
REINFORCEMENT LEARNING WITH

TIME PERCEPTION

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2012

By

Chong Liu

School of Computer Science

Contents

Abstract 13

Declaration 15

Copyright 16

Acknowledgements 17

1 Introduction 18

1.1 Research motivation . 18

1.2 Research aims . 22

1.3 What is time perception? . 22

1.4 What is novel in this research? . 23

1.5 Thesis outline . 25

2 Background on reinforcement learning 27

2.1 Elements of reinforcement learning 27

2.1.1 The agent . 28

2.1.2 The policy . 29

2.1.3 The environment . 30

2.1.4 Rewards and returns . 30

2.1.5 Markov property and Markov processes 30

2.1.6 Markov decision processes 31

2.1.7 Semi-Markov decision processes 31

2.1.8 Types of tasks . 32

2.1.9 Criteria of optimality . 32

2.2 Challenges for reinforcement learning 34

2.2.1 Evaluative vs. instructive 34

2

2.2.2 Exploration vs. exploitation 35

2.2.3 Immediate vs. delayed rewards 35

2.2.4 Credit assignment . 36

2.2.5 Designing a reward function 36

2.2.6 Rewards vs. value . 37

2.2.7 Generalisation . 38

2.3 Methods for solving reinforcement learning problems 39

2.3.1 Bellman equations . 39

2.3.2 Dynamic programming . 41

2.3.3 Monte Carlo methods . 42

2.3.4 Temporal-di�erence (TD) learning 43

2.3.5 Q learning . 44

2.3.6 SARSA learning . 44

2.3.7 Reinforcement comparison and actor-critic methods 45

2.3.8 Eligibility traces . 46

2.3.9 Discussions of di�erent methods 47

3 Related work 49

3.1 Classical conditioning . 49

3.1.1 Phenomena of classical conditioning 50

3.1.2 Simulation of classical conditioning 52

3.1.3 Neural substrate of TD learning 53

3.2 The n-armed bandit problem . 55

3.2.1 The problem . 55

3.2.2 Dynamic programming . 56

3.2.3 Gittins allocation indices 57

3.2.4 Reinforcement learning . 57

3.3 Approaches to estimation of variance 58

3.4 Reinforcement learning in semi-MDPs 59

3.4.1 Bellman equations for semi-MDPs 59

3.4.2 Research in semi-MDPs 60

3.5 Reinforcement learning in dynamic environments 61

3.5.1 A �xed learning rate and �nite time window 63

3.5.2 Non-greedy decision making 64

3.5.3 Exploration bonuses . 65

3.5.4 Interval estimation algorithm 67

3

3.5.5 Bayesian methods . 67

3.5.6 Risk sensitive reinforcement learning 69

3.5.7 Metacognitive monitoring and control 70

3.5.8 Relational reinforcement learning 72

3.5.9 State augmentation . 73

3.5.10 State instantiation . 73

3.5.11 Methods designed speci�cally for cyclical environments . . 74

3.6 Our research . 75

4 Classical conditioning with spiking neurons 77

4.1 Background on spiking neuron models 78

4.1.1 The biological neural system 79

4.1.2 Neural coding . 79

4.1.3 Single neuron models . 83

4.1.4 Population neuron models 85

4.1.5 Synapses . 86

4.1.6 Neural learning . 86

4.2 Neural structure . 90

4.2.1 Neuron architecture . 90

4.2.2 Neuron model . 90

4.2.3 Synapse model . 91

4.3 Learning algorithm . 91

4.4 Simulation results . 93

4.4.1 Pavlovian conditioning . 93

4.4.2 Extinction . 94

4.4.3 Blocking . 95

4.4.4 Secondary conditioning . 97

4.5 Conclusions and discussion . 97

4.5.1 Robustness of the model 98

4.5.2 Compared with TD learning 98

4.5.3 Novelty of the model . 100

4.5.4 An alternative model . 102

4.5.5 Instrumental conditioning and general reinforcement learning103

5 Time delayed n-armed bandit problem 107

5.1 Introduction . 108

4

5.2 Algorithms . 110

5.2.1 Time estimation . 114

5.2.2 Time estimation with time perception 115

5.2.3 Value (discounted reward) estimation 136

5.2.4 Value (discounted reward) estimation with value perception 136

5.2.5 Other criteria of optimality 140

5.3 Experimental settings . 143

5.4 Deterministic environments . 146

5.4.1 Introduction . 146

5.4.2 When the amount of reward for actions is the same and

does not change . 146

5.4.3 When the amount of reward for actions may be di�erent

and may also change . 155

5.5 Stochastic environments . 159

5.5.1 Introduction . 159

5.5.2 When the amount of reward for actions is the same and

does not change . 160

5.5.3 When the amount of reward for actions may be di�erent

and may also change . 169

5.6 Conclusions and discussion . 173

5.6.1 On-policy or o�-policy . 175

5.6.2 Alternative models . 176

5.6.3 When the reward may never come 178

5.6.4 When the energy budget is limited 180

6 Route �nder problem 186

6.1 Introduction . 186

6.2 Algorithms . 190

6.2.1 Monte Carlo methods . 192

6.2.2 Monte Carlo methods with time perception 193

6.3 Experimental settings . 195

6.4 Experimental results . 199

6.4.1 Deterministic environments 199

6.4.2 Stochastic environments 209

6.5 Conclusions and discussion . 217

6.5.1 On-policy or o�-policy . 218

5

6.5.2 State representation . 219

6.5.3 Alternative models . 219

6.5.4 Why Monte Carlo methods 223

7 Summary and conclusions 224

7.1 Summary of the research . 224

7.2 The limitations of the research . 230

7.3 Future work . 232

Bibliography 236

Word Count: 93,166

6

List of Tables

5.1 Summary of notation used to describe algorithms for the time de-

layed n-armed bandit problem . 112

5.2 Summary of notation used to describe experimental scenarios for

the time delayed n-armed bandit problem 145

6.1 Summary of notation used to describe algorithms for the route

�nder problem . 190

6.2 Summary of notation used to describe experimental scenarios for

the route �nder problem . 199

7

List of Figures

3.1 Activity of the dopaminergic neurons during classical conditioning

experiments . 54

4.1 Schematic illustration of biological neurons 79

4.2 Signals generated and transmitted by neurons 80

4.3 Schematic diagram of the leaky integrate-and-�re model 84

4.4 Neuron architecture used to model classical conditioning 90

4.5 Square learning window . 92

4.6 Inputs and output (Pavlovian conditioning) 94

4.7 Weight updates during learning (Pavlovian conditioning) 95

4.8 Weight updates during learning (extinction) 95

4.9 Inputs and output (blocking) . 96

4.10 Weight updates during learning (blocking) 96

4.11 Inputs and output (secondary conditioning) 97

4.12 Weight updates during learning (secondary conditioning) 98

4.13 Inputs and output (Pavlovian conditioning, overlapped inputs) . . 99

4.14 Weight updates during learning (Pavlovian conditioning, overlapped

inputs) . 99

4.15 Inputs and output (Pavlovian conditioning, uncontigeous inputs) . 100

4.16 Weight updates during learning (Pavlovian conditioning, unconti-

geous inputs) . 101

4.17 Weight updates during learning (Pavlovian conditioning, Hebbian

learning only) . 102

4.18 Weight updates during learning (extinction, Hebbian learning only) 102

4.19 Weight updates during learning (Pavlovian conditioning, anti-Hebbian

learning only) . 103

4.20 A neuron structure modelling instrumental conditioning 104

4.21 A scenario of general reinforcement learning 105

8

4.22 Neural structure modelling general reinforcement learning 106

4.23 A learning window that can serve as a discount function. 106

5.1 Learn the mean and variance of a random variable (Poisson distri-

bution) . 119

5.2 Learn the mean and variance of a random variable (normal distri-

bution) . 119

5.3 Learn the mean of a random variable with a �xed learning rate . . 125

5.4 Learn the mean of a random variable with a decreasing learning rate127

5.5 Learn the mean of a variable with a variable α and a �xed big α2 129

5.6 Learn the mean of a variable with a variable α and a �xed small α2 130

5.7 Comparison of learning the mean of a variable with di�erent learn-

ing rates . 131

5.8 Comparison of the three algorithms during training; same amount

of reward, deterministic: Case 1 148

5.9 Comparison of the three algorithms during training; same amount

of reward, deterministic: Case 2 149

5.10 Comparison of the three algorithms during training in terms of

time steps taken for the behaviour of the learning agent to become

correct and stable; same amount of reward, deterministic 149

5.11 Time steps taken to recover from environmental changes after the

time to reward for the two arms changes from (6,10); same amount

of reward, deterministic . 151

5.12 Time steps taken to recover from environmental changes after the

time to reward changes in the average cases; same amount of re-

ward, deterministic . 153

5.13 Time steps taken to recover from environmental changes with dif-

ferent initial learning rates; same amount of reward, deterministic 154

5.14 Comparison of the three algorithms during training; di�erent amounts

of rewards, deterministic: Case 1 156

5.15 Comparison of the three algorithms during training; di�erent amounts

of rewards, deterministic: Case 2 157

5.16 Time steps needed to recover from environmental changes after

both the time to reward and the amount of reward change; di�erent

amount of reward, deterministic: Case 3 158

9

5.17 Time steps needed to recover from environmental changes; di�erent

amount of reward, deterministic: Case 4 159

5.18 Comparison of the three algorithms during training; same amount

of reward, stochastic: Case 1 . 162

5.19 Comparison of the three algorithms during training; same amount

of reward, stochastic: Case 2 . 163

5.20 Comparison of the three algorithms during training in terms of

time steps taken for the behaviour of the learning agent to become

correct and stable for the environment; same amount of reward,

stochastic . 163

5.21 Comparison of the three algorithms during training in a typical

run when the actual mean of the time to reward for two arms is

very close; same amount of reward, stochastic 164

5.22 Time steps taken to recover from environmental changes after the

time to reward changes from Poisson(6) and Poisson(10); same

amount of reward, stochastic . 166

5.23 Time steps taken to recover from environmental changes after the

time to reward changes in the average cases; same amount of re-

ward, stochastic . 169

5.24 Time steps taken to recover from environmental changes with dif-

ferent initial learning rates; same amount of reward, stochastic . . 170

5.25 Comparison of the three algorithms during training; di�erent amount

of reward, stochastic: Case 1 . 172

5.26 Comparison of the three algorithms during training; di�erent amount

of reward, stochastic: Case 2 . 172

5.27 Time steps needed to recover from environmental changes after

both the time to reward and the amount of reward change; di�erent

amount of reward, stochastic: Case 3 174

5.28 Time steps needed to recover from environmental changes; di�erent

amount of reward, stochastic: Case 4 174

5.29 Modi�ed time delayed n-arm bandit problem 177

5.30 The learning process of Q learning during training in a new exper-

imental setting . 179

5.31 The learning process of Q learning with time augmentation during

training in a new experimental setting 179

10

5.32 Comparison of the three algorithms with initial training in terms

of the value of the discounted reward received; limited energy budget183

5.33 Comparison of the three algorithms without initial training in

terms of the value of the discounted reward received; limited energy

budget . 184

6.1 Illustration of a route �nder problem 187

6.2 Comparison of the two algorithms during training; deterministic:

Case 1 . 202

6.3 Comparison of the two algorithms during training; deterministic:

Case 2 . 203

6.4 Comparison of the two algorithms during training; deterministic:

Case 3 . 204

6.5 Comparison of the two algorithms in terms of the average time

steps to get one reward in the last 100 episodes; deterministic . . 205

6.6 Comparison of the three algorithms in terms of the average time

steps to get one reward after the learning converges; deterministic:

Case 7 . 206

6.7 Time steps taken to recover from environmental changes; deter-

ministic . 208

6.8 Comparison of the two algorithms during training; stochastic: Case 1211

6.9 Comparison of the two algorithms during training; stochastic: Case 2212

6.10 Comparison of the two algorithms during training; stochastic: Case 3213

6.11 Comparison of the two algorithms in terms of the average time

steps to get one reward in the last 100 episodes; stochastic 214

6.12 Comparison of the three algorithms in terms of the average time

steps to get one reward after the learning converges; stochastic:

Case 7 . 215

6.13 Time steps taken to recover from environmental changes; stochastic 217

6.14 Time steps needed to get the Xth reward in a new experimental

setting . 220

6.15 Time steps needed to get the Xth reward in another new experi-

mental setting . 221

6.16 Time steps needed to get the Xth reward in the third new experi-

mental setting . 222

11

7.1 Illustration of a scalable general route �nder problem 234

12

Abstract

Classical value estimation reinforcement learning algorithms do not perform very

well in dynamic environments. On the other hand, the reinforcement learning of

animals is quite �exible: they can adapt to dynamic environments very quickly

and deal with noisy inputs very e�ectively. One feature that may contribute

to animals' good performance in dynamic environments is that they learn and

perceive the time to reward.

In this research, we attempt to learn and perceive the time to reward and

explore situations where the learned time information can be used to improve the

performance of the learning agent in dynamic environments. The type of dynamic

environments that we are interested in is that type of switching environment

which stays the same for a long time, then changes abruptly, and then holds for a

long time before another change. The type of dynamics that we mainly focus on

is the time to reward, though we also extend the ideas to learning and perceiving

other criteria of optimality, e.g. the discounted return, so that they can still work

even when the amount of reward may also change.

Speci�cally, both the mean and variance of the time to reward are learned

and then used to detect changes in the environment and to decide whether the

agent should give up a suboptimal action. When a change in the environment

is detected, the learning agent responds speci�cally to the change in order to

recover quickly from it. When it is found that the current action is still worse

than the optimal one, the agent gives up this time's exploration of the action and

then remakes its decision in order to avoid longer than necessary exploration.

The results of our experiments using two real-world problems show that they

have e�ectively sped up learning, reduced the time taken to recover from envi-

ronmental changes, and improved the performance of the agent after the learning

converges in most of the test cases compared with classical value estimation re-

inforcement learning algorithms. In addition, we have successfully used spiking

13

neurons to implement various phenomena of classical conditioning, the simplest

form of animal reinforcement learning in dynamic environments, and also pointed

out a possible implementation of instrumental conditioning and general reinforce-

ment learning using similar models.

14

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or quali�cation of this or any other university or other

institute of learning.

15

Copyright

i. The author of this thesis (including any appendices and/or schedules to this

thesis) owns any copyright in it (the �Copyright�) and s/he has given The

University of Manchester the right to use such Copyright for any adminis-

trative, promotional, educational and/or teaching purposes.

ii. Copies of this thesis, either in full or in extracts, may be made only in

accordance with the regulations of the John Rylands University Library of

Manchester. Details of these regulations may be obtained from the Librar-

ian. This page must form part of any such copies made.

iii. The ownership of any patents, designs, trade marks and any and all other

intellectual property rights except for the Copyright (the �Intellectual Prop-

erty Rights�) and any reproductions of copyright works, for example graphs

and tables (�Reproductions�), which may be described in this thesis, may

not be owned by the author and may be owned by third parties. Such Intel-

lectual Property Rights and Reproductions cannot and must not be made

available for use without the prior written permission of the owner(s) of the

relevant Intellectual Property Rights and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication

and exploitation of this thesis, the Copyright and any Intellectual Property

Rights and/or Reproductions described in it may take place is available

from the Head of School of Computer Science (or the Vice-President).

16

Acknowledgements

There are many people to whom I am indebted during my PhD research. First

of all, I would like to thank my supervisor Dr. Jonathan Shapiro and advisor

Professor Steve Furber for their continuous help and guidance.

Another great debt is to other lecturers and my fellow PhD students of the

school as well as researchers outside the school or the university. I really enjoy

both casual conversation and academic discussion with them. In particular, I

thank Joy Bose and Dr. Stefano Panzeri for introducing me to spiking neurons,

John M. Butterworth for his discussion of reinforcement learning with me, Dr.

Michael L. Anderson for answering my questions about the MCL approach, and

Dr. Jeremy Wyatt and Dr. Xiaojun Zeng for their suggestions for improving

this thesis. In addition, I am also very grateful to Geo� and Sylvia, the former

organisers of Globe Cafe Manchester, through which I have learned a lot about

British culture and also made many good friends. In particular, I thank Vicky

and Mark for their e�orts to help me correct all the grammar errors in this thesis.

I gratefully acknowledge the �nancial support of this research from the Over-

seas Scholarship Scheme provided by Universities UK and from the departmental

studentship provided by the School of Computer Science at the University of

Manchester.

Finally, thanks go to my grandmas, parents, parents-in-law, brothers and

sisters for their support, help and encouragement. I especially thank my angel,

Tian. Without her support and encouragement, I would never have �nished this

work. I am thankful for our unborn baby whose arrival will be a joy and also an

inspiration to me and whose birth will be a big blessing to our whole family.

17

Chapter 1

Introduction

Reinforcement learning (RL) [1, 2] is learning from interaction with a dynamic

environment and from the consequences of the learning agent's own actions, rather

than from explicit teaching. It is intended to address one prediction, learning and

decision making problem that animals and humans have to face in their everyday

lives. In addition, it has found a great number of applications in the real world,

such as game playing, robotics and industrial manufacturing.

This research attempts to learn and monitor the time to reward and explore

situations where the learned time information can be used to improve the perfor-

mance of the learning agent in dynamic environments. The motivation for our

research is discussed in section 1.1. Section 1.2 presents our research aims. Sec-

tion 1.3 explains the meaning of time perception in the context of this research.

In section 1.4, the novelty of our research is discussed. The last section outlines

the whole thesis.

1.1 Research motivation

Classical value estimation reinforcement learning algorithms, e.g. Monte Carlo

methods [3�5], dynamic programming algorithms [6], Q learning [7], SARSA

learning [8], and Prioritized Sweeping [9], only learn the value of reward but

use a discount factor to distinguish two reward with the same value but received

at di�erent times (a reward received in the future would become smaller after

the discount). In e�ect, they use a single value for two things, viz. the value of

reward and the time to reward.

This method, however, su�ers from several drawbacks. Firstly, it cannot

18

1.1. RESEARCH MOTIVATION 19

distinguish a small reward r1 received in a shorter time t1 from a big reward

r2 received in a longer time t2 as long as r1γ
t1 = r2γ

t2 where 0 ≤ γ ≤ 1 is

the discount factor. Although this is probably a favourable behaviour in general

cases, it may not be desirable in some restrictive cases. For instance, a robot with

limited battery tries to �nd a charging point (reward). Suppose the battery is

enough to support the robot for t1 but not for t2. The optimal decision in this case

should go for the �rst charging point rather than the second one. In addition, it

cannot distinguish a reward with constant value or constant time to reward and

the other one with variable value or variable time to reward as long as the mean

of the discounted values of the two rewards is the same. Animal experiments [10,

11], however, showed that even when the expected value of the rewards is the

same, some animals may be risk-prone (choose the one with variable value or

variable time to reward) [12,13], while others are risk-averse (choose the one with

constant value or constant time to reward) [14, 15], or sometimes indi�erent to

risk (the variability of the value or the variability of the time to reward) [16,17].

Furthermore, some studies [18,19] also suggested that the preference depends on

the energy budget of the animals.

Furthermore, although continuous exploration is needed in nonstationary en-

vironments, it is not necessary to continue this time's exploration of the current

action or the current state-action pair beyond the time when the learning agent

has found that the action or the state-action pair is still worse than the optimal

one. It is worth noting, however, that this does not a�ect future exploration of

the action or the state-action pair. For simplicity, we consider a deterministic

environment with only one state and two actions. Suppose that the value of re-

ward for both actions is the same and does not change but the time to reward

for both actions may change. Suppose that the agent has learned that it takes

1 minute to get a reward if it chooses the �rst action or 1 year to get the same

amount of reward if it selects the second action. Even though the �rst action is

apparently the optimal action at present, the agent still needs to explore/select

the second action occasionally just in case the environment has changed and the

time to reward for the second action has become even shorter than that for the

�rst action, e.g. 1 second. This is the classical trade-o� between exploration and

exploitation. On the other hand, however, does the agent need to wait (1 year)

until receiving a reward after it takes the second action? Fortunately, this is not

20 CHAPTER 1. INTRODUCTION

necessary. If the reward has not arrived 1 minute after the second action is se-

lected, the agent can conclude that the second action is still worse than the �rst

one, so the purpose of this time's exploration has been ful�lled and therefore the

agent does not need to wait any longer. By giving up the second action 1 minute

after it is taken and then choosing the �rst action instead, the agent can get a

reward in only 2 minutes in this episode, whereas it may take the agent 1 year

to get a reward if it chooses to continue its wait until receiving a reward after

it takes the second action. Even if the time to reward is not deterministic or

the amount of reward for actions in one state is not the same, it is still possible

to �nd a time after which the current action is still worse than the optimal one

and therefore longer exploration beyond the time is not necessary. Unfortunately,

however, the learned discounted reward alone cannot be used to decide when the

agent should give up this time's exploration of a suboptimal action because it

may expect a bigger reward in a longer time which would have the same value of

discounted reward. In contrast, animal experiments [20�22] showed that animals

maintain the average foraging rate. When the foraging rate in the current patch

is below the average one, they give up the patch and then choose other patches

instead.

Similarly, if the agent knows the expected time to a reward after taking an

action, it can deduce that something wrong must have happened, e.g. the en-

vironment has changed, it has made a bad decision or it has taken a di�erent

action from what it had intended to take, when it has not received the reward

long after the expected time. Being able to discover that something is wrong

enables the agent to change its policy accordingly and therefore can potentially

improve its performance. For example, suppose that it usually takes a person 30

minutes to drive home from work. One day, however, he has not yet arrived home

after more than one hour's driving or he �nds himself in a completely unfamiliar

place. If everything is as usual, e.g. tra�c free-�owing, weather good and no road

closure, he would realise that he had made a wrong turn at one junction. If he

goes back to the junction or some familiar place, it will not take him very long to

reach his destination if he does not make another wrong turn afterwards. On the

other hand, however, if he continues his journey, he may be further away from his

home and may never even arrive. Animal experiments also found that animals

have the ability to learn and perceive the time to reward [23�25] and can also

1.1. RESEARCH MOTIVATION 21

use this ability to detect if something is wrong and then adjust its policy accord-

ingly [10]. Speci�cally, the experiment by Brunner et al. [26] on starlings showed

that the rate of their pecking (active search of foods) peaked when the time was

close to the time of the reward; the starlings stopped pecking about 1.5 times the

inter-prey interval if they had not received any reward, and then abandoned the

current patch and �ew to other patches 13s later. In addition, the hungry feeling

of animals also serves a similar purpose. When animals feel hungry, they know

that their energy level is low and they need to eat something in order to top up

its energy. In contrast, if animals had no feeling of hunger, they would not be

able to know that their energy is low and would have no incentive to top up its

energy. Instead, they may continue consuming their energy and would eventually

run out of energy and die.

Next, in a dynamic environment, although these classical value estimation al-

gorithms can forget past experience (weight recent rewards more heavily) through

a �xed learning rate α, keep exploring through ε-greedy or other non-greedy deci-

sion making strategies, and change their policies by updating their value functions

when the environment changes, the learning process is usually quite slow after the

environment changes because it takes the learning agent a long time to unlearn

the previous optimal policy [27]. Thus, it may take them a long time to recover

from an environmental change. Experiments by Anderson et al. [28, 29] further

showed that in some cases it is even better to throw away the existing policy

and start over than to continue learning with the existing policy. In addition,

in order to keep tracking nonstationary environments, the learning rate cannot

be reduced to a very small number. For this reason, the learned value cannot

converge to its true value even in a stationary but stochastic environment. If

there is a method that can detect changes in the environment, the learning rate

can be increased to learn the change quickly when an environmental change has

been detected and can be decreased for the estimated value to converge to its

true value when an environmental change has not been detected. Studies in neu-

roscience [30,31] found that animals can detect environmental changes, and then

boost their learning rate when an environmental change is detected, and reduce

their learning rate otherwise. Speci�cally, when the consequence of a stimulus

is uncertain and the uncertainty is expected (e.g. stochastic environments), the

activity of neocortical acetylcholine (ACh) increases [32]; when the consequence

of a stimulus is not expected (e.g. nonstationary environments), the activity of

22 CHAPTER 1. INTRODUCTION

neocortical norepinephrine (NE) increases [33]. Although ACh reports on uncer-

tainties in internal estimates whereas NE reports on dramatic changes, the in-

creased level of both ACh and NE will increase the learning rate, boost learning

about the environment and enhance bottom-up processing in inference [30,31].

For these reasons, we attempt to incorporate some of the above features of

animal learning into reinforcement learning in order to improve the performance of

the learning agent in dynamic environments. Speci�cally, we attempt to learn and

monitor the time to reward and then use it to detect changes in the environment.

When a change is detected, the learning agent responds speci�cally to it in order

to recover from it quickly. In addition, the learned time information is also used

to �nd out when the agent should give up the current action in order to avoid

longer than necessary exploration. Our long term research plan is to implement

reinforcement learning together with the above features of animal learning using

biologically plausible neuron models which are the foundations of animal learning

and behaviour.

1.2 Research aims

This PhD research aims to learn and perceive the time to reward and explore

situations where the learned time information can be used to improve the per-

formance of the learning agent in dynamic environments. The type of dynamic

environments that we are interested in is that type of switching environment

which stays the same for a long time, then changes abruptly, and then holds for

a long time before another change. The type of dynamics that we mainly focus

on is the time to reward.

In addition, as part of ongoing research, which attempts to build a biologically

plausible neuron model that is capable of implementing reinforcement learning

and of adapting to dynamic environments quickly, this PhD research also ex-

plores the possibilities of using biologically plausible neuron models to implement

reinforcement learning.

1.3 What is time perception?

The de�nition of time perception from Encyclopædia Britannica [34] is

�experience or awareness of the passage of time�.

1.4. WHAT IS NOVEL IN THIS RESEARCH? 23

For animals, the ability to perceive time serves at least four purposes. Firstly,

they learn the timing of an event if the event is regular. The event may be the

arrival of prey or the arrival of winter. Secondly, they use the learned time to

predict the approach of the event so that they can prepare for it in advance (e.g.

in classical conditioning, the salivation of dogs prepares them for digesting food).

Thirdly, they compare the learned timing of the event with the actual timing of

the event to �nd out if the timing of the event has changed. If it has changed,

they respond quickly to the change. In Pavlov's experiments, for instance, if

both the timing when the bell sounds and the timing when the food is given are

delayed, dogs will also delay their salivation. Finally, if the event does not happen

some time after the predicted time, they know that the event will not come or

the action choice they made is not a good choice and therefore need not wait for

it forever. Therefore, in this research, the term time perception not only means

perceiving time but also means the behaviours associated with it, viz. learning,

predicting, monitoring and comparing time.

1.4 What is novel in this research?

1. We have successfully implemented various phenomena of classical condi-

tioning using spiking neurons [35] and also pointed out a possible imple-

mentation of instrumental conditioning and general reinforcement learning

using similar models. Traditionally, classical conditioning is mainly mod-

elled by connectionist neural networks, e.g. the Rescorla-Wagner model [36]

and the Sutton-Barto model [37]. These models use high-level abstractions

of neurons which ignore the temporal dynamics of real neurons. Classi-

cal conditioning, however, is dynamic in essence because it mainly learns

and predicts the dynamic environment. The Sutton-Barto model solves

this problem by using a temporal learning rule. Here we attempt to use

the temporal dynamics of biological neurons directly to model the dynamic

nature of classical conditioning.

2. We have designed a method that detects changes in the environment by

comparing the actual value of a state-action pair (s, a) in the current trial

with the estimated mean (Q(s, a)) and variance (Q_var(s, a)) of the value

of (s, a). When the actual value of (s, a) is outside Q(s, a)±k
√
Q_var(s, a)

where k ≥ 0, the method deems that the value of (s, a) has changed. This

24 CHAPTER 1. INTRODUCTION

method has the potential to detect changes in the environment with only

one trial even in a stochastic environment. On the other hand, if only the

mean of the value is learned, many trials are needed to detect changes in

a stochastic environment because it has to compare the mean of the values

in recent several trials with the mean of the values in several trials before

recent several trials. Furthermore, this method is much easier than to learn

the full distribution of the values, which is a non-trivial task in its own

right.

3. We have designed a method to adjust the value of the learning rate to dif-

ferent situations. The learning rate is increased to learn the change quickly

when an environmental change has been detected and the learning rate is

decreased towards 0 for the estimated value to converge to its true value

when an environmental change has not been detected. Traditionally, a �xed

learning rate is usually used. The value of the �xed learning rate cannot

be either too small or too big because it has to balance the nonstationary

stages of the environment and the stationary stages of the environment.

When the environment changes, the learning rate is not big enough to re-

spond quickly to the change. On the other hand, when the environment

does not change, the learning rate is not small enough for the estimated

value to converge to its true value if the environment is stochastic.

4. We have used two methods to balance exploration and exploitation. Firstly,

the exploration rate (e.g. ε for ε-greedy) is increased in order to increase the

chance that suboptimal actions are visited if it is found that a suboptimal

action in one state has improved and may potentially become the optimal

action; otherwise, the exploration rate is decreased gradually towards its

minimum value in order to reduce the cost of exploring suboptimal actions.

Secondly, if the learning agent has found that the current action in one

state is still worse than the optimal one in the state some time after taking

the action, it will give up this time's exploration of the action in order to

avoid longer than necessary exploration. It is worth mentioning that it is

impossible to completely avoid exploration in nonstationary environments

because only when the learning agent has explored the state-action pairs

can it know whether their values have changed or not. However, with our

methods, the cost of exploration can be dramatically reduced in certain

1.5. THESIS OUTLINE 25

cases.

5. The learning rate is associated with each state-action pair. Traditionally, a

single learning rate is used for all state-action pairs. When the environment

changes, it makes sense to increase the learning rate in order to respond

quickly to the environmental change. However, not all state-action pairs

may have been a�ected by the change. It may lead to instability if the

learning rates of the state-action pairs, whose values have not changed, are

increased in a stochastic environment. Therefore, we use a di�erent learning

rate for each state-action pair so that only the learning rates of the pairs,

whose values have changed, are increased when the environment changes.

6. The exploration rate (e.g. ε for ε-greedy) is associated with each state. Tra-

ditionally, a single ε is used for all states. When the environment changes, ε

is usually increased to explore suboptimal actions. However, only when the

suboptimal actions have improved does increasing ε help. In some cases,

for example, when the optimal action has improved or the suboptimal ac-

tions have worsened, the result is even worse if ε is increased. In addition,

some states may satisfy the condition of increasing ε whereas others are not.

Therefore, we use a di�erent ε for each state so that only the ε of the states

satisfying the conditions is increased when the environment changes.

1.5 Thesis outline

A brief introduction to this research has been provided in this chapter. The

remainder of this thesis is organised as follows:

Chapter 2 provides some preliminary knowledge about reinforcement learning

including problems that reinforcement learning addresses, challenges for

reinforcement learning and classical algorithms for reinforcement learning.

Chapter 3 discusses recent research on reinforcement learning which is related

with this research and compares this research with them.

Chapter 4 introduces spiking neuron models and presents our work implement-

ing classical conditioning using spiking neurons. In addition, it points out

a possible implementation of instrumental conditioning and general rein-

forcement learning using similar models.

26 CHAPTER 1. INTRODUCTION

Chapter 5 and the next chapter, introduce two real-world problems and related

algorithms. This chapter introduces a simple problem which has only one

state but multiple actions with delayed reward. In this chapter, we also

investigate possible implementations of the ideas of learning and monitor-

ing the time to reward and then design simple algorithms for this kind of

reinforcement learning problem with only one state. In addition, we also

extend the idea of learning and perceiving the time to reward to learning

and monitoring other criteria of optimality, e.g. the discounted reward, so

that it can work even when the amount of reward is not the same and may

also change. Finally, we compare the standard reinforcement learning algo-

rithms without time/value perception with the algorithms with time/value

perception in various experimental scenarios.

Chapter 6 introduces a route �nder problem which naturally extends the time

delayed n-armed bandit problem to multiple states and extends the algo-

rithms introduced in last chapter to work with multiple states. In addition,

this chapter also compares standard Monte Carlo methods without time

perception with Monte Carlo methods with time perception in various ex-

perimental scenarios.

Chapter 7 concludes the thesis with a summary of the motivation, fundamental

ideas, justi�cations for key decisions, and the main results, contributions

and limitations of this research as well as ideas for future work.

Chapter 2

Background on reinforcement

learning

Reinforcement learning (RL) [1, 2] concerns a fundamental type of learning: a

learning agent learns from interaction with a dynamic environment and the con-

sequences of its own actions rather than from explicit teaching. It is intended to

address the prediction, learning and decision making problems that animals and

humans have to face in their everyday lives.

Reinforcement learning is also relevant to robotics. The real world is so com-

plex that it is impossible to hard-wire controllers for robots that can cope with

every situation. In addition, it is also not realistic for humans to instruct robots

all the time. They must be able to learn and behave properly and independently

in di�erent situations on the basis of the rewards or penalties they have received.

This chapter is organised as follows. In section 2.1, we introduce reinforcement

learning in detail and discuss its various features. Then the challenges faced by

reinforcement learning are present in section 2.2. In the last section, various

methods for solving reinforcement learning problems are discussed.

2.1 Elements of reinforcement learning

In the reinforcement learning paradigm, an agent, e.g. an animal or a robot,

gathers information from the environment in which it is situated, and then takes

an action according to the information. After that, it will receive either a reward

or a penalty immediately or later from the environment for what it has done.

In the future, it will modify its strategy (or policy) to behave satisfactorily or

27

28 CHAPTER 2. BACKGROUND ON REINFORCEMENT LEARNING

optimally in the environment in terms of its criteria of optimality.

2.1.1 The agent

The agent in the reinforcement learning paradigm is an entity that has sensors

to perceive the state of the environment, a �brain" to make decisions based on its

observations, and e�ectors to take actions based on its decisions.

From the above de�nition of the agent, it is straightforward to model the

agent as (MS, π,MA) whereMS models the sensors of the agent and is a mapping

from the set of all possible states S of the environment to the set of all possible

observations S ′ of the states of the environment made by the agent. π models the

�brain" of the agent and is a mapping from the set of all possible observations

S ′ to the set of probability distributions across all possible intended actions. It

is usually called the policy of the agent, which will be discussed in detail in the

next section. MA models the e�ectors of the agent and is a mapping from the

set of all possible intended actions A′ of the agent to the set of all possible actual

actions A of the agent.

It is worth noting that the observation of one state of the environment made

by the agent may not be exactly the same with the actual state of the environment

because the agent may not have complete and perfect perception of the state of

the environment. It may cause serious problems for the agent if two quite di�erent

states of the environment are mapped to the same observation (the many-to-one

relation), viz. the agent can not distinguish two states of the environment. In

addition, the agent with a faulty sensor may also perceive the same state of the

environment di�erently on di�erent occasions (the one-to-many relation). This

case, however, does not pose a big problem to the agent. It only increases the

state space perceived by the agent and therefore slows down its learning. If both

situations happen, the relationship between the states of the environment and

the observations made by the agent will become many-to-many. This will cause

the problems arisen both in the many-to-one situation and in the one-to-many

situation.

Likewise, the intended action of the agent is not necessarily the same with the

actual action it takes. One classic example is that a language learner may intend

to pronounce one sound but has actually pronounced another sound instead (the

many-to-one relation). This case, however, similar to the one-to-many relation

of the sensor, does not cause great trouble for the agent because the agent can

2.1. ELEMENTS OF REINFORCEMENT LEARNING 29

distinguish these two situations and therefore is able to only adjust the pronun-

ciation/action leading to a low reward whereas leaving the pronunciation/action

leading to a high reward unchanged. In addition, the agent with a faulty e�ector

may also perform di�erent actions on di�erent occasions even though the agent

intends to perform the same action (the one-to-many relation). Its net e�ect is

similar to that of the many-to-one relation of the sensor. In fact, they are equiv-

alent in some cases. For instance, suppose that an agent is in one state of an

environment where it will receive a reward if it moves left whereas it will receive

a penalty if it moves right. The agent has a perfect sensor but has an equal

probability of moving left and of moving right when it chooses to move either left

or right. This situation is equivalent to where an agent has perfect e�ectors but

cannot distinguish between a state in which it will receive a reward if it moves

left and a penalty if it moves right and another state in which it will receive a

penalty if it moves left and a reward if it moves right. Similarly, many-to-many

relations will also appear if both situations occur, which will cause the problems

arisen both in the many-to-one situation and in the one-to-many situation.

In this thesis, however, we are only concerned with the situation where the

observation of one state of the environment made by the agent is exactly the same

with the state of the environment (the one-to-one relation) and the intended

action of the agent is exactly the same with its actual action (the one-to-one

relation).

2.1.2 The policy

In general, a policy de�nes the agent's way of making decisions at a given time

or in a certain state/situation. In the reinforcement learning paradigm, it is a

mapping from perceived states of the environment to actions taken by the agent

in those states. Roughly speaking, the policy of a learning agent is just what

action it chooses to do in a certain state. The learning process of the agent

involves improving its policy. As for stochastic policies, the policy π(s, a) de�nes

the probability that action a, a ∈ A(s), is chosen in state s, viz.

π(s, a) = Pr(ac = a|sc = s) (2.1)

where sc is the state in which the agent �nds itself and ac is the action that the

agent will take in sc.

30 CHAPTER 2. BACKGROUND ON REINFORCEMENT LEARNING

2.1.3 The environment

The environment is a closed system where the agent is situated. Basically, ev-

erything outside the agent is considered as part of the environment. The goal of

the agent is to behave optimally or properly in the environment in terms of its

criteria of optimality. In addition, the action of the learning agent may in�uence

the environment's state in which it �nds itself. For instance, if a lion forages in

a place today, it may cause fewer prey to go to the place in the near future.

The environment can be modelled as (S,M,R) where S is the set of all possible

states of the environment, M : (S,A) → S is the mapping from the current

state of the environment and the action of the agent to the next state of the

environment, R is the set of all possible rewards o�ered by the environment.

2.1.4 Rewards and returns

A reward, r, is de�ned as what an agent can receive by taking a certain action in

a particular state of the environment in which it is situated.

The return, Ri, is a measure of long-term rewards and is the sum of some

function of the reward sequence received after step i but before step j.

Ri =

j∑
k=i+1

fk(rk). (2.2)

The step j and the function fk depend on the agent's criteria of optimality, which

will be discussed in subsection 2.1.9.

2.1.5 Markov property and Markov processes

In general, the outcome of a discrete stochastic process X = (Xi, i ∈ I) at the
(i+ 1)th stage is dependent on the prior sequence of outcomes, viz.

Pr(Xi+1 = xi+1|Xi = xi, Xi−1 = xi−1, . . . , X0 = x0). (2.3)

A discrete stochastic process is said to have the Markov property if the out-

come of the process at any step i + 1 where i, i + 1 ∈ I is only dependent on

the outcome of the process at step i, that is, independent on all the outcomes

of the process before step i. A discrete stochastic process possessing the Markov

property is called a Markov process. If the process X mentioned above possesses

2.1. ELEMENTS OF REINFORCEMENT LEARNING 31

the Markov property, the conditional probability can be simpli�ed as

Pr(Xi+1 = xi+1|Xi = xi, Xi−1 = xi−1, . . . , X0 = x0) = Pr(Xi+1 = xi+1|Xi = xi).

(2.4)

It is worth noting that the Markov property relaxes the requirement for an

independent process, where the outcome of the process at any step is independent

on all the prior sequence of outcomes. If the process X mentioned above is an

independent process, the conditional probability can be further simpli�ed as

Pr(Xi+1 = xi+1|Xi = xi, Xi−1 = xi−1, . . . , X0 = x0) = Pr(Xi+1 = xi+1). (2.5)

2.1.6 Markov decision processes

The Markov decision process (MDP) extends the Markov process by making the

transition depend on the decision or the action of an agent. Suppose that an agent

in one state of an environment makes a decision (takes an action), and then enters

another state of the environment and receives a reward in one discrete time step.

The environment is aMarkov decision process if the probability of transition from

the current state (si) to the next state (si+1) and receipt of the reward (ri+1)

depends only on the current state of the environment and the current action

of the agent, not on the previous states, actions taken and rewards received,

viz. the Markov property. The Markov property for MDPs can be expressed

mathematically as:

Pr(si+1, ri+1|si, ai, ri, si−1, ai−1, ri−1, · · · , r1, s0, a0) = Pr(si+1, ri+1|si, ai). (2.6)

If the state and action spaces are �nite, the Markov decision process is called

a �nite Markov decision process. MDPs have largely simpli�ed reinforcement

learning problems, and most reinforcement learning algorithms and theories as-

sume that the environment is a �nite MDP. In real-world problems, though the

Markov property is rarely strictly satis�ed, many problems can be approximated

by MDPs when the states are carefully constructed and represented.

2.1.7 Semi-Markov decision processes

In MDPs, the time spent in any transition is the same. This assumption, however,

is not the case for many real-world problems. Semi-MDPs (SMDPs) extend

32 CHAPTER 2. BACKGROUND ON REINFORCEMENT LEARNING

MDPs by allowing transitions to have di�erent duration (t). The Markov property

for semi-MDPs can be expressed mathematically as:

P (si+1, ri+1, ti+1 ≤ t|si, ai, ri, ti, si−1, ai−1, ri−1, ti−1, · · · , r1, t1, s0, a0)

= P (si+1, ri+1, ti+1 ≤ t|si, ai) (2.7)

where ti+1 is the time taken by the transition from si to si+1 and t ≥ 0 is a period

of time. P (si+1, ri+1, ti+1 ≤ t|si, ai) represents the probability that the next state

is si+1, the transition from si to si+1 takes no more than t and the agent receives

reward ri+1 when the current state is si and it takes action ai. Or it can be

expressed separately by

P (ti+1 ≤ t|si, ai, ri, ti, si−1, ai−1, ri−1, ti−1, · · · , r1, t1, s0, a0)

= P (ti+1 ≤ t|si, ai) (2.8)

and

P (si+1, ri+1|ti+1, si, ai, ri, ti, si−1, ai−1, ri−1, ti−1, · · · , r1, t1, s0, a0)

= P (si+1, ri+1|ti+1, si, ai). (2.9)

2.1.8 Types of tasks

In some tasks, the interaction between the agent and the environment can be bro-

ken into subsequences or episodes with each episode ending in a special terminal

state. Such tasks are called episodic tasks. Examples of episodic tasks include

playing a game, cooking a dish and travelling home after work.

On the other hand, there are tasks that cannot be broken into episodes, such

as the lifelong learning of an animal or a robot. These tasks are called continual

tasks.

2.1.9 Criteria of optimality

In general, we want the agent to behave optimally in the environment where it

is situated. Depending on what kind of optimal behaviour we want the learning

agent to achieve, there are mainly three criteria of optimality in the reinforce-

ment learning paradigm. The �rst one is the �nite-horizon model which aims to

maximise the expected return in a �nite number (n) of steps. If there are in�nite

2.1. ELEMENTS OF REINFORCEMENT LEARNING 33

steps, the agent always looks ahead n steps in every step. Suppose that the agent

is in the ith step and the reward sequence at step k is rk. Under this criterion,

the target of the agent is to maximise

E(Ri) = E(
i+n∑
k=i+1

fk(rk)) (2.10)

where fk(r) = r. If there are only n steps, however, the agent looks ahead n steps

before taking the �rst step, then looks ahead n − 1 steps after taking the �rst

step, and so on until it terminates. Here, i < n. Under this criterion, the target

of the agent is to maximise

E(Ri) = E(
n∑

k=i+1

fk(rk)) (2.11)

where fk(r) = r.

Another is the in�nite-horizon discounted model which aims to maximise the

expected discounted return in the in�nite future. In this way, immediate and

delayed rewards are well balanced: immediate rewards are more heavily weighted

than delayed rewards. Under this criterion, the target of the agent is to maximise

E(Ri) = E(
∞∑

k=i+1

fk(rk)) (2.12)

where fk(r) = γk−i−1r and γ (0 ≤ γ ≤ 1) is a parameter called the discount

factor.

The last is the average-reward model which aims to maximise the expected

long-term average return. Under this criterion, the target of the agent is to

maximise

E(Ri) = lim
n→∞

E(
1

n

n∑
k=i+1

fk(rk)) (2.13)

where fk(r) = r.

In this thesis, we are mainly concerned with the in�nite-horizon discounted

model unless otherwise speci�ed.

34 CHAPTER 2. BACKGROUND ON REINFORCEMENT LEARNING

2.2 Challenges for reinforcement learning

Due to the evaluative nature of reinforcement learning, it faces several challenges.

Firstly, it needs to balance exploration and exploitation. Secondly, rewards may

be received from the environment immediately or with some delay. Should they

be treated equally? Thirdly, a reward may have been achieved by a sequence

of actions. How should reinforcement learning algorithms assign the credit for

the reward to these actions (the temporal credit assignment problem)? Fourthly,

the behaviour of the agent is guided by the location and value of rewards. How

should we assign di�erent values of rewards to di�erent locations in order for the

agent to behave as we expect? Fifthly, a simple greedy policy choosing the action

which leads to the maximum immediate reward does not guarantee optimality.

Finally, for large problems, generalisation may be needed to estimate the value

of state-action pairs that have not been experienced previously. The challenges

for reinforcement learning posed by dynamic environments, however, will not be

discussed here but in section 3.5 instead.

2.2.1 Evaluative vs. instructive

In the supervised learning paradigm, the learning process is instructive. After the

learning agent takes some action according to its inputs (e.g. the current state of

the environment), a teacher will inform it of the right action that it should have

taken. Then, it adjusts its internal parameters to minimise the errors between its

action and the teacher's answer.

In the reinforcement learning paradigm, however, there is no such a teacher

who can tell the learning agent what it should have done. Instead, the learn-

ing agent will receive a reward or penalty for its action from the environment in

which it is situated or from a critic who has some experience with the environ-

ment. Then, it adjusts its internal parameters to maximise the expected return

in terms of its criteria of optimality. A learning process like this is evaluative. For

evaluative learning, the learning agent can only know whether its action is good

or bad from the reward or penalty but it can not know whether it is the right

or the best action. For instance, a lion goes to place A and catches two zebras,

but this does not mean that A is the best choice for the lion. The lion may have

caught three zebras if it went to place B, or even more if it went to place C. On

the other hand, it is also possible that the lion may have caught fewer zebras if

2.2. CHALLENGES FOR REINFORCEMENT LEARNING 35

it went to place B or C. It stays uncertain until the lion has tried all places.

2.2.2 Exploration vs. exploitation

As a result of the nature of evaluative learning, reinforcement learning has to

balance exploration and exploitation. In the reinforcement learning paradigm,

exploration is to try actions the reward for which is unknown; on the other hand,

exploitation is to choose the action which can o�er the most rewards among all

actions having been tried.

Although exploitation can utilise what has been discovered during exploration,

it may miss the chance to �nd better solutions. On the other hand, though

exploration o�ers the opportunity to �nd better solutions, it may waste the time

of the agent on exploration and may even lead the agent to a worse situation.

Consider the lion example that we have just discussed. If the lion always goes

to place A (assume the environment does not change, viz. deterministic and

stationary; of course, this is not the actual case because zebras can also learn the

behavior of the lion), it can get two zebras every day and will miss the opportunity

to get three zebras or even more daily in other places. But if it tries other places

every day, it may go to some places where there is only one or even zero zebras and

at the same time miss the opportunity to catch two zebras in place A. This is the

dilemma of exploration and exploitation that has to be balanced in reinforcement

learning.

2.2.3 Immediate vs. delayed rewards

In the reinforcement learning paradigm, rewards can be received immediately

after the learning agent's action, a period after the learning agent's action (time

delayed), or after a sequence of the learning agent's actions (action delayed). For

instance, the n-armed bandit problem is a problem with immediate rewards and

the chess problem is a problem with action sequence delayed rewards. For the

n-armed bandit problem, if a reward is given only a period after an arm is pushed,

the problem becomes one with time delayed rewards.

Delayed rewards, whether action delayed or time delayed, dramatically in-

crease the di�culty for reinforcement learning. In particular, action delayed

rewards give rise to the problem of temporal credit assignment, which will be dis-

cussed in section 2.2.4. For time delayed rewards, we need to balance immediate

36 CHAPTER 2. BACKGROUND ON REINFORCEMENT LEARNING

and delayed rewards. Although delayed rewards are worth considering, they are

not so important as immediate rewards in many tasks. In the lion case mentioned

earlier, for example, it is more relevant for it to get food immediately than to

wait for the food that will appear several days later. A good way to balance

them is to use discounted rewards as discussed in the in�nite-horizon discounted

model in section 2.1.9. In addition, for agents who have limited time or limited

energy budget, their optimal behavior not only depends on the expected return

but also depends on their time limit or energy budget, which will be discussed in

section 5.6.4.

2.2.4 Credit assignment

Another factor that makes reinforcement learning harder than supervised learn-

ing is that it is not easy to decide which actions among a sequence of actions

contribute to the rewards received after the sequence of actions and what their

contribution is. This is the problem of credit assignment, viz. how to distribute

credit for success or rewards among many decisions all of which may have con-

tributed to the success.

