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Abstract 
  

Abstract 
In this thesis we investigate how to improve the performance of MU-MIMO wireless 
system in terms of achieving Shannon capacity limit and efficient use of precious 
resource of radio spectrum in wireless communication.  

First a new suboptimal volume-based scheduling algorithm is presented, 
which can be applied in MU-MIMO downlink system to transmit signals 
concurrently to multiple users under the assumption of perfect channel information at 
transmitter and receiver. The volume-based scheduling algorithm utilises Block 
Diagonalisation precoding and Householder reduction procedure of QR factorisation. 
In comparison with capacity-based suboptimal scheduling algorithm, the volume-
based algorithm has much reduced computational complexity with only a fraction of 
sum-rate capacity penalty from the upper bound of system capacity limit. In 
comparison with semi-orthogonal user selection suboptimal scheduling algorithm, 
the volume-based scheduling algorithm can be implemented with less computational 
complexity. Furthermore, the sum-rate capacity achieved via volume-based 
scheduling algorithm is higher than that achieved by SUS scheduling algorithm in 
the MIMO case.  

Then, a two-step scheduling algorithm is proposed, which can be used in the 
MU-MIMO system and under the assumption that channel state information is 
known to the receiver, but it is not known to the transmitter and the system under the 
feedback resource constraint. Assume that low bits codebook and high bits codebook 
are stored at the transmitter and receiver. The users are selected by using the low bits 
codebook; subsequently the BD precoding vectors for selected users are designed by 
employing high bits codebook. The first step of the algorithm can alleviate the load 
on feedback uplink channel in the MU-MIMO wireless system while the second step 
can aid precoding design to improve system sum-rate capacity.  

Next, a MU-MIMO cognitive radio (CR) wireless system has been studied.  
In such system, a primary wireless network and secondary wireless network coexist 
and the transmitters and receivers are equipped with multiple antennas. Spectrum 
sensing methods by which a portion of spectrum can be utilised by a secondary user 
when the spectrum is detected not in use by a primary user were investigated. A Free 
Probability Theory (FPT) spectrum sensing method that is a blind spectrum sensing 
method is proposed. By utilizing the asymptotic behaviour of random matrix based 
on FPT, the covariance matrix of transmitted signals can be estimated through a large 
number of observations of the received signals. The method performs better than 
traditional energy spectrum sensing method. We also consider cooperative spectrum 
sensing by using the FPT method in MU-MIMO CR system. Cooperative spectrum 
sensing can improve the performance of signal detection. Furthermore, with the 
selective cooperative spectrum sensing approach, high probability of detection can be 
achieved when the system is under false alarm constraint.  
 Finally, spectrum sensing method based on the bispectrum of high-order 
statistics (HOS) and receive diversity in SIMO CR system is proposed. Multiple 
antennas on the receiver can improve received SNR value and therefore enhance 
spectrum sensing performance in terms of increase of system-level probability of 
detection. Discussions on cooperative spectrum sensing by using the spectrum 
sensing method based on HOS and receive diversity are presented. 
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Chapter 1 Introduction 
  

Chapter 1 Introduction 
 

In the past two decades, mankind has witnessed the fast development of the 

wireless communication industry. The examples of the wireless application 

and service are the use of mobile phone, Internet access, wireless Local 

Area Network (LAN) access, gaming, message forwarding and down 

loading, file retrieving and transfer, large volume data transfers between 

mobile handsets or laptop, video downloading to a handheld entertainment 

product, voice exchange on mobile phones and the multimedia 

communication to and from other mobile devices. The consequence of this 

expansion of the wireless communication industry is that the demand for 

capacity and frequency bandwidth has become increasingly high. Therefore, 

the available resources such as spectrum and system capacity become 

limited. To address these issues and to allocate these precious resources to 

different applications and services efficiently, multiuser Multiple-Input 

Multiple-Output (MU-MIMO) and Cognitive Radio (CR) are hot research 

areas in last decade. MU-MIMO and CR are two techniques that are the 

main focus of this thesis. 

 

 In a point-to-point Multiple-Input Multiple-Output (MIMO) system, 

multiple antennas are equipped at the transmitter and receiver. Two special 

cases of the MIMO system are Single-Input and Multiple-Output (SIMO) 

and Multiple-Input and Single-Output (MISO), where multiple-antennas are 

equipped at the receiver for SIMO system and multiple-antennas are 

equipped at the transmitter for MISO system. Multiple antennas in MIMO 

system introduce a new space dimension to the wireless system. It is 

recognized that MIMO technology in wireless system can increase system 

capacity and improve system performance by utilizing the space dimension 

and applying advanced coding techniques [A. Goldsmith, 2005, E. Larsson 

and P. Stoica, 2003 and A. Paulraj et al., 2003]. Each transmitter-receiver 

pair in MU-MIMO system forms a MIMO communication channels, the 
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users share the receive antennas in the uplink case and transmit antennas in 

the downlink case. Since different users have different channels that 

experience various degrees of channel fading, the channel information of 

different users can be exploited. The system resource can be allocated to a 

best channel or several users with good channel conditions in order to 

maximize system data rate. In the case of serving more than one users, the 

methodology of signal transmission is to minimize inter-user interference [D. 

Gesbert et al., 2007 and D. Tse and P. Viswanath, 2005]. It is recognized 

that the MU-MIMO technology plays a very important part in current 

commercial wireless systems and future generation mobile systems [M. 

Jiang and L. Hanzo, 2007]. 

   

 Cognitive radio is an emergent technology for improving the 

utilization of radio spectrum resource [I. Mitola, J. and J. Maguire, G. Q., 

1999, J. Mitola, 2000]. The cognitive radio is built on a software-defined 

radio, which is considered as an intelligent wireless communication system 

that is aware of its environment and learns from its setting, and therefore is 

able to adapt the system parameters to its surrounding for signal 

transmission. The utmost goals of the cognitive radio technology are to 

utilize the radio spectrum efficiently and to ensure reliable communication 

as the radio spectrum becomes a scarce resource with the emergence of new 

applications and services of wireless communication in recent years. 

 

 This thesis provides some suggestions and solutions to deal with the 

fundamental limits of wireless networks, such as capacity limits and radio 

spectrum shortage problem. The remainder of this chapter provides 

necessary background material and outlines the specific contributions of this 

thesis. 

1.1 Background  

1.1.1 Communication channel, MIMO and MU-MIMO 
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In 1948, Claude Shannon [C. E. Shannon, 1948] pioneered the mathematical 

theory of communication which is based on the concept of mutual 

information between the input and output of a channel. It is evident that the 

theory has formed a basis for analyzing the performance of both wired and 

wireless communication systems. The essence of the theory is the concept 

of channel capacity which is defined as the maximum data rate over a 

channel with asymptotically small error probability. In a typical 

communication system with the additive white Gaussian noise (AWGN) 

channel as shown in Figure 1.1, the relationship between the output signal 

and input signal can be expressed as  

 

y = x + n,      (1.1)  

 

where y denotes the output signal, x denotes the input signal and n denotes 

the AWGN noise. That is, the output of the system is the summation of 

input x and AWGN noise n. Assume that the signal-to-noise ratio (SNR) is 

the ratio of the power of the output signal in Watts to the power of the noise 

in Watts, and B is the channel bandwidth in Hz, Shannon capacity in bits per 

second (bps) of such a channel is given below 

 

C = Blog2(1 + SNR).     (1.2) 

 

Since Shannon capacity is the maximum data rate that a communication 

system can achieve with near zero error probability, the data rate achieved 

in a practical system is inevitable lower than the Shannon capacity due to 

the limitation of channel bandwidth and signal power. In other words, 

Shannon capacity is generally used as an upper bound on the achievable 

data rate in a real system.  
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Figure 1.1 General communication system. 

 
 

 

 

 

Base
station

Mobile 1

Mobile 2

Mobile 3

Downlink
Uplink

Dow
nli

nk
Upli

nk

Downlink

Uplink

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.2 Wireless cellular system 

 

 Shannon capacity limit can be applied as the upper bound of a 

wireless system, such as a cellular system shown in Figure 1.2. When the 

base station is transmitting messages to the mobiles, the channel is referred 

to as a downlink or broadcast channel. The reverse link is called uplink 

channel where the messages from a mobile are transmitted to the base 
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station. In this thesis, a downlink channel in a wireless network means that 

the base station transmits different signals (voice, data file or multimedia 

streams) to different mobiles or users. A downlink channel differs from a 

TV or radio broadcast channel where a transmitter sends the same message 

to each receiver. In following chapters of this thesis, we are interested in 

transmission of different messages to each mobile in the context of finding a 

scheduling algorithm in MU-MIMO wireless system to maximize system 

sum-rate capacity. On the other hand, we are interested in the scenario of 

spectrum sensing where same message are transmitted  

from transmitter and reaches different receivers. 

 

To meet the demands for higher data rate in wireless systems, 

MIMO technology has been utilized in various wireless standards. For 

example, MIMO technology is incorporated in IEEE Standard for local and 

metropolitan area networks IEEE standard 802.16e. The use of multiple 

input and multiple output antennas adds another dimension to the wireless 

communication system, which is known as antenna and space dimension. 

The MIMO technology can improve system capacity of wireless system. A 

typical point-to-point (single user) MIMO wireless system is shown in 

Figure 1. 3. 
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Figure 1.3 A point-to-point MIMO wireless system. 
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The earlier studies on MIMO system can be found in the pioneering 

works by Winter [J. Winters, 1987], Foschini and Gans [Foschini and Gans, 

1998], and E. Telatar [E. Telatar, 1999]. In 1987, Winters studied 

fundamental limits on the data rate of multiple antenna systems in the 

Rayleigh fading environment. The distribution of the maximum data rate at 

a given error rate in the channels was investigated. His research 

demonstrated that large capacity in systems can be potentially achieved with 

limited bandwidth. In 1998, Foschini and Gans used MIMO technology to 

improve wireless capacities by considering Rayleigh fading channel and the 

receiver with full knowledge of Channel State Information (CSI). Very large 

capacity can be achieved by forming a channel with increased spatial 

dimensions under the condition of fixed bandwidth and total transmitted 

power. In 1999, E. Telatar investigated single user MIMO system over an 

additive Gaussian channel with and without fading. The mathematical 

formulas for the capacities as well as the error exponents of the channels are 

derived. His work demonstrated that the large gains of multi-antenna 

systems over single antenna systems can be achieved under independence 

assumptions for the fades and noises at different receiving antennas. 

  

Since then, researches on MIMO technology have been pursued 

intensively to achieve spectral efficiency and high system capacity in 

wireless communication [A. J. Paulraj et al., 2004]. The advantages of 

MIMO systems over single-input single-output (SISO) systems are twofold: 

(a) system capacity and spectral efficiency can be improved significantly. 

The increase of the capacity of a wireless link is proportional to the 

minimum number of transmitter or the receiver antennas [G. G. Raleigh and 

J. M. Cioffi, 1996], [G. G. Raleigh and J. M. Cioffi, 1998]. The system data 

rate can be increased via spatial multiplexing without consuming more 

frequency resources and without increasing total transmit power. (b) The 

effects of fading can be reduced via diversity in a MIMO system. 
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SU-MIMO technique is theoretically understood and has been 

applied in the communication industry to achieve channel capacity gain and 

spectrum efficiency in past decades. The research emphasis on MIMO 

technology has shifted from SU-MIMO to multiuser-MIMO in recent years 

[D. Gesbert et al., 2007]. One obvious benefit of MU-MIMO system is that 

the space signature of users in the system can be explored to obtain high 

system capacity and better spectrum utilization. Research on MU-MIMO in 

last two decades has revealed that antennas across users in the system, such 

as cellular system, can be collectively exploited to achieve high 

multiplexing gain. This technique involves scheduling to multiple users 

simultaneously within same channel such as, time slot or frequency band. 

This technique is also called space-division multiple access (SDMA) [M. 

Cooper and M. Goldburg, 1996]. SDMA explores the space signatures of 

users and assigns to different users different spatial beams and 

encoding/decoding is applied to the users. Although signal transmissions 

to/from users within same spectrum coexist, they are separable in space. The 

studies in [M. Jiang and L. Hanzo, 2007] show improved system 

performance due to multiuser multiplexing gain in a MU-MIMO-OFDM 

(orthogonal frequency division multiplexing) wireless systems, where 

multiple users are transmitted simultaneously in orthogonal frequency band 

under the interference limit required. An overview of the results on Shannon 

capacity limits of SU and MU-MIMO channels is provided [A. Goldsmith, 

et al., 2003]. In the area of precoding strategy, the research has been done 

on the sum capacity and achievable sum rates for dirty paper coding (DPC) 

[D. Gesbert and M. Kountouris, 2007], coordinated beamforming [C.-B. 

Chae et al., 2006], and zero-forcing beamforming (ZFBF) with the 

dimensionality constraint [T. Yoo and A. Goldsmith, 2006]. DPC [M. Costa, 

1983] combined with user scheduling and power loading algorithm [G. 

Caire and S. Shamai, 2003] is demonstrated as an optimum strategy in MU-

MIMO BC (broadcast downlink channel) among the precoding strategies. 

DPC strategy in MU-MIMO BC system is a theoretical pre-interference 

cancellation technique. In [P. Viswanath et al., 2002], multiuser diversity is 
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explored in opportunistic beamforming using dumb antennas. The results 

show that the data rates can be increase significantly via multiuser diversity 

in a scheduling scheme designed to detect the channel condition of each 

user and only a user with the best channel conditions being served at one 

time. 

 

Figure 1.4 shows the downlink channel and Figure 1.5 is the uplink 

channel of simple case of two users and one base station in a MU-MIMO 

wireless system, each user terminal having two antennas and base station 

having two antennas. In a MU-MIMO uplink system, the spectral sharing is 

typically done by dividing the signal dimensions along the time, frequency 

and/or code space axes, that is, frequency-division multiple access (FDMA), 

time-division multiple access (TDMA), code-division multiple access 

(CDMA) and space-division multiple access (SDMA). SDMA is generally 

done with directional antennas and realized with smart antennas [J. H. 

Winters, 1998]. In MU-MIMO downlink system, a scheduling algorithm for 

servicing multiple users can be designed if transmitter and receivers have 

perfect channel state information. However, a transmitter without channel 

information is common in a MU-MIMO downlink system. In this case, 

CSIT can be obtained via an uplink feedback channel in MU-MIMO system 

to aid scheduling to multiple users simultaneously and precoding design in 

MU-MIMO downlink system. This feedback strategy may cause a 

significant burden on uplink capacity. In a MU-MIMO system with a large 

number of users, a scheduling procedure might be complex in order to select 

a group of users and serve them simultaneously. Optimal scheduling 

involves exhaustive search whose complexity is exponential in the group 

size and depends on the choice of precoding, decoding, and channel state 

feedback technique. In this thesis, the MU-MIMO downlink system is 

considered. The discussions on scheduling strategy will be presented in 

chapter 3 and chapter 4. 
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Figure 1.4 Multiuser MIMO downlink. 
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Figure 1.5 Multiuser MIMO uplink. 

 

1.1.2 Spectrum utilization – cognitive radio technique 

 

To improve spectrum utilization in MU-MIMO system, cognitive radio 

technique will be discussed in later chapters in this thesis.  Cognitive radio 

(CR) is a hot research topic in recent yeas. The study in CR is to find a 
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solution to a problem that radio spectrum resources become scarce with the 

increasing wireless application and, at the same time, the spectrum is not 

efficiently utilized. Current wireless networks are normally regulated by a 

fixed spectrum assignment policy. The spectrum is regulated by 

governmental agencies and is assigned to license holders or services on a 

long term basis for large geographical regions. The practice of this spectrum 

allocation inevitably results that the spectrum usage is concentrated on 

certain portions of the spectrum while a significant amount of the spectrum 

remains unutilized. The frequency allocation chart [National 

Telecommunications and Information Administration, 2003] from National 

Telecommunications and Information Administration (NTIA) organization 

in USA shows that all frequencies are allocated to various applications. The 

UK Frequency Allocation Table [Ofcom, 2008] is published by Ofcom on 

behalf of the National Frequency Planning Group, a sub-committee of the 

Cabinet Official Committee on UK Spectrum Strategy. The table shows the 

position as at December 2008 and will be updated according to the 

modification of spectrum policy decisions to meet the demand of emerging 

range of applications and services. The spectrum allocation chart [Roke, 

2007] also shows that the whole range of spectrum is heavily occupied by 

the allocated radio services.  

