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In this thesis, we prove the existence and uniqueness of the solution to a Neu-

mann boundary problem for an elliptic differential operator with singular coefficients,

and reveal the relationship between the solution to the partial differential equation

(PDE in abbreviation) and the solution to a kind of backward stochastic differential

equations (BSDE in abbreviation).

This study is motivated by the research on the Dirichlet problem for an elliptic

operator ([42]). But it turns out that different methods are needed to deal with the

reflecting diffusion on a bounded domain. For example, the integral with respect

to the boundary local time, which is a nondecreasing process associated with the

reflecting diffusion, needs to be estimated. This leads us to a detailed study of

the reflecting diffusion. As a result, two-sided estimates on the heat kernels are

established.

We introduce a new type of backward differential equations with infinity horizon

and prove the existence and uniqueness of both L2 and L1 solutions of the BSDEs.

In this thesis, we use the BSDE to solve the semilinear Neumann boundary problem.

However, this research on the BSDEs has its independent interest.

Under certain conditions on both the “singular” coefficient of the elliptic operator

and the “semilinear coefficient ” in the deterministic differential equation, we find an

explicit probabilistic solution to the Neumann problem, which supplies a L2 solution

of a BSDE with infinite horizon. We also show that, less restrictive conditions on

the coefficients are needed if the solution to the Neumann boundary problem only

provides a L1 solution to the BSDE.

4



Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

5



Copyright Statement

i. The author of this thesis (including any appendices and/or schedules to this

thesis) owns certain copyright or related rights in it (the “Copyright”) and s/he

has given The University of Manchester certain rights to use such Copyright,

including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or elec-

tronic copy, may be made only in accordance with the Copyright, Designs and

Patents Act 1988 (as amended) and regulations issued under it or, where appro-

priate, in accordance with licensing agreements which the University has from

time to time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other

intellectual property (the “Intellectual Property”) and any reproductions of

copyright works in the thesis, for example graphs and tables (“Reproductions”),

which may be described in this thesis, may not be owned by the author and may

be owned by third parties. Such Intellectual Property and Reproductions can-

not and must not be made available for use without the prior written permission

of the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and

commercialisation of this thesis, the Copyright and any Intellectual Property

and/or Reproductions described in it may take place is available in the Univer-

sity IP Policy (see http://www.campus.manchester.ac.uk/medialibrary/

policies/intellectual-property.pdf), in any relevant Thesis restriction

declarations deposited in the University Library, The University Librarys regu-

lations (see http://www.manchester.ac.uk/library/aboutus/regulations)

and in The Universitys policy on presentation of Theses.

6



Publications

[1] Weiguo Yang and Xue Yang, ”A note on strong limit theorems for arbitrary

stochastic sequences”, Statist. Probab. Lett. 78 (2008).

[2] Xinfang Han, Li Ma and Xue Yang, ”Perturbation of generalized Dirichlet forms

by signed smooth measures and the associated Markov processes”, (Chinese) Acta

Math. Sci. Ser. A Chin. Ed. 30 (2010).

[3] Xinfang Han, Li Ma and Xue Yang, ”Remarks on non-symmetric perturbed Dirich-

let forms and switching identities”. Chinese J. Appl. Probab. Statist. 27 (2011).

[4] Xue Yang and T.S. Zhang, ”The estimates of heat kernels with Neumann boundary

conditions”, (Accepted for publication by Potential Analysis)

Pre-publication articles :

[5] Xue Yang and T.S. Zhang, ”A probabilistic approach to Neumann problems of

semilinear elliptic PDEs with singular coefficients”. (Submitted)

[6] Xue Yang and T.S. Zhang, ”Absolute continuity of the law of solutions of SPDEs

driven by white noise with coefficients depending on the past of the solutions ”.

(Preprint)

[7] Xue Yang and T.S. Zhang, ”A probabilistic approach to Dirichlet problems with

non-linear divergence term ”. (Preprint)

7



Acknowledgements

First of all, I would like to express my most sincere thanks to my supervisor Prof.

Tusheng Zhang for his help, guidance and patience throughout my three-year Ph.D

study. Under his supervision, I have learned so much, not only the professional

knowledge, but also the boundless dedication and braveness. His influence on all

aspects of my work has been immeasurable.

Furthermore, I am very grateful to Prof. Zhi-ming Ma at the Chinese Academy

of Sciences, for showing me the beauty of Mathematics and welcoming me into this

research field. I also would like to thank Prof. Zhao Dong and Prof. Fuzhou Gong

for their continuous help and encouragement over the years. I am grateful to Prof.

Niels Jacob and Dr.Kees Van Schaik for reading this thesis so carefully and giving

me so many helpful and inspiring suggestions.

I am indebted to my parents, Chenglin Yang and Furong Shi. It is their love,

support and constant encouragement that give me the solid foundation upon which

everything else can be built. I also would like to dedicate this thesis to my fiancé,
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Chapter 1

Introduction

1.1 Motivation and Contribution

This thesis is devoted to the study of the semilinear Neumann boundary problem

for an elliptic differential operator with singular coefficients, and culminates in an

explicit probabilistic solution of this problem. This study is motivated by the previ-

ous research on the reflecting diffusions and the Dirichlet problems for such kind of

operators.

The theory of reflecting diffusion on a bounded domain plays an important role in this

thesis. Reflecting Brownian motion (RBM in abbreviation) on a bounded domain has

been studied in different ways. For example, in the view of Skorohod equations (see

[3], [21]), RBM (Xt) on bounded domain D can be decomposed as a semimartingale

Xt = X0 +Bt +
1

2

∫ t

0

~n(Xs) dLs,

where (Bt) is a standard Brownian motion, ~n(x) is the unit inward normal vector at

x ∈ ∂D and Lt is a continuous increasing process but increases only when Xt ∈ ∂D.

Furthermore, considering the RBM in the framework of Dirichlet form, we know that

10



CHAPTER 1. INTRODUCTION 11

RBM is a diffusion process associated with the regular Dirichlet form:

E(u, v) =
1

2

∑
i,j

∫
D

∂u

∂xi

∂v

∂xj
dx.

The generator of RBM is G = 1
2
4 equipped with the Neumann boundary condition

∂
∂~n

= 0 on ∂D.

Reflecting diffusion is a generalization of RBM, by adding the diffusion matrix A(x) =

(aij(x)) and the drift term
∑

i bi
∂
∂xi

(see [5],[26]). In general, the reflecting diffusion

(Xt) has a decomposition in the following form:

Xt = X0 +

∫ t

0

σ(Xs) dBs +

∫ t

0

b(Xs) ds+
1

2

∫ t

0

A~n(Xs) dLs,

where the matrix σ(x) is the positive definite symmetric square root of the matrix

A(x). Inspired by the method in [3],[21], we know that estimates for the local time,

from which the integrability of the semigroup is derived, are necessary for the prob-

abilistic solution to a Neumann boundary problem. To this end, a detailed study on

the reflecting diffusion is needed.

The operator we consider in the thesis is the following

L =
1

2
∇ · (A∇) +B · ∇ − div(B̂·) + q

=
1

2

d∑
i,j=1

∂

∂xi

(
aij(x)

∂

∂xj

)
+

d∑
i=1

Bi(x)
∂

∂xi
−

d∑
i=1

∂B̂i·
∂xi

+ q(x).

L acts on the functions defined on a smooth bounded domain D and the mixed

boundary condition

1

2
< A∇u, ~n > − < B̂u, ~n >= Φ

on ∂D is required. The precise description of L is given in Section 3.1. Please note

that in the following discussion, when we say a operator is defined on a domain D,
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it actually means that the operator acts on the functions defined on domain D.

The Dirichlet problem to an elliptic differential operator with singular coefficients

 Lu(x) = −F (x, u(x),∇u(x)), on D

u(x) = Φ(x) on ∂D
(1.1)

has been studied ([7],[8] and [42]). The method dealing with the ”bad” term div(B̂·)

called ”time-reversal”, which is the intrinsic motivation of our research, will be used

in this thesis.

This thesis mainly studies the following three problems.

(1) Two-sided estimates for the heat kernels associated with the operator L equipped

with mixed boundary condition.

Although there has been a great amount of literature on the estimates for heat kernels

with Dirichlet boundary conditions (see [7] [33] [40], [41] and references therein), there

is not so much work on estimates of heat kernels with Neumann boundary conditions.

Here we mention three papers. Two-sided estimates of the heat kernel of reflecting

Brownian motion (A = I, B = B̂ = 0) on Lipschitz domains are obtained in [3].

When the coefficients A and B are smooth and B̂ = 0, the heat kernels under mixed

boundary conditions are constructed in [22] and [34], but the Gaussian bounds are

not established for the heat kernel there. Using the estimates on heat kernels estab-

lished by us, we get the integrability of the semigroup associated with the operator L.

(2) Existence and uniqueness of the solutions to BSDEs with infinite horizon.

Thanks to the development of the BSDEs in recent years, it is possible to represent

the solutions of the nonlinear PDEs by the solutions of certain BSDEs associated

with a diffusion process generated by some linear operator A. The first result on

a probabilistic interpretation for solutions of semilinear parabolic PDEs is obtained
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by Peng in [32] and subsequently in [31], in both of which the terminal time of the

BSDE is finite. But in our situation, considering the reflecting diffusion, we have to

solve the BSDEs with infinite horizon. The integrability of the solution to the BSDE

becomes crucial and makes the problem much harder.

Since the term
∫ t

0
A~n(X(s))dLs is involved in the decomposition of reflecting diffusion

process X, the BSDE, which we use to solve the nonlinear Neumann problem, also

involves an integral with respect to the local time Lt. This is a new type of BSDE.

The research on such a kind of BSDE has an independent interest.

(3) Probabilistic solution of the Neumann boundary problem associated with the op-

erator L.

Based on the first two topics, we use probabilistic methods to solve the mixed bound-

ary value problem for semilinear second order elliptic partial differential equations in

the following form:

 Lu(x) = −F (x, u(x),∇u(x)), on D

1
2
∂u
∂γ

(x)− B̂ · n(x)u(x) = Φ(x) on ∂D
(1.2)

Probabilistic approaches to boundary value problems of second order differential op-

erators have been adopted by many authors and the earliest work went back as early

as 1944 in [24]. So far there has been a lot of studies on the Dirichlet boundary

problem (see [8],[16], [36] and [42]). However, there are not many articles on the

probabilistic approach to the Neumann boundary problem. Here we only mention

one reference. When A = I, B = 0 and B̂ = 0, the following Neumann boundary

problem


1
2
4u(x) + qu(x) = 0, on D

1
2
∂u
∂n

(x) = φ(x) on ∂D
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is solved in [3], which gives the solution the following representation:

u(x) = Ex[

∫ ∞
0

e
∫ t
0 q(B̄u)duφ(B̄t)dL

0
t ].

Here (B̄t)t>0 defined on the probability space (Ω, Ex, x ∈ D) is the reflecting Brown-

ian motion associated with the infinitesimal generator G = 1
2
4, and L0

t , t > 0 is the

boundary local time satisfying L0
t =

∫ t
0
I∂D(B̄s)dL

0
s.

There are two essential difficulties in the third topic. One lies in the divergence

term div(B̂·) of the operator L. The term div(B̂·) is hard to deal with because

the divergence does not exist as B̂ is only a measurable vector field. It should be

interpreted in the distributional sense. Since B̂ is not differentiable, the term ∇· (B̂·)

can not be handled by Girsanov transform or Feynman-Kac transform. Therefore, the

”time reversal” method is used here. The other difficulty lies in the boundary local

time in the decomposition of the reflecting diffusion. The method dealing with the

boundary local time is inspired by the paper [19]. However the equation considered

in [19] is linear

 (1
2
4− ν)u(x) = 0 on D

∂u
∂n

= φ on ∂D,

and only a probabilistic interpretation of the solution to the Neumann problem is

given.

In conclusion, the analysis of the reflecting diffusion in the first topic helps to build

the BSDE of new type in the second topic. The two topics handled first are the basis

of the third one. Note that, every topic has its own interest.
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1.2 Structure of the Thesis

This thesis is organized in five chapters. The first chapter is a brief survey of the

literature. We summarize the motivation and contribution of this thesis, and indicate

the difficulties we meet in the course of our study as well.

Chapter 2 introduces the basic theories of Dirichlet form, backward stochastic differ-

ential equations and some inequalities used in the following chapters.

Chapter 3 provides both upper and lower bound estimates on the heat kernel of

Gaussian type associated with operator L equipped with the Neumann boundary

conditions.

Chapter 4 considers the existence and uniqueness of the solutions (Y, Z) to the fol-

lowing BSDE with infinite horizon:

Yx(t) = Yx(T ) +

∫ T

t

F (X(s), Yx(s), Zx(s))ds−
∫ T

t

e
∫ s
0 q(X(u))dtΦ(X(s))dLs

−
∫ T

t

〈Zx(s), dMx(s)〉, for t < T,

where Mx(t) is the martingale of the reflecting diffusion X(t). Actually, both L1 and

L2 solutions of the BSDE are obtained in this chapter. By using them, we get the

solutions of the Neumann boundary problem, which require different conditions on

the operator L.

Chapter 5 discusses a future work we are interested in. We want to consider that the

divergence term could also be nonlinear, for example, in the form of div(B̂(x, u(x))).



Chapter 2

Background Theory

In this chapter, we recall some background material which will be used in the following

chapters.

2.1 Regular Symmetric Dirichlet Forms

Let E be a locally compact separable Hausdorff space. m is a Radon measure with

support on E. L2(E,m) denotes the space of functions defined on E square integrable

with respect to the measure m. Let (·, ·) denote the inner product on L2(E,m).

Definition 2.1.1. A family of linear bounded operators {Tt, t > 0} with domain

D(Tt) = L2(E,m) is called a symmetric contraction semigroup, if the following con-

ditions are satisfied:

(1) (Symmetry)
∫
E
Ttg(x)f(x)m(dx) =

∫
E
g(x)Ttf(x)m(dx), for any t > 0 and

f, g ∈ L2(E,m);

(2) (Semigroup property) TtTs = Tt+s, t, s > 0;

(3) (Contraction property) The norm of the operator satisfies ‖Tt‖ ≤ 1.

Moreover, {Tt, t > 0} is said to be strongly continuous if

(4) (Ttu− u, Ttu− u)→ 0, as t→ 0, for u ∈ L2(E,m).

Definition 2.1.2. A family of linear bounded operators {Gα, α > 0} with domain

16
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D(Gα) = L2(E,m) is called a symmetric contraction resolvent, if the following con-

ditions are satisfied:

(1) (Symmetry)
∫
E
Gαg(x)f(x)m(dx) =

∫
E
g(x)Gαf(x)m(dx), for any α > 0 and

f, g ∈ L2(E,m);

(2) (Resolvent equation) Gα −Gβ + (α− β)GαGβ = 0;

(3) (Contraction property) The norm of the operator satisfies ‖Gα‖ ≤ α−1, for any

α > 0.

Moreover, {Gα, α > 0} is said to be strongly continuous if

(4) (αGαu− u, αGαu− u)→ 0, as α→∞, for u ∈ L2(E,m).

Definition 2.1.3. For a strongly continuous semigroup {Tt, t > 0} on L2(E,m), the

operator (A,D(A)) defined as follows,

D(A) := {f ∈ L2(E,m)| lim
t→0

Ttf − f
t

exits},

Af := lim
t→0

Ttf − f
t

, for f ∈ D(A),

is called the generator of the semigroup.

The following theorem reveals the relationship between the generator, semigroup

and resolvent.

Theorem 2.1.4. ( [38]Hille-Yosida’s Theorem )

(1) For a strongly continuous semigroup {Tt, t > 0} on L2(E,m), define

Gαu =

∫ ∞
0

e−αtTtu dt,

then {Gα, α > 0} is a strongly continuous resolvent and every Tt, t > 0 has the

following representation:

Tt := lim
α→∞

eα(αGα−1)t.

(2) For the linear densely defined self-adjoint operator A such that, for any α > 0,

the inverse operator (α − A)−1 exists and is a linear bounded operator on L2(E,m)
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satisfying ‖α(α− A)−1‖ ≤ 1. We define

Gα := (α− A)−1.

Then {Gα, α > 0} is a resolvent and the operator can be expressed as A = α−G−1
α .

Definition 2.1.5. Suppose D(E) is a dense linear subset in L2(E,m) and E(·, ·) is

a symmetric bilinear form defined on D(E)×D(E) with values in R. Then (E ,D(E))

is called a symmetric Dirichlet form if the following conditions are satisfied:

(i) D(E) is a Hilbert space equipped with the inner product E1(, ) := E(, ) + (, ).

(ii) (Markovian) For any ε > 0, there exists a real function φε(t), t ∈ R1, satisfying

φε(t) = t, ∀t ∈ [0, 1], −ε ≤ φε(t) ≤ ε+ 1, ∀t ∈ R1, and

0 ≤ φε(t
′)− φε(t) ≤ t′ − t whenever t < t′,

such that

u ∈ D(E)⇒ φε(u) ∈ D(E), E(φε(u), φε(u)) ≤ E(u, u).

Moreover, the measure m is called the reference measure of the Dirichlet form

(E ,D(E)).

The following theorem reveals the relationship between the Dirichlet form, gener-

ator and resolvent.

Theorem 2.1.6. ([15], [30])

(1) Given a symmetric Dirichlet form (E ,D(E)) defined on L2(E,m), we can define

a corresponding non-positive self-adjoint operator in the following way: define

D(A) := {f ∈ D(E) : g 7→ E(f, g) is a continuous linear functional on L2(E,m)},

then for every f ∈ D(A), let Af denote the unique element in L2(E,m) such that

(−Af, g) = E(f, g) for all g ∈ D(E).



CHAPTER 2. BACKGROUND THEORY 19

(2) Let {Gα, α > 0} be the resolvent which is associated with the operator A

defined as in (1), then

Eα(Gαu, v) := E(Gαu, v) + α(Gαu, v) = (u, v).

Moreover, for u ∈ L2, u ∈ D(E) if and only if limα→∞ α(u− αGαu, u) exists. In

this case,

E(u, u) = lim
α→∞

α(u− αGαu, u).

The Dirichlet forms are also strongly related to a class of Markov processes, so

that it is possible to apply the analytic theories to deal with the stochastic processes.

A Markov process (Ω,F , Xt,Ft, Px) with the state space E is called a Hunt process

if {Xt}t≥0 is strong Markovian and quasi-continuous with respect to the σ−filtration

{Ft}t≥0. θt and γt are the shift and reverse operators on Ω respectively, defined by

Xs(θt(ω)) = Xt+s(ω), s, t ≥ 0,

Xs(γt(ω)) = Xt−s(ω), s ≤ t.

Set Bb := {Borel measurable and bounded function on E}.

Denote by pt the Markov transition function, i.e. ptf(x) = Ex[f(Xt)], for any

f ∈ Bb. Then {Xt}t≥0 is called m-symmetric if

(u, ptv) = (ptu, v),

for any u, v ∈ Bb.

Theorem 2.1.7. ([15])

Every symmetric regular Dirichlet form (E ,D(E)) with reference measure m is asso-

ciated with a m-symmetric Hunt process (Ω,F), in the sense that ptf = Ttf m−a.e.,

for f ∈ Bb
⋂
L2(E,m).

In the rest of the section, we introduce several kinds of functionals associated with
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the Hunt process and Dirichlet form.

The reference measure m now is not ”fine” enough as long as the Hunt processes

are considered, so that a kind of Choquet capacity is used to describe the ”small”

set. For an open set G ∈ E, the capacity of G is defined as:

Cap(G) = inf{E1(u, u)| u ∈ D(E), u ≥ 1 on G}

and Cap(G) =∞ if G is an empty set.

For any subset B ⊂ E, the set function:

Cap(B) = inf{Cap(G)| G ⊃ B is a open set}

can be proved to be a Choquet capacity (in [15]).

A set N , which is a Borel set (i.e. N ∈ B(E)), is called an exceptional set

if Cap(N) = 0. It is proved in [15] that, N is an exceptional set if and only if

Px(h(N) < ∞) = 0, m − a.e., where h(N) is the hitting time for the set N of the

process {Xt}t>0, that is, h(N) := inf{t ≥ 0| Xt ∈ N}.

A function f is said to be quasi-continuous if for any ε > 0 there is an open

subset G ⊂ E with Cap(G) < ε such that the restriction of f on E − G, f |E−G is

continuous. It is proved in [15] that every function h ∈ D(E) has a quasi-continuous

version, denoted by h̃.

Definition 2.1.8. An extended real valued process {At}t≥0 defined on Ω is an additive

functional (AF in abbreviation) if the following conditions are satisfied:

(1) At is Ft-measurable for any t > 0;

(2) there exists a set Λ ∈ F∞ :=
⋃
t

Ft and an exceptional set N ⊂ D with Cap(N) =

0 such that Px(Λ) = 1 for x ∈ E ∩N c and θtΛ ∈ Λ for all t ≥ 0. Moreover, for any

ω ∈ Λ, t 7→ At(ω) is right continuous and has left limit in t ∈ [0,∞] with A0(ω) = 0

and |At(ω)| <∞ and At+s(ω) = At(ω) + As(θtω).

If t 7→ At(ω) is positive and continuous, then {At}t≥0 is a positive continuous
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additive functional (PCAF in abbreviation).

In the following discussion, we use one capital letter A to denote the process

{At}t≥0 for convenience.

Definition 2.1.9. A positive Borel measure ν is smooth if the following conditions

are satisfied:

(1) ν(N) = 0 if Cap(N) = 0;

(2) there exists an increasing sequence {Fn} of closed sets satisfying limn→∞ ν(K −

Fn) = 0 for any compact set K, such that ν(Fn) <∞ and ν(E − ∪nFn) = 0.

It is proved (in [15]) that there is a one-to-one correspondence between the set of

smooth measures and the set of PCAFs:

lim
t↓0

1

t
Eh·m(At) := lim

t↓0

1

t

∫
E

h(x)Ex(At)m(dx) =

∫
E

h̃(x)ν(dx), (2.1)

for any positive function h ∈ D(E).

Define

M : = {M | M is an AF with exceptional set N, ∀t > 0, ExM
2
t <∞,

ExMt = 0, for x ∈ E −N}.

M is called the set of martingale additive functionals (MAF in abbreviation). For

M ∈M, we define

e(M) := sup
t>0

1

2t
EmM

2
t (≤ ∞).

e(M) is called the energy of M . A MAF M is said to have finite energy if

M ∈ M̊ := {M ∈M| e(M) <∞}.

By the definition of MAF, it is known that {Mt,Ft, Px}t≥0 is a square integrable

martingale for x ∈ E−N . Let < M > be the sharp bracket process of M ([18]), then

< M > is a PCAF. We denote by µ<M> the smooth measure associated with the

PCAF < M > and we call it the energy measure of MAF M . By simple calculation,
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it can be shown that

e(M) =
1

2
µ<M>(E), M ∈M.

In fact, by (2.1), it follows that

e(M) = sup
t>0

1

2t
EmM

2
t =

1

2
sup
t>0

1

t
Em < M >t=

1

2
µ<M>(E).

A continuous AF (CAF in abbreviation) {Nt}t≥0 is called a CAF of zero energy,

if Nt belongs to the following set,

Nc : = {N | N is CAF with exception set Z, e(N) = 0,

∀t > 0, ExNt <∞, x ∈ E − Z}.

Theorem 2.1.10. ([15] Fukushima’s decomposition)

For u ∈ D(E), an AF {u(X)}t≥0 can be decomposed as

u(Xt) = u(X0) +Mu
t +Nu

t , t ≥ 0,

where Mu ∈ M̊ and Nu ∈ Nc.

Moreover, if Nu is a CAF of bounded variation on [0, t] for any t > 0, and µ is

the signed measure associated with Nu satisfying |µ|(E) < ∞, then for any bounded

v ∈ D(E),

E(u, v) = −
∫
E

v(x)µ(dx).

The following example reveals a relationship between the Markov process, Dirich-

let form and the various kinds of functionals introduced above.

Example 1. D is a d-dimensional smooth bounded Euclidean domain, dx is the d-

dimensional Lebesgue measure and λ(dx) is the (d-1)-dimensional Lebesgue measure

on ∂D.

Let A(x) = (aij)1≤ij≤d: Rd → Rd ⊗ Rd be a smooth, symmetric matrix-valued

function and assume that A is uniformly elliptic. That is, there is a constant λ > 1
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such that

1

λ
Id×d ≤ A(·) ≤ λId×d.