There are mainly two kinds of credit assignment problems, the structural

credit assignment problem and the temporal credit assignment problem. In the

reinforcement learning paradigm, the temporal credit assignment problem is more

relevant than the structural credit assignment problem. Whereas the structural

credit assignment problem occurs when there are several components of an action

or an environment state that may give rise to a reward, the temporal credit as-

signment problem happens when there are a sequence of state-action pairs that

lead to a reward, which is the usual case in reinforcement learning with delayed

rewards. In a chess game, for instance, a reward is only given at the end of

the game. Every state-action pair before the end of the game may or may not

contribute to the result of the game (win or lose).

The temporal credit assignment problem has been successfully solved by

temporal-di�erence (TD) learning [38], which will be discussed in section 2.3.4.

2.2.5 Designing a reward function

The problem of designing a reward function, or the credit structuring problem [39�

41], is how to place rewards in appropriate states to attain the intended aim of

2.2. CHALLENGES FOR REINFORCEMENT LEARNING 37

learning, viz. for the agent to behave as we expect. In reinforcement learning,

the learning agent learns to maximise its return. So, the reward assignment

e�ectively decides the direction or goal of learning. In other words, if one wants

a learning agent to learn to accomplish a goal, one has to assign rewards properly

to achieve the goal: when does it deserve a reward? How much should the reward

be? For instance, if one wants a robot to press button A rather than button B,

one should give it a (+1) reward if it presses button A and give it a (-1) penalty if

it presses button B. On the other hand, if one wants the robot to press button B,

one should give it a (+1) reward if it presses button B and give it a (-1) penalty

if it presses button A.

Improper reward assignment may lead to slow learning or even undesired

behaviours. For example, in a chess game, if one gives the learning agent a

reward both when it takes a piece of its opponent and when it wins, it may �nd

a way to maximise its return by taking the opponent's pieces even at the price of

losing the game.

In the real world, most problems are too complex to de�ne rewards properly,

especially in a time- and space-continuous environment because there are too

many situations to consider. Consider a recycling robot, for example, it should

not only get a positive reward when it successfully collects a piece of rubbish,

it should also get a negative reward when its battery is run out before reaching

recharging sites, get a negative reward when it hits something and get a negative

reward when it is hit by something. Besides, thousands of other either positive

or negative reward assignments are needed to ensure that it behaves properly. In

addition, the values of these rewards have to be carefully chosen. For example, if

the recycling robot is given +1 every time it collects a piece of rubbish while given

-10 every time it hits something, its priority will try to avoid hitting something

rather than collecting rubbish. On the other hand, if the recycling robot is

given +10 every time it collects a piece of rubbish while given -1 every time

it hits something, it will try hard to collect rubbish even at the risk of hitting

something.

2.2.6 Rewards vs. value

A reward function is de�ned as what an agent can receive immediately by taking

a certain action in a particular state of the environment in which it is situated.

Although a learning agent can get a high reward in one time step by following a

38 CHAPTER 2. BACKGROUND ON REINFORCEMENT LEARNING

greedy policy based on the reward function, this cannot guarantee a high total

of rewards in the future time steps, viz. a high return. That is, the greedy policy

choosing the action which is optimal based on the one-step reward function does

not guarantee optimality in the longer term. Suppose, if a learning agent takes

action A in a certain state it will win a high reward (10 points). But this action

will lead it to state I and none of all available actions in state I can give the agent

a reward more than 3 points. In contrast, if the learning agent takes action B in

the initial state, it will get a lower reward (5 points) and enter state II. But in the

state II, it can receive a reward more than 10 points by taking any of available

actions. In this case, the lower immediate reward will lead to a higher return.

In contrast, a value function is de�ned as the expected return that an agent

can receive by following a policy from a particular state of the environment in

which it is situated. Whereas a reward function indicates what is good in an

immediate sense, a value function speci�es what is good in the long run. If the

value of an action in a certain state is the highest, taking the action in that

state can ensure the highest return in the long run as long as the value function

has been calculated correctly because the computation of the value function has

already considered all possible future states, actions and rewards.

2.2.7 Generalisation

If a problem has only a small number of states and actions, it is possible to just

use tables to record the estimated value for each state or for each state-action

pair. If the problem is very large, however, it needs a lot of time and space to

store data in a table and then read data from the table. Furthermore, many states

or state-action pairs in the problem may have not been experienced before. In

this case, no estimated values are available for these states or state-action pairs

from the table. One way to solve these problems is to use generalisation that can

not only avoid storing a great quantity of data but also predict the values of the

states or state-action pairs which have not been experienced previously.

Generalisation is a typical supervised learning problem (structural credit as-

signment). A variety of techniques for supervised learning can be used to gener-

alise the mapping from states to values or the mapping from state-action pairs to

values. These techniques include neural networks [42], fuzzy logic [43] and local

memory-based methods [44].

2.3. METHODS FOR SOLVING REINFORCEMENT LEARNING PROBLEMS39

2.3 Methods for solving reinforcement learning prob-

lems

Because reinforcement learning problems are very common in the real world,

many methods were proposed to solve them from research in optimal control,

psychology, neuroscience and machine learning. Among them, there are mainly

three fundamental classes of methods, viz. dynamic programming, Monte Carlo

methods, and temporal-di�erence learning.

2.3.1 Bellman equations

The value function, whether the function of states or the function of state-action

pairs, has recursive relationships, viz. the value (V (s) or Q(s, a)) of one state (s)

or state-action pair (s, a) can be expressed as a function of the value of possible

successor states or state-action pairs. For the in�nite-horizon discounted model,

according to Sutton and Barto [2] for example, we can get

V π(s) = Eπ(Ri|si = s)

= Eπ(
∞∑

k=i+1

γk−i−1rk|si = s)

= Eπ(ri+1 + γ
∞∑

k=i+1

γk−i−1rk+1|si = s)

=
∑
a∈A(s)

π(s, a)
∑
s′∈S

Pass′ [Ra
ss′ + γEπ(

∞∑
k=i+1

γk−i−1rk+1|si+1 = s′)]

=
∑
a∈A(s)

π(s, a)
∑
s′∈S

Pass′ [Ra
ss′ + γV π(s′)] (2.14)

where π is the policy of the agent, P is the probability distribution of the state

transition, Pass′ is the probability that the next state is s′ if the agent takes action
a in state s. Ra

ss′ is the expected value of the next reward that the agent will

receive if it takes action a in state s and then enters the state s′. Equation 2.14 is

called the Bellman equation for V π. Similarly, we can get the Bellman equation

for Qπ as follows [2].

Qπ(s, a) =
∑
s′∈S

Pass′ [Ra
ss′ +

∑
a′∈A(s′)

π(s′, a′)γQπ(s′, a′)] (2.15)

40 CHAPTER 2. BACKGROUND ON REINFORCEMENT LEARNING

There is always at least one policy, called an optimal policy denoted as π∗,

which is better than or equal to all other policies. All optimal policies share the

same value function, called the optimal value function denoted as V ∗ and de�ned

as

V ∗(s) = max
π

V π(s). (2.16)

Similarly, the optimal state-action value function Q∗ is de�ned as

Q∗(s, a) = max
π

Qπ(s, a). (2.17)

With the Bellman equation for V π and Bellman's Principle of Optimality [6],

according to Sutton and Barto [2], equation 2.16 can be expended to

V ∗(s) = max
a∈A(s)

∑
s′∈S

Pass′ [Ra
ss′ + γV ∗(s′)]. (2.18)

Similarly, with the Bellman equation for Qπ and Bellman's Principle of Optimal-

ity, according to Sutton and Barto [2], equation 2.17 can be expended to

Q∗(s, a) =
∑
s′∈S

Pass′ [Ra
ss′ + γ max

a′∈A(s′)
Q∗(s′, a′)]. (2.19)

Both equation 2.18 and equation 2.19 are called the Bellman optimality equation.

For each state or each state-action pair, there is one Bellman optimality equa-

tion (V ∗ or Q∗). There are also an equal number of unknowns. Therefore, if Pass′
and Ra

ss′ are known, we can get V ∗ or Q∗ by solving their Bellman optimality

equations in principle. With V ∗ or Q∗, we can further easily determine an opti-

mal policy by following the action a which o�ers the maximum expected return

(argmax
a∈A(s)

∑
s′∈S Pass′ [Ra

ss′ + γV ∗(s′)] or argmax
a∈A(s)

Q∗(s, a)) in any state s, viz. the

greedy policy in terms of the expected return.

In practice, however, this method has limited use. Firstly, it assumes a �nite

Markov decision process. In real-world problems, the Markov property is rarely

strictly satis�ed. Many problems, however, can be approximated by MDPs when

their states are carefully constructed and represented. Secondly, it requires the

knowledge of the dynamics of the environment, viz. the probability distribution

of the state transition Pass′ and the expected value of the next reward Ra
ss′ . It is

usually the case that we do not know either of them before hand. Even if the

previous two conditions are satis�ed, the time and space required to solve the

2.3. METHODS FOR SOLVING REINFORCEMENT LEARNING PROBLEMS41

equations when there are a lot of states may be prohibitive. Take the game of

backgammon as an example: the �rst two assumptions are valid. But the game

has about 1020 possible states and therefore it would take the fastest computers at

present thousands of years and more than 100 Exabytes (1011 Gigabytes) memory

to solve the equations.

2.3.2 Dynamic programming

In general, dynamic programming [6] refers to a technique that breaks a complex

problem down to simpler subproblems and then builds the solution to the complex

problem on solutions to these subproblems. In this way, repeated subproblems

only need to be solved once. In the optimisation and reinforcement learning

paradigms, it usually refers to methods that calculate the estimated value of

a state based on the estimated values of all possible successor states and the

probability of their occurrence. Here, two of these methods are discussed, viz.

policy iteration and value iteration.

Policy iteration has two main stages, the policy evaluation stage and the

policy improvement stage. At the policy evaluation stage, the method updates

the estimated values of all states under a certain policy with the estimated value of

all possible successor states using the Bellman equations iteratively. The updating

process repeats until the di�erence in the estimated value of every state, before

and after the estimated value of the state is updated, is less than a small positive

number, viz. the estimated value function for the policy has converged/ become

stable. Then, it enters the policy improvement stage. In this stage, the old policy

is replaced with the policy which maximises the expected return in every state,

viz. the greedy policy in terms of the value function. Next, the new policy is

evaluated. The two stages repeat until the policy is stable, viz. the policy does

not change at the policy improvement stage.

One drawback of policy iteration, however, is that it may take many iterations

to evaluate one policy. The value iteration method addresses this problem by

conducting only one sweep, viz. updating the estimated values of all states only

once. The updated value function is then used to construct a new greedy policy.

Both methods converge to an optimal policy for �nite MDPs in terms of the

in�nite-horizon discounted model [2, 45]. In addition, dynamic programming is

much more e�cient than solving Bellman optimality equations directly or search-

ing the whole policy space (exhaustive search). Suppose that a problem has n

42 CHAPTER 2. BACKGROUND ON REINFORCEMENT LEARNING

states and each state has m actions. The time complexity of dynamic program-

ming for the problem is some polynomial function of m and n, whereas it takes

the method of solving Bellman optimality equations directly or exhaustive search

computational operations proportional to mn. Despite its computational e�-

ciency, however, dynamic programming still requires that the environment should

be a �nite MDP and the dynamics of the environment should be known.

2.3.3 Monte Carlo methods

Monte Carlo methods [3�5] refer to methods that use the actual or simulated

samples to replace the actual probability distribution in computation. In the

reinforcement learning paradigm, the dynamics of the environment, viz. the state

transition and the value of the reward, is obtained from actual or simulated

interaction with the environment by these methods. Therefore, these methods do

not require the knowledge of the environment unlike dynamic programming.

There are on-policy and o�-policy Monte Carlo algorithms. Here, however, we

only introduce one on-policy Monte Carlo algorithm. Like dynamic programming,

it also includes two stages, policy evaluation and policy improvement. An episode

is �rst generated either through the actual interaction of the agent with the

environment or through simulation using a non-greedy policy. The estimated

value of every visited state-action pair during the episode is updated with the

return following the occurrence of the state-action pair incrementally. If a state-

action pair is visited more than once during the episode, we can either only

consider the return following the �rst visit to the state-action pair (the �rst-visit

MC method) or use the average of the returns following every visit to the state-

action pair (the every-visit MC method). The new values of the state-action pairs

are then used to improve the policy. Next, another episode is generated with the

new policy and the process repeats until a termination condition is satis�ed, e.g.

when the policy is stable.

Unlike dynamic programming where all states and actions are considered, the

state-action pairs experienced by the agent with Monte Carlo methods and a

deterministic policy may not be complete and in fact quite sparse in many cases.

In order to encourage exploration, a stochastic policy, e.g. ε-greedy, is normally

used. In order for the learning to converge, however, the policy needs to move

gradually towards a greedy policy. In the case of the ε-greedy policy, we need

gradually reduce the value of ε to 0.

2.3. METHODS FOR SOLVING REINFORCEMENT LEARNING PROBLEMS43

2.3.4 Temporal-di�erence (TD) learning

Temporal-di�erence (TD) learning [46] is an important technique for reinforce-

ment learning that aims to eliminate the temporal di�erences in prediction. The

purpose of TD learning is to solve prediction problems, viz. to learn a value

function given a policy.

It is a combination of ideas from dynamic programming algorithms (bootstrap:

estimate the value of the current state according to the values of successor states)

and Monte Carlo methods (a model of the environment is not required: learn from

experience).

Like dynamic programming algorithms, it also uses the estimated values of

successor states to estimate the value of the current state. Unlike dynamic pro-

gramming algorithms, however, it utilises experience (or samples) rather than a

model of the environment to get the next state and the expected reward that it

can earn when it transfers from the current state to the next state.

Like Monte Carlo methods, it also uses experience to �nd the next state and

the consequential reward. Unlike Monte Carlo methods, however, it does not

need to keep experiencing until the end of an episode before it starts learning

because it uses the estimated value of the state one or more steps later and the

rewards obtained during this period to update the estimated value of the current

state.

Assume an agent is in the state s at present. Following a �xed policy π to

take a certain action in s, the agent gets a reward r and then enters the next

state s′. With TD learning [46], the value function of the state s can be updated

with

V π(s)← V π(s) + α[r + γV π(s′)− V π(s)] (2.20)

where 0 < α ≤ 1 is the learning rate, 0 ≤ γ ≤ 1 is the discount factor. If s′ is a

terminal state, V π(s′) = 0.

If α in the above equation satis�es

∞∑
n

α(n) =∞,
∞∑
n

α2(n) <∞ (2.21)

where α(n) is the value of α used in the n update of V π(s), the estimated V π(s)

is guaranteed to converge to its true value [47] eventually. When α(n) = 1
n
, it

satis�es both conditions. When α is a �xed value, however, it cannot satisfy

44 CHAPTER 2. BACKGROUND ON REINFORCEMENT LEARNING

both conditions at the same time. If it is equal to 0, the �rst condition is not

satis�ed. If it is bigger than 0, the second condition is not satis�ed. But this

may be a desirable behaviour to track nonstationary environments because the

learning agent can forget past experience gradually by discounting them.

The learning rule 2.20 is based on the assumption that the expected value of

the next state should be more accurate than that of the current state because the

next state is closer to the end point which is usually where the most important

reward lies and is also newer to re�ect changes in the environment.

2.3.5 Q learning

One of the most important reinforcement learning algorithm is Q learning [7], an

o�-policy TD control algorithm. It updates the estimated value (Q(s, a)) of the

current state-action pair (s, a) with the immediate reward received (r) and the

maximum estimated value of all actions available (A(s′)) in the next state (s′),

viz.

Q(s, a)← Q(s, a) + α[r + γ max
a′∈A(s′)

Q(s′, a′)−Q(s, a)]. (2.22)

If s′ is a terminal state, Q(s′, ∗) = 0 where ∗ ∈ A(s′). Similar to Monte Carlo

methods, a stochastic policy is normally used for decision making.

Q learning is guaranteed to converge asymptotically given that each state-

action pair is visited an in�nite number of times and α decreases appropriately

over time according to equation 2.21. Q learning is an o�-policy learning algo-

rithm in that the policy that it follows is di�erent from the policy that it uses to

evaluate values of state-action pairs. The policy that it follows is a non-greedy

policy whereas the policy that it uses to evaluate values of state-action pairs is a

greedy policy.

2.3.6 SARSA learning

In contrast to Q learning, SARSA learning [8] is an on-policy TD control algo-

rithm. It updates the estimated value (Q(s, a)) of the current state-action pair

(s, a) with the immediate reward received (r) and the estimated value (Q(s′, a′))

of the action (a′) that the agent will take in the next state (s′) under the current

policy, viz.

Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]. (2.23)

2.3. METHODS FOR SOLVING REINFORCEMENT LEARNING PROBLEMS45

Like Q learning, if s′ is a terminal state, Q(s′, ∗) = 0 where ∗ ∈ A(s′). Similar

to both Monte Carlo methods and Q learning, a stochastic policy, is normally

used for decision making. Unlike Q learning, however, SARSA learning is an

on-policy learning algorithm in that the policy that it follows is the same with

the policy that it uses to evaluate the values of state-action pairs.

2.3.7 Reinforcement comparison and actor-critic methods

The idea of reinforcement comparison [2,38] is to compare a reward for one action

with a reference reward: if the reward (r) is higher than the reference reward,

the action is more likely to be taken; otherwise, it is less likely to be taken.

A straightforward choice of the reference reward is an average of all rewards

previously received after the action is taken (r̄).

Unlike most reinforcement learning algorithms which calculate the estimated

values of actions, reinforcement comparison methods calculate a measure of the

preference for each action instead. The preference for action a (p(a)) can be

calculated by

p(a)← p(a) + β[r − r̄] (2.24)

where

r̄ ← r + α[r − r̄] (2.25)

and both α and β are small numbers.

With the preference function for actions, actions can be chosen according to

a stochastic policy similar to other reinforcement learning algorithms.

It is worth noting, however, reinforcement comparison methods do not work

with a sequence of actions. In these cases, a time di�erence error or a critic is

needed to guide the agent instead of the di�erence between the current reward

and the average reward. This kind of method is called the actor-critic method,

addressing learning from delayed rewards in the absence of mechanisms for sec-

ondary reinforcement. This method updates the preference for action a (p(s, a))

in s with

p(s, a)← p(s, a) + βδ (2.26)

where δ = r + γV (s′)− V (s), which is the same with TD learning.

46 CHAPTER 2. BACKGROUND ON REINFORCEMENT LEARNING

2.3.8 Eligibility traces

The learning rule introduced in Section 2.3.4 is called TD(0). It only looks ahead

one step to update state value estimates, which may cause a low speed of con-

vergence. To overcome this drawback, the values of all states recently visited are

updated according to their eligibility to learn when a reward is received. This

kind of algorithm is called TD(λ). The eligibility of states to learn is calculated

using an eligibility trace which is de�ned as:

e(s)←

{
γλe(s) + 1 if s is the current state

γλe(s) otherwise
(2.27)

where 0 ≤ λ ≤ 1 and initially e(s) = 0 for all s ∈ S. When λ = 0, the rule

becomes TD(0); when λ = 1 and γ = 1, it behaves exactly the same with a

Monte Carlo method for an undiscounted episodic task.

The eligibility trace of one state is accumulated each time the state is visited

and then fades away gradually when the state is not visited. This kind of eligibility

trace is called an accumulating trace. One drawback of this kind of eligibility trace

is that it is unbounded and may become greater than 1 when a state is visited

again before its eligibility trace decays to 0. One way to overcome the drawback

is to increase the eligibility trace of a state to 1 each time the state is visited and

then fades away gradually when the state is not visited. This kind of eligibility

trace is called a replacing trace.

With the eligibility trace, the learning rule of TD(λ) can be expressed as:

V (u)← V (u) + α[r + γV (s′)− V (s)]e(u) (2.28)

where u is any of states visited between the last reward and this reward and V (u)

is the value of the state u, r is the value of the reward received in state s, and γ

is the discount factor as before. That is, V (u) is updated for all u.

In practice, TD(λ) learning often converges considerably faster for large λ than

TD(0); but it is also more complex and needs more computational resources. In

addition, it is worth noting that the idea of eligibility traces can also be used in

other reinforcement learning algorithms, e.g. Q learning and SARSA learning.

2.3. METHODS FOR SOLVING REINFORCEMENT LEARNING PROBLEMS47

2.3.9 Discussions of di�erent methods

In order to converge with probability one to an optimal policy and the opti-

mal value function of states or state-action pairs, these methods including adap-

tive/iterative dynamic programming, Monte Carlo and TD like algorithms need

to update the estimated values of all states or state-action pairs an in�nite num-

ber of times [2, 48�51]. Speci�cally for Monte Carlo and TD like algorithms,

their policy needs to converge in the limit to the greedy policy due to their sam-

pling feature and their learning rate needs to be gradually reduced according to

equation 2.21 due to their incremental updating rule.

According to whether or not they use a model of the environment, learning al-

gorithms can be grouped into model-based methods and model-free methods. For

instance, adaptive dynamic programming algorithms [6] are model-based methods

and Monte Carlo methods [3�5] are model-free methods. Reinforcement learning

algorithms can be either model-based (e.g. prioritised sweeping) or model-free

(e.g. Q learning and SARSA learning). Model-based reinforcement learning algo-

rithms take advantage of the model learned during their interaction with the envi-

ronment and can perform extra learning with the model. This is especially useful

when the agent has not enough interaction with the environment or interaction

with the environment is very costly. On the other hand, however, model-based

reinforcement learning algorithms need more computational resources to learn a

model of the environment and to perform the extra learning. In addition, they

are not suitable for nonstationary environments since the learned model which

may be a good representation of the old environment usually does not represent

the new environment well.

According to whether or not the estimated value of one state or state-action

pair is updated based on the estimated value of another state or state-action pair,

learning algorithms can be divided into two groups, viz. bootstrap algorithms

and non-bootstrap algorithms. Adaptive dynamic programming algorithms and

TD(0) are bootstrap algorithms while Monte Carlo methods and TD(1) are non-

bootstrap algorithms. Empirical data [2] show that bootstrap algorithms usually

perform better than non-bootstrap algorithms. On the other hand, however, it is

harder to use generation methods for bootstrap algorithms than non-bootstrap

algorithms. In some cases, bootstrap algorithms cannot �nd optimal solutions.

For instance, if a linear gradient-descent function approximator is used, on-policy

bootstrap algorithms can only �nd solutions with a near minimal mean squared

48 CHAPTER 2. BACKGROUND ON REINFORCEMENT LEARNING

error whereas non-bootstrap algorithms can �nd minimal mean squared error

solutions [2]. In addition, Baird [52] further showed an example where o�-policy

dynamic programming methods become unstable for some initial values of the

parameters when a gradient-descent function approximator is used.

According to whether or not the policy that the agent follows is the same

with the policy that it uses to evaluate values of states or state-action pairs,

learning algorithms can be grouped into on-policy learning and o�-policy learn-

ing. Dynamic programming methods, Monte Carlo methods and reinforcement

learning algorithms have both on-policy learning algorithms and o�-policy learn-

ing algorithms. Empirical data [2] show that o�-policy learning algorithms (e.g.

Q learning) usually learn faster than on-policy learning algorithms (e.g. SARSA

learning). On the other hand, however, the performance of o�-policy learning

algorithms may be worse than on-policy learning algorithms in some situations.

For example, Sutton and Barto [2] showed a cli�-walking task where the optimal

policy of Q learning walks along the cli� which results that the agent occasion-

ally falls o� the cli� and gets a big penalty whereas the optimal policy of SARSA

learning walks along a safer path. It is worth noting, however, that both meth-

ods would asymptotically converge to the same optimal policy if they change

their policy gradually from a non-greedy policy to a greedy policy. In a dynamic

environment, however, a non-greedy policy is needed all the time.

Chapter 3

Related work

In the last chapter, the fundamental knowledge of reinforcement learning is pro-

vided. In this chapter, we will further discuss recent research on reinforcement

learning which are related with our work.

This chapter is organised as follows. In section 3.1, the biological motiva-

tion for reinforcement learning, classical conditioning and its simulation by TD

learning are discussed. In section 3.2, we introduce a simple and popular rein-

forcement learning problem, viz. the n-armed bandit problem, and then discuss

some of its classical solutions. Approaches to estimation of variance are present in

section 3.3. Section 3.4 reviews recent research on reinforcement learning in semi-

Markov decision processes. Section 3.5 reviews recent research on reinforcement

learning in dynamic environments. In the last section, the relationship of our

research to existing research on reinforcement learning in dynamic environments

is discussed.

3.1 Classical conditioning

Classical conditioning [53] is a simple form of reinforcement learning and also

a motivation for temporal-di�erence (TD) learning, an important reinforcement

learning algorithm. It involves various behavioural phenomena that animals learn

and predict rewards in their environment (e.g. Pavlovian classical conditioning)

and also respond to changes in the environment (e.g. the disappearance of a

reward � the extinction phenomenon in classical conditioning). Its study begins

with Pavlov's experiments on dogs in the 1890s. Normally, dogs will salivate

(an unconditional response) when they receive food (an unconditional stimulus).

49

50 CHAPTER 3. RELATED WORK

After a dog is repeatedly fed just after a bell (a conditional stimulus) is rung, it

salivates (a conditional response) whenever the bell sounds (Pavlovian classical

conditioning). In the reinforcement learning terms, the dog is a learning agent,

food is a reward, the ringing of the bell is a state of the environment, and the

conditioning is a prediction of the reward. Following Pavlov's experiments, a

great number of scientists did similar experiments and found a variety of other

phenomena [54�56].

Since the discovery of classical conditioning, many researchers have sought

to explain the phenomena. In 1972, Rescorla and Wagner [36] proposed the

Rescorla-Wagner rule which has successfully explained Pavlovian, extinction and

blocking phenomena of classical conditioning, but failed to explain secondary

conditioning. In 1988, Sutton and Barto [37] used temporal-di�erence (TD)

learning to provide a successful explanation of various phenomena of classical

conditioning including secondary conditioning, which will be discussed in detail

in section 3.1.2. Malaka [57] reviewed various models developed for simulating

classical conditioning and classi�ed them into two groups, viz. trial-based models

(e.g. the Rescorla-Wagner model [36]), where weights are only updated at the

end of one trial, and real-time models (e.g. the Sutton-Barto model [37]), where

weights are updated in real time during one trial. However, all these models

used high-level abstractions of neurons which ignore the temporal dynamics of

real neurons. Classical conditioning, however, is dynamic in essence because it

mainly learns and predicts the dynamic environment. The real-time models solve

this problem by using a temporal learning rule instead of directly utilising the

temporal dynamics of biological neurons.

3.1.1 Phenomena of classical conditioning

There are various phenomena of classical conditioning. But here we only dis-

cuss Pavlovian, Extinction, Partial, Blocking, Inhibition, Overshadowing and

Secondary phenomena of classical conditioning.

1. Pavlovian

If an animal is given a reward repeatedly shortly following a conditional

stimulus, the animal will be able to anticipate the reward when the con-

ditional stimulus occurs. This phenomenon is called Pavlovian classical

conditioning.

3.1. CLASSICAL CONDITIONING 51

2. Extinction

After the conditioning of the conditional stimulus with the Pavlovian clas-

sical conditioning procedure, if the reward is removed, the association be-

tween the conditional stimulus and the reward will be gradually lost. This

phenomenon is called extinction in classical conditioning.

3. Partial

If two training experiments, in one of which a reward follows a conditional

stimulus and in the other of which no reward follows the same conditional

stimulus, are alternated repeatedly, the animal will anticipate a partial or

weakened expectation of the reward. This phenomenon is called partial

conditioning.

4. Blocking

After the conditioning of a conditional stimulus, if another stimulus is pre-

sented at the same time with the �rst conditional stimulus, the association

between the �rst conditional stimulus and the reward will not change and

will block the formation of the association between the second conditional

stimulus and the reward. This phenomenon is called blocking in classical

conditioning.

5. Inhibition

If two experiments, in one of which a reward follows when only one con-

ditional stimulus (the �rst stimulus) appears and in the other of which

no reward follows when both the stimulus (the �rst stimulus) and another

conditional stimulus (the second stimulus) appear together, are alternated

repeatedly, an expectation of reward will be associated with the �rst con-

ditional stimulus and the suppression of an expectation of reward will be

associated with the second conditional stimulus. This phenomenon is called

inhibition in classical conditioning.

6. Overshadowing

If two conditional stimuli are presented at the same time shortly preceding

a reward, each of them will be partly associated with an expectation of

reward. This phenomenon is called overshadowing in classical conditioning.

7. Secondary

52 CHAPTER 3. RELATED WORK

After the conditioning of the �rst conditional stimulus, if the reward is re-

moved and another stimulus is presented before the �rst conditional stim-

ulus, the �rst conditional stimulus will gradually lose its association with

an expectation of reward and the second conditional stimulus will gradu-

ally form its association with an expectation of reward but will still lose its

association in the end. This phenomenon is called secondary conditioning.

In addition to classical conditioning, there is another kind of conditioning,

viz. instrumental conditioning. Unlike the conditioning discussed above, in the

process of instrumental conditioning, the actions of animals can have an in�uence

on how many rewards they can obtain, which is more usual in the real world.

3.1.2 Simulation of classical conditioning

The phenomena of Pavlovian conditioning, partial conditioning, inhibitory con-

ditioning, overshadowing and extinction demonstrate that animals can associate

stimuli with rewards and penalties. Moreover, other phenomena including sec-

ondary conditioning further demonstrate that animals can also learn the relative

occurrence order of stimuli and rewards. The Rescorla-Wagner rule [36] cannot re-

alise secondary conditioning because it completely ignores the timing information

of stimuli and rewards. In order to overcome this di�culty, Sutton and Barto [37]

extended the Rescorla-Wagner rule to temporal-di�erence learning with the aim

to eliminate the time di�erence between the actual and predicted total future

rewards rather than only to eliminate the amount di�erence between the actual

and predicted total future rewards.

Suppose there are n time-dependent stimuli, s1(t), s2(t),. . . ,sn(t). For any of

the stimuli si(t), its eligibility trace (eligibility to learn) ei(t + 1) at time t + 1

can be expressed as:

ei(t+ 1) = ei(t) + λ [ui(t)− ei(t)] (3.1)

where ei(0) = 0, λ is a positive constant, and

ui(t) =

{
1 if si is present at time t

0 otherwise.

The predicted total future rewards v(t+ 1) at the time t+ 1 can be expressed

3.1. CLASSICAL CONDITIONING 53

as:

v(t+ 1) =

⌊∑
i

wi(t)ei(t+ 1)

⌋
(3.2)

where

bxc =

{
x if x ≥ 0

0 otherwise

and, wi(t) is the weight of the stimulus si(t) at time t and i = 1, 2, . . . , n.

The TD rule is to update wi(t + 1) from wi(t) with the aim to minimise the

time di�erence between the actual and predicted total future rewards. It can be

expressed as:

wi(t+ 1) = wi(t) + βδ(t+ 1)αiei(t+ 1) (3.3)

where αi is a positive constant depending on the conditional stimulus si(t), β

is a positive constant depending on the unconditional stimulus, δ(t + 1) is the

approximate di�erence between the the actual and predicted total future rewards

at time t and can be expressed as:

δ(t+ 1) = r(t+ 1) + γv(t+ 1)− v(t) (3.4)

where r(t+ 1) is the reward received at the time t+ 1,

r(t+ 1) =

{
1 if r is present at time t+ 1

0 otherwise

and γ is the discount rate as before. Substituting v with equation 3.2, we can get

δ(t+ 1) = r(t+ 1) + γ

⌊∑
i

wi(t)ei(t+ 1)

⌋
−

⌊∑
i

wi(t)ei(t)

⌋
. (3.5)

3.1.3 Neural substrate of TD learning

Although temporal-di�erence learning has successfully simulated various phenom-

ena of classical conditioning, it is still unknown how animals learn to predict

future rewards. If animals also use temporal-di�erence learning, how do they

get the time di�erence information between the actual and predicted total future

rewards, which is a critical factor to temporal-di�erence learning?

A series of studies by Schultz et al. [58, 59] showed that the activity of the

54 CHAPTER 3. RELATED WORK

Figure 3.1: The activity of the dopaminergic neurons during classical conditioning
experiments (taken from [58]). Before learning, when a reward occurs unexpect-
edly, the dopaminergic neurons are activated at the time just after the reward;
after learning, when a conditional stimulus predicts the reward, the activation
time of the dopaminergic neurons is moved forwards to the time just after the
conditional stimulus; after learning, if the reward fails to happen, the activity of
the dopaminergic neurons will be depressed at the time just after the reward was
expected.

3.2. THE N-ARMED BANDIT PROBLEM 55

dopaminergic neurons in the ventral tegmental area (VTA) in the midbrain per-

forms the same function as the prediction error δ in temporal-di�erence learning

as Figure 3.1 shows. Before learning, when a reward occurs unexpectedly, the

dopaminergic neurons are activated at the time just after the reward; after learn-

ing, when a conditional stimulus predicts the reward, the activation time of the

dopaminergic neurons is moved forward to the time just after the conditional

stimulus; after learning, if the reward fails to happen, however, the activity of

the dopaminergic neurons will be depressed at the time just after the reward is

expected.

Furthermore, if signals produced from dopaminergic neurons can be used to

modify the plasticity of the neurons involved in reinforcement learning, temporal

di�erence learning will be able to be realised in a biological neural system.

3.2 The n-armed bandit problem

The n-armed bandit problem is probably the simplest and most studied reinforce-

ment learning problem. It has only one state but n actions. Many mathematicians

and engineers have studied the problem extensively [60�63] and invented many

novel methods which have formed the foundations of reinforcement learning and

optimal control.

3.2.1 The problem

The n-armed bandit problem can be described as follows. There is an n-armed

bandit and the agent can push any of its arms. The probability distributions

of the payo�s of arms are unknown. After one arm is pushed, a reward (r) is

returned. After receiving a reward, the agent goes back and starts again.

When the possible value of r is either 1 representing success/win or 0 rep-

resenting failure/loss, the problem is a binary n-armed bandit problem. On the

other hand, if the possible value of r is any real value, the problem is a real-valued

n-armed bandit problem.

The n-armed bandit problem can be either treated as a one-step episodic task,

a multiple-step episodic task, or a continual task. If it is treated as a one-step

episodic task, each episode starts when one arm is pushed and ends when a reward

(r) is received. The goal is the same in terms of all three criteria of optimality

56 CHAPTER 3. RELATED WORK

discussed previously, viz. to maximise the expected one-step return

E(R) = E(r). (3.6)

If it is treated as a multiple-step episodic task or a continual task, on the other

hand, the goal is quite di�erent for the three criteria of optimality.

Although this problem has only one state, in a multiple-step episodic task or

a continual task, the policy of the agent also depends on the number of remaining

plays and previous results for multiple-step episodic tasks and continual tasks.

Therefore, in order for the problem to be treated as a MDP, the state needs to be

augmented with these signals (i1, j1, . . . , in, jn) where ik is the number of times

arm k has been chosen and jk is the total value of rewards received from arm k.

The augmented states are called belief states.

3.2.2 Dynamic programming

Although dynamic programming can be used to solve both binary n-armed bandit

problems and real-valued n-armed bandit problems, we only consider a binary n-

armed bandit problem here for simplicity.

Because dynamic programming requires the knowledge of the probability dis-

tributions of the payo�s of arms, which are unknown, we assume a prior distri-

bution for each arm initially, e.g. a uniform distribution between 0 and 1. The

estimation of the probability distribution for each arm can then be updated with

experience using Bayes' rule.

For simplicity, only the �nite-horizon model is considered here. Denote the

length of the horizon of the �nite-horizon model by o, viz. the total number of

times that the agent can play. Denote the value of the optimal policy by V ∗.

Then

V ∗m(i1, j1, . . . , in, jn) = max
k

[
pkV

∗
m−1(i1, j1, . . . , ik + 1, jk + 1, . . . , in, jn)+

(1− pk)V ∗m−1(i1, j1, . . . , ik + 1, jk, . . . , in, jn)

]
(3.7)

where pk is the posterior subjective probability of arm k paying o� given ik, jk

and our prior probability, m (m = o −
∑

k ik) is the number of times left to

play. For the uniform priors, the posterior probability distribution is a beta

distribution with the expected value p̂k = jk+1
ik+2

according to Laplace's rule of

3.2. THE N-ARMED BANDIT PROBLEM 57

succession [64�66]. The base case of the recursion is

V ∗1 (i1, j1, . . . , in, jn) = max
k

pk (3.8)

There is a similar equation for each belief state. The number of equation is

linear in the number of belief states times actions while the number of belief states

is exponential in the horizon. In principle, dynamic programming can be used to

�nd an optimal policy for any bandit problem. For large horizons, however, it

is not practical. It is worth noting, however, if the criterion of optimality is the

�nite-horizon model, dynamic programming is the only technique that guarantees

optimality.

3.2.3 Gittins allocation indices

For the in�nite-horizon discounted model, Gittins allocation indices can be used

to �nd the optimal action that the agent should take in each step. Gittins allo-

cation indices for some discount factor are tables of the number of times (i) that

one arm has been chosen and the total value of rewards (j) received from the

arm, viz. I(i, j). The indices are obtained from dynamic programming methods.

At each step, the agent just chooses the action which has the maximum index

value, viz.

argmax
k

I(ik, jk). (3.9)

In this way, the optimality in terms of the in�nite-horizon discounted model

is guaranteed. It is worth noting that this method works not only with binary

bandit problems but also with real-valued bandit problems. However, it only

works under the in�nite-horizon discounted model [1, 63] and has not yet been

extended to more general reinforcement problems with delayed rewards.

3.2.4 Reinforcement learning

A typical reinforcement learning approach to solve the n-armed bandit problem is

to update the estimated value (Q) of one action (a) with the reward (r) received

following the action and the previous estimated value of the action, viz.

Q(a)← Q(a) + α[r −Q(a)] (3.10)

58 CHAPTER 3. RELATED WORK

where α is the learning rate, the same as before.

A non-greedy policy, e.g. ε-greedy, is usually used for decision making. The

optimal target of such algorithms is to maximise the expected return in one step,

viz. the �nite-horizon model, if we consider the n-armed bandit problem as an

one-step episodic task, or to maximise the expected long term average return,

viz. the average-reward model, if we consider the n-armed bandit problem as a

continual task or a multiple-step episodic task.

3.3 Approaches to estimation of variance

The variance of a random variable X is de�ned as

V ar(X) = E[(X − µ)2] (3.11)

where µ is the expected value of X.

Extending the above equation with µ = E(X), we can get

V ar(X) = E(X2)− [E(X)]2. (3.12)

Usually, however, the probability distribution of X is unknown. If an entire

population of X is known, denoted as x1, x2, . . . , xn, the variance of X can be

calculated from the population variance δ2, viz.

δ2 =

∑n
i=1 x

2
i

n
− (
∑n

i=1 xi)
2

n2
. (3.13)

However, the population is usually not known, either. In this case, we have

to estimate the population variance from a �nite sample of observations denoted

as x1, x2, . . . , xk, viz.

s2 =

∑k
i=1 x

2
i

k − 1
− (
∑k

i=1 xi)
2

k(k − 1)
(3.14)

where s2 is sample variance. Equation 3.14 is an unbiased estimator of the pop-

ulation variance because its expected value E(s2) is equal to the true variance of

the population.

One drawback of equation 3.14 is that all samples have to be store. In addition,

it is not suitable when the variance needs to be calculated online. For example,

if the sample is available one by one and the variance needs to be estimated

3.4. REINFORCEMENT LEARNING IN SEMI-MDPS 59

whenever a new sample is available, which is the case for reinforcement learning,

we have to repeat the calculation of variance and it is very costly. In order to

solve these problems, we need an incremental on-line algorithm.

According to Knuth [67], the variance of a random variable X can be unbias-

edly estimated from a �nite sample of observations incrementally using

vk =
(xk −mk−1)(xk −mk) + vk−1(k − 2)

k − 1

= vk−1 +
(xk −mk−1)(xk −mk)− vk−1

k − 1
(3.15)

where m is the estimated mean, v is the estimated variance, xk is the k
th observed

data, and mk and vk are the k
th estimation.

For bootstrap methods in an environment with multiple states, however, it

is worth noting that unless a full dynamic programming backup is used, the

estimated mean is non-stationary during the learning period. This will lead to a

biased estimate of the variance in the value function [68], which in turn a�ects

the performance of methods relying on unbiased statistics [69].

3.4 Reinforcement learning in semi-MDPs

Most classical reinforcement learning algorithms were developed for Markov deci-

sion processes. Semi-Markov decision processes pose a challenge to reinforcement

learning. In this section, recent research in semi-MDPs in the reinforcement

learning paradigm is reviewed.

3.4.1 Bellman equations for semi-MDPs

For the in�nite-horizon discounted model, the target of the agent in SMDPs is to

maximise

E(

∫ ∞
0

e−βtρ(s(t), a(t))dt) (3.16)

where x(t) and a(t) are respectively the state and action at t, ρ(s(t), a(t)) is the

reward rate after a(t) is taken in s(t) until the next state, β > 0 is a parameter,

and e−βt serves as the discount factor.

The Bellman equation for a SMDP in terms of V π under the in�nite-horizon

60 CHAPTER 3. RELATED WORK

discounted model is

V π(s) =
∑
a∈A(s)

π(s, a)
∑
s′∈S

Pass′

[

∫ ∞
0

∫ t

0

e−βzρ(s, a)dzdF a
ss′(t) + V π(s′)

∫ ∞
0

e−βtdF a
ss′(t)] (3.17)

where π is the policy of the agent, V π(s) and V π(s′) are respectively the values

of s and s′ under the policy π, P is the probability distribution of the state

transition, Pass′ is the probability that the next state is s′ if the agent takes action
a in state s. F a

ss′(t) is the cumulative probability distribution function of the time

taken by the state transition from s to s′ when action a is taken in s.

Let Ra
ss′ =

∫∞
0

∫ t
0
e−βzρ(s, a)dzdF a

ss′(t) and γass′ =
∫∞
0
e−βtdF a

ss′(t). Equa-

tion 3.17 can be simpli�ed to

V π(s) =
∑
a∈A(s)

π(s, a)
∑
s′∈S

Pass′ [Ra
ss′ + γass′V

π(s′)]. (3.18)

Equation 3.18 is quite similar to its counterpart equation for MDPs (equa-

tion 2.14). The Bellman optimality equation for a SMDPs in terms of V π under

the in�nite-horizon discounted model is

V ∗(s) = max
a∈A(s)

∑
s′∈S

Pass′ [Ra
ss′ + γass′V

π(s′)] (3.19)

where V ∗ is the optimal value function.

3.4.2 Research in semi-MDPs

Bradtke and Du� [70] extended classical reinforcement learning algorithms de-

veloped for Markov decision processes, e.g. TD learning and Q learning, to semi-

Markov decision processes under the in�nite-horizon discounted model. Das and

Gosavi [71] introduced a new model-free reinforcement learning algorithm, Semi-

Markov Average Reward Technique (SMART), to solve SMDPs problems under

the average-reward model.

In addition, Sutton et al. [72, 73] introduced the theory of options to bridge

the gap between MDPs and semi-MDPs. In semi-MDPs, temporally extended

actions or state transitions are considered as indivisible units, so there is no

3.5. REINFORCEMENT LEARNING IN DYNAMIC ENVIRONMENTS 61

way to examine or improve the structures inside the extended actions or state

transitions. The options theory, however, considers temporally extended actions

or state transitions, so called options, as temporal abstractions of an underlying

MDP. In doing so, it o�ers the �exibility to represent problems at multiple levels

of temporal abstractions, the potential to speed up planning and learning, and

the possibility of modifying (constructing or decomposing) options and changing

the course of temporally extended actions or state transitions by examining and

changing the structures of options.

3.5 Reinforcement learning in dynamic environ-

ments

The environment may be stationary or nonstationary. In a stationary environ-

ment, the reward structure and transitions between states either do not change

over time or vary with respect to a stationary probabilistic distribution. There are

two kinds of stationary environments. The �rst one is a deterministic stationary

environment. In a deterministic stationary environment, the reward structure

and transitions between states (the state structure) do not change over time.

Therefore, if a �xed and deterministic policy is used, one visit to every state-

action pair is enough to learn their actual values under the policy. The other

one is a stochastic stationary environment. In a stochastic stationary environ-

ment, the reward structure and transition between states change over time with

respect to a probabilistic distribution and therefore the learning agent needs to

visit every state-action pair many times before the true mean of their value is

learned (estimating the expected value or the population mean from the sample

mean) under the policy even if a �xed and deterministic policy is used. In both

of these environments, however, the learning agent can just follow the optimal

action in every state and does not need to continue its exploration or even con-

tinue learning once it has learned the true mean of the optimal value of every

state-action pair because the environment will not change later. In a stationary

environment, most classical value estimation reinforcement learning algorithms,

e.g. TD learning [46], Q learning [48] and SARSA learning [74], converge with

probability one to an optimal policy and the optimal value function as long as all

state-action pairs are visited an in�nite number of times, their policy converges in

the limit to a greedy policy, and their learning rate is gradually reduced towards

62 CHAPTER 3. RELATED WORK

0 as discussed previously.

In a nonstationary environment, the reward structure and transitions between

states change over time and the change is not subject to a probabilistic distribu-

tion, viz. the probability that a state transition happens and the probability that

a certain amount of reward is received for the state transition may change over

time. The learning agent has to keep learning and exploring the environment

because an optimal policy in the old environment may not be optimal in the new

environment. Depending on the speed of changes in the environment, the nonsta-

tionary environment can be classi�ed into two kinds of environments, viz. slowly

changing environments and rapidly changing environments. In a slowly changing

environment, the reward structure and transitions between states change slowly

over time. In this kind of environment, most classical algorithms with a non-

greedy policy and a �xed learning rate, e.g. Q learning and SARSA learning, can

still handle the changes. However, there is little theoretical analysis about it [1].

In a rapidly changing environment, the reward structure and transitions between

states change rapidly over time. In this kind of environment, a big discount factor

might help to forget the past environment and therefore help to learn the current

environment. However, it would become intractable if the environment keeps

changing too rapidly because the environment has already become a di�erent one

even before the old one is learned and therefore the learning agent can never learn

the environment.

In addition, there are two kinds of special nonstationary environments which

are commonly encountered in real-world applications and that can also be better

solved by utilising their special features, i.e. switching environments and cyclical

environments. In a switching environment, the reward structure and transitions

between states stay the same for a long time, then change abruptly, and then

hold for a long time before another change. Real-world examples of this kind of

environment include the closing of a highway road, the exhaustion of a water or

food source, and a change or damage in the learning agent itself. In this kind

of environment, though classical algorithms can also eventually learn the change

through continuous exploration, the learning process is quite slow because it

takes the learning agent a long time to unlearn the previous optimal policy [27].

Experiments conducted by Anderson et al. [28, 29] further show that in some

cases it is even better to throw away the existing policy and start over than to

continue with the existing policy. In a cyclical/recurrent environment, di�erent

3.5. REINFORCEMENT LEARNING IN DYNAMIC ENVIRONMENTS 63

reward structures and transitions between states appear repeatedly. In this case,

it may be better to store the mapping of the environment and learning parameters

(e.g. the Q values for Q learning), and then recall the corresponding learning

parameters when an stored environment reappears [75,76].

Generally, a dynamic environment refers to a nonstationary environment,

though some researchers also consider a stochastic stationary environment as

a kind of dynamic environment. As discussed above, dynamic environments pose

a big challenge to reinforcement learning algorithms. The following subsections

will present a review of existing research on reinforcement learning in dynamic

environments.

3.5.1 A �xed learning rate and �nite time window

With a �xed learning rate α, the ith past experience is discounted by (1− α)k−i

as shown in

Qk = Qk−1 +α(rk−Qk−1) = αrk + (1−α)Qk−1 = (1−α)kQ0 +
k∑
i=1

α(1−α)k−iri

(3.20)

where k is the total number of experiences so far, Q0 is the initial estimation of

the value of the reward, Qk is the k
th estimation of the value of the reward, ri is

the value of the ith reward received, and α is the �xed learning rate. Therefore,

the further away from the present, the more heavily the experience is discounted,

which is called an exponential recency-weighted average [2].

It is worth noting that the value of α needs to be chosen carefully. With

a large α, past experience is heavily discounted. This would make the learning

prone to noise and may lead to instability because the learning is dominated by

recent experience. On the other hand, with a small α, learning would become

very slow and greatly depend on the initial value.

With a �nite time window, past experience outside the time window is com-

pletely ignored and only experiences within the time window contribute to the

learning. Similar to the choice of the value of α, the size of a �nite time window

should also be carefully picked. With too small a size, it would never learn any-

thing. On the other hand, however, too large a size would lead to a slow response

to changes in the environment.