 

 Researches on spectrum utilisation have demonstrated that not all 

spectrums are in use for all of the time. Figure 1.6 [Ofcom, “Cognitive 

Radio,”] shows the spectrum occupancy measurements in a rural area, near 

Heathrow airport and in central London. The central London band has the 

highest degree of spectrum occupancy while the rural area measurement 

shows the lowest degree of occupancy and large areas of space.  
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Figure 1.6 Spectrum occupancy measurements [Ofcom, “Cognitive Radio,”] in a rural 

area (top), near Heathrow airport (middle) and in central London (bottom).

 

 It is obvious that the traditional fixed spectrum assignment policy 

can not meet the needs of ever increasing demand to access the limited 

spectrum for mobile services in recent years. Cognitive Radio is one 

technology which offers the potential to make efficient use of the unused 

spectrum, allowing large amounts of spectrum to become available for 

future high bandwidth applications. The essence of cognitive radio 

techniques is to allow users from different networks to use/share the 

spectrum in an opportunistic manner. To access dynamically to a licensed 

band, cognitive radio technology enables the users from unlicensed users to 

determine if licensed users occupy in a licensed band; to select the best 

available channel if unoccupied licensed bands are detected; to be able to 

share the bands among users, and finally to vacate the channel when a 

licensed user is detected. Cognitive radio technique has been included in the 

application initiatives, such as, the IEEE 802.22 standard wireless regional 

area network (WRAN) [802.22 Working Group, 2008, C. Stevenson et al., 

2009] and the Wireless Innovation Alliance [Wireless Innovation Alliance, 

2008] that support unleashing the potential of using “White Spaces” in the 

television (TV) spectrum.  
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 Cognitive radio technique may include spectrum sensing, spectrum 

analysis, and spectrum decision in a typical CR cycle [I. Mitola, J. and J. 

Maguire, G. Q., 1999, I. Akyildiz et al., 2006, S. Haykin, 2005]. In this 

thesis, we will focus our discussion on spectrum sensing methods that an 

unlisence user (secondary user) detctes if a license user (primary user) 

occupies a portion of the spectrum. A review paper summarised various 

spectrum sensing methods reported in recent years (Y. Zeng et al., 2010). 

Examples of the proposed spectrum sensing methods are energy detection 

[H. Urkowitz, 1967], matched filtering detection [A. Sahai and D. Cabric, 

2005], wavelet-based sensing [Z. Tian and G. B. Giannakis, 2006]. 

Spectrum sensing methods can be categorised into three types: (a) methods 

can be used when source signal and noise power information are known; (b) 

methods require only noise power information (semi blind), and (c) methods 

can be applied without information of source signal and noise power (blind). 

We will discuss spectrum sensing methods in chapter 5 and chapter 6.  

Furthermore, MIMO technique will be considered to improve the 

performance of spectrum sensing. In MU-MIMO system, cooperative 

spectrum sensing among users can also improve system sensing 

performance. This cooperative sensing method takes the advantage of users 

with different locations. Sensing decision from users close to the transmitter 

and/or with less external interference will greatly affect the final system 

sensing decision. Cooperative sensing can also increase system sensing 

reliability since the chance of all users sensing incorrectly due to channel 

fading or shadowing effect is low.  

 

1.2 Motivation 

 

Two main streams of studies on MU-MIMO are: (a)  Concerning achieving 

upper bound of Shannon capacities or optimal capacity regions for a given 

MU-MIMO system regardless how the capacity might be achieved and how 

complex the solution to a problem formulation is. (b) The emphasis is on the 
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practical implementation of any transmission schemes in the MU-MIMO 

system. The consequence of this strategy may result that the performance 

measure in terms of achievable rates is far from theoretical Shannon 

capacity. Our work in this thesis will be focused on developing transmission 

schemes that are not only feasible but also can approach Shannon capacity 

limit, i.e., to build a transmission strategy achieving high data rate with less 

complex.  The MIMO downlink system will be considered in our study.  

 

 Most of scheduling algorithms function under the assumption of 

perfect channel state information at the transmitter and receiver. However, 

variable nature of wireless channel might cause difficulties of obtaining 

exact channel state information at transmitter (CSIT) and channel state 

information at the receiver (CSIR). It might be relatively straightforward to 

direct measure the wireless channel at the receiver. However, it is normally 

the case that the transmitter is not aware of any channel information. In this 

thesis, we also consider a situation that perfect CSIR and transmitter obtains 

the channel state information through uplink feedback channel. To ease 

feedback load, we propose a two-step scheduling algorithm to deal with the 

system under feedback resource constraint. Using low bits feedback to 

select users in the first stage of the algorithm can significantly alleviate 

system feedback load.  

 

 Final motivation is to solve the problem of scarce spectrum resource 

and increase spectrum utilisation in MU-MIMO wireless system. In 

particular, we focus on exploring efficient spectrum sensing methods which 

are essential in cognitive radio technique to detect if a portion of spectrum 

allocated to a licensed user is in use. User cooperation in a MU-MIMO 

system can reduce hidden node problem and shadowing effect. Therefore, 

we also investigate how cooperative spectrum sensing can improve system 

performance in terms of probability of detection enhancement. 
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1.3 Outline of the thesis 

  

In following chapters, chapter 2 presents literature review on wireless 

channel and fading phenomenon existed in the wireless channel, system 

capacity as one of performance measures in MIMO system and MU-MIMO 

system, and cognitive radio technique in wireless network. 

 

 In chapter 3, we show a new volume-based scheduling algorithm. 

We describe how the algorithm works in the case of perfect channel 

knowledge at the transmitter and receiver. The algorithm is in the category 

of suboptimal scheduling method. We compare system sum-rate capacity 

achieved by the volume-based scheduling algorithm with other two 

suboptimal scheduling algorithms: capacity-based and SUS algorithms. We 

also compare the computational complexity of these suboptimal scheduling 

algorithms.    

 

 In chapter 4, we illustrate a two-step scheduling algorithm that is 

used for perfect channel state information at receiver and transmitter gaining 

channel state information via feedback uplink channel in MU-MIMO 

wireless system. It explains using low bits feedback to reduce feedback load 

and using high bits codebook for precoding vector design to improve system 

sum-rate capacity.     

 

 In chapter 5, a new Free Probability Theory (FPT) spectrum sensing 

is described. The review of Free Probability Theory is given in the chapter. 

The sensing performances between energy spectrum sensing method and the 

FPT spectrum sensing method are compared.  In addition, the cooperative 

spectrum sensing is discussed.    

 

 In chapter 6, another spectrum sensing method based on Higher-

Order Statistics (HOS) and receive diversity is presented. The review on 

HOS is provided. We demonstrate the sensing performance can be improved 
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by utilizing multiple antennas at the receiver. Cooperative spectrum sensing 

is also discussed in the case of MU-MIMO system with either a small 

number of users or a large number of users.  

 

 Finally, the conclusions and future work are presented in Chapter 7. 

 

 In this thesis, Matlab v7 software package is used for the simulation 

results presented in following chapters.
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Chapter 2 Literature review on wireless 
channel, MU-MIMO system and cognitive radio 
technology 

2.1 Wireless radio channel and fading 

 

Wireless radio channel is a dynamic channel in which the electromagnetic 

wave propagates. Comparing with wired radio channel, a mobile wireless 

channel is more complex in terms of random appearance of obstacles in a 

signal path from a transmitter to a receiver. In an urban area and outdoor 

environment, skyscrapers, trees as well as high density of the buildings can 

change a signal path significantly. The signal arriving at the receiver is not a 

simple case of a line-of-sight (LOS) path but the combination of the 

multipath signals arriving at the receiver. Similarly in the suburban area and 

countryside, the geographical surface of the earth such as mountains and 

hills can obstruct a signal; the received signal at a receiver is the 

combination of multi-path signals coming from a transmitter. In the 

situation of indoor environment, the objects in a wireless channel can vary 

extensively, such as floors, wall, partition in an office building, machinery 

etc. The complexity of a wireless channel media has brought challenge to 

the design of a wireless system and the analysis of the system performance. 

Because main theme of this PhD study is wireless MIMO (Multiple-Input 

Multiple-Output) system, the wireless radio propagation phenomena related 

to the wireless channel is presented next. 

 

a
b

c
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Figure 2.1 A wireless radio channel and signal multipath transmission. 
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Figure 2.1 shows typical signal transmission paths from a transmitter 

to a receiver in an outdoor environment. It is known that the signal 

transmission in the form of electromagnetic wave propagation experiences 

reflection, diffraction and scattering from various objects. As indicated in 

Figure 2.1, path (a) is the line-of-sight path that the signal arrives to the 

receiver without any obstruction. Reflection happens when a propagating 

electromagnetic wave impinges on an object which has large dimensions 

when compared to the wavelength of the propagating wave and the object 

has smooth surface; path (b) exhibits that an electromagnetic wave is 

reflected by house wall and path (d) displays that the signal is reflected by 

the ground surface. Diffraction occurs when the transmitted signal path from 

the transmitter to the receiver is obstructed by a surface that has sharp edges 

and the secondary waves are resulted around the obstacles. Path (c) is the 

case when the signal is diffracted by the top edge of a skyscraper and 

reaches to the recipient. The scattering situation is not shown in Figure 2.1. 

Scattered waves are mainly caused by many objects with small dimensions 

compared to the wavelength of the signal in the electromagnetic wave 

travelling path. These objects can be lamp posts, trees and hedges, and any 

rough surfaces.  

  

 There are two obvious phenomena when a radio wave propagating 

from a source to a destination in a wireless channel if a receiver moves 

away from a transmitter: (1) the average signal strength at the receiver 

decreases when the distance between the transmitter and receiver increases; 

(2) the interaction between multiple waves resulted by reflection, diffraction 

and scattering causes multipath fading at the destination, i.e., possible 

distorted signal with fast change amplitude, altered phase and frequency. 

  

 To analyze the performance of a mobile wireless channel, 

propagation models developed are categorized large-scale propagation 

models and small-scale propagation models. Large-scale propagation 

models are used to predict average signal strength at the receiver when there 
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exists large distance between the transmitter and the receiver, which is 

several hundreds or thousands metres. Small-scale propagation models, 

which are also known as fading models, deal with the circumstances when 

rapid fluctuations of the received signal strength occur in a short time period 

when the receiver moves very short distance (a few wavelengths).  

  

 There are numerous models to tackle the signal propagation in 

various wireless operation environments. They can be found in standard 

wireless communication text books and research papers, such as two-ray 

ground reflection model, knife-edge diffraction model [T. S. Rappaport, 

2002, M. J. Feuerstein et al., 1994], practical log-distance path loss model, 

log-normal shadowing model and Clark’s model for flat fading [Clark R. H., 

1987].  

 

2.1.1 Large-scale path loss 

2.1.1.1 Log-distance Path Loss Model 

  

Classical Log-distance Path Loss Model is used to describe large scale path 

loss, which specifies that average received power decreases logarithmically 

with distance in a wireless radio channel. Let PL  denote the average path 

loss which is the ratio of transmit power P  to receive power  at distance 

d from the transmitter, that is,

rP

/ rPPL P= ; denote a close-in reference 

distance which is determined from the measurements close to the 

transmitter. The average path loss at distance d can be expressed as: 

0d

 

( 0/ nPL d d∝ )   ,       (2.1) 

 

where n denotes the path loss exponent which designates the rate at which 

the path loss increases with distance. Because of scattering phenomenon in 

the antenna near field, (2.1) is valid only at transmission distances . If 0d d>
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average path loss is expressed in unit dBm and  is plotted in log scale, 

a linear relationship is found between the path loss and the separation 

distance of transmitter and receiver. Figure 2.2 indicates this linear trend 

when the parameters are taken the values 

0/d d

0 1d = , 0( ) 0PL d =  dBm and  

 when urban area cellular environment is considered.  3n =

 

100 101 102 103
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Transmitter-Receiver seperation distance d/d0

S
ig

na
l s

tre
ng

th
 a

t t
he

 re
ce

iv
er

 (d
B

m
)

 
 

Figure 2.2 Path loss in wireless radio channel. 

 

2.1.1.2 Log-normal shadowing model  

  

In the wireless radio channel, the transmitted signal can be blocked by large 

objects and shadowing effect takes place. Attenuation and deflection of the 

transmitted signal depends on the size of the objects as well as the substance 

medium property. The fading due to shadowing is categorized as large scale 

fading. The Log-normal shadowing model is developed to describe the 

shadowing effect, which can be used both in outdoor and indoor 

environment [M. Gudmundson, 1991, V. Erceg et al., 1999]. The Log-
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normal shadowing model considers that the path loss in dB at the distance d 

of the receiver from transmitter is contributed by the path loss solely due to 

the distance and the path loss due to the shadowing effect. Hence, the path 

loss in unit dB can be expressed as  

 

  10( ) 10 log 0 s
dPL d n PLd

⎛ ⎞
⎜ ⎟
⎝ ⎠

∝ +  ,     (2.2) 

 

where 1010 log
0

dn
d

⎛
⎜
⎝ ⎠

⎞
⎟  in unit dB is the Log-distance Path Loss described in 

section 2.1.1.1; sPL  in unit dB denotes the path loss due to the shadowing 

effect, which is a zero-mean Gaussian distributed random variable with 

standard deviation σ  in unit dB. The value of σ  depends on the 

surrounding environment. Large value of σ  indicates that strong shadowing 

effect happens. The example of shadow fading is shown in Figure 2.3. The 

ripples on the path loss curve are contributed by shadowing effect.   
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Figure 2.3 Path loss and shadow fading in wireless radio channel 

 

2.1.2 Small-scale fading and multipath 

  

Apart from large-scale path loss, small-scale fading existed in a wireless 

radio channel can cause unstable system performance. Small-scale fading is 

the phenomenon that the amplitudes and phases of a received radio signal 

fluctuate rapidly in a short period of time. Many factors can cause small 

scale fading, such as, the speed of the user terminal, the speed of 

surrounding moving objects and the frequency bandwidth used for the 

signal transmission. One of the causes of small scale fading is due to the 

interference of two or more copies of the transmitted signal at the receiver, 

which is called multipath fading. In this situation, the result signals at the 

receiver depend on number of signal paths, the intensity of the signal from 

each path, time delay between multipath signals and the bandwidth of the 

transmitted signal. 
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2.1.2.1 Multipath time delay, flat fading and frequency 

selective fading  

 

When a transmitted signal travels different paths in a mobile radio channel, 

each signal reaches to the receiver at slight different time. The time 

dispersion due to the multipath causes flat fading and frequency selective 

fading to the transmitted signal which depends on if all frequency 

components in the signal can pass through the channel. 

 

Flat fading and frequency selective fading are two typical fading 

phenomena in small-scale fading, which is illustrated in Figure 2.4. In the 

figure, ( , )h t τ  denotes a wireless channel impulse response at time t, τ  is 

channel coherence time, transmitted signal is x(t) and received signal is y(t). 

There are two characteristics of the channel response ( , )h t τ . Firstly the 

channel coherence time τ  is much less than the signal symbol length sT , 

which is indicated in Figure 2.4 (b). Secondly the channel coherence time τ  

is much greater than the signal symbol length sT , as shown in Figure 2.4 (c).  

 

Figure 2.4 (b) shows the case that the bandwidth of the input signal 

 is much less than the coherence bandwidth  of the wireless 

channel, i.e., 

1/xB = sT

c

cB

xB B<<  when the input symbol length sT  is much greater 

than the width of the delta function of the channel impulse response τ . 

