in

M belongs to two domains of two charts (Uα, ϕα) and (Uβ, ϕβ), i.e. these two domains

overlap, the corresponding coordinate systems must be consistent. Therefore we need

to introduce the concept of an atlas A ofM into R
d, see [3, p. 19].

Definition 3.2.2. An atlas A is a collection of charts (Uα, ϕα) ofM satisfying

• the union of all chart domains coverM, i.e.M =
⋃

α Uα,

• for any two charts (Uα, ϕα) and (Uβ, ϕβ) with an overlapping domain the func-

tion

ϕβ ◦ ϕ−1α : ϕα(Uα ∩ Uβ) 7→ R
d

is smooth, i.e. it is in C∞, the set of functions that are continuously differentiable

for all degrees of differentiation.

Note that in this chapter we will refer to functions that are in C∞ as smooth

functions. Now we are ready to define the term of a differentiable manifold.
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Definition 3.2.3. Let A be an atlas ofM. Let A+ be defined as the set of all charts

(U, ϕ) such that A ∪ {(U, ϕ)} is an atlas. A+ is also an atlas of M and is called

the maximal atlas. The couple (M,A+) is then called a d-dimensional smooth or

differentiable manifold. For simplicity we write onlyM for a smooth manifold in our

later notation, although it is assumed thatM comes with a maximal atlas.

3.2.2 Examples of Smooth Manifolds

Finite-Dimensional Vector Spaces

Let V be an n-dimensional vector space and let (E1, . . . , En) be a basis for V . Then
the map E : Rn 7→ V with

E(x) =
n∑

i=1

xiEi

is clearly an isomorphism and (V , E−1) a chart. All charts built in this way are com-

patible and thus they form an atlas on V . Consequently, V is an n-dimensional smooth

manifold. It follows that also R
n and R

n×p are smooth manifolds with dimension n

and np, respectively.

Open Submanifolds

Let M be an n-dimensional smooth manifold and U be an open subset of M. For

every point x ∈ U there must exist a chart (W,ϕ) of M with x ∈ W . Hence, by

setting V = W ∩ U we obtain a chart (V, ϕ
∣∣
V
) of U . Let then AU be the collection

of all these charts for every x ∈ U , which is by construction an atlas of U . By [84,

Lemma 1.10] there exists a unique maximal atlas containing AU and thus U together

with this maximal atlas is an n-dimensional smooth manifold that we call an open

submanifold ofM.

3.3 Smooth Functions and Tangent Spaces

When optimizing a smooth function f : Rn 7→ R over Rn the usual procedure to find

stationary points, i.e. points x ∈ R
n with ∇f(x) = 0, is to generate a sequence with

xk+1 = xk + αkdk, (3.1)

starting from a given point x0. If dk is a descent direction and αk is suitably chosen

one can show that the sequence converges to a stationary point. However, if we

consider to optimize over a smooth manifoldM, first we are facing the problem that

the iterates xk+1 as defined in (3.1) might not be inM, even if x0 ∈ M. Therefore
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we need to generalize the definition of (3.1) to so called retraction. Similarly, we

need a new definition for the gradient of f at a point xk ∈M and need to generalize

the set of the vectors dk at xk that can be chosen for a descent direction. This set

will be the tangent space, which is a vector space and is one of the geometric objects

that needs to be defined in order to be able to optimize over manifolds. Introducing

these geometric objects will provide a generalization of the conventional optimization

tools to manifolds. We will start with the concept of smooth functions on manifolds

and we will then introduce tangent spaces, which are fundamental in Riemannian

optimization. Further geometric objects are considered in Section 3.7.

3.3.1 Smooth Functions

LetM and N be two smooth manifolds of dimension m and n and let F :M 7→ N
a map between them.

Definition 3.3.1. The map F is called smooth if for every x ∈M there exist charts

(U, ϕ) with x ∈ U and (V, ψ) with F (x) ∈ V such that F (U) ⊂ V and the map

F̂ := ψ ◦ F ◦ ϕ−1 : ϕ(U) 7→ ψ(V ) is smooth.

This allows us to define a smooth objective function on M. Let F(M) and

Fx(M) denote the set of all smooth real-valued functions defined onM and only on

a neighbourhood of x ∈M, respectively. Hence, F(M) ⊂ Fx(M).

Let the function F̂ be defined as in Definition 3.3.1. As F̂ is a function from

R
m and R

n the Fréchet derivative LF̂ (ϕ(x), ·) : Rm 7→ R
n is well defined in a neigh-

bourhood of U ; see Appendix A.2 for a definition of the Fréchet derivative. Thus

we can specify the rank of F at x as the dimension of the range of LF̂ at ϕ(x). Let

F :M 7→ N be a function that has rank equal to n at every point of M be called

a submersion and a point y ∈ N a regular point if F is of full rank at every point x

with x ∈ F−1(y).
Now we can also introduce the concept of a curve, which is a smooth mapping

γ : R 7→ M and can define when a manifoldM is connected : for all x, y ∈ M there

exists a curve γ inM on the interval [a, b] such that γ(a) = x and γ(b) = y. We are

ready to define a tangent vector and tangent space.

3.3.2 Tangent Vectors and Spaces

IfM is a smooth manifold representing a smooth surface in R
n then one can see the

tangent space at a point x ∈ M as the tangent plane at x. However, for a general

manifold one needs a more abstract definition, see [3, Definition 3.5.1].
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Definition 3.3.2. Let γ be a smooth curve with γ(t0) = x. Then the mapping

ξx : Fx(M) 7→ R with

ξxf :=
d(f(γ(t)))

dt

∣∣∣∣
t=t0

(3.2)

is called tangent vector to the curve γ at t = t0 and x is the foot of ξx. We say that

such a curve γ realizes the tangent vector ξx.

Note that the term d(f(γ(t)))
dt

∣∣
t=t0

is well defined as f ◦γ is a function from R into R

and the classical derivative can be applied. The concept of a tangent vector can also

be introduced by derivations which are generalizations of the directional derivative

and equivalent to the elements ξx; see [84, Chapter 3].

Now let the set of all tangent vectors at the point x ∈ M be denoted by the

tangent space TxM. This set admits the structure of a vector space [3, Section 3.5.1]

under the vector operation and scalar multiplication defined by

(aξx + bµx)f := aξxf + bµxf

for f ∈ F(M), a, b ∈ R and ξx, µx two tangent vectors at x. This property is

important as we can now locally approximate the manifold by a vector space, making

it possible to apply locally our conventional optimization tools.

Let F :M 7→ N be a smooth function between two manifoldsM, N . Then we

can also consider to map a tangent vector ξx of a tangent space at a point x in M
into the tangent space TF (x)N . This is realized by a differential.

Definition 3.3.3. The mapping DF (x) : TxM 7→ TF (x)N with ξ 7→ DF (x)[ξ] where

DF (x)[ξ] is a map from FF (x)(N ) into R with

(DF (x)[ξx])f := ξx(f ◦ F )

and f ∈ FF (x)(N ) is called the differential of F at x.

The set TM :=
⋃

x∈M TxM is called a tangent bundle and for later use we also

define a vector field as a smooth mapping ξ :M 7→ TM with x 7→ ξx ∈ TxM. Vector

fields can also be defined on curves γ by assigning to each t in the domain of γ a

tangent vector in Tγ(t)M. If this tangent vector is realized by the curve γ at γ(t) we

call the corresponding mapping γ̇ : t 7→ γ̇(t) the velocity vector field.

3.4 Embedded Submanifolds

3.4.1 Recognizing Embedded Submanifolds

To show that a set is a smooth manifold one needs to find a maximal atlas associ-

ated with this set, which can often be cumbersome. Fortunately, there is tool that
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identifies the preimage of a regular value associated with a smooth function as a

smooth manifold with the additional property that it is embedded in the domain of

this function. Such embedded manifolds are defined as follows [3, Proposition 3.3.2].

Definition 3.4.1. Let N be a subset of an n-dimensional smooth manifold M. If

for every point x ∈ N there exists a chart (U, ϕ) ofM such that

N ∩ U =
{
x ∈ U : ϕ(x) ∈ R

d × 0
}

for d < n then N is called a d-dimensional embedded submanifold ofM.

Now we can state the theorem that gives us a tool to identify embedded subman-

ifolds.

Theorem 3.4.2. [3, Proposition 3.3.3] Let F : M 7→ N be a smooth mapping

between two manifolds with dimension n and m respectively. If x is a regular value

of F then the set F−1(x) is a closed embedded submanifold ofM with the dimension

n−m.

3.4.2 Manifolds Embedded in Euclidean Space

Manifolds embedded in a Euclidean space (a vector space with an inner product) play

an important role in the optimization over manifolds. One reason is that the tangent

vectors at a point on the manifold reduce then to the classical directional derivatives

and thus the tangent space can be identified with a subspace of the Euclidean space.

LetM be an embedded submanifold of a Euclidean space E . Note that we will use

R
n×p as our Euclidean space later. Further, let γ be a curve inM and γ(t0) = x ∈M

with t0 ∈ R and ξx a tangent vector at x realized by the curve γ. AsM is an embedded

submanifold of a Euclidean space,

γ′(t0) = lim
t→t0

γ(t)− γ(t0)
t− t0

∈ E

is well defined. Similarly, for a function f ∈ Fx(M) defined on a neighbourhood U

of x in E , the classical directional derivative of f

Df(x)[z] = lim
t→0

f(x+ tz)− f(x)
t

for z ∈ E is also well defined.

Let f̂ be the restriction of f to U ∩M. Then the tangent vector ξx is related to

γ′(t0) as

ξxf̂ =
d

dt
f̂(γ(t))

∣∣∣∣
t=t0

=
d

dt
f(γ(t))

∣∣∣∣
t=t0

= Df(x)[γ′(t0)],
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being a one-to-one correspondence. Hence, we have a natural identification of TxM
with the set

{γ′(t0) : γ curve inM, γ(t0) = x} ,
which is a linear subspace of E and gives an alternative representation of TxM.

Note if M is a Euclidean space then the above derivations imply TxM ≃ M.

Hence, for a function F :M 7→ N with M and N smooth manifolds that are Eu-

clidean spaces the differentialDF in Definition 3.3.3 reduces to the Fréchet derivative.

3.5 Quotient Manifolds

3.5.1 Definition

LetM be a smooth manifold and ∼ be an equivalence relation onM.

Definition 3.5.1. [3, Section 3.4] For x ∈M the set

[x] := {y ∈M : y ∼ x}

is called the equivalence class, which obviously contains x. Then the set of all equiv-

alent classes

M/∼:= {[x] : x ∈M}
is the quotient ofM by ∼ andM is called the total space ofM/∼. The corresponding
mapping π :M 7→M/∼ with π(x) = [x] is denoted by the canonical projection.

Under some suitable conditions [3, Proposition 3.4.1] and [3, Proposition 3.4.2]

the quotient M/∼ admits a unique maximal atlas A+ such that (M/∼,A+) is a

smooth manifold called the quotient manifold.

Lemma 3.5.2. Let π be the canonical projection of a quotient manifold M/∼ and

dim(M/∼) < dim(M). Then the set π−1(π(x)) is an embedded submanifold of M
with the dimension dim(M)− dim(M/∼).

Proof. From the definition of π it follows that the canonical projection π is a sub-

mersion. Then Theorem 3.4.2 implies the result.

3.5.2 Smooth Functions

Optimizing over a quotient manifold Q := M/∼ is of interest if the corresponding

function f ∈ F(M) is invariant under the equivalence relation ∼ and in this case

one would like to exploit this property, which is that f(x1) = f(x2) for x1 ∼ x2 with

x1, x2 ∈M. If f has this property it induces a unique function f̃ on Q with f = f̃ ◦π.
By [3, Proposition 3.4.5] f̃ is smooth on Q iff f̃ ◦ π is a smooth function onM.
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3.5.3 Tangent Space

LetM be a smooth manifold and Q :=M/∼ be a quotient manifold ofM. Further

let x be an element of M and y = π(x) the corresponding equivalence class. Then

by Lemma 3.5.2 the set π−1(y) is an embedded submanifold of M whose tangent

space Vx = Txπ
−1(y) at x is called the vertical space at x. The subspace Hx of

TxM complementary to Vx is called the horizontal space and thus, it holds that

TxM = Vx ⊕ Hx. Moreover, let µy be an element of TyQ then by [3, Section 3.5.8]

there exists a unique element µh
x ∈ Hx that satisfies

Dπ(x)[µh
x] = µy.

This element is called the horizontal lift. As dim(π−1(y)) = dim(M)−dim(M/∼) we
have dim(Hx) = dim(M)−dim(π−1(y)) = dim(M/∼) where dim(A) is the dimension

of the space A. Hence, the horizontal space Hx is equivalent to the tangent space of

M/∼ at y. Therefore we can define a bijective function that maps an element in TyQ
to the corresponding element in Hx and we denote this map by τx : Tπ(x)Q 7→ Hx.

3.5.4 Quotient Manifolds Embedded in Euclidean Space

Similarly to embedded submanifolds in a Euclidean space, if Q is a quotient manifold

of an embedded submanifold in a Euclidean space E , there is an alternative repre-

sentation of the tangent vectors µy ∈ TxQ. That is the horizontal lift, which, by the

derivation in Section 3.4.2, is being represented by an element in E .

3.6 Riemannian Manifolds

3.6.1 Riemannian Metric and Distance

Essential for the optimization is to measure distances on manifolds e.g. in order to

define the steepest descent of a function on manifolds. Therefore we introduce the

notion of length that applies to tangent vectors and endow every tangent space TxM
forM a smooth manifold with an inner product 〈·, ·〉x, inducing a norm on TxM by

‖ξx‖x =
√
〈ξx, ξx〉x.

If the inner product 〈·, ·〉x is smoothly varying with x ∈M it is called a Riemannian

metric.

Definition 3.6.1. If a smooth manifold M is endowed with a Riemannian metric

with such an inner product then we callM a Riemannian manifold.
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As we will see later these manifolds allow the generalization of the conventional

optimization tools. Moreover, all manifolds that we will deal with later have the

properties of a Riemannian manifold.

Let γ : [a, b] 7→ M be a curve. Then the length of γ is defined by

L(γ) =

∫ b

a

√〈
ξγ(t), ξγ(t)

〉
γ(t)
dt, (3.3)

where ξγ(t) is the tangent vector that is realized by the curve γ at γ(t).

3.6.2 Riemannian Submanifold

Let N be a submanifold of a Riemannian manifold M. By definition the tangent

space TxN is a subspace of TxM for x ∈ N . Therefore by restricting the metric of

M to the tangent space TxN we obtain a new metric 〈·, ·〉nx on TxN , i.e. we set

〈ξx, µx〉nx := 〈ξx, µx〉x .

We call the smooth submanifold N equipped with this metric Riemannian submani-

fold. Now we can also define the normal space NxN at x to TxN by

NxN := {ξx ∈ TxM : 〈ξx, µx〉x = 0 for all µx ∈ TxN} .

Thus, we have TxM = NxN ⊕TxN , allowing the definition of orthogonal projections

of an element in TxM onto the tangent space TxN and NxN , respectively with

Π t
x : TxM 7→ TxN and Πn

x : TxM 7→ NxN .

3.6.3 Riemannian Quotient Manifold

The situation for quotient manifolds of a Riemannian manifold is similar. Therefore

let Q be a quotient manifold of a Riemannian manifold M and π the canonical

projection. Further let x be a point inM, y := π(x) and Hx the horizontal space at

x. Recall from Section 3.5 that every µy ∈ TyQ can be represented by the horizontal

lift ξx ∈ Hx. Hence, we obtain a new metric by restricting 〈·, ·〉x to the horizontal

space. That is

〈µ̂y, µy〉ny :=
〈
µ̂h
x, µ

h
x

〉
x
for all µ̂y, µy ∈ TyQ

and µ̂h
x = τx(µ̂y) and µh

x = τx(µy) the corresponding horizontal lifts in Hx. If this

metric is independent of the particular choice of x, i.e., the metric is constant for all

elements at π−1(y), then we call Q endowed with this metric a Riemannian quotient
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manifold. As TxM = Vx ⊕ Hx with Vx and Hx the vertical and horizontal space,

respectively we can also define the orthogonal projectors onto these spaces by

Πh
x : TxM 7→ Hx and Πv

x : TxM 7→ Vx.

We have seen that for both embedded submanifolds N and quotient manifolds

Q of a Riemannian manifold M we can inherit the Riemannian metric from M
in a natural way. Therefore Riemannian submanifolds and Riemannian quotient

manifolds are Riemannian manifolds.

3.7 Geometric Objects

3.7.1 The Gradient

LetM be a Riemannian manifold. As this manifold is equipped with an inner product

we can define the gradient of a real valued function onM.

Definition 3.7.1. The gradient grad f(x) of f ∈ F(M) is defined as the unique

vector field with grad f(x) the unique tangent vector in TxM at x ∈M satisfying

〈grad f(x), ξx〉x = Df(x)[ξx], ∀ξx ∈ TxM. (3.4)

This definition is well defined by the Riesz representation theorem. Further if we

define the direction of steepest descent at x ∈ M of a function f ∈ F(M) as the

element in TxM that satisfies

argmin
ξx∈TxM,‖ξx‖x=1

Df(x)[ξx],

then it is clear from (3.4) that this element is − grad f(x)/‖grad f(x)‖
x
.

3.7.2 Levi-Civita Connection

With the gradient of a real valued function f ∈ F(M) on a manifold M one ob-

tains first-order information about the function. However, often, especially to develop

optimization algorithms with higher order of convergence, second-order information

about the function is required. In Euclidean space E one uses the directional deriva-

tive of a vector field ξ, which could be e.g. the gradient of f , defined as

Dξ(x)[µ(x)] = lim
t→0

ξ(x+ tµ(x))− ξ(x)
t

(3.5)

and obtains again a vector field in E . However, this is generally not true for manifolds.

Therefore, we introduce a generalization of the directional derivative of a vector field

onM which is called the affine connection.
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Definition 3.7.2. Let X (M) be the set of all vector fields onM. Then the mapping

∇ : X (M)×X (M) 7→ X (M)

that satisfies for f, g ∈ F(M), ξ, µ, ν ∈ X (M) and a, b ∈ R

• ∇fµ+gνξ = f∇µξ + g∇νξ,

• ∇µ(aξ + bν) = a∇µξ + b∇µν and

• ∇µ(fξ) = (µf)ξ + f∇µξ

is called an affine connection.

There are infinitely many choices for an affine connection on smooth manifolds.

However, it is desirable to have a unique connection that also reduces to the conven-

tional directional derivative as defined in (3.5) in the Euclidean space. The Levi-Civita

connection satisfies these properties and is therefore a popular choice for an affine

connection.

Theorem 3.7.3. [3, Theorem 5.3.1] LetM be a Riemannian manifold and 〈·, ·〉 the
corresponding metric onM. There exists a unique affine connection ∇ that satisfies

for ξ, ν, µ ∈ X (M)

• ∇µξ −∇ξµ = µξ − ξµ and

• ξ 〈µ, ν〉 = 〈∇ξµ, ν〉+ 〈µ,∇ξν〉.

The affine connection that is uniquely defined by this theorem is called Levi-Civita

connection. Note that µξ − ξµ is well defined as it is by [84, Lemma 4.12] a vector

field.

Levi-Civita Connection on Embedded Riemannian Submanifolds

The next theorem relates the Levi-Civita connection on a Riemannian manifoldM
to the one on an embedded Riemannian submanifold. This result will be particularly

useful if M is a Euclidean space as in this case the directional derivative coincides

with the Levi-Civita connection.

Theorem 3.7.4. [3, Proposition 5.3.2] LetM be a Riemannian manifold and N an

embedded Riemannian submanifold ofM. Further let ∇M and ∇N be the Levi-Civita

connections onM and N , respectively. Then

∇Nµ(x)ξ(x) = Π t
x(∇Mµ(x)ξ(x)) (3.6)

for all µ(x), ξ(x) ∈ TxN and x ∈ N .
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Levi-Civita Connection on Riemannian Quotient Manifolds

A similar result can be obtained for quotient manifolds.

Theorem 3.7.5. [3, Proposition 5.3.3] LetM be a Riemannian manifold and Q :=

M/∼ a Riemannian quotient manifold. Further let ∇M and ∇Q be the Levi-Civita

connections onM and Q, respectively. Then

τx

(
∇Qµ(y)ξ(y)

)
= Πh

x

(
∇Mτx(µ(y))τx(ξ(y))

)
(3.7)

where x is any element of π−1(y), y ∈ Q and µ(y), ξ(y) ∈ TyQ.

3.7.3 Geodesics and Retractions

Geodesics

In Euclidean space E the optimization is usually performed along straight lines using

a line search technique, i.e. we start from an iterate xk and try to minimize a real

function f over a scalar αk along a descent direction dk to find a new iterate

xk+1 = xk + αkdk, (3.8)

where αk is chosen such that the descent in f is sufficiently large. Hence the opti-

mization is carried out along straight lines. As (3.8) is not defined on a manifold the

notion of straight lines needs to be generalized by using the property that character-

izes straight lines, that is
d2

dt2
γ(t) = 0 for all t

and γ a curve in E .

Definition 3.7.6. LetM be a Riemannian manifold and γ : (a, b) 7→ M be a curve

and let ∇ denote the Levi-Civita connection. If this curve satisfies

∇γ̇(t)γ̇(t) = 0

for all t ∈ (a, b) then the curve γ is called a geodesic.

The next lemma ensures its existence and uniqueness, see [3, Section 5.4].

Lemma 3.7.7. For any tangent vector ξx ∈ TxM for x ∈M there exists an interval

I about zero and a geodesic γ(t) with γ(0) = x and γ̇(0) = ξx that is unique.

Note that the geodesic can also be described by the curve of shortest length

connecting two points on the manifold [46] where the length of the curve between

two points is defined by (3.3).
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Retractions

As computing the geodesics is rather costly for common manifolds like the Stiefel or

Grassmannian manifold the usage of approximations of these geodesics are inevitable

to develop efficient algorithms. These approximations are called retractions. We only

look at first-order retractions that approximate the geodesic up to first order.

Definition 3.7.8. [3, Definition 4.1.1], [138, Definition 2.31] LetM be a Riemannian

manifold. Let R be a smooth mapping with R : TM 7→M and Rx the restriction to

TxM for x ∈M. If R satisfies

• Rx(0x) = x where 0x is the zero element of TxM and

• for every tangent vector ξx ∈ TxM the curve γξx : t 7→ Rx(tξx) realizes ξx at 0

then R is called a retraction.

3.7.4 The Riemannian Hessian

The above definition of the Levi-Civita connection ∇ also allows us to define the

Riemannian Hessian of a real-valued function f ∈ F(M).

Definition 3.7.9. [3, Definition 5.5.1] LetM be a Riemannian manifold and ∇ the

Levi-Civita connection. Then the Riemannian Hessian of f ∈ F(M) at x ∈ M is

defined as the linear mapping Hess f(x) : TxM 7→ TxM with

Hess f(x)[ξx] = ∇ξx grad f(x) (3.9)

for ξx ∈ TxM.

Note that it holds that

〈Hess f(x)[ξx], ξx〉 =
d2

dt2
f(γ(t))

∣∣∣∣
t=0

for γ(t) the geodesic with γ(0) = x and γ̇(0) = ξx, see [3, Proposition 5.5.4]. Hence,

the Hessian operator Hess f(x) captures second-order information of f .

3.7.5 Vector Transport

For quasi-Newton methods like the BFGS-method where a closed form of the Hessian

is not available, one needs to compare first-order information at different points. This

first-order information correspond to tangent vectors on manifolds. Therefore we need

to introduce the concept of vector transport, mapping a tangent vector ξx along a

direction µx into the tangent space at Rx(µx), making it possible to compare ξx with

tangent vectors in TRx(µx)M.
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Vector Transport on Smooth Manifolds

Definition 3.7.10. [3, Definition 8.1.1] A smooth mapping T : TM× TM 7→ TM
written as Tµx

(ξx) := T (µx, ξx) is called a vector transport if is satisfies

• there exists a retraction R associated with T such that the following diagram

commutes
(µx, ξx)

T−−−→ Tµx
(ξx)

←−
− ς

−−−→

µx
R−−−→ ς (Tµx

(ξx))

where ς(ξx) returns the foot for a tangent vector ξx ∈ TM,

• T0xξx = ξx for all ξx ∈ TxM and

• Tµx
(aξx + bνx) = aTµx

(ξx) + bTµx
(νx) for a, b ∈ R and µx, ξx, νx ∈ TxM.

Note that

Tµx
ξx :=

d

dt
Rx(µx + tξx)

∣∣∣∣
t=0

defines a vector transport on a Riemannian manifoldM endowed with a retraction

R [3, Section 8.1.2].

Parallel Transport - An Isometric Vector Transport

Let ∇ be the Levi-Cevita connection on a Riemannian manifold M and ξ a vector

field on a curve γ inM and let ν be a vector field realized by the curve γ. If ∇νξ = 0

then ξ is called a parallel vector field on γ. For a tangent vector ξγ(a) ∈ Tγ(a)M for a

in the domain of γ there exists a unique parallel vector field ξ with ξ(γ(a)) = ξγ(a).

Hence, we can define an operator P b←a
γ that maps ξγ(a) to ξ(γ(b)) for b in the domain

of γ, see [3, p. 104]. This operator is called parallel translation along the curve γ. Note

that by [3, Proposition 8.1.2] the parallel translation is a vector transport. Moreover,

this vector transport preserves the metric [104, Lemma 3.20], which is an important

feature when it comes to generalizing optimization routines to manifolds.

Vector Transport on Riemannian Submanifold

ForM an embedded submanifold of a Euclidean space E endowed with a retraction

R we can define the vector transport by

Tµx
ξx := Π t

Rx(µx)ξx. (3.10)
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3.8 Examples of Riemannian Manifolds

In this section we introduce the geometric objects for two particular manifolds, the

Stiefel manifold and Grassmannian manifold, providing us with the necessary tools

to be able to optimize over these two manifolds.

3.8.1 The Stiefel Manifold

Definition of the Manifold

The Stiefel manifold is the set of matrices in R
n×p with orthonormal columns and

p ≤ n, that is

St(n, p) :=
{
Y ∈ R

n×p : Y TY = Ip
}
.

Often this set is also called compact Stiefel manifold.

Lemma 3.8.1. St(n, p) is an embedded submanifold of Rn×p with dimension np −
p(p+ 1)/2. See Definition 3.4.1 when a manifold is called embedded in R

n×p.

Proof. Consider the function F : Rn×p 7→ Sp with F (Y ) = Y TY −Ip. Then it is clear

that F−1(0) = St(n, p). Hence, by Theorem 3.4.2 it is enough to show that 0 is a

regular point. We have that

DF (Y )[Z] = ZTY + Y TZ.

For S ∈ Sp arbitrary by choosing Z = 1
2
Y S we obtain DF (Y )[Z] = S. Thus F has

full rank for all Y ∈ St(n, p) and consequently 0 is a regular point.

Tangent Space

Let us now derive the tangent space of this manifold at a point Y ∈ St(n, p) and

define a metric in these spaces. Let Y (t) be a curve in St(n, p) with Y (0) = Y then

by differentiating the condition Y TY = Ip with respect to t at t = 0 we obtain

Y TY ′(0) + Y ′(0)
T
Y = 0, (3.11)

meaning that Y TY ′(0) is skew-symmetric for every matrix Y ′(0) in the tangent space

TY St(n, p) at Y . Moreover, as (3.11) imposes p(p+1)/2 constraints on Y ′(0) ∈ R
n×p,

the set of all matrices satisfying property (3.11) has the same dimension as St(n, p),

which is dim St(n, p) = np − p(p + 1)/2. Thus, (3.11) gives a defining property for

the tangent space TY St(n, p).

Let Kp be the set of all skew-symmetric matrices in R
p×p. Then the set

N := {Y A+ Y⊥B : A ∈ Kp, B ∈ R
(n−p)×p} (3.12)
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describes fully the tangent space TY St(n, p) as it has the same dimension and every

element of N satisfies (3.11). In (3.12) Y⊥ denotes a matrix in R
n×(n−p) that has

orthonormal columns and are complementary to the columns of Y .

Now let this manifold be endowed with the metric 〈A,B〉Y := trace(BTA) for

A,B in the tangent space of St(n, p) at Y .

As the Stiefel manifold is an embedded submanifold of the Euclidean space R
n×p

endowed with the inner product 〈A,B〉Y := trace(BTA) we can also define the pro-

jection of a vector in R
n×p onto TY St(n, p) at a point Y . From (3.12) it is easy to

check that the projection is defined by

Π t
Y (Z) = Y skew(Y TZ) + (In − Y Y T )Z

where skew(A) is the skew-symmetric part (A− AT )/2 of A ∈ R
p×p.

From (3.12) we also obtain the normal space

NY St(n, p) =
{
Z ∈ R

n×p : Z = Y S with S ∈ Sp
}

and the projection onto it

Πn
Y (Z) = Y sym(Y TZ)

with sym(A) the symmetric part (A+ AT )/2 of A ∈ R
p×p.