64 CHAPTER 3. RELATED WORK

These are general strategies for nonstationary environments and can be in-

tegrated into almost all reinforcement learning algorithms. However, they both

discount past experience whether the environment changes or not. If the en-

vironment changes, they would help forget past experience gained in the old

environment. If the environment does not change, however, they would limit

the achievable learning because only part of the experience is used to learn and

would make it impossible for the learned value to converge to its true value in a

stationary but stochastic environment. Besides, the degree of discount (the value

of α and the size of the �nite time window) should be carefully chosen.

3.5.2 Non-greedy decision making

With non-greedy decision making, the learning agent deliberately chooses non-

optimal actions with a certain probability so that it keeps exploring the environ-

ment and modi�es its policy to suit the current environment.

Probably the simplest method to make non-greedy decisions is ε-greedy [7,77].

The optimal action is chosen most of the time but with probability ε actions are

chosen randomly, regardless of their values.

Although ε-greedy is simple and e�ective, it chooses all actions with equal

probability when it explores the environment (with probability ε). It may be

more desirable to explore the actions with higher values than the actions with

lower values. This idea leads to softmax methods [78, 79]. One of the most

widely used softmax methods is Boltzmann-Gibbs rule which chooses action a

with probability
eQ(a)/T∑
i e
Q(i)/T

(3.21)

where T is a positive number. With a big T , the di�erence in the probability of

being chosen between actions is very small. The net e�ect is close to uniformly

random choice and therefore it encourages exploration. On the other hand, with

a small T , the di�erence in the probability of being chosen between actions be-

comes big. The net e�ect is close to greedy choice and therefore it encourages

exploitation.

In a stationary environment, T is set to a big value initially to encourage

exploration and then a small value to reduce the cost of exploration. In a nonsta-

tionary environment, however, T should stay at a relatively big value to maintain

exploration. In fact, from the point of view of the agent, the environment also

3.5. REINFORCEMENT LEARNING IN DYNAMIC ENVIRONMENTS 65

changes at the initial learning stage even though the environment is stationary

and has not changed because its initial estimation of the environment is usually

incorrect.

These non-greedy decision making methods are general strategies for nonsta-

tionary environments and are useful in the learning stage for stationary environ-

ments. They are widely used by almost all reinforcement learning algorithms.

However, many algorithms use them whether the environment changes or not.

It is preferable to use a big exploration rate when the environment has changed

and a small one when the environment has not because exploration is costly.

Furthermore, only when suboptimal actions have improved does increasing the

exploration rate (e.g. ε for ε-greedy) help. In some cases, for example, when the

optimal action has improved or suboptimal actions have worsened, increasing ε

would make the situation worse. In addition, some states may satisfy the condi-

tions of increasing ε whereas others do not. Therefore, a di�erent ε for each state

would be helpful to ensure that only the ε of the states that satisfy the conditions

is increased when the environment changes.

3.5.3 Exploration bonuses

Sutton [27] introduced two kinds of problems in a navigation task which classical

value estimation reinforcement learning algorithms struggle to solve.

The �rst problem is called blocking. It is worth noting that it is di�erent

from the blocking phenomenon in classical conditioning discussed previously. In

this problem, after the learning agent �nds the optimal path, the optimal path

is blocked. Although classical value estimation algorithms can eventually learn

about the blocking and �nd the new optimal path, they bump into the barrier

again and again, and spend many trials to unlearn the previous optimal policy.

The second problem is called a shortcut. In this problem, after the learning

agent �nds the optimal path, a path, which is even shorter than the optimal one

but which was previously closed, is opened. Classical value estimation algorithms

may still follow the previous optimal path and never learn the shortcut because

the previous policy/ value function keeps pushing the learning agent towards the

previous optimal path even when it is away from the previous optimal path by a

very small chance (e.g. ε-greedy).

In order to solve these two problems, Sutton suggested exploration bonuses [27]

to encourage exploration of states which have not been visited for a long time.

66 CHAPTER 3. RELATED WORK

In particular, it adds an exploration bonus to the reward that the learning agent

receives by taking one action. In Sutton's paper [27], the amount of bonus is

proportional to the square root of the number of time steps that have elapsed

since the action was tried last time. Therefore, the longer the actions have not

been tried, the bigger bonus reward they will get.

Although this method of exploration bonuses has dramatically improved the

performance of classical value estimation reinforcement learning algorithms on the

blocking and shortcut problems, it has several drawbacks. Firstly, the calculation

of exploration bonuses is a bit heuristic and there is little theoretical analysis

about it as the author of [27] has also pointed out. Secondly, the exploration

bonus is undirected because all the actions with the same number of elapsed time

steps will get the same amount of bonus. It may be preferable that the actions

which may lead to a better path will get a bigger bonus reward. Thirdly, the

bonus reward is potentially unbounded and may be very big and even overshadow

the real reward. Finally, it will encourage exploration whether the environment

changes or not.

Dayan and Sejnowski [80] further systematically extended the exploration

bonus method by modelling the uncertainty of the way the environment changes

and then turning it into exploration bonuses for uncertain states. The learning

agent assumes that changes in the environment (for instance, the probability

that a barrier is present in the maze problem) follow a probabilistic distribution.

Compared with Sutton's exploration bonus method, it is more directed in the

sense that it explores the states which potentially lead to better results if the

situation changes (for instance, a barrier is opened in the maze problem) more.

Dayan and Sejnowski's extended exploration bonus method, however, would

still encourage exploration whether the environment changes or not. Another

problem is due to the fact that the learning is incremental. Suppose that the

learning agent has found that a previous suboptimal action in one state has

improved thanks to the exploration bonus. After one update, it is likely that

its estimated value is still suboptimal. After that, however, it is less likely to be

visited because it has lost the exploration bonus after being visited. In addition, it

also needs a model of the environment and assumes that the environment changes

with respect to a certain probabilistic distribution.

3.5. REINFORCEMENT LEARNING IN DYNAMIC ENVIRONMENTS 67

3.5.4 Interval estimation algorithm

The Interval Estimation (IE) algorithm [69] computes the con�dence intervals

of the estimated values of actions and then selects the action with the largest

upper interval boundary instead of the one with the largest mean. In this way,

it encourages the agent to choose the actions with more uncertainty, viz. less

explored actions.

The algorithm uses the statistical mean, variance and an assumed distribution

to calculate the con�dence intervals. When the number of experiences is very

large, a normal distribution is used. Otherwise, a t-distribution or a binomial

distribution is used instead. The algorithm has been successfully used to solve

n-armed bandit problems [69], robot goal keeper problems [81], and large maze

problems [82] combined with prioritized sweeping [9].

It is worth noting that the algorithm is mainly designed to balance exploration

and exploitation in stationary environments: more uncertain actions are explored

more often. However, it can also be combined with non-greedy decision making

methods or exploration bonuses to work in nonstationary environments. For

instance, one extension of the algorithm [69] is to reduce the recorded number

of visits to actions which have not been visited for some time. This, in e�ect,

increases the upper interval boundary of these actions and therefore encourages

exploration of them in a manner similar to exploration bonuses.

3.5.5 Bayesian methods

The environment where the agent is situated is usually unknown to the agent. The

agent learns the environment through repeated interaction with the environment.

It is not hard to understand that the more unknown the value of one action

or one state-action pair is, the more the action or the state-action pair should

be explored. A probability distribution can be used to model the uncertainty

about the estimation of values. Take the n-armed bandit problem as an example.

At the beginning of learning, Bayesian reinforcement learning methods assume

a prior distribution, e.g. a uniform distribution or a normal distribution, over

the probability of paying-o� for each arm in a binary n-armed bandit problem

and over the possible values of paying-o� for each arm in a real-valued n-armed

bandit problem. The probability distribution is then updated with experiences

using Bayes' rule.

68 CHAPTER 3. RELATED WORK

As for decision making, Wyatt [68] proposed to use a probability matching

method to choose actions. At each step, the method chooses an action with the

probability of the action being optimal. In this way, if the estimated returns of

two arms are the same, the arm with a higher uncertainty is explored more often.

With the probability distribution modelling the uncertainty about the expected

return, it is possible to calculate the probability that an action is the optimal

action. It is worth noting, however, when there are more than two actions, this

method becomes intractable. In this case, a sampling method can be used [83].

With this method, a value is sampled from the estimated probability distribution

of the value of each action. The action with the highest sampled value is chosen.

The net result of the sampling method on average is the same with choosing one

action with the probability of the action being optimal.

Although this method is not necessarily optimal for controlling the trade-o� of

exploration and exploitation, it is guaranteed to converge [68]. One drawback of

the method is that it only considers the probability that an action is optimal, but

ignores the amount by which choosing the action might improve over the current

policy [83]. One exploration is more valuable if it can lead to bigger improvement

over the current policy with a less or equal expected cost of taking a poten-

tially suboptimal action. Following this thought, Dearden et al. [83] proposed to

use Myopic-VPI (Myopic value of perfect information [84]) for decision making.

Dearden et al. [83] further extended both the probability matching method and

the Myopic-VPI method to multi-state reinforcement learning problems for Q

learning.

For model based reinforcement learning, Dearden et al. [85] proposed to use

Bayesian methods to learn the model of the environment. Assume that the agent

takes action a in state s. One possible implementation is to use a parameter for

each possible successor state s′, viz. θs
′
s,a = Pr(s′|s, a) to de�ne the distribution

of the transition, a parameter for each possible reward r, viz. θrs,a = Pr(r|s, a)

to de�ne the distribution of the reward. Both θs
′
s,a, s

′ ∈ S and θrs,a, r ∈ R are

categorical distributions. The number of times that s′ is observed in n indepen-

dent trials follows a discrete multinomial distribution with parameters θs
′
s,a and n.

The same is true with the reward distribution. In order to model the uncertainty

about these parameters, we �rst assume a prior for each parameter, e.g. Dirichlet

priors. Then we use Bayes' rule to calculate their posteriors after an experience

is observed. With the Bayesian model of the environment, we can sample n times

3.5. REINFORCEMENT LEARNING IN DYNAMIC ENVIRONMENTS 69

of all the parameters and generate n MDPs. The value function of each MDPs

can be obtained by dynamic programming or other reinforcement learning algo-

rithms. The mean value function, viz. the average of all value functions, is then

used together with either the probability matching method or the Myopic-VPI

method for decision making.

It is worth noting that, similar to the interval estimation algorithm, these

Bayesian reinforcement learning methods are mainly designed to model the un-

certainty about the environment, and to balance exploration and exploitation in

stationary environments rather than to solve problems arised due to nonstation-

ary environments.

3.5.6 Risk sensitive reinforcement learning

The optimal target of classical reinforcement learning algorithms is to maximise

the expected return either within a �nite horizon or within an in�nite horizon. It

is not necessarily a desirable optimal target for all applications. Some applications

may be risk averse while others may be risk seeking. Heger [86] introduced a

reinforcement learning algorithm for the worst-case optimality criterion which

chooses actions based on their worst-case returns instead of the expected return,

viz. to maximise

inf
s0,s1,...

(
∞∑
k=0

γkrsk,sk+1
). (3.22)

The algorithm usually results in a very low average return and therefore is only

suitable for risk-avoiding applications.

Another approach is to use exponential utility functions. The goal is to max-

imise the expected value of an exponential utility function of the return. In

this way, sample values are weighted depending on their distance away from the

mean. One exponential utility function is eβx, where the parameter β controls

the desired sensitivity of risk. The goal is to maximise

1

β
log E(eβ

∑∞
k=0 γ

krsk,sk+1). (3.23)

If we use the Taylor series to expand the equation, we can get

1

β
log E(eβx) = E(x) +

β

2
V ar(x) +O(β2). (3.24)

70 CHAPTER 3. RELATED WORK

When β = 0, the agent only aims to maximise the expected return and therefore

the objective becomes risk-neutral. When β > 0, variability, viz. risk, is encour-

aged and therefore the objective becomes risk-seeking. When β < 0, variability,

viz. risk, is discouraged and therefore the objective becomes risk-averse. Thus, by

setting β to di�erent values, we can control the level of risk that we want the agent

to take. This method, however, su�ers from the following three problems [87]:

time-dependent optimal policies, no optimality equations for stochastic reward

structures, and no model-free reinforcement learning algorithms for both deter-

ministic and stochastic reward structures. In order to avoid these drawbacks,

Mihatsch and Neuneier [87] proposed to apply a utility function to the temporal

di�erences instead of the return. A risk-sensitive version of Bellman equations is

0 =
∑
s′∈S

p
π(s)
ss′ U(r

π(s)
ss′ + γV π

β (s′)− V π
β (s)). (3.25)

They further showed that, similar to risk neutral reinforcement learning, opti-

mal stationary policies exist in the risk-sensitive sense and their optimal value

function is unique and can be obtained by solving a risk-sensitive version of Bell-

man's optimality equations. In addition, most classical reinforcement learning

algorithms can be transformed to their risk-sensitive version of algorithms easily.

Risk-sensitive TD learning can be expressed as

V (s)← V (s) + αU(r + γV (s′)− V (s)). (3.26)

There are also risk-sensitive versions of other reinforcement learning algorithms,

e.g. Q learning and SARSA learning. These risk-sensitive version of reinforcement

learning algorithms converge under the same conditions with their normal (risk

neutral) version.

It is worth noting that risk sensitive reinforcement learning allows the agent

to take risk/variability into consideration for their decision making. It does not,

however, address the problems caused by nonstationary environments.

3.5.7 Metacognitive monitoring and control

Metacognitive monitoring and control (MCL) [28,29,88,89] �rst detects the degree

of perturbation in the environment. The degree of perturbation in the environ-

ment is estimated through monitoring the performance of the learning agent.

3.5. REINFORCEMENT LEARNING IN DYNAMIC ENVIRONMENTS 71

The performance indexes include the estimation of the expected reward value,

the expected time to reward and the expected average reward per time step. For

example, it would be considered a perturbation if the learning agent receives an

unexpected reward, the number of time steps between rewards are three times

the expected value, or the average reward per time step drops to eighty-�ve per-

cent of the expected rate [29]. The degree of perturbation also depends on the

severity of the perturbation, e.g. a reward change from 10 to -10 is a larger degree

of perturbation than a reward change from 10 to 9. After a certain amount of

perturbations have been detected, the method throws out its policy and starts

over if the combined degree of perturbation is more than a threshold. Otherwise,

it temporarily raises the exploration rate (e.g. ε for an ε-greedy policy) to en-

courage exploration and then allows the exploration rate to decay over time. The

experiments by Anderson et al. [29] show that MCL has signi�cantly improved

the performance of Q learning, SARSA learning and Prioritized Sweeping when

a perturbation happens, especially when it has a high degree.

Despite the fact that MCL has signi�cantly improved the performance of clas-

sical reinforcement learning algorithms when the environment changes, it su�ers

from several drawbacks. Firstly, MCL calculates these performance indices only

by averaging their actual values across several trials and then comparing the av-

erage value with their actual value in the current trial. Thus, it does not work in

a stochastic stationary environment without using a batch rule, viz. comparing

the average value across recent several trials with their average value across sev-

eral trials before recent several trials. This is because the MCL approach would

detect the variation in a stochastic stationary environment as a perturbation and

therefore keep changing its policies. On the other hand, if a batch rule is used,

it needs many trials to detect a change in the environment because it has to

compare the average values across recent several trials with those across several

trials before recent several trials.

Another disadvantage is that it only changes its policy between trials rather

than during one trial. This would a�ect its response speed. As an extreme

example, suppose, in an n-armed bandit problem, if the reward for one arm never

arrives, their approach will still wait for the reward before changing its policy.

Thirdly, their method of calculating the degree of perturbation is rather

heuristic and problem-dependent because all parameters are hand picked and

problem-dependent. Furthermore, both the strategy of throwing out its policy

72 CHAPTER 3. RELATED WORK

and the strategy of increasing the exploration rate after the detection of perturba-

tion lack guidance because every state would be in�uenced. Finally, the method

throws away the performance indexes and then relearns them from scratch after

perturbations are detected rather than updates them. It takes some time before

the performance indexes are learned and can be used to detect new perturbations.

3.5.8 Relational reinforcement learning

Almost all classical reinforcement learning algorithms use atomic states, viz. each

value is associated with an atomic or an enumerated state. Instead of associat-

ing values with atomic states, relational reinforcement learning associates them

with the relational representations of states described by �rst-order logical lan-

guages [90�92].

In doing so, it o�ers more generalisation which can not only reduce the state

space but also make it more resilient to environmental changes. In a mobile rover

problem, for instance, suppose that the environment has two kinds of terrains,

viz. dry land and wetland, and also suppose that there is little di�erence between

states with the same terrain. Suppose that there are two speed choices available

to the mobile rover in both types of terrains. On a dry land, the mobile rover

can receive more rewards by choosing the high speed, whereas it can receive more

rewards by choosing the low speed on a wetland. Atomic reinforcement learning

would associate values with the location of every state. Relational reinforcement

learning, however, would associate values with the type of the terrain of every

state. This way of state representation dramatically reduces the state space be-

cause, though there may be hundreds of distinct locations (hundreds of states for

the atomic representations), there are only two kinds of terrains (two states for

the relational representations). Now, assume that the terrain of a state changes

from dry land to wetland. The learning agent with an atomic representation,

would still use the same policy in the state that is used on a dry land (choos-

ing to drive fast most of time) because it associates values with the location of

the state and the location does not change. The learning agent with relational

reinforcement learning, however, would use the policy on wetland in this state

(choosing to drive slow most of time) instead because it associates values with the

terrain of the state which has changed into wetland. Therefore, the performance

of relational reinforcement learning has not been a�ected by the environmental

change.

3.5. REINFORCEMENT LEARNING IN DYNAMIC ENVIRONMENTS 73

It is worth noting that this method is only useful when the relational represen-

tations of states are very simple. Suppose, in the above example, that if the value

of a state depends not only on its terrain but also on the terrain of its neighbour-

ing states, the relational representations would become more complex. In the

extreme, if the value of a state also depends on its location, the relational rep-

resentations would become as complex as the atomic representations. Secondly,

relational reinforcement learning can only adapt to a change in the environment

if the representation can characterise the change. Otherwise, it may still struggle

to cope with the new environment. For example, if a state of the environment

changes to a new type of terrain, e.g. grassland, relational reinforcement learning

still needs to learn the change just like atomic reinforcement learning.

3.5.9 State augmentation

In a dynamic environment, if changes are decided by one or more dynamic el-

ements, the problem can be transformed to a stationary environment problem

by augmenting the state space with the dynamic elements [93, 94]. In a tra�c

control problem, for example, we can add a time index (e.g. peak time or o�-peak

time) to the state space and use di�erent policies to control tra�c in the peak

time and o�-peak time.

When there are too many dynamic elements, however, this method would

cause an explosion of the state space. In a robot football problem, for instance,

one can add all the positions of other footballers to the state space. Suppose

there are 5 players per team and there are 100 possible positions, then the size

of the new state space would become approximately 10010.

3.5.10 State instantiation

One way to overcome the state space explosion problem su�ered by the state

augmentation method discussed above is to instantiate the states of dynamic ele-

ments in the environment model before learning, and use the instantiated model

to learn new policies and then update the model with experiences [95].

To use this method, however, one has to know which objects are likely to

change in advance because the cost of modelling a dynamic object is huge. Fur-

thermore, like Dayan and Sejnowski's extended exploration bonus method dis-

cussed above, it also needs a model of the environment and assumes that the

74 CHAPTER 3. RELATED WORK

environment changes with respect to a certain probabilistic distribution.

3.5.11 Methods designed speci�cally for cyclical environ-

ments

As mentioned previously, in a cyclical/recurrent environment, di�erent types of

environments with di�erent reward structures and transitions between states ap-

pear repeatedly. In this case, it may be better to store the mapping of the

type/mode of the environment and the policy/learning parameters (e.g. Q value

for Q learning), and then recall the corresponding learning parameters when a

type of environment reappears rather than relearning them from scratch.

Tsumori and Ozawa [76] store pairs of the policy/knowledge/parameters

of the learning agent with the type of environment, and then recall the pol-

icy/knowledge corresponding to the type of environment which best matches the

current environment when the environment changes. If no type of environment

stored matches the current environment, the learning agent needs to learn it from

scratch and then adds the pair of the learned policy and the type of the current

environment to its knowledge base.

Choi et al. [75] integrate the state augmentation method with a hidden Markov

model. Here, the mode of the environment is the hidden variable of the hidden

Markov model and the current state is the observation. The learning agent �rst

learns a policy in each mode of the environment, and then associates the policy

with the corresponding mode and stores the association. It switches to an ap-

propriate policy according to the current mode of the environment deduced from

the current state (observation) when the environment changes. However, it as-

sumes that the approximate number of di�erent environment dynamics (modes)

is known. Silva et al. [96] lift this limitation by incrementally building new models

if the current mode is new.

It is worth noting that these methods only work in a cyclical/recurrent world

where di�erent reward structures and transitions between states appear repeat-

edly.

3.6. OUR RESEARCH 75

3.6 Our research

Classical value estimation reinforcement learning algorithms can learn very quickly

but cannot respond rapidly to abrupt changes in the environment. Exploration

bonuses improve the speed of response to abrupt changes in the environment at

the price of the learning speed because it always explores the places which have

not been visited recently whether the environment has changed or not. In order

for the agent to both learn quickly and respond rapidly to abrupt changes in

the environment, we propose to learn and monitor the time to reward for every

state-action pair. The learned time information is then used to detect changes

in the environment. If a change in the environment is detected, the learning rate

is increased in order for the agent to learn the change quickly. Otherwise, the

learning rate is decreased gradually towards 0 in order for the estimated mean of

the time to reward to converge to its true mean. If a suboptimal action has im-

proved and may potentially become the optimal action in the new environment,

the exploration rate (e.g. ε for ε-greedy) is also increased in order to increase the

chance that the suboptimal action is visited. Otherwise, the exploration rate is

decreased gradually towards its minimum value in order to reduce the cost of ex-

ploring suboptimal actions. In addition, when the learning agent has found that

the current action is still worse than the optimal one some time after taking the

action, as discussed previously, it gives up this time's exploration of the action in

order to avoid longer than necessary exploration.

The MCL approach is similar to our research in the sense that it also detects

changes in the environment through monitoring the performance of the learning

agent and then changes its policy if a change in the environment has been de-

tected. However, both its detection method and its response strategy are rather

heuristic because parameters are hand-picked and problem dependent (e.g. the

expected reward is not received three times in a row). In contrast, our algorithm

detects changes in the environment with the mean and variance of the time to

reward which is suitable for almost all environments. Furthermore, their method

also lacks guidance because every state would be in�uenced if a change in the

environment is detected, e.g. throwing out its policy and temporarily raising

the exploration rate for all states. In contrast, our algorithm only increases the

learning rate of the state-action pair and ε of the state whose time to reward or

value has changed after a change in the environment is detected.

Secondly, MCL only calculates the performance indexes and changes its policy

76 CHAPTER 3. RELATED WORK

between trials, whereas our algorithm can respond (e.g. give up the current action)

during one trial. In doing so, our algorithm can potentially respond to changes

in the environment more quickly. Suppose, in an n-armed bandit problem, if the

reward for one arm never arrives, their approach will still wait for the reward

before changing its policy which will never happen. Our algorithm, however, can

detect the problem and then give up the arm and try other arms instead.

Thirdly, MCL only calculates the mean of the time to reward, so it would not

work without using a batch rule in a stochastic stationary environment where

the value of reward or the time to reward for state-action pairs keeps changing.

This is because the MCL approach would detect the variation in a stochastic

stationary environment as a perturbation and therefore keep changing its policy.

On the other hand, if a batch rule is used, it needs many trials to detect a change

in the environment because it has to compare the average values across recent

several trials with those across several trials before recent several trials. Our

algorithm learns both the mean and variance of the time to reward, so it can

detect a change in the environment with only one trial whether in deterministic

or stochastic environments. Finally, MCL throws away the performance indexes

and relearns them after perturbations are detected whereas our algorithm updates

and reuses them.

Chapter 4

Classical conditioning with spiking

neurons

As mentioned previously, classical conditioning [53] can be found in almost all

living organisms and may be one of the most important learning mechanisms

behind the independent learning behaviours of organisms. Some robotics re-

searchers [97] believe that implementing classical conditioning in robots would be

the �rst step to build a robot that can learn independently like animals. Classi-

cal conditioning is also a simple form of reinforcement learning and a motivation

for temporal-di�erence (TD) learning, an important reinforcement learning al-

gorithm. Traditionally, classical conditioning is mainly modelled by connection-

ist neural networks, e.g. the Rescorla-Wagner model [36] and the Sutton-Barto

model [37]. These models use high-level abstractions of neurons which ignore

the temporal dynamics of real neurons. Classical conditioning, however, is dy-

namic in essence because it mainly learns and predicts dynamic environments.

The Sutton-Barto model [37] solves this problem by using a temporal learning

rule. Here we attempt to use the dynamics of biological neurons directly to model

the dynamic nature of classical conditioning as the �rst step of our research on

reinforcement learning with time perception.

Experiments by Rao and Sejnowski [98] show that the temporally asymmetric

window of Hebbian plasticity can be reproduced by a temporal-di�erence (TD)

learning rule in conjunction with dendritic backpropagating action potentials.

This chapter explores the possibility of the inverse problem, viz. is it possible to

use spike-time dependent Hebbian learning and spiking neuron models to realise

TD learning and further to model classical conditioning?

77

78CHAPTER 4. CLASSICAL CONDITIONING WITH SPIKING NEURONS

The �rst section provides some preliminary knowledge of spiking neuron mod-

els. The neuron model and learning algorithm, used to implement classical con-

ditioning in our experiments, are introduced respectively in section 4.2 and sec-

tion 4.3. Then, the results of the simulation are shown in section 4.4. Finally,

the last section concludes the chapter by discussing the robustness of the model

and other related topics.

4.1 Background on spiking neuron models

Traditionally, most models of neural networks, whether in arti�cial neural net-

works or in neuroscience, assume that neurons encode information by means of

their �ring rates. Typically, these models take a large number of neuron-like

processing units, connect them together with weighted connections that are the

rough equivalent of neural synapses, and assume the output of each unit is some

activation function or transfer function, which mimics the dynamics of neurons,

of the weighted sum of all the inputs to each neuron. Besides, they also take it

for granted that signals transmitted in the networks (viz. inputs and outputs of

each unit) are a continuous value, often a �oating point number. This, however,

is not the case for biological neurons. In the biological neural system, neurons

communicate by means of a sequence of short electrical pulses, the so-called spikes

or action potentials rather than a continuous value. Furthermore, data gathered

in recent years from neurobiological experiments [99�101] also support that in-

formation is transmitted through spikes and the timing of these spikes is used to

transmit information and perform computation. This realisation has stimulated

a signi�cant growth of research activity in the area of spiking neural networks or

pulsed neural networks [102].

We shall give a short introduction to the biological neural system in subsec-

tion 4.1.1. In subsection 4.1.2, we will present two di�erent information coding

schemes which can be used by neurons and discuss their advantages and disadvan-

tages. The spiking neuron models are mainly focused on in subsection 4.1.3 for

single neurons and in subsection 4.1.4 for population neurons. In subsection 4.1.5,

di�erent synapse models are introduced. The last subsection discusses di�erent

learning algorithms which can be used by neurons.

4.1. BACKGROUND ON SPIKING NEURON MODELS 79

4.1.1 The biological neural system

The biological neural system is comprised by billions of neurons connected with

each other through synapses. Typically, a neuron is composed by dendrites, cell

body and axon.

Figure 4.1: Schematic illustration of biological neurons (taken from [103]).

As �gure 4.1 shows, signals (information about the environment) are trans-

mitted from the axon of one neuron to the dendrite of another neuron through a

synapse. When across synapses, signals may be ampli�ed, reduced, or delayed. In

the cell body of the neuron, signals from di�erent neurons will then be computed.

Next, the computed signal will be sent through the axon of the neuron to other

neurons connected with it.

4.1.2 Neural coding

The brain is well known as an information processing system. Information about

the environment is received through receptors, such as eyes, nose, ears, skin and

taste buds, and then is sent to the brain for processing. After processing the

information, the brain will send control signals to e�ectors, such as the muscles

of hands and feet, to respond to the environment. Finally, after receiving the

control signals from the brain, e�ectors will act to adapt to the environment.

80CHAPTER 4. CLASSICAL CONDITIONING WITH SPIKING NEURONS

The problem of neural coding is to �nd how information from the environment

is encoded by receptor neurons, how the coded information is decoded by the

brain, how the brain encodes the action signals, and how e�ector neurons decode

the coded control information.

Figure 4.2: Signals generated and transmitted by neurons(taken from [101]).

As �gure 4.2 presents, signals generated and transmitted by neurons are just

short electrical pulses or action potentials or spikes, not waves or any other forms.

There are four spikes in this �gure and others are background noise. From the

�gure, we can also see that there is little di�erence between the shapes of spikes.

Thus, it is likely that neurons encode information either through the amount of

spikes (the �ring rate model) or through the timing of spikes (the spiking neuron

model), both of which will be discussed below.

4.1.2.1 Firing rate models

The �ring rate model has been used since the very beginning of experimental

neurophysiology. In 1920s, the pioneering work of Adrian [104, 105] suggested

that the �ring rate of stretch receptor neurons in muscles is related to the force

applied to the muscles. Since then, the �ring rate model has become the dominant

model used in both arti�cial neural networks and neuroscience partly because of

the relative ease of measuring �ring rates experimentally.

4.1. BACKGROUND ON SPIKING NEURON MODELS 81

According to di�erent averaging procedures, the �ring rate model can be cat-

egorised into three kinds, viz. temporal average coding, repetition average coding

and population average coding.

The temporal average coding is the most commonly used one of the three

categories. It is de�ned as an average of the number of spikes over a period

of time, usually 100 ms or 500 ms. If one sets the time window T and counts

the number of spikes nsp occurred from t to t + T , according to Gerstner and

Kistler [102], the �ring rate v at t for this coding is

v(t) =
n(t, t+ T)

T
. (4.1)

Although the temporal average coding is relatively simple and has been suc-

cessfully used by experimenters to evaluate and classify neuronal �ring, it is not

suitable for neurons in the biological neural system to encode information. In

the real world, creatures have to react to stimuli very quickly to stay alive. For

instance, a �y can react to a stimulus very quickly and change the direction of its

�ight within 30�40 ms [101]. This means that the �y has to respond after a post-

synaptic neuron has received just one or two spikes. So, there is not enough time

for the �y to count spikes and average them over a long time window. Primates

can also respond selectively to complex visual stimuli such as faces, food and

other familiar 3D objects only 100�150 ms after stimulus onset [99]. Moreover,

there are more than 10 layers of neurons on the way from the retinal photore-

ceptors to the brain. So, each layer of neurons can only have about 10 ms to

process information. Experiments on bats [100] also show that neurons in the

bat auditory cortex can respond just 8 ms after stimulus onset, which leaves only

a couple of milliseconds at each level given the number of intervening subcortical

processing stages. Thus, even though it is convenient for experimenters to evalu-

ate and analyse neuronal �ring using the temporal average coding, it cannot be

the coding that the biological neural system actually uses.

In the repetition average coding, the same stimulation sequence is repeated

several times and then the neuronal responses are averaged over these repetitions.

Suppose, at the time t, a neuron produces nK(t, t + ∆t) spikes summed over K

repetitions of the same experiment in a very short time period of ∆t. Then,

according to Gerstner and Kistler [102], the �ring rate of the neuron at the time

82CHAPTER 4. CLASSICAL CONDITIONING WITH SPIKING NEURONS

t for the repetition average coding is

v(t) =
1

∆t

nK(t, t+ ∆t)

K
. (4.2)

Although the repetition average coding is useful to evaluate and analyse neu-

ronal activity, it is apparent that the biological neural system cannot use it to

encode information either. This is because neurons must wait for several repe-

titions of stimuli before they can get the �ring rate with the repetition average

coding, which is apparently unrealistic in the real world.

Among numerous neurons, some of them have similar properties and respond

to the same stimuli. So, it is reasonable to average the activity of these neurons to

get a more accurate description of neuronal activity. Assume there are nN spikes

produced by N neurons with similar properties from the time t to the time t+∆t

(∆t is a very short time period). Then, according to Gerstner and Kistler [102],

the �ring rate of the neurons for the population average coding at the time t is

v(t) =
1

∆t

nN(t, t+ ∆t)

N
. (4.3)

4.1.2.2 Spiking neuron models

Because of the limitations of �ring rate models, researchers gradually realised the

importance of the timing of spikes and increasingly started research in spiking

neuron models. A number of spiking neuron models are introduced. Here, we

only discuss three types of them, viz. rank order coding, temporal coding and

population correlation coding.

Rank order coding [106�109], the simplest one of the three coding schemes,

only considers the order in which neurons �re instead of the exact timing of spikes

produced by neurons. The basis for this coding scheme is that neurons only have

time to �re either 0 or 1 spike for rapid processing. Therefore, the �rst spike

should contain most of the relevant information.

Unlike rank order coding, temporal coding makes use of the precise timing of

all spikes produced by neurons. Without doubt, this coding scheme is potentially

powerful and can contain a large amount of information.

Neurons in the cortex are connected with each other and therefore interact

with each other. So, their activity is usually correlated and this kind of corre-

lation may provide important information that is not contained in the timing

4.1. BACKGROUND ON SPIKING NEURON MODELS 83

of spikes produced by individual neurons. For this reason, it may be groups of

correlated neurons that together encode information instead of isolated neurons.

For example, the brain may use synchrony (a special case of correlation without

time lag, viz. two or more neurons �re at the same time) to tell whether or not

spikes produced by di�erent neurons belong to the same visual object.

4.1.3 Single neuron models

In the paradigm of spiking neuron models, there are mainly two kinds of single

neuron models, one is detailed conductance-based neuron models and the other

simple phenomenological spiking neuron models. Because of the intrinsic com-

plexity of detailed conductance-based neuron models, only simple phenomenolog-

ical spiking neuron models are discussed here.

According to how to de�ne the dynamics of the membrane potential of neu-

rons, the simple phenomenological spiking neuron models can be classi�ed into

several groups. Here, we only consider two of them, viz. the leaky integrate-and-

�re model and the spike response model.

4.1.3.1 Leaky integrate-and-�re model

The leaky integrate-and-�re model uses a basic RC circuit showed in Figure 4.3

to simulate the dynamics of neuronal activity. When input spikes arrive at a

neuron, the membrane potential of the neuron is integrated. The neuron will �re

a spike when the membrane potential reaches some value, viz. its threshold. On

the other hand, the membrane potential of the neuron will leak over time and

may even disappear if there are no input spikes.

As �gure 4.3 represents, the circuit is composed by a capacitor C and a resistor

R. A current I(t) drives the circuit and is split into two components IR and IC .

If the capacity of C at time t is denoted as u(t), then, according to Gerstner and

Kistler [102], I(t) can be expressed as

I(t) = IR + IC =
u(t)

R
+ C

du(t)

dt
. (4.4)

Let τm = RC, then, according to Gerstner and Kistler [102], equation 4.4 can be

represented as

τm
du(t)

dt
= −u(t) +RI(t). (4.5)

84CHAPTER 4. CLASSICAL CONDITIONING WITH SPIKING NEURONS

Figure 4.3: Schematic diagram of the leaky integrate-and-�re model (taken
from [102]).

In terms of the leaky integrate-and-�re model, u(t) refers to the membrane

potential of the postsynaptic neuron, τm refers to the membrane time constant

of the neuron, I(t) refers to spikes of presynaptic neurons, and R measures the

in�uence of external currents on the membrane potential.

Equation 4.4 and equation 4.5 only describe the neuronal activity between the

�ring of one spike and the �ring of the next spike by the postsynaptic neuron,

viz. before the the membrane potential of the postsynaptic neuron reaches its

�ring threshold. According to Gerstner and Kistler [102], when the membrane

potential u(t) of the postsynaptic neuron reaches its �ring threshold υ at time t̂,

viz.,

t̂ : u(t̂) = υ, (4.6)

a spike will be �red by the postsynaptic neuron. And immediately after the �ring

moment, its membrane potential is reset to ur < υ. Then, the dynamics of the

postsynaptic neuron will develop along the trajectory described by equation 4.4

and equation 4.5 until its next spike.

4.1. BACKGROUND ON SPIKING NEURON MODELS 85

4.1.3.2 Spike response model (SRM)

Unlike the leaky integrate-and-�re model, the spike response model (SRM) as-

sumes a function ε to describe the time course of the response of the membrane

potential of a neuron to an incoming spike instead of a basic RC circuit and a

function η to describe the time course of the membrane potential of a neuron after

�ring a spike instead of simply resetting the membrane potential of the neuron

to ur.

Suppose that the postsynaptic neuron i �red its last spike at time t̂i. After

that, at time t
(f)
j , the presynaptic neuron j generated a spike which caused the

membrane potential (ui) of the neuron i to increase by wijεij(t − t̂i, t − t(f)j) at

time t. f means �ring and t
(f)
j is the time when the presynaptic neuron j �res a

spike. Besides, the trajectory of the membrane potential after �ring a spike can

be described by the same certain time course function η(t − t̂i) because action

potentials always have roughly the same form. So, the membrane potential (ui) of

the neuron i at time t, according to Gerstner and Kistler [102], can be expressed

as

ui(t) = η(t− t̂i) +
∑
j

wij
∑
f

εij(t− t̂i, t− t(f)j). (4.7)

4.1.4 Population neuron models

The biological neural network is an inherent parallel processing system in which

neurons are highly connected with each other (approximately 7,000 connections

per neuron on average [103]). Thus, it is not appropriate to isolate one neuron

from others and only consider the models of a single neuron. Furthermore, there

are a large number of neurons that are located nearby, have similar properties

and perform a certain function together in the brain. For instance, there are

the somatosensory cortex within which a large number of neurons perform the

somatosensory function [110], the visual cortex within which a large number of

neurons perform the visual function [111], and pools of motor neurons within

which a large number of neurons perform the motor function [112]. Therefore,

it is essential to consider the activity of the whole population of neurons rather

than that of individual neurons.

Because of the restriction of length and the complexity of population neuron

models, however, we will not further discuss the population neuron model.

86CHAPTER 4. CLASSICAL CONDITIONING WITH SPIKING NEURONS

4.1.5 Synapses

The synapse is where the axon of a presynaptic neuron makes contact with the

dendrite or soma of a postsynaptic neuron. As mentioned previously, signals (or

spikes in spiking neuron models) are transmitted from the axon of one neuron to

the dendrite of another neuron through synapses. When they cross a synapse,

signals may be ampli�ed, attenuated, or delayed. The degree to which the signals

are ampli�ed or attenuated depends on the strength of the synapse which is also

plastic. The synapse is believed to be the foundation of learning and memory.

An α-function [102] is usually used to model the synapse. There are two

versions of α-function. The simple version has only one parameter. Suppose I(t)

is the current triggered by spikes from other neurons or external sources at time t,

which is also the current that charges the membrane potential of the postsynaptic

neuron, then, according to Gerstner and Kistler [102], it can be expressed as

I(t) =
1

τs

∑
j

∑
k

wje
−
t−tkj−dj

τs θ(t− tkj − dj) (4.8)

where, τs is the time constant, wj and dj are respectively the synaptic weight and

the transmission delay of the jth connection, and tkj is the kth input spike time

from the jth synapse. θ(s) is the Heaviside step function and satis�es,

θ(s) =

{
0 if s ≤ 0

1 if s > 0

A more sophisticated version has two parameters. In addition to τs, the other

parameter is the �nite rise time τr of the postsynaptic current. This version of

α-function, according to Gerstner and Kistler [102], can be expressed as

I(t) =
1

τs − τr

∑
j

∑
k

wj(e
−
t−tkj−dj

τs − e−
t−tkj−dj

τr)θ(t− tkj − dj). (4.9)

4.1.6 Neural learning

Only a fraction of neural structures are de�ned at birth [103]. Most parts are

developed with new connections made and others waste away in the early stage of

life to learn the environment. After that, they continue changing throughout the

whole life to adapt to changes in the environment, but these changes are mainly

4.1. BACKGROUND ON SPIKING NEURON MODELS 87

limited to the strengthening or weakening of synaptic connections. Thus, neural

learning is very important for creatures to �t the environment, stay alive and

�ourish.

According to whether there is external information that helps a learning agent

to learn and whether the external information is instructive or evaluative, the

learning process can be grouped into three categories, viz. supervised learning,

unsupervised learning and reinforcement learning.

Recent research [113,114] indicates that the biological neural system involves

all of the three learning paradigms. Speci�cally, it is indicated that the cere-

bral cortex is specialized for unsupervised learning, the cerebellum for supervised

learning, and the basal ganglia for reinforcement learning.

4.1.6.1 Unsupervised learning

Unlike supervised learning, unsupervised learning has no teacher to oversee its

learning process. Therefore, it can only learn from inputs.

Unsupervised learning in arti�cial neural networks can be realised by associa-

tive learning [115,116], competitive networks [117] and Grossberg network [118].

Their main application is to categorise the input patterns into a �nite number of

classes.

Unsupervised learning for spiking neuron models is usually realised by time-

dependent Hebbian learning and maximum mutual information theory.

The basic rule of Hebbian learning is from Hebb's postulate,

�When an axon of cell A is near enough to excite a cell B and re-

peatedly or persistently takes part in �ring it, some growth process

or metabolic change takes place in one or both cells such that A's

e�ciency, as one of the cells �ring B, is increased.�

Although Hebb never claimed that there is �rm physiological evidence for his

theory, subsequent research has shown that neurons in this case do exhibit this

kind of learning. Recent experiments [119�133] push Hebbian learning further

and suggest that Hebbian learning is time-dependent, viz. if a presynaptic spike

arrives at the synapse before the postsynaptic action potential, the synapse is

potentiated (long-term potentiation (LTP)); if the timing is reversed the synapse

is depressed (long-term depression (LTD)). This kind of time-dependent Hebbian

learning is also called spike-timing dependent plasticity (STDP) [132, 134, 135].

88CHAPTER 4. CLASSICAL CONDITIONING WITH SPIKING NEURONS

Moreover, the curve of time-dependent anti-Hebbian learning is also observed in

the cerebellum of electric �sh [124, 131], viz. if a presynaptic spike arrives at the

synapse before the postsynaptic action potential, the synapse is depressed; if the

timing is reversed the synapse is potentiated.

Besides, other researchers [136�138] are concerned with designing an optimal

synaptic updating rule so as to maximise the mutual information between pre-

and postsynaptic neurons. They found that the learning rule produces a learning

window similar to that of spike-timing dependent plasticity (STDP).

4.1.6.2 Supervised learning

Supervised learning is learning from an external teacher [139]. A typical scenario

of supervised learning is that a learning agent tries to learn the environment

where it exits. After receiving inputs (the current state of the environment, for

example) from the environment, the agent will give an estimate based on its

internal parameters. At the same time, a teacher who has full knowledge of the

environment will tell the agent the correct answer to the input. Then, the agent

will adjust its internal parameters to minimise the errors between its estimation

and the teacher's answer. After many times' corrections, the agent will be able

to predict the environment correctly.

For arti�cial neural networks with only a single layer, so called the Percep-

tron [140,141], supervised learning can be realised by using the least mean square

(LMS) or delta rule [142,143]. At the k iteration, suppose, p(k) is the input vec-

tor of a neural network, W (k) is the weight matrix of the input vector to the

neural network, b(k) is the bias vector of the neural network, e(k) is the error

vector between the actual output vector a(k) and the target output vector t(k),

and α(k) is the learning rate. In this case, the LMS rule can be expressed as

W (k + 1) = W (k) + 2α(k)e(k)pT (k). (4.10)

For arti�cial neural networks with multiple layers, the backpropagation algo-

rithm [42,144,145] is used to solve the problem of the credit or blame assignment

problem (how to propagate the errors back to the layers preceding the last layer

so that neurons in these layers can also learn the errors).

After the popularisation of spiking neuron models, great e�orts are made to

implement supervised learning using spiking neuron models. Legenstein, Naeger

4.1. BACKGROUND ON SPIKING NEURON MODELS 89

and Maass [146] examined what a neuron can learn with spike-timing dependent

plasticity in the supervised learning paradigm. Their experiments showed that

the convergence of the supervised learning from arbitrary inputs to output spike

patterns can not be guaranteed in contrast to the perceptron convergence the-

orem. On the other hand, however, they also proved that the convergence can

be achieved for both uncorrelated and correlated Poisson input spike trains in an

average case sense.

Barber et al. [147�150] designed a supervised learning rule to maximise the

likelihood of postsynaptic �ring at one or several desired �ring times. It was found

that the learning window of the optimal strategy is similar to that of spike-timing

dependent plasticity.

4.1.6.3 Reinforcement learning

Like unsupervised learning, reinforcement learning also has no teacher to give the

correct answer; but unlike unsupervised learning, it does have a critic who will

give a reward or penalty to show how good it behaves after it takes an action.

Although the learning agent can get feedback from the environment or a critic in

reinforcement learning, reinforcement learning is di�erent from supervised learn-

ing in that the learning agent is not told what it should have done.

Reinforcement learning is a more plausible learning for creatures than super-

vised learning because creatures generally have no teachers to tell them what

they should do. On the other hand, however, they do receive rewards (e.g. food,

life and happiness) and penalty (e.g. hunger, death and pain) after their actions.

Studies [113] suggest that the basal ganglia of the brain may be involved in re-

inforcement learning. More speci�cally, studies by Schultz et al. [58, 59] indicate

that the activity of the dopaminergic neurons in the basal ganglia may be used

to encode the error between the actual reward and the expected reward. Studies

by Barto [151], Houk and et. al. [152] indicate that the striosome compartment

of the striatum in the basal ganglia may be used to predict the value of reward

and the matix compartment of the striatum in the basal ganglia may be used to

make action selection. In addtion, experiments by Rao and Sejnowski [98] show

that the temporally asymmetric window of spike-timing dependent plasticity can

be reproduced by a reinforcement learning rule in conjunction with dendritic

backpropagating action potentials.

90CHAPTER 4. CLASSICAL CONDITIONING WITH SPIKING NEURONS

4.2 Neural structure

4.2.1 Neuron architecture

Our model uses only one neuron and regards both unconditional stimulus (US)

and conditional stimuli (CS) as inputs of the neuron as shown in �gure 4.4.

US is regarded as a special stimulus with a big �xed weight (set to 1 in the

simulation). The output of the neuron is an unconditional response (UR)/ a

conditional response (CR) depending on whether it is produced by US or CS. All

of these inputs and outputs are expressed in the form of spikes.

Figure 4.4: Neuron architecture used to model classical conditioning. Both un-
conditional stimulus (US) and conditional stimuli (CS) are inputs of the neuron.
US is regarded as a special stimulus with a big �xed weight (set to 1 in the simula-
tion). The output of the neuron is an unconditional response (UR)/ a conditional
response (CR) depending on whether it is produced by US or CS. All of these
inputs and outputs are expressed in the form of spikes.

4.2.2 Neuron model

The leaky linear integrate-and-�re model introduced in section 4.1.3.1 is used to

represent the dynamics of the neuron in the simulation for simplicity.

In the numerical simulation, the parameters of the neuron model are set as

follows: τm = 10ms, R = 10kΩ, υ = 1mV, ur = 0mV.

4.3. LEARNING ALGORITHM 91

4.2.3 Synapse model

The simple version of the α-function introduced in section 4.1.5 is used in the

simulation to model the neuron's synapses.

In the numerical experiment, we set τs = 10msec, dj = 0msec.

4.3 Learning algorithm

Although spike-time dependent Hebbian learning is well-known in the biological

neural system, the curve of spike-time dependent anti-Hebbian learning is also

observed in the cerebellum of electric �sh [124, 131], viz. if a presynaptic spike

arrives at the synapse before the postsynaptic action potential, the synapse is

depressed; if the timing is reversed the synapse is potentiated.

It has also been found that long-term potentiation (LTP) [153] of the cortico-

striatal synapse is induced given the coincident occurrence of a cortical input

and postsynaptic depolarization in a striatal neuron with a phasic dopamine

release, and long-term depression (LTD) [154] given the coincident occurrence of

a cortical input and postsynaptic depolarization in a striatal neuron without a

phasic dopamine release. Since it is generally believed that dopamine is involved

in reward learning, this suggests that Hebbian learning happens when rewards

are present and anti-Hebbian learning happens when rewards are not present.

Furthermore, in almost all the experiments [122,123,126,127] where spike-time

dependent Hebbian learning is found, the action potentials in the postsynap-

tic neuron are initiated by current injection rather than the presynaptic spikes.

Therefore, spike-time dependent Hebbian learning may be formed between the

presynaptic spikes and the postsynaptic action potentials produced by other in-

puts (the current injection) rather than the action potentials produced by the

presynaptic spikes themselves. Besides, it is also possible that spike-time depen-

dent Hebbian learning is formed between the presynaptic spikes and the current

injection (which can be considered as an unconditional stimulus or a reward)

instead of the postsynaptic action potentials.

