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Abstract

The valuation of weather derivatives is complex since the underlying temperature

process has no negotiable price. This thesis introduces a selection of models for

the valuation of weather derivative contracts, governed by a stochastic underlying

temperature process.

We then present a new weather pricing model, which is used to determine the

fair hedging price of a weather derivative under the assumptions of mean self-

financing. This model is then extended to incorporate a compensation (or market

price of risk) awarded to investors who hold undiversifiable risks. This results in

the derivation of a non-linear two-dimensional PDE, for which the numerical

evaluation cannot be performed using standard finite-difference techniques.

The numerical techniques applied in this thesis are based on a broad range of

lattice based schemes, including enhancements to finite-differences, quadrature

methods and binomial trees. Furthermore simulations of temperature processes

are undertaken that involves the development of Monte Carlo based methods.
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Chapter 1

Introduction

The beginning is the most important part of the work.

Plato

For millennia people have tried to forecast the weather. According to Lynch

(2008), the earliest attempts began in 650 BC as the Babylonians used cloud

formation patterns and astrology to make weather predications. Modern day

weather forecasting is attributed to Francis Beaufort and Robert Fitzroy, who

were ridiculed for their work. The development of this area accelerated with the

developments of computers leading to the creation of numerical weather predic-

tion that was first proposed by Vilhelm Bjerknes and later developed by British

mathematician Lewis Fry Richardson in 1922 (Richardson, 2007).

The models that arise in numerical weather prediction are mathematical equa-

tions that closely resembles the physics and dynamics of the atmosphere. These

sophisticated models are nonlinear, which makes them impossible to solve ana-

lytically and therefore they require supercomputing power to solve. An under-

standing of how weather behaves has become crucial to the financial performance

of numerous industries (Dutton, 2002). As discussed in chapter 2, various indus-

tries, e.g. utility companies, are reliant on weather forecasts to anticipate demand

and therefore company profits. In order to protect themselves during periods of

unfavourable weather conditions, companies may attempt to enter into financial

contracts to minimise their exposure to weather risk. This has given rise to new
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Chapter 1. Introduction

forms of financial instruments that are based on the changes in weather. How-

ever, in the trading of these new instruments the use of sophisticated weather

forecasting models are not relevant for two reasons. Firstly, the level of sophis-

tication required to model climate restricts the application to within meteoro-

logical centres. Secondly, and more importantly, the majority of weather-based

contracts are traded long before the start date of the contract, and long before

any meaningful forecasts have been published by climate centres (Bellini, 2005).

For example, a utilities company wishing to protect against warm conditions in

the winter months may purchase weather protection in the preceding spring. In-

stead, simpler models based on an understanding of seasonal behaviour are used.

A discussion of these simplified models is presented in chapter 4.

As company cash reserves are placed under enormous strain due to the credit

crunch (that began in 2007), companies require techniques to value weather-

based contracts to avoid further losses due to adverse weather conditions. This

is the focus of this thesis. The follow section outlines the discussions of each

chapter.

1.1 Thesis aims and structure

This thesis proposes a new model using incomplete market theory and techniques

from actuarial sciences to produce a PDE suitable for valuing weather derivatives.

Chapter 2 serves as a basic introduction to the background of the weather deriva-

tives market and its uses. The specifications of weather derivatives are outlined

and the relevant formulae and notation for subsequent chapters are introduced.

The goal of chapter 3 is to provide an introduction to the financial and mathe-

matical concepts and techniques that are used for the later research in chapters

5 to 7. A short overview of incomplete market models (such as illiquid options

with stochastic volatility) is presented.

Chapter 4 focuses on the existing temperature models that have been proposed

in the literature. The chapter begins by examining the properties of temperature

and the various models that have been introduced to capture its behaviour. These

models are not as comprehensive (as they omit some of the physical properties) as

those traditionally used in meteorological forecasting, but do provide an adequate
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model of behaviour (see the comprehensive work of Kalnay, 2003, for model

examples). Clarifications between the differences in modelling the temperature

or the index are provided and the advantages and disadvantages of each approach

are discussed. Since later chapters involve the numerical evaluation of weather

derivatives, current numerical techniques are also explored in chapter 4.

Chapter 5 applies techniques from chapter 3 to propose a new model for valu-

ing an option where the underlying cannot be hedged completely. From this

model, a two-dimensional PDE that values a weather derivative is derived. The

hedged portfolio is created using a suitably correlated asset and we assume that

the hedging portfolio is mean self-financing (details are found in §5.2.3). The

underlying assumptions used in our model are discussed, with particular interest

in the conditions under which the PDE is suitable for use and the important

hedging strategy needed to derive the derivative’s price is given. Finally, neces-

sary estimates of parameters governing the temperature are calculated for use in

subsequent chapters.

Numerical evaluation of the two-dimensional PDE is performed in chapter 6.

Here, an analysis of our derived weather PDE is presented and the difficulties in

numerically solving it are discussed. A review of the existing numerical techniques

used to overcome these difficulties is conducted, and then an improved numerical

procedure is introduced to solve our PDE. This procedure has by applied in a

financial mathematical setting in Harris (2003), d’Halluin, Forsyth, and Labahn

(2006) and more recently in the valuation of a mine in Evatt, Johnson, Duck,

and Howell (2010a) and Evatt, Johnson, Duck, Howell, and Moriarty (2010b).

We utilise the numerical procedure but derive some new bounds for the grid

spacing to suppress introduced errors from interpolation.

In chapter 7, the newly proposed model in chapter 5 is extended. The extension

relaxes the assumption of allowing the portfolio to be mean self-financing and in-

stead assumes that the holder of the option will be compensated for taking on risk

that cannot be diversified. Various choices exist for the mathematical definition

of how the compensation should be assessed, and we briefly highlight a few, then

one is selected. This is then an incomplete market problem since the choices of

how compensation should be given will vary between investors. Therefore there is

no longer one suitable price for the derivative. The impact of the correlation co-

efficient ρ between the temperature process and the chosen imperfectly correlated
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asset is examined towards the end of the chapter. Depending on the option to

be valued, the PDE may become non-linear. For example, the PDE is non-linear

when the option payoff has a sign-alternating delta.

In an attempt to remove the presence of spurious oscillations often experienced in

lattice-based schemes (see figure 6.6(d) in §6.4 for example), an improved numer-

ical scheme is proposed in chapter 8. It is shown to lead to superior convergence

over other lattice methods. We begin by introducing an improved numerical

scheme that leads to superior convergence over traditional lattice-based schemes.

Based on the motivation to value weather derivative contracts on multiple loca-

tions, a discussion of the difficulties in using existing approaches applied in this

thesis is presented, and subsequently we propose and develop a generic method-

ology for overcoming them. The approach can readily be applied to a broad

class of numerical schemes to improve convergence, including, but not limited to,

binomial trees, quadrature and finite-difference schemes. The methodology en-

ables extrapolation techniques to be employed on non-monotonic data sets, and

is equally applicable to pricing options with early exercise features, and produces

significant improvements in accuracy.

Chapter 9 concludes this thesis by summarising the results and providing several

directions for future research.
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Chapter 2

Introducing Weather Derivatives

A bank is a place where they lend you an umbrella in fair weather and

ask for it back when it begins to rain.

Robert Frost

In 1996, the US energy sector began the process of deregulation in the hope of

providing reliable services to consumers at reasonable prices. The deregulation

was imposed to allow competition, giving consumers a choice of electricity and/or

natural gas suppliers. As a result, companies within this sector had to increase

their knowledge and skill in trading financial instruments in order to remain

competitive and profitable. The drive for energy sector participants to remain

competitive led to the urgent reassessment of business risk exposure. One crucial,

and sometimes overlooked, aspect of business-risk was how weather changes af-

fected demand (volumetric risk), and thus company profits. An ability to mitigate

weather risk was attractive not for its money making ability, but as an instru-

ment for hedging purposes to stabilise cash-flow. Prior to this, the effects of

unpredictable seasonal weather patterns had been absorbed and managed within

a regulated and monopoly environment, whereby institutions could simply pass

on the burden to the customer without consequence.

At the time of energy deregulation, the overall management of weather risk was

extremely problematic for companies. To reduce their exposure, four possible

approaches were available (Myers, 2009):
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• Diversification - Consider a company whose sales are reliant on one type

of weather, for example snowfall. They could aim to diversify their product

range in order to reduce their overall exposure. For example, a manu-

facturer of snowmobiles could also produce jet skis, or a ski resort might

install a heated pool for summer guests. However, this approach merely

offsets losses, and does not eliminate them, and would also be expensive to

implement.

• Commodity Futures - Commodities futures and forward contracts could

aid in protecting end-users against unfavourable weather conditions. Take,

for example a farmer who is concerned about strong industry crop yield.

Weather conditions conducive to crop growth would increase total crop

yield and lead to reduction in the value of his crop, due to the imbalance

between supply and demand. For protection, the farmer may enter a futures

or forward contract on his crop to secure a guaranteed price for his stock.

However, selling crop ahead of harvest creates some extra risk, namely if

the physical crop is smaller than the amount presold.

• Insurance - Catastrophic weather-related insurance has been available for

many years to protect the holder from losses incurred from, say, a hurri-

cane or flood. Using these instruments for hedging against unusual (non-

catastrophic) weather conditions, for example a hot period in the winter

that reduces the demand for heating in homes, is ineffective because a loss

in profits cannot necessarily be classified as a weather-induced loss (Jewson,

Brix, and Ziehmann, 2005). Furthermore, a company may find it difficult

to prove to the insurance company that the loss of earnings was solely due

to adverse weather conditions.

• Contract Contingencies - A company may decide to pass on the impact

of weather fluctuations to customers by raising prices (Jewson et al., 2005).

Construction companies often include weather contingencies in contracts,

which specify that in the event of frost that would prevent work from pro-

gressing, the buyer must take on the extra cost for the added time required

to complete the project. This is an effective method in times of economic

growth. However, its effectiveness diminishes in an economy slowing down

because of heavy competition.
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As noted by Schiller, Seidler, and Wimmer (2008), the preferred method to man-

age weather risk, prior to the energy deregulation, was through purchasing of

weather insurance from private financial institutions. However, these insurance

contracts would only protect against catastrophic events, but due to deregulation,

a number of companies developed a need to manage non-catastrophic events such

as warm or cold temperature periods, rainy or dry periods, sunny periods, etc.

As commercial companies attempted to understand their exposure to climate,

academics began to stress the impact that climate change (or more specifically

weather fluctuations) was having on global economies. A study by the US De-

partment of Commerce (see Dutton, 2002) concluded that up to a third of the

US Gross Domestic Product (approximately $3.8 trillion) was exposed to weather

risks. Additionally, Dutton (2002) stated that around 15% of the industrialised

economy was affected by daily weather. In 2001, the UK Met Office conducted

a survey examining the impact of weather on British industry, and found that

95% of respondents admitted to a 10% loss in profits due to adverse climate ef-

fects (Met-Office, 2001). In the United States, several institutions attributed the

increased levels of unpredictable climate conditions to global warming, an idea

supported by the results obtained by the U.S National Oceanic and Atmospheric

Administration, which highlighted lower precipitation and higher temperature on

average over the United States.

Unpredictable weather conditions can have dramatic impacts on companies. Dut-

ton (2002) highlighted a few particular cases of such affected companies in his

review of the weather service industry. He reported that 2001 fourth quarter elec-

tricity sales by First-Energy were down $122 million on the previous year, due

to milder winter conditions. Similarly, another energy company, Dominion, re-

ported a $47 million decrease in earnings in 2001 because of unfavourable weather

conditions. As management within a company may wish to mitigate weather fluc-

tuations to maintain performance/sales and in turn ensure their bonuses (which

may also not be in the interest of diversified investors, who may have already

accounted for the weather risk), together with deregulation of the energy and

utility industries, helps to explain the impetus for the creation of a new asset

class: weather derivatives.

32



Chapter 2. Introducing Weather Derivatives

2.0.1 Anatomy of a Weather Derivative

A weather derivative is a contract with a future settlement contingent on a speci-

fied weather variable. Generally, a weather derivative is defined by (Jewson et al.,

2005):

• A weather variable, such as temperature, rainfall, snowfall;

• a reference weather station that measures the weather variable;

• a measurement period, given by a starting date t1 and finishing date t2;

• an index that governs how the weather variable is aggregated over the mea-

surement period;

• a payoff function indicating how cash-flows are calculated, containing key

attributes such as contract structure (for example defining it as a call,

put, swap, etc.), the strike level, tick size (the payout amount per unit

above/below the strike), and a maximum payout (usually referred to as a

cap);

• and possibly a premium, which is awarded to the seller if the derivative is an

option. Additionally, an insurance premium may often be added to provide

compensation for the sellers inability to completely hedge their position.

A distinguishing feature of a weather derivative contract is that it has no ne-

gotiable underlying index, as for example, temperature has no traded value in

the market. Also, contracts are not created on the instantaneous weather vari-

able, but rather on some accumulated average or total, which we discuss in §2.2.
The existence of a traded underlying variable usually forms the basis of a tradi-

tional derivatives contract. The absence of a tradable underlying presents many

problems, which we examine in chapters 4 - 6.

33



Chapter 2. Introducing Weather Derivatives

2.1 History and Development of Weather Deriva-

tives

It is an old cliché that the British are obsessed with the weather, yet it was in

the United States where the modern weather risk-trading market was born. The

commencement date of the weather derivatives market is not clear, with Nicholls

(2004), Jewson et al. (2005) and Hamisultane (2006) alluding to its inception

in 1996, whilst others, such as Garman, Blanco, and Erickson (2000), Harris

(2003) and Bellini (2005), suggest 1997 as the first year. According to Nicholls

(2004), Aqulia Energy, a subsidiary of UtiliCorp United, pioneered the use of

weather derivatives by constructing the first deal in July/August 1996. Aqulia

Energy entered into a transaction with Consolidated Edison Co to offset the risk

of power sales decline due to a cool August period (Nicholls, 2004). In 1997, a

weather derivatives transaction between Koch Industries and Enron Corporation,

the infamous energy company that later imploded in an accounting scandal, was

the first publicised deal of its kind, which indicates why it is often regarded as the

first weather derivatives transaction. The contract was based on a temperature

index for Milwaukee, Wisconsin. The index was an accumulated quantity of

temperature by a given formula (various types are defined in details in §2.2).
The contract was structured such that Enron would pay Koch $10, 000 for every

degree the temperature fell below a specified value during the winter of 1997-

1998, while Koch would pay Enron $10, 000 for every degree above the specified

value. This type of deal is commonly referred to as a swap contract, whereby two

counter-parties agree to exchange cash flows in the future in some prearranged

manner (see §2.3.1, and refer to Hull, 2006, for further details).

Leading the way in establishing the weather-risk market were Enron, Koch and

Swiss Re. Although the energy and utilities industries pushed for the develop-

ment of weather derivatives, the economic fortunes of several enterprises within

the agriculture, retail, entertainment and tourism sectors are also subject to the

mercy of mother nature and equally required a financial instrument to reduce their

sensitivity to weather changes. This resulted in contract variants of the original

deals being created for, among others, a brewery, a sports-drink company, a golf

resort and a fertiliser maker. These took the form of options and futures linked to

a specific and measurable weather property, such as rainfall. Market participants
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recognised weather derivatives as suitable instruments to hedge weather exposure

in their core energy assets and as a form of risk management.

Of the non-energy specific sectors, the application of weather derivatives has

been most prominent within the agriculture sector and has been examined in the

literature in depth by Geman (2005) and Turvey (2008). In the energy sector

weather derivatives are used to hedge volumetric risk, whereas in the agriculture

sector weather derivatives are used to protect against production yield risk.

2.1.1 The effect of El Niño

The weather derivatives market grew significantly during the warm Midwest and

Northwest El Niño-Southern Oscillation (commonly referred to as El Niño) in the

winter of 1997-1998. In general terms, El Niño is a periodic change in the atmo-

sphere and ocean of the tropical Pacific region, causing weather changes in large

parts of the world, especially in countries situated around the equator, namely

certain parts of Africa, Indian Ocean, South America and Australia. Although

the effects of El Niño in the United States were weaker than those experienced

in other regions (according to Jewson et al., 2005), it still led to higher temper-

atures over most of the northern United States and an increase in rainfall in the

southern and coastal regions of the United States. These changes in weather were

significant enough to act as a catalyst in growing the weather derivatives market

as companies sought to protect themselves from declines in earnings due to un-

favourable weather conditions. The impact of El Niño stimulated the demand for

companies seeking warm-side winter protection, by purchasing weather deriva-

tives. Contracts were primarily traded in an over-the-counter (OTC) market

(Jewson et al., 2005).

In September 1999, weather derivatives were standardised on the Chicago Mer-

cantile Exchange (CME) through the creation of the electronic platform Globex

(Hamisultane, 2008). This was the first exchange where standardised weather

contracts could be traded and Hamisultane (2008) cites this as one of the main

drivers for the growth in market participation and trade volume. The reason for

this increase in trading activity was that exchanged-based transactions provided

investors with the most reliable price for a given contract, and eliminated credit
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risk (the risk that the other counter-party may default) through the establish-

ment and use of the clearing house. Additionally, market makers specialising in

trading weather derivatives viewed the exchange as creating a liquid weather-risk

market that is crucial to quick transfer of risk. The platform initially listed con-

tracts for ten cities in US: Atlanta, Chicago, Cincinnati, Dallas, Des Moines, Las

Vegas, New York, Philadelphia, Portland and Tucson, which were chosen based

on population size, the locations’ seasonal temperature variability, and the level

of trades in the over-the-counter market. By 2003, European contracts began to

trade on the CME, and were quickly followed by the introduction of contracts

on the Japanese cities Osaka and Tokyo. Today, the CME Group has weather

derivative contracts on 24 cities in the United States, ten in European, six in

Canada, three in Australia and three in Japan (Myers, 2009; Matthews, 2009).

Following in the footsteps of the CME, the London International Financial Fu-

tures and Options Exchange (LIFFE) in conjunction with two information tech-

nology companies, Intelligent Financial Systems (IFS) and World-wide Intellec-

tual Resources Exchange (WIRE Limited) created the first London-based weather

exchange with the release of the website I-WeX.com on 23rd December 2001. The

exchange promised to be an on-line marketplace where market-makers, buyers and

sellers came together to construct and trade weather contracts on European cities

through an over-the-counter auction system (Hamisultane, 2008). Additionally,

it provided bulletin boards and news, on-line pricing models and weather data

services (Mehta, 2000). The first trade on this exchange was by Accord Energy

Limited and Aquila Risk Management, where five lots were traded for January

2002 contracts where temperature data were observed at London Heathrow. The

exchange failed to deliver on its promises, and due to insufficient turnover and

significant structural issues, LIFFE suspended the trading of weather derivatives

contracts in 2004 (Jewson et al., 2005).

Market makers and market participants offered the weather-derivative market

a greater depth and breadth. Brockett, Wang, and Yang (2005) explained that

these rapid developments contributed to the market widening to include a variety

of sectors, including agriculture, construction, retail, transportation, tourism and

entertainment1. These developments are now bringing the weather-derivative

market to the attention of brokers, banks and other financial institutions.

1According to the Weather Risk Management Association www.wrma.org/risk history.html
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2.1.2 Market Size

A Price Waterhouse Coopers (PwC) survey conducted over twelve months in

2003-2004 found that the weather-risk market size2 stood at $4.7bn (£3.2bn),

and by 2006 this had increased to $45bn (£30bn). However, according to the

survey, by 2007 a contrasting story was being told as the market size had more

than halved to $19bn (£13bn). The Weather Risk Management Association

(WRMA), the industry body that represents the weather risk management busi-

ness, attributes the decline to a quieter hurricane season in 2007 in contrast to

the occurrence of the costly Hurricane Katrina in the equivalent season of 2005.

Year Summer Winter Total
2000-2001 1126 1633 2759
2001-2002 868 3069 3937
2002-2003 2412 2105 4517
2003-2004 1175 1987 3162
2004-2005 1928 2129 4057
2005-2006 1036 1144 2180
2006-2007 372 402 774
2007-2008 163 268 431

Table 2.1: A breakdown of the number of OTC contracts (of various structures)
traded during the winter and summer months, as reported by survey participants
(excluding CME trades). Source: PwC/WRMA.

2006-2007 (%) 2007-2008 (%)
Heating degree days 20 29
Cooling degree days 5 4
Other temperature 62 37
Non-temperature contracts 13 30

Table 2.2: Over-the-counter trades by types. Source PwC/WRMA

The most recent annual survey, over the period April 2008 to March 2009, con-

ducted by PwC for the Weather Risk Management Association reported that

the trading volumes were down 39%, with notional values 3 falling 53% (Vil-

lage, 2008). Observe from table 2.1 that winter-based weather contracts are more

2This represents the potential payout on weather derivatives contracts written globally in
12 months

3The total value of a leverage position’s asset. For example, one S&P 500 Index futures
contract obligates the buyer to 250 units of the S&P 500 index. If the index is trading at $1, 000,
then the single futures contract is similar to investing $250, 000(250 × $1, 000). Therefore,
$250, 000 is the notional value underlying the futures contract.
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Year Notional Value ($m)
2000-2001 2517
2001-2002 4339
2002-2003 4188
2003-2004 4710
2004-2005 9698
2005-2006 45244
2006-2007 19193
2007-2008 32008

Table 2.3: Notional value of all weather risk contracts. Source: PwC/WRMA

frequently traded than their summer variants and, furthermore, table 2.2 shows

that almost 30% of the trades performed in the over-the-counter market were

on heating degrees days (we formally define heating degree-days in §2.2.1). The

current notional value of the market stands at $15.1bn, making it the lowest

since 2004 (see table 2.3). Volumes have not grown as expected, partly because

weather derivatives contracts are primarily used for hedging purposes (Dutton,

2002; Jewson et al., 2005), where the hedgers are primarily concerned with pro-

tection for their specific situations and, hence, deal directly with counterparties

in the OTC market. Myers (2009) points to the turmoil in the financial markets

and general economic contraction (often referred to as the credit crunch) that

erupted from the 2007 sub-prime mortgage crisis, as the reason for the depressed

volumes. Earnings shortfalls caused by weather conditions were not easy to mit-

igate because of the enormous strain the credit crunch has had on companies’

cash reserves and/or bank credit makes it more difficult for companies to invest

the required capital to invest in projects/assets which offset the losses due to

unfavourable weather conditions.

Outside of the academic literature, Morrison (2009) (who is a natural advocate

and provider of weather derivative products), indicates that market observers

remain optimistic despite the recent volume decline, because they believe that

the weather-risk market will benefit as the administration of President Barack

Obama of the United States has placed significant emphasis on the use of wind

power and other renewable energy solutions, all of which are heavily dependent

on weather conditions. The WRMA president holds a similar view (STORM,

2009):
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The rising use of renewable energy - solar, wind and hydro - will spur

more interest in employing weather risk management tools. Most

renewable sources are tied to the weather and we are seeing increased

interest from developers, operators and financiers in mitigating their

weather exposure by using risk management tools.

Morrison suggests that although companies’ cash reserves are strained, the weather

derivatives market will grow as companies find that the recession forces them to

assess the vulnerability to weather conditions since they may not be able to

withstand further hits from abnormal weather patterns. This view is shared by

another provider of weather derivative related products, the CEO of Galileo 4,

Malinow (Morrison, 2009):

With weather derivatives you have a whole slew of end users who will

have to de-risk going forward to gain access to new capital. You are

going to see people making more effective use of these products.

Being able to dramatically reduce earnings volatility in times of economic un-

certainty is one of the major advantages that a company manager may see in

purchasing weather derivatives. However, it must be noted that from the per-

spective of a diversified investor, the weather risk can be absorbed by shorting

the company’s stock and hence protecting themselves from downward risk.

As market participation from the United States declines, there is reason to remain

optimistic about the future of this market, given increased participation from Asia

and Europe Hamisultane (2006). A possible reason for this growth may be due to

the introduction of a variety of ways in which the accumulated index (based on

a weather variable) is calculated, and therefore market participants who operate

in a climate that differs from the United States may now find a use for these

contracts. We next consider a selection of the more popular types of indices.

4Galileo Weather Risk Management was formed in 2005 and writes tailored financial weather-
related risk management products
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2.2 Common underlying

There is a vast array of observable weather attributes, ranging from average daily

temperatures to more obscure attributes such as sunshine hours. Even though

there appear to be numerous types of observable weather effects on which a

derivative could be created, table 2.2 indicates that temperature is more often

used as an underlying. For example, in 2007-2008, 70% of all weather derivatives

contracts traded were based on temperature as the underlyer. Table 2.4 reports

the link between weather and financial risk from the perspective of a company

manager, and suggest that across various industries temperature movement is

strong component of financial performance. Also extremely cold temperatures,

which result in snowfall, are of major concern to these industries. According

to Tigler and Butte (2001), the dominant use of temperature derivatives arises

because

1. it is relatively easy to quantify across a spectrum of industries, unlike other

weather variables e.g. rainfall, which is highly spatially dependent.

2. high-quality data and sufficiently long historical records sets are available

for numerous locations around the world,

3. the impact of temperature on a particular industry is easy to quantify, e.g.

cold summers having a direct hit on sales of ice cream, which allows for

forecast models to be created.

With the majority of traded weather contracts currently being written on temper-

ature, we shall constrain our analysis primarily to derivatives where temperature

represents the underlying weather variable in one form or another although it

is worth noting that rainfall options are studied by Odening, Musshoff, and Xu

(2007), in the context of wheat production levels. Turvey has published several

papers within the weather derivatives literature, covering the use of these deriva-

tives for specific events risk in agriculture (Turvey, 2001), examining the role

of famine-indexed weather derivatives in Chantarat, Turvey, Mude, and Barrett

(2008). More recently Turvey (2008) develops formulae for valuing coupon rates

on weather-linked bonds and the interest rates on weather-linked mortgages and

lines of credit.
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Risk Holder Weather Type Risk
Energy Industry Temperature Lower sales during warm winters

or cool summers
Energy Consumers Temperature Higher heating/cooling costs during

cold winters and hot summers
Beverage Producers Temperature Lower sales during cool summers
Building Material Companies Temperature/Snowfall Lower sales during severe winters

(construction sites shut down)
Construction Companies Temperature/Snowfall Delays in meeting schedules

during periods of poor weather
Ski Resorts Snowfall Lower revenue during winters

with below-average snowfall
Agricultural Industry Temperature/Snowfall Significant crop losses due to

extreme temperatures or rainfall
Municipal Governments Snowfall Higher snow removal costs during

winters with above-average snowfall
Road Salt Companies Snowfall Lower revenues during low

snowfall winters
Hydro-electric power generation Precipitation Lower revenue during periods

of drought

Table 2.4: Illustrative links between weather and financial Risk. Source: Climetrix, Risk Management Solutions Inc.
http://www.climetrix.com.
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With this in mind, we introduce the most commonly used measurements of tem-

perature in the weather derivative market.

2.2.1 Degree-Day Indices

Meteorologists define a degree-day as the difference between a reference temper-

ature and the average temperature on a given day. In this thesis, we take a

day to be measured from midnight until the following midnight. The average5

temperature X(t) on day t is defined as (Geman, 2005; Jewson et al., 2005)

X(t) ≡ Xmax(t) +Xmin(t)

2
, (2.1)

where Xmax(t) and Xmin(t) denote the maximum and minimum temperature on

day t, respectively. It is helpful to view the reference temperature as a barrier

level, which we denote as Xref(t). Work in the weather derivatives literature

often assumes this barrier to be constant and it is typically set to the temper-

ature level for when heat furnaces are switched on/off. Therefore, we drop the

time-dependency and write it simply as Xref . The barrier is typically specified

as 18.33◦C (Cao, Li, and Wei, 2003; Jewson et al., 2005), since converting from

measurements in Fahrenheit, ( Xref = 65◦F) produces a decimal value for the

barrier. Jewson et al. further mention that in all other countries where temper-

ature is measured in Celsius it is usually taken as 18◦C, and we adopt this value

for Xref throughout this thesis. Describing the reference temperature as a barrier

strengthens the comparison of valuing a weather option with that of valuing a

barrier option. We use this observation later in chapter 6 to aid in solving various

weather options.

Degree-day indices come in two types: heating degree-days (HDD) and cooling

degree-days (CDD). We provide an outline of these and their uses below.

5This is not a true average as we are taking extreme values of the temperature as opposed
to observing all temperature movements and then taking the mean temperature. Unlike the
true average, this average is locally horizontal as a variable, making jumps only at a countable
number of occasions on which X jumps outside its previous range Xmin to Xmax. The author
notes that statistically this approach has drawbacks and will prevent it from being useful in a
PDE framework.
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The Heating Degree-Day index

A heating degree-day is a measure of how cold the day was. In other words it

provides information on the number of degrees that the observed average tem-

perature, on day t, was below the barrier Xref ,

(Xref −X(t))+. (2.2)

When X(t) > Xref , it implies that little fuel or electricity is consumed for the

purpose of providing heating because the temperature is sufficiently warm. If

X(t) < Xref then it is assumed that heating will be required. This quantity (2.2)

is accumulated over a given time period T , and is known as the heating degree-day

index. This may be defined as

IH(t) =

j(t)
∑

i=0

(Xref −X(ti))
+. (2.3)

where ti are the observation days and j(t) is the largest integer such that tj(t) < t.

It is possible to represent the above quantity (2.3) in continuous time. We do

this by redefining X(t) such that it denotes the temperature observed at midday

on day t. Previously, X(t) was defined only in discrete time but is now treated

as an Itô variable in continuous time such that the continuous form of equation

(2.3) becomes:

IH(t) =

∫ t

0

(Xref −X(s))+ds, (2.4)

and by applying Itô’s lemma (to O(dt)) becomes

dIH(t) = (Xref −X(t))+dt. (2.5)

Using a continuous description of the index is attractive because we can then

observe this quantity at any time during the day. In (2.3) the subscript notation

is used to denote that the index is defined for a heating degree-day index (from

now on referred to as HDD).

A possible temperature path is simulated to illustrate graphically how the index

may accumulate. Such a situation is shown in figure 2.1, which uses the stochastic

differential equation suggested by Alaton et al. (2002) (see §4.1.4) to simulate a
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Figure 2.1: A simulated temperature path using the Monte Carlo method showing
the area above and below the barrier. The start date is from January 1st (day
0). The temperature is measured in Celsius and ‘Time’ is the real calendar time
measured in days. We use an Ornstein-Uhlenbeck SDE of the form given in (3.5)
to simulate the temperature paths in this figure. Parameters for the SDE are
given by estimates determine in chapter 5
.

temperature path using the Monte Carlo method. The red shaded region in this

figure indicates the area between temperature and the barrier (here Xref = 18),

and the value of area is the quantity (2.4). The start date (day 0) of the simulated

temperature is January 1st. It is evident that that during the winter months there

will be a large number of heating degree-days, and fewer, or none during summer.

In most countries, during the winter, the temperature rarely exceeds the 18◦C

barrier, which implies that the dIH(t) on each day t will be positive.

The Cooling Degree-Day index

Conversely, a cooling degree-day is a measure of how warm a given day has been.

It captures how many degrees the observed average temperature was above the
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barrier, and is calculated as follows:

(X(t)−Xref)
+. (2.6)

This quantity is effectively a measure of the energy demand for cooling on a given

day t. As was the case for a heating degree-day index, the cooling degree-day

index accumulates (2.6) until time T , and is given by

IC(t) =

j(t)
∑

i=0

(X(ti)−Xref)
+, (2.7)

and for the same reasons as stated in the above section, we define the continuous

form as

IC(t) =

∫ t

0

(X(t)−Xref)
+ds, (2.8)

where

dIC(t) = (X(t)−Xref)
+dt. (2.9)

Since (2.8) captures how hot a time period has been, cooling degree-day indices

(hereafter CDD) are typically used during the summer months. This is further

emphasised through figure 2.1, where the small green shaded region only has value

during the summer months. Typically, weather conditions in most of the traded

locations may rise above 18◦C during summer, but often will drop below that level

in summer. This differs from the winter months where the temperature is seen

generally to be consistently below the barrier and, hence, the CDD has zero value.

It is then evident that temperature movements during the winter and summer

seasons are not symmetrical about the barrier level. The CDD index is rarely

traded in Europe and Japan, because in these regions summer temperatures are

typically not high enough to place significant demand for cooling. Therefore, the

CDD index would have zero value.

It has been reported by Cao et al. (2003) and Jewson et al. (2005) that use of a

CDD index is most relevant to the US electricity market and to a lesser extent

the gas market, for the simple reason that part of the demand for electricity is

driven by people’s need for cooling. Jewson et al. (2005) also suggest that CDDs

are becoming of more interest to participants in the gas market because more

electricity is now being generated from natural gas.
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The popularity of degree-days indices arises as they closely track the extent

to which consumers use their heating systems and/or air conditioners. Geman

(2005) shows the high correlation between HDD and gas and power use in the

United States; Cao et al. (2003) shows the that consumption of gas is highly

correlated with changes in temperature (they report R2 = 0.9416). Because

weather conditions and patterns concerning temperature and related industries

across Europe and Asia behave differently from the United States, specifically

that temperature fluctuations are not as significant, other indices are used in

these locations.

2.2.2 Average of Average Temperature Indices

Often, there is a desire to understand the average temperature during a given

time period. For this purpose, the average of average temperature index (AAT)

is used. This is calculated by averaging across all the daily average temperature,

X(t), values over the time period, i.e.,

IA(t) =
1

t

∫ t

0

X(s)ds. (2.10)

The above is perhaps a more intuitive measure of temperature variability than

degree-day measurements, though for that reason it is less relevant to the dis-

continuous payoffs of US CDD weather derivatives. It is also a more informative

measure of the behaviour of the weather itself. However in practice it is not pos-

sible to observe temperature continuously, in a legally verifiable way, therefore a

discrete representation of the above equation is more useful for defining contracts.

The average of average temperature indices are mainly used in Japan, but seldom

used in United States or Europe. Derivative contracts whose underlying is an

AAT can be regarded as Asian options. We discuss the significance of this in

Chapter 6

2.2.3 Cumulative Average Temperature Indices

Northern European summer temperatures differ vastly from those observed in

the United States, by the fact that the temperature does not often exceed the

46



Chapter 2. Introducing Weather Derivatives

typically-used reference temperature which is set at 18◦C - set at this level as the

market is dominated by agents from the energy markets in the United States -

so the use of CDD based contracts in Europe is rare (table 2.2 highlights the low

percentage of traded CDD contracts). This is supported by the fact that the CME

contracts provides no CDD based contracts on European locations (see Matthews,

2009). Instead, the cumulative average temperature (CAT) index is used and is

defined as the summation of daily average temperature over the contract period

(Jewson et al., 2005):

ICAT (t) =

∫ t

0

X(s)ds. (2.11)

2.2.4 Event indices

Occasionally, companies may be interested in monitoring the number of days over

a given period that some particular weather event occurs, e.g. the temperature

exceeds some temperature threshold. These are known as critical day indices.

Alternatively, a contract can be created which measures the period over which a

particular event occurs and will pay out once the length of time is above a given

threshold. Contracts written on these indices may be regarded as Parisian, or in

some instances Par-Asian, options (for precise definitions of both Parisian and

Par-Asian options we refer the interested reader to Hull, 2006). Jewson et al.

(2005) explain that because of the specific nature of these indices, transactions

are typically between hedgers and speculators. An example of such a transaction

could be to provide insurance for construction workers in the event that frost

occurs. The contract might be dependent on the number of frost days from

November to March. The event is triggered if on a working day 6 the temperature

at 7am was below −3.5◦C, or at 10am was below −1.5◦C, or the temperatures

between 7am and 10am was both below −0.5◦C.

2.3 Product Overview

As with all new markets, the OTC arena drove the initial volume in weather

derivatives trading. Activity in the OTC weather market has lessened due to

6This would only include weekdays and exclude public holidays which fell on a weekend
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the standardisation and reduction in credit risk offered by exchanges, such as

the CME (Hamisultane, 2008). The standardisations of contract specifications

are outlined below, and where necessary we mention the economic purposes for

further illustration.

2.3.1 Swaps

One of the first traded weather derivatives was constructed as a swap contract.

As previously stated in §2.1, a swap contract is an agreement to exchange cash

flows in the future, according to a prearranged formula (Hull, 2006). These ex-

changes of cash flows occur at predefined stages over the lifetime of the contract.

Exchange-traded weather swap contracts involve daily cash settlement as the

index fluctuates, while OTC traded swap contracts are cash settled only at ma-

turity. At initiation, both counter-parties agree to pay each other according to the

weather conditions over a pre-agreed period, at some future date, with (rarely)

any premiums being exchanged at initiation (Jewson et al., 2005). However the

level of risk taken by the two counter-parties involved in the transaction is often

different, and so the strike level is set at a value where the expected pay-off at

maturity is close to zero, but offset slightly in favour of the counter-party tak-

ing on more risk. The market, therefore, prices costless swaps prior to trading

by appropriately determining the strike level - and explains why weather swaps

contracts that are traded on an exchange are quoted by their respective strike

level.

Swaps as forwards

P (IH(T ), T ) =











tick · (L1 −K), if IH(T ) < L1

tick · (IH(T )−K), if L1 < IH(T ) < L2

tick · (L2 −K), if IH(T ) > L2

(2.12)

where IH(T ) is the value of the HDD index at maturity, tick is used to translate

the quantity (IH(T )−K) into monetary terms, K is the strike level, and L1 and

L2 denote the level at which a limit to the payoff is applied. When the index is

below L1, the maximum amount the buyer of the swap contract will have to pay

the other counterparty is tick · (L1−K). In the instance when the index is above
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L2, the maximum amount the buyer will receive is tick · (L2 −K). This contract

has the economic benefit of protecting against a high HDD index values. The

downside of such a contract is that the buyer must pay the seller for low values

of the settlement index. Figure 2.2(a) provides an illustration of the payoff just

described.

Exchange based weather swaps

The CME offers the trading of swaps as futures contracts based on the CME

Degree Day Index. According to the CME (2011), these contracts are often

uncapped and have maturity dates which last for weeks, months or a season7.

Weather future contracts are available on the CME Globex platform, and come

in the following forms:

1. U.S. Weekly, Monthly and Season Weather Futures using either the HDD

or CDD temperature settlement index

2. European Monthly and Seasonal Weather Futures using either HDD or

CATs temperature settlement index

3. Asia-Pacific Monthly and Seasonal Weather Futures based on temperature

4. Canadian Monthly and Seasonal Weather Futures based on HDD, CDD or

CATs temperature indices

Additionally, non-temperature based contracts are offered:

1. Frost Day Monthly and Seasonal Futures

2. Snowfall and Seasonal Snowfall Futures

3. Hurricane Seasonal, Seasonal Maximum and Event based Futures. These

contracts are based on the Carvill Hurricane Index 8, which is is an index

that describes the potential for damage from an Atlantic hurricane.

7Traditionally, a season lasts 3 months, where winter begins in November, spring in February,
summer in May, and autumn in August

8The maximum sustained wind speed of a hurricane and the radius to the hurricane force
winds are used to calculate the CHI. The CME uses the values 74 mph and 60 miles for the
maximum sustained wind speed and radius of hurricane force winds respectively. The variable
CHI is used as the basis for trading hurricane futures and options on the CME.
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Srike I

(a) Swap payoff
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Strike

(b) Call payoff
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(c) Put payoff
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(d) Collar payoff

Strike I

(e) Straddle payoff

Strike Strike I

(f) Strangle payoff

Figure 2.2: The payoff functions for the various weather derivative contracts. The
solid represents the payoff, and the dotted lines denote the strike level(s).
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Additionally, the exchange provides options on these futures:

1. The HDD/CDD Index futures are agreements to buy or sell the value of

the HDD/CDD Index at a specific future date.

2. The size of the unit trading shall be 20 British pounds times the respective

HDD/CDD index.

3. Weather futures are cash-settled daily at 15:15 Central American Time

(CT), unless the exchange closes early, and therefore are daily mark-to-

market, based upon the index.

2.3.2 Options

The temperature index call (put) option gives the holder the right, but not obliga-

tion, to own (short) one index at a given strike level. Unlike the equities market,

where an option may have several different strikes, in weather-based contracts

the strike is typically set at the historical expected index value or one standard

deviation above or below the expected index depending on if the contract is being

bought or sold, or is a call or put option (Jewson et al., 2005). These contracts’

maximum payoffs are usually capped at a level which is either two standard devi-

ations or the most extreme historical value of the weather index. Most contracts

traded in the OTC market impose a limit on the financial gains or losses, but the

weather contracts specified on the CME have no such restriction. At the time of

writing, weather option contracts are only of European style.

Unlike swap contracts, where both parties are exposed to making an unpre-

dictable, but in capped contracts, potentially bounded payment at the end of

every reset date or marked to market like futures, the downside for the holder

of an option is limited to the value of the option, the so-called premium. This

benefit justifies why it has been estimated that around 80% of weather derivatives

are structured as options (Bellini, 2005). Taking the example of a capped HDD

put option, its payoff is given by

P (IH(T ), T ) =

{

tick · (K − L), if IH(T ) < L

tick · (K − IH(T ))
+, otherwise

(2.13)
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and the capped call option is defined as

C(IH(T ), T ) =

{

tick · (IH(T )−K)+, if IH(T ) < L

tick · (L−K), otherwise
(2.14)

where tick and K are as defined in (2.12), and the maximum payout is set when

the index value equals L. Let us consider a call option. The holder of this option

receives money if the index value is greater than the strike level. If the value of

the index exceeds L, the holder’s payout is limited to tick · (L − K)+. When

the index is lower than the strike level no money is gained. The buyer’s profit is

simply the payment from the seller, which is discounted to account for time value

of money, minus the initial premium value.

A wide range of different option structures, such as collars, straddles, strangles,

etc., are used by counter-parties in the weather market depending on their re-

quirements. Figure 2.2 illustrates the payoffs from the different option types.

2.3.3 Basket options

The contract types so far have only considered the case where the derivative is

dependent on the temperature observed at one location. Suppose an investor

is affected by weather conditions across multiple cities. Rather than purchas-

ing individual contracts on each location it would be cost-effective (in terms of

transaction costs) to purchase a single basket option, which depends on all the

necessary locations. In chapter 8, we examine basket options in the more general

case of options with multiple underlying assets, and investigate the application

of existing techniques often used to solve these problems. Later in chapter 8,

we offer an improvement on current numerical schemes through the development

of a generic methodology that can be utilised to value weather derivatives with

multiple underlying indices, or a variety of financial derivatives.

2.3.4 Weather Bonds

In addition to swaps and option-style derivative contracts, the growth of weather

derivatives has seen the re-emergence of risk management for events caused by
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Temperature

Coupon indexed to temperature

Principal(%)
Guaranteed full principal

Figure 2.3: Payout of a tranche with the principal guaranteed and temperature-
indexed coupon risk.

nature. Securities based on observable individual natural events, which are un-

affected by trading, were constructed and traded on the Chicago Board of Trade

(CBOT) until 2000, when they were delisted (Poncet and Vaugirard, 2001). Af-

ter their relegation from the CBOT, investment bankers began structuring these

products as insurance-linked bonds. These new products give corporations the

opportunity to hedge risks associated to nature, by means of tailor-made assets.

Furthermore, insurance and reinsurance companies can utilise such products to

share their business risk with other market participants. Poncet and Vaugirard

(2001) highlight an example of such a situation of companies sharing risk when,

in 1999, Goldman Sachs offered insurance bonds to protect the reinsurance com-

pany Gerling Global Re from high-level catastrophe losses from earthquakes in

Japan. Gerling Global Re sold these bonds and had to pay a coupon of 450 basis

points above the six-month London InterBank Offered Rate (LIBOR); however

the investor’s principal was at risk. The rise of structured weather products is

not limited to the risk management of catastrophic events. Corporations are

often equally concerned with non-catastrophic weather events and have created

structured commodity-linked bonds to manage their exposure to these events.

The bond coupon payments are linked to some weather variable and pay out

according to how much the variable deviates from some norm. For example, a

weather bond structure may include a series of tranches whose returns are linked
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to temperature (either degree-days or average temperature). Particular tranches

guarantee partial or full return of the principal, and have a coupon that would be

indexed to the temperature at a prescribed set of locations. Figure 2.3 illustrates

this, where the tranche guarantees the full return of principal, and has a warm

winter coupon, such that higher temperatures in winter imply higher tranche

yield. Due to the specific nature of more structured products, their liquidity is

limited (Dischel and Observer, 2002). The first bond-type weather derivative was

developed by Koch Energy Trading (now Energy-Koch) in 1997. The contract

was a multi-tranche, multi-year bond structure. Cash-flows were linked to the

performance of 28 weather derivatives contracts at 19 US locations. Dischel and

Observer (2002) correctly state that the complex nature of these contract has led

to them being infrequently traded. They report that Enron also experienced this

when they tried to create a simpler contract, but still investors complained about

pricing issues and consequently the contract was never issued.

2.4 Summary

The introduction of weather derivatives has provided investors with a method

to mitigate daily weather fluctuations and to remain competitive within today’s

economy. With market analysts (such as Myers, 2009) believing the weather

derivatives market is to expand further, the valuation of such contracts has be-

come hugely important.

As mentioned briefly toward the end of §2.0.1, since temperature (or any weather

variable) cannot be explicitly traded, the use of well-known pricing methodologies,

such as the analysis performed by Black and Scholes (1973) and Merton (1973),

cannot be applied since a risk-free portfolio cannot be constructed. According

to Schiller et al. (2008), the absence of a consensus pricing model has limited

investors’ appetite for trading these contracts. Much of the existing work in the

literature assumes that the weather derivatives market is liquid and therefore

is able to construct hedging strategies appropriately. Jewson et al. (2005), in

particular, take this approach and assume that the weather futures contract is

sufficiently traded to allow for the derivation of a suitable partial differential

equation (PDE) in the Black-Scholes & Merton framework.
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More work is required to develop the various methods currently in the literature.

The job of financial engineers is to adopt a unified approach, similar to the way

Black-Scholes & Merton revolutionised the equity derivatives market. In the next

chapter, we introduce the financial and mathematical concepts and techniques

that are used throughout this thesis.
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Preliminaries

A successful man is one who can lay a firm foundation with the bricks

others have thrown at him.

David Brinkley

This chapter considers the concepts and techniques used for pricing financial

derivatives. This is by no means an exhaustive review of the financial derivatives

literature, but acts as the minimal requirements for understanding the material

in this thesis.

3.1 Stochastic differential equations

Stochastic differential equations (SDEs) litter the finance literature and are used

to describe various random phenomena. The SDEs consist of a Newtonian (deter-

ministic) component related to an incremental change in time, dt, and a Brownian

increment dWt. In the general case of a continuous random process St, its evolu-

tion can be described by

dSt = S0 +

∫ t

0

µ(St, u)du+

∫ t

0

σ(St, u)dWt, (3.1)
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where S0 is the starting point,
∫ t

0
du is a Riemann integral, and

∫ t

0
dWt is an Itô

integral. In the limit of the integral, as dt → 0, we can express (3.1) as

dSt = µ(St, t)dt + σ(St, t)dWt. (3.2)

The terms µ(St, t) and σ(St, t) pertain to the drift and volatility of the process S

and can take various forms. In this thesis, arithmetic Brownian motion (ABM)

is used extensively. This is defined as

dSt = µdt + σdWt, (3.3)

where µ and σ denote the constant drift and volatility of S respectively. Another

form is geometric Brownian motion (GBM)

dSt = µStdt + σStdWt, (3.4)

which takes account of the proportional variations of the process, and where µ

and σ denote the constant drift and volatility of S respectively. Lastly, and

importantly in the studying of weather dynamics, an Ornstein-Uhlenbeck (OU)

processes is considered and is given by

dSt = κ(µ−Xt)dt + σdWt, (3.5)

In equation (3.5), µ is the mean value, σ the degree of variability about this mean,

κ is the rate at which any deviations dissipate and revert back towards the mean

µ. Note that the parameters in the above equations can be constant, dependent

on a stated variable(s), or even stochastic, and we consider each of these cases in

this work.

Using an OU description (3.5) prevents inappropriately large values from being

reached, in contrast with ABM or GBM models. The properties of this pro-

cess make it attractive in modelling various financial quantities such as interest

rates (see Vasicek, 1977), currency exchange rates and commodity prices (Ge-

man, 2005). Moreover, OU processes have been shown to capture sufficiently the

behaviour of weather variables and we discuss their application in chapter 4.
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3.2 Fundamentals of financial derivatives

Much of the research described in this thesis depends on several financial princi-

ples and we begin by providing a summary of the mathematical and financial tools

and concepts used to value financial derivatives, drawing particular attention to

cases where the market is incomplete. The interested reader should explore works

such as Neftci (2000) for an accessible read on stochastic calculus, both books by

Wilmott, Howison, and Dewynne(1995, 2000) are excellent for an account of the

standard PDE valuation techniques.

3.2.1 Self-financing portfolio

An appropriate starting point for discussing financial concepts, and one of the

most fundamental aspects of financial derivatives pricing is that of having a self-

financing portfolio. This property is used throughout the financial mathematical

literature. Generally, a portfolio is said to be self-financing if there is no exogenous

infusion or withdrawal of money, such that all future purchases of new assets are

financed by the sales of older ones. Following Björk (2009) we define the portfolio

process as

Π(t) =
t
∑

i=1

hi(t)Si(t), (3.6)

where hi(t) represents the number of units held in each i asset at time t, and

Si(t) the price of the ith asset at time t. A portfolio that adheres to a strategy

given by h(t) = (h1(t), . . . , hn(t)) is self-financing if the following condition holds

for all time t

dΠ(t) =
n
∑

i=1

hi(t)dSi(t) (3.7)

where dSi(t) is the change in the price of the ith asset at time t. This means

that the portfolio’s value is not altered by changing the number of units held in

the asset i but, rather, by the change in the ith asset. Note that the sign of

hi indicates whether the asset was bought (when positive) or short sold (when

negative), though there are cases whereby a constraint is imposed which may

force hi to adopt a particular sign. An example is when no short selling of risky

assets is imposed. Such a situation was experienced in 2008 when the Financial
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Service Authority (FSA) banned the short selling of 34 particular financial stocks

in the UK; this was later lifted in January 2009 (details can be found in FSA,

2009). Therefore, where short selling is not permitted the value of hi in (3.6) is

non-negative.

Operating a self-financing strategy is one of the key principles, along with the

principles of no-arbitrage and delta-hedging, in deriving the much celebrated

Black-Scholes-Merton PDE (see either Black and Scholes, 1973; Wilmott et al.,

1995, for example).

3.2.2 Arbitrage principle

It is often said that there “is no such thing as a free lunch” and this underpins

the essence of no-arbitrage. By using the no-arbitrage argument it is possible to

uniquely determine a financial derivative’s price, irrespective of our views of how

asset prices evolve. This is the great revolution that has spurred much of the

research in mathematical finance (Joshi, 2003).

Where arbitrage is possible, this implies that one can make money at zero cost.

Recall the definition for the portfolio’s total value Π as given in equation (3.6).

A self-financing strategy h(t) is called an arbitrage if either of the following hold

for some fixed time t (Glasserman, 2004):

1. if Π(0) < 0 and then P(Π(t) ≥ 0) = 1;

2. if Π(0) = 0, with P(Π(t) ≥ 0) = 1 and P(Π(t) > 0) > 0,

where P is the real-world probability. This first statement says that if the portfolio

holding has a negative value at inception it will finish with positive value with

probability 1. Statement 2 suggests that following a strategy denoted by both

the number of physical quantities h(t) and the set of asset prices S will turn

a zero net investment into non-negative final wealth with positive probability.

In other words, an arbitrage portfolio is one that has zero setup cost, has non-

negative value in the future, and may be of positive value in the future. Though

arbitrage opportunities may exist in the market, this generally occurs over short

time intervals because the relative mis-pricing will be corrected by the pressures

of supply and demand in the market. This is closely related to the concept of
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market efficiency, which roughly states that there is no such thing as a ‘good’ buy;

that the value of the asset is its market value (for a explanation and illustrations

of this concept see Wilmott et al., 1995; Joshi, 2003).

3.2.3 Delta hedging

Delta hedging is the removal of risk from a portfolio. Suppose that we have a self-

financing portfolio Π containing the derivative V and short ∆ of the underlying

S,

Π = V −∆S. (3.8)

where the underlying S follows GBM (3.4). The hedging property simply states

that the stochastic movement in the derivative’s value over a small time increment

dt is offset by the movement from the negative quantity held in the asset.

It was shown by Black and Scholes (1973) that by setting ∆ = ∂V
∂S

the risk from

the portfolio (3.8) is removed, and so to prelude arbitrage the portfolio must grow

at the risk-free rate, i.e.

dΠ = rΠdt. (3.9)

This resulted in the Black and Scholes and Merton (BSM) PDE that afforded

both Scholes and Merton a Nobel prize in 1997.

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0. (3.10)

An obvious assumption is that we must be able to continuously re-hedge the port-

folio to ensure that it remains risk-free. However, in reality continuous hedging

is impossible and so discrete hedging is used. Continuous delta-hedging may also

be inappropriate if there are associated costs with buying or selling the underly-

ing asset. This was first studied by Leland (1985), who showed that re-hedging

continuously would result in infinite total transaction costs. To circumvent this,

he suggests that re-hedging is done at discrete-time intervals, and subsequently

he derives a similar PDE to that of BSM, though this PDE is non-linear and

contains an extra term:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
− ασS2

√

2

πδt

∣

∣

∣

∣

∂2V

∂S2

∣

∣

∣

∣

+ rS
∂V

∂S
− rV = 0. (3.11)
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Note that δt is the time-interval between re-hedges and is not assumed to tend to

zero. In the above equation, α is a scaling constant defined by an investor which

describes their view on the impact transaction costs have on their investments,

and Γ = ∂2V
∂S2 is the second derivative of the option with respect to the asset. As

the effect of transaction costs differs between investors (for example, the larger the

book the less significant the transactions costs are), so too does the specification

of α, which implies that the valuation model may no longer produce unique option

prices. In equation (3.11), gamma, Γ, is a measure of how sensitive the delta-

hedge is to changes in the asset price. In the BSM case, it indicates how much

we need to re-hedge in order to maintain a risk-free position; however here
∣

∣

∣

∂2V
∂S2

∣

∣

∣

in (3.11) expresses the degree of mis-hedging due to δt not being infinitesimally

small. More details on the significance of mis-hedging in incomplete markets are

discussed in §3.2.6.

An interesting point in the derivation of Leland’s PDE is that the portfolio is no

longer risk-free. The important assumption here is that the hedge portfolio has

an expected return that is equal to the risk-free rate, i.e.

E[δΠ] = rΠδt, (3.12)

where δΠ and δt denote a small (but not infinitesimally small) change in the port-

folio holding and time respectively. This approach of considering the expectation

of a portfolio is considered in the derivation of our weather derivative PDE in

chapter 5. The full derivation of an option valuation model including transaction

costs can be found in Leland (1985) or outlined in Wilmott et al. (1995).

3.2.4 Market completeness

When a market has as many independent tradable assets as there are sources of

randomness it is said to be complete. This is to say that any derivative may be

perfectly replicated by the (risky and riskless) assets within the market (Joshi,

2003). As the payoff can be replicated through the construction of a self-financing

portfolio (typically using a riskless asset and the underlying), the portfolio set-up

cost is taken as the unique arbitrage-free price of the derivative.
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If the number of sources of randomness exceeds the number of tradable instru-

ments, then perfect replication is no longer possible. Here, the market is referred

to as an incomplete one. This further implies that the sources of randomness are

not hedgable, resulting in risk remaining in the portfolio. In fact, all markets

are somewhat incomplete as many of the underlying assumptions underpinning

pricing models do not hold in reality.

