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Much  of the  work  in  the  sociology  of science  observes  scientific  communities  from  a  micro  perspective,
focusing  on  interactions  in  laboratories  in order  to  uncover  the  impact  of  social  and  cultural  norms  in
the everyday  production  of  scientific  results.  Other  studies  approach  the topic  from  a  macro  perspective,
analysing  scientific  organizations  and  the  reciprocal  influence  they  have  with  wider  society,  or  uncov-
ering  the  invisible  colleges  that  become  apparent  through  the  analysis  of  co-authorship  and  citations’
patterns.  Less  attention  has been  paid  to the  meso  level  of  interaction  within  and  between  scientists  and
the institutions  they  work  in. This  paper  extends  the  structural  approach  of  Lazega  et  al.  (2008.  Catching
up  with  big  fish  in  the big  pond?  Multi-level  network  analysis  through  linked  design.  Social  Networks
30,  157–176)  and  analyses  the  local  system  of  public  funding  to physics  in  Italy  using  bipartite  networks.
Data  cover  10  years  of  funding  of  Projects  of  National  Interest  (Prin)  from  the  Italian  Ministry  of University
and  Research.  The  micro  level  (collaborations  between  scientists),  macro  level  (collaborations  between

institutions)  and  meso  level  (the combination  of  network  measures  at a micro  and  macro  level)  of  inter-
actions  are  independently  analysed,  and results  are  used  to  model  the total  amount  of  money  physicists
have  received  over  the  10 years  against  the  variables  that  meaningfully  describe  the  network  structure
of  collaborations.  Results  show  that  in  order  to be  successfully  funded  what  counts  more  than  being  a
big fish  (a  scientist  with  a  lot  of connections)  working  in  a  big  pond  (a large  University),  is being  in  a

cting
brokerage  position  intera

. Introduction

The production of scientific knowledge is a complex mechanism
hat involves several agencies, such as funding bodies, universi-
ies, scientists, and laboratories for experimental research. It is also

 process of different phases, such as selection of research areas,
ecruitment of research groups, competition for funding, organi-
ation of research work, publication of results and dissemination
f findings both in a scientific community and to the wider public.
ll the steps required to produce and validate science can be seen
s systems of interconnections between different actors at differ-
nt levels, engaging in social interactions where the goal is to make

esearch possible, and to gain scientific prestige both for individuals
nd for organizations.

The tradition of studies in sociology of science has been focused
n disentangling these processes in order to describe and explain

� Data presented in this article are part of a Prin project “Campi di produzione del
apere a confronto: strutture, pratiche e attori nella fisica e nella filosofia”, funded
n  2005 by the Italian Ministry of University and Research.
∗ Correspondence address: Arthur Lewis Building, Bridgeford Street, Manchester
13  9PL, United Kingdom. Tel.: +44 0 161 275 2921.

E-mail address: Elisa.Bellotti@manchester.ac.uk
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 over  the  years  with  different  research  groups.
© 2011 Elsevier B.V. All rights reserved.

the social factors that play a role both in the life of scientists and in
the definition of what is required to be considered science. Much
work has been dedicated to exploring the social elements that
shape the scientific production of knowledge, showing how the
process of defining objectivity is not only subjected to empirical
evidence and logic consistency, but also to social and cultural fac-
tors. Within the process of validation and recognition of science,
power and competition relationships interlock with collaboration
and discussion in order to achieve a collective definition of scientific
knowledge.

Sociology of science studies the process of constitution of insti-
tutional apparatuses in charge of organizing the production of
science. The importance of knowing how these apparatuses work
is crucial for any scientific discipline: while some of them are still
characterized by a relative small scale of organization, some oth-
ers, like physics, are today dominated by what has been called
big science (de Solla Price, 1963): these scientific fields require
big research groups, massive technological instruments, and large
laboratories where experiments are centralized and funded by
national governments, who  commit to long term investments. This
means that big science cannot be done entirely at a national level

anymore (as it was  the case until the Second World War) and that
funding efforts are concentrated to few large experiments and lab-
oratories (like Cern in Ginevra or Slac in S. Francisco for particle
physics).

dx.doi.org/10.1016/j.socnet.2011.12.002
http://www.sciencedirect.com/science/journal/03788733
http://www.elsevier.com/locate/socnet
mailto:Elisa.Bellotti@manchester.ac.uk
dx.doi.org/10.1016/j.socnet.2011.12.002
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The international organization of big science does not entirely
ash away national differences: while the job market of scien-

ific careers is more internationalised in English speaking countries,
ther countries’ systems of recruitment are still nationally based.
his is the case of Italy, where the academic system of recruitment is
entralized around the Ministry of University and Research (Miur)
nd the vast majority of scientists are Italian. Here mechanisms are
ocalised and scientific communities are more easily bounded, but
hey still need to be empirically examined, as it is not always imme-
iately evident who belongs to a community, who  is peripheral,
ho is not part of it, and how connected such a community is. Each

cademic sector in Italy is organized around sub-disciplines; every
ub-discipline enrols scientists via national competitions organized
y Miur, and successful candidates are subsequently appointed
y Universities according to departments’ needs. While the sub-
isciplines all together and their distinctions might be useful to

dentify a scientific community and its subgroups, different strands
f research can be found in sub-disciplines; also, interdisciplinary
ollaborations cut across disciplinary boundaries, making the bor-
ers of sub-disciplines and the whole field of science permeable;
nally, as in the case of Italian physics, Miur only controls academic
areers, but other independent institutions, like the National Insti-
utes for Nuclear Physics (Infn), and for Material Physics (Infm),
lso contribute to scientific research with their own  employed sci-
ntists.

Institutions impact over science at a macro level. They provide
he infrastructure, the organizational and the intellectual envi-
onment for research: universities, departments, laboratories and
esearch centres exchange people, ideas and technologies, collab-
rate for production and dissemination of results, and produce
rganizational cultures that define their goals and their practices.
cientists live and work in this environment, and interact within the
nstitutional frame that shapes their possibilities and constrains. At
he same time, at a micro, individual level, scientists develop sev-
ral kinds of relationships with people they meet along their career:
riendship, advice exchanges, rivalry, collaborations, conflicts and

entorships are social relations that can play an important role in
acilitating or hampering the production of science in terms of diffu-
ion of knowledge and validation of results. An interesting attempt
o study the way  in which these different levels intersect is repre-
ented by the structural approach of multilevel networks (Breiger,
974; Fararo and Doreian, 1984; Hedström et al., 2000; Lazega et al.,
008). Here, the macro level of institutional and organizational link-
ges is connected to the micro level of personal relationship via a
eso level of affiliations: in other words, the structural approach

s able to connect the organizational structure with the web of
ersonal interactions, and to observe how the two interconnected

evels affect the performances of both institutions and individuals.
This paper follows the structural approach in order to recon-

truct and analyse the Italian national system of public funding in
he field of physics. Data presented here are only a small part of a
ider research project on the production of knowledge in physics

n Italy (Bellotti et al., 2008; Bellotti, 2011), and they focus on the
esearch Projects of National Interests (Prin) funded in Italy by
iur in the area of physics from 1997 to 2006. This is not the only

ine of funding available in Italy: other sources of money are for
xample Infn and Infm which provide the major part of funding for
esearch in terms of the Italian participation to the big international
xperiments (Volontè, 2008). However, Prin is an important line of
unding as it is mainly used to create temporary research positions
Bellotti, 2008), and because it is one of the criteria of evaluation of
cientists’ careers in Italy. Moreover, it illustrates some interesting

eculiarities of the Italian academic system.

Historically, the fundamental research in physics in Italy has
een lead by Infn, an institution created in 1951 with the specific

ntention to subtract the decisional power and the control over
 34 (2012) 215– 229

funding in the area of physics from the local powers of academic
departments on one side, and the bureaucracy of Ministry of Uni-
versity and Research on the other side. Infn was funded via the
Cnrn, the National Committee for Nuclear Research, created the
following year by the Ministry of Industry and Trade (it became
the National Committee of Nuclear Energy, Cnen, in 1960): the
fact that the institution was  created and funded by the Ministry
of Industry and Trade, rather than the Ministry of University and
Research, highlights the political and economic interests in sup-
porting Italian research in physics in order to keep pace with the
international competition over nuclear energy, but also signals the
marginal role of Universities in the initial participation of Italy to
the emerging international big science (Ippolito and Simen, 1974;
Volontè, 2008). While Infn rapidly became the main institutional
actor in Italian physics (followed by Infm, a twin institution cre-
ated in the ‘80s for material physics) in terms of control over the
system of research funding, the scientific careers of physicists are
still mainly controlled by Universities, especially in terms of recruit-
ment. Infn and Infm only offer research positions, therefore they
appoint already trained scientists, while the training system (from
undergraduate to PhD levels) is concentrated in Universities. This
creates an interesting synergy between Infn and Universities, as the
latter are in charge of developing future researchers. Given the fact
that Prin projects are often used to create post doctoral positions,
and the line of funding is only accessible by academic personnel
(not by Infn researchers), it is clear the strategic importance of Prin
line of funding, even if money generated by these projects is only a
small part of the overall funding in physics.