Based on these �ndings, spike-time dependent Hebbian learning is applied be-

tween inputs and spike-time dependent anti-Hebbian learning is applied between

the input and the output in our model. For simplicity, a square learning win-

dow is used as shown in �gure 4.5 to mimic the curve of spike-time dependent

Hebbian learning and spike-time dependent anti-Hebbian learning. US has a big

92CHAPTER 4. CLASSICAL CONDITIONING WITH SPIKING NEURONS

�xed weight a�ected neither by CS nor by UR/CR. CS has a small weight at the

beginning but it can be either potentiated or depressed by US, UR/CR and other

CS.

Figure 4.5: Square learning window. As the solid line shows, the weight associated
with an input (excluding US) will be reinforced if a spike of the input is followed
by spikes of other inputs; it will be weakened if a spike of the input is preceded
by spikes of other inputs. As the dashed line shows, the weight associated with
an input (excluding US) will be weakened if a spike of the input is followed by
spikes of the output; it will be reinforced if a spike of the input is preceded by
spikes of the output.

Suppose there are N stimuli including both CS and US.W in andW out respec-

tively denote the learning window of input Hebbian learning and that of output

anti-Hebbian learning respectively as �gure 4.5, equation 4.11 and 4.12 show.

W in(t) =

1 if −τ < t < 0

−1 if 0 < t < τ

0 otherwise

(4.11)

W out(t) =

−1 if −τ < t < 0

1 if 0 < t < τ

0 otherwise

(4.12)

where τ is the size of the learning window and τ = 10msec. in the experiments.

The weight increment of the ith stimulus between time t and time t+T (T is

a period of time) is denoted as ∆wi(t, t+T). Then, the mathematical formula of

4.4. SIMULATION RESULTS 93

our learning algorithm can be expressed as equation 4.13 for CS and equation 4.14

for US. If the ith stimulus is a CS, then

∆wi(t, t+ T) =
N∑

j=1∩j 6=i

α

∫ t+T

t

dt′
∫ t+T

t

dt′′wj(t)W
in(t′′ − t′)Sin

i (t′′)Sin
j (t′)

+ α

∫ t+T

t

dt′
∫ t+T

t

dt′′W out(t′′ − t′)Sin
i (t′′)Sout(t′).

(4.13)

The �rst term is the weight update due to the Hebbian learning e�ect of other

inputs as shown by the solid line in �gure 4.5, and the second term is the weight

update due to the anti-Hebbian learning e�ect of the output as shown by the

dashed line in �gure 4.5. α is the learning rate (set to 0.01 in the simulation),

and

Sin(t) =

{
1 if t = t̂ (t̂ is the arrival time of spikes of inputs)

0 otherwise

Sout(t) =

{
1 if u(t) ≥ υ

0 otherwise

where u(t) is the membrane potential and υ is the �ring threshold of the neuron.

If the ith stimulus is a US, then

∆wi(t, t+ T) = 0. (4.14)

4.4 Simulation results

Although we have successfully simulated a variety of classical conditioning phe-

nomena, we only discuss the four most important of them here, viz. Pavlovian

conditioning, extinction, blocking and secondary conditioning.

4.4.1 Pavlovian conditioning

In the setting of the Pavlovian conditioning experiment, CS1 has 15 spikes from

the 16th millisecond to the 30th millisecond, followed by US which also has 15

spikes from the 31st millisecond to the 45th millisecond, and no CS2 is presented

94CHAPTER 4. CLASSICAL CONDITIONING WITH SPIKING NEURONS

as �gure 4.6a & b depict. Before learning, UR, induced by US, is shown in

�gure 4.6c; the initial weights respectively associated with CS1 and associated

with CS2 are both set to 0. During learning, the weight associated with CS1 keeps

increasing until it reaches a saturation value near 0.7 and the weight associated

with CS2 remains unchanged as Figure 4.7 presents. After learning, CS1 alone

can produce output spikes (CR which precedes UR and predicts the approach of

US) as shown in �gure 4.6d. Pavlovian conditioning has been formed.

Figure 4.6: Inputs and output (Pavlovian conditioning). a,b) CS1 is followed by
US; CS2 is not present. c) The output spikes of the neuron when only US is
present before learning. d) The output spikes of the neuron without the presence
of US after learning.

4.4.2 Extinction

Before the experiment for extinction, Pavlovian learning was �rst conducted for

10 trials to associate CS1 with US. Then US is removed. During learning, the

weight associated with CS1 gradually decreases until it arrives at about 0.15 as

�gure 4.8 presents. Although the �nal weight associated with CS1 after learning

has not gone down to 0, the extinction of conditioning has been realised because

no output spikes are produced by CS1 after learning, viz. the association of CS1

with US has become extinct. When there are no output spikes, there is no learning

and therefore the �nal weight associated with CS1 has not gone down to 0.

4.4. SIMULATION RESULTS 95

Figure 4.7: Weight updates during learning (Pavlovian conditioning). The weight
associated with CS1 keeps increasing until it reaches a saturation value near 0.7
and the weight associated with CS2 remains unchanged. CS1 has been success-
fully associated with US after learning.

Figure 4.8: Weight updates during learning (extinction). The weight associated
with CS1 gradually decreases until it arrives at about 0.15. The association of
CS1 with US has become extinct after learning.

4.4.3 Blocking

Similar to the experiment for extinction, CS1 was �rst associated with US by

conducting Pavlovian learning for 10 trials before the simulation of blocking.

Then CS2, which has the exact same time trajectory with CS1, is presented

as �gure 4.9a, b & c depict. During learning, the weight associated with CS1

goes slightly down and the weight associated with CS2 goes slightly up at the

beginning but is stabilised at around 0.2 after 1 trial as shown in �gure 4.10. In

order to see if blocking has been realised, we checked the output of the neuron

96CHAPTER 4. CLASSICAL CONDITIONING WITH SPIKING NEURONS

with input CS2 only and found that there is no output spike produced throughout

the experiment. Therefore, blocking has been realised, even though the weight

associated with CS2 is not equal to 0. Comparing �gure 4.9d with �gure 4.6d,

we can see CR produced by both CS1 and CS2 in blocking is almost the same

with that produced by CS1 alone in Pavlovian conditioning after learning, which

further demonstrates that CS2 has been blocked.

Figure 4.9: Inputs and output (blocking). a-c) The two CS, which have the exact
same time trajectory, are followed by US. d) The output spikes of the neuron
without the presence of US after learning.

Figure 4.10: Weight updates during learning (blocking). The weights associated
with CS1 and CS2 slightly change, but blocking has been realised because CS2
cannot produce any spikes with a maximum weight about 0.2.

4.5. CONCLUSIONS AND DISCUSSION 97

4.4.4 Secondary conditioning

Similar to the experiments for blocking and extinction, Pavlovian conditioning

was �rst used for 10 trials to associate CS1 with US. Then CS2, which precedes

CS1, is presented and at the same time US is removed as shown in �gure 4.11.

From the learning curve depicted in �gure 4.12, it can be seen that the weight

associated with CS1 gradually reduces to 0, and the weight associated with CS2

goes up at �rst but eventually goes down to a very small amount (about 0.2).

After learning, there are no output spikes, which means the associations of both

CS1 and CS2 with US have become extinct.

Figure 4.11: Inputs and output (secondary conditioning). CS1 is followed by
CS2; US is not present. There are no output spikes after learning.

4.5 Conclusions and discussion

In this chapter, we have used a very simple spiking neuron model to successfully

implement the four most important phenomena associated with classical condi-

tioning. Because of the simplicity and e�ectiveness of the spiking neuron model,

it seems that spiking neuron models are well suited to implement classical con-

ditioning and the dynamics of biological neurons o�ers more power to model the

dynamic nature of classical conditioning.

In this section, we will discuss the robustness of the model, the comparison

of the learning algorithm used in our model with TD learning, the novelty of

our model, an alternative model, and a possible implementation of instrumental

conditioning and general reinforcement learning.

98CHAPTER 4. CLASSICAL CONDITIONING WITH SPIKING NEURONS

Figure 4.12: Weight updates during learning (secondary conditioning). The
weight associated with CS1 gradually reduces until to 0, and the weight asso-
ciated with CS2 goes up at the beginning but eventually goes down to a very
small amount (about 0.2): the associations of both CS1 and CS2 with US have
become extinct after learning.

4.5.1 Robustness of the model

Although only one set of experimental scenarios is presented in this chapter, the

results still hold with di�erent settings of inputs and di�erent initial weights.

In the simulation of Pavlovian conditioning, for instance, all spikes of CS1

precede all spikes of US and the �rst spike of US is just after the last spike of

CS1. In fact, spikes of CS1 and US may be overlapped or uncontigeous. As long

as some spikes of CS1 precede spikes of US within the learning window, the result

does not change, though the weight associated with CS1 may be more or less as

�gure 4.13 and 4.14 show for overlapped inputs and as �gure 4.15 and 4.16 show

for uncontigeous inputs.

As far as the initial weights associated with conditional stimuli are concerned,

they are set to 0 in the simulation. However, they can be very small positive values

or very big positive values (even more than 1). The values of initial weights only

a�ect the speed of learning but have no in�uence on the result.

4.5.2 Compared with TD learning

The learning algorithm 4.13 used in our model is quite like TD learning. In fact,

we can consider
∑N

j=1∩j 6=i α
∫ t+T
t

dt′
∫ t+T
t

dt′′Jj(t)W
in(t′′− t′)Sini (t′′)Sinj (t′) in our

model to be equivalent to αre(u) in TD Learning;
∑N

j=1∩j 6=i α
∫ t+T
t

dt′
∫ t+T
t

dt′′

4.5. CONCLUSIONS AND DISCUSSION 99

Figure 4.13: Inputs and output (Pavlovian conditioning, overlapped inputs). a,b)
CS1 is followed by US; there are overlaps between CS1 and US; CS2 is not present.
c) The output spikes of the neuron when only US is present before learning. d)
The output spikes of the neuron without the presence of US after learning.

Figure 4.14: Weight updates during learning (Pavlovian conditioning, overlapped
inputs). The weight associated with CS1 keeps increasing until it reaches a sat-
uration value near 0.8 and the weight associated with CS2 remains unchanged.
CS1 has been successfully associated with US after learning.

100CHAPTER 4. CLASSICAL CONDITIONING WITH SPIKING NEURONS

Figure 4.15: Inputs and output (Pavlovian conditioning, uncontigeous inputs).
a,b) CS1 is followed by US; there are gaps between CS1 and US; CS2 is not
present. c) The output spikes of the neuron when only US is present before
learning. d) The output spikes of the neuron without the presence of US after
learning.

W out(t′′−t′)Sini (t′′)Sout(t′) in our model equivalent to α[γV (s′)−V (s)]e(u) in TD

Learning.

However, our model is arguably simpler than TD learning. It uses simple

spike-time dependent Hebbian learning and spike-time dependent anti-Hebbian

learning which are commonly found in biological neurons. In addition, the eligi-

bility trace, which is essential in the TD model, is not needed in our model.

4.5.3 Novelty of the model

As far as we know, we were the �rst to use spiking neuron models, a kind of

biologically more plausible neuron model, to implement classical conditioning.

In addition, as far as we are aware, we were also the �rst to use Hebbian

and anti-Hebbian learning together. Hebbian learning has been used in linear

4.5. CONCLUSIONS AND DISCUSSION 101

Figure 4.16: Weight updates during learning (Pavlovian conditioning, unconti-
geous inputs). The weight associated with CS1 keeps increasing until it reaches a
saturation value near 0.4 and the weight associated with CS2 remains unchanged.
CS1 has been successfully associated with US after learning.

associator [115], associative learning [116], competitive networks [117] and Gross-

berg networks [118] in the context of arti�cial neural networks. In the context

of spiking neuron models, Hebbian learning has been used to implement BCM

learning rule [155], to learn short syn�re chains [156], to detect the coherence in

the input [157], to cluster data [158�160], to identify diabetic objects, to model

the somatosensory system that has the ability to self-organize [161], to control a

modular robotic system [162], and to train competitive networks [163]. Further-

more, Carnell [164] applied both Hebbian and anti-Hebbian learning separately

to recurrent spiking neural networks and found that Hebbian and anti-Hebbian

learning can be considered approximately equivalent under speci�c conditions.

None of the previous work, however, has used Hebbian and anti-Hebbian learn-

ing together as far as we are aware.

Not only is our use of Hebbian and anti-Hebbian learning together innovative,

it is also necessary to reproduce the phenomena associated with classical condi-

tioning that we display with our model. If only Hebbian learning is used, the

weight of the conditional stimulus will keep increasing without limit in Pavlovian

conditioning as �gure 4.17 shows and moreover extinction cannot be produced

as �gure 4.18 shows. On the other hand, if only anti-Hebbian learning is used,

the weight of the conditional stimulus will not increase in Pavlovian conditioning

and therefore Pavlovian conditioning cannot be formed as �gure 4.19 shows.

102CHAPTER 4. CLASSICAL CONDITIONING WITH SPIKING NEURONS

Figure 4.17: Weight updates during learning (Pavlovian conditioning, Hebbian
learning only). The weight associated with CS1 keeps increasing without limit.

Figure 4.18: Weight updates during learning (extinction, Hebbian learning only).
The weight associated with CS1 does not decrease at all.

4.5.4 An alternative model

Instead of requiring learning both between inputs and between the inputs and

the output, we can also implement classical conditioning by using only learning

between the inputs and the output. Spike-time dependent Hebbian learning is

applied between inputs and the output spikes produced by other inputs, and

spike-time dependent anti-Hebbian learning is applied between inputs and the

output spikes produced by themselves. In addition, as mentioned previously,

in biological experiments, it is also the case that spike-time dependent Hebbian

learning is formed between the presynaptic spikes and the postsynaptic action

potentials produced by other inputs (the current injection) rather than the action

4.5. CONCLUSIONS AND DISCUSSION 103

Figure 4.19: Weight updates during learning (Pavlovian conditioning, anti-
Hebbian learning only). The weight associated with CS1 does not increase at
all.

potentials produced by the presynaptic spikes themselves.

Despite these advantages, however, it is hard to tell which output spike is

contributed by which input in practice, since one output spike may be contributed

to by more than one input.

4.5.5 Instrumental conditioning and general reinforcement

learning

As mentioned previously, in addition to classical conditioning simulated in this

chapter, there is also another kind of conditioning, viz. instrumental conditioning.

Unlike the classical conditioning we have discussed, in the process of instrumental

conditioning, the actions of animals can also have an in�uence on how many

rewards they can obtain.

Our model can be used to implement instrumental conditioning as well with-

out any modi�cation. Suppose that there are n buttons/actions. After pressing

one button, an animal will be given a reward. After many repetitions of the

experiment, the animal will be able to �nd the button which gives it the maxi-

mum rewards and therefore presses it most of the time (a non-greedy policy) or

exclusively (a greedy policy) in order to get the maximum payo�. We can use

n independent single neurons used in our model to simulate this conditioning

as �gure 4.20 shows (only two neurons are drawn for simplicity). Every neuron

represents one action/button. The input is a special event/stimulus that signals

104CHAPTER 4. CLASSICAL CONDITIONING WITH SPIKING NEURONS

the start of a trial and the reward is a kind of special input just like US. The

output is the response. After many repetitions of conditioning on these neurons,

the action corresponding to the neuron that �res �rst with the same input will be

chosen most of the time (a non-greedy policy) or exclusively (a greedy policy).

Figure 4.20: A neuron structure modelling instrumental conditioning. Input:
a special event/stimulus that signals the start of a trial; An: possible actions
modelled by neurons; Rn: a reward received when the nth action is chosen;
Response: the response to the input or reward.

After implementing instrumental conditioning, it is not di�cult to simulate

general reinforcement learning using spiking neurons. We use the reinforcement

learning scenarios shown in �gure 4.21 as an example. The learning agent is

initially in state s0. After taking action a1, it will receive a reward r1 and enter

state s1 and so on. On the other hand, if it takes action a2, it will receive reward

r2 and enter state s2. We can just chain the neuron structure to model one-

step reinforcement learning (only the reward received immediately is counted) as

�gure 4.22 (a.) shows. In order to model a non-bootstrap (Monte Carlo style)

n-step reinforcement learning or even in�nite-horizon discounted reinforcement

learning, we need to inject rewards received later into the previous states as

shown in �gure 4.22 (b.). A decreasing learning window as shown in �gure 4.23

can serve as a discounted function naturally. It is interesting to point out that

the Hebbian learning part of the learning window is also one curve of spike-time

dependent Hebbian learning that is found in biological experiments [127]. In

order to model a bootstrap reinforcement learning algorithm, e.g. Q learning and

4.5. CONCLUSIONS AND DISCUSSION 105

SARSA learning, we need to feed the output of the neuron representing the next

state back to the neuron representing the previous state and also feed the output

of each neuron to itself (self-feedback), viz. a recurrent network, so that the value

of the next state may in�uence that of the previous state and the previous value

of one state may also in�uence the current value of the state.

Figure 4.21: A scenario of general reinforcement learning. s: states; a: actions in
a state; r: rewards received after taking one action.

106CHAPTER 4. CLASSICAL CONDITIONING WITH SPIKING NEURONS

Figure 4.22: The neural structure modelling the general reinforcement learning
scenario shown in �gure 4.21. (a.) the neural structure modelling one-step rein-
forcement learning; (b.) the neural structure modelling n-step or even in�nite-
horizon discounted reinforcement learning. s: states, inputs of neurons; a: actions
in a state, modelled by a neuron; r: rewards received after taking one action.

Figure 4.23: A learning window that can serve as a discount function.

Chapter 5

Time delayed n-armed bandit

problem

From this chapter on, instead of implementing the idea of time perception with

low-level biological models �rst and then testing whether it works or not, we

start by studying the details of time perception and then test its e�ectiveness by

using abstract reinforcement learning models and a perfect clock. The �rst reason

for this decision is that, if we implement it with low-level biological models, the

result is implementation dependent. If it does not work, it is hard to determine

whether the problem is because of the biological implementation or because of

the principle (the idea itself). Besides, for the idea itself, there are still many

questions to answer, many problems to address, and many details to investigate.

These questions are much easier to address with abstract models rather than

low-level biological models.

Regarding detecting any changes in the environment, what should be learned

in order to detect changes in the environment? Is learning only the mean of the

time to reward su�cient? When the amount of reward may also change, it is

obvious that the learned time information cannot detect changes in the amount.

In this case, what should the learning agent learn to detect both changes in the

time to reward and changes in the amount of reward? On the other hand, even if

the amount of reward does not change, learning the mean of the time to reward

alone cannot detect changes in the time to reward immediately (in one trial)

when the environment is stochastic. In this case, are there any ways to detect

changes in the time to reward immediately? Furthermore, after a change in the

environment is detected, what should the learning agent do in order to recover

107

108 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

from the change quickly?

Regarding giving up a suboptimal action to avoid longer than necessary ex-

ploration, how can the agent decide whether or not and when to give up the

current action? If it decides to give up the action, what state should it give up

to? After giving up, what action should the agent choose? These questions will

be addressed in this and the following chapters.

In the following sections, the time delayed n-armed bandit problem is �rst in-

troduced. Then, the above questions are answered and possible implementations

of the ideas of time perception are investigated and simple algorithms speci�cally

for this kind of reinforcement learning problem with only one state are designed.

From section 5.3 to section 5.5, the settings of experiments are discussed and

the results of experiments on these algorithms are presented. The last section

concludes this chapter and discusses related questions.

5.1 Introduction

The classical n-armed bandit problem assumes that a reward is paid o� immedi-

ately after an arm is pushed. This assumption, however, is not the case in some

real-world situations. For instance, patients in a clinical trial may not be able

to give immediate responses after being treated [165] and a supercomputer needs

some time to process a task after the task is chosen [166]. In this chapter, we

study a more general problem, the n-armed bandit problem with time delay, viz.

the time delayed n-armed bandit problem.

Instead of receiving rewards immediately, the learning agent needs to wait

some time after pushing an arm and before a reward is received. Both the amount

of reward and the time to reward may be deterministic or stochastic and their

distributions may also change over time. Though this problem can still be con-

sidered as a MDP by augmenting the state space with time steps, we model it as

a semi-MDP in order to simplify it from a multiple-state problem to a single-state

problem and therefore speed up learning and planning. This problem, however,

is only a simpli�ed version of semi-MDP: a reward only appears at a speci�c and

discrete time, viz. at the end of one episode. In addition, instead of considering

the temporally extended actions or state transitions as indivisible units, which is

the case for the theory of semi-MDPs, we treat them as temporal abstractions of

5.1. INTRODUCTION 109

an underlying MDP so that we can interrupt and change the course of the tem-

porally extended actions or state transitions, similar to Sutton et al.'s framework

of options [72,73]. After choosing one action, the agent has the option to give up

the action, go back and remake its choice at every time step while waiting for a

reward.

The time delayed n-armed bandit problem, which has only one state but

multiple actions, is probably the simplest reinforcement learning problem with

delayed rewards. In this chapter, we will experiment with this simple problem and

see if learning and perceiving the time to reward can improve the performance of

the learning agent in various experimental scenarios.

The time delayed n-armed bandit problem can be described as follows. There

is an n-armed bandit and the learning agent can push any of its arms. After

one arm is pushed, a reward (r) comes after a period of time (t). Here, we only

consider it as a one-step episodic semi-Markov task for simplicity. One episode

starts when one arm is pushed and ends when a reward is received. After choosing

one action, the agent has the option to give up the action, go back and remake

its choice at every time step while waiting for a reward. After receiving a reward,

the learning agent goes back and starts another episode. The goal may be to

maximise the expected one-step undiscounted return

E(r), (5.1)

to minimise the expected time to reward

E(t), (5.2)

to maximise the expected one-step discounted return

E(γtr), (5.3)

where γ is the discount rate, 0 ≤ γ ≤ 1, or to maximise the expected rate of

return

E(r/t). (5.4)

This problem is similar to the optimal foraging problem [20,21]. In the optimal

foraging problem, there are n patches and a predator chooses one of the patches

to exploit. The possible goals are similar to those of the time delayed n-armed

110 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

bandit problem, e.g. to get the maximum rate of reward. In fact, the optimal

foraging problem can be simpli�ed to the time delayed n-armed bandit problem

under the following three assumptions.

1. Assume that the time needed to reach a patch and switch between patches

is very small compared with the waiting time in any patch and therefore it

can be ignored for the simplicity of analysis.

2. Assume that there is no energy loss for waiting in one patch and switching

between patches apart from the time loss.

3. Assume that the time starts with the selection of a patch. For example,

suppose there are two patches, one with the time to reward 3 mins, the

other one with the time to reward 4 mins. If the predator waits 3 mins at

the �rst patch and then switches to the second one, it still needs to wait

for 4 mins before a reward appears (not 1 min).

5.2 Algorithms

In this section, we introduce simple versions of algorithms speci�cally designed

to solve reinforcement learning problems with only one state, to which the time

delayed n-armed bandit problem belongs. In the next chapter, we extend these

algorithms to work with multiple states.

We �rst consider cases where the amount of the reward for actions is the same

and also does not change (stationary and deterministic). In these cases, the time

to reward for actions can be learned and then used to make decisions. Instead of

choosing the action with the maximum value of the estimated discounted reward

most of time, the learning agent selects the action with the minimum value of the

estimated time to reward most of time. It is worth pointing out that, although it

may not be equivalent to maximising the expected discounted reward in stochastic

environments, minimising the expected time to reward (getting a reward in the

shortest time) is also a sensible optimal target. We introduce three algorithms

for these cases, viz. time estimation (T learning), time estimation with time

perception (TP learning) and time estimation with time perception without giving

up (TPWG learning). T learning is a standard value estimation reinforcement

learning algorithm that learns the time to reward (T). In particular, it only learns

the mean of the time to reward and then uses it to make decisions. TP/TPWG

5.2. ALGORITHMS 111

learning, however, learns both the mean and variance of the time to reward. In

addition to using the estimated mean of the time to reward to make decisions

like T learning, they also use both the estimated mean and variance of the time

to reward to detect any changes in the environment. When a change is detected,

the learning agent responds to it speci�cally in order to recover from it quickly.

In addition, unlike T/TPWG learning, TP learning also uses the estimated mean

and variance of the time to reward to �nd out when the agent should give up this

time's exploration of the current action in order to avoid longer than necessary

exploration.

Next, we consider cases where the amount of reward for actions may be dif-

ferent and may also change over time. In these cases, learning the time to reward

alone is neither enough to make decisions nor enough to detect changes in the

environment. Thus, the discounted reward is learned and then used to make deci-

sions instead. In addition, we extend the ideas of learning and perceiving the time

to reward to learning and perceiving the discounted reward. We introduce three

algorithms for these cases, viz. value estimation (V learning), value estimation

with value perception (VP learning) and value estimation with value perception

without giving up (VPWG learning). V learning is a standard value estimation

reinforcement learning algorithm that learns the discounted return. In particu-

lar, it only learns the mean of the discounted reward and then uses it to make

decisions. VP/VPWG learning, however, learns both the mean and variance of

the discounted reward. In addition, VP learning also learns both the mean and

variance of the undiscounted reward. In addition to using the estimated mean of

the discounted reward to make decisions like V learning, VP/VPWG learning also

uses both the mean and variance of the discounted reward to detect changes in

the environment. In addition, VP learning uses all learned information to decide

whether to give up this time's exploration of the current action.

It is worth noting that both T learning and V learning are not our original

contributions but standard value estimation reinforcement learning algorithms

used to compare with our learning algorithms.

The notation used to describe algorithms is summarised in table 5.1.

112 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

Table 5.1: Summary of notation used to describe algorithms for the time delayed

n-armed bandit problem

Notation Meaning

A set of possible actions

a any action ∈ A
A\a set of possible actions except action a

ac the current action

a∗ the optimal action in terms of the agent's criterion of

optimality

ag the action the agent will choose after giving up; 0 (viz.

no action) if it should not give up

α learning rate, 0 < α ≤ 1; a scalar with a �xed value

for T and V learning and a function of actions for both

TP/TPWG and VP/VPWG learning

α0, δ, η parameters used to calculate α for TP/TPWG and

VP/VPWG learning

α2(a) learning rate speci�cally used to learn the variance for

action a, 0 < α2 ≤ 1

α2max, α2min the maximum/minimum of α2

ε random parameter to explore suboptimal actions, 0 ≤
ε ≤ 1

εmax, εmin the maximum/minimum of ε

φ parameter used to calculate ε in both TP/TPWG and

VP/VPWG learning

ε2 random parameter to decide whether to explore the

current action longer than usual; with probability ε2
2
,

explore the current action longer than usual, 0 ≤ ε2 ≤
1

5.2. ALGORITHMS 113

ε3 random parameter to decide whether to explore the

amount of reward for the current action; with proba-

bility ε3
2
, the agent does not give up the current action,

0 ≤ ε3 ≤ 1

γ discount rate to discount future rewards, 0 ≤ γ ≤ 1

t discrete time step

r the amount of reward

T (a) estimated mean of the time to reward for action a

T_var(a) estimated variance of the time to reward for action a

Q(a) estimated mean of the discounted reward for action a

Q_var(a) estimated variance of the discounted reward for action

a

R(a) estimated mean of the undiscounted reward for action

a

R_var(a) estimated variance of the undiscounted reward for ac-

tion a

k the size of the expectation window ranging from

T (a)− k
√
T_var(a) to T (a) + k

√
T_var(a), Q(a)−

k
√
Q_var(a) to Q(a) + k

√
Q_var(a), or R(a) −

k
√
R_var(a) to R(a) + k

√
R_var(a)

count_correct(a) the number of times/episodes in a row that the actual

time to reward or the actual discounted reward for

a is correctly estimated; whether they are correctly

estimated is judged by algorithms.

threshold(a) the time step after which the learning agent should

give up action a

action_forCmp(a) the action which the agent uses to compare with ac-

tion a; 0 (viz. no action) if no action is eligible

flag_correctEst(a) a Boolean storing the information about whether or

not the actual time to reward or the actual discounted

reward for a is correctly estimated judged by algo-

rithms; refer to section 5.2.2.5 for how to evaluate

whether or not they are correctly estimated

114 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

flag_correctEstR(a) a Boolean storing the information about whether or

not the estimated amount of reward for action a is

correct judged by algorithms

flag_correctCmp(a) a Boolean storing the information about whether or

not action a can be used to compare with the current

action judged by algorithms

flag_exploreAmount a Boolean deciding whether the learning agent will

explore the amount of reward, viz. not give up

5.2.1 Time estimation

The mean of the time to reward is learned through an incremental updating rule

with a �xed learning rate. The mean of a random variable x can be estimated

from a �nite sample of observations incrementally using

mn =
xn +mn−1(n− 1)

n
= mn−1 +

xn −mn−1

n
(5.5)

where m is the estimated mean, xn is the nth observed data, mn is the nth

estimation of the mean. In order to avoid tracking/memorising n (the number of

data observed so far) and also to track nonstationary environments as discussed

in subsection 3.5.1, we replace 1
n
with a very small number α:

mn ≈ mn−1 + α(xn −mn−1) (5.6)

where 0 < α ≤ 1 is the learning rate for learning the mean.

As shown in algorithm 1, a standard time estimation reinforcement learning

algorithm (T learning) learns the time to reward (T) through an incremental

updating rule with a �xed learning rate shown in equation 5.6 and then uses it

to make decisions through a non-greedy rule, e.g. ε-greedy and softmax methods.

Since the n-armed bandit problem has only one state (but n actions) and we only

consider it as a one-step episodic task, it has no state transition and the T value

is only updated when a reward is received. In essence, this algorithm is just a

simpli�ed version of classical reinforcement learning algorithms to learn the time

to reward with only one state.

1The action with the minimum T is chosen most of time, but with probability ε, actions are
chosen randomly.

5.2. ALGORITHMS 115

Algorithm 1 T learning
Inputs: T ; Outputs: T ; Parameters: α, ε; Internal variables: t
for all episodes do
Choose ac from all possible actions using the policy derived from T (ε-greedy,
minimum T priority1)
t = 0
repeat
t← t+ 1

until a reward is received
T (ac)← T (ac) + α [t− T (ac)]

end for

5.2.2 Time estimation with time perception

In addition to learning the mean of the time to reward as in the standard time

estimation reinforcement learning algorithm discussed in the last subsection, the

algorithms of time estimation with time perception (TP learning) and time esti-

mation with time perception without giving up (TPWG learning) also learn the

variance of the time to reward as shown in algorithm 2-4. The learned time infor-

mation including both the estimated mean and variance of the time to reward is

then used to detect changes in the environment. If a change in the environment

is detected, the learning rate is increased in order to learn the change quickly.

Otherwise, the learning rate is decreased gradually towards 0 in order for the es-

timated mean of the time to reward to converge to its true mean. If a suboptimal

action has improved and can potentially become the optimal action in the new

environment, the exploration rate (e.g. ε for ε-greedy) is also increased in order to

increase the chance that the suboptimal action is visited. Otherwise, the explo-

ration rate is decreased gradually towards its minimum value in order to reduce

the cost of exploring suboptimal actions. In addition, for TP learning only, if the

agent discovers that the current action is still worse than the optimal one, it gives

up this time's exploration of the action in order to avoid longer than necessary

exploration. Therefore, TPWG learning is exactly the same with TP learning

except that the learning agent does not give up. This algorithm is designed to

make the experimental comparison fairer because giving up or not giving up is

to be regarded as part of the problem formulation, not as part of an algorithm.

The details of the algorithms will be discussed in the following subsections.

116 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

Algorithm 2 TP/TPWG learning

Inputs: T , T_var; Outputs: T , T_var;
Parameters: k; Internal variables: A, ac, t, ε (initial value: εmin),
flag_correctEst (initial value: FALSE), count_correct (initial value: 0),
ag (for TP learning only), threshold (initial value: ∞, for TP learning only),
action_forCmp (initial value: 0, for TP learning only), flag_correctCmp
(initial value: FALSE, for TP learning only)
for all episodes do
Choose ac from all possible actions using the policy derived from T (ε-greedy,
minimum T priority)
t = 0
ag = 0 {This line is for TP learning only}
Use algorithm 4 to calculate threshold(ac) and action_forCmp(ac) {This
line is for TP learning only}
repeat
{Below is for TP learning only}
if ag 6= 0 then
ac = ag, ag = 0, t = 0
Use algorithm 4 to calculate threshold(ac) and action_forCmp(ac)

end if
if t > T (ac) + k

√
T_var(ac) then

flag_correctEst(ac) = FALSE
flag_correctCmp(ac) = FALSE

end if
if flag_correctEst(ac) = TRUE AND t > threshold(ac) then
ag = action_forCmp(ac) {Give up and then choose ag}

end if
{Above is for TP learning only}
t← t+ 1

until a reward is received
Use algorithm 3 to update the model

end for

5.2. ALGORITHMS 117

Algorithm 3 Update the model (used by algorithm 2)

Inputs: T , T_var, a, ε, t, count_correct, flag_correctEst,
flag_correctCmp (for TP learning only)
Outputs: T , T_var, ε, count_correct, flag_correctEst, flag_correctCmp
(for TP learning only)
Parameters: α0, α2max, α2min,εmax, εmin, φ, k, δ, η
Internal variables: α, α2, a

∗, Told

flag_correctCmp(a) =

{
TRUE t ≤ T (a) + k

√
T_var(a)

FALSE otherwise
{This line is

for TP learning only}
if T (a)− k

√
T_var(a) ≤ t ≤ T (a) + k

√
T_var(a) then

flag_correctEst(a) = TRUE, α2(a) = α2max, count_correct(a) ←
count_correct(a) + 1

else
flag_correctEst(a) = FALSE, α2(a) = α2min

if this happens twice in a row then
count_correct(a) = 0

end if
end if
α(a) = α0

(count_correct(a)+1+δ)η

if a is not the optimal action then

ε =

{
ε+ φ [εmax − ε] t < T (a)− k

√
T_var(a) AND t < T (a∗)

ε+ φ [εmin − ε] otherwise
end if
{Update the estimation}
Told(a) = T (a); T (a)← T (a) + α(a) [t− T (a)]
T_var(a)← T_var(a) + α2(a){[t− Told(a)][t− T (a)]− T_var(a)}

118 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

Algorithm 4 Calculate when it should give up (used by algorithm 2); for TP
learning only

Inputs: T , A, a, flag_correctCmp; Outputs: threshold, action_forCmp
Parameters: ε2; Internal variables: a

′, A′, a′′

if ∃a′ ∈ A\a satisfying flag_correctCmp(a′) = TRUE then
use A′ to represent the set of all a′, a′′ = arg min

a′∈A′
[T (a′)]

action_forCmp(a) = a′′

if T (a) ≤ 2T (a′′) then
threshold(a) =∞

else

threshold(a) =

{
T (a′′) with probability 1− ε2/2
2T (a′′) with probability ε2/2

end if
else
action_forCmp(a) = 0, threshold(a) =∞

end if

5.2.2.1 Learn the variance of the time to reward

For the same reasons in the estimation of the mean, we replace 1
n−1 in equa-

tion 3.15 with a very small number α2:

vn ≈ vn−1 + α2[(xn −mn−1)(xn −mn)− vn−1] (5.7)

where 0 < α2 ≤ 1 is the learning rate for learning variance.

About the choice of the parameter α2, it should be less than α used in equa-

tion 5.6 to estimate the mean. This is �rst because the learning of variance

�uctuates more than the learning of mean if the same learning rate is used. We

have used equation 5.6 and 5.7 with di�erent learning rates to learn the mean and

variance of random variables drawn respectively from Poisson distribution shown

in �gure 5.1 and from normal distribution shown in �gure 5.2. From the two �g-

ures, we can see that, whereas the mean can be learned in a stable manner with

a learning rate of 0.1, the learning of variance �uctuates much more dramatically

with the same rate of learning. When the learning rate is 0.01, the learning of

variance becomes more stable and closer to the learning of mean with a learning

rate of 0.1. If the learning rate further decreases (e.g. 0.001), the learning of

variance becomes quite slow.

5.2. ALGORITHMS 119

Figure 5.1: Learn the mean and variance of the time to reward (Poisson distri-
bution). (a.) data randomly drawn from Poisson(10); (b.) learn the mean and
variance of the data with di�erent learning rates. The learning of variance is
much noisier than the learning of mean with the same learning rate.

Figure 5.2: Learn the mean and variance of the time to reward (normal distri-
bution). (a.) data randomly drawn from norm(9,3); (b.) learn the mean and
variance of the data with di�erent learning rates. The learning of variance is
much noisier than the learning of mean with the same learning rate.

120 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

5.2.2.2 Detect changes in the environment

When the actual time to reward for arm/action a in the current episode is outside

T (a) ± k
√
T_var(a) where T (a) and T_var(a) are respectively the estimated

mean and variance of the time to reward for action a and k ≥ 0, we consider that

the time to reward for action a has changed. When the actual time to reward for

action a is less than T (a) − k
√
T_var(a), we consider that the time to reward

for the action has become shorter. It is worth pointing out that a change in the

environment is more subjective to the learning agent than an objective matter.

Suppose that the learning agent's initial estimation of the environment is not

correct. The learning agent may consider that the environment has changed

because the actual environment does not agree with its estimation, even though

the environment may never have changed. The agent still needs to reduce the

di�erence between its estimation and the actual value, whether the di�erence is

due to a change of the environment or its incorrect estimation of the environment.

From Chebyshev's inequality [167], we know that no more than 1
k2

of the

possible values of a random variable are more than k standard deviations away

from its mean, no matter what distribution it has. From one-sided Chebyshev's

inequality, also known as Cantelli's inequality, no more than 1
k2+1

of the values

are less than the mean minus k standard deviations. Speci�cally, if k = 3,

no more than 1
9
of the values are more than 3 standard deviations away from

the mean, no matter what distribution a random variable has. From one-sided

Chebyshev's inequality, no more than 1
10

of the values are less than the mean

minus 3 standard deviations. For a normal distribution, in particular, no more

than 3% of the values are more than 3 standard deviations away from the mean.

Therefore, we can e�ectively detect changes in the time to reward in most cases

with the above method. Furthermore, we can cover even more cases with a

greater standard deviation window. For instance, if we choose a window with 6

standard deviations, no more than 1/36 of the values are outside the window for

any distribution and 1/506842372 for normal distribution. This is also the theory

behind the famous 6σ business management strategy initially implemented by

Motorola [168].

This method has the potential to detect a change in the environment with

only one trial even in a stochastic environment. On the other hand, if only the

mean of the time to reward is learned, it needs many trials to detect a change in a

stochastic environment because it has to compare the mean of the values in recent

5.2. ALGORITHMS 121

several trials with the mean of the values in several trials before recent several

trials. Furthermore, this method is much easier to implement than learning the

full distribution of the time to reward, which is a non-trivial task in its own right.

However, it is worth noting the following four points about this method.

Firstly, no matter how big the window is (except in�nity), there is no guarantee

that all data from the same distribution are within the window for some distribu-

tions, e.g. normal distribution. This means that a false detection of a change is

unavoidable. Therefore, the policy used to handle environmental changes needs

to accommodate these data, e.g. responding incrementally rather than abruptly.

Secondly, when the time to reward changes not very greatly in a stochastic en-

vironment, e.g., the new time to reward is still within T (a)± k
√
T_var(a), this

method cannot detect the change. But, if the change in the environment is very

small, it may not be necessary to respond speci�cally to the change, since clas-

sical value estimation reinforcement learning algorithms may be able to handle

the change very well. In addition, if the mean has not changed but the variance

has increased, this method may still consider the environment changed. Lastly, k

cannot be too small or too large. A large k can reduce the rate of false detections

of environmental changes but at the same time it increases the chance of failing

to detect real environmental changes, viz. less sensitive to changes in the environ-

ment. On the other hand, a small k can detect even small environmental changes,

but at the same time it is more likely to make a false detection of environmental

changes, viz. too sensitive to changes in the environment.

5.2.2.3 Respond to a change in the environment

When a change in the environment is detected by the method mentioned above,

the agent can increase the learning rate, increase the exploration rate (e.g. ε for

ε-greedy), or give up the current action and then remake decisions in order to

adapt to the new environment quickly.

Firstly, the agent can increase the learning rate in order for the agent to learn

the change quickly. Whenever a change in the time to reward for one arm a is

detected by the above method, the learning rate for this arm is increased either

temporarily to a high value or incrementally in order to learn the change quickly.

One way to increase the learning rate temporarily is to use a bigger learning

rate if a change is detected twice in a row. The reason why we require that

a change is detected twice in a row before the learning rate is increased is to

122 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

reduce the in�uence of noise. Alternatively, we can also use a probabilistic rule:

the probability of increasing the learning rate is increased with the number of

changes detected in a row increasing. Otherwise, a small learning rate is used.

One way to increase the learning rate incrementally is, when a change is detected,

to update the learning rate by

α(a)← α(a) + φα_in [αmax − α(a)] (5.8)

where α(a) is the learning rate of action a, 0 < φα_in ≤ 1, αmax is the maximum

value of α. Otherwise, it is updated by

α(a)← α(a) + φα_de [αmin − α(a)] (5.9)

where 0 < φα_de ≤ 1, αmin is the minimum value of α.

Regarding the learning rate (α2) used to calculate the estimated variance, a

smaller value should be used when a change in the environment is detected and a

bigger value used otherwise. This is so that the estimated mean converges �rst and

then the estimated variance. Otherwise, the estimated variance becomes so big

that the changed actual time to reward may still fall within the estimated mean

plus and minus k standard deviations, even though the learning agent has not

yet recovered from the environmental change. When the environment changes,

two things contribute to the variance, viz., the change in the environment (more

precisely, the change in the mean) and the variance of the new environment. In

order to reduce the in�uence of the change in the environment on the estima-

tion of variance, a smaller learning rate is used to learn the variance when the

environment changes. Admittedly, it would be ideal to eliminate the in�uence

of the change in the environment on the estimation of variance completely and

only learn the variance of the new environment. Unfortunately, however, it seems

impossible because the mean of the new environment is unknown.

Secondly, the agent can increase the exploration rate (e.g. ε for ε-greedy)

to increase the chance that suboptimal actions are explored. Suppose that the

time to reward for the optimal arm has not changed or has changed to a value

still less than the previous time to reward for all other arms. If the new time

to reward for another arm has become less than that for the previous optimal

arm, it would take the learning agent a long time to �nd that the suboptimal

arm has improved because the suboptimal action is seldom selected. Even after

5.2. ALGORITHMS 123

the arm has been explored, it still takes a long time to update the value of the

previous suboptimal action before it can take the place of the previous optimal

action, because suboptimal actions are seldom explored and values are updated

incrementally. One way to speed up the speed of updating the value of the

suboptimal arm is to increase the random parameter ε if ε-greedy is used to make

a non-greedy decision. Speci�cally, ε is increased whenever the actual time to

reward for any suboptimal action in the current episode becomes shorter than

its estimated mean minus k standard deviations and shorter than the expected

time to reward for the optimal action. When these two conditions are satis�ed,

increase ε towards its maximum value by

ε← ε+ φε_in [εmax − ε] (5.10)

where εmax is the maximum possible value of ε and φε_in is a small positive

number. Otherwise,

ε← ε+ φε_de [εmin − ε] (5.11)

is used to decrease epsilon towards its minimum value. Here, εmin is the minimum

possible value of ε and φε_de is a small positive number. In particular, when the

environment stays the same, epsilon decreases towards its minimum value and

therefore ε will converge to εmin as long as the environment stays the same for

long enough after one change whether the changes on the time to reward among

actions are correlated or not.

It is worth noting that the two conditions should both be checked. When the

new time to reward for a suboptimal action becomes shorter, the new time to

reward may still be much worse than that for the optimal action, where we should

not increase ε. On the other hand, if the new time to reward for a suboptimal

action has not become shorter, it is likely that its time to reward has not changed

and therefore is still longer than that for the optimal action. The reason why

its actual time to reward in some episodes is shorter than the estimated time to

reward for the optimal action may be that there are only some samples shorter

whereas most are not. If so, the suboptimal action is still suboptimal and there-

fore we should not increase ε either. Otherwise, ε would �uctuate. When both

conditions are satis�ed, it is more likely that the suboptimal action may have

become optimal.

124 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

In addition, for problems with more than two arms, increasing ε would encour-

age exploration of all suboptimal actions including those whose time to reward

has not changed or has even become longer. In order to solve this problem, a

softmax method can be used instead of ε-greedy. Only the suboptimal actions,

whose time to reward has become shorter and also shorter than the estimated

time to reward for the optimal action, are explored more often.

Finally, the agent can give up the current action if the time to reward for the

current action has been delayed. If the reward may never come or is so delayed

that it is not worth waiting, it makes sense for the agent to give up and choose

other actions instead rather than to wait there forever. Unfortunately, however,

the learning agent would never know whether the reward will appear in the near

future or not unless it continues its waiting and the `future' arrives.

TP/TPWG learning uses the �rst two methods, viz. increase the learning rate

and increase ε, to respond quickly to changes in the environment. The learning

agent will not give up actions unless it has learned the new environment correctly.

5.2.2.4 Ensure the estimated mean converges to the true mean

In a deterministic stationary environment, the estimated mean calculated by

equation 5.6 with a �xed learning rate, will eventually converge to the true mean

regardless of the initial estimated value. In a stochastic stationary environment,

however, the estimated mean calculated by equation 5.6 with a �xed learning rate

cannot converge to the true mean regardless of the initial estimated value. As

�gure 5.3 shows, although the initial estimated value is equal to the true mean,

the estimated mean still �uctuates even with a moderate �xed learning rate 0.1.

With a smaller learning rate, it would �uctuate less seriously at the expense of

the learning speed, but the �uctuation cannot be completely eliminated unless

the learning rate is equal to 0. Generally speaking, the smaller the learning rate

is, the slower the learning speed is, unless the initial estimated mean is already

equal to or close to the true mean where it does not need learning or a greater

learning rate may push the estimated mean further away from its true value. As

discussed previously, when α(n), the value of α used to calculate mn, satis�es

equation 2.21, the estimated mean is guaranteed to converge to the true mean.

As mentioned previously, a �xed learning rate does not satisfy equation 2.21.

Does the learning rate calculated by equation 5.9 satisfy the two conditions? If

αmin > 0, α(n) will converge to αmin eventually with the equation and α(n) is not

5.2. ALGORITHMS 125

Figure 5.3: Learn the mean of a random variable with a �xed learning rate (0.1);
the initial estimation is 10; the data is drawn from a Poisson distribution with a
mean of 10. Although the initial estimated value is equal to the true mean, the
estimated mean still �uctuates even with a moderate �xed learning rate 0.1.

less than αmin for any n assuming that αmax ≥ αmin. Based on these observations,

we have
∞∑
n

α2(n) ≥ α2
min

∞∑
n

n =∞. (5.12)

Therefore, the second condition is not satis�ed. On the other hand, if αmin = 0,

α(n) = α(n− 1)− φα(n− 1) = (1− φ)α(n− 1) = (1− φ)nα(0). (5.13)

Based on this equation, we have

∞∑
n

α(n) =
∞∑
n

(1− φ)nα(0) = α(0) lim
n→∞

1− (1− φ)n

φ
=
α(0)

φ
(5.14)

if 0 < φ ≤ 1. Therefore, the �rst condition is not satis�ed. One choice of α(n)

which does satisfy both conditions is

α(n) =
α(0)

(n+ δ)η
(5.15)

126 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

where α(n) is the learning rate used to calculate the nth estimation of mean in

equation 5.6, δ is a non-negative number, and 1 ≤ η < 2.

On the other hand, the learning rate satisfying equation 2.21 does not work

well in nonstationary environments where the learning agent needs to keep learn-

ing in case the environment has changed and therefore cannot decrease its learn-

ing rate to a very small value. This is also one of the main reasons why a �xed

learning rate is usually used in reinforcement learning.

Another disadvantage of using a learning rate satisfying equation 2.21 is that

the learning is quite slow even in stationary environments if the initial estimated

mean is not close to the true mean and the initial learning rate is not very big.

We do experiments on a Poisson distributed random variable with a mean of 10

with di�erent initial estimated mean. α(n) is calculated by equation 5.15 and

we set α(0) = 0.1, δ = 0 and η = 1. As �gure 5.4 shows, when the initial

estimated value is 10, the di�erence between the estimated mean and the true

mean is near 0 after 1000 episodes' learning; when the initial estimated value

is 8, the di�erence between the estimated mean and the true mean is within 1

after 1000 episodes' learning; when the initial estimated value is 12, the di�erence

between the estimated mean and the true mean is more than 1 after 1000 episodes'

learning. Because the learning rate becomes smaller and smaller, it would take

even longer to further reduce the estimation error.

However, since our learning algorithm can detect changes in the environment,

it can increase the learning rate to learn the change quickly when an environ-

mental change has been detected and decrease the learning rate with respect to

equation 2.21 in order for the estimated mean to converge to the true mean when

an environmental change has not been detected.