Coherence bandwidth  is a statistical measure of frequencies over which 

a channel can be considered flat i.e., a signal which can pass a channel with 

approximately equal gain and linear phase. In the case of multipath channel, 

coherence bandwidth is defined and related to rms (root mean square) delay 

spread of the channel [T. S. Rappaport, 2002]. If the channel is 

characterized with constant gain and linear phase response over a bandwidth 

which is greater than the bandwidth of the transmit signal, the received 

signal will undergo flat fading. In flat fading, the intensity of the combined 

cB
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signals at the receiver due to the multipath effect in the channel will 

fluctuate fast with the time, however, the spectral characteristics of the 

transmitted signal at the receiver is not distorted. 
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Figure 2.4 Channel characteristics in terms of channel impulse response: (a) Input 

signal x(t), output signal y(t) and channel impulse response ( , )h t τ , (b) C ristics 

on time scale for flat fading, (c) Characteristics on time scale for frequency selective 

fading. 

haracte

 
On the other hand, if the input symbol length sT  is much less than 

the width of channel impulse response function τ  as shown in Figure 2.4 

(c), the bandwidth of the input signal is much greater than the coherence 

bandwidth of the channel, i.e., . Supposing the channel has constant 

gain and linear phase response, a signal passing through the channel 

undergoes different channel gain for different frequency components. The 

frequency components of the signal within the coherence bandwidth have 

high gain and the frequency components of the signal out of range of the 

coherence bandwidth have much less gain. Therefore, this kind of channel 

generates frequency selective fading to the transmitted signal. The multipath 

signals traverse the channel and they have different time delay, large time 

xB B� c
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spread causes frequency selective fading. As a result, the received signal 

viewed in time domain is a distorted signal of the original transmitted 

signal. 

 

2.1.2.2 Doppler shift and fast and slow fading 

 

Because a mobile station normally moves in a wireless communication 

environment, the movement of the mobile in a short time can cause the 

phase change in the received signal therefore the signal frequency alteration. 

This effect is called Doppler shift that is illustrated in Figure 2.5. 

 

 

 

 

 

 

 

 

 

 

θ
v

d+

A B

T (Transmitter)

Figure 2.5 Diagram to demonstrate the Doppler Effect. 

 

 Supposing a sinusoidal carrier wave signal with carrier frequency cf  

is radiated from the transmitter which is far away from the mobile station. 

The signal arriving angle at the mobile is θ . The mobile station moves from 

position B to position A with speed v  during time period that is denoted as 

. Let  denote the signal travel distance variation between the path TB t+ d+
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and path TA, which is approximately cosd v t θ=+ + . Because of this path 

difference, the phase change in the received signal at point A is  

22 / cosv td πφ π λ
λ

= =
++ + θ   ,     (2.3) 

 

where λ  is the wavelength of the transmitted signal. Therefore, the 

frequency change of the received signal at point B is 

  

1 cos
2d

vf
t
φ θ

π λ
= ⋅ =

+
+

.     (2.4) 

 

The frequency df  is called Doppler shift which is related to the mobile 

speed and the arrival angle of the signal wave. Hence, the frequency 

spectrum of the received signal will be broadened around cf  and in the 

range of c df f−  and c df f+ . The frequency spectrum of the received signal 

is also termed as Doppler spectrum because it is caused by the Doppler 

shift.  

 

It is clear that the movement speed of the mobile terminal and the 

change of the incident angle of the transmitted signal will determine how 

fast a radio channel varies. The channel can be categorized as a fast fading 

channel or a slow fading channel which depends on if the speed of the 

channel variation is much faster or slower than the change rate of the 

transmitted base band signal. 

  

2.1.3 Rayleigh fading and Ricean fading 

2.1.3.1 Rayleigh fading model 

 

Rayleigh fading is a statistical model for the small scale fading in a wireless 

propagation environment. Rayleigh fading model assumes that the 
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magnitude of a signal that has passed through a wireless radio channel will 

vary randomly according to a Rayleigh distribution - the radial component 

of the sum of two uncorrelated Gaussian random variables. Rayleigh fading 

is most applicable when there is no dominant propagation along a line-of-

sight between the transmitter and the receiver. Rayleigh fading model suites 

the situation when there are many objects in the environment that scatter the 

radio signal before it arrives at the receiver. One example of applications of 

Rayleigh fading model is in heavily built-up city areas where there is no 

line-of-sight between the transmitter and receiver.  

 

The central limit theorem holds that, if there is sufficiently much 

scatter, the channel impulse response will be well-modelled as a Gaussian 

process irrespective of the distribution of the individual components. If there 

is no dominant component to the scatter, then such a process will have zero 

mean and phase evenly distributed between 0 and 2π radians. The envelope 

of the channel response will therefore be Rayleigh distributed [J. G. Proakis, 

2001]. More detailed explanation is given below in the rest of this section. 

 

Supposing a transmitted signal  at time t is  0S

 

0 0 0( ) exp( )S t a j 0ω φ= + ,      (2.5) 

 

where  is the amplitude of the transmitted signal, 0a 0 2 cfω π=  , cf  is the 

frequency of the carrier wave and 0φ  is the initial radian phase of the 

transmitted signal. Each received signal  at time t from path i due to 

multipath can be expressed as 

iS

 

0 0
2( ) exp[ ( cos )]exp[ ( )]i i i iS t a j vt jπφ θ ω
λ

= + +φ ,   (2.6) 
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where iφ  is the phase change due to the time dispersion of the multipath, v  

is the speed of the mobile station, λ  is the wavelength of the transmitted 

signal, iθ  is the signal arriving angle and 2 cos ivtπ θ
λ

 is the phase change 

introduced by Doppler frequency shift.  

 

Assume that total number of paths is N, the received signal S at the 

receiver is the combination of the signals from N paths: 

 

1
( ) ( )

N

i
i

S t S t
=

= ∑ .     (2.7) 

 

If complex form of 2exp[ ( cos )]i ij vtπφ θ
λ

+  is used,  can be expressed 

as 

( )S t

 

 1 1

0 0

2 2( ) cos( cos ) sin( cos )

exp[ ( )]

N N

i i i i i i
i i

S t a vt j a vt

j

π πφ θ φ
λ λ

ω φ

= =

⎡ ⎤= + + +⎢ ⎥⎣ ⎦

× +

∑ ∑ θ
. (2.8) 

 

Obviously, multipath effect in the wireless environment induces a real part 

and imaginary part of change to the transmitted signal. Let ix  designate real 

part and  designate imaginary part, i.e., iy 2cos( cos )i i i ix a vtπφ θ
λ

= +  and 

2sin( cos )i i i iy a vtπφ θ
λ

= + , S(t) can be expressed as 

 

0 0( ) ( ) exp[ ( )]S t x jy j ω φ= + + ,    (2.9) 

 

where 
1

N

i
i

x x
=

= ∑  and . 
1

N

i
i

y y
=

= ∑
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Because x is a variable of summation of N independent random 

variables ix  and y is a variable of summation of N independent random 

variables , the probability density distribution of the random variables x 

and y should follow the normal distribution according to central limit 

theorem: 

iy

 
2

221( )
2

x

x

x

p x e σ

πσ

−

= ,      (2.10) 

 

where ( )p x  is the probability distribution of variable x, xσ  is the standard 

deviation of variable x and 2
xσ  is the variance of x. 

 
2

221( )
2

y

y

y

p y e σ

πσ

−

=  ,      (2.11) 

 

where ( )p y  is the probability distribution of variable y, yσ  is the standard 

deviation of variable y and 2
yσ  is the variance of y. 

 

The joint probability density of x and y is given by: 

 
22

22 221 1( , )
2 2

yx

yx

x y

p x y e e σσ

πσ πσ

−−

= .    (2.12) 

 

Assuming xσ = yσ = σ , the joint probability density of x and y can be 

expressed as: 

 
2 2

2

2

21( , )
2

x y

p x y e σ

πσ

+
−

= .     (2.13) 
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If we use spherical coordinates system to express the joint probability 

density of x and y instead of orthogonal coordinates system in space, two 

dimensional joint probability density of x and y can be written as  
2

22
2( , )

2

rrp r e σθ
πσ

−
= ,      (2.14) 

 

where  and 2 2r x y= + 2 arctan y
x

θ = . 

 

 The envelop probability density function of random radial variable r 

is obtained by integrating the joint probability density ( , )p r θ  to θ  from 0 

to 2π : 

 
2 2

22
2

2 0

1( )
2

r rrp r re d e
π 22

2
σ σθ

πσ σ
−

= =∫
−

.    (2.15) 

 

(2.15) is Rayleigh distribution. Therefore the envelope of the multipath 

radio channel response without dominant line-of-sight path is Rayleigh 

distributed. Figure 2.6 demonstrates the simulation result of Rayleigh 

fading.  Signal sample period is 1/10000 second, amplitude of the signal is 1 

volt, maximum Doppler shift is 100Hz and average path delay is 1.0000e-

006 second. 
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Figure 2.6 Illustration of Rayleigh fading in wireless radio channel. Signal sample 

period is 1/10000 second, maximum Doppler shift is 100Hz and average path delay is 

1.0000e-006 second. 

 

2.1.3.2 Ricean model 

 

If the environment is such that, in addition to the scattering, there is a 

strongly dominant signal seen at the receiver, usually caused by a line-of-

sight, then the mean of the random process will no longer be zero, varying 

instead around the power-level of the dominant path. Such a situation may 

be better modelled as Ricean fading. Ricean fading model assumes that the 

magnitude of a signal that has passed through a wireless radio channel will 

vary randomly according to a Ricean distribution. The Ricean distribution is 

given by 
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2 2

22
02 2( ) ( 0, 0( )

0 (

r Ar Are I for A rp r

for r

σ

σ σ

+
−⎧

≥ ≥⎪= ⎨
⎪ <⎩

)

0)

,    (2.16) 

 

where r is radian variable, A denotes the peak amplitude of the dominant 

signal, σ  is the standard deviation of random variable r. 0 ( )I i  is the 

modified Bessel function of the first kind and zero-order. The Ricean 

distribution becomes Rayleigh distribution if the dominant of the line-of-

sight path fades away. Normally a parameter 2 / (2 )K A 2σ=  is used to 

describe the Ricean distribution. K is defined as Ricean factor which 

measures the ratio of signal power to the variance of the multipath. The 

Ricean distribution becomes to Rayleigh distribution when . 0K →

 

Figure 2.7 shows the Ricean fading simulation result when K factor 

is 3, signal sample period is 1/10000 second, and maximum Doppler Shift is 

100Hz.  
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Figure 2.7 Illustration of Ricean fading in wireless radio channel. Signal sample 

period is 1/10000 second, Maximum Doppler Shift is 100Hz and K factor is 3. 
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2.2 Performance measure of wireless communication 

systems 

2.2.1 Capacity of wireless channel 

 

It is known that Shannon capacity [C. E. Shannon, 1948] is defined as the 

maximum data rate over a channel with asymptotically small error 

probability. Figure 1.1 shows a typical communication system: the input 

signal is encoded by an encoder and then is transmitted from the transmitter; 

the signal traverses through the communication channel; the signal received 

at the receiver is the combination of the signal from the transmitter and the 

noise contributed from any sources on the way to the receiver, such as 

channel noise and thermal noise from the receiver; finally the output signal 

is the decoded signal from the receiver. The detected output signal should be 

realistic copy of the input signal, otherwise detection error occurs. In a 

typical wireless system with a discrete-time additive white Gaussian noise 

(AWGN) channel, the relationship between the output signal and input 

signal can be expressed as  

 

y = x + n,      (2.17) 

 

where y denotes the output signal at time t, x denotes the input signal and n 

denotes the AWGN noise at time t. That is, the output of the system is the 

summation of input x and AWGN noise n. Assume that B is the channel 

bandwidth in Hz, the noise n is Gaussian distributed with zero mean and 

variance 2σ , average value of the received power is Pr in Watts and the 

received signal-to-noise ratio (SNR) is the ratio of PrB to the power of the 

noise 2σ  in Watts, Shannon capacity in bits per second (bps) of such a 

channel is equal to 

 

2log (1 )C B SNR= + .     (2.18) 
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Shannon capacity is the maximum data rate that a communication system 

can achieve with near zero error probability, which is used as an upper 

bound on the achievable data rate in a real wired or wireless system.  

 

2.2.2 Probability of message error and Bit Error Rate (BER) 

 

In a wireless communication system, the digital signal can be sent in the 

form of message (or symbol) in bits [A. Goldsmith, 2005]. Assume that the 

total number of combination of K bits information is M, i.e., 2KM =  and 

each input message  1:im for i M=  is K bits information, i.e., 

; m  is sent every T second therefore the transmission data 

rate of the system is  bits per second (bps). The message  is 

then modulated via signal modulation. The modulated signal  during 

the time interval [0, T) is sent through the channel. The signal arriving at the 

receiver is then decoded and the receiver obtains the best estimation of the 

input message . There are various modulation and 

demodulation methods and their usage depends on the system design 

requirement. The rule of thumb for the receiver design is to minimize the 

probability of message error , which is defined as 

1 2{ , ,..., }i Km b b b= i

K

/R K T= im

( )is t

1 2
ˆ ˆ ˆˆ { , ,..., }im b b b=

eP

 

1
)ˆ(  (  

M

e i i i i
i

P p m m m sent p m sent
=

= ≠∑ ) ,    (2.19) 

 

where (  )ip m sent  is the probability of correct message estimation at the 

receiver  when the input message  is sent; im im ˆ(  )i i ip m m m sent≠  is the 

probability of incorrect message estimation at the receiver  when the 

input message  is sent. If the input signals are the binary phase-shift 

keying (BPSK) messages, the probability of message error is the probability 

of bit error that is also called bit error rate (BER). For the messages with 

 bits information and M-signalling, that is, Pulse Amplitude 

Modulation (MPAM) and Phase-Shift Keying (MPSK), the relationship 

im

im

1K >
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between the probability of bit error  and the probability of message error 

 can be expressed approximately as [A. Goldsmith, 2005, p126] 

bP

eP

 

2log
e

b
PP

M
≈  .        (2.20) 

  

 Many factors can contribute to the probability of message error of 

wireless system; such as channel fading, transmit power, inter-symbol 

interference and any source of noises.   

 

 To improve the performance of the wireless system, it is desirable to 

attain the system capacity close to Shannon capacity and at the same time to 

maintain the probability of message error low in the system design.  The 

multiple-input multiple output (MIMO) antenna technique is one of the 

methods to achieve these goals. The MIMO wireless system is the main 

focus of this thesis. The theoretic background on MIMO systems and some 

high capacity achieving strategies will be presented in the following 

sections of this chapter. 

   

2.3 Single user – MIMO system and channel capacity 

2.3.1 Multiplexing gain and capacity of the MIMO channel 

 

In this section, we consider a narrowband point-to-point (single user) 

wireless MIMO system with M transmit antennas and N receive antennas. In 

a multiple antenna system, a multiplexing gain can be achieved by 

decomposing the MIMO channel into parallel channels and multiplexing 

different data streams onto these channels. The multiplexing gain can only 

be obtainable in the MIMO system, which is proportional to the number of 

transmit-antenna pairs, that is mi  [G. J. Foschini and M. J. Gans, 

1998, E. Telatar, 1999]. Assume that H(t) is the channel gain between the 

transmitter and receiver at any time instance t. The channel matrix has the 

n( , )N M
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dimension of N M×  and the matrix element hij represents the gain from 

transmit antenna j to receive antenna i. The received signal at the receiver 

can be expressed as  

 

y(t) = H(t)x(t) + n(t),     (2.21) 

 

where y(t) is the received signal column vector with N element, x(t) is the 

input (transmitted) signal column vector with M dimension, n(t) is the 

additive noise which is a column vector with N dimension. Assuming R 

denotes the rank of channel matrix H and a MIMO channel is decomposed 

R parallel independent channels, an R-fold dada rate increase can be 

achieved by multiplexing different data onto different channels in 

comparison with the single antenna input and single antenna output (SISO) 

system. In this thesis, white Gaussian noise is assumed, that is, the entries of 

the noise vector are independent, identically distributed (i.i.d) with zero 

mean and variance matrix 2σ I , where I is the identity matrix with N N  

dimension. In the remainder of this thesis, the time index (t) is often omitted. 