The underlying quantities of a weather-based security, such as temperature or

rainfall, are not traded and, additionally, weather derivatives themselves are not

traded with enough liquidity for constructing a delta-hedged portfolio. Hence

there exists no self-financing replicating portfolio that is equivalent to the value

of the contingent claim. Yet, replicating portfolios are not completely irrelevant

as through them we can infer bounds on option prices.

3.2.5 Market price of risk

Given that risk cannot be completely eliminated in an incomplete market we

must infer the monetary value per unit risk for the source of randomness, which

is referred to as the market price of risk. In other words, the risk exposure

is expressed in monetary terms. If we assume that the underlying process, St,

follows GBM (3.4), we typically denote λ as

λ =
µ(St, t)− r

σ(St, t)
. (3.13)

where µ(St, t) and σ(St, t) represent the drift and volatility of S at time t. The

financial interpretation of the equation above is that it describes the excess return

above the risk-free rate r per unit of volatility that we expect to receive in return

for holding a risky asset S. In the spirit of pricing a weather derivative, this

parameter is the market price of risk of temperature. Hull (2006) provides a

helpful description of (3.13), by firstly rewriting (3.13) as

λσ(St, t) = µ(St, t)− r, (3.14)

and stating that the left-hand side (LHS) of (3.14) is multiplying the quantity of

temperature risk by the associated price of that risk. The RHS is the expected

level of return in excess of the risk-free interest rate that is required to compensate
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for this risk.

An excellent and elegant interpretation of this unknown function λ is provided

by Wilmott et al. (1995). The explanation is set in the context of an incomplete

market problem by valuing a derivative on a (non-traded) stochastic interest-rate,

rt, given by

drt = µ(rt, t)dt + σ(rt, t)dW. (3.15)

By following an appropriate hedging strategy1 the one-factor bond price V satis-

fies the following PDE

∂V

∂t
+

(

µ(rt, t)− σ(rt, t)λ(rt, t)

)

∂V

∂r
+

1

2
σ2(rt, t)

∂2V

∂r2
− rtV = 0, (3.16)

where λ(rt, t) denotes the market price of interest rate risk. Next, consider holding

a naked bond position, i.e. hold just the bond and do not attempt to hedge this

position, Π = V . Using Itô’s lemma, the variation of the the bond is simply

dV =

(

∂V

∂t
+ µ(rt, t)

∂V

∂r
+

1

2
σ2(rt, t)

∂2V

∂r2

)

dt+ σ(rt, t)
∂V

∂r
dW. (3.17)

Clearly this portfolio is not riskless, due to the presence of dW . Now, rearrange

equation (3.16) so that

∂V

∂t
+ µ(rt, t)

∂V

∂r
+

1

2
σ2(rt, t)

∂2V

∂r2
= rtV + σ(rt, t)λ(rt, t)

∂V

∂r
. (3.18)

Substituting (3.18) into (3.17) and rearranging leads to

dV − rtV dt = σ(rt, t)
∂V

∂r
(λ(rt, t)dt+ dWt). (3.19)

In this form, it is clear that the LHS is the change in overall wealth from holding

the bond, as dV is the change in bond investment, and rV dt is the cost of

borrowing the money to finance this bond purchase (hence the negative sign).

The RHS may be interpreted as the excess return above the risk-free rate that

is awarded for accepting risk. Therefore, for each unit of extra risk, σ(rt, t), the

portfolio gains (in expectation) an extra profit λdt.

1Holding a portfolio containing two bonds, with different maturity dates, such that dΠ =
V1(rt, t : T1)−∆V2(rt, t;T2), where T1 < T2.
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When dealing with a traded asset, it is possible to construct a hedge that will

remove risk dW , making the investors indifferent to risk (often known as risk-

neutral). In other words, the rate of return on the asset is equal to the risk-free

rate, i.e. µ = r, which leads to λ = µ−r
σ

= 0. We are then left with a standard

Black-Scholes type PDE. In the case where the asset is not traded, the market

price of risk denotes the compensation the investor expects for taking on non-

diversifiable risk. The exact amount of compensation varies depending on an

investor’s attitude towards risk and, as stated by Joshi (2003) and Ibáñez (2005),

λ may no longer be unique. Calibration is used to infer the value of λ, and limited

investigations have been conducted by Alaton et al. (2002) and Bellini (2005) in

the context of weather derivatives pricing. However, limited datasets used by the

previously mentioned works restrict the usefulness of the derived value of λ. In

chapter 7 we make no attempt to use real-world market prices to determine λ,

but do investigate its impact on pricing by choosing a range of different values.

Alternatively, ideas from expectation theory can be applied to provide further

insights. Introduce P to represent the total wealth created from holding the

naked bond. So, write the LHS of (3.19) as

dP (t) = dV − rV dt. (3.20)

Thus,

dP (t) = σ
∂V

∂r
dWt + σλ

∂V

∂r
dt. (3.21)

Then write this in the stochastic integral form as in (3.1), to obtain

P (t) = P0 +

∫ t

0

σ
∂V

∂r
dWt +

∫ t

0

σλ
∂V

∂r
du, (3.22)

with P0 = 0. Now taking expectations (under real-world measure P), and using

the definition from Itô’s integral means that

EP

[

∫ t

0

σ
∂V

∂r
dW

]

= 0, (3.23)

then leads to

EP[P (t)] = EP

[

∫ t

0

σλ
∂V

∂r
du

]

. (3.24)
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When λ = 0, this implies no compensation is provided for risk taking and there-

fore the expected profit is given by

EP[P (t)] = 0. (3.25)

However, for λ > 0 the expected profit is now non-zero as the investor is being

compensated for the risk under-taken

EP[P (t)] = EP

[

∫ t

0

σλ
∂V

∂r
du

]

> 0. (3.26)

3.2.6 The Hedging Error and Pricing Bounds

As stated in §3.2.3 in our discussion on delta hedging, in an incomplete market

attempts using a given trading strategy h(t) to hedge the derivative V (t) with a

portfolio holding Π(t) cannot totally eliminate risk. This hedging error Y (t) is

then given by

Y (t) = Π(t)− V (t). (3.27)

To remain arbitrage-free, the hedging error Y (t) can be neither strictly positive

nor strictly negative, otherwise, if Y (t) were strictly positive, an investor could

implement the trading strategy h that gains Π(t) and then short the derivative,

making a riskless profit of Π(T )−V (T ). Notice that if Y (t) is always positive, we

say that the portfolio Π dominates the option price V −(t), implying that its value

is always at least larger than the derivative’s payoff. Similarly when Y (t) < 0,

the hedging portfolio is bounded above by V +(t), which leads to the following

inequality

V −(t) < Π(t) < V +(t). (3.28)

In the case where perfect hedging is possible, the value of the portfolio is equal

to the value of the derivative.
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3.3 Utility theory

This section does not attempt to summarise the area of utility theory, but is in-

cluded since this is an alternative approach used in the literature to solve incom-

plete market problems. The theory arose as the solution to the St. Petersburg2

paradox which was first stated by Nicolas Bernoulli in 1713. It was his cousin

Daniel Bernoulli who provided the resolution which involved the explicit intro-

duction of a utility function, and expected utility hypothesis, and the notion of

diminishing marginal utility of money. A full discussion of the problem can be

found in Durand (1957) and Samuelson (1977).

The main idea behind the use of utility theory is beautifully expressed by Daniel

Bernoulli:

The determination of the value of an item must not be based on the

price, but rather on the utility it yields...There is no doubt that a

gain of one thousand ducats is more significant to the pauper than to

a rich man though both gain the same amount.

The basic idea of utility theory is that every level of wealth has a level of utility

to the holder of that wealth. Writing the wealth as w and the utility as u we

have u = u(w). The function u(w) describes one person’s (or organisation’s) risk

preferences. Decisions are then made on the basis of the expected utility, where

expectations are calculated over all possible values of w. If the probabilities of

different levels of wealth lead to one decision having a higher expected utility

than another, then it is to be preferred. If the expected utilities are the same,

then we are indifferent.

There are a number of properties that utility functions are usually required to

have to give a reasonable representation of real attitudes to risk (Jewson et al.,

2005):

2The paradox poses the question of ‘what is the fair price to enter a game, where you win
2k−1 dollars if the coin is tossed k times until the first tail appears?’ The paradox lies in the
fact that the expected value payoff is

E =

∞
∑

k=1

1

2
= ∞.

So a player should pay any amount since in the long run he can win a very large payout.
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Figure 3.1: A depiction of the utility function (3.29), which could be used to
describe someone’s impression on how increases in wealth will improve utility.
Two examples are show here for different levels of risk-aversion. A more risk
averse investor’s utility function is denoted by the green line (where a = 2), while
the less risk averse person has utility represented by the red line (a = 1).

1. Wealth preference: more wealth is always better. An investor never believes

that they have so much wealth that getting more would not be at least a

little bit desirable. Therefore the first derivative du
dw

> 0.

2. Risk aversion: the marginal utility of wealth decreases as wealth increases,

therefore the utility function is concave. To see why this is, consider some-

one who already has a million pounds, obtaining one more pound is almost

meaningless. Hence d2u
dw2 > 0.

The popular definition of the utility function with these properties is the so-called

exponential utility function

u(w) = 1− e−aw, (3.29)

where a is a positive parameter and measures the risk-aversion. Figure 3.1 shows

this utility function for two different risk-aversion levels, 1 and 2. It clearly shows

that the increase of utility diminishes the wealthier the person becomes. Utility
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functions of this form have been discussed in valuing executive stock options by

Henderson (2005), as even though the executive can invest in options and stocks

in the market, he is restricted to investing in own-company stocks which leaves

him subject to firm-specific risk. Other such forms exist, such as the power utility

function. Henderson (2002) uses both power and exponential utility functions to

compute the hedging strategy and price of an option on nontraded assets. Cao and

Wei (2000) consider using utility theory in pricing weather derivative contracts.

Given that each investor’s view on risk differs, there will not be a unique utility

function to describe the market and therefore this leads to varying determinations

of price depending on risk appetite. Moreover, practitioners are unaware of the

exact shape of their utility function and it is not an instructive approach, in that

an answer is obtained but how that price arises is difficult to determine (Otaka

and Kawaguchi, 2002).

3.4 Quadratic Hedging

Delta hedging strategies (3.2.3) are often used in a complete market setting.

However, the idea of hedging used in such strategies is to minimise one’s exposure

to risk, whereas in the derivation of the BSM, the objective was to eliminate the

variance of the portfolio: making it risk-free. This, in summary, is known as a

form of quadratic hedging where the size of risk is constrained. This approach is

classified into variance-minimising hedging and risk-minimising hedging.

3.4.1 Variance-minimising hedging

Variance-minimising hedging was first developed by Schweizer (1996). This ap-

proach involves minimising the tracking error of a self-financing portfolio (see

(3.6)), against the terminal value of a derivative. Let V (t) model the value of a

derivative and follow the same notation from §3.2.1, such that the trading gain

induced by following trading strategy h(t) is denoted Π(t). Assuming constant

interest rate r, the total loss at t = T to a hedger is therefore given as

V (T )− Π(T )− cerT , (3.30)
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with initial capital c invested. As an example, if we consider the specific case

of hedging in the mean-variance sense, this amounts to solving the optimisation

problem

minimise E

[

(V (T )− Π(T )− cerT )2
]

over all strategies h, (3.31)

and has been studied by Pham, Rheinländer, and Schweizer (1998).

3.4.2 Risk-minimisation

In risk-minimising hedging, which is introduced by Föllmer and Sondermann

(1985), funds are allowed to be injected or withdrawn from the portfolio in order

that the cash flow movements in the underlying instrument and contingent claims

are approximately equal. The ability to inject or withdraw funds violates the self-

financing property (3.7). The amount of capital invested or withdrawn is denoted

by a cost process C(t). Consider a European call option V , with strike K and

payoff V (T ) = (X(T )−K)+. Here, we assume that X(T ) is the observed value

of a non-traded quantity at expiry. The accumulated gain Π is

Π(t) =

∫ T

0

h(t)dX(t), (3.32)

and we can define an associated cumulative cost process C(t) such that

C(t) = V (t)− Π(t). (3.33)

When performing risk-minimising hedging, the problem is to minimise the re-

maining risk. The exact element of risk to minimise is varied and Schäl (1994)

specifies the following measures of risk for the accumulated cost:

(i) the local conditional risk E[(C(t+ 1)− C(t))2],

(ii) the conditional remaining risk E[(C(T )− C(t))2],

(iii) the total risk E[(C(T )− C(0))2].

Using (i) amounts to minimising the risk between incremental time-steps. This is

equivalent to the case in the BSM world, where ∆ is chosen so that V ar[dΠ] = 0.
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The second statement (ii) implies that the remaining risk from T to t is minimised.

This actually means that we assume that at time t one no longer cares about the

past and only considers the total future risk. Another way to look at this, is

that even if we have lost money in time before t we are simply trying to suppress

the damage going forward. Lastly, statement (iii) attempts to reduce the risk by

investing a sufficient amount upfront such that V ar[C(T )− C(t)] = 0.

3.5 An example: Illiquid option with stochastic

volatility

To see how the ideas from the above sections can be utilised, we next provide

a derivation for the valuation of an option whose asset’s volatility is stochastic,

and for which the option itself is not liquidly traded.

It can be argued that volatility in practice varies stochastically (Hull, 2006). The

incorporation of stochastic volatility in asset processes originates from Hull and

White (1987). Assuming that the asset St follows GBM, whose variance σt is a

stochastic mean-reverting process, such that

dSt = µStdt +
√
σtStdZt, (3.34)

dσt = κ(θσ − σt)dt+ νσα
t dW

∗
t . (3.35)

The drift term of the asset St is given by µ and is assumed constant. For the

stochastic volatility term the mean reversion rate is κ, θσ denotes the reversion

level and ν is the volatility of volatility. The two Wiener processes dZt and dW ∗
t

are correlated, such that

dZtdW
∗
t = ρdt. (3.36)

where ρ measures the correlation and

dW ∗
t = ρdZt +

√

1− ρ2dWt. (3.37)

Here dWt and dZt are two orthogonal Brownian motions, so that E(dWtdZt) = 0.

Pricing an option on an asset with stochastic volatility introduces another source

of uncertainty, yet it is still a complete market problem since it is possible to create
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a hedging portfolio (an outline can be found in Joshi, 2003). This additional

source of risk can also be diversified provided that we allow ourselves to trade

in a second option, for hedging purposes. Essentially we hedge the option with

the underlying (as usual) and a second option in such a way that both the Delta

and Vega (the sensitivity of the portfolio value to volatility (Joshi, 2003)), of the

portfolio are both zero. This is known as Vega-hedging. A complete derivation of

the associated PDE can be found in the excellent book The concepts and practice

of mathematical finance by Joshi, 2003.

Market completeness breaks down if we assume that the option market is illiquid

so it is not possible to trade in the second option, as doing so may be extremely

costly. In this setting we face an incomplete market problem where the volatility

risk cannot be Vega hedged. Consider that C(S, σ, t) is an option dependent an

asset St with stochastic volatility σt, which follow the dynamics given by (3.34),

but with a volatility structure as defined in Heston (1993) (i.e. α = 1/2 in (3.35)):

dσt = κ(θσ − σt)dt+ ν
√
σtdW

∗
t . (3.38)

This model permits negative volatilities since as the volatility approaches zero,

the volatility of volatility becomes large. From Itô’s lemma, the change in the

option C(S, σ, t) is given by

dC =
∂C

∂t
dt+

∂C

∂S
dSt +

∂C

∂σ
dσt +

1

2

∂2C

∂σ2
dσ2

t +
∂2C

∂S∂σ
dStdσt +

1

2

∂2C

∂S2
dS2

t . (3.39)

Substituting (3.34) and (3.38) into the equation above and simplifying gives

dC =

(

∂C

∂t
+ µSt

∂C

∂S
+ κ(θσ − σt)

∂C

∂σt
+

1

2
ν2σt

∂2C

∂σ2
+ ν

√
σtStρ

∂2C

∂S∂σ
+

1

2
σtS

2
t

∂2C

∂S2

)

dt

+
√
σtSt

∂C

∂S
dZt + ν

√
σt
∂C

∂σ
(ρdZt +

√

1− ρ2dWt). (3.40)

Inspired by Ibáñez (2005), a portfolio can be constructed such that

Π = C −∆S (3.41)

with instantaneous variation

dΠ = dC −∆dS. (3.42)
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Various strategies are available to hedge this portfolio. Ibáñez (2005) showed that

the source of randomness associated with the asset S can be removed by setting

∆ as

∆ =
∂C

∂S
+

νρ∂C
∂σ

S
. (3.43)

However, the risk introduced by the volatility persists, and is referred to as the

residual risk:

ν
√
σt
∂C

∂σ

√

1− ρ2dWt. (3.44)

The question is: how does one price and hedge this random payoff? Numerous

techniques exist, and we noted the use of utility functions in §3.3. Another

technique is capturing the market price of risk. Møller (2001) mentions how

premiums are typically added for unhedgable risk, because the option writer

should be compensated for not being able to diversify their risk. The chosen

approach of Windcliff, Wang, Forsyth, and Vetzal (2007), and Ibáñez (2005) is

to state that during each time interval the portfolio should earn a premium at

a rate proportional to its instantaneous standard deviation. Using our notation,

this is

E[dΠ] = rΠdt + λ

√

V ar[dΠ]

dt
dt. (3.45)

Take the option variation (3.40), (3.42) and (3.43) and substitute into (3.45).

This yields

E[dΠ] = rΠdt + ν
√
σt

∣

∣

∣

∣

∂C

∂σ

∣

∣

∣

∣

√

1− ρ2. (3.46)

The same approach of observing the expectation of portfolio growth was adopted

by Leland (1985) (which we demonstrated in §3.2.3), and this description of being

compensated per unit of risk is consistent with the definition of the market price

of risk (3.19).

3.6 Summary

This chapter has presented the essential mathematical tools and concepts that

are used throughout this thesis. The principles of mean-self financing has been

introduced and also how pricing equations may be derived for options on illiquid

assets is illustrated. This has been included since weather derivatives contracts

are illiquid and operate in an incomplete market.
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The next chapter provides an extensive overview of the current state of models

and numerical approaches that have been proposed within the weather derivatives

literature.
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Weather derivatives’ models and

pricing approaches

The trouble with weather forecasting is that it’s right too often for us

to ignore it and wrong too often for us to rely on it.

Patrick Young

This chapter completes the framework necessary to value derivatives whose un-

derlying is temperature. Detailed descriptions of the fundamental models are

provided, and a discussion of their respective strengths and weaknesses is in-

cluded. Popular pricing approaches for the valuation of weather derivatives are

then presented, namely burn analysis, index modelling and daily simulation (Jew-

son et al., 2005). This chapter forms the foundation for valuation of weather-based

contingent claims that will be used throughout the thesis.

4.1 Temperature models

Modelling of temperature can be split into two classes:

1. modelling the distribution of the weather settlement index

2. modelling the true weather process and using it to construct the index

distribution.
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This is further broken down by Jewson et al. (2005) into finding a statistical

model for one of the following:

• measured values of a daily temperature, X(t);

• measurement of an average daily temperature, which we defined previously

as

X(t) ≡ Xmax(t) +Xmin(t)

2
; (2.1)

this approach also requires us to model Xmax(t) and Xmin(t);

• the daily movements of the underlying weather index, see §4.2;

• the distribution of the final weather settlement index, which we examine in

§4.3.3.

Each approach has its merits and has been applied in the valuation of weather-

based contracts. In the following sections we explore these models for the under-

lying variable.

As mentioned in §2.1.2, contracts on temperature are the most frequently traded

and so we choose to focus our analysis on temperature derivatives. The modelling

of this weather variable has been widely discussed and previous work may be split

into two groups: stochastic differential equations which model the dynamics, and

another group which utilise time series. In the following section, we review various

temperature models found in the weather derivatives literature.

4.1.1 Stochastic differential temperature models

Temperature dynamics can be characterised by four components (Alaton et al.,

2002):

1. Seasonality;

2. Existence of long-term trends;

3. Randomness;

4. Mean reversion.
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Temperature exhibits seasonal patterns and often reverts to a mean whose value

is dependent on the time of year. Additionally, we observe that temperature

does not grow/fall indefinitely. A well defined model should incorporate these

characteristics. An appropriate choice would be an OU process of the form (3.5),

and consequently much of the weather derivatives literature generally specifies

the change in the temperature X as (see Dischel, 1998a; Dornier and Queruel,

2000; Alaton et al., 2002; Jewson et al., 2005, for example)

dXt = κ(t) [θ(t)−Xt] dt+ σ(t)dWt. (4.1)

The parameter κ(t) is the speed the temperature reverts to its seasonal mean θ(t),

and the volatility of temperature variations is expressed by σ(t) and is assumed

to be a deterministic function. Here it is assumed that the drift and standard

deviation are functions of time t, but this need not be precisely the case. Since

temperature exhibits seasonal patterns, the model reverts to a time-dependent

mean level θ(t). The forms of θ(t), σ(t) and κ(t) are determined from analysis of

historical temperatures (see §5.4).

4.1.2 Dischel (1998a) two parameter model

The most basic temperature model used to value weather contracts is the two

parameter model presented by Dischel (1998a), where the temperature follows

an OU process of the form (4.1), and the speed of mean-reversion κ is assumed

constant. Furthermore, rather than using the seasonal mean θ(t), Dischel (1998a)

suggests that the temperature on any given day is expected to revert back to the

historical average temperature experienced on that day in the past. More pre-

cisely, for example, the historical average temperature of January 1st is computed

by taking the average of all the recorded values on January 1st for each year in

the sample set. The daily historical average temperature is denoted by X̄t:

X̄t =
1

N

N
∑

yr

Xyr,t (4.2)

where Xyr,t denotes the historical temperature taken from the yrth year from the

sample set, on date t. Here yr = 1, 2, . . . , Y and Y is the total number of years

in the sample. The number of years of data used to compute the average (here
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denoted N) was not stated in Dischel (1998a), but since weather trends are slow-

moving, averaging using all available data in the sample could be appropriate

(hence N = Y ). This gives rise to following temperature model,

dXt = κ
[

X̄t −Xt

]

dt+ σ(t)ζ1dW1,t + σ(t)ζ2dW2,t (4.3)

where W1,t and W1,t are two Wiener processes, where the former drives the tem-

peratures Xt and latter is alleged by (Bellini, 2005) to capture the high auto-

correlation between consecutive days of temperature. The distribution of the

random variables dW1 and dW2 in (4.3) are taken as normal, but in Dischel

(1998b) this assumption is relaxed by approximating the distribution using his-

torical data. The factors ζ1 and ζ2 are scaling quantities.

4.1.3 Dornier and Querel

Dornier and Queruel (2000) criticise Dischel (1998a) approach of using the daily

historical average, X̂t, in-place of a seasonality term, θ(t). They show that Dischel

(1998a) SDE model produces a process that in the long run does not revert to

the required seasonal mean (this is also shown by Moreno, 2000). In other words,

the expected value of the process is not equal to the seasonal mean. The mean-

reverting component of (4.4) will make Xt approach θ(t), however, as Xt begins

to tend toward the seasonal mean value, the value of θ(t) has already changed

and so Xt should be approaching a different value. Therefore, to ensure that Xt

tends to θ(t) in the long run (i.e. E[Xt] = θ(t)), we must account for the seasonal

variation dθ(t). This led Dornier and Queruel (2000) to propose an SDE process:

dXt = dθ(t) + κ(t) [θ(t)−Xt] dt+ σdWt, (4.4)

where the volatility of temperature, σ, is assumed constant, and the seasonal

mean is expressed as a deterministic function with a sine wave:

θ(t) = A+Bt + C sin(ωt+ φ) (4.5)

with ω = 2π/365. The linear term A + Bt in (4.5) captures the phenomena

of global warming and/or urbanisation of cities 1, and C denotes the amplitude

1Dischel and Observer (2002) highlight the presence of a warming trend in the temperature.
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of the sine-function and expresses half the difference in temperature between a

typical winter and summer day. From inspecting figure 4.1, it is apparent that the

maximum and minimum temperatures do not occur precisely on the 1st January

and 1st July respectively; therefore, Dischel and Observer (2002) introduce a

phase angle φ (i.e a shift) to capture correctly the seasonal mean. The term dθ(t)

in (4.4) expresses the seasonal variation and is included to ensure that the process

tends to the seasonal mean in the long run (see A.2).
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Figure 4.1: A comparison of the estimated seasonal mean as defined by (4.5) and
the actual temperature data observed at London Heathrow from 1996 to 1999.
Here the x-axis starts from January 1st 1996 (day 0).

4.1.4 Alaton et al. (2002) enhanced model

Alaton et al. (2002) extended the models of Dischel (1998a,1998b) and Dornier

and Queruel (2000). Alaton et al. (2002) use the same temperature SDE process

as given by equations (4.4) and (4.5), but model the monthly variation in the

78



Chapter 4. Weather derivatives’ models and pricing approaches

variance of temperature, as a piecewise constant function:

σ(t) =























σ(1) during January

σ(2) during February
...

σ(12) during December ,

(4.6)

This change in specification of the volatility was observed when Alaton et al.

(2002) considered 40 years of daily average temperature data at Bromma airport,

Stockholm. Alaton et al. (2002) observed that the quadratic variation (see Ap-

pendix A.1 for definition) σ2 of the temperature in the dataset is nearly constant

over each month, though it varies for different months in a year.

Similar to Dornier and Queruel (2000), Alaton et al. (2002) argue that choosing

a Wiener process as the driving noise in the SDE (4.4) is appropriate since tem-

perature differences are close to being normally distributed. Alaton et al. (2002)

however, admit that “the probability of getting small differences in the daily mean

temperature will be slightly underestimated.” To observe this, a histogram of the

daily temperature differences in London Heathrow is computed using the online

statistic software of Wessa (2010). In figure 4.2 the shapes of the computed his-

togram is compared with a normal distribution. Qualitatively, the figure suggests

that the normal distribution underestimates the probability of small differences

in temperature. A Q-Q plot of the quantiles of the observed daily differences

in the temperature data versus the theoretical quantiles from a normal distribu-

tion is presented in figure 4.3 in order to graphically measure the goodness of

fit. The solid straight line represents the theoretical quantile values if the data

was perfectly normally distributed. The figure shows that the observed data falls

approximately along the theoretical line, but there is evidences of departure from

normality since it does not fall on the line for each quantile. To quantitatively

test for normality we use the Jarque-Bera test (Ruppert, 2010). This test com-

pares the estimated skewness and kurtosis the values expected under normality,

which are 0 and 3 respectively. The test statistic is given as

JB =
n

6

(

Sk2 +
(Kur − 3)2

4

)

, (4.7)

where Sk and Kur represent the skewness and kurtosis respectively. From the
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Parameter Estimated Value Standard Deviation
Mean 0.0066 0.02611
Standard deviation 1.9602 0.01846
Skewness -0.7476 N/A
Kurtosis 53.2510 N/A
Jarque-Bera 109.16 N/A

Table 4.1: The characteristics of the distribution of the daily temperature differ-
ences observed at London Heathrow between 1995 to 2010. It reports the mean,
standard deviation, skewness, kurtosis, and the Jarque-Bera statistic. Here we
omit stating the confidence intervals as they are not central to the argument.

value of the test statistic reported in table 4.1 it is evident that the sample is

not precisely normally distributed since JB is not zero. This is mainly due to

the large kurtosis value of the daily temperature differences distribution. Our

findings are consistent with Alaton et al. (2002).

However, although the observed temperature differences at London Heathrow

are not precisely normally distributed we simplify our modelling specifications

by using a standard Wiener process as it allows mathematical tractability. The

assumption of normality is very much dependent on the dataset. For example,

Benth and Šaltytė-Benth (2005) note that in several Norwegian locations, the use

of non-normal models should be preferred (more details are provided in §4.1.7).

Minor extension to Alaton et al. (2002) model

Schiller et al. (2008) propose a minor extension to the Alaton et al. (2002) model,

by suggesting that the seasonality trend is generally stronger in the winter than

in summer. This gives rise to the following altered seasonal component:

θ(t) = A+Bt+ C sin(ωt+ φ) +Dt cos(ωt+ φ), (4.8)

where A,B,C, ω and φ are the same as defined in (4.5), and Dt cos(ωt + φ)

captures the additional seasonality trend that is greater in the winter.
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Figure 4.2: The figure plots the histogram of the differences of the daily average
temperature using the data from London Heathrow from 1995 to 2010. The solid
line represents the density curve of a theoretical normal random variable with
mean and standard deviation estimated from the time series. The supporting
statistics can be seen in table B.1 and the mean and standard deviation is given
in table Appendix 4.1.
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Figure 4.3: The figure displays a QQ-plot of the quantile of the observed tempera-
ture at London Heathrow versus theoretical quantiles from a normal distribution.
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4.1.5 Benth and Benth (2007) model

Motivated by empirical results, Benth and Benth (2007) suggest using a trun-

cated Fourier series to express both the seasonality component θ(t) and the daily

volatility of temperature variation σ(t). The processes are given by

dXt = dθ(t) + κ [θ(t)−Xt] dt + σ(t)dWt. (4.9)

and

θ(t) = A +Bt +

I1
∑

i=1

Ai sin (ωit+ φ) +

J1
∑

j=1

Bj cos (ωjt+ φ) , (4.10)

σ2(t) = C +

I2
∑

i=1

Ci sin (ωjt) +

J2
∑

j=1

Dj cos (ωjt) . (4.11)

The meanings of the parameters, A,B, ω, and φ that appear in equations (4.9) -

(4.11) are identical to those described in Alaton et al. (2002) model (see §4.1.3,
equation (4.5)).

The Benth and Benth (2007) model differs from Dischel (1998a) and Alaton et al.

(2002) since volatility is specified as being time-varying and also seasonal. Using

historical temperature observations from Stockholm, from 1961 to 2004, they fit

the seasonal component θ(t) to the data using the method of least squares. Benth

and Benth state that it is sufficient to capture the seasonality of the temperature

and its variance by setting I1 = 1, J1 = 1, I2 = 4 and J2 = 4.

4.1.6 Mraoua (2009) two factor model

The two factor model of Mraoua (2009) is a natural extension of previous models,

and attempts to more closely fit historical temperature. This is achieved by

modelling the volatility as a stochastic process, σt, rather than a (piecewise)

constant σ(t) as used by Alaton et al. (2002), or as a time-varying quantity (for

example Benth and Benth, 2007). This gives the model for temperature evolution
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as

dXt = dθ(t) + κ [θ(t)−Xt] dt+ σtdWt. (4.12)

dσt = κσ

(

α− σt

)

dt+ γdW, (4.13)

where κσ is constant and is the speed of reversion, α is the constant mean volatility

value and γ expresses the variance of the volatility and is taken as constant. The

parameters κσ and γ are estimated from 44 years of daily historical temperature

data from Casablanca-Anfa meteorological station in Morocco. The validity of

the Mraoua (2009) stochastic volatility model was tested on temperature data

during 2004, with satisfactory results claimed (comparing the forecasts to the

actual observed temperature).

4.1.7 Fractional Brownian motion model

Brody, Syroka, and Zervos (2002) discourage the use of standard Brownian mo-

tion as the driving noise of temperature evolution. They observe, from empirical

studies, that temperature dynamics exhibits long-range temporal dependencies,

which means that the present weather condition is influenced significantly by re-

cent weather conditions. After examining UK data from 1772 to 1999, Brody

et al. (2002) found clear signs of fractional behaviour in temperature fluctua-

tions and suggested substituting the standard Brownian motion with a fractional

Brownian motion (FBM) WH(t). Regular Brownian motion increments are in-

dependent, whereas FBM increments are dependent. The dependence between

increments means that if there is an increasing pattern in the previous time, then

it is likely that the current step will also be increasing. A FBM is characterised

by the Hurst exponent H ∈ (0, 1) (see Hurst, 1951), which determines the sign

and the extent of correlation. Depending on the value of H different types of

process are obtained:

1. for 1
2
< H < 1 the process has a long memory;

2. for 0 < H < 1
2
the process is said to be ‘antipersistent’;

3. for H = 1
2
the process has short memory (this represents a standard linear

Brownian motion).
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The specified model is then given by

dXt = dθ(t) + κ(t) [θ(t)−Xt] dt+ σ(t)dWH
t , (4.14)

σ(t) = A+ C sin (ωt+ φ) . (4.15)

where again the parameters A,B,C, ω and φ are as defined in (4.5). Brody et al.

(2002) assume that volatility is time-varying and seasonal and take the speed of

mean-reversion as time-dependent. Discussions of implementation are omitted,

however. Further details of FBM and the new calculus used to analyse it can be

found in the classic work of Mandelbrot and Van Ness (1968) and in Duncan, Hu,

and Pasik-Duncan (2000).

4.2 A stochastic model for weather indices

As weather derivative payoffs are usually explicitly described in terms of the

weather accumulation index, a few authors have chosen to model directly the

evolution of the index of temperature rather than modelling the seasonal be-

haviour of temperature itself. It can be safe to ignore seasonality if the index is

being observed over short time horizons, say of less than three months. Notably,

Davis (2001) and later Turvey (2005) both model the total accumulated weather

index (in other words the total value the index has reached over a certain time

period m) as a GBM process Imt satisfying

dImt = µImt dt + σImt dW, (4.16)

where µ is the drift and σ the standard deviation of the cumulative index. Here

the superscript m specifies the time length over which the index is accumulated,

for example, if we are concerned with modelling a 3-month HDD index then

m = 3 (so m = 0, 1, 2, . . . , 12). The solution of the SDE (4.16) is (Neftci, 2000)

ImT = Im0 exp

((

µ− 1

2
σ2

)

T + σWT

)

. (4.17)

Here, Im0 refers to the total index value that has been obtained after the daily

index values have been accumulated after m month(s) have past, Im1 is the accu-

mulated index value obtained over the same time period m but one year later,
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Figure 4.4: An illustration of the accumulated index HDD process over a 3-month
time period. The top point of each line represents the values I(0), I(1), I(2). It
is these values which are assumed to be log-normally distributed as indicated by
(4.17).

and so on.

To illustrate this clearly, over a period of three consecutive years, the London

Heathrow temperature data are used to compute the accumulated HDD index

value over a three month period, staring from January 1st 1996. The growth of

each index is plotted in figure 4.4, where the highest points on the red, green and

blue lines represents the accumulated index value of I30 , I
3
1 , I

3
2 respectively. In

modelling the index itself we are more concerned with the index value at the end

of the accumulation period, since we are mostly interested in the distribution of

the index at the exercise (maturity) time of the derivative, at time m. However,

as Davis (2001) rightly states, it would be incorrect to model the whole process

I(t), from time 0 to T , as following a GBM because at all times t when the

temperature is above Xref the HDD increment is zero, which can certainly not

be modelled as Brownian. Our new model, proposed in chapter 5, seems superior

to the Davis (2001) approach in that it can directly model, and numerically solve

under, the discontinuities intrinsic to the HDD process.
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Turvey (2005) uses a similar model to (4.16), but assumes σ(t) is time-dependent,

and then continues to develop a valuation framework. To account for the tradeless

nature of the temperature index, Turvey extends the SDE (4.16) to include the

market price of risk of the weather index, as also carried out by Alaton et al.

(2002). This modified process becomes

dImt = (µ− λσ(t))Imt dt+ σ(t)Imt dW, (4.18)

where λ is the market price of weather risk of (3.13), and λσ(t) is the associated

risk premium. Turvey argues that λ = 0, since weather events are not correlated

with the market portfolio that consists of a weighted sum of every asset in the

market. By this hypothesis the market price of weather risk is absent or unim-

portant, which Cao and Wei (2000) appear to corroborate by empirical studies.

However if a substantial market price of weather risk does exist, disregarding

its impact could severely distort pricing, as was shown computed by Härdle and

López Cabrera (2009) and Cao and Wei (2004) and extended by Bellini (2005).

Only empirical evidence can test the hypothesis that weather risks are indeed

large and undiversifiable. This question is outside the scope of this thesis, but

within this thesis we compute in chapter 7 the effect on prices of the market price

of weather risk, when its value is assumed to be non-zero.

4.3 Valuation methods

Given the various models outlined to describe the changes in temperature, we next

review the current selection of valuation techniques often used to price weather

derivatives. Discussions of the methods are provided and so too are numerical

results that are then used to benchmark the two proposed models in chapters 5

and 7.

4.3.1 Burn analysis

Burn analysis is often used in the actuarial sciences and presumes that past

results can be used to determine future outcomes. Burn analysis examines how

the weather derivative would have performed (i.e. its payoff) in previous years,
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and then takes an discounted average of these payoffs as the option’s value. The

simplicity of this method has made it very appealing to practitioners. Suppose

we have 100 years of historical temperature data and we wish to determine the

fair strike for a swap contract. The fair strike value of a swap contract is the one

that gives an expected swap payoff of zero. This will occur when the strike level

is equal to the expected weather index value. This is shown with an example

below. Consider an uncapped swap with payoff

V (I, T ) = tick · (I −K), (4.19)

where I is the value of a specified index at maturity time, T , K is the strike level,

and tick represents the cash value of one value movement in the sum (I − K).

Additionally, we assume that the contract is valued under the risk-free rate, r.

The fair strike value satisfies

E
[

V (I, T )
]

= 0, (4.20)

where on substituting the equation of the payoff (4.19) into (4.20), gives

E [tick · (I −K)] = 0,

tick · (E[I]−K) = 0,

and so E[I] = K. (4.21)

Additionally,

Var[V (I, T )] = E[V 2(I, T )]− E[V (I, T )]2,

= E[tick2 · (K2 − 2KI + I2)]− tick2 · (K − E[I])2,

= tick2 · (E[I2]− E[I]2),

= tick2 · Var[I], (4.22)

and, therefore, the standard deviation of the payoff distribution is simply the tick

multiplied by the standard deviation of the index distribution:

σpayoff = tick · σI . (4.23)

The procedure is more complicated for capped swaps when the maximum payouts
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for the two counterparties are not equal, i.e,

V (I, T ) =











tick · (L1 −K), if IH(T ) < L1

tick · (IH(T )−K), if L1 < IH(T ) < L2

tick · (L2 −K), if IH(T ) > L2

, (4.24)

where IH(T ) is value of the HDD index at maturity, tick is used to translate the

quantity (IH(T )−K) into monetary terms, K is the strike level, and L1 and L2

denote the level at which a limit to the payoff is applied. As the swap structure

is not symmetrical we seek to determine the value of the strike K that satisfies

the equation

H(K) = 0, (4.25)

with H denoting the expected payoff from a swap contract. Equation (4.25)

can be solved iteratively using a gradient-descent type numerical method such as

Newton’s method (see Press, Teukolsky, and Vetterling, 2002, for a description

and implementation of the method). For simplicity, the interval bisecting method,

as suggested in Jewson et al. (2005), is employed, and works as follows:

1. Set K = E[I].

2. Calculate the value of H(K).

3. If the value of H(K) is not within a given tolerance of zero, then evaluate

H(K + δK) and H(K − δK).

4. UpdateK to the value yielding the smaller of the two quantities H(K+δK)

and H(K − δK).

5. Repeat from steps 2 - 4 until H(K) is within a specified tolerance.

6. Take this value of K as the fair strike price.

In practice, steps must be taken prior to calculating the expected index (or payoff)

to ensure that the historical temperature data being used is suitable. In the next

section these steps are outlined.
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Removing the seasonality trend

To start with, before calculating the expectation of the index value, it is important

to remove any data trends found in either the underlying temperature data or

the index values (Jewson et al., 2005). Trends may exist in weather data for a

variety of reasons, namely

1. Predictable climate variability;

2. Urbanisation;

3. Anthropogenic climate change;

4. Predictable internal climate variability;

5. Variability in solar forcing.

Jewson et al. (2005) states that in practice, the preferred approach is to remove

the trend found in the weather index data rather than the daily temperature. This

is because it is difficult to distinguish between the trend of daily temperature and

the seasonality that daily temperature exhibits, during a given year. Furthermore,

detrending daily temperatures requires that we define the trends of the mean,

the variability, the correlation structure, the extremes, whereas focusing on just

weather index values, we only need to capture the trend in the mean.

Various techniques can be utilised to capture the trend. Some of the most common

ways to model this are by linear, piecewise linear, quadratic, exponential, moving

average and LOESS forms. To choose the appropriate model, and also how many

years of data to use, it is common practice within the meteorological industry to

perform backtesting. Using backtesting, experiments are conducted using various

time-scales in the length of historical data and fitting different regression models,

in order to determine the optimal choice of the number of years of historical

weather data and the type of trend assumed.

Here we provide an outline of the well known least squares method (see Press

et al., 2002, for more precise details) to determine a line of best fit, which is then

used to remove the trend. To begin, we define yi as the value of the weather settle-

ment index obtained from the linear regression approximation, and assume that
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the dependent variable yi can be expressed by a linear combination of parame-

ters. In a simple linear regression model with N data points with one independent

variable and two unknown parameters α and β, we have

yi = ri + ǫi, i = 1, . . . , N (4.26)

where ri = α+ βxi, i.e. model is assumed to follow a linear trend, xi denotes the

year the weather settlement was measured and takes the values x = 1, 2, . . . , N ,

and ǫi is the measurement error. It is assumed that the error is an independent

random quantity that is normally distributed with expectation zero. The sub-

script i denotes the ith year, and the constant N denotes the number of historical

years of data used. The unknown parameters α and β are then estimated from

the dataset via the method of linear least squares (sometimes referred to as or-

dinary least squares). The method finds estimates for α and β such that the

the sum of the squared errors (SSE) (the distances between the observed data

and those predicted by the linear approximation squared) is minimised (see Press

et al., 2002, for further details),

SSE = min
{α,β}

(

N
∑

i=1

ǫ2i

)

. (4.27)

y
′

i = yi − β̂xi (4.28)

Size of historical dataset

Rather than backtesting to determine how many years of historical data should

be used, Jewson et al. (2005) suggest computing the mean and standard deviation

on successively bigger portions of the data set. For example, collect t years of

temperature data and calculate the standard deviation and mean of this dataset,

then compare the mean and standard deviation of a larger dataset consisting

of t + 1 years. By continuing this process, a graph can be plotted showing the

sensitivity to the mean and standard deviation of the index as a function of years

of historical data. When the sensitivities are low, the parameter values of α̂ and

β̂ are taken as the estimates of α and β. From conducting empirical studies,

Jewson and Brix (2004) suggest as a rule of thumb that when fewer than 10 years

of historical temperature data are considered, it is best to apply no detrending
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since weather trends arise over long time-scales.

4.3.2 Numerical results

This section applies burn analysis method, as used by practitioners, to price a

weather swap and option for the specific case where the underlying temperature

index is based on weather conditions at London Heathrow. To price these weather

derivatives, the gathering of historical climate data is vital.

The weather data used throughout this thesis are obtained from Weather Under-

ground2. Temperature observations for London Heathrow starting from January

1st 1995 to May 12th 2010 3 are used. The data consists of observations on the

daily maximum and minimum and average temperature that are measured in

Fahrenheit degrees. The average temperature in the dataset is computed using

equation (2.1).The chosen length of data is suitable as it exceeds the 10 year data

minimum requirement that was suggested by Jewson and Brix (2004). Herein

we refer to this dataset using the naming convention RTD (to mean Real Tem-

perature Data). The RTD can be found in Appendix B.2. The daily average

temperature against time is plotted in figure 4.5. Table 4.2 contains the sum-

mary statistics for the daily temperature data. This shows a high value for the

standard deviation of temperature that suggests weather is subject to broad os-

cillations over time. More data is spread out to the left, which implies that colder

than normal weather is more likely since the skewness is negative (see table 4.2).

To use this dataset, the temperature readings are converted from Fahrenheit into

degrees Celsius. Then any errors in the data are addressed. Typically this would

consist of checking for

• Missing data - Dunis and Karalis (2003) propose that missing data are

filled by taking the same daily temperature observed in the previous year.

This method was used by Bellini (2005), however, we reject this näıve ap-

proach (as named by Dunis and Karalis, 2003) and instead favour the use

2Weather Underground delivers the most reliable, accurate weather information possi-
ble. They monitor conditions and forecasts for locations across the world. Website link:
http://www.wunderground.com/

3This data set consists of 5599 observations.
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Figure 4.5: This figure plots the daily temperature against the day measured at
London Heathrow starting from January 1st 1996 to May 12th 2010.

Parameter Estimated Value
Mean 0.0066
Standard deviation 5.5809
Skewness -1.8512
Kurtosis 2279.895
Jarque-Bera 98.6365

Table 4.2: The summary statistics for the distribution of the daily temperature
observed at London Heathrow between 1995 to 2010. It reports the mean, stan-
dard deviation, skewness, kurtosis, and the Jarque-Bera statistic. The moments
in the table are the central moments.

of linear interpolation, since it more accurately predicts the correct temper-

ature, given the seasonal patterns of that year.

• Consistency - Checks that the daily minimum temperature is less than

the daily maximum temperature, and, if required, substitute its value using

spatial interpolation again.

• Unrealistic data - Finally, if large (unrealistic) jumps are present in the

data, suitable adjustments are made; our chosen data sample has no jumps.

In the RTD, 7 pieces of data were missing and we used linear interpolation to

determine the temperature value for those days. As the RTD is only comprised of
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average temperature, consistency was already ensured. Given that RTD sample

spanned over 15 years, we choose to remove the 4 leap year data points since any

resulting bias is small, and their removal eases computation.

Pricing a costless weather swap contract

Using the historical data, as specified by RTD, we apply the burn analysis method

to determine the fair strike K of a costless uncapped swap contract, with a HDD

index IH based on observations over three months (from 1st January to 31st

March) at London Heathrow. The payoff is expressed as

V (IH , T ) = tick ∗ (IH −K), (4.29)

where tick is used to convert the quantity (IH −K) into monetary terms. In the

following section tick = £5000.

To begin, the HDD index is calculated for the three months from January to

March in each year using

IH(t) =

T
∑

t=1

(Xref −X(t))+. (2.3)

where the barrier temperature Xref is set at 18◦C. The results of the yearly

HDD index values are shown in column 2 of table 4.4. The table shows a small

cooling trend in the temperature, but can be confirm through regression analysis,

whereby linear model is fitted to historical data. If β̂ is distinguishable from

zero then there is a trend. Performing the regression analysis produces estimates

of (A.17) and (A.18), as shown in table 4.3. The value of β̂ is positive and is

relatively small when compared to the sizes of the accumulated HDD indices, and

therefore, indicates that there is only a minor upward trend in the HDD index

over this 15 year period. This is to be expected since significant climate changes

often occur over longer time scales. The large and negative value of α̂ denotes

the intercept of the regression line. Table 4.3 also includes the standard error

and the t-statistic of each estimate. A t-statistic is a measure of the departure

of an estimated parameter from its notional value and its standard error. This is
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defined mathematically as

t-statistic =
β̂ − β0

s.e(β̂)
, (4.30)

where β0 = 0 since we are using the t-statistic to test the significance of a re-

gressor4, s.e(β̂) is the standard error of the estimator of the parameter. The

estimated parameters are then used to produce detrended index values by using

equation (4.28) produces the detrended index values shown in table 4.4, and also

illustrated in figure 4.6.

Parameter Estimate Standard Error t-statistic Pr(> |t|)
α̂ -7393.877 11209.100 -0.660 0.520

β̂ 4.213 5.598 0.7525 0.464

Table 4.3: The summary statistics obtained after fitting the linear trend (4.26)
to RTD using the statistical program R to perform the method of least squares.
The parameter values are presented, along with their respective standard error
and t-statistic. Pr(> |t|) denotes the probability. The degrees of freedom is 14.
The t-distribution is used due to the small sample set.

Next, the estimated expected index can be calculated by

E[IH ] =

∑N
i=1(IH)

′

i

N
+ β̂N, (4.31)

where β̂ is the constant value specified in table 4.3. The values for the mean and

standard deviation of the HDD index are presented in table 4.5. Therefore, from

equation (4.21) it follows that the swap fair strike is K = 1042.48. As required,

the calculated sample mean using the data in table 4.4 is given as zero.

Adjusting the strike level in an incomplete market

Trading the uncapped swap contract at the expected strike level of K = 1074.07

would not occur in practice, as mentioned by Møller (2001). Instead, the strike

level is shifted away from the derived fair strike level in favour of the investor that

is taking on more risk, or more specifically the one who holds the unhedgable risk.

Adjusting the strike, is referred to in the actuarial literature as risk loading.

4When testing hypothesis, β0 may be non-zero.
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Year HDD Index Detrended HDD Index Swap Payoff

(IH)
′

i = (IH)i − β̂xi V (I, T ) = tick ∗ (I −K)
1995 1024.56 1020.34 -89609.37
1996 1196.11 1187.69 768168.40
1997 1020.5 1007.86 -109887.15
1998 929.06 912.2 -567109.38
1999 982.81 961.74 -298359.38
2000 979.83 954.56 -313220.49
2001 1113.83 1084.34 356779.51
2002 909.28 875.57 -665998.26
2003 1047.33 1009.42 24279.51
2004 1027.28 985.15 -75998.26
2005 1014.56 968.21 -139609.38
2006 1212.17 1161.61 848446.18
2007 924.67 869.9 -589053.82
2008 961.22 902.24 -406276.04
2009 1115.06 1051.86 362890.63
2010 1221.39 1153.98 894557.29

Table 4.4: The historical HDD index over a 3 month period that starts on January
1st, for each year from 1996 to 2010. The third column shows the detrended
historical HDD index values over the same periods. The strike level is K =
1042.48 and tick = £5000.

Statistic Value
mean 1042.48

standard deviation 101.71

Table 4.5: The mean and standard deviation of the weather settlement index.
The values are computed using RTD.

A market maker who is issuing the swap contract will set the strike level below the

expected payoff as this would increase his payoff. We can think of this example as

a client approaching the market maker, wishing to obtain a fixed level K while the

market maker is to accept the floating level I. Continuing with the swap example

from the beginning of §4.3.2, the strike level K is adjusted by the market maker

such that (Jewson et al., 2005)

K̂ = K − λR = E[I]− λR, (4.32)

where λ is the risk loading factor, R is the risk measure we choose to model and

K̂ denotes the altered strike level. The risk measure can be modelled in different
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Figure 4.6: 15 years of historical index values using dataset RTD. The dashed
green line shows the result after detrended the index. The regression line is
represented by the dashed blue.

ways, but Gatzert, Schmeiser, and Toplek (2007), Windcliff et al. (2007) and

Brix, Jewson, and Ziehmann (2002) suggest that it is often represented as the

expectation, standard deviation or variance of the payoff. For consistency with

the definition of the market price of risk (3.13), we only consider the case where

R is the standard deviation of the index (i.e. R = σI), since this is comparable

to the manner in which we defined the market price of risk in §3.2.5.

The expected payoff of the swap with strike K̂ is given by the following

E[P (I, T )] = E[tick · (I − K̂)] (4.33)

E[P (I, T )] = tick · (E[I] + λσI − E[I])

= tick · λσI . (4.34)

This is to say that the expected payoff for the speculator is a fraction of the

standard deviation of the index distribution multiplied by the tick. It is clear

that if no compensation (i.e. λ = 0) is provided for holding extra risk, then the

expected payoff is zero. As a consequence of shifting the strike level, if we were

to simulate the payoff of the market maker who sets the strike level at K̂ many
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Parameters Value
λ 0.2
σI 101.71

K = E[IH ]− λσI 1011.96
T 90 days
tick £5, 000
L£ £1, 000, 000

Table 4.6: Parameters for the capped put option written on a 3-month HDD index
at London Heathrow. The time period of the contract is from 1st January to 31st
March, i.e. T = 90 days, which is the same time period that the accumulated
HDD index is calculated. The strike level is set at 20% of the standard deviation
below the expected HDD index, i.e. K = 1011.96

times, it would show him making a profit on average, whilst the buyer would be

losing money in most cases.

If we consider the case where the market maker sets λ = 0.3, then the adjusted

strike becomes K̂ = 1042.48 HDDs. This consequently dramatically effects the

expected payoff of the market maker, rising from zero to £152, 567.14 in profit.

The higher the risk loading factor, the larger the spread between the selling (bid)

and buying (ask) strike level.

Pricing a weather option

As much of the work in this thesis is around the valuation of option contracts,

a capped put option V on a 3-month HDD index based on London Heathrow is

valued. The contract details can be found in table 4.6. The option’s payoff is

given by

V (I, T ) = min(tick ·max(K − (IH(T ))
′

), L£). (4.35)

Valuing an option using burn analysis is similar to valuing a swap, but instead

of computing the expectation of the historical index, the historical payoffs of the

option are calculated. The obtained payoffs of each year i with accumulated index

IH are presented in the fourth column of table 4.7. We present the option payoffs

for each year in figure 4.7. The expected payoff is then computed and this is

taken as the value of the capped put option. Importantly, we stress the use of the

expectation here. Usually, one must define an appropriate measure under which
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Year HDD Index Detrended HDD Index 3-month Option Payoff

(IH)
′

i = (IH)i − β̂xi min
(

tick ·max(K − (IH)
′

, 0), L£

)

1995 1024.56 1020.34 0
1996 1196.11 1187.69 0
1997 1020.5 1007.86 20,493
1998 929.06 912.2 498,780
1999 982.81 961.74 251,094
2000 979.83 954.56 287,019
2001 1113.83 1084.34 0
2002 909.28 875.57 681,926
2003 1047.33 1009.42 12,712
2004 1027.28 985.15 134,054
2005 1014.56 968.21 218,730
2006 1212.17 1161.61 0
2007 924.67 869.9 710,303
2008 961.22 902.24 548,590
2009 1115.06 1051.86 0
2010 1221.39 1153.98 0

Table 4.7: The historical performance of a 3 month HDD put option measured at
London Heathrow from January 1st, for each year from 1996 to 2010. The third
column shows the detrended historical HDD index values over the same periods.
The strike level is K = 1042.48 and tick = £5000.

to take the expectation (either real-world P or risk-neutral Q) to avoid arbitrage

opportunities. In the case of equity options, where the underlying is traded, the

option price is made up of the cost of hedging and the distribution of the payoffs.

This price is the arbitrage price and is generally different from the price that would

be charged if no such dynamic hedging were to be undertaken. However, because

temperature itself is tradeless, one cannot form a parallel between temperature

and equities. Therefore, the option premium is formally calculated by

V (I, t) =

∑N
i=0 V

H(Ii, Ti)

N
, (4.36)

where V H is the historical payoff of the option during the equivalent time pe-

riod Ti. Using (4.36), the historical expected payoff of our specified option is

£201, 231 and the standard deviation is £216, 273. Therefore the fair premium

to be charged is V = £201, 231; however, as mentioned in §4.3.2 this value is

very rarely used. As a fictitious example, a market maker who adds 20% (i.e.

λ = 0.2) of the standard deviation might offer the following bid and ask prices
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Figure 4.7: The historical payoff of a capped call option.

respectively:

Vbuy = V − λσpayoff = £157, 977.

Vsell = V + λσpayoff = £242, 486,

which creates a large bid/ask spread. Jewson et al. (2005) reports that large

spreads are common in the weather derivatives market due to the high levels of

risk in trading them. Additionally, because of the asymmetry of option payoffs,

a market maker will favour buying options rather than selling them, since selling

increases the risk of making a large pay out whereas only the initial premium is

at risk when purchasing options. Therefore, from the principles of supply and

demand, the market buying price will be further skewed away from the fair strike

than the selling price.