The Gradient

Let f ∈ F(St(n, p)) and let the inner product be the Euclidean inner product as

in the previous section. Then from Section 3.7.1 the gradient at Y is the element

grad f(Y ) in TY St(n, p) satisfying

〈grad f(Y ), ξY 〉Y = Df(Y )[ξY ] (3.13)

for all ξY ∈ TY St(n, p). Then it is easily verified that

ζY := ∇f(Y )− Y sym
(
Y T∇f(Y )

)
(3.14)

satisfies (3.13) and lies in TY St(n, p) for all Y ∈ St(n, p). Therefore ζY is the gradient

at Y .

Geodesics

The formula for the geodesics is given in [46]. Let Y ∈ St(n, p) and ξY ∈ TY St(n, p)
a direction in the tangent space then

Y (t) =
[
Y ξY

]
exp

(
t

[
Y T ξY −ξTY ξY
Ip Y T ξY

])[
Ip

0

]
exp(−Y T ξY t)

is the geodesic along ξY .
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Retractions

Let us present the two most popular retractions on the Stiefel manifold [3, Exam-

ple 4.1.3]. The first is based on the unitary polar factor of Y + ξY , that is

RY (ξY ) = (Y + ξY )(Ip + ξTY ξY )
−1/2.

See [66, Chapter 8] for details of the polar decomposition. The other one is based on

the Q-factor of the QR-decomposition, that is

RY (ξY ) = qf(Y + ξY )

where qf(A) is the Q-factor of A ∈ R
n×p with A of full rank.

Vector Transport

To obtain a vector transport on the Stiefel manifold one can apply (3.10) as the

projection onto the tangent space is known.

3.8.2 The Grassmannian Manifold

Definition

The next manifold that we are looking at more in detail is the Grassmannian manifold.

Definition 3.8.2. Let ∼ denote an equivalence relation defined on the Stiefel mani-

fold with

X ∼ Y ⇐⇒ span(X) = span(Y ).

for X, Y ∈ St(n, p). Then the quotient space Gr(n, p) := St(n, p)/∼ is called the

Grassmannian manifold. Note that the mapping X 7→ XQ for X ∈ St(n, p) and

Q ∈ O(p) corresponds to all possible changes of the basis of span(X) where O(p) is

the set of all orthogonal matrices in R
p×p. Therefore we can also write Gr(n, p) =

St(n, p)/O(p) and Gr(n, p) is the collection of all equivalent classes

[X] := {XQ : Q ∈ O(p)} (3.15)

for X ∈ St(n, p).

The Grassmannian manifold Gr(n, p) corresponds to the set of all p-dimensional

subspaces of Rn. One element in Gr(n, p) is the collection of all possibles matrices with

orthonormal columns that can be identified as orthonormal basis vectors, spanning

the same subspace.

Lemma 3.8.3. The quotient set Gr(n, p) admits a unique structure of quotient man-

ifold and has dimension p(n− p).
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Proof. As Gr(n, p) ≃ R
n×p
∗ /Rp×p we obtain the result by [3, Proposition 3.4.6] where

R
n×p
∗ is the set of matrices in R

n×p with full rank. The dimension follows from [3,

p. 32].

Tangent Space

As from the previous section the tangent space TXSt(n, p) of the total space St(n, p)

of Gr(n, p) is already known we need to determine the horizontal and vertical space.

From (3.12) and (3.15) it is clear that the vertical space is

VX := {XA : A ∈ Kp} .

Hence, the horizontal space at X ∈ St(n, p) is then

HX :=
{
X⊥B : B ∈ R

(n−p)×p} ,

which is equivalent to the tangent space Tπ(X)Gr(n, p) for π the canonical projection.

The projection onto HX is then clearly given by

Πh
X(Z) = (In −XXT )Z. (3.16)

Let Tπ(X)Gr(n, p) be endowed with the inner product
〈
ξπ(X), νπ(X)

〉
π(X)

:= trace
(
νTXξX

)

for ξπ(X), νπ(X) ∈ Tπ(X)Gr(n, p) and ξX , νX the corresponding elements in HX . This

is well defined as the corresponding elements do not depend on the specific choice of

X in π−1(π(X)). As the inner product does not depend on π(X) we can just write〈
ξπ(X), νπ(X)

〉
. Therefore, together with the inner product

〈
ξπ(X), νπ(X)

〉
, Gr(n, p) is a

Riemannian quotient manifold.

The Gradient

Let f̃ ∈ F(Gr(n, p)) and the inner product be as in the previous section. Then

from Section 3.7.1 the gradient at Y ∈ Gr(n, p) is the element grad f̃ in TYGr(n, p)

satisfying 〈
grad f̃(Y), ξY

〉
= Df̃(Y )[ξY ] (3.17)

for all ξY ∈ TYGr(n, p). With f(X) := f̃(π(X)) it is easily verified that

ζX := (In −XXT )∇f(X) ∈ HX (3.18)

for X ∈ π−1(Y) satisfies 〈ζX , µX〉 = Df(X)[µX ] for µX ∈ HX . See [46, Section 2.5.3].

Let νY = τ−1X (ζX) where ζX is by definition independent of the choice of X. Then

〈νY , ξY〉 = 〈ζX , µX〉
= Df(X)[µX ]

= Df̃(π(X))[Dπ(X)[µX ]]

= Df̃(Y)[ξY ]
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for µX = τX(ξY). Hence, the element νY satisfies (3.17) and is therefore the gradient

of f̃ at Y .
Note that later we will deal with the element ζX , written as grad f(X), in the

horizontal space HX instead of grad f̃(Y) as we have a matrix representation of ζX .

Moreover, in order to minimize a function over Gr(n, p) we will see later that we can

entirely operate on the matrices X in the total space St(n, p) and the elements in

HX in our optimization algorithms as we can always map bijectively the elements of

Gr(n, p) and TYGr(n, p) to elements in St(n, p) and HX , respectively.

Levi-Civita Connection

From (3.7) the Levi-Civita connection ∇Gr(n,p) on Gr(n, p) is given by

τX
(
∇Gr(n,p)

µ(Y) ξ(Y)
)
= Πh

X

(
∇St(n,p)

τX(µ(Y))τX(ξ(Y))
)

where X ∈ π−1(Y), Y ∈ Gr(n, p), ξ(Y), µ(Y) ∈ TYGr(n, p) and ∇St(n,p) the Levi-

Civita connection on the Stiefel manifold. By [3, Example 5.3.3] τX
(
∇Gr(n,p)

µ(Y) ξ(Y)
)

reduces to

τX
(
∇Gr(n,p)

µ(Y) ξ(Y)
)
= Πh

X (D(τX(µ(Y)))[τX(ξ(Y))]) .

Geodesics

Let Y ∈ Gr(n, p), ξY ∈ TYGr(n, p) and X be an element of π−1(Y) with µX = τX(ξY)

in HX . By [46, Theorem 2.3] the geodesic of Gr(n, p) at a point Y ∈ Gr(n, p) in

direction ξY ∈ TYGr(n, p) is then given by Y(t) = π(X(t)) with

X(t) =
[
XV U

] [cos(tΣ)

sin(tΣ)

]
V T , (3.19)

where µX = UΣV T is the compact singular value decomposition of µX and cos(D)

and sin(D) are the operators applying the cos and the sin function, respectively on

the diagonal elements of the diagonal matrix D. A constructive proof of (3.19) can

be found in [2].

Retractions

By [3, Example 4.1.3] and [3, Proposition 4.1.3] a retraction of Gr(n, p) at a point Y
is given by

RY(ξY) = π
(
(X + µX)(Ip + µT

XµX)
−1/2) (3.20)

where (X + µX)(Ip + µT
XµX)

−1/2 is the unitary polar factor of (X + µX) with X and

µX as defined above.
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Vector Transport

By using the projection Πh
X(Z) onto HX as defined in (3.16) we obtain a vector

transport by

τX̂(TµY
(ξY)) = Πh

X̂
(νX) (3.21)

for X ∈ π−1(Y) and X̂ ∈ π−1(RY(µY)), and νX = τX(ξY).

Another vector transport is obtained by the parallel translation along the geodesics.

Let ξY and µY be tangent vectors in TYGr(n, p) and let τX(µY) = UΣV T the compact

singular value decomposition of τX(µY) for X ∈ π−1(Y). Then the parallel transla-

tion along the geodesic Y(t) = π(X(t)) in direction µY at Y = Y(0) given by [46,

Theorem 2.4] is

τX(t)(P
t←0
Y(t) (ξY)) =

([
XV U

] [− sin(tΣ)

cos(tΣ)

]
UT + (I − UUT )

)
τX(ξY). (3.22)

We are ready now to introduce optimization algorithms minimizing an objective

function f over a Riemannian manifold.

3.9 Optimization Algorithms

In this section we will introduce popular optimization algorithms that have already

successfully been applied to many problem in science [46], [138], [3]. One of them is

the BFGS-algorithm over Riemannian manifolds called Riemannian BFGS (RBFGS),

which was proposed in [49]. This algorithm has recently been extended for the use

of retractions [109]. However, the approximation to the Hessian obtained by rank

two updates is stored fully in memory. As this approximated Hessian stored as a

matrix can be large in dimension for e.g. the Stiefel or Grassmannian manifold we

propose a limited memory version of the RBFGS algorithm. Let us now start with

the nonlinear conjugate gradient algorithm.

3.9.1 Nonlinear Conjugate Gradient Algorithm

In R
n the linear Conjugate Gradient (CG) method proposed by Hestenes and Stiefel

[62] minimizes a quadratic function q(x) = xTAx + bx + c ∈ R with A ∈ R
n×n

symmetric positive definite and b ∈ R
n, c ∈ R. It generates a sequence of iterates xk

minimizing q(x) over the set x0 + span{p0, . . . , pk−1} where the basis vectors pk are

successive search direction chosen to be A-conjugate to all previous search directions

p0, . . . , pk−1, i.e. 〈Api, pj〉 = 0 for i 6= j. The first search direction is the steepest

descent direction p0 = ∇q(x0). As in iteration k, the previous directions p0, . . . , pk−1
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have been chosen to be A-conjugate, one needs only to determine the new search

direction pk and to perform an exact line-search to find the coefficient αk such that

xk+1 = xk + αkpk (3.23)

minimizes q(x). Since αk is determined by means of exact line-search the gradient

∇q(x) at xk+1 is orthogonal to pk. The idea is now to determine the new search

direction pk+1 by a composition of pk and ∇q(xk+1) that is

pk+1 = −∇q(xk+1) + βk+1pk (3.24)

where βk+1 is chosen such that pk+1 is A-conjugate to pk. The linear CG method

converges in n iterations. For the nonlinear CG method for nonlinear function f two

changes need to be made. As determining the exact line-search for αk becomes more

complicated this is replaced by a line-search strategy. Now in order to compensate

this modification several alternatives to βk are possible such that the nonlinear CG

reduces to the linear CG if q(x) is strictly convex and αk is chosen by means of exact

line-search procedure. The most popular choices are the one by Fletcher-Reeves

βk =
‖∇f(xk)‖22
‖∇f(xk−1)‖22

(3.25)

and by Polak-Riberière

βk =
‖∇f(xk)‖22 − 〈∇f(xk),∇f(xk−1)〉

‖∇f(xk−1)‖22
. (3.26)

For more on linear and nonlinear CG methods see [102, Chapter 5].

Now we are going to generalize this to manifolds that requires some modifications

to (3.23), (3.24), in the line-search strategy, and in (3.25) or (3.26). Remediation

is provided by the concept of retractions and vector transport. Let the iterates xk

now be generated on the manifoldM and let the new search direction pk be chosen

in Txk
M. Therefore we replace (3.23) by xk+1 = Rxk

(αkξxk
) for ξxk

∈ Txk
M. For

(3.24) we need to transport the vector ξxk
that is the search direction in iteration k

into Txk+1
M in order to form the sum with grad f(xk+1). We proceed similarly with

the line-search procedure and the choices for βk+1, yielding Algorithm 3.9.1, see [3,

Algorithm 13].

Under suitable conditions this algorithm converges globally [102, Section 5.2], [3,

Theorem 4.3.1] and has superlinear convergence [124]. For the global convergence one

requires that the direction in line 6 in Algorithm 3.9.1 is a descent direction. In R
n

this condition can be ensured for the choice of Fletcher-Reeves by imposing strong

Wolfe conditions [102, p. 34] in the backtracking strategy. If the vector transport is
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Algorithm 3.9.1 Nonlinear Conjugate Gradient Algorithm on Riemannian manifold
M.
This algorithm implements the nonlinear conjugate gradient algorithm for Rieman-
nian manifolds by generating a sequence xk ∈M of iterates to find a local minimum of
a real valued function f ∈ F(M).

Require: x0 ∈M, ε > 0 the tolerance for the norm of gradient at the last iterate.
1 Compute ξx0

= − grad f(x0). Set k = 0.
2 while ‖grad f(xk)‖xk > ε do

3 Compute step size αk by means of a backtracking strategy, e.g. Armijo-
backtracking: find the smallest natural number mk ∈ N ∪ {0} such that

f(Rxk
(αρmkξxk

)) < f(xk) + γαρmk 〈grad f(xk), ξxk
〉xk

. (3.27)

for α > 0, γ, ρ ∈ (0, 1). Then αk = αρmk .
4 Set xk+1 := Rxk

(αkξxk
).

5 Compute βk+1 by Fletcher-Reeves, that is,

βk+1 =
‖grad f(xk+1)‖2xk+1

‖grad f(xk)‖2xk
or βk+1 by Polak-Ribière, that is,

βk+1 =
‖grad f(xk+1)‖2xk+1

− 〈grad f(xk+1), Tαkξk(grad f(xk))〉xk+1

‖grad f(xk)‖2xk
.

6 Set ξxk+1
= − grad f(xk+1) + βk+1Tαξxk (ξxk

).
7 Set k = k + 1.
8 end while

9 return xk.
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the parallel translation, see Section 3.7.5 then due to the preservation of the metric

these conditions can be generalized to Riemannian manifolds.

Note that the nonlinear CG method is often the method of choice for large scale

problems where no second-order information is available. In particular it only re-

quires to compute the gradient at the iterates and at most two vector transports per

iteration.

3.9.2 Limited Memory RBFGS

Let us now consider the BFGS-method on Riemannian manifolds. The BFGS-method

is a quasi-Newton method named after its discoverers Broyden, Fletcher, Goldfarb,

and Shanno. Quasi-Newton methods are iterative methods that construct a model

of the objective function by only requiring the gradient of the function at every

iteration. A descent direction of the objective function is then found by minimizing

this constructed model. To describe the idea of the BFGS-method we first consider

the method in R
n equipped with the Euclidean inner product and move then to the

generalisation for Riemannian manifolds. Let f be a function in R to be minimized.

The idea of this method is to generate a sequence of iterates xk+1 = xk +αkpk where

the descent direction pk is chosen to minimize the quadratic model

mk(p) = f(xk) +∇f(xk)Tp+
1

2
pTBkp

of f at xk where Bk is a symmetric positive definite matrix, determined in the follow-

ing way. Since in the optimization routine one needs to deal with Hk = B−1k instead

of Bk one rather considers how to choose Hk. The first requirement on Hk is that the

gradient of the model mk(p) should match ∇f(x) at the iterates xk and xk−1. This

condition implies

Hkyk = sk with yk = ∇f(xk)−∇f(xk−1) and sk = xk − xk−1, (3.28)

imposing n constraints on Hk. As Hk is also symmetric positive definite the condition

(3.28) is only well defined if ρk := 〈sk, yk〉 > 0. By enforcing the Wolfe conditions

[41, Section 6.3] in the line-search procedure one can guarantee that ρk is positive.

The second requirement, determining the matrix Hk uniquely, is that the new matrix

Hk is closest to the previously chosen symmetric positive definite matrix Hk−1. The

condition of closeness is thereby expressed in the weighted Frobenius norm ‖A‖
W

=

‖W 1/2AW 1/2‖
F
with W = Ḡk−1 the inverse of the averaged Hessian defined by

Ḡk−1 =

∫ 1

0

∇2f(xk−1 + tαk−1pk−1)dt.
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This choice of the weighting matrix W ensures that the updating formula for Hk is

invariant to scaling transformations. To determine Hk we need to find the solution

of
minH∈S+n ‖H −Hk−1‖W

s.t. Hyk = sk.

This optimization problem has the unique solution Hk given by [102, Section 6.1]

Hk =

(
I − 1

ρk
sky

T
k

)
Hk−1

(
I − 1

ρk
yks

T
k

)
+

1

ρk
sks

T
k . (3.29)

Note that this corresponds to a rank two update of the matrix Hk−1. Certainly other

choices for Hk, respectively Bk can be considered. However, the BFGS-method is

known to be highly efficient [102, Section 6.1]. As Hk is chosen to be positive definite

pk is a descent direction. Under suitable conditions this algorithm converges globally

to a minimum of the function f [102, Theorem 6.5].

The matrix Hk is usually dense and therefore for large values of n it is impractical

to store it. In this case one would like to efficiently compute Hkd for an arbitrary

vector d without storing Hk explicitly. The solution is the limited memory BFGS-

method described in [101]. The idea is to store only the most recent M ≪ n pairs

(yi, si) and approximate Hkd by starting from Hmax{0,k−M} := H0 and applying it-

eratively (3.29). This corresponds to performing a sequence of inner products and

summation of vectors by using only the most M recent pairs (yi, si).

Now we are going to generalize this method to minimize a function f ∈ F(M)

over the Riemannian manifold M. Let xk = Rxk−1
(αk−1µxk−1

) ∈ M be the current

iterate where µxk−1
∈ Txk−1

M is the tangent vector that was chosen as a descent

direction in the previous iteration and αk−1 the step size. Then the pair (yk, sk)

becomes

sk = Tαk−1µxk−1
(αk−1µxk−1

), yk = grad f(xk)− Tαk−1µxk−1
(grad f(xk−1)). (3.30)

We equally define ρk as

ρk := 〈sk, yk〉xk
. (3.31)

Note that if the Wolfe condition on αk are imposed and the vector transport is the

parallel translation along geodesics then ρ will still be positive.

Lemma 3.9.1. Let x ∈ M and µx ∈ TxM a tangent vector with 〈grad f, µx〉x < 0.

Further let γ(α) be the geodesic with γ(0) = x and γ̇(0) = µx and T·(·) be the parallel

translation at x associated with γ. Assume that {f(γ(α)) : α > 0} is bounded from

below. Then there exists an α for 0 < c1 < c2 < 1 such that the generalized Wolfe

conditions

f(γ(α)) ≤ f(x) + c1α 〈grad f, µx〉x (3.32)
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and

〈grad f(γ(α)), Tαµx
µx〉γ(α) ≥ c2 〈grad f(x), µx〉x (3.33)

are satisfied.

Proof. The proof is similar to the one in R
n [41, Theorem 6.3.2]. As c1 < 1 condition

(3.32) is satisfied for α > 0 small enough. As f(γ(α)) is bounded below there exists

a smallest positive ᾱ such that

f(γ(ᾱ)) = f(x) + c1ᾱ 〈grad f(x), µx〉x (3.34)

and thus for any α ∈ (0, ᾱ] condition (3.32) is satisfied. As f(γ(α)) is a function from

R 7→ R we can apply the mean value theorem and obtain for an α̂ ∈ (0, ᾱ)

f(γ(ᾱ))− f(γ(0)) = ᾱ 〈grad f(γ(α̂)), γ̇(α̂)〉γ(α̂) . (3.35)

As the geodesic parallel transports its own tangent vector [33, p. 228] γ̇(α̂) = Tα̂µx
(µx).

Combining this with (3.35) and (3.34) we have

〈grad f(γ(α̂)), Tα̂µx
(µx)〉γ(α̂) = c1 〈grad f(x), µx〉x > c2 〈grad f(x), µx〉x .

Hence, α̂ satisfies the both conditions.

If the Wolfe conditions are satisfied in every iteration we obtain that ρk > 0 when

using the parallel translation along the geodesics and µk defined as in Lemma 3.9.1

as then

ρk = 〈sk, yk〉xk

=
〈
Tαk−1µxk−1

(αk−1µxk−1
), grad f(xk)

〉
xk

−
〈
Tαk−1µxk−1

(αk−1µxk−1
), Tαk−1µxk−1

(grad f(xk−1))
〉
xk

≥ c2
〈
αk−1µxk−1

, grad f(xk−1)
〉
xk−1

−
〈
αk−1µxk−1

, grad f(xk−1)
〉
xk−1

> 0,

where we used that the vector transport is isometric. Hence, we can ensure the

positiveness of ρk.

By using the concept of vector transport we approximate the inverse of the Hessian

operator Hess f applied to a tangent vector ξxk
∈ Txk

M at xk by generalizing (3.29)

to

Hk(ξxk
) =H̃k−1(ξxk

)−
〈
yk, H̃k−1(ξxk

)
〉
xk

ρk
sk −

〈sk, ξxk
〉xk

ρk
H̃k−1(yk)

+
〈sk, ξxk

〉xk

〈
yk, H̃k−1(yk)

〉
xk

ρ2k
sk +

〈sk, ξxk
〉xk

ρk
sk.

(3.36)

where H̃k−1(·) = Tαk−1µxk−1
◦Hk−1 ◦ T −1αk−1µxk−1

(·).
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From (3.29) and (3.36) we see that the operator is positive definite if and only if

H̃k−1 is positive definite. This is clearly the case if the vector transport is isometric.

Note that Hk(·) is now considered to be positive definite if 〈ξxk
, Hk(ξxk

)〉xk
> 0 for

all ξxk
∈ Txk

M and ξxk
nonzero.

For the limited memory BFGS Nocedal describes in [101] an algorithm to effi-

ciently compute the product Hk(p) from the at most last M pairs (yi, si), achieving

R-linear convergence under suitable conditions [89, Theorem 6.1]. In comparison

the BFGS algorithm has superlinear convergence for similar conditions [102, Theo-

rem 6.6]. The algorithm in [101] can easily be generalized to Riemannian manifolds

by using (3.36) resulting in Algorithm 3.9.2. The problem that remains is how to

choose the initial operator H̃0 as H0 is an operator from Tx0
M into the same space.

In order to apply the vector ν0 to H0 we need to transport ν0 into Tx0
M, possibly

requiring to store all previous descent directions. In order to avoid this we choose

H̃0(ν0) to be a multiple of ν0, which is also a popular choice in R
n [101, p. 142-143].

The multiple that has proven to be efficient in R
n is 〈yk,sk〉〈yk,yk〉 . Therefore we adjust this

choice where use the inner product in Txk
M. We are ready now to state the lim-

ited memory BFGS algorithm for Riemannian manifolds in Algorithm 3.9.3, which is

similar to the RBGFS algorithm in [109].

Gabay obtains a global convergence result of this algorithm in [49, Theorem 4.6]

for functions f having the additional property that the Hessian of f is non-degenerate

at all stationary points of f . Note that for this result he does not limit the memory,

i.e. M = k in Algorithm 3.9.2 and he uses the geodesic for the retraction and the

parallel translation for the vector transport. The Hessian is called non-degenerated

at x if 〈ξx,Hess f(x)[ξx]〉 = 0 for ξx ∈ TxM implies ξx = 0. Under suitable conditions

the author even obtains superlinear convergence. See [49, Theorem 4.7].

3.10 Conclusions

In this chapter we gave a brief introduction to Riemannian manifolds by defining nec-

essary geometric objects to optimize real valued function over these manifolds. We

continued by considering two Riemannian manifolds in detail that will play an im-

portant role in the later chapters, that is the Stiefel and the Grassmannian manifold.

Two different optimization methods were introduced to minimize nonlinear function

on Riemannian manifolds, namely the nonlinear CG and the RBFGS method, and

particular attention was paid to generalize the limited memory BFGS method to

Riemannian manifolds.
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Algorithm 3.9.2 Algorithm to compute Hk(ξxk
) for the limited memory BFGS.

This algorithm computes an approximation of the inverse Hessian of a function f ∈
F(M) applied to a tangent vector at xk by using the most M recent pairs (yi, si).
This algorithm is our modification of the algorithm in [101] generalized to Riemannian
manifolds.

Require: x0 ∈ M, M the maximal number of pairs (yi, si) stored. The tan-
gent vector ξxk

that is required be to applied to Hk, the at most M recent
pairs (ymax{1,k+1−M}, smax{1,k+1−M}), . . . , (yk, sk) and at most M recent directions
µmax{0,k−M}, . . . , µk−1.

1 if k ≤M then

2 B = k.
3 c = 0.
4 else

5 B =M .
6 c = k −M .
7 end if

8 νB = ξxk

9 for i = B : −1 : 1 do

10 j = i+ c
11 δi =

1
ρj
〈sj, νi〉xj

12 νi−1 = T −1αj−1µj−1
(νi − δiyj)

13 end for

14 η0 = H̃0(ν0).
15 for i = 1 : B do

16 j = i+ c
17 ηi = Tαj−1ηj−1

(ηi−1)
18 βi =

1
ρj
〈yj, ηi〉xj

19 ηi = ηi − (δi − βi)sj
20 end for

21 return νB.

Algorithm 3.9.3 Limited memory BFGS algorithm for Riemannian manifolds.

This algorithm implements the limited memory BFGS algorithm for Rie-
mannian manifolds to find a local minimum of a function f ∈ F(M).

Require: x0 ∈M, ε > 0 the tolerance for the norm of gradient at the last iterate.
1 Compute µx0

= − grad f(x0). Set k = 0.
2 while ‖grad f(xk)‖xk > ε do

3 Compute step size αk by means of a line-search strategy such that xk+1 :=
Rxk

(αkµxk
) satisfies the Wolfe conditions (3.32) and (3.33).

4 Set k = k + 1 and sk, yk as in (3.30).
5 Compute µxk

= −Hk(grad f(xk)) by using Algorithm 3.9.2.
6 end while

7 return xk.



Chapter 4

Two-Sided Optimization Problems

with Orthogonal Constraints

Arising in Chemistry

4.1 Introduction

In this chapter we consider two problems that arise in atomic chemistry and involve

minimization over the Stiefel manifold St(n, p). The minimum value of the first

problem can be derived [28] by exploiting the structure of the stationary points.

We briefly repeat the analysis in [28] and extend it by addressing the question of

how to find the points at which the minimum value is attained. From the derivations

arising in the first problem we show that the second problem is equivalent to a convex

quadratic programming problem. We propose to use the active-set method to solve

this problem and we show that it converges in at most 2p iterations to an optimal

solution despite the lack of strict convexity of the objective function. We also examine

the set of optimal solutions of the first problem and show that a slight modification

of this set is a Riemannian manifold for which we can evolve all necessary geometric

objects discussed in Chapter 3 to make an optimization over this manifold possible.

The development of these objects leads to a new algorithm to optimize an arbitrary

smooth function over the set of optimal solutions of the first problem. This new

algorithm is an augmented Lagrangian method where the inner problem is to minimize

the augmented Lagrangian function over this new Riemannian manifold. We show

that this algorithm outperforms the classical approach, that is, to use again the

augmented Lagrangian method but to formulate a different augmented Lagrangian

function with (p − 1)p/2 more Lagrange multipliers where the inner problem is to

minimize this function over the Stiefel manifold.

The outline of this chapter is as follows. In the next section we introduce the

84
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problems and describe briefly their applications in chemistry. We derive the optimal

conditions for the first problem in Section 4.3 and discuss how to obtain the station-

ary points with the minimal value in Section 4.4. This leads to Algorithm 4.4.1 that

computes the minimum of the first problem. In Section 4.5 we show how we can then

determine the optimal solution of the second problem, leading to Algorithm 4.5.1.

Subsequently, we evolve the necessary geometric objects mentioned above in Sec-

tion 4.6 and investigate the performance of the resulting algorithm in our numerical

tests in Section 4.7.

4.2 The Problems

Let N ∈ R
n×n be a given symmetric matrix and D = diag (d1, d2, . . . , dp) ∈ R

p×p be

diagonal with (D)ii = di and p ≤ n. We define

〈A,B〉 := trace(BTA)

as our inner product in R
n×p and the corresponding norm is the Frobenius norm

‖A‖2
F
:= 〈A,A〉. Let us now state the two problems that arise from atomic chemistry.

4.2.1 Problem 1

The first problem concerns the minimization in the Frobenius norm of the difference

between a symmetric matrix and a diagonal matrix D, that is,

min
Y T Y=Ip, Y ∈Rn×p

‖Y TNY −D‖2
F
. (4.1)

For simplicity we considerN being symmetric and Y having orthonormal columns,

although the analysis in Section 4.3 can also be applied for N Hermitian and Y having

unitary columns.

We became aware of (4.1) from Prof. Alexander Sax, University of Graz, who

came across this problem in atomic chemistry [72], [90]. In his particular problem

N is a block of a density operator of a molecular system defined on a large space

of atomic orbitals and D is the occupation numbers of p atomic orbitals. Then the

application of (4.1) is to determine a minimal set of localised atomic orbitals having

occupation numbers closest to the occupation numbers prescribed in D.

4.2.2 Problem 2

For the second problem we are interested in a different distance measure, that is

min
Y T Y=Ip, Y ∈Rn×p

(trace(Y TNY )− c)2, (4.2)
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where c ∈ N is given and could be considered as c = trace(D).

This problem was also provided by Prof. Sax [120] and its applications are similar

to those of (4.1). The difference is that in (4.2) one is only interested in reproducing

the number of electrons of the atoms, c, and not in prescribing the occupation numbers

of the atomic orbitals.