×

   

A useful matrix operation used in decomposing the MIMO system is 

the singular value decomposition (SVD) of the channel matrix H.  The SVD 

matrix manipulation is expressed as: 

 

,H=H U V∑       (2.22) 

 

where U is an N  unitary matrix, V is an N× M M× unitary matrix, HV  is 

the Hermitian of the matrix V and ∑  is an N M×  diagonal matrix of 

singular values { }iσ  of H. Assuming iλ  is the ith largest eigenvalue of 

HHH , the singular value iσ  is equal to iλ  as this singular value property 

holds. If both transmitter and receiver have perfect channel information, the 

MIMO channel can be decomposed into independent parallel channels. By 

perform SVD to the channel matrix, we can obtain the transmit precoding 
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vector to the input vector x  and receiver shaping vector to the output 

vector y , therefore achieve parallel decomposition of the MIMO channel, 

as shown in Figure 2.8. The transmit precoding can be generated by a linear 

transformation on input vector x , that is, . Similarly, the receiver 

shaping can be acquired by multiplying the summation of the channel output 

 and the noise n with U

=�x Vx

�y H  at the receiver, i.e., . The signal 

and noise component after receiver shaping are  and  

respectively. 

H +y = ( )�U y n
H �U y H=�n U n

 

To estimate and optimize the channel capacity in MIMO system, 

parameters such as, channel bandwidth, the distribution of channel noise, 

the transmit power constraint are playing an important part in addition to the 

channel side information at the transmitter (CSIT) and channel side 

information at the receiver (CSIR). In general, different assumptions about 

channel side information (CSI) and about the distribution of the channel H 

entries lead to different channel capacities and different approaches to 

space-time signalling.  

 

The capacity of the discrete static channels in terms of the mutual 

information between channel input x and output vector y is defined as [T.  

Cover and J. Thomas, 1991] 

 

( )
max ( ; )

p
C I x y=

x
 ,    (2.23) 

 
where ( ; )I x y  denotes the mutual information between channel input and 

channel output and ( )p x  is the input distribution. Hence the capacity is that 

the maximum mutual information taken over all possible input distribution 

( )p x .  

 

Assuming that perfect channel information is known to the 

transmitter and receiver, the MIMO capacity can be expressed in terms of 
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maximizing the mutual information over all input covariance matrices  

satisfying the power constraint [A. Goldsmith et al., 2003]: 

xR

 

2: ( )
max log det H

NTr
C B

ρ=
⎡ ⎤= +⎣ ⎦

x x
xR R

I HR H ,   (2.24) 

 

where B is the channel bandwidth,   is the trace of input covariance 

matrices 

(Tr xR )

= ⎣x E H⎡ ⎤⎦R xx , ρ  is the power constraint that is the ratio of the 

signal transmit power/noise power , H is the MIMO channel matrix, 2/σP
HH  is the Hermitian of H,  NI  is the identity matrix with N N×  dimension 

and det[ ]i  denotes the determinant of a matrix. It is known that maximizing 

MIMO channel capacity leads to the transmit power optimally allocated on 

each of the independent parallel channel. The capacity on this power 

allocation optimization can be expressed as:  

 

2
: 1
max log (1 )

i ii

R
i i

P P P i

PC B
P
γ

≤ =

=
∑ ∑

H

+ ,    (2.25) 

 
where RH is the number of nonzero singular values 2

iσ  of H,  2 2/i i Pγ σ σ=  

is the signal noise rate (SNR) associated with the ith channel at full power. 

 is the power allocated to the iiP th parallel channel and P is the total transmit 

power at the transmitter. Solving the optimization of equation (2.25) results 

in a well known water-filling power allocation or waterpouring algorithm 

for the MIMO channel [T. Cover and J. Thomas, 1991, A. Goldsmith et al., 

2003]:  

 

0 0

0

1/ 1/

0

i ii

i

P
P

γ γ γ γ
γ γ

−⎧ ≥⎪= ⎨ <⎪⎩
,    (2.26) 

 
for a cut off SNR value 0γ . The capacity under this operation can be 

expressed as: 
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0

2
: 0

log .
i

i

i

C B
γ γ

γ
γ≥

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ .          (2.27) 

 
On the other hand, uniform power allocation scheme can be used if 

the channel information is known to the receiver and unknown to the 

transmitter. In this case, the mutual information for an M number of transmit 

antennas and N number of receive antennas of a MIMO system is as follows: 

 

2( ; ) log det H
NI B

M
ρ⎡ ⎤= +⎢ ⎥⎣ ⎦

x y I HH  ,      (2.28) 

 
where NI  is the identity matrix with N dimension, H is the MIMO channel 

matrix and ρ  is the ratio of the signal transmit power/noise power . 2/σP

  

In this thesis, we consider the situation of perfect CSIT and CSIR as 

well as the situation of perfect CSIR only. For the first case, water-filling 

power allocation is applied in the transmission scheme presented in the later 

chapters of the thesis. In the case of only channel state information known 

to the receiver, either equal power allocation to the transmitter is utilized or 

the transmitter gains the channel state information from the receiver via 

feedback channel and then the water-filling power allocation can be 

implemented.  
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Figure 2.8 Decomposition of MIMO channel under the condition of perfect CSIT and 

CSIR. 

 

2.3.2 Space diversity gain and the capacity of MIMO 
beamforming 

 

In a wireless channel, the signal power can drop significantly across space, 

time and frequency due to channel fading. In the MIMO system, same copy 

of transmitted signal at the transmitter reaches to the receiver via different 

transmit-receive antenna path. Each path constitutes a diversity branch. The 

received signal on one path differs from the received signals on other paths 

since each individual path suffers from different degree of channel fading. 

Space diversity describes the phenomenon of multiple copies of the 

transmitted signal at the receiver due to the space difference of the multiple 
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antennas. Space diversity in a MIMO system can be used to combat fading. 

Space diversity gain is the increases in signal-to-interference ratio due to the 

space diversity scheme that can be achieved by using multiple transmit 

antennas and/or receive antennas. Receive antenna diversity of SIMO 

system and transmit antenna diversity of MISO system are two special cases 

of the space diversity of MIMO system. The schemes for obtaining the 

receive diversity gain for SIMO system and the transmit diversity gain for 

MISO system can be equally applied to the MIMO system. The details of 

the receive diversity gain of SIMO, transmit diversity gain of MISO and 

space diversity gain of MIMO system are following. 

 

2.3.2.1 Receive diversity of SIMO system 

  

Assuming that number of receive antennas is N, flat fading channel is 

considered and each transmit-receive link is Raleigh fading channel, i.e., the 

real and imaginary parts of element entries of the channel vector following 

Gaussian distributed with zero mean and unit variance. The channel vector 

in the SIMO system is  

 

1 2[ , ,···, ]T
Nh h h=h ,      (2.29) 

 

where [ ]· T  denotes the transpose of the vector. The received signal y at the 

receiver is  

 

s= +y h n ,      (2.30) 

 

where s is the signal that is the scalar, n is the N×1 noise vector that is the 

additive white Gaussian noise with zero mean and variance 2σ . Perfect 

channel information at the receiver is assumed. To maximize the received 

SNR and obtain the receive diversity gain; Maximum Ratio Combining 
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(MRC) can be implemented at the receiver. The final output after MRC 

operation can be expressed as  

 

MRC
H Hs= +y h h h n ,       (2.31) 

 

where [ ]· H  denotes the Hermitian of the vector. Assume that the transmitted 

signal power is P, the SNR at the receiver is  

 
2

F
SNR ρ= h ,      (2.32) 

 

where 2

F
h  denotes the Frobenius norm of h and 2/Pρ σ=  is the signal-to-

noise ratio in the case of single-input and single-output (SISO) antenna link. 

For the Rayleigh fading channel and if the separation between the antennas 

at the receiver is greater than the coherence distance, which is defined as the 

maximum spatial separation over which the channel response can be 

assumed constant [T. S. Rappaport, 2002], the diversity order of such 

system is equal to the number of receive antennas at the receiver N [A. J. 

Paulraj et al., 2003]. In (2.32), ρ  represents the diversity gain attained, 

which means that system behaves the same as the SISO system without 

fading. Because the mean value of 2

F
h  is N for the flat Rayleigh fading 

channels under consideration, the average value of received SNR of the 

SIMO system is also increased by N-fold. It is known as the array gain 

which is defined as the average increase of SNR at the receiver due to the 

coherent combining effect of the multiple antennas of the MIMO antenna 

array.  

2.3.2.2 Transmit diversity of MISO system 

 

In MISO system, multiple antennas at the transmitter can be used to obtain 

spatial diversity and array gain. In such system, the transmitter is equipped 

with M antennas and one antenna at the receiver. Normally the flat Rayleigh 
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fading channel is considered; hence the channel vector h is a row vector as 

follows: 

 

1 2[   ···· ]Mh h h=h ,     (2.33) 

 

where each entry of h is a complex value and the real and imaginary parts of 

the entries are Gaussian distributed with zero mean and unit variance. If the 

transmit signal is a scalar s and the transmitter has perfect channel state 

information, the scheme of transmit-maximal ratio combining (transmit- 

MRC) [T. Lo, 1999] can extract full transmit diversity gain as well as the 

array gain due to the transmit antenna array. The details of the scheme are 

given below. 

 

Suppose that w is the weight vector applied to the transmit antennas 

before the signal s is transmitted. The received signal at the receiver is given 

by 

 

y s= +hw n ,           (2.34) 

 

where w is column vector with M dimensions, n is Gaussian noise and the 

entries of noise are Gaussian distributed with zero mean and variance 2σ . If 

average total power of the signal is P and the weight vector is chosen as 

  

2

H

F

P= hw
h

 .    (2.35) 

 

The received SNR can be maximized and given by [T. Lo, 1999] 

 
2

F
SNR ρ= h .      (2.36) 
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For the flat Rayleigh fading channel considered and mean value 2

F
h  of M, 

i.e., 2

F
E M⎡ ⎤

⎣ ⎦ =h  where [ ]E ⋅  is the expectation operator, the average SNR 

value at the receiver can be expressed as 

  

SNR M ρ= .    (2.37) 

 

The diversity order of such MISO system is M [A. J. Paulraj et al., 2003] 

and the average SNR is enhanced by a factor of M in comparison with the 

received signal-to-noise value ρ  in the case of SISO link. Therefore, both 

diversity gain represented by ρ  in (2.37) and array gain characterized by M 

can be extracted via the transmit-MRC scheme. 

  

2.3.2.3 Space diversity of MIMO 

 

For the MIMO case, space diversity and array gain can be obtained due to 

the multiple antenna arrays. Diversity in the MIMO channel is the 

combination of the transmit diversity of MISO channel and receive diversity 

of the SIMO channel. If the channel information is not known to the 

transmitter, a simple Alamouti scheme can be used to extract diversity gain 

[S. Alamouti, 1998]. In a simple case of two transmit and two receive 

antennas, the symbol transmit sequence of the Alamouti scheme is: during 

the first symbol period, symbol s1 is transmitted from antenna 1 and symbol 

s2 is transmitted from antenna 2 concurrently; then symbols –s2* and s1* are 

transmitted from antennas 1 and 2 respectively in the second symbol period. 

Since channel information is not known to the transmitter, equal transmit 

power P/2 (P denotes the total transmit power) is applied to the transmit 

antennas. Assume that channel is flat fading channel and noise is white 

Gaussian noise with zero mean and variance 2σ . Alamouti scheme can 

extract fourth order diversity and receive array gain. In the general case of 

the MIMO system with M transmit antennas and N receive antennas, the 
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diversity order extracted by Alamouti scheme depends on the number of 

transmit and receive antennas and how the symbol transmit sequence 

designed. Alamouti scheme can be equally applied to the MISO system and 

extracted diversity order is related to number of transmit antenna M only.  

 

In this thesis, we consider that the channel information is known to 

the transmitter in Chapter 3 where a scheduling algorithm in a multiuser 

MIMO (MU-MIMO) system is studied. In the MIMO system with perfect 

channel information, the space diversity can be extracted by a method of 

MIMO beamforming, as shown in Figure 2.9. In this scheme, the same 

symbol x is applied by a weight column vector before the signal is 

transmitted through the transmit antennas. To maximize the system capacity, 

the beamforming strategy is to use the matrix SVD operation to the channel 

matrix  and obtain the unitary matrices N M×H ×N NU  and H
M M×V , the first 

column vectors from U  and HV  are selected as the precoding and shaping 

column vectors: v and Hu , where 1 2[ , ,..., ]T
Mv v v=v  and 1 2[ , ,... ]T

Nu u u=u , 

[ ]H⋅  denotes the Hermitian of  a vector or a matrix. The vector v is chosen as 

the transmit weight vector and Hu  is selected as the receive weight vector. 

The transmit and receive weight vectors are normalized so that 1= =u v . 

The received signal y with N dimensions can be expressed as: 

 
H x= +y u Hv u nH ,     (2.38) 

 

where n is the white Gaussian noise column vector with N dimensions and  

each element entry is following independent and identically distributed with 

zero mean and variance 2σ . 

 

Since the weight vectors in the beamforming scheme corresponding 

to the maximum singular value maxσ  of channel matrix H, the SNR at the 

receiver is 2
maxσ ρ  if the power constraint is 2/Pρ σ=  . The capacity of this 

beamforming scheme can be expressed as 
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)1(log 2
max2 ρσ+=   BC  ,    (2.39) 

 

where B is the bandwidth. Therefore, this technique is also called dominant 

eigenmode transmission. The beamforming scheme can extract maximum 

diversity order of NM (the product of number of receive and transmit 

antennas) and array gain is given by 2
maxσ⎡ ⎤⎣ ⎦E . 
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Figure 2.9 MIMO beamforming. 

 

2.4 Multiuser MIMO channel capacity 

 

We have discussed single user MIMO (SU-MIMO) case in the space time 

(ST) wireless system. The antenna arrays in the SU-MIMO system are 

deployed at one transmitter and one receiver. In a wireless application 

system such as cellular wireless system, one base station needs to support 

multiple users. If multiple antennas are equipped at the base station and user 

terminal having one or multiple antennas, the antenna arrays are across the 

base station and multiple users.  The communication channel of such system 

is referred to as multiuser MIMO (MU-MIMO) channel. The distinct feature 

of MU-MIMO system is that the base station can communicate with 

multiple users simultaneously in the same frequency channel if a transmit 

scheme is designed by utilizing the space signature of the users in the 

system and the interference among users can be eliminated or minimized. 

This feature is called space division multiple access (SDMA) which refers 

to channel reuse within a cell due to geographical location of users. 
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Therefore, SDMA can improve system performance by increasing the 

spectral efficiency.  

 

Assume that K users are in a cellular system, the base station is 

equipped with M antennas and each user terminal equipped with one or 

more antennas, Figure 2.10 shows two kinds of channels in the MU-MIMO 

system, namely uplink channel (or multiple access channels) and downlink 

channel (broadcast channel). The system performance analysis to MU-

MIMO system is more complex than the performance analysis to the SU-

MIMO system. In the case of downlink channel, the MU-MIMO channel 

behaves the same as SU-MIMO if the transmitter has perfect channel 

information from all users, although different users experience different 

path loss and channel fading due to the space signature of user terminals. In 

comparison with SU-MIMO channel, the transmit-receive pairs in MU-

MIMO channel can originate from different users. In the case of uplink 

channel, system capacity achieved depends on if users can cooperate in 

encoding in the transmission stage.  
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Figure 2.10 MU-MIMO channel: (a) Uplink, (b) Downlink 

 

2.4.1 Capacity of multiuser MIMO uplink channel 

 

Different from the capacity expression of SU-MIMO, MU-MIMO capacity 

is defined by a rate region [T. Cover and J. Thomas, 1991]. If there are K 

users in the cellular system and each user is represented by a rate vector 

 61



 
Chapter 2 Literature review 
  

  1,...,iR for i K= , the capacity region for K user MAC system is the closure 

of the class of achievable rate vectors. Assume that the base station is 

deployed with M antennas and each user terminal is equipped with N 

antennas; the channel matrix between the base station and user k is 

,  1,...,k for k K=H  with M N×  dimensions; the system MAC channel 

matrix including K users is [ ]K=H H H,...,1 ;  1,...,k for k K=x  is the input 

signal column vector with N dimensions for kth user and the signal follows 

zero mean Gaussian distributed; n is zero-mean complex Gaussian noise 

column vector with M dimensions at receiver and H
M×M=⎡ ⎤⎣ ⎦Ε nn I  where I 

is the identity matrix. The received column signal with M dimensions at the 

receiver is given by 

 

1

[ ]1 K

K

,..., 
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= #
x

y H H
x

+ n .     (2.40) 

 

 A high sum-rate can be achieved via joint decoding than that via the 

independent decoding [B. Suard et al., 1998]. Joint decoding is that 

decoding of all signals is performed simultaneously and cooperatively and 

signals are processed as signals. Independent decoding is that different 

signals are decoded independently and in parallel and the signal from other 

users   1,...,i k for i K≠ =x  are treated as the noise when signal 

  1,...,k for k K=x  is decoded. 