Consider the bilinear form:


E0(u, v) = 1

2

∑
i,j

∫
D
aij(x) ∂u

∂xi

∂v
∂xj

dx,

D(E0) = W 1,2(D) := {u : u ∈ L2(D), ∂u
∂xi
∈ L2(D), i = 1, ..., d}.

It is easy to verify that (E0, D(E0)) is a regular symmetric Dirichlet form and it

is associated with a Hunt process {X}t≥0.

For any bounded functions u, f ∈ D(E0), by Fukushima’s decomposition, it follows

that

∫
D

f(x)µ<Mu>(dx) = lim
t↓0

1

t
Ef ·m(u(Xt)− u(X0))2

= lim
t↓0

1

t

∫
D

(ptu
2(x)− 2u(x)ptu(x) + u2(x))f(x) dx

= lim
t↓0

2

t

∫
D

u(x)f(x)(u(x)− ptu(x)) dx

− lim
t↓0

1

t

∫
D

u2(x)(f(x)− ptf(x)) dx

= 2E0(uf, u)− E0(u2, f)

=
∑
i,j

∫
D

aij(x)
∂u

∂xi

∂u

∂xj
f(x) dx.

Therefore by the fact that µ<Mu>(dx) =
∑

i,j aij(x) ∂u
∂xi

∂u
∂xj
dx, we obtain

< Mu >t=

∫ t

0

∑
i,j

aij(Xs)
∂u

∂xi
(Xs)

∂u

∂xj
(Xs) ds,

and

Mu
t =

∑
i,j

∫ t

0

σij(Xs)
∂u

∂xi
(Xs) dB

j
s =

∫ t

0

< σ∇u(Xs), dBs > .

Here the matrix σ(x) is the positive definite symmetric square root of the matrix

A(x). {Bt}t>0 is a d-dimensional standard Brownian motion.
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For a positive integer number i, 1 ≤ i ≤ d, we set u0(x) = xi on D, where xi is

the ith coordinate of x. By Fukushima’s decomposition, it follows that

X i
t = X i

0 +
∑
j

∫ t

0

σij(Xs) dB
j
s +Nu0

t , t > 0.

By further calculation, we get that, for any bounded function f ∈ D(E0),

E0(u0, f) =
1

2

∫
D

∑
j

∫
D

aij(x)
∂f

∂xj
dx

= −1

2

∫
D

(
∑
j

∂aij
∂xj

)f(x) dx− 1

2

∫
∂D

(
∑
j

aijn
j)(x)f(x)λ(dx). (2.2)

Here ~n denotes the inward normal vector to the boundary ∂D . For any ξ ∈ ∂D,

U(ξ) denotes a neighborhood of ξ. If there exists a smooth function ψ such that

∂D ∩ U(ξ) = {x : ψ(x1, ..., xd) = 0}, and D ∩ U(ξ) = {x : ψ(x1, ..., xd) > 0}, then ~n

is given by locally, i.e., for x ∈ ∂D ∩ U(ξ),

~n(x) = (n1(x), ..., nd(x)) = (
∂ψ

∂x1

(x), ...,
∂ψ

∂xd
(x))/(

d∑
i=1

(
∂ψ

∂xi
(x))2)

1
2 .

Denote by {Lt}t≥0 the PCAF associated with the measure 1
2
λ. By (2.2), we know

that Nu0 is associated with the smooth measure

ν(dx) =
1

2
(
∑
j

∂aij
∂xj

) dx+
1

2
(
∑
j

aijn
j)(x)λ(dx).

Therefore,

Nu0
t =

1

2

∫ t

0

(
∑
j

∂aij
∂xj

)(Xs) ds+ (
∑
j

aijn
j)(Xs) dLt.

Now we get the decomposition of the Hunt process associated with the Dirichlet
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form (E0, D(E0)):

X i
t = X i

0 +
∑
j

∫ t

0

σij(Xs) dB
j
s +

1

2

∫ t

0

(
∑
j

∂aij
∂xj

)(Xs) ds+

∫ t

0

(
∑
j

aijn
j)(Xs) dLs,

i = 1, ..., d,

which can be written simply as follows:

Xt = X0 +

∫ t

0

σ(Xs) dBs +
1

2

∫ t

0

∇A(Xs) ds+

∫ t

0

A~n(Xs) dLs.

2.2 Backward Stochastic Differential Equations

Given a probability space (Ω,F , P ), we denote by E the expectation under the mea-

sure P . {Wt}t≥0 is a d-dimensional standard Brownian motion. The σ−filtration

(Ft) is generated by {Wt}t≥0,

Ft := N ∨ σ{Ws; 0 ≤ s ≤ t} := σ{N , σ{Ws; 0 ≤ s ≤ t}},

where N is the set of P-null sets in F∞ = σ{Ws; 0 ≤ s <∞}.

Let < ·, · > denote the scalar product in the Euclid space Rn and | · | the length

of a vector in Rn. For any T > 0, define the set of all of the Ft-adapted, square

integrable processes on [0, T ] as follows

M(0, T ;Rn) := {{vt}| {vt} is Rn-valued, Ft-adapted and E

∫ T

0

|vt|2 dt <∞}.

Suppose a function

g = g(ω, t, y, z) : Ω× [0, T ]×Rn ×Rn×d → Rn

satisfies the following conditions:

(1) for any (y, z) ∈ Rn ×Rn×d, g(·, y, z) is Rn-valued, Ft-adapted;
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(2) (Lipschitz condition) there is a constant C > 0, such that for any y, y′ ∈ Rn and

z, z′ ∈ Rn×d,

|g(t, y, z)− g(t, y′, z′)| ≤ C(|y − y′|+ |z − z′|);

(3)
∫ T

0
|g(·, 0, 0)|ds ∈ L2(Ω,FT , P ;R).

Consider the following backward stochastic differential equation:

Yt = ξ +

∫ T

t

g(s, Ys, Zs)ds−
∫ T

t

ZsdWs

ξ ∈ FT . (2.3)

Here the processes Y and Z are unknown, and a pair of processes (Y, Z) satisfying

(2.3) is called a solution of the BSDE.

The following theorem is a classical result of the existence and uniqueness of the

solution (Y, Z).

Theorem 2.2.1. ([31])

Suppose that the function g satisfies the above conditions (1)-(3). Then for any

terminal condition ξ ∈ L2(Ω,FT , P ;Rn), the BSDE (2.3) has a unique solution

(Y, Z) ∈M(0, T ;Rn ×Rn×d). Moreover, Y0 and Z0 are constants.

The following example comes from the Chapter 2 in [12] and gives a method to

solve a kind of BSDE, and it reveals a relationship between the BSDEs and the PDEs.

Example 2. Set the initial condition ζ ∈ L2(Ω,Ft, P ;Rn). Suppose the coefficients

b and σ satisfy the Lipschitz condition: there exists a constant C > 0 such that for

any t ∈ [0, T ] and x, x′ ∈ R,

|b(t, x)− b(t, x′)|+ |σ(t, x)− σ(t, x′)| ≤ C|x− x′|.
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Denote by (X t,ζ) the solution of the following stochastic differential equation:

dX t,ζ
s = b(s,X t,ζ

s )ds+ σ(s,X t,ζ
s ) dWs, s ∈ [t, T ],

X t,ζ
t = ζ.

By Ito’s formula, it follows that (X t,ζ) is associated with the generator:

L =
1

2

∑
i,j

aij
∂2·

∂xi∂xj
+
∑
i

bi
∂

∂xi
.

Suppose that u : [0, T ]×Rn → Rn is the solution of the following partial differential

equation:

∂tu(t, x) + Lu(t, x) + f(t, x, u, σ∇u) = 0,

u(T, x) = Φ(x).

Suppose that the coefficients f and Φ satisfy the following conditions,

(1) (Lipschitz condition) f(t, x, y, z) is Lipschitz continuous with respect to the

variables y and z;

(2) (α Hölder condition) α ∈ (0, 1), ∀(x, y, z), (x′, y′, z′) ∈ Rn × R × R1×d, it

follows that

|Φ(x)− Φ(x′)|+ |f(t, x, y, z)− f(t, x′, y′z′)| ≤ C(|y − y′|+ |z − z′|+ |x− x′|α);

(3) (Linear growth) |f(t, x, 0, 0)|+ |Φ(x)| ≤ C(1 + |x|),

then (u, σ∇u)(s,X t,ζ
s ) is a solution of the following BSDE:

Y t,ζ
s = Φ(X t,ζ

T ) +

∫ T

s

f(u,X t,ζ
u , Y t,ζ

u , Zt,ζ
u ) du−

∫ T

s

Zt,ζ
u dWu, s ∈ [t, T ].
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2.3 Useful Inequalities and Lemmas

Lemma 2.3.1 ([10] Gronwall’s Inequality). Let I denote an interval of the real

line of the form [a,∞) or [a, b] or [a, b) with a < b. Let α, β and u be real-valued

functions defined on I. Assume that β and u are continuous and that the negative

part of α is integrable on every closed and bounded subinterval of I.

(1) If β is non-negative and if u satisfies the integral inequality

u(t) ≤ α(t) +

∫ t

a

β(s)u(s) ds, t ∈ I,

then

u(t) ≤ α(t) +

∫ t

a

α(s)β(s)e
∫ t
s β(r)dr ds, t ∈ I.

(2) If, in addition, the function α is non-decreasing, then

u(t) ≤ α(t)e
∫ t
a β(r) dr, t ∈ I.

Lemma 2.3.2 ([4], [18] Doob’s Inequality). M = (Mt, t > 0) is a continuous

martingale on a probability space (Ω, P ). Set M∗
t = sup

0≤s≤t
|Ms|. For any p ∈ (1,∞),

the following inequality holds,

E(M∗
t )p ≤ (

p

p− 1
)pE(|Mt|p).

For any p ∈ (0, 1), the following inequality holds,

E(M∗
t )p ≤ 1

1− p
(E(|Mt|))p.

Lemma 2.3.3 ([18] Burkholder-Davis-Gundy Inequality). For any continuous

martingale {Xt}t≥0 with X0 = 0, any stopping time τ and any 0 < p < ∞, the
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following inequality holds,

cpE(< X >
p
2
τ ) ≤ E( sup

0≤s≤τ
|Xs|p) ≤ CpE(< X >

p
2
τ ),

where the constants cp and Cp only depend on the choice of p.

Assume D is a domain in Rd with smooth boundary. Define the Sobolev space

W 1,p(D) := {f ∈ Lp(D)| weak derivative
∂f

∂xi
∈ Lp(D), i = 1, ..., d},

equipped with the norm ‖f‖W 1,p = (
∫
D

(|f |p + |∇f |p) dx)
1
p .

Define the Hölder space: for γ ∈ (0, 1),

Cγ(D) := {f | sup
x,y∈D;x 6=y

|f(x)− f(y)|
|x− y|γ

<∞},

with the Hölder coefficient ‖f‖Cγ = sup
x,y∈D;x 6=y

|f(x)− f(y)|
|x− y|γ

.

Lemma 2.3.4 ( [20] Sobolev’s Embedding Theorem). Let p > d and γ = 1− d
p
.

Suppose f ∈ W 1,p(D), then it holds that f ∈ Cγ(D).

Moreover, there is a constant C > 0, such that for any f ∈ W 1,p(D),

‖f‖Cγ ≤ C‖f‖W 1,p .

Lemma 2.3.5 ([20] Poincaré Inequality). Assume that 1 ≤ p ≤ ∞ and that D

is a bounded connected open subset of the d-dimensional Euclidean space Rd with a

Lipschitz boundary. Then there exists a constant C, depending only on D and p, such

that for every function u in the Sobolev space W 1,p(D):

‖u− ū‖Lp ≤ C‖∇u‖Lp ,

where ū = 1
m(D)

∫
D
u(x)dx and m(D) is the Lebesgue measure of the domain D.



Chapter 3

Two-sided Estimates on the Heat

Kernels

3.1 Introduction

Consider an elliptic operator as follows,

L =
1

2
∇ · (A∇) +B · ∇ −∇ · (B̂·) +Q

=
1

2

d∑
i,j=1

∂

∂xi

(
aij(x)

∂

∂xj

)
+

d∑
i=1

Bi(x)
∂

∂xi
−
∑
i

∂

∂xi
(B̂i(x)·) +Q(x) (3.1)

in a d-dimensional smooth bounded Euclidean domain D.

A(·) = (aij)1≤ij≤d: R
d → Rd⊗Rd is a smooth, symmetric matrix-valued function

and we assume that A is uniformly elliptic. That is, there is a constant λ > 1 such

that

1

λ
Id×d ≤ A(·) ≤ λId×d. (3.2)

Here B = (B1, ..., Bd) and B̂ = (B̂1, ..., B̂d) : Rd → Rd are Borel measurable

30
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Rd-valued functions, and Q is a Borel measurable function on Rd such that:

ID(|B|2 + |B̂|2 + |Q|) ∈ Lp(D)

for some p > d.

Satisfying the following mixed boundary condition

1

2
< A∇u, ~n > − < B̂, ~n〉u = 0, on∂D, (3.3)

the operator L determines a quadratic form :

Q(u, v) = (−Lu, v) =
1

2

∑
i,j

∫
D

aij(x)
∂u

∂xi

∂v

∂xj
dx−

∑
i

∫
D

Bi(x)
∂u

∂xi
v(x) dx

−
∑
i

∫
D

B̂i(x)
∂v

∂xi
u(x) dx−

∫
D

Q(x)u(x)v(x) dx,

where (·, ·) stands for the inner product in L2(D) and ~n denotes the inward normal

vector to the boundary ∂D . For any ξ ∈ ∂D, U(ξ) denotes a neighborhood of ξ. For

every ξ ∈ ∂D there exists a neighborhood U(ξ) and a smooth function ψ such that

∂D ∩ U(ξ) = {x : ψ(x1, ..., xd) = 0}, and D ∩ U(ξ) = {x : ψ(x1, ..., xd) > 0}. Then ~n

has the following expression in this local coordinates: for x ∈ ∂D ∩ U(ξ),

~n(x) = (
∂ψ

∂x1

(x), ...,
∂ψ

∂xd
(x))/(

d∑
i=1

(
∂ψ

∂xi
(x))2)

1
2 .

Set ~γ(x) = A(x)~n(x) and denote ∂u
∂~γ

:=< A∇u, ~n >.

The domain of the quadratic form is

D(E) = W 1,2(D) := {u : u ∈ L2(D),
∂u

∂xi
∈ L2(D), i = 1, ..., d}.

We use {Tt, t ≥ 0} to denote the semigroup generated by L, and we will prove in

the following discussion that there exists a function l(t, x, y) which is the heat kernel

associated with the semigroup Tt in the sense: Ttg(x) =
∫
D
l(t, x, y)g(y)dy.
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The purpose of this chapter is to provide both upper and lower bound estimates

for the heat kernel l(t, x, y) associated with operator L equipped with the mixed

boundary conditions (3.3). By a ”time reverse” technique (see Section 3.2) introduced

in [7], we transform the problem of estimating the heat kernels with mixed boundary

condition associated with the general operator L in (3.1) to a problem of estimating

the fundamental solution p(t, x, y) of the following simpler problem:


∂u
∂t

= Gu x ∈ D,

< A∇u, ~n >= 0 x ∈ ∂D.
(3.4)

Here

G =
1

2
∇ · (A∇) + b · ∇+ q

for an appropriate vector field b and a function q. The precise expressions of b and q

will be given in Section 3.2.

For the upper bound, we use parametrix and perturbation methods. For the lower

bound, we need to assume that the domain is convex. Our method is inspired by the

one in [3].

This chapter is organized as follows. In Section 3.2, some preliminary results are

proved. The reduction of estimating the heat kernel associated with the operator L

to the estimate of the heat kernel associated with the operator G is explained. In

Section 3.3, we obtain the upper bound for the heat kernel p2(t, x, y) associated with

the operator

G2 =
1

2
∇ · (A∇) + b · ∇

The lower bound for p2(t, x, y) is given in Section 3.4. Finally, the two sided

estimates of the heat kernel associated with the general operator L are proved in
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Section 3.5.

3.2 A Reduction Method

Consider the following regular Dirichlet form


E0(u, v) = 1

2

∑
i,j

∫
D
aij(x) ∂u

∂xi

∂v
∂xj
dx,

D(E0) = W 1,2(D).

Denoting the associated reflecting diffusion process by (Ω,Ft, Xt, θt, γt, P
x) by the

discussion in Example 1, Section 2.1, we know the following decomposition holds:

Xt = X0 +

∫ t

0

σ(Xs) dBs +
1

2

∫ t

0

∇A(Xs) ds+
1

2

∫ t

0

A~n(Xs) dLs. P x − a.s. (3.5)

Here the square integrable martingale Mt :=
∫ t

0
σ(Xs) dBs has the property:

< M i,M j >t=

∫ t

0

aij(Xs) ds. (3.6)

The following probabilistic representation of the semigroup {Tt}t≥0 associated

with the operator L was proved in [6]

Ttf(x) = Ex[f(Xt) exp(

∫ t

0

(A−1B)∗(Xs)dMs + (

∫ t

0

(A−1B̂)∗(Xs)dMs) ◦ γt −

− 1

2

∫ t

0

(B − B̂)∗A−1(B − B̂)(Xs)ds+

∫ t

0

Q(Xs)ds)],

where B, B̂ and Q are the coefficients of operator L in (3.1).

Here Ex denotes the expectation under P x and we denote by x∗ the transpose of

the vector x.

The following result plays an important role in the thesis. The proof will be given

after some preparations.

Proposition 3.2.1. Let f = (f1, ..., fd) be a vector-valued function defined on the
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domain D satisfying that |f | ∈ Lp(D) for p > d. If u ∈ W 1,2(D) satisfies

∫
D

∑
ij

aij
∂u

∂xi

∂ψ

∂xi
dx =

∫
D

∑
i

fi
∂ψ

∂xi
dx.

for any function ψ ∈ W 1,2(D), then u ∈ W 1,p(D).

Set

C∞γ (D) := {φ ∈ C∞(D)|∂φ
∂γ

= 0 on ∂D},

where γ(x) = A(x)~n(x).

Let two positive numbers q and q satisfying 1
q

+ 1
p

= 1. W−1,p(D) denotes the

dual space of W 1,q(D).

Remark 1. Let f be the function as in Proposition 3.2.1, then we know div(f) ∈

W−1,p(D).

In fact, for any φ ∈ W 1,q(D),

|
∫
D

< f,∇φ > (x)dx| ≤ ‖f‖Lp · ‖∇φ‖Lq(D) ≤ ‖f‖Lp · ‖φ‖W 1,q(D),

which implies that

W−1,p(D) < div(f), φ >W 1,q(D)=

∫
D

< f,∇φ > (x)dx.

Moreover, we have ‖div(f)‖W−1,p(D) ≤ ‖f‖Lp.

For the uniformly elliptic diffusion matrix A = (aij), we construct a matrix Ã =

(ãij) whose inverse matrix Ã−1 = (ãij) satisfies
√
detÃ−1Ã = A, where detÃ−1 is the

determinant of the matrix Ã−1. Denote a = detÃ−1.

In fact, by calculation, we know that if we set Ã = (det(A−1))
1
d−2A, then det(Ã−1) =

(detA−1)−
2
d−2 . Therefore,

√
detÃ−1Ã = A satisfies.

We know that Ã forms a symmetric strictly positive definite covariant tensor

of order 2. (D, Ã) can be seen as a compact Riemannian manifold with the global
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Euclidean coordinate system. The volume form dV onD is dV =
√
adx. As usual, the

metric tensor Ã, in Euclidean coordinates (x1, ...xd) has the following representation

<
∂

∂xi
,
∂

∂xj
>m= ãij,

where <,>m stands for the inner product of the tangent vectors in (D, Ã).

The gradient vector of a function f is

gradmf = ((
∑
j

ã1j
∂f

∂xj
), ..., (

∑
j

ãdj
∂f

∂xj
)).

Let X = (X1, ..., Xd) be a smooth vector field on (D, Ã). The divergence of X is

divm(X) =
1√
a

∑
i

∂

∂xi
(
√
aXi),

and the Laplace operator is given by

4mf := divmgradmf =
1√
a

∑
ij

∂

∂xj
(ãij
√
a
∂f

∂xi
).

So far using the above discussion, we know the following relationship between the

integral on the manifold (D, Ã) with respect to the measure dV and the integral on

the Euclidean domain D with respect to the Lebesgue measure dx under the global

Euclidean coordination system ,

∫
D

4mf(x)g(x) dV (x) =

∫
D

∇(A∇f)(x)g(x) dx.

Therefore, with the above Riemannian structure, we are able to apply Theorem

2.3’ [39] to obtain the following lemma.

Lemma 3.2.2. Let g ∈ W−1,p(D). Suppose that v ∈ L2(D) satisfies

∫
D

< v,∇(A∇φ) > (x) dx = W−1,p(D) < g, φ >W 1,p(D), (3.7)
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for any φ ∈ C∞γ (D). Then v ∈ W 1,p(D) and moreover, there exists a constant C

such that,

‖v‖W 1,p(D) ≤ C(‖g‖W−1,p(D) + |
∫
D

v(x) dx|).

Proof of Proposition 3.2.1:

Proof. (1) Firstly we prove that, if u ∈ W 1,2(D) satisfies that

∫
D

∑
ij

< A∇u,∇ψ > dx =

∫
D

∑
i

< f,∇ψ > dx,

for any function ψ ∈ W 1,2(D), and
∫
D
u(x) dx = 0, then u ∈ W 1,p(D) and moreover,

there exists a constant C1 > 0 such that

‖∇u‖Lp ≤ C1‖f‖Lp .

There exists fk = (fk1 , ..., f
k
d ) such that fki ∈ C∞0 (D), i = 1, ..., d and

lim
k→∞
‖fk − f‖Lp = 0.

Note that in this case, div(fk) =
∑

i
∂fki
∂xi
∈ Lp(D).

By [39], for every k, there exists vk ∈ W 1,2(D),
∫
D
vk(x)dx = 0 such that

∫
D

∑
ij

aij
∂vk
∂xi

∂ψ

∂xi
dx =

∫
D

∑
i

fki
∂ψ

∂xi
dx,

for ψ ∈ W 1,2(D).

By Green’s identity, and the fact that fk = 0 on ∂D = 0, we see that vk satisfies

the formula (3.7) with g = divfk, i.e.

∫
D

vk(x)∇(A∇φ)(x)dx =

∫
D

div(fk)φ(x)dx (3.8)

for every φ ∈ C∞γ (D).
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Therefore, vk satisfies the conditions in Lemma 3.2.2, so we know that vk ∈

W 1,p(D) and ‖∇vk‖W 1,p(D) ≤ C‖div(fk)‖W−1,p(D) ≤ C‖fk‖Lp .

Set positive number p′, such that 1
p′

+ 1
p

= 1. So p′ < 2 < p implies that

Lp(D) ⊂ L2(D) ⊂ Lp
′
(D).

For any φ ∈ W 1,2(D),

|
∫
D

< fk − f,∇φ > (x) dx| ≤
∫
D

|fk − f | · |∇φ| dx

≤ ‖fk − f‖Lp · ‖∇φ‖Lp′

≤ C1‖fk − f‖Lp · ‖∇φ‖L2 .

So that

lim
k→∞

∫
D

< fk,∇φ > dx =

∫
D

< f,∇φ > dx.

It follows that

lim
k→∞

∫
D

< A∇vk,∇φ > dx = lim
k→∞

∫
D

< fk,∇φ > dx

=

∫
D

< f,∇φ > dx =

∫
D

< A∇u,∇φ > dx.

On the other hand, we know that ‖∇vk −∇vk′‖Lp ≤ C‖fk − fk′‖Lp .

By the Poincaré inequality and the fact that
∫
D
vl dx = 0, for l ≥ 1, it follows

that

‖vk − vk′‖Lp ≤M‖∇vk −∇vk′‖Lp ≤ CM‖fk − fk′‖Lp .

So that {vk}∞k=1 is a Cauchy sequence in W 1,p(D). Therefore, there exists v̄ ∈

W 1,p(D), such that ‖vk − v̄‖W 1,p(D) → 0 as k →∞.

For any φ ∈ W 1,2(D), it follows that

lim
k→∞

∫
D

< A∇vk,∇φ > dx =

∫
D

< A∇v̄,∇φ > dx, ∀φ ∈ W 1,2(D),
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which implies that ∫
D

< A∇(v̄ − u),∇φ > dx = 0.