Speci�cally, TP/TPWG learning uses a big learning rate when an environ-

mental change has been detected twice in a row and then decreases the learning

rate according to equation 5.15 otherwise. In addition, as mentioned previously,

we should use a smaller learning rate to learn the variance when the environ-

ment changes in order to reduce the in�uence of the environmental change on

the estimated variance. After the mean is near its true value, we should use a

bigger learning rate to learn the true variance quickly. If we use the same big

learning rate (0.01) to learn variance whether the environment changes or not,

the estimated variance may become so big that the changed actual time can still

5.2. ALGORITHMS 127

Figure 5.4: Learn the mean of a random variable with a decreasing variable
learning rate; α(n) = α(0)

n
where n is the nth estimation and α(0) = 0.1, the data

is drawn from a Poisson distribution with a mean of 10; m0 is the initial estimation
of the mean. The learning is quite slow even in stationary environments if the
initial estimated mean is not close to the true mean and the initial learning rate
is not very big.

128 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

fall within the estimated mean plus and minus k standard deviations and there-

fore the learning rate used to learn the mean starts to decrease, even though

the estimated mean is still far away from the true mean. As �gure 5.5 shows,

it would take the learning agent forever to learn the true mean. On the other

hand, if we use the same small learning rate (0.001) to learn variance whether the

environment changes or not, the variance is so small that the actual time may fall

outside the estimated mean plus and minus k standard deviations even though

the estimated mean is very close to the true mean and therefore the learning rate

is increased incorrectly. As �gure 5.6 shows, even when the mean has converged,

α is still increased accidentally.

For these reasons, we use a smaller learning rate to learn variance when a

change in the environment is detected and a greater learning rate if not. It is

worth pointing out that even with this parameter setting, the above issues cannot

be completely eliminated: the variance may still be incorrectly estimated with

some data and this may further lead to incorrect estimation of the mean. How-

ever, the chance that the issues happen becomes much smaller. In the following

experiment, we set α2 = 0.002 when an environmental change has been detected,

α2 = 0.01 when it has not. As �rgure 5.7 shows, the learning is not only fast but

also stable.

In addition, as discussed previously, when the actual time to reward for a sub-

optimal action is not smaller than its estimated mean minus k standard deviations

or is not smaller than the estimated time to reward for the optimal action in the

state, it is likely that the suboptimal action is still suboptimal. Therefore, we

decrease the exploration rate of the state (e.g. ε for ε-greedy) gradually towards

its minimum value with equation 5.11 in order to reduce the cost of exploration

of suboptimal actions and in order to enable the learning to converge to a better

policy.

5.2.2.5 Evaluate whether or not the time information has been cor-

rectly learned

Although continuous exploration is needed in nonstationary environments, it is

not necessary to continue this time's exploration of the current action or the

current state-action pair beyond the time when the learning agent has found that

the action is still worse than the optimal one. It is worth noting, however, that

this does not a�ect future exploration of the action or the state-action pair. For

5.2. ALGORITHMS 129

Figure 5.5: Learn the mean of a variable with a variable α and a �xed big α2;
α(n) = α(0) if an environmental change is detected twice in a row, otherwise

α(n) = α(0)
n+1

where n is the number that an environmental change has not been
detected in a row, α(0) = 0.1; α2 = 0.01; the data is drawn from a Poisson
distribution with a mean of 6 in the �rst 500 episodes and then is drawn from a
Poisson distribution with a mean of 10. If we use the same learning rate (0.01)
to learn the variance whether the environment changes or not, the estimated
variance may become so big when the environment changes that the changed
actual time can still fall within the estimated mean plus and minus k standard
deviations and therefore the learning rate used to learn the mean continues to
decrease, even though the estimated mean is still far away from the true mean.

130 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

Figure 5.6: Learn the mean of a random variable with a variable α and a �xed
small α2; α(n) = α(0) if the environmental change is detected twice in a row,

otherwise α(n) = α(0)
n+1

where n is the number that the environmental change has
not been detected in a row, α(0) = 0.1; α2 = 0.001; the data is drawn from a
Poisson distribution with a mean of 10. If we use the same small learning rate
(0.001) to learn variance whether the environment changes or not, the variance
is so small that the actual time may fall outside the estimated mean plus and
minus k standard deviations even though the estimated mean is very close to the
true mean and therefore the learning rate is increased incorrectly.

5.2. ALGORITHMS 131

Figure 5.7: Comparison of learning the mean of a variable with di�erent learning
rates; the initial estimation is all 0; the data is drawn from a Poisson distribution
with a mean of 10; (a.) a �xed learning rate (0.1); (b.) α(n) = α(0) if the

environmental change is detected twice in a row, otherwise α(n) = α(0)
n+1

where
n is the number that the environmental change has not been detected in a row,
α(0) = 0.1; α2 = 0.002 when the environmental change has been detected, α2 =

0.01 when it has not. (c.) α(n) = α(0)
n

where n is the nth estimation and
α(0) = 0.1.

132 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

simplicity, we consider a time delayed 2-armed bandit problem. The two arms

have the same amount of reward that does not change over time. The time to

reward for the two arms is deterministic but nonstationary. Suppose that the

agent has learned that it takes the agent 1 minute to get a reward if it chooses

the �rst arm and 1 year to get the same amount of reward if it selects the second

arm. Even so, the agent still needs to explore/select the second arm occasionally

just in case the environment has changed and the time to reward for the second

arm has become even shorter than that for the �rst arm, e.g. 1 second. This is

the classical trade-o� between exploration and exploitation. On the other hand,

however, does the agent need to wait (1 year) until receiving a reward after it picks

the second arm? Fortunately, this is not necessary. If the reward has not arrived

1 minute after the second arm is selected, the agent can conclude that the second

arm is still worse than the �rst one, so the purpose of this time's exploration has

been served and the agent does not need to wait there any longer. One important

condition for this conclusion is that the estimated time to reward for the �rst arm,

which is used to compare with the current action (the second arm), should not

have been underestimated. Otherwise, the agent may even give up the optimal

action.

When the actual time to reward for action a falls within T (a)±k
√
T_var(a),

we consider that its time information has been correctly learned. Otherwise, we

consider it not. Initially, we set the estimated variance to 0 so that it will not be

evaluated as correct unless it is in a deterministic environment and the estimated

mean is the correct one. When the actual time to reward for action a is no more

than T (a) + k
√
T_var(a), we consider the estimated time to reward for action

a has not been underestimated and action a has the correct time information for

comparison. It can be used to decide whether to give up another action. This

simple method is used in TP learning.

In order to make it robust to noise, we can make some modi�cations to the

above simple rule. The prediction of whether the time information for one action

has been learned correctly only changes when the action has been taken n times

and its actual time to reward all falls within or outside T (a) ± k
√
T_var(a) in

a row. Obviously, when n = 1, it is just the above simple rule. Alternatively,

we can also make the prediction probabilistic. When the actual time to reward

for the action a falls within T (a) ± k
√
T_var(a), the probability that the time

information has been correctly learned increases towards 1; otherwise, it decreases

5.2. ALGORITHMS 133

towards 0.

5.2.2.6 Give up the current action

Assume that the time to reward for the current action a has been correctly learned

and the time to reward for at least one of the other actions (a′) has not been

underestimated. We use a′′ to denote the action which has the minimum T value

among all a′. If the estimated time to the reward for a is more than that for

a′′ and also the learning agent has spent in the current action (a) for more than

the estimated time to reward for a′′, the learning agent will give up the current

action and then remake its decisions.

This is the simplest one, but it is not optimal when the actual time to reward

for a is less than twice the estimated time to reward for a′′. For example, suppose

that the time to reward for a is 3 seconds and the time to reward for a′′ is 2

seconds. If the agent waits for 2 seconds after choosing a, and then gives up and

takes a′′ instead, it will take the agent 4 seconds to get a reward. On the other

hand, however, if the agent waits until a reward arrives after selecting a, it will

only take the agent 3 seconds to get a reward. In this case, it is better not to give

up when a is chosen because the agent can get the reward earlier by staying in

a than by giving up and choosing a′′ instead. In addition, in some special cases,

this method may make the learning unstable. For instance, suppose that there

are two arms. The time to reward for the �rst arm is deterministic and the time

to reward for the second one is stochastic. The mean of the time to reward for

the �rst arm is slightly less than the mean of the time to reward for the second

one. The actual time to reward for the second arm may be less than the mean of

the time to reward for the �rst arm in some episodes. If the learning agent gives

up when the time elapsed after the second action is chosen exceeds the mean of

the time to reward for the �rst arm, the estimated mean of the time to reward for

the second arm is only updated in episodes when its actual time to reward is less

than the mean of the time to reward for the �rst arm. Gradually, the estimated

mean of the time to reward for the second arm will become less than or equal

to that for the �rst arm, though the actual mean of the time to reward for the

second arm is still greater than that for the �rst arm. After that, the second arm

is chosen most of time and is not given up. The learning agent will soon �nd that

the mean of its time to reward is actually still greater than that for the �rst arm,

so it will then choose the �rst arm most of time and another cycle of switching

134 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

between arms commences.

The second method is that the agent will not give up unless the estimated

time to reward for a is more than twice the estimated time to reward for a′′. If

this condition is satis�ed, most of the time, the learning agent only explores T (a′′)

after it takes a; But at times, it explores 2T (a′′) after choosing a just in case the

time to reward for a has become less than 2T (a′′) where it is better not to give

up when a is chosen. This method can solve the instability problem caused by

the �rst method. For the previous example, when the estimated time to reward

for the second arm becomes less than twice that for the �rst arm, the learning

agent will not give up the second arm. Afterwards, the estimated time to reward

for the second arm should increase and become more than twice that for the �rst

arm statistically. Therefore, the estimated time to reward for the second arm is

more than that for the �rst arm, viz. the �rst arm is the estimated optimal one,

all the time. This method is used in TP learning.

Finally, in both of the above methods, the waiting time after action a is

taken is proportional to the estimated mean of the time to reward for action a′′.

Instead of using T (a′′), we can also use T (a′′) + k
√
T_var(a′′) to decide when to

give up. Obviously, this method encourages longer exploration because the agent

explores suboptimal actions longer before giving up. Furthermore, the agent can

also choose actions based on their estimated mean plus k standard deviations

instead of their estimated mean alone in order to encourage exploration of actions

whose values are uncertain. In this sense, it is similar to the Interval Estimation

(IE) algorithm [69] where the action with the largest upper interval boundary is

selected most of the time instead of the one with the largest mean.

It is worth pointing out that when the time information of the current action

is not correct, it is also safe to give up. However, after giving up, the time to

reward for the action cannot be correctly learned because the learning agent has

not received the reward yet before giving up. Therefore, its time information

cannot be used to decide whether to give up other actions later on. In addition,

it cannot guarantee that the actual mean of the time to reward for a is more than

twice the actual mean of the time to reward for a′′ when the estimated time to

reward for a is more than twice the estimated time to reward for a′′ because the

estimated time to reward for a may not be correct. Finally, if the learning agent

is allowed to give up a even though the estimated time to reward for a is not

more than the estimated time to reward for a′′, we need to speci�cally increase

5.2. ALGORITHMS 135

its estimation after giving up because its estimation cannot be updated through

the normal updating rule due to the giving up. Otherwise, action a would stay

as the optimal one and the learning agent would keep choosing action a most of

time and then giving it up. One way to solve the problem is to update T (a) and

T_var(a) using an assumed time to reward. When the learning agent gives up

at the tth time step, it may expect the reward to be able to receive in kt time

steps where k > 1, k ∈ <. Thus, we can update T (a) and T_var(a) by using the

assumed time to reward instead of the actual time to reward.

After giving up, the learning agent can remake its decision with respect to its

policy. If so, however, the learning agent may still choose the previous action (a)

after giving up. Although this helps to update the T value of this action, it may

take the learning agent a long time to �nd whether or not the time to reward for

the action (a′′) used to decide to give up the previous action has also changed. If

the time to reward for that action also becomes longer, the learning agent should

not give up the current action since the time to reward for the compared action

is not correct for comparison any more. Alternatively, the learning agent can

just choose the action used to decide to give up the previous action in order to

�nd whether or not the time to reward for that action has changed. If the time

to reward for that action has become longer, it will not give up the action next

time. If the time to reward for that action has not changed, however, this does

not help the learning agent to recover from the environmental change because the

T values of all actions have not changed at all and therefore their rank also does

not change. This alternative method is used in TP learning after the learning

agent gives up.

It is worth pointing out that the method of giving up used by TP learning

is �exible and robust enough to cope with almost every case. Firstly, it always

explores the current action at least the estimated time to reward for a′′ just in case

the time to reward for the current action (a) has become less than the estimated

time to reward for a′′ and a has become the optimal action. Secondly, when the

estimated time to reward for the current arm is less than twice the estimated time

to reward for a′′, the learning agent does not give up the current action because it

would take more time to get a reward if it gives up. On the other hand, when the

estimated time to reward for the current arm is more than twice the estimated

time to reward for a′′, the learning agent would give up the current action at the

time step equal to the estimated time to reward for a′′ most of time. But just in

136 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

case the time to reward for a has become less than 2T (a′′) where it is better not to

give up when a is chosen, it explores 2T (a′′) after a is taken occasionally. Given

that the time information has been correctly learned, this method can behave

near optimally in almost all settings of the time to reward.

5.2.3 Value (discounted reward) estimation

This algorithm is quite like algorithm 1. The only di�erence is that it learns the

discounted reward and then uses it to make decisions instead of the time to re-

ward. As shown in algorithm 5, a standard value (discounted reward) estimation

reinforcement learning algorithm learns the discounted reward (Q) through an

incremental updating rule with a �xed learning rate and then uses it to make de-

cisions through a non-greedy rule, e.g. ε-greedy or softmax methods, with respect

to the Q values of arms/actions. Since the n-armed bandit problem has only one

state (but n actions) and we only consider it as a one-step episodic task, it has

no state transition and Q values are only updated when a reward is received.

In essence, this algorithm is just a simpli�ed version of classical reinforcement

learning algorithms to learn the discounted reward with only one state.

Algorithm 5 V learning
Inputs: Q; Outputs: Q; Parameters: α, ε, γ; Internal variables: t
for all episodes do
Choose ac from all possible actions using the policy derived from Q (ε-greedy)
and then take action ac
t = 0
repeat
t← t+ 1

until a reward r is received
Q(ac)← Q(ac) + α [γtr −Q(ac)]

end for

5.2.4 Value (discounted reward) estimation with value per-

ception

TP/TPWG learning improves the standard time estimation reinforcement learn-

ing algorithm by learning both the estimated mean and variance of the time to

reward, and then using them to detect any change in the environment and re-

sponding quickly to it if a change is detected. TP learning goes further by giving

5.2. ALGORITHMS 137

up the current action if it has discovered that the current action is still worse than

the optimal one. But they only work when the amount of reward for actions is

the same and does not change. Firstly, the learned time information alone cannot

be used to make sensible decisions if the amount of reward for actions is not the

same. Secondly, it cannot detect changes in the amount of reward. If the amount

of reward for actions is not the same but does not change, the agent can still

use the learned time to reward to detect changes in the environment and then

respond to the change quickly. Finally, the agent cannot just use the learned time

to reward to decide when to give up because the giving up time is also decided

by the relative amount of reward for actions in addition to the time to reward for

actions. It is obvious that a bigger reward is worth waiting longer for. Therefore,

we also need to learn the mean of the amount of reward in order to decide when to

give up if the amount of reward for actions is not the same. For instance, consider

a deterministic stationary environment for simplicity. Suppose that the reward

for the current action has an amount of r1, the reward for another action has an

amount of r2 occurred at t2, and the time has elapsed t and no reward has been

received since the learning agent chose the current action. Also suppose that the

criterion of optimality is to maximise the discounted reward with a discounted

factor γ. Only when t > logγr2 − logγr1 + t2, viz. γ
tr1 < γt2r2, the agent can

deduct that the current action is worse than the compared action and therefore

the learning agent can give up the action and end this time's exploration.

From the viewpoint of the learning agent, the learning agent will not consider

the environment changed if its optimal target, e.g. the discounted reward, has

not changed, though in reality the environment may have changed, e.g. the time

to reward and the amount of reward both have changed. Regarding giving up,

the learning agent should not give up unless the new amount of reward has been

correctly learned when the amount of reward changes because the giving up time

is also decided by the amount of reward as discussed above.

For the above reasons, we learn the mean (Q) and variance (Q_var) of the

discounted reward and the mean (R) and variance (R_var) of the amount of

reward. We then use the learned mean and variance of the discounted reward to

detect environmental changes (from the viewpoint of the learning agent). When

the actual time to reward t and the actual amount of reward r for the current

138 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

action a in the current episode satisfy

Q(a)− k
√
Q_var(a) ≤ γtr ≤ Q(a) + k

√
Q_var(a) (5.16)

where γ is the discount rate, we consider the environment unchanged and Q(a)

has been correctly learned. Otherwise, we consider that the environment has

changed and Q(a) has not been correctly learned. If a change in the environment

is detected, the learning rate is increased in order to learn the change quickly.

Otherwise, the learning rate is decreased gradually towards 0 in order for the

estimated mean of the discounted reward to converge to its true mean. If a

suboptimal action has improved and can potentially become the optimal action

in the new environment, the exploration rate (e.g. ε for ε-greedy) is also increased

in order to increase the chance that the suboptimal action is visited. Otherwise,

the exploration rate is decreased gradually towards its minimum value in order

to reduce the cost of exploring suboptimal actions.

Likewise, for VP learning only, we use the learned mean and variance of the

amount of reward to detect changes in the amount of reward and evaluate if the

amount of reward has been correctly learned. When the actual amount of reward

r of the current action a in the current episode satis�es

R(a)− k
√
R_var(a) ≤ r ≤ R(a) + k

√
R_var(a) (5.17)

we consider the amount of reward unchanged and R(a) has been correctly learned.

Otherwise, we consider that the amount of reward has changed and R(a) has not

been correctly learned. When R(a) has been correctly learned, the learning agent

is allowed to give up the current action. Otherwise, it is not allowed to give up

the current action. If R(a) has not been correctly learned, R(a) is either bigger

or less than the actual mean of the amount of reward. When R(a) is less than

the actual mean of the amount of reward, the learning agent would give up too

early if it is allowed to give up because the learning agent would wait a shorter

time for a smaller amount of reward. When R(a) is more than the actual mean

of the amount of reward, the learning agent would give up too late if it is allowed

to give up because the learning agent would wait longer for a greater reward.

This is the reason why the learning agent is only allowed to give up the current

action a when R(a) has been correctly learned. In addition, even if R(a) has been

correctly learned, the learning agent should also occasionally explore the amount

5.2. ALGORITHMS 139

of reward for action a, viz. not give up, just in case the amount of its reward has

changed.

Assume the learning agent has spent in the current action a t time steps,

Q(a) and R(a) has been correctly learned, and there exists at least one other

action which has the correct Q values for comparison. We use a′′ to represent

the action which has the maximum Q value among those which have the correct

Q values for comparison except a. If the conditions γtR(a) < Q(a′′), viz. t >

logγQ(a′′) − logγR(a), and T (a) > logγQ(a′′) − logγR(a) are both satis�ed, it

is likely that the current action is still suboptimal and therefore the learning

agent can give up the current action and then remake its decision. In order

to avoid learning T , we use logγ
Q(a)
R(a)

to approximately replace T (a), so we can

get the condition Q(a) < Q(a′′).This method of calculating the timing of giving

up, however, is not optimal when the actual time to reward for a is less than

twice logγQ(a′′) − logγR(a). Similar to TP learning, it is better not to give up

in this case. Thus, in the second method, the agent will not give up unless the

expected time to reward for the current action T (a) is more than 2(logγQ(a′′)−
logγR(a)). Similar to the above, in order to avoid learning T , we use logγ

Q(a)
R(a)

to approximately replace T (a), so we can get the condition Q(a) < Q2(a′′)
R(a)

. If

this condition is satis�ed, most of the time, the learning agent only explores

logγQ(a′′)− logγR(a) in a; But at times, it explores 2(logγQ(a′′)− logγR(a)) in a

just in case the time to reward for a has become less than 2(logγQ(a′′)−logγR(a))

where it is better not to give up when a is chosen. Again, similar to TP learning,

we can also encourage longer exploration by allowing the learning agent to give

up when the time has exceeded logγ(Q(a′′)− k
√
Q_var(a′′))− logγR(a) instead

of logγQ(a′′)− logγR(a). Furthermore, the agent can also choose actions based on

their estimated mean plus k standard deviations instead of their estimated mean

alone in order to encourage exploration of actions whose values are uncertain.

Furthermore, the agent can also choose actions based on their estimated mean

plus k standard deviations instead of their estimated mean alone in order to

encourage exploration of actions whose values are uncertain. In this sense, it is

similar to the Interval Estimation (IE) algorithm [69] where the action with the

largest upper interval boundary is selected most of the time instead of the one

with the largest mean.

As shown in algorithm 6, VP learning is quite similar to TP learning and

VPWG learning is quite similar to TPWG learning. Most of the variations and

140 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

discussions regarding TP/TPWG learning are also applicable to these two algo-

rithms except that it can handle the cases where the amount of reward for actions

may be di�erent and may also change.

Algorithm 6 VP/VPWG learning

Inputs: Q, Q_var, R, R_var; Outputs: Q, Q_var, R, R_var;
Parameters: k; Internal variables: A, ac, t, ε (initial value: εmin),
flag_correctEst (initial value: FALSE), count_correct (initial value: 0),
ag (for VP learning only), threshold (initial value: -∞, for VP learning only),
action_forCmp (initial value: 0, for VP learning only), flag_correctCmp
(initial value: FALSE, for VP learning only)
for all episode do
Choose ac from all possible actions using the policy derived from Q (ε-
greedy); then take action ac
t = 0
ag = 0 {This line is for VP learning only}
Use algorithm 8 to calculate threshold(ac) and action_forCmp(ac) {This
line is for VP learning only}
repeat
{Below is for VP learning only}
if ag 6= 0 then
ac = ag, ag = 0, t = 0
Use algorithm 8 to calculate threshold(ac) and action_forCmp(ac)

end if
if γtR(ac) < Q(ac)− k

√
Q_var(ac) then

flag_correctEst(ac) = FALSE, flag_correctCmp(ac) = FALSE
end if
if flag_correctEst(ac) = TRUE AND flag_correctEstR(ac) = TRUE
AND γtR(ac) < threshold(ac) then
ag = action_forCmp(ac) {Give up and then choose ag}

end if
{Above is for VP learning only}
t← t+ 1

until a reward r is received
Use algorithm 7 to update the model

end for

5.2.5 Other criteria of optimality

In the above four subsections, we improve the standard time or value estimation

reinforcement learning algorithm by learning the mean and variance of the time

to reward when the amount of reward is the same for all actions and does not

5.2. ALGORITHMS 141

Algorithm 7 Update the model

Inputs: a, Q, Q_var, R (for VP learning only), R_var (for VP
learning only), r, t, ε, count_correct, count_correctR (for VP learn-
ing only), flag_correctEst, flag_correctEstR (for VP learning only),
flag_correctCmp (for VP learning only)
Outputs: Q, Q_var, R (for VP learning only), R_var (for VP learning only),
ε, count_correct, count_correctR (for VP learning only), flag_correctEst,
flag_correctEstR (for VP learning only), flag_correctCmp (for VP learning
only)
Parameters: α0, α2max, α2min, εmax, εmin, γ, φ, k, δ, η
Internal variables: α, αR, α2, α2R, a

∗, Qold, Rold (for VP learning only)

flag_correctCmp(a) =

{
TRUE γtr ≥ Q(a)− k

√
Q_var(a)

FALSE otherwise
{This line

is for VP learning only}
if Q(a)− k

√
Q_var(a) ≤ γtr ≤ Q(a) + k

√
Q_var(a) then

flag_correctEst(a) = TRUE, α2(a) = α2max, count_correct(a) ←
count_correct(a) + 1

else
flag_correctEst(a) = FALSE, α2(a) = α2min

if this happens twice in a row then
count_correct(a) = 0

end if
end if
α(a) = α0

(count_correct(a)+1+δ)η

{Below is for VP learning only}
if R(a)− k

√
R_var(a) ≤ γtr ≤ R(a) + k

√
R_var(a) then

flag_correctEstR(a) = TRUE, α2R(a) = α2max, count_correctR(a) ←
count_correctR(a) + 1

else
flag_correctEstR(a) = FALSE, α2R(a) = α2min

if this happens twice in a row then
count_correctR(a) = 0

end if
end if
αR(a) = α0

(count_correctR(a)+1+δ)η

{Above is for VP learning only}
if a is not the optimal action then

ε =

{
ε+ φ [εmax − ε] γtr > Q(a) + k

√
Q_var(a) AND γtr > Q(a∗)

ε+ φ [εmin − ε] otherwise
end if
{Update the estimation}
Qold(a) = Q(a), Q(a)← Q(a) + α(a) [γtr −Q(a)]
Q_var(a)← Q_var(a) + α2(a){[γtr −Qold(a)][γtr −Q(a)]−Q_var(a)}
Rold(a) = R(a), R(a) ← R(a) + αR(a) [r −R(a)] {This line is for VP learning
only}
R_var(a)← R_var(a)+α2R(a){[γtr−Rold(a)][γtr−R(a)]−R_var(a)} {This
line is for VP learning only}

142 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

Algorithm 8 Calculate when it should give up (used by algorithm 6); for VP
learning only

Inputs: a, A, Q, R, t, flag_correctCmp
Outputs: threshold, action_forCmp
Parameters: ε2, ε3; Internal variables: flag_exploreAmount, a

′, A′, a′′

if ∃a′ ∈ A\a satisfying flag_correctCmp(a′) = TRUE then
use A′ to represent the set of all a′, a′′ = arg max

a′∈A′
[Q(a′)]

action_forCmp(a) = a′′

flag_exploreAmount =

{
TRUE with probability ε3/2
FALSE with probability 1− ε3/2

if flag_exploreAmount = TRUE OR Q(a) ≥ Q2(a′′)
R(a)

then
threshold = −∞

else

threshold =

{
Q(a′′) with probability 1− ε2/2
Q2(a′′)
R(a)

with probability ε2/2

end if
else
action_forCmp(a) = 0, threshold = −∞

end if

change over time, and learning the mean and variance of both the discounted

and undiscounted reward when the amount of reward may be di�erent and may

also change. When the amount of reward is the same for all actions and does

not change over time, the optimal target used is to minimise the expected time

to reward (get a reward in the shortest time). When the amount of reward may

be di�erent and may also change, the optimal target used is to maximise the

expected discounted reward/return (the in�nite-horizon discounted model).

Their application, however, is not limited to these two criteria of optimality

and the ideas can be applied to virtually any criterion of optimality. For instance,

they can also be used where the optimal target is to maximise the expected rate

of rewards (the average-reward model). In this case, the mean (P) and variance

(P_var) of the rate of rewards and the mean (R) and variance (R_var) of the

amount of reward should be learned instead. The agent then uses the learned

mean and variance of the rate of rewards to detect environmental changes (from

the viewpoint of the learning agent) and the learned mean and variance of the

amount of reward to evaluate if the amount of reward has been correctly learned.

If a change in the environment is detected, the learning rate is increased in order

to learn the change quickly. Otherwise, the learning rate is decreased gradually

5.3. EXPERIMENTAL SETTINGS 143

towards 0 in order for the estimated mean of the rate of rewards to converge to

its true mean. If a suboptimal action has improved and can potentially become

the optimal action in the new environment, the exploration rate (e.g. ε for ε-

greedy) is also increased in order to increase the chance that the suboptimal

action is visited. Otherwise, the exploration rate is decreased gradually towards

its minimum value in order to reduce the cost of exploring suboptimal actions.

When R(a) has been correctly learned, the learning agent is allowed to give up

the current action. Otherwise, it is not allowed to give up the current action. In

addition, even if R(a) has been correctly learned, the learning agent should also

occasionally explore the amount of reward for action a, viz. not give up, just in

case the amount of its reward has changed.

Assume t time steps have passed since the current action a is chosen, P (a)

and R(a) have been correctly learned, and there exists at least one other action

(a′) which has the correct P value for comparison, viz. not overestimated. We

use a′′ to represent the action which has the maximum P value among all a′. If

the conditions R(a)/t < P (a′′) and P (a) < P (a′′) are both satis�ed, the learning

agent will give up the current action and then remake its decision. Other methods

for determining the timing of giving up in subsection 5.2.2 are also applicable

here.

5.3 Experimental settings

In the following experiments, we only consider 2-armed bandit problems for sim-

plicity. Speci�cally, the experimental scenario is as follows. There are two arms,

each with a certain reward occurring some time after being pushed. Each episode

ends when a reward is received. After some training, the time to reward or the

amount of reward for one or both arms changes to another value, either smaller

or bigger. The environment may be deterministic or stochastic. Experiments

for deterministic environments are discussed in section 5.4 and experiments for

stochastic environments are discussed in section 5.5.

Each experiment, except the experiments with random data, is run 100 times

to reduce the in�uence of random noise. When we experiment on the algorithms

with random data, we generate 100 random cases and each case is only run once.

The data which has the same value for the two arms are discarded, because in

this case there is no di�erence between either of the two arms. In addition, these

144 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

cases are generated in advance and then used for all algorithms to make the

experimental comparison fair.

One criterion used here to evaluate the recovery speed from an environmental

change is to see how long it takes the estimated optimal action to become correct

for the new environment and stable after the environment changes when ε-greedy

is used for decision-making. When the estimated optimal action becomes stable,

the behaviour of the learning agent has become stable and therefore we can say

that the learning has converged. When the estimated optimal action becomes

correct for the new environment, the learning agent will be able to choose the

actual optimal arm most of time (with the probability 1− (n−1)ε
n

) where n is the

number of actions and therefore will behave correctly in the new environment.

Thus, the recovery time used here is just the time of the last change of the

estimated optimal action after the environment changes if the �nal estimated

optimal action is correct for the new environment. On the other hand, if the

�nal estimated optimal action at the end of one trial is not correct for the new

environment, the recovery time is equal to all the time steps that the learning

agent takes after the environment changes and before the trial ends. If softmax

methods are used for non-greedy decision making, however, the behaviour of

the learning agent will not become stable unless the (relative) T/Q values of all

actions converge because the probability that one action is chosen depends on

both its own T/Q value and the T/Q values of other actions. For simplicity,

when the rank of the T/Q values of all actions becomes stable, we also consider

that the behaviour of the learning agent has become stable since the action with

the biggest T/Q value is chosen with the biggest probability, the action with the

second biggest T/Q value is chosen with the second biggest probability and so

on. Therefore, if softmax methods are used, we consider the learning agent has

recovered from the environmental change when the rank of T/Q values becomes

correct for the new environment and stable after the environment changes.

For the same reason, the criterion used here to evaluate the learning speed

of algorithms during training is to see how long it takes for the estimated op-

timal action to become correct for the environment and stable afterwards after

the learning begins when ε-greedy is used for decision making. When softmax

methods are used, the criterion becomes how long it takes the rank of T/Q values

to become correct and stable for the environment, after the training starts.

The settings of parameters used in the following experiments are as follows

5.3. EXPERIMENTAL SETTINGS 145

Notation Meaning
t1 the actual time to reward for the �rst arm before the envi-

ronment changes
t′1 the actual time to reward for the �rst arm after the envi-

ronment changes
t2 the actual time to reward for the second arm before the

environment changes
t′2 the actual time to reward for the second arm after the

environment changes
r1 the actual amount of reward for the �rst arm before the

environment changes
r′1 the actual amount of reward for the �rst arm after the

environment changes
r2 the actual amount of reward for the second arm before the

environment changes
r′2 the actual amount of reward for the second arm after the

environment changes
q1 the actual discounted reward for the �rst arm before the

environment changes
q′1 the actual discounted reward for the �rst arm after the

environment changes
q2 the actual discounted reward for the second arm before the

environment changes
q′2 the actual discounted reward for the second arm after the

environment changes

Table 5.2: Summary of notation used to describe experimental scenarios for the
time delayed n-armed bandit problem

when applicable. α = 0.1, α0 = 1.2, α2min = 0.002, α2max = 0.01, ε = 0.1, εmin =

0.1, εmax = 1, ε2 = 0.1, ε3 = 0.1, φ = 0.1, γ = 0.9, k = 3, δ = 3, η = 1. Initialise

Q(a) = 0, Q_var(a) = 0, R(a) = 0, R_var(a) = 0, T (a) = 0, T_var(a) = 0,

action_forCmp(a) = 0, flag_correctEst(a) = FALSE,

flag_correctCmp(a) = FALSE, count_correct(a) = 0 for all actions when

applicable. Initialise threshold(a) =∞ for TP learning and threshold(a) = −∞
for VP learning.

In order to facilitate the description of the experimental scenarios, we intro-

duce more notation as shown in table 5.2.

146 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

5.4 Deterministic environments

5.4.1 Introduction

In this section, we compare the performance of algorithms in terms of the learning

speed, the recovery speed from environmental changes, and the agent's perfor-

mance after the learning converges in deterministic environments where both the

amount of reward and the time to reward for each arm are deterministic but may

change over time.

We �rst consider cases where the two arms have the same amount of reward

that does not change over time. The time to reward, however, may be di�erent

and may also change over time. Then we consider more general and complex

scenarios, viz. cases where the two arms may have di�erent amounts of reward

and di�erent time to reward, and both of them may also change over time.

5.4.2 When the amount of reward for actions is the same

and does not change

We �rst compare the training process of the three algorithms. The following two

cases are considered. It is worth noting that the two arms have the same amount

of a single reward (r1 = r2 = r′1 = r′2 = 1) .

1. Case 1: t1 = 6, t2 = 10, t1 < t2

The time to reward for the �rst action is less than that for the second

action and therefore the �rst action is optimal. The di�erence in the time

to reward between the two actions is relatively small.

2. Case 2: t1 = 6, t2 = 100, t1 << t2

This is similar to Case 1: the �rst action is optimal. However, the di�erence

in the time to reward between the two actions is quite great.

In Case 1, as �gure 5.8 shows, both TP learning and TPWG learning learn the

time to reward (T) faster than T learning due to a bigger learning rate when

the estimated mean is not correct, which is the usual case at the beginning of

learning. TP learning and TPWG learning learn almost at the same speed. At

the learning stage, the estimated time to reward is usually incorrect, so giving up

has not occurred. In addition, giving up has not occurred after learning either

because the di�erence in the time to reward between the two actions is relatively

5.4. DETERMINISTIC ENVIRONMENTS 147

small. For this reason, there is also little di�erence among the three algorithms

after learning.

When the di�erence in the time to reward between the two actions increases,

however, giving up takes e�ect. In Case 2, as �gure 5.9 shows, TP learning

performs much better than T learning and TPWG learning after the learning

converges in terms of the time steps taken to get one reward thanks to giving

up when the di�erence in the time to reward between actions is great. After the

learning converges, TP learning can get a reward in almost half of the time that T

learning and TPWG learning need to get a reward and the time taken to get one

reward by TP learning is also much less noisy than that by T learning and TPWG

learning. The noisy error bars produced by T learning and TPWG learning are

due to the variation in the time taken to get one reward. In one episode of one

experiment, it may take 6 time steps to get a reward; in the same episode of

another experiment, however, it may take 100 time steps to get a reward. For

TP learning, however, it may either take 6 time steps or around 12 time steps on

average to get a reward in one episode due to giving up, so the variation is less

and therefore its error bar is less noisy.

As mentioned in section 5.3, we use the time steps taken for the estimated

optimal action to become correct and stable to measure the learning speed of

algorithms. In this sense, however, we cannot see the di�erence among the three

algorithms from either �gure 5.9 or 5.8. Therefore �gure 5.10 is drawn. In the

�rst scenario (the actual time to reward for the two arms is respectively 6 and

10), TP learning and TPWG learning learn faster than T learning due to a big

learning rate when the estimated value is not correct, which is the usual case at

the beginning of learning. In the second scenario (the actual time to reward for

the two arms is respectively 6 and 100), however, there is little di�erence between

TP/TPWG learning and T learning. This is because the di�erence in the time

to reward between actions is quite big and therefore even a small learning rate

can make the estimation of the time to reward for the two arms di�erentiable

in one or two episodes. It is worth noting, however, though it takes all three

algorithms almost the same time steps to converge in the second case, the agent's

performance after the learning converges is quite di�erent between T/TPWG

learning and TP learning as discussed above.

Then, we compare their performance in terms of recovering from environmen-

tal changes. We �rst consider the following typical scenarios. Initially, the two

148 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

Figure 5.8: Comparison of the three algorithms during training; the time to
reward for the two arms is respectively 6 and 10 time steps; the amount of reward
for the two arms is both 1. The error bar in the graph is the sampling error, which
is the case for all the following graphs. (a.) time steps taken to get the Xth reward
by T learning; (b.) the learning of the estimated time to reward by T learning;
(c.) time steps taken to get the Xth reward by TPWG learning; (d.) the learning
of the estimated time to reward by TPWG learning; (e.) time steps taken to get
the Xth reward by TP learning; (f.) the learning of the estimated time to reward
by TP learning.

5.4. DETERMINISTIC ENVIRONMENTS 149

Figure 5.9: Comparison of the three algorithms during training; the time to
reward for the two arms is respectively 6 and 100 time steps; the amount of
reward for the two arms is both 1. (a.) time steps taken to get the Xth reward
by T learning; (b.) time steps taken to get the Xth reward by TPWG learning;
(c.) time steps taken to get the Xth reward by TP learning.

Figure 5.10: Comparison of the three algorithms during training in terms of time
steps taken for the behaviour of the learning agent to become correct and stable
for the environment, viz. successfully identifying the optimal arm and choosing
it most of the time if ε-greedy is used to make decisions; the amount of reward
for the two arms is both 1.

150 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

arms have the same amount of a single reward (r1 = r2 = 1) occurred respectively

at the 6th and 10th time steps after being pushed (t1 = 6, t2 = 10, t1 < t2, the

�rst arm is the optimal choice). After 1000 episodes, the time to reward for the

two actions changes, though the amount of reward stays the same (r′1 = r′2 = 1).

1. Case 3: t′1 = t1, t
′
2 = 2 < t2, t

′
2 < t′1

The time to reward for the �rst action does not change. The new time

to reward for the second action becomes shorter: the previous suboptimal

action (the second action) has become optimal.

2. Case 4: t′1 = 14 > t1, t
′
2 = t2, t

′
2 < t′1

The new time to reward for the �rst action becomes longer: the previous

optimal action (the �rst action) has become suboptimal. The time to reward

for the second action does not change.

3. Case 5: t′1 = 14 > t1, t
′
2 = 18 > t2, t

′
1 < t′2

The new time to reward for both actions becomes longer. In the new envi-

ronment, the �rst arm is still the optimal one. Even though the rank of the

actual time to reward for the two actions has not changed, the rank of the

estimated time to reward by the learning agent will change over time. At

the beginning, the estimated time to reward for the �rst action is smaller, so

it is chosen more often and its estimated time to reward therefore increases

more quickly and eventually becomes bigger than that for the second one.

Then, the second action is chosen more often, so its estimated time to re-

ward increases quicker and eventually becomes more than that for the �rst

one. The process will go on until the estimated time to reward for at least

one action converges.

4. Case 6: t′1 = 18 > t1, t
′
2 = 14 > t2, t

′
2 < t′1

The new time to reward for both actions becomes longer. In the new envi-

ronment, the �rst arm has become the suboptimal one and the second arm

has become the optimal one.

As �gure 5.11 shows, TP/TPWG learning recovers from environmental changes

at least twice as fast as T learning in all experimental scenarios. In Case 3,

TP/TPWG learning is more than 4 times faster in recovering from environmen-

tal changes than T learning. When the time to reward changes from [6 10] to

5.4. DETERMINISTIC ENVIRONMENTS 151

[6 2], increasing ε when suboptimal actions may have potentially become the op-

timal action has helped TP/TPWG learning to explore the second action. In

all experimental scenarios, increasing the learning rate when the environment

changes has accelerated the learning speed. It is worth noting that TP learning

and TPWG learning perform almost the same in terms of the speed in recovering

from environmental changes in all experimental cases. This is because giving up

has not contributed to the recovery of TP learning from environmental changes.

When the environment changes, the estimated time to reward becomes incorrect

and therefore giving up has not occurred. TP learning, in this case, becomes

equivalent to TPWG learning in essence.

Figure 5.11: Time steps taken to recover from environmental changes after the
time to reward changes from (6,10); the amount of reward for both arms (1) does
not change.

In order to get the average performance of the algorithms, we also generate the

time to reward for both actions randomly from integer number discrete uniform

distributions at the �rst episode and the 1001th episode. The amount of reward

for both arms is 1 all the time.

1. Case 7: t1, t2, t
′
1, t
′
2 ∼ IntegerDiscreteUniform(0, 100)

The time to reward for both arms is drawn from an integer number discrete

uniform distribution ranging from 0 to 100 once at the beginning and once

when the environment changes. In this scenario, the time to reward for

both arms may become shorter, longer or stay the same (even though the

152 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

chance of which is very small). The rank of both arms may also stay the

same or change when the environment changes.

2. Case 8: t1, t
′
1, t
′
2 ∼ IntegerDiscreteUniform(0, 50);

t2 ∼ IntegerDiscreteUniform(51, 101)

The time to reward for the �rst arm is drawn from an integer number

discrete uniform distribution ranging from 0 to 50 once at the beginning and

once when the environment changes; the time to reward for the second arm

is drawn from an integer number discrete uniform distribution ranging from

51 to 101 once at the beginning and from an integer number discrete uniform

distribution ranging from 0 to 50 once when the environment changes. In

this scenario, the time to reward for the �rst arm may become shorter,

longer or stay the same (even though the chance of which is very small).

But the time to reward for the second arm de�nitely decreases. The rank

of both arms may stay the same or change from a certain rank (the �rst

arm is optimal at the beginning) when the environment changes.

3. Case 9: t1 ∼ IntegerDiscreteUniform(0, 50);

t2, t
′
1, t
′
2 ∼ IntegerDiscreteUniform(51, 101)

The time to reward for the �rst arm is drawn from an integer number

discrete uniform distribution ranging from 0 to 50 once at the beginning and

from an integer number discrete uniform distribution ranging from 51 to 100

once when the environment changes; the time to reward for the second arm

is drawn from an integer number discrete uniform distribution ranging from

51 to 101 once at the beginning and once when the environment changes.

In this scenario, the time to reward for the second arm may become shorter,

longer or stay the same (even though the chance of which is very small).

But the time to reward for the �rst arm de�nitely increases. The rank of

both arms may also stay the same or change from a certain rank (the �rst

arm is optimal at the beginning) when the environment changes.

4. Case 10: t1, t
′
2 ∼ IntegerDiscreteUniform(0, 50);

t2, t
′
1 ∼ IntegerDiscreteUniform(51, 101)

The time to reward for the �rst arm is drawn from an integer number

discrete uniform distribution ranging from 0 to 50 once at the beginning and

from an integer number discrete uniform distribution ranging from 51 to 100

once when the environment changes; the time to reward for the second arm

5.4. DETERMINISTIC ENVIRONMENTS 153

is drawn from an integer number discrete uniform distribution ranging from

51 to 101 once at the beginning and from an integer number discrete uniform

distribution ranging from 0 to 50 once when the environment changes. In

this scenario, the time to reward for the �rst arm increases and the time to

reward for the second arm decreases. The rank of both arms changes from

a certain rank to another certain rank when the environment changes.

As �gure 5.12 shows, TP/TPWG learning recovers from environmental changes

at least twice as fast as T learning in all experimental scenarios. The di�erence

between TP learning and TPWG learning is relatively small compared with their

di�erence with T learning.

Figure 5.12: Time steps taken to recover from environmental changes after the
time to reward changes; the amount of reward for both arms (1) does not change.
(a.) Case 7; (b.) Case 8; (c.) Case 9; (d.) Case 10.

We then use Case 7 as a test bed to experiment on T learning and TP/TPWG

learning with di�erent initial learning rate (α0). The results are shown in 5.13. It

takes the learning agent fewer time steps to recover from environmental changes

with a bigger initial learning rate, though the improvement over a smaller learning

rate becomes smaller and smaller with the increase in the learning rate.

154 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

Figure 5.13: Time steps taken to recover from environmental changes with dif-
ferent initial learning rates; the time to reward for both arms is drawn from an
integer number discrete uniform distribution ranging from 0 to 100 once at the
beginning and once when the environment changes; the amount of reward for
both arms (1) does not change. (a.) T learning (α = 0.1); (b.) TP/TPWG
learning with α0 = 1.2; (c.) TP/TPWG learning with α0 = 1.6; (d.) TP/TPWG
learning with α0 = 2.0; (e.) TP/TPWG learning with α0 = 2.4; (f.) TP/TPWG
learning with α0 = 2.8.

5.4. DETERMINISTIC ENVIRONMENTS 155

5.4.3 When the amount of reward for actions may be dif-

ferent and may also change

As discussed above, when the amount of reward for actions is not the same and

may also change, learning the time to reward alone cannot make sensible decisions,

detect changes in the amount of reward, or decide when to give up the current

action. Therefore, in this subsection, we use V, VP and VPWG learning instead.

We �rst compare the training process of the three algorithms. The following

two cases are considered.

1. Case 1: t1 = 6, r1 = 6, t2 = 10, r2 = 10

The second action is optimal in terms of the discounted reward, but the

di�erence between two actions is relatively small.

2. Case 2: t1 = 6, r1 = 100, t2 = 10, r2 = 10

The �rst action is optimal in terms of the discounted reward, and the dif-

ference between two actions is relatively large.

In Case 1, as �gure 5.14 shows, VP/VPWG learning learns much faster than V

learning in terms of both the learning process and the learning of Q values due

to a greater learning rate when the estimated value is not correct, which is the

usual case at the beginning of learning.

Because the di�erence in Q values between the two actions is relatively small,

giving up has not occurred after learning and therefore there is little di�erence

between the three algorithms after learning. When the di�erence in the Q value

between the two actions becomes greater, however, giving up takes e�ect. As

�gure 5.15 shows, VP learning performs better than V/VPWG learning after the

learning converges in terms of the discounted reward received thanks to giving

up when the di�erence in the Q value between actions is large.

Then, we compare their performance in terms of recovering from environmen-

tal changes. We consider the following two scenarios.

1. Case 3: t1, t2, t
′
1, t
′
2 ∼ IntegerDiscreteUniform(0, 100);

q1, q2, q
′
1, q
′
2 ∼ RealNumberUniform(0, 100)

The time to reward for both arms is independently drawn from an integer

number discrete uniform distribution from 0 to 100 inclusive once at the

beginning and once when the environment changes, the value of discounted

reward for both arms is independently drawn from a real number continuous

156 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

Figure 5.14: Comparison of the three algorithms during training; Case 1. (a.)
discounted reward received by V learning; (b.) the learning of Q values by V
learning; (c.) discounted reward received by VPWG learning; (d.) the learning
of Q values by VPWG learning; (e.) discounted reward received by VP learning;
(f.) the learning of Q values by VP learning.

5.4. DETERMINISTIC ENVIRONMENTS 157

Figure 5.15: Comparison of the three algorithms during training; Case 2. (a.)
discounted reward received by V learning; (b.) discounted reward received by
VPWG learning; (c.) discounted reward received by VP learning.

uniform distribution from 0 to 100 exclusive once at the beginning and once

when the environment changes, and the amount of reward is deduced from

them. The reason why we generate the discounted reward rather than the

amount of reward for experiments is that the discounted reward decides the

optimal action and we use the last change of the optimal action to measure

the recovery time.

2. Case 4: t1 = 6, r1 = 10, t2 = 10, r2 = 100; t′1 = t1, r
′
1 = 100 > r1, t

′
2 =

t2, r
′
2 = r2

The amount of reward for the �rst action increases and the �rst action

becomes the optimal action in the new environment in place of the second

one.

The �rst experiment tests their average performance. As �gure 5.16 shows, both

VP learning and VPWG learning recover from environmental changes more than

twice as quickly as V learning. It is worth noting that VPWG learning performs

even better than VP learning. In this experiment, the amount of reward for

actions before and after the environment changes is generated randomly, so in

some scenarios the amount of reward for the suboptimal action may increase

158 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

and the suboptimal action may become the optimal one. VP learning assumes

that the amount of reward for suboptimal actions stays the same and therefore

may still give up the suboptimal action even though it may have become the

optimal one. If VP learning gives up the suboptimal action before receiving any

reward, it cannot discover that the amount of reward for the suboptimal action

has changed and the suboptimal action has become the optimal one. Even though

with probability ε3
2
, VP learning does not give up and therefore can discover the

change in the amount of reward for the suboptimal action eventually, it would take

VP learning much longer to �nd the change and to discover that the suboptimal

action has become the optimal one than V/VPWG learning. To demonstrate

this, we speci�cally design such a scenario, viz. Case 4. The results are shown

in �gure 5.17. VP learning with standard parameter settings performs the least

e�ectively. With the increase in ε3 (the probability of exploring the amount of

reward, viz. not giving up, increases), the performance of VP learning is improved.

VPWG learning performs best.

Figure 5.16: Time steps needed to recover from environmental changes after both
the time to reward and the amount of reward change; Case 3.