In the next section we will look more closely at (4.1) and will detect the stationary

points on the Stiefel manifold by exploiting the structure of Y at those points. From

this analysis we address the question of how to find a solution of (4.1) and develop

an algorithm returning this solution.

4.3 Optimality Conditions for Problem 1

The analysis of this section is mainly from [28] where the stationary points of (4.1)

are investigated and an optimal function value is found. Note that the authors

consider a more general version of (4.1) in [28], where the objective function is

‖Y ∗NY − U∗BU‖2
F
for given Hermitian matrices N and B of possible different di-

mensions. The optimization is then carried out for (Y, U) in the product manifold of

two sets of rectangular matrices with unitary columns.

4.3.1 Conditions for Stationary Points

Since our constraint set of (4.1) is the compact Stiefel manifold introduced in Section

3.8.1 we consider how to determine the stationary points of the problem in (4.1) on

this manifold. Recall from Section 3.8.1 that the gradient of the Stiefel manifold in

the Euclidean inner product is

grad f(Y ) = ∇f(Y )− Y sym
(
Y T∇f(Y )

)

where f(Y ) := ‖Y TNY −D‖2
F
is the objective function of (4.1). Therefore we need

to find the points Y ∈ St(n, p) that satisfy

∇f(Y )− Y sym
(
Y T∇f(Y )

)
= 0. (4.3)

By substituting the matrix of partial derivatives

∇f(Y ) = 4NY (Y TNY −D)

into (4.3) we obtain

NY (Y TNY −D) = Y sym
(
Y TNY (Y TNY −D)

)
. (4.4)

Now when multiplying Y T from the left in (4.4) we notice that Y TNYD must be

symmetric, which implies that we can assume that Y TNY and D have the same
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eigenvectors [69, Theorem 2.3.3]. As the Frobenius norm is invariant to orthogonal

transformations it follows from (4.1) that we can also assume without loss of generality

that Y TNY is diagonal. We denote this diagonal matrix by

∆ := Y TNY with (∆)ii = δi (4.5)

for i = 1, . . . , p.

It follows that the condition (4.4) for Y ∈ St(n, p) to be a stationary point sim-

plifies to

(NY − Y ∆)(∆−D) = 0.

This means either the ith diagonal entry of ∆ coincides with the ith diagonal entry

of D or (Yi, δi) is an eigenpair of N where Yi denotes the ith column of Y .

4.3.2 Attaining Optimal Function Value

Let us now have a look at the objective function at the stationary points. As Y TNY

is diagonal the function value f(Y ) simplifies to

f(Y ) = ‖Y TNY −D‖2
F
= ‖∆−D‖

F
=

p∑

i=1

|δi − di|2 . (4.6)

As a consequence, to find the stationary point with the smallest function value, we

need to choose the columns of Y such that the diagonal elements of ∆ are closest to

the corresponding elements of D. To achieve this goal, we will apply a theorem that

specifies when a matrix imbeddable. The latter property is defined as follows.

Definition 4.3.1. Let A ∈ R
n×n and AY ∈ R

p×p be two square matrices with n ≥ p.

Then AY is called imbeddable in A if there exists a matrix Y ∈ St(n, p) such that

Y TAY = AY .

The next theorem by Fan and Paul [47] gives a relation of the eigenvalues of a

matrix AY that is imbeddable in a larger matrix A to the eigenvalues of A. This will

help us to determine the diagonal elements of ∆ at which the optimum is attained.

Theorem 4.3.2. [47, Theorem 1] Let A ∈ R
n×n and AY ∈ R

p×p be two symmetric

matrices and λ1 ≤ λ2 ≤ · · · ≤ λn and θ1 ≤ θ2 ≤ · · · ≤ θp their corresponding

eigenvalues. Then AY is imbeddable in A iff

θi ∈ [λi, λi−p+n] i = 1, . . . , p.

Let N = PΛP T be the spectral decomposition of N with Λ the diagonal matrix

of the eigenvalues λ1, . . . , λn of N with λ1 ≤ · · · ≤ λn. Let the diagonal elements
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of D = diag
(
(d1, d2, . . . , dp)

T
)
be in increasing order d1 ≤ d2 ≤ · · · ≤ dp. We can

assume this, as the Frobenius norm is invariant under orthogonal transformations so

that (4.1) does not change.

Then from (4.6) one can see that a minimum value for f(Y ) at the stationary

points is achieved if the diagonal elements of ∆ are also increasing. Hence, let ∆ =

diag((δ1, δ2, . . . , δp)
T ) with δ1 ≤ δ2 ≤ · · · ≤ δp.

Since ∆ is imbeddable by definition in (4.5) it holds that δi ∈ [λi, λi−p+n] for all

i = 1, . . . , p. Hence by Theorem 4.3.2 the smallest value at a stationary point is

attained if δi is chosen such that the distance between δi and di is smallest. Thus we

obtain

δ∗i =





di if di ∈ (λi, λi−p+n)

λi if di ≤ λi

λi−p+n otherwise

(4.7)

and the function value at this point is

p∑

i=1

(
max{0, λi − di, di − λi−p+n}

)2
. (4.8)

This is the minimal function value of (4.1). Let Y∗ be an optimal solution. Then

Y T
∗ NY∗ = diag(δ∗1, . . . , δ

∗
p) and we denote this matrix as ∆∗.

It remains to compute Y∗. In the subsequent section we address how a solution

Y∗ is obtained and introduce an algorithm by using the analysis of this section.

4.4 Steps to Optimal Solution of Problem 1

From now on we present our idea how to obtain an optimal solution Y∗ of (4.1) and

develop an algorithm that computes a Y∗ ∈ St(n, p) at which the function value of

(4.8) is attained. If p = n− 1 by Theorem 4.3.2 the eigenvalues λ1, . . . , λn of N have

the property of interlacing δ1, . . . , δp, i.e.

λ1 ≤ δ1 ≤ λ2 ≤ · · · ≤ δp ≤ λn.

This property will allow us to apply a theorem in [107] for p = n − 1, which shows

that we can construct an arrowhead matrix A such that the (n−1)st principal minor

of A is ∆∗ and the eigenvalues of A coincide with the eigenvalues of N . By using this

theorem we can easily obtain a solution of (4.1).

To generalize this procedure to any p our idea is now after diagonalizing N to

apply permutation matrices to Λ and ∆∗, respectively such that we obtain smaller

diagonal matrices that allow us to apply the theorem in [107]. This method has the

advantage that we can obtain a solution of (4.1) by only performing a few eigenvalue
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decompositions of dimension less than n provided the spectral decomposition of N is

already determined. We show that it is always possible to find permutation matrices

such that these smaller diagonal matrices are obtained. The result is an algorithm

that returns a solution of (4.1) for any p ≤ n.

Note that for simplicity reasons we say that a diagonal matrix A ∈ R
m×m inter-

laces a diagonal matrix B ∈ R
(m−1)×(m−1) if their diagonal elements interlace. Let

us now state the theorem in [107] and show how this yields a solution of (4.1) if Λ

interlaces ∆∗.

4.4.1 Construction of Arrowhead Matrix with Prescribed

Eigenspectrum

In [107, Theorem 1] Parlett and Strang distinguished three cases how the elements can

interlace depending on the occurrence of strict inequalities between these elements.

We have rewritten this theorem in a more compressed form without distinguishing

these three cases, which makes the later algorithm clearer. As the statement of this

theorem is clearly the same we omit the proof.

Theorem 4.4.1. [107, Theorem 1] Let λ1, . . . , λm interlace δ1, . . . , δm−1, i.e.

λ1 ≤ δ1 ≤ λ2 ≤ · · · ≤ λm−1 ≤ δm−1 ≤ λm

for m > 1. Further for k ∈ N let the vectors

v1 =

[
1

v1(2)

]
, v2 =

[
v1(2) + 1

v2(2)

]
, . . . , vk =

[
vk−1(2) + 1

m− 1

]
∈ N

2

be chosen such that for all i = 1, . . . , k

λvi(1) ≤ δvi(1) = λvi(1)+1 = · · · = λvi(2) = δvi(2) ≤ λvi(2)+1

with vi(2)−vi(1) maximal. Then there exist c1, . . . , cm−1 ∈ R such that the symmetric

arrowhead matrix

A =




δ1 c1
. . .

...

δm−1 cm−1

c1 . . . cm−1
∑m−1

i=1 (λi − δi) + λm




has the eigenvalues λ1, . . . , λm. For the values of c1, . . . , cm−1 it holds that for i =

1, . . . , k

c2vi(1) + · · ·+ c2vi(2) = −
Πj<=vi(1)(δvi(1) − λj)Πj>vi(2)(δvi(1) − λj)
Πj<vi(1)(δvi(1) − δj)Πj>vi(2)(δvi(1) − δj)

≥ 0.
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Note that the condition of vi(2) − vi(1) to be maximal ensures that the vectors

v1, . . . , vk are uniquely determined. Also if vi(1) = vi(2) then c2vi(1) is uniquely de-

termined. Further if λvi(1) = δvi(1) or δvi(2) = λvi(2)+1 then all the cvi(1), . . . , cvi(2) are

zero.

In case p = n − 1 we now obtain Y∗ that imbeds ∆∗ chosen in (4.8) into N by

first forming the corresponding arrowhead matrix A accordingly to Theorem 4.4.1.

Then as A is symmetric there is a spectral decomposition A = V ΛV T and we can set

Y := PV T In,n−1 with In,n−1 = [In−1, 0]T . Since Y TNY = ITn,n−1AIn,n−1 = ∆∗ and Y

satisfies Y TY = Ip, Y is a solution of (4.1) with (4.8) as solution value.

4.4.2 Obtaining an Optimal Solution

Now we show how Theorem 4.4.1 can be used to obtain a solution for any p with

p ≤ n. Recall we are trying to find a matrix Y ∈ St(n, p) satisfying

Y TNY = ∆∗ (4.9)

for ∆∗ having the prescribed diagonal elements of (4.7). As the matrix ∆∗ is chosen

to be imbeddable in N (4.9) is well defined.

This becomes trivial for n = p and as we assumed in Section 4.3.1 that the

diagonal elements of Λ are in increasing order the solution of (4.9) is just the matrix

of eigenvectors P of N . Let us now assume that p < n. As mentioned above our

idea is to permute the diagonal elements of Λ and ∆ such that we obtain smaller

diagonal matrices Λ1, . . . , Λq+1 and ∆1, . . . , ∆q that allow us to apply Theorem 4.4.1

to these smaller matrices. The next lemma shows that the corresponding permutation

matrices always exist and as the proof of this lemma is constructive it also tells us

how to choose these permutation matrices.

Lemma 4.4.2. Let Λ = diag(λ1, . . . , λn) ∈ R
n×n, ∆ = diag(δ1, . . . , δp) ∈ R

p×p be

diagonal matrices with λ1 ≤ λ2 ≤ · · · ≤ λn and δ1 ≤ δ2 ≤ · · · ≤ δp. Further let p < n,

q = min{p, n− p} and

δi ∈ [λi, λi−p+n] ∀i = 1, . . . , p. (4.10)

Then there exist permutation matrices U ∈ R
n×n, Q ∈ R

p×p and diagonal matrices

Λi ∈ R
si×si for i = 1, . . . , q + 1 and ∆i ∈ R

(si−1)×(si−1) for i = 1, . . . , q such that

UTΛU = diag (Λ1, Λ2, . . . , Λq+1) , Q
T∆Q = diag (∆1, ∆2, . . . , ∆q) (4.11)

and Λi interlaces ∆i for i = 1, . . . , q.
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Note that Λq+1 contains the diagonal elements of Λ that are not used to interlace

the diagonal elements of ∆ and are thus, remaining. Before we prove this lemma we

show how by means of this lemma an optimal solution of (4.1) is easily found.

For now let us assume Lemma 4.4.2 is true then with q = min{p, n−p} there exist
two permutation matrices U and Q such that UTΛU = diag (Λ1, Λ2, . . . , Λq+1) and

QT∆∗Q = diag(∆1, ∆2, . . . , ∆q) where the smaller diagonal matrices Λ1, Λ2, . . . , Λq+1

and ∆1, ∆2, . . . , ∆q satisfy the conditions in Lemma 4.4.2. Since Λi interlaces ∆i we

can apply Theorem 4.4.1 and obtain Yi ∈ St(si, si − 1) for all i = 1, . . . , q such that

Y T
i ΛiYi = ∆i. Hence the matrix

Ŷ := diag (Y1, Y2, . . . , Yq) (4.12)

solves Ŷ TUTΛUŶ = QT∆∗Q and consequently, the solution of Y TNY = ∆∗ can be

obtained by setting Y := PUŶ QT . It remains to prove Lemma 4.4.2.

Proof. The proof of Lemma 4.4.2 is constructive, i.e. we will obtain diagonal matrices

Λ1, . . . , Λq+1, ∆1, . . . , ∆q that satisfy the required properties. Using the floor operator

⌊ ⌋ : R 7→ Z with

⌊x⌋ = max
y∈Z,y≤x

y

we define the numbers si as

si :=

⌊
n− i
n− p

⌋
+ 1, i = 1, . . . , q

and sq+1 := n−∑q
i=1 si. Note that si ≥ 2 for i = 1, . . . , q due to the choice of q.

Let Λ1, . . . , Λq+1 and ∆1, . . . , ∆q be chosen as

Λi := diag(λi, λi+n−p, . . . , λi+(si−1)(n−p)),

∆i := diag(δi, δi+n−p, . . . , δi+(si−2)(n−p))
(4.13)

for i = 1, . . . , q and Λq+1 having on its diagonal all the elements λ1, . . . , λn that are

remaining. Let further Λ̂ := diag (Λ1, . . . , Λq+1), ∆̂ := diag (∆1, . . . , ∆q) and let Li =

{(Λi)11, . . . , (Λi)si,si} be the set of all diagonal elements of Λi for i = 1, . . . , q+1 and

let Di = {(∆i)11, . . . , (∆i)si−1,si−1} be the corresponding set for ∆i for i = 1, . . . , q.

It remains to show that the choice (4.13) is well defined, i.e. the following prop-

erties are satisfied.

(i) There exists a bijective function, which represent an one to one correspondence

between the diagonal elements of Λ and Λ̂. This is equivalent to
⋃q+1

i=1 Li =

{λ1, . . . , λn} as by construction of L1, . . . ,Lq+1 Li ∩ Lj = ∅ for i 6= j.

(ii) Analogously to (i)
⋃q

i=1Di = {δ1, . . . , δn}.
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(iii) The elements of Λi interlace the diagonal elements of ∆i for i = 1, . . . , q.

Note that condition (i) and (ii) imply the existence of U and Q, respectively. Let us

first prove these two conditions. As for all i = 1, . . . , q

1 ≤ i+ (si − 1)(n− p) = i+

⌊
n− i
n− p

⌋
(n− p) ≤ i+ n− i ≤ n

and

1 ≤ i+ (si − 2)(n− p) = i+

(⌊
n− i
n− p

⌋
− 1

)
(n− p) ≤ i+ n− i+ p− n = p

we have
⋃q+1

i=1 Li ⊂ {λ1, . . . , λn} and
⋃q

i=1Di ⊂ {δ1, . . . , δn}. Conversely, we will show
that

∑q+1
i=1 si = n and

∑q
i=1(si − 1) = p implying that

⋃q+1
i=1 Li ⊃ {λ1, . . . , λn} and⋃q

i=1Di ⊃ {δ1, . . . , δn}, respectively.
We consider the two cases for q separately. Let us first assume that q = p. Then

q∑

i=1

(si − 1) =

p∑

i=1

⌊
n− i
n− p

⌋
≥ p

as n− i ≥ n− p and therefore, every term in the sum is greater than or equal to 1.

Conversely,
q∑

i=1

⌊
n− i
n− p

⌋
≤

q∑

i=1

⌊
2(n− i)

n

⌋
≤ p

as n− p ≥ p⇐⇒ n/2 ≥ p and n− i < n. It follows
∑q

i=1(si − 1) = p for q = p. Let

us assume q = n− p now. Then from p ≥ n− p we have

q∑

i=1

⌊
n− i
n− p

⌋
≥

q∑

i=1

⌊
n− i
p

⌋
≥ p.

On the other hand it holds that

q∑

i=1

⌊
n− i
n− p

⌋
≤

q∑

i=1

⌊
n− p+ p− i

n− p

⌋
≤ n− p+

n−p∑

i=1

⌊
p− i
n− p

⌋
.

The term p−i
n−p is an integer for exactly one i ∈ {1, . . . , n − p}. Let this index be

denoted by i∗ and the corresponding integer number by z. Then

q∑

i=1

⌊
n− i
n− p

⌋
≤ n− p+ (z − 1)(p− i∗ − (2p− n)) + z(p− (p− i∗)) = p.

Hence,
∑q

i=1(si − 1) = p is also satisfied for q = n− p.
The condition

∑q
i=1 si = n is easily shown. As the dimensions of Λi differ from

the dimensions of ∆i by exactly one for i = 1, . . . , q we have
∑q

i=1 si = p+ q ≤ n and

hence, by definition of Λq+1

∑q
i=1 si = n.

It remains to show condition (iii), which follows directly from (4.10) and the

construction of (4.13). We obtain the assertion.
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Now we are ready to state the algorithm that computes the solution of (4.1). All

the steps that need to be taken are listed in Algorithm 4.4.1. Let us now consider

the major cost of this algorithm. First we need to count the computation of the

spectral decompositions of N in line 1 and of Ai in line 13 for i = 1, . . . , q, which

requires approximately 25n3 + 25
∑q

i=1 s
3
i flops [66, p. 337] with si as defined in

proof of Lemma 4.4.2. As Q,W , and U are permutation matrices we additionally

need only to consider the cost of one sparse matrix-matrix multiplication in line 16,

which requires at most 2n2p flops. In total, the major cost of Algorithm 4.4.1 is

approximately 25(n3 +
∑q

i=1 s
3
i ) + 2n2p flops.

Algorithm 4.4.1 Algorithm for computing the solution of (4.1).

Require: N ∈ R
n×n symmetric and D ∈ R

p×p diagonal, with p ≤ n.
1 Compute the spectral decomposition N = PΛP T with P orthogonal and such

that the eigenvalues are sorted in increasing order, i.e., Λ = diag((λ1, . . . , λn)
T )

with λ1 ≤ · · · ≤ λn.
2 Compute the permutation matrix W such that D̃ = W TDW has diagonal ele-

ments that are in increasing order.
3 Determine the diagonal elements of ∆∗ by means of (4.7).

4 Compute the minimal function value f ∗ :=
∑p

i=1

∣∣∣δ∗i − D̃ii

∣∣∣
2

for (4.1).

5 if n = p then

6 Compute the solution Y := PW T .
7 return Y , f ∗.
8 end if

9 Set q := min{p, n− p}.
10 Determine the diagonal matrices Λ1, . . . , Λq+1, (∆∗)1, . . . , (∆∗)q as constructed in

the proof of Lemma 4.4.2 and the corresponding permutation matrices U and Q.

11 for i = 1 : q do

12 Construct the arrowhead matrices Ai for the diagonal elements of Λi and (∆∗)i
according to Theorem 4.4.1.

13 Determine the spectral decomposition of Ai = ViΛiV
T
i .

14 Set Yi := V T
i Isi,si−1.

15 end for

16 Compute Ŷ as in (4.12) and determine the solution Y := PUŶ QTW T .
17 return Y , f ∗.

4.5 Steps to Optimal Solution of Problem 2

In this section we consider how to determine the optimal solution of (4.2). By apply-

ing Theorem 4.3.2 we show that (4.2) is equivalent to a convex quadratic programming

problem with box constraints. For solving this problem we consider the active-set

method described in [102, Algorithm 16.3] which turns out to be efficient, as for
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the inner optimization problem with equality constraints no linear system needs to

be solved. Moreover, we show that the active-set method terminates in most 2p

iterations.

4.5.1 Reformulation into a Convex Quadratic Programming

Let λ1 ≤ · · · ≤ λn be the eigenvalues of N in (4.2). By Theorem 4.3.2 it holds for the

eigenvalues θ1, . . . , θp of Y TNY with θ1 ≤ · · · ≤ θp that θi ∈ [λi, λi+n−p]. Therefore,

as the trace of a square matrix A is equal to the sum of the eigenvalues of A, we have

that trace(Y TNY ) =
∑p

i=1 θi with θi ∈ [λi, λi+n−p]. Hence with cp := c/p

min (trace(Y TΛY )− c)2
s.t. Y ∈ St(n, p)

⇐⇒ min (
∑p

i=1 (θi − cp))2
s.t. θi ∈ [λi, λi+n−p]

⇐⇒ min (
∑p

i=1 µi)
2

s.t. µi ∈ [λi − cp, λi+n−p − cp].

The objective function of the latter problem can be rewritten as (
∑p

i=1 µi)
2 = (eTµ)2 =

µT eeTµ with µ = (µ1, . . . , µp)
T and e ∈ R

p the vector of ones. Then this problem is

of the form of a convex quadratic programming problem

min µT eeTµ

s.t. µi ∈ [λi − cp, λi+n−p − cp], i = 1, . . . , p.
(4.14)

As the feasible set of this problem is closed, convex and not empty and the objective

function is convex, however not strictly convex, a solution of (4.14) always exists but

may not be unique.

If µ∗ is the solution of (4.14) then from the above derivation it is clear that the

function value of (4.2) at the solution is just (µT
∗ e)

2. To obtain the solution of (4.2)

it remains to determine Y ∈ St(n, p) such that

Y TNY = diag(µ∗ + cpe),

which is found by the solution of (4.1) with D = diag(µ∗+ cpe) and can be computed

by means of Algorithm 4.4.1.

4.5.2 Active-Set Method for Convex Quadratic Problems

Before we consider how to solve (4.14) we will briefly introduce the primal active-set

method for convex quadratic problems described in [102, Section 16.5] and we will

apply it to (4.14) in the next section. In general active-set methods deal with convex
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programming problems of the form

minx∈Rn q(x) := xTGx+ xT c

s.t. aTi x = bi, i ∈ E ,
aTi x ≥ bi, i ∈ I,

(4.15)

where G ∈ S+
n , c ∈ R

n and E and I are finite sets of indices indicating the equality

and inequality constraints, respectively. Furthermore, for all i ∈ I ∪ E ai ∈ R
n and

bi ∈ R. Let A(x) ⊂ E ∪ I be the active set, the set of indices of the equality and

inequality constraints that are active at x, i.e. aTi x = bi for all i ∈ A(x).
As we do not know the active set at the solution x∗ in general the idea is to solve

iteratively convex quadratic programming subproblems with only those constraints

that are in E or a subset of the active set at the current iterate xk, transformed

into equality constraints. We call this subset the working set and denote it by Wk.

Assuming the convex quadratic programming subproblems have always a solution,

which can easily be obtained by the Lagrangian method, solving these subproblems

yields either zero or a direction dk along which the constraints in the current working

set are not violated and for which q(xk) ≥ q(xk + αdk) for small α > 0.

To demonstrate this, let d := x − xk. The objective of (4.15) becomes then

dTGd+ gTk d+ zk where gk = 2Gxk + c and zk = xTkGxk + cTxk and for all i ∈ Wk the

constraints are aTi d = 0. Thus to find the direction that gives the largest reduction

in the objective function we have to solve the convex quadratic problem

mind dTGd+ gTk d

s.t. aTi d = 0, i ∈ Wk,
(4.16)

in every iteration. Let dk be the solution of (4.16). All constraints inWk are satisfied

for the new iterate xk+1 = xk + αkdk with αk ∈ [0, 1] as aTi xk+1 = bi + αka
T
i dk = bi.

If dk is nonzero a maximal step length αk ∈ [0, 1] is chosen such that all other

constraints are not violated. If there is a blocking constraint it will be added to

the working set of the next iterate. If αk is one and no blocking constraint exists

the solution of the convex quadratic programming in the next iteration will be zero,

which is the first case. As in this situation the first-order optimality condition for

(4.16) is satisfied it holds that for some Lagrange multipliers θi, i ∈ Wk

∑

i∈Wk

aiθi = gk = 2Gxk + c. (4.17)

If all Lagrange multipliers θi for i ∈ Wk ∩ I are nonnegative from [102, Section 16.5]

follows xk is a KKT point of (4.15) and thus a global solution.

If there are one or more Lagrange multipliers θi for i ∈ Wk ∩ I that are negative

then one constraint with a negative Lagrange multiplier is removed from the working
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set. The next theorem states that under certain conditions the solution of the next

subproblem will yield a direction for q(·) along which the dropped constraint will be

satisfied.

Theorem 4.5.1. Let xk satisfy the first-order condition for the equality-constrained

subproblem with working set Wk, that is, (4.17) holds for xk and aTi xk = bi for all

i ∈ Wk. Let further the constraint gradients ai for all i ∈ Wk be linearly independent

and assume there is an index j ∈ Wk ∩I with θj < 0. Let d be the solution of (4.16)

for Wk+1 \ {j}. Then aTj d ≥ 0.

Proof. This is proven by the first part of [102, Theorem 16.5].

The next theorem shows that the active-set method will converge to a global

solution in a finite number iterations under certain assumptions.

Theorem 4.5.2. Suppose that whenever the solution dk of the subproblem (4.16) is

nonzero dk is a descent direction for q(·) and the method takes a nonzero step length

αk > 0. Suppose further that if dk = 0 and there exists a Lagrange multiplier θj < 0

with j ∈ Wk ∩ I then dk+1 will be nonzero. Then the active-set method converges to

a global solution in a finite number of iterations.

Proof. The proof of this theorem follows from the discussion on [102, page 477].

If the method cannot always take a nonzero step length αk whenever dk computed

from (4.16) is nonzero the algorithm may undergo cycling. This refers to the situation

when after a certain number l > 0 of iterates there is no movement in xk = xk+l and

Wk =Wk+l. However, there are techniques that prevent the algorithm from cycling.

We will not go into detail and direct the reader to [102, Chapter 13]. In the case of

G positive definite [102, Theorem 12.5] together with [102, Theorem 12.6] show that

if dk 6= 0 it will be a descent direction for q(·). Moreover, if dk = 0 and θj < 0 for

a j ∈ Wk ∩ I the computed direction dk+1 in the next iteration will be a descent

direction.

4.5.3 Applying Active-Set Method to Problem 2

In this section we apply the active-set method to (4.14) and show that no linear

system needs to be solved to find a solution of the convex quadratic programming

subproblems. Further, it will turn out that the active-set method always converges

to an optimal solution of (4.14) in at most 2p iterations.
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Let us first transform the box constraints of (4.14) into linear inequality con-

straints so that this problem is of the form of (4.15). We obtain

minx∈Rp xT eeTx

s.t. eTi x ≥ λi − δp,
−eTi x ≥ −λi+n−p + δp, i = 1, . . . , p.

(4.18)

We assume that λi 6= λi+n−p for all i = 1, . . . , p. This is no restriction as all elements

of x with λi = λi+n−p are fixed so that the programming problem can be reduced

to an equivalent programming problem satisfying the assumption. As a consequence

the constraint gradients of all inequalities in A(x) are either of the form −ei or ei
and are linearly independent at all x in the feasible set.

Let us now consider how to solve the convex quadratic subproblem without solving

a linear system, which is the result of the next lemma.

Lemma 4.5.3. Let Wk be the current working set of iteration k and r := |Wk|. Let

further Ak ∈ R
p×r denote the matrix whose columns are the constraint gradients of

the subproblem corresponding to Wk. As all the constraints of the subproblem are

equality constraints the constraint gradients ai of the subproblem are assumed to be

of the form of ei for i ∈ {1, . . . , p}. Therefore there exists a permutation matrix

Pk ∈ R
p×p such that P T

k Ak = [ Ir 0 ]T . Then

dk :=





Pk


 0r×1

− eT xk

p−r e


 for r < p

0 otherwise

(4.19)

is an optimal solution of the convex quadratic subproblem (4.16) for (4.18) where

0r×1 = [0, . . . , 0]T ∈ R
r. If r < p all Lagrange multipliers corresponding to the

inequalities in Wk will be zero.

Proof. Let ιk :Wk 7→ {1, . . . , p} be the function that maps the index of the constraint

to the corresponding index of the unit basis vector, that is eιk(j) = aj for j ∈ Wk. We

now consider the Lagrangian function of (4.16) for our particular problem

L(d, θ) = dT eeTd+ (2eeTxk)
Td+

∑

j∈Wk

θιk(j)e
T
ιk(j)

d

where θ = (θιk(j))j∈Wk
are the Lagrange multipliers. As this function is convex the

condition for d ∈ R
p to be a global solution is thus

[
2eeT Ak

AT
k 0

][
d

θ

]
=

[
−2eeTxk

0

]
(4.20)



CHAPTER 4. TWO-SIDED OPTIMIZATION PROBLEMS 98

If r = p the columns of Ak form a basis of Rp. Hence, AT
k d = 0 has a unique solution,

that is dk = 0.