Then v̄ − u satisfies Lemma 3.2.2 with g ≡ 0. Hence v̄ − u ∈ W 1,p(D) and

‖v̄ − u‖W 1,p(D) = 0.

(2) In the general case, setting ū = u −
∫
D
u(x)dx, we know that the function ū

satisfies the conditions in part (1). Therefore, we find that ū ∈ W 1,p(D). Then the

proposition is proved.

As a conclusion of this section, a reduction method is given as follows.

From [7], it follows that there exists a function v ∈ D(E0) satisfying

(

∫ t

0

(A−1B̂)∗(Xs) dMs) ◦ γt

= −
∫ t

0

∇v(Xs)dMs + v(Xt)− v(X0)−
∫ t

0

(A−1B̂)∗(Xs) dMs, (3.9)

and moreover,  div(A∇v) = −div(B̂) on D,

∂v
∂γ

= −2 < B̂, ~n > on ∂D.
(3.10)

Therefore, by Proposition 3.2.1, we know that v ∈ W 1,p(D). In particular, by

Sobolev’s embedding theorem, v is bounded and continuous.

Thus the representation of Tt becomes:

Ttf(x) = e−v(x)Ex[f(Xt)e
v(Xt) exp(

∫ t

0

(A−1(B − B̂ − A∇v))∗dMs

−1

2

∫ t

0

(B − B̂ − A∇v)∗A−1(B − B̂ − A∇v)(Xs)ds

+

∫ t

0

(Q+
1

2
(∇v)∗A(∇v)− < B − B̂,∇v >)(Xs)ds)]

= e−v(x)St[fe
v](x) (3.11)

Here, St is the semigroup generated by the following operator equipped with the
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boundary condition < A∇u, ~n >= 0, x ∈ ∂D:

G =
1

2
∇ · (A∇) + (B − B̂ − (A∇v)) · ∇+ (Q+

1

2
(∇v)A(∇v)∗− < B − B̂,∇v >)

=
1

2
∇ · (A∇) + b · ∇+ q. (3.12)

Here we set b = B − B̂ − (A∇v) and q = Q+ 1
2
(∇v)A(∇v)∗− < B − B̂,∇v >.

In the following discussion, we will construct the heat kernel denoted by p(t, x, y)

and associated with the semigroup St. For any f ∈ C∞(D), we have

Ttf(x) = e−v(x)

∫
D

ev(y)p(t, x, y)f(y)dy. (3.13)

Hence

l(t, x, y) = p(t, x, y)ev(y)−v(x). (3.14)

Thus, the estimates of l(t, x, y) will follow from that of p(t, x, y). Due to (3.10),

it is easy to see that the corresponding boundary condition also holds:

1

2

∂l

∂γ
(t, x, y)− l(t, x, y) < B̂, ~n >= 0, on ∂D.

The rest of the chapter will be devoted to the estimates on p(t, x, y).

3.3 Upper Bound Estimates

In this section, we consider the operator of the following form,

G2 =
1

2
∇ · (A∇) + b · ∇.

Let p2(t, x, y) denote the heat kernel associated with G2 on D equipped with the

boundary condition < A∇u, ~n >= 0. We aim to establish an upper estimate for

p2(t, x, y). To this end, we first consider the heat kernel p1(t, x, y) associated with
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G1:

G1 =
1

2
∇ · (A∇).

3.3.1 Upper Bounds for Heat Kernels Associated with G1

Local coordinate transformations will be used in this section to deal with the bound-

ary of the domain. Rewrite the operator G1 in the following form:

G1 =
1

2

d∑
i=1

∂

∂xi
(
d∑
j=1

aij
∂

∂xj
)

=
1

2

d∑
i,j=1

aij
∂2

∂xi∂xj
+

1

2

d∑
j=1

(
d∑
i=1

∂aij
∂xi

)
∂

∂xj
.

Note that the expression of G1 depends on the choice of the coordinate system

x = (x1, ..., xd). For convenience, we denote the global Euclidean coordinate mapping

by σ0 : D → Rd with σ0(x) = (x1, ..., xd).

If we consider another coordinate system σ(x) = (x̄1, ..., x̄d) : D → Rn with

x̄i = x̄i(x1, ..., xd), i = 1, .., d, being smooth, then an easy calculation yields that

G1 =
1

2

d∑
k.l=1

(
d∑

i,j=1

aij
∂x̄k
∂xi

∂x̄l
∂xj

)
∂2

∂x̄l∂x̄k
+

1

2

d∑
k=1

(
d∑
l=1

∂

∂x̄l
(

d∑
i,j=1

aij
∂x̄k
∂xi

∂x̄l
∂xj

))
∂

∂x̄k

=
1

2

d∑
k,l=1

ākl
∂2

∂x̄k∂x̄l
+

1

2

d∑
k=1

(
d∑
l=1

∂ākl
∂x̄l

)
∂

∂x̄k
. (3.15)

here ākl =
∑d

i,j=1 aij
∂x̄k
∂xi

∂x̄l
∂xj

.

Therefore G1 under the new coordinate system σ(x) = (x̄1, ..., x̄d) has the same

form as under the Euclidean coordinate system σ0 with a diffusion matrix Ā =

(ākl)1≤k,l≤d.

Based on this observation, we see that the diffusion matrix (aij)1≤i,j≤d is trans-

formed between two local coordinates in the following way. Suppose that U1(ξ) and

U2(ξ) are two neighborhoods of the point ξ ∈ D̄ and the mappings σ1 : U1(ξ) → Rd
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and σ2 : U2(ξ) → Rd are the coordinate systems on U1(ξ) and U2(ξ) respectively.

For any z ∈ U1(ξ)
⋂
U2(ξ)

⋂
D̄ with coordinates σ1(z) = (z1, ..., zd) and σ2(z) =

(z̄1, ..., z̄d), we have

āij =
∑
kl

∂z̄i
∂zk

∂z̄j
∂zl

akl (3.16)

here āij(z) and aij(z̄) denote the diffusion matrix associated with the coordinate

systems σ2 and σ1 respectively.

The Neumann boundary condition

∂f

∂γ
:=< A~n,∇f >= 0, on ∂D

which is described precisely in Section 3.1, actually has different expressions under

different local coordinate systems. Suppose that U(ξ0) is a neighborhood of the point

ξ0 ∈ ∂D with coordinate mapping σ(ξ) = (ξ1, ..., ξd) for ξ ∈ U(ξ0) ∩D. Recall that

there exists a smooth function φ such that U(ξ0) ∩ ∂D = {ξ, φ(ξ1, ..., ξd) = 0} and

U(ξ0) ∩D = {ξ, φ(ξ1, ..., ξd) > 0}.

Set

γ(ξ) := (
∑
i

a1i(ξ)
∂φ(ξ)

∂ξi
, ...,

∑
i

adi(ξ)
∂φ(ξ)

∂ξi
)/(
∑
ij

aij
∂φ(ξ)

∂ξi

∂φ(ξ)

∂ξj
)
1
2

and

∂f

∂γ
(ξ) :=

∑
ij

aij(ξ)
∂φ(ξ)

∂ξi

∂f

∂ξj
/(
∑
ij

aij
∂φ(ξ)

∂ξi

∂φ(ξ)

∂ξj
)
1
2 ,

where f is the smooth function on D̄.

The operator G1 satisfying the Neumann boundary condition means that for a

function u in the domain of G1, u must satisfy ∂u
∂γ

(ξ) = 0 for ξ ∈ ∂D ∩ U(ξ0).

A−1(x) = (aij(x))ij denotes the inverse matrix of A(x), which forms a symmetric

strictly positive definite covariant tensor of order 2. A−1 is used to define the length

of a piecewise C1 smooth curve as follows.
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Suppose a curve C is defined by z : θ ∈ [0, 1]→ z(θ) ∈ D̄. Then the length of C,

calculated in the coordinate system z = (z1, ..., zd), is

L(C) =

∫
[0,1]

(
∑
ij

aij(z(θ))
dzi
dθ

dzj
dθ

)
1
2dθ.

Remark 2. Set a =
√
detA−1, where detA−1 is the determinant of the matrix A−1.

By the transformation (3.16), it is easy to verify that the length of the curve is inde-

pendent of the choice of the local coordinate system.

Define the distance between x, y ∈ D̄, d(x, y), as the infimum of the length of

all smooth curves contained in D̄ which connect x and y. And write d(x, ∂D) =

infy∈∂D d(x, y).

Lemma 3.3.1. Fix ξ ∈ D̄. Let U(ξ) be a convex neighborhood of ξ with coordinate

system σ(z) = (z1, z2, ..., zd) for z ∈ U(ξ) ∩ D̄. Then there exist two constants

K1, K2 > 0, such that for z1, z2 ∈ U(ξ) ∩ D̄

K2(
d∑
i=1

|z1
i − z2

i |2)
1
2 ≤ d(z1, z2) ≤ K1(

d∑
i=1

|z1
i − z2

i |2)
1
2 (3.17)

Proof. (1) Let C be a C1 piecewise smooth curve, given by :

C : θ ∈ [0, 1]→ c(θ) ∈ D

such that c(0) = z1 and c(1) = z2. Then we obtain

l(C) =

∫
[0,1]

(
∑
i,j

aij(c(θ))
dci(θ)

dθ

dcj(θ)

dθ
)
1
2 dθ ≥ 1

K

∑
i

∫ 1

0

|dci(θ)
dθ
| dθ ≥ 1

K
|z1
i − z2

i |,

where the first inequality comes from the uniformly ellipticity of the matrix (aij)1≤i,j≤d.

This implies

l(C) ≥ 1

K
√
d

(
d∑
i=1

|z1
i − z2

i |2)
1
2 .

As C is arbitrary, we have d(z1, z2) ≥ 1
K
√
d
(
∑d

i=1 |z1
i − z2

i |2)
1
2 .



CHAPTER 3. TWO-SIDED ESTIMATES ON THE HEAT KERNELS 43

Here, the constant K is independent of the choice of z but dependent on the choice

of the local coordinate system. Setting K2 = 1
K
√
d
, we have proved the first half of

(3.17).

(2) Define a curve P from z1 to z2 by

P : θ ∈ [0, 1]→ p(θ) = σ−1(z1
1 + θ(z2

1 − z1
1), ..., z1

d + θ(z2
d − z1

d))

then we get that

d(z1, z2) ≤ l(P ) =

∫ 1

0

(
∑
i,j

aij(p(θ))(z2
i − z1

i )(z
2
j − z1

j ))
1
2dθ ≤ K1(

d∑
i=1

|z2
i − z1

i |2)
1
2

Remark 3. Because of this Lemma, for two neighborhoods U1(ξ), U2(ξ) of ξ with

coordinate systems σ1(z) = (z1, · · ·, zd), σ2(z) = (z̄1, · · ·, z̄d) respectively, there are

positive numbers C1, C2, such that C2(
∑d

i=1 |z̄1
i − z̄2

i |2)
1
2 ≤ (

∑d
i=1 |z1

i − z2
i |2)

1
2 ≤

C1(
∑d

i=1 |z̄1
i − z̄2

i |2)
1
2 , for z1, z2 ∈ U1(ξ) ∩ U2(ξ).

The following result is from [22].

Lemma 3.3.2. Fix any x0 ∈ ∂D, there is a neighborhood U0 of x0 with coordinate

system (x̄1, · · ·, x̄d), such that

(1) ∂D ∩ U0 = {x : x̄d = 0, x ∈ D̄ ∩ U0}, D ∩ U0 = {x : x̄d > 0, x ∈ D̄ ∩ U0}.

(2) For x ∈ U0 ∩ ∂D, āid(x) = ādi(x) = δid. Here {āij} denotes the diffusion matrix

A associated with the local coordinate (x̄i) and δij denotes Kronecker’s delta.

From now on we call this coordinate system the canonical coordinate neighbor-

hood of x0 ∈ ∂D.

Theorem 3.3.3. There exist a positive constant T1 and a function p1(t, x, y) defined



CHAPTER 3. TWO-SIDED ESTIMATES ON THE HEAT KERNELS 44

on [0, T1]× D̄ × D̄ which solves the following equation:


∂p1
∂t

(t, x, y) = G1p1(t, x, y) (t, x, y) ∈ (0, T1]×D ×D,

∂p1
∂γ

(t, x, y) = 0 x ∈ ∂D.
(3.18)

And moreover p1(t, x, y) admits an upper bound of Gaussian type:

p1(t, x, y) ≤ C1t
− d

2 exp(−C2t
−1|x− y|2), t ≤ T1, (3.19)

here C1 and C2 are positive constants.

Proof. From [34], we can choose a finite number of canonical coordinate neighbor-

hoods Ui, 1 ≤ i ≤ M , open subsets Bij, 1 ≤ j ≤ Mi, of Ui and non-negative

functions λij in C2(D̄) with supports contained in Bij, satisfying the following con-

ditions: {Bij, 1 ≤ i ≤ M, 1 ≤ j ≤ Mi} is a covering of D̄; if Bij intersects Bi′j′ , then

B̄i′j′ ⊂ Ui;
∑

ij λij(x)2 = 1 for x ∈ D̄;
∂λij
∂~n

(x) = 0 for x ∈ ∂D.

Suppose that Ui contains boundary points for 1 ≤ i ≤ i0, while Ui (i0+1 ≤ i ≤M)

not. Let σi(x) = (x1
(i), · · · , xd(i)) be the canonical coordinate system in Ui(1 ≤ i ≤ i0).

We will use the Euclidean coordinate system σ0(x) = (x1, · · · , xd) in Ui (i0 + 1 ≤ i ≤

M).

From the appendix in [34], we know that there is a smooth function q(t, x, y)

defined on [0, T ]× D̄× D̄, where T is an arbitrarily fixed positive number, satisfying

the reflecting boundary condition ∂q
∂γ

(t, x, y) = 0, x ∈ ∂D and limt→0 q(t, x, y) = δx(y).

Moreover, q satisfies the following upper bound: for some constants K1, K2 > 0,

x, y ∈ D̄:

|q(t, x, y)| ≤ K1

∑
ij

λij(x)λij(y)t−
d
2 exp(−K2t

−1

d∑
k=1

|xk(i) − yk(i)|2), x, y ∈ D̄.

By the Remark 3, there is a constant C > 0 independent of x and coordinate

neighborhood Ui such that
∑d

k=1 |xk(i) − yk(i)|2 ≥ C
∑d

k=1 |xk − yk|2, where the right
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side denotes the corresponding Euclidean coordinate. And because |λij| ≤ 1, we get

|q(t, x, y)| ≤M1t
− d

2 exp(−M2t
−1

d∑
k=1

|xk − yk|2) (3.20)

where M1,M2 > 0 are constants.

Let f(t, x, y) be a solution of the following integral equation

f(t, x, y) = (G1 −
∂

∂t
)q(t, x, y) +

∫ t

0

ds

∫
D̄

(G1 −
∂

∂t
)q(t− s, x, z)f(s, z, y) dz

where dz denotes the Lebesgue measure on the domain D. This is an integral equation

of Volterra type. We will follow the method in [22] and [21] to solve this equation by

the method of iteration in the following discussion.

Define p1(t, x, y) by

p1(t, x, y) = q(t, x, y) +

∫ t

0

ds

∫
D̄

q(t− s, x, z)f(s, z, y) dz. (3.21)

It is easy to verify that p1(t, x, y) satisfies the equation (3.18).

To obtain the upper bound of p1(t, x, y), we first establish an upper bound for

f(t, x, y). For this, we write f(t, x, y) as a series.

Set

e0(t, x, y) = (G1 −
∂

∂t
)q(t, x, y),

en+1(t, x, y) =

∫ t

0

ds

∫
D̄

e0(t− s, x, z)en(s, z, y) dz.

Then the following equation holds if the series is convergent,

f(t, x, y) =
∞∑
n=0

en(t, x, y)
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In fact, by [34], there exists a constant M3, such that e0(t, x, y) can be chosen to

satisfy

|e0(t, x, y)| ≤M3t
− d+1

2 exp(−M2t
−1

d∑
i.j=1

|xi − yi|2).

Let |x− y|2 =
∑d

i=1 |xi − yi|2. Then it follows, for t ∈ [0, T ],

|e1(t, x, y)| ≤
∫ t

0

ds

∫
D̄

|e0(t− s, x, z)e0(s, z, y)| dz

≤ (M3)2

∫ t

0

ds

∫
D̄

(t− s)−
d+1
2 exp(−M2(t− s)−1|x− z|2)s−

d+1
2

× exp(−M2s
−1|z − y|2) dz

= (M3)2(2π)d
∫ t

0

ds

(t− s) 1
2 s

1
2

∫
D̄

exp(−M2|x−z|2
t−s )

(2π(t− s)) d2
exp(−M2|z−y|2

s
)

(2π(s))
d
2

dz

≤ (M3)2(2π)
d
2 t−

d
2 exp(−M2|x− y|2

t
)

√
2

t

∫ t
2

0

ds

s
1
2

≤ (M3)2(2π)
d
2 2
√
Tt−

d+1
2 exp(−M2|x− y|2

t
). (3.22)

Iterating this calculation, we get, for t ∈ [0, T ],

|ek(t, x, y)| ≤M3
k+1(2π)k

d
2 2kT

k
2 t−

d+1
2 exp(−M2|x− y|2

t
).

Therefore, there exist positive numbers T1 and M4, such that, for any t ∈ [0, T1],

|f(t, x, y)| ≤
∞∑
n=0

|en(t, x, y)| ≤M4t
− d+1

2 exp(−M2|x− y|2

t
). (3.23)
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Combining (3.20), (3.21) and (3.23), we get:

|p1(t, x, y)| ≤ M1t
− d

2 exp(−M2t
−1|x− y|2) +

∫ t

0

ds

∫
D̄

M1(t− s)−
d
2 ×

× exp(−M2(t− s)−1|x− z|2)×M4s
− d+1

2 exp(−M2s
−1|z − y|2) dz

≤ M1t
− d

2 exp(−M2t
−1|x− y|2)

+M1M4t
− d

2 exp(−M2t
−1|x− y|2)(2π)

d
2

∫ t

0

ds√
s

≤ M5t
− d

2 exp(−M2t
−1|x− y|2), (3.24)

as t ∈ [0, T1]. Here M5 is a positive number, depending on M1,M4 and T1.

Lemma 3.3.4. Let p1(t, x, y) be defined as in Theorem 3.3.3. There exist two con-

stants λ1, λ2 > 0 such that

|∇p1| ≤ λ1t
− d+1

2 exp(−λ2t
−1|x− y|2), t ∈ [0, T1], x, y ∈ D. (3.25)

Proof. Let Ui, Bij and λij be the same as in the Theorem 3.3.3. By the proof of

lemma 2.2 in [34], we have, for x, y ∈ Ui,

| ∂q
∂xl(i)

(t, x, y)| ≤M6t
− d+1

2 exp(−M7t
−1

d∑
k=1

|yk(i) − xk(i)|2).

Recall that coordinate system σ0(x) = (x1, · · · , xd) denotes the global Euclidean

coordinate system. Assume x ∈ Ui. Because the mapping σi ◦ σ−1
0 : (x1, · · · , xd) ∈

Rd → (x1
(i), ..., x

d
(i)) ∈ Rd is continuous and bounded, there exists a constant K3 > 0

independent of x, k and j, such that

| ∂q
∂xj
| = |

d∑
k=1

∂q

∂xk(i)

∂xk(i)
xj
|

≤ K3

∑
k

| ∂q
∂xk(i)

(t, x, y)|

≤ M8t
− d+1

2 exp(−M7t
−1|y − x|2) (3.26)
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The last equality is due to the fact
∑d

k=1 |yk(i) − xk(j)|2 ≤ C
∑d

k=1 |yk − xk|2.

Thus there exist constants M9,M10 > 0 such that

|∂p1

∂xi
| ≤ | ∂q

∂xi
|+
∫ t

0

∫
D̄

|∂q(t− s, x, z)

∂xi
| · |f(s, z, y)| dzds

≤ M8t
− d+1

2 exp(−M7t
−1|y − x|2)

+M8M4

∫ t

0

ds

(t− s) 1
2 s

1
2

∫
D̄

exp(−M7|x−z|2
t−s )

(t− s) d2
exp(−M2|z−y|2

s
)

(s)
d
2

dz

≤ M9t
− d+1

2 exp(−M10t
−1|x− y|2),

for t ∈ [0, T1].

3.3.2 Upper Bounds for Heat Kernels Associated with G2

Recall that G2 = G1 + b · ∇, where b was defined in (3.12). The following theorem is

the main result of this section.

Theorem 3.3.5. There exist a constant T2 > 0 and a continuous function p2(t, x, y),

which is the heat kernel associated with the operator G2. p2(t, x, y) admits an upper

bound of Gaussian type. That is, there exist some constants C1, C2 > 0, such that

|p2(t, x, y)| ≤ C1t
− d

2 exp(−C2t
−1|x− y|2) (3.27)

for t ∈ [0, T2], x, y ∈ D.

Let B : D → Rd is a vector-valued measurable function. Set

Nα
h (B) := sup

x∈D

∫ h

0

∫
D

|B(y)|s−
d+1
2 exp(−α |x− y|

2

s
) dyds (3.28)

Definition 3.3.6. We say that B satisfies condition K if

lim
h→0

Nα
h (B) = 0, for all α > 0. (3.29)

Lemma 3.3.7. If |B| ∈ Lp(D) (p > d), then B satisfies condition K.
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Proof. For |B| ∈ Lp(D) and p > d, we have |B| is of the Kato class Kd+1, i.e.,

lim
δ→0

sup
x∈D

∫
{|y−x|≤δ}

|B(y)|
|y − x|d−1

dy = 0.

In fact, let q > 0, 1
q

+ 1
p

= 1, then for any δ > 0

∫
{|y−x|≤δ}

|B(y)|
|y − x|d−1

dy

≤ (

∫
D

|B(y)|pdy)
1
p (

∫
{|y−x|≤δ}

1

|y − x|(d−1)q
dy)

1
q

≤ C‖B‖Lp(
∫ δ

0

1

r(d−1)(q−1)
dr)

1
q .

Because d < p, we know that (d− 1)(q − 1) < 1. Then

supx

∫
{|y−x|≤δ}

|B(y)|
|y − x|d−1

dy ≤ C̃‖B‖Lpδ1−(d−1)(q−1).

That is, for any ε > 0, there is a δ ∈ (0, 1), such that

supx

∫
{|y−x|≤δ}

|B(y)|
|y − x|d−1

dy ≤ ε.

For the above δ,

∫
D

∫ h

0

|B(y)|s−
d+1
2 exp(−α |x− y|

2

s
) dyds

≤
∫
{|y−x|≤δ}

· · · dy︸ ︷︷ ︸
I

+

∫
{|y−x|≥δ}

· · · dy︸ ︷︷ ︸
II

.

First, we get

(I) ≤
∫
{|y−x|≤δ}

|B(y)|
∫ h

0

s−
d+1
2 exp(−α |x− y|

2

s
) dyds

≤
∫
{|y−x|≤δ}

|B(y)|
∫ ∞

0

l
d+1
2
−2 exp(−α|x− y|2l) dldy

≤
∫
{|y−x|≤δ}

|B(y)| 1

α
d−1
2 |x− y|d−1

∫ ∞
0

l
d−1
2
−1e−l dldy

≤ C

∫
{|y−x|≤δ}

|B(y)|
|y − x|d−1

dy ≤ Cε.
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By the Hölder’s inequality, it follows that

(II) ≤

(∫
{|y−x|≥δ}

|B(y)|p
(∫ h

0

exp(−α |x−y|
2

s
)

s
d+1
2

ds

)
dy

) 1
p

(∫
{|y−x|≥δ}

(∫ h

0

exp(−α |x−y|
2

s
)

s
d+1
2

ds

)
dy

) 1
q

.

On the set {|y − x| ≥ δ}, we get

∫ h

0

exp(−α |x−y|
2

s
)

s
d+1
2

ds ≤
∫ h

0

exp(−α δ2
s

)

s
d+1
2

ds =

∫ ∞
1
h

e−αδ
2ss

d+1
2
−1s−1 ds

≤ h

∫ ∞
0

e−αδ
2ss

d+1
2
−1 ds =

1

α
d+1
s δd+1

Γ(
d+ 1

2
)h,

which implies that

(II) ≤
(∫
{|y−x|≥δ}

|B(y)|p
(
C2

δd+1
h

)
dy

) 1
p

(∫ h

0

1

s
1
2

(∫
exp(−α |x−y|

2

s
)

s
d
2

dy

)
ds

) 1
q

≤ C3

δ
d+1
p

‖B‖Lph
1
p

+ 1
2q .