5.5. STOCHASTIC ENVIRONMENTS 159

Figure 5.17: Time steps needed to recover from environmental changes; Case 4.
(a.) V learning; (b.) VP learning, ε3 = 0.1; (c.) VP learning, ε3 = 0.5; (d.) VP
learning, ε3 = 1; (e.) VPWG learning.

5.5 Stochastic environments

5.5.1 Introduction

In this section, we compare the performance of algorithms in terms of the learning

speed, the recovery speed from environmental changes, and the agent's perfor-

mance after the learning converges in stochastic environments where the amount

of reward and the time to reward for each arm are stochastic and their distri-

butions may also change over time. Stochastic environments make the problem

more complex. Even if the distribution does not change over time, the actual

time to reward or the actual amount of reward may still be di�erent in di�erent

episodes.

We �rst consider cases where the two arms have the same deterministic

amount of reward that does not change over time. The time to reward, how-

ever, is stochastic and its distribution may also change over time. Then we move

on to more general and complex scenarios, viz. both the amount of reward and

the time to reward for arms are stochastic, and both of their distributions may

change over time.

160 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

5.5.2 When the amount of reward for actions is the same

and does not change

In this subsection, we carry out a set of experiments similar to those in subsec-

tion 5.4.2. The di�erence is that the actual time to reward here is drawn from

a Poisson distribution rather than being deterministic. Unlike deterministic en-

vironments, even though the mean of the actual time to reward is the same in

di�erent episodes of one experiment, the actual time to reward in each episode

may be quite di�erent.

We �rst compare the training process of the three algorithms. The following

two cases are considered. It is worth noting that the two arms have the same

amount of a single reward (r1 = r2 = r′1 = r′2 = 1) .

1. Case 1: t1 ∼ Poisson(6), t2 ∼ Poisson(10),mean(t1) < mean(t2)

The mean of the time to reward for the �rst action is less than that for the

second action, so the �rst action is optimal on average. The di�erence in

the mean of the time to reward between the two actions is relatively small.

It is worth pointing out, however, that these conclusions only apply to the

average case. In some episodes, the situations can be quite di�erent. For

example, the actual time to reward for the �rst action in some episodes can

be more than that for the second action and the di�erence in the actual

time to reward between the two actions in some episodes can be very large.

2. Case 2: t1 ∼ Poisson(6), t2 ∼ Poisson(100),mean(t1) << mean(t2)

This is similar to Case 1: the �rst action is optimal on average. However,

the di�erence in the mean of the time to reward between the two actions is

quite large.

The results are similar to those in the deterministic experiments. In Case 1, as

�gure 5.18 shows, TP/TPWG learning learns the estimated time to reward (T)

faster than T learning due to a greater learning rate when the estimated value is

not correct, which is the usual case at the beginning of learning. The di�erence

among the three algorithms after learning is still very small. When the di�erence

in the time to reward between the two actions increases, however, giving up

takes e�ect for the same reason in the deterministic experiments. In Case 2, as

�gure 5.19 shows, TP learning performs much better than T/TPWG learning

after the learning converges in terms of the time steps taken to get one reward

5.5. STOCHASTIC ENVIRONMENTS 161

thanks to giving up when the di�erence in the time to reward between actions

is great. In addition, as in the deterministic experiments, we also measure how

many time steps taken for the behaviour of the learning agent to become correct

and stable for the environment. The results are shown in �gure 5.20 and they

are quite similar to those in the deterministic experiments. In the �rst scenario

(the mean of the actual time to reward for the two arms is respectively 6 and 10),

TP/TPWG learning learns faster than T learning due to a faster learning rate

when the estimated value is not correct, which is usually the case at the beginning

of learning. In the second scenario (the mean of the actual time to reward for the

two arms is respectively 6 and 100), however, there is little di�erence among the

three algorithms. This is because the di�erence in the time to reward between

actions is quite large. For all three algorithms, the learning agent only needs

one or two episodes to make the estimated optimal action correct and stable

for the environment. Similar to the results for the deterministic experiments,

though it takes all three algorithms almost the same time steps to converge in

the second case, the agent's performance after the learning converges is quite

di�erent between T/TPWG learning and TP learning as discussed above.

As mentioned in the description of the algorithms, TP/TPWG learning de-

creases the learning rate in order for the estimated mean to converge to the true

mean when environmental changes have not been detected. Furthermore, when

the mean of the time to reward for two arms is very close, algorithms which do not

decrease the learning rate may struggle to �nd the optimal action in stochastic

environments. Thus, we experiment on the algorithms using two scenarios where

the actual mean of the time to reward for the two arms is very close.

1. Case 3: t1 ∼ Poisson(14), t2 ∼ Poisson(16),mean(t1) < mean(t2)

In this scenario, the time to reward for the two arms is drawn respectively

from Poisson(14) and from Poisson(16). The mean of the time to reward

for the two arms is quite close.

2. Case 4: t1 ∼ Poisson(15), t2 ∼ Poisson(16),mean(t1) < mean(t2)

In this scenario, the time to reward for the two arms is drawn respectively

from Poisson(15) and from Poisson(16). The mean of the time to reward

for the two arms is even closer.

As �gure 5.21 shows, the estimated time to reward (T) by T learning �uctuates

and therefore T learning struggles to �nd the optimal action in both scenarios.

162 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

Figure 5.18: Comparison of the three algorithms during training; the time to
reward for the two arms is drawn from Poisson(6) and Poisson(10); the amount
of reward for the two arms is both 1. (a.) time steps taken to get the Xth reward
by T learning; (b.) the learning of the time to reward by T learning; (c.) time
steps taken to get the Xth reward by TPWG learning; (d.) the learning of the
time to reward by TPWG learning; (e.) time steps taken to get the Xth reward
by TP learning; (f.) the learning of the time to reward by TP learning.

5.5. STOCHASTIC ENVIRONMENTS 163

Figure 5.19: Comparison of the three algorithms during training, the time to
reward for the two arms is drawn from Poisson(6) and Poisson(100); the amount
of reward for the two arms is both 1. (a.) time steps taken to get the Xth reward
by T learning; (b.) time steps taken to get the Xth reward by TPWG learning;
(c.) time steps taken to get the Xth reward by TP learning.

Figure 5.20: Comparison of the three algorithms during training in terms of time
steps taken for the behaviour of the learning agent to become correct and stable
for the environment; the amount of reward for the two arms is both 1.

164 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

The estimation estimated time to reward (T) by TP/TPWG learning, on the

other hand, converges to their actual value and therefore TP/TPWG learning is

able to �nd the optimal action in both scenarios.

Figure 5.21: Comparison of the three algorithms during training in a typical run
when the actual mean of the time to reward for two arms is very close; the time
to reward for the two arms is drawn from Poisson(14) and Poisson(16) for (a.),
(b.) and (c.); the time to reward for the two arms is drawn from Poisson(15) and
Poisson(16) for (d.), (e.) and (f.); the amount of reward for the two arms is both
1. (a.) and (d.): the learning of T by T learning in a typical run; (b.) and (e.):
the learning of T by TPWG learning in a typical run; (c.) and (f.): the learning
of T by TP learning in a typical run.

Then, we compare their performance in terms of recovering from environ-

mental changes. We �rst experiment on the alorithms using the following typi-

cal scenarios similar to the scenarios in the deterministic environments. Unlike

the deterministic environments, however, the rank of actions in each episode is

still uncertain even though the rank of actions on average is certain. Initially,

the two arms have the same amount of a single reward (r1 = r2 = 1). The

time to reward for actions is drawn from Poisson distributions with mean equal

to respectively 6 and 10 time steps after being pushed (t1 ∼ Poisson(6), t2 ∼

5.5. STOCHASTIC ENVIRONMENTS 165

Poisson(10),mean(t1) < mean(t2)). After 1000 episodes, the mean of the time

to reward for the two actions changes, though it is still drawn from a Poisson

distribution. Furthermore, the amount stays the same (r′1 = r′2 = 1).

1. Case 5: mean(t′1) = mean(t1), t
′
2 ∼ Poisson(2); mean(t′2) < mean(t2),

mean(t′2) < mean(t′1)

The new time to reward for the �rst action is drawn from the same dis-

tribution. The new time to reward for the second action is drawn from

a Poisson distribution with a smaller mean: the suboptimal action (the

second action) becomes optimal on average in the new environment. It is

worth noting, however, that it is possible that the actual time to reward

for the �rst arm is still less than that for the second arm in some episodes

after the environmental change thanks to the stochastic environment.

2. Case 6: t′1 ∼ Poisson(14), mean(t′2) = mean(t2); mean(t′1) > mean(t1),

mean(t′2) < mean(t′1)

The new time to reward for the �rst action is drawn from a Poisson distri-

bution with a higher mean: the previous optimal action (the �rst action)

becomes suboptimal on average in the new environment. The new time to

reward for the second action is drawn from the same distribution.

3. Case 7: t′1 ∼ Poisson(14), t′2 ∼ Poisson(18); mean(t′1) > mean(t1),

mean(t′2) > mean(t2), mean(t′1) < mean(t′2)

The mean of the new time to reward for both actions increases. In the

new environment, the �rst arm is still the optimal one on average. Similar

to the case in the deterministic experiments, even though the rank of the

mean of the actual time to reward for the two actions has not changed, the

rank of the estimated mean of the time to reward by the learning agent

will change over time. At the beginning, the estimated mean of the time

to reward for the �rst action is smaller, so it is chosen more often and its

estimated mean of the time to reward therefore increases more quickly and

eventually becomes bigger than that for the second one. Then, the second

action is chosen more often, so its estimated mean of the time to reward

increases quicker and eventually becomes more than that for the �rst one.

The process will go on until the estimated mean of the time to reward for

at least one action converges.

166 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

4. Case 8: t′1 ∼ Poisson(18), t′2 ∼ Poisson(14); mean(t′1) > mean(t1),

mean(t′2) > mean(t2), mean(t′2) < mean(t′1)

Like the last case, the mean of the time to reward for both actions increases.

Unlike the last case, however, the second arm, the previous suboptimal arm,

becomes optimal on average in the new environment.

As before, the criterion used here to evaluate the performance of recovering

from environmental changes is to see how long it takes before the estimated

optimal action becomes correct for the new environment and becomes stable after

the environment changes. As �gure 5.22 shows, it takes TP/TPWG learning fewer

time steps than T learning to recover from environmental changes in all scenarios

similar to the results for deterministic environments. The smallest di�erence

(around half) in the time steps taken to recover from environmental changes

between TP/TPWG learning and T learning happens in Case 6. The di�erence

in the other three cases is much greater. Similar to the results for deterministic

environments, TP learning and TPWG learning perform almost the same in terms

of the speed in recovering from environmental changes for similar reasons. It is

also worth noting that it takes all three algorithms more time to recover from

environmental changes than in deterministic environments.

Figure 5.22: Time steps taken to recover from environmental changes after the
time to reward changes from Poisson(6) and Poisson(10); the amount of reward
for both arms (1) does not change.

In order to get the average performance of the algorithms, we also generate

5.5. STOCHASTIC ENVIRONMENTS 167

the mean of the Poisson distributions, from which the time to reward for arms

is drawn at every episode, randomly from an integer number discrete uniform

distribution once at the �rst episode and once at the 1001th episode similar to

what we have done in deterministic experiments. The amount of reward for both

arms is 1 all the time.

1. Case 9: t1 ∼ Poisson(λ1), λ1 ∼ IntegerDiscreteUniform(0, 100); t2 ∼
Poisson(λ2), λ2 ∼ IntegerDiscreteUniform(0, 100); t′1 ∼ Poisson(λ′1),

λ′1 ∼ IntegerDiscreteUniform(0, 100); t′2 ∼ Poisson(λ′2),

λ′2 ∼ IntegerDiscreteUniform(0, 100)

The mean of the Poisson distributions used to generate the time to reward

for the two arms is drawn both from an integer number discrete uniform

distribution ranging from 0 to 100 once at the beginning and once when the

environment changes. In this scenario, the mean of the time to reward for

both arms may become shorter, longer or stay the same (even though the

chance of which is very small). The rank of both arms on average may also

stay the same or change when the environment changes.

2. Case 10: t1 ∼ Poisson(λ1), λ1 ∼ IntegerDiscreteUniform(0, 50); t2 ∼
Poisson(λ2), λ2 ∼ IntegerDiscreteUniform(51, 101); t′1 ∼ Poisson(λ′1),

λ′1 ∼ IntegerDiscreteUniform(0, 50); t′2 ∼ Poisson(λ′2),

λ′2 ∼ IntegerDiscreteUniform(0, 50)

The mean of the Poisson distribution used to generate the time to reward for

the �rst arm is drawn from an integer number discrete uniform distribution

ranging from 0 to 50 once at the beginning and once when the environment

changes; the mean of the Poisson distribution used to generate the time

to reward for the second arm is drawn from an integer number discrete

uniform distribution ranging from 51 to 101 once at the beginning and from

an integer number discrete uniform distribution ranging from 0 to 50 once

when the environment changes. In this scenario, the mean of the time to

reward for the �rst arm may become shorter, longer or stay the same (even

though the chance of which is very small). The mean of the time to reward

for the second arm certainly decreases. The rank of both arms on average

changes from a certain rank to an uncertain rank when the environment

changes.

3. Case 11: t1 ∼ Poisson(λ1), λ1 ∼ IntegerDiscreteUniform(0, 50); t2 ∼

168 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

Poisson(λ2), λ2 ∼ IntegerDiscreteUniform(51, 101); t′1 ∼ Poisson(λ′1),

λ′1 ∼ IntegerDiscreteUniform(51, 101); t′2 ∼ Poisson(λ′2),

λ′2 ∼ IntegerDiscreteUniform(51, 101)

The mean of the Poisson distribution used to generate the time to reward

for the �rst arm is drawn from an integer number discrete uniform distri-

bution ranging from 0 to 50 once at the beginning and from an integer

number discrete uniform distribution ranging from 51 to 101 once when the

environment changes; the mean of the Poisson distribution used to gener-

ate the time to reward for the second arm is drawn from an integer number

discrete uniform distribution ranging from 51 to 101 once at the beginning

and once when the environment changes. In this scenario, the mean of the

time to reward for the �rst arm certainly increases and the mean of the

time to reward for the second arm may become shorter, longer or stay the

same (even though the chance of which is very small). The rank of both

arms on average changes from a certain rank to an uncertain rank when the

environment changes.

4. Case 12: t1 ∼ Poisson(λ1), λ1 ∼ IntegerDiscreteUniform(0, 50); t2 ∼
Poisson(λ2), λ2 ∼ IntegerDiscreteUniform(51, 101); t′1 ∼ Poisson(λ′1),

λ′1 ∼ IntegerDiscreteUniform(51, 101); t′2 ∼ Poisson(λ′2),

λ′2 ∼ IntegerDiscreteUniform(0, 50)

The mean of the Poisson distribution used to generate the time to reward

for the �rst arm is drawn from an integer number discrete uniform distri-

bution ranging from 0 to 50 once at the beginning and from an integer

number discrete uniform distribution ranging from 51 to 101 once when the

environment changes; the mean of the Poisson distribution used to gener-

ate the time to reward for the second arm is drawn from an integer number

discrete uniform distribution ranging from 51 to 101 once at the beginning

and from an integer number discrete uniform distribution ranging from 0

to 50 once when the environment changes. In this scenario, the mean of

the time to reward for the �rst arm certainly increases and the mean of the

time to reward for the second arm certainly decreases. The rank of both

arms on average changes from a certain rank to another certain rank when

the environment changes.

As �gure 5.23 shows, similar to the conclusions for deterministic environments,

TP/TPWG learning recovers from environmental changes faster than T learning

5.5. STOCHASTIC ENVIRONMENTS 169

in all experimental scenarios. However, it is worth noting that the results of

the three algorithms are very close in Case 9 and all are worse than those in

deterministic environments. Similar to the results for deterministic environments,

TP learning and TPWG learning perform almost the same in terms of the speed

in recovering from environmental changes for similar reasons.

Figure 5.23: Time steps taken to recover from environmental changes after the
time to reward changes; the amount of reward for both arms (1) does not change;
(a.) Case 9; (b.) Case 10; (c.) Case 11; (c.) Case 12

We then use Case 9 as a test bed to experiment on T learning and TP/TPWG

learning with di�erent initial learning rates (α0). The results are shown in 5.24.

Unlike the counterpart experiment in deterministic environments, the time steps

taken to recover from environmental changes by TP/TPWG learning do not

monotonically decrease when the initial learning rate increases. This is because in

stochastic environments a faster learning rate may cause the learning to become

unstable.

5.5.3 When the amount of reward for actions may be dif-

ferent and may also change

We �rst compare the training process of the three algorithms. The following two

cases are considered.

170 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

Figure 5.24: Time steps taken to recover from environmental changes with di�er-
ent initial learning rates; the mean of the Poisson distributions used to generate
the time to reward for the two arms is drawn both from an integer number dis-
crete uniform distribution ranging from 0 to 100 once at the beginning and once
when the environment changes; the amount of reward for both arms (1) does not
change.(a.) T learning (α = 0.1); (b.) TP/TPWG learning with α0 = 1.2; (c.)
TP/TPWG learning with α0 = 1.6; (d.) TP/TPWG learning with α0 = 2.0; (e.)
TP/TPWG learning with α0 = 2.4; (f.) TP/TPWG learning with α0 = 2.8.

5.5. STOCHASTIC ENVIRONMENTS 171

1. Case 1: t1 ∼ Poisson(6), r1 ∼ Poisson(6), t2 ∼ Poisson(10), r2 ∼ Poisson(10)

The second action is optimal on average in terms of the discounted reward,

but the di�erence between the two actions on average is relatively small.

2. Case 2: t1 ∼ Poisson(6), r1 ∼ Poisson(100), t2 ∼ Poisson(10), r2 ∼
Poisson(10)

The �rst action is optimal on average in terms of the discounted reward,

and the di�erence between the two actions on average is relatively big.

In Case 1, as �gure 5.25 shows, VP/VPWG learning learns Q values faster than

V learning due to a bigger learning rate when the estimated value is not correct,

which is usually the case at the beginning of learning. Because the di�erence in

Q values between the two actions is relatively small, giving up has not occurred

and therefore there is little di�erence between the three algorithms after learning.

When the di�erence in the Q value between the two actions increases, however,

giving up takes e�ect. As �gure 5.26 shows, VP learning performs better than

V/VPWG learning after the learning converges in terms of the discounted reward

received thanks to giving up when the di�erence in the Q value between actions

is big. On average, the discounted reward obtained through VP learning in one

episode after learning is a little more than, and also less noisy than, that obtained

through V/VPWG learning. Compared with the deterministic case, the result

is considerably noisier and the di�erence among the three algorithms is also less

apparent.

Next, we compare their performance in terms of recovering from environmental

changes. We experiment on the alorithms using the following two scenarios:

1. Case 3: t1 ∼ Poisson(λ1), λ1 ∼ IntegerDiscreteUniform(0, 100);

t2 ∼ Poisson(λ2), λ2 ∼ IntegerDiscreteUniform(0, 100);

t′1 ∼ Poisson(λ′1), λ
′
1 ∼ IntegerDiscreteUniform(0, 100);

t′2 ∼ Poisson(λ′2), λ
′
2 ∼ IntegerDiscreteUniform(0, 100);

q1 ∼ Poisson(λ3), λ3 ∼ IntegerDiscreteUniform(0, 100);

q2 ∼ Poisson(λ4), λ4 ∼ IntegerDiscreteUniform(0, 100);

q′1 ∼ Poisson(λ′3), λ
′
3 ∼ IntegerDiscreteUniform(0, 100);

q′2 ∼ Poisson(λ′4), λ
′
4 ∼ IntegerDiscreteUniform(0, 100)

The means of the Poisson distributions used to generate the time to reward

and the discounted reward for the two arms are independently drawn from

an integer number discrete uniform distribution from 0 to 100 inclusive

172 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

Figure 5.25: Comparison of the three algorithms during training; Case 1. (a.)
discounted reward received by V learning; (b.) the learning of Q values by V
learning; (c.) discounted reward received by VPWG learning; (d.) the learning
of Q values by VPWG learning; (e.) discounted reward received by VP learning;
(f.) the learning of Q values by VP learning.

Figure 5.26: Comparison of the three algorithms during training; Case 2. (a.)
discounted reward received V learning; (b.) discounted reward received VPWG
learning; (c.) discounted reward received VP learning.

5.6. CONCLUSIONS AND DISCUSSION 173

once at the beginning and once when the environment changes, and the

amount of reward is deduced from them. The reason why we generate the

discounted reward rather than the amount of reward for experiments is that

the discounted reward decides the optimal action and we use the last change

of the optimal action to measure the recovery time.

2. Case 4: t1 ∼ Poisson(6), r1 ∼ Poisson(10), t2 ∼ Poisson(10),

r2 ∼ Poisson(100);mean(t′1) = mean(t1), r
′
1 ∼ Poisson(100),

mean(r′1) > mean(r1),mean(t′2) = mean(t2),mean(r′2) = mean(r2)

The mean of the amount of reward for the �rst action increases and the

�rst action becomes the optimal action on average in the new environment

in place of the second one.

The �rst experiment tests their average performance. Similar to the results for

the deterministic experiment, as �gure 5.27 shows, both VP learning and VPWG

learning recover from environmental changes more than twice as fast as V learn-

ing. It is worth noting that, similar to the results for the deterministic experi-

ments, VPWG learning performs even better than VP learning for similar reasons.

In some scenarios the amount of reward for the suboptimal action increases and

the suboptimal action may become the optimal one. Due to giving up, it would

take VP learning longer to �nd the change. To demonstrate this, we especially

designed such a scenario, viz. Case 4. The result is shown in �gure 5.28. VP

learning with standard parameter settings performs worst of them. With the in-

crease in ε3 (the probability of exploring the amount of reward, viz. not giving up,

increases), the performance of VP learning improves. VPWG learning performs

best.

5.6 Conclusions and discussion

This chapter introduced the time delayed n-armed bandit problem, a simple prob-

lem with only one state but n actions, investigated possible implementations

of learning and perceiving the time to reward, and designed simple algorithms

speci�cally for this kind of reinforcement learning problems with only one state.

The problem was then used as a test bed to compare the standard time/value

174 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

Figure 5.27: Time steps needed to recover from environmental changes after both
the time to reward and the amount of reward change; Case 3.

Figure 5.28: Time steps needed to recover from environmental changes; Case 4.
(a.) V learning; (b.) VP learning, ε3 = 0.1; (c.) VP learning, ε3 = 0.5; (d.) VP
learning, ε3 = 1; (e.) VPWG learning.

5.6. CONCLUSIONS AND DISCUSSION 175

estimation reinforcement learning algorithms with time/value perception algo-

rithms. We have considered both deterministic environments and stochastic en-

vironments. In both kinds of environments, we initially considered only the cases

where the two arms have the same amount of reward but di�erent time to re-

ward, then the cases where the two arms have di�erent amounts of reward and

di�erent time to reward. In all cases, we compared the performance of these

learning algorithms in terms of the learning speed, the recovery speed from en-

vironmental changes, and the agent's performance after the learning converges.

The experimental results show that the idea of time perception or value percep-

tion has signi�cantly improved the performance of the learning agent in terms

of the learning speed (for both TP/VP and TPWG/VPWG learning), the re-

covery speed from environmental changes (for both TP/VP and TPWG/VPWG

learning) and the agent's performance after the learning converges (for TP/VP

learning only) in most of the experimental cases.

In the following subsections, we will discuss what policy the algorithms intro-

duced in this chapter learn, alternative models, and two modi�ed problems, viz.

when the reward may never come and when there is an energy/time limit.

5.6.1 On-policy or o�-policy

For T/TPWG and V/VPWG learning, they are on-policy learners, viz. they use

the same policy to update their estimation and make decisions (evaluate/improve

the same policy while following it). For both TP and VP learning, however, they

are not on-policy learners. For actions which are not given up, their time to

reward or values are learned on-policy. For actions which are given up, their time

to reward or values are learned o�-policy. This is because their estimated time

to reward or values are not updated when they are given up. In other words,

the policy used to make decisions contains giving up whereas the policy used to

update their estimation ignores giving up. It is worth pointing out, however, that

both TP and VP learning can be modi�ed to on-policy learners by updating the

estimation of a given-up action with the actual time to reward spent in this action

and other actions before a reward is received. For example, suppose the learning

agent gives a1 up t1 time steps after a1 is chosen. After giving up, suppose the

learning agent chooses a2 and then receives a reward t2 after a2 is chosen. In

o�-policy TP learning, the estimated time to reward for a1 is not updated and

only the estimated time to reward for a2 is updated in this episode. In on-policy

176 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

TP learning, however, the estimated time to reward for a1 is also updated with

t1 + t2.

It is worth noting the following two points about on-policy TP or VP learning.

Firstly, the estimated values of given-up actions are dependent on those of the non

given-up actions through which a reward is received. For the previous example,

the estimated time to reward for a1 is dependent on the actual time to reward for

a2. If the time to reward for a2 changes, the estimated time to reward for both a1

and a2 would become incorrect. In addition, we cannot demand that the time to

reward for actions should be correctly learned before giving them up for on-policy

TP or VP learning (unlike o�-policy TP or VP learning). Otherwise, it may cause

instability. For the previous example, suppose that the time to reward for a1 has

been correctly learned. When the learning agent gives up a1, the estimated time

to reward for a1 is updated with t1 + t2 which may be di�erent from the original

time to reward without giving up and therefore it is very likely that the estimated

time to reward for a1 would become incorrect. If so, the learning agent is not

allowed to give up a1 and another cycle of switching between giving up and not

giving up begins.

5.6.2 Alternative models

When the di�erence in the time to reward for actions is quite large, TP learning

improves the performance of the learning agent by giving up the current action

when it discovers that the action is still worse than the optimal action. Some may

argue that the improvement can also be made by allowing the learning agent to

make decisions whether or not to give up at every time step. This makes the

problem more complex. In fact, this has transformed a one-state problem into

a multiple-states problem as shown in �gure 5.29 for a 2-armed bandit problem.

The learning agent always starts in s1. From s1, if it chooses the �rst arm/action

(a1), it will enter s2; on the other hand, if it chooses the second arm/action a2, it

will enter s3. In both s2 and s3, it can choose to wait (a1) and stays in the state,

or can choose to give up (a2), and then goes back to s1 and remakes decisions.

When we use the standard Q learning on the new scenario where t1 = 6, t2 =

10, r1 = r2 = 1 and the parameters are as usual (α = 0.1, ε = 0.1, γ = 0.9), it

does not work very well as shown in �gure 5.30. Firstly, it takes a long time to

get the �rst reward. This is because, whether in s2 or s3, the learning agent has

an equal chance to give up and to wait at every time step initially thanks to the

5.6. CONCLUSIONS AND DISCUSSION 177

Figure 5.29: Modi�ed time delayed n-arm bandit problem with options to give
up at every time step; s: state; a: action; s1: the starting state; s2: the �rst arm;
s3: the second arm.

equal initial Q values of the two actions. If the learning agent chooses the �rst

action in s1 and enters s2, it has only the probability 0.55 to receive a reward

without giving up and has the probability 1 − 0.55 to give up before receiving

a reward. If the learning agent chooses the second action and enters s3, it has

even less probability to receive a reward without giving up. One way to solve

this problem is to give the learning agent a small penalty when it gives up. This,

however, would disadvantage giving up and make giving up less likely to happen

even when it should happen afterwards. Another way is to set the initial Q value

of the �rst action (wait) in both s2 and s3 bigger than that of the second action

(give up). This, however, would disadvantage giving up and make it hard for the

learning agent to learn the true Q value of the second action (give up). Secondly,

the learning is unstable. This is because it cannot di�erentiate one state at a

di�erent time step. The Q values of one state at a di�erent time step should be

di�erent. Take s3 as an example, at the �rst time step, it may be better to give

up to s1 and then choose the �rst action; but at the 9th time step, it is better

not to give up. It is worth pointing out that, when the time to reward for the

two arms increases, both problems will become more serious.

One way to solve the problems is to augment the states with time steps.

Previously, Q is associated with (s, a) pairs but now it is associated with (s, t, a)

178 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

triplets. The result is shown in �gure 5.31. Firstly, it still shares the problem

of taking a long time to get the �rst reward with the Q learning without time

augmentation. Secondly, after learning, though it is much better than the Q

learning without time augmentation, it is still worse than TP and even T/TPWG

learning shown in �gure 5.8. This is mainly due to non-greedy decision making.

Take s2 as an example, at every time step, the learning agent waits there with

probability 0.95 (viz. 1− ε
2
) after learning. But before the learning agent receives

a reward, the probability of giving up is 1− 0.955 = 0.23. Therefore, the learning

agent may give up several times before actually receiving a reward even when the

optimal action is chosen in s2 most of the time. Furthermore, it is not hard to

predict that the result would become even worse if the time to reward for the two

arms is longer because the probability of giving up increases when the time to

reward increases. As mentioned previously, non-greedy decision making, however,

is necessary in nonstationary environments. It is also worth noting that, when the

learning agent chooses the second action in s1 and enters s3, the learning agent

is more likely to give up at the �rst couple of time steps and less likely to give

up at the last couple of time steps due to the rank of Q values of the two actions

in s3. This is a desirable behaviour in stationary environments. In nonstationary

environments, however, this prevents the learning agent from detecting changes

in the environment. For instance, when the time to reward for the second arm has

decreased and become even less than that for the �rst arm, it would be di�cult

for the learning agent to detect, since the learning agent usually gives up the

second arm before receiving the new reward for the second arm. In contrast, our

algorithms always wait at least the estimated time to reward for the �rst arm if

the second arm is chosen. Therefore, they can quickly detect the change if the

second arm has become better than the �rst arm.

5.6.3 When the reward may never come

In the time delayed n-armed bandit problem discussed previously, the time to

reward may become shorter or longer than previously, but the reward will even-

tually come. In some cases, however, the reward may never come or is so delayed

that it is not worth waiting when the reward does not appear around the expected

time. For example, in a foraging scenario, it may be due to the exhaustion of

a foraging site (the environment has changed abruptly). Or, the destination of

the learning agent is somewhere in the south, but it goes north. In these cases,

5.6. CONCLUSIONS AND DISCUSSION 179

Figure 5.30: The learning process of Q learning during training in the new exper-
imental setting where the learning agent is able to make a decision of whether or
not to give up at every time step. (a.) the learning process; (b.) the zoomed-in
version of (a.).

Figure 5.31: The learning process of Q learning with time augmentation during
training in the new experimental setting where the learning agent is able to make
a decision whether or not to give up at every time step. (a.) the learning process;
(b.) the zoomed-in version of (a.).

180 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

the learning agent neither needs to compare with other actions nor needs to con-

sider the amount of reward to decide when it should give up the current action.

Suppose that the time to reward for a has been correctly learned. When the

reward does not come within T (a) + k
√
T_var(a), the reward may never come

and therefore the learning agent would give up a. It is worth noting, however,

that the learning agent would never know whether or not the reward will appear

in the near future unless it continues waiting and the `future' arrives.

As mentioned previously, animal experiments also show that animals have

the ability to learn the time to reward and would give up if the reward does not

appear for some time. For instance, the experiment by Brunner et al. [26] on

starlings showed that the rate of their pecking (active search of foods) peaked

when the time was close to the time of the reward; the starlings stopped pecking

about 1.5 times the inter-prey interval if they had not received any reward, and

abandoned the current patch and �ew to other patches 13s later.

5.6.4 When the energy budget is limited

In the previous experiments, there is no time/energy limit and the learning agent

can wait after taking one action as long as it wishes. Unfortunately, however, this

is not usually the case in the real-world. Firstly, every learning agent, whether bi-

ological or arti�cial, has a lifetime. The reward that comes after its lifetime means

little, if not nothing, to it. Secondly, there are usually even tighter time/energy

restrictions on them. For instance, predators cannot wait for prey without eating

any for too long, or they will die from hunger. Likewise, a battery-powered robot

cannot go without recharging for too long, or it will run out of battery. In this

subsection, we consider cases where the learning agent has an energy budget at

the beginning of every episode. After taking one action, its energy will elapse

over time. We also assume that the learning agent knows how much energy it

has at the beginning of every episode. This assumption is the usual case in the

real-world, though the learning agent may have only rough/noisy knowledge of

its energy instead of complete knowledge. Predators know how hungry they are

and how long they can bear without eating any food. A battery-powered robot

can also measure how much power is left in its battery.

The reward can be energy or an abstract value. If it is energy, a natural goal

of the learning agent is to maximise the energy gained minus the energy lost. If

it is an abstract value, a natural goal of the learning agent is to maximise the

5.6. CONCLUSIONS AND DISCUSSION 181

discounted value obtained within the energy limit. In some real-world problems,

the learning agent is required to come back to the starting point/ charging point

before it runs out of energy. If the reward is an abstract value, it is quite straight-

forward. The learning agent can only use half of its energy limit to explore and

has to leave another half to go back if the penalty for not being able to return

outweighs the potential reward, which is normally the case. This is because the

learning agent is de�nitely unable to return once it consumes more than half of

its energy, assuming that it costs the learning agent the same amount of energy

to go somewhere and come back. If the reward is energy, however, it becomes

more complicated, The learning agent may be able to use all its energy budget

for exploration and then uses the obtained reward energy to go back. But this is

risky because the learning agent may not be able to get the reward energy before

running out of energy. Furthermore, even if the learning agent can get the reward

energy, the quantity of the reward energy may not be enough to support it on the

return journey. The optimal policy depends on both the credit structure and the

experimental settings. For simplicity, we only consider cases where the reward is

an abstract value.

For the simplicity of analysis, we only consider the case of a 2-armed bandit

problem here. We �rst consider cases where both the amount of and the time

to reward are deterministic. The �rst arm has a reward of r1 units occurred

t1 time steps after being pushed and the second one has a reward of r2 units

occurred t2 time steps after being pushed. It is apparent that the learning agent

should choose the �rst action if r1 > r2 and t1 ≤ t2 and the second action

if r1 < r2 and t1 ≥ t2 regardless of the energy limit. Otherwise, the optimal

policy may depend on the energy limit. In addition, if the energy is enough

for the learning agent to get a reward for any action, the problem is equivalent

to that without energy limit: the learning agent just chooses the optimal one.

On the other hand, if the energy is not enough for the learning agent to get

a reward in any action, there is no di�erence in choosing any of these actions,

either. Furthermore, if the energy budget is enough for the optimal action, the

problem also becomes similar to, though not exactly the same as, not having an

energy limit: the learning agent just chooses the optimal one. Therefore, we only

consider cases where the action, whose time to reward is shorter, has a smaller

amount of reward and the energy budget is enough for the suboptimal action

to get a reward but not enough for the optimal action. Even in this case, if

182 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

the energy budget is deterministic, the learning agent with the standard value

estimation reinforcement learning algorithm, can still �nd the optimal action

with the energy budget and therefore can behave optimally. This is the beauty

of classical value estimation reinforcement learning algorithms.

For the above reasons, we consider a case which has a stochastic energy bud-

get and satis�es the above conditions. Speci�cally, the experimental scenario is

as follows. The �rst arm has a reward of 1 unit occurred 5 time steps after being

pushed and the second one has a reward of 2 units occurred 10 time steps after

being pushed. The energy of the learning agent is subject to a uniform distribu-

tion from 5 to 15 inclusive at the beginning of every episode and will decrease by

1 unit after each time step. Each episode ends either when a reward is received or

when the agent's energy is exhausted. The experiment is run 100 times to reduce

the in�uence of random noise. We experiment on three algorithms. The �rst al-

gorithm is called V1 learning, a standard value estimation reinforcement learning

algorithm which does not update its Q value when a reward is not received be-

fore the time limit. The second algorithm is called V2 learning, a standard value

estimation reinforcement learning algorithm, which updates its Q value with 0

when a reward is not received before the time limit. The last algorithm is called

VTP learning which combines V1 and TP/TPWG learning. It chooses the best

possible action whose reward is predicted to be able to reach with the energy

budget, viz. the estimated time to reward is less than the time/energy limit.

Suppose �rst that the learning agent has no time/energy limit at the beginning

of learning (the �rst 1000 episodes) so that it can fully learn the environment. It

is worth noting that we will remove this restriction later. The assumption seems

not realistic at �rst glance. But it is also usually the case in the real world. When

a child lion is under the training of its mother, it is not limited by its energy since

it can get extra energy from its mother.

As �gure 5.32 shows, V1 learning still considers the second arm as the optimal

action and therefore chooses it most of the time. Without the time/energy limit,

the second action is the optimal one. With the time/energy limit, however, the

second action is even worse than the �rst one on average. V2 learning correctly

identi�es the �rst arm as the optimal action and therefore chooses it most of the

time. VTP learning, however, chooses the second one when the learning agent

has enough energy to reach its reward and the �rst one otherwise. Therefore, the

learning agent with VTP learning can behave optimally whether it has enough

5.6. CONCLUSIONS AND DISCUSSION 183

energy or not. From �gure 5.32, we can also see VTP learning performs best

among the three.

Figure 5.32: The comparison of the three algorithms in terms of the value of
the discounted reward received. (a.) the value of the discounted reward received
in the Xth episode; (b.) the value of the discounted reward received in the
[1+100(X−1)]th episode. V1: a standard value estimation reinforcement learning
algorithm which does not update its Q value when the reward is not received
before the time limit; V2: a standard value estimation reinforcement learning
algorithm which updates its Q value with 0 when the reward is not received
before its energy is exhausted; VTP: Learn the time to reward which chooses the
best possible action whose reward is predicted to be able to be reached with the
energy.

The problem has become much easier with the above assumption that the

learning agent has no time/energy limit at the beginning of learning. But it may

not be true in some cases and therefore here we try to remove the assumption.

There should be little di�erence for V1 and V2 learning because they do not learn

the time to reward. For VTP learning which learns the time to reward, there may

be some di�culties in learning the true time to reward for the second arm due

to the energy limit. Therefore, we modify VTP learning in order that it �rst

chooses the �rst arm exclusively, and only updates its Q value and the time to

reward when a reward is received. When the time information for the �rst arm is

correctly learned, it then chooses the second arm exclusively and learns itsQ value

184 CHAPTER 5. TIME DELAYED N-ARMED BANDIT PROBLEM

and the time to reward as stated above. It is worth noting that, when the reward

does not come for many episodes in a row after a certain action is chosen, the

reward for the action is marked unreachable and we also consider that the time

information has been correctly learned. The process goes on until it learns the

time to reward for all arms correctly. Then, it will choose the optimal one when

the learning agent has enough energy to reach its reward, otherwise the second

optimal one when the learning agent has enough energy to reach its reward, and

so on. In case the environment changes, it should also explore suboptimal actions

with a small probability, if the actions have no chance of being taken otherwise.

We do experiments on the three algorithms in the same scenario but with

the assumption removed. As �gure 5.33 shows, the result is similar to the above

result as shown in �gure 5.32.

Figure 5.33: The comparison of the three algorithms in terms of the value of
the discounted reward received. V1: a standard value estimation reinforcement
learning algorithm which does not update its Q value when the reward is not
received before the time limit; V2: a standard value estimation reinforcement
learning algorithm which updates its Q value with 0 when the reward is not
received before its energy is exhausted; VTP: Learn the time to reward which
chooses the best possible action whose reward is predicted to be able to be reached
with the energy.

If the amount of and the time to reward are stochastic but the time/energy

limit is deterministic, V2 learning, which updates its Q value with 0 when the

reward is not received before its energy is exhausted, is still optimal. When

5.6. CONCLUSIONS AND DISCUSSION 185

the time limit/ energy budget is also stochastic, however, the problem becomes

more complex. The optimal policy may depend on the distributions of both the

time/energy limit and the time to reward. As a simple example, assume that r1,

r2 and t1 are deterministic, r1 < r2, and only t2 is stochastic. Also assume that

the optimal target is to maximise the undiscounted rewards. Then the learning

agent needs to learn the r1
r2

percentile point of t2 denoted as t2p. If the learning

agent has the time limit more than t2p or less than t1, it chooses the second action;

otherwise, it chooses the �rst action. This policy is optimal if r1, r2, t1 and t2p

have been learned correctly.

It is also possible that after the learning agent gets a reward from one arm, the

learning agent still has enough energy left to try another episode or even more.

In essence, one episode in this scenario is equivalent to a concatenation of several

episodes in the above scenario. So, we will not consider this scenario speci�cally.

In this subsection, we have shown that learning the time to reward can improve

the performance of the learning agent when the energy/time budget is limited.

Animal experiments [18] also show that animals make di�erent decisions on where

to forage depending on their energy budget at that time.

Chapter 6

Route �nder problem

In this chapter, the route �nder problem is �rst introduced. The algorithms

introduced in the last chapter are then extended to work with multiple states.

Next, the settings of experiments are discussed and the results of experiments

on these algorithms are presented. The last section concludes this chapter and

discusses related questions.

6.1 Introduction

In the last chapter, we studied the time delayed n-armed bandit problem which

has only one state. In this chapter, we study a problem with multiple states,

viz. the route �nder problem, which naturally extends the time delayed n-armed

bandit problem. In the time delayed n-armed bandit problem, the learning agent

makes a decision, takes the decision/action and then waits for a reward. In the

route �nder problem, however, after making one decision the learning agent may

need to make another or even more decisions before receiving a reward.

As �gure 6.1 illustrates, at every junction, the learning agent makes a decision

on which path to choose, just like which arm to choose in the time delayed n-

armed bandit problem. The length of each path varies similar to the time to

reward for each arm in the time delayed n-armed bandit problem, so it can also

be modelled as a semi-MDP by only modelling junctions as states in order to

speed up learning and planning. In addition, similar to the time delayed n-

armed bandit problem, we also treat the temporally extended actions or state

transitions as temporal abstractions of an underlying MDP. Therefore, the agent

has the option to change the course of the temporally extended actions or state

186

6.1. INTRODUCTION 187

transitions, in particular, to give up the current route at every time step before

reaching its destination, go back to any junctions that it has previous visited, and

then remake its choice. There is, however, one di�erence from the time delayed

n-armed bandit problem when the agent gives up the current action: the agent

has to consider the extra cost caused by giving up because it needs to walk back

to the junction to which it gives up. In other words, there is a cost to give up

the current action and also a cost to follow it. Both must be considered in order

to decide whether or not it is worthwhile to give up.

Figure 6.1: Illustration of a route �nder problem

In fact, we can consider that the route �nder problem is composed by a se-

quence of time delayed n-armed bandit problems. At every junction, the learning

agent makes a decision on one time delayed n-armed bandit problem.

In this problem, only junction states, denoted as J , are high abstraction of

states and have options. Since a normal action can also be considered as a

special case of an option because an option lasts one or more time steps whereas

a normal action lasts exactly one time step, we only consider options in these

junction states. An option, denoted as o, begins from one junction state and ends

at a neighbouring junction state or the destination state. Non junction states

except the destination state, denoted as N , are considered as part of options.

188 CHAPTER 6. ROUTE FINDER PROBLEM

In each junction state, denoted as sJ (sJ ∈ J), the agent chooses one from all

options available in sJ based on its normal policy π : J,O → [0, 1] where O is

a set of all options. After the agent selects one option, it follows another policy

πo : N,A → [0, 1] where A is a set of all actions available in the states N (viz.

follows or gives up the current path), until the option terminates, viz. when the

agent reaches one junction state again or the destination state. If it is not the

destination state, the agent chooses one from all options available in the state

based on its normal policy π similar to the above and another iteration begins.

On the other hand, if it is the destination state, the agent receives a reward,

denoted as r, and the current episode ends.

Suppose that the agent is in a junction state sJ ∈ J (viz. outside options)

at the ith time step. Then, the value of taking option o in sJ under policy π in

terms of the discounted return can be de�ned as

Qπ(sJ , o) = E(
n∑

k=i+1

γk−i−1rk) (6.1)

where n is the time step when the agent arrives at its destination, γ (0 ≤ γ ≤ 1)

is a parameter called the discount factor, and rk is the reward received at the kth

time step. In this problem, only when the agent reaches its destination will it

receive a reward r. Therefore, the above equation can be further simpli�ed as

Qπ(sJ , o) = E(γn−i−1r). (6.2)

On the other hand, if the agent is in a non junction state sN ∈ N (viz. inside

an option) at the ith time step, the value function for sN under policy πo in terms

of the discounted return can be de�ned as

V πo(sN) = E(
n∑

k=i+1

γk−i−1rk) (6.3)

Similarly, the above equation can also be further simpli�ed as

V πo(sN) = E(γn−i−1r). (6.4)

Instead of its maximising the discounted return, another natural goal of the

agent is to walk from the starting point to the end point in the shortest time, viz.

6.1. INTRODUCTION 189

to minimise the expected time to reward, which is used in this thesis.

Suppose that the agent is in a junction state sJ ∈ J (viz. outside options)

at the ith time step and it takes the agent tsJ ,o to reach its destination after an

option o is taken in the state. Then, the value of taking option o in sJ under

policy π with this criterion can be de�ned as

Qπ(sJ , o) = E(tsJ ,o). (6.5)

On the other hand, if the agent is in a non junction state sN ∈ N (viz. inside

an option) at the ith time step and it takes the agent tsN to reach its destination

from the state, the value function for sN under policy πo with this criterion can

be de�ned as

V πo(sN) = E(tsN) (6.6)

At �rst glance, this problem seems like the single-source shortest-path prob-

lem [169] in a weighted graph with nonnegative weights, which can e�ectively be

solved by Dijkstra's algorithm [170]. But the algorithm assumes that all vertexes

and routes are known, and their weights/lengths are deterministic and stationary.

In the problem we discuss here, however, the learning agent does not know the

routes in advance and needs to explore them �rst. Furthermore, the length of

paths may be stochastic and may also change over time. Therefore, a reinforce-

ment learning algorithm is suitable for this problem.

Similar to the time delayed n-armed bandit problem, when the environment

changes, it may be better to increase the learning rate in order to learn the change

quickly and to increase the exploration rate (e.g. ε for ε-greedy) in order to in-

crease the chance that suboptimal actions are visited if any suboptimal action

has improved and can potentially become the optimal action in the new envi-

ronment. When the environment does not change, on the other hand, it may

be better to decrease the learning rate in order for the estimated value to con-

verge to its true value and to decrease the exploration rate in order to reduce

the cost of exploring suboptimal actions. Likewise, when the lengths of routes

vary greatly, the learning agent may bene�t from giving up the current route in

order to avoid longer than necessary exploration if it has already found that the

current route is still worse than the optimal one. However, the analysis becomes

much more complex because this problem has more than one state. Even if the

length of every route is deterministic, the estimated value of every state-action

190 CHAPTER 6. ROUTE FINDER PROBLEM

pair is stochastic because the learning agent may make di�erent decisions at the

same junction due to the non-greedy decision making. Furthermore, some states

far away from the starting point are seldom visited and their estimated values

may be incorrect all the time. Using this more complex problem, we would like

to �nd out if the idea of learning and perceiving the time to reward, which works

very well in the relatively simple time delayed n-armed bandit problem, can still

work well in more complex problems.

Here, we only consider cases where there is only one destination (reward). In

addition, we further assume that the walking speed of the learning agent is the

same everywhere, so we can still learn the time to reward instead of the length

of routes. With these conditions, T learning and TP/TPWG learning introduced

in the last chapter, if extended to multiple states, are su�cient to solve this

problem.

6.2 Algorithms

In this section, we introduce a Monte Carlo method to learn the time to reward

and another Monte Carlo method to learn and perceive the time to reward. The

notation used to describe algorithms is summarised in table 6.1.

From the experimental results of the last chapter, we know that there is little

di�erence between TP and TPWG learning or between VP and VPWG learning

in terms of the learning speed and the recovery speed from environmental changes.

TP or VP performs better than TPWG/VPWG learning in terms of the agent's

performance after the learning converges only when the di�erence in the time to

reward for actions or in the values of actions is great. Thus, we only extend TP

learning to work with multiple states in this chapter.