Summary of the method

To summarise, the simplicity of the burn analysis methodology is one of the

reasons it has been used by practitioners. However, the main limitation is that

temperature forecasts are not incorporated as burn analysis assumes that future
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seasons can resemble past seasons in a sample set. Relying on historical informa-

tion in this way means that we may not be able to account for extreme events,

e.g. El Niño, if the historical sample set did not include examples of such ex-

treme events. The lack of clarity regarding the most appropriate number of years

of historical data to be used in the analysis also presents issues. Jewson et al.

(2005) and Bellini (2005) state that in many cases the historical simulations tend

to overestimate prices, especially in instances where the set of temperature data

is small.

4.3.3 Index modelling

The idea behind using index modelling to derive the value of a weather derivative

is similar to that of burn analysis, as both methods are based on the analysis

of historical weather index values. As with burn analysis, the academic basis

for index modelling is tenuous. Due to the similarities between these methods,

we choose to only briefly outline their differences and indicate the circumstances

where one method is favoured over the other. For numerical examples of the

method in practice, Jewson et al. (2005) is useful.

Index modelling attempts to fit a continuous distribution to the historical weather

index values. To fit the distribution, various parameters must be estimated. This

can be performed using either the method of moments or the method of maxi-

mum likelihood. The latter approach is preferred in the literature as along with

determining the estimated parameters it is also possible to derive the uncertainty

in these estimates.

Turvey (2005) and Harris (2003), both take the weather index as being normally

distributed. Here, the hypothesis that the cumulative HDD index for the contract

are normally distributed is tested by performing a Jarque-Bera test at the 5%

significance level. At this level, the results from table 5.7 do not provide sufficient

evidence to reject the hypothesis. This is because the p− value(= 0.5602) is not

less than 0.05. Given that a limited set of historical weather data is available a

plot of the histogram indicates that the fit of the cumulative HDD at London

Heathrow to normal distribution is poor. This is seen from the histogram that is

compared with the normal distribution in figure 4.8
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Histogram and Fitted Normal Density

value of data series

de
ns

ity

1400 1500 1600 1700 1800 1900 2000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

Figure 4.8: A comparison of a fitted normal density and a histogram of the
historical index values.

Statistic Value
p-value 0.5602
Jarque-Bera 1.159
Mean of HDD 1713.44
Std of HDD 135.6

Table 4.8: A summary of results from Jarque-Bera test of normality for the
cumulative HDD index. The table shows the p-value, the mean of the proposed
RTD cumulative HDD index and its standard deviation (denoted Std in the
table). These values were computed using 5474 observations.
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Using their own temperature data, Harris (2003), Turvey (2005) and Jewson et al.

(2005) suggest that a normal distribution can in special cases be chosen to model

the total index values, and specifies the instances where it is appropriate:

1. when modelling winter season HDD and CAT indices, and summer season

CDD and CAT indices;

2. when considering monthly contracts based on CAT and HDD indices, it

is only appropriate to model the indices in months January, February and

March by a normal distribution;

3. for CAT indices based on individual summer months;

4. when modelling the month of July in a CDD based monthly contract;

As we previously discussed in §4.2, the reason why these authors state that a

normal distribution can only be assumed in these limited cases, is due to the fact

that the probability of the temperature breaching the barrier Xref is higher in

certain months. If the barrier is breach then the contribution to, for example a

HDD index, would be zero and thus it is no longer valid to model the process

as being normally distributed. Therefore, pricing a 1-month HDD index option

may lead to mis-pricing as during that month the temperature may surpass 18 ◦C.

However, using index modelling does provide an advantage over the burn analysis

method described in §4.3.1 because extreme outcomes can be modelled since

the smooth estimated distribution extends into the tails beyond the information

provided by the historical data.

4.4 Summary

This chapter has surveyed the existing temperature models proposed in the

weather derivatives literature and outlined the reasoning behind their creation.

We have priced both swaps and option using the method of burn analysis and will

compare these prices with the ones obtained from our newly developed models

in the following chapters. As we have seen in this chapter, adjusting prices to

account for the undiversifiable risk that an investor is exposed to in the weather

derivatives market creates large price differences between the fair strike level or
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option premium and the level/price chosen by the market maker. Therefore it is

important to ask if the market price of risk is a significant factor when valuing

these instruments and, if so, to what extent.
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A new weather derivative pricing

model

To raise new questions, new possibilities, to regard old problems from

a new angle, requires creative imagination and marks real advance in

science.

Albert Einstein

Typically, option valuation is dependent on the underlying quantity being used to

hedge the option’s position. This is used so that movements in the derivative are

balanced by the change of some multiple of the underlying, such that the portfolio

can be assumed risk-free. In these instances, unique prices can be derived by

following Black and Scholes-type analysis (see 3.2.3), with the key assumptions

of their approach being that the portfolio can be delta-hedged continuously and

that the underlying is available for trading. Alternatively, we could consider the

use of the Feynman-Kac̆ formula (5.1), below, which establishes a link between

SDEs and PDEs, such that given a stochastic process and final condition (the

payoff function, V (XT , T )) we can derive an appropriate PDE by considering

V (x, t) = E

[

exp−
∫
T

t
r(u)du V (XT , T )|Xt = x

]

. (5.1)

where Xt is an Itô process of the form (3.1), and then initial condition for Xt is

X0 = x. By using the Feynman-Kac̆ formula, a hedging strategy can be derived if

the implicit change of measure is specified. This is both a strength and weakness
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of the method. On one hand we can effectively determine a value for an option

on the given stochastic process, however it is not clear how this price is justified

or how the risk can be managed. The technique has been used in almost all areas

of finance and we make special reference to the work carried out by Law (2009)

when valuing complex commodity derivatives, and by Evatt et al. (2010b) in the

pricing of a mine. In deriving a mine valuation model, Evatt et al. (2010b) argue

that the drift parameter that appears in the PDE should be set at the risk-free

rate when hedging is possible. This is of course reliant on the standard hedging

arguments presented by Black and Scholes, in which the portfolio becomes risk-

free in a complete market. However, as Evatt et al. (2010b) point out, this

cannot be done in cases where perfect hedging is not possible because the market

is incomplete.

The emergence of innovative financial products that attempt to securitise risk

has led researchers to question the validity of pricing methods based on standard

hedging arguments (see Black and Scholes, 1973). This is because the underlying

instrument may not be available for trading. For example, to price an interest-

rate derivative it is not possible to construct a hedged position such that Πt =

V1(rt, t)−∆rt since the stochastic interest-rate rt is not a tradable asset. Vasicek

(1977) suggests that a hedged portfolio can be constructed if an interest-rate

derivative V1(rt, t : T1) is hedged with another interest-rate derivative V2(rt, t : T2)

on the same underlying rt that expires at a later time T2 > T1. This gives a

portfolio position of

Πt = V1(rt, t : T1)−∆V2(rt, t : T2). (5.2)

However, this approach is often not possible when the derivative does not possess

sufficient liquidity, and hence it is not possible to maintain a delta-hedged posi-

tion. In this case, it is generally useful and practical to make use of a correlated

asset1. If the underlying processes of the option and the correlated asset behave

identically, then complete elimination of the risk is possible. However, it is much

more common for them to be imperfectly correlated. Consider the example as

detailed in Hull (2006) of an airline that is concerned about the future price of

jet fuel. As jet fuel futures contracts are illiquid2, Hull (2006) states that in

1This could be an equity, commodity, index, or simply an observed process.
2Jet fuel futures contracts recently started traded on the Chicago Mercantile Exchange

(CME). Gulf Coast jet fuel calendar swap futures give market participants the opportunity to
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practice it is appropriate to utilise heating oil futures contracts as the hedging

instrument. This is because price movements in jet fuel are strongly correlated

to the price fluctuations in heating oil futures. This strategy of hedging using

futures contracts from different markets is known as cross hedging. This only

works if there is significant correlation between the prices of the spot and futures

contracts. Another example, taken from Davis (2001), of where an imperfectly

correlated asset is used in place of the hedging instrument is when a trader wishes

to hedge a book of equity options. When there are associated transaction costs in

trading the underlying equities, it is often not possible to hedge with each of the

individual equities as transaction costs rapidly increase. Instead, the trader ob-

serves that the correlation between the basket of equities and the index futures is

indeed very high, and so hedges with the index. Now, because only one contract

(the index futures contract) needs to be re-hedged, the associated transaction

costs would be several magnitudes lower.

The pricing of weather derivatives is an incomplete market problem. In general,

determining the value of a contingent claim in an incomplete market is non-

trivial, and generally leads to pricing concepts based on probability or utility

theory. Heston (1993) and Sircar and Papanicolaou (1999) study the problem of

pricing derivatives when volatility is itself a random process, and view this as an

incomplete market problem for which pricing bands are derived. An approach

developed by Cochrane and Saa-Requejo (2000), leads to very tight bounds on

option values in an incomplete market by finding strategies that have a bounded

market price of risk (or Sharpe ratio), and assumes that investors want ‘good-

deals’ in a market. Another approach, and one that is considered in this thesis,

is to assume that the value of a derivative can be made up of the cost of con-

structing a partially hedged portfolio plus some risk-premium; this approach is

also considered by Ibáñez (2005).

First attempts to value weather derivatives assumed that the market was com-

plete. Harris (2003), following McIntyre and Doherty (1999), assume that the

cumulative number of HDD’s is a normally distributed variable with mean m

target their risk management coverage for jet fuel traded on the Gulf Coast, the most liquid
physical jet fuel market.
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and standard deviation σ, with probability density function

f(x) =
1

σ
√
2π

e−
(x−m)2

2σ2 . (5.3)

where parameter µ is the mean and σ2 is the variance. McIntyre and Doherty

(1999) arrive at a simple analytical model similar to the Black and Scholes (1973)

formula for option pricing, where the value of an HDD call option is

C = (m−K)N

(

m−K

σ

)

+ σ2f(K), (5.4)

where K is the strike level, N(.) is the cumulative standard normal distribution.

A similar result is also derived by Harris (2003) for an HDD put option.

We find however, that limited research has been undertaken to value weather

derivatives from an incomplete markets perspective. The papers that have con-

sidered this are Cao and Wei (2000) who propose and implement an equilibrium

valuation framework, Platen and West (2004) use the growth optimal portfolio

(which they define as a world stock index) as a benchmark in order to value a

weather derivative, Davis (2001) approaches valuation from the angle of marginal

utility, and Brockett et al. (2005) also price the contract in an incomplete mar-

ket framework. These works focus primarily on the use of utility functions (see

§3.3) and therefore have limited practical use, though, Platen and West (2004)

is an exception to this list, as they adopt an approach more closely linked with

actuarial pricing.

In this chapter we firstly consider the use of an imperfectly correlated instru-

ment that can be used as a substitute for temperature. We then introduce the

fundamental state variables, and construct a suitable hedging argument which

minimises the risk in the portfolio. Subsequently, a two-dimensional PDE for a

weather option is formulated, and we complete the specification of the problem

by prescribing the necessary boundary and terminal conditions. We conclude the

chapter by calculating estimates of the temperature model parameters that are

required before actually pricing any temperature derivatives.
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5.1 Imperfectly correlated instruments

Climate3 conditions, as stated by Cao and Wei (2004), greatly affect short-term

demand and long-term supply of energy. Geman (2005) and Zanotti, Gabbi,

and Laboratore (2003) showed that both electricity load and gas consumption

are significantly correlated with temperature. Electricity load is thought to be

largely dependent on weather conditions (specifically temperature) that Pirrong

and Jermakyan (2008) take the underlying power spot price to be dependent on

weather rather than on load when formulating their electricity derivative PDE.

Cao and Wei (2004) also showed this strong relationship, and observed that the

maximum power load is at its lowest when the average daily temperature is around

18◦C, and increases as temperature moves away from this level; this reiterates

why most temperature derivative indices use Xref = 18◦C (see §2.2.1).

Natural gas consumption is also highly dependent on monthly average temper-

ature and Cao and Wei (2004), again, demonstrate this by taking the monthly

average temperature for the US state of Illinois and regressing it against the

monthly delivery of natural gas. The results from Cao and Wei (2004) give a

measure4 of how closely linear movements in temperature affect gas demand.

They deduce that there is a strong correlation between temperature and electric-

ity/gas demand, which implies that either gas or electricity prices could be used

in place of temperature contracts, as a partial hedge of a companys energy costs

or profits. The link between weather and these other commodity spot prices is

the main reason why weather derivatives were created to begin with. In Leggio

and Lien (2002), the suitability of using weather derivatives to hedge gas bills

is studied. Similarly, Pirrong and Jermakyan (2008) investigate the benefits of

using weather derivatives to reduce the risk in trading electricity. Most authors,

including, but not limited to Turvey (2005) and Platen and West (2004), follow

the approach outlined in Cao and Wei (2000) who state that the market price of

weather risk is negligible and hence the discount rate is the risk-free rate. This

argument stems from the belief that weather is uncorrelated with most traditional

investment assets. However, investors in the weather derivatives market are not

3When we refer to climate we are referring to the (occurred/expected) behaviour of the
atmosphere over long time-periods. The behaviour of the atmosphere over short time horizons
is referred to as the weather.

4They used the R2 measure, which essentially describes how well an estimated model can
predict futures outcomes. Cao and Wei (2004) find R2 = 0.9416.
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‘representative’ of the market, but face very specific risks that are induced by

the weather. Thus it has been shown by Bellini (2005) that this assumption can

lead to unsatisfactory prices. In the next section we assume that there exists a

commodity, available for trading, that is sufficiently correlated with temperature

so as to allow for the construction of at least partial hedging.

5.2 A new weather pricing PDE

As presented in §4.1 several models exist that attempt to describe the evolution

of temperature. We adopt the model first purposed by Alaton et al. (2002), and

confirm the choice of this model through empirical tests. To ensure an appropriate

fit to UK historical data, we provide a new set of estimated parameters for the

temperature model, but we shall defer explanations until §5.4.

To formulate the problem and create a weather derivatives valuation model, we

first prescribe the state-space variables. The core variables are the daily tem-

perature X , the degree-day index I, and time t. Let V (Xt, I, t) be the value

of a weather contingent claim written on these core variables. Additionally, we

assume there to be a constant risk-free interest-rate r. Given that temperature is

not traded we introduce a hedging instrument5 H that is imperfectly correlated

with temperature, and follows a GBM. This assumption of the correlated asset

following a GBM is simple and is used so that the derivation is kept clear, but

inclusion of say an OU process would result in the same procedure and a similar

PDE. The equations that describe our problem are given by

dHt = µHHtdt+ σHHtdZ1, (5.5)

dXt = dθ(t) + κ [θ(t)−Xt] dt+ σX(t)dWt, (5.6)

dIt = f(Xt, t)dt, (5.7)

dMt = rMtdt, (5.8)

where uH , σH are the respective drift and volatility of the correlated instrument

H and are assumed constant. The temperature process in equation (5.6) drifts

to the long-run seasonality mean θ(t) with mean-reversion speed κ. As explained

5This could take the form of a traded asset/commodity or liquid derivative such as a futures
contract.
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in §4.1.3, the forcing term dθ(t) is included to ensure that the long-run average

value of temperature tends to θ(t). The variability of the temperature is σX(t)

and is given as a piecewise constant function. In addition, f(Xt, t) represents the

drift of the underlying index, which for a HDD and CAT is given by

f(Xt, t) = (Xref −Xt)
+ (5.9)

and

f(Xt, t) = Xt. (5.10)

respectively. As dHt is correlated with dXt we use Cholesky decomposition (Hull,

2006) to rewrite the Brownian increment dWt as

dWt = ρdZ1 +
√

1− ρ2dZ2, (5.11)

where where ρ is the correlation between dZ and dWt, Z1 and Z2 are two standard

Brownian motions, and Z1 is uncorrelated with Z2,

E(dZ1dZ2) = 0. (5.12)

Lastly we note the usual Wiener process properties of

dW 2
t = dt, (5.13)

dZ2
1 = dt, (5.14)

dZ2
2 = dt, (5.15)

dZ1dWt = ρdt, . (5.16)

5.2.1 The partial hedge

We follow a similar approach as laid out in Windcliff et al. (2007) by constructing

a hedged portfolio, where a correlated asset is used as the hedging instrument

rather than temperature. Consider a portfolio comprising of an option V (X, I, t)

less ∆ contracts of the imperfectly correlated asset Ht. The portfolio is financed

by selling a bond Mt. Hence

Πt = Vt −∆Ht −Mt, (5.17)
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where it is assumed that

Mt = Vt −∆Ht (5.18)

at time t, so that the self-financing property (3.7) holds. This means that no

funds are either added or removed from the portfolio for the duration 0 < t < T .

The instantaneous variation of the portfolio is

dΠt = dVt −∆dHt − dMt. (5.19)

Using Itô’s Lemma we expand an increment of the option dV (X, I, t), so that

dVt =
∂V

∂t
dt +

∂V

∂X
dXt +

1

2

∂2V

∂X2
dX2

t +
∂V

∂I
dI

=

[

∂V

∂t
+
(

κ(θ(t)−Xt) + θ
′

(t)
) ∂V

∂X
+

1

2
σ2
X(t)

∂2V

∂X2
+ f(Xt, t)

∂V

∂I

]

dt

+ σX(t)
∂V

∂X
dWt. (5.20)

where θ
′

(t) expresses the first derivative of θ with respect to time t. Substituting

(5.11) into (5.20) leads to

dVt =

[

∂V

∂t
+
(

κ(θ(t)−Xt) + θ
′

(t)
) ∂V

∂X
+

1

2
σ2
X(t)

∂2V

∂X2
+ f(Xt, t)

∂V

∂I

]

dt

+ σX(t)
∂V

∂X

(

ρdZ1 +
√

1− ρ2dZ2

)

. (5.21)

We substitute (5.5), (5.6) and (5.21) into portfolio variation (5.19) to obtain

dΠt =

[

∂V

∂t
+
(

κ(θ(t)−Xt) + θ
′

(t)
) ∂V

∂X
+

1

2
σ2
X(t)

∂2V

∂X2
+ f(Xt, t)

∂V

∂I

− ∆µHHt − rM

]

dt +

(

σX(t)
∂V

∂X
ρ−∆σHHt

)

dZ1

+ σX(t)
∂V

∂X

√

1− ρ2dZ2. (5.22)

This portfolio is driven by two random sources of risk. Firstly, the risk from

the temperature Xt, dZ2, and secondly, the risk from the imperfectly correlated

asset dZ1. As shown by Black and Scholes (1973), a source of randomness can
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be eliminated by solving for ∆ such that coefficient of dZ1 is zero. This gives

∆ = ρ
σX(t)

σH

·
∂V
∂X

Ht

. (5.23)

Substituting (5.18) and value for ∆ into (5.22) gives

dΠt =

[

∂V

∂t
+ γ(Xt, t)

∂V

∂X
+

1

2
σ2
X(t)

∂2V

∂X2
+ f(Xt, t)

∂V

∂I
− rV

]

dt

+ σX(t)
∂V

∂X

√

1− ρ2dZ2, (5.24)

with

γ(Xt, t) = κ(θ(t)−Xt) + θ
′

(t)− (µH − r)

σH
ρσX(t). (5.25)

Clearly this hedging strategy only partially hedges the derivative as the changes

in the portfolio are still random. The portfolio becomes deterministic only if there

exists a perfectly correlated instrument, i.e. when |ρ| = 1.

5.2.2 A special case

Lets consider a special case where the mean and standard deviation of temper-

ature and the correlated asset are identical and are positively correlated. For

example, this could be of two adjacent wind farms, where one is traded and the

other is not, they have identical climates (since they have the same µ and σ) but

non-identical weather (hence ρ 6= 1). We define the drift of temperature as µX ,

and apply this special case to (5.25) to obtain

γ(X, t) = µX(1− ρ) + ρr. (5.26)

Choosing the drift in this way simplifies our problem and avoids the need to

specify µH , which is difficult to estimate when p 6= 1 and is µH 6= µX . The

removal of real-world drift is a significant step forward, as was the case in the

derivation of the Black and Scholes (1973) PDE. When ρ = 1, a perfect hedge

can be constructed. In this case, γ(X, t) = r, since the asset should grow at

the risk-free rate. When the instrument is completely uncorrelated, i.e. ρ = 0,

the hedge is completely ineffective and so the return is γ(X, t) = µX . Also, for

an imperfectly correlated instrument with ρ = 0.5, the hedged portfolio should
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remove 50% of the the risk premium, and therefore γ(X, t) = (µX + r)/2.

Consequently, for |ρ| 6= 1 the residual risk persists. We are unable to perfectly

replicate the movements in the derivative’s payoff and therefore can no longer rely

on the straightforward Black and Scholes (1973) type analysis, and hence another

approach is required to value the weather derivative within an incomplete markets

setting. The following section outlines a possible approach.

5.2.3 Minimising risk in an incomplete market

As a starting point, we use the concept introduced by Föllmer and Sondermann

(1985) of having a mean-self-financing portfolio, see §5.2.3. This property assumes

that a portfolio Πt has an expected value of zero. Considering a portfolio to

be mean self-financing is an approach adopted by numerous academics to value

various derivative contracts. Windcliff et al. (2007) adopt this method when

pricing a segregated funds contract, and Ibáñez (2005) does the same in deriving

a PDE for an option where short-selling of the underlying is restriction. The

author is unaware of any work in the literature that has utilised this property

((5.27) below) in the context of pricing a weather derivatives contract. Given

the portfolio defined in (5.17), we therefore assume that its variation has zero

expectation:

E[dΠt] = 0. (5.27)

Under this assumption, we regard today’s option value, V (Xt, I, 0), as the fair

hedging price (Schäl, 1994). Here it is assumed that the portfolio growth is

expected to be zero (a local martingale) as opposed to taking the expected growth

as equal to the risk-free rate, i.e. dΠt = rΠtdt. The reason for this is that by

including the bond B in our portfolio we are already taking into account this

growth and therefore do not need to incorporate it twice. Since the expectation

of a Brownian motion is zero, the expectation of (5.24) is simply

E [dΠt] =

[

∂V

∂t
+ γ(Xt, t)

∂V

∂X
+

1

2
σ2
X(t)

∂2V

∂X2
− rV + f(Xt, t)

∂V

∂I

]

dt.(5.28)

It then follows from the mean-self financing property (5.27) that in expectation

∂V

∂t
+ γ(Xt, t)

∂V

∂X
+

1

2
σ2
X(t)

∂2V

∂X2
+ f(Xt, t)

∂V

∂I
− rV = 0. (5.29)

113



Chapter 5. A new weather derivative pricing model

To give a PDE for a weather option, when the underlying is a HDD index we

define

f(Xt, t) = (Xref −Xt)
+. (5.9)

From herein assume that f(Xt, t) is given by (5.9), unless stated otherwise. PDE

(5.29) is similar to convection-diffusion or advection PDEs that have been studied

extensively in the applied mathematics literature. Morton and Kellogg (1996)

provide a comprehensive and thorough examination of these types of problems

and highlight the difficulties that arise in the numerical evaluation of such PDEs.

Problems may arise if the PDE becomes convection-dominated in the X spatial

dimension when the magnitude of the diffusion term with respect to X is smaller

than its corresponding convection term, i.e.

1

2
σ2
X(t) < γ(Xt, t). (5.30)

We demonstrate in chapter 6 the consequence of the above properties and show

how the choice of which numerical scheme to apply is important, otherwise mis-

leading results may be obtained. The solution to the above PDE will be used as

a benchmark value, VBE = V (X, I, t = 0), throughout this thesis.

5.3 Boundary and final conditions

The valuation of a weather derivative requires the specification of boundary con-

ditions to fully define the problem. A number of terminal conditions can be

used, and depend on the type of contract to be valued. We present a few typical

examples:

• A European call option:

V (X, I, T ) = tick ·max(I −K, 0). (5.31)

• A European capped put option:

V (X, I, T ) = min(tick ·max(K − I, 0), cap). (5.32)
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In the above payoffs, the form of I is dependent on the type of underlying index

that is used. We outlined several possible forms in §2.2.1. Much of the computa-

tions performed in this thesis will be on European capped options because they

are the mostly frequently traded type of derivative in the weather-risk market.

5.3.1 Truncation of computational domain

The value of an option that satisfies (5.29) is dependent on the value of the

current temperature Xt. As we have a three-dimensional PDE, where we have

first- and second-order derivatives in X , we are required to specify two boundary

conditions. The domain for the PDE (5.29) is X × I ∈ [−a,∞] × [0,∞], where

a is the magnitude of absolute zero 6. Motivated by numerical studies in chapter

6, we must first determine a finite domain in which we solve the PDE. Since the

temperature is modeled as a mean-reverting process, its expectation and standard

deviation are known. Therefore, the likely movement of the process in time can

be specified, which then enables for truncation of the X domain. Given that the

temperature process (4.4) at time s < t admits the following strong solution:

Xt = [Xs − θ(s)]e−κ(t−s) + θ(t) +

∫ t

s

e−κ(t−u)σX(u)dWu. (5.33)

It follows that the mean and variance are (Bellini, 2005)

E [X(t)] = θ(t) + (Xs − θ(s)) e−κ(t−s), (5.34)

Var [X(t)] =

∫ t

s

e−2κ(t−u)σ2
X(u)du. (5.35)

To define the computational domain, the maximum standard deviation, denoted

σ̂X , is chosen and substituted in place of σX(t) in (5.35). This has the benefit of

not needing to recompute new computational bounds at each time-step. There-

fore, to value a contract within the specified domain at a given time t, say Xt,

Andricopoulos, Widdicks, Duck, and Newton (2003) suggest setting the domain

range to be at least 7.5 times standard deviation (i.e. set D = 7.5 in (5.36) below)

either side of Xt. Andricopoulos et al. (2003) and Law (2009) considered this for

ABM processes. Similar to Andricopoulos et al. (2003), the deviation from XT

6This corresponds to 0 Kelvin or -273.15 ◦C
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for an OU process is defined as

X∆
T = D

σ̂X√
2κ

(

1− e−2κT
)1/2

. (5.36)

Consequently, the computational domain limits, Xmin
T and Xmax

T , may be given

by

Xmin
T = XT −X∆

T , (5.37)

Xmax
T = XT +X∆

T . (5.38)

Equations (5.37) and (5.38) denote the minimum and maximum values that we

allow temperature to reach within our computational domain. We perform nu-

merical experiments to confirm that by truncating our domain the solution is not

(significantly) affected. This is done by holding the grid spacing ∆X fixed, and

then expanding the magnitudes of Xmin and Xmax to observe the effect this has

on the solution. In the implementation, since ∆X is fixed, the number of grid

points in X must be increased as the domain size is expanded. The diagrams in

figure 5.1 illustrate how the solution changes as the truncated domain is varied.

In figure 5.1(a) the value of the option is computed for four different domain sizes.

The figure focuses on regions where distinct differences are observed. Comparing

the red and green lines in the figure indicates that some information is lost when

the domain size is as small as Xmax = 25, and the difference between the solution

when Xmax = 50 and Xmax = 60 is virtually zero (this is why the blue line is not

easily visible in the diagram). Figure 5.1(b) shows the solution at X = 17 for

different domain sizes. Again, small differences between the solutions when the

domain limit is Xmax = 25 and Xmax = 50 are shown. The precise explanations

of the method used to calculated the solutions in figure 5.1 are deferred until

§6.2.3.

5.3.2 The value at extreme temperatures

By truncating the range in X , we next consider the behaviour of the system at

the extremes Xmin and Xmax as defined in (5.37) and (5.38) respectively. In the

context of weather derivatives the condition describes the behaviour of the option

value when the temperature is either extremely warm or cold. Consider a capped
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Figure 5.1: The figures plot the solution profiles of an uncapped HDD put option
that are computed using differently sized computational domains. For each of
the differently sized domains, ∆X is fixed. We use the Semi-Lagrangian method
(which is explained in §6.2.3) to solve equation (5.29) with the following param-
eters: K = 986.73, T = 90, r = 0.05/365, ρ = 0.9,∆I = 4.93365,∆τ = 0.18.
Figure 5.1(a) plots the solutions as temperature changes, whereas in figure 5.1(b)
we set X = 17 and plot the solution’s (i.e. V (17, 0, 0)) behaviour for each domain
size. 117
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European HDD put option with payoff (5.32). As a reminder, the HDD weather

index is given by

IH(t) =

∫ t

0

(Xref −X(s))+ds, (2.4)

where Xref is the barrier temperature. In what follows, we suppress the use of

subscript H in referring to the HDD index.

Condition as X → Xmin

If the temperature is very cold the HDD index becomes large, resulting in a put

option being worthless. Therefore, a possible boundary condition is

V (Xmin, I, t) = 0. (5.39)

However this condition is too severe, and may unnaturally force the solution to

reach zero within the computational domain. In order to avoid this we would

have to set the range in X sufficiently large so that solutions in the regions of

interest are not greatly effected. For computational convenience we impose the

corresponding Robin boundary condition,

∂V (Xmin, I, t)

∂t
+ γ(Xmin, t)

∂V (Xmin, I, t)

∂X

+ (Xref −Xmin)+
∂V (Xmin, I, t)

∂I
− rV = 0, (5.40)

as this enables a smaller domain truncation Xmin, whilst giving a smoother so-

lution profile. The specification of our boundary condition is an improvement on

the simple Dirichlet condition of (5.39) that was used by Harris (2003) to value

a similar weather PDE.

Condition as X → Xmax

Warm weather conditions result in a small accumulated HDD index, as no heating

has been necessary. From observing the payoff condition (5.32), payoff is almost

guaranteed (if the domain is large enough) since for warm conditions I = 0. This
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suggests the Neumann boundary condition

∂V

∂X
(Xmax, I, t) = 0, (5.41)

that implies that the option value is invariant at Xmax.

Condition for the accumulating weather index along I → ∞

Because we have an extra dimensional derivative appearing in the PDE (namely

∂V/∂I) we are obliged to supply another boundary condition in this dimension.

We can determine this by considering that I → ∞ implies that K − I < 0. In

other words the temperature must have been very cold to cause the accumulation

index to reach such high levels, and thus the put option value is worthless. We

obtain the Dirichlet boundary condition

lim
I→∞

V (X, I, t) = 0. (5.42)

To ensure the problem remains well posed we only apply a condition at the max-

imum value of I, and then march backwards through decreasing I until reaching

I = 0 (because the PDE is backwards parabolic in I).

Again, to numerically solve the PDE we need to determine where best to trun-

cate our domain, so that Imax is finite. This will be the the largest value the

weather index can reach on the grid. Since X ∈ [Xmin, Xmax], we can make a

suitable approximation by assuming that the maximum value I would reach if

the temperature remained at Xmin for the duration of the accumulation period,

say T . This implies that

Imax = T ∗ (Xref + |Xmin|). (5.43)

This completes the specification of the boundary conditions for a capped put op-

tion that satisfies PDE (5.29) on a computational domainX×I×t ∈ [Xmin, Xmax]×
[0, Imax] × [0, T ]. Derivation of the boundary conditions for capped call options

is similar and we define them at the relevant point in chapter 6.
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5.4 Calculation of the temperature model pa-

rameters

To conclude this chapter we provide numerical estimates for the unknown pa-

rameters in the temperature SDE (5.6). The estimated parameter values are

determined from using the data set RTD (see Appendix table B.2).

5.4.1 Estimating seasonal mean

Differing from Alaton et al. (2002), the method of non-linear least squares method

(NLS) is used here to compute the parameters in seasonal mean (4.5). This

involves searching for the parameter vector ǫ = (A,B,C, φ) that solves

min
ǫ

||Y − Z||2 (5.44)

where Y is the vector with elements computed by (4.5) and Z is the real data

vector. The statistical program R is used to perform the non-linear least squares

fitting algorithm. The null hypothesis to be tested is that no one of the coeffi-

cients should appear in the model. The parameter estimates and their summary

statistics are in table 5.1. For the A parameter, the t-statistic is large and its p-

value is less than the computational precision level of 2x10−16, therefore assuming

the absence of outliers, there is sufficient evidence to reject the null hypothesis

that A = 0. The parameters C and φ are also significant. The t-statistic for B is

not large enough to reject the null hypothesis. Therefore, B can safely be omitted

from the model within the data range spanned by the sample. This leads to the

following function for the seasonal mean temperature

θ(t) = 11.56 + 2.87x10−6t + 6.75 sin(ωt− 1.90), (5.45)

where t is measured in days and ω(= 2π/365) is the frequency. The constant −1.9

(measured in Radians) is a shift in the seasonal pattern, which when defined in

units of t is approximately 110 days.

In order to validate the use of the developed model, a t-test is carried out. A

two-tailed t-test is used to determine the likelihood that the proposed model
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Parameter Estimate Std. Error t-statistic p-value (=Pr(> |t|))
A 11.56 7.735x10−02 149.41 < 2x10−16 ***
B 2.872x10−06 2.393x10−05 0.12 0.904
C 6.749 5.467x10−02 123.45 < 2x10−16 ***
φ -1.904 8.107x10−03 -234.81 < 2x10−16 ***

Table 5.1: The parameter values of the least-square model function (4.5). The
standard error, t-statistic and its corresponding probability are shown for each
parameter in columns three, four and five respectively. Where *** appears in the
table it means that the significance level is approximately zero. 5599 observations
were used. In the non-linear least square algorithm the parameters were initialise
with the following values A = 10, B = 0.002, C = 6, φ = −1.90

Parameter Estimate Standard Error
p-value 0.9860 N/A

t-statistic 0.01755 N/A
Mean of RTD 11.4755 ±0.07459

Mean of proposed model 11.4772 ±0.06382

Table 5.2: The table reports the p − value, the mean of RTD and mean of the
proposed model (5.45). There are 11196 degrees of freedom. The significance
level is at 5%.

(5.45) and RTD have the same mean (this is the null hypothesis). In this test,

the significance level is set at 5%. It was confirmed from statistical analysis

in table 5.2 indicates that there is not significant difference between the means

RTD and the model (5.45). This is because the p-value(= 0.9860) is above the

significance level. We also regress the proposed model (5.45) against the actual

observed temperature at London Heathrow. Table 5.3 provides the statistics from

the regression analysis and shows the similarity between the mean values of both

the actual mean and approximated seasonal mean temperatures. Additionally, it

highlights that almost 77% of temperature’s behaviour can be explained by its

seasonal mean.

The numerical results are consistent with our understanding of general weather

conditions in the United Kingdom and the mean appears to visually match his-

torical movements in figure 5.2. For example, the data shows that the difference

between a typical winter day and a summer day is about 13◦C, as the amplitude

of the sine function is 6.75. We observe that the value of B is very small. This

is to be expected since warming (or cooling) of the earth occurs over long time

scales, and we have only taken the measurement over 15 years of historical data,
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Figure 5.2: The figure plots the daily average temperature that is computed as
the mean of the daily maximum and minimum values observed. The sample
period extends from January 1st 1996 to May 12th 2010 with a total of 5599
observations. The green line displays the behaviour of the estimated seasonal
mean.

from January 1st 1995 to May 12th 2010. Moreover, the rise in the temperature

mean over the past 15 years is almost negligible at 0.0147◦C.

5.4.2 Estimating σX(t)

Given that we are using a piecewise volatility function, the estimator is based on

the quadratic variation (see Appendix A.1) of temperature X(t):

σ̃2
m =

1

Nm

Nm−1
∑

j=0

(X(j + 1)−X(j))2, (5.46)

where m is the specific month consisting of Nm days, with the observed tempera-

tures during that month being denoted by X(j) for j = 1, . . . , Nm. This estimate

is based on using one year of the RTD data set.

Differing from the study of Alaton et al. (2002), we do not simply take the estimate
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Parameter Value
Constant 0.0154
Beta 0.9985
R2 0.7736

Mean of approximated seasonal mean temperature 11.4754
Mean of actual temperature 11.4772

Table 5.3: The statistics from the regression analysis.

Month Estimation of (σ̃avg) Estimation of σ̃
January 2.30974 2.51209
Febuary 2.09215 2.20502
March 1.88139 2.37840
April 1.83017 2.10051
May 1.83714 1.74256
June 1.75476 1.48755
July 1.62044 1.87269
August 1.54031 1.76075
September 1.64422 1.50615
October 1.94372 2.04457
November 2.32217 2.16213
December 2.48829 2.66395

Table 5.4: The calculated values for the two approximations for the function
σX(t) The first column calculations are based on formula (5.47) and the second
column uses estimate (5.46) .

based on the most recent year’s data, but make use of all the available data and

average the respective volatility. It would be useful in future work to compare

the two approaches on identical data sets. Then for each month we perform

(σ̃avg)
2
m =

∑Y
i=1

1
Nm

∑Nm−1
j=0 (X i(j + 1)−X i(j))2

Y
(5.47)

where now, X i(j) is the observed temperature in year i on day j, again for

j = 1, . . . , Nm and also i = 1, . . . , Y , where Y represents the number of years

used in the dataset. We present the results of both in table 5.4.
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Parameter Using σ̃2
m Using ( ˜σavg)

2
m

κ̂ 0.2483 0.2546

Table 5.5: Estimated values of κ. We compute its value using the two different
volatility estimates in equations (5.46) and (5.47).

5.4.3 Estimating κ

Next, to estimate the speed of mean reversion, the approach taken by Alaton

et al. (2002), who use the martingale estimation functions method of Bibby and

Sørensen (1995), is employed:

κ̂ = − log

( ∑n
i=1G(ti−1) [X(ti)− θ(ti)]

∑n
i=1G(ti−1) [X(ti−1)− θ(ti−1)]

)

, (5.48)

where

G(ti−1) =
X(ti−1)− θ(ti−1)

σ2(ti−1)
, i = 1, . . . , n, (5.49)

with θ(t) as defined in (4.4), and volatility values σ2 as either (5.46) or (5.47).

For ease of computation, the estimate of κ̂ is computed by writing a C++ pro-

gram. Table 5.5 shows the obtained estimated mean reversion parameter using

the different estimates for volatility. A Welch two-sample t-test is performed to

confirm the use of estimate ( ˜σavg)
2
m rather than σ̃2

m. To do this, a 1000 possible

temperature trajectories of (5.6) were obtained using the Monte-Carlo method

and then averaged of these paths. The averaged trajectories are then used in

the t-test to check the statistical likelihood that the mean is the same as the

RTD. From the statistical analysis, it is confirmed that there is no significant

difference between the mean of RTD and the mean temperature value produced

when κ = 0.2483 because the p− value(= 0.373) is above the significance level.

A summary of the p − value and the estimated means of the RTD data set and

that of the model temperature values when κ = 0.2483 are presented in table

5.6. Therefore, it suggests that a suitable representation of the RTD is when

the reversion rate is κ = 0.2546. For future work, it would useful to perform a

statistical test to determine if the difference between the two levels of p are shown

to be significant.
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Statistic Value
p− value 0.373
Mean of RTD 11.59
Mean of proposed model 11.49

Table 5.6: A summary of the results from the t-test used to compare the proposed
model (5.6) (κ = 0.2483) with RTD. The table shows the p − value, which
represents the probability that if the model is true, the difference between RTD
and our model would be no larger than found here. Additionally we report the
means of the proposed model and RTD. These values were computed using 5474
observations.

Empirical tests with real data

Given the derived estimates in §5.4.1 - §5.4.3, we can simulate possible trajectories

and then make comparisons against the real temperature data. To do this, we

use the Monte-Carlo method to simulate 1000 possible temperature trajectories,

using the discrete version of the temperature process (5.6),

Xt+1 = Xt + θ
′

∆t + κ [θ(t)−Xt] ∆t + σX(t)
√
∆tφ, (5.50)

and then take the average of these trajectories. Figure 5.3 shows a possible

average temperature process compared with the RTD. To validate the use of

this model, we perform a t-test, which measures the probability of the observed

sample deviating from the null. Table 5.7 presents the summary of the statistical

analysis. The p − value obtained is larger than the critical value of 0.05 (95%

confidence interval). This result indicates that there is not sufficient evidence to

reject the hypothesis that the mean of the RTD and the mean of the developed

model (5.6) are the same. The differences between the means of the two datasets

are relatively small (see table 5.7). This finding suggest that the developed model

is a valid representation for modelling the behaviour of temperature at London

Heathrow. However, we do note that this model of weather does not allow for

occasional very long, stably hot or cold spells to arise.

The choice of κ ensures that even if the weather today is wildly extreme, the

temperature in the coming days will quickly return to a position about its sea-

sonal mean. We illustrate such an example in figure 5.4(a) where we simulate a

temperature path, but instead of setting the initial point at the seasonal mean
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Statistic Estimate Standard Error
p− value 0.8335 N/A
Mean of RTD 11.59 ±0.0754
Mean of proposed model 11.61 ±0.0666
Std of RTD 5.567 ±0.0754
Std of proposed model 4.928 ±0.0666
Minimum value of RTD -2.940 N/A
Minimum value of proposed model -0.9895 N/A
Maximum value of RTD 28.33 N/A
Maximum value of proposed model 21.58 N/A

Table 5.7: A summary of the results from the t-test used to compare the pro-
posed model (5.6) with RTD. The table shows the p − value, the mean of the
proposed model and RTD, the standard deviation (denoted Std in the table) of
both datasets. The standard error in these approximations is also shown. These
values were computed using 5474 observations.

value on the day, we set the X(0) = −50. Figure 5.4(b) shows a possible simu-

lated temperature path when X(0) = 50. In both instances it is apparent that

after a few days the temperature has returned to more expected levels. More

precisely, as κ ≈ 0.25 it implies that there is about a 25% reduction per day in

the difference between the current temperature and the seasonal mean. Thus it

could take approximately 21 days for a temperature starting at X = 50 to reach

the mean temperature of 5◦C.

5.5 Summary

In this section a new model has been proposed that is based on the principles

of mean-self financing and partial hedging. A PDE is consequently derived that

values a weather-based contingent claim. The principle of mean-self financing

implies that the expected change in the given portfolio is zero, which removes

the remaining risk that existed due to the partial hedge. This is possible when

the remaining weather risk can be diversified away, so as to leave a stable mean

weather risk. The actual degree to which weather risk can be diversified is a key

topic for future empirical research.

The mean-self financing assumption has been used in the literature and provides

a suitable starting place from which to explore weather option pricing. The form
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Figure 5.3: This figure plots the temperature data observed at London Heathrow
from 1996 to 2010 and also the temperature values that are generated by the
proposed stochastic process of temperature (4.4). The solid green line is computed
by taking the average of several simulated paths of (4.4).

of our PDE is similar to that proposed Johnson (2007), with the exception that

his derivation is for dividend paying asset with GBM. A similar PDE was also

proposed by Windcliff et al. (2007), but we make use of a different underlying pro-

cess (mean-reverting process). However, their model contains the real-world drift

which is difficult to estimate. Avellaneda, Levy, and Paras (1995) suggest the

use of worst case pricing when the real-world drift remains in the pricing equa-

tions, assuming that the parameter lies between known bounds. Our weather

PDE model has the presence of the real-world drift (or more precisely the sea-

sonal mean) but only for the temperature for which estimation of parameters is

more robust than for those used to determine stock price drifts. Therefore, it

is not a requirement in this case to rely on worst-case pricing. Furthermore, we

demonstrated that in the special case where the drifts of X and H are identical

the presence of the real-world percentage drift of the correlated instrument can

be eliminated.

The model is an improvement on other weather pricing approaches for the fol-

lowing reasons:
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(b) X = 50

Figure 5.4: A simulated temperature path, generated using Monte Carlo method.
This illustrates the speed at which the temperature process with revert back to its
respective mean-level for that time of year given an extreme initial temperature.
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• Using a PDE approach allows for the option value to be determined at any

point in time, without re-computations.

• The model can be extended to include more complicated underlying pro-

cesses, which perhaps more closely correlate with temperature throughout

a particular time period.

• We can value weather options long before the start date of the averaging

period. The value of the option in this instance will be similar to an Asian

tail option, since in this case the averaging period does not start at the

inception of the contract, but rather sometime after (Wilmott, 2000a). The

start of the averaging window will now be expressed as t∗ given that t∗ ∈
[0, T ]. We cite the work of Law (2009) as a guide on the computation of

such an option.

The form of the derived PDE (5.29) makes it a challenging problem to solve,

and we describe in the next chapter the issues that arise from the application

of various numerical schemes. Since the PDE behaves like an advection PDE in

certain regions, this requires the use of non-standard numerical techniques, which

we demonstrate in detail in the next chapter.
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Numerical solutions of weather

options

In this chapter, we consider the pricing of a weather derivative using our PDE

from chapter 5, which we restate here

∂V

∂t
+

1

2
σ2
X

∂2V

∂X2
+ γ(Xt, t)

∂V

∂X
+ f(Xt, t)

∂V

∂I
− rV = 0, (5.29)

where

γ(X, t) = µX(1− ρ) + ρr, (5.26)

and

θ(t) = A +Bt+ C sin(ωt+ φ). (4.5)

Throughout this chapter, unless stated, we consider valuing HDD options such

that

f(Xt, t) = (Xref −Xt)
+. (5.9)

The boundary conditions for pricing a European HDD capped put option (as

explained in §5.3) are given as

∂V (X, I, t)

∂t
+γ(X, t)

∂V (X, I, t)

∂X
+(Xref−X)+

∂V (X, I, t)

∂I
−rV = 0, for X → Xmin,

(5.40)
∂V

∂X
(X, I, t) = 0, for X → Xmax, (5.41)

lim
I→∞

V (X, I, t) = 0, for I → ∞, (5.42)
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with final condition

V (X, I, T ) = min(max(K − I, 0) · tick, cap). (5.32)

This chapter is organised as follows. First, we explain the properties of the

weather option PDE, and compare it with existing PDEs in the financial lit-

erature. Then, we provide descriptions of the numerical methods that may be

used to appropriately determine the value of a weather derivative. When describ-

ing the numerical methods, we carefully examine their limitations when solving

(5.29) and where possible highlight the necessary conditions under which these

limitations are avoided or significantly reduced.

6.1 Similar PDEs

In pursuit of determining a suitable solution to the PDE (5.29), this section begins

by comparing the PDE form to other similar models that have been presented.

The fact that weather derivative contracts depend on an underlying that is an

averaging of temperature suggests a strong link to Asian options. An Asian option

has a payoff that depends on an average price or quantity of the underlying over

a specified time horizon. The averaging may be discrete or continuous, and

arithmetic or geometric. Taken from Law (2009), the continuous-time geometric

and arithmetic averages of an asset S are given respectively by

IG(t) = exp

[

1

t

∫ t

0

ln(S(u))du

]

,

IA(t) =
1

t

∫ t

0

S(u)du.

Explanations of either of the approaches can be found in Wilmott et al. (1995).

Weather derivatives underlying index variables are typically of the arithmetic

form and therefore we shall only consider them in this thesis. As we discussed in

§2.2.2, discrete sampling of the average may be more realistic but here the main

focus is on the continuous case for the reasons outlined in §2.2.1. It is helpful to
view the pricing of a degree-day weather option as an arithmetic Asian option with

no averaging being performed at maturity, and we observe that standard Asian
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option pricing equations as found in Wilmott et al. (1995) and Zvan, Forsyth,

and Vetzal (1996) bear a strong resemblance to PDE (5.29).

Ideally, the problem would be solved analytically, however, Wilmott et al. (1995)

details that this is generally not possible. This happens if the payoff condition

cannot be written in the form

SηF (I/S, t), (6.1)

for some constant η and function F . When this is possible, the dimensionality

of problem can also be reduced through application of a similarity reduction.

However, in the case of (5.29) this cannot be done because typical boundary con-

ditions for weather options are not linearly homogeneous in X and I (see Wilmott

et al., 1995, for an illustration of how to use a similarity reduction to simplify

a PDE). Wilmott et al. (1995) states that to value arithmetic Asian options we

must resort to numerical methods or approximations. Therefore, as the weather

option is akin to valuing an arithmetic Asian option we too must utilise numerical

approximations. Making this connection we are able to draw upon the vast array

of numerical techniques presented for valuing Asian options. Kemna and Vorst

(1990) prefer the simple implementation of Monte Carlo methods with a variance

reduction. Adopting a PDE approach, Alziary, Décamps, and Koehl (1997) use

an explicit finite-difference scheme to evaluate a European Asian option, though

Zvan et al. (1996) show that standard finite-difference schemes (such as explicit

schemes) are inaccurate and propose the use of a flux limiting technique to im-

prove accuracy. Law (2009) utilises a hybrid finite-differencing scheme, which also

uses the QUAD method as detailed in Andricopoulos et al. (2003), to value more

complex Asian options. More details of the variety of available Asian options can

be found in Wilmott (2000b) and we provide no further details on this topic.

Recall that by definition, a degree day is usually determined by examining the

number of degrees above/below the barrier temperature that the temperature has

reached over a given time period. The differences in degrees are then accumulated

to form the index, which is subsequently used in the payoff function. Given the

combination of the barrier component and the accumulation that occurs, it would

be more appropriate to view a weather derivative contact as a ParAsian option

(Xiao, 2007). This type of option monitors the cumulative time the underlying

process has spent either above or below a specified barrier. Depending on the
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accumulated quantity, the option may provide payoff (is activated) or not (is

extinguished). If we consider the case of an ‘up and in’ ParAsian option, payoff

will be made only if the underlying process has maintained a value greater than

say B, for a given time length t̄.

The idea of applying Asian options to pricing weather derivatives has been con-

sidered by Harris (2003) and Hamisultane (2008), who employ Asian options to

capture the averaging feature of the weather index I. Here, the weather option

is view as a ParAsian option since a weather derivative payoff typically contains

an averaging and barrier feature. Sharp (2006) uses a ParAsian option to model

mortgage valuation. To model bankruptcy, Johnson (2007) uses ParAsian options

and consequently proposes a new option called the ParAsian Integral Time op-

tion. This option not only monitors the cumulative time spent above the barrier,

but also the resulting area above/below the barrier. This area is defined by

I =

∫ t

0

dI(t), (6.2)

with

dI =

{

0 if S(t) < B

ǫ (S(t)− B) dt if S(t) ≥ B
, (6.3)

where ǫ is a scaling parameter that is similar a tick multiplier. The resulting

PDE in Johnson (2007) is of a similar form to our PDE (5.29) with the exception

that his derivation is for dividend paying asset with GBM (3.4):

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ (r − d)S

∂V

∂S
− rV = 0 if S < B , (6.4)

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ (r − d)S

∂V

∂S
+ ǫ (S − B)

∂V

∂I
− rV = 0. if S ≥ B . (6.5)

The introduction of the additional dimension I in (6.5) can lead to highly oscilla-

tory solutions when using a standard Crank-Nicolson scheme (for more details of

the Crank-Nicholson scheme refer to Smith, 1985). This happens as the scheme

fails to deal with situations where the solution changes rapidly with respect to

I. Johnson (2007) concludes that the use of a one-sided implicit scheme provides

smoother solutions, though accuracy is lost without the use of excessively small

grid spacing. Windcliff et al. (2007) use a fully implicit scheme and develop an

algorithm to ensure that particular grid conditions are maintained by inserting a
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finite number of nodes in an initial grid. In the following section the one-sided

implicit scheme is outlined, and an improved numerical scheme is introduced in

§6.2.

6.2 Numerical schemes for advection equations

Valuing a weather derivative based on numerically solving PDE (5.29) presents

various challenges. As reported by Morton and Kellogg (1996), numerical evalua-

tion of this type of PDE is difficult, and as mentioned above, the use of standard

finite-difference schemes results in poor approximations due to the absence of a

second-order derivative in I. By grouping particular terms in (5.29), the problem

can be recast as an advection equation. To see this, we firstly make the usual

transformation of τ = T − t, with T being final time, and rewrite (5.29) to obtain

∂V

∂τ
− f(X, τ)

∂V

∂I
=

1

2
σ2
X

∂2V

∂X2
+ γ(X, τ)

∂V

∂X
− rV. (6.6)

The left-hand side (LHS) is a classical example of an advection type equation and

the RHS is a convection-diffusion equation. In this section we examine various

schemes that may be used to obtain accurate solutions for advection PDEs. We

introduce these methods in a simple context, to ensure clarity in the descriptions

of the proposed numerical schemes.

Consider the one-dimensional linear advection equation

∂U

∂τ
+ k

∂U

∂x
= 0, (6.7)

with positive constant coefficient k. The first term on the LHS of the above

equation is the local rate of change of U with respect to time and the second

term is referred to as the advection term. This simple advection equation (6.7)

has the well known general solution of

U(x, τ) = U0(x− kτ), (6.8)

which is obtained using the method of characteristics (Farlow, 1993). However, we

consider evaluating this advection PDE numerically by discretising it on a uniform
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two-dimensional mesh with spacing ∆x and time step ∆τ and then compare the

numerical solution to the analytical one. The spatial nodes are denoted by i, and

n denotes the time levels. Therefore the locations on our mesh are given by

xi = x0 + i∆x, i = 0, 1, . . . , imax , (6.9)

τn = τ0 + n∆τ, n = 0, 1, . . . , nmax . (6.10)

As we are interested in solving the PDE for U(x, τ), we only consider the values

of U at discrete points in the mesh, such that at node (i, n)

U(x, τ) → U(x0 + i∆x, τ0 + n∆τ) ≡ Un
i (6.11)

From this we have that a given numerical scheme is convergent if for succes-

sive grid refinements the numerical solution tends to the analytical one (or true

solution), i.e.,

Un
i → U(xi, τn) ∀ i, n, (6.12)

as ∆x → 0 and ∆τ → 0. If this is not satisfied then we can conclude that the

scheme is inappropriate for the problem.

There are several ways to discretise each of the differential terms in (6.7) and

here we consider some typical examples, but for more details see Smith (1985).

6.2.1 Standard finite-difference schemes

Central differencing in space

Using a central difference scheme for the derivative with respect to x may result

in spurious oscillations appearing the solution, as stated by Morton and Kellogg

(1996) and further illustrated in Harris (2003). To see this oscillatory behaviour,

write the difference equations as

∂U(x, τ)

∂x
=

Un
i+1 − Un

i−1

2∆x
+O(∆x)2, (6.13)

∂U(x, τ +∆τ)

∂τ
=

Un+1
i − Un

i

∆τ
+O(∆τ). (6.14)
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The above discretisation is commonly referred to as a forward time and centred

space scheme (FTCS). Equation (6.7) then becomes

Un+1
i − Un

i

∆τ
= −k

Un
i+1 − Un

i−1

2∆x
, (6.15)

where on rearrangement we obtain

Un+1
i = Un

i − k∆τ

2∆x
(Un

i+1 − Un
i−1). (6.16)

This scheme is said to be unstable and this can be confirmed using Von Neumann

stability analysis. This consists of inserting a trial solution into the numerical

scheme and determining if as time increases does the solution grow. To see this

explicitly, consider the trial solution

U(x, τ) = z(τ)eikx, (6.17)

however here we redefine i such that i =
√
−1. For the remainder of this sub-

section i denotes an imaginary number and we replace old subscripts i with m;

thus, Un
m denotes the solution at time-step n and grid point m. Using the discrete

representations of the solution, substitute 6.17 into the equation of the scheme

(6.16):

zn+1e
ik(m∆x) = zne

ik(m∆x) − k∆τ

2∆x

{

zne
ik(m+1)∆x − zne

ik(m−1)∆x
}

= zne
ik(m∆x)

{

1− k∆τ

2∆x
[eik∆x − e−ik∆x]

}

= zne
ik(m∆x)

{

1− k∆τ

∆x
· i sin(k∆x)

}

. (6.18)

The amplification factor is given by

|ζ | =

√

1 +

(

k∆τ

∆x

)2

sin2(k∆x). (6.19)

Clearly |ζ | ≥ 1 for all combination of grid sizes. Therefore it is not appropriate

for solving (6.7) since the solution modulus |Un
m| grows exponentially.
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Lax Method

To overcome the instability problems of the above scheme, it is possible to use

the Lax method. We revert to using i subscript to denote a grid point location.