Following this introduction, the second section of the paper
revises the literature in sociology of science, showing how pre-
vious classic studies have focused on a micro or a macro level of
observation, missing out the importance of adopting a network
perspective in the study of the production of science. A structural
approach has been advanced by social network scholars, who have
improved the empirical validation of previous theories, and have
introduced a meso level of observation which, through bipartite
networks, takes into account the micro and the macro levels and the
interactions between them. In the third section I introduce and con-
textualise the dataset, describing the competitive system of public
funding to research projects in Italy, and underlining the impor-
tance of some individual variables (national coordinator, rank and
sub-disciplines) in the process of obtaining money. The fourth sec-
tion describes the micro, macro and meso level of collaboration to
research projects, in terms of collaborations between scientists, col-
laborations between institutions, and the combination of the two
levels. In the fifth section I hierarchically model the total amount
of money received by every scientist in the 10 years under analysis
against individual attributes, personal collaborations, institutional
collaborations, and the categories obtained combining centrality
scores at a micro level with the size of departments at a macro level.
Results and limits of the present research are discussed in the final
session, while conclusions highlight further research questions that
have emerged from the analysis.

2. Scientific communities and multi-level network analysis

Much work in sociology of science is dedicated to studying the
influence of social factors over the production of science. Back in
the 40s Merton set up the debate insisting on a weak position of
sociology of science, as only cultural aspects of the scientific job
can be addressed by sociology, while the foundations of the scien-

tific method (empirical verifiability and logic coherence) are left to
epistemology of science (Merton, 1949). Departing from this classic
position, subsequent scholars attempt to open the black box of sci-
entific method and investigate the role of everyday interactions in
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he construction of the contents of science. The attention thus shifts
o the analysis of controversies and conflicts that lead to changes
n scientific paradigms (Kuhn, 1962). The merit of linking the pro-
uction and validation of scientific products to local socio-cultural
orms belongs to the Edinburgh School and the work of Barnes
nd Bloor (1982),  as well as to Collins (1985) and the Bath school,
ho are interested in the processes of interactions in and through
hich interests, preferences and beliefs are formed, somehow inde-
endently from the structure of dispositions that scientists have
ccording to their position in the social world. Finally, labora-
ory studies (Gilbert and Mulkay, 1984; Knorr-Cetina, 1992) push
urther the concept of scientific objects as social and cultural con-
tructions, showing how they are technically built in laboratories
nd symbolically made up through literary and political discourses,
hose goal is making alliances and gaining resources.

A departure from previous approaches in sociology of science
an be found in the actor-network theory (ANT) developed by
atour and Callon (see for example Latour, 1987,2005). Here the
oncept of network is introduced, where actors can be equally peo-
le, objects (actants) and organizations. The main problem of such
pproach lies in the fact that ANT theory tends to be highly deter-
inistic in terms of network constrains over actors: once an actor

etwork is stabilized, the possibilities of actions become increas-
ngly narrow (Whittle and Spicer, 2008). Moreover, ANT theory
ails to engage with the wider literature of empirically observed
etworks, as ANT views social network analysis as heavily limited
y the fact it accounts only for relationships between humans in

nformal settings (Callon, 2001; Cambrosio et al., 2004). The same
ritics have been advanced by Bourdieu, who accuses SNA to neglect
he study of the underlying structures that shape the field of sci-
nce, focusing only on “the analysis of particular linkages (between
gents and institutions) and flows (of information, resources, ser-
ices, etc.) through which they become visible” (Bourdieu, 2004:
14).

But these previous approaches to sociology of sciences, while
riticizing SNA for the focus on concrete relationships, do them-
elves lack from the advantages of observing empirical networks,
hich are useful in understanding the reciprocal influences of local

nteractions over organizational structures and vice versa. Labo-
atory studies and ANT rely on a micro approach to the study
f interactions, where the effort to regularization in an empirical
epertoire is seen as local and individual strategy to gain prestige,
nd it is detached from the influence of the overall structure of the
eld of science. Bourdieu, on the other hand, abstracts the individ-
al features (in terms of combinations of capitals required to occupy

 structural position) to a macro perspective, without taking into
ccount the level of concrete interactions (for a review of similar-
ties and difference between SNA and Bourdieu’s field theory, see
ellotti, 2011).

Also, the critics that social network analysis focuses only on
uman actors and on few types of relationships does not seem
o be sustainable, as SNA has produced a large number of stud-
es where actors are of different nature (scientists, institutions,
onferences and workshops, articles, journals, disciplines1) and

ifferent kinds of relationships are mapped (friendship, mentor-
hip, co-authorship, citations, advice, diffusion of information). But
nstead of being limited to the micro level of local interactional

1 While it is evident that these networks do not only take into account humans, the
undamental difference from ANT and SNA is still that in SNA there is an underlining
ssumption that some sort of social interaction between humans is at the basis of
ny  kind of relationship. And it is difficult to accept ANT critics when, for example,
he network presented in Cambrosio et al. (2004) is made out of reagents submitted
o  workshops: even if the nodes here are non human, they still entail a (group of)
esearcher submitting a reagent to a (group of) organizer of the workshop.
 34 (2012) 215– 229 217

mechanisms, or trying to jump from the micro to the macro
abstracting individual features, SNA has focused on empirical con-
nections to test the robustness of various theories in sociology of
science and to study the evolution of several disciplines (Crane,
1972; Burt, 1978/79; Lievrouw et al., 1987; Hummon and Doreian,
1989; Hummon and Carley, 1993; Liberman and Wolf, 1998).

In particular, the works of Lievrouw et al. (1987) and of Liberman
and Wolf (1998) suggest two interesting elements in the study of
scientific production. First, relationships between scientists can-
not be reduced to co-authorship and co-citations, but involve a
wider set of interactions, from competition for research funding
to affiliation to different organizations. Second, they point out the
importance of finding a way  to mediate between the micro level
of individual relationships and the macro levels of institutional
exchange, where institutions can be research groups, departments,
universities, specialities and disciplines, journals or even national
countries. These levels are dependent to each others, as the actors
are simultaneously embedded in everyday micro interactions, and
in affiliations to the higher, macro level of institutions and orga-
nizations. The need for a dual approach in the study of networks,
where both individuals and collectivities are taken into account, is
first advanced by Breiger (1974),2 who describes the properties of
two modes networks. Fararo and Doreian (1984) extend Breiger’s
formalism to tripartite networks, where, for example, people are
embedded in groups and groups in organizations: they then gen-
eralize the conceptual basis and the matrix formalisms of bipartite
graphs to tripartite networks, and produce a set of matrix equa-
tions and operations that can be applied in the study of empirical
networks.

This has been done in a recent study by Lazega et al. (2008) that
analyses the meso level of interaction in the production of science.
In their article, Lazega et al. (2008) extend the principles of linked
design (Parcel et al., 1991) to structural analysis in order to study the
“duality” of social life (Breiger, 1974), where duality is represented
as “multi-level networks of two systems of superposed and partially
interlocked interdependencies, one inter-organizational, the other
inter-individual” (Lazega et al., 2008: 160). They study the net-
work of the élite of French cancer researchers, selected according
to the number of articles published in scientific journals between
1996 and 1998, both at the individual and the organizational level.
They also map  several kinds of relations between individuals and
between organizations, moving beyond the traditional analysis of
co-citations and co-authorships.

In their analysis, they combine degree centrality measures at
the level of the individual network of relationships with the ones at
the level of the inter-organizational network between laboratories,
and create four categories according to how central actors are (big
fishes and little fishes) and how important their laboratories are in
terms of potential access to resources (big ponds and little ponds).
They then regress the production of knowledge, in terms of the
increase in the impact factor of articles published by actors at two
different point of time, against their network profiles (big fishes
in big ponds, little fishes in big ponds, big fishes in little ponds
and little fishes in little ponds), and point out possible strategies
of the last three categories in catching up with the big fishes in
big ponds. Their results show that while it is not necessary to be
in a big pond (a large laboratory designated by élites as a central
laboratory) in order to have a chance at catching up, the position

of an organization in the inter-organizational network is still more
important in terms of attaining high levels of performance than the

2 Fararo and Doreian (1984) acknowledge that the same formalization was pro-
posed by Wilson (1982) in a paper written in the 1960s but only published later on.
Wilson and Breiger arrived to the identical matrix equations of bipartite graphs.
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osition of individual members in the network of the élite (Lazega
t al., 2008: 174).