  

 Let [ ]H
x,k k k=Q E x x  be the covariance matrix of input signal for user 

k;  is the power constraint applied to the kth user terminal; and 

normalizing bandwidth to unity. The capacity region for joint decoding is 

given by  

kP

 

2 ,
1 1

log det
K K

H
k k

k k
R

= =
x k k

⎡ ⎤
⎢ ⎥
⎣ ⎦

≤ +∑ ∑I H Q H  .    (2.41) 
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The capacity region of the joint decoding scheme is polyhedral when total 

number of user . The maximum sum-rate capacity is achievable when 

maximum likelihood (ML) decoding or Minimum Mean Square Error 

(MMSE) decoding is applied and equality of (2.41) holds. In the case of 

independent decoding, let 

2K >

[ ]H
y,k =Q E yy  be the covariance matrix of 

received signal for user k, the achievable rate is given by  

 

,
2

, ,

 
det( )log  1,...,

det( )
y k

k
y k x k

R for k K
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

≤
−

Q
Q Q = ,   (2.42) 

 

since the signals from other users are considered as noise for user k. Figure 

2.11 shows the capacity region of the MAC system for two users. The 

maximum sum-rate capacity achieved through independent decoding will be 

less than that via the joint decoding.  
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Figure 2.11 Capacity region of MIMO MAC system for two users. 
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2.4.2 Capacity of multiuser MIMO broadcast (BC) downlink 

channel 

 

In a K user MIMO BC downlink cellular system, supposing the transmitter 

(base station) has M antennas and each user terminal (receiver) has N 

antennas. The N channel matrix M×  1,...,k for k K=H  characterizes the 

channel gains between the transmitter and the kth receiver. Assume that the 

input signal is a column vector x with M dimensions; a column vector  

with N dimensions represents the additive white Gaussian noise with zero 

mean and variance 2

kn

σ  at kth receiver, the received signal ky  for the kth 

user is: 

k

 

k k= +y H x n .    (2.43) 

 

Assume that MIMO BC channel is Gaussian distributed. In a multiuser 

Gaussian BC channels with one antenna at transmitter and one antenna at 

each receiver, it can be regarded as a degraded broadcast channel for which 

the capacity region is well established [T. Cover and J. Thomas, 1991]. 

Degraded BC channel means that one user’s signal is a noisier version of the 

other user’s signal. The capacity region for a degraded broadcast channel 

can be achieved by using a superposition coding and interference 

subtraction scheme [T. Cover and J. Thomas, 1991]. MU-MIMO downlink 

channel is no longer degraded channel and the capacity region for a non-

degraded broadcast channel is an unsolved problem. However, the capacity 

region can be achieved if an interference subtraction technique based on the 

notion of Dirty Paper Coding (DPC) [M. Costa, 1983] is applied to the 

system [G. Caire and S. Shamai, 2003].  
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Figure 2.12 Gaussian Shannon channel with Gaussian interference. 

 

 In [M. Costa, 1983], a Gaussian channel is considered as shown in 

Figure 2.12. Assume that m sequence of codeword are sent from the 

transmitter and the codeword has an index (1,..., )M∈W . Here M is the 

greatest integer smaller than or equal to emR and R is the rate in nats per 

transmission. The interference signal S of the channel for m transmissions is 

assumed to be a sequence of independent identically distributed (i.i.d.) 

random variables with zero mean and variance S0, i.e., 0(0, )N S I  where I is 

the identity matrix. The S is known to the transmitter but not to the receiver. 

The output of encoder X is the summation of the codeword input W and the 

interference S. Assume that the codeword X satisfies the power constraint 

2

1

1 m

i
i

X Pm =

≤∑  where P is the transmit power. The channel output is then 

given by Y X , where the channel noise Z is Gaussian distributed 

with zero mean and variance Z

= + +S Z

0, that is N Z0(0, )I . Upon receipt of Y the 

decoder creates an estimate Ŵ of the index W. The idea of the transmission 

strategy is that it adds some extra i.i.d. interference sequence S to the output 

of the channel, as long as full knowledge of this extra noise sequence is 

known to the encoder. The optimal encoding uses codewords in the 

direction of S. The encoder looks at the space surrounding the vector S and 

chooses codewords that are compatible with the power constraint. Therefore, 

the encoder adapts its signal to the S instead of trying to erase it. In [M. 

Costa, 1983], it proves that the capacity of the Gaussian channel with this 

extra additive Gaussian interference and power constrained input is not 
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affected by the S as if the channel behaves without the interference noise S. 

The maximum capacity achieved is 2
0

log (1 )PC
Z

= + . This transmission 

strategy is given the name Dirty Paper Coding (DPC) because it is 

analogous to the problem of writing a message on a sheet of dirty paper that 

covered with independent dirt spots of normally distributed intensity. The 

writer knows the location and intensity of the dirt spots and writes; the 

reader read but cannot distinguish the dirt spot from the ink marks applied 

by the writer. 

 

 In multiuser MIMO broadcast channel, the idea of DPC can be 

applied at the transmitter when choosing codewords for different users in 

transmission [W. Yu, and J. M. Cioffi, 2004]. Assume that there exists the 

MU-MIMO BC system described at the beginning of this section except 

different users send their own codeword (input signal) . K 

users is ordered as k=1,…,K. DPC encoding of MU-MIMO BC channel 

works as follows. The transmitter first transmits the codeword  for user 1. 

Then the codeword for user 1 is pre-subtracted before the codeword  for 

user 2 is transmitted since the transmitter has full knowledge of the 

codeword intended for user 1. By doing so, user 2 does not see the 

codeword intended for user 1 as interference. Similarly, the codeword for 

user k for  does not see the codeword intended for previous k-1 

users as interference. Therefore following capacity region is achievable via 

DPC scheme in transmission: 

,  for 1,...,k k K=x

1x

2x

2,...,k > K

 

1 2

1

det
( ,..., ): log

det

K
H

i k i
k i

K i K
H

i k i
k i

R R R =

= +

⎡ ⎤+⎢ ⎥⎣ ⎦≤
⎡ ⎤

+⎢ ⎥⎣ ⎦

∑

∑

I HQ H

I HQ H
 for i=1,…,K,    (2.44) 

 

where  denotes the input covariance matrix for user k.  H
k kE ⎡= ⎣Q x xk ⎤⎦

1[ ,..., ]K=Q Q Q  is a set of positive semi-definite covariance matrices 
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satisfying constraint 
1

[ ]
K

i
i

Tr P
=

≤∑ Q , where  denotes the trace operator. 

Equation (2.44) represents the capacity region for one permutation of K 

users. It is obvious that the capacity region expression for K user MIMO BC 

channel is more complex because number of full permutation of users is K!. 

Therefore, the capacity region is the convex hull of the union of all rate 

vectors over all permutations and all positive semi-definite covariance 

matrices satisfying the average power constraint. 

[ ]Tr i

 

 As we know from [S. Vishwanath et al., 2003, P. Vishwanath and D. 

N. C. Tse, 2003], it is difficult to compute the MIMO downlink capacity 

because the rate expression in (2.44) is neither a concave nor a convex of 

the covariance matrices. The uplink-downlink duality is an important 

feature to explore in a MU-MIMO system to obtain MU-MIMO BC 

capacity region. By applying this duality characteristic, we can simplify 

calculation of the capacity region and simplify finding the corresponding 

optimal transmission strategy. However, this uplink-downlink duality is out 

of the scope of this thesis, interested reader can refer to the reference papers 

given for details.  

 

2.4.3 Scheduling and linear transmission scheme in MU-
MIMO BC systems 

 

In following chapters of this thesis, we consider the scheduling and linear 

transmission in MU-MIMO broadcast (BC) system. In MU-MIMO BC 

systems, the signal transmission schemes and user selection strategies (they 

are also called scheduling strategies) can be designed with the aim of 

maximizing the system capacity if the transmitter at the base station can 

acquire the channel information of users. The base station can broadcast the 

signals dedicated to multiple users simultaneously and also keep the signal 

interference among users to minimum via user cooperation and joint 

encoding. At the same time, the scheduling strategies can consider signal 
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transmission to the users in a fairness manner so each user can have a fair 

chance to be served. There are numerous research papers on scheduling in 

multiuser MIMO wireless systems. In [P. Viswanath et al., 2002] multiple 

transmit antennas are applied to induce large and fast fluctuations in a 

multiuser system when user channels conditions have very little change. The 

benefit of this scheme is to increase the dynamic range of the fluctuation so 

the transmitter can decide and allocate all signal power to the user with the 

best channel condition to exploit the multiuser diversity. T.Yoo and A. 

Goldsmith [T. Yoo and A GoldSmith, 2006] investigated a simple Zero-

Forcing Beamforming (ZFBF) strategy to achieve suboptimal asymptotic 

sum capacity in a multiuser broadcast system. The scheduling strategies in 

the MU-MIMO BC systems can be categorized into types: (a) optimal 

scheduling strategies, such as Dirty Paper Coding (DPC) [M. Costa, 1983]; 

(b) scheduling schemes consider only the fairness to serve the users, for 

example, Round-Robin (RR) scheduling  [R. S. Ranasinghe et al., 2001, O. 

S. Shin and K. B. Lee, 2003]; (c) the scheduling strategies between the 

categories (a) and (b), which compromise the fairness and system capacity 

optimization. The strategies of category (c) usually explore the user channel 

information and design the signal transmission scheme to achieve high 

system capacity limit. The examples of these strategies are Beamforming 

(BF) [A. Paulraj et al., 2003], Time Sharing (TS) [ P. Viswanath et al., 2002, 

M. Sharif and B. Hassibi, 2005], Proportional Fair Scheduling (PFS) [C. 

Etielle et al., 2002].  

 

Assume that there exist K users in the MU-MIMO BC system, the 

transmitter has M antennas, each user terminal is equipped with N antennas 

and channel matrix for user k is Hk with N M×  dimensions for . 

White Gaussian noise for each user n is assumed, that is, the entries of the 

noise matrix are independent, identically distributed (i.i.d) with zero mean 

and variance matrix 

1,...,k K=

2σ I , where I is the identity matrix with N N  

dimension. 

×
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DPC is an optimal scheduling scheme and maximum capacity can be 

achieved under this scheme. DPC is also an interference cancellation 

technique for reducing interference in the downlink channel. By using 

coherent channel knowledge kH , users are ordered and user signals are 

sequentially encoded and transmitted. The user does not see previous user 

signal as interference in the DPC scheme. It has been shown theoretically 

DPC offers the optimal rate for MU-MIMO BC system [M. Sharif and B. 

Hassibi, 2007]. However, it is difficult to implement in practical systems 

due to the high computational complexity. 

  

The beamforming (BF) scheduling used in a MU-MIMO downlink 

channel is a strategy where the transmitter transmits signals to multiple 

users simultaneously via a linear precoding. BF strategy assigns a 

beamforming weight vector to each user so that the simultaneous signals 

transmitted to multiple users are orthogonal to each other. In a MU-MIMO 

downlink system with a large number of users, a user selection algorithm 

can be designed by exploring user channel information. Transmitting signals 

to the users with the best channel conditions can assure high system 

capacity achieved.  

 

Time sharing (TS) is a scheduling scheme that only one user with 

the best channel condition is served in any timeslot in the allocated 

frequency band. This scheme explores multiuser diversity by transmitting 

the signal to the user with the highest channel gain. However, the fairness to 

serve all users is not considered under this scheme.  

 

Proportional faire scheduling (PFS) is a scheme which takes into 

account multiuser diversity as well as the fairness when users have varying 

channel conditions. In comparison with the TS scheme, PFS also serves one 

user in any time slot. However, the decision to serve a user of this scheme is 

made on if the user has the maximum ratio of ( ) / ( )k kR t T tα = , where  

is a requested data rate for a user k at the time t and  is the actual 

( )kR t

( )kT t
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throughput at time t for the user k. The user being served in current time slot 

has a higher chance not to be served in next time slot because the user has 

the possibility of small α  due to high . Therefore, PFS is a fairer 

scheme than time sharing scheduling.  

( )kT t

 

 Round-Robin (RR) is a fair scheduling scheme and each user has a 

fair chance to be served in turn. However, RR scheduling does not consider 

whether a user has a best channel condition and therefore it does not allocate 

the system resource efficiently. Hence, the RR does not provide the best 

system capacity.  

 

 We consider a scheduling strategy in this thesis: A volume-based 

scheduling algorithm based on block diagonalisation (BD) precoding [Z. 

Shen et al., 2006]. The scheduling method is presented in the following 

chapter. 

 

2.5 Cognitive radio technique in wireless network  

 

Early idea of Cognitive Radio (CR) is proposed by Mitola and Maguire [I. 

Mitola, J. and J. Maguire, G. Q., 1999]. In [I. Mitola, J. and J. Maguire, G. 

Q., 1999], the software radios are defined as the platforms for multiband 

multimode personal communication systems. Cognitive radio extends the 

software radio with radio-domain model-based reasoning about the set of 

RF bands, air interfaces, protocols, and spatial and temporal patterns that 

moderate the use of the radio spectrum. Cognitive radio enhances the 

flexibility of personal services through a Radio Knowledge Representation 

Language (RKRL). Since then, the idea of cognitive radio has evoked much 

enthusiasm.  

 

 There is no agreement on formal definition of Cognitive Radio 

because meaning of the CR varies in different contexts [I. Akyildiz et al., 
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2006, T. Yücek and H. Arslan, 2009, S. Haykin, 2005, A. Goldsmith et al., 

2009]. In essence, common feature of the cognitive radio is the awareness of 

its environment.  Following is the definition of the cognitive radio extracted 

from Federal Communications Commission (FCC): “A cognitive radio (CR) 

is a radio that can change its transmitter parameters based on interaction 

with the environment in which it operates. This interaction may involve 

active negotiation or communications with other spectrum users and/or 

passive sensing and decision making within the radio.” [Federal 

Communications Commission, 2003]. Therefore, the long term vision of 

cognitive radio technology is that the user terminals would automatically 

make use of underutilised spectrum across a broad frequency range. 

 

 A typical cognitive radio cycle [I. Mitola, J. and J. Maguire, G. Q., 

1999, I. Akyildiz et al., 2006, S. Haykin, 2005] is illustrated in Figure 2.13. 

The cognitive radio cycle involves three main steps: spectrum sensing, 

spectrum analysis and spectrum decision. The spectrum sensing stage 

involves examining the radio environment and obtaining the spectrum holes 

information. Then in the spectrum analysis stage, the characteristics of the 

spectrum holes is determined, the channel state information is estimated and 

the channel capacity is predicted for the transmitter to use. In the spectrum 

decision step, the transmit strategy is decided, such as transmit power 

control, data rate, transmission mode and dynamic spectrum management. 
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Figure 2.13 Cognitive radio cycle. 

 
 In early research papers on cognitive radio [I. Akyildiz et al., 2006, 

S. Haykin, 2005], dynamic spectrum access (DSA) networks as well as 

cognitive networks is predicted as the next generation wireless 

communication networks in view of solving scarcity of spectrum and 

utilizing the unused band. The heterogeneous wireless network architectures 

are designed for the future networks to provide high bandwidth to mobile 

users. It is considered that the key technology of the next generation 

networks is the cognitive radio which enables the unlicensed (secondary) 

users to use and share the spectrum with the licensed (primary) users in an 

opportunistic manner.  

 

 With the research development on cognitive radio, there are other 

ways to utilize the licensed band where both licensed and unlicensed users 

operate on the same band when the interference constraint to the licensed 

user is satisfied. In general, there are three main cognitive radio network 

paradigms [A. Goldsmith et al., 2009]: underlay, overlay, and interweave 

described as follows.  
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2.5.1 Underlay 

 
Assuming the secondary user has knowledge of the interference caused by 

its transmitter to the receivers of all primary users, the underlay paradigm 

allows primary and secondary users operate simultaneously as long as the 

interference caused by the secondary users to the primary users is below a 

given threshold. For example, one of the enabling technologies, MIMO, can 

be used to guide the signals from the secondary users away from the 

primary receivers to meet the interference constraint for the primary users. 