The Lax method essentially replaces the value at Un
i with its average. Therefore

(6.16) becomes

Un+1
i =

1

2
(Un

i+1 + Un
i−1)−

k∆τ

2∆x
(Un

i+1 − Un
i−1). (6.20)

If we consider the Taylor series expansions

U(x +∆x, τ) = U(x, τ) + ∆x
∂U

∂x
+

∆x2

2

∂2U

∂x2
+

∆x2

6

∂3U

∂x3
+ . . . , (6.21)

U(x−∆x, τ) = U(x, τ) −∆x
∂U

∂x
+

∆x2

2

∂2U

∂x2
− ∆x2

6

∂3U

∂x3
+ . . . , (6.22)

we find that

U(x+∆x, τ)− U(x−∆x, τ) = 2∆x
∂U

∂x
− (∆x)3

3

∂2U

∂x2
+ . . . , (6.23)

U(x+∆x, τ) + U(x−∆x, τ) = 2U(x, τ) + (∆x)2
∂2U

∂x2
+ . . . . (6.24)

Using the expressions of (6.23) and (6.24) and ignoring terms smaller than (∆x)2,

(6.20) can be expressed as

U(x, τ +∆τ)− U(x, τ)

∆τ
= −k

∂U

∂x
+

(∆x)2

2∆τ

∂2U

∂x2
, (6.25)

which is none other than

∂U

∂τ
= −k

∂U

∂x
+

(∆x)2

2∆τ

∂2U

∂x2
. (6.26)

The presence of the second-derivative term clearly shows that artificial diffusion

has been introduced into the equation. This is not necessarily undesirable, as

diffusion smooths out the instabilities that previously existed. The scheme is

stable if the time grid size is chosen to satisfy

∆τ ≤ ∆x

k
. (6.27)
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However, given that ∆τ appears in the denominator of the coefficient of the

diffusion term in (6.26), it implies that if ∆τ → 0 faster than (∆x)2 → 0 then this

coefficient will grow and result in the artificial diffusion dominating the solution.

One-sided differencing schemes

Wilmott (2000a) and Morton and Kellogg (1996) suggest that the differential op-

erators of the spatial variable be approximated by a one-sided difference scheme.

This scheme can be specified as either downwind or upwind, and the choice of

scheme to use is dependent on the directional flow of information, denoted by

k. In the mathematical finance literature, the terms upwind and downwind are

sometimes referred to as upstream and downstream respectively. The terms end-

ing with ‘wind’ refer to the flow of air, whereas those ending in ’stream’ refer

to the flow of fluid; in this thesis, we use the terms ending in ‘wind’. Let us

consider a given grid point i in our two-dimensional domain, at any given time

the particle can only move in two directions: left or right. When k ≥ 0, moving

to the left side of the domain is referred to as the upwind side and the right

side is known as the downwind side, The reverse is true when k is negative.

Consequently, depending on the sign of k we are able to choose the appropriate

one-sided discretisation scheme to solve the advection equation (6.7), which leads

to the following (explicit) first-order approximations

Un+1
i − Un

i

∆τ
+ k

Un
i − Un

i−1

∆x
= 0, for k ≥ 0 , (6.28)

or
Un+1
i − Un

i

∆τ
+ k

Un
i+1 − Un

i

∆x
= 0, for k < 0 . (6.29)

A Taylor series analysis of the one-sided schemes above shows that these are

first-order accurate in both space and time, i.e. O(∆τ) and O(∆x). As with all

explicit schemes, stability is only guaranteed when the Courant-Friedrichs-Lewy

condition (CFL) is satisfied (see Courant, Friedrichs, and Lewy, 1928), namely

∣

∣

∣
k
∆τ

∆x

∣

∣

∣
≤ D. (6.30)

where the constant D depends on the equation being solved, and the number

C = k · ∆τ/∆x is called the Courant number. The inequality (6.30) imposes
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restrictions on the time-step spacing ∆τ . In other words, the discrete step forward

in τ must be smaller than the time taken for the particle to travel to the an

adjacent grid point.

Using an implicit version of the one-sided difference scheme removes the CFL

restriction and ensures stability. This is at the expense of introducing artificial

diffusion in regions with large gradients. We see this by performing the same

analysis as used to derive (6.26) to determine that using this scheme the PDE

has errors that equal the RHS of the following equation

∂U

∂τ
+

∂U

∂x
= −∆τ

6

∂U

∂τ
+

∆x

2

∂2U

∂x2
. (6.31)

Using an example we illustrate this introduction of artificial diffusion. Consider

an implicit finite-difference scheme, with k = 1 and initial condition

U(x, 0) =

{

0 x < 0

1 x ≥ 0
. (6.32)

Using different grid sizes for ∆X and ∆t the solution is computed and then

compared with the analytic solution (U(x − τ)), see figure 6.1. to make visual

comparisons between the different solutions. In regions where the first-order

derivative in x is not defined, i.e. near x ≈ 0, this initially causes the second-

order derivative to be unbounded and large, meaning that the diffusive term

will dominate. This can be observed in figure 6.1 where the solution appears

excessively smoothed in the region x = 1, which is the location where there is a

discontinuity in the first derivative at t = 1. The analytical solution shows that

from definition of the PDE (6.7) the initial condition profile must be preserved

throughout time. The figure highlights that by significantly reducing the grid

size in x, the diffusion can be suppressed.

To reduce the diffusive nature of an upwind scheme it may be appropriate to use

higher-order versions of the scheme. We state the formulas for just the upwind

schemes as the downwind schemes are symmetrical. In the case of a upwind

scheme, equation (6.28) can be represented by the following second-order scheme

only in x,
Un+1
i − Un

i

∆τ
− k

3Un
i − 4Un

i−1 + Un
i−2

2∆x
= 0 (6.33)
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Figure 6.1: Diffusion that persists in a one-sided finite difference scheme. Here
c = 1. The analytical solution shown in the figure is U(x− τ)

and the third-order scheme is

Un+1
i − Un

i

∆τ
− k

2Un
i+1 + 3Un

i − 6Un
i−1 + Un

i−2

6∆x
= 0. (6.34)

6.2.2 The Lagrangian derivative

Rather than using traditional Eulerian-based methods, such as the methods dis-

cussed in the previous section, we now consider using Lagrangian-based schemes.

A Lagrangian description of a system is often used in fluid dynamics, and is a

way of observing the properties of a fluid while travelling along an individual

fluid parcel1 as it moves in space and time (Batchelor, 2000). This differs from

an Eulerian description, whereby fluid properties would be measured from a fixed

location in space. For example, suppose we have two researchers Dan and Tom,

who wish to measure the temperature change over time in a river. Tom records

the temperature changes at uniform time intervals by attaching a thermometer

1A fluid parcel is simply a small collection of very small fluid particles moving in a fluid flow
Batchelor (2000)
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to a rock that lies on the river bed. This is an example of measuring a property

of the fluid from a fixed location as the fluid flows by, and is referred to as the

Eulerian description. On the other hand, Dan attaches a thermometer to a free

floating buoy, and records the temperature of the river as the buoy (and hence

thermometer) moves along with the flow of the river. So rather than having a

fixed co-ordinate system, we have a moving co-ordinate system that is known

as the Lagrangian description of a fluid (Batchelor, 2000). Furthermore, this

gives rise to the term the Lagrangian derivative, which is a derivative taken with

respect to a moving co-ordinate system.

Next we derive the Lagrangian derivative, using the above temperature example.

Let U(x, τ) denote temperature of the fluid in one-dimension, with τ being time.

Suppose that the fluid parcel moves with velocity g(x, τ). By using a Lagrangian

description of the system, our location x is no longer fixed as time passes, but

instead moves along with the fluid with velocity g(x, τ). This gives rise to the

following definition for the Lagrangian derivative

DU

Dτ
= lim

∆τ→0

U(x+ f∆τ, τ +∆τ)− U(x, τ)

∆τ
. (6.35)

Using the Taylor series expansion of the term at time τ +∆τ , and assuming that

∆τ is small enough such that the quadratic and higher order terms are negligible,

gives,

U(x+ f∆τ, τ +∆τ) = U(x, τ) + ∆τ
∂U

∂τ
+ f∆τ

∂U

∂x
. (6.36)

Taking this series and substituting into (6.35), we obtain after simplifications

DU

Dτ
=

∂U

∂τ
+

dx

dτ

∂U

∂x
, (6.37)

and use the fact that the velocity f is equivalent to dx
dτ
. The Lagrangian derivative

operator can be given as
D

Dτ
≡ ∂

∂τ
+

dx

dτ

∂

∂x
(6.38)

or as is typically seen in fluids textbooks (such as Batchelor, 2000), in multiple

dimensions
D

Dτ
≡ ∂

∂τ
+ k · ∇ (6.39)

where k is the velocity field and∇ ≡ ( ∂
∂x
, ∂
∂y
, ∂
∂z
) is the rate of change in U in three
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spatial variables x, y and z. The ordinary differential equation (ODE) (6.37) tells

us that the total rate of change of temperature as the fluid parcel travels with

velocity f is equal to the sum of the local rate of change and convective rate of

change of U . Here it is appropriate to use D
Dτ

rather than d
dτ

to distinguish from

the ordinary understanding in mathematics for the derivative of a function of one

variable.

If we consider our original example (6.7), the Lagrangian derivative is given by

DU

Dt
=

∂U

∂t
+

dx

dt

∂U

∂x
(6.40)

along the trajectory
dx

dt
= k. (6.41)

This reduces equation (6.7) to the ODE

DU

Dt
= 0. (6.42)

A physical interpretation of this ODE could be that the quantity U is conserved

under transport along a fluid path (or characteristic).

6.2.3 Semi-Lagrangian Scheme

Semi-Lagrangian schemes (hereafter SLS) were first introduced by Douglas Jr

and Russell (1982) for numerical atmospheric and weather predictions, which is

fitting, as we shall employ this technique in the case of weather derivatives. This

scheme has attracted considerable interest since its introduction, and Randall

(2009) suggests that this interest is because SLS provide the same level of accuracy

for larger time steps than those used in Eulerian-based schemes, and more easily

maintains properties such as monotonicity. Although SLS have several advantages

over other finite-difference schemes, there are a few inherent issues:

1. severe truncation errors may cause misleading results;

2. the integration of Lagrangian trajectories and interpolations of the particles

may increase computational time.
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The reasons for using SLS is to attempt to exploit the benefits of having a fixed

computational grid, as found in Eulerian-based schemes but with the enhanced

stability of Lagrangian methods, implying that computational times can be re-

duced, as the time-step ∆τ can be larger than those required in Eulerian-based

schemes; in others words the CFL condition need not be met. As the name

implies, the SLS is a hybrid of the Eulerian and Lagrangian methods. As men-

tioned in §6.2.2, in an Eulerian scheme an observer stays at a fixed location and

watches the world evolve around him, whereas in a Lagrangian scheme the ob-

server watches the world evolve as he moves along a fluid path. A SLS allows

the observer to travel along a fluid path whilst ensuring that at the end of each

time-step the arrival location is exactly at a computation grid point.

The application of SLS within finance is very limited. The popularity of this

method remains with the fluid dynamics community. In the mathematical fi-

nance literature, we start with the work of Parrott and Clarke (1998) who use

the SLS to value an American-Asian option and demonstrate that it accurately

integrates the convection terms appearing in their Asian option PDE. They also

introduce a parallelised version of the SLS to enable the valuation of American-

Asian options with stochastic volatility. For valuation of a weather derivative

where, differing from our work in chapter 5, the underlying is the actual weather

index, Harris (2003) illustrates that due to the convection-dominance of her de-

rived PDE, application of SLS eliminates spurious oscillating solutions. We give

special credit to Forsyth, who has provided a extensive collection of papers on

the use of SLS and their applications in a variety of settings. The following are

works which have involved Forsyth and made use of SLS: d’Halluin, Forsyth, and

Labahn (2006) demonstrate the scheme’s ability to enable the pricing of Asian

options with jumps, and also those that follow Levy processes in Wang, Wan, and

Forsyth (2007); the solution of an optimal gas storage problem is in Chen and

Forsyth (2007); and in Forsyth, Kennedy, Tse, and Windcliff (2009) the scheme

is used to decouple the linear and nonlinear components of the PDE used in de-

termining the optimal liquidation strategy in the presence of price impact. In

addition to Forsyth, we note that recently the method has been applied by Evatt

et al. (2010a) and Evatt et al. (2010b) to the valuing of a mine, under price,

interest and convenience yield uncertainties.
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The next three sections provide a review of the application of SLS by applying

the method to a simple problem to demonstrate its effectiveness, and illustrate

the numerical errors that are associated with using the scheme. In section §6.3
our weather PDE (5.29) is then solved using SLS.

Application of the SLS

Consider a 1D advection equation similar to that of (6.7), but now with a variable

coefficient of advection g(x, τ) such that,

∂U

∂τ
− g(x, τ)

∂U

∂x
= 0. (6.43)

where xmin ≤ x ≤ xmax. The initial condition here is given when t = 0, which

occurs when τ = T (by definition that τ = T − t); therefore,

U(x, 0) = g(x, T ), (6.44)

and the we impose the Dirichlet boundary condition,

U(xmin, τ) = 0. (6.45)

Using the Lagrangian derivative operator (6.38), the PDE (6.43) reduces to the

ODE
DU

Dτ
= 0 (6.46)

along the trajectory
dx

dτ
= −g(x, τ). (6.47)

The essence of the SLS is to approximately integrate the PDE (6.43) along the

trajectory given by (6.47) (Randall, 2009). To integrate along this trajectory, the

point where a given parcel originated is calculated at every time step. We refer

to the point of origination as the departure point and its current position as the

arrival point. The departure point is calculated by solving

dx

dτ
= −g(x, τ) (6.48)
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backwards from τ = τn+1 to τ = τn. The reason for doing this is that we

are interested in finding out the position at the previous step but using the

characteristic line at (xn+1
a , τn+1). Using Euler’s discretisation the above equation

becomes

xn+1
a − x̃n

d

∆τ
= −g(xn+1

a , τn+1), (6.49)

where xn+1
a and x̃n

d denotes the arrival and departure points at the respective

time-levels n+1 and n. As we are using an Euler scheme to solve (6.48), we have

introduced x̃n
d to denote the approximate value of the actual departure point

xn
d . Therefore the Euler approximated departure point x̃n

d at time τn is simply

calculated from

x̃n
d = xn+1

a + g(xn+1
a , τn+1)∆τ. (6.50)

Applying the SLS with implicit time-stepping, we write (6.46) as the discrete

equation
Un+1
a − Un

d

∆τ
= 0. (6.51)

The schematic view of the SLS is illustrated in Figure 6.2. The solid curve, AC,

in figure 6.2 shows the exact path that a particle would have to take in order

to arrive at xτn+1

a at time τn+1, with its current velocity specified by g(x, τn+1).

The dashed-line A′C is the path from C to the Euler-approximated departure

point x̃. Note that the location of the departure point will not necessarily lie on

a grid point in the x× t plane, and so the precise location of x̃n
d will generally not

coincide with the Eulerian grid points. Hence, we must utilise an interpolation

scheme to estimate the dependent variable Un
d at grid points surrounding x̃n

d .

Interpolation

Suppose that a particle resides at x = xn+1
a and has a departure point at time

step τ = τn given by

x̃n
d = xn+1

a + g(xn+1
a , τn+1)∆τ. (6.52)

Furthermore, suppose, for simplicity, that the mesh is spatially uniform, that

g(x, τ) > 0, and that the departure point lies between two consecutive grid points

xa < x̃n
d < xa+1. (6.53)
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xa

xa+1

τn+1 τn

∆x

∆τ

g(xτn+1

a , τn+1)∆τ

A

A′

C

Figure 6.2: Schematic view for two-time-level advection. The vertical axis is the
displacement and the horizontal axis denotes time τ . Actual (solid curve) and
approximated (dashed-line) trajectories that arrive at mesh point xτn+1

a . Here
g(xτn+1

a , τn+1)∆τ is the displacement of the particle during the time-interval ∆τ

Using linear interpolation we can determine an estimate of U at x̃n
d , denoted by

Ũn
d , as

Ũn
d = Un

a +
[ x̃n

d − xa

∆x

]

(Un
a+1 − Un

a ). (6.54)

Substituting (6.52) into the above equation

Ũn
d = Un

a +
[xn+1

a + g(xn+1
a , τn+1)− xa

∆x

]

(Un
a+1 − Un

a ) (6.55)

and then simplifying terms, yields

Ũn
d = (1− α)Un

a + αUn
a+1, (6.56)

where

α =
g(xn+1

d , τn+1)∆τ

∆x
. (6.57)
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By initially assuming that the departure point is located between two consecutive

points xa and xa+1, this results in the following condition

0 < α < 1, (6.58)

because from (6.53)

xa < x̃n
d < xa+1,

0 < g(xn+1
d , τn+1)∆τ < ∆x,

0 < α < 1.

The inequality (6.53) is the same stability condition for upwind schemes (see

§6.2).

A strong assumption is made here: the speed of advection (denoted by g(x, τ))

is sufficiently slow such that during any given time-step, x̃n
d will be between

consecutive grid points. It is possible for this not to be the case, and so the

scheme may appear as illustrated in figure 6.3, where x̃n
d is no longer between

the blue dots at xa and xa+1. This schematic view occurs when the particle

displacement is large, which implies that either the particle is moving rapidly

(i.e., g(x, τ) is large) and/or the time step size ∆τ is large. In other words if

g(x, τ)∆τ > ∆x, (6.59)

then the departure point location will no longer satisfy (6.53) and α > 1. Here,

the CFL condition would be violated and therefore the use of an explicit scheme

would result in unstable solutions being obtained. To include the case where

condition (6.59) is met, we specify the more general inequality,

xa+b < x̃n
d < xa+1+b, (6.60)

where b ≥ 0. The value of b is dependent on the values of g(x, τ), ∆x and ∆τ ,

and is given by

b =
⌊g(x, τ)∆τ

∆x

⌋

, (6.61)

where ⌊z⌋ evaluates the largest integer not greater than z, and is referred to as
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xa+b

xa+b+1

xa

xa+1

τn+1 τn

∆x

∆τ

g(xτn+1

a , τn+1)∆τ

A′

A

C

Figure 6.3: A view of a fast moving particle over the domain. Actual (solid
curve) and approximated (dashed-line) trajectories that arrive at mesh point xa

at τn+1. Here g(xτn+1

a , τn+1)∆τ is approximated backward displacement of the
particle during the time period ∆τ .

the floor of a real number z. Furthermore, the CFL number is now

C =
g(xn+1

a , τn+1)∆τ

∆x
− b. (6.62)

Again, by using linear interpolation, we obtain

Ũn
d = Un

a+b +

[

x̃n
d − xa+b

∆x

]

(

Un
a+b+1 − Un

a+b

)

,

= Un
a+b +

[

xn+1
a + g(xn+1

a , τn+1)− xa − b∆x

∆x

]

(

Un
a+b+1 − Un

a+b

)

,

=
(

1 + b− g(xn+1
a , τn+1)∆τ

∆x

)

Un
a+b +

(g(xn+1
a , τn+1)∆τ

∆x
− b
)

Un
a+b+1,
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then by simplifying and letting

α̂ = α− b (6.63)

this gives

Ũn
d = (1− α̂)Un

a+b + α̂Un
a+b+1. (6.64)

This is a more general formula to use, and will ensure that we are approximating

the solution at the correct departure point. Again, from (6.60) it is clear that

0 < α̂ ≤ 1. (6.65)

When b = 0, it implies that no steps have been skipped in the x space, and we

return to the original case with α̂ = α.

Errors in Semi-Lagrangian scheme

As the solution of Un
d typically involves interpolation, it is important to under-

stand the errors this introduces. First, from equation (6.64) the Taylor expansion

of U(xi +∆x, τ) (expanding about xi) is given as

U(xi +∆x, τ) = U(xi, τ) +∆x
∂U

∂x
(xi, τ) +

1

2
(∆x)2

∂2U

∂x2
(xi, τ) +O(∆x)3 (6.66)

Rearranging this equation provides the Taylor series approximation for the first

derivative in x:

∂U

∂x
(xi, τ) =

U(xi +∆x, τ)− U(xi, τ)

∆x
− 1

2
∆x

∂2U

∂x2
(xi, τ) +O(∆x)3. (6.67)

Next, write the departure point as x̃n
d = x+ α∆x because

α∆x = g(xi, τ
n+1)∆τ,
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and then obtain the Taylor expansion at x+ α∆x:

U(xi + α∆x, τ) = U(xi, τ) + α∆x
∂U

∂x
(xi, τ) +

1

2
α2∆x2∂

2U

∂x2
(xi, τ) +O(∆x)3.

(6.68)

Replacing the first derivative term in (6.68) with the derivative expression in

(6.67) yields

U(xi + α∆x, τ) = U(xi, τ) + α∆x

(

U(xi +∆x, τ)− U(xi, τ)

∆x
− 1

2
∆x

∂2U

∂x2
(xi, τ)

)

+
1

2
α2∆x2∂

2U

∂x2
(xi, τ) +O(∆x)3.

which simplifies to give

U(xi + α∆x, τ) = U(xi, τ) + α
(

U(xi +∆x, τ)− U(xi, τ)
)

+
1

2
α(α− 1)∆x2∂

2U

∂x2
(xi, τ) +O(∆x)3. (6.69)

This is the expansion of the solution at x̃n
d and indicates the associated errors

that results when using linear interpolation. It is clear from the presence of

the diffusion term in (6.69) that artificial smoothing may occur, which leads to

inaccurate results. As expected, when α = 0 no interpolation is required since

it implies that the particle is exactly at xi. Similarly when α = 1, it is at xi+1.

Also we note that the maximum source of diffusion comes is introduced when the

interpolation is taken half-way between two consecutive grid points, i.e. when

α = 1/2. In this case it implies that

max
0≤α≤1

α(α− 1) =
1

4
. (6.70)

Using the above equation, we can determine the error bounds of our approx-

imated solution under linear interpolation. Simply rearrange the expansion of

U(xi + α∆x, t), and ignore terms smaller than O(∆x)2, to obtain

U(xi+α∆, τ)−
{

U(xi, τ)+α
(

U(xi+∆x, τ)−U(xi, τ)
)

}

=
∆x2

2
α(α−1)

∂2U

∂x2
(xi, τ) .

(6.71)
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If we express error of the approximation as

R = U(xi + α∆x, τ)− Ũ(xi + α∆x, τ), (6.72)

where U is the exact value and Ũ is the linear interpolated value from (6.69),

then using (6.70) we see that this error is bounded by

|R| ≤ max
0≤α≤1

1

8
∆x2

∣

∣

∣

∣

∂2U

∂x2
(xi, τ)

∣

∣

∣

∣

. (6.73)

This inequality states that the approximation between two points on a given

function increases with the second derivative of the function that is approximated

(assuming U has a continuous second derivative). The above derivation, and the

fact that we have shown that it is consistent with the standard error bound

for linearly interpolated functions, see Press et al. (2002), is a contribution of

our work. Deriving the accuracy of the solution using higher-order interpolation

schemes can be performed in the same manner.

Therefore, using an SLS with the linear interpolated approximation Ũn
i∗ , the PDE

(6.7) expressed in discrete form is

1

∆τ

[

Un+1
i − Un

i∗ − α
(

Un
i∗+1 − Un

i∗

)]

=
∆x2

2∆τ
α(α− 1)

∂2Un
i∗

∂x2
− ∆τ

2

∂2Un
i

∂τ 2
, (6.74)

where we intentionally differentiate between i and i∗, to stress that depending on

the grid sizes in the spatial or time dimensions or the speed of the information

flow (denoted by g(x, τ)), the location where the interpolation is performed may

not be near i, or near the ath point as shown in figure 6.3. Thus, we find that

the error associated with SLS for our PDE is given by

O

(

(∆x)2

∆τ
,∆τ

)

, (6.75)

and is also found to be identical to the error of the Lax method (see (6.26)).

However, the SLS is superior as in the special cases we noted above (i.e. α =

{0, 1}), there is no longer spurious smoothing in the x dimension. Furthermore

the magnitude of the first error term found in (6.74) is consistently smaller than

the diffusive error term in (6.26).

What is surprising here, is that we typically find (in standard difference schemes)
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Figure 6.4: Solution of the PDE (6.43) as a function of x, at τ = 1, using different
discretisations (as stated in table 6.1). Here g(x, τ) = 1, the computational
domains are given as xmin = −20 and xmax = 20, and the Dirichlet boundary
condition is U(xmin, τ) = 0. The analytical solution is U = U(x− 1).

that making refinements in τ , and keeping ∆x fixed, usually offers convergence

(see Smith, 1985). However, for an SLS this will lead to misleading results due

to the excessive smoothing . Additionally, these errors are exaggerated in regions

where the solution rapidly changes since the second-order derivative in x becomes

large and unbounded. To make appropriate use of SLS, we suggest that ∆x → 0

faster than ∆τ → 0, ∆x 6=
√

g(x, τ)∆τ , and by choosing ∆x = g(x, τ)∆τ .

Following this, results in the useful removal of numerical diffusion that is inherent

in the SLS scheme.

To conclude this review and analysis of the SLS, numerical examples are provided

and compared with the analytical solution of (6.7). Equation (6.43) is solved

using the previously stated initial condition,

U(x, 0) =

{

0 x < 0

1 x ≥ 0
, (6.32)

and compared with the solutions obtained when using different discretisations (as

outlined in table 6.1). In figure 6.4, these solutions are presented and confirm

that when α̂ = 1 the result is very accurate (see the solid dashed blue line

in the figure). The red line in the figure shows the artificial smoothing as the

ratio between ∆x and ∆τ results in α becoming less than unity. Table 6.2 also

shows that the artificial diffusion is not explicitly caused when the speed of the

particle is fast, and so bypassing the two nearest grid points (see figure 6.3), but

occurs as the value of α̂ varies between fractional values. In order to visualise

the numerical diffusion occurring we take two representative points in x space,

at x = g(x, τ)τ −∆x and x = g(x, τ)τ + ∆x and then plot out their respective

solutions (see figure 6.5). These points are chosen as they are either side of a

discontinuity in the solution. The solution has significant errors when α̂ = 0.5

and decreases either side of this value. The bottom graph in figure 6.5 shows how

the value of α̂ changes as the speed of advection f(x, τ) is varied, while keeping

the values of ∆x and ∆τ fixed. This indicates that if the speed of advection

varies, then careful selection of grid sizes is required in order to suppress artificial
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diffusion. Note that the results in table 6.2 were obtained using large grid-spacing,

yet achieve the exact result when α̂ = 0 and α̂ = 1.

Case #x #τ ∆x ∆τ α̂ α̂
2
(1− α̂) Numerical Diffusion

1 4000 100 0.01 0.01 1 0 No
2 4000 200 0.01 0.005 0.5 0.125 Yes
3 4000 67 0.01 0.0149 0.4925 0.1249 Yes

Table 6.1: The specification of the grid sizes and resulting values of α that are
used to solve PDE (6.43). Here xmin = −20 and xmax = 20. The speed of
advection is a constant g(x, τ) = 1.
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Figure 6.5: Top half of figure indicates how the error in the numerical solution
of PDE (6.43) at the points x = f(x, τ)τ − ∆x and x = f(x, τ)τ + ∆x vary as
a function of the speed of advection f(x, τ). The values of x are shown in table
6.2, and the resulting values of α̂ are then plotted on the bottom section of the
figure.

6.3 Discretising the weather PDE

Having surveyed the numerous numerical schemes that may be used to discretise

a PDE of the form (6.7), this section considers the application of the SLS for the
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case g(x, τ) α̂ g(x, τ)∆τ −∆x g(x, τ)∆τ +∆x
1 0 0 0 1
2 1 0.0333 0.361662 0.92286
3 5 0.1666 0.424434 0.776537
4 10 0.333 0.431744 0.723864
5 15 0.5 0.427768 0.707668
6 20 0.6 0.41524 0.713984
7 25 0.8333 0.383553 0.76038
8 30 1 0 1

Table 6.2: Test cases to show the presence of numerical diffusion as the speed of
advection varies. Here, we fixed the grid sizes at ∆x = 1 and ∆τ = 0.03̇. The
solution of (6.7) is computed for the locations either side of the location where
the solution rapidly changes.

reasons outlined previously. Starting from the PDE for a HDD option,

∂V

∂τ
− (Xref −X)+

∂V

∂I
=

1

2
σ2
X

∂2V

∂X2
+ γ(X, τ)

∂V

∂X
− rV, (6.6)

let L be the differential operator represented by

L{V } ≡ 1

2
σ2
X

∂2V

∂X2
+ γ(X, t)

∂V

∂X
− rV, (6.76)

such that (6.6) can be rewritten as

∂V

∂τ
− (Xref −X)+

∂V

∂I
= L{V }. (6.77)

The Lagrangian derivative along a trajectory I(X, τ), through the domain I × τ

(hence X is fixed), is
DV

Dτ
=

∂V

∂τ
+

dI

dτ

∂V

∂I
. (6.78)

Equating (6.78) with the LHS of (6.77) yields

DV

Dτ
= L{V } (6.79)

along the trajectory
dI

dτ
= −(Xref −X)+. (6.80)

Let V (Xi, Ij, τn) = V n
i,j denote the approximated value of the option at node Xi,
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Parameter Value
Xmin -50
Xmax 50
Xref 18
Imin 0
Imax T · (Xref + |Xmin|)

Table 6.3: The computational domain values used to compute the solution of
PDE (5.29). The value of Imax varies depending on the length of the contract
period T .

weather index value Ij , and discrete time τn. For simplicity we discretise the

system with an equally-spaced grid in all directions, such that

Xi = Xmin + i∆X, i = 0, · · · , A ,

Ij = Imin + j∆I, j = 0, · · · , J ,

τn = τN − n∆τ n = 0, · · · , N ,

(6.81)

where A, J and N are the maximum number of points in each dimension re-

spectively. We have used the unusual notation of A because the natural use of

I would cause confusion with the weather index value Ij . If we are valuing a

weather contract at initiation then the value of the index will be zero, since there

has been no HDD values recorded; therefore take Imin = 0. Also, the values of

Xmin, and the maximum values of Xi, Ij are as given in table 6.3.

Construction of a semi-Lagrangian scheme is performed by assuming that the

solution is known at τ = τn. Discretising (6.79) along the trajectory, using a

fully implicit scheme for both time and spatial dimensions, yields

V n+1
i,j − V n

i,d

∆τ
= (L{V })n+1

i,j , (6.82)

where V n
i,d = V (Xi, Id, τ

n) is the value of the option price at the departure point.

To determine the location of the departure point, (6.80) must be solved. Stani-

forth and Côté (1991) stated that usually the trajectory must be estimated nu-

merically, using, perhaps an iterative based root finder. However, since the value

of X along the trajectory is fixed, the LHS of (6.80) is a constant function and

so its solution can be determined exactly. Therefore, integrating

dI

dτ
= −(Xref −X)+. (6.83)
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from τ = τn+1 to τ = τn, yields

Ind = In+1
a + (Xref −X)+∆τ, (6.84)

where Ind is the departure point and In+1
a is the arrival point. With knowledge of

the location of Id, V
n
i,d can be determined by interpolation:

V n
i,d = (1− α̂)V n

i,a+b + α̂V n
i,a+b+1 (6.85)

where α̂ redefined here as

α̂ =
(Xref −X)+∆τ

∆I
−
⌊(Xref −X)+∆τ

∆I

⌋

. (6.86)

Using standard finite-difference techniques, the RHS of (6.82) becomes

(L{V })n+1
i,j =

1

2
σ2
H

(

V n+1
i+1,j − 2V n+1

i,j + V n+1
i−1,j

(∆X)2

)

+γ(Xi, τ
n+1)

(

V n+1
i+1,j − V n+1

i−1,j

2∆X

)

−rV n+1
i,j .

(6.87)

Combining (6.82) and (6.87) the following implementation is obtained

V n
i,d = aiV

n+1
i−1,j + biV

n+1
i,j + ciV

n+1
i+1,j, (6.88)

with

ai =
∆τ

2(∆X)2
(

∆Xγ(Xi, τ
n+1)− σ2

X

)

(6.89)

bi = 1 +
σ2
H∆τ

(∆X)2
+ r∆τ (6.90)

ci = − ∆τ

2(∆X)2
(

∆Xγ(Xi, τ
n+1) + σ2

X

)

(6.91)

di = V n
i,d. (6.92)

This can be represented this in matrix form as

AVn+1 = Dn, (6.93)
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where A is the matrix of coefficients



























b0 c0 0 0 . . . . 0

a1 b1 c1 0 . . . . .

0 a2 b2 c2 . . . . .

. . . . . . . . .

. . . 0 ai bi ci 0 .

. . . . . . . . .

0 . . . . . 0 aimax bimax



























, (6.94)

and Dn is the solution at each point i:



























dn0,j
dn01,j

.

.

.

dnimax−1,j

dnimax,j



























. (6.95)

Equation (6.93) is then solved using an LU solver. Due to the time-dependence of

the mean-reverting drift parameter the LU matrices must be calculated at each

time-step. Using an SLS with linear interpolation the global truncation error is

given by

O

(

(∆X)2,
(∆I)2

∆τ
,∆τ

)

, (6.96)

implying that there is second-order convergence X due to the central differencing

used; first-order convergence in τ and the errors in the I dimension are exclusively

from the errors of interpolation, of size (∆I)2

∆τ
.

6.4 Analysis of numerical schemes on option prices

As discussed earlier in §6.2.3, the SLS can lead to inaccurate solutions as numer-

ical diffusion may be introduced. In this section, the SLS is applied to value a

weather derivative contract and the peculiarities of the scheme are investigated.
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Additionally, further illustrations are provided that compare SLS against other

numerical techniques based on standard finite-difference schemes from §6.2.1.

Consider the weather PDE for a HDD option

∂V

∂τ
− (Xref −X)+

∂V

∂I
=

1

2
σ2
X(τ)

∂2V

∂X2
+ γ(X, τ)

∂V

∂X
− rV, (6.6)

with the same boundary conditions as stated in equation (5.39), (5.41) and (5.42),

and initial condition for an uncapped option,

V (X, IH , T ) = max(K − IH , 0). (6.97)

PDE (6.6) has wave-like behaviour (in the I dimension) in the region where

X < Xref . It is in this region where the use of SLS may result in artificial

smoothing appearing in the solution space, since α̂ will often remain fractional,

implying that a form of interpolation is required. We investigate, via numerical

experiments, if SLS is appropriate for solving (6.6). To uncover the numerical

diffusion it is helpful to begin the analysis by considering the trivial case of when

σX(τ) = 0 and also γ(X, τ) = 0, which has the effect of restricting the directional

influences to just the I dimension. In this case (6.6) reduces to

∂V

∂τ
− (Xref −X)+

∂V

∂I
= −rV. (6.77)

This equation has a known analytical solution of

V (X, I, τ) = e−rτ max(K − I − (Xref −X)+τ, 0), (6.98)

which can then be used to compare the accuracy of the numerical solution ob-

tained using SLS. We use a sample set of parameters that we shall refer to as

EBM-01 (we adopt this naming convention to illustrate that these parameters

are chosen by the author purely for experimental purposes, where details of the

parameters are provided in table 6.4). Equation (6.6) is solved at τ = T (i.e.

t = 0) where I = 0. The computed errors are shown in figure 6.6 for the so-

lution at X = 11, through to X = 16. We chose to focus on this region as in

this neighbourhood lies another discontinuity in ∂V
∂X

, which differs from the other,

and more typical, discontinuity found at the reference level Xref . This additional
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discontinuity is denoted Xdis and is defined such that (at I = 0)

Xdis =

(

Xref −
K

τ

)

. (6.99)

This discontinuity exists only when X < Xref , otherwise, from (6.6) and (6.98),

the solution is simply V = e−rτK that has no sharp changes. The five panels

in figure 6.6 show the variations in the error of the solution for different values

of X , as ∆I and ∆t are varied. Given the parameter set EBM-01, we find that

Xdis = (18 − 80/20) = 14, which explains why in figure 6.6(d) large errors are

found in the solution, and also the numerical scheme shows the largest errors

around this region as depicted by figure 6.6(c) and 6.6(e). The oscillations in

figure 6.6(d) represent the non-linearity errors in the scheme because as we make

refinements in ∆I, the resulting grid points may not coincide with the location

where there is a discontinuity Johnson (2007) therefore recommends selecting

the sizes and the origins of ∆I and ∆τ such that the discontinuity lies exactly

at a grid point. For an analysis of the impact of non-linearity errors found in

finite-difference schemes (and other lattice-based schemes) refer to chapter 8.

Now, in the region where this discontinuity lies the second derivative is large and

unbounded, therefore if the ratio (∆I)2/∆τ is not sufficiently small, then the

artificial diffusion will grow. This explains why in figures 6.6(c) and 6.6(e) there

is an increase in the errors of the solution in the region where ∆τ is sufficiently

smaller than ∆I (this occurs in the top right-hand corner of both images) because

this makes (∆I)2/∆τ large. Alternatively, when ∆I is much smaller than ∆τ ,

its evident from figure 6.7 that numerical diffusion diminishes as the errors are

virtually zero.

The convergence results obtained from refining the mesh spacing and time-step

size are shown in table 6.5, where we have used both linear and quadratic in-

terpolation in the SLS scheme. The sizes of domain spacings ∆τ and ∆I are

successively halved whilst we hold ∆X(= 1) constant. The ratio is computed

ratio =
Vz+1 − Vz

Vz+2 − Vz+1
, (6.100)

where Vz, Vz+1 and Vz+2 are the option values at successive grid levels. To compute

the value Vz+1 we use twice as many nodes in the τ and I dimensions as we did

to compute Vz. Similarly, Vz+2 is calculated using four times as many nodes

159



Chapter 6. Numerical solutions of weather options

 0.02
 0.03

 0.04
 0.05

 0.06
 0.07

 0.08
 0.09

 0.1  0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8

-1

-0.5

 0

 0.5

 1

V

X=11

∆ τ

∆ I

V

(a) X=11

 0.02
 0.03

 0.04
 0.05

 0.06
 0.07

 0.08
 0.09

 0.1  0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8

 0

 5e-07

 1e-06

 1.5e-06

 2e-06

 2.5e-06

 3e-06

V

X=12

∆ τ

∆ I

V

(b) X=12

 0.02
 0.03

 0.04
 0.05

 0.06
 0.07

 0.08
 0.09

 0.1  0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8

 0
 0.002
 0.004
 0.006
 0.008

 0.01
 0.012
 0.014
 0.016
 0.018

 0.02

V

X=13

∆ τ

∆ I

V

(c) X=13

 0.02
 0.03

 0.04
 0.05

 0.06
 0.07

 0.08
 0.09

 0.1  0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

V

X=14

∆ τ

∆ I

V

(d) X=14

 0.02
 0.03

 0.04
 0.05

 0.06
 0.07

 0.08
 0.09

 0.1  0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8

 0
 0.0005

 0.001
 0.0015

 0.002
 0.0025

 0.003
 0.0035

 0.004
 0.0045

V

X=15

∆ τ

∆ I

V

(e) X=15

Figure 6.6: Error of the numerical solution (obtained using SLS) when compared
to the analytical solution for different values of X . The solution is evaluated at
t = 0, I = 0, using parameters EBM-01
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Data set EBM-01 EBM-02 EBM-03
Parameter

r 0.05/365 0.05/365 0.05/365
K 80 80 986.73
T 20 days 31 days 90 days
ρ0.5 0 0 0.9
κ 0.254577 0.254577 0.254577
σX 0 { 2.51209, 2.20502, 2.37840, 2.10051,

1.74256, 1.48755, 1.87269, 1.76075,
1.50615, 2.04457, 2.16213, 2.66395 } same as for EBM-02

Xmin -50 -50 -50
Xmax 50 50 50
Imin 0 0 0
Imax 160 160 1980
Xref 18 18 18
∆τ 0.13̇ 0.103̇ 0.1
∆X 1 1 1
∆I 0.8 0.8 0.8
θ(t) 11.56 + 2.87x10−6t + 6.75 sin(ωt− 1.90)

Table 6.4: This parameter set is used to demonstrate the effectiveness of the
derived weather model (5.29) for pricing a collection of European weather options
using SLS. The value of r is scaled so that it is represented in days. The expression
of θ(t) is used for all parameter sets.

as used to compute Vz. So, Vz = V (∆τ,∆I), Vz+1 = V (∆τ/2,∆I/2), Vz+2 =

V (∆τ/4,∆I/4). First-order convergence is achieved, since the ratio is very close

to 2 when using both forms of interpolation. Notable, in the table, it was ensured

that ∆I < ∆τ so that numerical diffusion is minimised. The precise removal of

artificial diffusion is difficult because α̂ is not constant but varies as (Xref −X)

changes (see table 6.2). Therefore, the computational grid sizes at each X value

would need to be adjusted. This approach is not performed, but instead we utilise

the weak condition that

∆I < ∆τ. (6.101)

Additionally, we choose to employ quadratic interpolation to compute an approx-

imation for Un
d , since figure 6.8 shows that quadratic interpolation reduces the

error by 50%, even at locations where the solution changes rapidly (Staniforth

and Côté, 1991, also recommend the use of quadratic interpolation).

Next we consider the behaviour of the solution as ∆X → 0. We fix the size of
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Figure 6.7: An illustration of how the artificial diffusion for small values of ∆I
and ∆τ causes errors in the solution of a HDD put option (obtained using SLS).
The option is computed at X = 11, t = 0, I = 0, using parameters K = 25, r =
0.05, T = 25, ρ = 0, σX = 0.2285, µX = 0,∆X = 1

.

∆I and ∆τ and plot in figure 6.9 the various solution profiles for different sizes

of ∆X . The change in the solution can be relatively significant. We show this

by observing the different option values that are obtained when X = 0. If we

compare the solutions for when ∆X = 1 and ∆X = 0.0625 we see that there

is almost a 6% difference in value. As expected, when the value of ∆X gets

small, say ∆X = 0.015625, the difference between the solution here and when

∆X = 0.0625 is less than 0.2%.

Case where X ≥ Xref

Again consider PDE (6.6), where σX(X) and γ(X, τ) are functions and not zero

for all values of X and τ . When solving the PDE in the region where X ≥ Xref ,

we are able to use standard-finite difference techniques because the advection

disappears as (Xref − X)+ = 0 (and therefore α̂ = 0 from (6.86) on page 151).

This means that in this region we solve the reduced PDE (5.29):

∂V

∂τ
=

1

2
σ2
X

∂2V

∂X2
+ γ(X, τ)

∂V

∂X
− rV. (6.102)
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n I grid nodes ∆τ ∆I V (X, 0, 0) ratio
Semi-Lagrangian with linear interpolation

21 201 1.0 0.8 39.8905684288 N/A
41 401 0.5 0.4 39.8905646865 N/A
81 801 0.25 0.2 39.8905628152 1.9998631590
161 1601 0.125 0.1 39.8905618796 1.9999301732
321 3201 0.0625 0.05 39.8905614117 1.9999672400
641 6401 0.03125 0.025 39.8905611778 1.9999831114

Semi-Lagrangian with quadratic interpolation
21 201 1.0 0.8 39.8905684288 N/A
41 401 0.5 0.4 39.8905646865 N/A
81 801 0.25 0.2 39.8905628152 1.9998631514
161 1601 0.125 0.1 39.8905618796 1.9999302567
321 3201 0.0625 0.05 39.8905614117 1.9999668907
641 6401 0.03125 0.025 39.8905611778 1.9999837493

Table 6.5: The exact value of the option at X = 16. The exact value is given
by the analytic formula (6.98) as 39.8905609439 (to 10 d.p). The option is a
put option with parameters EBM-01. We use n nodes in τ . Here the value of
∆X = 1.

Note that there is no boundary condition required at X = Xref , since in the

implementation we are using the values computed at the previous time-step as

the initial conditions for this reduced PDE in this region. In figure 6.10 when the

values of ∆I → 0 and ∆τ → 0, the solution begins to approach a stable value as

no numerical diffusion is present.

6.5 Results - Weather options

In this section we value a series of European HDD weather put options using the

SLS scheme for the LHS and an implicit scheme for the RHS of PDE (5.27). First,

we take a preliminary look at solution profiles using a simple data set EBM-02 to

get an impression of the behaviour of the prices with respect to the state variables

I and X . Then we highlight the key subtleties of the numerical implementation

and also provide the real-world interpretations of the results, followed by a more

robust example similar to a real weather option contract. In the valuation of

the following contracts we keep maturity dates short, as in practice the contract

maturities are usual only weeks, months or a season. In general we value capped
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options but to aid understanding we begin with a simple uncapped put option.

Preliminary results

Consider a European HDD put option with payoff

V (X, I, T ) = (K − I)+ (6.103)

and parameter set EBM-02. Specifying ρ = 0 implies that they there is no

correlated instrument available, thus the drift term in the PDE is completely

driven by the mean-reverting drift. The contract length is specified at 31 days,

starting on January 1st (which corresponds to t = 0) until January 31st (t = 31).

As we are valuing a put option we set the truncation Imax equal to twice the

strike value, so that unnecessary computations are avoided.

For our PDE model, the presence of the term (Xref −X+) implies that movement

in the option V through I is linked not just to time, but also to its position in X

space. When X becomes negative and large, (Xref − X)+ becomes large which
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n I grid nodes ∆τ ∆I V (X, 0, 0) ratio
Semi-Lagrangian with quadratic interpolation

11 201 2.0 0.4 13.2069618186 N/A
21 401 1.0 0.2 13.0246779117 N/A
41 801 0.5 0.1 12.9409856629 2.1780261566
81 1601 0.25 0.05 12.9010440680 2.0953657204
161 3201 0.125 0.025 12.8815549012 2.0494254721
321 6401 0.0625 0.0125 12.8719314306 2.0251703042
641 12800 0.03125 0.0062504883 12.8671497060 2.0125522223
1281 25600 0.015625 0.0031251221 12.8647668931 2.0067562770

Table 6.6: Value of a HDD put option at X = 16 and I = 0, with parameter set
EBM-02. We use n nodes in τ and 100 grid points is used in the X dimension.
The payoff is given in (6.103). ∆X = 1, since the number of nodes in the X is
A = 100.

results in V rapidly moving through I space. In this region an implicit central-

difference scheme (see 6.2.1) produces highly oscillatory solutions, see 6.11(a).

This is resolved by employing a one-sided difference scheme, which is shown in

figure 6.11(b), although this reduces the accuracy of the scheme since the order

of errors are large in a one-sided difference scheme. We confirm that the use of

SLS is appropriate in solving PDE (5.29) as from table 6.6 we see second order

convergence, with desired ratio of 2. The final computation in the table was

derived using over 3 billion nodes in the computational domain.

We present four plots in figure 6.12 that show how weather option prices with

different expiry date behave through X and I. From these diagrams we can see

that as the length of the contract increases the option value decays, since there is

increased probability of I having value and hence of the payoff being small. Since

the strike level is relatively low the option has little value (see figure 6.12(d)).

Today’s option price is given at τ = T , with I = 0 as at the start of the contract

the HDD index is zero. An illustration of the solution profiles as X varies is

provided in figure 6.13 and confirms that if the starting temperature is very hot,

the option price still has little value, since as the option evolves through time

the underlying variable X will revert back to its seasonal mean θ(τ) that results

in I increasing in value (since temperatures in January are usually below 18◦C).

Consequently this reduces the option’s payoff and therefore its value today. The

reason why the option price is not exactly zero, is because it can take a few days

before the model adjusts the temperature back to normal levels and therefore in
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Figure 6.12: The variation in the solution profiles in time for a put option with
parameters EBM-02.

that elapsed time I has little or no value. At extreme negative values, say at

X = −50, by the time the temperature has returned to usual levels the value

of the HDD index is large, and will generally continue to grow throughout the

typically cold month of January. This is intuitive, as the temperature today

should not greatly affect a weather derivatives value, unless the contract period

is unusually short. Such an example is shown in figure 6.12(a) where the contract

length is just 5 days. If the strike level is large enough such that I is unlikely to

surpass it then the price would behave as shown in figure 6.14, but notice that

even in regions with extremely warm weather the option prices is significantly
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Based on the EBM-01 parameter set.

below K since over the contract period the index will still accumulated value.

We compare the solutions from (5.29) to those of Harris (2003) where the valu-

ation of a HDD put weather option was obtained, assuming that the underlying

temperature followed a ABM process with yearly averaged constant volatility and

drift. Our empirical results in §5.4 show this assumption is incorrect. We illus-

trate in figure 6.15 our derived solutions for a put option using three different

values for the correlation ρ0.5, and compare these with the solution obtained using

Harris (2003) model. The values obtained differ significantly, since Harris (2003)

assumes that temperature follows an ABM process, which would suggest that if

the temperature was to have begun at an extreme value then it is likely to remain

near this starting point for all time. Our model is more consistent with real-world

dynamics of temperature. Furthermore the model produces option prices that are

not largely dependent on temperature today but more on its general behaviour

during the contract period, since abnormal temperatures soon revert back to nor-

mal levels. Harris’s model completely neglects this, which results in her model

being extremely sensitive to the changes in initial temperature. As the hedging

170



Chapter 6. Numerical solutions of weather options

 0

 20

 40

 60

 80

 100

 120

-60 -40 -20  0  20  40  60

V
al

ue
 (

V
)

Temperature (X)

(a)

 0
 50
 100

 150
 200

 250
 300

 350
 400 -60 -40 -20  0  20  40  60

 0

 20

 40

 60

 80

 100

 120

Value (V)

HDD Index (I)

Temperature (X)

Value (V)

(b)

Figure 6.14: European put option price, with parameter set EBM-01 but with
K = 400. In figure 6.14(a) , I = 0 since at the start of the contract the index has
no value. We show the solution profile in X and I dimensions in figure 6.14(b).
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instruments correlation increases the dominance of the mean-reverting drift is

lessen and when |ρ| = 1 the solution profile appears similar to that of Harris.

However, our solution has a smoother profile since the specified volatilities are

different.

A concrete example

Consider a capped European put option with parameter set EBM-03, payoff

V (X, IH , T ) = min(max(K − IH , 0) · tick, cap). (6.104)

and additionally parameters tick = £5, 000 and cap = £1, 000, 000. Notable from

the parameter set, we have assumed there exists a suitable correlated instrument,

with ρ = 0.9 such that a partial hedge is effective. The contract starts from

January 1st to March 31st. We begin by illustrating in table 6.6 that the SLS

provides convergence.

The general shape of the capped European put option price in figure 6.16 is very
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similar to the one shown in figure 6.14(b). However, the observed temperature

today now greatly impacts the option price. As an example, consider the option

prices

V (X = 3, 0, 0) = 229, 996,

V (X = 4, 0, 0) = 248, 129,

V (X = 5, 0, 0) = 266, 948,

we can then compute the delta of the option to be, ∂V
∂X

(X0, 0) = 18, 476. This is

significant because using our model, incorrect observations of today’s tempera-

ture can lead to large mis-pricing depending on the structure of the payoff. The

reasons for this increased sensitivity stems from the inclusion of the tick multi-

plier in the payoff condition (6.104). Consequently, at expiry for every unit that I

decreases leads to an increase of 5, 000 in the final payoff. As expected, the sensi-

tive is reduced as the we move towards the limits Xmin and Xmax. Increasing the

speed of mean-reversion κ reduces the option’s sensitivity to initial temperature,

the reverse is true when κ → 0. We present this result in figure 6.17. How-

ever, this parameter should be measured according to historical weather data or

accurate forecasts, to ensure that the underlying temperature dynamics behave

realistically.

6.5.1 Effects of ρ on the weather option price

A particular point of interest, and one which is crucial in the specification of our

new weather option PDE, is the relationship between option prices and the ob-

served correlation between temperature and the traded asset. Moreover, from the

arbitrage arguments which led to the definition of γ(X, τ), ρ is a free parameter

which can be independently changed. The temperature drift and volatility struc-

tures could be altered as weather changes, but this is usually fixed and based

on estimates from historical weather data. According to (5.29), increasing |ρ|
implies that a more suitable hedge is available, hence the risk for the issuer of

the contract decreases, as shown by Windcliff et al. (2007). However, in the case

of a mean-reverting process the situation is quite subtle. If ρ = 0, then the drift
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Figure 6.16: A 3D illustration of the option price’s behaviour at t = 0, using
parameters EBM-03.

term is purely driven by the mean-reverting temperature drift, i.e.

γ(X, τ) = dθ(t) + κ [θ(t)−X ] dt.

As we illustrated previously, the put option price increases through theX domain,

starting from negative then through to positive values. Figure 6.18 shows how

the solution of a capped European HDD put option, using parameter set EBM-

03 and payoff (6.104), behaves as ρ0.5 varies. For ρ0.5 6= 0 the sign of γ changes

depending on the position of V in X space. In the region where X ≈ −50, the

movement in the X domain is dominated by a positive temperature drift such

that we have γ ≈ dθ(t) + κ [θ(t)−X ] dt > 0. A positive drift term has the

effect of making the option price more expensive, which explains the behaviour of

the solution depicted in figure 6.18(b). When X ≈ 50, the mean-reverting drift

becomes large and negative and subsequently this depresses the option price. This

is not unusual because the market price is not equivalent to the hedging price,

and therefore being able to hedge will not translate necessarily into the option

value being reduced.
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Figure 6.17: The behaviour of the option price as the specification of mean-
reversion changes. The parameters used here are given by EBM-03, for a capped
European HDD put option with payoff (6.104).

6.5.2 Further numerical enhancements

To improve the accuracy of the scheme further, Richardson extrapolation could

be used (but this was not used in our implementation). First suggested by Geske

and Johnson (1984), it forms an integral part of the methods for Andricopoulos

et al. (2003) and Widdicks, Andricopoulos, Newton, and Duck (2002). The idea is

as follows: Let VE be the exact price of the option, and take Vn as the value given

by the numerical method with n steps. If the rate of convergence, as n → ∞, is

known to be 1/(n)c, where c is the order of convergence, then Vn is assumed to

have form:

Vn = VE +
h1

nc
+ smaller terms, (6.105)

where h1 is unknown but stays constants for different n. Take approximations

Vn1 and Vn2 which used n1 and n2 steps respectively, and equate equations in
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size 0.05. The bottom graph highlights the hidden curvature that exists in the
region where X is large and negative.

176



Chapter 6. Numerical solutions of weather options

terms of h1

h1 = (n1)
cVn1 − (n1)

cVE = (n2)
cVn2 − (n2)

cVE . (6.106)

This is simple rearranged to give

VE =
(n1)

cVn1 − (n2)
cVn2

(n1)c − (n2)c
. (6.107)

Alternatively, the use of more densely spaced grid points in the region where the

solution changes rapidly might offer improvement, but at a considerable increase

in computational effort. Another possibility for investigating the very slight cen-

tral bulge in (b) of 6.18 would be to test alternative forms of boundary condition,

such as a Robin condition in the direction of ρ0.5 = 1,−1 along the X boundaries

at ρ0.5 = 1,−1.

6.6 Summary

This chapter has discussed a variety of numerical schemes and examined some of

the difficulties of using an implicit central-difference scheme. These drawbacks

can be overcome by using an SLS, and by imposing the weak condition of (6.101)

to suppress errors introduced from interpolation.

We observed an objectively small but qualitatively interesting result when ρ 6= 0

and X is very small. In practical terms we would anticipate that if ρ = 0, hedging

is no longer possible and therefore a put issuer’s selling price will increase, relative

to the case when |ρ| = 1. The price that the issuer is charging is best referred

to as the market price, since this is what participants are prepared to pay. In

this chapter we are computing the fair hedging price, but by assuming the hedge

portfolio to provide mean zero returns, we have neglected the additional random

risk. Relaxing this assumption of having a mean self-financing portfolio greatly

affects the prices of weather derivatives, and we consider this impact in the next

chapter.
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Weather Options with an added

risk-premium

If we drop the assumption that markets are always correct and that

financial modelling is at best an approximate science, then there is

no such thing as risk-free hedging . . . . [An] alternative approach as-

sumes uncertain volatility: if volatility is so difficult to measure, why

not accept this situation and instead work on volatility ranges? A con-

sequence is that there is no such thing as a single fair value for an

option, all prices within a given range are possible.