Let us now assume r < p. Substituting dk of (4.19) in (4.20) we obtain for the

left-hand side

[
2eeT Ak

AT
k 0

]

Pk

[
0r×1

− eT xk

p−r e

]

θ


 =


 2eeT Ak

Ir 0 0







0r×1

− eT xk

p−r e

θ




=

[
−2eTxke+ Akθ

0

]
(4.21)

For θ = 0, (4.21) is equal to the right-hand side of (4.20) and thus dk is an optimal

solution of (4.16) for our particular problem.

Note that the direction dk chosen in Lemma 4.5.3 is a descent direction for q(·)
whenever it is nonzero. The reason is that for dk 6= 0 dTkGdk = (eTxk)

2 > 0 as eTxk

is only zero for dk = 0. Since dk is a solution of (4.16) we have

q(xk + dk) = q(xk) + gTk dk + dTkGdk ≤ q(xk).

Hence gTk dk < 0 and thus dk is a descent direction.

The statement of the next lemma is needed to show subsequently that the active-

set method takes at most 2p iterations for (4.18).

Lemma 4.5.4. Let j be a blocking constraint that is added to the working set in iter-

ation k in the active-set method for (4.18). Then this constraint will not be removed

from the working set in the algorithm.

Proof. Let us assume that l > k is the iteration number when the constraint j is

removed from the working set Wl. By Lemma 4.5.3 a constraint is only removed if

r = p. Therefore by Theorem 4.5.1 we have that

aTj dl+1 > 0. (4.22)

Further, as j was a blocking constraint at iteration k it holds that

aTj dk = −aTj Pk

[
0r×1
eT xk

p−r e

]
≤ 0. (4.23)

As we minimize the function (eTx)2, eTxk and eTxl+1 must have the same sign. Thus

from (4.23)

aTj dl+1 = −aTj Pl+1

[
0r×1

eTxl+1e

]
≤ 0,

which is a contradiction to (4.22).
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Now we are ready to prove the active-set method converges to the global solution

in at most 2p iterations.

Theorem 4.5.5. Let the directions dk be chosen as in (4.19) then the active-set

method converges to a global solution of (4.18) and terminates in at most 2p itera-

tions.

Proof. We need to show that the active-set method converges in at most 2p iterations

to a point x∗ and working set W∗ where the convex quadratic subproblem (4.16) has

the solution d∗ = 0 and all corresponding Lagrange multipliers θi with i ∈ Wk are

nonnegative [102, Section 16.5]. Let again r := |Wk| and let us first assume r < p.

At iteration k, either dk is nonzero or dk is zero, which implies according to

Lemma 4.5.3 that all Lagrange multipliers are zero so that xk is an optimal solution

of (4.18). In the former case a constraint will be added to the working set Wk or

in the subsequent iteration the new direction dk+1 is equal to zero, implying, unless

r = p, that an optimal solution is found. Therefore, for r < p in every iteration one

constraint is added to the working set and no constraint is removed until r = p or

an optimal solution has been found. Let m be the number of iterations until r = p.

Note that m is bounded from above by p.

Let us now consider r = p and assume that there exists a Lagrange multiplier

with θj < 0 for j ∈ Wk. As dk = 0 one of these Lagrange multipliers with θj < 0

will be removed from the working set Wk. Since in the next iteration we will have

r = p − 1 < p we obtain for dk+1 either zero and an optimal solution is found or

according to Theorem 4.5.1 a descent direction for q(·) along which the inequality

j is satisfied. If a blocking constraint exists then this constraint will be added to

the new working set and r = p, otherwise an optimal solution is found. By Lemma

4.5.4 this procedure can happen at most p − m times, requiring at most 2(p − m)

additional iterations until an optimal solution is found. Thus, in total we have at

most 2(p − m) + m iterations and as m can be zero, the algorithm takes at most

2p iterations. Note that the factor 2 results from the iteration where r = p and one

constraint is removed from the working set, and the subsequent iteration where a

reduction of the objective function is achieved.

As a consequence of Theorem 4.5.5 we obtain an algorithm that terminates in at

most 2p iterations and returns an optimal solution of (4.14). We state the active-set

method [102, Algorithm 16.3] for our particular problem in Algorithm 4.5.1.
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Algorithm 4.5.1 Active-set method for computing the solution of (4.14).

Require: p, n ∈ N and p ≤ n, cp, Λ = diag(λ1, . . . , λn) with λ1 ≤ · · · ≤ λn.
1 Determine the range for x ∈ [l, u]. l := (λ1 − cp, . . . , λp − cp)T , u := (λ1+n−p −
cp, . . . , λn − cp)T .

2 Reduce the corresponding convex quadratic programming by removing all ele-
ments of x with li = ui.

3 Set k := 0, determine a feasible starting value x0, e.g. x0 = u and set W0 to be
a subset of the active set at x0.

4 loop

5 Compute solution dk of the current subproblem (4.16) by means of (4.19).
6 if dk = 0 then

7 if |Wk| 6= p then

8 break

9 else

10 Compute Lagrange multipliers θi corresponding to the inequalities of Wk.
11 if all Lagrange multipliers are nonnegative then

12 break

13 else

14 j := argminj∈Wk∩I θj
15 Set Wk+1 :=Wk \ {j}.
16 end if

17 end if

18 else

19 Compute αk := min
{
1,mini 6∈Wk,a

T
i dk<0

bi−aTi xk

aTi dk

}
.

20 Set xk+1 = xk + αkdk.
21 if there is a blocking constraint j then

22 Wk+1 :=Wk ∪ {j}
23 else

24 Wk+1 :=Wk

25 end if

26 k := k + 1
27 end if

28 end loop

29 return xk.
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4.6 Optimizing Arbitrary Smooth Functions over

Set of Optimal Solutions

4.6.1 Introduction

In Section 4.4 and 4.5 we solved the problems that were introduced in Section 4.2.

However, the solutions obtained are generally not unique. For (4.1) we have shown

that the set of optimal solutions is equivalent to

C :=
{
Y ∈ St(n, p) : Y TΛY = D

}
(4.24)

with D = ∆∗ defined in (4.7) and Λ the diagonal matrix with the eigenvalues of N on

its diagonal. Moreover, we have seen in Section 4.5 that this set plays an important

role in solving (4.2), too.

To select a particular solution out of the set in (4.24) the idea is to pose a new opti-

mization problem. We therefore establish a new framework in this section that allows

the optimization of an arbitrary smooth function f over the set (4.24). Depending

on the application, this function should then be chosen such that the minimum value

of f is attained at the points of interest in (4.24). Our approach assumes that the

diagonal elements of D are distinct and in increasing order.

We will first consider a set that imposes p fewer constraints on Y ∈ St(n, p)

than C but can easily been proven to be a Riemannian manifold. We will then show

that all geometric objects can be derived to make an optimization over this manifold

possible by using optimizing algorithms that are applicable. See Chapter 3 for an

introduction to optimization over Riemannian manifolds. To optimize eventually

over C it remains to impose the p constraints that we have disregarded. We tackle

this problem by applying the augmented Lagrangian method [13, Section 4.2], [102,

Chapter 17].

4.6.2 Modified Constraint Set Forming Riemannian Mani-

fold

Let us now define the new constraint set as

B(n, p) =
{
Y ∈ St(n, p) : offdiag(Y TΛY ) = 0 and (Y TΛY )11 < · · · < (Y TΛY )pp

}

where offdiag : Rp×p 7→ R
p(p−1) is the operator that stacks the off-diagonals into a

long vector starting from the most upper right. Note that B(n, p) does not impose the

constraints that the diagonal elements of Y TΛY coincide with the diagonal elements

of D. The idea is to impose these constraints separately in our optimization routine.
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Constraint Set As Embedded Submanifold of Rn×p

Let us now show that B(n, p) is an embedded submanifold of Rn×p.

Lemma 4.6.1. The set B(n, p) is an embedded submanifold of Rn×p with dimension

np− p2.

Proof. Let Y be an element in B(n, p). Then there exists an open neighbourhood UY

of Y in R
n×p such that the diagonal elements of XTΛX are distinct for all X ∈ UY .

Let U =
⋃

Y ∈B(n,p) UY . As UY is an open subset of Rn×p for all Y ∈ B(n, p) the set U
is also an open subset of Rn×p. Therefore from the discussions in Section 3.2.2, U is

an open submanifold of Rn×p of dimension np.

Consider the function F : U 7→ Sp × Sp
0 with

F (X) =

[
XTX − Ip

XTΛX − diag
(
XTΛX

)
]
, (4.25)

where Sp
0 := {Z ∈ Sp : diag(Z) = 0}. Then by construction it holds that F−1(0) =

B(n, p). Now in order to apply Theorem 3.4.2 we need to show that F is a submersion

at all X ∈ B(n, p).
Let Θ = XTΛX with X ∈ B(n, p). Let further S =

[
S1 S2

]T
∈ Sp × Sp

0 be

arbitrary and Ẑ = 1
2
X(S1 +K) with K ∈ Kp and

Kij =





(ΘS1+S1Θ−2S2)ij
Θjj−Θii

for i 6= j

0 otherwise.

Then from

DF (X)[Z] =

[
XTZ + ZTX

2sym(XTΛZ)− 2 diag
(
sym

(
XTΛZ

))
]

we have that DF (X)[Ẑ] =
[
S1 S2

]T
. As the matrix S was chosen arbitrarily F

is of full rank at all X ∈ B(n, p), which implies that 0 is a regular value of F .

Hence, by Theorem 3.4.2 B(n, p) is an embedded submanifold of U with dimension

dim(U)− dim(Sp ×Sp
0 ) = np− p2. As U covers B(n, p) by Definition 3.4.1 B(n, p) is

an embedded submanifold of Rn×p.

Note that B(n, p) can likewise be considered as embedded submanifold of St(n, p).

The Riemannian manifold B(n, p) is bounded as each column of Y ∈ B(n, p) has

2-norm one, implying that ‖Y ‖
F
=
√
p. However, it is not closed in R

n×p as demon-

strated by the following example. Let {εk}k≥0 be a sequence with εk ց 0 as k →∞.
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Let Λ = diag(1, 1, 2) and {Yk}k≥0 be a sequence with

Yk =



1 0

0 (1− εk)/sk
0 εk/sk


 where sk =

√
ε2k + (1− εk)2.

Then Yk is in B(3, 2) for all k as Y T
k ΛYk = diag

(
1,

2ε2k+(1−εk)2
ε2
k
+(1−εk)2

)
. However Y∗ :=

limk→∞ Yk 6∈ B(3, 2) as Y T
∗ ΛY∗ = diag(1, 1).

Set of Constructed Solutions Connected on Manifold

By means of the next lemma we prove that the optimal solutions of (4.1) for different

values of D that are obtained by Algorithm 4.4.1 are connected on the manifold.

Lemma 4.6.2. Let Λ be the diagonal matrix with the eigenvalues of N in (4.1) on its

diagonal. Suppose the elements of Λ are distinct. Let D̂, D̃ ∈ R
p×p be two diagonal

matrices that are imbeddable in Λ and that have strictly increasing diagonal elements.

Then the optimal solutions of (4.1) for D = D̂ and D = D̃, respectively, obtained by

Algorithm 4.4.1 are connected on B(n, p).

Proof. We need to show that there exists a curve Y : [a, b] 7→ B(n, p) such that Y (a) =

Y1 and Y (b) = Y2 where Y1, Y2 are computed by Algorithm 4.4.1 with Y T
1 ΛY1 = D̂ and

Y T
2 ΛY2 = D̃. Without loss of generality we can assume that the diagonal elements

of Λ are in increasing order, that is λ1 < λ2 < · · · < λn. As the diagonal elements

of D̂ and D̃ are in strictly increasing there exists a curve D(t) with D(t) diagonal,

D(a) = D̂, D(b) = D̃, and Dii(t) 6= Djj(t) for i 6= j and all t ∈ [a, b]. For example

D(t) defined as Dii(t) := D̂ii
b−t
b−a + D̃ii

t−a
b−a for all i is such a curve. Then from the

proof of Lemma 4.4.2 there exist two permutation matrices P and Q independent of

t such that UTΛU = diag(Λ1, . . . , Λq+1) and Q
TD(t)Q = diag(D1(t), . . . , Dq(t)) with

q = min{n − p, p} and Λi interlacing Di(t) for all i = 1, . . . , q and all t ∈ [a, b]. As

Di(t) is smooth the curve of arrowhead matrices Ai(t) whose upper left part coincides

with Di(t) and whose eigenvalues are the diagonal element of Λi is also smooth for

all i = 1, . . . , q. Since all diagonal elements of Λi are distinct we can apply [43,

Proposition 2.4] and obtain a smooth spectral decomposition of Ai(t) = Vi(t)ΛiVi(t)
T

for all i. Hence, Y (t) := UŶ (t)QT with

Ŷ (t) = diag
(
V1(t)

T [Is1−1 0]T , . . . , Vq(t)
T [Isq−1 0]T

)

is the curve that we are looking for as it is smooth for all t ∈ [a, b] and Y (a)TΛY (a) =

D̂ and Y (b)TΛY (b) = D̃ where Y (a) and Y (b) is computed by Algorithm 4.4.1.
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Note that the assumption of Lemma 4.6.2 that the diagonal elements of Λ are

distinct can be relaxed. If Λi as determined in the proof of Lemma 4.6.2 has diag-

onal elements that are not distinct then the problem is that we cannot apply [43,

Proposition 2.4] to find a smooth spectral decomposition of Ai(t) = Vi(t)ΛiVi(t)
T .

However, we can overcome this problem. For simplicity reasons we assume that Λi

has only two diagonal elements µ1 and µ2 with the same value. If one or more el-

ements are of multiple occurrence then the same procedure can be applied. As Λi

interlaces Di(t) there exists a diagonal element d(t) = (Di(t))jj with µ1 = d(t) = µ2.

Hence, d(t) is constant for all t ∈ [a, b]. If we now diagonalize the arrowhead matrix

Ai(t) in our Algorithm 4.4.1 as follows we still obtain a smooth spectral decompo-

sition of Ai(t) = Vi(t)ΛiVi(t)
T . First we apply [43, Proposition 2.4] to the minor

Ai(j, j) yielding a smooth decomposition W (t)Λi(j, j)W (t) of Ai(j, j). Then we set

Vi(t)(j, j) := W (t) and the jth row and column of Vi(t) to ej and e
T
j , respectively. As

d(t) is constant Vi(t) diagonalizes Ai(t) and we obtain our smooth spectral decompo-

sition.

4.6.3 Geometric Objects of this Manifold

The Tangent Space

Let us now consider the tangent space of B(n, p) for whose definition we need the

operator A : R(n−p)×p 7→ Kp at Y ∈ B(n, p) with

Aij(Z) =
2sym(Y TΛY⊥Z)ij

(Y TΛY )jj − (Y TΛY )ii
(4.26)

for i 6= j and Aii = 0 for all i = 1, . . . , p.

Lemma 4.6.3. The tangent space TY B(n, p) of B(n, p) at Y ∈ B(n, p) is

N =
{
Z = Y A(B) + Y⊥B : B ∈ R

(n−p)×p free.
}
. (4.27)

Proof. Let Y (t) be a curve in B(n, p) with Y (0) = Y . From the argument in Sec-

tion 3.8.1 it is clear that the condition Y TY = Ip imposes p(p + 1)/2 constraints on

Y ′(0). Let us now differentiate offdiag(Y TΛY ) = 0 with respect to t. We obtain that

offdiag
(
sym

(
Y TΛY ′(0)

))
= 0, (4.28)

imposing another p(p − 1)/2 constraints on Y ′(0). Hence, the vector space R
n×p

imposing these constraints has dimension np − p(p + 1)/2 − p(p − 1)/2 = np − p2.
This is obviously the same as the dimension of dim(TY B(n, p)) and the dimension of

(4.27). Therefore it is enough to show that all elements Z ∈ N satisfy Y TZ skew-

symmetric and offdiag
(
sym

(
Y TΛZ

))
= 0. Substituting Z = Y A + Y⊥B with A as

chosen in (4.27) verifies the claim.
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Now we endow all tangent spaces of B(n, p) with the Euclidean inner product

〈A,B〉 := trace(BTA) and obtain a Riemannian submanifold of Rn×p.

The Normal Space

Lemma 4.6.4. The normal space of B(n, p) at Y is given by

N :=

{
Z ∈ R

n×p : Z = ΛY (C + CT )− Y (CD +DCT − T )

for C, T ∈ R
p×p with Cii = 0 and T diagonal

}
.

Proof. First, N has dimension p2 as Y TZ(C, T ) = DC − CD + T is of dimension

p2 for Z(C, T ) := ΛY (C + CT ) − Y (CD + DCT − T ) ∈ N and as the variables of

freedom in N is also dim(C) + dim(T ) = p2. Now let Z ∈ N be arbitrary. Since for

all V = Y A(B) + Y⊥B ∈ TY B(n, p) with B ∈ R
(n−p)×p

trace(V TZ) = trace
((
A(B)TY T + BTY T

⊥
)(
ΛY (C + CT )

− Y (CD +DCT − T )
))

= trace
(
A(B)TD(C + CT )− A(B)T (CD +DCT − T )

+ BTY T
⊥ ΛY (C + CT )

)

= trace
((
A(B)TD +DA(B) + BTY T

⊥ ΛY + Y TΛY⊥B
)
C
)

= 0

(4.29)

we have that Z is an element of the normal space at Y . The latter equality in (4.29)

holds as A(B)TD +DA(B) + BTY T
⊥ ΛY + Y TΛY⊥B = 0 by the definition of A(·) in

(4.26).

Projection onto Tangent and Normal Space

To compute the projection of an element Z ∈ R
n×p onto the tangent space TY B(n, p)

it is required to determine the element Zp ∈ TY B(n, p) satisfying
〈
Z − Zp, Y A(eie

T
j ) + Y⊥eie

T
j

〉
= 0 for all i = 1, . . . , n− p and j = 1, . . . , p.

Hence, we need to solve a linear system of dimension p× (n− p). If p≪ n then it is

clearly less expensive to compute the projection onto the normal space at Y instead

and subtract it from Z as this involves solving only a linear system of dimension p2.

Since we assume that p is small in comparison to n we devote yourselves to look at

this projection more in detail. It will turn out that it is sufficient to solve a linear

system of dimension p(p− 1)/2 only.
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Let Q : {X ∈ R
p×p : diag(X) = 0} 7→ R

n×p be an operator with

Q(C) = ΛY (CT + C)− Y (CD +DCT ). (4.30)

Then to find the projection of Z onto the normal space at Y the aim is to determine

the element Zn ∈ NY B(n, p) satisfying
〈
Z − Zn, Q(eie

T
j )
〉

= 0 for all i 6= j and〈
Z − Zn, Y eie

T
i

〉
= 0 for all i = 1, . . . , p.

Since we compute the projection onto a Hilbert space this element exists and is

unique. Let H ∈ R
p×p×p×p be a tensor with

Hi,j,k,l =





〈
Q(eie

T
j ), Q(eke

T
l )
〉

for i 6= j, k 6= l
〈
Y eie

T
j , Q(eke

T
l )
〉

for i = j, k 6= l
〈
Q(eie

T
j ), Y eke

T
l

〉
for i 6= j, k = l

〈
Y eie

T
j , Y eke

T
l

〉
for i = j, k = l

(4.31)

and let B ∈ R
p×p be defined as

Bij =





〈
Z,Q(eie

T
j )
〉

for i 6= j
〈
Z, Y eje

T
i

〉
for i = j.

Then with H ∈ R
p2×p2 being the unfolding of the tensor H in mode 1 and 2 along

the rows and mode 3 and 4 along the columns and b ∈ R
p2 the mode 1 unfolding of

B the linear system that needs to be solved to compute the projection Zn is Hz = b.

The vector z ∈ R
p2 is related to Zn as follows. Let C ∈ R

p×p, T ∈ R
p×p be defined as

C :=
∑

i 6=j

z((j−1)p+i)eie
T
j and T :=

p∑

i=1

z((i−1)p+i)eie
T
i (4.32)

then Zn = Q (C) + Y T .

First we note that only the right-hand side b depends on Z. Hence, a multiple

projection onto the same normal space is not of much higher cost than a single

projection. Second, we show by the next lemma that it is sufficient to solve Hz = b

by determining the solution of a smaller linear system of dimension q := (p− 1)p/2.

Let us first define the map ι : {2, . . . , p} × {1, . . . , p− 1} 7→ {1, . . . , q} with ι(i, j) =
(j − 1)(p− 1− j/2) + i− 1.

Lemma 4.6.5. The linear system Hz = b is equivalent to a linear system H̃z̃ = b̃

with z̃, b̃ ∈ R
p2 and H̃ ∈ R

p2×p2 being of the form

H̃ =




S 0q×p

0p×q Ip
H̃1

0q×(q+p) H̃2




(4.33)
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where S ∈ R
q×q is a diagonal matrix with Sι(i,j),ι(i,j) = (Dii − Djj)

2 for i > j and

i, j = 1, . . . , p and H̃1 ∈ R
(q+p)×q, H̃2 ∈ R

q×q are full matrices.

Proof. Let us first look at the ((l−1)p+k)th column ofH for k 6= l, which corresponds

in MATLAB notation to H(:, :, k, l). From (4.31) we have for i 6= j

Hi,j,k,l = trace
(
(eke

T
l + ele

T
k )(Y

TΛΛY +DllDjjIp)(eje
T
i + eie

T
j )
)

− trace
(
(eke

T
l + ele

T
k )(Djj −Dll)(Diieie

T
j +Djjeje

T
i )
)

and for i = j

Hi,j,k,l = 0.

Therefore for k 6= l

Hi,j,k,l −Hi,j,l,k = trace
(
(eke

T
l + ele

T
k )(Dll −Dkk)(Djj −Dii)eie

T
j

)

=





(Dll −Dkk)
2 for j = l, i = k

−(Dll −Dkk)
2 for j = k, i = l

0 otherwise,

which implies that there exists an invertible lower triangular matrix L ∈ R
p2×p2 and

permutation matrices Pc, Pr such that

PrL
−1HLPc =

[
S ∗

0(q+p)×q ∗

]
. (4.34)

Note that the lower triangular matrix L corresponds to subtracting the ((k−1)p+l)th
column of H from the ((l−1)p+k)th column for all k > l. Similarly, L−1 corresponds

to adding the ((i− 1)p+ j)th row of H to the ((j − 1)p+ i))th row for j > i. These

row and columns operations yield together with the permutation matrices Pc, Pr the

diagonal matrix S in the upper left corner in (4.34). By noticing that for k 6= l

Hi,j,k,l =




1 for i = j

0 for i 6= j

we see that there exists a further permutation matrix P such that P TPrL
−1HLPcP

has the form of H̃ in (4.33). Therefore by setting b̃ := P TPrL
−1b and z̃ := P T

c P
TL−1z

we obtain our equivalent linear system H̃z̃ = b̃.

Let H̃z̃ = b̃ be defined as in Lemma 4.6.5. Let further z̃1, b̃1 ∈ R
q+p, z̃2, b̃2 ∈ R

q

be defined as

z̃ =

[
z̃1

z̃2

]
and b̃ =

[
b̃1

b̃2

]
.
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Then from Lemma 4.6.5 it follows that we can determine the vector z in Hz = b by

first solving

H̃2z̃2 = b̃2 (4.35)

and [
S

Ip

]
z̃1 = b̃1 − H̃1z̃2, (4.36)

and computing z via z = LPPcz̃. The major cost is surely to solve the linear system

H̃2z̃2 = b̃2, which is of order q. Fortunately, H̃2 has additional structure shown by

the next lemma that can be exploited to solve this linear system.

Lemma 4.6.6. The matrix H̃2 in Lemma 4.6.5 is symmetric and sparse for p large

whereas the ratio R of the number of zeros to the total number of elements in H̃2 is

R ≥ 1− 4

p− 1
+

6

p(p− 1)
, p 6= 1. (4.37)

Proof. From above it follows that

(H̃2)st = Hi,j,k,l +Hj,i,k,l for 1 ≤ i < j ≤ p, 1 ≤ k < l ≤ p

and s = ι(j, i), t = ι(l, k).
(4.38)

Let M := Y TΛΛY . Then if we substitute Hi,j,k,l in (4.31) into (4.38) and simplify

the equations we obtain that

(H̃2)st =
〈
Q(eie

T
j ), Q(eke

T
l + ele

T
k )
〉

=





0 for i 6= k, i 6= l, j 6= k, j 6= l

2Mki for i 6= k, i 6= l, j = l

2Mli for i 6= k, i 6= l, j = k

2Mkj for i = l, j 6= k, j 6= l

2Mlj for i = k, j 6= k, j 6= l

2Mii + 2Mjj − (Dii +Djj)
2 for i = k, j = l,

(4.39)

implying that (H̃2)st = (H̃2)ts as M is symmetric. It remains to show (4.37). From

(4.39) it follows that we need to count the elements of H̃2 for which i 6= k, i 6= l, j 6=
k, j 6= l. Let K be this number. In order to determine K, we are going to subtract

from the number of all elements, the number of elements where i = k as well as where

j = l ∧ k 6= i and where i < j = k < l and k < l = i < j. We have

K = q2 −
(

p−1∑

i=1

(p− i)2 +
p−2∑

i=1

(p− i)(p− i− 1) + 2

p−2∑

i=1

i(p− i− 1)

)

=
p(p− 1)

4
(p2 − 5p+ 6).
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Hence,

R =
K

q2
= 1− 4

p− 1
+

6

p(p− 1)
.

In addition to the sparsity of H̃2 we observed in our numerical tests that H̃2 was

diagonally dominant. However unfortunately, we could not prove this observation.

Nevertheless this gives support to the idea of using an iterative solver to determine

z̃2 in (4.35) with the diagonal of H̃2 as preconditioner.

Note also that to obtain z̃1 in (4.36) we need to divide the first q elements of

b̃3 := b̃1 − H̃1z̃2 by the diagonal elements of S. If the gaps between the diagonal

elements in S are small then we need to divide by these small numbers squared that

can cause numerical difficulties. The key observation to remedy this problem is that

the first q elements of z̃1 describe the lower triangular part of C as defined in (4.32)

and that the upper triangular part of C is described by again the first q elements

of z̃1 and the elements of z̃2 as follows. Let z̃11 and z̃12 be the vectors with the

first q and last p elements of z̃1, respectively. Let further CL, CU ∈ R
p×p be defined

as CL :=
∑

i>j z̃11(ι(i, j))eie
T
j and CU :=

∑
j>i z̃2((j − 2)(j − 1)/2 + i)eie

T
j . Then

C = CL + CU − CT
L and T =

∑p
i=1 z̃12(i). Now, from the definition of Q in (4.30)

we do not need to compute C in order to determine the projection onto the normal

space it is enough to compute C + CT and CD +DCT . We see that

C + CT = CL − CL + CT
L − CT

L + CU + CT
U = CU + CT

U .

Hence, in order to compute C + CT we do not need to determine CL and avoid

dividing by the diagonal elements of S. Let us now look at

CD +DCT = CLD − CT
LD +DCT

L −DCL + CUD +DCT
U

= CLD −DCL + (CLD −DCL)
T + CUD +DCT

U .

As for i > j with b̃31 the first q elements of b̃3

(CLD −DCL)ij = (CL)ijDjj −Dii(CL)ij

= (CL)ij
√
Sι(i,j),ι(i,j)

= z̃11(ι(i, j))
√
Sι(i,j),ι(i,j)

= −b̃31(ι(i, j))/
√
Sι(i,j),ι(i,j)

we do not need to solve (4.36) for z̃1 it is sufficient to divide the elements of b̃31 by only

the differences between the diagonal elements of D, corresponding to the diagonal

elements of S, and not these elements squared.
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A Retraction

With these tools that we have developed in the previous sections we can already obtain

a direction along which we can optimize an objective function over this manifold.

However, we still need a curve on the manifold, going in this direction at a point

Y ∈ B(n, p).

Lemma 4.6.7. Let Y ∈ B(n, p) and H ∈ TY B(n, p). Let R̂Y (H) be a retraction

on the Stiefel manifold St(n, p) at Y . This is well defined as Y ∈ St(n, p) and H ∈
TY St(n, p). Then

RY (H) = R̂Y (H)P

is a retraction on B(n, p) at Y with P diag(θ1, . . . , θp)P
T the spectral decomposition

of F (H) := R̂Y (H)TΛR̂Y (H) and θ1 ≤ θ2 ≤ · · · ≤ θp.

Proof. Let us check the conditions of Definition 3.7.8. For H in the neighbourhood

of 0Y ∈ TY B(n, p) RY (H) is clearly smooth as the diagonal elements of F (0Y ) are

distinct. Furthermore as this matrix is diagonal at 0Y we have that P = Ip for

H = 0Y and

RY (0Y ) = Y.

Let us now consider the curve RY (tH) = R̂(tH)P (t), which exists for all t sufficiently

small [43, Section 2.2], where P (t) is the orthogonal matrix that diagonalizes F (tH).

Then
d

dt
RY (tH)

∣∣∣∣
t=0

= HIp + Y
d

dt
P (t)

∣∣∣∣
t=0

. (4.40)

From [43, Section 2.2] we obtain that

d

dt
P (t)

∣∣∣∣
t=0

= P (0)T

with T skew-symmetric and

Tij =

(
P (0)T d

dt
(F (tH))

∣∣∣∣
t=0

P (0)

)

ij

dj − di
for i 6= j and di the diagonal elements of Y TΛY for i = 1, . . . , p. As by (4.28)

offdiag

(
d
dt
(F (tH))

∣∣∣∣
t=0

)
= offdiag

(
HTΛY + Y TΛH

)
= 0 and T skew-symmetric

we have that T = 0. This implies that the left-hand side of (4.40) is H. Therefore

all conditions for RY (H) to be a retraction are satisfied.