The structural approach to multilevel networks introduces an
mportant distinction in the conceptualization of micro and macro
evels. In previous research traditions of sociology of science, micro
evel is intended as the combination of individual attributes, or at
east their symbolic interactions with others, without organizing
hese interactions in networks. On the other hand, macro level is
he level of aggregate phenomena, where collective actions and
nstitutions are analysed as separate from individual, assuming a
eciprocal influence (of collective cultures over individuals, and
f individuals’ actions over collectivities) which is not empirically
ested. SNA and the structural approach (like in the case of Lazega
t al., 2008) consider as micro level the network of individual inter-
ctions, where attributes are only one side of the story, the other
eing the position individuals occupy within the network and the
onsequences this entails in terms of opportunities and constrains.
n the same way, the macro level is considered as the network
f inter and intra ties within and between organizations. A meso
evel links the two together via bipartite networks, accounting for
nterdependencies through matrix algebra.

In this paper I extend Lazega et al’s method to the Italian network
f collaborations to research projects in physics. The dataset con-
ists of 10 bipartite networks of ‘people by funded projects’, one for
ach year from 1997 to 2006. Prin projects are inter-organizational
ollaborations between researchers based in different Universi-
ies: each project is lead by a national coordinator, and involves

 various number of local units, which must be based in differ-
nt institutions. Therefore, the dataset consists of the names of all
he units’ coordinators (the national and the local ones), where the
ink represent their collaboration to a specific project. Given the
act that a researcher can only participate to one project every
wo years (projects are all funded for 24 months),3 each year’s
etwork is reduced to a number of disconnected stars (with ties
etween scientists and the specific projects they work on). Sum-
ing up the 10 bipartite matrices, the resulting network shows the

tars’ overlap, as researchers move from one project to the next
ne (and in some cases from one collaborative group to another)
hrough the years. Data are supplemented with information about
eople’s affiliations to Universities: while it is possible that sci-
ntists during their career move from one university to another,
his is very unlikely in the Italian context, where people tend to
e appointed and spend their entire career in the same Univer-
ity they obtained their PhD from (Beltrame, 2008). Although there
re three distinct sets of nodes (people, projects, Universities), data
o not form a tripartite network as relations are only defined by

ndividual collaborations to research project, while institutional
ffiliation constitutes an attribute to individuals (multiple affilia-
ion is not allowed and change in affiliation not recorded). However,
t is still possible to apply matrix algebra and deduce the ‘University
y project’ matrix, moving from the individual level of collaboration
o the institutional one.4 Both the individual and the institutional

atrices have been transposed, giving a ‘people by people’ val-

ed network of number of projects in common, and the equivalent
alued network for Universities. All networks are undirected.

3 This is true for funded projects, as every researcher, being national coordinator,
ocal coordinator, or simple équipe member, can only work on one Prin project
er time; but it is also true for Prin bids: when a group submits a proposal, all the
embers must be included only in one bid, therefore they cannot place their name

n  several projects in the hoping of having more chances to getting funded.
4 This has been done by transforming the University affiliation attribute vector

nto a two mode binary ‘University by people’ matrix. This matrix is multiplied
y  the two  mode binary ‘people by project’ matrix, obtaining a two mode valued

University by project’ matrix.
 34 (2012) 215– 229

Given the redundancy of the Universities’ network of collab-
orations to the individual ones, here it is not possible to fully
apply Lazega et al. method of multilevel analysis. This is mainly
due to the different context of research collaborations discussed
in this paper. Lazega et al. (2008: 163) explore a wider range of
inter-organizational collaborations, mapping exchanges between
laboratories in terms of recruitment of post doc researchers, the
development of programs of joint research, joint responses to ten-
der offers, sharing of technical equipment, sharing of experimental
material, mobility of administrative personnel, and invitations to
conferences and seminars. In this paper I aim to explore only
the specific cases of collaborations to Prin projects, where several
research teams (the various units coordinated by the team leader
whose name is reported in the data) get together for the specific
purpose of working on a funded project. While collaborations are
born by the individual agreement of scientists, it is still important
to take into account the level of institutional affiliation, as one of
the reason for selecting research partners might be the prestige
of their departments. Therefore a multilevel approach is adopted
here, but because it is not possible to collect data on multiplex
exchange ties at an inter-organizational level, some other mea-
sures of the importance of the institutions are selected. Out of the
possible ones, the size of the departments in terms of appointed
researchers seems to be the most appropriate one, as it still retains
a potential network value in terms of the number of colleagues
each scientist can interact with on a daily basis. Working in a large
department can be an advantage as there are more people scien-
tists can seek advice from; or it could be a disadvantage as in a
larger institutional setting people are less aware of each other (and
therefore can count on less potential advice) than in smaller ones.
Also, working in a big department might be counterproductive in
terms of the number of projects funded every year, as Miur might
limit funding to each institution (the scientific value of the projects
assumed to being equal) in order to guarantee a balance between
Universities.

Regardless the limit of the data, the study is innovative as:

- It applies a modified version of Lazega et al.’s method of analysis
to a new dataset. Data refer to a different national context (Italy),
for a different scientific community (physicists), for a larger set of
individuals and projects (1122 scientists working on 455 projects
and based in 66 Universities). It represents all the people and
projects funded by Miur from 1997 to 2006, therefore it is not
affected by missing data as the population is not sampled. More-
over, the analysis of the micro, the meso and the macro level
of interaction is not limited to degree centrality (Lazega et al.,
2008), but describes the characteristics of networks using several
measures, such as the E-I index, brokerage scores, egonetwork
density, and a core-periphery analysis.

- It observes a social network where relationships are collabo-
ration to research projects, rather than classic co-authorships
or co-citations. Without assuming that research projects are
not selected according to the quality and the innovation of the
proposal, I aim to test the impact of social and structural fac-
tors over the process of selection: this is reasonable given the
fact that research proposals are evaluated not only in terms of
innovation in a scientific field, but also taking into account the
individuals’ CVs and their reputation within the community of
scientists. The analysis gives an insight into the mechanisms
related to the process of funding, as it allows us to model
the impact of individual variables (scientists’ attributes), micro
relational variables (scientists’ collaborations), macro relational

variables (Universities’ affiliations), and meso level characteris-
tics (the combination of the previous two levels) over the amount
of money gained by researchers and institutions in 10 years
time.
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. Overview of the system of Prin funding in Italy

Hunting for funding is a highly competitive task in the life of
 scientist. It is necessary because it is not possible to do research
ithout finances that give access to human and material resources,

ecause it increases the chances of getting a promotion, because
t allows appointing junior staff, and because results are going to
e published, and publications are the measure of scientific job
erformances. This is true for the Research Projects of National

nterest (Prin) line of funding in Italy. The Prin is a form of co-
unding between the Ministry of University and Research (Miur)
nd individual Universities. Every year, researchers obtain a bud-
et from their Universities, which is available for funding 30% of a
esearch project, the rest 70% being provided by Miur if the project
s selected. In order to be funded, a research group must be orga-
ized around a national coordinator, and a variable number of local
nities: every unit is based in a distinct University, and it is lead by

 local coordinator.
Miur defines disciplines according to general areas (maths and

nformatics sciences, physical sciences, chemical sciences, biologi-
al sciences, social sciences, and the like) and every area is further
ivided in several sub-disciplines. For the area of physics, these
re experimental physics, theoretical and mathematical physics,
aterial physics, nuclear and sub-nuclear physics, astronomy and

strophysics, earth system physics, applied physics, and history
nd didactic of physics. Projects must be submitted for a specific
rea (physical sciences) but they can be interdisciplinary in terms
f scientists involved. Thus, for example, it is possible to have a
roject where a theorist and a mathematician work together on
ome theoretical problems, or nuclear physicists work with engi-
eers to develop new instruments, or particle physicists work with
strophysicists on an astro-particle project.