Paul Wilmott

This chapter develops the weather option valuation model proposed in chapter

5, where we now relax the assumption that in expectation the change in the

portfolio is mean self-financing, i.e. E[dΠt] = 0. Recall from chapter 5 that

the portfolio is random since the process of delta-hedging does not eliminate all

sources of risk. This issue of random payoffs which are not hedgeable appears in

the insurance pricing literature. For example, Moller (1998) approaches the valu-

ation of a unit-linked life insurance contract from this perspective, and Windcliff

et al. (2007) price a segregated funds contract that provides guarantees on mutual

funds held in pension plan investment accounts. The resulting pricing equations

of these papers differ greatly, with the former using principles of self-financing

strategies and martingale theory, whereas a PDE approach is used in the latter

paper. We adopt a similar approach to that outlined in Windcliff et al. (2007),
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to derive a new weather option PDE which is non-linear in the instances where

the payoff structure is more complicated than simple put and call options. Using

the extended model produces option prices that have been priced relative to the

magnitude of risk that remains after the partial hedge. To our knowledge use of

these principles for the valuation of weather derivatives has not been covered in

the literature previously.

7.1 Extension to the weather option PDE

Considering a portfolio to be mean self-financing is perhaps an over-simplification

used in the derivation of the weather derivative pricing equation (5.29). As dis-

cussed by Windcliff et al. (2007), insolvency problems can arise for an investor

(or insurer) who charges a price based on equation (5.29). Jewson et al. (2005)

provide an illustration of this point by performing trading simulations, where

the option is repeatedly issued at the fair price, for independent realisations of

the weather index. Their results show that issuing a weather option at its fair

price will lead to an expected loss in the trade, unless trading continues for al-

most 100 hundred years into the future. Over this time horizon, the mean profit

reaches zero. Therefore, trading at the fair price can result in insolvency problems

(Windcliff et al., 2007). Since weather derivatives typically have short maturi-

ties, investors are thus concerned about managing their short-term risks and will

therefore charge more than the derived fair price. This difference between the fair

option price and the price charged by the issuer is captured by the market price

of risk (3.13). Møller (2001) indicates that if residual risk is not diversifiable,

then the option writer should be compensated for bearing this extra risk. In this

incomplete market situation, there are various approaches that can be used to

value the contract. We have already discussed in chapters 3, 4 and 5 the works of

several authors who value derivatives in an incomplete market. We therefore do

not repeat this literature review in this chapter, but instead present our exten-

sion to the previously derived weather pricing model. Such weather option prices

incorporate an extra premium that is awarded for bearing unhedgable risk.
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We begin by reconsidering the variation in the portfolio (5.24)

dΠt =

[

∂V

∂t
+ γ(X, t)

∂V

∂X
+

1

2
σ2
X(t)

∂2V

∂X2
+ f(X, t)

∂V

∂I
− rV

]

dt

+ σX
∂V

∂X

√

1− ρ2dZ2,

which was obtained by using the hedging strategy of

∆ = ρ
σX

σH
·

∂V
∂X

H
. (5.23)

In order to continue, we briefly review principles of actuarial premium calcula-

tions. From Møller (2001), the two most widely used calculation principles are

referred to as the variance principle

Vvar = E[V ] + λVar[V ]. (7.1)

and the standard deviation principle

Vsd = E[V ] + λ
√

Var[V ]. (7.2)

We use principle (7.2) in §4.3.2, to appropriately adjust the fair price obtained

from burn analysis for both a swap and option contract. The second term in

equation (7.1) and (7.2) should be regarded as the level of reserve the issuer

must have (or obtain from the buyer of the contract) so that any payouts can

be honoured. These terms are frequently referred to as safety loadings in the

context of insurance pricing. These principles suggest that the option value can

be determined as its expected value plus some compensation. As pointed out by

Ibáñez (2005) and Windcliff et al. (2007), it is not unreasonable for an investor to

expect to earn a premium at a rate that is proportional to his risk. More precisely,

during a time-interval ∆t the portfolio’s value should appreciate in accordance

to the size of the risk, so that by using the standard deviation principle (7.2) we

obtain

E[dΠt] = λ

√

Var[dΠt]

dt
dt. (7.3)

This is equivalent to defining a market price of risk associated with the residual

risk dZ2, and has been used by Ibáñez (2005) and Cochrane and Saa-Requejo
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(2000) to value real options. Therefore, LHS of (7.3) becomes

LHS = λ

√

Var[dΠt]

dt

= λσX

∣

∣

∣

∣

∂V

∂X

∣

∣

∣

∣

√

1− ρ2

= sgn

(

∂V

∂X

)

λσX
∂V

∂X

√

1− ρ2, (7.4)

and sgn(z) denotes the sign of z. Taking the expectation of (5.24) and combining

the result with (7.4) produces the following PDE

∂V

∂t
+

(

γ(X, t)− sgn

(

∂V

∂X

)

λσX

√

1− ρ2
)

∂V

∂X
+
1

2
σ2
X(t)

∂2V

∂X2
+f(X, t)

∂V

∂I
−rV = 0.

(7.5)

The solution to this PDE is a weather option price that incorporates a risk pre-

mium to compensate for the fact that temperature cannot be traded and no

perfect hedge is available. This is analogous to the case of paying dividends to

investor for holding a risky financial stock. Of particular interest here is that

this PDE is valid only for a long position in V . Notice that in the definition

of our portfolio, we have assumed we are long the option, which implies that

since prefect replication is not possible, the risk the investor is exposed to is

mainly upside-risk (with the downside being the option’s premium), whereas for

the option writer there is a possibility of making a large payout. Therefore we

would expect these prices to now be different as the risks involved are no longer

symmetrical. A similar PDE for the short position can be easily derived by first

considering the portfolio

(Πt)s = −Vt +∆Ht +Mt, (7.6)

where we have used the subscript s to distinguish this from our original portfolio

(5.17). Then by choosing ∆ as defined in (5.23), the change in the portfolio (7.6)

is

(dΠt)s = −
[

∂V

∂t
+ γ(X, t)

∂V

∂X
+

1

2
σ2
X(t)

∂2V

∂X2
+ f(X, t)

∂V

∂I
− rV

]

dt

+ σX
∂V

∂X

√

1− ρ2dZ2.
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Since the change in the portfolio is not deterministic, the holder would expect

to be compensated. Therefore, we make use of principle (7.3) and then find that

the PDE for the weather option’s short position is given by

∂V

∂t
+

(

γ(X, t) + sgn

(

∂V

∂X

)

λσX

√

1− ρ2
)

∂V

∂X
+
1

2
σ2
X(t)

∂2V

∂X2
+f(X, t)

∂V

∂I
−rV = 0.

(7.7)

We can express PDEs (7.5) and (7.7) succinctly as

∂V

∂t
+
(

γ(X, t) + qλσX

√

1− ρ2
) ∂V

∂X
+
1

2
σ2
X(t)

∂2V

∂X2
+f(X, t)

∂V

∂I
−rV = 0, (7.8)

where q is

q =

{

−sgn
(

∂V
∂X

)

if long,

sgn
(

∂V
∂X

)

if short.
(7.9)

Depending on the payoff structure, ∂V/∂X is not single-signed. A straddle would

be a good example of this since the combination of both a call and put implies

that its delta will change signs in certain regions. We value straddles in §7.2.
In this case we cannot drop the modulus sign in (7.8), therefore the equation

is non-linear and must be solved numerically. Hoggard, Whalley, and Wilmott

(1994) introduced one of the first non-linear PDEs in their model for options with

transaction costs. More recently, Glover (2008) derives a non-linear PDE to price

an illiquid option with a price impact factor feeding back into the governing asset

price process. Non-linear PDEs can result in non-unique prices being obtained

(Glover, Duck, and Newton, 2010, provides insights and cautionary notes). Con-

sequently, we no longer obtain single prices for the option, but rather determine

pricing bands that indicate the cheapest and most expensive price to be paid for

the derivative. This is typical of an incomplete market problem. So rather than

näıvely following the existing literature on weather derivatives, we assume that

λ 6= 0. This approach is very much in line with the quote from Willmott at the

start of this chapter; that financial modelling is an approximate science and thus

a band of prices exists.

If we denote the value of the short position as V s and long position V l then in

order for a weather market to exist the condition V s ≥ V l must be satisfied,

otherwise no one would ever write an option. Both V s and V l are positive. We

can confirm that our PDE model (7.8) satisfies this condition by considering the

valuation of a simple call option. For this option ∂V/∂X ≥ 0 which implies q > 0
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for the short position which has the effect of increasing the value of the option,

whereas in the long position q < 0 which reduces the price. Therefore V s ≥ V l.

Similarly for a put option q < 0 in the short position, and from figure 7.1 this

will translate the payoff condition to the right, thus increasing the value of the

option. In the long position this option’s value is decreased because when q > 0

the payoff condition is translated to the left.

7.2 Valuation

Following the detailed analysis in chapter 6, we make use of the SLS to discretise

and then solve the non-linear PDE (7.8). As the discretisation of the PDE is

almost identical to (6.88), we omit reproducing the derivation and state that the

only differences is that γ(X, τn+1) in equations (6.89) and (6.90) is replaced by

the new drift term

γ(X, τn+1) + qλσX(τn+1)
√

1− ρ2.

We demonstrate that in this incomplete market setting, there exist large spreads

between the bid (long) and ask (short) prices of weather options. The non-linear

component of the (7.8) is then considered, as we price a straddle option.

Parameter choices

In our numerical examples, the results obtained are not directly comparable to

the weather derivative market because the choices of parameters are not derived

from market data. Until the UK weather derivatives markets’ liquidity increases,

robust estimates of model parameters through methods of calibration are not

available. The level of compensation an investor demands for risk is difficult to set

accurately. Turvey (2005) considers λ = 0, however Bellini (2005) demonstrates

empirically that the value of λ is very different from zero and that it is time-

dependent. Alaton et al. (2002) attempt to determine the value of λ by calibrating

their model prices with two quoted OTC weather derivative prices, though this

is too limited a data set to be confident of the market’s value for λ. Instead,

we use the numerical values for λ presented in Møller (2001), since this provides

a selection of possible option prices for investors with different risk appetites
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K

V

X

Payoff condition

q = 1, short

q = −1, long

(a) Call option payoff

K

V

X

Payoff condition

q = −1, short

q = 1, long

(b) Put option payoff

Figure 7.1: The movement of a call and put option as the magnitude of the
∂V/∂X coefficient increases/decreases.
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λ 0.01 0.1 0.25 0.5 1 2

Table 7.1: Numerical choices for the market price of risk, λ. Source: Møller
(2001). The larger the value of λ the greater the level of compensation awarded.

(these values are listed in table 7.1). The volatility of temperature is given by the

averaged monthly volatility estimate (5.47), where the numerical values of each

month are presented in the second column of table 5.4. The mean reversion and

seasonal mean are as specified in parameter set EBM-03. In all the examples we

take tick = £5, 000 and cap = £1, 000, 000, unless specified otherwise.

Results

In figure 7.2(a) we show the numerical solution of a capped European HDD put

option, where virtually no additional compensation is awarded for the residual

risk. In this case we have taken λ = 0.01. Also in this example, we have as-

sumed a sufficiently accurate partial hedge as ρ = 0.9; the results are intuitive.

Because the portfolio only earns a small premium for carrying additional risk,

the short and long position option values V s and V l in the figure are very close.

In particular, the spread between the short and long position prices decreases as

the temperature becomes extremely cold (i.e. where X → −50). This is because

when the initial temperature is very cold the probability that it will rise above

18◦C is small, which implies that the HDD index will be large. Thus the proba-

bility for which the option will expire with a positive payoff is very low. A HDD

weather contract that has an initial temperature below the barrier Xref can be

regarded as being out of the money (OTM). For contracts that begin far OTM

the values of V s and V l tend to the value of the fair premium. The difference

between the prices changes significantly as we increase the market price of risk,

λ. In figure 7.3 the option has been valued using a variety of values for λ, such

that for increasing values of λ the difference in the short and long position put

prices grows. However, there is a bound to the level of increases since the option’s

value has an upper bound. This point is illustrated clearly in figure 7.3(d). Tak-

ing λ = 1, and pricing an uncapped put option we can see from figure 7.4 that

prices far exceed those found in 7.3(d) and only begin to approach the maximum

value of e−rTK · tick for X > 10, as opposed to reaching its maximum value from

X = −10 onwards. To understand the significance of our findings, we examine
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Figure 7.2: The figure on the left gives the value of a put in the long and short
positions. Also included is the value of the fair premium that is computed using
PDE (5.29). Here the partial hedge is effective, ρ = 0.9. λ = 0.01, with other
parameters from EBM-03. The right-hand figure shows the percentage differences
of these option prices against the fair premium for a put option.

the percentage difference of the short position and long position prices above and

below the fair premium, respectively. For X = 4, and λ = 0.01 (implying that

the investor should earn a premium that is a 1/10 of the standard deviation of

the residual risk), the short position price is 4.58% more expensive that the fair

premium and the long position price 4.68% cheaper. We illustrate the percentage

difference of the short and long prices relative to the fair price in figure 7.2(b).

The solution of a call option is similar and is presented in figure 7.5. However,

we use a different boundary condition along Imax since in this region a call option

will likely have value. We specify the following Dirichlet boundary condition

V (X, Imax, t) = e−rτK. (7.10)

We purposely defined the boundary conditions at Xmin and Xmax in a general

manner so that they could be applied to value a variety of options with different

payoff structures, such as straddles.

As (7.8) becomes non-linear when an option’s delta is not singled-signed, we

consider the valuation of a portfolio of options. Specifically we value a straddle,

with payoff

V (T ) = max(I −K, 0) + max(K − I, 0). (7.11)

In figure 7.6, we show solution of an option with payoff (7.11) at different times
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(a) λ = 0.1
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(b) λ = 0.25
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(c) λ = 0.5

 0

 200000

 400000

 600000

 800000

 1e+06

-50 -40 -30 -20 -10  0  10  20  30  40  50

O
pt

io
n 

va
lu

e 
(V

)

Temperature (X)

Zero risk premium
Short
Long

(d) λ = 1

Figure 7.3: Option prices for the long and short positions for different values of
λ. The fair premium price is included. ρ = 0.9, with other parameters as given
by EBM-03. We adjust the range of the last diagram so that the last line can be
seen clearly.

t. Interestingly, the capped straddle option prices in figure 7.6(d) exhibit much

smoother (and flatter) solution profiles through X than an uncapped straddle,

shown in figure 7.6(b). This confirms that constructing weather options as a

capped straddle can reduce an investor’s risk as payoff is likely in these instances.
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Figure 7.4: Put option price for an uncapped put. Parameter set EBM-03, λ = 1,
ρ = 0.9. We adjust the range of the last diagram so that the last line can be seen
clearly.

7.3 Summary

In this chapter we extend the previous model from chapter 5, to obtain a PDE

that produces prices for weather options that include an added risk-premium,

which is relative to the magnitude of risk that the investor is exposed to, due to

not being able to trade the underlying quantity to create full hedge. Using our

model, the option values for a counterparty holding the long or short position

are no longer equal, unless the correlated asset being used in the hedging of the

contract is perfectly correctly with temperature (i.e. |ρ| = 1) or (λ = 0). We

demonstrate the non-linear nature of the PDE, in the case of valuing a straddle

weather option.
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(a) λ = 0.01
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(b) λ = 0.1
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(c) λ = 0.25
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(d) λ = 0.5

Figure 7.5: Call option prices for the long and short positions for different values
of λ. The fair premium price is included. ρ = 0.9, with other parameters as given
by EBM-03.
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(b) Uncapped straddle prices
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(c) Capped straddle time evolution
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(d) Capped straddle prices

Figure 7.6: The evolution of a capped and uncapped straddle option price through
time and I space. Here λ = 0.1, ρ = 0.9, and parameter set EBM-03.
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Chapter 8

Improved numerical techniques

for alleviating non-linearity

errors

Parts of this chapter were presented at the 6th World Congress of the Bachelier

Finance Society, June 22nd-26th 2010, Toronto, Canada

Change is the law of life. And those who look only to the past or

present are certain to miss the future.

John Fitzgerald Kennedy

In the previous chapter we introduced the valuation of derivatives involving more

complex payoff structures. These types of weather derivative contracts are be-

coming increasingly traded as industry participants attempt to mitigate their

weather risks. Jewson et al. (2005) note that a company’s weather-related finan-

cial returns may not be derived from the weather conditions at one specific loca-

tion, but rather across multiple locations. Therefore, the purchase of a weather

basket option would be more attractive than needing to individually manage

separate contracts, one for each location. The pricing of a basket option using

finite-difference or other lattice-based schemes, such as a binomial tree, can be

problematic since it is difficult in multiple dimensions to ensure that computa-

tional grid points will lie on discontinuities. When grid points are not correctly
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aligned oscillatory solutions can be introduced, as we saw in figure 6.6(d). The

problem of locating these discontinuities becomes more complex as the number

of underlying weather indices increases.

The aims of this chapter are twofold. Firstly, to introduce a quadrature scheme

that can be used to value weather derivatives and other financial derivatives with

precision. Secondly, we propose and develop a generic methodology for overcom-

ing this non-linearity error that is typically found in lattice-based option pricing,

such as binomial trees or finite-difference (Widdicks et al., 2002). The proposed

methodology’s effectiveness is demonstrated by pricing options on multiple un-

derlyings.

8.1 The QUAD method

The use of numerical quadrature to price options was introduced by Andricopou-

los et al. (2003) and then later extended to the case where the option has multiple

underlying in Andricopoulos, Widdicks, Newton, and Duck (2007). In both pa-

pers, the authors employ simple numerical integration techniques, namely the

trapezium and Simpson’s rule to solve the resulting integral (8.3) (which is pre-

sented the following section). We modify their work, and suggest the use of the

tanh-sinh scheme (explained in §8.1.3), which consequently increases the numer-

ical accuracy of option prices and reduces computational times. In this section

we begin by describing briefly the key aspects of the QUAD method.

8.1.1 Building blocks of QUAD

In our description of the method, we assume the same Black & Scholes framework

as proposed in Andricopoulos et al. (2003) and so begin with PDE

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0. (8.1)

where σ is the volatility, r is the risk-free rate and S is the underlying. QUAD

exploits the fact that this PDE can be represented as an integral equation which

consists of the payoff function and the Green’s function representation of (3.10).
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By considering K to be the strike value, and then performing the change of

variable

x = ln

(

St

K

)

, y = ln

(

St+∆t

K

)

(8.2)

with ∆t being the time interval between two time observations, the value of the

option V (St, t) can be expressed as

V (x, t) = A(x)

∫ ∞

−∞

B(x, y)V (y, t+∆t)dy (8.3)

where

A(x) =
1√

2σ2π∆t
exp

(

−kx

2
− σ2k2∆t

8
− r∆t

)

, (8.4)

B(x, y) = exp

(

ky

2
− (x− y)2

2σ2∆t

)

(8.5)

and

k =
2r

σ2
− 1. (8.6)

Theoretically, we are required to evaluate the integral over a doubly-infinite range

in order to solve the problem correctly. Expression (8.5) reveals that our interval

of integration need not necessarily be large, to accurately evaluate our option.

This is evident because our value for x is fixed over the integration and remains

modestly small due to its log-normal nature. However, as |y| → ∞, the ex-

ponential term in B(x, y) behaves as e−y2 , which rapidly approaches zero and

consequently results in an insignificant contribution to the overall integral. This

then permits the truncation of the range of integration in order to practically

solve (8.3) (Andricopoulos et al., 2003). In accordance with (8.2) define

x0 = ln(S0/K), (8.7)

where S0 is the value of the asset and x0 is our log-transformed variable, both at

t = t0. The truncated range of integration shall be referred to as [ymin, ymax] and

take the value

ymax = x0 + x∆ (8.8)

ymin = x0 − x∆ (8.9)
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where

x∆ = Dσ
√
T . (8.10)

In (8.10) D denotes the number of standard deviations we anticipate x to move

within the next time-step. We mentioned this parameter earlier in chapter 6 but

omitted much of the detail so as to not disturb the flow of the text; here we

expand slightly. The value of D is important and should not be set too small

or large. Choosing a small value for D results in significant contributions being

neglected, since the range of integration is too small which consequently impacts

the quality of the final solution. Conversely, if chosen too large, then either the

computational time is dramatically extended as more points are evaluated or the

size of ∆y needs to be increased; ultimately affecting the accuracy of the result.

Practically, the size of D is chosen to lie between 7 and 20, and Andricopoulos

et al. (2003), and Law (2009) indicate that a suitable choice is for D = 7.5.

As with all quadrature schemes, it is necessary to determine the number of knot-

points we wish to use in order to approximate the given integral. Let us define

Nabove = NEINT

(

ymax − b

∆y

)

(8.11)

Nbelow = NEINT

(

b− ymin

∆y

)

(8.12)

to be the number of knot-points above and below the discontinuity point, b, re-

spectively. The function NEINT(.), in both expressions (8.11) and (8.12), returns

the nearest positive even number. This differs from the implementation given by

Andricopoulos et al. (2003, 2007) but it then allows for the easy substitution of

other numerical quadrature schemes which require a even number of grid points,

such as Simpson’s rule.

A subtle point here is that taking points above/below the strike value guarantees

that a node will lie at b. In this instance monotonic and smooth convergence

is permitted; in §8.5 we consider the effect of not having a grid point on the

discontinuity.
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Imposing equations (8.8) and (8.9) in equation (8.3), we obtain

V (x0, t) ≈ A(x)

∫ ymax

ymin

B(x0, y)V (y, t+∆t)dy, (8.13)

where V (y, t + ∆t) is the option payoff. Depending on the nature of the option

to be evaluated, integral (8.13) in general cannot be expressed analytically, un-

less we are concerned with evaluating simple European options. An important

consideration when selecting a numerical scheme is the relative trade-off between

numerical accuracy and computational efficiency. Usually the more complicated

the scheme, the longer it takes to evaluate an integral, although it may offer fast

convergence rates. The trapezoidal scheme is of O(∆x2), whereas the Simpson’s is

O(∆x4) accurate. The latter scheme is preferred as even though it is more com-

putationally expensive this is not significant enough to prevent a higher-order

approximation.

Other types of schemes are available such as Gaussian quadrature or Clenshaw-

Curtis quadrature, where the main differences between these two and the Newton-

Côtes schemes are that which allow for the flexible placement of evaluation grid

points within the domain. Comparison of the tanh-sinh (see §8.1.3 below) against
further quadrature schemes would be an interesting area of study to consider in

the future.

We summarise the QUAD algorithm below

1. Set the number of knot-points, n, to obtain the required accuracy.

2. Define x0 = ln(S0/K) and set D such that 7 ≤ D ≤ 20.

3. Calculate the value of ymin, ymax, and ∆y.

4. Determine Nbelow and Nabove.

5. Apply the final conditions:

for i = 0 to Nabove do

Set yi = b+ i∆y

Set the value of payoff V (yi, T )

end for

for i = Nbelow to 1 do
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Set yi = b− i∆y

Set the value of payoff V (yi, T )

end for

6. Use the chosen quadrature scheme to integrate (8.13), and then multiply

by A(x) to obtain the value of the option.

8.1.2 Extension of QUAD to price discretely monitored

options

QUAD can be extended to value options that have early exercise features, such as

Bermudan and American options. Here we briefly show how this can be achieved

for a Bermudan option, and refer the reader to Andricopoulos et al. (2007) for

further details and examples.

In pricing a Bermudan put option with strike value K and maturity T , we define

Vm to be the value of the option at time tm where m = 1, 2, 3 . . . ,M denotes the

distinct exercise times. The option value at expiry, VM , is

VM(x, tM) = max(K −Key, 0). (8.14)

At each time where the holder can exercise the option we must determine whether

the option is worth holding onto or not. This is determined via the early exercise

condition

Vm(x, tm) = max(Vm+1(y, tm), K −Kex). (8.15)

Given that the pricing process begins from the final condition, i.e. going backward

in time, the notation Vm+1 is used to distinguish the option value at the previous

time step from the currently evaluated option value Vm. It is evident that there

is a discontinuity, bm, at the point where Vm = K − Kex at each time-step tm.

Therefore we split the range of integration in order to eliminate non-linearity

error. To determine the value of bm, we apply Newton-Raphson iteration to find

an approximation to the zeros of some real-valued function, here defined as

p(z) = (K −Kez)− Vm(z, tm). (8.16)

As this is an iterative solver, estimates for the initial of z and ∆z must be set,
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which then allows for new values of z to be obtained by

z∗ = z +∆z. (8.17)

The values of p(z) and p(z∗) are calculated by integrating (8.3) using a chosen

quadrature scheme. We then apply the Newton-Raphson method (Press et al.,

2002) to obtain a new value of ∆z∗,

∆z∗ =
−∆zp(z∗)

p(z∗)− p(z)
. (8.18)

This iterative process is continued until we obtain an acceptably accurate 1 ap-

proximation to the zero of (8.16), and then take bm = z. This process of deter-

mining the location of discontinuity is performed at each time-step.

Equipped with a method to determine the locations of the free boundary, bm, the

range of integration can be ‘centred’ about it: removing non-linearity error. The

evaluation process for pricing a Bermudan option is equivalent to calculating a

European option over numerous consecutive observation times. Therefore, rather

than repeat the algorithm (presented at the end of §8.1.1) we will outline the

extension made to the European pricing algorithm:

1. We generate a set of values for ymaxm
and yminm

at each time-step tm, such

that

ymaxm
= x0 + (x∆)m (8.19)

yminm
= x0 − (x∆)m (8.20)

where

(x∆)m = Dσ
√
T −m∆t. (8.21)

Defining (x∆)m in this manner provides an estimate of the maximum move-

ment of the underlying asset, from x0 during a small time ∆t.

2. Starting at maturity, we compute the free boundary bM , and then generate

the set of points

yi = bM + i∆y, (8.22)

1Iterations ceased once the value of p(z) reached below 10−11 .
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and store the option value at each point using condition (8.15).

3. Move to the next time-step and determine bm using the Newton-Raphson

method.

4. Using a chosen quadrature scheme, evaluate the option at each xi using

V (xi, tm) = A(xi)

[

∫ ymaxm+1

bm+1

B(xi, y)V (y, t+∆t)dy

+

∫ bm+1

yminm+1

B(xi, y)V (y, t+∆t)dy

]

. (8.23)

5. Repeat the previous two steps until the option price for the underlying asset

with value x0 is determined.

8.1.3 The tanh-sinh scheme

Having outlined the details of QUAD, we next introduce a high-precision quadra-

ture scheme that can be used in conjunction with QUAD. Tanh-sinh quadrature

is a sophisticated numerical integration technique that is well suited for deriv-

ing vastly accurate numerical solutions of integrals. Takahashi and Mori (1974)

first introduced tanh-sinh quadrature as a means of achieving accuracy of hun-

dreds or even thousands of digits. Convergence of the scheme is exponential for

well-behaved integrands. Bailey and Borwein (2006) have shown the method to

be superior to Gaussian quadrature and error function quadrature. For clear

descriptions of Gaussian and error function quadrature see Press et al. (2002).

The tanh-sinh scheme is based on the Euler-Maclaurin summation formula2 (Bai-

ley and Borwein, 2006), which implies that for certain bell-shaped integrands,

approximating the integral by a simple step-function is remarkably accurate. The

idea of the scheme is as follows: transform the integral on the interval [−1, 1] to

an integral on (−∞,∞) by using the change of variable

x = g(t) where g(t) = tanh(
π

2
sinh(t)). (8.24)

Then using the knowledge that, firstly, g(x) is some monotonic function with the

2This is used to approximate integrals by using finite sums
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property that g(x) → 1 as x → ∞ and g(x) → −1 as x → −∞ and, secondly,

that all derivatives of g(x) rapidly approach zero for large positive and negative

values of x, we can evaluate our integral using the equation below:

∫ 1

−1

f(x)dx =

∫ ∞

−∞

f(g(t))g′(t)dt ≈ ∆x
N
∑

j=−N

wjf(xj) (8.25)

where

xj = g(j∆x) = tanh(
π

2
sinh(∆xj)), (8.26)

wj = g′(j∆x) =
π
2
cosh(∆xj)

cosh2(π
2
sinh(∆xj))

, (8.27)

∆x is the interval of integration, and N is chosen such that the contributions

of the terms greater than N are smaller than some required arithmetic precision

measure ǫ. Typically, the measure is set at ǫ = 10−p, where p is the level of

precision in digits.

The tanh-sinh scheme requires that the interval of integration, prior to the change

of variable, is [−1, 1]. In scenarios where this interval is [c, d] where |c| 6= |d|,
one must apply some affine transformation to map the interval to (−1, 1). This

transformation is given by

(d− c)

2

∫ 1

−1

f

(

(d− c)y + (d+ c)

2

)

dy. (8.28)

Implementation detail

From the above definition of our approximated integral (8.25), it is evident that

x−j = −xj (8.29)

w−j = wj (8.30)

This is extremely useful as it means that we do not need to calculate the weight

and knot-points for j < 0: saving considerable computational time. The knot-

point xj and weight wj can be computed once for some given h. Now suppose

we have evaluated equation (8.25) and the value produced is above our error

threshold, we can decrease our interval of integration ∆x to improve the accuracy.
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Typically we refine ∆x through the expression ∆x = 2−k, for some level k; each

successive refinement is termed a ’level’. This expression for ∆x is chosen because

of the exponential convergence of the scheme, where the number of correct digits

is doubled when ∆x is halved. For a more detailed examination of the scheme’s

convergence see Borwein and Ye (2007). The number, say n, of knot-points

and weights required at level k depends on the precision the user needs: the

implementation here uses n = 3.3x2k.

Accuracy and Computational Time

In this results section, all computations were obtained using an AMD Athlon XP

2600+ 2.09 GHz with only 256MB of RAM computer, and the executables were

created using the Microsoft Visual Studio .Net Version 7 under optimized Release

mode.

To show the improved accuracy obtained by changing the underlying quadrature

scheme, we consider the pricing of a European put option, which has strike K

and matures at time T with payoff

V (S, T ) = max(K − S, 0). (8.31)

The values ofK, T , and the other parameters of the contract are given by EBM-04

in table 8.1. Applying the final-time condition, our integrand in (8.3) is

B(x, y)max(K −Key). (8.32)

Clearly the first derivative, ∂V
∂S

, is discontinuous at the strike level (i.e. when

y = 0). Therefore, to eliminate non-linearity error we split the interval of inte-

gration into two components based on the location of the strike price. Hence, the

two intervals of integration are [−∞, 0] and [0,∞]. We can then evaluate each

integral using the tanh-sinh method as described before to obtain the option’s

value. Since there is an analytical solution for a simple European put option

(via the Black and Scholes (1973) formula), we use it in order to compute errors.

Table 8.2 presents the error of QUAD when using different numbers of segments.

Using just 56 segments we can clearly see that the QUAD tanh-sinh implementa-

tion is 5.53 x 1012 times more accurate than the Simpson’s Rule implementation
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Parameter EBM-04
S0 100
X 95
σ 0.2
r 0.1
T 1.0
D 10
ymin -1.97
ymax 2.022

Table 8.1: Values for an European put option parameters

Trapezium QUAD Simspons QUAD tanh-sinh QUAD
Segments Error Error Error

4 2.40 2.39 1.20
14 9.69x10−1 5.21x10−1 2.57x10−3

26 2.76x10−1 4.95x10−3 5.27565x10−8

54 6.34x10−2 7.23x10−4 3.9968x10−15

106 1.64x10−2 4.94x10−5 5.32907x10−15

212 4.10x10−3 3.09x10−6 5.77315x10−15

422 1.03x10−3 1.97x10−7 5.32907x10−15

846 2.58x10−4 1.22x10−8 4.44089x10−15

1690 6.45x10−5 7.67x10−10 1.77635x10−15

Table 8.2: Comparison of option values using different underlying quadrature
schemes for a European put option using parameters EBM-04 as shown in table
8.1. The errors are determined by comparing the solutions obtained using the
QUAD method with the analytical solution, which is 2.39820 (to 5 d.p).

and 6.30 x 1014 times more accurate than the trapezium implementation. No-

tice that after 106 segments the error in the tanh-sinh implementation begins to

oscillate; this is due to round-off error that occurs in memory during the calcu-

lation process. This demonstrates that the tanh-sinh scheme, using the QUAD

method implementation, produces far superior accuracy and astonishingly fast

convergence compared to Simpson’s rule (see figure 8.1).

Table 8.3 shows the comparison of error and computational time of the tanh-

sinh QUAD and Crank-Nicolson method with respect to the exact solution for a

European put option. Unlike the QUAD method which requires only one time

step in its calculation, the Crank-Nicolson method here uses 60 time steps. This

larger number of time steps means that obtaining high accuracy with the Crank-

Nicolson method incurs a time penalty. This results in the tanh-sinh QUAD
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Figure 8.1: Comparison of different underlying quadratures schemes.

 0

 2e-015

 4e-015

 6e-015

 8e-015

 1e-014

 0  100  200  300  400  500  600  700  800  900

QUAD using Tanh-Sinh Rule

Figure 8.2: A closer look at the high accuracy achieved by using the tanh-sinh
scheme.
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tanh-sinh QUAD Crank-Nicolson
Segments Error (time(s)) Nodes Error(time(s))

106 5.33x10−15(0.00045) 106 2.18x10−3(0.49906)
422 5.33x10−15(0.00129) 422 4.97x10−5(0.54856)
1690 1.78x10−15(0.00449) 1690 4.55x10−5(1.12510)

Table 8.3: Comparing tanh-sinh QUAD with other numerical methods for a
European put option

method being 250 times faster than Crank-Nicolson method, taking only 0.00449

seconds.

8.2 Appraisal of tanh-sinh method

The computational time is significantly shorter than for a finite-difference ap-

proximation. In the instance of pricing one-dimensional options even with early-

exercise features, we therefore recommend the application of the tanh-sinh quadra-

ture. The tanh-sinh scheme described previously can be extended to two or more

dimensions (see Appendix §A.6 for the formulation in two dimensions). In two

dimensions the method’s computational effort greatly increases since the number

of function evaluations in a 2-D system is vastly greater than for the 1-D case.

Bailey and Borwein (2005) state that for each increase in the level k (i.e. doubling

the knot-points), the computational cost is quadrupled instead of doubled, since

there are four times as many function evaluations required. For well-behaved

integrands accuracy to over 100-digit can be achieved within a few minutes using

only a single CPU processor (see table 3 in Bailey and Borwein, 2005). However,

when the number of dimensions of a problem is larger than 5 this tradeoff between

accuracy and efficiency takes over, and we must consider other techniques.

In multiple dimensions QUAD still fails to provide the flexibility required to price

options with dimensions higher than 5. Additionally, as the dimensions of the

option increase, determining the exact topology of the free boundaries proves

extremely difficult and significantly increases computational time. This is the

main reason why Monte Carlo simulation is still the preferred method for valuing

derivatives in high dimensions. To make QUAD a viable numerical technique of

practical use in high dimensions issues with locating free boundaries and increases
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in computational time must be addressed and possible solutions obtained. This

is the focus of the next section.

8.3 An enhanced methodology to suppress non-

linearity errors

The valuation of financial derivatives may be computed via the application of

lattice-based methods, such as binomial trees (Cox et al., 1979), finite-difference

schemes (see §6.2.1 for example), and quadrature methods. However, issues of

stability often occur for even the simplest option payoffs, for example a European

put option V with standard payoff

max(K − S, 0),

where K is the strike price and S the underlying asset. A discontinuity exists in

the delta of the option at the strike value. If the nodes in a lattice-based scheme

are misaligned in regions where the delta is discontinuous, then convergence is

frequently non-monotonic. This phenomenon is typically known as ‘non-linearity’

error, and has been observed by Figlewski and Gao (1999), Widdicks et al. (2002),

amongst others. A similar observation was found in our numerical solution of a

weather option in figure 6.6(d). To achieve acceptable accuracy, vast amounts of

calculations are required because of the non-monotonic convergence, which makes

the use of Richardson extrapolation inappropriate.

Use of higher-order lattice-based schemes, such as the QUADmethod as described

previously in §8.1, will exaggerate the magnitude of errors in the option price,

since higher-order schemes have error terms involving higher order derivatives.

In the region near the strike value these will be large and unbounded.

Techniques have been presented to reduce the ‘non-linearity’ error. Figlewski

and Gao (1999) present their Adaptive Mesh Model as a method to reduce the

non-linearity error in binomial trees by refining the lattice around the exercise re-

gion, since this is where the most significant solution variation occurs. Widdicks

et al. (2002) seek to improve the accuracy of binomial trees by defining a param-

eter which measures the distance between the strike price and the nearest node,
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Figure 8.3: A graph of the price against number of node points N for a American
call, using binomial model (Cox et al., 1979).

normalised with respect to the lattice size. They show that if this parameter is

held constant, then it is possible to produce smooth monotonic convergence, and

Richardson extrapolation can then be used to obtain accurate values; see Chapter

6.6 for a brief description of Richardson extrapolation.

Though the Widdicks et al. (2002) method is applicable to binomial, trinomial

and finite-difference schemes, it has less application when pricing American-style

options, since at each time step the location of all the nodes is important, due to

the presence of the free boundary, which intersects through the mesh in a manner

unknown a priori.

As much of the errors stem from not successfully tracking the locations of dis-

continuities, Johnson (2007) uses a transformation to explicitly solve the location

of the moving free boundary at each time-step (present when pricing American

style options), and subsequently aligning the grid with this location; this effec-

tively removes the non-linearity error. As per Widdicks et al. (2002), Johnson

(2007) improves the boundary-fitted coordinate (BFC) method’s efficiency by

applying Richardson extrapolation. From this, Johnson (2007) then compares

and further develops an Enhanced boundary-fitted coordinate method. He shows

that the method’s calculation of the free-boundary location is superior to that of

the Project Successive Over Relaxation (PSOR) method 3. However, as stated

3The PSOR method is simply an extension to the Successive Over Relaxation (SOR) method
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Figure 8.4: Topology of free-boundary surface of a 2D basket American put
option. Solid line is the payoff at expiration, max(K1 − S1, K2 − S2, 0); dashed
line represents the free-boundaries at a subsequent time-step.

by Johnson, Sharp, Duck, and Newton (2007), it is impractical to use the BFC

method to price an option on multiple assets, as formulation of the topology of

the free boundary is extremely complex. More recently, Lord, Fang, Bervoets,

and Oosterlee (2007) proposed an alternative to locating the discontinuity. They

use simple linear (or cubic) interpolation to determine an approximate location of

the free boundary, which by-passes the need for a Newton-Raphson iteration and

in so doing reduces the computational effort somewhat. Once obtained, the grid

is then shifted so that the discontinuity lies on the grid, although this can lead to

some inaccuracies, since interpolating across the free boundary introduces errors

due to the underlying data being non-differentiable, because of the discontinuity

in the delta.

However, the effectiveness of the methods described above is limited once the

number of state variables (i.e. dimensions) increases or when pricing more exotic

options, as the topology of the domain hyper-surfaces becomes extremely com-

plicated, thus locating precise node locations becomes problematic. Figure 8.4

depicts the two-dimensional topology for a basket option with two underlyings.

Consequently, the highly rigorous task of determining the exact topology may

be a disincentive to practitioners without a strong theoretical background. Our

aim is to provide a simple methodology to solve complex options using existing

lattice-based methods, which is applicable in multi-dimensions.

and the reader is directed to Smith (1985) for specifics on the method.
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The remainder of this chapter proceeds as follows: in §8.4 we propose a generic

methodology for the pricing of simple vanilla options and also multi-dimensional

options, which is based on a least-squares approach (see Press et al., 2002, for an

in depth view of the algorithm). In addition we outline how the method can be

incorporated within an existing option pricing framework, based on virtually any

lattice method. Then in §8.5 we demonstrate the method’s effectiveness through

numerical experiments.

8.4 Methodology

The main focus will be on how to effectively minimise the non-linearity error

to obtain an accurate representation of the true option value. Unlike previous

literature, this approach performs post-processing on the computed results. In

particular, it permits the use of extrapolation techniques by analysing data that

is non-monotonic (but convergent). A least-squares approach is used in order

to determine the curve of ‘best’ fit. In statistics, it is typical to apply some

regression analysis on (scattered) data sets to identify a trend. Once determined,

it can enable the prediction of subsequent data, which has not yet been obtained

(or calculated). Observing the graph in figure 8.3 it is clear that the data-set

converges (even though non-monotonically) and so we wish to determine the

’curve of best-fit’, using the method of least squares (Dahlquist and Björck, 2003).

For clarity, we outline the basic concept of the least-squares method in this con-

text.

8.4.1 Representation of a model function

The least-squares method requires the specification of a model function V (N, β),

from which it estimates the parameter(s) β that best fit the computed data, and

where N is the number of grid (data) points4. This is similar to techniques of

regression analysis that we show earlier in §4.3.1, when fitting a linear trend

to historical weather data. The least squares method attempts to determine

the ‘best’ curve which fits through observed data points, whilst minimising the

4When using binomial trees, we are concern in the number of time-steps
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Figure 8.5: Fitting with higher order polynomial results in the function trying to
replicate the data set.

residual (for details on different approaches on how residuals are minimise, see

Appendix A.7); however, in this context, we do not require this. Since in the

presence of non-linearity error the observed values oscillate, meaning that a func-

tion which faithfully replicates this behaviour cannot be used for extrapolation

(see figure 8.5). In the numerical experiments, the form of the model function

was consider as

V (N, β) = Vǫ(N) +

M
∑

i=1

βi

N i
. (8.33)

where M represents the number of basis functions {1/N, 1/N2, 1/N3, . . . , 1/NM},
and βi is the estimated error for the basis function. Using the trapezium rule,

several option values were computed using a different number of grid points and

then attempted to apply the our methodology. Figure 8.6 illustrates the results,

and confirms that introducing extra terms actually reduces the accuracy of the

methodology. Rather, we require the asymptotic value of the option prices in the

limit of infinitesimal lattice spacing.
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α 1 2 4
binomial tree 2nd order finite-difference Simpson’s rule

1st order finite-difference Point successive over relaxation
trapezium rule

Table 8.4: The appropriate value for α in equation (8.34), when a given numerical
scheme has been used to derive the option price data.
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not improve accuracy. And in fact the best model function chosen is the one
which best follows the trapezium rule’s rate of convergence.

The method

Rather than minimising the residuals, we require that as N → ∞, V (N, β) gives

the precise value of the option price. Numerical experiments suggest a model

function of the form

V (N, β) = Vǫ(N) +
β0

Nα
, (8.34)

where Vǫ is the precise value of the option, β0 is the coefficient of the leading-

order error term and α represents the rate of convergence of the chosen numerical

technique (e.g. α = 2 for the trapezium rule, see table 8.4 for an outline of the

various selections for α).

To determine β0 and Vǫ, we construct a lattice containing N grid points, and then
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apply a chosen numerical scheme (e.g finite-difference, QUAD, binomial tree) to

obtain a value for the option, say V1. We then repeat the previous process with a

refined lattice using Ni+1 = Ni + 1 grid points, where i denotes the ith choice of

grid size, which will generate a set of computed option values V = {V1, V2, . . . , Vi}.
The small increment in grid points ensures that we observe the points which are

near the location of discontinuity in the delta.

Naturally, we ask: how many choices of N do we use before applying the least-

squares method? Firstly, the least squares algorithm can only be applied once

the number of computed option values exceeds the number of basis functions

appearing in (8.34), and so i > 2. Secondly, it is optimal5 to perform the method

once the following conditions are satisfied:

V (Ni−4) > V (Ni−2) and V (Ni−2) < V (Ni), (8.35)

This is equivalent to saying, compare the two previous option values, which were

computed using node points Ni−4 and Ni−2 respectively, with the current option

value obtained using Ni node points. When this condition is satisfied we may

refer to option value at Ni−2 as a sweet spot, due to the fortuitous alignment

of the node points in regions of rapidly-varying solutions, and refer to it as V 1
∗ .

Once the two conditions are satisfied, we perform the method of least-squares to

find the curve of ‘best’ fit across the computed values {V1, . . . , Vi−2} (i.e. only use

points up to the sweet spot), to obtain values for β1 and Vǫ,1, which are the initial

estimates of β and Vǫ respectively. We show the locations of the sweet spots in

figure 8.7, and these are the points where the methodology is applied.

As we increase the number of node points (and evaluate the value of the option),

we check to see if (8.35) is satisfied, and if so, we record this value as the next

sweet spot V 2
∗ . Now, we perform the least squares method again, but this time

fitting the curve over the dataset {V 1
∗ , . . . , V

2
∗ }, in other words, discard all infor-

mation before V 1
∗ and only use the data between the two successive sweet spots.

We can summarise this by stating that the least-squares method is performed

over dataset {V w−1
∗ , . . . , V w

∗ }, where w refers to the number of sweet spots that

have been encountered so far. Continuing this process, produces a set of approxi-

mate values, Vǫ= {Vǫ,1 . . . Vǫ,w}. Note that the errors of the approximations for Vǫ

5In the sense that the obtained Least-Square option prices generated using our methodology
converge monotonically and hence extrapolation techniques can be applied.
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Figure 8.7: The sweet spot locations at which the methodology is applied.

monotonically decrease, for payoff functions that do not have numerous discon-

tinuities, and so Vǫ,w is the best approximation for the option price. Therefore,

the application of our methodology permits the use of extrapolation to further

enhance accuracy (here we employ Richardson extrapolation), because of the

monotonic convergent property.

8.5 Numerical results of the proposed method-

ology

Through various numerical experiments we illustrate the application and effec-

tiveness of the methodology, valuing both European and Bermudan options (both

on multiple underlyings). Section 8.5.3 further demonstrates the significance of

our methodology as it is not possible (with the current technologies) to solve

numerically a highly dimensional problem using a high number of knot points. In

this section we outline the pricing of options where the underlying stock process

follows the usual, GBM (3.4), though as our methodology is generic it may be

applied irrespective of the underlying price process.
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European σ1 = 0.1 σ2 = 0.1 r = 0.1 T = 1.0 ρ = 0.4
S1 = 1.0 K1 = 1.0 S2 = 0.49 K2 =0.5

Bermudan σ1,2 = 0.2 σ2 = 0.2 r = 0.1 T = 1.0 ρ = 0.4
S1 = 1.0 K1 = 1.0 S2 = 0.49 K2 =0.5 M = 6

Table 8.5: Values for a European put option parameters. The asset values are
given by S1 and S2, with volatilities σ1 and σ2. The option strike values are given
by K1 and K2. The number of exercise opportunities is given by M

To obtain an accurate option price, denoted as Vref , the QUAD method (An-

dricopoulos et al., 2003) is employed with a sufficiently small ∆y (≈ 2.4x10−4).

This amounts to integrating over a coarse grid of around 100 million knot points

for an European put option on two underlying assets. This value is extremely

accurate and will be used as a benchmark in our error analysis.

8.5.1 Multi-dimensional European option

We begin by considering a European put option which has two underlying assets

with values, S1 and S2 respectively, and matures at time T with constant interest

rate r. The volatilities of the two assets are given by σ1 and σ2 respectively, and

ρ denotes the correlation between the assets. The payoff is defined as

V (S1, S2, T ) = max(K1 − S1, K2 − S2, 0), (8.36)

where K1 and K2 are the strike values. The values of the parameters used to

value the European put option are shown in the top of table 8.5. Figure 8.4 is an

illustration of the locations of discontinuities for an option on two underlyings.

We compute the value of the option using the methodology proposed in §8.4.1
and also the value obtained when using the original QUAD method, and then

determine the associated errors by comparing the two values with Vref . Table 8.6

presents the percentage error found when using our methodology (which we refer

to as LSO-QUAD, to indicate that we are using our methodology on numerical

results produced by the QUAD scheme) and original QUAD method. In both

cases the trapezoidal integration method is used to compute the integral (8.13).

In table 8.6, when N = 97, one “sweet-spot” has been reached and therefore

the least-square algorithm is performed. Each entry in the table denotes another
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“sweet-spot” being reached. The location of these points is shown by the green

plus signs in figure 8.8. At these locations we perform our methodology and

obtain a series of computed option prices (that are shown by blue crosses in

figure 8.8). After only one “sweet-spot” has been reached we achieve accuracy

that is within 0.48% of the true option price.

We make a comparison between our proposed methodology and the original

QUAD method in order to demonstrate that little improvement is gained by de-

termining the location of the discontinuity and positioning the grid accordingly.

Our proposed methodology rapidly suppresses the ‘non-linearity‘ error using a

limited number of knot-points for the QUAD-based implementation. The blue

crosses in figure 8.8 show that the option values obtained using our methodol-

ogy are monotonically decreasing, and therefore, enables the use of extrapolation

to further improved estimates. Additionally, computational time is significantly

reduced, and enables previously infeasible problems to be approached. An impor-

tant observation is that using a sizable truncated range of integration will speed

up convergence and improve accuracy (see Andricopoulos et al., 2003).

LSO-QUAD QUAD
N Error N Error
97 0.48 % 97 0.25 %
229 0.19 % 229 0.047 %
351 0.08 % 361 0.019 %
471 0.04 % 493 0.010 %
591 0.03 % 625 0.006 %
711 0.02 % 757 0.004 %
831 0.015 % 889 0.003 %
951 0.01 % 1021 0.002%
1069 0.009 % 1153 0.0019%
1189 0.007 % 1285 0.0015%
European option, payoff = max(K1 − S1, K2 − S2, 0)

Vref = 0.011908043

Table 8.6: Comparison of the percentage error found when applying methodology
and the original error. Note that titles with the prefix ’LSO’ indicates the ap-
plication of the Least Square Optimisation Methodology. Both implementations
use the trapezoidal integration method.

In the implementation of the methodology, we used the the trapezoidal and Simp-

son’s rule numerical integration techniques. It is striking that typically the Simp-

son’s rule has superior accuracy over the trapezoidal method, with an error of
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Figure 8.8: An illustration of the locations of the “sweet-spots” and also the
option values that are computed using our methodology. The solid red line, is
the raw underlying option prices computed using the QUAD method without
discontinuities being alignment with the grid points.

O(∆y4) where ∆y represents the width between two knot points. However, the

introduction of non-linearity error reverses this, as at the location of discontinuity

the approximations of the higher order derivative terms are more inaccurate (in-

deed, unbounded) terms, and because the trapezoidal method only approximates

up to the second derivative (unlike the Simpson’s rule, which involves the fourth

derivative) it is less effected by the error. We may observe in table 8.7 that there

are greater differences in the errors found between QUAD and our methodology

when the integral is computed using Simpson’s rule as opposed to the trapezium

method. When using the trapezium method, the error with our methodology is

at most twice as large, whereas when using the Simpson’s rule this difference can

be 5-6 times the size of the error when using original QUAD. Additionally, setting

α to the rate of the convergence of the quadrature scheme employed (in the case

of the Simpson’s rule, α = 4) produces smaller errors. We show this result in

figure 8.9, where the red and green lines represents the percentage errors obtain

using our methodology for when α = 4 and α = 2 respectively.

We next apply the methodology to the Cox et al. (1979) binomial tree (hereafter

214



Chapter 8. Improved numerical techniques for alleviating non-linearity errors

 0

 0.2

 0.4

 0.6

 0.8

 200  400  600  800  1000  1200  1400

P
er

ce
nt

ag
e 

E
rr

or
 (

%
)

Number Of Segments (n)

Percentage Errors: When using different values of alphas

f(n) = a + b/n4

f(n) = a + b/n2

Figure 8.9: Illustrates the percentage error of our proposed methodology, with
different values for α in model function (8.34), where Simpson’s rule has been
used to compute integral (8.13). This is for valuing a European put option with
parameters as given in table 8.5 and payoff (8.36).

denoted as CRR) and show that the non-linearity error is suppressed, and it

produces surprisingly accurate results. It should be noted that in the binomial

tree method the rate of convergence is typically of O(1/N), and so when applying

the proposed methodology we set α = 1 in equation (8.34), and we then proceed

as outlined in the proposed methodology algorithm. In figure 8.10 we present the

obtained option values using our methodology, using three different specifications

for the model function (8.34). The figure illustrates that using α = 1 provides

more accurate results, since the solution profile is closer to the value of Vref .

8.5.2 Multi-dimensional Bermudan option

We now present the results for a six-times exercisable Bermudan put option on

two underlying assets, S1 and S2 respectively, with payoff

V (S1, S2, T ) = max(K1 − S1, K2 − S2, 0), (8.37)
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QUAD: Trapezium LSO-QUAD: Trapezium QUAD: Simpson’s LSO-QUAD: Simpson’s
N %Error % Error N % Error % Error
15 26.3422 14.2835 18 32.7180 33.1754
97 0.4800 0.4852 194 0.3143 0.9671
229 0.1931 0.0994 334 0.0859 0.3569
351 0.0838 0.0427 414 0.0569 0.3232
471 0.0425 0.0237 566 0.0292 0.1246
591 0.0279 0.0151 646 0.0225 0.0909
711 0.0206 0.0104 802 0.0145 0.0758
951 0.0106 0.0058 1038 0.0086 0.0407
1069 0.0090 0.0046 1118 0.0074 0.0341
1189 0.0073 0.0037 1278 0.0057 0.0292

European option, payoff = max(K1 − S1, K2 − S2, 0)
Vref = 0.011908043

Table 8.7: Table comparing percentage errors for when the QUAD method has been implemented to not align the lattice
about the discontinuity found at the expiry and then the improvement with utilising the LSO methodology.
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Figure 8.10: The option values obtained using our methodology with the CRR
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where K1 and K2 are the strike values. The parameter values are specified in

bottom of table 8.5. Since no analytical solution is available for early-exercise

style options, we obtain the value for Vref by employing the QUAD method with

216 knot points used in the computation.

Table 8.8 reports the absolute error found when using our proposed method with

QUAD. Notice that the experiments were completed using fewer segments than

when computing the European option, because of the extended computational

time required to price multiple observed options. At each exercise opportunity,

at say τ , we need to value the option at a series of asset prices xi (in all dimen-

sions), and continue this process moving backward in time. Applying LSO-QUAD

achieves excellent accuracy with an error as small as approximately 10−7.

In our results we ensured that in implementing the PSOR method that the strike

price was not aligned with the grid in an attempt to produce the non-monotonic

behaviour observed in other lattice methods. We slightly perturbed the option

data from table 8.5 and from oscillations that are visible in red line in figure 8.11

it is evident that without careful nodal placement the non-linearity error persists.
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LSO-QUAD
N Error
50 0.000032561
75 0.000007415
100 0.000002622
125 0.000000799
150 0.000000137
Bermudan option, payoff = max(K1 − S1, K2 − S2, 0)

Vref = 0.0201941230315239

Table 8.8: The absolute errors of the proposed method for different grid segments
N . The parameter values used to compute these values are specified in bottom
half of table 8.5

Table 8.9 also highlights the importance of choosing the appropriate model func-

tion as by using f(x) = α1+α2/x
2 the accuracy is significantly improved by 99%.

Note that in figure 8.11, the blue line is not a least square fit of the solid red line

(which is the raw data) but rather is a fit of the option prices at the most recent

“sweet-spots”. So by examining the true convergence of the chosen scheme and

then setting the model function to reflect this, will typically lead to reduction in

the magnitude of errors.