Therefore, for arbitrary ε0 > 0, there exists a positive number δ0 > 0 such that

for any h < δ0, Nα
h (B) < ε. That is limh→0N

α
h (B) = 0.

Lemma 3.3.8. ([41])

Suppose 0 < a < b, there exist positive constants Ca,b and c depending only on a and

b such that

∫ t

0

∫
D

exp(−a(t− s)−1|x− z|2)

(t− s) d2
|B(z)|exp(−bs−1|z − y|2)

s
d+1
2

dzds

≤ Ca,bN
c
h(B)

exp(−at−1|x− y|2)

t
d
2

(3.30)
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and

∫ t

0

∫
D

exp(−a(t− s)−1|x− z|2)

(t− s) d+1
2

|B(z)|exp(−bs−1|z − y|2)

s
d+1
2

dzds

≤ Ca,bN
c
h(B)

exp(−at−1|x− y|2)

t
d+1
2

(3.31)

for t < h.

Proof of Theorem 3.3.5:

By the standard parametrix method ([13]), the fundamental solution of the parabolic

equation associated with G2 has the following expression:

p2(t, x, y) = p1(t, x, y) +

∫ t

0

∫
D

p1(t− s, x, z)Φ(s, z, y) dzds,

where

Φ(t, x, y) = b(x) · ∇xp1(t, x, y) +

∫ t

0

∫
D

b(x) · ∇xp1(t− s, x, z)Φ(s, z, y) dzds,

and p1(t, x, y) is as in section 3.1.

Let

f1(t, x, y) = b(x) · ∇xp1(t, x, y),

fn+1(t, x, y) =

∫ t

0

∫
D

b(x) · ∇xp1(t− s, x, z)fn(s, z, y) dzds.

Then

Φ(t, x, y) =
∞∑
n=1

fn(t, x, y).
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By the upper estimates on p1, ∇p1 and Lemma 3.3.8, we have

|
∫ t

0

∫
D

p1(t− s, x, z)f1(s, z, y) dzds|

= |
∫ t

0

∫
D

p1(t− s, x, z)b(z) · ∇zp1(s, z, y) dzds|

≤ M11N
M̃12
h (b)

exp(−M12t
−1|x− y|2)

t
d
2

. (3.32)

Let g(t, x, y) =
∫ t

0

∫
D
p1(t− s, x, z)b(z) · ∇zp1(s, z, y) dzds. Therefore

|
∫ t

0

∫
D

p1(t− s, x, z)fn+1(s, z, y) dzds|

= |
∫ t

0

∫
D

p1(t− s, x, z){
∫ s

0

∫
D

b(z) · ∇zp1(s− l, z, ω)fn(l, ω, y)m(dω)dl} dzds|

= |
∫ t

0

∫
D

{
∫ t−l

0

∫
D

p1(t− l − s, x, z)b(z) · ∇zp1(s, z, ω) dzds}fn(l, ω, y)m(dw) dl|

= |
∫ t

0

∫
D

g(t− l, x, ω)fn(l, ω, y) dωds|.

By the estimates (3.32) for g(t, x, y) and the Lemma 3.3.8, we get:

|
∫ t

0

∫
D

p1(t− s, x, z)fn+1(s, z, y) dzds|

≤ (N M̃12
h (b)M11)nt−

d
2 exp(−M12t

−1|x− y|2).

Choosing h small enough, it follows that there exists T2 > 0 such that

p2(t, x, y) ≤M13t
− d

2 exp(−M12t
−1|x− y|2) on [0, T2]× D̄ × D̄.

�

3.4 Lower Bound Estimates

In this section, we establish the lower bound for the heat kernel of operator G2

equipped with the Neumann boundary condition. Recall that G2 = 1
2
∇· (A∇)+b ·∇.
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We first establish the lower bound for the heat kernel associated with the diffusion

operator G1 = 1
2
∇ · (A∇).

3.4.1 Lower Bounds for Heat Kernels Associated with G1

Recall that the reflecting diffusion {Xt, P
x}t≥0 associated with the regular Dirichlet

form E0(·, ·) has the generator G1 = 1
2
∇ · (A∇). And we have shown that the heat

kernel p1(t, x, y) of the operator G1 equipped with Neumann boundary condition, has

upper bounds of Gaussian type:

p1(t, x, y) ≤ C1t
− d

2 exp(−C2|x− y|2

t
)

for t ∈ [0, T1] x, y ∈ D, where C1, C2 and T1 are positive constants.

Proposition 3.4.1. There are positive numbers C3 and C4 such that, for t ∈ [0, T1],

x ∈ D and any ε > 0,

P x[sup
s≤t
|Xs − x| ≥ ε] ≤ C3 exp (−C4ε

2

t
) (3.33)

Proof. Note that

P x[|Xt − x| ≥ ε] =

∫
{|x−y|≥ε}∩D

p1(t, x, y) dy

≤ C1t
− d

2

∫
{|y−x|≥ε}∩D

e−
C2|x−y|

2

t dy

≤ C̃1 exp(−C2ε
2

2t
).

Define the stopping time τ = inf {t > 0, |Xt −X0| ≥ ε}.
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Then we have

P x[sup
s≤t
|Xs − x| ≥ ε]

= P x[τ ≤ t]

= P x[|Xt −X0| ≥
ε

2
; τ ≤ t] + P x[|Xt −X0| ≤

ε

2
; τ ≤ t]

≤ P x[|Xt −X0| ≥
ε

2
] + P x[|Xt −Xτ | ≥

ε

2
; τ ≤ t]

= P x[|Xt −X0| ≥
ε

2
] + Ex[EXτ [|Xt−τ −X0| ≥

ε

2
], τ ≤ t].

Note that on {τ ≤ t},

EXτ [|Xt−τ −X0| ≥
ε

2
] ≤ sup

x∈D,s≤t
P x[|Xs − x| ≥

ε

2
] ≤ C̃1 exp(−C2ε

2

8t
),

and (3.33 ) is proved.

Set

Lr =
1

2
∇ · (Ar∇) on Dr := {rx : x ∈ D}, (3.34)

here Ar(x) = (arij(x))1≤i,j≤d := (aij(x/r))1≤i,j≤d.

Proposition 3.4.2. For any x ∈ Dr, if we define the probability measure P x
r = P x/r,

then the process {rXt/r2 , P
x
r }t≥0 is a reflecting diffusion on Dr associated with the

generator operator Lr equipped with the Neumann boundary condition.

Proof. Firstly, we prove that the heat kernel pr(t, x, y) of the process {rXt/r2 , P
x
r }t≥0 is

equal to 1
rd
p1( t

r2
, x
r
, y
r
), where p1(t, x, y) is the heat kernel associated with the operator

G1 on D.

Let Yt = rXt/r2 . For any function f ∈ C∞(Dr), define the semigroup associated

with (Yt, P
x
r ) as T rt f(x) = Ex

r [f(Yt)]. On the one hand, we have, for x ∈ Dr, T
r
t f(x) =∫

Dr
f(y)pr(t, x, y) dy.
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On the other hand, we have, for x ∈ Dr,

T rt f(x) = Ex
r [f(Yt)] = Ex/r[f(rXt/r2)] =

∫
D

f(ry)p1(
t

r2
,
x

r
, y) dy

=
1

rd

∫
Dr

f(y)p1(
t

r2
,
x

r
,
y

r
) dy.

This implies

pr(t, x, y) =
1

rd
p1(

t

r2
,
x

r
,
y

r
).

Secondly, we prove that the generator of the semigroup T rt is Lr. Fix any f ∈

C∞(D̄r), then f̃(z) := f(rz) for z ∈ D belongs to C∞(D̄). For any x ∈ Dr,

lim
t→0

f − T rt f
t

(x) = lim
t→0

1

t

(
f(x)− 1

rd

∫
Dr

f(y)p1(
t

r2
,
x

r
,
y

r
) dy

)
= lim

t→0

1

t

(
f(x)−

∫
D

f(ry)p1(
t

r2
,
x

r
, y) dy

)
= lim

t→0

1

t

(
f̃(x/r)−

∫
D

f̃(y)p1(
t

r2
,
x

r
, y) dy

)
= lim

t→0

1

t

(
f̃ − Tt/r2 f̃

)
(x/r) =

1

r2
(L1f̃)(x/r)

=
1

2r2
∇ · (A∇f̃)(x/r) =

1

2
∇ · (Ar∇ f)(x).

The last equality follows from the fact that ∂f̃
∂xi

(x/r) = r ∂f
∂xi

(x) and r
∂arij
∂xi

(x) =

∂aij
∂xi

(x/r), for x ∈ Dr. Without loss of generalization, we assume that there is a

smooth function φ such that ∂D = {x : φ(x) = 0}. Defining φ̃(x) = φ(x/r) for

x ∈ Dr, we get ∂Dr = {x : φ̃(x) = 0}. Therefore, for any x ∈ ∂Dr,

< Ar(x)~n(x),∇pr(t, x, y) > =
1

|∇φ(x)|
< Ar(x)∇φ̃(x),

1

r1+d
∇p1(t/r2, x/r, y/r) >

=
1

r2+d|∇φ(x)|
< A(x/r)∇φ(x/r),∇p1(t/r2, x/r, y/r) >

= 0

This proves that pr satisfies the Neumann boundary condition.
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Proposition 3.4.3. There exist two constants c and c′ such that

p1(t, x, y) ≥ c

t
d
2

whenever |x− y| ≤ c′
√
t.

Proof. By [3] and Proposition 3.4.1, there are some constants t0 > 0 and c̃ depending

on the Lipschitz constant γ of the boundary of domain D and the ellipticity constant

λ, such that

p1(t0, x, y) ≥ c̃ whenever |x− y| ≤ 1

Set c′ = 1/
√
t0. Fix any t > 0 and x, y ∈ D with |x− y| ≤ c′

√
t. Set r =

√
t0/t.

Since the domain Dr shares the same Lipschitz constant with D and pr(t, ·, ·) admits

the same upper bound as p1(t, x, y), we know that pr(t0,m, n) ≥ c̃ if |m− n| ≤ 1.

Therefore,

|rx− ry| ≤ rc′
√
t = c′

√
t0 = 1

implies that pr(t0, rx, ry) ≥ c̃. So

pr(t0, rx, ry) =
1

rd
p1(t0/r

2, x, y) =
1

rd
p1(t, x, y) ≥ c̃.

Setting c = c̃t
d
2
0 , we get p1(t, x, y) ≥ c

t
d
2

for |x− y| ≤ c′
√
t.

After the preparation of Proposition 3.4.3, the following result follows similarly

as the proof of Theorem 2.7 in [14].

Theorem 3.4.4. Suppose that domain D is convex. There exist constants C1, C2 > 0

and T3 > 0, such that for x, y ∈ D, t ∈ [0, T3]

p1(t, x, y) ≥ C1t
− d

2 exp(−C2|x− y|2

t
)

Proof. Fix t > 0, x, y ∈ D. If |x−y| < c′
√
t, by last proposition, we have p1(t, x, y) ≥

ct−
d
2 ≥ ct−

d
2 exp(− |x−y|

2

t
). Therefore we suppose that |x− y| ≥ c′

√
t.
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Because ∂D is compact and smooth, there exist two constants r0 > 0 and δ > 0

only depending on D, such that |D ∩ B(x, r)| ≥ δ|B(x, r)| for x ∈ D̄, r ≤ r0. Here

B(z, r) = {x ∈ Rd : |x− z| < r} and | · | means the volume of the set ·.

Since D is convex, the set c(x, y) := {(1− t)x + ty, t ∈ [0, 1]} ⊂ D. Let k be the

smallest positive integer dominating 9|x−y|2
c′2t

and set si = x + i(y−x)
k

(1 ≤ i ≤ k − 1),

r = c′

3

√
t
k
. So that r = c′

3

√
t
k
≥ |x−y|

k
and r < r0.

Denote Si = B(si, r), where B(z, r) = {x ∈ Rd : |x−z| < r}. Then {Si}i=0,...,k is a

sequence of balls. For ξi ∈ Si, max{|x−ξ1|, |y−ξk−1|, |ξl−ξl+1|, 1 ≤ l < k−1} < c′
√

t
k
.

Hence, by the last proposition,

p1(t, x, y) =

∫
D

· · ·
∫
D

p1(
t

k
, x, ξ1)p1(

t

k
, ξ1, ξ2) · · · p1(

t

k
, ξk−1, y) dξ1 · · · ξk−1

≥
∫
S1∩D

· · ·
∫
Sk−1∩D

p1(
t

k
, x, ξ1)p1(

t

k
, ξ1, ξ2) · · · p1(

t

k
, ξk−1, y) dξ1 · · · ξk−1

≥ (c(
t

k
)−d/2)k|δS1|k−1

Here, the volume of the ball |S1| = ωdr
d = ωd(

c′

3
)d( t

k
)d/2, and the constant ωd only

depends on d.

Therefore, we get that

p1(t, x, y) ≥ (
3

ωdc′
)t−d/2kd/2δk−1(

1

3
ωdc

′c)k =: C1t
−d/2kd/2Ck

2

Then, there is a constant C3 > 0, such that

log p1(t, x, y) ≥ logC1t
−d/2 + k logC2 ≥ logC1t

−d/2 − C3k

Since 9|x−y|2
c′2t

≤ k < 9|x−y|2
c′2t

+ 1, we know that

p1(t, x, y) ≥ C4t
− d

2 e
−C6|x−y|

2

t . (3.35)

Here, the constants C4, C5, C6 only depend on λ, T3 and d.
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3.4.2 Lower Bounds for Heat Kernels Associated with G2

Recall that

G2 =
1

2
∇ · (A∇) + b · ∇.

As in the proof of theorem 3.3.5, we set

f1(t, x, y) = b(x) · ∇xp1(t, x, y),

fn+1(t, x, y) =

∫ t

0

∫
D

b(z) · ∇xp1(t− s, x, z)fn(s, z, y) dzds.

Then by the construction of function p2(t, x, y) in Theorem 3.3.5, the following

inequality holds: there are constants λ1 > 0, λ2 > 0, such that

|p2(t, x, y)− p1(t, x, y)| = |
∞∑
k=1

∫ t

0

∫
D

p1(t− s, x, z)fn+1(s, z, y) dzds|

≤ λ1N
λ2
h (b)t−

d
2 exp(−λ2|x− y|2

t
),

and consequently,

p2(t, x, y) ≥ p1(t, x, y)− λ1N
λ2
h (b)t−

d
2 exp(−λ2|x− y|2

t
) (3.36)

Because limh→0N
λ2
h (b) = 0, we can chose h small enough so that

p2(t, x, y) ≥ p1(t, x, y)− λ1N
α
h (b)t−

d
2 exp(−λ2|x− y|2

t
)

≥ C4t
− d

2 e
−C6|x−y|

2

t − λ1N
α
h (b)t−

d
2 exp(−λ2|x− y|2

t
)

≥ 1

2
C4t

− d
2 e
−C6∨λ2|x−y|

2

t , (3.37)

for t ≤ h.
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3.5 Two-sided Estimates for the Heat Kernel p(t, x, y)

of Operator G

Recall that G = 1
2
∇ · (A∇) + b · ∇+ q with b and q defined in (3.12). In this section,

we establish both the upper and lower bounds of the heat kernel p(t, x, y) associated

with the operator G equipped with the Neumann boundary condition.

3.5.1 Upper Bounds for the Heat Kernel p(t, x, y)

Define the exponential martingale

Zt = e
∫ t
0 A
−1b(Xs)dMs− 1

2

∫ t
0<b,A

−1b>(Xs)ds,

where the martingale {Mt, t ≥ 0} was defined in (3.5) and (3.6).

As |b| ∈ Lp, p > d, then by [27], we know that Zt is an exponential martingale on

the probability space {Ω,Ft, P x}t≥0. Define a family of measures (P̃ x, x ∈ D) on F∞

by

dP̃ x

dP x
|Ft = Zt.

Then, by the Feymann-Kac formula, if f ∈ C∞(D), we have:

Stf(x) = Ex[Zte
∫ t
0 q(Xs)dsf(Xt)] = Ẽx[e

∫ t
0 q(Xs)dsf(Xt)]

= Ẽx[f(Xt)
∞∑
n=0

1

n!
(

∫ t

0

q(Xs) ds)
n].

Here Ẽx denotes the expectation under P̃ x.

Set

Q0(t, x) = Ẽx[f(Xt)] (3.38)

Qn(t, x) = Ẽx[

∫ t

0

q(Xs)Qn−1(t− s,Xs) ds] (3.39)
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Then if the following series is convergent, we have

Stf(x) =
∞∑
n=0

Qn(t, x)

Theorem 3.5.1. The heat kernel p(t, x, y) associated with the operator G equipped

with Neumann boundary condition has the following upper bound of Gaussian type:

for K1, K2 > 0,

p(t, x, y) ≤ K1t
− d

2 e−
K2|x−y|

2

t , for0 ≤ t ≤ T4, (3.40)

where T4 is a positive constant.

Proof. Firstly, we establish the upper bounds for Qn(t, x):

|Q0(t, x)| = |
∫
D

p2(t, x, y)f(y)dy| ≤
∫
D

M13t
− d

2 e−
M12|x−y|

2

t |f(y)| dy, (3.41)

|Q1(t, x)| = |
∫ t

0

Ẽx[q(Xs)Q0(t− s,Xs)] ds|

= |
∫ t

0

∫
D

p2(s, x, y)q(y)Q0(t− s, y) dyds|

≤
∫
D

|f(z)|(
∫ t

0

∫
D

M13s
− d

2 e−
M12|x−y|

2

s |q(y)|M13(t− s)−
d
2 e−

M12|y−z|
2

t−s dyds) dz

≤ M2
13N

M12
h (|q|)

∫
D

t−
d
2 e−

M12|x−z|
2

t |f(z)| dz. (3.42)

The last inequality follows from the fact that q satisfies condition K.

Iterating the calculation, we get

|Qn(t, x)| ≤Mn+1
13 (NM12

h (|q|))n
∫
D

t−
d
2 e−

M12|x−z|
2

t |f(z)| dz.

There exits T4 > 0, such that if h < T4, then M13N
M12
h (|q|) < 1. This implies

∞∑
n=0

Qn(t, x) ≤ M13

1−M2
13N

M12
h (|q|)

∫
D

t−
d
2 e−

M12|x−z|
2

t |f(z)| dz

for t ≤ h ≤ T4.
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Therefore, we conclude that there exists K1, K2 > 0 such that

|p(t, x, y)| ≤ K1t
− d

2 e−
K2|x−z|

2

t , for0 ≤ t ≤ T4.

3.5.2 Lower Bounds for the Heat Kernel p(t, x, y)

Theorem 3.5.2. Given a positive function f ∈ Lp for some p > d. Let ξ(t, x, y) be

the heat kernel of the operator Gf := 1
2
∇(A∇) + b · ∇ − f , that is,

Ẽx[exp (−
∫ t

0

f(Xs)ds)·] =

∫
D

ξ(t, x, y) · dy.

Then there are two constants k1, k2 > 0 and T > 0, such that for t ∈ [0, T ]

ξ(t, x, y) ≥ k1t
− d

2 e−
k2|x−y|

2

t . (3.43)

Proof. We set pf (t, x, y) to be the heat kernel such that

Ẽx[exp (

∫ t

0

f(Xs)ds)·] =

∫
D

pf (t, x, y) · dy.

Let g ∈ C(D) be a non-negative function satisfying ‖g‖L1(D) = 1. By Hölder’s

inequality, we get

|
∫
D

p2(t, x, y)g(y) dy| = |Ẽx[g(Xt)]| ≤ Ẽx[e
∫ t
0 f(Xs) dsg(Xt)]

1
2 Ẽx[e−

∫ t
0 f(Xs) dsg(Xt)]

1
2

= (

∫
D

pf (t, x, y)g(y) dy)
1
2 (

∫
D

ξ(t, x, y)g(y) dy)
1
2

Let gk, k ≥ 0 be a sequence of nonnegative continuous functions on D with

‖gk‖L1(D) = 1, such that gk tends to the Dirac measure δy0 at y0 . Then we have

p2(t, x, y0)2 ≤ pf (t, x, y0)ξ(t, x, y0).
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By the lower bound of p2(t, x, y) and upper bound of pf (t, x, y) established in

Section 3.4.2 and Theorem 3.5.1 respectively, we get the required lower bounds in

(3.43).

Decompose function q as follows:

q = q+ − q−,

where q+ = max{q, 0} and q− = −min{q, 0}.

Let f be a nonnegative continuous function on D̄. Then we have

∫
D

p(t, x, y)f(y) dy = Ẽx[exp (

∫ t

0

q(Xs) ds)f(Xt)]

= Ẽx[exp (

∫ t

0

q+(Xs)− q−(Xs) ds)f(Xt)]

≥ Ẽx[exp (

∫ t

0

−q−(Xs) ds)f(Xt)]

=

∫
D

ξ̂(t, x, y)f(y) dy (3.44)

where ξ̂(t, x, y) is the heat kernel associated with the semigroup

Ŝt· := Ẽx[exp (

∫ t

0

−q−(Xs) ds)·].

By Theorem 3.5.2, we know that there exist constants k̂1, k̂2 > 0 and T5 > 0, such

that the heat kernel ξ̂(t, x, y) ≥ k̂1t
− d

2 e−
k̂2|x−y|

2

t for t ≤ T5.

Therefore, the heat kernel p(t, x, y) associated with operator G also admits the

following lower bound:

p(t, x, y) ≥ ξ̂(t, x, y) ≥ k̂1t
− d

2 e−
k̂2|x−y|

2

t , for0 ≤ t ≤ T5.



Chapter 4

Neumann Problems for Semilinear

Elliptic PDEs

4.1 Introduction

In this chapter, our aim is to use probabilistic methods to solve the mixed boundary

value problem for semilinear second order elliptic partial differential equations ( PDEs

in abbreviation) of the following form:

 Lu(x) = −F (x, u(x),∇u(x)) on D,

1
2
∂u
∂~γ

(x)− B̂ · ~n(x)u(x) = Φ(x) on ∂D ,
(4.1)

on the bounded convex domain D with smooth boundary.

Both the elliptic operator L = 1
2
∇· (A∇) +B ·∇−∇· (B̂·) +Q and the quadratic

form Q(·, ·) associated with L are as in Chapter 3.

The function F (·, ·, ·) in (4.1) is a nonlinear function defined on Rd × R × Rd. Φ

is a bounded measurable function defined on the boundary ∂D. Set ~γ = A~n, where

~n denotes the inward normal vector field defined on the boundary ∂D.

As discussed in Chapter 3, the term ∇ · (B̂·) is tackled using the time-reversal of

Girsanov transform with the symmetric diffusion (Ω, P 0
x , X

0
t , t ≥ 0) associated with

63



CHAPTER 4. NEUMANN PROBLEMS FOR SEMILINEAR ELLIPTIC PDES 64

the operator

G1 =
1

2
∇ · (A∇),

which is the symmetric part of L. The semigroup Tt associated with the operator L

has the following form:

Ttf(x) = E0
x[f(X0

t ) exp(

∫ t

0

(A−1B)∗(X0
s )dM0

s + (

∫ t

0

(A−1B̂)∗(X0
s )dM0

s ) ◦ γ0
t

− 1

2

∫ t

0

(B − B̂)∗A−1(B − B̂)(X0
s )ds+

∫ t

0

Q(X0
s )ds)]

= e−v(x)St[fe
v](x), (4.2)

where v is got in the Section 3.2.

Here M0 is the martingale part of the diffusion X0, γ0
t is the reverse operator and

{St} is the semigroup associated with the operator G = 1
2
∇ · (A∇) + b · ∇+ q.

Please note that in this chapter, for convenience, we will use (Ω, P 0
x , X

0
t , t ≥ 0) to

denote the process associated the operator G1 and use (Ω, Px, X(t), t > 0) to denote

the process associated with G2 = 1
2
∇ · (A∇) + b · ∇. This notation is different from

that in Chapter 3.