Table 6.1: Summary of notation used to describe algorithms for the route �nder

problem

Notation Meaning

S set of possible states

s any state ∈ S
sc the current state

6.2. ALGORITHMS 191

s1 the initial state

sg the state to which it should give up; 0 (no state) if it

should not give up

A(s) set of possible actions in state s

a any action in one state

A(s)\a set of actions except action a in the state s

ac the current action

a∗(s) the optimal action in s in terms of the agent's crite-

rion of optimality

ag the action the agent will choose after giving up

α learning rate, 0 < α ≤ 1, a scalar with �xed value for

MCT learning and a function of state-action pairs for

MCTP learning

α0, δ, η parameters used to calculate α for MCTP learning

α2(s, a) learning rate speci�cally used to learn the variance of

the time to reward for (s, a), 0 < α2 ≤ 1

α2max, α2min the maximum/minimum of α2

ε random parameter to explore suboptimal actions, 0 ≤
ε ≤ 1, a scalar with a �xed value for MCT learning

and a function of states for MCTP learning

εmax, εmin the maximum/minimum of ε

φ parameter used to calculate ε for MCTP learning

ε2 random parameter to decide whether to explore the

current action longer than usual; with probability ε2
2
,

explore the current action longer than usual, 0 ≤ ε2 ≤
1

trackList a list storing all state-action pairs visited in the cur-

rent episode

t(s, a) discrete time step elapsed since state-action pair (s, a)

is visited

192 CHAPTER 6. ROUTE FINDER PROBLEM

T (s, a) estimated mean of the time to reward for state-action

pair (s, a)

T_var(s, a) estimated variance of the time to reward for state-

action pair (s, a)

k the size of the expectation window ranging from

T (s, a)−k
√
T_var(s, a) to T (s, a)+k

√
T_var(s, a)

count_correct(s, a) the number of times/episodes in a row that the ac-

tual time to reward for state-action pair (s, a) is cor-

rectly estimated; whether or not they are correctly

estimated is judged by algorithms.

threshold(s, a) the time step after which the agent should give up

(s, a)

action_forCmp(s, a) the action which the agent uses to compare with a in

s; 0 (viz. no action) if no action is eligible

flag_correctEst(s, a) a Boolean storing the information about whether or

not the time to reward for state-action pair (s, a) is

correctly estimated judged by algorithms

flag_correctCmp(s, a) a Boolean storing the information about whether or

not a can be used to compare with other actions in s

judged by algorithms

6.2.1 Monte Carlo methods

The time estimation algorithm introduced in the last chapter is designed to work

with only one state. The Monte Carlo method to be introduced in this subsection

is a natural extension of the algorithm in order to work with multiple states. Like

the time estimation algorithm, it also learns the estimated time to reward from

experiences or samples and then updates the estimated time only at the end

of an episode. Furthermore, the estimated time is also used to make decisions.

But unlike the time estimation algorithm, the estimated time to reward in the

Monte Carlo method is associated with state-action pairs rather than just actions

because there may be more than one state in every episode. For the same reason,

a track list is used to record all state-action pairs visited during one episode and a

timer for each state-action pair in the track list is used to record how far/long the

learning agent has gone since the visit to that particular state-action pair. After

an episode ends, the timer information is used to update the estimated time to

6.2. ALGORITHMS 193

reward for all of the state-action pairs in the track list incrementally.

The �nal algorithm of the Monte Carlo method for this problem is shown in

algorithm 9. Please refer to table 6.1 for the meaning of notation used in the

algorithm. Originally, the track list is empty. When a junction is encountered,

the learning agent uses a non-greedy policy to choose one action from all actions

available in this state with respect to their estimated time to reward. Then the

state and the chosen action pair is added to the track list if it has not yet been

in the list. Next, the learning agent moves forward one step along the chosen

action/path and the timer of all state-action pairs in the track list is increased

by one time step. The process will repeat until the learning agent arrives at

the destination, signalling the end of an episode. At the end of one episode, the

estimated time to reward for all state-action pairs in the track list is updated

with their timer information (their actual time to reward) incrementally. It is

worth noting that this algorithm is not our original contribution but a standard

Monte Carlo algorithm to learn the time to reward.

Algorithm 9 A Monte Carlo method to learn the time to reward (MCT)

Inputs: T , s1; Outputs: T ; Parameters: α, ε; Internal variables: t,
trackList
for all episode do
sc = s1, trackList = [], t = 0
repeat
if the learning agent arrives at a junction (sc) then
Choose ac from all possible actions in s using a non-greedy policy derived
from T (sc, :) (e.g., ε-greedy, minimum T priority); then take action ac
if (sc, ac) is not already in trackList then
add (sc, ac) to trackList

end if
end if
The learning agent moves forward one step
For all (s, a) in trackList, t(s, a)← t(s, a) + 1

until the learning agent arrives at its destination
For all (s, a) in trackList, T (s, a)← T (s, a) + α {t(s, a)− T (s, a)}

end for

6.2.2 Monte Carlo methods with time perception

Just like algorithm 9 extending the time estimation algorithm, the algorithm to

be discussed in this section extends the algorithm of learning and perceiving the

194 CHAPTER 6. ROUTE FINDER PROBLEM

time to reward in last chapter in order to work with multiple states. As shown in

algorithm 10, it uses Monte Carlo methods to learn both the mean and variance

of the time to reward, and then uses the learned time information to detect

environmental changes and decide when to give up the current state-action pair.

As shown in algorithm 11, if an environmental change is detected twice in a

row, the learning rate is increased in order to learn the change quickly and the

exploration rate (e.g. ε for ε-greedy) is increased in order to increase the chance

that suboptimal actions are visited if one suboptimal action has improved and

can potentially become the optimal action in the new environment; otherwise, the

learning rate is decreased gradually towards 0 in order for the estimated mean

of the time to reward to converge to its true mean and the exploration rate is

also decreased gradually towards its minimum value in order to reduce the cost

of exploring suboptimal actions. As shown in algorithm 12, if the learning agent

has found that the current action is still worse than the optimal one, it gives up

the action in order to avoid longer than necessary exploration.

Algorithm 10 is similar to algorithm 9 except that it also learns the variance

of the time to reward and then uses the time information (both the mean and

variance) to detect environmental changes and to decide when to give up the

current action in order to avoid longer than necessary exploration. Algorithm 11

and algorithm 12 are also very similar to their counterpart algorithms 3 and 4 in

the last chapter except that they augment all parameters and values with states

since this problem has multiple states.

Speci�cally, when the actual time to reward t(s, a) of the state-action pair

(s, a) is outside T (s, a)± k
√
T_var(s, a) where T (s, a) and T_var(s, a) are the

sample mean and variance of the time to reward for the state-action pair (s, a),

we consider that the time to reward for the state-action pair (s, a) has changed.

If this happens twice in a row, a bigger learning rate is used to update T (s, a)

in order to learn the change quickly. Otherwise, the learning rate is decreased

gradually towards 0 in order for the estimated value to converge to the true value.

When the actual time to reward t(s, a) of the state-action pair (s, a) is less than

T (s, a)−k
√
T_var(s, a), we consider that the time to reward for the state-action

pair (s, a) has become shorter. If so and also a is one suboptimal action in s and

t(s, a) < T (s, a∗), which means that a may have become the optimal action in s in

the new environment, ε(s) will be increased so that a can be explored more often.

Otherwise, the exploration rate is decreased gradually towards its minimum value

6.3. EXPERIMENTAL SETTINGS 195

in order to reduce the cost of exploring suboptimal actions.

At every time step, the learning agent also checks whether it should give

up the current action in order to avoid longer than necessary exploration. It is

worth pointing out that if the time to reward for all state-action pairs has been

correctly learned, the learning agent can not only detect when it should give up

the current action but also �nd to which state it should give up by comparing

the elapsed time since the visit to one action in one state with its estimated time

to reward and with the estimated time to reward for other actions in the state.

It checks all state-action pairs in the track list from the last to the �rst. One

reason why it checks from the last to the �rst is that the cost of giving up to a

latter visited state is smaller than giving up to an earlier visited state. Another

reason is that the chance of giving up to a latter visited state is usually greater

than that of giving up to an earlier visited state. Normally, the closer to the

reward the less there is variation in the values of the state-action pair. For each

state-action pair (s, a), it �rst checks if there exists any action (a′ ∈ A(s)\a)
in the state (s) that has the correct estimated time to reward for comparison

(viz. flag_correctCmp(s, a′) = TRUE). If there is none, it will not give up

the current action. On the other hand, if there is any, it �nds the action (a′′)

which has the shortest estimated time to reward among all these actions. It will

not give up unless the estimated time to reward for the state-action pair (s, a)

is more than triple the estimated time to reward for the compared state-action

pair (s, a′′). If this condition is satis�ed, most of the time, the learning agent

only explores (s, a) for T (s, a′′) when (s, a) is chosen; But at times, it explores

the pair for 3T (s, a′′) just in case the time to reward for (s, a) has become less

than 3T (s, a′′). When T (s, a) < 3T (s, a′′), the learning agent is expected to get

a reward in less than 3T (s, a′′) if it does not give up and in 3T (s, a′′) if it gives

up after a is chosen in s. Therefore, it is better not to give up in this case.

6.3 Experimental settings

Each experiment, except the experiments with random data, is run 100 times to

reduce the in�uence of random noise. When we experiment on the algorithms

with random data, we generate 100 random cases and each case is only run once.

In addition, these cases are generated in advance and then used for all algorithms

to make the experimental comparison fair.

196 CHAPTER 6. ROUTE FINDER PROBLEM

Algorithm 10 A Monte Carlo method to learn and perceive the time to reward
(MCTP)

Inputs: T , T_var, s1; Outputs: T , T_var
Parameters: k, εmin; Internal variables: sc, ac, ag, t, trackList, ε (initial
value: εmin), count_correct (initial value: 0), threshold (initial value: ∞),
action_forCmp (initial value: 0), flag_correctEst (initial value: FALSE),
flag_correctCmp (initial value: FALSE)
for all episode do
Initialise trackList = [], t(s, a) = 0 for all (s, a) pairs, ag = 0, sc = s1
repeat
if the learning agent arrives at a junction (sc) then
if ag 6= 0 then
ac = ag, ag = 0

else
Choose ac from all possible actions in sc using a non-greedy policy
derived from T (sc, :) (ε-greedy, minimum T priority)

end if
if (sc, ac) is not already in trackList then
add (sc, ac) to trackList,
use algorithm 12 to calculate threshold(sc, ac)

end if
end if
For all (s, a) in trackList, t(s, a)← t(s, a) + 1
for all (s, a) in trackList do
if t(s, a) > T (s, a) + k

√
T_var(s, a) then

flag_correctEst(s, a) = flag_correctCmp(s, a) = FALSE
Use algorithm 12 to recalculate the threshold of the actions (a′ ∈
A(s)\a) where action_forCmp(s, a′) = a

end if
end for
for all (s, a) in trackList from the end to the beginning do
if flag_correctEst(s, a) = TRUE AND t(s, a) > threshold(s, a) then
sc = s, ag = action_forCmp(s, a) {Give up to s and then choose ag}

Reset t of the state-action pairs in trackList ranging from (s, a) to
the last pair, and remove these pairs from trackList; for state-action
pairs in trackList before (s, a), increase their timer by t(s, a)
break

end if
end for

until the learning agent arrives at its destination
Use algorithm 11 to update the model

end for

6.3. EXPERIMENTAL SETTINGS 197

Algorithm 11 Update the model used by algorithm 10

Inputs: T , T_var, t, ε, count_correct, trackList
Outputs: flag_correctEst, flag_correctCmp, T , T_var, ε, count_correct
Parameters: α0, α2max, α2min, εmax, εmin, φ, k, δ, η; Internal variables: α,
α2, a

∗(s), Told
for all (s, a) in trackList do

flag_correctCmp(s, a) =

{
TRUE t(s, a) ≤ T (s, a) + k

√
T_var(s, a)

FALSE otherwise

if T (s, a)− k
√
T_var(s, a) ≤ t(s, a) ≤ T (s, a) + k

√
T_var(s, a) then

flag_correctEst(s, a) = TRUE, α2(s, a) = α2max,
count_correct(s, a)← count_correct(s, a) + 1

else
flag_correctEst(s, a) = FALSE, α2(s, a) = α2min

if this happens twice in a row then
count_correct(s, a) = 0

end if
end if
α(s, a) = α0

(count_correct(s,a)+1+δ)η

if a is not the optimal action then
if t(s, a) < T (s, a)− k

√
T_var(s, a) AND t(s, a) < T (s, a∗) then

ε(s) = ε(s) + φ [εmax − ε(s)]
else
ε(s) = ε(s) + φ [εmin − ε(s)]

end if
end if
{Update the estimation}
Told(s, a) = T (s, a); T (s, a)← T (s, a) + α(s, a) [t(s, a)− T (s, a)]
T_var(s, a)← T_var(s, a) +α2(s, a){[t(s, a)−Told(s, a)][t(s, a)−T (s, a)]−
T_var(s, a)}

end for

198 CHAPTER 6. ROUTE FINDER PROBLEM

Algorithm 12 Calculate when it should give up used by algorithm 10

Inputs: T , flag_correctCmp, (s, a), A(s)
Outputs: threshold, action_forCmp
Parameters: ε2; Internal variables: a

′, A′, a′′

if ∃a′ ∈ A(s)\a satisfying flag_correctCmp(s, a′) = TRUE then
use A′ to represent the set of all a′, a′′ = arg min

a′∈A′
[T (s, a′)]

action_forCmp(s, a) = a′′

if T (s, a) ≤ 3T (s, a′′) then
threshold(s, a) =∞

else

threshold(s, a) =

{
T (a′′) with probability 1− ε2/2
3T (a′′) with probability ε2/2

end if
else
action_forCmp(s, a) = 0, threshold(s, a) =∞

end if

Like previous experiments, we consider that the learning has converged if the

behaviour of the learning agent does not change afterwards and we consider that

the learning has recovered from environmental changes if the learning agent can

behave correctly in the new environment. However, there are two things worth

considering. Firstly, because there is more than one state in this problem, some

state-action pairs are seldom visited in some cases. For instance, as �gure 6.1

illustrates, if the �rst action in all states is the optimal action, in one episode, the

chance that the second action in s1 is taken is ε/2, the chance that the second

action in s2 is taken is ε2/4, the chance that the second action in s3 is taken

is ε3/8 and so on. It would take a long time if we require the behaviour of the

learning agent in every state to be correct. Secondly, the optimal behaviour of

the learning agent also depends on its policy. In this problem, for instance, the

optimal path for a greedy learner is just the shortest path whereas the optimal

path for a non-greedy learner is not necessarily the shortest path. For example,

in the cli�-walking task [2], the optimal behaviour for a non-greedy learner is not

to follow the shortest path which is close to the cli� but to follow a longer path

which is far away from the cli�. For the same reason, the optimal path for a

non-greedy learner with giving up may also be di�erent. Therefore, we consider

that the learning has recovered from environmental changes if the optimal route

decided by its estimated values is the correct one with respect to its policy and

does not change afterwards.

6.4. EXPERIMENTAL RESULTS 199

Notation Meaning
x1, x2, x3, x4, y1, y2, y3, y4 the length of paths shown in �gure 6.1 before

the environment changes
x′1, x

′
2, x
′
3, x
′
4, y
′
1, y
′
2, y
′
3, y
′
4 the length of the above paths after the envi-

ronment changes

Table 6.2: Summary of notation used to describe experimental scenarios for the
route �nder problem

In order to make the experiments tractable, we use a route �nder problem

with 4 junctions and 2 actions in each junction as �gure 6.1 shows. The settings

of parameters used in the following experiments are as follows where applicable.

α = 0.1, α0 = 1.2, α2min = 0.002, α2max = 0.01, ε = 0.1, εmin = 0.1, εmax = 1, ε2 =

0.1, φ = 0.1, γ = 0.9, k = 3, δ = 3, η = 1. Initialise T (s, a) = 0, T_var(s, a) =

0, action_forCmp(s, a) = 0, threshold(s, a) = ∞, flag_correctEst(s, a) =

FALSE, flag_correctCmp(s, a) = FALSE, count_correct(s, a) = 0 for all

(s, a) pairs.

6.4 Experimental results

In this section, we compare the performance of the Monte Carlo method to learn

the time to reward with that of the Monte Carlo method to learn and perceive the

time to reward in terms of the learning speed, the recovery speed from environ-

mental changes, and the agent's performance after the learning converges in both

deterministic environments and stochastic environments. Deterministic environ-

ments are considered in section 6.4.1 and stochastic environments are considered

in section 6.4.2.

In order to facilitate the description of the experimental scenarios, we intro-

duce more notation as shown in table 6.2.

6.4.1 Deterministic environments

In this subsection, we carry out experiments in environments where the length

of every path is deterministic but may change over time. We �rst compare the

training process of the two algorithms.

1. Case 1: x1 = x2 = x3 = x4 = y1 = y2 = y3 = y4 = 10

The length of all paths is equal. This, however, does not mean that each

200 CHAPTER 6. ROUTE FINDER PROBLEM

route is equal due to the topology of the graph. The shortest route in this

case is (s1, a1) and its length is 10.

2. Case 2: x1 = x2 = x3 = x4 = 100, y1 = y2 = y3 = y4 = 10

The shortest route is (s1, a2)→ (s2, a2)→ (s3, a2)→ (s4, a2) and its length

is 40. The di�erence in the time to reward between actions in one state is

relatively great.

3. Case 3: x1 = x2 = x3 = x4 = 10, y1 = y2 = y3 = y4 = 100

In this case, (s1, a1) is the shortest route and its length is 10. The di�erence

in the time to reward between actions in one state is relatively great.

4. Case 4: x1 = x2 = x3 = x4 = 100, y1 = y2 = y3 = y4 = 2

The shortest route is (s1, a2)→ (s2, a2)→ (s3, a2)→ (s4, a2) and its length

is 8. This case is similar to Case 2, but the di�erence in the time to reward

between actions in one state is even greater.

5. Case 5: x1 = x2 = x3 = x4 = 2, y1 = y2 = y3 = y4 = 100

(s1, a1) is the shortest route and its length is 2. This case is similar to Case

3, but the di�erence in the time to reward between actions in one state is

even greater.

6. Case 6: x1 = 40, x2 = 30, x3 = 20, x4 = 10, y1 = y2 = y3 = y4 = 10

In this scenario, there is no di�erence in the time to reward between actions

in all states.

In Case 1, as �gure 6.2 shows, MCTP learning learns faster than MCT learning

in terms of both the time steps taken to get one reward and the learning of T

values due to an increased learning rate when the estimated value is not correct,

which is usually the case at the beginning of learning. Because the di�erence

in the time to reward between actions in all states is relatively small, giving up

only occurs when the learning agent chooses the second action in all �rst three

states. The chance that this situation happens is very small because the second

actions in the �rst three states are all suboptimal actions. Therefore giving up

seldom occurs in this scenario. This explains why the two algorithms behave

similarly after the learning converges. When the di�erence in length between

routes increases, however, giving up takes e�ect. As �gure 6.3 for Case 2 and

�gure 6.4 for Case 3 show, it takes MCTP learning fewer time steps to reach its

6.4. EXPERIMENTAL RESULTS 201

destination than MCT learning after the learning converges in both scenarios. It

is worth noting that, in �gure 6.3, it takes MCTP learning more time to converge

in this scenario. This is because at the beginning of the learning, the learning

agent is more likely to go through suboptimal paths in this scenario, which causes

incorrect estimation of T (1, 2), T (2, 2) and even T (3, 2). Because MCTP learning

has a faster learning rate when the estimated value is not correct, its estimation

of T (1, 2), T (2, 2), T (3, 2) is further away from their true value and therefore it

takes longer to correct the mistake. Comparing �gure 6.3 (b.) and (d.), we can

see that for MCTP learning, T (1, 2), T (2, 2) and T (3, 2) increase more quickly at

the beginning and therefore need more time to drop back afterwards than those

for MCT learning.

To further compare the performance of the two algorithms in terms of the time

steps taken to reach the destination after the learning converges, we calculate

the average time steps to get one reward by the two algorithms in the last 100

episodes in the above six scenarios. The results are shown in �gure 6.5. In Case

6, giving up does not occur and therefore there is no di�erence between the two

algorithms. In Case 1, giving up seldom occurs as discussed above and therefore

MCTP learning is only marginally better than MCT learning. In Case 2 and Case

3, the di�erence in length between paths increases, giving up occurs more often

and therefore MCTP learning is apparently better than MCT learning. In Case

4 and Case 5, the di�erence in the length between paths becomes even greater,

giving up can save more time and therefore MCTP learning is much better than

MCT learning.

We also do an interesting experiment using a scenario similar to the cli�-

walking task [2].

1. Case 7: x1 = 16, x2 = x3 = x4 = 100, y1 = y2 = y3 = y4 = 2

Like the cli�-walking task, the shortest route in this scenario is not necessar-

ily the optimal route for a non-greedy learning agent because a non-greedy

learning agent may easily enter a much worse situation if it follows the

shortest route. But unlike the cli�-walking task, the learning agent in this

scenario can still reach its destination and also has opportunities to go back

even if it enters such a situation.

We experiment on standard Q learning, MCT learning and MCTP learning in

this scenario. The settings for MCT learning and MCTP learning are the same

as for previous experiments. For Q learning, the state representation is the same

202 CHAPTER 6. ROUTE FINDER PROBLEM

Figure 6.2: Comparison of the two algorithms during training; ; Case 1. (a.) time
steps taken to get the Xth reward by MCT learning; (b.) same with (a.), but
only shows the �rst 100 episodes; (c.) the learning of T values by MCT learning;
(d.) time steps taken to get the Xth reward by MCTP learning; (e.) same with
(d.) but only shows the �rst 100 episodes (f.) the learning of T values by MCTP
learning.

6.4. EXPERIMENTAL RESULTS 203

Figure 6.3: Comparison of the two algorithms during training; Case 2. (a.) time
steps taken to get the Xth reward by MCT learning; (b.) the learning of T values
by MCT learning; (c.) time steps taken to get the Xth reward by MCTP learning;
(d.) the learning of T values by MCTP learning.

204 CHAPTER 6. ROUTE FINDER PROBLEM

Figure 6.4: Comparison of the two algorithms during training; Case 3. (a.) time
steps taken to get the Xth reward by MCT learning; (b.) the learning of T values
by MCT learning; (c.) time steps taken to get the Xth reward by MCTP learning;
(d.) the learning of T values by MCTP learning

6.4. EXPERIMENTAL RESULTS 205

Figure 6.5: Comparison of the two algorithms in terms of the average time steps
to get one reward in the last 100 episodes. (a.) Case 6; (b.) Case 1; (c.) Case 2;
(d.) Case 3; (e.) Case 4; (f.) Case 5.

206 CHAPTER 6. ROUTE FINDER PROBLEM

and the parameters are as usual (α = 0.1, ε = 0.1, γ = 0.9). As �gure 6.6 shows,

Q learning performs the worst of the three. This is because Q learning, as an

o�-policy learner, chooses to follow the shortest route most of time and, due to its

non-greedy decision making, it is very likely that it may deviate from the shortest

route and enter one path with length 100 before it reaches its destination. MCT

learning performs better than Q learning. As an on-policy learner, MCT learning

chooses the �rst action in the �rst state most of time and avoids the risky shortest

route. MCTP learning performs the best of the three. Like Q learning, it also

chooses to follow the shortest route most of time. But unlike Q learning, it would

give up to the previous junction if it has found that the current path is still worse

than the optimal one after it enters a path with length 100 and would therefore

avoid being trapped in suboptimal paths for too long.

Figure 6.6: Comparison of the three algorithms in terms of the average time steps
to get one reward after the learning converges; x1 = 16, x2 = x3 = x4 = 100, y1 =
y2 = y3 = y4 = 2.

Next, we compare their performance in terms of the recovery speed from an en-

vironmental change. In this problem, there is more than one state. As mentioned

previously, it would take a very long time to learn the values of all state-action

pairs correctly. For limited episodes, the degree to which the learning agent has

6.4. EXPERIMENTAL RESULTS 207

learned may be di�erent for di�erent learning algorithms, which would in turn

a�ect their performance in terms of the recovery speed from an environmental

change. It is not hard to image that the better the learning agent learns the old

environment the longer it may take the learning agent to unlearn the old environ-

ment and then learn the new environment. Therefore, in addition to using the

same algorithm for both training and recovery, we also use a common algorithm,

e.g. MCT learning, to learn the old environment �rst and then use the two al-

gorithms to recover from the environmental change so that we can eliminate the

in�uence of the training on the performance of recovery from an environmental

change. We consider the following three scenarios.

1. Case 8: x1 = x2 = x3 = x4 = 100, y1 = y2 = y3 = y4 = 10, x′1 = x′2 = x′3 =

x′4 = 10, y′1 = y′2 = y′3 = y′4 = 100

At the beginning, the shortest route is (s1, a2) → (s2, a2) → (s3, a2) →
(s4, a2). In this environment, the optimal action in the last state is the

second action. The optimal action in the �rst three states, however, depends

on the policy of the learning agent. If the learning agent chooses the second

action most of time in all states, the second action in the �rst three states is

also the optimal action. Otherwise, the �rst action in the �rst three states

is the optimal action because x1 < y1 +x2;x2 < y2 +x3;x3 < y3 +x4. When

the environment changes, (s1, a1) becomes the new shortest route. In the

new environment, the �rst action in all states is the optimal action.

2. Case 9: x1 = x2 = x3 = x4 = 10, y1 = y2 = y3 = y4 = 100, x′1 = x′2 = x′3 =

x′4 = 100, y′1 = y′2 = y′3 = y′4 = 10

This case is just the opposite to the �rst case. If an algorithm can cope

well with the environmental change in the �rst case, it does not mean that

it is good at handling environmental changes because it may be its special

features that enable it to recover from that particular kind of environmental

change very quickly. If so, however, it should perform particularly badly if

a contrary environmental change occurs. This scenario tests if this is the

case.

3. Case 10: x1, x2, x3, x4, y1, y2, y3, y4, x
′
1, x
′
2, x
′
3, x
′
4, y
′
1, y
′
2, y
′
3, y
′
4

∼ IntegerDiscreteUniform(1, 101)

The length of each path is drawn from an integer number discrete uniform

distribution ranging from 1 to 101 once at the beginning and once when

208 CHAPTER 6. ROUTE FINDER PROBLEM

the environment changes. In this scenario, the length of each path can be

di�erent and can become shorter, longer or stay the same (even though the

chance of which is very small) when the environment changes. The shortest

route or optimal route (these two paths can be di�erent depending on the

policy of the agent) may also stay the same or change when the environment

changes. This scenario is used to test the average performance of the two

algorithms.

As �gure 6.7 shows, when the same algorithm is used for both training and

recovery, MCTP learning recovers from the environmental change slightly quicker

than MCT learning in Case 8, apparently quicker than MCT learning in both Case

9 and Case 10. When MCT learning is used for training in both experiments,

however, MCTP learning recovers from the environmental change much quicker

than MCT learning in all the three cases.

Figure 6.7: Time steps taken to recover from environmental changes. (a.) Case
8; (b.) Case 9; (c.) Case 10.

6.4. EXPERIMENTAL RESULTS 209

6.4.2 Stochastic environments

In this subsection, we do sets of experiments similar to those in the last subsection

but in stochastic environments where the length of every path is stochastic instead

of deterministic. We �rst compare the training process of the two algorithms.

1. Case 1: x1, x2, x3, x4, y1, y2, y3, y4 ∼ Poisson(10) + 1

The mean of the length of all paths is equal. This, however, does not mean

that each route is equal due to the topology of the graph or that the length

of all paths in one episode is the same due to the stochastic environment.

The shortest route in this case is (s1, a1) on average and its length is 11 on

average.

2. Case 2: x1, x2, x3, x4 ∼ Poisson(100) + 1; y1, y2, y3, y4 ∼ Poisson(10) + 1

The shortest route on average is (s1, a2) → (s2, a2) → (s3, a2) → (s4, a2)

and its length on average is 44.

3. Case 3: x1, x2, x3, x4 ∼ Poisson(10) + 1; y1, y2, y3, y4 ∼ Poisson(100) + 1

In this case, (s1, a1) is the shortest route on average and its length is 11 on

average. The di�erence in the mean of the time to reward between actions

in one state is relatively great.

4. Case 4: x1, x2, x3, x4 ∼ Poisson(100) + 1; y1, y2, y3, y4 ∼ Poisson(2) + 1

The shortest route is (s1, a2) → (s2, a2) → (s3, a2) → (s4, a2) on average

and its length is 12 on average. This case is similar to Case 2, but the

di�erence in the mean of the time to reward between actions in one state is

even greater.

5. Case 5: x1, x2, x3, x4 ∼ Poisson(2) + 1; y1, y2, y3, y4 ∼ Poisson(100) + 1

(s1, a1) is the shortest route on average and its length is 3 on average. This

case is similar to Case 3, but the di�erence in the mean of the time to

reward between actions in one state is even greater on average.

6. Case 6: x1 ∼ Poisson(40) + 1, x2 ∼ Poisson(30) + 1, x3 ∼ Poisson(20) +

1, x4 ∼ Poisson(10) + 1; y1, y2, y3, y4 ∼ Poisson(10) + 1

In this scenario, there is almost no di�erence in the mean of the time to

reward between actions in all states on average. However, the actual time

to reward for actions in one state can be quite di�erent in one episode.

210 CHAPTER 6. ROUTE FINDER PROBLEM

In Case 1, as �gure 6.8 shows, similar to the results for the deterministic environ-

ment, MCTP learning learns faster than MCT learning in terms of both the time

steps taken to get the xth reward and the learning of T values due to a greater

learning rate when the estimated value is not correct, which is usually the case at

the beginning of learning. For the same reason discussed in the last subsection,

giving up seldom occurs in this scenario and therefore the two algorithms behave

similarly after learning converges. When the di�erence in length between paths

increases, however, giving up takes e�ect. As �gure 6.9 for Case 2 and 6.10 for

Case 3 show, similar to the results for the deterministic environment, it takes

MCTP learning fewer time steps to reach its destination than MCT learning af-

ter the learning converges in both scenarios. It is worth noting that, in �gure 6.9,

similar to the results for the deterministic environment, it takes MCTP learning

more time to converge in this scenario for the same reason discussed in the last

subsection.

To further compare the performance of the two algorithms in terms of the time

steps taken to reach the destination after the learning converges, we calculate

the average time steps to get one reward by the two algorithms in the last 100

episodes in the above six scenarios. The results are shown in �gure 6.11. In

Case 6, giving up does not occur because the estimated time to reward for the

two actions in each state is almost the same, though the actual time to reward

for the two actions in each state can be quite di�erent due to the stochastic

environment unlike the deterministic scenario in the last subsection. Therefore

there is almost no di�erence between the two algorithms. In Case 1, giving up

seldom occurs as discussed above and therefore MCTP learning is only marginally

better than MCT learning. In Case 2 and Case 3, the di�erence in the mean of the

length between paths increases, giving up occurs more often and therefore MCTP

learning is apparently better than MCT learning. In the last two scenarios, the

di�erence in the mean of the length between paths becomes even greater, giving

up can save more time and therefore MCTP learning performs much better than

MCT learning.

We also do an experiment using a scenario similar to the cli�-walking task as

what we have done for deterministic environments.

1. Case 7: x1 ∼ Poisson(16) + 1; x2, x3, x4 ∼ Poisson(100) + 1;

y1, y2, y3, y4 ∼ Poisson(2) + 1

6.4. EXPERIMENTAL RESULTS 211

Figure 6.8: Comparison of the two algorithms during training; Case 1. (a.) time
steps taken to get the Xth reward by MCT learning; (b.) same with (a.), but
only shows the �rst 100 episodes; (c.) the learning of T values by MCT learning;
(d.) time steps taken to get the Xth reward by MCTP learning; (e.) same with
(d.), but only shows the �rst 100 episodes; (f.) the learning of T values by MCTP
learning.

212 CHAPTER 6. ROUTE FINDER PROBLEM

Figure 6.9: Comparison of the two algorithms during training; Case 2. (a.) time
steps taken to get the Xth reward by MCT learning; (b.) the learning of T values
by MCT learning; (c.) time steps taken to get the Xth reward by MCTP learning;
(d.) the learning of T values by MCTP learning.

6.4. EXPERIMENTAL RESULTS 213

Figure 6.10: Comparison of the two algorithms during training; Case 3. (a.) time
steps taken to get the Xth reward by MCT learning; (b.) the learning of T values
by MCT learning; (c.) time steps taken to get the Xth reward by MCTP learning;
(d.) the learning of T values by MCTP learning.

214 CHAPTER 6. ROUTE FINDER PROBLEM

Figure 6.11: Comparison of the two algorithms in terms of the average time steps
to get one reward in the last 100 episodes. (a.) Case 6; (b.) Case 1; (c.) Case 2;
(d.) Case 3; (e.) Case 4; (f.) Case 5.

6.4. EXPERIMENTAL RESULTS 215

Similar to the last subsection, we experiment on Q learning, MCT learning and

MCTP learning using this scenario with the same settings. As �gure 6.12 shows,

the results are similar to those in deterministic environments. Q learning performs

the worst of the three, MCT learning second and MCTP learning the best for the

same reason discussed in the last subsection.

Figure 6.12: Comparison of the three algorithms in terms of the average time steps
to get one reward after the learning converges; x1 ∼ Poisson(16) + 1;x2, x3, x4 ∼
Poisson(100) + 1; y1, y2, y3, y4 ∼ Poisson(2) + 1

Next, we compare their performance in terms of the recovery speed from an

environmental change. For the same reason discussed in the last subsection, in

addition to using the same algorithm for both training and recovery, we also use

a common algorithm, e.g. MCT learning, to learn the old environment �rst and

then use the two algorithms to recover from an environmental change so that we

can eliminate the in�uence of the training on their performance in terms of the

recovery speed from an environmental change. We consider the following three

scenarios.

1. Case 8: x1, x2, x3, x4 ∼ Poisson(100) + 1, y1, y2, y3, y4 ∼ Poisson(10) + 1,

x′1, x
′
2, x
′
3, x
′
4 ∼ Poisson(10) + 1, y′1, y

′
2, y
′
3, y
′
4 ∼ Poisson(100) + 1

At the beginning, the shortest route on average is (s1, a2) → (s2, a2) →

216 CHAPTER 6. ROUTE FINDER PROBLEM

(s3, a2) → (s4, a2). In this environment, the optimal action on average in

the last state is the second action. The optimal action on average in the

�rst three states, however, depends on the policy of the learning agent. If

the learning agent chooses the second action most of time in all states, the

second action in the �rst three states is also the optimal action on average.

Otherwise, the �rst action in the �rst three states is the optimal action on

average because x1 < y1 + x2, x2 < y2 + x3, and x3 < y3 + x4 on average.

When the environment changes, (s1, a1) becomes the new shortest route on

average. In the new environment, the �rst action in all states is the optimal

action on average. It is worth noting that this analysis is based only on the

average case. In every episode, the actual length of each path may be quite

di�erent from its expected value. For example, in one episode, x1 may be

greater than y1. In another episode, however, x1 may be even smaller than

y1.

2. Case 9: x1, x2, x3, x4 ∼ Poisson(10) + 1, y1, y2, y3, y4 ∼ Poisson(100) + 1,

x′1, x
′
2, x
′
3, x
′
4 ∼ Poisson(100) + 1, y′1, y

′
2, y
′
3, y
′
4 ∼ Poisson(10) + 1

This case is just the opposite to the �rst case. Similar to the last subsection,

this scenario is used to see if it is some special features of the algorithms that

enable them to recover from that particular kind of environmental change

very quickly.

3. Case 10: x1 ∼ Poisson(λ1) + 1, x2 ∼ Poisson(λ2) + 1,

x3 ∼ Poisson(λ3) + 1, x4 ∼ Poisson(λ4) + 1,

y1 ∼ Poisson(λ5) + 1, y2 ∼ Poisson(λ6) + 1,

y3 ∼ Poisson(λ7) + 1, y4 ∼ Poisson(λ8) + 1,

x′1 ∼ Poisson(λ′1) + 1, x′2 ∼ Poisson(λ′2) + 1,

x′3 ∼ Poisson(λ′3) + 1, x′4 ∼ Poisson(λ′4) + 1,

y′1 ∼ Poisson(λ′5) + 1, y′2 ∼ Poisson(λ′6) + 1,

y′3 ∼ Poisson(λ′7) + 1, y′4 ∼ Poisson(λ′8) + 1

λ1, ..., λ8, λ
′
1, ..., λ

′
8 ∼ IntegerDiscreteUniform(1, 101)

The length of each path is drawn from Poisson distributions with di�erent

means, which are themselves generated from an integer number discrete

uniform distribution ranging from 1 to 101 once at the beginning and once

when the environment changes. In this scenario, the mean of the length of

each path can all be di�erent and can become shorter, longer or stay the

6.5. CONCLUSIONS AND DISCUSSION 217

same (even though the chance of which is very small) when the environment

changes. The shortest route or optimal route (these two paths can be

di�erent depending on the policy of the agent) on average can also stay the

same or change when the environment changes.

As �gure 6.13 shows, similar to the results for the deterministic environment,

when the same algorithm is used for both training and recovery, MCTP learning

recovers from the environmental change slightly quicker than MCT learning in

Case 8, apparently quicker than MCT learning in both Case 9 and Case 10. When

MCT learning is used for training in both experiments, MCTP learning recovers

from the environmental change much quicker than MCT learning in all three

cases.

Figure 6.13: Time steps taken to recover from environmental changes. (a.) Case
8; (b.) Case 9; (c.) Case 10.

6.5 Conclusions and discussion

In this chapter, we �rst introduced the route �nder problem, a problem with

multiple states which naturally extends the time delayed n-armed bandit problem

218 CHAPTER 6. ROUTE FINDER PROBLEM

discussed in the last chapter. We then extended the algorithms introduced in the

last chapter to work with multiple states, viz. a Monte Carlo method to learn

the time to reward and a Monte Carlo method to learn and perceive the time to

reward. The problem is used as a test bed to compare these two algorithms. We

have considered both deterministic environments and stochastic environments.

In all cases, we compared the performance of these learning algorithms in terms

of the learning speed and recovery speed from environmental changes, and the

agent's performance after the learning converges. In all experimental scenarios,

MCTP learning learns more quickly, but it does not necessarily mean that it also

converges more quickly, unlike the results for the time delayed n-armed bandit

problem. In regard to the recovery speed from environmental changes, when the

same algorithm is used for both training and recovery, MCTP learning is better

in all the cases but the di�erence in some cases is not great. When MCT learning

is used for training in both experiments, however, MCTP learning recovers from

environmental changes much quicker than MCT learning in all the test cases.

After the learning converges, MCTP learning also improves the performance of

the learning agent if the di�erence in the time to reward for actions in one state

is great.

In the following subsections, we will discuss what kind of policy the algorithms

learn and consider an alternative state representation where all points discretised

by time steps on the route are represented as states and alternative models where

the learning agent also makes decisions in non-junction states.

6.5.1 On-policy or o�-policy

Like T and V learning, as introduced in the last chapter, MCT learning is also

a type of on-policy learning. Like TP and VP learning, MCTP learning is also

an on-policy learner when giving up has not occurred and an o�-policy learner

when giving up has occurred. For state-action pairs which are not given up, their

time to reward is learned on-policy. For the state-action pairs which are given

up, their time to reward is learned o�-policy. This is because their estimated

time to reward is not updated when they are given up. In other words, the policy

used to make decisions contains giving up whereas the policy used to update their

estimation ignores giving up. Similar to TP and VP learning, MCTP learning can

also be modi�ed to on-policy learner by updating the estimation of the given-up

state-action pairs with the actual time which takes the learning agent to get a

6.5. CONCLUSIONS AND DISCUSSION 219

reward since the visit to this state-action pair whether it was given up or not.

Speci�cally, after giving up, no state-action pairs will be removed from trackList

and the estimated time to reward for all state-action pairs in trackList will be

updated when a reward is received. It is worth pointing out that, however, the

same problems with on-policy TP or VP learning also apply to on-policy MCTP

learning.

6.5.2 State representation

In the experiments, instead of considering all points discretionised by time steps

on the route as states, we only represent the junctions as states since there is

no decision making anywhere between two neighbouring junctions. This has

dramatically reduced the state space with the same e�ect for both MCT and

MCTP learning. For Q learning, the learning would be much slower if all time

steps were represented as states. This is because the estimation of Q value is based

on a bootstrap method and it takes longer to bootstrap a reward to previous states

if there are more states between them when eligibility traces are not used.

6.5.3 Alternative models

When the time to reward for actions varies substantially in their values, MCTP

learning improves the performance of the learning agent by giving up suboptimal

actions in order to avoid longer than necessary exploration. Some may argue

that we can achieve the same goal with MCT learning by augmenting the semi-

MDP with time (viz. augmenting junction states with non-junction states) and

allowing the learning agent to go back in non-junction states. At a junction state,

the learning agent has two routes to choose. At a non-junction state, the learning

agent also has two choices: to go ahead or to go back. With a greedy policy, it

may work. But with a non-greedy policy, the learning agent may spend a long

time going forwards and backwards in one route.

In order to test this hypothesis, we experiment on MCT learning with the

choice to go back in the �rst deterministic scenario x1 = x2 = x3 = x4 = y1 =

y2 = y3 = y4 = 10. The result is shown in �gure 6.14 and the new algorithm does

not work very well. Firstly, it takes a long time to get the �rst reward. This is

because, at the beginning, the learning agent has equal chance to go forwards and

220 CHAPTER 6. ROUTE FINDER PROBLEM

backwards. The learning agent has gone forwards and backwards many times be-

fore reaching its destination. Secondly, the learning is very slow. This is because

there are too many state-action pairs in the problem representation. Finally, after

the learning converges, it still takes much longer to reach the destination than it

should. This is mainly due to non-greedy decision making. At every time step,

even if the optimal action is to go forwards, the learning agent has the probability

0.05 (viz. 1 − ε
2
) to go backwards. Within 10 time steps, the learning agent has

the probability 1−0.9510 = 0.4 to go backwards at least once. Therefore, it takes

the learning agent much longer to reach the destination than it should, even after

the learning converges. Furthermore, it is not hard to predict that the result

would become even worse if the length of the paths were even longer, because the

probability of giving up increases when the length of the paths increases.

Figure 6.14: Time steps needed to get the Xth reward in a new experimental
setting where junction states are augmented with non-junction states and the
learning agent is allowed to go back in non-junction states. (a.) MCT learning
with going both forwards and backwards allowed; (b.) the zoomed-in version of
(a.).

6.5. CONCLUSIONS AND DISCUSSION 221

Since augmenting the semi-MDP with time has not improved the performance

of the learning agent, the following two models that we will consider do not

augment the semi-MDP with time, viz. the state space only contains junction

states, the same as before. Q learning with standard parameters (α = 0.1, ε =

0.1, γ = 0.9) is used in the experiments. In the �rst model, the agent also has

two choices like the previous model: to go forwards or backwards when it is in

the middle of a route/path, viz. between two junctions. Because non-junction

states are not in the state space represented by the agent, the values of these

non-junction state-action pairs are not available. Thus, the agent has to choose

between going forwards and going backwards equally in non-junction states. As

�gure 6.15 shows, the result is even worse than that of last model. It takes longer

time to get the �rst reward than the last model and, after the learning converges,

it takes even much longer time to get a reward than the last model.

Figure 6.15: Time steps needed to get the Xth reward in a new experimental
setting where the semi-MDP has not been augmented with time and the learning
agent may go backwards as well as forwards in non-junction states.

In the other model, when the agent is in the middle of a route/path, it has

two di�erent choices: to go ahead one step or to give up the current route/path

and then go back to the last junction and remake its decision. For the same

222 CHAPTER 6. ROUTE FINDER PROBLEM

reason in the last model, the agent has to choose between giving up and going

forwards equally in non-junction states. As �gure 6.16 shows, the result is even

worse than that of the last model. It takes even much longer time both to get

the �rst reward and, after the learning converges, to get a reward than both of

the last two models. From �gure 6.16b, we can see that the Q value of (1,1) is

unstable. When the agent receives a reward after taking the �rst action in the

�rst state, Q(1, 1) increases. When the agent gives up after taking the �rst action

in the �rst state, however, Q(1, 1) decreases. Therefore, the agent keeps learning

and unlearning Q(1, 1).

Figure 6.16: Experimental results in a new experimental setting where the semi-
MDP has not been augmented with time and the learning agent may give up to
the last junction state as well as go forwards in non-junction states. (a.) time
steps needed to get the Xth reward; (b.) the learning of T values by Q learning.

6.5. CONCLUSIONS AND DISCUSSION 223

6.5.4 Why Monte Carlo methods

As mentioned in section 3.3, the estimated mean is non-stationary during the

learning period for bootstrap methods in an environment with multiple states

unless a full dynamic programming backup is used. The non-stationary nature

of the estimated mean will lead to a biased estimation of the variance in the

value function [68], which in turn a�ects the performance of methods relying on

unbiased statistics [69]. For this reason, we have proposed a Monte Carlo method

with time perception, a non-bootstrap method, to solve the route �nder problem

instead of a bootstrap method, e.g. Q learning.

Chapter 7

Summary and conclusions

This concluding chapter summarises the motivation, fundamental ideas, justi�-

cation for key decisions, and the main results and contributions of the research

in section 7.1 (using non-technical language and omitting equations). The lim-

itations of the research are pointed out in section 7.2 and ideas for future work

are discussed in section 7.3.

7.1 Summary of the research

This PhD research is part of an ongoing research programme. The main motiva-

tion for this ongoing research shall now be outlined.

Classical value estimation reinforcement learning algorithms do not perform

very well in dynamic environments. On the other hand, the reinforcement learn-

ing of animals is quite �exible: they can adapt to dynamic environments very

quickly and deal with noisy inputs very e�ectively. Anyone who has ever learned

to ride a bicycle or drive a car knows how fast humans can learn a new complex

task. Similarly, dogs can perform new and very complex tasks, such as rescuing

buried people during earthquakes and guiding blind people, after some training.

One feature that may contribute to animals' good performance in dynamic envi-

ronments is that they learn and perceive the time to reward which can be used to

detect changes in the environment and decide when it should give up the current

action in order to avoid longer than necessary exploration. When a change is

detected, animals can respond speci�cally to and recover from it quickly. Mo-

tivated by this feature of animal learning, the ongoing research aims to build a

biologically plausible neuron model that is capable of implementing reinforcement

224

7.1. SUMMARY OF THE RESEARCH 225

learning and of perceiving the time and above all capable of adapting to dynamic

environments quickly.

As part of the ongoing research, this PhD research has �rst explored the possi-

bilities of using biologically plausible neuron models to implement reinforcement

learning. Currently, reinforcement learning is mainly implemented by abstract

models. For animals, however, neurons are the only computing units. Therefore,

the reinforcement learning of animals must be implemented by neurons. Further-

more, neurons communicate by means of a sequence of short electrical pulses,

the so-called spikes or action potentials in the biological neural system. Spiking

neuron models emphasise that the timing of these spikes carries information and

can be used for computation, which is potentially more powerful and can contain

more information than traditional �ring rate models. For reinforcement learning,

timing is also very important. Rewards received immediately are considered more

important than those received after a long time. Rewards received after a state-

action pair are usually credited to the state-action pair, whereas rewards received

before a state-action pair are usually not credited to the state-action pair. In addi-

tion, the dynamics of spiking neurons may be well suited to model reinforcement

learning in dynamic environments. We have successfully used spiking neurons

to implement various phenomena of classical conditioning, the simplest form of

animal reinforcement learning in dynamic environments, and also pointed out a

possible implementation of instrumental conditioning and general reinforcement

learning using similar models.

Instead of implementing the approach of time perception with low-level bio-

logical models �rst and then testing whether or not it works, we decided to �rst

study the details of time perception and test its e�ectiveness by using abstract

reinforcement learning models and a perfect clock. Implementing it with low-level

biological models would have caused the result to be implementation dependent.

If it does not work, it is hard to determine whether the problem is because of

the biological implementation or because of the principle (the approach itself).

Besides, for the approach itself, there are still many questions to answer, many

problems to address, and many details to investigate. These questions are much

easier to address with abstract models than with low-level biological models.

Regarding detecting changes in the environment, what should be learned in

order to detect changes in the environment? Is learning only the mean of the time

to reward su�cient? When the amount of reward may also change, it is obvious

226 CHAPTER 7. SUMMARY AND CONCLUSIONS

that the learned time information cannot detect changes in the amount. In this

case, what should the learning agent learn to detect both changes in the time to

reward and changes in the amount of reward? On the other hand, even if the

amount of reward does not change, learning the mean of the time to reward alone

cannot detect changes in the time to reward immediately (in one trial) when the

environment is stochastic. In this case, are there any ways to detect changes in

the time to reward immediately? Furthermore, after a change in the environment

is detected, what should the learning agent do in order to recover from the change

quickly? Regarding giving up a suboptimal action to avoid longer than necessary

exploration, how can the agent decide whether or not to give up the current

action? If it decides to give up the action, what state should it give up to? After

giving up, what action should the agent choose?

With regard to detecting changes in the environment, we found that learning

the mean of the time to reward alone is not enough. When the amount of re-

ward does not change, the estimated mean of the time to reward cannot detect

changes in the time to reward immediately (in one trial) when the environment

is stochastic. It needs many trials to detect changes in a stochastic environment

because it has to compare the mean of the values in recent several trials with

the mean of the values in several trials before recent several trials. On the other

hand, although we can use the estimated distribution of the time to reward to

detect changes in the time to reward immediately (in one trial) even when the

environment is stochastic, learning the distribution of a random variable is a

non-trivial task in its own right. Based on Chebyshev's inequality and Cantelli's

inequality, we decided to learn the variance of the time to reward as well and

then to use it together with the estimated mean of the time to reward to detect

changes in the time to reward. When the amount of reward may also change,

another problem arises: learning the time to reward cannot detect changes in

the amount of reward. Admittedly, the agent can learn both the mean and the

variance of the time to reward to detect changes in the mean of the time to re-

ward, and can learn both the mean and the variance of the amount of reward

to detect changes in the amount of reward. This method, however, separates

changes in the time to reward from changes in the amount of reward. From the

viewpoint of the learning agent, however, the learning agent will not consider the

environment as changed if its optimal target based on which it makes decisions,

7.1. SUMMARY OF THE RESEARCH 227

e.g. the discounted reward/return, has not changed, though in reality the envi-

ronment may have changed, e.g. the time to reward and the amount of reward

have both changed in such a way that the discounted reward remains the same.