4.6.4 Optimization over Whole Constraint Set

Now we have developed all necessary tools to apply one of the algorithms discussed

in Section 3.9 to optimize a smooth function f over B(n, p).
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Reformulation of Problem

However, the aim is to optimize a smooth function f over C as defined in (4.24).

Therefore, in order to incorporate the p constraints of C that are disregarded in

B(n, p) we are interested in solving

minY ∈B(n,p) f(Y )

s.t. ci(Y ) = 0 for all i = 1, . . . , p,
(4.41)

where ci(Y ) ∈ F(B) are the p equality constraints with

ci(Y ) = Y T
i ΛYi −Dii for all i = 1, . . . , p.

The index i in Yi denotes the ith columns of Y .

Our Algorithm

Now, we are ready to propose our algorithm to solve (4.41). That is to apply the aug-

mented Lagrangian method [102, Algorithm 17.4] to (4.41) and to use the nonlinear

CG method described in Section 3.9 to solve the inner problem (4.43).

The augmented Lagrangian method for solving (4.41) can be stated as follows.

Let us first define the augmented Lagrangian function of (4.41), that is

Gµ,θ(Y ) = f(Y )−
p∑

i=1

θici(Y ) +
µ

2

p∑

i=1

ci(Y )2 (4.42)

where Y ∈ B(n, p), θ ∈ R
p are the Lagrange multipliers and µ > 0 is the penalty

parameter. Let µ0 > 0 and θ0 ∈ R
p be the initial estimate of the Lagrange multipliers.

Then the augmented Lagrangian method is to determine at the kth iteration

Yk+1 ∈ argmin
Y ∈B(n,p)

Gµk,θk(Y ) (4.43)

and, according to some rules [102, Algorithm 17.4], to update the Lagrange multipliers

by

θk+1
i := θki − µkci(Yk+1) or θk+1

i := θki

and to update the penalty parameter by

µk+1 := µk or µk+1 > µk.

Note that (4.43) is only well defined if the minimizer is attained in B(n, p), which is

generally true for µk large.

The minimization of the augmented Lagrangian function over B(n, p) in (4.43)

can be carried out by applying one of the algorithms discussed in Section 3.9. We
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use the nonlinear CG method in our numerical tests in the next section. Further, for

the algorithm to work we need to slightly modify the Armijo-backtracking procedure

in the nonlinear CG method by additionally checking that the new point Y is on

the manifold B(n, p). The reason for this modification is that for large step sizes

the diagonal elements of Y TΛY may not satisfy the conditions of B(n, p). In our

code we check whether the diagonal elements of Y TΛY are in increasing order and

for numerical stability whether the minimal gap between two diagonal elements are

greater than a certain tolerance dm = 1e-5. If the α-condition (3.27) of the Armijo-

backtracking procedure is satisfied and either of the other checks fail we continue

our backtracking to find a new feasible point but exit the nonlinear CG method in

the next instance and restart with an increased penalty parameter µ and updated

Lagrange multipliers. This procedure guarantees that the new point will always

be on the manifold B(n, p). We briefly summarized the steps of this algorithm in

Algorithm 4.6.1 that we will refer to as ALB.

Algorithm 4.6.1 (ALB) This algorithm minimizes an arbitrary smooth function f
over the set C in (4.24).

Require: p, n ∈ N, p ≤ n, Λ = diag(λ1, . . . , λn), D = diag(d1, . . . , dp) with d1 <
d2 < · · · < dp, and a smooth function f : Rn×p 7→ R that is to minimize and its
derivative ∇f .

1 Apply the augmented Lagrangian method [102, Algorithm 17.4] to (4.41) where
the inner problem (4.43) is to minimize the augmented Lagrangian function (4.42)
over B(n, p). Solve (4.43) by using the nonlinear CG method in Section 3.9 with
an Armijo-backtracking procedure that is modified according to the discussions
in Section 4.6.4.

2 return Minimizer Y∗.

Optimality Conditions for Nonlinear Programming

In R
n we can derive a necessary condition in connection with the corresponding

augmented Lagrangian function for a point x∗ ∈ R
n to be a local minimizer of a

nonlinear programming

minx∈Rn f(x)

s.t. ci(x) = 0 for all i = 1, . . . , p,
(4.44)

where f(x), c1(x), . . . , cp(x) are smooth functions in R
n.

Theorem 4.6.8. [102, Theorem 17.5] Let x∗ be a local minimizer of (4.44) at which

the second-order sufficient conditions [102, Theorem 12.6] are satisfied for the La-

grange multipliers θ∗ and let further the linear independent constraint qualification

(LICQ) be satisfied at x∗, that is that ∇c1(x), . . . ,∇cp(x) are linearly independent.



CHAPTER 4. TWO-SIDED OPTIMIZATION PROBLEMS 113

Then x∗ is a strict local minimum of the corresponding augmented Lagrangian func-

tion Gµ,θ∗(x) for all µ large enough.

We will show that this can be generalized to Riemannian manifolds that are

submanifolds of Rn.

Recently Yang and Zhang [142] have shown that the concept of the Lagrange

multipliers for nonlinear programming problems can be generalized to a Riemannian

manifold M. Furthermore, they derived similar necessary and sufficient conditions

as in R
n that a Karush-Kuhn-Tucker (KKT) point Y ∈M is a local optimum of the

corresponding nonlinear programming problem. Let now ci ∈ F(M) for i = 1, . . . , p

be p equality constraints of an optimization problem of the form

minY ∈M f(Y )

s.t. ci(Y ) = 0 for all i = 1, . . . , p,
(4.45)

where f ∈ F(M). Then we first need to generalize LICQ as follows [142, Equa-

tion (15)].

Definition 4.6.9. The LICQ onM at Y ∈M holds if grad c1(Y ), . . . , grad cp(Y ) ∈
TYM are linearly independent where grad ci(Y ) is the gradient in the tangent space

TYM defined in (3.4) for all i = 1, . . . , p.

Let

Lθ(Y ) := f(Y )−
p∑

i=1

θici(Y ) (4.46)

be the Lagrangian function of (4.45) where θi are the Lagrange multipliers. The

next theorem gives a necessary condition of Y ∈ M to be a solution of (4.45) [142,

Theorem 3.7].

Theorem 4.6.10. Let Y∗ be a local solution of (4.45) and let the LICQ be satisfied at

Y∗. Then there exist Lagrange multipliers θ∗ such that gradLθ∗(Y∗) = 0 and ci(Y∗) = 0

for all i = 1, . . . , p.

We can also derive a sufficient condition.

Theorem 4.6.11. [142, Theorem 3.11] Suppose Y∗ ∈ M and θ∗ ∈ R
p satisfy

gradLθ∗(Y∗) = 0 and ci(Y∗) = 0 for all i = 1, . . . , p. Suppose also that

〈Z,HessLθ∗(Y∗)[Z]〉Y∗
> 0

for all Z ∈ TY∗
M with 〈grad ci(Y∗), Z〉Y∗

= 0 for all i = 1, . . . , p, and Z 6= 0. Then

Y∗ is a strict local solution of (4.45). Recall that HessLθ∗(Y∗)[Z] denotes the Hessian

operator of Lθ∗(Y∗) that we defined in (3.9).
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Now we are ready to generalize the Theorem 4.6.8 to Riemannian manifolds that

are embedded in R
n.

Theorem 4.6.12. Let M be a Riemannian manifold embedded in R
n with 〈·, ·〉 the

Riemannian metric and ‖·‖ the induced norm. Let Y∗ satisfy the condition of The-

orem 4.6.10 and Theorem 4.6.11 with Lagrange multipliers θ∗. Then Y∗ is a strict

local minimum of the augmented Lagrangian function

Gµ,θ∗ = f(Y )−
p∑

i=1

θici(Y ) +
µ

2

p∑

i=1

ci(Y )2

for all µ > 0 sufficiently large.

Proof. The proof is analogous to the proof of [102, Theorem 17.5]. First as Y∗ is a

local solution of (4.45) we have

gradGµ,θ∗(Y∗) = grad f(Y∗)−
p∑

i=1

(
(θ∗)i − µci(Y∗)

)
grad ci(Y∗)

= grad f(Y∗)−
p∑

i=1

(θ∗)i grad ci(Y∗) = gradLθ∗(Y∗) = 0.

Hence, Y∗ is a stationary point of Gµ,θ∗(Y∗). Let us now assume that HessGµ,θ∗(Y∗)

is not positive definite for all µ sufficiently large. Therefore we can choose a vector

Zk ∈ TY∗
M with ‖Zk‖ = 1 for each integer k ≥ 1 sufficiently large such that

〈HessGk,θ∗(Y∗)[Zk], Zk〉 ≤ 0. (4.47)

Now let g(Y ) := k
∑p

i=1 ci(Y )2. Then grad g(Y ) = k
∑p

i=1 ci(Y ) grad ci(Y ). From

(3.6) and (3.9) we have

Hess g(Y )[Z] = ∇Z grad g(Y ) = ΠTYM(Dgrad g(Y )(Y, Z)),

where∇Z grad g(Y ) is the Levi-Civita connection from Theorem 3.7.3, ΠTYM(·) is the
projection onto the tangent space TYM, and Dgrad g(Y )(Y, Z) is the Fréchet derivative,

see Appendix A.2. By using Taylor’s formula we obtain

Dgrad g(Y )(Y∗, Z) = k

p∑

i=1

〈∇ci(Y∗), Z〉 grad ci(Y∗).

Hence, from (4.47)

〈HessGk,θ∗(Y∗)[Zk], Zk〉 = 〈HessLθ∗(Y∗)[Zk], Zk〉

+

〈
k

p∑

i=1

〈∇ci(Y∗), Zk〉 grad ci(Y∗), Zk

〉
≤ 0.
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where Lθ∗(Y ) is the Lagrangian function defined in (4.46). It follows that

p∑

i=1

〈grad ci(Y∗), Zk〉2 ≤ −
1

k
〈HessLθ∗(Y∗)[Zk], Zk〉 → 0

as k → ∞. As the vectors Zk lie in a compact set, there exists an accumu-

lation point Z. Hence, it follows that 〈grad ci(Y∗), Z〉 = 0 for all i = 1, . . . , p

and 〈HessLθ∗ [Z], Z〉 ≤ 0, which contradicts our assumption. Hence, we have that

HessGµ,θ∗(Y∗) is positive definite for µ sufficiently large.

Let x∗ ∈ R
n and θ∗ ∈ R

p be defined as in Theorem 4.6.8 and let the assumption of

this theorem be satisfied at x∗ and θ∗. Then in R
n Bertsekas [13, Proposition 4.2.3]

obtained a convergence result for the sequence {(xk, θk, µk)}k≥0 that is generated by

the augmented Lagrangian method. There exists constants δ > 0 and ε > 0 so that

if

‖θk − θ∗‖2 ≤ µkδ for all µk sufficiently large and ‖xk − x∗‖2 ≤ ε

we have that

‖xk − x∗‖2 ≤M‖θk − θ∗‖2/µk and ‖θk − µkc(xk)‖2 ≤M‖θk − θ∗‖2/µk

for a constant M > 0 and c(x) = [c1(x), . . . , cp(x)]
T .

Since we have not been able to prove that the LICQ condition for the constraints

in (4.41) is always satisfied at the optimal points Y∗ of (4.41) and since the result by

Bertsekas relies again on the LICQ we did not pursue to generalize this result on Rie-

mannian manifolds. The same holds for the condition that 〈Z,HessLθ∗(Y∗)[Z]〉 > 0

for all Z ∈ TY∗
M with 〈grad ci(Y∗), Z〉 = 0 for all i = 1, . . . , p and Z 6= 0. Therefore

we cannot guarantee convergence of ALB in general. Note further that the minimiza-

tion in (4.43) can fail as our retraction proposed in Lemma 4.6.7 is only defined in

a small neighbourhood of our starting point, thus we might only be able to optimize

locally.

We will check the LICQ in our numerical tests in the next section, in which we

will investigate the performance of ALB by applying this algorithm to a test problem.

4.7 Computational Experiments

As the initial eigenvalue decomposition of N is the major cost for Algorithm 4.4.1 and

4.5.1, and the iteration number of Algorithm 4.5.1 is at most 2p we do not expect to

gain further insight into the performance of these algorithms by applying them to test

examples. Therefore we focus on investigating the performance of Algorithm ALB in

this section.
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4.7.1 Test Problem

Let us first introduce a test problem to investigate the performance of ALB, which also

arises from the application in atomic chemistry that leaded us to our problems (4.1)

and (4.2). In this application it is desired to find a point Y ∈ St(n, p) that is optimal

with respect to (4.1) but also has columns that ideally preserve the sign characteristics

of the eigenvectors of N . Surely this preservation is a constraint that is usually hard

to deal with. We therefore pose a new optimization problem over the set of optimal

solutions of (4.1) and are looking for an appropriate smooth objective function f(Y )

whose minimization drives us to a solution in the set of optimal solutions of (4.1)

that preserves the sign characteristics. This optimization problem will be our test

problem for ALB.

Our idea to approach the preservation of the sign characteristics is to minimize

the angle in modulus between every column of Y and the eigenvectors of P by solving

minY ∈St(n,p) −
∑p

i=1 ‖P TYi‖∞
s.t. Y TNY = D,

(4.48)

where Yi is the ith column of Y . As the infinity norm ‖·‖
∞
is not smooth we will use

the q-norm ‖x‖
q
:= (

∑n
i=1 |xi|

q)
1

q for q = 4 instead. This yields the problem

minY ∈St(n,p) −
∑p

i=1 ‖P TYi‖qq ,
s.t. Y TNY = D,

which can equivalently be written as

minY ∈C f(Y ) := −∑p
i=1 ‖Yi‖qq . (4.49)

The latter problem (4.49) will be our test problem for investigating the performance

of Algorithm ALB.

Note that another alternative for the objective function in (4.48) is f̂(Y ) =∑p
i=1(‖P TYi‖1 − 1)2. The idea is here to reduce for all i = 1, . . . , p the angle in

modulus between Yi and one column of P and to simultaneously enlarge the angle in

modulus between Yi and the other columns of P . This function is surely not smooth

but could, for example, be approximated by f̃(Y ) =
∑p

i=1

(∑n
j=1((P

TYi)
2
j)

q
2q−1 − 1

)2

for q large. We will not pursue these ideas any further.

In order to apply ALB to (4.49) it remains to determine the matrix of partial

derivatives of f(Y ), that is

∇f(Y ) = −q
(
Y q−1
ij

)n,p
i=1,j=1

.
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4.7.2 Numerical Methods

In addition to ALB we use the following algorithm for comparing purposes in our

tests. We will refer to this algorithm as ALS. Let cij : Rn×p 7→ R be defined as

cij(Y ) = (Y TΛY )ij for i > j and cii(Y ) = (Y TΛY )ii−Dii for i = j and i, j = 1, . . . , p.

We reformulate (4.49) as

minY ∈St(n,p) f(Y )

s.t. cij(Y ) = 0 i, j = 1, . . . , p and i ≥ j
(4.50)

and apply, similarly to ALB, the augmented Lagrangian method [102, Algorithm 17.4]

to (4.50). The inner problem is then to minimize the following augmented Lagrangian

function

Gµ,θ(Y ) = f(Y )−
∑

i≥j
θijcij(Y ) +

µ

2

∑

i≥j
cij(Y )2 (4.51)

over the Stiefel manifold. In (4.51) θij are the Lagrange multipliers for i ≥ j. To

minimize Gµ,θ(Y ) we use again the nonlinear CG method discussed in Section 3.9.

4.7.3 Test Matrices and Starting Values

In order to investigate the performance of these two algorithms we need to provide

test matrices for the diagonal matrices Λ and D in (4.49). We look at two different

classes whereas the first is more for demonstrating purposes.

• ldchem: Prof. Alexander Sax provided us with a small example forN ∈ R
11×11

in (4.1) that is

N =





0.0001 0.0002 0.0005 0.0013 0.0028 0.0054 0.0080 0.0078 0.0041 0.0006 -0.0004

0.0002 0.0005 0.0013 0.0031 0.0068 0.0131 0.0194 0.0188 0.0098 0.0015 -0.0011

0.0005 0.0013 0.0032 0.0075 0.0166 0.0319 0.0472 0.0459 0.0239 0.0036 -0.0027

0.0013 0.0031 0.0075 0.0178 0.0393 0.0755 0.1118 0.1086 0.0565 0.0082 -0.0166

0.0028 0.0068 0.0166 0.0393 0.0869 0.1667 0.2470 0.2398 0.1244 0.0174 -0.0153

0.0054 0.0131 0.0319 0.0755 0.1667 0.3198 0.4739 0.4599 0.2375 0.0307 -0.0317

0.0080 0.0194 0.0472 0.1118 0.2470 0.4739 0.7023 0.6814 0.3512 0.0438 -0.0486

0.0078 0.0188 0.0459 0.1086 0.2398 0.4599 0.6814 0.6633 0.3547 0.0737 -0.0194

0.0041 0.0098 0.0239 0.0565 0.1244 0.2375 0.3512 0.3547 0.2639 0.2189 0.1526

0.0006 0.0015 0.0036 0.0082 0.0174 0.0307 0.0438 0.0737 0.2189 0.4434 0.3980

-0.0004 -0.0011 -0.0027 -0.0066 -0.0153 -0.0317 -0.0486 -0.0194 0.1526 0.3980 0.3919





,

which corresponds to an s-block of C-atom. The three largest eigenvalues of

N are 0.0144, 0.881, and 1.99 and all other eigenvalues have a modulus of less

than 0.001. If we prescribe two orbitals with occupation numbers 1.5 and 0.1,

by the analysis of Section 4.4 it follows that the set of optimal solutions of (4.1)

is equivalent to

{
Y ∈ St(n, p) : Y TΛY = diag(0.1, 1.5)

}
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where Λ is the diagonal matrix whose diagonal elements are the eigenvalues of

N in increasing order. Therefore we use Λ and D = diag(0.1, 1.5) as our test

matrices.

• ldrand: The second class is drawn from purely randomly generated matri-

ces. We generate a symmetric matrix N ∈ R
n×n by means of the MATLAB

commands

N=rand(n,n);N=N+N’;

and compute the matrix of eigenvalues of N , which is our test matrix Λ. For the

diagonal matrix D we first generate randomly a diagonal matrix in MATLAB

by using

diag(sort(rand(p,1)*p));

and set then, accordingly to (4.7), D to the closest diagonal matrix that is

imbeddable in N . If one diagonal element of D is within the range of 0.01 of

another we repeat the process of generating D.

For our starting matrix Y0 we can use the matrix computed by Algorithm 4.4.1;

however our numerical tests indicate that these points are local minima or are close

to local minima of (4.49) as we will demonstrate in the first numerical test in Sec-

tion 4.7.4. Hence, they are not suitable to investigate the performance of our algo-

rithms ALB and ALS.

Therefore we randomly generate a matrix Y ∈ St(n, p) by applying the MAT-

LAB function rand and computing the Q-factor of the randomly generated matrix

by means of qr. Thereafter we set Y0 = Y P where P ∈ O(p) computed by eig

diagonalizes Y TΛY with the diagonal elements increasing. If the distance between

two diagonal elements is less than 0.01 we repeat the procedure, making sure that

Y0 ∈ B(n, p).

4.7.4 Numerical Tests

Chosen Parameters

We implement and test both algorithms on an Intel(R) Core(TM)2 Quad CPU

(2.83GHz each processor) with 4GB RAM, Ubuntu Linux 10.04.1 64bit in MATLAB

R2010a. We use for both algorithms the augmented Lagrangian method proposed in

[102, Algorithm 17.4] with the following modifications.
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• If the penalty parameter needs to be enlarged we only increase it by a factor

of 2 instead of 100 as we have empirically experienced better performance.

Furthermore, we use µ0 = 10 for our initial choice of the penalty parameter µ.

• We change the stopping criterion for the inner problem to

‖gradGµ,θk(Yk)‖F < np2ωk (4.52)

where gradGµ,θk(Yk) is the gradient at Yk of the augmented Lagrangian function

(4.42) for ALB and (4.51) for ALS.

• We choose η∗, which is tolerance for the constraint violation at the final iterate

Y∗
√√√√

p∑

i=1

ci(Y∗)2 ≤ p2η∗ for ALB and

√√√√2

p∑

i>j

cij(Y∗)2 +
p∑

i=1

cii(Y∗) ≤ p2η∗ for ALS,

to be 10−6 and ω∗, the tolerance of (4.52) at Y∗, to be 10−6.

• We limit the number of iterations in the augmented Lagrangian method to 100.

For the nonlinear CG method ( see Algorithm 3.9.1) we use the scalar βk that was

proposed by Polak-Ribière in both algorithms ALB and ALS as this choice outper-

forms the version of Fletcher-Reeves in our numerical tests. If ξxk+1
in Algorithm 3.9.1

is not a descent direction we use the steepest descent direction − grad f(xk+1) instead.

Further, we limit the number of iterations in the nonlinear CG method to 50, 000 and

use for the backtracking strategy the Armijo-backtracking procedure as stated in Al-

gorithm 3.9.1 with ρ = 0.5 and γ = 10−4, where these parameters are proposed in

[41, Algorithm A6.3.1]. To avoid many backtracking steps we compute a guess for the

initial step length α in Algorithm 3.9.1 as follows. Let Yi be the current iterate and

ξYi
be the current direction in the tangent space at Yi in the nonlinear CG method

at iteration i. Further let θk and µk be the current value for the Lagrange multipliers

and the penalty parameter, respectively. Then our approach to find a good guess for

the initial step length in both algorithms is to solve

min
t∈(0,1]

Gµk,θk(Yi + tξYi
), (4.53)

where the optimal solution is our initial step length α. Solving (4.53) corresponds to

finding the roots of a polynomial of degree q− 1. If no optimal solution can be found

we set α to 1. If more than one optimal solutions exist we take the largest of the

optimal solutions that are smaller than or equal to 1. Our numerical tests show that

this choice for the initial steps length yields the desired results as most often only

one or two backtracking steps are necessary to find a step length that is accepted.
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For the retraction on the Stiefel manifold in ALS we use the unitary polar factor

as described in Section 3.8.1 since, according to our tests, this choice gives us the

best performance. We compared our results with the geodesic and the Q-factor. For

ALB we use the retraction that we introduced in Lemma 4.6.7 and choose for R̂Y (H)

again the unitary polar factor. For the vector transport in the nonlinear CG method

we apply for both algorithms (3.10). As discussed in Section 4.6.3 for ALB we need

to solve a linear system to compute the projection onto the normal space NY B(n, p).
To solve this system we apply the algorithm provided by MATLAB that computes

the LU-decomposition for dense matrices. This algorithm actually runs the LAPACK

routine DGETRF [9]. In the third test of this section we will demonstrate by means

of numerical tests that we cannot make use of the sparsity of the coefficient matrix

H̃2 in Lemma 4.6.5 for the sizes of our test matrices that are used in our tests.

Test 1

Our first test is for demonstrating purposes of ALB. Our aim is to find a better

solution of (4.49) than obtained by Algorithm 4.4.1 with respect to our test problem

(4.49) for the test matrices ldchem.

To achieve this goal we generate 100 instances of the starting matrix Y0 as de-

scribed in Section 4.7.3 and apply ALB for every single starting matrix. To ensure

that our output matrix is comparable with the matrix returned by Algorithm 4.4.1

we tighten our tolerance for the constraint violation and set η∗ to 10−15. The matrix

returned by Algorithm 4.4.1 is

YA1=





-0.941521479950964 0
0 0.499232223306862
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0.336952968218038 0
0 -0.866468226314207





(4.54)

and the objective value of (4.49) at YA1 is -1.424475197032718.

Let us now apply ALB starting from these generated matrices and from the matrix

YA1. We present our results in Table 4.1 where we only show the output of ALB for

YA1 and for the generated starting matrix that gives us the best objective function

value among all generated matrices. Let this matrix be called YG. We denote the

final iterate of Y , µ, and θ by Y∗, µ∗, and θ∗, respectively. The returned matrix Y∗ is
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Table 4.1: Output for ALB for test matrices ldchem.

Output for YG Output for YA1

Outer iterations 68 64
Total number of iterations in CG 179 121

Total number of backtracking steps in CG 60 18
gradGµ∗,θ∗(Y∗) 2.8e-8 1.5e-9

µ∗ 1310720 655360
Computational time in seconds 1.1 0.5

Objective function at Y0 -0.305477011857360 -1.424475197032718
Objective function at final iterate -1.424475179359067 -1.424475197032720

Constraint violation ‖[c1(Y∗), . . . , cp(Y∗)]‖2 3.2e-16 3.3e-16
rank of [grad c1(Y∗), grad c2(Y∗)] 2 2

the same as (4.54) for the starting matrix YA1 and is similar for YG, which is

Y∗=





0.941521479950964 -0.000000000143277
0.000000000007014 0.000000000941466
0.000000000011416 0.000000001576076
-0.000000000003769 0.499232240953539
0.000000000001399 -0.000000002465845
-0.000000000001018 -0.000000000203445
0.000000000014893 0.000000001699105
-0.000000000015848 0.000000000165078
-0.000000000015340 0.000000027803602
-0.336952968218039 -0.000000000725956
-0.000000000124452 0.866468216146736





. (4.55)

We see that the matrix computed by Algorithm 4.4.1 is obviously close to a

stationary point of the augmented Lagrangian function Gµ∗,θ∗(Y ) and we also observe

that we cannot improve the objective function of (4.49) by starting from different

randomly generated matrices. However, as we see by the example (4.55) we can

converge to a different matrix. For YA1 as a starting matrix we move first away from

YA1 as the penalty parameter is small but return back to our starting point during the

iterations of the augmented Lagrangian method. Our penalty parameter is relatively

large at the final iterate, which can be explained by the small tolerance for η∗. If we

increase this tolerance we obtain moderate sizes for the penalty parameter.

As the rank of [grad c1(Y∗), grad c2(Y∗)] is two for both returned matrices the LICQ

defined in Definition 4.6.9 is satisfied at Y∗, giving us theoretical support that both

Y∗ are local solutions of (4.49). Note that for both matrices the smallest singular

value of [grad c1(Y∗), grad c2(Y∗)] is approximately 0.279.

Note further, we also checked for P the matrix of eigenvectors of N whether the

solutions Ỹ1 := PYA1 and Ỹ2 := PY∗ with Y∗ defined in (4.55) preserve the sign

characteristics of the eigenvectors of N . The multiplication by P from the left is

needed to obtain the corresponding solution of the original problem (4.1). The result

is that for both Ỹ1 and Ỹ2 the first column does have the same sign characteristics as

the first column of P but unfortunately the second column does not have the same

characteristics as any column of P . Therefore let us consider (4.49) exclusively as a
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Table 4.2: Results for the randomly generated matrices Λ and D.

ALB ALS
t it fv gradn t it fv gradn

n = 100
p = 10 86 2420 -8.922100 0.009 322 1.5e4 -8.465806 0.010
p = 20 392 3597 -19.636700 0.039 1699 5.7e4 -19.410440 0.040
p = 30 1483 3304 -29.424377 0.083 6027 1.3e5 -29.095622 0.090
p = 40 682 559 -39.188760 0.159 2711 5.2e4 -39.508334 0.140
p = 50 1249 539 -49.283334 0.213 1.9e4 3.2e5 -49.472668 0.027

n = 150
p = 10 163 5848 -8.234490 0.014 126 6082 -8.641289 0.015
p = 20 675 1.2e4 -18.159201 0.054 3417 1.3e5 -17.976303 0.059
p = 30 1899 9834 -28.033409 0.134 3166 9.1e4 -27.970304 0.134
p = 40 4739 8401 -37.627541 0.193 6808 1.7e5 -37.624987 0.240
p = 50 6770 5866 -48.566146 0.364 2.9e4 5.9e5 -48.951799 0.098

n = 250
p = 10 51 1564 -7.646136 0.024 151 5636 -7.416588 0.025
p = 20 1190 1.5e4 -17.057930 0.099 2797 7.2e4 -17.227175 0.099
p = 30 5240 2.6e4 -26.942655 0.212 1.9e4 4.1e5 -27.322446 0.225
p = 40 1.0e4 1.9e4 -37.807461 0.355 3.2e4 5.8e5 -39.011732 0.164
p = 50 2.6e4 2.3e4 -48.070583 0.507 2.7e4 4.2e5 -46.994304 0.244

test problem.

In the second test we compare the performance of ALB with ALS.

Test 2

In the second test we randomly generate matrices for Λ and D of type ldrand for

n = 50, 100, . . . , 250 and p = 5, . . . , 50 and apply ALB and ALS to our test problem

(4.49) with these matrices. We show a selection of our results in Table 4.2 where we

use the following abbreviations.

• t: time in seconds to compute the final iterate Y∗,

• it: total number of iterations in the nonlinear CG method,

• fv: function value at Y∗,

• gradn: grad f(Y∗).