Chapter 4 is organized as follows. In the next section, we obtain a pair of L2

solutions (Y, Z) of the BSDEs with infinite horizon:

dY (t) = −F (X(t), Y (t), Z(t))dt+ e
∫ t
0 q(X(u))dtΦ(X(s))dLt+ < Z(t), dM(t) >,

lim
t→∞

e
∫ t
0 d(X(u)) duYt = 0 in L2(Ω), (4.3)

where {X(t)}t>0 is the reflecting diffusion associated with the infinitesimal generator

G2 = 1
2
∇(A∇) + b · ∇, M(t) is the martingale part of {X(t)}t>0 and function d is

associated with the semilinear function F (x, y, z) and the ellipticity constant λ. Here

we call (Y, Z) the L2 solution because we estimate the solution in L2(Ω) in the whole

Section 4.2. The crucial point in this section is that the BSDE to be considered
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has a term associated with the local time and needs to be solved on an infinite time

interval.

In section 4.3, we solve the linear PDEs of the form:


1
2
∇(A∇u)(x) + b · ∇u(x) + qu(x) = F (x) on D

1
2
∂u
∂~γ

(x) = φ(x) on ∂D .
(4.4)

Some useful estimates, which are used in the subsequent discussions, are also

proved in this section.

In section 4.4, we obtain the solution to the semilinear PDE:


1
2
∇(A∇u)(x) + b · ∇u(x) + qu(x) = G(x, u(x),∇u(x)) on D,

1
2
∂u
∂~γ

(x) = φ(x) on ∂D .
(4.5)

Using the solution (Yx(t), Zx(t)) to the BSDE (4.3), we set F (x) := G(x, u0(x), v0(x)),

where u0(x) = Ex[Yx(0)] and v0(x) = Ex[Zx(0)], so that we can transform the semi-

linear equation (4.5) to the linear equation (4.4). With the solution u(x) of the linear

case shown in Section 4.3, what we need to do is to prove that u0(x) coincides with

u(x). Then we will show that u(x) is the solution to (4.5).

In section 4.5, we finally solve the non-linear equation:

 Lu(x) = −F (x, u(x)), on D

1
2
∂u
∂~γ

(x)− B̂ · n(x)u(x) = Φ(x) on ∂D.
(4.6)

The relationship between the operator L and G is the crucial point to complete

the proof. We apply the transformation introduced in [7] and Section 3.2 to transform

the problem (4.6) to a similar problem as (4.5), then an inverse transformation will

solve the final problem (4.6).

In section 4.6, we also obtain the L1 solutions of the BSDEs (4.3). Then using

the same methods introduced in Section 4.4 and 4.5, we solve the equations (4.5)

and (4.6). Since all of the solutions are estimated in L1(Ω) in this section, different
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conditions on the coefficients of operator L are obtained.

4.2 BSDEs with Singular Coefficients and Infinite

Horizon

Consider the operator

G2 =
1

2

d∑
i,j=1

∂

∂xi

(
aij(x)

∂

∂xj

)
+

d∑
i=1

bi(x)
∂

∂xi
,

on the domian D equipped with the Neumann boundary condition:

∂

∂~γ
:=< A~n,∇· >= 0, on ∂D.

By [26], there exists a unique reflecting diffusion process denoted by

(Ω,Ft, Xx(t), Px, θt, x ∈ D) associated with the generator G2. Here θ : Ω→ Ω is the

shift operator defined as follows:

Xx(s)(θt·) = Xx(t+ s), s, t ≥ 0.

Let Ex denote the expectation under the measure Px.

Set b̃ = {b̃1, ..., b̃d}, where b̃i = 1
2

∑
j
∂aij
∂xj

+ bi.

Then the process Xx(t) has the following decomposition:

Xx(t) = Xx(0) +Mx(t) +

∫ t

0

b̃(Xx(s)) ds+

∫ t

0

A~n(Xx(s)) dLs, Px − a.s.. (4.7)

Here Mx is a Ft-measurable square integrable continuous martingale additive

functional:

Mx(t) =

∫ t

0

σ(Xs)dBs,

where the matrix σ(x) is the positive definite symmetric square root of the matrix
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A(x) and {(Bt}t≥0 is a standard Brownian motion.

Lt is a positive increasing continuous additive functional satisfying

Lt =

∫ t

0

I{Xx(s)∈∂D} dLs.

We write Xx(t) as X(t) for short in the following discussion.

In this section, we will study the backward stochastic differential equations with

singular coefficients and infinite horizon associated with the martingale part Mx(t)

and the local time Lt. The unique L2 solution of such kind of BSDE is obtained.

Let g(ω, t, y, z) : Ω× R+ × R × Rd → R be a progressively measurable function.

Consider the following conditions:

(A.1) (y1 − y2)(g(t, y1, z)− g(t, y2, z)) ≤ −a1(t)|y1 − y2|2, a.s.,

(A.2) |g(t, y, z1)− g(t, y, z2)| ≤ a2|z1 − z2|, a.s.,

(A.3) |g(t, y, z)| ≤ |g(t, 0, 0)|+ a3(t)(1 + |y|), a.s..

Here a1(t) and a3(t) are two progressively measurable processes and a2 is a con-

stant. Set a(t) = −a1(t) + δa2
2, for some constant δ > 1

2λ
, where λ is the elliptic

constant which appeared in (3.2).

Lemma 4.2.1. Assume the conditions (A.1)-(A.3) hold and

Ex[

∫ ∞
0

e2
∫ t
0 a(u) du|g(t, 0, 0)|2 dt] <∞.

Then there exists a unique solution (Yx(t), Zx(t)) to the following backward stochastic

differential equation:

Yx(t) = Yx(T ) +

∫ T

t

g(s, Yx(s), Zx(s)) ds−
∫ T

t

< Zx(s), dMx(s) >, for 0 ≤ t ≤ T ;

lim
t→∞

e
∫ t
0 a(u) duYx(t) = 0, in L2(Ω). (4.8)
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Moreover,

Ex[sup
t
e2

∫ t
0 a(u) du|Yx(t)|2] <∞ and Ex[

∫ ∞
0

e2
∫ s
0 a(u) du|Zx(s)|2 ds] <∞. (4.9)

Proof. Existence:

The proof of this lemma is similar to that of Theorem 3.2 in [42], but the terminal

conditions here are different. By Theorem 3.1 in [42], the following BSDE has a

unique solution (Y n
x (t), Zn

x (t)):

Y n
x (t) =

∫ n

t

g(s, Y n
x (s), Zn

x (s)) ds−
∫ n

t

< Zn
x (s), dMx(s) >, for 0 ≤ t ≤ n,

(4.10)

and moreover,

Y n
x (t) = 0, Zn

x (t) = 0, t > n.

Fix t > 0 and n > m > t. It follows that

e2
∫ t
0 a(u) du|Y n

x (t)− Y m
x (t)|2

+

∫ n

t

e2
∫ s
0 a(u) du < A(X(s))(Zn

x (s)− Zm
x (s)), (Zn

x (s)− Zm
x (s)) > ds

= −2

∫ n

t

a(s)e2
∫ s
0 a(u) du|Y n

x (s)− Y m
x (s)|2 ds

+2

∫ n

t

e2
∫ s
0 a(u) du(Y n

x (s)− Y m
x (s))(g(s, Y n

x (s), Zn
x (s))− g(s, Y m

x (s), Zm
x (s))) ds

+2

∫ n

m

e2
∫ s
0 a(u) du(Y n

x (s)− Y m
x (s))g(s, 0, 0) ds

−2

∫ n

t

e2
∫ s
0 a(u) du(Y n

x (s)− Y m
x (s)) < Zn

x (s)− Zm
x (s), dMx(s) > .

Choose two positive numbers δ1 and δ2 such that δ1 >
1

2λ
and δ1 + δ2 < δ.
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Then by

2

∫ n

t

e2
∫ s
0 a(u) du(Y n

x (s)− Y m
x (s))(g(s, Y n

x (s), Zn
x (s))− g(s, Y m

x (s), Zm
x (s))) ds

≤ −2

∫ n

t

a1(s)e2
∫ s
0 a(u) du|Y n

x (s)− Y m
x (s)|2 ds

+2δ1a
2
2

∫ n

t

e2
∫ s
0 a(u) du|Y n

x (s)− Y m
x (s)|2 ds

+
1

2λδ1

∫ n

t

e2
∫ s
0 a(u) du < A(X(s))(Zn

x (s)− Zm
x (s)), (Zn

x (s)− Zm
x (s)) > ds

and

2

∫ n

m

e2
∫ s
0 a(u) du(Y n

x (s)− Y m
x (s))g(s, 0, 0) ds

≤ 2δ2a
2
2

∫ n

m

e2
∫ s
0 a(u) du|Y n

x (s)− Y m
x (s)|2 ds+

1

2δ2a2
2

∫ n

m

e2
∫ s
0 a(u) du|g(s, 0, 0)|2 ds,

it follows that

Ex[e
2
∫ t
0 a(u) du|Y n

x (t)− Y m
x (t)|2] +

1

λ
(1− 1

2λδ1

)Ex[

∫ ∞
t

e2
∫ s
0 a(u) du|Zn

x (s)− Zm
x (s)|2 ds]

≤ 1

2δ2a2
2

Ex[

∫ n

m

e2
∫ s
0 a(u) du|g(s, 0, 0)|2 ds].

This implies that

Ex[

∫ ∞
0

e2
∫ s
0 a(u) du|Zn

x (s)− Zm
x (s)|2 ds]→ 0, as m, n→∞.

Hence there exists Z̃x such that

Z̃x = lim
n→∞

e
∫ ·
0 a(u) duZn

x in L2([0,∞)× Ω).
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At the same time, we also obtain the following estimate:

sup
t
e2

∫ t
0 a(u) du|Y n

x (t)− Y m
x (t)|2

≤ 1

2δ2a2
2

∫ n

m

e2
∫ s
0 a(u) du|g(s, 0, 0)|2 ds

+2 sup
t
|
∫ n

t

e2
∫ s
0 a(u) du(Y n

x (s)− Y m
x (s)) < Zn

x (s)− Zm
x (s), dMx(s) > |.

Taking expectation on both sides of the above inequality, by the Burkholder-

Davis-Gundy inequality, we obtain

Ex[sup
t
e2

∫ t
0 a(u) du|Y n

x (t)− Y m
x (t)|2]

≤ 1

2δ2a2
2

Ex[

∫ n

m

e2
∫ s
0 a(u) du|g(s, 0, 0)|2 ds]

+C1Ex[{
∫ n

t

e4
∫ s
0 a(u) du|Y n

x (s)− Y m
x (s)|2|Zn

x (s)− Zm
x (s)|2 ds}

1
2 ]

≤ 1

2δ2a2
2

Ex[

∫ n

m

e2
∫ s
0 a(u) du|g(s, 0, 0)|2 ds] +

1

2
Ex[sup

t
e2

∫ t
0 a(u) du|Y n

x (t)− Y m
x (t)|2]

+C2Ex[

∫ ∞
0

e2
∫ s
0 a(u) du|Zn

x (s)− Zm
x (s)|2 ds].

Thus

Ex[sup
t
e2

∫ t
0 a(u) du|Y n

x (t)− Y m
x (t)|2]

≤ 1

δ2a2
2

Ex[

∫ n

m

e2
∫ s
0 a(u) du|g(s, 0, 0)|2 ds] + 2C2Ex[

∫ ∞
0

e2
∫ s
0 a(u) du|Zn

x (s)− Zm
x (s)|2 ds]

→ 0, as m, n→∞.

Therefore, there exists {Ỹx(t)} such that

lim
n→∞

Ex[sup
t
|Ỹx(t)− e

∫ t
0 a(u) duY n

x (t)|2] = 0.

For any ε > 0, there exist a positive number N such that for any n ≥ N ,

Ex[sup
t
|Ỹx(t)− e

∫ t
0 a(u) duY n

x (t)|2] <
ε

2
.
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For t > N , noticing Y N
x (t) = 0, it follows that

Ex[|Ỹx(t)|2] ≤ 2Ex[|Ỹx(t)− e
∫ t
0 a(u) du|Y N

x (t)|2] + 2Ex[e
2
∫ t
0 a(u) du|Y N

x (t)|2]

≤ 2Ex[sup
t
|Ỹx(t)− e

∫ t
0 a(u) du|Y N

x (t)|2] + 2Ex[e
2
∫ t
0 a(u) du|Y N

x (t)|2]

< ε.

Thus we have lim
t→∞

Ex[|Ỹx(t)|2] = 0.

By the chain rule, it is easy to see that, from (4.10),

Yx(t) = e−
∫ t
0 a(u) duỸx(t) and Zx(t) = e−

∫ t
0 a(u) duZ̃x(t)

satisfy the equation (4.8) and

lim
t→∞

Ex[e
2
∫ t
0 a(u) du|Yx(t)|2] = lim

t→∞
Ex[|Ỹx(t)|2] = 0.

According to the above proof, we also conclude that (4.9) holds.

Uniqueness:

Suppose that (Y 1
x , Z

1
x) and (Y 2

x , Z
2
x) are two solutions of the equation (4.8).

Set Ȳx(t) = Y 1
x (t)− Y 2

x (t) and Z̄x(t) = Z1
x(t)− Z2

x(t), a.s.. Then

d(e
∫ t
0 a(u) duȲx(t)) = −e

∫ t
0 a(u) du(g(t, Y 1

x (t), Z1
x(t))− g(t, Y 2

x (t), Z2
x(t)))dt

+a(t)e
∫ t
0 a(u) duȲx(t)dt

+e
∫ t
0 a(u) du < Z̄x(t), dMx(t) > . (4.11)
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By Ito’s formula, we get, for any t < T ,

e2
∫ t
0 a(u) du|Ȳx(t)|2 +

∫ T

t

e2
∫ t
0 a(u) du < A(X(s))Z̄x(s), Z̄x(s) > ds

= e2
∫ T
0 a(u) du|Ȳx(T )|2 + 2

∫ T

t

e2
∫ s
0 a(u) duȲx(s)(g(s, Y 1

x (s), Z1
x(s))− g(s, Y 2

x (s), Z2
x(s))) ds

−2

∫ T

t

a(s)e2
∫ s
0 a(u) du|Ȳx(s)|2 ds

−2

∫ T

t

a(s)e2
∫ s
0 a(u) duȲx(s) < Z̄x(s), dMx(s) > . (4.12)

By conditions (A.1) and (A.2), we have

2

∫ T

t

e2
∫ s
0 a(u) duȲx(s)(g(s, Y 1

x (s), Z1
x(s))− g(s, Y 2

x (s), Z2
x(s))) ds

= 2

∫ T

t

e2
∫ s
0 a(u) duȲx(s)(g(s, Y 1

x (s), Z1
x(s))− g(s, Y 2

x (s), Z1
x(s))) ds

+2

∫ T

t

e2
∫ s
0 a(u) duȲx(s)(g(s, Y 2

x (s), Z1
x(s))− g(s, Y 2

x (s), Z2
x(s))) ds

≤ −2

∫ T

t

a1(s)e2
∫ s
0 a(u) du|Ȳx(s)|2 ds+ a2

∫ T

t

e2
∫ s
0 a(u) duȲx(s)|Z̄x(s)| ds

≤ −2

∫ T

t

a1(s)e2
∫ s
0 a(u) du|Ȳx(s)|2 ds+ c′a2

∫ T

t

e2
∫ s
0 a(u) du|Ȳx(s)|2 ds

+a2
1

c′λ

∫ T

t

e2
∫ s
0 a(u) du|Z̄x(s)|2 ds. (4.13)

Choosing c′ = 2δa2, we obtain

|e
∫ t
0 a(u) duȲx(t)|2 + (1− 1

2δλ
)

∫ T

t

e2
∫ s
0 a(u) du < A(X(s))Z̄x(s), Z̄x(s) > ds

≤ e2
∫ T
0 a(u) du|Ȳx(T )|2 − 2

∫ T

t

a(s)e2
∫ s
0 a(u) duȲx(s) < Z̄x(s), dMx(s) > (4.14)

Taking expectation on both sides of the above inequality, we get that, for any

t < T ,

Ex[e
2
∫ t
0 a(u) du|Ȳx(t)|2] ≤ Ex[e

2
∫ T
0 a(u) du|Ȳx(T )|2].
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Since both Y 1 and Y 2 satisfy the terminal condition in (4.8), we obtain that

lim
T→∞

Ex[e
2
∫ T
0 a(u) du|Ȳx(T )|2] = 0,

which leads to Ex[e
2
∫ t
0 a(u) du|Ȳx(t)|2] = 0.

We conclude that Y 1
x (t) = Y 2

x (t) and Z1
x(t) = Z2

x(t).

We now want to apply Lemma 4.2.1 to a particular situation.

Let F (x, y, z) : Rd × R × Rd → R be a Borel measurable function. Consider the

following conditions:

(D.1) (y1 − y2)(F (x, y1, z)− F (x, y2, z)) ≤ −d1(x)|y1 − y2|2,

(D.2) |F (x, y, z1)− F (x, y, z2)| ≤ d2|z1 − z2|,

(D.3) |F (x, y, z)| ≤ |F (x, 0, z)|+K(x)(1 + |y|).

Set d(x) = −d1(x) + δd2
2 for some constant δ > 1

2λ
. The next result follows from

Lemma 4.2.1.

Lemma 4.2.2. Assume the conditions (D.1)-(D.3) hold and

Ex[

∫ ∞
0

e2
∫ t
0 d(X(u))du|F (X(t), 0, 0)|2dt] <∞.

Then there exists a unique solution (Yx(t), Zx(t)) to the following equation:

Yx(t) = Yx(T ) +

∫ T

t

F (X(s), Yx(s), Zx(s)) ds

−
∫ T

t

< Zx(s), dMx(s) >, for 0 ≤ t ≤ T ;

lim
t→∞

e
∫ t
0 d(X(u)) duYx(t) = 0, in L2(Ω). (4.15)

Consider the following condition instead of (D.3):

(D.3)′ |F (X(t), y, z)| ≤ K(t), for any y ∈ R and z ∈ Rd.

Let Φ be a bounded measurable function defined on ∂D, and q̃ ∈ Lp(D), for p > d.

The following theorem is the main result in this section.
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Theorem 4.2.3. Assume the conditions (D.1), (D.2) and (D.3)′ hold and that

Ex0 [

∫ ∞
0

e
∫ s
0 q̃(X(u)) du dLs] <∞ (4.16)

for some x0 ∈ D and for x ∈ D,

Ex[

∫ ∞
0

e2
∫ t
0 d(X(u)) du{e2

∫ t
0 q̃(X(u)) du + |K(t)|2} dt] <∞. (4.17)

Then there exists a unique solution (Yx, Zx) to the following BSDE:

Yx(t) = Yx(T ) +

∫ T

t

F (X(s), Yx(s), Zx(s)) ds−
∫ T

t

e
∫ s
0 q̃(X(u))dtΦ(X(s)) dLs

−
∫ T

t

< Zx(s), dMx(s) >, for 0 ≤ t ≤ T, (4.18)

and

lim
t→∞

e
∫ t
0 d(X(u)) duYt = 0 in L2(Ω). (4.19)

Proof. Uniqueness:

Suppose that (Y 1
x , Z

1
x) and (Y 2

x , Z
2
x) are two solutions of the equation (4.18) sat-

isfying (4.19).

Set Ȳx(t) = Y 1
x (t)− Y 2

x (t) and Z̄x(t) = Z1
x(t)− Z2

x(t) . Then

d(e
∫ t
0 d(X(u)) duȲx(t))

= −e
∫ t
0 d(X(u)) du(F (X(t), Y 1

x (t), Z1
x(t))− F (X(t), Y 2

x (t), Z2
x(t)))dt

+d(X(t))e
∫ t
0 d(X(u)) duȲx(t)dt+ e

∫ t
0 d(X(u)) du < Z̄x(t), dMx(t) > .



CHAPTER 4. NEUMANN PROBLEMS FOR SEMILINEAR ELLIPTIC PDES 75

By Ito’s formula, we get, for any t < T ,

e2
∫ t
0 d(X(u)) du|Ȳx(t)|2 +

∫ T

t

e2
∫ t
0 d(X(u)) du < A(X(s))Z̄x(s), Z̄x(s) > ds

= e2
∫ T
0 d(X(u)) du|Ȳx(T )|2

+2

∫ T

t

e2
∫ s
0 d(X(u)) duȲx(s)(F (X(s), Y 1

x (s), Z1
x(s))− F (X(s), Y 2

x (s), Z2
x(s))) ds

−2

∫ T

t

d(X(s))e2
∫ s
0 d(X(u)) du|Ȳx(s)|2 ds

−2

∫ T

t

d1(X(s))e2
∫ s
0 d(X(u)) duȲx(s) < Z̄x(s), dMx(s) > (4.20)

By (D.1) and (D.2), we have

2

∫ T

t

e2
∫ s
0 d(X(u)) duȲx(s)(F (X(s), Y 1

x (s), Z1
x(s))− F (X(s), Y 2

x (s), Z2
x(s))) ds

= 2

∫ T

t

e2
∫ s
0 d(X(u)) duȲx(s)(F (X(s), Y 1

x (s), Z1
x(s))− F (X(s), Y 2

x (s), Z1
x(s))) ds

+2

∫ T

t

e2
∫ s
0 d(X(u)) duȲx(s)(F (X(s), Y 2

x (s), Z1
x(s))− F (X(s), Y 2

x (s), Z2
x(s))) ds

≤ −2

∫ T

t

d1(X(s))e2
∫ s
0 d(X(u)) du|Ȳx(s)|2 ds+ d2

∫ ∞
t

e2
∫ s
0 d(X(u)) duȲx(s)|Z̄x(s)| ds

≤ −2

∫ T

t

d1(X(s))e2
∫ s
0 d(X(u)) du|Ȳx(s)|2 ds+ cd2

∫ T

t

e2
∫ s
0 d(X(u)) du|Ȳx(s)|2 ds

+d2
1

cλ

∫ T

t

e2
∫ s
0 d(X(u)) du|Z̄x(s)|2 ds. (4.21)

Choosing c = 2δd2, from (4.21) we obtain that

|e
∫ t
0 d(X(u)) duȲx(t)|2 + (1− 1

2δλ
)

∫ T

t

e2
∫ t
0 d(X(u)) du < A(X(s))Z̄x(s), Z̄x(s) > ds

≤ e2
∫ T
0 d(X(u)) du|Ȳx(T )|2 − 2

∫ T

t

d(X(s))e2
∫ s
0 d(X(u)) duȲx(s) < Z̄x(s), dMx(s) > .

(4.22)

Taking expectation on both sides of the above inequality and letting T tend to

∞, we get that

Ex[e
2
∫ t
0 d(X(u)) du|Ȳx(t)|2] = 0
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We conclude that Y 1
x (t) = Y 2

x (t) and hence from (4.22), Z1
x(t) = Z2

x(t).

Existence:

First of all, the assumption (4.16) and the following Lemma 4.4.3 imply that

sup
x
Ex[

∫ ∞
0

e
∫ s
0 q̃(X(u)) du dLs] <∞.

1◦: There exists (px(t), qx(t)) such that

dpx(t) = e
∫ t
0 q̃(X(u)) duΦ(X(t))dLt+ < qx(t), dMx(t) >, (4.23)

and e
∫ t
0 d(X(u)) dupx(t)→ 0 as t→∞, in L2(Ω).

In fact, let

px(t) := −Ex[
∫ ∞
t

e
∫ s
0 q̃(X(u)) duΦ(X(s)) dLs|Ft]

=

∫ t

0

e
∫ s
0 q̃(X(u)) duΦ(X(s))Ls − Ex[

∫ ∞
0

e
∫ s
0 q̃(X(u)) duΦ(X(s)) dLs|Ft].