The information on funded projects is available from Miur
ebsite5: every funded project for every year (since 1997) is listed

n a pdf file containing the name and affiliation of researchers
ogether with their role (national coordinator, local unit coordi-
ator), the amount of funded money for each unit, the title of
he project and its description, including units’ specific tasks. Each
roject must clearly state the expected innovations regarding the
iscipline state of art, the provisional number of publications,
atents, conference presentations, PhD thesis, and other outcomes.
lso, the rank of scientists (full professor, associate professor,
nd researcher6) and the sub-disciplinary affiliation are obtainable
rom the same source, together with the full list of all the physi-
ists working in Italian Universities, including the ones who never
ot funded via Prin projects. In 2006 there were 3116 physicists
orking in 73 Universities; 1122 of them, who work in 66 Univer-

ities, have been funded during the 10 years under analysis. Of these
122, 8 people (0.7%) have been national coordinators 4 times, 29
eople (2.5%) 3 times, 64 people (5.7%) 2 times, 215 people (19.1%)

 time, and 806 people (72%) have never been national coordina-
ors. Being a national coordinator is an essential attribute, as s/he
ormally develops the original idea of the project, and establishes
he initial contact with other local units to work on developing the
dea. Because of the role of initiating collaborations, the national
oordinator is also the one who usually receives more money if the

roject is funded.

The Miur website also provides some basic statistics on the num-
er of projects funded over the number of proposed bids from 2001

5 www.miur.it.
6 The rank refers to the position occupied by every scientist in 2006. It was  not

ossible to collect historical data that account for ranking improvement. This is a
erious limit for the research, as it is likely that people in 1997 were in lower ranks
han in 2006, and that some of the researchers were not yet in permanent positions.
Fig. 1. % of funded Prin projects and researchers from 2001 to 2006.

to 2006 (Fig. 1), which shows the decreasing percentage of success-
ful projects over the years, with the exception of 2004. This means
that from 2001 the competition over funding has increased, espe-
cially in 2006. All the research projects are funded for two  years,
which means that each research unit, if its project is selected, can-
not place a bid or participate to any other project in the following
year.

The ratio of the number of physicists in every sub-discipline
funded via Prin projects over the total number of people funded
indicates which sub-disciplines have been more represented in
Prin projects in the last 10 years (Fig. 2). It is interesting to notice
that while 25% of people involved in projects are affiliated to
experimental physics, a good 18% comes from other disciplines,
indicating physics’ tendency to interdisciplinarity with external
sectors. Applying the same ratio to the scientists’ rank, over the total
number of funded people 42% are full professors, 23% are associate
professors, 7% are researchers, and 28% come from other disciplines
(therefore rank is unknown).

This brief overview of the general characteristics of Prin sys-
tem highlights some interesting features of the dataset. Within
projects that do get funded via Prin, experimental physics, interdis-
ciplinary projects, astronomy and material physics are privileged
9%

Material
17%

Nuclear
4%

Astronomy
19%

Fig. 2. % of scientists in each sub-disciplines over the total n. of funded scientists.

http://www.miur.it/


2 tworks

r
f

4

a
m
o
c
b
t
p
w
o
b
w
o

4

t
T
r
T
3
a
w
n
w
t
o
7
o
t
w
u
d
a
i
r
2
f
m
6

g
g
m
a
t
t
t
u

t
m
r
s

p
c
n
w

hypothesis is tested in the final section of the paper, and results
thus suggest a possible direction of causation.
20 E. Bellotti / Social Ne

esources, with full professors dominating the process of getting
unded.7

. The levels of interaction

Sub-disciplines, rank and coordination roles can be considered
s individual attributes of scientists involved in Prin projects. I now
ove to the analysis of the micro, the macro and the meso level

f interactions. The micro level consists of the network of research
ollaborations between scientists. The macro level is obtained com-
ining the micro network with scientists’ affiliation to institutions:
he outcome is a University by University matrix with number of
rojects in common, which does not add information to the net-
ork itself in terms of additional links, but it gives a different view

f the collaboration process. The meso level is constructed by com-
ining the individuals’ number of collaborations (the micro level)
ith the size of their departments. This gives us a modified version

f Lazega et al.’s system of classification (2008).

.1. The micro and the macro level

The network of collaboration is obtained counting a tie between
wo researchers every time they are named in the same project.
he result is a symmetric and valued square matrix, with actors in
ows and columns and cells counting the number of collaborations.
he size of personal networks range from 0 (no collaborations) to
9 (an actor collaborating with 39 alters), with a mean = 6.7 and

 median = 5. Degree distribution range from 0 (a research project
ith only one unit, therefore only one scientist without any con-
ections) to 73 (an actor collaborating 73 times with other people)
ith a mean = 9 and a median = 5. As it is valued, degree can indicate

hat a scientist participates to large research projects (with many
ther scientists) or to several of them (in the case of the one with
3 collaborations, he collaborates with 39 others, but with some
f them more than one time). The network of individual collabora-
ions has a density of 0.006, and an average distance of 8.89 nodes,
hich means it is not highly dense, as cliques of projects summed
p for 10 years do not dramatically overlap. Only 6 scientists (3
yads) have the maximum of 5 projects in common, meaning they
lways collaborate with each other over the years. 17 groups of var-
ous sizes (from 2 to 12) have 4 projects in common, 33 groups (size
ange from 2 to 16) have 3 projects in common, and 80 groups of
–48 nodes have 2 projects in common. 71 groups of size ranging
rom 1 to 774 have at least one project in common (Fig. 3). At this

inimum level of collaboration, the main component accounts for
9% of scientists, the second largest one for only 2% (24 nodes).

This structure suggests that there are at least two strategies of
etting connected to achieve funding. On one hand, some research
roups tend to collaborate over the years, strengthening their
utual relationship: they either develop long term research plans,

sking for funding for follow-up projects, or they simply collec-
ively decide where to invest their research efforts as a group over

he years. On the other hand, some researchers tend to change
he composition of research groups over time: overall, they end
p occupying a brokerage position8 between different sets of

7 Given the fact rank refers only to the scientists’ positions in 2006, therefore at
he end of the period data refer to, it could be that being funded is the factor that

ade scientists progressing in ranks, rather than being funded because of their high
ank. However, it is still important to notice the correlation between high ranks and
uccessful funding.

8 A brokerage position is defined as the number of times ego lies on the shortest
ath between two alters (i.e., the number of pairs of alters that are not directly
onnected). In the regression model presented in section 5 of the paper I use the
ormalized version of this measure, where the number of brokerage opportunities,
hich is a function of ego network size, is taken into account.
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people, increasing the number of personal contacts which would
be otherwise disconnected. The two  strategies are not mutually
exclusive: someone might collaborate with one group one year, add
new people to the original group two  years later (therefore his/her
egonetwork will be a larger clique with ties value = 1 for relation-
ships from the first group with the second group, and ties value = 2
for relationships within the first group), and eventually move to col-
laborate with a third group after other two  years, therefore finding
him/herself in the position of being the only link between groups
1 and 2 and group 3. These strategies resemble the ones theorised
by Burt (2005),  who  distinguishes between brokerage and closure
in organizational settings, where brokerage seems to favour the
development of new ideas, while closure the delivery of settled
projects. In Burt’s theory, both strategies are valuable in terms of
social capital, as when combined they maximise the advantage for
actors of having dense egonetworks which facilitate the develop-
ment of trust and behavioural control, and gaining different and
exclusive perspectives from otherwise disconnected people. In this
case I cannot assume that closure implies shared behavioural con-
trol and higher level of trust and commitment. In the same way,
a brokerage position does not automatically entail a knowledge
transfer between otherwise disconnected groups: the reasons why
someone decides to move across different groups can be various,
and cannot be surmised from this kind of data. But in terms of
potential social capital, he/she can count on personal relationships
with unconnected sets of colleagues.

Within the population under study, 614 researchers have a bro-
kerage score equal to 0 (60% out of the 1122 physicists), while the
remaining 40% have a brokerage score ranging from 0.1 to 1: 157
(14%) have a value >0 and <0.33, 246 (22%) have a value ≥0.33 and
<0.66, and 49 (4%) have a value ≥0.66 to 1. In terms of closure, the
density of egonetworks (calculated taking into account the values
of the ties) range from 0 to 4, with 300 people (27%) with values
≥0 < 1; 345 (31%) people with values = 1; 305 (27%) with values
>1 < 2; and 116 (10%) with values ≥2 and ≤4. For 56 people density
and brokerage values cannot be calculated as they are isolates.9

I model the success of these strategies in the final section of the
paper, in order to test which of the two  proves to be more success-
ful for obtaining money. While here I am assuming a direction of
causation from the structure to the level of funding, it could also
be the case that people become popular as they received funding
in the past, and therefore attract new collaborators. Disentangling
the direction of causation can only be empirically tested with tem-
poral analysis, where it would be possible to see if it is the position
in the structure of collaboration that favour the amount of received
funding, or if it is the amount of funding that stimulate further
collaborations.10 However, this latter direction of causation would
imply a higher impact of closure than brokerage over the total
amount of money received in the ten years under analysis: this
9 I also tried to combine egonetwork density with brokerage scores by multiply-
ing the two together, in order to create a measure of “mixed” strategies (for people
having an average level of density and an average level of brokerage). The new com-
bined measure behaves exactly like brokerage scores in the final regression model,
suggesting that it is still a brokerage role which makes most of the differences in
terms of getting funded. This is mainly because 60% of the population have broker-
age  scores = 0, therefore when multiplied by density they delete the value of closure,
reinforcing the one of brokerage.