Furthermore, using di�erent criteria to detect environmental changes and make

decisions may cause problems because their learning may not be synchronised.

Suppose that the agent uses the discounted reward to make decisions and uses

the time to reward to detect environmental changes. The learning of the time

to reward may have converged, which leads to a decrease in the learning rate.

However, the learning of the discounted reward probably has not converged. If

so, it would take a long time to learn the true mean of the discounted reward

because the learning rate is decreasing. Therefore, in our algorithms, only the

mean and the variance of the optimal target are learned and then used to detect

environmental changes and to make decisions.

When a change in the environment is detected, the learning rate is increased

in order to learn the change quickly. Otherwise, the learning rate is decreased

gradually towards 0 in order for the estimated mean to converge to its true mean.

If the learning agent has detected that a suboptimal action has improved and can

potentially become the optimal action in the new environment, the exploration

rate (e.g. ε for ε-greedy) is also increased in order to increase the chance that

the suboptimal action is visited. Otherwise, the exploration rate is decreased

gradually towards its minimum value in order to reduce the cost of exploring

suboptimal actions. The results of our experiments using two real-world prob-

lems show that, increasing the learning rate when a change in the environment

is detected and increasing the exploration rate when a suboptimal action has im-

proved and can potentially become the optimal action, have e�ectively improved

the learning speed during training and the recovery speed when the environment

changes in most of the experimental scenarios. In addition, the experiments show

that decreasing the learning rate gradually towards 0, when a change in the en-

vironment has not been detected, enables the estimated mean to converge to the

true mean even in stochastic environments and also enables the learning agent

to �nd the optimal action when the mean of values (e.g. the time to reward) for

actions in one state is very close in stochastic environments.

With regard to giving up a suboptimal action to avoid longer than necessary

exploration, we found that the learning agent needs to compare the current action

with other actions in order to �nd whether or not the current action is the optimal

228 CHAPTER 7. SUMMARY AND CONCLUSIONS

one and when to give up the current action. Optimality is relative rather than

absolute. Only when the agent �nds that the current action is still worse than the

optimal one should it give up this time's exploration of the action. Furthermore,

the comparison only makes sense when the actions used to compare with the

current action has not been overestimated. Otherwise, the current action can

still be the optimal one. Here, we also use the estimated mean and variance to

tell whether or not an action has been overestimated. When the amount of reward

for actions is the same and does not change, the time to reward alone can be used

to decide if an action is optimal, if an action has been overestimated, and when

to give up a suboptimal action. When the amount of reward for actions is not the

same, even though it does not change, learning time to reward alone is not enough

to decide when to give up the current action. Obviously, the greater a reward it is

worth waiting longer for. The learning agent may either learn the time to reward

and the undiscounted reward or learn the optimal target which implicitly contains

the time information (e.g. discounted reward) and the undiscounted reward. In

addition, the learning agent should not be allowed to give up the current action

until the undiscounted reward has been correctly learned. When the amount of

reward for actions may also change, however, even if the undiscounted reward for

one action has been correctly learned, the learning agent should also occasionally

explore the amount of reward for one action, viz. not giving up the action, just

in case the amount of its reward has changed. This is because only after the

learning agent receives the reward can it know the amount of the reward. Before

it knows the amount of the reward, it cannot get the time after which the current

action is still worse than the optimal one, viz. decide when to give up.

When the learning agent has found that the current action in one state is still

worse than the optimal one, longer exploration is unnecessary and therefore the

learning agent may bene�t from giving up this time's exploration of the action.

This, however, is not optimal. For simplicity, suppose that the amount of reward

for actions is the same and does not change so that we can just use the estimated

time to reward for discussion. When the learning agent can go back without any

cost and the actual time to reward for the current action in one state is less than

twice the estimated time to reward for the reference action in the state, it is

better not to give up this action because it can get the reward earlier by staying

in the current action than by giving up the action and then choosing the reference

action in the state, which would take twice the estimated time to reward for the

7.1. SUMMARY OF THE RESEARCH 229

reference action on average. Therefore, the learning agent will not give up unless

the estimated time to reward for the current action in one state is more than

twice the estimated time to reward for the reference action in the state. It is

apparent that the check is only useful when the estimated time to reward for the

current action has been correctly learned and the estimated time to reward for

the reference action in the state has not been underestimated. If these conditions

are satis�ed, most of the time, the learning agent only explores the current action

the estimated time to reward for the reference action in the state; But at times,

it explores the current action twice the estimated time to reward for the reference

action in the state, just in case the time to reward for the current action has

become less than twice the estimated time to reward for the reference action

where it is better not to give up the current action. When there is a cost for the

learning agent to give up, the threshold should be twice the estimated time to

reward for the reference action plus the cost. For example, in the route �nder

problem, the cost of giving up and returning to a junction is just the same as that

of coming here from the junction. So, the threshold for giving up should be triple

the estimated time to reward for the reference action or state-action pair. When

the amount of reward for actions is not the same we can still calculate the optimal

time to give up. The results of our experiments using two real-world problems

show that, when the di�erence in the time to reward or the discounted reward

between actions in one state is great, this method of giving up to avoid longer

than necessary exploration, has dramatically improved the performance of the

learning agent after learning. On the other hand, when the di�erence in the time

to reward or the discounted reward between actions in one state is small, giving

up usually does not occur and therefore this method has little, if any, negative

in�uence on the performance of the learning agent after learning. Furthermore,

we also demonstrated that, some obvious alternative approaches that may be

used to avoid longer than necessary exploration, do not work very well.

In addition, we also conducted experiments on the algorithms using a prob-

lem with a time limit or an energy budget. We have used a simple scenario to

demonstrate that learning and monitoring the time to reward can improve the

learning performance when the time limit or an energy budget of the agent is

stochastic.

In summary, this PhD research contributes to the ongoing research by explor-

ing the possibilities of using biologically plausible neuron models to implement

230 CHAPTER 7. SUMMARY AND CONCLUSIONS

reinforcement learning, by investigating the details of possible implementations

of time perception, and by exploring situations where the learned time informa-

tion can be used to improve the performance of the learning agent in dynamic

environments. In addition, this PhD research will also contribute to the under-

standing of animal behaviour and learning, and shed light on how animals use

the learned time information to adapt to dynamic environments quickly.

7.2 The limitations of the research

We use second order statistics to detect changes in the environment. When the

actual value/return of (s, a) is outside Q(s, a) ± k
√
Q_var(s, a) where Q(s, a)

and Q_var(s, a) is the estimated mean and variance of the value of the state-

action pair (s, a) and k ≥ 0, we consider that the value of (s, a) has changed.

Although this method has the potential to detect changes in the environment

with only one trial even in a stochastic environment, it does have some limita-

tions. Firstly, however large the window is except in�nity, there is no guarantee

that all data from the same distribution are within the window for some distribu-

tions, e.g. normal distribution. This means that a false detection of a change is

unavoidable. Therefore, the policy used to handle environmental changes needs

to accommodate these data, e.g. responding incrementally rather than abruptly.

Secondly, when the value changes not very greatly in a stochastic environment,

e.g., the new value is still within Q(s, a) ± k
√
Q_var(s, a), this method cannot

detect the change. But, if a change in the environment is very small, it may not

be necessary to respond speci�cally to the change since classical value estimation

reinforcement learning algorithms may be able to handle the change very well.

Thirdly, if the mean does not change but the variance increases, this method may

still consider the environment changed. In addition, the detection rule depends

on the estimated variance. Unfortunately, however, the estimated variance tends

to become bigger than the actual new variance when the environment changes.

When the environment changes, two things contribute to the variance, viz., the

change in the environment (more precisely, the change in the mean) and the vari-

ance of the new environment. The overestimated variance may cause the changed

actual value to fall within the estimated mean plus and minus k standard devia-

tions, even though the learning agent has not recovered from the environmental

change, viz. the estimated mean is still incorrect. In order to reduce the in�uence

7.2. THE LIMITATIONS OF THE RESEARCH 231

of a change in the environment on the estimation of variance, a smaller learning

rate is used to learn the variance when the environment changes. Admittedly, it

would be ideal to eliminate the in�uence of a change in the environment on the

estimation of variance completely and only learn the variance of the new envi-

ronment. Unfortunately, however, it seems impossible because the mean of the

new environment is unknown. Lastly, k cannot be too small or too big. A big k

can reduce the chance of a false detection of environmental changes but it may

increase the chance of failing to detect environmental changes, viz. less sensitive

to a change in the environment. On the other hand, a small k can detect even

small environmental changes, but it is more likely to make a false detection of

environmental changes, viz. too sensitive to a change in the environment.

To apply the giving up strategy (giving up to avoid longer than necessary

exploration), the rule of the problem should allow giving up without losing too

much. In a chess match, for example, if it is allowed to retract its moves without

limitations, the learning agent can give up back to any previous move in one

episode. If it is allowed to ask for a draw and then restart the match, the learning

agent can give up to the beginning. On the other hand, however, if the learning

agent can neither retract its moves nor ask for a draw, the giving up strategy

cannot be applied to the problem.

In addition, as mentioned in section 3.3, the estimated mean is non-stationary

during the learning period for bootstrap methods in an environment with multiple

states unless a full dynamic programming backup is used. The non-stationary

nature of the estimated mean will lead to a biased estimation of the variance in

the value function [68], which in turn a�ects the performance of methods relying

on unbiased statistics [69].

We have to point out that our method still cannot solve the shortcut problem

mentioned in subsection 3.5.3. On the other hand, it will not make things worse

because it only gives up the current action when it is still worse than the optimal

one and will not give up actions that can potentially be the optimal one. In

addition, it can also be incorporated with exploration bonus and other similar

methods which are speci�cally designed to solve this kind of problem.

We have mainly experimented with problems where there is only one reward.

In terms of problems with multiple rewards, there are two cases. The �rst case

is that each episode still ends when any of the rewards is received. In fact, we

have discussed this case in the time delayed n-armed bandit problem. When the

232 CHAPTER 7. SUMMARY AND CONCLUSIONS

amount of reward for arms is not exactly the same, the problem belongs to this

case and we use VP/VPWG learning to solve the problem. VP/VPWG learning,

when extended to multiple state problems, can also be used to solve this case with

multiple states. The other one is that each episode does not necessarily end when

one reward is received. As discussed in subsection 2.2.5, this case causes the credit

structuring problem. Improper reward assignment will lead to slow learning or

even undesired behaviours. For example, in a chess game, if the learning agent is

given a reward both when it wins and when it achieves a subgoal such as taking a

piece from its opponent. It may �nd a way to maximise its rewards by taking the

opponent's pieces even at the price of losing the game. Nevertheless, the method

of detecting and responding to the environmental change should still work in this

setting without any modi�cation. For the method of giving up to avoid longer

than necessary exploration, however, it will not work in this setting without a

signi�cant modi�cation. Finally, though we have only considered problems with

discrete time steps, the methods should work for problems with continuous time

as well.

7.3 Future work

As mentioned previously, this PhD research is part of ongoing research which aims

to build a biologically plausible neuron model that is capable of implementing re-

inforcement learning and of adapting to dynamic environments quickly. Since we

have demonstrated the possibilities of implementing reinforcement learning us-

ing biologically plausible neuron models and the possibilities of using the learned

time information to improve the performance of the learning agent in dynamic

environments, the next big step is to build a biologically plausible neuron model

that can do what we have done with the abstract reinforcement learning models.

Firstly, we need to build a biological clock to perceive and measure time. The

clock needs to have an enormous dynamic range because a reward may occur in

a short time or in a long time. The possible candidates include accumulators

and a bank of �lters sensitive to a bank of intervals. Secondly, we need a neuron

model that can learn the time to reward. Thirdly, we need a neuron model

that can also learn the variance of values in addition to the mean of values.

Finally, we also need to implement something similar to neuron modulators such

as neocortical acetylcholine (ACh) and neocortical norepinephrine (NE) which

7.3. FUTURE WORK 233

can detect whether the actual value is outside its estimated mean plus and minus

twice or triple standard deviations, and accordingly boost or reduce the rate of

learning.

As well as a biological implementation, there are other interesting topics worth

consideration. In each problem, we have only experimented with relatively small-

scale problems. It would be interesting to test the scalability of the algorithms

by experimenting with more complex large scale problems. One good candidate

is a more general and complex route �nder problem, which extends the simple

route �nder problem introduced in chapter 6. As �gure 7.1 shows, the routes are

formed using a 2-D grid. The problem itself is highly scalable and can be scaled

to an nxn grid (where n is any integer no less than 2). In fact, �gure 7.1 (a.) is

just the 2-armed bandit problem we introduced in chapter 5. In addition, there

are circles in the graph and therefore the learning agent can go back to a state

in one episode without giving up. Lastly, the position of the destination/reward

can also be changed in addition to the length of paths.

Large scale problems pose some di�culties. We cannot simply use a lookup

table to store the information mapping from state-action pairs to their values

because the table would become too large. Another problem is that many state-

action pairs are seldom visited and some of them may even never have been en-

countered before. Thus, generalisation is needed to avoid storing a great quantity

of data and to predict the values of the states or state-action pairs not experi-

enced previously. Possible candidates for generalisation purpose include neural

networks, fuzzy logic and local memory-based methods. Since our ultimate goal

is to implement our algorithms using biologically plausible neuron models, we

will also attempt to use biologically plausible neuron models to implement gen-

eralisation in the future. Secondly, there may be more than two actions in one

state. Therefore, it is better to use a softmax method to make non-greedy deci-

sion making instead of ε-greedy in this case so that only the suboptimal actions

which can potentially become the optimal one get more chance of being explored.

Furthermore, we have not systematically carried out comparative experiments

on di�erent parameter settings. It would be interesting to study the performance

of learning algorithms in di�erent environments with di�erent parameters. Fi-

nally, we have only experimented on non bootstrap methods such as Monte Carlo

methods because the variance can be easily learned in a non bootstrap style. It

234 CHAPTER 7. SUMMARY AND CONCLUSIONS

Figure 7.1: Illustration of a scalable general route �nder problem. The learning
agent always starts at s1 and tries to reach the destination in the shortest time.
s: states, the junctions of routes; x, y: the length of paths; the states and lengths
of paths in (c.) and (d.) have not been marked due to the proliferation of states
and paths available. There is only 1 state in (a.), 6 states in (b.), 13 states in (c.)
and 22 states in (d.).

7.3. FUTURE WORK 235

would be interesting to integrate learning the mean and variance with bootstrap

methods, e.g. Q learning. There are two possibilities in this regard. The �rst one

is still to use Monte Carlo methods to learn the mean and variance of values and

then use the eligibility trace to update Q values with appropriate learning rates

when a reward is received. The second one is to learn the mean of the value using

Q learning and to learn the variance of the Q value using the following learning

rule as shown in

Q_var(s, a)←Q_var(s, a) + α2{[r + γmax
a′
Q(s′, a′)−Qold(s, a)]

[r + γmax
a′
Q(s′, a′)−Q(s, a)]−Q_var(s, a)}. (7.1)

where s is the current state, a is the action taken in s, s′ is the next state after

taking action a, r is the reward received after taking a, α2 is the learning rate

used to learn the variance, and γ is the discount factor, and Qold(s, a), Q(s, a) and

Q_var(s, a) are respectively the last and the current estimation of the mean of

the value of (s, a) and the estimation of the variance of the value of (s, a). After

both the mean and variance of Q values are learned, they can then be used to

detect environmental changes and then to respond quickly to the change as well

as to decide when to give up the current action to avoid longer than necessary

exploration just like VP and MCTP learning.

As mentioned in section 3.3, however, the estimated mean is non-stationary

during the learning period for bootstrap methods in an environment with multiple

states unless a full dynamic programming backup is used. The non-stationary

nature of the estimated mean will lead to a biased estimation of the variance in

the value function [68], which in turn a�ects the performance of methods relying

on unbiased statistics [69].

Bibliography

[1] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning:

A survey. Journal of Arti�cial Intelligence Research, 4:237�285, 1996.

[2] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction.

MIT Press, 1998.

[3] D. Michie and R. A. Chambers. Boxes: An experiment in adaptive control.

In E. Dale and D. Michie, editors, Machine Intelligence 2, pages 137�152.

Oliver and Boyd, 1968.

[4] K. S. Narendra and R. M. Wheeler. Decentralized learning in �nite Markov

chains. IEEE Transactions on Automatic Control, AC31(6):519�526, 1986.

[5] S. P. Singh and R. S. Sutton. Reinforcement learning with replacing eligi-

bility traces. Machine Learning, 22:123�158, 1996.

[6] R. E. Bellman. Dynamic Programming. Princeton University Press, 1957.

[7] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, Cam-

bridge University, 1989.

[8] G. A. Rummery and M. Niranjan. On-line q-learning using connectionist

systems. Technical report, Cambridge University Engineering Department,

1994.

[9] Andrew W. Moore and Christopher G. Atkeson. Prioritized sweeping: Re-

inforcement learning with less data and less time. In Machine Learning,

pages 103�130, 1993.

[10] A Kacelnik and M Bateson. Risky theories - The e�ects of variance on

foraging decisions. AMERICAN ZOOLOGIST, 36(4):402�434, SEP 1996.

236

BIBLIOGRAPHY 237

Symposium on Risk Sensitivity in Behavioral Ecology, at the Annual Meet-

ing of the American-Society-of-Zoologists, ST LOUIS, MO, JAN 04-08,

1995.

[11] Y Niv, P Dayan, and JP O'Doherty. Decision making: Neural prediction

errors show risk sensitivity. In Computational and Systems Neuroscience,

2008.

[12] J. S. Young. Discrete-trial choice in pigeons: E�ects of reinforcer magni-

tude. J. Exp. Anal. Behav, 35:23�29, 1981.

[13] D. A. Case, P. Nichols, and E. Fantino. Pigeon's preference for variable-

interval water reinforcement under widely varied water budgets. J. Exp.

Anal. Behav, 64:299�311, 1995.

[14] K. D. Waddington, T. Allen, and B. Heinrich. Floral preferences of bum-

blebees (bombus edwardsii) in relation to intermittent versus continuous

rewards. Animal Behaviour, 29:779�784, 1981.

[15] K. C. Clements. Risk-aversion in the foraging blue jay, cyanocitta cristala.

Animal Behaviour, 40:182�195, 1990.

[16] J. E. Mazur. Theories of probabilistic reinforcement. J. Exp. Anal. Behav.,

51:87�99, 1989.

[17] K. D. Waddington. Bumblebees do not respond to variance in nectar con-

centration. Ethology, 101:33�38, 1995.

[18] D. W. Stephens. The logic of risk-sensitive foraging preferences. Animal

Behaviour, 29:628�629, 1981.

[19] T. Caraco, W. U. Blanckenhorn, G. M. Gregory, J. A. Newman, G. M.

Recer, and S. M. Zwicker. Risk-sensitivity: Ambient temperature a�ects

foraging choice. Animal Behaviour, 39:338 � 345, 1990.

[20] Robert H. Macarthur and Eric R. Pianka. On optimal use of a patchy

environment. The American Naturalist, 100(916):603�609, 1966.

[21] E. L. Charnov. Optimal foraging: the marginal value theorem. Theoretical

Population Biology, 9:129�136, 1976.

238 BIBLIOGRAPHY

[22] D. J. Howell and D. L. Harti. Optimal foraging in glossophagine bats: when

to give up. Am. Nat., 115(5):696�704, 1980.

[23] J. Gibbon and R. M. Church. Representation of time. Cognition, 37:23�54,

1990.

[24] S. C. Hinton and W. H. Meck. How time �ies: Functional and neural

mechansims of interval timing. In C. M. Bradshaw and E. Szadabi, edi-

tors, Time and Behaviour: Psychological and Neurobehavioural Analyses.

Elsevier Science, 1997.

[25] CR Gallistel and J. Gibbon. Time, rate and conditioning. Psychological

Review, 107(2):289�344, 2000.

[26] Dani Brunner, Alex Kacelnik, and John Gibbon. Optimal foraging and

timing processes in the starling, sturnus vulgaris: e�ect of inter-capture

interval. Animal Behaviour, 44(4):597 � 613, 1992.

[27] Richard S. Sutton. Integrated architectures for learning, planning, and

reacting based on approximating dynamic programming. In In Proceedings

of the Seventh International Conference on Machine Learning, pages 216�

224. Morgan Kaufmann, 1990.

[28] M. Anderson. A �exible approach to quantifying various dimensions of

environmental complexity. In E.R. Messina and A.M. Meystel, editors,

Research and Engineering of Intelligent Systems, 2004.

[29] Michael L. Anderson, Tim Oates, Waiyian Chong, and Donald Perlis. The

metacognitive loop i: Enhancing reinforcement learning with metacognitive

monitoring and control for improved perturbation tolerance. J. Exp. Theor.

Artif. Intell., 18(3):387�411, 2006.

[30] Angela J. Yu and Peter Dayan. Expected and unexpected uncertainty: Ach

and ne in the neocortex. In NIPS, pages 157�164, 2002.

[31] Angela J. Yu and Peter Dayan. Uncertainty, neuromodulation, and atten-

tion. Neuron, 46(4):681�692, May 2005.

[32] D.J. Bucci, P.C. Holland, and M. Gallagher. Removal of cholinergic input to

rat posterior parietal cortex disrupts incremental processing of conditioned

stimuli. Journal of Neuroscience, 18:8038�8046, 1998.

BIBLIOGRAPHY 239

[33] V. Devauges and S.J. Sara. Activation of the noradrenergic system facili-

tates an attentional shift in the rat. Behav. Brain Res., 39:19�28, 1990.

[34] Encyclopædia Britannica. Time perception. In Encyclopædia Britannica.

2009.

[35] Chong Liu and Jonathan Shapiro. Implementing classical conditioning with

spiking neurons. In ICANN (1), pages 400�410, 2007.

[36] R. A. Rescorla and A. R. Wagner. A theory of pavlovian conditioning:

The e�ectiveness of reinforcement and non-reinforcement. In A H Black

and W F Prokasy, editors, Classical Conditioning II: Current Research and

Theory, pages 64�69. Aleton-Century-Crofts, 1972.

[37] R. S. Sutton and A. G. Barto. Time-derivative models of pavlovian condi-

tioning. In M. Gabriel and J. W. Moore, editors, Learning and Computa-

tional Neuroscience, pages 497�537. MIT Press, 1990.

[38] R. S. Sutton. Temporal Credit Assignment in Reinforcement Learning. PhD

thesis, University of Massachusetts, 1984.

[39] B. Porr and F. Wörgötter. Isotropic sequence order learning. Neural Com-

putation, 15:831�864, 2003.

[40] F. Wörgötter. Actor-critic models of animal control � a critique of rein-

forcement learning. In Proceeding of Fourth International ICSC Symposium

on Engineering of Intelligent Systems, 2004.

[41] F. Wörgötter and B. Porr. Temporal sequence learning, prediction, and

control: A review of di�erent models and their relation to biological mech-

anisms. Neural Computation, 17:245�319, 2005.

[42] D. E. Rumelhart and J. L. McClelland, editors. Parallel Distributed Pro-

cessing: Explorations in the Microstructures of Cognition. Volume 1: Foun-

dations. MIT Press, 1986.

[43] H. R. Berenji. Arti�cial neural networks and approximate reasoning for

intelligent control in space. In American Control Conference, pages 1075�

1080, 1991.

240 BIBLIOGRAPHY

[44] A. W. Moore, C. G. Atkeson, and S. Schaal. Memory-based learning for

control. Technical Report CMU-RI-TR-95-18, CMU Robotics Institute,

1995.

[45] Dimitri P. Bertsekas. Dynamic programming: deterministic and stochastic

models. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1987.

[46] Richard S. Sutton. Learning to predict by the methods of temporal di�er-

ences. Mach. Learn., 3(1):9�44, 1988.

[47] Herbert Robbins and Sutton Monro. A stochastic approximation method.

The Annals of Mathematical Statistics, 22(3):400�407, 1951.

[48] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8:279�

292, 1992.

[49] Tommi Jaakkola, Michael I. Jordan, and Satinder P. Singh. Convergence of

stochastic iterative dynamic programming algorithms. Neural Computation,

6:1185�1201, 1994.

[50] John N. Tsitsiklis and Richard Sutton. Asynchronous stochastic approxi-

mation and q-learning. In Machine Learning, pages 185�202, 1994.

[51] Satinder Singh, Tommi Jaakkola, Michael L. Littman, and Csaba Szepesv

Ari. Convergence results for single-step on-policy reinforcement-learning

algorithms. In Machine Learning, pages 287�308, 1998.

[52] Leemon Baird. Residual algorithms: Reinforcement learning with function

approximation. In In Proceedings of the Twelfth International Conference

on Machine Learning, pages 30�37. Morgan Kaufmann, 1995.

[53] P. Dayan and L. F. Abbott. Theoretical Neuroscience: Computational and

Mathematical Modeling of Neural Systems. MIT Press, 2001.

[54] Ivan Petrovich Pavlov. Conditioned re�exes. Oxford University Press, Ox-

ford, 1927.

[55] Bitterman ME, LoLordo VM, Overrnier JB, and Rashotte ME. Animal

learning. Plenum Press, New York, 1979.

BIBLIOGRAPHY 241

[56] Rescorla RA. Pavlovian second-order conditioning: studies in associative

learning. Lawrence Erlbaum Associates, Hillsdale, N.J., 1980.

[57] Rainer Malaka. Models of classical conditioning. Bulletin of Mathematical

Biology, pages 33�83, 1999.

[58] W. Schultz, P. Dayan, and P. R. Montague. A neural substrate of prediction

and reward. Science, 275:1593�1599, 1997.

[59] W. Schultz. Predictive reward signal of dopamine neurons. Journal of

Neurophysiology, 80:1�27, 1998.

[60] Herbert Robbins. Some aspects of the sequential design of experiments. Bul-

letin of the American Mathematical Society, 58:527�535, September 1952.

[61] Richard Bellman. A problem in the sequential design of experiments.

Sankhya: The Indian Journal of Statistics (1933-1960), 16(3/4):221�229,

1956.

[62] J. C. Gittins. Bandit processes and dynamic allocation indices. Journal

of the Royal Statistical Society. Series B (Methodological), 41(2):148�177,

1979.

[63] Donald A. Berry and Bert Fristedt. Bandit Problems: Sequential Allocation

of Experiments. Chapman and Hall, 1985.

[64] Pierre-Simon Laplace. Mémoire sur la probabilité des causes par les évène-

mens. Mem. Acad. Roy. Sci., 6:621Ð�656, 1774.

[65] Pierre-Simon Laplace. Théorie Analytique des Probabilités. Courcier Im-

primeur, Paris, 3rd edition, 1812.

[66] E. T. Jaynes. Probability Theory: The Logic of Science (Vol 1). Cambridge

University Press, 2003.

[67] Donald E. Knuth. The Art of Computer Programming, volume volume 2:

Seminumerical Algorithms. Boston: Addison-Wesley, Boston, 3rd edition,

1998.

[68] Jeremy Wyatt. Exploration and Inference in Learning from Reinforcement.

PhD thesis, University of Edinburgh, 1997.

242 BIBLIOGRAPHY

[69] Leslie P. Kaelbling. Learning in Embedded Systems. The MIT Press, 1993.

[70] Steven J. Bradtke and Michael O. Du�. Reinforcement learning methods

for continuous-time markov decision problems. In Advances in Neural In-

formation Processing Systems, pages 393�400. MIT Press, 1994.

[71] Tapas Das, Abhijit Gosavi, Sridhar Mahadevan, and N. Marchalleck. Solv-

ing semi-markov decision problems using average reward reinforcement

learning. Management Science, 45:560�574, 1999.

[72] Richard Sutton, Doina Precup, and Satinder Singh. Between mdps and

semi-mdps: A framework for temporal abstraction in reinforcement learn-

ing. Arti�cial Intelligence, 112:181�211, 1999.

[73] Martin Stolle and Doina Precup. Learning options in reinforcement learn-

ing. In Lecture Notes in Computer Science, pages 212�223, 2002.

[74] Satinder P. Singh, Tommi Jaakkola, Michael L. Littman, and Csaba

Szepesvári. Convergence results for single-step on-policy reinforcement-

learning algorithms. Machine Learning, 38(3):287�308, 2000.

[75] Samuel P. M. Choi, Dit yan Yeung, and Nevin L. Zhang. Hidden-mode

markov decision processes for nonstationary sequential decision making. In

In Sequence Learning - Paradigms, Algorithms, and Applications, pages

264�287. Springer-Verlag, 2001.

[76] K. Tsumori and S. Ozawa. Incremental learning in dynamic environments

using neural network with long-term memory. In Proceedings of the Int.

Conf. on Neural Networks, 2003.

[77] Richard S. Sutton. Generalization in reinforcement learning: Successful

examples using sparse coarse coding. In Advances in Neural Information

Processing Systems 8, pages 1038�1044. MIT Press, 1996.

[78] R. Duncan Luce. Individual choice behavior. John Wiley, Oxford, England,

1959.

[79] John S. Bridle. Training stochastic model recognition algorithms as net-

works can lead to maximum mutual information estimation of parame-

ters. pages 211�217. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 1990.

BIBLIOGRAPHY 243

[80] Peter Dayan and Terrence J. Sejnowski. Exploration bonuses and dual

control. Mach. Learn., 25(1):5�22, 1996.

[81] T. Van der Zant, M. Wiering, and J. Van Eijck. On-line and real-time

learning using the interval estimation algorithm. In Proceedings of the 7th

European Workshop on Reinforcement Learning, pages 11�12, 2005.

[82] M. A. Wiering and Juergen Schmidhuber. E�cient model-based explo-

ration. In R. Pfei�er, B. Blumberg, J. A. Meyer, and S. W. Wilson, editors,

Proceedings of the Fifth International Conference on Simulation of Adaptive

Behavior (SAB'98): From Animals to Animats, volume 5, pages 223�228,

1998.

[83] Richard Dearden, Nir Friedman, and Stuart Russell. Bayesian q-learning.

In In AAAI/IAAI, pages 761�768. AAAI Press, 1998.

[84] Ronald Howard. Information value theory. IEEE Transactions on Systems

Science and Cybernetics, 2(1):22�26, 1966.

[85] Richard Dearden, Nir Friedman, and David Andre. Model based bayesian

exploration. In In Proceedings of the Fifteenth Conference on Uncertainty

in Arti�cial Intelligence, pages 150�159, 1999.

[86] Matthias Heger. Consideration of risk in reinforcement learning. In W. W.

Cohen and H. Hirsh, editors,Machine Learning: Proceedings of the Eleventh

International Conference, pages 105Ð�111. Morgan Kaufmann Publishers,

1994.

[87] Oliver Mihatsch and Ralph Neuneier. Risk-Sensitive reinforcement learning.

Mach. Learn., 49(2-3):267�290, 2002.

[88] Darsana P. Josyula, Michael L. Anderson, and Donald Perlis. Metacognition

for dropping and reconsidering intentions. In Metacognition in Computa-

tion, pages 62�67, 2005.

[89] Michael L. Anderson and Donald R. Perlis. Logic, self-awareness and self-

improvement: the metacognitive loop and the problem of brittleness. J.

Log. and Comput., 15(1):21�40, 2005.

244 BIBLIOGRAPHY

[90] S. Dzeroski, L. De Raedt, and K. Driessens. Relational reinforcement learn-

ing. Machine Learning, 43:7�52, 2001.

[91] Leslie Pack Kaelbling, Tim Oates, Natalia Hernandez-Gardiol, and Sarah

Finney. Learning in worlds with objects. In The AAAI Spring Symposium,

2001.

[92] Ir. M. van Otterlo. A survey of reinforcement learning in relational domains.

Technical Report 2005-31, Department of Computer Science, University of

Twente, 2005.

[93] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. Athena

Scienti�c, 1995.

[94] Justin A. Boyan and Michael L. Littman. Exact solutions to time-dependent

mdps. In in Advances in Neural Information Processing Systems, pages

1026�1032. MIT Press, 2000.

[95] M. A. Wiering. Reinforcement learning in dynamic environments using

instantiated information. In Proceedings of the Eighth International Con-

ference on Machine Learning, 2001.

[96] Bruno C. da Silva, Eduardo W. Basso, Filipo S. Perotto, Ana L. C. Bazzan,

and Paulo M. Engel. Improving reinforcement learning with context detec-

tion. In AAMAS '06: Proceedings of the �fth international joint conference

on Autonomous agents and multiagent systems, pages 810�812, New York,

NY, USA, 2006. ACM.

[97] Christian Balkenius and Jan Morén. Dynamics of a classical conditioning

model. Auton. Robots, 7(1):41�56, 1999.

[98] R. P. N. Rao and T. J. Sejnowski. Spike-timing-dependent hebbian plas-

ticity as temporal di�erence learning. Neural Computation, 13:2221�2237,

2001.

[99] S. J. Thorpe and M. Imbert. Biological constraints on connectionist mod-

els. In R. Pfeifer, Z. Schreter, F. Fogelman-Soulié, and L. Steels, editors,

Connectionism in Perspective, pages 63�92. Elsevier, 1989.

BIBLIOGRAPHY 245

[100] P. H. Jen, X. D. Sun, and P. J. Lin. Frequency and space representation

in the primary auditory cortex of the frequency modulating bat Eptesicus

fuscus. Journal of Comparative Physiology, 165(1):1�14, 1989.

[101] F. Rieke, D. Warland, R. de Ruyter van Steveninck, and W. Bialek. Spikes

� Exploring the Neural Code. MIT Press, 1996.

[102] W. Gerstner and W. M. Kistler. Spiking Neuron Models. Cambridge Uni-

versity Press, 2002.

[103] M. T. Hagan, H. B. Demuth, and M. Beale. Neural Network Design. PWS

Publishing Company, 1996.

[104] E. D. Adrian. The impulses produced by sensory nerve endings. The Journal

of Physiology, 61:49�72, 1926.

[105] E. D. Adrian. The Basis of Sensation: The Action of the Sense Organs.

W. W. Norton, 1928.

[106] S. J. Thorpe, D. Fize, and C. Marlot. Speed of processing in the human

visual system. Nature, 381:520�522, 1996.

[107] S. J. Thorpe and J. Gautrais. Rank order coding. In J. Bower, editor, Com-

putational Neuroscience: Trends in Research 1998, pages 113�119. Plenum

Press, 1998.

[108] S. J. Thorpe, A. Delorme, and R. VanRullen. Spike-based strategies for

rapid processing. Neural Networks, 14(6-7):715�726, 2001.

[109] R. VanRullen and S. J. Thorpe. Rate coding versus temporal order coding:

What the retinal ganglion cells tell the visual cortex. Neural Computation,

13:1255�1283, 2001.

[110] V. B. Mountcastle. Modality and topographic properties of single neurons of

cat's somatosensory cortex. Journal of Neurophysiology, 20:408�434, 1957.

[111] D. H. Hubel and T. N. Wiesel. Receptive �elds, binocular interaction and

functional architecture in the cat's visual cortex. The Journal of Physiology,

160:106�154, 1962.

246 BIBLIOGRAPHY

[112] E. C. Kandel and J. H. Schwartz. Principles of Neural Science. Elsevier,

3rd edition, 1991.

[113] K. Doya. What are the computations of the cerebellum, the basal ganglia

and the cerebral cortex. Neural Networks, 12:961�974, 1999.

[114] K. Doya. Complementary roles of basal ganglia and cerebellum in learning

and motor control. Current Opinion in Neurobiology, 10:732�739, 2000.

[115] J. A. Anderson. A simple neural network generating interactive memory.

Mathematical Biosciences, 14:197�220, 1972.

[116] T. Kohonen. Correlation matrix memories. IEEE Transactions on Com-

puters, 21:353�359, 1972.

[117] T. Kohonen. Self-organization and Associative Memory. Springer-Verlag,

3rd edition, 1989.

[118] S. Grossberg. Studies of Mind and Brain. D. Reidel Publishing, 1982.

[119] W. B. Levy and O. Steward. Temporal contiguity requirements for longterm

associative potentiation/depression in the hippocampus. Journal of Neuro-

science, 8:791�797, 1983.

[120] B. Gustafsson, H. Wigstrom, W. C. Abraham, and Y.-Y. Huang. Long-

term potentiation in the hippocampus using depolarizing current pulses as

the conditioning stimulus to single volley synaptic potentials. Journal of

Neuroscience, 7:774�780, 1987.

[121] D. Debanne, B. T. Gahwiler, and S. H. Thompson. Asynchronous pre-

and postsynaptic activity induces associative long-term depression in area

CAI of the rat hippocampus in vitro. In The Proceedings of the National

Academy of Sciences (USA), volume 91, pages 1148�1152, 1994.

[122] H. Markram, J. Lübke, M. Frotscher, and B. Sakmann. Regulation of

synaptic e�cacy by coincidence of postsynaptic APs and EPSPs. Science,

275:213�215, 1997.

[123] J. C. Magee and D. Johnston. A synaptically controlled, associative signal

for Hebbian plasticity in hippocampal neurons. Science, 275:209�213, 1997.

BIBLIOGRAPHY 247

[124] C. C. Bell, V. Z. Han, Y. Sugawara, and K. Grankt. Synaptic plasticity in a

cerebellum-like structure depends on temporal order. Nature, 387:278�281,

1997.

[125] G. Q. Bi and M. M. Poo. Synaptic modi�cations in cultured hippocampal

neurons: Dependence on spike timing, synaptic strength, and postsynaptic

cell type. Journal of Neuroscience, 18:10464�10472, 1998.

[126] D. Debanne, B. Gahwiler, and S. Thompson. Long-term synaptic plasticity

between pairs of individual CA3 pyramidal cells in rat hippocampal slice

cultures. The Journal of Physiology, 507:237�247, 1998.

[127] L. I. Zhang, H. W. Tao, C. E. Holt, W. A. Harris, and M.-M. Poo. A criti-

cal window for cooperation and competition among developing retinotectal

synapses. Nature, 395:37�44, 1998.

[128] V. Egger, D. Feldmeyer, and B. Sakmann. Coincidence detection and

changes of synaptic e�cacy in spiny stellate neurons in rat barrel cortex.

Nature Neuroscience, 2:1098�1105, 1999.

[129] D. Feldman. Timing-based LTP and LTD at vertical inputs to layer II/III

pyramidal cells in rat barrel cortex. Neuron, 27:45�56, 2000.

[130] M. Nishiyama, K. Hong, K. Mikoshiba, M. Poo, and K. Kato. Calcium re-

lease frominternal stores regulates polarity and input speci�city of synaptic

modi�cation. Nature, 408:584�588, 2000.

[131] V. Z. Han, K. Grant, and C. C. Bell. Reversible associative depression and

nonassociative potentiation at a parallel �ber synapse. Neuron, 27:611�622,

2000.

[132] G.-Q. Bi and M. Poo. Synaptic modi�cation by correlated activity: Hebb's

postulate revisited. Annual Review of Neuroscience, 24:139�166, 2001.

[133] P. D. Roberts and C. C. Bell. Spike timing dependent synaptic plasticity

in biological systems. Biological Cybernetics, 87:392�403, 2002.

[134] R. Kempter, W. Gerstner, and J. L. van Hemmen. Hebbian learning and

spiking neurons. Phys. Rev. E, 59(4):4498�4514, 1999. article.

248 BIBLIOGRAPHY

[135] P. J. Sjöström, E. A. Rancz, A. Roth, and M. Häusser. Dendritic excitability

and synaptic plasticity. Physiological reviews, 88(2):769�840, April 2008.

[136] G. Chechik. Spike-timing-dependent plasticity and relevant mutual infor-

mation maximization. Neural Computation, 15:1481�1510, 2003.

[137] A. J. Bell and L. C. Parra. Maximising information yields spike timing

dependent plasticity. In Proceedings of Advances in Neural Information

Processing (NIPS), volume 18, 2004.

[138] T. Toyoizumi, J. P. P�ster, K. Aihara, and W. Gerstner. Spike-timing

dependent plasticity and mutual information maximization for a spiking

neuron model. In Proceedings of Advances in Neural Information Processing

(NIPS), volume 18, 2004.

[139] S. Haykin. Neural network � A Comprehensive Foundation. Prentice Hall,

second edition, 1999.

[140] F. Rosenblatt. The perceptron: a probabilistic model for information stor-

age and organization in the brain. Psychological Review, 65:386�408, 1958.

[141] Marvin L. Minsky and Seymour A. Papert. Perceptrons. The MIT Press,

December 1969.

[142] B. Widrow and M. E. Ho�. Adaptive switching circuits. IRE WESCON

Convention Record, 4:96�104, 1960.

[143] B. Widrow and S. D. Stearns. Adaptive Signal Processing. Prentice-Hall,

1985.

[144] P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis

in the Behavioral Sciences. PhD thesis, Harvard University, 1974.

[145] D. E. Rumelhart, G. E. Hintont, and R. J. Williams. Learning representa-

tions by back-propagating errors. Nature, 323:533�536, 1986.

[146] R. Legenstein, C. Naeger, and W. Maass. What can a neuron learn with

spike-timing-dependent plasticity? Neural Computation, 17:2337�2382,

2005.

BIBLIOGRAPHY 249

[147] D. Barber. Learning in spiking neural assemblies. In Advances in Neural

Information Processing Systems, 15, pages 149�156. MIT Press, 2003.

[148] J. P. P�ster, D. Barber, and W. Gerstner. Optimal hebbian learning: A

probabilistic point of view. Lecture Notes in Computer Science, 2714:92�98,

2003.

[149] R. E. Suri. A computational framework for cortical learning. Biological

Cybernetics, 90:400�409, 2004.

[150] J. P. P�ster, T. Toyoizumi, D. Barber, and W. Gerstner. Optimal spike-

timing-dependent plasticity for precise action potential �ring in supervised

learning. Neural Computation, 18:1318�1348, 2006.

[151] Barto AG. Adaptive critics and the basal ganglia. In Houk JC, Davis

JL, and Beiser DG, editors, Models of Information Processing in the Basal

Ganglia, pages 215�232. MIT Press, 1995.

[152] James C. Houk and S. P. Wise. Distributed modular architectures linking

basal ganglia, cerebellum, and cerebral cortex: their role in planning and

controlling action. Cerebral Cortex, 5:95�110, 1995.

[153] J. R. Wickens, A. J. Begg, and G. W. Arbuthnott. Dopamine reverses

the depression of rat corticostriatal synapses which normally follows high-

frequency stimulation of cortex in vitro. Neuroscience, 70(1):1�5, 1996.

[154] P. Calabresi, A. Pisani, N. B. Mercuri, and G. Bernardi. The corticostriatal

projection: from synaptic plasticity to dysfunctions of the basal ganglia.

Trends in Neurosciences, 19(1):19�24, 1996.

[155] Eugene M. Izhikevich and Niraj S. Desai. Relating stdp to bcm. Neural

Computation, 15:1511�1523, 2003.

[156] John Hertz and Adam Prügel-Bennett. Learning short syn�re chains by

self-organization. Network: Computatioon in Neural Systems, 7(2):357�363,

1996.

[157] L. Perrinet and M. Samuelides. Coherence detection in a spiking neuron

via hebbian learning. Neurocomputing, 44�46:133�139, 2002.

250 BIBLIOGRAPHY

[158] S. M. Bohte, H. La Poutre, and J. N. Kok. Unsupervised clustering with

spiking neurons by sparse temporal coding and multilayer rbf networks.

IEEE Transactions on Neural Networks, 13:426�435, 2002.

[159] Xiaoli Tao and Howard E. Michel. Data clustering via spiking neural net-

works through spike timing-dependent plasticity. In IC-AI, pages 168�173,

2004.

[160] D.T. Pham, M.S. Packianather, and E.Y.A. Charles. A novel self- organised

learning model with temporal coding for spiking neural networks. In Intel-

ligent Production Machines and Systems, pages 307�312. Elsevier, 2006.

[161] Krzysztof J. Cios, Waldemar Swiercz, and William Jackson. Networks of

spiking neurons in modeling and problem solving. Neurocomputing, pages

99�119, 2004.

[162] J. Nielsen and H. H. Lund. Spiking neural building block robot with hebbian

learning. In Proceedings of IROSÕ03. IEEE. Press, 2003.

[163] S. Song, K. D. Miller, and L. F. Abbott. Competitive Hebbian learning

through spike-timing-dependent synaptic plasticity. Nature neuroscience,

3(9):919�926, 2000.

[164] Andrew Carnell. An analysis of the use of hebbian and anti-hebbian spike

time dependent plasticity learning functions within the context of recurrent

spiking neural networks. Neurocomputing, 72:685�692, 2009.

[165] Stephen G. Eick. The two-armed bandit with delayed responses. The Annals

of Statistics, 16(1):254�264, 1988.

[166] András György, Levente Kocsis, Ivett Szabó, and Csaba Szepesvári. Con-

tinuous time associative bandit problems. In Manuela M. Veloso, editor,

IJCAI, pages 830�835, 2007.

[167] Donald E. Knuth. The Art of Computer Programming, volume volume 1:

Fundamental Algorithms. Boston: Addison-Wesley, Boston, 3rd edition,

1998.

[168] Mikel J. Harry. The Nature of six sigma quality. Motorola University Press,

1988.

BIBLIOGRAPHY 251

[169] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord

Stein. Introduction to Algorithms, Second Edition. The MIT Press, 2001.

[170] E. W. Dijkstra. A note on two problems in connexion with graphs. Nu-

merische Mathematik, 1(1):269�271, December 1959.

	Abstract
	Declaration
	Copyright
	Acknowledgements
	Introduction
	Research motivation
	Research aims
	What is time perception?
	What is novel in this research?
	Thesis outline

	Background on reinforcement learning
	Elements of reinforcement learning
	The agent
	The policy
	The environment
	Rewards and returns
	Markov property and Markov processes
	Markov decision processes
	Semi-Markov decision processes
	Types of tasks
	Criteria of optimality

	Challenges for reinforcement learning
	Evaluative vs. instructive
	Exploration vs. exploitation
	Immediate vs. delayed rewards
	Credit assignment
	Designing a reward function
	Rewards vs. value
	Generalisation

	Methods for solving reinforcement learning problems
	Bellman equations
	Dynamic programming
	Monte Carlo methods
	Temporal-difference (TD) learning
	Q learning
	SARSA learning
	Reinforcement comparison and actor-critic methods
	Eligibility traces
	Discussions of different methods

	Related work
	Classical conditioning
	Phenomena of classical conditioning
	Simulation of classical conditioning
	Neural substrate of TD learning

	The n-armed bandit problem
	The problem
	Dynamic programming
	Gittins allocation indices
	Reinforcement learning

	Approaches to estimation of variance
	Reinforcement learning in semi-MDPs
	Bellman equations for semi-MDPs
	Research in semi-MDPs

	Reinforcement learning in dynamic environments
	A fixed learning rate and finite time window
	Non-greedy decision making
	Exploration bonuses
	Interval estimation algorithm
	Bayesian methods
	Risk sensitive reinforcement learning
	Metacognitive monitoring and control
	Relational reinforcement learning
	State augmentation
	State instantiation
	Methods designed specifically for cyclical environments

	Our research

	Classical conditioning with spiking neurons
	Background on spiking neuron models
	The biological neural system
	Neural coding
	Single neuron models
	Population neuron models
	Synapses
	Neural learning

	Neural structure
	Neuron architecture
	Neuron model
	Synapse model

	Learning algorithm
	Simulation results
	Pavlovian conditioning
	Extinction
	Blocking
	Secondary conditioning

	Conclusions and discussion
	Robustness of the model
	Compared with TD learning
	Novelty of the model
	An alternative model
	Instrumental conditioning and general reinforcement learning

	Time delayed n-armed bandit problem
	Introduction
	Algorithms
	Time estimation
	Time estimation with time perception
	Value (discounted reward) estimation
	Value (discounted reward) estimation with value perception
	Other criteria of optimality

	Experimental settings
	Deterministic environments
	Introduction
	When the amount of reward for actions is the same and does not change
	When the amount of reward for actions may be different and may also change

	Stochastic environments
	Introduction
	When the amount of reward for actions is the same and does not change
	When the amount of reward for actions may be different and may also change

	Conclusions and discussion
	On-policy or off-policy
	Alternative models
	When the reward may never come
	When the energy budget is limited

	Route finder problem
	Introduction
	Algorithms
	Monte Carlo methods
	Monte Carlo methods with time perception

	Experimental settings
	Experimental results
	Deterministic environments
	Stochastic environments

	Conclusions and discussion
	On-policy or off-policy
	State representation
	Alternative models
	Why Monte Carlo methods

	Summary and conclusions
	Summary of the research
	The limitations of the research
	Future work

	Bibliography