8.5.3 Ten-Dimensional European Basket Option

To fully appreciate our methodology’s applicability, we use the method to value a

European put option on 10 underlyings. The valuation of an option on multiple-

assets may be obtain through solving the Black-Scholes partial differential equa-

tion (Andricopoulos et al., 2007):

∂V

∂t
+

1

2

N
∑

i=1

N
∑

j=1

σiσjρijSiSj
∂2V

∂Si∂Sj
+

N
∑

i=1

(r − di)Si
∂V

∂Si
− rV = 0 (8.38)

where Si are the underlying assets, σi and di represent the corresponding volatil-

ities and continuous dividend yield respectively and ρij the correlation coefficient

between underlying assets Si and Sj . The risk-free rate is denoted as r, t is time,

and V (S1, . . . , S10, t) is the price of the derivative. Here i = 1, 2, . . . , 10. Note

that |ρij| < 1, ρii = 1 and ρij = ρji.

Following the same procedure as performed in §8.1.1 to solve (3.10), let Ki be
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LS-PSOR(f(x) = β0 + β1/x) LS-PSOR(f(x) = β0 + β1/(x
2))

K Error Error
20 0.000809034 0.000391210
30 0.000662721 0.000085861
40 0.000433197 0.000008267
50 0.000404582 0.000018631
60 0.000314935 0.000015135
70 0.000252584 0.000006045
80 0.000212729 0.000003192
90 0.000187271 0.000004083
100 0.000176882 0.000001429
110 0.000160062 0.000000949

Bermudan option, payoff = max(E1 − S1, E2 − S2, 0)
Vref = 0.00259345594581309

Table 8.9: Error of the proposed method when applied to explicit finite difference
method (using PSOR) to value a Bermudan option with parameters as stated in
table 8.5. The model function is defined as f(x) = β0 + β1/x.
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Figure 8.11: Results observed when pricing an American two-dimensional basket
option, using the PSOR method to obtain the underlying non-monodic data. The
two curves show the approximation of the proposed method when using different
basis functions for Least Square model function.
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the exercise prices, and then make the suitable logarithmic transformations

xi = ln((Si)t/Ki) and yi = ln((Si)t+∆t/Ki). (8.39)

Here xi and yi are chosen nodes at t and t+∆t respectively. Now let R represent

the correlation matrix such that the elements R(i, j) = ρij . The solution is then

given by (Wilmott, 2000a)

V (x1, . . . , x10, t) = (8.40)

C

∫ ∞

−∞

. . .

∫ ∞

−∞

V (y1, . . . , y10, t+∆t)B(x1, . . . , x10, y1, . . . , y10)dy1 . . .dyn,

where

C = e−r∆t(2π∆t)−10/2(|R|)−1/2(σ1, . . . , σ10)
−1, (8.41)

the Green’s function

B(x1, . . . , x10, y1, . . . , y10) = exp(−1

2
αT
i R

−1αi), (8.42)

and column vector

αi =
1

σi(∆t)−1/2

(

xi − yi +
(

r −Di −
σ2
i

2

)

∆t
)

. (8.43)

The range of integration in equation (8.40) can be truncated, provided that the

contributions of the integrals outside this range are insignificant (Andricopoulos

et al., 2003). This simple amounts to having a set of values for ymin and ymax for

each ith underlying.

For this basket put option we define the payoff as

V (S1, S2, . . . , S10, T ) = max(K1 − S1, . . . , K10 − S10, 0). (8.44)

where the values of Si, Ki and the other contract parameters are given in table

8.10. Trying to determine the topology of the free-boundaries in this case is dif-

ficult, and therefore we ignore them and instead make use of our methodology to

determine the option’s value. As the tensor-product grid is large, we choose to

use few knot points (at most 12), so that CPU times are minimal. The results of

these are shown graphically in figure 8.12, where the option prices are computed
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Parameter Value
r 0.1
σ 0.1
S1 1.0

S2, S5, S8 0.49
S3, S6, S9 0.49
S4, S7, S10 0.8

K1 1.0
K2, K5, K8 0.5
K3, K6, K9 0.5
K4, K7, K10 0.8

T 1
D 7

Table 8.10: The parameter values for pricing a European basket put option on
10 underlyings.

for grids with different number of segments and results in the values oscillate vio-

lently due to the misalignment with discontinuities (see the solid red line in figure

8.12). The green line in the figure is our approximate option values using our

proposed methodology. We see that even with this many dimensions we can still

observe the suppression of the non-linearity error by utilising our methodology.

In future work, we intend to use parallel computing to further reduce computa-

tional times and to allow for the pricing of more complex derivatives, in higher

dimensions, i.e. American style basket options.

8.6 Conclusion

In this chapter we have presented a canonical least-squares based methodology for

suppressing the non-linearity errors present when pricing options. Our method

is flexible with respect to the type of option to be priced and the underlying

method used to compute that option, which is demonstrated in the numerical

experiments for European, Bermudan, and up to 10 dimension European basket

option. Numerous types of contracts can be accurately valued given an appro-

priate numerical scheme exists to obtain a set of (non-monotonic) prices. The

generic nature of the scheme implies that it would be useful for solving an array

of different financial instruments. An example would be in the solving of weather

basket options.
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Chapter 9

Conclusions

Under the assumptions of mean self-financing portfolios and the standard devia-

tion principle, weather derivatives pricing is investigated. Using an imperfectly

correlated asset, a suitable partial hedge is constructed and is shown to remove a

source of randomness observed in the portfolio. The approach of using correlated

asset as substitutes for the purpose of hedging has been considered in the litera-

ture (as discussed in chapter 5). We assume initially that the expected value of

the portfolio is zero, which consequently eliminates the second residual risk. This

then allows the derivation of a new two-dimensional backward parabolic PDE

which includes the weather index I. Calculation of temperature model parame-

ters are estimated, so that we can adequately model the behaviour of temperature.

Modifications as to how these parameters are calculated are given and justified.

In chapter 6, an investigation of finite-difference for solving advection or convection-

dominated PDEs ruled out application of several standard schemes. Noting the

difficulties in numerically solving these PDEs, we subsequently introduced SLS

and showed it to be the best suited for a PDE of the form (5.29). We speci-

fied weak conditions under which accurate solution can be obtained when using

SLS. We provided a specification of the boundary conditions, and allowed for the

truncation of the computational domain which led to a reduction in unnecessary

computations. Results indicated that for standard put and call options the start-

ing temperature only slightly alters the option’s price, because equation (5.29)

has a mean-reverting drift process.
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An extension to the work in chapter 5 is developed in chapter 7, where the valu-

ation of a weather derivative is viewed from an incomplete markets perspective.

This results in a non-linear two-dimensional PDE which gives rise to option prices

of different values depending on if the option is long or short. This is practically

important, as in the weather derivatives markets there is often a sizeable spread

between the bid and ask prices. The approach is similar to those considered in

actuarial science where a risk premium is added to compensate the investor for

holding undiversifiable risk.

We introduce into this literature the tanh-sinh quadrature scheme in chapter 8,

and demonstrate its superior accuracy when compared to other lattice methods,

such as QUAD using either a Simpson’s or trapezium, or a Crank-Nicolson finite-

difference scheme. The scheme was incorporated into the QUAD method, and

through numerical experiments was shown to exhibit exponential convergence,

and be 250 times faster than Crank-Nicolson method. The second contribution

of this chapter is in the development of a generic methodology which suppresses

the non-linearities that are often found in lattice-based schemes. It was shown

that our approach is easily extended into multiple dimensions and applicable to

various lattice schemes, such as QUAD, finite-difference schemes, and binomial

trees.

9.1 Future work

Several interesting avenues of future research can be extended from this thesis.

An important development would to model more precisely the correlation between

temperature and various commodity contracts. This could be extended to model

the known lag between movements in load versus movements in prices.

The weather option model developed here could be extended to include more

complex dynamic models of the behaviour of temperature. We neglected this

since the estimated temperature model appeared to approximate the temperature

patterns (at London Heathrow).

With regards to the numerical techniques presented in this thesis, a comparison of

the tanh-sinh scheme versus other non-Newton-Côtes quadrature schemes would
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be an interesting area to consider in the future. The Least Square Optimisation

methodology developed in chapter 8 may have applications for valuing previously

intractable basket options, not only in weather derivatives but in other fields.
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Appendix A

Additional mathematical details

A.1 Quadratic Variation

The quadratic variation of a process is an extension of the notion of the total

variation of a function, but rather than summing the absolute values of changes

of a function sampled at a sequence of times, the squares are summed. Suppose

Xt is a stochastic process, with t = 0, 1, 2, . . . then the quadratic variation is the

processes

[X ]t =

t
∑

s=1

(Xs −Xs−1)
2 (A.1)

A.2 Proof for including seasonal variation term

Take

dXt = dθ(t) + κ(t) [θ(t)−Xt] dt+ σ(t)dWt. (A.2)

we wish to prove that the expectation of the process is θ(t). First we introduce

a variable

Zt = e
∫
t

0 κ(s)ds [θ(t)−Xt] , (A.3)
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where we define Z0 = 0. Using Itô’s lemma, we find that

dZt =
∂Z

∂t
dt +

∂Z

∂X
dXt (A.4)

= e
∫
t

0
κ(s)dsdθ

dt
+ κ(t)e

∫
t

0
κ(s)ds [θ(t)−Xt] dt− e

∫
t

0
κ(s)dsXtdXt

= e
∫
t

0
κ(s)dsdθ

dt
+ κ(t)e

∫
t

0
κ(s)ds [θ(t)−Xt] dt

− e
∫
t

0 κ(s)ds [dθ(t) + κ(t) [θ(t)−Xt] dt] + e
∫
t

0 κ(s)dsσ(t)dWt

= −e
∫
t

0 κ(s)dsσ(t)dWt.

Integrating both sides yields,

Zt = Z0 −
∫ t

0

e
∫
t

0 κ(s)dsσ(t)dWt. (A.5)

From the definition of the variable Zt in equation (A.3), we obtain

Xt = θ(t) + e−
∫
t

0
κ(s)ds

∫ t

0

e
∫
t

0
κ(s)dsσ(t)dWt (A.6)

Taking expectations of the previous equation produces

E[Xt] = θ(t) (A.7)

as required (since E[dW ] = 0).

A.3 The strong solution to Dornier/Alaton’s model

With initial condition T0, using the method of variation of parameters and Itô’s

formula, we can derive the solution to (4.4). Let

f(T̂t, t) = T̂te
αt (A.8)

and then differentiate to give,

∂f

∂t
= T̂tαe

αt,
∂f

∂T̂t

= eαt,
∂2f

∂T̂t
2 = 0
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. Using Itô’s Lemma to express df we obtain:

df = T̂tαe
αtdt+ eαtdT̂t

df = eαtdS + αeαtS(t)dt + eαtσtdWt (A.9)

Integrating we obtain,

∫ t

0

df =

∫ t

0

eατdS(τ) +

∫ t

0

αeατS(τ)dτ +

∫ t

0

eατστdWτ , (A.10)

where through evaluation we see reduces to

T̂te
αt − T̂0 = eαt

(

S(t)− S(s)

)

+ S(t)

(

eαt − 1

)

+

∫ t

0

eατστdWτ , (A.11)

which then yields the strong solution to the SDE (4.4)

T̂t =

(

T̂0 − S(t)

)

e−αt) +

(

S(t)− S(0)

)

+ S(t) +

∫ t

0

eα(τ−t)στdWτ . (A.12)

A.4 Fractional Brownian motion

An associated fBm WH is a Gaussian stochastic process that must satisfy the

following properties:

1. the process WH has continuous sample paths with WH
0 = 0,

2. WH
t is a zero-mean Gaussian random variable for t ≥ 0 (i.e. E[WH

t ] = 0),

3. The covariance relation between to stationary increments of the process

WH is defined as:

E[WH
t WH

s ] =
1

2
(t2H + s2H − |t− s|2H), for all t, s ≥ 0, (A.13)

where here E denotes the expectation with respect to probability measure

P.

From observation, when H = 1/2 the FBM reduces to a standard Brownian

motion; if H > 1/2 the Gaussian process models long-range dependence. It ss
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important to note that whenH 6= 1/2 the standard methods of stochastic calculus

are not readily applicable, as by definition the process WH is no longer a semi-

martingale or Markov process. Intuitively this can be understood as implying that

the process now depends on more information in the past than just the present

value, which violates the definition of a Markov process. Brody et al. (2002) use

the results from Duncan et al. (2000) to derive the model of temperature dynamics

using FBM, and similar to Alaton et al. (2002), employ an Ornstein-Uhlenbeck

process to model the evolution of daily temperature, giving

dT̂t = α(θ(t)− T̂t)dt+ σtdW
H
t . (A.14)

Here, the parameters α, θ(t), σt are defined as in equation (4.4), with WH
t being

a FBM.

Using the methods developed in Duncan et al. (2000), the strong solution of

(4.14) yields

X = T̂0Kt +Kt

∫ t

0

αS(τ)K−1
τ dτ +Kt

∫ t

0

στK
−1
τ dWH

τ , (A.15)

with

Kt = exp

(

−
∫ t

0

αdτ

)

. (A.16)

A.5 Linear regression formulas

For a linear regression model, the least square estimates are given by the simple

formulae

α̂ =
SxxSy − SxSxy

NSxx − S2
x

, (A.17)

β̂ =
NSxy − SxSy

NSxx − S2
x

, (A.18)
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where (Press et al., 2002; Jewson et al., 2005)

Sy =
N
∑

i=1

yi , Sx =
N
∑

i=1

xi , (A.19)

Sxx =
N
∑

i=1

x2
i , Sxy =

N
∑

i=1

xiyi , (A.20)

ȳ =
1

N
Sy , x̄ =

1

N
Sx . (A.21)

A.6 Tanh-Sinh in two dimensions

Below shows the formulation of the tanh-sinh quadrature scheme, for an integral

∫ 1

−1

∫ 1

−1

f(x, y)dxdy. (A.22)

Make the change of variable

x = g(t) where g(t) = tanh(
π

2
sinh(t)), (A.23)

y = g(u) where g(u) = tanh(
π

2
sinh(u)). (A.24)

It then follows that we can evaluate the integral using the following equation

∫ 1

−1

∫ 1

−1

f(x, y)dxdy =

∫ ∞

−∞

∫ ∞

−∞

f(g(t), g(u))g
′

(t)g
′

(u)dtdu (A.25)

≈ ∆x∆y

∞
∑

k=−∞

∞
∑

j=−∞

wjwkf(xj , xk), (A.26)

where xj and wj are the 1-D abscissas and weights defined by equations (8.26)

and (8.27) respectively. The other set of absicissas and weights are given by

xk = g(j∆y) = tanh(
π

2
sinh(∆xk)), (A.27)

wk = g′(j∆y) =
π
2
cosh(∆xk)

cosh2(π
2
sinh(∆xj))

. (A.28)

∆x and ∆y are the intervals of integration in x and y.
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A.7 L-p Norms

Two approaches commonly used to minimise the residuals are the l1 or l∞ ap-

proximations. We provide a very brief description of both. Given the set of

residuals

r =













r1

r2
...

rn













(A.29)

we may calculate an l1 solution, which minimises the l1 norm of the residuals

|r|1 =
N
∑

i=1

|ri|. (A.30)

Alternatively an l∞ solution is obtained through minimising the absolutely largest

residual

|r|∞ = max
x∈[a,b]

|ri|. (A.31)

For small values of N the error in the value produced by the numerical technique

will be large; therefore, computation of an l1 solution is necessary. This will be

more crucial when applying the methodology in multiple dimensions where, due

to the curse of dimensionality, few node points can be used. The reader is referred

to Dahlquist and Björck (2003) for more formal specifics and details with regard

to the various norms.
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Table data

B.1 Statistics

Bins Midpoint Abs. Frequency Rel. Frequency Cumul. Rel. Freq. Density
-9,-8 -8.5 3 0.000536 0.000536 0.000536
-8,-7 -7.5 2 0.000357 0.000893 0.000357
-7,-6 -6.5 9 0.001607 0.0025 0.001607
-6,-5 -5.5 40 0.007144 0.009645 0.007144
-5,-4 -4.5 90 0.016074 0.025719 0.016074
-4,-3 -3.5 202 0.036078 0.061797 0.036078
-3,-2 -2.5 406 0.072513 0.13431 0.072513
-2,-1 -1.5 794 0.141811 0.276121 0.141811
-1,0 -0.5 1181 0.210931 0.487051 0.210931
0,1 0.5 1212 0.216467 0.703518 0.216467
1,2 1.5 871 0.155563 0.859082 0.155563
2,3 2.5 446 0.079657 0.938739 0.079657
3,4 3.5 217 0.038757 0.977496 0.038757
4,5 4.5 78 0.013931 0.991427 0.013931
5,6 5.5 37 0.006608 0.998035 0.006608
6,7 6.5 8 0.001429 0.999464 0.001429
7,8 7.5 3 0.000536 1 0.000536

Table B.1: A frequency table of the statistics absolute frequency, relative fre-
quency, cumulative relative frequency, midpoints, and density of the temperature
data observed at London Heathrow from January 1st 1995 to May 30th 2010.
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B.2 Temperature Data
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Date Temperature Date Temperature Date Temperature
01/01/1995 1.22 02/01/1995 0.33 03/01/1995 -0.61
04/01/1995 3.17 05/01/1995 4.17 06/01/1995 4.61
07/01/1995 3.89 08/01/1995 7.83 09/01/1995 6.11
10/01/1995 9.5 11/01/1995 4.06 12/01/1995 2.44
13/01/1995 4.5 14/01/1995 8.39 15/01/1995 9.61
16/01/1995 8.5 17/01/1995 8.89 18/01/1995 5.5
19/01/1995 5.83 20/01/1995 7.22 21/01/1995 6.72
22/01/1995 5.89 23/01/1995 5.61 24/01/1995 6.17
25/01/1995 7.67 26/01/1995 6.39 27/01/1995 4.11
28/01/1995 8.78 29/01/1995 9.39 30/01/1995 4.33
31/01/1995 9 01/02/1995 10.06 02/02/1995 5.5
03/02/1995 9.39 04/02/1995 9.61 05/02/1995 8.22
06/02/1995 10.33 07/02/1995 9.5 08/02/1995 7.11
09/02/1995 4.22 10/02/1995 7.83 11/02/1995 9.61
12/02/1995 9.06 13/02/1995 9.11 14/02/1995 8.22
15/02/1995 9.89 16/02/1995 8 17/02/1995 6.28
18/02/1995 6.67 19/02/1995 8.83 20/02/1995 8.11
21/02/1995 6.61 22/02/1995 6.39 23/02/1995 4.83
24/02/1995 6.39 25/02/1995 6.22 26/02/1995 3.89
27/02/1995 4.94 28/02/1995 10.61 01/03/1995 7.72
02/03/1995 3.22 03/03/1995 2.61 04/03/1995 2.44
05/03/1995 6.06 06/03/1995 4.67 07/03/1995 3.44
08/03/1995 4.17 09/03/1995 5 10/03/1995 8.83
11/03/1995 9.94 12/03/1995 9.33 13/03/1995 4.67
14/03/1995 6.94 15/03/1995 4.22 16/03/1995 6.17
17/03/1995 8.78 18/03/1995 8 19/03/1995 5.5
20/03/1995 5.22 21/03/1995 5.78 22/03/1995 6.61
23/03/1995 8.28 24/03/1995 9.78 25/03/1995 10.56
26/03/1995 9.72 27/03/1995 5.44 28/03/1995 4.17
29/03/1995 4.83 30/03/1995 6.61 31/03/1995 12.06
01/04/1995 13.44 02/04/1995 11.78 03/04/1995 11.78
04/04/1995 11.5 05/04/1995 11.89 06/04/1995 14.33
07/04/1995 13.06 08/04/1995 8.61 09/04/1995 8.83
10/04/1995 12.17 11/04/1995 12.61 12/04/1995 11.28
13/04/1995 10.5 14/04/1995 12.56 15/04/1995 10.56
16/04/1995 9.33 17/04/1995 10.61 18/04/1995 8.61
19/04/1995 5.11 20/04/1995 6.06 21/04/1995 7.28
22/04/1995 8.61 23/04/1995 10.61 24/04/1995 9.22
25/04/1995 13.39 26/04/1995 8.44 27/04/1995 8
28/04/1995 8.39 29/04/1995 9.67 30/04/1995 11.89
01/05/1995 13.33 02/05/1995 16.56 03/05/1995 17.94
04/05/1995 19 05/05/1995 19.72 06/05/1995 19.89
07/05/1995 19.94 08/05/1995 13.89 09/05/1995 11.44
10/05/1995 10.67 11/05/1995 8.56 12/05/1995 7.67
13/05/1995 7.72 14/05/1995 9.06 15/05/1995 10.22
16/05/1995 10.72 17/05/1995 8.83 18/05/1995 9.39
19/05/1995 11 20/05/1995 11.17 21/05/1995 12.28
22/05/1995 13.78 23/05/1995 16.11 24/05/1995 14.83
25/05/1995 14.89 26/05/1995 15.17 27/05/1995 16.17
28/05/1995 16.44 29/05/1995 14.61 30/05/1995 13.33
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Date Temperature Date Temperature Date Temperature
31/05/1995 15.06 01/06/1995 13.72 02/06/1995 15.06
03/06/1995 13.61 04/06/1995 13.67 05/06/1995 14.61
06/06/1995 15.11 07/06/1995 15.44 08/06/1995 12.39
09/06/1995 12.33 10/06/1995 12.06 11/06/1995 12.67
12/06/1995 11.28 13/06/1995 11.17 14/06/1995 13
15/06/1995 13.67 16/06/1995 14.83 17/06/1995 13.72
18/06/1995 16.94 19/06/1995 17.78 20/06/1995 18.89
21/06/1995 18.11 22/06/1995 17.72 23/06/1995 15.72
24/06/1995 13.89 25/06/1995 17.06 26/06/1995 17.5
27/06/1995 18.44 28/06/1995 21.39 29/06/1995 21.94
30/06/1995 22.89 01/07/1995 17.06 02/07/1995 15.33
03/07/1995 15.78 04/07/1995 17.44 05/07/1995 19.56
06/07/1995 18.94 07/07/1995 20.11 08/07/1995 21.17
09/07/1995 21.44 10/07/1995 22.61 11/07/1995 23.06
12/07/1995 21.11 13/07/1995 19.94 14/07/1995 19.61
15/07/1995 18.22 16/07/1995 18.56 17/07/1995 18.56
18/07/1995 21.22 19/07/1995 22.83 20/07/1995 24.28
21/07/1995 23.17 22/07/1995 18.5 23/07/1995 19.17
24/07/1995 20.78 25/07/1995 22.11 26/07/1995 21.72
27/07/1995 20.5 28/07/1995 21.44 29/07/1995 23.67
30/07/1995 23.17 31/07/1995 25.44 01/08/1995 26.67
02/08/1995 26.56 03/08/1995 25.44 04/08/1995 20.78
05/08/1995 20.17 06/08/1995 20.22 07/08/1995 18.5
08/08/1995 17.61 09/08/1995 18.5 10/08/1995 21.56
11/08/1995 24.39 12/08/1995 23.78 13/08/1995 21.44
14/08/1995 20.22 15/08/1995 22.61 16/08/1995 24.17
17/08/1995 22.22 18/08/1995 22.83 19/08/1995 23.22
20/08/1995 23.44 21/08/1995 23.06 22/08/1995 22.56
23/08/1995 19.83 24/08/1995 18.61 25/08/1995 20.67
26/08/1995 19.56 27/08/1995 17.39 28/08/1995 15.22
29/08/1995 14.94 30/08/1995 17 31/08/1995 18
01/09/1995 17.33 02/09/1995 16.33 03/09/1995 14.5
04/09/1995 15.39 05/09/1995 14.33 06/09/1995 15.33
07/09/1995 17.11 08/09/1995 17 09/09/1995 16.83
10/09/1995 15.22 11/09/1995 16.33 12/09/1995 14.44
13/09/1995 13.78 14/09/1995 14.06 15/09/1995 14.06
16/09/1995 14.17 17/09/1995 15.28 18/09/1995 15.94
19/09/1995 16.28 20/09/1995 13.78 21/09/1995 13.5
22/09/1995 15.39 23/09/1995 14.94 24/09/1995 12.67
25/09/1995 12.11 26/09/1995 15.33 27/09/1995 12.5
28/09/1995 9.33 29/09/1995 10.83 30/09/1995 11.89
01/10/1995 15.83 02/10/1995 14.17 03/10/1995 14.94
04/10/1995 15.78 05/10/1995 13.72 06/10/1995 14.61
07/10/1995 17.11 08/10/1995 18.28 09/10/1995 18.28
10/10/1995 16.33 11/10/1995 16.33 12/10/1995 16.78
13/10/1995 16.33 14/10/1995 16.11 15/10/1995 15.78
16/10/1995 15 17/10/1995 15.89 18/10/1995 12.44
19/10/1995 12.28 20/10/1995 11.89 21/10/1995 10.22
22/10/1995 11.5 23/10/1995 11.44 24/10/1995 16.33
25/10/1995 13.39 26/10/1995 15.11 27/10/1995 13.5
28/10/1995 7.89 29/10/1995 10.06 30/10/1995 10.5
31/10/1995 9.67 01/11/1995 9.17 02/11/1995 7.83
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Date Temperature Date Temperature Date” Temperature
03/11/1995 7.83 04/11/1995 6.28 05/11/1995 4.72
06/11/1995 4.89 07/11/1995 6.72 08/11/1995 11.56
09/11/1995 11.83 10/11/1995 9.89 11/11/1995 12.39
12/11/1995 13.17 13/11/1995 11.94 14/11/1995 10.39
15/11/1995 11.39 16/11/1995 8.78 17/11/1995 2.94
18/11/1995 2.17 19/11/1995 5.17 20/11/1995 5.5
21/11/1995 9.56 22/11/1995 10.17 23/11/1995 9.22
24/11/1995 11.78 25/11/1995 11.78 26/11/1995 9.56
27/11/1995 9.22 28/11/1995 8.67 29/11/1995 9
30/11/1995 5.72 01/12/1995 8.28 02/12/1995 11.61
03/12/1995 11.22 04/12/1995 6.89 05/12/1995 1.72
06/12/1995 0 07/12/1995 0.5 08/12/1995 2
09/12/1995 1.22 10/12/1995 -0.33 11/12/1995 3.78
12/12/1995 5.72 13/12/1995 6.22 14/12/1995 4.44
15/12/1995 2.67 16/12/1995 4.44 17/12/1995 4.72
18/12/1995 4.56 19/12/1995 5.28 20/12/1995 3.44
21/12/1995 2.83 22/12/1995 10.67 23/12/1995 6.17
24/12/1995 3.78 25/12/1995 0.67 26/12/1995 -1
27/12/1995 -0.67 28/12/1995 -2.22 29/12/1995 -1.5
30/12/1995 -0.5 31/12/1995 2.61 01/01/1996 4.17
02/01/1996 5.94 03/01/1996 4.78 04/01/1996 5.56
05/01/1996 7.22 06/01/1996 7.11 07/01/1996 9.56
08/01/1996 9.89 09/01/1996 9.78 10/01/1996 9
11/01/1996 8.44 12/01/1996 10.61 13/01/1996 10.72
14/01/1996 9.28 15/01/1996 7.33 16/01/1996 6.5
17/01/1996 7 18/01/1996 5.06 19/01/1996 6.67
20/01/1996 3.94 21/01/1996 2.67 22/01/1996 4.67
23/01/1996 3.61 24/01/1996 3.28 25/01/1996 -0.5
26/01/1996 -2.72 27/01/1996 -2.72 28/01/1996 1.5
29/01/1996 0.89 30/01/1996 2.33 31/01/1996 2.5
01/02/1996 0.67 02/02/1996 1.44 03/02/1996 1.78
04/02/1996 1.72 05/02/1996 -0.28 06/02/1996 -0.28
07/02/1996 -0.22 08/02/1996 1.33 09/02/1996 4.06
10/02/1996 6.67 11/02/1996 7.06 12/02/1996 5.11
13/02/1996 4.61 14/02/1996 3.56 15/02/1996 2.56
16/02/1996 7.83 17/02/1996 8.06 18/02/1996 6.67
19/02/1996 1.39 20/02/1996 -0.28 21/02/1996 -0.11
22/02/1996 1.17 23/02/1996 5.17 24/02/1996 7.83
25/02/1996 6.22 26/02/1996 4.83 27/02/1996 4.89
28/02/1996 4.28 29/02/1996 5.22 01/03/1996 5.89
02/03/1996 6 03/03/1996 6.56 04/03/1996 6.28
05/03/1996 6.22 06/03/1996 6.11 07/03/1996 3.61
08/03/1996 4.44 09/03/1996 3.89 10/03/1996 5.5
11/03/1996 1.44 12/03/1996 1.56 13/03/1996 0.94
14/03/1996 2.22 15/03/1996 5.5 16/03/1996 5.61
17/03/1996 5.78 18/03/1996 6.33 19/03/1996 4.94
20/03/1996 3.56 21/03/1996 7.33 22/03/1996 8.06
23/03/1996 11.28 24/03/1996 8.17 25/03/1996 7.78
26/03/1996 4.78 27/03/1996 3.28 28/03/1996 4.17
29/03/1996 5.56 30/03/1996 4.28 31/03/1996 5.06
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Date Temperature Date Temperature Date” Temperature
01/04/1996 3.94 02/04/1996 4.11 03/04/1996 3.78
04/04/1996 5.22 05/04/1996 6.89 06/04/1996 6.39
07/04/1996 8.17 08/04/1996 10.06 09/04/1996 11.5
10/04/1996 9.72 11/04/1996 10.72 12/04/1996 5.33
13/04/1996 6.17 14/04/1996 7.78 15/04/1996 11.78
16/04/1996 13.61 17/04/1996 12.17 18/04/1996 10.78
19/04/1996 11.67 20/04/1996 15 21/04/1996 16.06
22/04/1996 10.28 23/04/1996 10.39 24/04/1996 10.83
25/04/1996 11.33 26/04/1996 13.5 27/04/1996 14.44
28/04/1996 11.72 29/04/1996 8.67 30/04/1996 8.78
01/05/1996 10.56 02/05/1996 8.72 03/05/1996 7.78
04/05/1996 7.11 05/05/1996 7.83 06/05/1996 9.17
07/05/1996 9.28 08/05/1996 7.94 09/05/1996 7.61
10/05/1996 7.17 11/05/1996 7.72 12/05/1996 10.78
13/05/1996 11.61 14/05/1996 11.11 15/05/1996 10.33
16/05/1996 6.39 17/05/1996 6.61 18/05/1996 6.39
19/05/1996 8.83 20/05/1996 10.5 21/05/1996 11.67
22/05/1996 11.17 23/05/1996 13.33 24/05/1996 12.56
25/05/1996 12.72 26/05/1996 11.44 27/05/1996 12.5
28/05/1996 11.72 29/05/1996 16.11 30/05/1996 19.61
31/05/1996 15.78 01/06/1996 13.83 02/06/1996 13.5
03/06/1996 13.61 04/06/1996 16.72 05/06/1996 20.28
06/06/1996 23.06 07/06/1996 25.28 08/06/1996 18.11
09/06/1996 17.39 10/06/1996 17.39 11/06/1996 17.11
12/06/1996 17 13/06/1996 16.22 14/06/1996 15.78
15/06/1996 16.72 16/06/1996 18.89 17/06/1996 21.06
18/06/1996 17.44 19/06/1996 17.28 20/06/1996 12.94
21/06/1996 13.72 22/06/1996 13.83 23/06/1996 15.39
24/06/1996 16.33 25/06/1996 19.06 26/06/1996 19.11
27/06/1996 19.17 28/06/1996 16.56 29/06/1996 14.5
30/06/1996 16.56 01/07/1996 14.39 02/07/1996 15.28
03/07/1996 15.17 04/07/1996 15.83 05/07/1996 14.06
06/07/1996 13.28 07/07/1996 14.94 08/07/1996 15.33
09/07/1996 16.28 10/07/1996 19.22 11/07/1996 19.83
12/07/1996 18.83 13/07/1996 20.06 14/07/1996 20.78
15/07/1996 18.78 16/07/1996 16 17/07/1996 17.17
18/07/1996 19.78 19/07/1996 19.17 20/07/1996 21.11
21/07/1996 22.89 22/07/1996 24.39 23/07/1996 22.28
24/07/1996 17.17 25/07/1996 19 26/07/1996 21.83
27/07/1996 19.39 28/07/1996 19.17 29/07/1996 19.33
30/07/1996 18.44 31/07/1996 19.06 01/08/1996 17.61
02/08/1996 16.67 03/08/1996 18.11 04/08/1996 19
05/08/1996 21.28 06/08/1996 18.44 07/08/1996 17.5
08/08/1996 17.56 09/08/1996 17.78 10/08/1996 18.61
11/08/1996 16.56 12/08/1996 17.11 13/08/1996 18.28
14/08/1996 18.22 15/08/1996 17.33 16/08/1996 20.39
17/08/1996 20.72 18/08/1996 23 19/08/1996 23.94
20/08/1996 20.67 21/08/1996 18.83 22/08/1996 17.72
23/08/1996 17.06 24/08/1996 16.17 25/08/1996 16.22
26/08/1996 15.56 27/08/1996 15.06 28/08/1996 15.11
29/08/1996 15.11 30/08/1996 14.89 31/08/1996 14.06
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Date Temperature Date Temperature Date” Temperature
01/09/1996 16.11 02/09/1996 18.11 03/09/1996 17.67
04/09/1996 16.22 05/09/1996 17.28 06/09/1996 15.78
07/09/1996 15.78 08/09/1996 15.5 09/09/1996 14.83
10/09/1996 14.28 11/09/1996 14.17 12/09/1996 14.83
13/09/1996 12.83 14/09/1996 13 15/09/1996 15.06
16/09/1996 15.5 17/09/1996 14.56 18/09/1996 13.06
19/09/1996 12.22 20/09/1996 13.33 21/09/1996 13.61
22/09/1996 12.5 23/09/1996 12.33 24/09/1996 12.11
25/09/1996 15.33 26/09/1996 14.17 27/09/1996 15.06
28/09/1996 14.94 29/09/1996 16.83 30/09/1996 13.28
01/10/1996 12.06 02/10/1996 11.56 03/10/1996 13.22
04/10/1996 11 05/10/1996 10.44 06/10/1996 10.44
07/10/1996 13.78 08/10/1996 14.78 09/10/1996 12.72
10/10/1996 12.33 11/10/1996 11.11 12/10/1996 12.89
13/10/1996 15.33 14/10/1996 15.56 15/10/1996 12.61
16/10/1996 11 17/10/1996 10.11 18/10/1996 11.78
19/10/1996 12.78 20/10/1996 15.17 21/10/1996 14
22/10/1996 13.28 23/10/1996 13.89 24/10/1996 14.33
25/10/1996 14.5 26/10/1996 11.61 27/10/1996 14.72
28/10/1996 14.22 29/10/1996 10.89 30/10/1996 8.72
31/10/1996 12.28 01/11/1996 13.39 02/11/1996 15.89
03/11/1996 15 04/11/1996 13.44 05/11/1996 10.89
06/11/1996 12.83 07/11/1996 9.67 08/11/1996 6.61
09/11/1996 8.28 10/11/1996 5.17 11/11/1996 3.67
12/11/1996 7.33 13/11/1996 5.33 14/11/1996 3.83
15/11/1996 5.5 16/11/1996 3.67 17/11/1996 6.56
18/11/1996 3.61 19/11/1996 3.89 20/11/1996 5.06
21/11/1996 2.39 22/11/1996 3.11 23/11/1996 2.89
24/11/1996 4.11 25/11/1996 8.33 26/11/1996 5.44
27/11/1996 3.56 28/11/1996 1.5 29/11/1996 8.28
30/11/1996 7.39 01/12/1996 7.89 02/12/1996 6.72
03/12/1996 8.78 04/12/1996 5.94 05/12/1996 3.72
06/12/1996 3.33 07/12/1996 4.67 08/12/1996 4.72
09/12/1996 3.89 10/12/1996 4 11/12/1996 4.28
12/12/1996 3.11 13/12/1996 3.56 14/12/1996 1.22
15/12/1996 7.17 16/12/1996 6.72 17/12/1996 6.33
18/12/1996 8.89 19/12/1996 8.11 20/12/1996 6.11
21/12/1996 3.17 22/12/1996 3.72 23/12/1996 2.33
24/12/1996 0.5 25/12/1996 2.11 26/12/1996 -0.56
27/12/1996 0.83 28/12/1996 0.72 29/12/1996 0.39
30/12/1996 2 31/12/1996 -1.67 01/01/1997 -2.78
02/01/1997 -2.94 03/01/1997 -1.89 04/01/1997 0.39
05/01/1997 1.22 06/01/1997 1.61 07/01/1997 -0.83
08/01/1997 -1.28 09/01/1997 -0.17 10/01/1997 -0.06
11/01/1997 2.17 12/01/1997 6.89 13/01/1997 6.83
14/01/1997 2.94 15/01/1997 0.22 16/01/1997 2.94
17/01/1997 5.89 18/01/1997 6.39 19/01/1997 4.83
20/01/1997 5.28 21/01/1997 3.56 22/01/1997 5.78
23/01/1997 7 24/01/1997 5.78 25/01/1997 5
26/01/1997 3.11 27/01/1997 4.11 28/01/1997 4.83
29/01/1997 5.17 30/01/1997 4.28 31/01/1997 4.44
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Appendix B. Table data

Date Temperature Date Temperature Date” Temperature
01/02/1997 4.89 02/02/1997 4.94 03/02/1997 3.44
04/02/1997 8.56 05/02/1997 6.67 06/02/1997 8.39
07/02/1997 9.06 08/02/1997 3.56 09/02/1997 8.89
10/02/1997 8.44 11/02/1997 7.5 12/02/1997 11.11
13/02/1997 6.56 14/02/1997 4.17 15/02/1997 5.28
16/02/1997 5.83 17/02/1997 8.83 18/02/1997 7.22
19/02/1997 6.89 20/02/1997 9 21/02/1997 10.72
22/02/1997 9.89 23/02/1997 10.78 24/02/1997 8.78
25/02/1997 10.33 26/02/1997 8.17 27/02/1997 7.5
28/02/1997 9.61 01/03/1997 8.89 02/03/1997 10.44
03/03/1997 6.44 04/03/1997 8.17 05/03/1997 9.33
06/03/1997 8.11 07/03/1997 9.67 08/03/1997 9.83
09/03/1997 9.11 10/03/1997 8.94 11/03/1997 9.39
12/03/1997 9.11 13/03/1997 10.06 14/03/1997 11.39
15/03/1997 12.5 16/03/1997 11.5 17/03/1997 10.56
18/03/1997 9.94 19/03/1997 9.72 20/03/1997 8.72
21/03/1997 8.61 22/03/1997 7.11 23/03/1997 9.83
24/03/1997 8.22 25/03/1997 9.56 26/03/1997 11.22
27/03/1997 11.33 28/03/1997 8.78 29/03/1997 8.28
30/03/1997 9 31/03/1997 10 01/04/1997 10.56
02/04/1997 10.83 03/04/1997 10.17 04/04/1997 8.67
05/04/1997 12.5 06/04/1997 10.28 07/04/1997 8.39
08/04/1997 9.94 09/04/1997 12.44 10/04/1997 13.44
11/04/1997 9.61 12/04/1997 7.67 13/04/1997 11.39
14/04/1997 10.83 15/04/1997 9.39 16/04/1997 9
17/04/1997 9.83 18/04/1997 8.06 19/04/1997 7.28
20/04/1997 5.72 21/04/1997 7.17 22/04/1997 8.72
23/04/1997 10.33 24/04/1997 11 25/04/1997 9.22
26/04/1997 10.5 27/04/1997 13.28 28/04/1997 14.39
29/04/1997 13.83 30/04/1997 13.83 01/05/1997 15.78
02/05/1997 18.17 03/05/1997 17.17 04/05/1997 14.89
05/05/1997 13.5 06/05/1997 6.11 07/05/1997 6.33
08/05/1997 8.83 09/05/1997 9.5 10/05/1997 11.17
11/05/1997 11.89 12/05/1997 11 13/05/1997 12.56
14/05/1997 13.39 15/05/1997 12.89 16/05/1997 15.78
17/05/1997 18.78 18/05/1997 16.83 19/05/1997 14.83
20/05/1997 12.89 21/05/1997 12 22/05/1997 11.44
23/05/1997 11.33 24/05/1997 10.89 25/05/1997 12.61
26/05/1997 15.72 27/05/1997 15 28/05/1997 11.78
29/05/1997 15.61 30/05/1997 17.56 31/05/1997 17.17
01/06/1997 15.56 02/06/1997 17.06 03/06/1997 16.39
04/06/1997 15.56 05/06/1997 18.72 06/06/1997 19.39
07/06/1997 19.28 08/06/1997 17.33 09/06/1997 16.56
10/06/1997 19.5 11/06/1997 19.11 12/06/1997 16.78
13/06/1997 17.83 14/06/1997 14.78 15/06/1997 14.94
16/06/1997 15.44 17/06/1997 15.67 18/06/1997 16.22
19/06/1997 13.17 20/06/1997 12.67 21/06/1997 13.89
22/06/1997 13.61 23/06/1997 15.56 24/06/1997 14.56
25/06/1997 13.61 26/06/1997 14.11 27/06/1997 12.56
28/06/1997 13 29/06/1997 15.28 30/06/1997 13.61
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Appendix B. Table data

Date Temperature Date Temperature Date” Temperature
01/07/1997 14.33 02/07/1997 13.89 03/07/1997 13.61
04/07/1997 14.83 05/07/1997 16.89 06/07/1997 19
07/07/1997 21.17 08/07/1997 20.22 09/07/1997 20.83
10/07/1997 17.61 11/07/1997 18.06 12/07/1997 18.5
13/07/1997 19.22 14/07/1997 18.39 15/07/1997 19.39
16/07/1997 18.39 17/07/1997 16.67 18/07/1997 16.11
19/07/1997 19.06 20/07/1997 19.61 21/07/1997 20.22
22/07/1997 21 23/07/1997 21.72 24/07/1997 19.5
25/07/1997 18.89 26/07/1997 17.56 27/07/1997 19.78
28/07/1997 19.72 29/07/1997 21.17 30/07/1997 19.17
31/07/1997 15.5 01/08/1997 19 02/08/1997 19.11
03/08/1997 17.78 04/08/1997 18.44 05/08/1997 19.06
06/08/1997 19.39 07/08/1997 22.17 08/08/1997 24.11
09/08/1997 23.28 10/08/1997 24.72 11/08/1997 24.78
12/08/1997 23.72 13/08/1997 22.61 14/08/1997 20.78
15/08/1997 22.06 16/08/1997 22.89 17/08/1997 21.56
18/08/1997 23.56 19/08/1997 24.22 20/08/1997 23.5
21/08/1997 21.94 22/08/1997 21.83 23/08/1997 22.17
24/08/1997 21.28 25/08/1997 18.94 26/08/1997 17.33
27/08/1997 16.72 28/08/1997 15.5 29/08/1997 16.83
30/08/1997 17.11 31/08/1997 18.61 01/09/1997 18.11
02/09/1997 16.61 03/09/1997 17.17 04/09/1997 17.78
05/09/1997 15.11 06/09/1997 15.17 07/09/1997 17.33
08/09/1997 16.44 09/09/1997 16.83 10/09/1997 15.72
11/09/1997 16.44 12/09/1997 14.67 13/09/1997 12.06
14/09/1997 13 15/09/1997 14.83 16/09/1997 16.56
17/09/1997 16.17 18/09/1997 17.94 19/09/1997 16.56
20/09/1997 15.56 21/09/1997 13.67 22/09/1997 14.39
23/09/1997 14.83 24/09/1997 15.5 25/09/1997 16.67
26/09/1997 16.61 27/09/1997 15.78 28/09/1997 14.72
29/09/1997 17.61 30/09/1997 18.89 01/10/1997 19.56
02/10/1997 15.89 03/10/1997 15 04/10/1997 15.06
05/10/1997 14 06/10/1997 15.22 07/10/1997 13.72
08/10/1997 15.39 09/10/1997 17.33 10/10/1997 14.33
11/10/1997 10.56 12/10/1997 10.11 13/10/1997 8.67
14/10/1997 6.94 15/10/1997 11.94 16/10/1997 13.67
17/10/1997 16.44 18/10/1997 16 19/10/1997 15.22
20/10/1997 12.56 21/10/1997 10 22/10/1997 8.56
23/10/1997 9.11 24/10/1997 8.33 25/10/1997 5.94
26/10/1997 6.28 27/10/1997 8.17 28/10/1997 5.17
29/10/1997 4 30/10/1997 3.83 31/10/1997 5.28
01/11/1997 5 02/11/1997 3.61 03/11/1997 8.06
04/11/1997 8.94 05/11/1997 13.78 06/11/1997 11.89
07/11/1997 10.28 08/11/1997 11.06 09/11/1997 8.33
10/11/1997 8.28 11/11/1997 7.78 12/11/1997 4.78
13/11/1997 4.94 14/11/1997 6.78 15/11/1997 13.72
16/11/1997 15.11 17/11/1997 13.89 18/11/1997 11.83
19/11/1997 11.78 20/11/1997 10.5 21/11/1997 7.61
22/11/1997 7.56 23/11/1997 7.83 24/11/1997 7.72
25/11/1997 7.61 26/11/1997 10.11 27/11/1997 10.06
28/11/1997 11.39 29/11/1997 9.61 30/11/1997 8.06
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Appendix B. Table data

Date Temperature Date Temperature Date” Temperature
01/12/1997 3.78 02/12/1997 2.33 03/12/1997 2.56
04/12/1997 3.5 05/12/1997 2.06 06/12/1997 8.11
07/12/1997 8.67 08/12/1997 10.94 09/12/1997 10.61
10/12/1997 12.83 11/12/1997 11.72 12/12/1997 6.72
13/12/1997 4.83 14/12/1997 6.56 15/12/1997 4.89
16/12/1997 2.11 17/12/1997 1.39 18/12/1997 8.11
19/12/1997 8 20/12/1997 8.83 21/12/1997 5.78
22/12/1997 6.5 23/12/1997 9.5 24/12/1997 12.61
25/12/1997 10.06 26/12/1997 7.78 27/12/1997 5.67
28/12/1997 4.56 29/12/1997 6.22 30/12/1997 9.33
31/12/1997 8 01/01/1998 6.22 02/01/1998 8.28
03/01/1998 8.17 04/01/1998 7 05/01/1998 4.89
06/01/1998 6.17 07/01/1998 8.33 08/01/1998 10.11
09/01/1998 12.61 10/01/1998 9.61 11/01/1998 8.33
12/01/1998 10.78 13/01/1998 9.89 14/01/1998 7.83
15/01/1998 8.89 16/01/1998 7.39 17/01/1998 6.89
18/01/1998 7.5 19/01/1998 5.33 20/01/1998 2.33
21/01/1998 3.33 22/01/1998 4 23/01/1998 1.94
24/01/1998 4.39 25/01/1998 3.5 26/01/1998 3.44
27/01/1998 2.94 28/01/1998 2.78 29/01/1998 4.44
30/01/1998 4.56 31/01/1998 4.39 01/02/1998 -0.22
02/02/1998 1.83 03/02/1998 2.17 04/02/1998 3.44
05/02/1998 6.17 06/02/1998 7.94 07/02/1998 6.11
08/02/1998 6.22 09/02/1998 8.17 10/02/1998 9.56
11/02/1998 10.56 12/02/1998 10.83 13/02/1998 12.83
14/02/1998 10.22 15/02/1998 9.78 16/02/1998 10.89
17/02/1998 9 18/02/1998 6.89 19/02/1998 10.06
20/02/1998 10.94 21/02/1998 10.28 22/02/1998 6.61
23/02/1998 7.06 24/02/1998 8.83 25/02/1998 8.39
26/02/1998 7.83 27/02/1998 8.89 28/02/1998 5.33
01/03/1998 6.28 02/03/1998 8.78 03/03/1998 12.39
04/03/1998 9.94 05/03/1998 7.44 06/03/1998 10.39
07/03/1998 10.78 08/03/1998 7.56 09/03/1998 4.44
10/03/1998 4.94 11/03/1998 7.5 12/03/1998 5.22
13/03/1998 8.78 14/03/1998 7.44 15/03/1998 9.72
16/03/1998 9.44 17/03/1998 10.28 18/03/1998 10.44
19/03/1998 8.44 20/03/1998 8.72 21/03/1998 9.44
22/03/1998 8.67 23/03/1998 6.67 24/03/1998 5.78
25/03/1998 6.83 26/03/1998 10.33 27/03/1998 12.22
28/03/1998 12 29/03/1998 14.17 30/03/1998 13
31/03/1998 10 01/04/1998 10 02/04/1998 10.94
03/04/1998 10.89 04/04/1998 10.89 05/04/1998 10.06
06/04/1998 9.89 07/04/1998 9 08/04/1998 8.06
09/04/1998 7.67 10/04/1998 5.61 11/04/1998 5.89
12/04/1998 4.17 13/04/1998 3.78 14/04/1998 4.56
15/04/1998 3.17 16/04/1998 5 17/04/1998 6.33
18/04/1998 6.17 19/04/1998 8.78 20/04/1998 10.06
21/04/1998 10.11 22/04/1998 15.33 23/04/1998 11.78
24/04/1998 11.83 25/04/1998 11.72 26/04/1998 10.33
27/04/1998 9.11 28/04/1998 9.44 29/04/1998 11.61
30/04/1998 10.56 01/05/1998 8.89 02/05/1998 10.78
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Appendix B. Table data

Date Temperature Date Temperature Date” Temperature
03/05/1998 9.11 04/05/1998 10 05/05/1998 11.28
06/05/1998 13.22 07/05/1998 13.17 08/05/1998 16
09/05/1998 17.78 10/05/1998 16.94 11/05/1998 15.56
12/05/1998 15.33 13/05/1998 17.89 14/05/1998 19.78
15/05/1998 18.72 16/05/1998 17.22 17/05/1998 15.89
18/05/1998 16.11 19/05/1998 17.39 20/05/1998 18.67
21/05/1998 15.56 22/05/1998 13.22 23/05/1998 13.78
24/05/1998 14.44 25/05/1998 14.44 26/05/1998 12.44
27/05/1998 9.44 28/05/1998 12.67 29/05/1998 14.78
30/05/1998 16.11 31/05/1998 15.5 01/06/1998 15.28
02/06/1998 15.5 03/06/1998 14.89 04/06/1998 13.22
05/06/1998 14.28 06/06/1998 17.61 07/06/1998 15.56
08/06/1998 14.39 09/06/1998 16.61 10/06/1998 13.72
11/06/1998 10.5 12/06/1998 12.17 13/06/1998 12.5
14/06/1998 14.11 15/06/1998 13.72 16/06/1998 14.83
17/06/1998 13.78 18/06/1998 15.56 19/06/1998 19.39
20/06/1998 22.11 21/06/1998 20.5 22/06/1998 16.44
23/06/1998 16.44 24/06/1998 18.22 25/06/1998 15.61
26/06/1998 14.67 27/06/1998 15.17 28/06/1998 16.22
29/06/1998 14.89 30/06/1998 16.22 01/07/1998 16.17
02/07/1998 14.06 03/07/1998 15 04/07/1998 15.78
05/07/1998 18.11 06/07/1998 16.83 07/07/1998 16.17
08/07/1998 15.78 09/07/1998 18.11 10/07/1998 17.83
11/07/1998 15.89 12/07/1998 17.22 13/07/1998 15.39
14/07/1998 15.39 15/07/1998 16 16/07/1998 17.06
17/07/1998 16.94 18/07/1998 16.61 19/07/1998 18
20/07/1998 20 21/07/1998 17.83 22/07/1998 17.39
23/07/1998 18.11 24/07/1998 17.06 25/07/1998 17.56
26/07/1998 16.61 27/07/1998 17.11 28/07/1998 17.06
29/07/1998 17.39 30/07/1998 16.72 31/07/1998 17.06
01/08/1998 15.89 02/08/1998 16.17 03/08/1998 15.72
04/08/1998 18.56 05/08/1998 19.39 06/08/1998 19
07/08/1998 20.22 08/08/1998 22.17 09/08/1998 20.44
10/08/1998 22.94 11/08/1998 23.5 12/08/1998 18.94
13/08/1998 16.89 14/08/1998 19.89 15/08/1998 18.61
16/08/1998 20.61 17/08/1998 19.17 18/08/1998 18.44
19/08/1998 18.11 20/08/1998 17.22 21/08/1998 18.78
22/08/1998 16 23/08/1998 14.61 24/08/1998 15.28
25/08/1998 15.89 26/08/1998 15.56 27/08/1998 14.67
28/08/1998 14.44 29/08/1998 16.39 30/08/1998 17.39
31/08/1998 16.83 01/09/1998 20 02/09/1998 18.17
03/09/1998 17.72 04/09/1998 16.28 05/09/1998 16.78
06/09/1998 17 07/09/1998 18.89 08/09/1998 18.33
09/09/1998 18.39 10/09/1998 16.44 11/09/1998 14
12/09/1998 10.22 13/09/1998 11.22 14/09/1998 12.89
15/09/1998 13.72 16/09/1998 13.56 17/09/1998 14.06
18/09/1998 16.83 19/09/1998 18.61 20/09/1998 16.56
21/09/1998 17.28 22/09/1998 15.78 23/09/1998 16.06
24/09/1998 16.83 25/09/1998 17.56 26/09/1998 17.28
27/09/1998 15.83 28/09/1998 16.17 29/09/1998 14.89
30/09/1998 15.39 01/10/1998 14.5 02/10/1998 11.67
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Appendix B. Table data

Date Temperature Date Temperature Date” Temperature
03/10/1998 9 04/10/1998 10.06 05/10/1998 9.89
06/10/1998 10.89 07/10/1998 11.22 08/10/1998 10.89
09/10/1998 11.89 10/10/1998 12.5 11/10/1998 13.11
12/10/1998 12.11 13/10/1998 13.44 14/10/1998 15.56
15/10/1998 11.33 16/10/1998 12.56 17/10/1998 11.89
18/10/1998 7.44 19/10/1998 7.94 20/10/1998 9.78
21/10/1998 15.61 22/10/1998 16.56 23/10/1998 15.22
24/10/1998 10.78 25/10/1998 10.44 26/10/1998 8.33
27/10/1998 13.94 28/10/1998 12.61 29/10/1998 9.33
30/10/1998 8.61 31/10/1998 8.28 01/11/1998 7.22
02/11/1998 7.94 03/11/1998 7.83 04/11/1998 4.83
05/11/1998 6.72 06/11/1998 9.22 07/11/1998 9.78
08/11/1998 12.28 09/11/1998 14.17 10/11/1998 9.5
11/11/1998 6.33 12/11/1998 8.67 13/11/1998 7.44
14/11/1998 6.33 15/11/1998 5.94 16/11/1998 3.83
17/11/1998 2.67 18/11/1998 4.17 19/11/1998 5.33
20/11/1998 3.39 21/11/1998 3.22 22/11/1998 2.61
23/11/1998 3.06 24/11/1998 6.33 25/11/1998 5.83
26/11/1998 6.67 27/11/1998 7.89 28/11/1998 9.33
29/11/1998 4.78 30/11/1998 4.83 01/12/1998 4.39
02/12/1998 3.33 03/12/1998 2 04/12/1998 2.94
05/12/1998 1.17 06/12/1998 0.06 07/12/1998 3.11
08/12/1998 8.22 09/12/1998 10 10/12/1998 9.11
11/12/1998 7.72 12/12/1998 12.61 13/12/1998 9.83
14/12/1998 13.28 15/12/1998 11.89 16/12/1998 8.39
17/12/1998 8.06 18/12/1998 9.06 19/12/1998 5.89
20/12/1998 3.06 21/12/1998 0.78 22/12/1998 5.5
23/12/1998 7.83 24/12/1998 8.89 25/12/1998 8.61
26/12/1998 6.5 27/12/1998 5.78 28/12/1998 8.89
29/12/1998 7.56 30/12/1998 7.06 31/12/1998 11.78
01/01/1999 12.33 02/01/1999 12 03/01/1999 6.33
04/01/1999 4.61 05/01/1999 3.33 06/01/1999 1.28
07/01/1999 2.39 08/01/1999 5.22 09/01/1999 6.5
10/01/1999 9.44 11/01/1999 7.89 12/01/1999 5.67
13/01/1999 7.11 14/01/1999 11.33 15/01/1999 11.06
16/01/1999 5.5 17/01/1999 -0.33 18/01/1999 5.44
19/01/1999 8.28 20/01/1999 10.28 21/01/1999 6.06
22/01/1999 5.72 23/01/1999 8.89 24/01/1999 5.17
25/01/1999 4.11 26/01/1999 4.61 27/01/1999 7.61
28/01/1999 7.5 29/01/1999 7.61 30/01/1999 10.61
31/01/1999 8.06 01/02/1999 7.28 02/02/1999 3.17
03/02/1999 1.28 04/02/1999 0.39 05/02/1999 1.17
06/02/1999 1.89 07/02/1999 4.56 08/02/1999 3.83
09/02/1999 2.67 10/02/1999 5.94 11/02/1999 7
12/02/1999 6.67 13/02/1999 10 14/02/1999 11
15/02/1999 7.56 16/02/1999 8 17/02/1999 4.94
18/02/1999 4.56 19/02/1999 4.22 20/02/1999 4.72
21/02/1999 8.89 22/02/1999 8.11 23/02/1999 8.17
24/02/1999 11.83 25/02/1999 11.78 26/02/1999 8.17
27/02/1999 5.72 28/02/1999 4.28 01/03/1999 3.78
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Appendix B. Table data