10 A longitudinal analysis of the data is not performed for several reasons. The first
one is that for each year networks include a completely different set of actors and
projects, therefore dynamic network analysis cannot be performed for the lack of
congruence between nodes in each time observation. The second one is the fact
that the original network is bipartite, therefore it requires the development of new
methodologies, for example some extension of Siena bipartite models.
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Fig. 3. Number of collaborations to research projects.

Fig. 4. The network of individual collaborations. Nodes shaped according to sub-disciplines.
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Table 1
E-I index for sub-disciplines.

Internal External Total E-I

Other 242 1105 1347 0.641
Experimental 484 1447 1931 0.499
Theoretical 46 611 657 0.86
Material 268 1129 1397 0.616
Nuclear 8 241 249 0.936
Astronomy 266 1114 1380 0.614
Earth 0 25 25 1
Applied 28 383 411 0.864
History and didactic 0 89 89 1

Table 2
E-I index for rank.

Internal External Total E-I

Other 456 1032 1488 0.387
Researcher 6 179 185 0.935
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Combining together information about fishes and ponds, I derive
the same four categories of Lazega et al. (2008),  obtaining 424 big
fishes in big ponds (BFBP), 460 little fishes in big ponds (LFBP), 111
Associate 138 741 879 0.686
Professor 1338 1218 2556 −0.047

Within the network sub-disciplines are clustered differently
Fig. 4): while nuclear physics is scattered around the whole
etwork, experimental physics, material physics and astron-
my/astrophysics are slightly more clustered. This is evident from
he E-I index values (Krackhardt and Stern, 1988, cfr. Table 1). E-

 index are positive for all the sub-disciplines (with theoretical,
uclear, earth, applied and history scoring higher than 0.8), but
lightly lower for experimental physics (0.499), astronomy (0.614),
aterial physics (0.616), and other disciplines (0.641).
While sub-disciplines show very positive E-I index values, indi-

ating a high level of interdisciplinarity within different areas of
hysics and other scientific areas, the same values calculated for
anks tell a different story (Table 2). Here full professors show E-I
ndex values very close to 0 (−0.04) indicating a balance of inter-
ctions with peers at the same rank level and people in lower
ositions. On the other hand, people in lower positions score very
igh on E-I index values (0.686 for associate professors, 0.935 for
esearchers) indicating their need to interact with higher ranks in
rder to get funded.

As briefly explained above, the network of collaborations
etween Universities is obtained combining the micro level of

nteractions between scientists with their affiliations to institu-
ions. While network data are completely derivable from these two

atrices, it is still interesting to observe the structure of collabo-
ations at the macro level of institutions, as it provides a different
erspective. The University by University network, with number of
rojects in common, has a density of 0.48, and an average distance
f 1.53. Valued degree ranges from 3 to 558, with a mean = 147. It
resents a quite distinctive core-periphery structure, with 19 Uni-
ersities in the core with an average value of 11.57,11 47 in the
eriphery with an average value of 0.68, and average value of con-
ection between core and periphery of 2.38 (Fig. 5). Out of the core,
he analysis of factions reveals a periphery with two subgroups:
ne is mainly composed by astronomy observatories, which seem
o play a distinct role from the rest of institutions in the network.
he other includes some minor Universities scattered around the
ore.
There are several ways to account for institutional success. One
f them can be the amount of received funding, with 17 Universi-
ies getting over 2 millions euro in the 10 years under study (Fig. 6).

11 Given the fact the network is valued, the density within and between core
nd  periphery does not range between 0 and 1, but it shows the average value
f connections.
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These are mainly the core institutions, as correlation between the
total amount of funding and the coreness values is very high (0.854).
Other criteria are the number of physicists working in every insti-
tution, where again core institutions seem to be the ones with the
larger number of appointed physicists (Fig. 5). The number of physi-
cists working in Italian universities (the total = 3116) range from 1
(Campus Bio Medico Roma) to 180 (Rome) with a mean = 42. On
average 37% of all the physicists were involved in Prin projects
in the last 10 years, with institutions like Rome, Florence, Padua,
Pisa and Naples where over 40 researchers have been successfully
funded.12

The analysis of the micro and the macro level of interactions
suggest some important properties of the overall network of col-
laborations. First of all, interdisciplinarity seems to be a privileged
strategy to gain funding, both in terms of collaborations with other
scientific area (math, engineering, philosophy, and the like), and
within subdisciplines (theoretical, experimental, nuclear, and the
like). Second, rank is still playing an important part in the forma-
tion of research groups, with lower ranks seeking collaborations
with full professors. Third, brokering between different research
groups for different projects, or clustering groups together over
time, seems to represent two  distinct and combinable strategies
for obtaining funding. Finally, working in a university with a higher
number of physicists seems to give an advantage in terms of col-
laborations, as larger departments tend to be in the core of the
institutional network.

4.2. The meso level: fishes and ponds in Italian physics

While in the previous section I analysed the micro and the macro
level separately, here I move to combining the two  together in order
to observe the meso level of interaction. This is done by adapting
Lazega et al. (2008) method of classification. The authors create four
categories, two for people and two  for institutions, using degree val-
ues as threshold (actors and institutions with degree values above
the median are big fishes and big ponds, while the ones with degree
values below the median are little fishes and little ponds). Combin-
ing them, they came out with the subsequent four categories: big
fish in big pond, little fish in big pond, big fish in little pond and
little fish in little pond.

Similarly, here I consider big fishes scientists with a valued
degree above the median (as the distribution is skewed): within the
1122 scientists, 535 are big fishes, 587 little fishes. As the network
of University is redundant to the network of individuals, it does
not make sense to use again degree values to distinguish between
ponds. Therefore the distinction is calculated on the number of
physicists working in every institution, regardless being funded or
not. The assumption is that an organization with a higher number
of physicists offers a potential larger pool of contacts.13 I consider
big ponds Universities with a number of appointed physicists above
the mean = 42 (the distribution is not skewed). Over the 73 Univer-
sities with at least 1 physicist 66 have obtained Prin funding from
1997 to 2006: 32 are big ponds and 34 are little ponds.
12 Correlation between institutions’ coreness and the total number of people work-
ing in a department is 0.851; with total number of funded people per department
is  0.896.

13 There could have been other methods to distinguish between big ponds and
little ponds. A valuable one is to consider big ponds Universities that get ranked in
a  worldwide University ranking system: the measure offers interesting information
over institutions, but it does not represent a potential network measure, while the
number of colleagues working in a University offers an estimate of potential contacts
a  scientist can count on.
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Fig. 5. University by University netw

ig fishes in little ponds (BFLP) and 127 little fishes in little ponds
LFLP). The high number of people working in big ponds proba-
ly resembles the fact that physics tends to concentrate in large
epartments, which are also the ones that historically developed
he discipline after the Second World War: as the tendency was
o move toward the model of big science, human and economic
esources have been concentrated in major departments like Rome,
adua, Turin, and Milan, where investments in physics were already
 priority.
If we look at the distribution of fish and pond categories in every

ub-disciplines (Fig. 7), we find that experimental physics is dom-
nated by LFBP (48%) followed by BFBP (34%), similarly to material
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Fig. 6. Total amount of money received by top
ith number of projects in common.

physics, where LFBP account for 42% of scientists, followed by BFBP
(33%). BFBP dominate theoretical physicists (60%) nuclear physics
(56%, followed by 26% of LFBP), astronomy (40%, followed by 32% of
LFBP) and history and didactic of physics (71%), while LFBP count
for 50% of earth physics and 48% of applied physics. Other disci-
plines see 54% of their researchers in LFBP, suggesting that they
might be big fishes in other sectors. LFLP and BFLP, given their lower
numbers, represent minorities in all the sub disciplines.
Regarding the rank (Fig. 8), LFBP account for 53% of researchers,
followed by LFLP (24%). Associate professors are mainly constituted
by LFBP (47%) and BFBP (34%), while full professors are mainly
made of BFBP (49%) followed by LFBP (34%). Researchers from other

 funded Universities (over 2,000,000D ).
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Fig. 7. % of fish and pond categories in each sub-disciplines.
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increases individuals’ credibility and facilitate them in convincing
other people to join their projects in subsequent years; similarly,
the capability of obtaining funding might contribute to careers’

14 Like in most network data, the assumption of the cases’ independence is unre-
alistic. As people are related to each other, and when they collaborate they tend to
equally share the total amount of funding between the local units (with the excep-
tion  of the national coordinator), we  should expect several functional dependencies.
The simplest way of correcting for potential lack of independence between cases due
to  a network with adjacency matrix W*  is to use the Network Disturbances model
(Leenders, 2002). I fitted the model with the same covariates in Table 5, and the
results do not vary dramatically from the standard regression. As expected there
Fig. 8. % of fish and po

isciplines are mostly BFBP (30%) and LFBP (44%), strengthening the
ossibility that they are big fishes in their own sectors.