 

2.5.2 Overlay 

 

Overlay systems are the systems that some signal processing and coding are 

applied by the secondary users to maintain or improve the communication 

of primary users whereas the secondary users gain the benefit of some 

additional bandwidth. In this case, the secondary user transmitter needs to 

know the primary users’ codebook and its message. For example, it is 

recognized that there is connection between the cognitive radio channel and 

the broadcast channel, therefore optimality dirty paper coding (DPC) 

strategy for the broadcast channel can be applied to the Gaussian cognitive 

channel and brings capacity gain. Some form of cooperation is also required 

for a large network with many primary and secondary users. In general, 

these cooperation strategies allow nodes to relay each other’s information to 

improve network capacity. For instance, neighbouring transmit nodes can 

group together, exchange their information through cooperation and 

mimicking a multi-antenna transmitter; similarly adjacent receive nodes can 

cooperate, exchange their information and form a virtual multi-antenna 

receiver. Then DPC strategy for a classical MIMO antenna system can be 

applied to this virtual MIMO transmitter/receiver to improve system 

performance [N. Jindal et al., 2004]. 
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2.5.3 Interweave 

 

In interweave system, the secondary users opportunistically exploit spectral 

holes to communicate without disrupting other active users (primary and 

secondary). The interweave paradigm reflects the original idea of the 

cognitive radio [I. Mitola, J. and J. Maguire, G. Q., 1999]. More details of 

this type of systems are described in [I. Mitola, J. and J. Maguire, G. Q., 

1999, S. Haykin, 2005]. The most important feature in the interweave 

systems is that the secondary users need to have the knowledge of the 

occupancy of different frequency bands by the primary users to ensure the 

efficient communication through the spectral holes without causing any 

interference to the active primary users. Hence, successful operation of the 

interweave systems depends on precise primary user detection, i.e., the 

spectrum sensing, over a wide bandwidth. In real systems, the primary user 

detection might be hampered by fading and shadowing effect in the wireless 

channels. Other factors can also affect accurate sensing the presence of the 

primary users, such as, uncertainty of the noise level caused by other 

primary and secondary users. Furthermore, the operation of spectrum 

sensing is frequently required to update the information of the frequency 

bands occupancy to accommodate the varying nature of the primary user 

activity. Cooperative sensing among secondary users can certainly improve 

the spectrum sensing [A. Sahai et al., 2006, S. M. Mishra et al., 2006, A. 

Ghasemi and E. S. Sousa, 2005, G. Ganesan and Y. Li, 2005, D. Cabric et 

al., 2004]. 

 

 It is known that the MIMO technique can improve wireless 

communication system performance and increase the spectral efficiency of 

the system [D. Tse and P. Viswanath, 2005]. Therefore, it is desirable to 

incorporate MIMO antenna system into a cognitive radio system to meet the 

goal of better spectrum utilization. In the MU-MIMO cognitive network, 

multiuser diversity can also add one more degree of freedom to the system 

and can be exploited. In this thesis, we will focus on the area of spectrum 
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sensing in the cognitive radio cycle of MU-MIMO systems. The details are 

presented in Chapter 5 and Chapter 6. 

 

2.6 Summary 

 

In this chapter, we presented literature review in the area of wireless 

propagation channel, performance measure of wireless system, system 

capacity expression for SU-MIMO and MU-MIMO systems, scheduling 

algorithms for MU-MIMO system and cognitive radio technique in wireless 

communication network. 

 

 In the following chapters, we will focus on scheduling algorithms 

(Chapters 3-4) and spectrum sensing methods (Chapters 5-6).  
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Chapter 3 Volume-based scheduling 
algorithm of MU-MIMO downlink channel  

3.1 Introduction 

 

Multiuser multiple-input and multiple-output (MU-MIMO) systems have 

drawn a significant attention in last ten yeas because MU-MIMO can be 

used in real wireless systems to enhance performance of wireless networks 

[D. Gesbert et al., 2007]. To meet the demand of serving multiple users 

simultaneously in a wireless system with a large number of users, a 

scheduling scheme is needed to select a group of users in order to achieve a 

high system sum-rate capacity. The researches on MU-MIMO precoding, 

feedback, scheduling strategies and different combinations of these 

strategies have been carried out for the purpose of increased capacity 

offered by MU-MIMO techniques [T. Yoo and A.Goldsmith, 2006, Q. H. 

Spencer et al., 2004, L. U. Choi and R. D. Murch, 2004, Z. Shen et al., 

2006, C. Lv et al., 2008].  

 

It is well known that dirty paper coding (DPC) can achieve optimal 

capacity. However, this strategy is difficult to implement in a real wireless 

system due to its complicated precoding and decoding process [M. Costa, 

1983, N. Jindal and A. Goldsmith, 2005]. Block diagonalisation (BD) [Q. H. 

Spencer et al., 2004] is a less complex and practical strategy. With BD 

strategy, each user’s precoding matrix is formed in such way that it is in the 

null space of all other users’ channels matrix. Compared to DPC, BD is 

however a suboptimal strategy in terms of achievable sum-rate capacity 

(bps/Hz). Consider that channel state information (CSI) is known to 

transmitter and receiver and a system with a large number of users, a good 

user selection scheme is needed to maximize the system capacity due to the 

fact that number of simultaneous users to be served is limited by the number 

of transmit antennas (rank condition in BD) if BD precoding strategy is 
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used. A semi-orthogonal user selection (SUS) algorithm is proposed in [T. 

Yoo and A. Goldsmith, 2006] for multiuser MIMO broadcast system and 

zero forcing beam forming (ZFBF) is applied to the selected active users. 

The SUS algorithm needs to use Gram-schmidt orthogonalization procedure 

in each user selection step. Two low-complexity suboptimal user selection 

algorithms combined with BD precoding for multiuser MIMO systems have 

been proposed [Z. Shen et al., 2006]. In [Z. Shen et al., 2006], the first 

algorithm uses a capacity-based user selection algorithm that greedily 

maximizes the sum-rate capacity in the selected user set, whereas the second 

algorithm uses the criterion of the Frobenius norm-based algorithm that is 

based on maximizing the channel energy with optimal combination of 

selected users. However, the capacity-based user selection algorithm is still 

computationally demanding because a frequent use of singular value 

decomposition (SVD) of the channel matrices is needed in the course of 

selecting each user. The Frobenius norm-based algorithm employs Gram-

Schmidt orthogonalization procedure in each user selection step, which still 

needs a fair amount of computational effort. 

 

In this chapter, we present a novel low complexity suboptimal user 

selection algorithm called the volume-based schedulimg algorithm for a 

MU-MIMO system based on BD [L. Jin et al., 2009, L. Jin et al., 2011]. The 

new algorithm defines the channel volume as the product of diagonal 

elements of an upper-triangular matrix R by performing QR factorization to 

the channel matrix of a user set and the volume metric is used for user 

selection. The benefit of the volume-based algorithm is that the 

computational complexity is significant less than the capacity-based 

algorithm because the SVD operation on the channel matrices of selected 

users is not needed in each user selection step. The proposed algorithm also 

needs less computational effort in comparison with SUS algorithm.  

 

The outline of the rest of this chapter is as follows. Section 3.2 

presents the system model and describes the block diagonalisation (BD) 
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precoding algorithm and the method of evaluating system sum-rate capacity. 

Section 3.3 analyses the computational complexity of four QR factorization 

procedures and gives the details of the proposed volume-based algorithm. 

Section 3.4 presents the computational complexity analysis on volume-

based, SUS and capacity-based algorithms. Section 3.5 provides the 

numerical simulation results and finally the summary is given in Section 

3.6. 

 

3.2 System model, block diagonalisation (BD) and 

sum-rate capacity 

 

In this section, the system model is presented, and BD precoding and 

capacity calculation are described. Consider a single cell multiuser MIMO 

broadcast system with a single base station (BS) serving K users. The BS is 

equipped with M transmit antennas, the receiver for user k is equipped with 

Nk antennas and K  is considered. The BD [Q. H. Spencer et al., 2004, 

L. U. Choi and R. D. Murch, 2004] precoding method is applied due to the 

benefit of eliminating inter-user interference in multiuser MIMO downlink 

system. Each user k for 

M≥

1k K= ⋅⋅⋅  in the system is characterized by a 

channel matrix kH  with 
k

N M× dimension. N Mk
k

×∈^H  with each entry 

following an independent and identically distributed (i.i.d) complex 

Gaussian distribution CN (0,1), which is a valid model if the transmit and 

receive antennas are in rich-scattering environments and antenna spacing is 

larger than the coherence distance. The transmitted symbol for user k is 

denoted as  which is 
k

x 1kN ×  vector. The signal is multiplied by a 

precoding matrix  and then is transmitted by the transmit antennas. The 

received signal  for user k can be expressed as 

k
W

ky

 

1,

K

k k k k k i i
i i k= ≠

+= + ∑ ky H W x H W x n ,                 (3.1) 
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where the first term on the right-hand side of (3.1) is the desired signal for 

user k, the second term is the interference from other user signals and  is 

the  additive white Gaussian noise (AWGN) vector for user k with 

zero mean and variance 

kn

1kN ×

2[ ]H
k kE σ=n n I . ( )Hi  denotes the Hermitian 

transpose of a matrix in the bracket. 

 

 Next the BD precoding method is described. Assuming if K users 

can be supported simultaneously, the channel matrix to include K users is  

  

1 1 1 ][ , , , , ,k k k K− += " "H H H H H H .            (3.2) 

 

The design of the BD precoding matrix for user k is to find a matrix  that 

meets the following condition: 

kW

 

( )k kM,N∈W U  

0k i =H W  for all k i≠  and 1 ,k i K≤ ≤  ,        (3.3) 

 

where  is a matrix with kW kM N×  dimension, ( k )M,NU  stands for the 

class of kM N×  unitary matrix which is a collection of vectors  

and the dimension of 

1( , , )
kN"u u

ju  is  M for 1 kj N≤ ≤ , k kH W  for user k is non-zero.  

 

The method to get the desired  is first to formulate a channel 

matrix to include all channel matrices from other interference users. The 

matrix is given by 

kW

 

1 1 1, , , , ,
TT T T T

k k k K− +
⎡
⎢⎣= " "H H H H H ⎤

⎥⎦ .                      (3.4) 
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To meet the constraint in (3.3),  shall be in the null space of  kW kH . Let 

kR  denote the rank of kH , kN  be row size ( 1) kK N− ×  and M  be column 

size M. The row size is less than the column size due to the fact that the 

maximum supportable users are limited by the number of transmit antennas 

for BD scheme. Hence kR  takes the value of ( 1) kK N− × . Performing 

singular value decomposition (SVD) to kH , one has: 

 
** 1

kk kk m k k k
0⎡ ⎤= = ⎢ ⎥⎣ ⎦

H U V U V VΣ Σ ,             (3.5) 

 

where kU  is a square matrix having the same size as the row of kH , 
*
mV  is 

a square matrix which has the same size as the column of kH , kU  and 
*
mV  

are unitary matrices,  
*
mV  denotes complex conjugate of mV , kΣ  is an 

kN M×  diagonal matrix of singular values of kH ; 
1
kV  contains the first kR  

right singular vectors and 
0
kV  contains the last kM R−  right singular 

vectors of kH . The columns in  are composed from the linear 

combination of those in 

kW

0
kV  because the columns in 

0
kV  form a basis set in 

the null space of kH . 

 

Assuming that each user terminal is equipped with same number of 

antennas N and transmitter has M antennas, the maximum simultaneous 

users,  , can be supported by BD algorithm [Q. H. Spencer et al., 

2004]. Subsequently the system sum-rate capacity is evaluated after 

precoding matrices are found for all simultaneous users in a subset of users. 

Consider that  is the maximum number of simultaneously supportable 

users,  is the set of all users, 

ˆ /K M N=

K̂

{1,2, , }Kκ = " iβ  is a subset of  and 

cardinality of 

κ

iβ  is less than or equal to , K̂ 1 2{ , , }β β β= "  is the set 

containing all possible iβ  and { }, , ,= "
1 2 K

H H H H  denotes the set of all 
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users’ channels. The achievable system sum-rate capacity under BD scheme 

is the capacity maximization problem under transmit power constraint P. 

The maximum capacity can be expressed as [Q. H. Spencer et al., 2004] 

 
2

|( , , ) max ( , , )BD BD i ii
C P C P

β β ββ
2σ σ

∈
=H H ,    (3.6) 

 

where βi
H denotes the channel matrix for user set iβ  and 2σ denotes 

Gaussian noise power. The solution for (3.6) is to obtain the maximum sum-

rate capacity for user set iβ  by SVD operation to 
j j

H W  for ij β∈  and 

water-filling on the corresponding singular values. 

 

3.3 Novel low complexity scheduling algorithms 

 

This section presents a novel low complexity shceduling scheme called the 

volume-based scheduling algorithm for MU-MIMO downlink channels.  

3.3.1 QR factorization procedures and complexity analysis 

 

As we know, if a matrix m n×A  with m row and n column has linearly 

independent columns, it can be uniquely factorized as m n m n n n× × ×=A Q R  in 

which the columns of  are orthonormal basis for m n×Q n n×R  that is an upper-

triangular matrix with positive diagonal entries [C. D. Meyer, 2000]. In our 

proposed scheduling algorithm, the key operation is to perform QR 

factorization to the channel matrix of a simultaneous user set and obtain the 

product of the diagonal elements of the upper-triangular matrix.  

 

There are various methods to get the upper-triangular matrix, such as, 

Gaussian elimination, Gram-Schmidt procedure, Householder reduction and 

Given reduction [C. D. Meyer, 2000]. Table 3.1 compares these QR 

 81



 
Chapter 3 Volume-based scheduling algorithm 
  
procedures in terms of the numerical stability and the computational effort if 

a matrix is a square matrix n n×A . In Table 3.1, the computational effort 

values are approximated by counting only multiplicative operations because 

the number of multiplicative operations is about the same as the number of 

additive operations; lower-order terms are also neglected. We can see that 

Given reduction procedure is stable but requires the most computational 

effort. Compared with Gram-Schmidt procedure, Householder reduction 

procedure is not only a stable procedure but also it needs 1/3 less 

computational effort. Therefore, Householder reduction procedure is 

preferred and it is chosen for the proposed scheduling algorithm.  

 

Table 3.1 Comparison of QR procedures 

QR factorization 

procedure 

Numerical 

stability 

Computational 

effort 

Gaussian elimination Not very stable 3 / 3n≈  

Gram-Schmidt procedure Not very stable 3n≈  

Householder reduction Stable 32 / 3n≈  

Given reduction Stable 34 / 3n≈  

 

Householder reduction process is described as follows. For a matrix 

m n×A , there exists a unitary matrix B such that BA=T has an upper-

trapezoidal form. When B is constructed as a product of elementary 

reflectors, this process is called Householder reduction [C. D. Meyer, 2000]. 

For 1 2[ , , , ]m n n× = "A a a a  where  is a m-dimensional column vector for 

, the elementary reflector corresponding to column i takes the form: 

ia

1 i n≤ ≤

 

2
H

H

i i
i

i i

= −
u u

R I
u u

,                                   (3.7) 
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where I is an identity matrix, vector 0i ≠u  and [ ]Hi  denotes Hermitian of a 

matrix. Therefore, BA=T can also be expressed as n 2 1 ="R R R A T . 

 

Following is the detailed illustration on the Householder reduction. 