We see in Table 4.2 that in most tests ALB outperforms ALS in terms of the

computational time. The main reason is that the ALB needs fewer iterations in

the nonlinear CG method to satisfy the stopping criterion. This total number of

iterations in the nonlinear CG method can differ by a factor of 100 but interestingly,

it does not depend much on p. We do not report the number of the outer iterations
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Figure 4.1: Ratio of time spent on computing the projection to total time

as this number does not vary much with n or p and is in the range of 10 to 20 whereas

ALS takes most often a few outer iterations more than ALB.

We also observe that the cost per iteration is more expensive in ALB than in ALS

and the relative difference is increasing with p. An explanation is clearly that the

cost to compute the projection onto the normal space of B(n, p) is of order O(p6). To
demonstrate this more illustratively we plot the fraction of the time taken to compute

the projection to the total time in Figure 4.1 for n = 200 and p = 5, 10, . . . , 50. For

p = 50 approximately 75% of the runtime of the code is spent to compute the linear

system (4.35).

The function value f(Y∗) at the final iterate Y∗ does not differ largely between

ALB and ALS and is most often slightly smaller than the function value at the point

YA1 that is returned by Algorithm 4.4.1 as can be seen in Figure 4.2. This affirms

the observation of the previous test that the computed point YA1 is close to a local

minimum of your test problem (4.49). One also needs to consider that we allow for

Y∗ to violate the constraints slightly whereas a constraint violation at YA1 can only

be caused due to limitations in the numerical computation.

In our tests it happened several times in ALB that backtracking steps were re-

quired to remain on the manifold; see the derivation of ALB at the end of Section 4.6.

It has occurred twice that due to this backtracking the step size was smaller than our

minimal allowed step size so that the algorithm failed to return a point that satisfies

our convergence criteria. In Figure 4.2 we see where this occurred as at n = 200,

p = 50 and n = 250, p = 35 the function value of the point returned by ALB is

clearly larger than at the point returned by ALS. In Figure 4.3 we show the rank of

grad c(Y∗) = [grad c1(Y∗), . . . , grad cp(Y∗)] where Y∗ is the point that is returned by

ALB. If grad c(Y∗) is of full rank then the LICQ is satisfied Y∗, giving us theoretical

support that Y∗ is a local minimum of (4.49). We see in this figure the LICQ is only
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satisfied for p and n small. For larger values the rank is often even only of half of the

size of p so that the existing theory discussed in Section 4.6.4 is not applicable.

Test 3

We have seen in Test 2 that solving the linear system (4.35) to compute the pro-

jection onto the normal space NY B(n, p) is the major cost of ALB. In addition by

Lemma 4.6.6 the coefficient matrix H̃2 of linear system is sparse for p large. Therefore

the question arises whether we can improve the performance of ALB by using a solver

for sparse matrices to solve the linear system. We address this question in this test

by comparing the following different algorithms to solve H̃2z̃2 = b̃2 in (4.35):

• lu: algorithm for the LU-decomposition for dense matrices provided by MAT-

LAB and used in the previous tests (LAPACK routine DGETRF [9]),

• lus: algorithm for the LU-decomposition for sparse matrices provided by MAT-

LAB (UMFPACK routine [37]).
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Table 4.3: Results for different methods to solve the linear system H̃2z̃2 = b̃2 in
(4.35).

p time in seconds

lu lus minres chol chols
25 0.2 1.1 1.6 0.5 0.6
50 7.6 17 8.4 3.7 8.7
75 69 99 34 27 58
100 329 343 156 147 223

• minres: MINRES [105] provided by MATLAB to solve H̃2z̃2 = b̃2 with default

tolerances, that is

‖H̃2z̃2 − b̃2‖2 ≤ 1e-6‖b̃2‖2
with the diagonal of H̃2 as preconditioner.

• chol: algorithm for the Cholesky-decomposition for dense matrices provided

by MATLAB (LAPACK routine DPOTRF [9]).

• chols: algorithm for the Cholesky-decomposition for sparse matrices provided

by MATLAB (CHOLMOD [38]).

We proceed as follows: we generate 30 matrices N,D of type ldrand for n = 150,

p = 25, 50, 75, 100, and a matrix A that is to project by using the MATLAB function

rand. We then project A onto the tangent space TY0
B(n, p) at our starting matrix

Y0 for all 30 matrices and report the total time in seconds that is spent to solve

the corresponding linear systems for every algorithm. Note that for the factorization

methods only the time to compute the factorization of H̃2 is measured.

Our results are listed in Table 4.3. We observe that the direct solvers that make

use of the sparsity of H̃2 are slower than those for dense matrices. Explanations could

be that p is not large enough so that the ratio in Lemma 4.6.6 between the number

of zeros and the total number of elements in H̃2 is too large to exploit the sparsity.

Certainly also the pattern of the nonzeros in H̃2 could slow down the algorithms

for sparse matrices. We also need to take into account that the routines come from

different sources. Hence, they may differ in their level of tuning. Interestingly, the

iterative solver MINRES for only one right-hand side takes more time than computing

the Cholesky decomposition. Hence, the sizes of the matrices H̃2 that we tested are

still in the range where direct solvers yield better results than iterative solvers.

Obviously, the algorithm for computing the Cholesky decomposition for dense

matrices gives us the best time. However, this assumes that the matrix H̃2 is positive

definite, which may not be the case for certain matrices input matrices N , D and
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could cause a break down of ALB. To overcome this problem one could compute the

LU-decomposition as in our previous tests or apply the algorithm for the Cholesky

decomposition and in case of failure to revert to the LU-decomposition. The latter

procedure could improve the performance of ALB in our second test.

To conclude, we have seen that ALB outperforms ALS in terms of time and

number of iterations taken in the nonlinear CG method. For p large the projection

onto the tangent space is the bottleneck of ALB as the corresponding computation is

then the major cost of the algorithm. From the last test we conclude that the time

spent to compute the projection can be reduced by using the Cholesky decomposition

for solving the linear system if the coefficient matrix is positive definite.

In terms of robustness and stability we have observed that ALB can fail to return a

stationary point of the augmented Lagrangian function. These failure were caused by

the problem that starting from a point Y0 ∈ B(n, p) we can only guarantee for small

movements realized by our retraction proposed in Section 4.6.3 that we remain on

the manifold. Therefore if sufficient decrease in the augmented Lagrangian function

is only achieved by leaving the neighbourhood that is characterized by these small

movements ALB might fail. One positive effect of ALB is that the total number of

iterations in the nonlinear CG method do not vary as much as for ALS. Hence ALB

shows a more stable behaviour.

4.8 Conclusions

In this chapter we have looked at two two-sided optimization problems with orthogo-

nal constraints arising in atomic chemistry. We investigated these two problems and

showed that they do generally not have unique optimal solutions. We proposed two

algorithms to find optimal solutions of either problems whose major cost are a few

eigenvalue decompositions. To establish the opportunity to optimize over the set of

the optimal solutions of the first problem we investigated this set further. We showed

that a slight modification of this set is a Riemannian manifold that allows us to evolve

all geometric objects that are needed for an optimization. To deal with the constraints

that we had dropped we proposed an augmented Lagrangian-based algorithm whose

inner problem is to minimize the augmented Lagrangian function over this new man-

ifold. To solve this problem we used the nonlinear CG method. We investigated

the numerical performance of this algorithm that we called ALB by applying it to

a test problem and compared it with the performance of algorithm ALS that we

introduced in Section 4.7. This algorithm is again an augmented Lagrangian-based

method whose inner problem is to minimize the augmented Lagrangian function over

the Stiefel manifold. To incorporate all the constraints in this method we need to
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use p(p− 1)/2 more Lagrange multipliers than in ALB. Our numerical tests showed

that ALB outperforms ALS as it took less time and fewer iterations in the nonlinear

CG method in most tests. However, as the computation of the projection onto the

tangent space of the new manifold costs of the order O(p6) operations the cost per

iteration of ALB is significantly more expensive than ALS. Therefore the saving in

using ALB is rather moderate for p large.



Chapter 5

Low Rank Linearly Structured

Matrix Nearness Problems

5.1 Introduction

In this chapter we consider the problem of finding a low rank matrix that is of linear

structure and closest to a given matrix in the Q-norm. Recall from Section 1.5 that

for U1, . . . , Us ∈ {0, 1}n×p the set of linearly structured matrices is defined as

L(U1, . . . , Us) :=

{
X : X =

s∑

i=1

xiUi, and xi ∈ R for all i = 1, . . . , s

}
, (5.1)

where every element X ∈ L can be written as vec(X) = Ux with U defined in (1.7)

and x = (x1, . . . , xs)
T . Throughout this section we assume that U is of full rank.

Our main interest in this chapter lies in algorithms that solve the low rank matrix

nearness problem in the Q-norm and for any linear matrix structure U although

for special matrices U more efficient algorithms can be developed that exploit the

structure and can thus, perform better. However, we are more concerned about

algorithms that are more flexible towards the matrix structure. Let us now state the

low rank problem.

5.1.1 The Problem

Let A ∈ R
n×p be given, s ≤ np, and r < rank(A). Then we are interested in solving

min
X∈L∩Rr

1

2
‖A−X‖2

Q
, (5.2)

where

Rr :=
{
X ∈ R

n×p : rank(X) ≤ r
}
. (5.3)

128
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and L is described by U1 . . . , Us as defined in (5.1). Note that the Rr is generally

nonconvex so that we cannot apply the alternating projection method that we intro-

duced in Section 1.4.2. Therefore we need to consider different algorithms that solve

this problem.

We have found different approaches in the literature to deal with this problem,

but the set of matrices is often restricted to a certain class of structured matrices like

Hankel, Toeplitz, or Sylvester structure. Certainly one reason is the computational

complexity for general linear structures, especially in the weighted case where often

one can only apply general nonlinear optimization techniques to find local minima.

When considering particular structures often more efficient algorithms can be devel-

oped by exploiting the structure. However, the drawback is that for every class of

linear matrix structure one needs to develop a different algorithm. This is certainly

not practical for any class of different linear matrix structure, and therefore there is

need for a robust algorithm providing low rank approximations for any linear matrix

structure for a moderate problem size.

Another issue is the existence of the solution. If the rank of the matrix X in

(5.2) needs to be predetermined then the existence question is hard to address for

general linear structures. However, there are results for classes of structured matrices.

Examples are symmetric Toeplitz matrices and squared Hankel matrices, for which

solutions exist for any rank according to [30, Theorem 3.2. and Theorem 3.3]. We

avoid this problem by defining Rr as in (5.3) so that the matrix X = 0 is always a

solution and thus, the set of solutions is not empty.

5.1.2 Applications

The low rank constraint is of high interest in many applications and is often associated

with model reduction, in particular for data analysis. As already seen in Section 1.7.2

this low rank problem occurs in areas of engineering such as speech encoding or filter

design [121] where one is dealing with Hankel matrices of low rank in order to reduce

the dimension of the problem or to remove noise of the incoming signal [106]. Similar

applications arise in system identification, system response prediction [118], [135],

and frequency estimation [116].

In latent semantic indexing, which is a method used for automatic indexing and

retrieval of information, one is seeking a sparse low rank approximation of a sparse ma-

trix [39] where often the singular value decomposition is used to obtain this low rank

approximation. However, this decomposition does not need to be sparse. Therefore

other methods are required. On example that takes the preservation of the sparsity

in the decomposition into account is the truncated pivoted QR approximations to

a sparse matrix by Stewart [128], [12]. Another way of finding a sparse low rank
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approximation, in particular if certain patterns of the sparsity structure should be

preserved, is to transform this problem into a problem of the form in (5.2).

Recall from Section 1.7.4 that an application also arises in computer algebra

systems where one is interested in computing approximations to two polynomials

that have a greatest common divisor with a degree greater or equal to a predefined

number.

5.1.3 Outline

In the next section we will introduce three different algorithms in the existing litera-

ture dealing with any linear matrix structure and discuss their strengths and weak-

nesses. We look then more closely at a geometric optimization approach in Section 5.3

where the problem is reformulated to apply the augmented Lagrangian method. The

latter requires to optimize over the Grassmannian manifold. We consider different

optimization techniques to make this approach more efficient and propose at the end

of this section an algorithm for solving these problems. Unfortunately we cannot

prove convergence for this algorithm in general and will therefore carry out extensive

tests in Section 5.4, demonstrating numerically the algorithm’s superior performance

in comparison to existing algorithms.

5.2 Algorithms Dealing with Any Linear Struc-

ture

5.2.1 The Lift and Projection Algorithm

The first algorithm is the lift and projection algorithm proposed and discussed in

[27], [30], [29] for a particular application. It tackles the problem by alternating

between unstructured low rank minimization and structure enforcement procedure.

Therefore this algorithm is only valid if both optimization problems can be solved.

Furthermore, since the set of low rank matrices is not convex the theory of the

alternating projections methods as outlined in Section 1.4.2 does not apply and thus,

the algorithm proposed may not converge. Let Yk be the solution of the unstructured

low rank minimization and Zk the solution of the subsequent enforcement procedure

in the Frobenius norm at iteration k. Then

‖Yk+1 − Zk+1‖F ≤ ‖Yk − Zk‖F

as shown by the authors in [29]. However, as mentioned above and pointed out in

[29] this is no guarantee that the algorithm does converge or even converges to the
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nearest low rank linearly structured matrix if we start the iteration with our given

matrix A in (5.2). Therefore the authors in [29] suggest to use this algorithm as a

tool to find a point in the intersection of both constraining sets. The idea is then by

means of direct search optimization methods [79] to select a good starting point for

the lift and projection algorithm.

A practical tool to solve the low rank minimization in the Frobenius norm or

W -norm is the truncated SVD [127], [57, Section 2.5]. However, in the H-norm

for general matrices H ∈ R
n×p with hij 6= 0 only general nonlinear optimization

techniques [126], [50] can be applied, which makes this approach impractical even

for small dimensions. The minimum in the structure enforcement procedure can be

found by e.g. the derivation in Section 1.5.2.

5.2.2 Transformation into a Structured Total Least Norm

Problem

Let now A ∈ L in (5.2). Then another approach to tackle the problem (5.2) is

to reformulate (5.2) into a structured total least norm problem as in [106]. Let us

therefore first introduce what a structured total least norm problem is.

Definition 5.2.1. Let U1, . . . , Us ∈ {0, 1}n×(k+l) and [B C] ∈ L(U1, . . . , Us) with

B ∈ R
n×k and C ∈ R

n×l. Let further Q̂ ∈ S+
n(k+l) be the weighting matrix in the

Q-norm in (5.4). Then we define the weighted structured total least norm problem as

minE,R
1
2
‖[E R]‖2

Q̂

s.t. (B + E)Z = C +R for a Z ∈ R
k×l,

[E R] ∈ L(U1, . . . , Us).

(5.4)

Note that if U1, . . . , Us in Definition 5.2.1 is a basis in R
n×(k+l) and Q̂ = Q̂1 ⊗ Q̂2

for Q̂1 ∈ S+
k+l, and Q̂2 ∈ S+

n diagonal then the definition coincides with the definition

of the total least squares problem in [57, Chapter 12.3], [56]. If the optimal solution

(E∗, R∗) of the problem in (5.4) exists then it gives the minimal perturbation in B

and C in the Q-norm such that range(C+R∗) ⊂ range(B+E∗). We use this property

to reformulate our rank constraint in (5.2) as follows.

Let Υa,b : Rn×p 7→ R
n×(b−a+1) be an operator with Υa,b(A) = [Aa Aa+1 · · · Ab],

where Ai denotes the ith column of A. Further, let X∗ be an optimal solution

of (5.2) and P ∈ O(p) be a permutation matrix such that the range of the last

p − r columns of X∗P is a subset of the range of the first r columns of X∗P .

Hence, range(Υr+1,p(X∗P )) ⊂ range(Υ1,r(X∗P )). Note that this permutation ma-

trix exists as rank(X∗) ≤ r. Then we can reformulate (5.2) with X1 := Υ1,r(XP ),
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X2 = Υr+1,p(XP ), A1 := Υ1,r(AP ), and A2 := Υr+1,p(AP ) as

minX1,X2

1
2
‖[A1 −X1 A2 −X2]P

T‖2
Q

s.t. X1Z = X2, for a Z ∈ R
r×(p−r),

[X1 X2] ∈ L(U1P, . . . , UsP ),

(5.5)

where the constraint X1Z = X2 ensures that the rank of X = [X1 X2]P
T is less than

or equal to r. Note that for B = A1, C = A2, E = −(A1 − X1), R = −(A2 − X2),

and Q̂ = (P T ⊗ In)Q(P ⊗ In) (5.5) is of the form of (5.4) and is thus a structured

total least norm problem.

The problem (5.5) is now ‘easier’ to solve than (5.2) since the constraintX1Z = X2

is linear and it allows to apply well known optimization techniques for nonlinear

constrained optimization [102, Chapter 15] as we will see below. However, how to

choose P in advance, and therefore the partition of A into A1 and A2 such that the

problem (5.2) is equivalent to (5.5), and such that X1Z = X2 has a solution, is in

general not clear. It is generally not known which columns of the optimal solution

X∗ of (5.2) are independent. However, if X is for example a Sylvester matrix, see

Section 1.7.4, then the independent and dependent columns of X are known, allowing

the reformulation of (5.2) into an equivalent structured total least norm problem [78].

The solution of the structured total least norm problem for unstructured matrices,

i.e. X ∈ R
n×p, can be found in the Frobenius- and in the W -norm by applying the

SVD [56]. The latter case can be reduced to the former by setting Â := W 1/2AW 1/2

and X̂ = W 1/2XW 1/2. The structured total least norm problem is then a total least

squares problem. Note however, that the solution of such problems may not exist

whereas fortunately, a sufficient condition for the existence can be derived. If we

reformulate problem (5.5) into a total least squares problem with a single column as

right-hand side as in [134, Section IV] and then apply [56, Theorem 4.1] we obtain the

following sufficient condition for the existence and uniqueness of an optimal solution

of (5.5). See an overview of total least squares methods in [95].

Lemma 5.2.2. Let σ and σ̂ be the smallest singular values of [Ip−r ⊗ A1 vec(A2)]

and Ip−r ⊗ A1, respectively. If σ < σ̂ then there exists a unique solution of (5.5) in

the Frobenius norm.

Our aim however, is to compute the nearest low rank linearly structured matrix

X ∈ L. Since the solution obtained by applying the SVD to the unstructured total

least squares does not generally preserve the structure of X a different approach is

required to solve (5.5). Let us assume the permutation matrix P is known in (5.5).

In this case the authors in [118] propose for p− r = 1 first to reformulate (5.5) as

min
x∈Rs,z∈Rp−1

1

2
‖[A1 −X1(x) A2 −X2(x)]P

T‖2
Q
+ µ‖X1(x)z −X2(x)‖2 , (5.6)
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where X1(x) =
∑s

i=1 xiΥ1,r(UiP ) and X2(x) =
∑s

i=1 xiΥr+1,p(UiP ) and µ a penalty

parameter, chosen large enough such that the structural residual X1(x)z − X2(x)

at the optimal solution of (5.6) is small. Secondly the authors suggest to solve the

problem by applying an iterative algorithm where they linearize the objective function

of (5.6) at the current iterate and solve the resulting problem to find a descent

direction, yielding a new iterate. Similar ideas are pursued in [10], [134], where in

the latter p − r > 1 is also considered. In this case the authors in [134] rewrite the

structured total least norm problem for p − r > 1 as an equivalent structured total

least norm problem with only one right-hand side, that is p − r = 1, allowing to

apply the algorithms for (5.6). However, the linear system that needs to be solved

in the optimization routine becomes significantly larger in dimension, resulting in

algorithms that are computationally expensive and therefore impractical for p − r

large. Note that in [118] only a special case of (5.6) is considered, which does not

include weights. Note further, as A ∈ L the dimension of [A1 − X1(x) A2 − X2(x)]

can be significantly reduced by accounting for the repetition of the elements of x in

(5.6).

The approach described above is often analysed and further improved in terms

of performance with regard to Toeplitz and Hankel matrices [134], [118], [106], [96],

resulting in more efficient algorithms. For instance, in [106] Park et al. show by

means of their numerical results that their algorithm for the nearest low rank Hankel

matrix, based on structured total least norm, outperforms the alternating projection

method of [27].

The drawback of reformulating the problem (5.2) and solving the resulting struc-

tured total least norm problem is surely that it is unclear how to choose the permu-

tation matrix P in (5.5) such that the rank constraint is equivalently replaced. More-

over, in addition to the problem that a large penalty parameter can cause numerical

difficulties, for p− r > 1 and for a general Q-norm the approach is computationally

challenging and rather not applicable for practical applications.

5.2.3 Reformulating and Applying Geometric Optimization

Now we consider an approach that reformulates (5.2) into an optimization problem

that requires to optimize over the Grassmannian manifold. See Section 3.8.2 for an

introduction to this manifold. This approach is applicable for any Q-norm and the

only requirement is that the matrix A is of the same linear structure as X in (5.2).

The idea of this approach goes back to [93] that proposed a geometric optimization

algorithm to find a nearest low rank approximation of unstructured rectangular ma-

trices in the Q-norm. Based on this work Schuermans et al. published in [121] a

similar approach for structured matrices that we now briefly introduce and improve
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in the following sections.

First, let us define the function f : Rp×(p−r) 7→ R with

f(N) := min

{
1

2
‖A−X‖2

Q
: X ∈ L, XN = 0

}
. (5.7)

Note that the function f only depends on the subspace that is spanned by the columns

of N . Therefore as observed by Manton et al. in [93] optimizing f(N) over all matrices

N that span different subspaces of dimension p−r in R
p×p is equivalent to (5.2). The

set of all p−r dimensional subspaces in R
p×p is the Grassmannian manifold Gr(p, p−r)

that we introduced in Section 3.8.2. Now in order to deal with these subspaces in

a more convenient way we rather consider matrix representations of these subspaces

whose columns are orthonormal and span the corresponding subspace. This is possible

since we can always find a matrix representation to every element in Gr(p, p− r) and
we are able to apply the geometric optimization tools to these matrix representations

as we have seen in Section 3.8.2. Let us now simplify the notation for these matrix

representations.

Let Y ∈ Gr(p, p− r) and π : St(p, p− r) 7→ Gr(p, p− r) be the canonical projection
defined in Definition 3.5.1. Then any N ∈ π−1(Y) is a matrix representation of Y .
For simplicity we now write N ∈ Gr(p, p − r) where N is a matrix representation of

the corresponding equivalence class π(N). Similarly, we deal with the tangent space.

Let TYGr(p, p− r) be the tangent space of Gr(p, p− r) at Y . Then from Section 3.5.3

we can define a bijective map τN : TYGr(p, p− r) 7→ HN where HN is the horizontal

space at N whose elements are in R
p×(p−r). Therefore from now on we write only

TNGr(n, p) to mean the horizontal space at N . This allows us now to deal only with

matrices.

By using these notations we can reformulate (5.2) as

minN∈Gr(p,p−r) f(N). (5.8)

As we assume that A has the same structure as X we write vec(A) = Ua with U

defined in (1.7) and a ∈ R
s and define a weighting matrix Q̂ := UTQU , which is

by definition symmetric and positive definite. Then by using the properties of the

Kronecker product (Appendix A.1.2) we can rewrite the constraint XN = 0 in (5.7)

as

vec(XN) = (NT ⊗ In)vec(X)

= (NT ⊗ In)Ux = 0

and f(N) in (5.7) simplifies to

f(N) = min

{
1

2
(a− x)T Q̂(a− x) : x ∈ R

s, (NT ⊗ In)Ux = 0

}
. (5.9)
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To obtain a solution of (5.9), Schuermans et al. [121] find stationary points of the

corresponding Lagrangian function

LN(x, λ) =
1

2
(a− x)T Q̂(a− x)− λT (NT ⊗ In)Ux (5.10)

where λ = (λ1, . . . , λn(p−r))T are the Lagrange multipliers. Differentiating LN(x, λ)

and setting it to zero yields for Û := (NT ⊗In)U and Û ∈ R
n(p−r)×s the linear system

[
Q̂ −ÛT

Û 0

][
x

λ

]
=

[
Q̂a

0

]
(5.11)

that needs to be solved.

By assuming that ÛQ̂−1ÛT is of full rank and using the Schur complement of the

coefficient matrix of (5.11) Schuermans et al. obtained the solution

x∗ = (Is − Q̂−1ÛT (ÛQ̂−1ÛT )−1Û)a (5.12)

of the linear system (5.11). Hence, x∗ is the projection of a onto the orthogonal

complement of the set spanned by Û with respect to the weighted Euclidean metric〈
Q̂−1x, y

〉
= yT Q̂−1x. By substituting (5.12) into (5.9) f(N) simplifies to

f(N) =
1

2
aT ÛT

(
ÛQ̂−1ÛT

)−1
Ûa,

which needs to be minimized over the Grassmannian manifold.

The assumption of ÛQ̂−1ÛT being of full rank can clearly be made if Û has full

row rank. However, if n(p− r) ≥ s, which holds in most applications of interest, we

obtain either the trivial solution x = 0 or ÛQ̂−1ÛT is singular. This observation was

also made by the authors in [121] when they considered L to be the set of Hankel

matrices. If in this case p − r > 1 corresponding to n(p − r) ≥ s their algorithm

breaks down returning the trivial solution x = 0.

They remedied the problem but only for L being the set of Hankel matrices by

showing that in this case (5.8) simplifies to

miny∈St(r+1,1) f(y) (5.13)

with

f(y) =
1

2
aT Ũ(y)T

(
Ũ(y)Q̂Ũ(y)T

)−1
Ũ(y)a (5.14)

and

Ũ(y) =




y1 · · · yr+1 0 0 · · · 0

0 y1 · · · yr+1 0 · · · 0
...

. . . . . . . . .

0 · · · 0 y1 · · · yr+1



∈ R

(n+p−1−r)×(n+p−1)
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with y = (y1, . . . , yr+1)
T . The matrix Ũ(y) is obviously of full row rank so that

minimizing the objective function f(y) in (5.14) will not break down.

Let y∗ be the optimal solution of (5.13). Then the optimal solution of (5.2) is

X∗ =
∑s

i=1(x∗)iUi where similar to (5.12) x∗ is the projection of a onto the orthogo-

nal complement of the set spanned by the columns of Ũ(y∗). Schuermans et al. used

MATLAB’s nonlinear least squares method lsqnonlin, to solve (5.13). However,

they did not consider to take derivatives into account to possibly improve the perfor-

mance, although this can be done by using e.g. the Fréchet derivative for orthogonal

projections [55]. We will not pursue this idea any further.

Since the reformulation of (5.2) as the geometric optimization problem (5.8) is

applicable for any Q-norm and any linear structure without any adjustments by the

user it is most promising for our interest in this chapter. Therefore we investigate

how we can solve (5.8) more closely and discuss improvements of the approach by

Schuermans et. al in the next section. We will see that we can develop an algorithm

returning a low rank approximation for any linear structure that does not break

down and shows good performance. However, unfortunately we cannot guarantee

convergence in general and have only numerical results as evidence that this algorithm

works.

5.3 Steps to Our Method

Now, we will further investigate the last approach introduced in the previous Sec-

tion 5.2.3. As we have seen when applying the Lagrangian method to (5.9) we ob-

tain an optimal solution but only if ÛQ̂−1ÛT is nonsingular. To remedy the latter

problem one could compute the pseudo-inverse of ÛQ̂−1ÛT ∈ R
n(p−r)×n(p−r) but for

n(p − r) ≫ s there is an approach, which requires fewer operations and gives us

further insight into the problem.

If we multiply the system (5.11) by the matrix diag
(
−Is, ÛT

)
from the left we

obtain an equivalent linear system

[
−Q̂ ÛT

ÛT Û 0

][
x

λ

]
=

[
−Q̂a
0

]
.

Then by substituting λ with λ := Û λ̂ the latter linear system becomes

[
−Q̂ ÛT Û

ÛT Û 0

][
x

λ̂

]
=

[
−Q̂a
0

]
, (5.15)

which is of significantly smaller dimension than (5.11) if n(p−r)≫ s and we see that

the vector x that solves (5.11) also solves (5.15) and vice versa. Now let F (N) :=
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ÛT Û . As this matrix is symmetric there exists a spectral decomposition of F (N) =

PDP T where D is a diagonal matrix with the eigenvalues in decreasing order on the

diagonal and P ∈ O(s). This allows us to rewrite (5.15) as

[
−P T Q̂P D

D 0

][
x̂

λ̃

]
=

[
−P T Q̂a

0

]
(5.16)

with x̂ = P Tx and λ̃ = P T λ̂. Let t be the number of nonzero diagonal elements of

D with 0 < t < s and P = [P1 P2] with P1 ∈ St(s, t) and P2 ∈ St(s, s − t). Note if

t = s we obtain x = 0 for the solution and for t = 0 we get x = a. Then from (5.16)

follows that the first t entries of x̂ are zero and thus in MATLAB notation
[
−P T

1 Q̂P2 D(1 : t, 1 : t)

−P T
2 Q̂P2 0(s−t)×t

][
x̂(t+ 1 : s)

λ̃(1 : t)

]
=

[
−P T

1 Q̂a

−P T
2 Q̂a

]
,

which always has a solution. We obtain (x̂t+1, . . . , x̂s)
T = (P T

2 Q̂P2)
−1P T

2 Q̂a and thus

x = P2(P
T
2 Q̂P2)

−1P T
2 Q̂a. Hence, x depends only on the eigenspace spanned by the

zero eigenvalues of F (N) and is independent of the particular choice of P2. If we

substitute the solution x into (5.9) f(N) simplifies to

f(N) =
1

2
aT (Q̂− Q̂P2(P

T
2 Q̂P2)

−1P T
2 Q̂)a. (5.17)

The problem with this approach is that the function f(N) is highly dependent

on the eigenspace corresponding to the zero eigenvalues of F (N), which does not

generally change continuously with N . If N changes either the eigenspace remains the

same, meaning that the function value of f(N) stays constant, or it does change but

then the function value of f(N) may jump. Hence, the function f(N) is discontinuous.