(4.24)

By the martingale representation theorem in [42], there exists a process qx(t),

such that

−Ex[
∫ ∞

0

e
∫ s
0 q̃(X(u)) duΦ(X(s)) dLs|Ft] = − Ex[

∫ ∞
0

e
∫ s
0 q̃(X(u)) duΦ(X(s)) dLs]

+

∫ t

0

< qx(s), dMx(s) > . (4.25)

Then (px, qx) satisfies the equation (4.23).
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Moreover,

px(t) = −Ex[
∫ ∞
t

e
∫ s
0 q̃(X(u)) duΦ(X(s)) dLs|Ft]

= −e
∫ t
0 q̃(X(u)) duEx[

∫ ∞
t

e
∫ s
t q̃(X(u)) duΦ(X(s)) dLs|Ft]

= −e
∫ t
0 q̃(X(u)) duEx[

∫ ∞
0

e
∫ s+t
t q̃(X(u)) duΦ(X(s+ t)) dLs+t|Ft]

= −e
∫ t
0 q̃(X(u)) duEx[

∫ ∞
0

e
∫ s
0 q̃(X(u+t)) duΦ(X(s+ t)) dLs+t|Ft]

= −e
∫ t
0 q̃(X(u)) duEX(t)[

∫ ∞
0

e
∫ l
0 q̃(X(u)) duΦ(X(l)) dLl]. (4.26)

The last equality follows from the fact that Lt+s = Lt + Ls ◦ θt. Therefore,

sup
x
|px(t)| ≤ e

∫ t
0 q̃(X(u)) du sup

x∈D
|Φ(x)| · sup

x∈D̄
Ex[

∫ ∞
0

e
∫ t
0 q̃(X(u)) dudLt].

Set M = sup
x∈D
|Φ(x)| · sup

x∈D̄
Ex[

∫ ∞
0

e
∫ t
0 q̃(X(u)) dudLt].

By the following Lemma 4.4.3 and condition (4.16), it follows that M <∞.

In view of (4.17), we have

lim
t→∞

e
∫ t
0 (d+q̃)(X(u)) du = 0

in L2(Ω). Hence,

e
∫ t
0 d(X(u)) dupx(t) ≤Me

∫ t
0 (d+q̃)(X(u)) du → 0 as t→∞, in L2(Ω). (4.27)

2◦ : Set g(t, y, z) = F (X(t), px(t) + y, qx(t) + z). Then

(y1 − y2)(g(t, y1, z)− g(t, y2, z))

= (y1 − y2)(F (X(t), px(t) + y1, qx(t) + z)− F (X(t), px(t) + y2, qx(t) + z))

≤ −d1(X(t))|y1 − y2|2, (4.28)



CHAPTER 4. NEUMANN PROBLEMS FOR SEMILINEAR ELLIPTIC PDES 78

and

|g(t, y, z1)− g(t, y, z2)|

= |F (X(t), px(t) + y, qx(t) + z1)− F (X(t), px(t) + y, qx(t) + z1)|

≤ d2|z1 − z2|.

Moreover,

Ex[

∫ ∞
0

e2
∫ t
0 d(X(u)) du|g(X(t), 0, 0)|2 dt]

≤ Ex[

∫ ∞
0

e2
∫ t
0 d(X(u)) du|F (X(t), px(t), qx(t))|2 dt]

≤ Ex[

∫ ∞
0

e2
∫ t
0 d(X(u)) du|K(t)|2 dt]

< ∞. (4.29)

Therefore, g satisfies all the conditions of the Lemma 4.2.1. So there exists a pair

of processes (kx, lx) such that

dkx(t) = −g(t, kx(t), lx(t)) dt+ < lx(t), dMx(t) >,

and

e
∫ t
0 d(X(u)) dukx(t)→ 0,

as t→∞.

Putting Yx(t) = px(t) + kx(t) and Zx(t) = qx(t) + lx(t), we find that (Yx(t), Zx(t))

satisfies the following equation

dYx(t) = e
∫ t
0 q̃(X(u)) duφ(X(t)) dLt − F (t, Yx(t), Zx(t)) dt+ < Zx(t), dMx >

and

lim
t→∞

e
∫ t
0 d(X(u)) duYt = 0.
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Corollary 4.2.4. Assume all of the assumptions in Theorem 4.2.3 are satisfied. If

sup
x
Ex[

∫ ∞
0

e2
∫ s
0 d(X(u)) duK2(s) ds <∞, (4.30)

then it holds that

sup
x∈D
|Yx(0)| <∞.

Proof. As shown in the proof of theorem, Yx(t) has the decomposition: Yx(t) =

px(t) + kx(t).

Firstly, set t = 0 in (4.26), it follows that

|px(0)| ≤ EX(t)[|
∫ ∞

0

e
∫ l
0 q̃(X(u)) duΦ(X(l))dLl|]

≤ sup
x
‖Φ‖∞ sup

x
Ex[

∫ ∞
0

e
∫ l
0 q̃(X(u)) dudLl]

< ∞. (4.31)

Secondly, by Ito’s formula, we obtain

de2
∫ t
0 d(X(u)) du|kx(t)|2 = −2e2

∫ t
0 d(X(u)) dukx(t)g(t, kx(t), lx(t)) dt

+2e2
∫ t
0 d(X(u)) dukx(t)d(X(t)) dt

+2e2
∫ t
0 d(X(u)) dukx(t) < lx(t), dMx(t) >

+e2
∫ t
0 d(X(u)) du < A(X(t))lx(t), lx(t) > dt.

By further calculation and choosing two positive numbers δ1 and δ2 such that

δ1 >
1

2λ
and δ1 + δ2 < δ, we obtain that, for any t < T ,

Ex[e
2
∫ t
0 d(X(u)) du|kx(t)|2] +

1

λ
(1− 1

2λδ1

)Ex[

∫ T

t

e2
∫ s
0 d(X(u)) du|lx(s)|2 ds]

≤ Ex[e
2
∫ T
0 d(X(u)) du|kx(T )|2] +

1

2δ2d2
2

Ex[

∫ T

t

e2
∫ s
0 d(X(u)) du|g(s, 0, 0)|2 ds].
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Setting t = 0, we get

|kx(0)|2 = Ex[|kx(0)|2] ≤ Ex[e
2
∫ T
0 d(X(u)) du|kx(T )|2]

+
1

2δ2d2
2

Ex[

∫ T

0

e2
∫ s
0 d(X(u)) du|g(s, 0, 0)|2 ds].

Because T > t is chosen arbitrary, it follows that

|kx(0)|2 ≤ 1

2δ2d2
2

Ex[

∫ ∞
0

e2
∫ s
0 d(X(u)) du|g(s, 0, 0)|2 ds].

Therefore, by condition (4.30), it follows that

sup
x
|kx(0)| ≤

(
1

2δ2d2
2

sup
x
Ex[

∫ ∞
0

e2
∫ s
0 d(X(u)) du|g(s, 0, 0)|2 ds]

) 1
2

<∞.

So that sup
x
|Yx(0)| ≤ sup

x
|px(0)|+ sup

x
|kx(0)| <∞.

4.3 Linear PDEs

Given an operator

G =
1

2
∇ · (A∇) + b · ∇+ q,

satisfying the Neumann boundary condition and with the domain D(G) ⊂ W 1,2(D)

densely, where D is a bounded smooth domain in Rd.

Here b = (b1, ..., bd) is a Rd-valued Borel measurable function, and q is a Borel

measurable function on Rd such that:

ID(|b|2 + |q|) ∈ Lp(D), p > d.

In this section, we solve the following linear boundary value problem:


1
2
∇ · (A∇u)(x) + b · ∇u(x) + q(x)u(x) = F (x) on D,

1
2
∂u
∂~γ

(x) = φ on ∂D ,
(4.32)
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where F and φ are bounded measurable functions on D and ∂D respectively.

By Green’s identity, it is known that operator G defined on a bounded domain

D with Neumann boundary condition ∂·
∂~γ

(x) = 0 is associated with a quadratic form

([15], [30]):

E(f, g) : = −
∫
D

Gf(x)g(x)dx

=
1

2

∫
D

< A∇f,∇g > dx−
∫
D

b · ∇f(x)g(x)dx−
∫
D

q(x)f(x)g(x)dx.

Definition 4.3.1. A bounded continuous function u defined on D is a weak solution

of the problem (4.32) if u ∈ W 1,2(D), and for any g ∈ C∞(D),

E(u, g) = −
∫
∂D

φ(x)g(x)λ(dx)−
∫
D

F (x)g(x)dx,

where λ denotes the d− 1 dimensional Lebesgue measure on ∂D.

Consider the operator

G1 =
1

2
∇ · (A∇u) (4.33)

on domain D with boundary condition ∂u
∂~γ

= 0 on ∂D.

G1 is associated with a reflecting diffusion process (X0, P 0
x ). By [26] and Example

1, X0 has the following decomposition:

dX0
t = σ(X0

t ) dWt +
1

2
∇A(X0

t ) dt+ ~γ(X0
t ) dL0

t ,

L0
t =

∫ t

0

I{X0
s∈∂D} dL

0
s, (4.34)

where the matrix σ(x) is the positive definite symmetric square root of the matrix

A(x) and {Wt}t≥0 is a d-dimensional standard Brownian motion.

It is well known that operator G1 is associated with the regular Dirichlet form
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([15]):

E0(u, v) =
1

2

∫
D

aij
∂u

∂xi

∂v

∂xj
dx

and the domain of E0 is W 1,2(D).

The following lemma can be proved similarly as the Corollary 3.8 in [21] using

the heat kernel estimates on p1(t, x, y) associated with G1 in Chapter 3.

Lemma 4.3.2. There exists a constant K > 0, such that

sup
x∈D̄

E0
x[L

0
t ] ≤ K

√
t and inf

x∈D̄
E0
x[L

0
t ] > 0.

Moreover, for all positive integer n, we have supx∈D̄ E
0
x[(L

0
t )
n] ≤ Knt

n
2 , for some

constant Kn > 0.

Set M0
t =

∫ t
0
σ(X0

s ) dWs and

Zt = e
∫ t
0<A

−1b(X0
s ),dM0

s>− 1
2

∫ t
0 b
∗A−1b(X0

s ) ds+
∫ t
0 q(X

0
s ) ds, (4.35)

where b∗ is the transpose of the row vector b.

The proof of the following two Lemmas are inspired by that of the Lemma 2.1

and Theorem 2.2 in [21].

Lemma 4.3.3. For t > 0, there are two strictly positive functions M1(t) and M2(t)

such that, for any x ∈ D, M1(t) ≤ E0
x[
∫ t

0
Zs dL

0
s] ≤ M2(t). Furthermore, M2(t) → 0

as t→ 0.

Proof. 1◦: Put

M̃(t) = e
∫ t
0<A

−1b(X0
s ),dM0

s>− 1
2

∫ t
0 b
∗A−1b(X0

s ) ds, (4.36)

eq(t) = e
∫ t
0 q(X

0
s ) ds.

Then by martingale inequality and the fact that L0 is increasing and continuous,
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we have

sup
x∈D

E0
x[

∫ t

0

Zs dL
0
s] = sup

x∈D
E0
x[

∫ t

0

M̃(s)eq(s) dL
0
s]

≤ sup
x∈D

E0
x[max

0≤s≤t
|M̃(s)|2]

1
2 · sup

x∈D
E0
x[e2|q|(t)(L

0
t )

2]
1
2

≤ C sup
x∈D

E0
x[|M̃t|2]

1
2︸ ︷︷ ︸

(I)

· sup
x∈D

E0
x[e4|q|(t)]

1
4︸ ︷︷ ︸

(II)

· sup
x∈D

E0
x[(L

0
t )

4]
1
4︸ ︷︷ ︸

(III)

By the fact |b|2, |q| ∈ Lp and Theorem 2.1 in [27], (I) and (II) are bounded if t

belongs to a bounded interval.

Because of E0
x[(L

0
t )
n] ≤ Knt

n
2 , we see that M2(t) := K(I)(II)

√
t is the required

upper bound.

2◦: Since

E0
x[L

0
t ]

2 ≤ E0
x[

∫ t

0

M̃−1(s)e−q(s) dL
0
s] · E0

x[

∫ t

0

M̃(s)eq(s) dL
0
s], (4.37)

we obtain

E0
x[

∫ t

0

M̃(s)eq(s) dL
0
s] ≥

E0
x[L

0
t ]

2

E0
x[
∫ t

0
M̃−1(s)e−q(s) dL0

s]
. (4.38)

Here

M̃−1(t) = e−
∫ t
0<A

−1b(X0
s ),dM0

s>+ 1
2

∫ t
0 b
∗A−1b(X0

s ) ds

= e−
∫ t
0<A

−1b(Xs),dM0
s>− 1

2

∫ t
0 b
∗A−1b(X0

s ) ds · e
∫ t
0 b
∗A−1b(X0

s ) ds

:= N(t) · e
∫ t
0 b
∗A−1b(X0

s ) ds (4.39)

By the proof of the first part, replacing M̃t, q by Nt and b∗A−1b−q respectively, it

can be seen that there exists K(t) > 0 such that supx∈D E
0
x[
∫ t

0
M̃−1(s)e−q(s) dL

0
s] ≤

K(t).

As infx∈D E
0
x[L

0
t ] > 0, we complete the proof of the lemma by setting M1(t) =

infx∈D E
0
x[L0

t ]
2

K(t)
.
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Set L(x) := E0
x[
∫∞

0
Zs dL

0
s].

Lemma 4.3.4. If there is a point x0 ∈ D, such that L(x0) <∞, then there are two

positive constants K and β such that supx∈D E
0
x[Zt] ≤ Ke−βt.

Proof. By Girsanov Theorem and Feymann-Kac formula, G = 1
2
∇· (A∇)+b ·∇+q is

associated with the semigroup {St}t>0, where Stf(x) = E0
x[Ztf(X0

t )] for f ∈ L2(D).

By the upper and lower bound estimates of the heat kernel p(t, x, y) associated

with St in [37] and Chapter 3, without losing generality, we assume that

m−1
1 e−m3|x−y|2 ≤ p(1, x, y) ≤ m1e

−m2|x−y|2 .

So that we have

p(1, x, y) ≤ m1e
−m2|x−y|2 ≤ m1,

and

p(1, x, y) ≥ m−1
1 e−m3|x−y|2 ≥ m−1

1 e−m3(supx,y∈D |x−y|2).

The above two estimates imply that, for any positive function f ∈ L2(D),

c−1

∫
D

f(x)dx ≤ E0
x[Z1f(X0

1 )] =

∫
D

p(1, x, y)f(y)dy ≤ c

∫
D

f(x)dx, (4.40)

where c is a positive constant. Since

L(x) =
∞∑
n=0

E0
x[ZnE

0
X0
n
[

∫ 1

0

ZsL
0(ds)]] ≥M1(1)

∞∑
n=0

E0
x[Zn]

and L(x0) <∞, there is a positive integer number N such that

1

2c2
≥ E0

x0
[ZN ] = E0

x0
[Z1E

0
X1

[ZN−1]] ≥ c−1

∫
D

E0
x[ZN−1]m(dx).
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This implies ∫
D

E0
x[ZN−1]m(dx) ≤ 1

2c
.

Thus

sup
x∈D

E0
x[ZN ] = sup

x∈D
E0
x[Z1E

0
X1

[ZN−1]] ≤ c

∫
D

E0
x[ZN−1]m(dx) ≤ 1

2
. (4.41)

For any t > 0, there exists a positive number n such that t
N
∈ [n − 1, n). Then

by (4.41), it follows that

E0
x[Zt] ≤

1

2n−1
E0
x[Zt−N(n−1)] ≤

(
sup

x∈D,0≤t≤N
E0
x[Zt]

)
1

2n−1

≤ 2 sup
x∈D,0≤t≤N

E0
x[Zt]e

− ln2
N
t.

Theorem 4.3.5. If there exists x0 ∈ D such that L(x0) < ∞, then there exists a

unique bounded continuous weak solution of the problem (4.32).

Proof. Existence :

Due to Theorem 3.2 in [8], there exists a unique, bounded, continuous weak

solution u2 of the following problem:

 Gu2(x) = 0, on D,

1
2
∂u2
∂~γ

(x) = φ, on ∂D .
(4.42)

Thus by the linearity of the problem (4.32), we only need to show that the fol-

lowing problem has a bounded continuous weak solution:

 Gu1(x) = F (x), on D,

∂u1
∂~γ

(x) = 0, on ∂D .
(4.43)

The semigroup associated with operator G is {St, t > 0}. By Lemma 4.3.4, we
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have

sup
x∈D
|StF (x)| = sup

x∈D
|E0

x[ZtF (X0
t )]| ≤ Ke−βt‖F‖∞.

Then

u1(x) :=

∫ ∞
0

StF (x)dt

is well defined and has the following bound:

sup
x∈D
|u1(x)| ≤ K

β
‖F‖∞.

Moreover, the function u1(x) is also continuous on D. In fact, fixing any x ∈ D and

ε > 0, we can firstly choose a constant t0 > 0, such that supz∈D |
∫ t0

0
SsF (z) ds| < ε

3
.

And because St0u1(x) is continuous, there exists a constant δ > 0, such that for any

y with |y − x| < δ, |St0u1(x)− St0u1(y)| ≤ ε
3
.

We find that

Stu1(x) = E0
x[Ztu1(X0

t )] = E0
x[Zt

∫ ∞
0

EX0
t
[ZsF (X0

s )] ds]

=

∫ ∞
0

E0
x[Zt+sF (X0

t+s)] ds

=

∫ ∞
t

SsF (x) ds

= u1(x)−
∫ t

0

SsF (x) ds. (4.44)

For any y satisfying |y − x| < δ, it follows that

|u1(x)− u1(y)| ≤ |St0u1(x)− St0u1(y)|+ |
∫ t0

0

SsF (x) ds|+ |
∫ t0

0

SsF (y) ds| ≤ ε.

This implies that the function u1 is continuous on domain D.
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Denote the resolvent associated with operator G by {Gβ, β > 0}. Note that

Gβu1(x) =

∫ ∞
0

e−βtStu1(x)dt

=

∫ ∞
0

e−βtu1(x)dt−
∫ ∞

0

e−βt
∫ t

0

SsF (x) dsdt

=
1

β
u1(x)−

∫ ∞
0

∫ t

0

e−βtSsF (x) dsdt

=
1

β
u1(x)−

∫ ∞
0

SsF (x)(

∫ ∞
s

e−βtdt) ds

=
1

β
u1(x)− 1

β
GβF (x). (4.45)

We have

β(u1(x)− βGβu1(x)) = βGβF (x).

Therefore,

lim
β→∞

∫
D

β(u1(x)− βGβu1(x))u1(x)dx = lim
β→∞

∫
D

βGβF (x)u1(x)dx

=

∫
D

F (x)u1(x)dx <∞.

This implies that u1 ∈ D(E) (see [30]) and u1 is a weak solution of equation (4.43).

By the linearity, u = u1+u2 is a bounded continuous weak solution of equation (4.32).

Uniqueness :

Let v1 and v2 be two bounded continuous weak solutions of the equation (4.32).

Then v1 − v2 is the solution of equation (4.42) with φ = 0. Then by the uniqueness

of solutions to the equation (4.42) proved in [8], we know that v1 = v2.

4.4 Semilinear PDEs

In this section, we solve the following semilinear boundary value problem:


1
2
∇ · (A∇u)(x) + b · ∇u(x) + q(x)u(x) = −H(x, u(x),∇u(x)), on D,

1
2
∂u
∂~γ

(x) = φ(x) on ∂D.
(4.46)
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Recall E(·, ·) is the quadratic form associated with the operator G = 1
2
∇· (A∇) +

b · ∇+ q. Then

E(u, v) =
1

2

∫
D

< A∇u,∇v > dx−
∫
D

< b,∇u > vdx−
∫
D

quvdx.

Definition 4.4.1. A bounded continuous function u(x) defined on D is called a weak

solution of the equation (4.46) if u ∈ W 1,2(D), and for any g ∈ C∞(D),

E(u, g) =

∫
∂D

φ(x)g(x)λ(dx) +

∫
D

H(x, u(x),∇u(x))g(x)dx.

Recall that Lt is the boundary local time of X(t) defined in (4.7) and L0
t is the

boundary local time of X0
t in (4.34).

As a consequence of the Girsanov theorem, we have the following lemma.

Lemma 4.4.2. Assume the function f satisfies Ex[
∫ T

0
e
∫ t
0 f(X(u)) dudLt] < ∞. Then

it holds that

Ex[

∫ T

0

e
∫ t
0 f(X(u)) dudLt] = E0

x[

∫ T

0

M̃te
∫ t
0 f(X0

u) dudL0
t ],

where M̃t was defined in (4.36).

Proof. Because the boundary ∂D is smooth, it is not difficult to see that there exists

a function g ∈ C2(D̄) with ∂g
∂~γ

(x) = 1 if x ∈ ∂D. By Ito’s formula, we get

g(X0
T ) = g(X0

0 ) +

∫ T

0

< ∇g(X0
s ), dM0

s > +

∫ T

0

(G1g)(X0
s ) ds+ L0

T .

And by the chain rule, we obtain

e
∫ T
0 f(X0

u) dug(X0
T ) = g(X0

0 ) +

∫ T

0

e
∫ s
0 f(X0

u) du < ∇g(X0
s ), dM0

s >

+

∫ T

0

e
∫ s
0 f(X0

u) du(fg +G1g)(X0
s ) ds+

∫ T

0

e
∫ s
0 f(X0

u) du dL0
s.
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Finally, it follows that

M̃T e
∫ T
0 f(X0

u) dug(X0
T )

= g(X0
0 ) +

∫ T

0

M̃se
∫ s
0 f(X0

u) du < ∇g(X0
s ), dM0

s >

+

∫ T

0

M̃se
∫ s
0 f(X0

u) du(fg +G1g)(X0
s ) ds+

∫ T

0

M̃se
∫ s
0 f(X0

u) du dL0
s

+

∫ T

0

e
∫ s
0 f(X0

u) dug(X0
s )dM̃s +

∫ T

0

M̃se
∫ s
0 f(X0

u) du < b,∇g > (X0
s ) ds.

Taking expectations on both sides of the above equation, we obtain

E0
x[M̃T e

∫ T
0 f(X0

u) dug(X0
T )] = g(x) + E0

x[

∫ T

0

M̃se
∫ s
0 f(X0

u) du(fg +G2g)(X0
s ) ds]

+E0
x[

∫ T

0

M̃se
∫ s
0 f(X0

u) du dL0
s]. (4.47)

On the other hand, by the Girsanov theorem and Ito’s formula, we obtain

E0
x[M̃T e

∫ T
0 f(X0

u) dug(X0
T )]

= Ex[e
∫ T
0 f(X(u)) dug(X(T ))]

= g(x) + Ex[

∫ T

0

e
∫ s
0 f(X(u)) du(fg +G2g)(X(s)) ds]

+Ex[

∫ T

0

e
∫ s
0 f(X(u)) du dLs] (4.48)

Comparing the formulas (4.47) and (4.48), we get the final result in this lemma.

Lemma 4.4.3. Suppose that the function q̃ ∈ Lp(D) and p > d. If there exists some

point x0 ∈ D, such that

Ex0 [

∫ ∞
0

e
∫ t
0 q̃(X(u)) dudLt] <∞, (4.49)
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it holds that

sup
x∈D

Ex[

∫ ∞
0

e
∫ t
0 q̃(X(u)) dudLt] <∞.

Proof. Due to the Theorem 3.2 in [8] and the condition (4.49), there is a continuous

bounded function f ∈ W 1,2(D), such that

1

2
∇ · (A∇f) + b · ∇f + q̃f = 0

on domain D and 1
2
∂f
∂~γ

= 1 on ∂D.

Moreover f has the following expression:

f(x) = E0
x[

∫ ∞
0

e
∫ t
0<A

−1b(X0(u)),dM0
u>− 1

2

∫ t
0 b
∗A−1b(X0

s ) ds+
∫ t
0 q̃(X

0
u) dudL0

t ].

By the Lemma 4.4.2, it follows that

f(x) = Ex[

∫ ∞
0

e
∫ t
0 q̃(X(u)) dudLt].

Then the lemma is proved, for f is bounded on the domain D̄.

Let H : Rd × R × Rd → R be a bounded Borel measurable function. Introduce

the following conditions:

(H.1) (y1 − y2)(H(x, y1, z)−H(x, y2, z)) ≤ −h1(x)|y1 − y2|2,

(H.2) |H(x, y, z1)−H(x, y, z2)| ≤ h2|z1 − z2|.

Set h(t) = −h1(X(t)) + δh2
2 + q(X(t)) and h̃(t) = −h1(X(t)) + δh2

2 for some constant

δ > 1
2λ

.

Theorem 4.4.4. Suppose that the conditions (H.1) and (H.2) are satisfied. As-

sume

Ex1 [

∫ ∞
0

e2
∫ t
0 (q(X(u))+h̃(u)) dudt] <∞, for some x1 ∈ D, (4.50)
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and there exists some point x0 ∈ D, such that

Ex0 [

∫ ∞
0

e
∫ t
0 q(X(u)) dudLt] <∞. (4.51)

Then the semilinear Neumann boundary value problem (4.46) has a unique continuous

weak solution.