Starts from the first column of A and let 1i = .  The first elementary reflector 

is 1 1
1

1 1

2
H

H
= −

u u
R I

u u
 , where 1 1 11

µ= ±u a a e1  in which 1a  is the norm of 

vector ,   is the unit vector and 1a 1e 1 11 /µ = a a .  Applying  to A yields 1R

  

11 12 1

11 1
1 1 1 1 2 1

2

0[ , , , ]
0

0

n
T

n

t t t
t

⎛ ⎞
⎜ ⎟ ⎛⎜ ⎟ ⎜⎜ ⎟ ⎝ ⎠⎜ ⎟
⎝ ⎠

∗ ∗= = =

∗ ∗

"
"" # # % #
"

tR A R a R a R a ⎞
⎟A
,  (3.8) 

 

where 2A  is a matrix with dimension of  ( 1) ( 1m n )− × −  and  is the vector 

. Therefore all entries below  in the first column of the resulting 

matrix are annihilated. Applying the same procedure to 

1
Tt

12 1[ nt t" ] 11t

2A  to construct an 

elementary reflector 2R̂  that annihilates all entries below the (1,1)-position 

in 2A . Let the second elementary reflector 2

2 2

1 0

0 ˆ
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

R
R A

, then  

 

11 12 13 1

11 1222 23 2

2 1 22 2

3

0
00 0
0 0

0 0

n

n
T

t t t t
t tt t t

t

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎜ ⎟
⎜ ⎟
⎝ ⎠

∗ ∗

∗ ∗

"
""

"
# # # #

"
A

R R A t .   (3.9) 

 

Continue this process to build elementary reflector  until all the rows 

(when m<n) or all the columns (when m>n) are exhausted. Hence, the final 

result of Householder reduction process applied to the matrix A is expressed 

as one of the following upper-trapezoidal forms: 

iR
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   when ,      (3.10) 

11 12 1

22 2

2 1

0
0
0 0
0 0 0

0 0 0

n

n

n nn

t t

t

t t t⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜
⎜
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

=

"
"

# % #
" "

"
# # #

"

R R R A ⎟
⎟ m n>

 

11 12 1 1, 1 1

22 2 2, 1 2
1 2 1

, 1

0

0 0

m m n

m m n
m

mm m m mn

t t t t t
t t t t

t t t

+

+
−

+

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

" "
" "" # # % # # % #
" "

R R R A  when m n< .     (3.11) 

 

Note that the elementary reflectors iR  for 1 i n≤ ≤  are unitary matrices and 

every product 
k k -1 2 1

"R R R R  is a unitary matrix. The case of m  is 

applicable to the volume-based algorithm because the QR operation is 

implemented on the transpose of the combined channel matrix of the 

selected user group and the number of transmit antennas should be greater 

than or equal to the total number of the antennas of the selected user group. 

n>

 

Having explained the Householder reduction for the QR procedure 

and it is chosen in our proposed algorithm, we now move on to describe the 

details of the volume-based scheduling algorithm.  

 

3.3.2 Details of the volume-based scheduling algorithm  

 

As described in section 3.2, K is the total number of users in the downlink 

system, the number of transmit antennas at the BS be M, the number of 

receive antennas for user k terminal be  and each user k be assigned a 

channel matrix 

kN

kH . The row dimension of the channel matrix depends on 

the number of antennas in the user terminal, that is, the channel matrix for 

user k is expressed as  where 1 2[ , , , ]
k

T T T T
k N= "H h h h 1 2, , ,

kN"h h h  are row 
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vectors. The column dimension of the channel matrix for user k is 

determined by the number of transmit antennas. Assuming these row vectors 

1 2, , ,
kN"h h h  are linearly independent and kN M<  which can be satisfied 

in a real time system due to space constraint on user terminal, these row 

vectors span a subspace: 

 

1 2( , , , )
kk NS span= "h h h .                         (3.12) 

 

When user i and user j are selected, a matrix can be formulated to include 

two user matrices as 

 

, [ T T T
i j i j=H H H ] .                      (3.13) 

 

The row vectors in ,i jH  span a subspace: 

 

, 1 2 1 2( , , , , , , , )
i ji j i i N i j j N jS span= " "h h h h h h ,          (3.14) 

 

where denotes a  row vector for user m, nmh thn m  ,  i j=  and , iN jN  

denotes the number of antennas for user i and j. 

 

We now implement a QR factorization to channel matrix ,i jH  and 

get the product V of the diagonal elements of the upper-triangular matrix. 

The product V can be intuitively seen as the volume of a parallelepiped with 

each side being unique row vector in . The volume of the parallelepiped 

generated by the rows of a matrix cannot exceed the volume of a rectangular 

box whose sides have row length [C. D. Meyer, 2000]. In other words, the 

maximum value of the volume can be obtained only if all row vectors in the 

matrix 

,i jS

,i jH  are orthogonal to each other. Therefore, the volume metric is a 

reasonable choice in our scheduling algorithm because a user set achieving 
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the maximum value of V indicates that vectors in the combined channel 

matrix tend to be orthogonal. 

 

 The volume-based algorithm is detailed as following:  

 

Volume-based scheduling algorithm 

1. Initialization:  

a) Let { }1,2, , KΩ = "  is the user set in which the users are waiting 

to be served, B = ∅  is the selected user set which is empty 

initially.  

b) Let n=1. 

c) Find a user, 1ω Ω∈ , that satisfies 2
1 arg max k Fk Ω

ω
∈

= H , where 

k F
H  is the Frobenius norm of channel matrix of user k. 

d) Move the user 1ω  to the selected user set, let  { }1B B ω= +  and 

{ }1Ω Ω ω= − . 

2. Let  denote the maximum users can be served. maxK

a) for n=2:  for each maxK k Ω∈ , find a user nω  such that 

arg max ( )
kn Bk

Vol ωΩ
ω +∈

= H  where 
kB ω+H  is the channel matrix of 

user kω  combined with previous selected users in B set and 

 denotes  the channel volume. (
kBVol ω+H )

b) Let { }nB B ω= +  and { }nΩ Ω ω= − . 

3. Finally, calculate the achievable sum-rate  to the selected 

user set by applying BD precoding and water filling strategy. 

( )BDC B
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3.4 Computational complexity analysis on volume-

based, SUS and capacity-based scheduling 

algorithms 

 

In this section, the computational complexity analysis is based on the 

assumptions in section 3.2. It is assumed that the total number of users in 

the system is much greater than the number of users to be served 

simultaneously, i.e. , each user has same number of receive antennas 

and . To simplify the analysis, the computational effort is 

estimated on the channel matrices with real element entries 

ˆK K>>

ˆ /K M N≈

N MA ×∈\  (  

represents set of real numbers) and the number of receive antenna is less 

than the number of transmit antenna

\

N M< . Frobenius norm, Gram-

Schmidt orthogonalization, Householder reduction, water-filling and 

singular value decomposition (SVD) are the matrix operations used by the 

volume-based, SUS and capacity-based suboptimal scheduling algorithms. 

Therefore, rest of this section reviews the flop count of the matrices 

operations mentioned above, and then presents the complexity evaluation on 

these suboptimal scheduling algorithms. Note that only multiplication is 

considered as the flop count of any matrix operations because the number of 

multiplication is about the same as the number of the addition. 

 

3.4.1 Complexity of five matrix operations 

 

Frobenius norm of N M×A  is 22

1 1

[ ]
N M

T
N M ijF

i j

Tr×
= =

= = ∑∑A AA A . This 

operation needs  multiplication. 2N M

 

Applying the singular value decomposition (SVD) to a real matrix N M×A , 

the computational effort to acquire the unitary matrices N N×U , M M×V  and 

diagonal matrix  is N M×D 2 22 4 5N M NM M 3+ + . 

 87



 
Chapter 3 Volume-based scheduling algorithm 
  

 

Either classic Gram-Schmidt orthogonalization or modified Gram-

Schmidt orthogonalization on matrix N M×A  takes  multiplication. 2N M

  

Householder reduction in  factorization on matrix QR N M×A  needs 

2 1(1 )
3

NN M
M

−  multiplication.  

 

Water-filling on N eigenmodes of matrix N M×A  requires up to  

multiplication.  

2 3N N+

 

Table 3.2 summarizes the flop counts of the matrix operations 

mentioned above. 

 

Table 3.2 Complexity analysis on five matrix operations 

Matrix operations Flop count 
Frobenius norm 2N M  

SVD 2 22 4 5N M NM M+ + 3  

Gram-Schmidt orthogonalization 2N M  

Householder reduction in QR factorization 2 1(1 )
3

NN M
M

−  

Water-filling 2 3N N+  

 

3.4.2 Complexity of volume-based, SUS and capacity-
based scheduling algorithms 

3.4.2.1 Volume-based algorithm 

 

Firstly, the volume-based algorithm begins with finding a user with 

maximum Frobenius norm so the flop count is . Secondly, iteration 

starts from i =2 to 

2KN M

K̂ , finding a user set that the volume of the combined 

channel matrix of the user set is maximized in each iteration. The flop count 
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in each iteration is expressed as 2 1( 1) ( ) (1 )
3

iNK i iN M iN
M

⎡ ⎤
⎢ ⎥
⎣ ⎦

− + × − + . Finally, 

the capacity is calculated by applying BD precoding and water-filling on the 

channel matrix of the chosen user set. The flop count in the final step can be 

omitted because the flop count is not related to total number of K and is 

relatively small.  

 

We can get the total flops by summing the flop counts contributed 

from step one and step two, which is  

 
ˆ

2 2

2

4 3

1( 1) ( ) (1 )
3

ˆ( )
4

K

v
i

iNF KN M K i iN M iN
M

KO K N

=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
+ − + × − +

≈

∑
.   (3.15) 

 

3.4.2.2. SUS algorithm 

 

The procedure of the SUS algorithm is that the iteration starts from i=1 to 

K̂ ,  in each iteration a new user is added to a chosen user set from previous 

iteration and then the combined channel matrix of the user set is mapped to 

an orthogonal subspace spanned by { }1 2, , i"g g g  via Gram-Schimidt 

orthogonalization procedure. The user with the maximum Frobenius norm 

 is chosen and the flop count in each iteration is ig ( )2iN M . The capacity is 

computed when the maximum supportable users reached. The 

computational cost of the SUS algorithm is mainly originated from the 

iteration step because the final capacity calculation is not dependent on K 

and can be neglected. Therefore, the flop count of SUS algorithm is  

 

 

ˆ
2

1

4 3

( 1) ( )

ˆ( )
3

K

s
i

F K i iN

KO K N

=

= − + ×

≈

∑ M
.                   (3.16) 
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3.4.2.3 Capacity-based algorithm 

 

The first step of the capacity-based algorithm is to search through K users. 

For each user, the SVD operation is implemented on the user’s channel 

matrix and then the water-filling algorithm is applied to the eigenmodes of 

the diagonal matrix obtained via the SVD operation. Finally the capacity is 

calculated. Hence the flop count of this step is 

. 2 2 3 2(2 4 5 5 )K N M NM M N N+ + + +

 

The second step of the algorithm is the iteration from i=2 to . In 

each iteration, a new user k is added to a chosen user set from previous 

round, precoding matrix  for the user is obtained by SVD operation and 

K̂

kW

k kH W  is calculated. Then SVD is applied to k kH W  and water-filling is 

implemented on the eigenvalues of the diagonal matrix. 

  

Last step of the algorithm is that the sum-rate capacity is computed. 

The flop count from this step is  
2 2 2 3 2

2 2 3

[2( 1) 4( 1) 5 ]

(2 4 5 ) ( 3)

i i N M i NM M iN M

i N M NM M iN iN iN

− + − + +

+ + + + + +
. 

 

Therefore, the total flop count of the capacity-based scheduling algorithm is 

expressed as 

 
2 2 3 2

ˆ
2 2 2 3 2

2

2 2 3

5 3

(2 4 5 5 )

{ [2( 1) 4( 1) 5 ]

(2 4 5 ) ( 3) } ( 1)

ˆ( )

K

i

F K N M NM M N Nc

i i N M i NM M iN M

i N M NM M iN iN iN K i

O KK N

=

= + + + +

+ − + − + +

+ + + + + + × −

≈

∑

+
.  (3.17) 

  

 To this end of the complexity analysis, it is found that the capacity-

based algorithm has highest complexity whilst the volume-based algorithm 
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needs the lowest computational effort by comparing (3.15), (3.16) and 

(3.17). The complexity of the volume-based algorithm is 3
4

 of the SUS 

algorithm. The capacity-based algorithm needs  times of the 

computational effort of the volume-based algorithm. 

ˆ4K

 

3.5 Simulation results 

 

This section presents the numeral simulation results by applying the 

proposed volume-based scheduling algorithm. The performance comparison 

with the sum-rate of capacity-based user selection algorithm [Z. Shen et al., 

2006] and semi-orthogonal user selection (SUS) algorithm [T. Yoo and A. 

Goldsmith, 2006] is provided. The aim of the simulation was to demonstrate 

that the proposed low complexity volume-based algorithm can achieve a 

good sum-rate capacity, comparable with others, if not higher. 

 

Figure 3.1 and Figure 3.2 show the sum-rate capacity of the 

proposed volume-based algorithm compared with the SUS and capacity-

based algorithms in the case of MISO antenna configuration. The total 

system capacity shown in Figure 3.1 and Figure 3.2 is the ergodic sum-rate 

capacity averaged over 1000 channel realization. The upper bound of sum-

rate capacity that can be achieved by optimal DPC strategy is also shown in 

two figures, which is obtained by using the scaling laws of the sum-rate of 

DPC in [M. Sharif and B. Hassibi, 2007]. The scaling laws of DPC in [M. 

Sharif and B. Hassibi, 2007] states that when the number of transmit 

antennas M is fixed, the sum-rate scales like loglogM KN  as number of 

users K grows to infinity and for any number of receive antennas N, no 

matter N whether grows to infinity or not. 

 

Figure 3.1 demonstrates the sum-rate capacity versus the number of 

users when the number of transmit antennas is 8 and all users’ terminal has 

one antenna. The signal-to-noise-ratio (SNR) for each user is 20dB and the 

 91



 
Chapter 3 Volume-based scheduling algorithm 
  
maximum number of simultaneous supportable users is 8. Figure 3.2 

provides the sum-rate capacity when the number of transmit antennas is 4 

and all users’ terminal has one antenna. The signal-to-noise-ratio (SNR) for 

each user is 20dB and the maximum number of supportable users is 4. The 

curve from DPC scheme is the result from the theoretical calculation that 

demonstrates the upper bound of the sum-rate capacity of the system. The 

results demonstrate that the performances of capacity-based, SUS and 

volume-based algorithms are close to the upper bound of sum-rate capacity 

achievable via DPC when there is a large number of users in the system. 

Figure 3.1 shows that the proposed volume-based algorithm achieves the 

equivalent performance compared with the capacity-based algorithm and the 

SUS-based algorithm. As discussed in section 3.4, the advantage of the 

volume-based algorithm has less computational complexity. The proposed 

algorithm needs 1/4 less computational effort than the SUS algorithm. The 

capacity-based algorithm needs the most computational effort because of the 

vigorous SVD operations in each user selection step. The capacity-based 

algorithm is ˆ4K  times of computational complexity in comparison with 

volume-based algorithm. Figure 3.2 confirms the similar performance result 

when the number of transmit antenna is 4. 
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Figure 3.1 Sum-rate capacity versus the number of users. 8×1 MISO configuration. 
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Figure 3.2 Sum-rate capacity versus number of users. 4×1 MISO configuration. 
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Next, we will show the performance results in the case of multiple 

receive antennas. The performance comparison with capacity-based user 

selection algorithm [Z. Shen et al., 2006] and semi-orthogonal user selection 

(SUS) algorithm [T. Yoo and A. Goldsmith, 2006] is provided. The system 

capacity shown in the result graphs is the ergodic sum-rate capacity 

averaged over 3000 channel realizations. In addition, the average simulation 

time of the volume-based algorithm is compared with the average 

simulation time of the existing capacity-based and SUS algorithms to 

validate that the proposed algorithm is indeed the least complex scheduling 

strategy. 

 

Figure 3.3 shows the performance result when the number of 

transmit antennas is 4 and the number of receive antennas for each user is 2. 

In this scenario, the maximum number of simultaneous supportable users is 

2. The signal-to-noise-ratio (SNR) for each user is 20dB. The result 

presented in Figure 3.3 reveals that the performance of the volume-based 

algorithm is comparable with the SUS and the capacity-based algorithms. 