These circumstances make the minimization of f(N) infeasible.

The idea in this section in order to overcome the problem discussed above is to

apply the augmented Lagrangian method to

min(N,x)∈Gr(p,p−r)×Rs
1
2
(a− x)T Q̂(a− x)

s.t. (NT ⊗ In)Ux = 0,
(5.18)

which is equivalent to (5.8). As we will see this has the advantage of only dealing

with smooth functions.

We could also apply the quadratic penalty method. However, we experienced

numerical difficulties for large penalty parameters in our numerical tests. Therefore

we concentrate on the augmented Lagrangian method since this method diminishes

the possibility that these numerical problems occur by introducing explicit Lagrange

multipliers into the function to be minimized, see [102, Section 17.3]. Note that the

set Gr(p, p− r)× R
s is a product manifold [3, Section 3.1.6].
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5.3.1 Applying the Augmented Lagrangian Method

First, let us form the augmented Lagrangian function Gµ,λ(N, x) of (5.18), which is a

combination of the standard Lagrangian function and the quadratic penalty function,

penalizing the constraint (NT ⊗ In)Ux = 0. That is

Gµ,λ(N, x) :=
1

2
(a− x)T Q̂(a− x) + µ

2
‖(NT ⊗ In)Ux‖22 − λT (NT ⊗ In)Ux, (5.19)

where λ ∈ R
n(p−r)×1 are the Lagrange multipliers and µ > 0 is the penalty parameter.

As already mentioned in Section 4.6.4 the idea of the augmented Lagrangian method

is at iteration k to first minimize Gµk,λk(N, x) over (N, x) ∈ Gr(p, p − r) × R
s for a

fixed value of λk and µk and then increase µk as k increases and update, according

to some rules, the Lagrange multipliers

λk+1 = λk − µk(N
T
k ⊗ In)Uxk (5.20)

where (Nk, xk) is the minimizer of Gµk,λk(N, x). See [102, Section 17.3] for more

details on augmented Lagrangian methods.

Let us now consider how to solve

min
(N,x)∈Gr(p,p−r)×Rs

Gµ,λ(N, x) (5.21)

for a fixed λ and µ. Let us first minimize Gµ,λ with respect to x. Differentiating Gµ,λ

yields

∇xGµ,λ =
(
Q̂+ µF (N)

)
x− ÛTλ− Q̂a.

Recall that F (N) = UT (N ⊗ In)(NT ⊗ In)U . The first order necessary optimality

condition for x implies that

x(N) =
(
Q̂+ µF (N)

)−1 (
Q̂a+ ÛTλ

)
. (5.22)

Note that the inverse of Q̂+µF (N) exists for any µ since this matrix is square and of

full rank. Moreover, since Q̂+µF (N) is symmetric positive definite x(N) in (5.22) is

the unique global minimizer of Gµ,λ(·, N). Substituting (5.22) into (5.21) and using

the properties of the Kronecker product, see Appendix A.1.2, yields an equivalent

problem to (5.21)

min
N∈Gr(p,p−r)

fµ,λ(N) := −1

2
y(N, λ)T

(
Q̂+ µF (N)

)−1
y(N, λ), (5.23)

where y(N, λ) = Q̂a + UTvec(ΛNT ) with Λ = vec−1(λ) ∈ R
n×(p−r). The advantage

of this method in comparison with the method in [121] is that the term Q̂+ µF (N)

is now invertible for any µ.
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5.3.2 Steps to Compute fµ,λ

Before we can state our algorithm we need to discuss how to efficiently compute

fµ,λ(N) and F (N), and as outlined in Section 3.9 we require to derive the derivative

for fµ,λ(N) to optimize over the Grassmannian manifold Gr(p, p− r).
First observe that the matrix F (N) is symmetric so that is enough to consider

how to compute the (i, j)th entry of this matrix for i ≤ j and i, j = 1, . . . , s. Let us

look at

Fij(N) = vec(Ui)
T (NNT ⊗ In)vec(Uj)

= vec(Ui)
Tvec(UjNN

T )

= trace(UT
i UjNN

T ).

(5.24)

From (5.24) we note that the cost for computing the function value for every N can

be significantly reduced if the matrices UT
i Uj for i ≤ j are precomputed. As the

matrices Uj for j = 1, . . . , s are usually sparse the precomputation requires s(s+1)/2

sparse matrix-matrix multiplications. Note that this computation only depends on

the structure of the matrix X and on the weighting Q so that the same matrices

UT
i Uj can be used for different input matrices A and are required to be computed

only once. If these matrices UT
i Uj are assumed to be given for i ≤ j and i, j = 1, . . . , s

computing F (N) requires 2p2(p− r) operations to form NNT and 2p2 operations to

compute trace(UT
i UjNN

T ) for all i ≤ j. To determine fµ,λ(N) we require another

s3/3 operations to compute the Cholesky factorization of Q̂ + µF (N) and 2n(p −
r)p(s+1) operations to determine UTvec(ΛNT ) in y(N, λ). All remaining operations

are of order O(s2). In total this adds up to approximately s3/3+ 2p2(p− r) + p2s2 +

2n(p− r)p(s+ 1) +O(s2) operations to evaluate fµ,λ(N) at N .

5.3.3 Forming the Derivative of the Objective Function

It remains to determine the derivative of fµ,λ(N) in (5.23) for the geometric opti-

mization. As the term Q̂ + µF (N) is invertible for all N this derivative exists. Let

us first compute the Fréchet derivative, see Appendix A.2 for a definition. Therefore

we define K(N) := (Q̂ + µF (N))−1 and g(N) := K(N)y(N, λ). Then by using the

product rule, see e.g. [66, Theorem 3.3] the Fréchet derivative of fµ,λ(N) at N in

direction E ∈ R
p×(p−r) is

Lfµ,λ(N,E) =−
1

2
(y(N, λ)Lg(N,E) + Ly(N,E)

T g(N))

=− 1

2
y(N, λ)T (K(N)Ly(N,E) + LK(N,E)y(N, λ))

− 1

2
Ly(N,E)

Tg(N)

=− Ly(N,E)
Tg(N)− 1

2
y(N, λ)TLK(N,E)y(N, λ),

(5.25)
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where LK(N,E), Lg(N,E), and Ly(N,E) are the Fréchet derivative of K(N), g(N),

and y(N, λ), respectively. In order to obtain the derivative ∇fµ,λ we will use that

∇fµ,λ = (Lfµ,λ(N,Eij))
p,(p−r)
i,j=1 with Eij = eie

T
j ∈ R

p×(p−r). Hence, we need to com-

pute Ly(N,Eij)
T multiplied by g(N) and y(N)TLK(N,Eij)y(N). Let us first look at

Ly(N,Eij)
T g(N), which is

Ly(N,Eij)
Tg(N) = vec(ΛET

ij)
TUg(N)

= vec(Λeje
T
i )

TUg(N)

= vec(eje
T
i )

T (Ip ⊗ ΛT )Ug(N)

= vec(eje
T
i )

Tvec
(
ΛTvec−1(Ug(N))

)
.

Hence (
Ly(N,Eij)

T g(N)
)p,(p−r)
i,j

=
(
vec−1(Ug(N))

)T
Λ. (5.26)

Let us now look at the functions t(M) := (Is+M)−1 and F (N) and let us compute

their Fréchet derivatives. We have for Ê ∈ R
s×s and M̂ = Is +M

t(M + Ê) = (M̂ + Ê)−1

= M̂−1 − M̂−1ÊM̂−1 +O(‖Ê‖2),

implying that Lt(M, Ê) = −M̂−1ÊM̂−1. Furthermore, it is easily verified that

LF (N,E) = UT ((NET +ENT )⊗ In)U . Observe then by using the chain rule for the

Fréchet derivative [66, Theorem 3.4] that

y(N, λ)TLK(N,E)y(N, λ)

= y(N, λ)T Q̂−1/2Lt

(
µQ̂−1/2F (N)Q̂−1/2, µQ̂−1/2LF (N,E)Q̂

−1/2
)
Q̂−1/2y(N, λ)

= −µy(N, λ)TK(N)UT ((NET + ENT )⊗ In)UK(N)y(N, λ)

= −2µg(N)TUT (ENT ⊗ In)Ug(N).

Therefore with

X(N) := vec−1 (Ug(N)) ∈ R
n×p (5.27)

we have (
y(N, λ)TLK(N,Eij)y(N, λ)

)p,(p−r)
i,j=1

= −2µX(N)TX(N)N

and it follows together with (5.25) and (5.26) that

∇fµ,λ = −X(N)T (Λ− µX(N)N). (5.28)

The matrix X(N) is equal to
∑s

i=1 xi(N)Ui and is therefore our matrix of interest.

Furthermore, X(N)N is our constraint of (5.18) so that the term (Λ − µX(N)N)

in (5.28) is exactly the term that we use to update Λ in (5.20) in the augmented

Lagrangian method. Note that K(N) also occurs in the objective function. Therefore
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the expensive operations to determine e.g. the Cholesky decomposition of Q̂+µF (N)

have already been carried out when the objective function was computed. Hence,

the additional cost for determining g(N) is only of O(s2) operations. It remains to

compute Ug(N), Λ − µX(N)N , and X(N)T (Λ − µX(N)N). In order, this requires

2nps, (2p + 1)n(p − r), and 2np(p − r) operations, which is in total 2np(s + 2(p −
r)) + n(p − r) + O(s2) operations. Note if e.g. L is the set of Hankel matrices then

s = p + n − 1 and the derivative is relatively cheap to obtain in comparison to

computing the objective function in Section 5.3.2.

5.3.4 Convergence

Recall from Section 4.6.4 that Yang and Zhang showed in [142] that similarly to R
n,

necessary and sufficient optimality conditions for nonlinear programming problems

over Riemannian manifolds can be derived and that the concept of Lagrange multi-

pliers can analogously be applied. In particular, we showed in Theorem 4.6.12 that

if a point Y∗ in a Riemannian manifold M embedded in R
n is a local solution of

the programming problem then under some conditions Y∗ is a local solution of the

corresponding augmented Lagrangian function. In R
n under the assumptions of this

theorem Bertsekas obtained a convergence result for the sequence generated by the

augmented Lagrangian method [13, Proposition 4.2.3]. This is our motivation to

check the assumptions of Theorem 4.6.12 for problem (5.18).

Let c(N, x) := (NT ⊗ In)Ux ∈ R
n(p−r)×1. As the objective function and the

constraints c(N, x) of (5.18) are smooth we fulfil the first requirement. However, we

also need two further requirements: the first one is that at a local solution of (5.18)

(N∗, x∗) the LICQ defined in Definition 4.6.9 is satisfied, giving us the existence of

the Lagrange multipliers λ∗ at (N∗, x∗), and the second is that

〈Z,HessG0,λ∗
(N∗, x∗)[Z]〉 > 0

for all Z ∈ TN∗
Gr(p, p− r)× R

s with 〈grad ci(N∗, x∗), Z〉 = 0 for all i = 1, . . . , n(p−
r), and Z 6= 0. Recall that HessG0,λ∗

(N∗, x∗)[Z] denotes the Hessian operator of

G0,λ∗
(N, x) that we defined in (3.9) and G0,λ∗

(N∗, x∗) is the function in (5.19).

We will not look at the Hessian operator, we will rather investigate the LICQ

and we will show by means of two examples that this condition may or may not be

satisfied, depending on the problem. Therefore we cannot guarantee convergence of

this algorithm in general. To check the LICQ we need to compute the gradient of

ci(N, x) on the product manifold Gr(p, p−r)×R
s at (N, x). Recall from Section 3.8.2

that the gradient on the Grassmannian manifold is represented by the element (In−
NNT )∇f(N). Therefore the gradient on the product manifold grad ci(N, x) for all i =
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1, . . . , n(p−r) at (N∗, x∗) of (5.18) is grad ci(N, x) = (gradN ci(N, x), gradx ci(N, x)) ∈
TNGr(p− r, p)× R

s. Let us first determine gradx ci(N, x) that is

gradx ci(N, x) = ∇xci(N, x) = [UT (N ⊗ In)]i ∈ R
s,

where [A]i denotes the ith column of A. By using similar techniques as in the previous

section we obtain that the gradient gradN ci(N, x) reshaped in a long vector is

vec (gradN ci(N, x)) = [Ip−r ⊗ ((Ip −NNT )XT )]i = [Ip−r ⊗ (XT )]i (5.29)

for all i = 1, . . . , n(p − r) where X =
∑s

i=1 xiUi. The latter equality in (5.29) holds

since we have for a solution of (5.18) that XN = 0. Hence, the LICQ is equivalent

to the condition that the matrix
[
UT (N ⊗ In)
Ip−r ⊗ (XT )

]
∈ R

((p−r)p+s)×n(p−r) (5.30)

is of full column rank at (N∗, x∗). At this point the matrix Ip−r ⊗ (XT ) is at most of

row rank r(p− r) and as we have that X∗N∗ = 0 with X∗ =
∑s

i=1(x∗)iUi the matrix

UT (N ⊗ In) = [vec(U1)N, . . . , vec(Us)N ]T

is at most of row rank s − 1 if x∗ 6= 0. Therefore the necessary condition that the

matrix in (5.30) has full column rank in case of x∗ nonzero is that

s ≥ (n− r)(p− r) + 1. (5.31)

For x∗ = 0 we require at least s ≥ n(p− r) as Ip−r ⊗ (XT ) is of rank zero. The next

example shows that even if s ≥ (n− r)(p− r) + 1 and x∗ nonzero the LICQ does not

need to be satisfied. Let

Q =
1

2
I4, a =

[
1.2

1

]
, U1 =

[
1 0

1 0

]
, U2 =

[
0 1

0 1

]
, and r = 1

in (5.18) so that U is of full rank and Q̂ = I2. We attain the optimal solution value

at N∗ =
1√
2
(−1, 1)T and x∗ = 1.1(1, 1)T . At this point the matrix

UT (N ⊗ In) =
1√
2

[
−1 −1
1 1

]
and Ip−r ⊗ (XT ) = 1.1

[
1 1

1 1

]
.

Therefore the matrix in (5.30) is only of rank one and the LICQ is not satisfied despite

that s is equal to s = (n− r)(p− r) + 1 = 2.

On the other hand the LICQ can also be satisfied at the optimal point as we see

in the next example. Consider

Q = I4, a =

[
2

1

]
, U1 =

[
1 0

0 0

]
, U2 =

[
0 0

0 1

]
, and r = 1 (5.32)
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in (5.18). Then U has full rank and Q̂ = I2. The optimal solution (N∗, x∗) of

(5.18) is clearly obtained with N∗ = (0, 1)T and x∗ = (2, 0)T . Since at this point

UT (N ⊗ In) = U2 and Ip−r ⊗ (XT ) = 2U1 the matrix in (5.30) is of full column rank

and the LICQ is satisfied.

Since our constraint X(N)N appears in the derivative of fµ,λ in (5.28) we can de-

rive some results that relate the geometric gradient grad fµ,λ with classical derivative

∇fµ,λ.
Lemma 5.3.1. Let µ‖X(N)N‖

F
≤ ε, ‖grad fµ,λ(N)‖

F
≤ ε2 and Λ be bounded then

with c =
(
(
√
p+ p− r + 1)‖X(N)‖

F
+
√
p‖Λ‖

F

)
and µ ≥ 1

‖∇fµ,λ‖F ≤ εc+ ε2,

where grad fµ,λ(N) is the gradient of fµ,λ(N) in the tangent space TNGr(p, p − r) at

N ; see Section 3.8.2.

Proof. From (3.18), (5.28) we have that grad fµ,λ(N) = (Ip−NNT )(µX(N)TX(N)−
X(N)TΛ). By using that ‖B − A‖

F
≥ ‖B‖

F
− ‖A‖

F
for A,B ∈ R

n×p

ε2 ≥ ‖(Ip −NNT )X(N)T (Λ− µX(N)N)‖
F

≥ ‖(Ip −NNT )X(N)TΛ‖
F
− µ‖(Ip −NNT )X(N)TX(N)N‖

F

≥ ‖(Ip −NNT )X(N)TΛ‖
F
− µ‖Ip −NNT‖

F
‖X(N)‖

F
‖X(N)N‖

F
.

Hence,

‖(Ip −NNT )X(N)TΛ‖
F
≤ ε2 + ε(

√
p+ p− r)‖X(N)‖

F
.

Then from

‖(Ip −NNT )X(N)TΛ‖
F
≥ ‖X(N)TΛ‖

F
− ‖N‖

F
‖X(N)N‖

F
‖Λ‖

F
,

we have

‖X(N)TΛ‖
F
≤ ‖(Ip −NNT )X(N)TΛ‖

F
+ ‖N‖

F
‖X(N)N‖

F
‖Λ‖

F

≤ ε2 + ε((
√
p+ p− r)‖X(N)‖

F
+
√
p‖Λ‖

F
)

and we obtain that

‖µX(N)TX(N)N −X(N)TΛ‖
F
≤ ε‖X(N)‖

F
+ ‖X(N)TΛ‖

F

≤ ε2 + ε
(
(
√
p+ p− r + 1)‖X(N)‖

F
+
√
p‖Λ‖

F

)
.

As ‖X(N)‖
F
is bounded the previous Lemma 5.3.1 implies that if µkX(Nk)Nk and

grad fµk,λk(Nk) is going to zero then also the matrix of partial derivatives ∇fµk,λk(Nk)

is going to zero. Note also in the penalty method where λ = 0 all the points N with

X(N)N = 0 and X(N) determined as in (5.27) are stationary points of fµ,0 as

‖grad fµ,0(N)‖
F
≤ µ‖(Ip −NNT )X(N)TX(N)N‖

F

≤ µ(
√
p+ (p− r))‖X(N)‖

F
‖X(N)N‖

F
.
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5.3.5 Our Algorithm

We state our proposed method in Algorithm 5.3.1 where, unlike in Section 4.7, we

do not use the practical augmented Lagrangian algorithm proposed in [102, Algo-

rithm 17.4]. We rather base our augmented Lagrangian algorithm on the [102, Frame-

work 17.3] and initiate and update our parameters as shown in Algorithm 5.3.1. The

reason for not using [102, Algorithm 17.4] is that the configurations for the param-

eters in Algorithm 5.3.1 yield empirically significantly better numerical results. The

main difference is first that we let the initial penalty parameter and the magnitude

of increase on line 10 depend on the function value (5.17). The second is that we use

quite a large initial tolerance for the stopping criterion on line 4 and tighten it only

moderately in every iteration. To determine the objective function value of (5.23)

we need to compute z = (Q̂ + µF (N))−1y(N, λ). For large value of µ we expect

the matrix Q̂ + µF (N) to be ill-conditioned. Nocedal and Wright discuss ideas in

[102, Section 17.1] to reduce the condition number of such a system by solving an

equivalent larger linear system
[
Q̂ LT

L − 1
µ
Is

][
z

η

]
=

[
y(N, λ)

0s×1

]

with F (N) = LTL. However, numerical tests have shown that the actual condition

number of the coefficient matrix is increased if we use this approach. Therefore we use

the Jacobi preconditioner, that is to scale the diagonal of Q̂+µF (N) to one. Let D be

the diagonal of Q̂+µF (N) then we solve Ax = b by using the Cholesky decomposition

of A with A = D−1/2(Q̂ + µF (N))D−1/2, x = D1/2z, and b = D−1/2y(N, λ). In

contrast to the approach above, we do not need to solve a larger system and our

numerical tests have shown that this approach yields a significant reduction of the

condition number of the system. Note that the Jacobi preconditioner has also a

theoretical motivation. By [64, Corollary 7.3]

κ2(A) ≤ s min
D∈Ds

κ2(D(Q̂+ µF (N))D)

where Ds is the set of all diagonal matrices in R
s×s and κ2(A) = ‖A‖2‖A−1‖2 .

In the next section we will investigate the performance of Algorithm 5.3.1 and we

will also look at which of the algorithms introduced in Section 3.9 is most suitable to

solve the inner problem on line 4 of Algorithm 5.3.1.

5.4 Computational Experiments

In this section we concentrate on investigating how well our Algorithm 5.3.1 proposed

in the previous section works by performing several numerical tests. Our purpose is
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Algorithm 5.3.1 This algorithm finds the nearest low rank linearly structured ma-
trix to a given linearly structured matrix by minimizing (5.18).

Require: U1, . . . , Us, a ∈ R
s, r ∈ N with r ≤ rank(

∑s
i=1 aiUi), Q̂ ∈ R

s×s symmetric
positive definite, and N0 ∈ Gr(p, p− r).

1 Apply the augmented Lagrangian method to (5.18) based on [102, Frame-
work 17.3]:

2 Set kmax = 100, λ0 = 0, µ0 =
p−r
4p
f(N0) with f(N0) defined in (5.17), the tolerance

ω0 = p(p− r)10−3, and the violation tolerance η∗ = n(p− r)210−11.
3 for k = 0 : kmax − 1 do

4 Find an approximate minimizer Nk+1 of (5.23) starting from Nk such that

‖grad fµk,λk(Nk+1)‖2F ≤ ωk

by using either the nonlinear CG method, Algorithm 3.9.1, or the limited mem-
ory RBFGS-method, Algorithm 3.9.3.

5 if ‖X(Nk+1)Nk+1‖2F ≤ η∗ then
6 break

7 end if

8 Update Lagrange multipliers λk+1 = λk − µkvec(X(Nk+1)Nk+1) with X(Nk+1)
defined in (5.27).

9 Update the tolerance ωk+1 = ωk/1.01.

10 Update penalty parameter µk+1 = µk +
(k+1)2(p−r)

8p
(f(Nk+1) + 1).

11 end for

12 return X(Nk+1) in (5.27).



CHAPTER 5. LOW RANK PROBLEM OF STRUCTURED MATRICES 146

to find a nearest low rank linearly structured matrix to a given linearly structured

matrix by solving (5.18) with different values for a, r and U1, . . . , Us. Let us first

introduce our test matrices.

5.4.1 Test Matrices

In all our tests we use Q̂ = UTU where U is defined in (1.7). We choose the matrices

U1, . . . , Us out of three different classes.

• uexample: The first one is the example in (5.32) where we know that the

LICQ is satisfied at the optimal solution.

• uhankel: In the second class the matrix U is chosen such that L is identical

to the set of Hankel matrices of given dimension n-by-p, see Section 1.7.2.

As by [106, Theorem 2.1], [30, Theorem 3.3] a nontrivial low rank solution

always exists for square Hankel matrices this class seems suitable for our tests

in particular for n = p, although better algorithms as mentioned in Section 5.2

are available to find a low rank Hankel matrix. We choose

U1 =

[
1 01×(p−1)

01×(n−1) 0(n−1)×(p−1)

]
, U2 =




0 1

1 0
02×(p−2)

0(n−2)×2 0(n−2)×(p−2)


 , . . . ,

Us =

[
0(n−1)×(p−1) 01×(n−1)

01×(p−1) 1

]
with s = n+ p− 1.

The vector a in (5.18) is determined by the MATLAB rand function.

• urand: The third class is drawn from randomly generated matrices U1, . . . , Us

that are computed as follows. Let n, p, s ∈ N with n ≥ p be given. For

k = 1 : (s − 1) we choose randomly by means of the MATLAB function rand

a number nk ∈
{
1, . . . , np− (s− k)−∑k−1

j=1 nj

}
and determine randomly nk

indices (i, j) for i ∈ {1, . . . , n} and j ∈ {1, . . . , p} that have not been chosen

before. Let Ik be the set of chosen indices at iteration k. Then we set for all

l = 1, . . . , n and q = 1, . . . , p

(Uk)lq =




1 for (l, q) ∈ Ik
0 otherwise.

(5.33)

Let Is be the set of indices that have not been chosen after (s − 1) iterations.

Then we set Us as in (5.33). This procedure ensures that the matrix U as

defined in (1.7) is of full rank. We choose the vector a as in the second class.

Note that in general we cannot guarantee for this class that there is a nontrivial

solution of (5.18).
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5.4.2 Numerical Methods

Let us now look at the numerical methods. Since all the methods that we will look

at solve a different problem to find the nearest low rank linearly structured matrix it

is difficult to find a common stopping criterion. Therefore we use for every method

a stopping criterion that is suitable for the method. However, we make sure that

the constraint violations of all returned points are at least as small as at the points

returned by Algorithm 5.3.1 as we are mainly interested in how large the constraint

violation of the returned points and the distance to the given matrix A is. In addition

to Algorithm 5.3.1 we look at the following methods to find the nearest low rank

linearly matrix.

• LIFTPROJ: The first is the lift and projection algorithm described in Sec-

tion 5.2.1, [27], [30]. This algorithm has no convergence guarantee and is only

applicable for theW -norm if the truncated SVD is used to compute the nearest

rank k matrix. As we have chosen Q to be the identity we can use the trun-

cated SVD. For this method we use our own implementation in MATLAB. Let

Yk be the optimal solution of the unstructured low rank minimization and Zk

the optimal solution of the subsequent enforcement procedure at iteration k;

see Section 5.2.1. We stop the iteration of this algorithm if after the structure

enforcement procedure at iteration k

p−r∑

i=1

σi ≤ ϕ, (5.34)

where σ1, . . . , σp−r are the smallest (p− r) singular values of the current iterate
Zk and ϕ is a tolerance that we specify later. As the method may not converge

to an intersection point we also stop the iteration if for k > 100

∣∣‖Yk − Zk‖2F − ‖Yk−100 − Zk−100‖2F
∣∣

1 + ‖Yk − Zk‖2F
≤ npu, (5.35)

where u is the unit roundoff, which is in double precision arithmetic u = 2−53.

We set our maximal number of iterations to 100, 000. As proposed by [29] we

use different starting values for this method. However, we do not use direct

search solvers as the matrices are too large. We therefore use A =
∑s

i=1 aiUi

and 10 different randomly generated starting matrices with the same linear

structure as A and return the matrix with the smallest function value that

satisfies (5.34).

• FMINCON: The next method is only applicable if the matrix A in (5.2) is

square and of full rank rA and we are seeking a matrix of this structure with
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rank less than or equal to rA − 1. In this case we can reformulate the problem

as
minX∈L

1
2
‖A−X‖2

Q

s.t. det(X) = 0
(5.36)

with det(X) the determinant of X ∈ R
n×n. We apply the MATLAB func-

tion fmincon, which is a subspace trust-region method based on the interior-

reflective Newton method [31], [32], to this problem, where we provide the first

and second derivative of the objective function of (5.36) but we do not pro-

vide the derivatives of the constraint. Furthermore, we use the same stopping

criterion (5.34) as for LIFTPROJ.

As the matrix of derivatives of det(X) is ∇ det(X) = det(X)(X−1)T [114], [92,

p. 179] we expect numerical difficulties for X close to the solution of (5.36).

Therefore this method is certainly not practical for general usage and we con-

sider it only for comparison.

5.4.3 Numerical Tests

All our tests are performed in MATLAB R2010a on an Intel(R) Xeon(R) with 3GHz

with eight cores and 16GB RAM, Scientific Linux release 6.1 (Carbon).

Test 1

In our first test we investigate the performance of the algorithms introduced in Sec-

tion 3.9 for solving the inner problem on line 4 of Algorithm 5.3.1. Our specifi-

cations for the nonlinear CG and the limited RBFGS method are as follows. Let

A =
∑s

i=1 aiUi be the given matrix in (5.2) and A = PΣV T its SVD decomposi-

tion with the diagonal elements of Σ in decreasing order. Then we use in MATLAB

notation

N0 = V (:, p− r + 1 : p) (5.37)

as our starting matrix in Algorithm 5.3.1. To continue, we also limit the maxi-

mum number of iterations to 100, 000 for both the nonlinear CG and the RBFGS

algorithm and since we do not have a good initial step length for the problem con-

sidered as in Section 4.7 we apply a more sophisticated line-search strategy in these

algorithms. For the nonlinear CG method we use the algorithm proposed in [41,

Algorithm A6.3.1]. Similar to the Armjio-backtracking procedure stated in Algo-

rithm 3.9.1, this algorithm also uses a backtracking strategy; the difference is that

the desired step size is found by using cubic interpolation of the objective function.