Overall, the meso level indicates that better connected scientists
end to work in large departments, and that there is a correlation
etween rank and the position of scientists in the meso level of
onnections, with big fishes in big ponds decreasing in numbers in
ubsequent lower ranks.

. Modelling funding achievements

While in most of sociology of science studies academic suc-
ess is measured in terms of publications and impact factor, in
his study success is represented by the total amount of funding

 researcher has achieved in the last 10 years. So far, I have ana-
ysed the networks characteristics in terms of getting connected

ith other researchers, without taking into account the amount
f money received for every projects scientists get involved into.
hile it is likely that participating to a higher number of projects
eans obtaining more funding, this could not be always the case,
s a scientist can participate to fewer but better funded projects. In
he last part of the article, I model the amount of money obtained
y every researcher in the last 10 years against the variables that
merged as important at the individual, micro, macro and meso
tegories in each rank.

level of analysis. I model each level hierarchically, in order to mea-
sure its influence separately from the other levels.14

At the individual level, I expect national coordinators and full
professors to be more successful in obtaining money for research,
as well as the affiliation to specific sub-disciplines, like experimen-
tal physics, astronomy and astrophysics, and material physics, or to
other disciplines. Here the direction of causality must be taken with
caution, as it could be that previous success in obtaining funding
is  a very large network correlation – the estimate of the feedback parameter is 0.5
and the standard error is 0.05. The diagnostics show that there are some very large
residuals but there are no alarming departures from model assumptions. I would
like  to thank Johan Koskinen for suggesting the solution to the problem of the lack
of  independence.
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Table 3
Descriptive statistics of variables.

Variable Abs.
values

% Average
value

Range

National coordinator (at least 1 time) 316 28% 0/4
Professor 470 42%
Associate 259 23%
Researchers 72 7%
Other rank 321 28%
Experimental 279 25%
Theoretical 108 10%
Material 191 17%
Nuclear 43 4%
Astronomy 213 19%
Earth 8 1%
Applied 64 6%
History and didactic 14 1%
Other discipline 202 18%
E-I  for disciplines 0.64 −1/1
Egonet valued density 1.14 0/4
Normalized brokerage

scores
0.16 0/1

Core 791 70%
BFBP 424 38%
BFLP 111 10%

project and obtains the largest part of the funding.
The second model, which includes the scientists ranks, does not

explain much of the variation in the amount of funding (R2 rises

15 I use the log of the money as values are not normally distributed.
16 All the variables have low levels of correlations among them. Highest levels of

correlations are associate/other rank (−0.35), National coordinator/brokerage roles
(0.35), other rank/other disciplines (0.74, which is expectable as other rank indicates
E. Bellotti / Social Net

dvances. The inverse direction of causality is less likely for sub-
isciplines, as it is difficult that a scientist changes his/her discipline
ffiliation to invest in more successful fields.

1. On average, national coordinators are more likely to obtain a
arger amount of money for research than researchers who never
ead a research group.

2. On average, full professors are more likely to obtain a larger
mount of money for research than other ranks.

3. On average, researchers working on experimental physics,
stronomy, and material physics, and in other disciplines, are more
ikely to obtain a larger amount of money than researchers working
n other sub-disciplines.

At the micro level of collaborations to research project I expect
rojects with a higher level of interdisciplinarity to be more suc-
essful. This is represented by the E-I index values calculated for
ub-disciplines. Again, direction of causality cannot be robustly
ested, as it could be the case that people who received funding for
nterdisciplinary collaborations will continue in the same direction.

I also want to measure the successful rate of researchers occupy-
ng a brokerage position or being involved in dense egonetworks:
ollowing Burt (2005),  I expect both brokerage scores and egonet-
ork density (which, for valued networks, is equal to the average

alue of ties) to impact on the total amount of funding. If the direc-
ion of causality is reversed, I would expect closure to be the most
uccessful strategy.

4. On average, researchers with higher E-I index values for sub-
isciplines are more likely to obtain a larger amount of money for
esearch than the ones with lower values.

5. On average, researchers with higher ego brokerage scores
nd/or higher egonetwork density are more likely to obtain a larger
mount of money for research than researcher with low values in
ne or both measures.

At the macro level, given the fact that core institutions seem
o be the ones getting more funding, I expect scientists working
n them to be more successful than the ones working in peripheral
niversities. Here the direction of causality is more robust, as given

he low level of mobility of Italian researchers it is very unlikely
hat a scientist decides to move to a core institution attracted by
he higher level of funding received by core departments.

6. On average, researchers working in core institutions are
ore likely to obtain a larger amount of money for research than

esearcher working in peripheral ones.

At the meso level, which combines the size of the egonetworks
degree) with the size of departments scientists work for (number
f appointed physicists), I expect big fishes in big ponds to be more
uccessful than other categories, given the fact that in order to be a
ig fish scientists must have collaborated to more research projects
han the median (therefore with a higher possibility of obtaining

ore money), and that big ponds might be considered more pres-
igious institutions, therefore attracting a higher level of funding.
he direction of causality could be partially affected by the previous
mount of funding, as successful projects can be criteria of evalu-
tion for future bids; however, being appointed in a big pond due
o the previous amount of received funding is again very unlikely
iven the low mobility of Italian scientists.

7. On average, big fishes in big ponds (BFBP) are more likely to
btain a larger amount of money for research than little fishes in

ig ponds (LFBP), big fishes in little ponds (BFLP) and little fishes in

ittle ponds (LFLP).

In all the models the log of money values (as the sum of every
unding granted to every researcher over the 10 years) is the
LFBP 460 41%
LFLP 127 11%

dependent variable.15 The analysis is done on 1121 people rather
than 1122, as there is an outliner case of someone who participated
to a project without getting any money, which is likely to be a case
of imputation error.

In the first model I introduce the variable of being a national
coordinator (no roles as national coordinator as constant). In the
second model I introduce variables related to rank (full profes-
sor as constant, associate professor, researcher, rank unknown).
In the third model I introduce variables related to sub-disciplines
(experimental physics as constant, theoretical, nuclear, material,
astronomy, earth, applied, didactic, other). In the fourth model E-I
values for sub-disciplines (ranging from −1 to +1), brokerage scores
(ranging from 0 to 1) and egonetwork valued density (ranging from
0 to 4) are introduced (−1 scores for E-I and 0 values for brokerage
and closure being constant). In the fifth model I take into account
core values, being in the periphery as constant. In the sixth and final
model, the meso categories are introduced (BFBP as constant, BFLP,
LFBP, LFLP). Summary of variables’ values is presented in Table 3.16

Outputs of the models are displayed in Table 4, which reports
the values for R, R2 and standard errors, and in Table 5 reporting
coefficients for every variable.

The first model, which takes into account how many times scien-
tists have been in the role of national coordinators, explains alone
13.8% of the variance: being a national coordinator increase the
total amount of money from an average of D 50.868 to an aver-
age of D 77.324, and values are significant. Therefore hypothesis 1
is confirmed: this can be considered as a control variable, as the
national coordinator is in most of the cases the one who sets up the
people working in other disciplines, but it is not completely correlated as there might
also  be physicists working in other disciplinary areas), sfbp/brokerage (−0.36, this
is  sensible to the fact that little fishes have less ties, therefore less probability to
be  a broker, bflp/core (−0.36) and sflp/core (−0.40 these last two  correlations are
sensible to the fact that core institutions are also the bigger ones).
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Table 4
Model summary.