Date Temperature Date Temperature Date Temperature
02/03/1999 4.33 03/03/1999 5.67 04/03/1999 5.5
05/03/1999 3 06/03/1999 4.89 07/03/1999 10.28
08/03/1999 10.67 09/03/1999 8.39 10/03/1999 9
11/03/1999 9.72 12/03/1999 12.83 13/03/1999 9.67
14/03/1999 7.78 15/03/1999 7.39 16/03/1999 8.5
17/03/1999 7.83 18/03/1999 11.11 19/03/1999 9.78
20/03/1999 9.28 21/03/1999 7.28 22/03/1999 7.83
23/03/1999 9 24/03/1999 11.61 25/03/1999 11.33
26/03/1999 13.78 27/03/1999 14.17 28/03/1999 12.78
29/03/1999 10.39 30/03/1999 12.89 31/03/1999 13.17
01/04/1999 12.83 02/04/1999 10.17 03/04/1999 11.44
04/04/1999 12.44 05/04/1999 10.78 06/04/1999 9.22
07/04/1999 9.39 08/04/1999 6.44 09/04/1999 4.39
10/04/1999 5.5 11/04/1999 5.83 12/04/1999 6.83
13/04/1999 6.67 14/04/1999 6.67 15/04/1999 9.33
16/04/1999 11.44 17/04/1999 10.78 18/04/1999 10.06
19/04/1999 11.72 20/04/1999 11.22 21/04/1999 13.06
22/04/1999 13.78 23/04/1999 12.78 24/04/1999 11.56
25/04/1999 13.06 26/04/1999 14.5 27/04/1999 14.72
28/04/1999 15.22 29/04/1999 13.72 30/04/1999 12.78
01/05/1999 13.67 02/05/1999 12.94 03/05/1999 12.83
04/05/1999 16.22 05/05/1999 14.83 06/05/1999 14.56
07/05/1999 13.5 08/05/1999 12.78 09/05/1999 13.56
10/05/1999 12 11/05/1999 11.78 12/05/1999 11.67
13/05/1999 12.56 14/05/1999 15.72 15/05/1999 16
16/05/1999 14.83 17/05/1999 12.89 18/05/1999 14.83
19/05/1999 14.78 20/05/1999 13.56 21/05/1999 15.28
22/05/1999 19.06 23/05/1999 17.61 24/05/1999 18.39
25/05/1999 13.11 26/05/1999 13.28 27/05/1999 16.72
28/05/1999 15.67 29/05/1999 14.39 30/05/1999 13.94
31/05/1999 11.94 01/06/1999 13.33 02/06/1999 12.72
03/06/1999 12.5 04/06/1999 13.56 05/06/1999 13.83
06/06/1999 14.39 07/06/1999 13.67 08/06/1999 15.44
09/06/1999 17.56 10/06/1999 18.94 11/06/1999 19.89
12/06/1999 17.28 13/06/1999 17.5 14/06/1999 16.78
15/06/1999 16.17 16/06/1999 13.28 17/06/1999 13.89
18/06/1999 16.94 19/06/1999 17.61 20/06/1999 16.89
21/06/1999 18.78 22/06/1999 16.11 23/06/1999 14.39
24/06/1999 15.78 25/06/1999 16.11 26/06/1999 17
27/06/1999 19.89 28/06/1999 19.61 29/06/1999 17.83
30/06/1999 18.5 01/07/1999 19.56 02/07/1999 20.33
03/07/1999 22.11 04/07/1999 20.72 05/07/1999 20
06/07/1999 20.61 07/07/1999 19.39 08/07/1999 18.56
09/07/1999 16 10/07/1999 16.33 11/07/1999 17.56
12/07/1999 20.33 13/07/1999 21.17 14/07/1999 20.44
15/07/1999 19.33 16/07/1999 16.83 17/07/1999 14.67
18/07/1999 18.06 19/07/1999 22.33 20/07/1999 21.78
21/07/1999 17.61 22/07/1999 17 23/07/1999 18.94
24/07/1999 19.89 25/07/1999 22.5 26/07/1999 23.67
27/07/1999 24.28 28/07/1999 24.39 29/07/1999 20.06
30/07/1999 20.83 31/07/1999 20.5 01/08/1999 21.22
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Appendix B. Table data

Date Temperature Date Temperature Date Temperature
02/08/1999 19 03/08/1999 18.06 04/08/1999 17.94
05/08/1999 15.56 06/08/1999 16.11 07/08/1999 17.17
08/08/1999 17.78 09/08/1999 17.22 10/08/1999 15.89
11/08/1999 13.61 12/08/1999 13.83 13/08/1999 14.89
14/08/1999 15.83 15/08/1999 15.28 16/08/1999 14.61
17/08/1999 14.67 18/08/1999 16.89 19/08/1999 16.39
20/08/1999 19.39 21/08/1999 19.17 22/08/1999 17.44
23/08/1999 18.5 24/08/1999 18.72 25/08/1999 18.33
26/08/1999 18.22 27/08/1999 19.11 28/08/1999 20.33
29/08/1999 20.22 30/08/1999 20 31/08/1999 20
01/09/1999 20.17 02/09/1999 18.78 03/09/1999 18
04/09/1999 17.28 05/09/1999 18.11 06/09/1999 21.94
07/09/1999 17.89 08/09/1999 14.5 09/09/1999 13
10/09/1999 12.83 11/09/1999 14.67 12/09/1999 14.89
13/09/1999 15.39 14/09/1999 16.44 15/09/1999 15.33
16/09/1999 15.83 17/09/1999 16.44 18/09/1999 16.67
19/09/1999 16.72 20/09/1999 15.94 21/09/1999 14.33
22/09/1999 15.17 23/09/1999 14.83 24/09/1999 15.72
25/09/1999 14.61 26/09/1999 14.22 27/09/1999 12.61
28/09/1999 10.61 29/09/1999 9.67 30/09/1999 8.61
01/10/1999 8.78 02/10/1999 10.94 03/10/1999 14.44
04/10/1999 15.5 05/10/1999 16.11 06/10/1999 12.67
07/10/1999 9.83 08/10/1999 10.28 09/10/1999 10.56
10/10/1999 12.78 11/10/1999 11.67 12/10/1999 10.67
13/10/1999 9.89 14/10/1999 9.61 15/10/1999 8.89
16/10/1999 10.11 17/10/1999 13.33 18/10/1999 12.67
19/10/1999 11.67 20/10/1999 11.72 21/10/1999 11.11
22/10/1999 10.89 23/10/1999 12.61 24/10/1999 10.72
25/10/1999 14.17 26/10/1999 13 27/10/1999 14.17
28/10/1999 10.56 29/10/1999 10.61 30/10/1999 10.94
31/10/1999 10.5 01/11/1999 8.61 02/11/1999 8
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Appendix B. Table data

Date Temperature Date Temperature Date Temperature
03/11/1999 10.78 04/11/1999 10.44 05/11/1999 9.39
06/11/1999 8.83 07/11/1999 8.11 08/11/1999 8.39
09/11/1999 9.22 10/11/1999 7.5 11/11/1999 5.94
12/11/1999 3.89 13/11/1999 4.17 14/11/1999 4.83
15/11/1999 4.89 16/11/1999 4.72 17/11/1999 5.28
18/11/1999 7.67 19/11/1999 11.61 20/11/1999 12.11
21/11/1999 10.72 22/11/1999 8.72 23/11/1999 11.83
24/11/1999 8.89 25/11/1999 7.17 26/11/1999 10.56
27/11/1999 7.5 28/11/1999 9.06 29/11/1999 4.67
30/11/1999 4 01/12/1999 10.89 02/12/1999 8.94
03/12/1999 8.17 04/12/1999 7.17 05/12/1999 5.94
06/12/1999 10.28 07/12/1999 7.39 08/12/1999 4.17
09/12/1999 2.06 10/12/1999 2.5 11/12/1999 3.83
12/12/1999 8.33 13/12/1999 3.44 14/12/1999 -0.06
15/12/1999 -1.61 16/12/1999 3.67 17/12/1999 8.11
18/12/1999 8.11 19/12/1999 10.78 20/12/1999 5.83
21/12/1999 5.39 22/12/1999 3.22 23/12/1999 2.94
24/12/1999 2.17 25/12/1999 4.11 26/12/1999 5.89
27/12/1999 7.94 28/12/1999 8.5 29/12/1999 9.17
30/12/1999 5.72 31/12/1999 6.5 01/01/2000 8.83
02/01/2000 7.89 03/01/2000 7.28 04/01/2000 2.89
05/01/2000 2.89 06/01/2000 8.11 07/01/2000 7.28
08/01/2000 3.89 09/01/2000 3.56 10/01/2000 4.72
11/01/2000 3.89 12/01/2000 4.56 13/01/2000 5.44
14/01/2000 5.78 15/01/2000 2.11 16/01/2000 5.44
17/01/2000 5 18/01/2000 3.94 19/01/2000 3
20/01/2000 1.11 21/01/2000 2.5 22/01/2000 0.56
23/01/2000 5 24/01/2000 11 25/01/2000 11.44
26/01/2000 11.06 27/01/2000 9.67 28/01/2000 8.17
29/01/2000 6.33 30/01/2000 9.28 31/01/2000 8.78
01/02/2000 10.33 02/02/2000 7.72 03/02/2000 9.28
04/02/2000 7.33 05/02/2000 6.94 06/02/2000 5.28
07/02/2000 7.33 08/02/2000 6.94 09/02/2000 4.89
10/02/2000 6.5 11/02/2000 4.44 12/02/2000 5.33
13/02/2000 8.72 14/02/2000 6.44 15/02/2000 3.89
16/02/2000 6.11 17/02/2000 4.78 18/02/2000 9.5
19/02/2000 9.67 20/02/2000 5.83 21/02/2000 6
22/02/2000 10.56 23/02/2000 7.94 24/02/2000 7.78
25/02/2000 5.67 26/02/2000 6.89 27/02/2000 8.44
28/02/2000 4.17 29/02/2000 5.11 01/03/2000 8.72
02/03/2000 11.39 03/03/2000 12.5 04/03/2000 13.17
05/03/2000 11.28 06/03/2000 10.33 07/03/2000 8.78
08/03/2000 10.17 09/03/2000 9.94 10/03/2000 7.78
11/03/2000 8.94 12/03/2000 9.56 13/03/2000 8.5
14/03/2000 7.22 15/03/2000 7.56 16/03/2000 8.28
17/03/2000 9.17 18/03/2000 10.72 19/03/2000 10.39
20/03/2000 7.44 21/03/2000 6.28 22/03/2000 6.17
23/03/2000 5.56 24/03/2000 5.67 25/03/2000 6.44
26/03/2000 6.94 27/03/2000 7 28/03/2000 10.17
29/03/2000 7.11 30/03/2000 3.22 31/03/2000 5.67
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Appendix B. Table data

Date Temperature Date Temperature Date Temperature
01/04/2000 5.83 02/04/2000 8.17 03/04/2000 9.78
04/04/2000 9.89 05/04/2000 7.83 06/04/2000 5.33
07/04/2000 3.89 08/04/2000 5.56 09/04/2000 6.72
10/04/2000 4.39 11/04/2000 6.83 12/04/2000 8.33
13/04/2000 9.39 14/04/2000 11.17 15/04/2000 12.33
16/04/2000 11.89 17/04/2000 11.44 18/04/2000 9.83
19/04/2000 10.44 20/04/2000 12.06 21/04/2000 11.5
22/04/2000 11.67 23/04/2000 11.72 24/04/2000 13.61
25/04/2000 11.83 26/04/2000 12.06 27/04/2000 10.94
28/04/2000 9.72 29/04/2000 9.78 30/04/2000 13
01/05/2000 16.33 02/05/2000 18.33 03/05/2000 14.56
04/05/2000 17.11 05/05/2000 14.94 06/05/2000 13.39
07/05/2000 14.39 08/05/2000 18.17 09/05/2000 19.67
10/05/2000 21.06 11/05/2000 17.56 12/05/2000 12.44
13/05/2000 11.11 14/05/2000 11.44 15/05/2000 11.17
16/05/2000 11.72 17/05/2000 13.78 18/05/2000 12.78
19/05/2000 12.17 20/05/2000 12.39 21/05/2000 11.11
22/05/2000 10.28 23/05/2000 10.28 24/05/2000 11.89
25/05/2000 12.22 26/05/2000 13.22 27/05/2000 14.17
28/05/2000 15.44 29/05/2000 17.33 30/05/2000 15.44
31/05/2000 13.61 01/06/2000 14.06 02/06/2000 14.78
03/06/2000 17.78 04/06/2000 16.22 05/06/2000 14.33
06/06/2000 15.28 07/06/2000 18.5 08/06/2000 18.06
09/06/2000 17.94 10/06/2000 17.56 11/06/2000 18.17
12/06/2000 20.33 13/06/2000 23.33 14/06/2000 24.5
15/06/2000 18.17 16/06/2000 16.83 17/06/2000 15.39
18/06/2000 15.17 19/06/2000 12.39 20/06/2000 14.44
21/06/2000 15.72 22/06/2000 17.06 23/06/2000 16.72
24/06/2000 16.89 25/06/2000 16.06 26/06/2000 17.11
27/06/2000 17.5 28/06/2000 18.61 29/06/2000 16.28
30/06/2000 15.17 01/07/2000 17.22 02/07/2000 15.33
03/07/2000 14.56 04/07/2000 15.5 05/07/2000 13.28
06/07/2000 12.72 07/07/2000 13.72 08/07/2000 16.17
09/07/2000 14.06 10/07/2000 14.11 11/07/2000 13.94
12/07/2000 16.61 13/07/2000 18.11 14/07/2000 19.28
15/07/2000 19.56 16/07/2000 19.39 17/07/2000 16.67
18/07/2000 15.78 19/07/2000 14.5 20/07/2000 15.83
21/07/2000 18.22 22/07/2000 19.11 23/07/2000 17.44
24/07/2000 18.44 25/07/2000 19.28 26/07/2000 20.44
27/07/2000 19.22 28/07/2000 17.28 29/07/2000 16.28
30/07/2000 17.72 31/07/2000 18.39 01/08/2000 20.39
02/08/2000 20 03/08/2000 19.33 04/08/2000 18.56
05/08/2000 19.89 06/08/2000 19.78 07/08/2000 20.44
08/08/2000 18.83 09/08/2000 19.78 10/08/2000 18.67
11/08/2000 18.67 12/08/2000 17.22 13/08/2000 16.78
14/08/2000 18.28 15/08/2000 17.44 16/08/2000 16
17/08/2000 16.89 18/08/2000 18.22 19/08/2000 19.89
20/08/2000 20.17 21/08/2000 18.72 22/08/2000 16.39
23/08/2000 15.78 24/08/2000 16.22 25/08/2000 16.83
26/08/2000 16.17 27/08/2000 14.94 28/08/2000 15.39
29/08/2000 14 30/08/2000 13.89 31/08/2000 15.5
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Appendix B. Table data

Date Temperature Date Temperature Date Temperature
01/09/2000 16.44 02/09/2000 15.22 03/09/2000 18.28
04/09/2000 18.56 05/09/2000 20.33 06/09/2000 21.61
07/09/2000 18.89 08/09/2000 17.11 09/09/2000 17
10/09/2000 16.22 11/09/2000 15.39 12/09/2000 15.56
13/09/2000 14.44 14/09/2000 13.61 15/09/2000 13.5
16/09/2000 13.61 17/09/2000 18.28 18/09/2000 19.11
19/09/2000 14.89 20/09/2000 13.61 21/09/2000 17.11
22/09/2000 14.72 23/09/2000 14.94 24/09/2000 15.33
25/09/2000 14.61 26/09/2000 13 27/09/2000 12.33
28/09/2000 13.67 29/09/2000 13.83 30/09/2000 11.67
01/10/2000 10.44 02/10/2000 10.94 03/10/2000 12.44
04/10/2000 9.5 05/10/2000 9.39 06/10/2000 9.78
07/10/2000 10.94 08/10/2000 11 09/10/2000 11.44
10/10/2000 12.22 11/10/2000 11.5 12/10/2000 10.33
13/10/2000 13.83 14/10/2000 11.17 15/10/2000 11
16/10/2000 10.78 17/10/2000 11.33 18/10/2000 13.17
19/10/2000 11.56 20/10/2000 12.89 21/10/2000 10.28
22/10/2000 13 23/10/2000 13.11 24/10/2000 10.5
25/10/2000 10.67 26/10/2000 10.11 27/10/2000 9.11
28/10/2000 7.94 29/10/2000 7.61 30/10/2000 6.72
31/10/2000 7.39 01/11/2000 9.22 02/11/2000 8.61
03/11/2000 7.83 04/11/2000 7.83 05/11/2000 7.67
06/11/2000 10.94 07/11/2000 8.56 08/11/2000 5.94
09/11/2000 4.44 10/11/2000 3.33 11/11/2000 8
12/11/2000 4.89 13/11/2000 8.33 14/11/2000 8.33
15/11/2000 4.83 16/11/2000 6.06 17/11/2000 8.89
18/11/2000 6.94 19/11/2000 6.5 20/11/2000 10.06
21/11/2000 8.39 22/11/2000 8.61 23/11/2000 14.11
24/11/2000 12.39 25/11/2000 9.83 26/11/2000 11.83
27/11/2000 10.28 28/11/2000 8.11 29/11/2000 11.56
30/11/2000 12.44 01/12/2000 11.56 02/12/2000 9.83
03/12/2000 10.67 04/12/2000 9.44 05/12/2000 10.5
06/12/2000 13.22 07/12/2000 13.33 08/12/2000 10.22
09/12/2000 6.33 10/12/2000 4.33 11/12/2000 2.44
12/12/2000 3.94 13/12/2000 6.39 14/12/2000 8.5
15/12/2000 8.89 16/12/2000 6.28 17/12/2000 4.83
18/12/2000 4.72 19/12/2000 5.67 20/12/2000 3.94
21/12/2000 1.89 22/12/2000 1.83 23/12/2000 -0.28
24/12/2000 -2.61 25/12/2000 -0.94 26/12/2000 0.89
27/12/2000 9.5 28/12/2000 9.61 29/12/2000 6.89
30/12/2000 8.94 31/12/2000 7 01/01/2001 5.72
02/01/2001 4.61 03/01/2001 4.56 04/01/2001 3.22
05/01/2001 5.17 06/01/2001 4.67 07/01/2001 5.61
08/01/2001 4.28 09/01/2001 4.17 10/01/2001 2.5
11/01/2001 0.67 12/01/2001 0.44 13/01/2001 -0.06
14/01/2001 -0.28 15/01/2001 -0.39 16/01/2001 2
17/01/2001 6.61 18/01/2001 8.89 19/01/2001 8.61
20/01/2001 6 21/01/2001 5.22 22/01/2001 3.78
23/01/2001 2.33 24/01/2001 2.17 25/01/2001 3.67
26/01/2001 4.5 27/01/2001 1.5 28/01/2001 5.89
29/01/2001 7.44 30/01/2001 7.89 31/01/2001 9.17
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Appendix B. Table data

Date Temperature Date Temperature Date Temperature
01/02/2001 10.06 02/02/2001 9.39 03/02/2001 5.67
04/02/2001 3.67 05/02/2001 6.39 06/02/2001 12.28
07/02/2001 9.94 08/02/2001 6 09/02/2001 5.33
10/02/2001 4.72 11/02/2001 5 12/02/2001 4.28
13/02/2001 3.83 14/02/2001 3.33 15/02/2001 4.33
16/02/2001 8.72 17/02/2001 8.39 18/02/2001 5.33
19/02/2001 2.94 20/02/2001 1.83 21/02/2001 3.67
22/02/2001 3.83 23/02/2001 2.89 24/02/2001 1.89
25/02/2001 0.11 26/02/2001 1.56 27/02/2001 2.06
28/02/2001 1.83 01/03/2001 6.78 02/03/2001 11.89
03/03/2001 9 04/03/2001 9.94 05/03/2001 11.56
06/03/2001 11.06 07/03/2001 6.39 08/03/2001 6.72
09/03/2001 7 10/03/2001 7.78 11/03/2001 7.67
12/03/2001 4.28 13/03/2001 3.22 14/03/2001 3.67
15/03/2001 3.22 16/03/2001 4.56 17/03/2001 8.89
18/03/2001 9.61 19/03/2001 8.56 20/03/2001 5.83
21/03/2001 5.06 22/03/2001 6.61 23/03/2001 7.89
24/03/2001 7.67 25/03/2001 8.17 26/03/2001 11.39
27/03/2001 12.17 28/03/2001 13.17 29/03/2001 9.78
30/03/2001 8.39 31/03/2001 8.17 01/04/2001 11
02/04/2001 7.89 03/04/2001 7.83 04/04/2001 11.94
05/04/2001 10.11 06/04/2001 8.78 07/04/2001 9.72
08/04/2001 7.11 09/04/2001 7.22 10/04/2001 9.78
11/04/2001 7.22 12/04/2001 6.72 13/04/2001 5.78
14/04/2001 4.89 15/04/2001 5.67 16/04/2001 6.89
17/04/2001 7.5 18/04/2001 9.22 19/04/2001 8.67
20/04/2001 9.22 21/04/2001 10.06 22/04/2001 10.5
23/04/2001 10.06 24/04/2001 8.61 25/04/2001 10.11
26/04/2001 8.61 27/04/2001 9.5 28/04/2001 11
29/04/2001 9.56 30/04/2001 8.5 01/05/2001 8.39
02/05/2001 10.22 03/05/2001 11.28 04/05/2001 11.83
05/05/2001 16.83 06/05/2001 19.11 07/05/2001 18.17
08/05/2001 17.61 09/05/2001 13.06 10/05/2001 14.22
11/05/2001 12.72 12/05/2001 8.78 13/05/2001 11.61
14/05/2001 12.72 15/05/2001 14.83 16/05/2001 13.83
17/05/2001 14.44 18/05/2001 15.83 19/05/2001 16.72
20/05/2001 14.94 21/05/2001 17.28 22/05/2001 17.22
23/05/2001 19 24/05/2001 17.5 25/05/2001 17.5
26/05/2001 14.83 27/05/2001 14.67 28/05/2001 13.78
29/05/2001 12 30/05/2001 14.56 31/05/2001 15.94
01/06/2001 15.17 02/06/2001 13.11 03/06/2001 11.78
04/06/2001 11.78 05/06/2001 11.5 06/06/2001 13.56
07/06/2001 15.11 08/06/2001 16.61 09/06/2001 15.44
10/06/2001 16.17 11/06/2001 14.89 12/06/2001 13.44
13/06/2001 14.33 14/06/2001 16.83 15/06/2001 17.89
16/06/2001 16.78 17/06/2001 16.44 18/06/2001 17
19/06/2001 20.17 20/06/2001 22.39 21/06/2001 24.28
22/06/2001 19.94 23/06/2001 18.44 24/06/2001 18.56
25/06/2001 19.11 26/06/2001 20.06 27/06/2001 22.72
28/06/2001 23.22 29/06/2001 24.06 30/06/2001 23.56
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Appendix B. Table data

Date Temperature Date Temperature Date Temperature
01/07/2001 21.28 02/07/2001 18.72 03/07/2001 17.83
04/07/2001 16.89 05/07/2001 16.72 06/07/2001 16.61
07/07/2001 16.06 08/07/2001 15.39 09/07/2001 14.61
10/07/2001 15.17 11/07/2001 16.61 12/07/2001 15.44
13/07/2001 16.39 14/07/2001 14.89 15/07/2001 15.61
16/07/2001 18.22 17/07/2001 17.44 18/07/2001 19.5
19/07/2001 18.44 20/07/2001 20.22 21/07/2001 21.44
22/07/2001 23.56 23/07/2001 24.28 24/07/2001 25.33
25/07/2001 23.56 26/07/2001 21.61 27/07/2001 20.56
28/07/2001 17 29/07/2001 17.56 30/07/2001 16.39
31/07/2001 17.56 01/08/2001 18.78 02/08/2001 17.44
03/08/2001 17.06 04/08/2001 14 05/08/2001 15.22
06/08/2001 16.17 07/08/2001 17.94 08/08/2001 20.5
09/08/2001 21.5 10/08/2001 22.94 11/08/2001 18.61
12/08/2001 17.89 13/08/2001 19.06 14/08/2001 18.06
15/08/2001 18.28 16/08/2001 18.22 17/08/2001 20.72
18/08/2001 21.28 19/08/2001 22.78 20/08/2001 23.06
21/08/2001 19.39 22/08/2001 17.67 23/08/2001 17.06
24/08/2001 16.94 25/08/2001 17.22 26/08/2001 14.67
27/08/2001 15.83 28/08/2001 18.28 29/08/2001 16.06
30/08/2001 14.44 31/08/2001 14.67 01/09/2001 16.22
02/09/2001 16.22 03/09/2001 15.61 04/09/2001 12.39
05/09/2001 12.78 06/09/2001 15.39 07/09/2001 15.11
08/09/2001 13 09/09/2001 14.17 10/09/2001 14.22
11/09/2001 13.11 12/09/2001 11.44 13/09/2001 13.11
14/09/2001 13.17 15/09/2001 13.94 16/09/2001 12.72
17/09/2001 12.56 18/09/2001 12.39 19/09/2001 13.22
20/09/2001 12.06 21/09/2001 12.89 22/09/2001 16.44
23/09/2001 17.61 24/09/2001 16.5 25/09/2001 15.5
26/09/2001 16.5 27/09/2001 15.11 28/09/2001 14.72
29/09/2001 14.72 30/09/2001 16.39 01/10/2001 15.22
02/10/2001 13.39 03/10/2001 13 04/10/2001 13.17
05/10/2001 13.33 06/10/2001 15.83 07/10/2001 15.94
08/10/2001 18.06 09/10/2001 16.33 10/10/2001 15.17
11/10/2001 12.56 12/10/2001 14.94 13/10/2001 15.11
14/10/2001 14.17 15/10/2001 15.94 16/10/2001 12
17/10/2001 11.94 18/10/2001 14.94 19/10/2001 13.39
20/10/2001 13.78 21/10/2001 14.67 22/10/2001 13.06
23/10/2001 12.17 24/10/2001 12.06 25/10/2001 15
26/10/2001 11.06 27/10/2001 8.44 28/10/2001 8.78
29/10/2001 7.83 30/10/2001 9.11 31/10/2001 7.89
01/11/2001 11.83 02/11/2001 11.61 03/11/2001 6.28
04/11/2001 3.61 05/11/2001 4.61 06/11/2001 10.17
07/11/2001 9.72 08/11/2001 5.89 09/11/2001 4.17
10/11/2001 4.5 11/11/2001 9.39 12/11/2001 9.5
13/11/2001 8.22 14/11/2001 7.72 15/11/2001 7.56
16/11/2001 10.56 17/11/2001 9.56 18/11/2001 3.89
19/11/2001 10.17 20/11/2001 10.44 21/11/2001 4.72
22/11/2001 5.67 23/11/2001 6.78 24/11/2001 12.44
25/11/2001 13.94 26/11/2001 10.5 27/11/2001 4.89
28/11/2001 7.06 29/11/2001 9.33 30/11/2001 9.44
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Appendix B. Table data

Date Temperature Date Temperature Date Temperature
01/12/2001 6.5 02/12/2001 7.44 03/12/2001 3.94
04/12/2001 4.11 05/12/2001 4.5 06/12/2001 3
07/12/2001 5.5 08/12/2001 6.56 09/12/2001 1.94
10/12/2001 2.56 11/12/2001 4.33 12/12/2001 3.61
13/12/2001 4.39 14/12/2001 2.89 15/12/2001 2.56
16/12/2001 4.33 17/12/2001 0.94 18/12/2001 0.06
19/12/2001 6.5 20/12/2001 4.94 21/12/2001 0.78
22/12/2001 5.94 23/12/2001 6.5 24/12/2001 1.28
25/12/2001 1.44 26/12/2001 0.17 27/12/2001 -1.28
28/12/2001 -0.11 29/12/2001 0.11 30/12/2001 0
31/12/2001 7.22 01/01/2002 7.22 02/01/2002 5.06
03/01/2002 3.83 04/01/2002 3.56 05/01/2002 5.83
06/01/2002 2.56 07/01/2002 6.06 08/01/2002 9.44
09/01/2002 9.78 10/01/2002 7.33 11/01/2002 5.17
12/01/2002 8.39 13/01/2002 5.06 14/01/2002 7.67
15/01/2002 10.61 16/01/2002 11.33 17/01/2002 9.06
18/01/2002 9.83 19/01/2002 8.83 20/01/2002 6.72
21/01/2002 10.56 22/01/2002 10.61 23/01/2002 11.17
24/01/2002 11 25/01/2002 11.11 26/01/2002 8.72
27/01/2002 11.39 28/01/2002 12.5 29/01/2002 9.39
30/01/2002 8.44 31/01/2002 10.17 01/02/2002 6.89
02/02/2002 6.39 03/02/2002 11.67 04/02/2002 10.67
05/02/2002 9.28 06/02/2002 12.78 07/02/2002 11.44
08/02/2002 8 09/02/2002 5.22 10/02/2002 3.94
11/02/2002 5.06 12/02/2002 3.17 13/02/2002 6.39
14/02/2002 9.11 15/02/2002 8.72 16/02/2002 4.67
17/02/2002 10.06 18/02/2002 5.28 19/02/2002 5.28
20/02/2002 10.72 21/02/2002 9.5 22/02/2002 5.28
23/02/2002 6.17 24/02/2002 3.5 25/02/2002 4.39
26/02/2002 7.33 27/02/2002 7.67 28/02/2002 7.56
01/03/2002 9.44 02/03/2002 11.56 03/03/2002 10.39
04/03/2002 7.5 05/03/2002 7.89 06/03/2002 9.78
07/03/2002 9.22 08/03/2002 6.11 09/03/2002 5.17
10/03/2002 6.61 11/03/2002 10.11 12/03/2002 10.5
13/03/2002 9.28 14/03/2002 9.89 15/03/2002 11.67
16/03/2002 12.33 17/03/2002 11.72 18/03/2002 8.89
19/03/2002 7.78 20/03/2002 9.61 21/03/2002 8.89
22/03/2002 7.11 23/03/2002 8.06 24/03/2002 9.83
25/03/2002 10.83 26/03/2002 10.11 27/03/2002 11.72
28/03/2002 13.06 29/03/2002 15.06 30/03/2002 12.44
31/03/2002 11 01/04/2002 8.78 02/04/2002 8.28
03/04/2002 9.06 04/04/2002 7 05/04/2002 8.61
06/04/2002 8.61 07/04/2002 8.17 08/04/2002 7.17
09/04/2002 7.17 10/04/2002 9.22 11/04/2002 9.72
12/04/2002 10.06 13/04/2002 8.78 14/04/2002 9.78
15/04/2002 11.06 16/04/2002 13.67 17/04/2002 14.39
18/04/2002 15.39 19/04/2002 14.67 20/04/2002 13.44
21/04/2002 10.28 22/04/2002 9.72 23/04/2002 10.39
24/04/2002 9.94 25/04/2002 9.67 26/04/2002 10.39
27/04/2002 10 28/04/2002 10.22 29/04/2002 9.44
30/04/2002 8.61 01/05/2002 11.33 02/05/2002 11.83
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Appendix B. Table data

Date Temperature Date Temperature Date Temperature
03/05/2002 10.72 04/05/2002 11 05/05/2002 13.61
06/05/2002 14 07/05/2002 12.56 08/05/2002 12.17
09/05/2002 13.56 10/05/2002 14.56 11/05/2002 17.67
12/05/2002 17.56 13/05/2002 14.72 14/05/2002 15.44
15/05/2002 15.67 16/05/2002 14.83 17/05/2002 14.72
18/05/2002 14.17 19/05/2002 13.17 20/05/2002 12.72
21/05/2002 10.28 22/05/2002 11.89 23/05/2002 12.28
24/05/2002 13.17 25/05/2002 12.89 26/05/2002 14.72
27/05/2002 16.17 28/05/2002 19.56 29/05/2002 15.28
30/05/2002 12.72 31/05/2002 12.61 01/06/2002 15.61
02/06/2002 13.94 03/06/2002 14.56 04/06/2002 13.33
05/06/2002 13.11 06/06/2002 13.39 07/06/2002 14.22
08/06/2002 14.94 09/06/2002 18.5 10/06/2002 16.5
11/06/2002 17.5 12/06/2002 20.72 13/06/2002 16.5
14/06/2002 16.11 15/06/2002 16.44 16/06/2002 16
17/06/2002 17.39 18/06/2002 14.94 19/06/2002 14.39
20/06/2002 14.72 21/06/2002 15.17 22/06/2002 14.61
23/06/2002 13.67 24/06/2002 13.94 25/06/2002 15.11
26/06/2002 15.44 27/06/2002 16.06 28/06/2002 16.28
29/06/2002 16.72 30/06/2002 16.5 01/07/2002 14.72
02/07/2002 15 03/07/2002 14.61 04/07/2002 17.22
05/07/2002 19.11 06/07/2002 20.56 07/07/2002 20.83
08/07/2002 17.56 09/07/2002 18.22 10/07/2002 18.33
11/07/2002 17.83 12/07/2002 15.78 13/07/2002 16.94
14/07/2002 17.78 15/07/2002 17.61 16/07/2002 17.67
17/07/2002 21.11 18/07/2002 20.72 19/07/2002 23.39
20/07/2002 24.17 21/07/2002 21.94 22/07/2002 18.39
23/07/2002 16.78 24/07/2002 17.78 25/07/2002 16.83
26/07/2002 16.17 27/07/2002 16.78 28/07/2002 19.39
29/07/2002 19.94 30/07/2002 16.67 31/07/2002 16.22
01/08/2002 16.83 02/08/2002 16.78 03/08/2002 18.22
04/08/2002 19.17 05/08/2002 20.5 06/08/2002 22.11
07/08/2002 21.11 08/08/2002 22.5 09/08/2002 21.28
10/08/2002 21 11/08/2002 19.11 12/08/2002 18.61
13/08/2002 18.56 14/08/2002 18.44 15/08/2002 19.06
16/08/2002 17.72 17/08/2002 15.17 18/08/2002 17.56
19/08/2002 18.61 20/08/2002 18.33 21/08/2002 19.61
22/08/2002 16.83 23/08/2002 15.22 24/08/2002 16.83
25/08/2002 18.5 26/08/2002 16.89 27/08/2002 17.39
28/08/2002 18.17 29/08/2002 16.17 30/08/2002 14.89
31/08/2002 13.94 01/09/2002 15.5 02/09/2002 16.56
03/09/2002 18.67 04/09/2002 18.72 05/09/2002 16.28
06/09/2002 15.83 07/09/2002 14.61 08/09/2002 15.56
09/09/2002 15.28 10/09/2002 16 11/09/2002 16.17
12/09/2002 15.39 13/09/2002 13.94 14/09/2002 13.94
15/09/2002 12.94 16/09/2002 13.61 17/09/2002 14.06
18/09/2002 13.56 19/09/2002 13.89 20/09/2002 14.83
21/09/2002 15.28 22/09/2002 15.78 23/09/2002 16.61
24/09/2002 15.72 25/09/2002 12.94 26/09/2002 13.94
27/09/2002 14.89 28/09/2002 13.56 29/09/2002 12.72
30/09/2002 11.78 01/10/2002 13.28 02/10/2002 11.78
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Appendix B. Table data

Date Temperature Date Temperature Date Temperature
03/10/2002 11.22 04/10/2002 8.56 05/10/2002 10.83
06/10/2002 11.22 07/10/2002 9.78 08/10/2002 7.33
09/10/2002 6.06 10/10/2002 6.44 11/10/2002 7.39
12/10/2002 13.06 13/10/2002 14.44 14/10/2002 9
15/10/2002 8.22 16/10/2002 12.67 17/10/2002 12.06
18/10/2002 12.67 19/10/2002 9.72 20/10/2002 11.94
21/10/2002 10.72 22/10/2002 12 23/10/2002 13.56
24/10/2002 13.28 25/10/2002 11.72 26/10/2002 10
27/10/2002 12 28/10/2002 11.89 29/10/2002 7.5
30/10/2002 9.94 31/10/2002 9.72 01/11/2002 11.28
02/11/2002 10.22 03/11/2002 10.83 04/11/2002 10.22
05/11/2002 10.44 06/11/2002 10.11 07/11/2002 8.33
08/11/2002 8.11 09/11/2002 5 10/11/2002 7.5
11/11/2002 9.11 12/11/2002 10.17 13/11/2002 9.28
14/11/2002 9.22 15/11/2002 7.72 16/11/2002 6.83
17/11/2002 7.83 18/11/2002 9.61 19/11/2002 10.44
20/11/2002 8.33 21/11/2002 9.22 22/11/2002 10.67
23/11/2002 9.22 24/11/2002 8.17 25/11/2002 7.56
26/11/2002 6.5 27/11/2002 7.06 28/11/2002 5.17
29/11/2002 3.78 30/11/2002 3.61 01/12/2002 2.11
02/12/2002 3.11 03/12/2002 3.83 04/12/2002 6.11
05/12/2002 6.94 06/12/2002 6.72 07/12/2002 6.06
08/12/2002 4.61 09/12/2002 3.61 10/12/2002 3.22
11/12/2002 4.67 12/12/2002 7.33 13/12/2002 11.22
14/12/2002 10.89 15/12/2002 12.06 16/12/2002 10.22
17/12/2002 10.94 18/12/2002 11.39 19/12/2002 8.11
20/12/2002 10.22 21/12/2002 10.06 22/12/2002 4.78
23/12/2002 9.56 24/12/2002 9.22 25/12/2002 5.72
26/12/2002 2 27/12/2002 0.83 28/12/2002 1.28
29/12/2002 -0.39 30/12/2002 -0.78 31/12/2002 0.83
01/01/2003 3.11 02/01/2003 0.28 03/01/2003 -0.06
04/01/2003 8.28 05/01/2003 9.22 06/01/2003 8.56
07/01/2003 6.61 08/01/2003 6.83 09/01/2003 5.67
10/01/2003 7.61 11/01/2003 8.56 12/01/2003 8.06
13/01/2003 7.22 14/01/2003 6.11 15/01/2003 5.5
16/01/2003 9.22 17/01/2003 9.39 18/01/2003 9.94
19/01/2003 6.39 20/01/2003 5.11 21/01/2003 1.5
22/01/2003 0.22 23/01/2003 3.44 24/01/2003 5.39
25/01/2003 4.28 26/01/2003 2.33 27/01/2003 1.78
28/01/2003 2.5 29/01/2003 8.61 30/01/2003 9.44
31/01/2003 7.72 01/02/2003 5.78 02/02/2003 6.06
03/02/2003 6.17 04/02/2003 1.94 05/02/2003 1.33
06/02/2003 1.83 07/02/2003 1.94 08/02/2003 1.22
09/02/2003 0.89 10/02/2003 1.22 11/02/2003 4.39
12/02/2003 5.78 13/02/2003 4.39 14/02/2003 8.67
15/02/2003 8.17 16/02/2003 7.72 17/02/2003 9.11
18/02/2003 9.61 19/02/2003 9.11 20/02/2003 8.56
21/02/2003 7.72 22/02/2003 5.78 23/02/2003 10.11
24/02/2003 10.61 25/02/2003 7.39 26/02/2003 7.11
27/02/2003 8.72 28/02/2003 11 01/03/2003 10.39
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Appendix B. Table data

Date Temperature Date Temperature Date Temperature
02/03/2003 10.28 03/03/2003 7.17 04/03/2003 5.83
05/03/2003 6 06/03/2003 5.94 07/03/2003 7.17
08/03/2003 7.67 09/03/2003 6.94 10/03/2003 7.61
11/03/2003 7.83 12/03/2003 6.61 13/03/2003 6.61
14/03/2003 9.94 15/03/2003 11.33 16/03/2003 11.61
17/03/2003 11.11 18/03/2003 10.61 19/03/2003 9.28
20/03/2003 12.22 21/03/2003 11.67 22/03/2003 9.39
23/03/2003 7.83 24/03/2003 7.44 25/03/2003 8.67
26/03/2003 12.44 27/03/2003 11.33 28/03/2003 8.44
29/03/2003 4.83 30/03/2003 4.33 31/03/2003 3.78
01/04/2003 4.67 02/04/2003 5.44 03/04/2003 8.06
04/04/2003 12.56 05/04/2003 14.83 06/04/2003 16.56
07/04/2003 17.17 08/04/2003 16.28 09/04/2003 14.67
10/04/2003 7.56 11/04/2003 10.06 12/04/2003 11.94
13/04/2003 11.61 14/04/2003 12.28 15/04/2003 11.89
16/04/2003 13.56 17/04/2003 11.28 18/04/2003 13.28
19/04/2003 12.5 20/04/2003 12.89 21/04/2003 12.39
22/04/2003 12.06 23/04/2003 11.06 24/04/2003 11.89
25/04/2003 15.61 26/04/2003 14 27/04/2003 12
28/04/2003 12.89 29/04/2003 12.5 30/04/2003 12.89
01/05/2003 10.67 02/05/2003 10.78 03/05/2003 10.06
04/05/2003 8.11 05/05/2003 10 06/05/2003 11.22
07/05/2003 10.5 08/05/2003 12.78 09/05/2003 13.39
10/05/2003 12.5 11/05/2003 11.06 12/05/2003 13.22
13/05/2003 14.94 14/05/2003 14.06 15/05/2003 12.83
16/05/2003 13.28 17/05/2003 14.28 18/05/2003 14.61
19/05/2003 18.5 20/05/2003 18.94 21/05/2003 20.67
22/05/2003 22.28 23/05/2003 17.83 24/05/2003 17.56
25/05/2003 16.89 26/05/2003 16.39 27/05/2003 16
28/05/2003 15.28 29/05/2003 18.22 30/05/2003 15.22
31/05/2003 15.78 01/06/2003 17.89 02/06/2003 17.44
03/06/2003 17.06 04/06/2003 17.56 05/06/2003 19.94
06/06/2003 20.11 07/06/2003 21.44 08/06/2003 19.78
09/06/2003 17.78 10/06/2003 19.39 11/06/2003 17.39
12/06/2003 18.39 13/06/2003 20.06 14/06/2003 18.72
15/06/2003 17.83 16/06/2003 18 17/06/2003 19.11
18/06/2003 18.28 19/06/2003 16.67 20/06/2003 19.44
21/06/2003 17.5 22/06/2003 16.5 23/06/2003 16.5
24/06/2003 16.17 25/06/2003 17.11 26/06/2003 16.56
27/06/2003 18.39 28/06/2003 17.67 29/06/2003 19.39
30/06/2003 22.39 01/07/2003 22.67 02/07/2003 19.78
03/07/2003 20.06 04/07/2003 21.33 05/07/2003 22.83
06/07/2003 25.28 07/07/2003 21.17 08/07/2003 18.39
09/07/2003 19.67 10/07/2003 21.72 11/07/2003 19.83
12/07/2003 19.39 13/07/2003 19.28 14/07/2003 18.83
15/07/2003 18.5 16/07/2003 17 17/07/2003 16.39
18/07/2003 18.17 19/07/2003 17.94 20/07/2003 18.17
21/07/2003 19.67 22/07/2003 18.22 23/07/2003 17.5
24/07/2003 19.22 25/07/2003 21.67 26/07/2003 24
27/07/2003 24.67 28/07/2003 27.39 29/07/2003 23.72
30/07/2003 24.61 31/07/2003 26.78 01/08/2003 28.33
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Appendix B. Table data

Date Temperature Date Temperature Date Temperature
02/08/2003 26.39 03/08/2003 23.89 04/08/2003 22.83
05/08/2003 20.06 06/08/2003 19.06 07/08/2003 18.39
08/08/2003 20.5 09/08/2003 19.89 10/08/2003 17.44
11/08/2003 17.39 12/08/2003 18.78 13/08/2003 21.28
14/08/2003 22.22 15/08/2003 21.39 16/08/2003 18.56
17/08/2003 19.11 18/08/2003 19.11 19/08/2003 16.06
20/08/2003 14.61 21/08/2003 14.22 22/08/2003 14.33
23/08/2003 15.61 24/08/2003 16.28 25/08/2003 18.22
26/08/2003 17.67 27/08/2003 19.17 28/08/2003 16.72
29/08/2003 14.39 30/08/2003 16.5 31/08/2003 15.78
01/09/2003 16.28 02/09/2003 15.61 03/09/2003 16.78
04/09/2003 16.94 05/09/2003 18.33 06/09/2003 18.39
07/09/2003 19 08/09/2003 19.67 09/09/2003 17.22
10/09/2003 17.28 11/09/2003 18.72 12/09/2003 20
13/09/2003 15.28 14/09/2003 11 15/09/2003 10.94
16/09/2003 13 17/09/2003 13.78 18/09/2003 13.94
19/09/2003 12.5 20/09/2003 12.22 21/09/2003 15.06
22/09/2003 14.56 23/09/2003 14.39 24/09/2003 15.39
25/09/2003 10.5 26/09/2003 8.44 27/09/2003 12.44
28/09/2003 11.5 29/09/2003 13.67 30/09/2003 15.11
01/10/2003 15.94 02/10/2003 12.89 03/10/2003 12.22
04/10/2003 13.11 05/10/2003 13 06/10/2003 11.61
07/10/2003 11.11 08/10/2003 10.06 09/10/2003 9.61
10/10/2003 9.94 11/10/2003 8.22 12/10/2003 6.22
13/10/2003 7.39 14/10/2003 7.22 15/10/2003 5.61
16/10/2003 6.11 17/10/2003 7.33 18/10/2003 6.22
19/10/2003 6.33 20/10/2003 7.94 21/10/2003 7.28
22/10/2003 9.33 23/10/2003 8.72 24/10/2003 11.28
25/10/2003 11.28 26/10/2003 10.67 27/10/2003 12.33
28/10/2003 12.61 29/10/2003 10.28 30/10/2003 8.5
31/10/2003 7.89 01/11/2003 10.94 02/11/2003 9.44
03/11/2003 11.06 04/11/2003 10.17 05/11/2003 11.72
06/11/2003 10 07/11/2003 7.06 08/11/2003 8.83
09/11/2003 13.67 10/11/2003 13.44 11/11/2003 11.94
12/11/2003 9.5 13/11/2003 7.83 14/11/2003 6.89
15/11/2003 6.83 16/11/2003 8.83 17/11/2003 9.11
18/11/2003 4.22 19/11/2003 6.17 20/11/2003 9.5
21/11/2003 8.39 22/11/2003 9.28 23/11/2003 8.72
24/11/2003 8.5 25/11/2003 8.94 26/11/2003 7.83
27/11/2003 6.33 28/11/2003 3.78 29/11/2003 3.22
30/11/2003 6.72 01/12/2003 3.33 02/12/2003 9.33
03/12/2003 8.72 04/12/2003 12.5 05/12/2003 7.94
06/12/2003 3.94 07/12/2003 2.17 08/12/2003 3.89
09/12/2003 4.5 10/12/2003 6 11/12/2003 8.11
12/12/2003 5.28 13/12/2003 1.61 14/12/2003 6.17
15/12/2003 9.61 16/12/2003 10.17 17/12/2003 9.61
18/12/2003 5.89 19/12/2003 3.89 20/12/2003 2.61
21/12/2003 3.28 22/12/2003 2.22 23/12/2003 5.94
24/12/2003 4.28 25/12/2003 1.17 26/12/2003 6.33
27/12/2003 7.94 28/12/2003 10.17 29/12/2003 8.83
30/12/2003 9.06 31/12/2003 6.11 01/01/2004 9.33
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Appendix B. Table data

Date Temperature Date Temperature Date Temperature
02/01/2004 8.78 03/01/2004 6.72 04/01/2004 8.39
05/01/2004 4.78 06/01/2004 5.56 07/01/2004 6.83
08/01/2004 3.28 09/01/2004 3.56 10/01/2004 8.67
11/01/2004 9.78 12/01/2004 8.56 13/01/2004 7.56
14/01/2004 7.5 15/01/2004 6.5 16/01/2004 3.33
17/01/2004 4.22 18/01/2004 3.11 19/01/2004 1.28
20/01/2004 0.61 21/01/2004 4.5 22/01/2004 10.39
23/01/2004 10.78 24/01/2004 12.28 25/01/2004 13.89
26/01/2004 13.78 27/01/2004 12 28/01/2004 9.56
29/01/2004 7.06 30/01/2004 5.83 31/01/2004 2.17
01/02/2004 5.22 02/02/2004 9.89 03/02/2004 9.22
04/02/2004 8.56 05/02/2004 7.39 06/02/2004 7.22
07/02/2004 6.61 08/02/2004 6 09/02/2004 6.11
10/02/2004 4.89 11/02/2004 2.39 12/02/2004 3.5
13/02/2004 4 14/02/2004 2.28 15/02/2004 2.44
16/02/2004 1.5 17/02/2004 0.5 18/02/2004 0.78
19/02/2004 1.39 20/02/2004 1.89 21/02/2004 2
22/02/2004 2.22 23/02/2004 5 24/02/2004 8.22
25/02/2004 7.11 26/02/2004 6.17 27/02/2004 5.17
28/02/2004 5.78 29/02/2004 5.06 01/03/2004 2.89
02/03/2004 3.17 03/03/2004 3.61 04/03/2004 8
05/03/2004 9.78 06/03/2004 11 07/03/2004 13.28
08/03/2004 11.06 09/03/2004 9.78 10/03/2004 9.5
11/03/2004 11.11 12/03/2004 8.78 13/03/2004 6.44
14/03/2004 5.44 15/03/2004 5.67 16/03/2004 4.5
17/03/2004 5.72 18/03/2004 6.89 19/03/2004 8.28
20/03/2004 9.06 21/03/2004 9.67 22/03/2004 12.11
23/03/2004 12.61 24/03/2004 11.61 25/03/2004 10.78
26/03/2004 9.39 27/03/2004 8.28 28/03/2004 6.06
29/03/2004 6.78 30/03/2004 6.39 31/03/2004 7.72
01/04/2004 9.11 02/04/2004 7.44 03/04/2004 10.5
04/04/2004 10.89 05/04/2004 10.61 06/04/2004 10.44
07/04/2004 13.67 08/04/2004 10.72 09/04/2004 7.67
10/04/2004 7.39 11/04/2004 8.67 12/04/2004 12.44
13/04/2004 11.56 14/04/2004 13.33 15/04/2004 15.28
16/04/2004 15 17/04/2004 15.22 18/04/2004 13.78
19/04/2004 11.44 20/04/2004 8.83 21/04/2004 10
22/04/2004 11 23/04/2004 13 24/04/2004 10.61
25/04/2004 8.39 26/04/2004 9.17 27/04/2004 10.89
28/04/2004 12 29/04/2004 11.11 30/04/2004 13.17
01/05/2004 15.28 02/05/2004 12.72 03/05/2004 10.61
04/05/2004 13.11 05/05/2004 14.83 06/05/2004 16.56
07/05/2004 17 08/05/2004 18.33 09/05/2004 18.06
10/05/2004 18.17 11/05/2004 16.83 12/05/2004 11.78
13/05/2004 10.94 14/05/2004 13.06 15/05/2004 15.17
16/05/2004 15.56 17/05/2004 13.89 18/05/2004 12.78
19/05/2004 14.61 20/05/2004 16.5 21/05/2004 14.72
22/05/2004 14.89 23/05/2004 14.56 24/05/2004 15.94
25/05/2004 16.56 26/05/2004 19 27/05/2004 17.67
28/05/2004 19.39 29/05/2004 21.06 30/05/2004 21.94
31/05/2004 19.11 01/06/2004 19 02/06/2004 17.11
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Appendix B. Table data

Date Temperature Date Temperature Date Temperature
03/06/2004 16.67 04/06/2004 19.44 05/06/2004 22.06
06/06/2004 20.78 07/06/2004 19.89 08/06/2004 17
09/06/2004 15.17 10/06/2004 12.5 11/06/2004 12.33
12/06/2004 13.44 13/06/2004 15.28 14/06/2004 14.78
15/06/2004 15.06 16/06/2004 15.56 17/06/2004 15.22
18/06/2004 17.22 19/06/2004 15.61 20/06/2004 17.67
21/06/2004 17.11 22/06/2004 15.61 23/06/2004 14.56
24/06/2004 15.5 25/06/2004 15.06 26/06/2004 16.06
27/06/2004 17.5 28/06/2004 15.72 29/06/2004 15.06
30/06/2004 14.61 01/07/2004 14.22 02/07/2004 14.61
03/07/2004 15.56 04/07/2004 16.06 05/07/2004 17.28
06/07/2004 19.83 07/07/2004 19.28 08/07/2004 19.22
09/07/2004 18.06 10/07/2004 17.22 11/07/2004 19.06
12/07/2004 19.22 13/07/2004 20.44 14/07/2004 20.39
15/07/2004 18.56 16/07/2004 17.33 17/07/2004 18.33
18/07/2004 19.06 19/07/2004 20.78 20/07/2004 22.33
21/07/2004 21.11 22/07/2004 21.83 23/07/2004 21.33
24/07/2004 21.33 25/07/2004 20.72 26/07/2004 22.06
27/07/2004 21.06 28/07/2004 21.39 29/07/2004 21.94
30/07/2004 24.5 31/07/2004 21.06 01/08/2004 20.39
02/08/2004 20.11 03/08/2004 19.39 04/08/2004 18.17
05/08/2004 19.56 06/08/2004 19.28 07/08/2004 18.06
08/08/2004 19.11 09/08/2004 18.78 10/08/2004 17.78
11/08/2004 17.06 12/08/2004 15.61 13/08/2004 17.11
14/08/2004 17.11 15/08/2004 17.22 16/08/2004 16.33
17/08/2004 17.17 18/08/2004 17.22 19/08/2004 16.11
20/08/2004 15.06 21/08/2004 15.61 22/08/2004 15.22
23/08/2004 15.78 24/08/2004 18.22 25/08/2004 19.5
26/08/2004 20 27/08/2004 21.11 28/08/2004 19.89
29/08/2004 19.39 30/08/2004 18.17 31/08/2004 19.61
01/09/2004 18.17 02/09/2004 18.17 03/09/2004 15.17
04/09/2004 15.61 05/09/2004 14.5 06/09/2004 13.56
07/09/2004 13.39 08/09/2004 16.22 09/09/2004 16.67
10/09/2004 13.33 11/09/2004 15.39 12/09/2004 13.17
13/09/2004 15.61 14/09/2004 16.33 15/09/2004 11.61
16/09/2004 11.33 17/09/2004 14.67 18/09/2004 16.61
19/09/2004 15.67 20/09/2004 14.39 21/09/2004 15.56
22/09/2004 13.22 23/09/2004 13 24/09/2004 13.44
25/09/2004 14.39 26/09/2004 12.28 27/09/2004 11.56
28/09/2004 11.22 29/09/2004 11.06 30/09/2004 11.22
01/10/2004 12 02/10/2004 11.44 03/10/2004 12.44
04/10/2004 12.11 05/10/2004 10.44 06/10/2004 9
07/10/2004 8.89 08/10/2004 9.44 09/10/2004 10.17
10/10/2004 10.56 11/10/2004 14.78 12/10/2004 12.33
13/10/2004 14.28 14/10/2004 15.61 15/10/2004 15.11
16/10/2004 11.83 17/10/2004 9.56 18/10/2004 9.5
19/10/2004 13.28 20/10/2004 12.28 21/10/2004 12.89
22/10/2004 11.56 23/10/2004 10.72 24/10/2004 10.67
25/10/2004 11.67 26/10/2004 11 27/10/2004 8
28/10/2004 10.11 29/10/2004 11.28 30/10/2004 10.83
31/10/2004 9.17 01/11/2004 7.89 02/11/2004 8.06
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Appendix B. Table data