Proof. Set

H̃(t, x, y, z) := e
∫ t
0 q(X(u))dtH(x, e−

∫ t
0 q(X(u))dty, e−

∫ t
0 q(X(u))dtz).

Then

(y1 − y2)(H̃(t,X(t), y1, z)− H̃(t,X(t), y2, z)) ≤ −h1(X(t))|y1 − y2|2 (4.52)

and

|H̃(t,X(t), y, z1)− H̃(t,X(t), y, z2)| ≤ h2|z1 − z2|. (4.53)

Using the fact that H is bounded, we can show that

H̃(t,X(t), y, z) ≤ e
∫ t
0 q(X(u))dt‖H‖∞.

By Theorem 4.2.3, there exists a unique process (Ŷx, Ẑx) satisfying

dŶx(t) = −H̃(t,X(t), Ŷx(t), Ẑx(t))dt+ e
∫ t
0 q(X(u)) duφ(X(t))dL(t)+ < Ẑx(t), dMx(t) >

e
∫ t
0 h̃(u) duŶx(t)→ 0 as t→∞.

Furthermore, Corollary 4.2.4 implies that sup
x
Ŷx(0) <∞.
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From Ito’s formula, it follows that

de−
∫ t
0 q(X(u)) duŶx(t)

= −q(X(t))e−
∫ t
0 q(X(u)) duŶx(t)dt− e−

∫ t
0 q(X(u)) duH̃(t,X(t), Ŷx(t), Ẑx(t))dt

+φ(X(t))dLt+ < e−
∫ t
0 q(X(u)) duẐx(t), dMx(t) > .

Setting Yx(t) := e−
∫ t
0 q(X(u)) duŶx(t) and Zx(t) := e−

∫ t
0 q(X(u)) duẐx(t), we obtain

dYx(t)

= −(q(X(t))Yx(t) +H(X(t), Yx(t), Zx(t)))dt+ φ(X(t))dLt+ < Zx(t), dMx(t) > .

Moreover,

e
∫ t
0 h(u) duYx(t) = e

∫ t
0 h(u) due−

∫ t
0 q(X(u)) duŶx(t) = e

∫ t
0 h̃(X(u)) duŶx(t)→ 0 as t→∞.

So by Ito’s formula, we have that, for any t < T ,

e
∫ t
0 h(u) duYx(t)

= e
∫ T
0 h(u) duYx(T ) +

∫ T

t

e
∫ s
0 h(u) du (H(X(s), Yx(s), Zx(t)) + q(X(s))Yx(s)) ds

−
∫ T

t

e
∫ s
0 h(u) duφ(X(s)) dLs −

∫ T

t

h(s)e
∫ s
0 h(u) duYx(s) ds

−
∫ T

t

e
∫ s
0 h(u) du < Zx(t), dMx(t) > . (4.54)

Put u0(x) = Yx(0) and v0(x) = Zx(0).

Since Yx(0) = Ŷx(0), we know that u0 is a bounded function on domain D. By

the Markov property of X and the uniqueness of (Yx, Zx) , it is easy to see that

Yx(t) = u0(X(t)), Zx(t) = v0(X(t)).

So that sup
x∈D,t>0

|Yx(t)| ≤ ‖u0‖∞ <∞.
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Now consider the following problem:

 L2u(x) = −H(x, u0(x), v0(x)), on D

1
2
∂u
∂~γ

(x) = φ(x) on ∂D.
(4.55)

By Theorem 4.3.5, equation (4.55) has a unique continuous weak solution u. Next

we will show that u = u0.

Since u belongs to the domain of the Dirichlet form associated with the process

X(t), it follows from the Fukushima’s decomposition:

du(X(t))

= −[H(X(t), u0(X(t)), v0(X(t))) + q(X(t))u(X(t))]dt

+φ(X(t))dL(t)+ < ∇u(X(t)), dMx(t) >

= −[H(X(t), Yx(t), Zx(t)) + q(X(t))u(X(t))]

+φ(X(t))dL(t)+ < ∇u(X(t)), dMx(t) > .

From the condition (4.50) and the boundedness of u(x), it follows that

lim
t→∞

Ex[e
2
∫ t
0 h(u) duu2(X(t))] ≤ ‖u‖2

∞ lim
t→∞

Ex[e
2
∫ t
0 (h̃+q)(u) du] = 0.

By Ito’s formula, it follows that, for any t < T ,

e
∫ t
0 h(u) duu(X(t))

= e
∫ T
0 h(u) duu(X(T )) +

∫ T

t

e
∫ s
0 h(u) du[H(X(s), Yx(s), Zx(s)) + q(X(s))u(X(s))] ds

−
∫ T

t

e
∫ s
0 h(u) duφ(X(s))dL(s)−

∫ T

t

h(s)e
∫ s
0 h(u) duu(X(s)) ds

−
∫ T

t

e
∫ s
0 h(u) du < ∇u(X(t)), dMx(t) > . (4.56)

Set

vx(t) = u(X(t))− Yx(t) and Rx(t) = ∇u(X(t))− Zx(t).
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Comparing the equations (4.54) and (4.56), we obtain the following equation: for

any t < T ,

e
∫ t
0 h(u) duv(X(t))

= e
∫ T
0 h(u) duv(X(T )) +

∫ ∞
t

(q(X(u))− h(u))e
∫ s
0 h(u) duv(X(s)) ds

−
∫ ∞
t

e
∫ s
0 h(u) du < Rx(t), , dMx(t) >

= e
∫ T
0 h(u) duv(X(T ))−

∫ T

t

h̃(s)e
∫ s
0 h(u) duv(X(s)) ds

−
∫ T

t

e
∫ s
0 h(u) du < Rx(t), dMx(t) > . (4.57)

Set g(t) = e
∫ t
0 h(u) duv(t). Taking conditional expectations on both sides of (4.57),

we find that

g(t) = Ex[g(T )−
∫ T

t

h̃(s)g(s) ds|Ft]

= Ex[g(T )(1−
∫ T

t

h̃(s) ds) +

∫ T

t

∫ T

s

h̃(s)h̃(s1)g(s1) ds1ds|Ft]

= Ex[g(T )(1−
∫ T

t

h̃(s) ds+
1

2
(

∫ T

t

h̃(s) ds)2)

+(−1)3

∫ T

t

∫ T

s

∫ T

s1

h̃(s)h̃(s1)h̃(s2)g(s2) ds2ds1ds|Ft].

Keeping iterating in the way above for n times, we obtain

g(t) = Ex[g(T )(
n∑
k=0

(−
∫ T
t
h̃(s) ds)n

n!
)

+(−1)n+1

∫ T

t

∫ T

s

∫ T

s1

...

∫ T

sn−1

h̃(s)h̃(s1)...h̃(sn)g(sn) dsn...ds1ds|Ft].

It follows that

|g(t)| ≤ Ex[|g(T )|e−
∫ T
t h̃(s) ds|Ft].
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Then by g(t) = e
∫ t
0 h(u) duv(t), we obtain,

|v(t)| ≤ Ex[|v(T )|e
∫ T
t (h(s)−h̃(s)) ds|Ft] ≤ (‖u0‖∞ + ‖u‖∞)Ex[e

∫ T
t q(X(s)) ds|Ft]. (4.58)

Hence, it follows that

0 ≤ Ex[e
∫ t
0 q(X(s)) ds|v(t)|] ≤ (‖u0‖∞ + ‖u‖∞)Ex[e

∫ T
0 q(X(s)) ds],

for any T > t.

Since the condition (4.51) and Lemma 4.3.4 imply

lim
t→∞

Ex[e
∫ t
0 q(X(s)) ds] = 0,

we know that Ex[e
∫ t
0 q(X(s)) ds|v(t)|] = 0. This implies that v(t) = 0, Px − a.s..

Therefore, for any t > 0, we have u(X(t)) = Yx(t). In particular, u(x) =

Ex[u(X(0))] = Ex[Yx(0)] = u0(x). This shows that u(x) is a weak solution of the

equation (4.46).

If ũ is another solution of the problem (4.46). Then the processes Ỹx(t) := ũ(X(t))

and Z̃x(t) := ∇ũ(X(t)) satisfy the following equation

dỸx(t) = −H(X(t), Ỹx(t), Z̃x(t))dt− φ(X(t))dLt+ < Z̃x(t), dMx(t) > . (4.59)

Set Ȳx(t) = e
∫ t
0 q(X(u)) duỸx(t) and Z̄x(t) = e

∫ t
0 q(X(u)) duZ̃x(t).

By the chain rule, it follows that

dȲx(t) = −H̃(X(t), Ȳx(t), Z̄x(t))dt+ e
∫ t
0 q(X(u)) duφ(X(t))dL(t)+ < Z̄x(t), dMx(t) > .

Moreover, because ũ is bounded,

lim
t→∞

e
∫ t
0 h̃(u) duȲx(t) = lim

t→∞
e
∫ t
0 h(u) duũ(X(t)) = 0
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is also satisfied. Therefore, from the uniqueness of the solution of the BSDE in

Theorem 4.2.3, we have

Ỹx(t) = Yx(t) and Z̃x(t) = Zx(t).

In particular,

ũ(x) = Ex[Ỹx(t)] = Ex[Yx(t)] = u(x).

4.5 Semilinear Elliptic PDEs with Singular Coef-

ficients

Recall the operator

L =
1

2
∇ · (A∇) +B · ∇ − div(B̂·) +Q

on the domain D equipped with the mixed boundary condition on ∂D:

1

2

∂u

∂~γ
(x)− < B̂, n > u(x) = 0.

Q(u, v) is the quadratic form associated with L, with the domainD(Q) = W 1,2(D).

{Tt, t ≥ 0} denotes the semigroup generated by L.

In this section, our main aim is to solve the following equation:

 Lf(x) = −F (x, f(x)), on D,

1
2
∂f
∂~γ

(x)− < B̂, n > (x)f(x) = Φ(x), on ∂D.
(4.60)

Definition 4.5.1. A bounded continuous function u defined on D is called a weak
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solution of the equation (4.60) if u ∈ W 1,2, and for any g ∈ C∞(D̄),

Q(u, g) =

∫
∂D

Φ(x)g(x)λ(dx) +

∫
D

F (x, u(x))g(x)dx.

Here the function F : Rd×R→ R is a bounded measurable function and satisfies

the following condition:

(E.1) (y1 − y2)(F (x, y1)− F (x, y2)) ≤ −r1(x)|y1 − y2|2.

Set

Ẑt = exp(

∫ t

0

(A−1B)∗(X0
s )dM0

s + (

∫ t

0

(A−1B̂)∗(X0
s )dM0

s ) ◦ γ0
t

− 1

2

∫ t

0

(B − B̂)∗A−1(B − B̂)(X0
s ) ds+

∫ t

0

Q(X0
s ) ds). (4.61)

By the reduction method introduced in Section 3.2, there exists a bounded, con-

tinuous functions v ∈ W 1,p(D) satisfying

Ttf(x) = e−v(x)St[fe
v](x).

Here, St is the semigroup generated by the operator: G = 1
2
∇ · (A∇) + b · ∇ + q

equipped with the boundary condition < A∇u, n >= 0, where b := B − B̂ − (A∇v)

and q := Q+ 1
2
(∇v)∗A(∇v)− < B − B̂,∇v >.

In this section, we will stick to this particular choice of b and q. Recall that

M̃(t) = e
∫ t
0<A

−1b(X0
s ),dM0

s>− 1
2

∫ t
0 b
∗A−1b(X0

s ) ds

and set Zt = M̃(t)e
∫ t
0 q(X

0
s ) ds.

Then from (3.9), it follows that

Ẑ(t) = Zte
v(X0

t )−v(X0
0 ).
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The process (X,Px) associated with operator G2 has the following decomposition:

X(t) = x+

∫ t

0

σ(X(s))dBs +

∫ t

0

(
1

2
∇A+ b)(X(s)) ds+

∫ t

0

~γ(X(s)) dLs, Px − a.s.

where {Bt}t≥0 is a d-dimensional Brownian motion and Lt is the local time satisfying

Lt =
∫ t

0
I∂D(X(s)) dLs. It is known from [29] that the processes (X,Px) and (X0, P 0

x )

are related as follows,

dPx|Ft = M̃tdP
0
x |Ft .

Since we can not set up conditions on the functions q and b, which are actually

the ”intermediates”, the following lemma gives us an important condition to prove

the existence of the solution to equation (4.60).

Lemma 4.5.2. Assume that there exists x0 ∈ D, such that

E0
x0

[

∫ ∞
0

|Ẑt|2e
∫ t
0 (2Q−4r1)(X0

u) dudL0
t ] <∞. (4.62)

Then there exists a positive number ε > 0, such that if ‖B̂‖Lp ≤ ε, the following

inequality holds:

sup
x∈D

Ex[

∫ ∞
0

e2
∫ t
0 (−r1+q)(X(u)) dudt] <∞. (4.63)

Proof. First note that,

Ex[e
2
∫ t
0 (−r1+q)(X(u)) du] = E0

x[M̃(t)e2
∫ t
0 (−r1+q)(X0

u) du]

= E0
x[Z(t)e

∫ t
0 (−2r1+q)(X(u)) du]

≤ C1E
0
x[Ẑ(t)e−2

∫ t
0 (r1(X(u)) due

∫ t
0 (Q+ 1

2
<A∇v−2(B−B̂),∇v>)(X0

u) du]

≤ C1E
0
x[Ẑ

2(t)e2
∫ t
0 (Q−2r1)(X0

u) du]
1
2 · E0

x[e
∫ t
0<A∇v−2(B−B̂),∇v>(X0

u) du]
1
2 .

By Lemma 4.3.4 and condition (4.62), there exist two constants c2, β > 0 such
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that

sup
x∈D

Ex[Ẑ
2(t)e2

∫ t
0 (Q−2r1)(X0

u) du] < c2e
−βt.

Moreover, for p > d, by the Theorem 2.1 in [27], there exist two positive constants

c3 and c4 such that

E0
x[e

∫ t
0<A∇v−2(B−B̂),∇v>(X0

u) du] ≤ c3e
c4t,

where c4 = c‖ < A∇v − 2(B − B̂),∇v > ‖Lp/2 .

Since ‖∇v‖Lp ≤ C‖B̂‖Lp(D) (see [37]), there exists ε > 0, such that ‖B̂‖Lp(D) ≤ ε

implies c4 < β. Thus (4.63) holds.

Theorem 4.5.3. Assume (4.62). Then for some point x0 ∈ D

E0
x0

[

∫ ∞
0

Ẑs dL
0
s] <∞ (4.64)

and moreover, ‖B̂‖Lp ≤ ε, where ε is as in Lemma 4.5.2. Then the problem (4.60)

has a unique, bounded, continuous weak solution u(x).

Proof. Existence:

Set F̃ (x, y) = ev(x)F (x, e−v(x)y) and φ(x) = ev(x)Φ(x).

From the boundedness of v , F̃ is also bounded and satisfies

(y1 − y2)(F̃ (x, y1)− F̃ (x, y2)) ≤ −r1(x)|y1 − y2|2.

Moreover, there is a constant c > 0, such that

∞ > E0
x0

[

∫ ∞
0

Ẑs dL
0
s] = E0

x0
[

∫ ∞
0

Zse
v(X0

s )−v(X0
0 ) dL0

s]

≥ cE0
x0

[

∫ ∞
0

Zs dL
0
s]

= cE0
x0

[

∫ ∞
0

M̃se
∫ s
0 q(X

0
u) du dL0

s]

= cEx0 [

∫ ∞
0

e
∫ s
0 q(Xu) du dLs]. (4.65)
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The last equality above is due to the Lemma 4.4.2.

Furthermore, by Lemma 4.4.3, it follows that

sup
x
Ex[

∫ ∞
0

e
∫ t
0 q(X(u)) dudLt] <∞. (4.66)

By Lemma 4.5.2, the following condition is satisfied :

Ex[

∫ ∞
0

e2
∫ t
0 (q−r1)(X(u)) dudt] <∞, (4.67)

So F̃ satisfies all of the conditions in Theorem 4.4.4 replacing G by F̃ .

Thus the following problem

 Gu(x) = −F̃ (x, u(x)), on D

1
2
∂u
∂~γ

(x) = φ on ∂D
(4.68)

has a unique bounded continuous weak solution u.

Set f(x) = e−v(x)u(x). Then we claim the function f(x) is the weak solution of

the equation (4.60).

Because function v is continuous and bounded, f(x) is also continuous. From the

fact that function u is the weak solution of the problem (4.68), we obtain, for any

function ψ ∈ C∞(D),

E(u, e−vψ) =
1

2

∫
D

(
< A∇u,∇(e−vψ) > − < b,∇u > e−vψ − e−vquψ

)
dx

=

∫
∂D

e−vφψ dλ+

∫
D

F̃ (x, u(x))e−vψ dx. (4.69)

As in the proof of Theorem 5.1 in [42], we can show that the left side of the

equation (4.69) is equal to

Q(f, ψ) =
1

2

∫
D

[< A∇f,∇ψ > − < B,∇u > ψ− < B̂,∇ψ > f −Qfψ] dx.
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At the same time, by the definition of the function φ and F̃ , the right side of the

equation (4.69) is equal to

∫
∂D

Φψ dλ+

∫
D

F (x, f(x))ψ dx.

Thus it follows that, for any ψ ∈ C∞(D),

Q(f, ψ) =

∫
∂D

Φψdλ+

∫
D

F (x, f(x))ψ dx,

which proves that function f is a weak solution of the problem (4.60).

Uniqueness:

If f̄ is another solution of the problem (4.60), then ū := evf can be shown to be

the solution of the equation (4.68). Then by the uniqueness of the problem (4.68)

proved in the Theorem 4.4.4, we find ū = u. Therefore, f = f̄ .

4.6 L1 Solutions to the BSDEs and Semilinear PDEs

In this section, we consider the L1 solutions of the BSDEs and use this result to solve

the nonlinear elliptic partial differential equation with the mixed boundary condition.

Let f : Ω × R+ × R → R be progressively measurable. Consider the following

conditions:

(I.1) (y − y′)(f(t, y) − f(t, y′)) ≤ d(t)|y − y′|2 −a.s., where d(t) is a progressively

measurable process;

(I.2)E[
∫∞

0
e
∫ s
0 d(u) du|f(s, 0)| ds] <∞;

(I.3) Px − a.s., for any t > 0, y → f(t, y) is continuous;

(I.4) ∀r > 0, T > 0, ψr(t) := sup
|y|≤r
|f(t, y)− f(t, 0)| ∈ L1([0, T ]× Ω, dt× Px).

The following lemma is deduced from Corollary 2.3 in [4].
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Lemma 4.6.1. Suppose a pair of progressively measurable processes (Y, Z) with val-

ues in R × Rd such that t → Zt belongs to L2([0, T ]) and t → f(t, Yt) belongs to

L1([0, T ]), Px − a.s..

If

Yt = ξ +

∫ T

t

f(r, Yr) dr −
∫ T

t

< Zr, dMr >, (4.70)

then the following inequality holds, for 0 ≤ t < u ≤ T ,

|Yt| ≤ |Yu|+
∫ u

t

Ŷsf(s, Ys) ds−
∫ u

t

Ŷs < Zr, dMr > .

where ŷ = y
|y|I{y 6=0}.

The following lemma can be proved by modifying the proof of Proposition 6.4 in

[4].

Lemma 4.6.2. Assume the conditions (I.1)-(I.4) with d(t) ≡ 0. Then there exists

a unique solution (Y, Z) of the BSDE

Yt =

∫ T

t

f(r, Yr) dr −
∫ T

t

< Zr, dMr >, for 0 ≤ t ≤ T. (4.71)

Moreover, for each β ∈ (0, 1), E[supt≤T |Yt|β] + E[(
∫ T

0
|Zr|2 dr)

β
2 ] <∞.

Suppose β ∈ (0, 1).

Sβ denotes the set of real-valued, adapted and continuous processes {Yt}t≥0 such

that

‖Y ‖β := E[sup
t>0
|Yt|β] <∞.

It is known that ‖ · ‖β induces a complete metric on the space of real-valued

continuous processes ([4]).
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Mβ denotes the set of Rd-valued predictable processes {Zt} such that

‖Z‖Mβ := E[(

∫ ∞
0

|Zt|2dt)
β
2 ] <∞.

Mβ is also a complete metric space with the distance deduced by ‖ · ‖Mβ .

Lemma 4.6.3. Assume that conditions (I.1)-(I.4) with d(t) ≡ 0, then there exists

a unique solution (Y, Z) of the BSDE

Yt = YT +

∫ T

t

f(r, Yr) dr −
∫ T

t

< Zr, dMr >, for 0 ≤ t ≤ T ;

lim
t→∞

Yt = 0, P − a.s.. (4.72)

Proof. Existence:

By Lemma 4.6.2, there exists (Y n, Zn) such that, for 0 ≤ t ≤ n,

Y n
t =

∫ n

t

f(r, Y n
r ) dr −

∫ n

t

< Zn
r , dMr >,

and Y n
t = Zn

t = 0, for t ≥ n.

Fix t > 0 and t < n < n+ i, then

Y n+i
t − Y n

t =

∫ n+i

t

(f(r, Y n+i
r )− f(r, Y n

r )) dr −
∫ n+i

t

< (Zn+i
r − Zn

r ), dMr >

+

∫ n+i

n

f(r, 0) dr.

Set

F n(r, y) = f(r, y + Y n
r )− f(r, Y n

r ) + f(r, 0)I{r>n},

ynt = Y n+i
t − Y n

t and znt = Zn+i
t − Zn

t .

Then (ynt , z
n
t ) is the solution of the following BSDE:

ynt =

∫ n+i

t

F n(r, ynr ) dr −
∫ n+i

t

< znr , dMr > . (4.73)
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So that by the condition (I.1) with d(t) ≡ 0 and Lemma 4.6.1, it follows that

|ynt | ≤
∫ n+i

t

< ŷnr , F
n(r, ynr ) > dr −

∫ n+i

t

ŷnr < znr , dMr >

≤
∫ n+i

t

I{ynr 6=0}

|ynr |
< ynr , f(r, ynr + Y n

r )− f(r, Y n
r ) > dr +

∫ n+i

n

|f(s, 0)| ds

−
∫ n+i

t

ŷnr < znr , dMr >

≤
∫ n+i

n

|f(s, 0)| ds−
∫ n+i

t

ŷnr < znr , dMr > . (4.74)

Taking conditional expectations on both sides of the inequality, we get

|ynt | ≤ E[

∫ n+i

n

|f(s, 0)| ds | Ft] := Mn
t ,

where Mn
t is a martingale. Then by the Doob’s inequality and condition (I.2), it

follows that, for β ∈ (0, 1),

E[sup
t
|ynt |β] ≤ E[sup

t
(Mn

t )β] ≤ 1

1− β
(E[

∫ n+i

n

|f(s, 0)| ds])β

→ 0, as n→∞. (4.75)

Therefore we know that {Y n} is a Cauchy sequence under the norm ‖ ·‖β∞. Hence

there is a process Y such that E[supt |Yt − Y n
t |β]→ 0.

This also implies that Yt → 0, as t→∞, Px − a.s..

Moreover, by the equation (4.73), Ito’s formula and the condition (I.1), it follows

that

|ynt |2 +

∫ n+i

t

< A(X(r))znr , z
n
r > dr

= 2

∫ n+i

t

ynrF
n(r, ynr ) dr − 2

∫ n+i

t

ynr < znr , dMr >

≤ 2

∫ n+i

n

ynr f(r, 0) dr + 2|
∫ n+i

t

ynr < znr , dMr > |

≤ sup
r
|ynr |2 + (

∫ n+i

n

|f(r, 0)| dr)2 + 2|
∫ ∞
t

ynr < znr , dMr > |,
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and thus that

(

∫ n+i

t

|znr |2 dr)
β
2 ≤ c1[sup

r
|ynr |β + (

∫ n+i

n

|f(r, 0)| dr)β + |
∫ n+i

t

ynr < znr , dMr > |
β
2 ].