Model R R square Adjusted R square Std. error of the
estimate

1 .373a .139 .138 .8050
2 .424b .179 .176 .7870
3  .445c .198 .189 .7808
4  .589d .347 .338 .7057
5  .590e .348 .338 .7054
6  .601f .361 .350 .6990

a Predictors: (constant), national coordinator.
b Predictors: (constant: full professor), other rank, researcher, associate.
c Predictors: (constant: full professor, experimental), other rank, researcher, asso-

ciate, history and didactic, earth, nuclear, applied, theoretical, astronomy, material,
other discipline.

d Predictors: (constant: full professor, experimental, E-I disciplines = −1, nor-
malized broker = 0), other rank, researcher, associate, history and didactic, earth,
nuclear, applied, theoretical, astronomy, material, other discipline, E-I disciplines,
normalized broker, egonet density.

e Predictors: (constant: full professor, experimental, E-I disciplines = −1, normal-
ized  broker = 0, Periphery), other rank, researcher, associate, history and didactic,
earth, nuclear, applied, theoretical, astronomy, material, other discipline, E-I disci-
plines, normalized broker, egonet density, core.

f Predictors: (constant: full professor, experimental, E-I disciplines = −1, nor-
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favour the process of getting funded: at a meso level, what counts
more is the size of the fish, as being a big fish entails obtaining
more funding regardless the size of pounds. Ponds do count, but
alized broker = 0, Periphery, BFBP), other rank, researcher, associate, history and
idactic, earth, nuclear, applied, theoretical, astronomy, material, other discipline,
-I  disciplines, normalized broker, egonet density, core, BFLP, LFBP, LFLP.

p only to 17.6%) but it is significant: full professors have gained
n average D 63.767 over the 10 years under analysis, compared to

 47.619 earned by associate professors, D 39.104 by researchers,
nd D 44.222 by scientists whose rank is unknown (as they are not
hysicists). Therefore hypothesis 2 is confirmed. In the third model,
ub-disciplines are included, but most of them do not play a signif-
cant role in access funding (working in experimental physics is
ignificant, but it does not increase the average amount of money
btained by full professors; working in applied physics, history
nd didactic, and other disciplines17 significantly decreases the
mount of funding from the average D 63.386 of experimental
hysics to, respectively, D 48.194, D 39.537, and D 46.676). Also,
hey do not increase the overall explanation (R2 only rises up to
8.9%). hypothesis 3 is thus not confirmed, especially for projects

nvolving other disciplines which receive on average less funding
hat physics projects.

The fourth model adds the network variables of the micro level
f interactions, and it explains much more of the variance (R2 is
ow up to 33.8%). On average, professors with −1 E-I values, 0
rokerage scores and 0 density obtain D 42.320. But while the E-

 index calculated for disciplines is not significant, a brokerage role
s highly significant and counts for a substantial increase in the
mount of funding. For example, having a brokerage score of 0.2
ncreases the average amount of obtained funding to D 59.481, hav-
ng a brokerage score of 0.5 increases it to D 99.111, and having

 maximum brokerage score of 1 increases it to D 232.118. At the
ame time, egonetwork valued density is also positively significant:
aving a density of 0.5 increases the average amount of funding to
5.936D , a density of 1.5 increases it to 54.123D , a density of 2.5

ncreases it to 63.768D , and a maximum density of 4 increases it
o 81.553D . Thus hypothesis 4 is not confirmed, while hypothesis

 is: brokers gain much more advantage than their colleagues in
erms of funding, but closure is a valuable strategy too, even if not

uccessful as brokerage. Interestingly, brokerage roles diminish the
ap between full professors and other physicists’ ranks, indicating
hat occupying a strategic position in terms of connecting different

17 The inclusion of disciplines in the model turns the unknown rank non significant:
his  is probably due to the fact that the variables “other rank” and “other disciplines”
re highly correlated (74%), therefore one diminishes the effect of the other.
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groups can reduce the competition with full professors. Also, bro-
kerage scores make astronomy negatively significant, suggesting
that playing a brokerage role is a strategy that does not work well
for astronomers. Astronomy observatories, in the macro analysis
of Universities’ positions in the network of institutional collabora-
tions, came out as part of the peripheral faction with an internal
density higher then the rest of the periphery: this suggests that
closure might be a strategy that suits astronomy better, but results
are not significant.18

The fifth model takes into account working in a core institution.
This is not significant, and it does not explain any more variance (R2

is still 33.8%). Therefore hypothesis 6 is not confirmed. The sixth and
final model takes into account the meso level network variables,
which explain a slightly higher variance (R2 is 35%). Big fishes in
big ponds do obtain on average more funding than little fishes in
big ponds (D 47.811 compared to D 37.572), and than little fishes in
little ponds (D 40.498) and the values are significant, but values for
big fishes in little ponds are not significant. Therefore hypothesis 7
is only partially confirmed. Here it is interesting to notice that little
fishes are generally penalised against the big fishes, but little fishes
in big ponds are more penalised than little fishes in little ponds, as
the former gain on average less funding that the latter. Moreover,
the meso level variables diminish the positive effect of brokerage
and closure, indicating the importance of keeping into account the
size of the institutions.

6. Discussion

Data analysis show very interesting features in the process of
getting funded. As expected, the task of obtaining money it is not an
easy one, especially given the fact public resources have diminished
from 2000 to 2006. Several factors play a role in being successful,
but the analysis shows the importance of detecting the networks
of collaborations for understanding how projects are funded. This
is evident as at an individual level rank and disciplines alone do not
seem to have a big impact. Apart from being a national coordina-
tor, individual attributes do not explain funding success, even if full
professors and some leading disciplines seem to do better than oth-
ers. A high level of interdisciplinarity characterizes collaborations
to Prin projects: this is probably due to the fact that fundamental
research is mostly funded by Infn and Infm and take places in the
big science experiments, allowing the more localised system of Prin
funding to be dedicated to specific interdisciplinary applications.
However, collaborations between different type of physicists and
scientists from other disciplines do not produce more money, as E-I
index values do not significantly increase the amount of funding.
The position of institutions in the network of collaborations as well
does not explain any variance. Universities which activate more
Prin projects do gain overall more money, but this is not reflected
at an individual level: the fact that a department is successful in
getting funded does not mean that its researchers will obtain, on
average, more money than the ones who  work in institutions with
less projects. The size of the institution itself does not seem to
18 The distinct effects of brokerage and closure have been tested by breaking the
model that inserts micro variables in two further hierarchical models: in the first
one only egonetwork density is included; in the second brokerage scores are added.
Egonetwork density, when introduced alone, does not increase the overall explained
variance much (from 18.9% to 19.4%), it becomes negatively significant, and it does
not  turn astronomy negatively significant. Also, it does not reduce the gap between
ranks. Brokerage scores, instead, are responsible for the largest jump in the R2 (up
to  33.8%) and for the discussed effects on other variables. This also indicates that
closure works only in combination with brokerage, as suggested by Burt (2005).
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Table 5
Coefficients’ values.

Model 1 2 3 4 5 6
Unstd. Coeff. Unstd. Coeff. Unstd. Coeff. Unstd. Coeff. Unstd. Coeff. Unstd. Coeff.

B Std. error B Std. error B Std. error B Std. error B Std. error B Std. error

(Constant) 10.837*** .027 11.063*** .041 11.057*** .057 10.653*** .080 10.602*** .088 10.775*** .104
National coordinator .419*** .031 .364*** .031 .362*** .031 .230*** .030 .230*** .030 .226*** .030
Associate −.292*** .062 −.275*** .063 −.181** .057 −.182** .057 −.169** .057
Researcher −.489*** .100 −.449*** .101 −.320** .092 −.317** .092 −.275** .092
Other rank −.366*** .058 −.136 .113 −.069 .102 −.009 .111 .007 .111
Theoretical .128 .089 .003 .082 −.008 .082 −.060 .083
Material .050 .074 −.014 .067 −.017 .067 −.011 .066
Nuclear .174 .129 .091 .117 .081 .117 .044 .116
Astronomy −.084 .094 −.192** .085 −.203** .085 −.217** .085
Earth  −.121 .282 −.093 .255 −.095 .255 −.106 .252
Applied −.274** .109 −.340** .098 −.334** .098 −.317** .098
History and didactic −.472** .214 −.458** .194 −.461** .194 −.566** .193
Other discipline −.306** .130 −.285** .118 −.351** .127 −.351** .127
E-I  disciplines .006 .051 .002 .051 .009 .051
Egonet valued density .164*** .039 .164*** .039 .124** .040
Normalized broker 1.702*** .109 1.704*** .109 1.446*** .121
Core  .073 .054 .101 .065
BFLP .049 .084
LFBP  −.241*** .054
LFLP −.166** .085

i
c

m
i
t
o
a
i
n
t
t
g
b
a
t
b

n
t
e
o
c
w
a
o
u
d
s
n
o
t
a
p

s
T
i
m
B

** p < .05.
*** p < .001.

n reverse effect: little fishes in big ponds seem to suffer more the
ompetition of big fishes than little fishes in little ponds.