Date Temperature Date Temperature Date Temperature
03/11/2004 9.94 04/11/2004 4.72 05/11/2004 4.17
06/11/2004 7.33 07/11/2004 10.78 08/11/2004 12.22
09/11/2004 9.44 10/11/2004 3.28 11/11/2004 2.22
12/11/2004 7.17 13/11/2004 12.11 14/11/2004 11.06
15/11/2004 10.11 16/11/2004 9.06 17/11/2004 10.5
18/11/2004 8.61 19/11/2004 7.33 20/11/2004 6.39
21/11/2004 5.61 22/11/2004 4.72 23/11/2004 4.5
24/11/2004 3.94 25/11/2004 7.5 26/11/2004 9.22
27/11/2004 9.5 28/11/2004 7.11 29/11/2004 8.5
30/11/2004 5.61 01/12/2004 5.22 02/12/2004 3.94
03/12/2004 5.56 04/12/2004 1.94 05/12/2004 7.5
06/12/2004 10.61 07/12/2004 9.39 08/12/2004 6.39
09/12/2004 5.39 10/12/2004 4.17 11/12/2004 2.89
12/12/2004 2.61 13/12/2004 8.33 14/12/2004 11.28
15/12/2004 8.83 16/12/2004 2.61 17/12/2004 0.5
18/12/2004 2.11 19/12/2004 4.94 20/12/2004 5.83
21/12/2004 10.39 22/12/2004 10.22 23/12/2004 8.83
24/12/2004 5.39 25/12/2004 7.83 26/12/2004 9.33
27/12/2004 5.94 28/12/2004 8.33 29/12/2004 12.67
30/12/2004 8.78 31/12/2004 9.33 01/01/2005 11.44
02/01/2005 9.83 03/01/2005 7.28 04/01/2005 5.44
05/01/2005 5.11 06/01/2005 7.5 07/01/2005 7.44
08/01/2005 8.39 09/01/2005 5.06 10/01/2005 7.06
11/01/2005 11.39 12/01/2005 7.39 13/01/2005 3.78
14/01/2005 3.44 15/01/2005 3.11 16/01/2005 3.61
17/01/2005 2.28 18/01/2005 5.78 19/01/2005 6.33
20/01/2005 6.22 21/01/2005 6.94 22/01/2005 7.67
23/01/2005 8.67 24/01/2005 7.22 25/01/2005 7.72
26/01/2005 8.28 27/01/2005 6.22 28/01/2005 6.61
29/01/2005 4.72 30/01/2005 6.06 31/01/2005 8
01/02/2005 10.33 02/02/2005 8.5 03/02/2005 10.56
04/02/2005 5.44 05/02/2005 4.39 06/02/2005 3.94
07/02/2005 3.22 08/02/2005 3.61 09/02/2005 6.39
10/02/2005 4.17 11/02/2005 2 12/02/2005 2.61
13/02/2005 1.83 14/02/2005 1.44 15/02/2005 1.67
16/02/2005 1.17 17/02/2005 2.78 18/02/2005 0.89
19/02/2005 0 20/02/2005 2.94 21/02/2005 2.39
22/02/2005 0.72 23/02/2005 1.39 24/02/2005 3
25/02/2005 1.72 26/02/2005 3.61 27/02/2005 6.28
28/02/2005 6.39 01/03/2005 6.06 02/03/2005 6.94
03/03/2005 5.22 04/03/2005 3.72 05/03/2005 5.44
06/03/2005 9.11 07/03/2005 13.39 08/03/2005 13.78
09/03/2005 13.17 10/03/2005 12.89 11/03/2005 10.61
12/03/2005 11.78 13/03/2005 12.78 14/03/2005 12.33
15/03/2005 12.39 16/03/2005 12 17/03/2005 10.83
18/03/2005 9.11 19/03/2005 10.44 20/03/2005 7.89
21/03/2005 9.89 22/03/2005 9.83 23/03/2005 11.17
24/03/2005 12.78 25/03/2005 13 26/03/2005 10.44
27/03/2005 8.28 28/03/2005 10.06 29/03/2005 8.61
30/03/2005 4.94 31/03/2005 5.72 01/04/2005 10.94
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Appendix B. Table data

Date Temperature Date Temperature Date Temperature
02/04/2005 11.61 03/04/2005 10.83 04/04/2005 9.5
05/04/2005 8.83 06/04/2005 6.67 07/04/2005 6.94
08/04/2005 8 09/04/2005 11.17 10/04/2005 9.22
11/04/2005 8.56 12/04/2005 9.94 13/04/2005 11.39
14/04/2005 11.22 15/04/2005 11.78 16/04/2005 10.22
17/04/2005 11.17 18/04/2005 10.61 19/04/2005 12.28
20/04/2005 14.17 21/04/2005 16.56 22/04/2005 18.61
23/04/2005 16.33 24/04/2005 13.94 25/04/2005 10.56
26/04/2005 11.39 27/04/2005 13.33 28/04/2005 11.56
29/04/2005 9.5 30/04/2005 9 01/05/2005 8.5
02/05/2005 8.33 03/05/2005 10.33 04/05/2005 11.56
05/05/2005 10.17 06/05/2005 11.28 07/05/2005 10.83
08/05/2005 9 09/05/2005 10.61 10/05/2005 12.72
11/05/2005 14.44 12/05/2005 12.5 13/05/2005 13.06
14/05/2005 12.39 15/05/2005 13.22 16/05/2005 16.28
17/05/2005 19.17 18/05/2005 22.72 19/05/2005 17.06
20/05/2005 13.39 21/05/2005 14.61 22/05/2005 14.94
23/05/2005 14.22 24/05/2005 15.5 25/05/2005 14.94
26/05/2005 15.11 27/05/2005 14.89 28/05/2005 13.61
29/05/2005 12.5 30/05/2005 15.06 31/05/2005 16.61
01/06/2005 15.67 02/06/2005 12.5 03/06/2005 14.17
04/06/2005 13.61 05/06/2005 14.83 06/06/2005 15.39
07/06/2005 17.28 08/06/2005 21.5 09/06/2005 23.72
10/06/2005 25.83 11/06/2005 23.11 12/06/2005 20.72
13/06/2005 22.28 14/06/2005 24.56 15/06/2005 21.22
16/06/2005 17.44 17/06/2005 16.17 18/06/2005 19.06
19/06/2005 18.83 20/06/2005 19.22 21/06/2005 16.61
22/06/2005 17 23/06/2005 18.56 24/06/2005 16.89
25/06/2005 14.5 26/06/2005 14.11 27/06/2005 16
28/06/2005 15.39 29/06/2005 16.61 30/06/2005 17.28
01/07/2005 22.17 02/07/2005 22.94 03/07/2005 20.56
04/07/2005 22.61 05/07/2005 24.17 06/07/2005 21.72
07/07/2005 19.94 08/07/2005 21.78 09/07/2005 19.17
10/07/2005 17.83 11/07/2005 19.44 12/07/2005 17.56
13/07/2005 17.11 14/07/2005 19 15/07/2005 17.33
16/07/2005 16 17/07/2005 16.61 18/07/2005 14.33
19/07/2005 19.33 20/07/2005 18.39 21/07/2005 16.61
22/07/2005 16.67 23/07/2005 17.06 24/07/2005 18.61
25/07/2005 18.83 26/07/2005 17.78 27/07/2005 17.44
28/07/2005 15.89 29/07/2005 16.33 30/07/2005 17.33
31/07/2005 19.28 01/08/2005 19.17 02/08/2005 19.94
03/08/2005 17.61 04/08/2005 16.5 05/08/2005 16.06
06/08/2005 17.56 07/08/2005 18.89 08/08/2005 20.17
09/08/2005 21.89 10/08/2005 16.78 11/08/2005 17
12/08/2005 19.11 13/08/2005 16.39 14/08/2005 16.78
15/08/2005 15.06 16/08/2005 14.61 17/08/2005 14.78
18/08/2005 17.11 19/08/2005 18 20/08/2005 19.5
21/08/2005 21.22 22/08/2005 23.78 23/08/2005 20.06
24/08/2005 18.78 25/08/2005 19.5 26/08/2005 22.11
27/08/2005 19.72 28/08/2005 18.67 29/08/2005 19.06
30/08/2005 19.06 31/08/2005 18.67 01/09/2005 19.72
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Appendix B. Table data

Date Temperature Date Temperature Date Temperature
02/09/2005 16.33 03/09/2005 17.28 04/09/2005 17.67
05/09/2005 19.33 06/09/2005 17.33 07/09/2005 12.39
08/09/2005 11.33 09/09/2005 13.28 10/09/2005 15.78
11/09/2005 16.28 12/09/2005 16.83 13/09/2005 15.83
14/09/2005 15.06 15/09/2005 13.33 16/09/2005 16.33
17/09/2005 15.11 18/09/2005 16 19/09/2005 12.61
20/09/2005 12.83 21/09/2005 16.56 22/09/2005 13.06
23/09/2005 11.56 24/09/2005 11.33 25/09/2005 12.78
26/09/2005 13.28 27/09/2005 14.83 28/09/2005 15.83
29/09/2005 15.28 30/09/2005 11.61 01/10/2005 16.11
02/10/2005 18.56 03/10/2005 17.44 04/10/2005 14.17
05/10/2005 14.28 06/10/2005 16.33 07/10/2005 14.22
08/10/2005 13.67 09/10/2005 11.11 10/10/2005 11.94
11/10/2005 11.78 12/10/2005 13.28 13/10/2005 12.33
14/10/2005 10.5 15/10/2005 14.78 16/10/2005 14.78
17/10/2005 15 18/10/2005 16.72 19/10/2005 15.22
20/10/2005 13.94 21/10/2005 16.22 22/10/2005 13.11
23/10/2005 10.83 24/10/2005 14.78 25/10/2005 14.28
26/10/2005 9.83 27/10/2005 9.28 28/10/2005 12.78
29/10/2005 10.39 30/10/2005 13.5 31/10/2005 7.61
01/11/2005 11.17 02/11/2005 12.78 03/11/2005 7.67
04/11/2005 5.5 05/11/2005 4.33 06/11/2005 8.61
07/11/2005 5.5 08/11/2005 2.22 09/11/2005 1.56
10/11/2005 1.17 11/11/2005 0.61 12/11/2005 1.72
13/11/2005 4.28 14/11/2005 2.78 15/11/2005 4.22
16/11/2005 0.33 17/11/2005 3.5 18/11/2005 3.06
19/11/2005 2.83 20/11/2005 2.33 21/11/2005 3.33
22/11/2005 8.06 23/11/2005 7.89 24/11/2005 7.61
25/11/2005 5.72 26/11/2005 6.33 27/11/2005 3.83
28/11/2005 3.22 29/11/2005 5.44 30/11/2005 1.72
01/12/2005 3.11 02/12/2005 1.11 03/12/2005 4.56
04/12/2005 5 05/12/2005 6.56 06/12/2005 8.11
07/12/2005 8.5 08/12/2005 1.56 09/12/2005 0.44
10/12/2005 5.56 11/12/2005 3 12/12/2005 7.83
13/12/2005 8.06 14/12/2005 8.5 15/12/2005 7.22
16/12/2005 3.06 17/12/2005 3.17 18/12/2005 0.33
19/12/2005 -0.78 20/12/2005 -1 21/12/2005 4.11
22/12/2005 5.83 23/12/2005 6.28 24/12/2005 5.83
25/12/2005 7.28 26/12/2005 4.89 27/12/2005 2.39
28/12/2005 2.61 29/12/2005 1.06 30/12/2005 3.5
31/12/2005 4.89 01/01/2006 6.28 02/01/2006 7.39
03/01/2006 2.56 04/01/2006 6.67 05/01/2006 7.56
06/01/2006 7.22 07/01/2006 7 08/01/2006 7.56
09/01/2006 9.33 10/01/2006 9.44 11/01/2006 8.06
12/01/2006 5.56 13/01/2006 2.22 14/01/2006 1.72
15/01/2006 -0.5 16/01/2006 1.11 17/01/2006 2.44
18/01/2006 2.39 19/01/2006 1.89 20/01/2006 2.61
21/01/2006 4.56 22/01/2006 3.28 23/01/2006 0.56
24/01/2006 -1.33 25/01/2006 -0.61 26/01/2006 3.11
27/01/2006 4 28/01/2006 5.39 29/01/2006 7.5
30/01/2006 5.67 31/01/2006 2.56 01/02/2006 1.83
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Date Temperature Date Temperature Date Temperature
02/02/2006 1.33 03/02/2006 5.94 04/02/2006 8.5
05/02/2006 7.5 06/02/2006 8.78 07/02/2006 6.22
08/02/2006 6.5 09/02/2006 3.94 10/02/2006 4.78
11/02/2006 4.33 12/02/2006 2.72 13/02/2006 2.44
14/02/2006 1.28 15/02/2006 1.44 16/02/2006 3.11
17/02/2006 3 18/02/2006 3.5 19/02/2006 2.5
20/02/2006 -0.11 21/02/2006 0.5 22/02/2006 0.67
23/02/2006 0 24/02/2006 2.72 25/02/2006 3.56
26/02/2006 3.5 27/02/2006 9.33 28/02/2006 8.06
01/03/2006 5.44 02/03/2006 3.06 03/03/2006 0.89
04/03/2006 1.44 05/03/2006 3.61 06/03/2006 4.78
07/03/2006 1.5 08/03/2006 2.33 09/03/2006 2.61
10/03/2006 4.5 11/03/2006 3.72 12/03/2006 3.11
13/03/2006 2.56 14/03/2006 4.33 15/03/2006 9.06
16/03/2006 10.67 17/03/2006 12.11 18/03/2006 10.89
19/03/2006 9.11 20/03/2006 9.06 21/03/2006 11.5
22/03/2006 11.78 23/03/2006 10.33 24/03/2006 9.44
25/03/2006 8 26/03/2006 4.72 27/03/2006 4.89
28/03/2006 6.78 29/03/2006 7.22 30/03/2006 7.67
31/03/2006 4.5 01/04/2006 5.28 02/04/2006 5.28
03/04/2006 8.39 04/04/2006 11.56 05/04/2006 10.33
06/04/2006 10 07/04/2006 11.17 08/04/2006 9.72
09/04/2006 9.67 10/04/2006 10.39 11/04/2006 10.67
12/04/2006 12.5 13/04/2006 11.33 14/04/2006 10.11
15/04/2006 10.39 16/04/2006 10.78 17/04/2006 11.83
18/04/2006 12.61 19/04/2006 10 20/04/2006 9.44
21/04/2006 8.28 22/04/2006 10.39 23/04/2006 10.44
24/04/2006 13.44 25/04/2006 18.94 26/04/2006 15.39
27/04/2006 10.83 28/04/2006 13.11 29/04/2006 11.89
30/04/2006 13.17 01/05/2006 12.72 02/05/2006 15.83
03/05/2006 16.44 04/05/2006 13.5 05/05/2006 12.33
06/05/2006 13.28 07/05/2006 12.78 08/05/2006 12.89
09/05/2006 14 10/05/2006 12.72 11/05/2006 12.56
12/05/2006 11.61 13/05/2006 11.44 14/05/2006 9.83
15/05/2006 10.72 16/05/2006 13.22 17/05/2006 15.33
18/05/2006 14.61 19/05/2006 13.39 20/05/2006 10.44
21/05/2006 9.33 22/05/2006 10.5 23/05/2006 11.39
24/05/2006 14.33 25/05/2006 16.5 26/05/2006 16.44
27/05/2006 15.22 28/05/2006 14.72 29/05/2006 17.89
30/05/2006 19.89 31/05/2006 19.78 01/06/2006 21.67
02/06/2006 22.44 03/06/2006 23.89 04/06/2006 18.28
05/06/2006 15.11 06/06/2006 15.28 07/06/2006 18.06
08/06/2006 21.06 09/06/2006 19.83 10/06/2006 17.28
11/06/2006 17.22 12/06/2006 15.89 13/06/2006 15.28
14/06/2006 16.39 15/06/2006 18.11 16/06/2006 18.11
17/06/2006 13.56 18/06/2006 14.67 19/06/2006 16.83
20/06/2006 17.72 21/06/2006 20.56 22/06/2006 22.56
23/06/2006 24.67 24/06/2006 24.22 25/06/2006 24
26/06/2006 19.78 27/06/2006 19.61 28/06/2006 18.44
29/06/2006 17.67 30/06/2006 17.39 01/07/2006 17.5
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Appendix B. Table data

Date Temperature Date Temperature Date Temperature
02/07/2006 19.56 03/07/2006 19.78 04/07/2006 18.61
05/07/2006 17.22 06/07/2006 18.78 07/07/2006 21.17
08/07/2006 23.89 09/07/2006 24.39 10/07/2006 25.94
11/07/2006 24.72 12/07/2006 24.89 13/07/2006 22.39
14/07/2006 20.83 15/07/2006 22.56 16/07/2006 25.22
17/07/2006 26 18/07/2006 22.5 19/07/2006 21.89
20/07/2006 20.83 21/07/2006 20.78 22/07/2006 19.5
23/07/2006 18.11 24/07/2006 17.33 25/07/2006 16.83
26/07/2006 17.67 27/07/2006 20.89 28/07/2006 22.5
29/07/2006 20.06 30/07/2006 19.39 31/07/2006 18.44
01/08/2006 16.44 02/08/2006 16.33 03/08/2006 16.22
04/08/2006 14.78 05/08/2006 15.39 06/08/2006 16.67
07/08/2006 16.89 08/08/2006 18.56 09/08/2006 16.89
10/08/2006 17.56 11/08/2006 16.78 12/08/2006 17.17
13/08/2006 16.39 14/08/2006 17 15/08/2006 16.78
16/08/2006 16.67 17/08/2006 17.56 18/08/2006 17.61
19/08/2006 16.44 20/08/2006 15.06 21/08/2006 15.67
22/08/2006 19 23/08/2006 18.22 24/08/2006 17.28
25/08/2006 21.22 26/08/2006 19.61 27/08/2006 21.06
28/08/2006 21.17 29/08/2006 17.17 30/08/2006 15
31/08/2006 16.39 01/09/2006 18.5 02/09/2006 21.11
03/09/2006 18.67 04/09/2006 19.33 05/09/2006 18.39
06/09/2006 18.06 07/09/2006 18.72 08/09/2006 19.56
09/09/2006 17.72 10/09/2006 16.56 11/09/2006 17.28
12/09/2006 21.83 13/09/2006 16.72 14/09/2006 17.83
15/09/2006 18.33 16/09/2006 17.11 17/09/2006 16.44
18/09/2006 16.28 19/09/2006 17.89 20/09/2006 16.56
21/09/2006 15.61 22/09/2006 16.61 23/09/2006 15.33
24/09/2006 12.67 25/09/2006 12.67 26/09/2006 12.94
27/09/2006 16.33 28/09/2006 13.22 29/09/2006 13.39
30/09/2006 17.44 01/10/2006 17.5 02/10/2006 16.33
03/10/2006 13.22 04/10/2006 13.72 05/10/2006 14.28
06/10/2006 15 07/10/2006 14.11 08/10/2006 14.17
09/10/2006 15.83 10/10/2006 15.44 11/10/2006 15.11
12/10/2006 14.67 13/10/2006 14.61 14/10/2006 12.44
15/10/2006 12.17 16/10/2006 12.56 17/10/2006 15.44
18/10/2006 10.89 19/10/2006 15.5 20/10/2006 14.44
21/10/2006 13.72 22/10/2006 12.83 23/10/2006 6.67
24/10/2006 5.22 25/10/2006 4.83 26/10/2006 5.39
27/10/2006 7.44 28/10/2006 7.33 29/10/2006 6.67
30/10/2006 10.5 31/10/2006 8 01/11/2006 7.17
02/11/2006 11.06 03/11/2006 10.11 04/11/2006 13.11
05/11/2006 12.78 06/11/2006 13.44 07/11/2006 10.94
08/11/2006 8.89 09/11/2006 6.44 10/11/2006 6.39
11/11/2006 10.28 12/11/2006 6.39 13/11/2006 8.17
14/11/2006 11.33 15/11/2006 10.78 16/11/2006 11.11
17/11/2006 10.5 18/11/2006 12.5 19/11/2006 11.39
20/11/2006 9.17 21/11/2006 9.78 22/11/2006 11.5
23/11/2006 10.22 24/11/2006 9.61 25/11/2006 11.28
26/11/2006 12.44 27/11/2006 8.83 28/11/2006 9.83
29/11/2006 7.5 30/11/2006 4.33 01/12/2006 5.17
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Appendix B. Table data

Date Temperature Date Temperature Date Temperature
02/12/2006 10.22 03/12/2006 8.17 04/12/2006 12
05/12/2006 12.33 06/12/2006 11.72 07/12/2006 6.17
08/12/2006 4.5 09/12/2006 5.67 10/12/2006 1.72
11/12/2006 0.17 12/12/2006 -0.22 13/12/2006 -0.78
14/12/2006 3.06 15/12/2006 6.17 16/12/2006 6.06
17/12/2006 6.28 18/12/2006 5.17 19/12/2006 9.56
20/12/2006 8.5 21/12/2006 11.28 22/12/2006 10
23/12/2006 7.22 24/12/2006 6.61 25/12/2006 9.11
26/12/2006 9.72 27/12/2006 9.61 28/12/2006 6.78
29/12/2006 9.89 30/12/2006 10 31/12/2006 13.28
01/01/2007 9.33 02/01/2007 10 03/01/2007 11.06
04/01/2007 11.06 05/01/2007 6.78 06/01/2007 8.17
07/01/2007 10.83 08/01/2007 9.89 09/01/2007 11.33
10/01/2007 12.17 11/01/2007 9.89 12/01/2007 6.22
13/01/2007 3.94 14/01/2007 1.72 15/01/2007 1.44
16/01/2007 1.61 17/01/2007 3.61 18/01/2007 6.5
19/01/2007 7.11 20/01/2007 8.83 21/01/2007 7.39
22/01/2007 5.89 23/01/2007 9 24/01/2007 8.56
25/01/2007 4.89 26/01/2007 2.56 27/01/2007 3.5
28/01/2007 2.11 29/01/2007 -0.22 30/01/2007 1.61
31/01/2007 2.83 01/02/2007 7.39 02/02/2007 9.33
03/02/2007 8.39 04/02/2007 8.11 05/02/2007 7.39
06/02/2007 6.5 07/02/2007 9.11 08/02/2007 7.44
09/02/2007 7.78 10/02/2007 8.67 11/02/2007 9.78
12/02/2007 9.33 13/02/2007 9.11 14/02/2007 9.67
15/02/2007 9.67 16/02/2007 7.89 17/02/2007 8
18/02/2007 8.89 19/02/2007 9.61 20/02/2007 7.39
21/02/2007 6.39 22/02/2007 7.94 23/02/2007 8.39
24/02/2007 9.33 25/02/2007 10.72 26/02/2007 8.5
27/02/2007 8.44 28/02/2007 9.28 01/03/2007 8.44
02/03/2007 10.11 03/03/2007 10.78 04/03/2007 9.56
05/03/2007 8.5 06/03/2007 8.17 07/03/2007 9.78
08/03/2007 11.17 09/03/2007 7.61 10/03/2007 3.83
11/03/2007 3.72 12/03/2007 3.72 13/03/2007 3.44
14/03/2007 6.56 15/03/2007 6.22 16/03/2007 9.11
17/03/2007 9.39 18/03/2007 10.11 19/03/2007 9.94
20/03/2007 7.39 21/03/2007 7.33 22/03/2007 10.17
23/03/2007 10.78 24/03/2007 11.28 25/03/2007 7.11
26/03/2007 7.39 27/03/2007 10.39 28/03/2007 11.56
29/03/2007 10.5 30/03/2007 11.17 31/03/2007 12.11
01/04/2007 14.44 02/04/2007 13.72 03/04/2007 12.94
04/04/2007 12.94 05/04/2007 15.17 06/04/2007 17.39
07/04/2007 17.11 08/04/2007 14 09/04/2007 11.44
10/04/2007 13.22 11/04/2007 11.72 12/04/2007 12.5
13/04/2007 14.94 14/04/2007 13.89 15/04/2007 16.22
16/04/2007 15.89 17/04/2007 12.5 18/04/2007 12.78
19/04/2007 15.17 20/04/2007 14.33 21/04/2007 14.28
22/04/2007 15.33 23/04/2007 15.28 24/04/2007 10.78
25/04/2007 11.83 26/04/2007 10.83 27/04/2007 14.17
28/04/2007 15.44 29/04/2007 14.22 30/04/2007 12.94
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Date Temperature Date Temperature Date Temperature
01/05/2007 12.78 02/05/2007 12.11 03/05/2007 13.56
04/05/2007 12.5 05/05/2007 10.94 06/05/2007 11.56
07/05/2007 12.72 08/05/2007 15.94 09/05/2007 16.17
10/05/2007 13.44 11/05/2007 13.5 12/05/2007 13.11
13/05/2007 16.89 14/05/2007 18.72 15/05/2007 20.28
16/05/2007 18.22 17/05/2007 12.17 18/05/2007 10.44
19/05/2007 7.33 20/05/2007 10.06 21/05/2007 11.72
22/05/2007 14.83 23/05/2007 16.61 24/05/2007 18.56
25/05/2007 18.89 26/05/2007 16.06 27/05/2007 15.83
28/05/2007 14.06 29/05/2007 15.39 30/05/2007 16.94
31/05/2007 19.67 01/06/2007 19.67 02/06/2007 18.39
03/06/2007 18.61 04/06/2007 18.28 05/06/2007 18.22
06/06/2007 17.06 07/06/2007 16.06 08/06/2007 16.61
09/06/2007 16.22 10/06/2007 18.83 11/06/2007 18.22
12/06/2007 17.11 13/06/2007 16.39 14/06/2007 16.83
15/06/2007 13.94 16/06/2007 14.06 17/06/2007 13.5
18/06/2007 13.89 19/06/2007 14.5 20/06/2007 17.17
21/06/2007 16.11 22/06/2007 17.06 23/06/2007 16.39
24/06/2007 15.22 25/06/2007 15.78 26/06/2007 16.28
27/06/2007 16.78 28/06/2007 16.94 29/06/2007 16.11
30/06/2007 15.44 01/07/2007 15.5 02/07/2007 16.44
03/07/2007 18.17 04/07/2007 19.33 05/07/2007 19.11
06/07/2007 19.94 07/07/2007 19.33 08/07/2007 17.56
09/07/2007 18.33 10/07/2007 17.94 11/07/2007 16.61
12/07/2007 15.17 13/07/2007 16.11 14/07/2007 15.94
15/07/2007 17.44 16/07/2007 16.5 17/07/2007 16.56
18/07/2007 17.22 19/07/2007 17.67 20/07/2007 15.89
21/07/2007 15.39 22/07/2007 16.33 23/07/2007 18.39
24/07/2007 17.06 25/07/2007 18.44 26/07/2007 20.28
27/07/2007 21.89 28/07/2007 18.94 29/07/2007 16.83
30/07/2007 16.67 31/07/2007 16.78 01/08/2007 18.17
02/08/2007 18.89 03/08/2007 17.22 04/08/2007 16.78
05/08/2007 17.17 06/08/2007 18.11 07/08/2007 15.11
08/08/2007 15.44 09/08/2007 16.06 10/08/2007 15.72
11/08/2007 14.39 12/08/2007 15.28 13/08/2007 15.56
14/08/2007 15.39 15/08/2007 16.56 16/08/2007 19.33
17/08/2007 18.89 18/08/2007 15.78 19/08/2007 16.56
20/08/2007 15.44 21/08/2007 16.44 22/08/2007 17.67
23/08/2007 17.67 24/08/2007 15.89 25/08/2007 13.78
26/08/2007 17.83 27/08/2007 19.11 28/08/2007 19.5
29/08/2007 16.06 30/08/2007 17.56 31/08/2007 17.11
01/09/2007 15.5 02/09/2007 15.72 03/09/2007 16.56
04/09/2007 16.5 05/09/2007 15 06/09/2007 15.72
07/09/2007 13.94 08/09/2007 11.33 09/09/2007 14
10/09/2007 16.94 11/09/2007 17 12/09/2007 16.78
13/09/2007 16.11 14/09/2007 15.22 15/09/2007 12.94
16/09/2007 10.61 17/09/2007 10.89 18/09/2007 12.83
19/09/2007 14.22 20/09/2007 12.5 21/09/2007 13.39
22/09/2007 13.39 23/09/2007 14.39 24/09/2007 14.56
25/09/2007 12.44 26/09/2007 14.22 27/09/2007 12.67
28/09/2007 13.5 29/09/2007 12 30/09/2007 13.67
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Date Temperature Date Temperature Date Temperature
01/10/2007 11.56 02/10/2007 15.28 03/10/2007 15.67
04/10/2007 14.22 05/10/2007 13.56 06/10/2007 15.28
07/10/2007 12.5 08/10/2007 8.78 09/10/2007 8.17
10/10/2007 8.61 11/10/2007 7.5 12/10/2007 8
13/10/2007 7.22 14/10/2007 8.94 15/10/2007 9.83
16/10/2007 9.94 17/10/2007 12.28 18/10/2007 13.89
19/10/2007 10.5 20/10/2007 9.78 21/10/2007 10.33
22/10/2007 13.06 23/10/2007 12.61 24/10/2007 11.94
25/10/2007 9.72 26/10/2007 7.72 27/10/2007 8.5
28/10/2007 11.06 29/10/2007 11.28 30/10/2007 8.17
31/10/2007 11.5 01/11/2007 10 02/11/2007 3.83
03/11/2007 6.61 04/11/2007 7.06 05/11/2007 4.33
06/11/2007 2.44 07/11/2007 4.89 08/11/2007 5.39
09/11/2007 7.67 10/11/2007 7.67 11/11/2007 9.78
12/11/2007 8.67 13/11/2007 4.72 14/11/2007 3.28
15/11/2007 8.17 16/11/2007 7.89 17/11/2007 9.5
18/11/2007 9.89 19/11/2007 8.56 20/11/2007 11
21/11/2007 8.78 22/11/2007 10.17 23/11/2007 8.33
24/11/2007 10.5 25/11/2007 12.67 26/11/2007 13
27/11/2007 9.44 28/11/2007 7.56 29/11/2007 7.83
30/11/2007 6.28 01/12/2007 2.56 02/12/2007 1.89
03/12/2007 1.72 04/12/2007 3.83 05/12/2007 2.44
06/12/2007 2 07/12/2007 3.22 08/12/2007 3.5
09/12/2007 2.67 10/12/2007 1.06 11/12/2007 1.17
12/12/2007 3.17 13/12/2007 0.89 14/12/2007 7.56
15/12/2007 7.78 16/12/2007 6.56 17/12/2007 11.56
18/12/2007 10.61 19/12/2007 7.94 20/12/2007 7.33
21/12/2007 7.06 22/12/2007 7.67 23/12/2007 4.28
24/12/2007 2.28 25/12/2007 6.44 26/12/2007 7
27/12/2007 5.39 28/12/2007 7.83 29/12/2007 8.39
30/12/2007 6.83 31/12/2007 10.22 01/01/2008 8
02/01/2008 5.56 03/01/2008 10 04/01/2008 9
05/01/2008 9.67 06/01/2008 6.33 07/01/2008 6.89
08/01/2008 10.89 09/01/2008 13.72 10/01/2008 13.56
11/01/2008 11.56 12/01/2008 6.28 13/01/2008 11.22
14/01/2008 9.28 15/01/2008 7.83 16/01/2008 8.17
17/01/2008 7.44 18/01/2008 4.89 19/01/2008 7.89
20/01/2008 5.56 21/01/2008 7.33 22/01/2008 5
23/01/2008 3.5 24/01/2008 6.56 25/01/2008 6.67
26/01/2008 10.89 27/01/2008 7.94 28/01/2008 7.56
29/01/2008 7.39 30/01/2008 7.22 31/01/2008 9.5
01/02/2008 6.39 02/02/2008 5.67 03/02/2008 5.33
04/02/2008 4.61 05/02/2008 4.83 06/02/2008 2.17
07/02/2008 2.22 08/02/2008 3.06 09/02/2008 4.22
10/02/2008 2.67 11/02/2008 8.61 12/02/2008 11.61
13/02/2008 9.5 14/02/2008 10.28 15/02/2008 6.61
16/02/2008 10.44 17/02/2008 7.67 18/02/2008 7.61
19/02/2008 7.44 20/02/2008 10.67 21/02/2008 11.06
22/02/2008 6.11 23/02/2008 4.5 24/02/2008 4.67
25/02/2008 9.44 26/02/2008 9 27/02/2008 8.22
28/02/2008 7.28 29/02/2008 7.11 01/03/2008 9.39

276



Appendix B. Table data

Date Temperature Date Temperature Date Temperature
02/03/2008 8.33 03/03/2008 8.33 04/03/2008 9.61
05/03/2008 11.28 06/03/2008 8.17 07/03/2008 6
08/03/2008 5.11 09/03/2008 5.44 10/03/2008 6.33
11/03/2008 7.11 12/03/2008 3.22 13/03/2008 1.72
14/03/2008 2.67 15/03/2008 4.67 16/03/2008 7.72
17/03/2008 7.06 18/03/2008 7.94 19/03/2008 8.61
20/03/2008 10.28 21/03/2008 8.61 22/03/2008 11.28
23/03/2008 10.89 24/03/2008 12.67 25/03/2008 11.72
26/03/2008 7 27/03/2008 2.61 28/03/2008 4.33
29/03/2008 5.44 30/03/2008 6.89 31/03/2008 7.5
01/04/2008 8.28 02/04/2008 8.67 03/04/2008 7.33
04/04/2008 7.78 05/04/2008 7 06/04/2008 7.56
07/04/2008 7.28 08/04/2008 8.11 09/04/2008 8.22
10/04/2008 11.39 11/04/2008 11.5 12/04/2008 11.72
13/04/2008 12 14/04/2008 11.22 15/04/2008 12.94
16/04/2008 15 17/04/2008 14.06 18/04/2008 10.83
19/04/2008 8.67 20/04/2008 7.83 21/04/2008 10.5
22/04/2008 10.67 23/04/2008 14 24/04/2008 17.78
25/04/2008 17.5 26/04/2008 16.72 27/04/2008 18.11
28/04/2008 18.94 29/04/2008 18.78 30/04/2008 19.89
01/05/2008 19.61 02/05/2008 18.56 03/05/2008 16.17
04/05/2008 14.94 05/05/2008 12.28 06/05/2008 11.72
07/05/2008 11.44 08/05/2008 11.72 09/05/2008 9.56
10/05/2008 10.78 11/05/2008 12.83 12/05/2008 15.5
13/05/2008 15.94 14/05/2008 17 15/05/2008 14.06
16/05/2008 12.28 17/05/2008 14.22 18/05/2008 15.17
19/05/2008 14.72 20/05/2008 15.67 21/05/2008 17.83
22/05/2008 15.44 23/05/2008 15.33 24/05/2008 14.72
25/05/2008 15.72 26/05/2008 16.11 27/05/2008 15.17
28/05/2008 15.94 29/05/2008 19.78 30/05/2008 20.94
31/05/2008 19.17 01/06/2008 16.44 02/06/2008 13.22
03/06/2008 13.39 04/06/2008 14.83 05/06/2008 14.78
06/06/2008 14.28 07/06/2008 16.06 08/06/2008 15.5
09/06/2008 16.89 10/06/2008 15.28 11/06/2008 16.17
12/06/2008 18.17 13/06/2008 16.67 14/06/2008 17.56
15/06/2008 17.83 16/06/2008 16.5 17/06/2008 17.5
18/06/2008 19.22 19/06/2008 17.5 20/06/2008 17.33
21/06/2008 20.39 22/06/2008 17.44 23/06/2008 16.33
24/06/2008 16.5 25/06/2008 18.33 26/06/2008 15.5
27/06/2008 15.22 28/06/2008 16.11 29/06/2008 15.11
30/06/2008 17.33 01/07/2008 16 02/07/2008 13.94
03/07/2008 16.17 04/07/2008 18.39 05/07/2008 20.61
06/07/2008 17.67 07/07/2008 16.39 08/07/2008 16.94
09/07/2008 18.11 10/07/2008 15.11 11/07/2008 16
12/07/2008 18.11 13/07/2008 21.44 14/07/2008 21.5
15/07/2008 21.11 16/07/2008 22.06 17/07/2008 23.28
18/07/2008 23.17 19/07/2008 18.83 20/07/2008 20.22
21/07/2008 21.22 22/07/2008 19 23/07/2008 19.11
24/07/2008 17.83 25/07/2008 17.17 26/07/2008 16.94
27/07/2008 21.06 28/07/2008 19.33 29/07/2008 16.89
30/07/2008 16.22 31/07/2008 17.78 01/08/2008 16.83
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Date Temperature Date Temperature Date Temperature
02/08/2008 16.44 03/08/2008 15.39 04/08/2008 15.67
05/08/2008 15.83 06/08/2008 17.17 07/08/2008 17.22
08/08/2008 17.11 09/08/2008 17.22 10/08/2008 18.11
11/08/2008 16.5 12/08/2008 15.72 13/08/2008 17.06
14/08/2008 17.28 15/08/2008 18.06 16/08/2008 17.94
17/08/2008 18.17 18/08/2008 20.11 19/08/2008 21.28
20/08/2008 17.28 21/08/2008 16.28 22/08/2008 15.44
23/08/2008 15.44 24/08/2008 15.56 25/08/2008 15.17
26/08/2008 15.17 27/08/2008 15.17 28/08/2008 15.22
29/08/2008 15.61 30/08/2008 16.56 31/08/2008 17
01/09/2008 13.94 02/09/2008 14.67 03/09/2008 14.89
04/09/2008 13.83 05/09/2008 13.11 06/09/2008 14.06
07/09/2008 14.06 08/09/2008 13.61 09/09/2008 13.78
10/09/2008 13.5 11/09/2008 14.44 12/09/2008 13.94
13/09/2008 14.17 14/09/2008 15.11 15/09/2008 14.22
16/09/2008 13.67 17/09/2008 13.22 18/09/2008 13.44
19/09/2008 13.67 20/09/2008 13.11 21/09/2008 9.94
22/09/2008 8.83 23/09/2008 9.83 24/09/2008 13.22
25/09/2008 11 26/09/2008 15.28 27/09/2008 11.94
28/09/2008 11.5 29/09/2008 13.78 30/09/2008 13.5
01/10/2008 14.39 02/10/2008 14.33 03/10/2008 12.89
04/10/2008 13.94 05/10/2008 10.83 06/10/2008 9.56
07/10/2008 10.39 08/10/2008 11.83 09/10/2008 13.39
10/10/2008 10.06 11/10/2008 8.33 12/10/2008 12
13/10/2008 11.44 14/10/2008 9.61 15/10/2008 12.78
16/10/2008 7.56 17/10/2008 4.28 18/10/2008 3.28
19/10/2008 4.72 20/10/2008 4.83 21/10/2008 6.11
22/10/2008 9.61 23/10/2008 9.72 24/10/2008 10.67
25/10/2008 10.61 26/10/2008 10 27/10/2008 9.94
28/10/2008 10.89 29/10/2008 9.89 30/10/2008 10.11
31/10/2008 9 01/11/2008 7.72 02/11/2008 8.28
03/11/2008 12.22 04/11/2008 12.83 05/11/2008 11.06
06/11/2008 6.39 07/11/2008 9.72 08/11/2008 9
09/11/2008 11 10/11/2008 8.67 11/11/2008 4.17
12/11/2008 3.06 13/11/2008 4.67 14/11/2008 4.17
15/11/2008 6.06 16/11/2008 9.39 17/11/2008 5.94
18/11/2008 2.89 19/11/2008 4.67 20/11/2008 3.83
21/11/2008 2.94 22/11/2008 1.11 23/11/2008 5.83
24/11/2008 5.17 25/11/2008 5 26/11/2008 1.83
27/11/2008 3.61 28/11/2008 3.78 29/11/2008 1.89
30/11/2008 2.39 01/12/2008 3.44 02/12/2008 5.89
03/12/2008 3.72 04/12/2008 4.89 05/12/2008 3.33
06/12/2008 5.5 07/12/2008 9.5 08/12/2008 6.78
09/12/2008 11.56 10/12/2008 11 11/12/2008 11.11
12/12/2008 9.44 13/12/2008 7.78 14/12/2008 6.5
15/12/2008 3.78 16/12/2008 2.17 17/12/2008 2.5
18/12/2008 1.33 19/12/2008 -0.67 20/12/2008 -0.06
21/12/2008 1.89 22/12/2008 2.78 23/12/2008 -0.67
24/12/2008 -1.83 25/12/2008 0.61 26/12/2008 -1.94
27/12/2008 -0.22 28/12/2008 2.56 29/12/2008 -0.94
30/12/2008 -2.89 31/12/2008 5.44 01/01/2009 8.89
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Date Temperature Date Temperature Date Temperature
02/01/2009 7.67 03/01/2009 2.33 04/01/2009 5.89
05/01/2009 7.22 06/01/2009 8.67 07/01/2009 5.72
08/01/2009 5.17 09/01/2009 3.78 10/01/2009 3.61
11/01/2009 7.61 12/01/2009 5.17 13/01/2009 2.56
14/01/2009 6.83 15/01/2009 6.22 16/01/2009 4
17/01/2009 6.17 18/01/2009 3.72 19/01/2009 3.67
20/01/2009 3 21/01/2009 0.5 22/01/2009 -0.94
23/01/2009 0.33 24/01/2009 1.44 25/01/2009 1.94
26/01/2009 1.5 27/01/2009 1.22 28/01/2009 2.28
29/01/2009 3.39 30/01/2009 3.44 31/01/2009 2.89
01/02/2009 1.5 02/02/2009 4.17 03/02/2009 2.22
04/02/2009 5.72 05/02/2009 7.5 06/02/2009 8.72
07/02/2009 8.72 08/02/2009 7.5 09/02/2009 7.5
10/02/2009 7.89 11/02/2009 8.72 12/02/2009 9.17
13/02/2009 9.67 14/02/2009 8.89 15/02/2009 7.78
16/02/2009 9.5 17/02/2009 7.89 18/02/2009 7.78
19/02/2009 7.44 20/02/2009 8.11 21/02/2009 4.89
22/02/2009 4.06 23/02/2009 4.72 24/02/2009 8.94
25/02/2009 7.22 26/02/2009 6.72 27/02/2009 9
28/02/2009 7.89 01/03/2009 10.94 02/03/2009 9.11
03/03/2009 9.89 04/03/2009 9.72 05/03/2009 9.83
06/03/2009 8.89 07/03/2009 9.72 08/03/2009 7.83
09/03/2009 7.94 10/03/2009 8.22 11/03/2009 10.44
12/03/2009 8.5 13/03/2009 7.78 14/03/2009 9.39
15/03/2009 9.39 16/03/2009 6.89 17/03/2009 6
18/03/2009 5.33 19/03/2009 7.89 20/03/2009 10.72
21/03/2009 10.39 22/03/2009 10.39 23/03/2009 8.11
24/03/2009 11.56 25/03/2009 10.78 26/03/2009 12.44
27/03/2009 10.67 28/03/2009 11.61 29/03/2009 11.78
30/03/2009 10.22 31/03/2009 10.5 01/04/2009 12.22
02/04/2009 12.78 03/04/2009 14.61 04/04/2009 12.78
05/04/2009 9.94 06/04/2009 10.44 07/04/2009 10.39
08/04/2009 11.78 09/04/2009 13.94 10/04/2009 13.67
11/04/2009 13.17 12/04/2009 13.72 13/04/2009 12.17
14/04/2009 11.39 15/04/2009 8.33 16/04/2009 7.72
17/04/2009 10.67 18/04/2009 12.94 19/04/2009 14.94
20/04/2009 13.39 21/04/2009 11.72 22/04/2009 9.83
23/04/2009 14.17 24/04/2009 15.11 25/04/2009 12.56
26/04/2009 12 27/04/2009 12 28/04/2009 13.28
29/04/2009 12.06 30/04/2009 11.94 01/05/2009 12.44
02/05/2009 15 03/05/2009 12.72 04/05/2009 12.17
05/05/2009 11.61 06/05/2009 13 07/05/2009 13.33
08/05/2009 13.78 09/05/2009 13.94 10/05/2009 14.28
11/05/2009 16.06 12/05/2009 17.83 13/05/2009 17.83
14/05/2009 13.83 15/05/2009 12.44 16/05/2009 18.06
17/05/2009 18.5 18/05/2009 17.56 19/05/2009 18.5
20/05/2009 19.56 21/05/2009 19.17 22/05/2009 16.33
23/05/2009 13.5 24/05/2009 12.06 25/05/2009 11.94
26/05/2009 12.5 27/05/2009 13.06 28/05/2009 13.17
29/05/2009 13.78 30/05/2009 15.56 31/05/2009 15.56
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Date Temperature Date Temperature Date Temperature
01/06/2009 18.28 02/06/2009 18.78 03/06/2009 17.94
04/06/2009 17.56 05/06/2009 17.11 06/06/2009 15.67
07/06/2009 15.61 08/06/2009 15.22 09/06/2009 16.33
10/06/2009 17.78 11/06/2009 18.67 12/06/2009 18.28
13/06/2009 19.89 14/06/2009 19.72 15/06/2009 20.11
16/06/2009 22 17/06/2009 24.17 18/06/2009 23.72
19/06/2009 23.17 20/06/2009 22.78 21/06/2009 21.39
22/06/2009 20.17 23/06/2009 19.56 24/06/2009 16.89
25/06/2009 16.33 26/06/2009 15.67 27/06/2009 15.89
28/06/2009 16.44 29/06/2009 16.94 30/06/2009 18.61
01/07/2009 17.94 02/07/2009 18.06 03/07/2009 17.94
04/07/2009 18.06 05/07/2009 16.28 06/07/2009 16.33
07/07/2009 16.33 08/07/2009 17 09/07/2009 17.33
10/07/2009 17.89 11/07/2009 17.06 12/07/2009 16.44
13/07/2009 17.89 14/07/2009 16.83 15/07/2009 16.89
16/07/2009 16.94 17/07/2009 17.06 18/07/2009 15.44
19/07/2009 17.06 20/07/2009 17.44 21/07/2009 16.61
22/07/2009 17.5 23/07/2009 19.06 24/07/2009 22.11
25/07/2009 19.06 26/07/2009 17.89 27/07/2009 18.83
28/07/2009 20.44 29/07/2009 18.39 30/07/2009 20.11
31/07/2009 19.33 01/08/2009 19.28 02/08/2009 18.94
03/08/2009 19.17 04/08/2009 19.06 05/08/2009 18.5
06/08/2009 18.67 07/08/2009 20.78 08/08/2009 19.06
09/08/2009 16.11 10/08/2009 17.22 11/08/2009 21.28
12/08/2009 19.06 13/08/2009 16.33 14/08/2009 17.56
15/08/2009 18.56 16/08/2009 15.94 17/08/2009 15.06
18/08/2009 15.33 19/08/2009 20.06 20/08/2009 17.39
21/08/2009 15.56 22/08/2009 15.61 23/08/2009 14.89
24/08/2009 14.89 25/08/2009 16 26/08/2009 17.78
27/08/2009 20.78 28/08/2009 16.67 29/08/2009 14.78
30/08/2009 15.5 31/08/2009 16.78 01/09/2009 14.11
02/09/2009 15.61 03/09/2009 15.11 04/09/2009 15.72
05/09/2009 14.56 06/09/2009 15.44 07/09/2009 18.06
08/09/2009 17.06 09/09/2009 15.06 10/09/2009 16.33
11/09/2009 16.94 12/09/2009 15.39 13/09/2009 14.33
14/09/2009 14.06 15/09/2009 14.72 16/09/2009 15.11
17/09/2009 15.78 18/09/2009 15.67 19/09/2009 14.72
20/09/2009 12.56 21/09/2009 14.5 22/09/2009 13.28
23/09/2009 13.28 24/09/2009 16.78 25/09/2009 13.56
26/09/2009 11.17 27/09/2009 10.78 28/09/2009 14.61
29/09/2009 13.06 30/09/2009 11.5 01/10/2009 10.39
02/10/2009 11.56 03/10/2009 12.06 04/10/2009 12.22
05/10/2009 9.72 06/10/2009 7.39 07/10/2009 8.61
08/10/2009 10.22 09/10/2009 12.56 10/10/2009 12.17
11/10/2009 12.5 12/10/2009 15.17 13/10/2009 13.44
14/10/2009 13 15/10/2009 14.17 16/10/2009 13.78
17/10/2009 12.89 18/10/2009 12.72 19/10/2009 13.5
20/10/2009 13 21/10/2009 9.33 22/10/2009 10.78
23/10/2009 8.67 24/10/2009 10.06 25/10/2009 10
26/10/2009 7.72 27/10/2009 7.83 28/10/2009 5.33
29/10/2009 5.56 30/10/2009 8.44 31/10/2009 11.39
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Date Temperature Date Temperature Date Temperature
01/11/2009 12.39 02/11/2009 11.72 03/11/2009 10.39
04/11/2009 11.72 05/11/2009 11.06 06/11/2009 13.5
07/11/2009 13.44 08/11/2009 12.94 09/11/2009 12.44
10/11/2009 10.11 11/11/2009 11.11 12/11/2009 12.56
13/11/2009 10.67 14/11/2009 8.39 15/11/2009 6.89
16/11/2009 6.56 17/11/2009 7.44 18/11/2009 5.83
19/11/2009 3.44 20/11/2009 8.44 21/11/2009 6.5
22/11/2009 4.56 23/11/2009 9.89 24/11/2009 10.78
25/11/2009 8.83 26/11/2009 7.89 27/11/2009 10.83
28/11/2009 8.44 29/11/2009 4.5 30/11/2009 5.67
01/12/2009 4.94 02/12/2009 3.39 03/12/2009 2
04/12/2009 0.33 05/12/2009 2.11 06/12/2009 0.44
07/12/2009 -1.11 08/12/2009 0.67 09/12/2009 0.17
10/12/2009 0.61 11/12/2009 -0.33 12/12/2009 4.22
13/12/2009 2.89 14/12/2009 6.89 15/12/2009 5.39
16/12/2009 1.89 17/12/2009 3.94 18/12/2009 4.44
19/12/2009 3.5 20/12/2009 0.78 21/12/2009 1.78
22/12/2009 0.44 23/12/2009 -2.78 24/12/2009 -1.33
25/12/2009 -0.06 26/12/2009 -2.33 27/12/2009 -1.44
28/12/2009 -1.22 29/12/2009 1.44 30/12/2009 0.72
31/12/2009 1.17 01/01/2010 0.56 02/01/2010 2.17
03/01/2010 3.67 04/01/2010 6 05/01/2010 5.06
06/01/2010 4.72 07/01/2010 6.5 08/01/2010 3.39
09/01/2010 4 10/01/2010 7.39 11/01/2010 5.94
12/01/2010 4.28 13/01/2010 3.61 14/01/2010 1.28
15/01/2010 1.89 16/01/2010 5.5 17/01/2010 3.67
18/01/2010 0.5 19/01/2010 0.22 20/01/2010 1.5
21/01/2010 5.83 22/01/2010 4.61 23/01/2010 7.61
24/01/2010 7.22 25/01/2010 5.11 26/01/2010 4.11
27/01/2010 1.72 28/01/2010 2.22 29/01/2010 1.61
30/01/2010 1.28 31/01/2010 2.94 01/02/2010 2.44
02/02/2010 3 03/02/2010 1.83 04/02/2010 4.11
05/02/2010 4.06 06/02/2010 3 07/02/2010 2.5
08/02/2010 1.22 09/02/2010 3.28 10/02/2010 3.33
11/02/2010 3.06 12/02/2010 7.39 13/02/2010 7.72
14/02/2010 6.22 15/02/2010 7.44 16/02/2010 5.61
17/02/2010 4.67 18/02/2010 4.94 19/02/2010 4
20/02/2010 3.89 21/02/2010 3.11 22/02/2010 4.06
23/02/2010 0.89 24/02/2010 2.5 25/02/2010 5.11
26/02/2010 4.06 27/02/2010 4.22 28/02/2010 5.28
01/03/2010 6.5 02/03/2010 8.44 03/03/2010 7.78
04/03/2010 7.11 05/03/2010 8.78 06/03/2010 10.83
07/03/2010 10.67 08/03/2010 11.83 09/03/2010 9.11
10/03/2010 8.56 11/03/2010 7.61 12/03/2010 11.94
13/03/2010 11.44 14/03/2010 9.72 15/03/2010 9.67
16/03/2010 9 17/03/2010 10 18/03/2010 8.44
19/03/2010 4.94 20/03/2010 5.61 21/03/2010 7.44
22/03/2010 7.72 23/03/2010 7.83 24/03/2010 8.94
25/03/2010 11.61 26/03/2010 9.67 27/03/2010 10.72
28/03/2010 12.44 29/03/2010 11.89 30/03/2010 9.44
31/03/2010 9.44 01/04/2010 9.33 02/04/2010 8.67
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Appendix B. Table data

Date Temperature Date Temperature Date Temperature
03/04/2010 8.67 04/04/2010 8.78 05/04/2010 9.78
06/04/2010 11.28 07/04/2010 11.61 08/04/2010 9.78
09/04/2010 7.89 10/04/2010 9 11/04/2010 10.83
12/04/2010 13.11 13/04/2010 13.33 14/04/2010 12.83
15/04/2010 14.22 16/04/2010 14.94 17/04/2010 14.11
18/04/2010 11.72 19/04/2010 12.11 20/04/2010 8.39
21/04/2010 7.78 22/04/2010 7.72 23/04/2010 10.17
24/04/2010 11.06 25/04/2010 9.06 26/04/2010 8.22
27/04/2010 8.94 28/04/2010 9.11 29/04/2010 7.33
30/04/2010 7.33
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