Taking expectations on both sides of the inequality and applying theBurkholder-

Davis-Gundy inequality, we obtain

E[(

∫ n+i

t

|znr |2 dr)
β
2 ]

≤ c1E[sup
r
|ynr |β] + c1(E[

∫ n+i

n

|f(r, 0)| dr])β + c2E[(

∫ n+i

t

|ynr |2|znr |2 dr)
β
4 ]

≤ c1E[sup
r
|ynr |β] + c1(E[

∫ n+i

n

|f(r, 0)| dr])β + c2E[(sup
r
|ynr |

β
2

∫ n+i

n

|znr |2 dr)
β
4 ]

≤ (c1 +
c2

2

2
)E[sup

r
|ynr |β] + c1(E[

∫ n+i

n

|f(r, 0)| dr])β +
1

2
E[(

∫ n+i

t

|znr |2 dr)
β
2 ].

Therefore, taking t = 0, we know that there is a constant C > 0, such that

E[(

∫ ∞
0

|zns |2 ds)
β
2 ]

≤ CE[sup
t
|ynt |β] + C(E[

∫ n+i

n

|f(r, 0)| dr])β

→ 0 as n→∞.

Hence {Zn
t } is a Cauchy sequence in Mβ. Let Z denote the limit of {Zn}.

Finally, by the condition (I.3), we find that

∫ T

0

f(t, Y n
t )dt→

∫ T

0

f(t, Yt)dt, Px − a.s.. (4.76)

Therefore, (Y,Z) is a solution of the BSDE (4.72).

Uniqueness:

Suppose (Y, Z) and (Y ′, Z ′) are two solutions to (4.72). Then by the estimate in
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Lemma 4.6.1 and the fact d(t) ≡ 0, it follows that, for t < T ,

|Yt − Y ′t | ≤ |YT − Y ′T |+
∫ T

t

IYr 6=Y ′r
|Yr − Y ′r |

(Yr − Y ′r )(f(r, Yr)− f(r, Y ′r )) dr

−
∫ T

t

< Zr − Z ′r, dMr >,

which implies that

E|Yt − Y ′t | ≤ E|YT − Y ′T | → 0, as T →∞.

Therefore, it holds that

∀t > 0, |Yt − Y ′t | = 0, P − a.s..

(I.5) The process d(t) is a progressively measurable process satisfying the following

condition:

d(·) ∈ L1[[0, T ]× Ω, dt⊗ P ], for any T > 0.

Theorem 4.6.4. Assume the conditions (I.1)-(I.5) hold. Then there exists a unique

process (Y, Z) such that,

Yt = YT +

∫ T

t

f(r, Yr) dr −
∫ T

t

< Zr, dMr >, for 0 ≤ t ≤ T ;

lim
t→∞

e
∫ t
0 d(u) duYt = 0, P − a.s. (4.77)

Proof. Existence:

Set f̂(t, y) = e
∫ t
0 d(u) duf(t, e−

∫ t
0 d(u) duy)− d(t)y. Then

(1) (y − y′)(f̂(t, y)− f̂(t, y′)) ≤ 0;

(2) f̂(t, 0) = e
∫ t
0 d(u) duf(t, 0). So

E[

∫ ∞
0

|f̂(s, 0)| ds] = E[

∫ ∞
0

e
∫ s
0 d(u) du|f(s, 0)| ds] <∞.
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(3) sup
|y|≤r
|f̂(t, y)− f̂(t, 0)| ≤ ψr(t) + |d(t)|r, where the process satisfies

ψr(t) + |d(t)|r ∈ L1([0, T ]× Ω, dt⊗ P ),

for T > 0.

Therefore, f̂ satisfies all of the conditions of the Lemma 4.6.3. So there exists a

pair of process (Ŷ , Ẑ) satisfying the equation:

Ŷt = ŶT +

∫ T

t

f̂(r, Ŷr) dr −
∫ T

t

< Ẑr, dMr >,

and obviously lim
t→∞

Ŷt = 0.

By the chain rule and the definition of the function f̂ , it follows that

de−
∫ t
0 d(u) duŶt = −f(t, e−

∫ t
0 d(u) duŶt)dt+ < e−

∫ t
0 d(u) duẐt, dMt > .

Set Yt = e−
∫ t
0 d(u) duŶt and Zt = e−

∫ t
0 d(u) duẐt. Then the process (Y, Z) is the

solution to the equation (4.77).

Uniqueness:

The uniqueness of the solution to (4.77) follows from the uniqueness of the solution

to equation (4.72).

Let H : Rd × R → R be a bounded Borel measurable function. Consider the

following conditions:

(H.1)
′
(y1−y2)(H(x, y1)−H(x, y2)) ≤ −h1(x)|y1−y2|2, where h1 ∈ Lp(D) for p > d

2
.

(H.2)
′
y → H(x, y) is continuous.

Theorem 4.6.5. Assume the Conditions (H.1)
′

and (H.2)
′

hold and that there is

some point x0 ∈ D, such that

Ex0 [

∫ ∞
0

e
∫ s
0 (−h1+q)(X(u)) du dLs] <∞, (4.78)
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and for some point x1 ∈ D,

Ex1 [

∫ ∞
0

e
∫ s
0 q(X(u)) du dLs] <∞. (4.79)

Then the semilinear Neumann boundary value problem

 Gu(x) = −H(x, u(x)), on D

∂u
∂~γ

(x) = φ(x) on ∂D
(4.80)

has a unique continuous weak solution.

Proof. Step 1

Set H̃(t, x, y) = e
∫ t
0 q(X(u))dtH(x, e−

∫ t
0 q(X(u))dty), then there exists a unique solution

(Ŷx, Ẑx) to the following BSDE: for any T > 0 and 0 < t < T ,

Ŷx(t) = Ŷx(T ) +

∫ T

t

H̃(s,X(s), Ŷx(s)) ds−
∫ T

t

e
∫ s
0 q(X(u))dtφ(X(s)) dLs

−
∫ T

t

< Ẑx(s), dMx(s) >

and

lim
t→∞

e−
∫ t
0 h1(X(u)) duŶt = 0 Px − a.s.

The uniqueness follows from the uniqueness proved in the last Theorem. Only

the existence of solution (Ŷx, Ẑx) needs to be proved:

(a) Similarly as the proof of Theorem 4.2.3, we can show that there exists (px(t), qx(t))

such that

dpx(t) = e
∫ t
0 q(X(u)) duφ(X(t))dLt+ < qx(t), dMx(t) >,

e−
∫ t
0 h1(X(u)) dupx(t)→ 0, as t→∞, Px − a.s.. (4.81)
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(b) Set g(t, x, y) = H̃(t, x, y + px(t)). Then it follows that

(y − y′)(g(t,X(t), y)− g(t,X(t), y′)) ≤ −h1(X(t))|y − y′|2.

The condition (4.78) and Lemma 4.3.4 imply, for x ∈ D,

Ex[

∫ ∞
0

e
∫ s
0 (−h1+q)(X(u)) du ds] <∞.

Furthermore, as the function H is bounded, we know that condition (I.2) is

satisfied:

Ex[

∫ ∞
0

e−
∫ s
0 h1(X(u)) du|g(s,X(s), 0)| ds]

= Ex[

∫ ∞
0

e−
∫ s
0 h1(X(u)) du|H̃(s,X(s), px(s))| ds]

= Ex[

∫ ∞
0

e
∫ s
0 (−h1+q)(X(u)) du|H(X(s), e−

∫ s
0 q(X(u)) dupx(s))| ds]

≤ ‖H‖∞Ex[
∫ ∞

0

e
∫ t
0 (−h1+q)(X(u)) dudt]

< ∞. (4.82)

Since y → g(x, y) is continuous, the condition (I.3) is satisfied.

Moreover, the condition (I.4) is also satisfied. In fact, for any r > 0,

ψr(t) = sup
r
|H̃(t,X(t), y)− H̃(t,X(t), 0)| ≤ 2‖H‖∞e

∫ t
0 q(Xt)dt,

and for any T > 0, by the fact that q ∈ Lp(D) with p > d and Theorem 2.1 in [27],

Ex[
∫ T

0
e
∫ t
0 q(Xu) dudt] <∞.

Therefore, the function g satisfies all of the conditions of Theorem 4.6.4 . There

exists a pair of process (yx(t), zx(t)) such that for any T > 0 and 0 < t < T ,

yx(t) = yx(T ) +

∫ T

t

g(X(s), yx(s)) ds−
∫ T

t

< zx(s), dMx(s) > (4.83)
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and

lim
t→∞

e−
∫ t
0 h1(X(u)) duyx(t) = 0 Px − a.s.. (4.84)

Put Ŷx(t) = px(t) + yx(t) and Ẑx(t) = qx(t) + zx(t). It follows that (Ŷx(t), Ẑx(t))

satisfies the following equation

dŶx(t) = e
∫ t
0 q(X(u)) duφ(X(t))dLt − H̃(t,X(t), Ŷx(t))dt+ < Ẑx(t), dMx >,

lim
t→∞

e−
∫ t
0 h1(X(u)) duŶt = 0 Px − a.s..

Step 2.

Put Yx(t) := e−
∫ t
0 q(X(u)) duŶx(t) and Zx(t) := e−

∫ t
0 q(X(u)) duẐx(t), we have

dYx(t) = −F (X(t), Yx(t)) + φ(X(t))dLt+ < Zx(t), dMx(t) >,

where F (x, y) = q(x)y +H(x, y).

Moreover,

e
∫ t
0 (−h1+q)(X(u)) duYx(t) = e

∫ t
0 (−h1+q)(X(u)) due−

∫ t
0 q(X(u))dtŶx(t)

= e−
∫ t
0 h1(X(u)) duŶx(t)→ 0 as t→∞.

Put u0(x) = Yx(0) and v0(x) = Zx(0).

Now as in Theorem 4.4.4, we can solve the following equation

 Gu(x) = −H(x, u0(x)), on D,

1
2
∂u
∂~γ

(x) = φ(x) on ∂D ,
(4.85)

and prove that the solution u coincides with u0(x). This completes the proof of the

whole theorem.

Recall the operators L and G introduced in Section 4.5. Suppose that F : Rd ×
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R → R is a bounded measurable function and r1 ∈ Lp(D). Consider the following

conditions :

(E.1) (y1 − y2)(F (x, y1)− F (x, y2)) ≤ −r1(x)|y1 − y2|2;

(E.2) y → F (x, y) is continuous.

Now following the same proof as that of Theorem 4.5.3, we obtain

Theorem 4.6.6. Suppose that the function F satisfies the condition (E.1) and

(E.2), and there exist x0, x1 ∈ D such that

E0
x0

[

∫ ∞
0

e−
∫ t
0 h1(X0

u) duẐtdL
0
t ] <∞, (4.86)

and

E0
x1

[

∫ ∞
0

ẐtdL
0
t ] <∞. (4.87)

Then the following problem

 Lu(x) = −F (x, u(x)), on D

1
2
∂u
∂~γ

(x)− < B̂, n > (x)u(x) = Φ(x), on ∂D
(4.88)

has a unique, bounded, continuous weak solution.



Chapter 5

Future Studies

5.1 An Inspiring Example

In this chapter, we consider the operator

L =
1

2
∇(A∇)+ < b,∇ >,

which is associated with the process {Ω,Ft, Xt, Px}, semigroup {Pt} and the transi-

tion density function p(t, x, y).

It is known that the adjoint operator L∗ of L, satisfying, for u ∈ D(L), v ∈ D(L∗):

∫
L(u)vdm =

∫
u(L∗v)dm,

and has the following expression:

L∗ =
1

2
∇(A∇·)− div(b·). (5.1)

In this sense, the term in the form div(b·) leads us to study the adjoint operator

and adjoint process. In the following discussion, we fix time t > 0 and then define the

backward filtration {
←−
F t
s, s < t} as

←−
F t
s = σ(Xr, r ∈ [s, t]). In [9] and [23], the reverse

process {Ys = Xs ◦ rt : s ∈ [0, t]} is a Markov process with respect to the filtration

112
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{
←−
F t
s : s ∈ [0, t]}. L∗ is associated with the semigroup P ∗ and the transition density

function p∗(t, x, y) = p(t, y, x).

Notice that the adjoint process Y is not homogenous under the measure Px. Based

on this notice, we apply the ”time-reversal” method introduced before to deal with

the divergence term. But we also find that, if we keep calculating the semigroup of

the adjoint process Y under the probability Px, something interesting will happen.

We try to study the simplest Dirichlet problem in this section:

 L∗u = 1
2
∇(A∇u)(x)− div(b(x)u(x)) = −F (x, u(x),∇u(x)), on D

u = Φ, on ∂D .
(5.2)

Calculating rigorously, if u ∈ D(L) ∩ D(L∗), we get, for s < t

u(Xt)− u(Xs)

=

∫ t

s

∇u(Xr)dMr +

∫ t

s

Lu(Xr) dr

=

∫ t

s

∇u(Xr)dMr +

∫ t

s

L∗u(Xr) dr +

∫ t

s

div(bu)(Xr) dr +

∫ t

s

< b,∇u > (Xr) dr.

(5.3)

But the term
∫ t
s
div(bu)(Xr) dr does not have a real meaning, because b is just

measurable. Inspired by [28] and [35], we will try to transform
∫ t
s
div(bu)(Xr) dr in

the following discussion.

Fix x0 and set pt(x) := p(t, x0, x), for every u ∈ W 1,2, we define

αu(s, t) :=

∫ t

s

< A∇ ln pt,∇u > (Xr) dr,

βu(s, t) :=

∫ t

s

< b,∇u > (Xr) dr.
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Denote the semigroup associate with the adjoint process under Px0 by

Ss,tf(x) := Ex0 [f(Xs)|Xt = x] =

∫
p(s, x0, y)p(t− s, y, x)

p(t, x0, x)
f(y)m(dy)

=
1

pt(x)
P ∗t−s(psf)(x), s < t.

By the following fact

L∗P ∗u (pt−uf) = P ∗uL
∗(pt−uf)

= P ∗u [(L∗pt−u)f+ < A∇pt−u,∇f > +pt−u(
1

2
∇(A∇f)− < b,∇f >)],

we get

Ss,tf(x)− f(x)

=
1

pt(x)
[P ∗t−s(psf)(x)− ptf(x)]

=
1

pt(x)

∫ t−s

0

∂u[P
∗
u (pt−uf)(x)]du

=
1

pt(x)

∫ t−s

0

(∂uP
∗
u )(pt−uf)(x)− P ∗u (∂upt−uf)(x))du

=
1

pt(x)

∫ t−s

0

(L∗P ∗u )(pt−uf)(x)− P ∗u [(L∗pt−u)f ](x))du

=

∫ t−s

0

1

pt(x)
P ∗u [< A∇pt−u,∇f > +pt−u(

1

2
∇(A∇f)− < b,∇f >)]du

=

∫ t

s

1

pt(x)
P ∗t−u(pu < A∇ ln pu,∇f >)du

+

∫ t

s

1

pt(x)
P ∗t−u(pu <

1

2
∇(A∇f)− < b,∇f >)du

=

∫ t

s

Sr,t(< A∇ ln pu,∇f > +
1

2
∇(A∇f)− < b,∇f >)(x)du.
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By the Markovian property of the adjoint process, it follows that

Ex0 [f(Xs)− f(Xt)− αf (s, t)−
1

2

∫ t

s

∇(A∇f)(Xr) dr + βf (s, t)|
←−
F t
s]

= Ex0 [f(Xs)− f(Xt)− αf (s, t)−
1

2

∫ t

s

∇(A∇f)(Xr) dr + βf (s, t)|Xt]

= 0. (5.4)

So far we know, when the time t > 0 is fixed, the process

←−
M f (s, t) := f(Xs)− f(Xt)−

1

2

∫ t

s

∇(A∇f)(Xr) dr − αf (s, t) + βf (s, t), s < t(5.5)

is a martingale with respect to the filtration {
←−
F t
s, s < t}. And it is not difficult to

see the sharp process of the backward martingale
←−
M f (s, t) is

<
←−
M f (·, t),

←−
M f (·, t) >t

s=

∫ t

s

< A∇f,∇f > (Xr) dr.

Since the coordinate of point x is x = (x1, ..., xd), we set f(x) = xi ∈ W 1,2. Then

it follows

←−
M i(s, t) = X i

s −X i
t −

1

2

∑
j

∫ t

s

∂j(aij)(Xr) dr − αi(s, t) + βi(s, u).

We write the backward martingale as following for short:

←−
M(s, t) = Xs −Xt −

1

2

∫ t

s

∇A(Xr) dr −
∫ t

s

A∇(ln pr)(Xr) dr +

∫ t

s

b(Xr) dr.

Define the stochastic integral with respect to the backward martingale
←−
M i(s, t)

as follows, for a function g,

∫ t

s

g(Xr)d
←−
M i(r, t) = lim

‖4‖→0

k∑
j=0

g(Xtj+1
)(
←−
M i(tj, t)−

←−
M i(tj+1, t)),

where 4 : s = t0 < t1 < ... < tk = t is the partition of the interval [s, t] and
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‖4‖ = maxj(tj+1 − tj).

Similarly as the ”forward” process, we conclude that

∫ t

s

∇u(Xr)d
←−
M(r, t) =

←−
Mu(s, t). (5.6)

In fact,

∫ t

s

∇u(Xr)d
←−
M(r, t)

= lim
‖4‖→0

k∑
j=0

∇u(Xtj+1
)(Xtj −Xtj+1

)− 1

2

∫ t

s

< ∇A,∇u > (Xr) dr

−
∫ t

s

< A∇(ln pr),∇u > (Xr) dr +

∫ t

s

< b,∇u > (Xr) dr. (5.7)

Set the first term in the right side of the equation (5.7) as (I), then it follows

(I)

= lim
‖4‖→0

k∑
j=0

∇u(Xtj)(Xtj −Xtj+1
) + lim

‖4‖→0

k∑
j=0

(∇u(Xtj+1
−∇u(Xtj))(Xtj −Xtj+1

)

= −
∫ t

s

∇u(Xr)dMr −
∫ t

s

<
1

2
∇A+ b,∇u > (Xr) dr −

∫ t

s

∑
ij

aij
∂2u

∂xi∂xj
(Xr) dr

= u(Xs)− u(Xt) +

∫ t

s

Lu(Xr) dr −
∫ t

s

<
1

2
∇A+ b,∇u > (Xr) dr

−
∫ t

s

∑
ij

aij
∂2u

∂xi∂xj
(Xr) dr.

By the above expression of (I), we get the conclusion (5.6).

Therefore, by (5.3) and (5.5), we conclude the following two results.

(1)For any f ∈ W 1,2, it follows

f(Xt)− f(Xs) =
1

2

∫ t

s

∇f(Xr)dMr −
1

2

∫ t

s

∇f(Xr)d
←−
M(r, t)− 1

2
αf (s, t) + βf (s, t).

(5.8)
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(2)For any function f ∈ D(L), it follows

−
∫ t

s

∇(A∇f)(Xr) dr

=

∫ t

s

∇f(Xr)dMr +

∫ t

s

∇f(Xr)d
←−
M(r, t) +

∫ t

s

< A∇ ln pr,∇f > (Xr) dr.

We use the notation in [35]. For function g = (g1, ..., gd), define

∫ t

s

g(Xr) ∗ dXr

=
∑
i

(∫ t

s

gi(Xr)dM
i
r +

∫ t

s

gi(Xr)d
←−
M i(r, t)

)
+

∫ t

s

< A∇ ln pr, g > (Xr) dr

We can generalize the second conclusion (2) as follows, which is inspired by [35].

Lemma 5.1.1. Assume g ∈ L2(Rd, Rd), f ∈ L2(Rd) and div(Ag) = f in the weak

sense. Then it holds that

−
∫ t

s

f(Xr) dr =

∫ t

s

g(Xr) ∗ dXr.

The function u ∈ W 1,2 is the weak solution of the equation (5.2), which can be

rewritten as div(A(1
2
∇u−A−1b)) = −F (x, u(x)) in the weak sense. By Lemma 5.1.1,

we have

1

2

∫ t

s

∇u(Xr) ∗ dXr −
∫ t

s

A−1b(Xr) ∗ dXr =

∫ t

s

F (Xr, u(Xr) dr.

By (5.8), we know that

1

2

∫ t

s

∇u(Xr) ∗ dXr

=
1

2

∫ t

s

∇u(Xr)dMr +
1

2

∫ t

s

∇u(Xr)d
←−
M(r, t) +

∫ t

s

< A∇ ln pr,∇u > (Xr) dr

= −u(Xt) + u(Xs) +

∫ t

s

∇u(Xr)dMr +

∫ t

s

< b,∇u > (Xr) dr.



CHAPTER 5. FUTURE STUDIES 118

Then

∫ t

s

F (Xr, u(Xr)) dr = −u(Xt) + u(Xs) +

∫ t

s

∇u(Xr)dMr +

∫ t

s

< b,∇u > (Xr) dr

−
∫ t

s

A−1b(Xr) ∗ dXr.

Therefore, we have the following expression of u(X),

u(Xt)− u(Xs) =

∫ t

s

∇u(Xr)dMr −
∫ t

s

F (Xr, u(Xr)) dr

+

∫ t

s

< b,∇u > (Xr) dr −
∫ t

s

A−1b̂(Xr) ∗ dXr. (5.9)

As a conclusion of this example, we say that the equation (5.9) supplies a candidate

of the solution to the BSDE . Suppose u is the solution of the equation (5.2) and

substitute the fixed time t for the first hitting time τ of the boundary ∂D. Then it

follows

u(Xs) = Φ(Xτ ) +

∫ τ

s

F (Xr, u(Xr)) dr −
∫ τ

s

< b,∇u > (Xr) dr

+

∫ t

s

A−1b̂(Xr) ∗ dXr −
∫ τ

s

∇u(Xr)dMr.

5.2 Future Studies

Set

HT := {u ∈ L2([0, T ]×Rd) : t 7→ u(t, ·) is continuous in L2(Rd) on [0, T ],

u(t, ·) ∈ H1(Rd) and

∫ T

0

(A∇u(t, ·),∇u(t, ·))dt <∞}.

The following theorem is the main result in [35], which is the essential inspiration

of our future study.

Theorem 5.2.1. If Φ ∈ L2(Rd) and f : [0, T ]×Rd ×R×Rd → R, g : [0, T ]×Rd ×

R×Rd → R satisfy the conditions,
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(1) f(·, ·, 0, 0) ∈ L2([0, T ]×Rd) and g(·, ·, 0, 0) ∈ L2([0, T ]×Rd;Rd),

(2) |f(t, x, y, z)− f(t, x, y′, z′)| ≤ C(|y − y′|+ |z − z′|),

(3) |g(t, x, y, z)− g(t, x, y′, z′)| ≤ C(|y − y′|+ α|z − z′|),

with some constant C > 0 and α ∈ (0, 1). Then there exists a unique determined

solution u ∈ HT of the following equation:

(∂t +∇(A∇))u(t, x) + f(t, x, u(t, x),
1√
2
∇u(t, x)σ(x))

−div(Ag)(t, x, u(t, x),
1√
2
∇u(t, x)σ(x)) = 0.

u(T, x) = Φ(x) (5.10)

Moreover, set Yt = u(t,Xt) and Zt = (∇u)(t,Xt), then (Y, Z) is a solution of the

following BSDE,

Yt = Φ(XT )−
∫ T

t

< Zr, dMr > +

∫ T

t

f(r,Xr, Yr,
1√
2
Zrσ(Xr)) dr

+
1

2

∫ T

t

g(r,Xr, Yr,
1√
2
Zrσ(Xr)) ∗ dX, (5.11)

for any 0 ≤ t ≤ T , Pm − a.s..

We notice that, the processes Y and Z as a pair of solutions to the BSDE (5.11)

must be two functions u and ∇u composed of Xt respectively, i.e. Y = u(X) and

Z = ∇u(X). But as a general solution to the BSDE, this is not easy to be satisfied.

Last but not least, we list three problems for our future studies as the conclusion

of the whole thesis.

(1) Study the BSDE (5.11), not only in the PDE (5.10) point of view, but also its

own properties as a backward differential equation.

(2) Consider the following Dirichlet boundary problem:


1
2
∇(A∇u)(x) + b · ∇u(x)− divb̂(x, u(x)) + q(x)u(x) = −F (x, u(x),∇u(x)), on D

u = Φ, on ∂D.
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(3) Consider the following Neumann boundary problem:


1
2
∇(A∇u)(x) + b · ∇u(x)− divb̂(x, u(x)) + q(x)u(x) = −F (x, u(x),∇u(x)), on D

1
2
< A∇u, ~n >=< b̂(x, u(x)), ~n >, on ∂D.
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