What really counts for individuals, in terms of obtaining more
oney, is being in a brokerage position, which means that the abil-

ty to change research groups and involve different people each
ime is a very productive strategy. Closure also has a positive impact
n the average amount of funding, even if not as strong as broker-
ge, but the effect is positive only when brokerage and closure are
ncluded together in the model, closure alone being negatively sig-
ificant. This result supports Burt’s well established finding about
he advantages of occupying brokerage positions and at the same
ime strengthening the relationship with an established research
roup over time (Burt, 2005). But results also suggest that the
rokerage strategy might not work so well for every scientist:
stronomers do not seem to take advantage of structural holes, as
he values for their discipline become negatively significant when
rokerage values are taken into account.

While data shows the impact of the individual position in the
etwork, the meaning of such position in terms of what flows in
he network cannot be subsumed from this kind of analysis. For
xample, a structural hole does not automatically entails a power
f controlling information flow between different groups: while I
an safely assume that closure is the result of positive relationships
ithin a group (otherwise people would not decide to collaborate

gain), brokers might decide to join other groups for a large variety
f reasons, which are unknown in this context. But results open
p some interesting research questions in terms of community
etection. The brokerage strategy impacts on the overall network
tructure, which shows a low level of transitivity but a good con-
ectivity: it will be interesting to further analyse the community
f physicists to find out if the network structure of collaborations
o research projects is reflected in co-authorship, and if the aver-
ge distance between scientists has a correlation with citations
atterns.

The analysis of the meso level reinforces the need of observing
tructures of collaborations from different levels of interactions.

he fact that big fishes obtain on average a higher amount of funding
s not in itself an illuminating finding, as it simply means that the

ore scientists collaborate, the more money they can count on.
ut working in a large department seems to penalise little fishes,
which are less funded, on average, than people working in small
departments. This could be due to the fact that, the quality of the
projects being equal, funding might be concentrated in the hands
of big fishes in big departments, the rest being distributed to small
departments to balance the available money across institutions.
Controlling degree for the size of the department thus improves the
understanding of the data, and also diminishes the effect of micro
network variables, showing that while the position of individuals
in the network is the most important element in predicting the
amount of funding, the size of institutions does have an overarching
influence on people.

Obviously there are some limits to the research presented here.
First of all, rank is recorded only in 2006: we  do not know if people
get funded because of their rank, or whether they get promoted
because they obtain funding. Therefore results of the regression
model should be considered with care, as it is not possible to test
the causal effect of rank over funding. The low level of R2 only means
that rank in itself is not decisive. Secondly, the size of the ponds is
not defined by a proper empirical network measure: I could not
map  relationships between institutions other than the macro level
of interactions for research projects. Therefore the decision of using
the number of physicists appointed in every University only gives a
proxy measure of the potential pools of available local contacts: this
is still relevant information, as the size of departments is considered
an important criterion of evaluation from the public sector, not only
for Prin projects, but for a whole range of funding. The same limit
applies to the micro level of interaction. Here I only detect collabo-
rations to specific research projects, cutting out all the other forms
of interactions which occur between scientists. However, the recip-
rocal selection of scientific partners can be an indicator not only of
a concrete relationship between researchers (people must know
each other to decide to collaborate), but also of mutual respect: the
decision of committing to a two year project together has to be the
result of previous meaningful contacts, and of reciprocal awareness
of each other’s work. Another limit consists in the fact that data only
refer to the decade from 1997 to 2006. The unavailability of infor-

mation for previous years means that we  cannot detect the previous
network of collaborations, which might have shown different struc-
ture and mechanisms. Also, data on unsuccessful research projects
are not available; therefore I could not compare the network of
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unded collaborations with the one of rejected projects. This is a
erious limit if a statistical analysis of the network dynamics is to
e performed.

Finally, as usual in social network research, results are only valid
or the specific field of Prin funding to physics research projects
n Italy. Data cannot be generalized to other sectors, other fund-
ng lines, or other countries. What is extremely valuable is the
bservation of specific network mechanisms that seem to play a
eterminant role in many kinds of networks. Here, as observed
or different contexts and different organizations (Burt, 2005), the
ombination of brokerage and closure represents the best strategy
o obtain funding and succeed in developing innovations. This is
artially in contrast with Lazega et al.’s results (2008),  where the
osition of the laboratory in the network of inter-organizational
xchanges counted more than the position of individuals in the
etwork of the élite. In my  case, results show that working in a
ore institution does not increase the average amount of funding.
lso, the size of the pond seems to only favour already success-

ul researchers, penalising the one who collaborate less. But the
ize of the pond diminishes the effects of being in a brokerage
osition, suggesting the importance of adopting Lazega et al.’s mul-
ilevel approach as it enriches the analysis of the data controlling
t the same time for the effects of micro and macro levels over the
ork of scientists. Given the fact the inter-individual and inter-

rganizational networks are constructed differently from the ones
f Lazega et al., and they refer to different contexts of scientific pro-
uction, direct comparison of results is not possible, but the method
hey propose works in this context too, and it calls for more similar
tudies.

. Conclusions

In this paper I analyse the structure of collaboration to physics
esearch projects in Italy using social network analysis. The the-
retical framework insists on the importance of the connections
cientists make during their work over the classic variables describ-
ng individual and organizational features. The study is important
s it shows how, more than rank, disciplinary or institutional affil-
ation, it is the position of researchers in the overall structure of
ollaboration that counts in terms of getting funded. Results add
redibility to the stream in sociology of science that claims the
mportance of detecting scientific communities approaching them
ot only at an individual level or at a macro level, but taking

nto account the micro level of interactions and the meso level of
eciprocal influence between networks of collaborations and insti-
utional affiliation. Moreover, it looks at scientific prestige not from
he classic point of view of publications, but from the perspective
f obtaining funding for research. Together with interesting results,
he paper also opens further research questions which are worth
nvestigating.

First, it will be interesting to analyse the narrative description
f research projects that is included in the pdf files: every projects
tates the goal of the research, the expected production of innova-
ive results in its scientific area, the list of verifiable criteria through
hich results are going to be validate by the scientific community

provisional conference presentations, publications, patents, train-
ng initiatives, and the like), and the specific program of work for
very single unit of the collaboration. Qualitative analysis of this
aterial will allow to link the scientific content (and its claimed

nnovative aspects) of every project to its position in the network:
o far I have analysed the transposed matrices of people and insti-

utions, but the same two mode “people by project” network can
e transpose as a project by project matrix, where it will be inter-
sting to see the disposition of research topics in the structure of
ollaboration.
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Second, it would be interesting to interview physicists in dif-
ferent positions in the network, for example people with high,
medium and low brokerage scores, to investigate the process they
activate when deciding to set up or participate to Prin projects:
how they chose the topic, how they select co-participants, how
they assign tasks to different units, how they allocate the human,
technical and economic resources, and the multiplex nature of rela-
tionships they establish with colleagues. This could shine a light on
hidden dyadic and structural mechanisms that the simple detection
of collaboration ties does not allow to explore.

Third, the longitudinal two mode format of the data poses some
challenges to the extension of the analysis to statistical modelling of
networks over time. It will be interesting to combine Exponential
Random Graph Models (ERGM) and actor-based models to simu-
late the decision of scientists to select a research project to which
participate, and to modify the composition of research groups they
decide to collaborate with year by year (taking into account the
fact that projects last for two years, therefore the overall network
is observed in 5 different time points over the 10 years). Although
of great value, the dynamic analysis of this dataset cannot be easily
performed, because for every year there is a completely different
list of actors and projects. Actors funded in year one cannot be
funded in year two, they might not be funded in year 3 (unsuc-
cessful bid) and then get funded again in year 4. This means that
each year has a completely different set of actors, which violate one
of the requirements for Siena modelling.

Finally, an already ongoing project aims to compare the struc-
ture of collaboration to research project in physics with the same
type of data collected for philosophy. Prin data for philosophy have
been so far only partially collected (from 2000 to 2006): once the
data collection is completed, it will be possible to analyse the struc-
ture of philosophy in similar terms and compare the mechanisms
that regulate the two  networks.
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