Since the limited memory RBFGS algorithm, Algorithm 3.9.3 is a secant method we

also need to check whether the step length is large enough. Therefore we use [41,
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Table 5.1: Performance of Algorithm 5.3.1 for different methods to solve (5.23) for
test matrices uhankel and r = n− 5.

t it

n 50 80 100 120 150 50 80 100 120 150

RB M=1 68 331 922 1710 3192 1753 4523 6631 9435 1.1e4

RB M=5 50 156 241 664 963 1055 1815 1891 3843 3507

RB M=10 43 138 212 645 822 730 1442 1481 3628 3169

RB M=20 32 77 143 440 602 459 696 862 2035 2075

RB M=30 42 83 145 369 409 474 625 842 1627 1435

RB M=40 47 93 171 434 427 523 662 861 1717 1376

RB M=50 49 86 141 312 415 528 615 736 1256 1272

CG-PF 58 316 501 834 959 1221 2718 2525 2864 2162

CG-Geo 41 187 431 844 954 787 1761 2076 2782 2097

Algorithm A6.3.1mod] for the line-search strategy in Algorithm 3.9.3, which is [41,

Algorithm A6.3.1] with this additional check on the step length. Having specified the

line-search strategy it remains to determine which retraction and vector transport

is to use. To guarantee in the RBFGS method that ρk > 0 in (3.31) we will only

consider to use the geodesic (3.19) for the retraction and the parallel translation in

(3.22) for the vector transport as in this case the condition ρk > 0 is always satisfied.

Which retraction to use for the nonlinear CG method will be part of our investigation

of this test. For the version of Polak-Ribière we will look at the performance when

using two different retractions. The first is the geodesic in (3.19) for which we use

the parallel translation in (3.22) for the vector transport (CG-Geo) and the second

is the unitary polar factor defined in (3.20) combined with the vector transport in

(3.21) (CG-PF). As in Section 4.7 if the direction ξxk+1
in Algorithm 3.9.1 is not a

descent direction we use the steepest descent direction − grad f(xk+1).

For the limited memory RBFGS method (RB) we will consider the performance

for different values of M in Algorithm 3.9.2, that is the maximal number of pairs

(yi, si) stored and used to approximate the Hessian.

Note that we also investigated the version of the nonlinear CG method proposed

by Fletcher and Reeves but as from our tests we clearly observed that this version is

not competitive we omitted the results. In our tests the version of Fletcher-Reeves

takes at least a factor of 10 more iterations in the nonlinear CG method and performs

clearly worse in terms of time than the version of Polak-Ribière and often fails to

converge to a point that satisfies our stopping criterion. The failure is caused in the

backtracking procedure due to limitations of the smallest step size allowed.

For the test in this section we generate 5 instances of square Hankel matrices of



CHAPTER 5. LOW RANK PROBLEM OF STRUCTURED MATRICES 150

type uhankel with dimension n = 50, 80, 100, 120, 150 and try to reduce the rank

of A =
∑s

i=1 aiUi by 5 and 10 with a and U1, . . . , Us as specified for uhankel. We

report a selection of our results in Table 5.1 and Table 5.2 where we use the following

abbreviations:

• t: mean computation time (in seconds) taken to run Algorithm 5.3.1.

• it: mean total iteration number taken in either the CG algorithm or in the

limited memory RBFGS method to solve the inner problem on line 4 of Algo-

rithm 5.3.1.

• f(X∗): mean objective function value 1
2
‖A−X∗‖2Q of (5.2) at the returned

point X∗.

• Assv: mean sum of the p− r smallest singular values of A.

• Xssv: mean sum of the p− r smallest singular values of X∗.

• µ∗: mean value of µ at the last iterate.

Note that we observed no significant variation between the 5 instances during

our tests so that the mean values displayed in Table 5.1 and Table 5.2 are good

representation of the overall performance of Algorithm 5.3.1 and the methods to solve

the inner problem. Note further that for all our tests we do not time the seconds that

are spent on computing the s(s + 1)/2 sparse matrix-matrix-multiplications UT
i Uj

in (5.24), although for n and p large computing these products can make a large

contribution to the total time. However, in all our tests n and p are sufficiently small

so that the contribution to the total computation time is negligible.

From Table 5.2 we observe that the constraint violation is reduced by applying

Algorithm 5.3.1 and that the points X∗ returned by Algorithm 5.3.1 for the different

methods used to solve the inner problem are comparable. If we look at the perfor-

mance in Table 5.1 we see that in terms of iterations and time taken the limited

memory RBFGS clearly outperforms the nonlinear CG if M is large enough. For

which value of M the best performance is achieved depends thereby on the value of

n. The larger n the more stored pairs (yi, si) are required to obtain the best per-

formance. One reason for the superiority of the RBFGS method is also observed by

looking at the iterations required in the backtracking procedure. For instance, the

RBFGS method with M = 50 takes only about a third of the number of iterations

in the backtracking procedure than taken by the nonlinear CG method. Therefore

the computational overhead for computing the descent direction in the RBFGS in

comparison to the CG method pays off and yields eventually better performance.
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Table 5.2: Results for Algorithm 5.3.1 for different methods to solve (5.23) for test
matrices uhankel.

r = n− 5 r = n− 10

f(X∗) Xssv µ∗ f(X∗) Xssv µ∗

n = 50 Assv= 1.37 Assv= 4.46

RB M=1 1.163 6.9e-5 1571 3.640 1.3e-4 2188

RB M=30 1.109 3.6e-5 1751 3.634 1.2e-4 1615

RB M=50 1.109 4.8e-5 1731 3.637 8.7e-5 1502

CG-Geo 1.176 6.9e-5 2088 3.638 1.6e-4 1898

n = 100 Assv= 1.09 Assv= 3.79

RB M=1 0.924 8.4e-5 2167 3.865 1.6e-4 2767

RB M=30 0.959 5.6e-5 3175 3.681 1.4e-4 2750

RB M=50 0.965 8.7e-5 2284 3.728 1.2e-4 2724

CG-Geo 0.970 9.2e-5 2638 4.291 9.2e-5 3286

n = 150 Assv= 0.75 Assv= 3.22

RB M=1 1.088 7.4e-5 5596 4.494 1.5e-4 3426

RB M=30 1.090 9.9e-5 3838 4.402 2.5e-4 2837

RB M=50 1.090 7.6e-5 3549 4.527 2.5e-4 3459

CG-Geo 1.119 1.1e-4 3168 5.067 2.2e-4 4291

In all subsequent tests when we refer to Algorithm 5.3.1 we use the limited memory

RBFGS, Algorithm 3.9.3 to solve the inner problem in Algorithm 5.3.1 with the

geodesic (3.19) as retraction and the parallel translation in (3.22) as vector transport.

We also set the maximal number of stored pairs toM = 30 and use the starting matrix

N0 in (5.37).

Test 2

The first test was devoted to finding the specifications and parameters for Algo-

rithm 5.3.1 that yield the best performance. The second and third test is to compare

Algorithm 5.3.1 with the methods in Section 5.4.2, namely LIFTPROJ and FMIN-

CON. We start by applying all methods to our problem for the test matrices of type

uexample as we know the optimal solution for this example and that the LICQ

defined in Definition 4.6.9 is satisfied at this solution. The aim is to reduce the rank

of the matrix A of uexample by one.

In LIFTPROJ we set ϕ to the smallest singular value of the point returned by

Algorithm 5.3.1. Our results are presented in Table 5.3 where the number of it-

erations refers to the total number of iterations in the nonlinear CG method for

Algorithm 5.3.1, for LIFTPROJ to the total number of performed iterations for the
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Table 5.3: Results for test matrices of type uexample.

Algorithm 5.3.1
LIFTPROJ FMINCON

(RB, M = 30)

total number of iterations 9 1 5
µ∗ 19.1 - -

starting point N0 =

[
0
1

]
X0 =

[
2 0
0 1

]
x0 =

[
2
1

]

returned point X∗

[
2 0
0 3.1e-6

] [
2 0
0 0

] [
2 0
0 -1.1e-10

]

starting matrix that yields the smallest function value and for FMINCON it refers to

the number of iterations in the trust-region algorithm. As we see from Table 5.3 all

algorithms return a point that is close to the global solution. However, if we change

the starting value of Algorithm 5.3.1 to N0 = (1, 0)T this algorithm returns only a

local solution that is

X∗ =

[
2.2e-5 0

0 1

]
,

which gives support for your chosen starting value N0 in (5.37) for Algorithm 5.3.1.

This shows that we deal with a highly nonconvex objective function in (5.23). There-

fore we can expect at most that the Algorithm 5.3.1 returns a point being close to a

local minimum.

Test 3

In the third test we look at the performance of all three methods introduced in Sec-

tion 5.4.2 for different test matrices of type uhankel and urand. We are particularly

interested in how far the distance between the given matrix A and the returned point

X∗ is.

For type urand we generate square test matrices of dimension n = 100, 150, 200

and we apply our algorithms to find a solution of (5.2). As we can apply FMINCON

only for a reduction of the rank of A by one we first devote ourselves to only r = p−1.
For urand we set s = 2n ≥ (n− r)(p− r)+ 1 to satisfy condition (5.31). Our results

are summarized in Table 5.4 where we use the following abbreviations:

• t: computation time (in seconds) taken to run the particular algorithm.

• it: depending on the algorithm:

– Algorithm 5.3.1: total number of iterations in the limited memory RBFGS

algorithm.

– LIFTPROJ: number of iterations in LIFTPROJ.
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Table 5.4: Results for r = p− 1 and test matrices urand.

Algorithm 5.3.1
LIFTPROJ FMINCON

(RB, M = 30)

n 100 150 200 100 150 200 100 150 200

t 5.0 12.5 23.6 10.3 2.6 6.5 327 10.2 692
it 38 104 116 102 9 12 298 6 164

1

2
‖A−X∗‖2

F
0.0005 0.0018 0.0041 11.4 51.8 49.1 47.1 1.32 665

Assv 4e-3 6e-3 9e-3 4e-3 6e-3 9e-3 4e-3 6e-3 9e-3
Xssv 4e-7 7e-6 2e-7 6e-10 3e-10 5e-13 2e-7 5e-6 8e-3
‖X∗‖2

F
5.2e2 1.1e4 9.6e3 3.6e-4 1.3e-12 2.4e-15 4.3e2 1.1e4 9.2e3
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Figure 5.1: 1
2
‖A−X∗‖2Q against the objective rank r.

– FMINCON: number of iterations in the trust-region algorithm.

• Assv: sum of the smallest p− r singular values of A.

• Xssv: sum of the smallest p− r singular values of X∗.

Note that we cannot guarantee in general that a nontrivial solution for the test

matrices urand exists. To identify whether the returned points are close to zero we

also report ‖X∗‖2F in Table 5.4.

From this table we clearly see that Algorithm 5.3.1 outperforms the other methods

and yields the smallest function value. LIFTPROJ returns only the trivial solution

X∗ = 0 and FMINCON returns a nonzero solution but the function value at this

solution is far larger than for the solution returned by Algorithm 5.3.1. For n =

200 FMINCON even fails to satisfy the stopping criterion (5.34) due to numerical

limitations.

To test the performance of Algorithm 5.3.1 for a rank reduction of more than one

we also generated test matrices of type uhankel and urand for n = 100, p = 100,

r = 1, 4, 7, . . . , 16. In Figure 5.1-5.3 we show the results where we plot in this order

the distance 1/2‖A−X∗‖2Q , the sum of the p− r smallest singular values of X∗, and
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Figure 5.2: Xssv against the objective rank r.
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Figure 5.3: Computational time in seconds against the objective rank r.
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Figure 5.4: Norm of gradient against number of iterations in RBFGS algorithm.

the computational time in seconds against the objective rank r of X∗. We see in

Figure 5.1 that the distance between A and X∗ is dramatically increasing when r

becomes smaller. Therefore for r small the smallest function value may be attained

at the trivial solution X∗ = 0. In Figure 5.3 we see for r = 87 that the algorithm

has difficulties to find a solution and fails for r = 84. This could be an indicator that

no nontrivial solution of this problem exists. Note that for this test we also applied

LIFTPROJ but it always returned the trivial solution X∗ = 0.

Test 4

The fourth test is only for illustrative reasons. We depict the behaviour of Algo-

rithm 5.3.1 in Figure 5.4 for n = 100, p = 100 with test matrices of type uhankel

and r = p − 10 where the ‖grad fµ,λ(N)‖
F
with fµ,λ(N) defined in (5.23) is plotted

against the number of iterations in the limited memory RBFGS algorithm and all µk.

We see that the gradient decreases but also oscillates heavily in the course of itera-

tions in the RBFGS method pointing out again that the objective function is highly

nonconvex. During our tests we observed that this behaviour of Algorithm 5.3.1 is

more general for this problem size and by no means only specific to the test problem

used to create Figure 5.4. We also see that most iterations in the limited memory

RBFGS are taken for the initial penalty parameter µ0 to satisfy the stopping criterion

on line 4 of Algorithm 5.3.1. For the subsequent calls of the limited memory RBFGS

far fewer iterations are required. In total the Algorithm 5.3.1 took 98 seconds to

compute the final iterate X∗ where 30% of the total time was spent on computing

F (N) in (5.24) and 25% on performing the vector transports in Algorithm 3.9.2,

respectively.
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Conclusion

In this numerical section we looked at different specifications for Algorithm 5.3.1, in

particular which algorithm of Section 3.9 should be used to solve the inner problem

on line 4 of Algorithm 5.3.1. According to our tests it turned out that the limited

memory RBFGS method outperforms the nonlinear CG method if the number of

stored pairs (yi, si) is large enough. We continued to look at the overall performance

of Algorithm 5.3.1 and showed that it yields in most cases better results than those

methods that we compared it with. In particular in all tests the p−r smallest singular

values of the points returned by Algorithm 5.3.1 had significantly smaller values than

those of the given matrix A. In contrast to the points returned by LIFTPROJ they

were also notably different from the trivial solution X∗ = 0 so that they could be of

use for possible applications.

Certainly, in most tested examples the p − r smallest singular values of X∗ were

greater than

tol = max(size(A)) * eps(norm(A))

that is the tolerance in the MATLAB function rank. This function returns the rank

of a matrix by counting all singular values that are greater than tol. Therefore if we

apply the function rank to our returned matrix X∗ the rank will in most cases still

be the rank of our given matrix A.

For a generated matrix A of type uhankel with dimension n = 100, p = 100

we tried by changing the parameters in Algorithm 5.3.1 what smallest possible size

of the sum of the p − r smallest singular of X∗ we can achieve before we encounter

numerical limitations. For r = p−1 the smallest singular value was about 2.6×10−14

but for r = p− 5 the smallest possible sum was only approximately 2.46× 10−7. In

the latter case we cannot reduce ‖grad fµ,λ(Nk)‖F any further than 0.0147 as for the

next iterate Nk+1 no feasible step length can be found in the Armjio-backtracking

procedure due to numerical rounding errors. Besides having no convergence guarantee

this shows another weakness of Algorithm 5.3.1. Nevertheless, as we have seen in our

tests this algorithm gives us a tool to approximate the solution of the problem and

it actually reduces the size of the smallest singular value despite the fact that we

cannot guarantee convergence.

5.5 Conclusions

In this chapter we looked at the low rank linearly structured matrix nearness problem

in the Q-norm. That is, given a rectangular matrix A we are trying to find a matrix

X ∈ L defined in (1.6) that is closest to A in the Q-norm and of lower rank r.
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We first looked at existing algorithms and we then investigated further the geo-

metric approach by Schuermans et al. [121]. The idea of reformulating the nearest

low rank problem for X ∈ R
n×p as an optimization problem over the Grassmannian

manifold goes back to an idea of Manton et al. in [93]. Schuermans et al. investi-

gated then in [121] the problem when additional linear structure on the matrix X is

imposed. However, the authors disregarded this approach in their tests as they only

obtained the trivial solution X∗ = 0 for p− r > 1 and L the set of Hankel matrices.

We analysed this method further and pointed out in Section 5.2.3 why the authors

obtained only the trivial solution in [121]. Furthermore, to be able to optimize the

problem posed by Schuermans et al. we proposed to use the augmented Lagrangian

method and developed all necessary tools that make the application of this method

possible. We also discussed certain improvements regarding the efficiency of the al-

gorithm and eventually stated our method in Algorithm 5.3.1. This algorithm is

applicable for any linear structure and any Q-norm whereas the additional cost for

Q dense is only moderate. Unfortunately, we cannot guarantee convergence of this

algorithm. Instead we showed by means of two examples that the LICQ, which is a

requirement to apply the existing convergence theory, may or may not be satisfied,

depending on the problem.

In all our numericals tests we have seen that during the iterations this algorithm

reduces the smallest singular values of the iterates Xk and does generally not return

the trivial solution X∗ = 0. We compared the results with other existing algorithms

and observed that most often Algorithm 5.3.1 returned a point that was closest to the

given matrix A. Therefore from the numerical tests we conclude that Algorithm 5.3.1

outperforms the other tested methods.

We also pointed out that the reduction of the smallest singular values of the given

matrix A is restricted due to numerical rounding errors so that, depending on the

problem, the final iterate X∗ is often not of lower rank, only the smallest singular

values are reduced.

In [122] the authors claim that it is not possible to obtain an algorithm that

reduces the rank for any linear structured matrices. With Algorithm 5.3.1 we tried

to contradict this statement and at least for a small reduction of the rank of the given

matrix A we claim that we made a step forward to achieve this target.



Chapter 6

Conclusions and Future Work

Throughout this thesis we have looked at different structured matrix nearness prob-

lems that all come from real applications. In particular, we investigated algorithms

that solve these nearness problems efficiently.

In Chapter 2 we investigated correlation matrices with k factor structure that

mainly arise in the area of finance and we compared different algorithms to solve

the corresponding nearness problem. Throughout this chapter we obtained more

theoretical understanding of these factor-structured problems, particularly through

explicit results for the one parameter and one factor cases. Furthermore, we arrived at

the conclusion that the spectral projected gradient method is the method of choice for

these kinds of problems as it guarantees convergence and performed best in most cases

among all tested algorithms. We are convinced that this work is of great use for many

scientists and financial analysts as the nearness problem can appear whenever a factor

model is used, which is a well established tool in financial modelling. In particular, the

algorithm proposed to solve the nearness problem provides a reliable tool for financial

analysts to validate whether a factor model is appropriate for their analysis. Finally,

as a result of our investigation in this chapter NAG, the Numerical Algorithms Group,

included the algorithm that arose from our analysis in their library [103], convinced

that this algorithm is of interest to their customers. The corresponding routine is

available in their latest release and plans to parallelize this algorithm are being made.

The next structured matrix nearness problems that we looked at were the two

two-sided optimization problems in Chapter 4 that arise in atomic chemistry. At the

beginning we analyzed the first problem and proposed then an analytical optimal

solution of it that is computed by Algorithm 4.4.1. We also showed by means of

this algorithm and applying the active-set method that we can also find an optimal

solution of the second problem. As the optimal solution of the first problem is gen-

erally not unique we established thereafter an optimization framework that allows

to optimize an arbitrary smooth function subject to the constraints that describe
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the structure of the optimal solutions. This mainly involved deriving all geometric

objects of a new Riemannian manifold that are required to apply first-order opti-

mization methods. The algorithm proposed is then an augmented Lagrangian-based

algorithm whose inner problem is solved by applying the nonlinear CG method for

Riemannian manifolds that we discussed in Section 3.9. We compared our algorithm

with an augmented Lagrangian-based method whose inner problem is to minimize

the augmented Lagrangian function over the Stiefel manifold. To incorporate all the

constraints in this method we needed to use p(p − 1)/2 more Lagrange multipliers

than in our proposed algorithm.

From our numerical tests we concluded that our algorithm showed better perfor-

mance if p is not too large. We also pointed out that the projection onto the tangent

space of our Riemannian manifold is the bottleneck of our algorithm as this involved

solving a linear system of order p(p − 1)/2. Another weakness of this algorithm is

that it can fail to find a stationary point of our augmented Lagrangian function.

This is due to the structure of the manifold. We can only guarantee a reduction

of the augmented Lagrangian function in the neighbourhood of our starting point.

Certainly this is a crucial point of our algorithm that requires further improvement.

We believe that one step forward to tackle this problem is to accept step sizes in the

Armijo-backtracking procedure that yield points Y ∈ St(n, p) with Y TΛY diagonal

but whose diagonal elements are not in increasing order. These points are surely

not on our manifold B(n, p) but can be projected onto B(n, p) by multiplying an

appropriate permutation matrix from the right. The latter operation may cause an

increase in the objective function that could e.g. be tackled by a nonmonotone line

search strategy. However, this needs further analysis. Further improvements of our

algorithm could be achieved by looking at different methods to solve the inner prob-

lem in the augmented Lagrangian method. Candidates are for example the limited

memory RBGFS algorithm introduced in Section 3.9 or the trust region algorithm

[3, Algorithm 10].

Further investigation is also required to find an appropriate objective function

whose minimization drives us to a point, at which the optimal solution of the first

problem preserves the sign characteristics of the eigenvectors of N . We mentioned

ideas in Section 4.7.1 but did not pursue them. Overall we conclude that we have

provided optimal solutions to the problems given by Prof. Sax, University of Graz, and

proposed an efficient algorithm that allows to select a specific solution from the set

of optimal solutions by posing a new optimization problem. Therefore this research

could provide helpful tools to obtain meaningful results in science, in particular, in

atomic chemistry and will hopefully contribute to new finding in this area.
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In the last chapter we considered the problem of finding a nearest low rank lin-

early structured matrix. We looked at different existing algorithms that solve these

problems and mentioned pros and cons. Thereafter, we investigated the geometric

approach and proposed to apply the augmented Lagrangian method to the resulting

optimization problem. We discussed some efficiency aspects of the resulting algorithm

and stated it then in Algorithm 5.3.1. By means of two examples we showed that

the LICQ may but also may not be satisfied at the optimal points of the augmented

Lagrangian function, showing that we cannot guarantee convergence of the algorithm

in general by applying the existing theory. However, we observed in all our tests that

our algorithm returns points that have small p − r singular values and performed

better than existing algorithms in terms of time spent. Therefore we are convinced

that is algorithm this of use in many applications, in particular, as it is applicable

to any linear structure and any symmetric positive definite weighting matrix Q in

the Q-norm. Similar to Chapter 4 we could also investigate other algorithms like the

trust region algorithm [3, Algorithm 10] to solve the inner problem in the augmented

Lagrangian method to improve further the performance of our algorithm.

Overall we have seen that structured matrix nearness problems come from many

applications and lead to interesting optimization problems in numerical analysis. In

particular, we observed that different matrix structures can lead to very different

optimization problems. We conclude that throughout these chapters we gained a

deeper understanding of these problems and were thus able to propose algorithms

that exploit the matrix structure and help to solve these nearness problems efficiently.

We hope that these algorithms provide a tool to analysts and scientists to solve the

structured matrix nearness problems discussed and thus, help to gain more knowledge

in their areas of research.



List of Symbols

Sets

N set of natural numbers.

Z set of integer numbers.

R set of real numbers.

R
n×p set of real matrices with dimension n-by-p.

Cs(Rn×p) set of functions f : Rn×p 7→ R that are s times continuously

differentiable.

0n×p zero matrix in R
n×p.

In identity matrix in R
n×n.

Sn set of symmetric matrices in R
n×n.

S+
n set of symmetric positive semidefinite matrices in R

n×n.

Kn set of skew-symmetric matrices in R
n×n.

Sn
0 set of symmetric matrix in R

n×n with zero diagonal.

M a smooth manifold.

TxM tangent space ofM at x.

NxM normal space ofM at x.

TM tangent bundle ofM.

F(M) set all smooth real-valued functions defined onM.

O(n) set of orthogonal matrices in R
n×n.

St(n, p) Stiefel manifold in R
n×p. See Section 3.8.1.

Gr(n, p) Grassmannian manifold St(n, p)/O(p). See Section 3.8.2.

Operators

◦ : R
n×p × R

n×p 7→ R
n×p H = A ◦ B is the Hadamard product (hij =

aijbij).

diag : R
n 7→ R

n×n diag(a) is the diagonal matrix with a on its

diagonal.
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diag : R
n×n × · · · × R

n×n 7→
R

np×np
diag(A1, . . . , Ap) is a block diagonal matrix

with A1, . . . , Ap on the diagonal.

diag : R
n×n 7→ R

n diag(A) is a vector with the diagonal of A.

offdiag : R
n×n 7→ R

n(n−1) offdiag(A) is a vector with the offdiagonals of

A stacked on top of each other starting with

the most upper right.

dim : {set of all spaces with

a countable basis} 7→
N ∪ {∞}

dim(A) is the dimension of A.

trace : R
n×n 7→ R trace(A) =

∑n
i=1 aii the trace of A.

vec : R
n×p 7→ R

np vec(A) stacks the columns of A into a long

vector

sym : R
n×n 7→ Sn

0 sym(A) = A+AT

2
is the symmetric part of A.

skew : R
n×n 7→ Kn skew(A) = A−AT

2
is the skew-symmetric part

of A.

⊗ : R
n×p × R

k×l 7→ R
nk×pl A⊗B is the Kronecker product of A and B.

See Appendix A.1.

∇ : C1(Rn×p) 7→ R
n×p ∇f is the classical derivative of f .

∇2 : C2(Rn) 7→ R
n×n ∇2f is the second classical derivative of f .

grad : F(M) 7→ TM grad f is the geometric gradient of f defined

in (3.4).

Hess f(x) : TxM 7→ TxM Hess f(x) is the Riemannian Hessian of f ∈
F(M) at x ∈M defined in (3.9).

T : TM× TM 7→ TM Tξx(ηx) denotes the vector transport defined

in Definition 3.7.10.

⊥: R
n×p 7→ R

n×(n−p) Y⊥ is a matrix that has orthonormal columns

and satisfies Y TY⊥ = 0 for Y ∈ R
n×p.

qf : R
n×p 7→ R

n×p qf(A) is the Q-factor of the QR decomposi-

tion of A for A of full rank.



Appendix A

Some Definitions

A.1 Kronecker Product

As we often make use of the notation of the Kronecker product, mainly in Chapter 5,

for completeness we define it in this section and list some of its key properties. Let

us start with the definition.

A.1.1 Definition

Definition A.1.1. The Kronecker product ⊗ : Rn×m × R
r×t 7→ R

nr×mt written as

A⊗B for A ∈ R
n×m, B ∈ R

r×t, is defined as

A⊗ B =




a11B a12B . . . a1mB
...

...
...

an1B an2B . . . anmB


 .

A.1.2 Properties

Let A ∈ R
n×m, B,C ∈ R

r×t, and s ∈ R. Then it holds that

• A⊗ (B + C) = A⊗ B + A⊗ C,

• A(A+ B)⊗ C = A⊗ C + B ⊗ C,

• (sA)⊗B = A⊗ (sB) = s(A⊗B),

• (A⊗B)⊗ C = A⊗ (B ⊗ C),

• (A⊗B)P = P (B ⊗ A)

where P is the permutation matrix defined by vec(AT ) = Pvec(A). For m = r,

D ∈ R
l×k, E ∈ R

l×p, and X ∈ R
k×n we also have
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• (A⊗D)(B ⊗ E) = (AB ⊗DE)

• (AT ⊗D)vec(X) = vec(DXA).

For more details on Kronecker products, see Horn and Johnson [70, Chapter 4] or

Lancaster and Tismenetsky [82, Chapter 12].

A.2 Fréchet Derivative

Definition A.2.1. Let f : Rm×p 7→ R
n×q be a matrix function. Then the Fréchet

derivative at a point X ∈ R
m×p is a linear mapping Lf (X, ·) : Rm×p 7→ R

n×q such

that for all E ∈ R
m×p

f(X + E)− f(X)− Lf (X,E) = o(‖E‖)

where ‖·‖ is any matrix norm.

For a reference see [66, Section 3.1] where the Fréchet derivative is defined on

functions from C
n×n 7→ C

n×n. However this definition is also valid for real and

rectangular matrices. Note if the Fréchet derivative exists it is equal to the directional

derivative

lim
t→0

f(X + tE)− f(X)

t

[66, Section 3.2].
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Wilmott Journal, 1(2):95–100, 2009.

[52] K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for computer algebra.

Kluwer Academic Publishers, 1992.

[53] J. E. Gentle. Elements of Computational Statistics. Springer-Verlag, 2002.

[54] P. Glasserman and S. Suchintabandid. Correlation expansions for CDO pricing.

Journal of Banking & Finance, 31:1375–1398, 2007.

[55] G. H. Golub and V. Pereyra. The differentiation of pseudo-inverses and nonlin-

ear least squares problems whose variables separate. SIAM J. Numer. Anal.,

pages 413–432, 1973.

[56] G. H. Golub and C. F. Van Loan. An analysis of the total least squares problem.

SIAM Journal on Numerical Analysis, 17(6):883–893, 1980.

[57] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins Uni-

versity Press, 3rd edition, 1996.

[58] J. C. Gower and G. B. Dijksterhuis. Procrustes Problems. Oxford University

Press, 2004.

[59] I. G. Graham, F. Y. Kuo, D. Nuyens, R. Scheichl, and I. H. Sloan. Quasi-Monte

Carlo methods for elliptic pdes with random coefficients and applications. Jour-

nal of Computational Physics, 2011. DOI:10.1016/j.jcp.2011.01.023, appeared

online.



BIBLIOGRAPHY 170

[60] J. Gregory and J.-P. Laurent. In the core of correlation. Risk, 17(10):87–91,

2004.
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