The advantage of the volume-based algorithm is that it has less 

computational complexity. The proposed algorithm needs 1/4 less 

computational effort than the SUS algorithm. In addition, the volume-based 

algorithm displays slight better performance than the SUS algorithm. In 

comparison with the volume-based algorithm, the capacity-based algorithm 

shows a small increment of the sum-rate capacity; however it needs much 

more computational effort because of the vigorous SVD operations in each 

user selection step. The capacity-based algorithm is  times of the 

computational complexity of the volume-based algorithm.   

ˆ4K
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Figure 3.3 Sum-rate capacity versus the number of users. 4×2 MIMO configuration. 
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Figure 3.4 Sum-rate capacity versus the number of users. 6×2 MIMO configuration. 
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Figure 3.4 is the performance result when the transmit and receive 

antennas configuration is 6 2× . The maximum number of simultaneous 

supportable users is 3 in this case. The signal-to-noise-ratio (SNR) for each 

user is 20dB. Comparing figure 3.4 to figure 3.3, it is evident that the sum-

rate capacity of the volume-based algorithm is closer to the sum-rate 

capacity acquired via the capacity-based algorithm and the proposed 

algorithm outperforms the SUS algorithm as the number of transmit antenna 

increases. 
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Figure 3.5 Sum-rate capacity versus the number of users. 6×3 MIMO configuration. 

 

Figure 3.5 demonstrates the result of the sum-rate capacity versus 

the number of users when the number of transmit antenna is 6 and the 

number of receive antennas for each user terminal is 3. The signal-to-noise- 

ratio (SNR) for each user is 20dB and the maximum number of 

simultaneous supportable users is 2. It clearly shows that the volume-based 

algorithm surpasses the SUS algorithm. The proposed algorithm achieves 

slight less sum-rate capacity than the capacity-based algorithm but with 
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much reduced computational complexity. Furthermore, by comparing 

Figure 3.4 and Figure 3.5, the results demonstrate that the volume-based 

algorithm works better than the SUS algorithm when the number of transmit 

antennas is kept same at 6 and the number of receive antennas increases 

from 2 to 3.  

 

To prove that the volume-based strategy is the least complex among 

these three scheduling schemes, the actual simulation time of the volume-

based, SUS and capacity-based algorithms versus number of users is 

presented in Figure 3.6. The system configuration for Figure 3.6 is the same 

as that for the previous result shown in Figure 3.5. It is clearly shown in 

Figure 3.6 that the average simulation time increases linearly with the 

number of users, which coincides with the computational complexity 

analysis expressed in equation (3.15), (3.16) and (3.17) in section 3.3. The 

result curves also demonstrate that capacity based algorithm needs much 

longer simulation time than that for the volume-based algorithm. The 

simulation time of the capacity-based algorithm is around 7 times of the 

simulation time needed for the volume-based algorithm when number of 

users is 200. Likewise, the simulation time of the SUS algorithm is greater 

than that of the volume-based algorithm. The simulation time is about 1.7 

times of the simulation time of the proposed algorithm when the number of 

users is 200. The simulation result validates the theoretical computational 

complexity analysis presented in section 3.4.2 although the simulation result 

does not match completely with the mathematical analysis due to other 

factors, such as channel matrix entry being complex element in the 

simulation instead of real element.  
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Figure 3.6 Average simulation time versus the number of users. 6×3 MIMO 

configuration. 

 

The results presented in this section confirm that the proposed 

scheduling strategy is superior to the capacity-based algorithm in terms of 

reducing the simulation time for user selection up to 7~8 fold in a MU-

MIMO wireless system with a large number of users. Therefore, this 

performance gain of the volume-based scheme can be significant in a real 

MU-MIMO system with a large number of users although a slight capacity 

loss is observed for the proposed algorithm. Both volume-based and SUS 

are low complexity algorithms, the capacity gain of the volume-based 

algorithm is noticeable in comparison with the SUS algorithm, such as, the 

sum-rate gain shown in Figure 3.5 is about 12 percent when the number of 

users is 50 in the 6×3 MIMO scenario. In addition, the computational 

complexity of the proposed algorithm is less than the SUS algorithm. 
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3.6 Summary 

 

In this chapter, a new suboptimal volume-based scheduling algorithm for 

MU-MIMO downlink system with block diagonalisation (BD) is presented 

[L. Jin et al., 2009, L. Jin et al., 2011]. The rule of the algorithm is to select 

a subset of users whose channel matrix provides maximum volume in a 

subspace spanned by the row vectors of the channel matrix. The sum-rate 

capacity of the proposed algorithm is evaluated in order to demonstrate that 

the proposed algorithm not only attains the reduced complexity, but also 

achieves a good performance. The simulation results show that the 

performance of our proposed low complexity algorithm is comparable to the 

performance obtained by the capacity-based and the SUS algorithms that 

suffer from higher computational complexity. An additional benefit of the 

volume-based algorithm is that it can achieve an even higher sum-rate 

capacity than that obtained by the SUS algorithm in the case of multiple 

receive antennas. Compared with the capacity-based algorithm, the 

proposed volume-based algorithm does not require SVD and water-filling 

operation in each user selection iteration, which greatly simplifies the 

operation of the proposed algorithm. Compared with the SUS algorithm, our 

algorithm does not need to perform Gram-Schmidt orthogonalization 

procedure in each user selection step, which is complex and not stable 

operation. The volume-based algorithm achieves the lowest computation 

complexity, which may be considered in a wireless MU-MIMO downlink 

system for the purpose of simplifying system design. 
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Chapter 4 Sum-rate gain for MU-MIMO 
downlink system with limited feedback and 
feedback resource constraint 

4.1 Introduction 

 

Recent researches on MU-MIMO technology in wireless communication 

have extended from under the condition of perfect channel state information 

at the transmitter and receiver (CSIT and CSIR) to the situation when the 

channel state information is not known to the transmitter. The drive behind 

this is that the channel information is not available to the transmitter in 

practice, whereas this channel information is needed to enable most of the 

precoding design or scheduling algorithms to work. Limited feedback in 

wireless communication systems conveys the channel information from the 

receiver to the transmitter. The system performance can benefit from this 

technique even if with a small number of bits feedback of the channel 

information. A review paper in [D. Love et al., 2008] provides an overview 

on the limited feedback in the MU-MIMO wireless communication system.  

   

 Compared with single user multiple-input and multiple-output (SU-

MIMO) system [A. Narula et al., 1998, D. J. Love et al., 2003, K.K. 

Mukkavilli et al., 2003, W. Wiroonsak and M. Honig, 2009], the quality of 

the limited feedback in a MU-MIMO system can significantly affect the 

signal-to-interference-plus-noise ratio (SINR) of each user because accurate 

channel state information of one user results in accurate precoding matrix 

design and, therefore transmitted signal to the user will have less 

interference to other users. 

 

 Studies on MU-MIMO broadcast channels with limited feedback 

was reported in [N. Jindal, 2006], it is assumed that each receiver in a 

system has perfect channel knowledge and the transmitter receives 
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quantized information of the channel instantiation from the receiver. Zero-

forcing (ZF) precoding is applied. The scheduling is not needed in a system 

with a small number of users and Rayleigh fading channel model is 

considered. Each user’s codebook is acquired by random vector quantization 

(RVQ) [W. Santipach and M. Honig, 2005, W. Santipach and M. Honig, 

2004]. It is found that the feedback rate per mobile must be increased 

linearly with the signal-to-noise ratio (SNR) (in decibels) in order to achieve 

the full multiplexing gain. The result is in sharp contrast to point-to-point 

multiple-input multiple-output (i.e. SU-MIMO) systems, in which it is not 

necessary to increase the feedback rate as a function of the SNR. In [N. 

Jindal, 2006], it also shows that the general results from the RVQ analysis 

holds for any choice of the quantization codebooks: fixed feedback rate 

systems achieve only a bounded sum-rate capacity, and feedback rate must 

be increased proportionally to the system SNR in order to achieve the full 

multiplexing gain. Other methods of generating quantization codebook can 

be Generalized Lloyds algorithm (GLA), LBG algorithm [Y. Linde et al., 

1980], LBG algorithm with splitting procedure and tree search VQ 

algorithm [N. Benvenuto et al., 2007]. Tree-Structured RVQ is the modified 

RVQ vector quantization proposed in [W. Santipach, 2008]. 

 

 P. Ding [P. Ding et al., 2007] analyzed the performance limit for the 

wireless downlink system with feedback when there is no user selection 

scheme is applied. Two models for partial channel state information 

feedback from each receiver to the transmitter were considered.  One is the 

shape feedback model where the normalized channel vector of each user is 

available at the base station. The other is the limited feedback model where 

each user quantizes its channel vector according to a rotated codebook. The 

precoding strategies applied are zero-forcing dirty paper coding (ZFDPC) 

and channel inversion (CI). Same result as Jindal’s was found that utilizing 

a fixed codebook in the circumstance of limited feedback leads to a sum rate 

ceiling for both schemes for asymptotically high SNR. 
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 N. Ravindran [N. Ravindran and N. Jindal, 2008] studied MU-

MIMO downlink system with limited feedback where each receiver has 

perfect channel state information and the transmitter gains the channel 

knowledge by a finite number of channel feedback bits from each receiver. 

Both BD precoding and ZF beamforming are used and the user selection is 

not applied. The sum-rate capacity loss due to imperfect channel knowledge 

as a function of the feedback level is analyzed. It is shown that scaling the 

number of feedback bits linearly with the system SNR is sufficient to 

maintain a bounded rate loss. It is also demonstrated that the superiority of 

quantized feedback by comparing the quantization strategy to an analogue 

feedback scheme. 

 

 C. Peel [C. Peel et al., 2005] introduced a simple encoding algorithm 

that achieves near-capacity at sum-rates of tens of bits/channel use for a 

downlink MU-MIMO wireless system. The algorithm is a variation on 

channel inversion (ZF beamforming), which regularizes the inverse and uses 

a “sphere encoder” to perturb the data to reduce the power of the transmitted 

signal. The poor performance of channel inversion due to the large spread in 

the singular values of the channel matrix, the regularization can improve the 

condition of the inverse and maximize the signal-to-interference-plus-noise 

ratio at the receivers. It is assumed that the transmitter has M antennas and 

each user terminal has one antenna. Suppose that the transmitter and 

receiver have perfect channel state information. Regularization enables sum-

rate grow linearly with min(M,K) and works especially well at low signal-

to-noise ratios (SNRs). In addition, after the regularization of the channel 

inverse, a certain perturbation of the data using a “sphere encoder” can 

further reduce the energy of the transmitted signal. Excellent performance at 

all SNR’s can be achieved with the perturbation. 

 

   A limited feedback system with regularized block diagonalisation 

(RBD) precoding is considered in [B. Song et al., 2008]. It is assumed that 

each receiver has perfect channel state information (CSI) and the transmitter 

 102



 
Chapter 4 Two-step scheduling algorithm in MU-MIMO system  

receives the quantized CSI with a finite number of feedback bits from each 

receiver. Similar result as other authors mentioned above is found that 

linearly increasing the number of feedback bits with the system SNR can 

maintain a sum-rate capacity loss less than a given value. A dominant 

eigenvector based LBG (DE-LBG) vector quantization scheme is proposed, 

which is applied to an OFDM-based multiuser MIMO system.  

  

 T. Yoo [T. Yoo et al., 2007] analyzed the sum-rate capacity of a 

MU-MIMO downlink system with a large number of users and hence 

scheduling algorithm applied, the transmitter gaining partial channel 

knowledge via finite rate feedback. It is shown that more multiuser diversity 

can be exploited if the channel direction information (CDI) and channel 

quality information (CQI) such as channel magnitude are known at the 

transmitter. Signal-to-Interference-plus-noise-Ratio (SINR) as CQI is also 

investigated because SINR captures both channel magnitude and 

quantization error. The relationship between the SINR distribution and the 

sum-rate is examined. The tradeoffs between the number of feedback bits, 

the number of users, and the SNR are observed. It is found that having more 

users reduces feedback load for a target performance. 

 

 In [M. Trivellato et al., 2008], the MU-MIMO broadcast channel is 

also considered and the CSIT is obtained through limited feedback from the 

receivers that index a set of precoding vectors contained in a predefined 

codebook. Transceiver architecture based on zero-forcing beamforming and 

linear receiver combining is proposed. The receiver combining and 

quantization for CSIT feedback are jointly designed in order to maximize 

the expected SINR for each user. An analytic characterisation of the 

achievable sum-rate capacity in the case of many users is provided. It is 

shown how additional receive antennas or higher multiuser diversity can 

reduce the required feedback rate to achieve a target capacity. In addition, a 

design methodology is proposed for generating codebooks tailored for 

arbitrary spatial correlation statistics. A tree structured codebook can be 
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utilized in time-correlated MIMO channels to significantly reduce feedback 

overhead.  

 

 In [M. Kountouris et al., 2008], a downlink MU-MIMO system with 

an M-antenna base station and K single-antenna users is considered. A 

limited feedback-based scheduling and precoding scenario is considered that 

builds on the multiuser random beamforming (RBF). The work in [M. 

Kountouris et al., 2008] is to find a solution to solve the problem that RBF 

yields degraded performance for low to moderate K values. A two-stage 

framework is proposed to decouple the scheduling and beamforming in 

which RBF is exploited to identify good, spatially separable, users in a first 

stage then the initial random beams are refined based on the available 

feedback to offer improved performance toward the selected users. Also a 

proposed technique is the beam power control that the direction of the 

second-stage beams is not changed, and therefore the reduced feedback and 

performance tradeoffs can be achieved.  

 

 R. Zakhour [R. Zakhour and D. Gesbert, 2007] studied the MU-

MIMO downlink system with a single cell containing a base station having 

multiple antennas and K single-antenna mobile terminals. The research 

considers the more realistic case of having an intermediate state of CSI. It 

utilizes an idea that the allotted feedback are divided and used for two 

stages: A first stage devoted to scheduling followed by a second stage for 

precoder design for the selected users. The investigation emphasizes on how 

to determine the splitting of the feedback rate so as to maximize 

performance. 

 

 In this chapter, we present a new scheduling algorithm which is 

designed for the MU-MIMO downlink system with a large number of users 

and total feedback bits constraint. The new scheduling algorithm adopts an 

approach that the users are selected by using low bits feedback and then the 

precoding vectors are designed based on the high bits feedback. The 
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volume-based scheduling algorithm described in chapter 3 [L.Jin et al., 

2009] is used in the user selection and the block diagonalisation (BD) 

precoding is adopted for signal transmission. We derive the sum-rate 

capacity expression of the MU-MIMO system by using the scheduling 

algorithm proposed. It is found that the sum-rate capacity can be improved 

significantly when SNR is at high value. The details are presented in 

following sections. Section 4.2 describes the system model; section 4.3 

presents the details of the proposed scheduling algorithm; performance 

analysis and math manipulation are given in section 4.4; and finally Monte 

Carlo simulation results and summary are shown in section 4.5 and section 

4.6. 

 

4.2 System model 

  

The system model is presented in this section. A single cell MU-MIMO 

broadcast system is considered, which has one base station (BS) serving K 

users. The BS is equipped with M transmit antennas, the receiver for user k 

is equipped with  antennas and  is considered. Block 

Diagonalization (BD) [Q. H. Spencer et al., 2004, L. U. Choi and R. D. 

Murch, 2004] precoding is applied to the transmitted signal. The BD 

precoding is a method that the inter-user interference can be eliminated in 

multiuser MIMO downlink system and if the channel information is known 

to the transmitter and the receiver. Each user 

k
N K M≥

1k K= ⋅⋅⋅  in the system is 

characterized by a channel matrix kH  with dimension of . 

 with each entry following an independent and identically 

distributed (i.i.d.) complex Gaussian distribution CN (0,1), which is a valid 

model if the transmit and receive antennas are in rich-scattering 

environments and antenna spacing is larger than the coherence distance. The 

transmitted symbol for user k is denoted as  which is 

k
N M×

N Mk
k

×∈^H

k
x 1kN ×  vector. The 

signal is multiplied by a precoding matrix  and then is transmitted by the 
k

W
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transmit antennas. Assume that maximum K users can be served 

simultaneously. Then the received signal  for user k can be expressed as ky

 

1,

K

k k k k k i i
i i k= ≠

+= + ∑ ky H W x H W x n ,                 (4.1) 

 

where the first term on the right-hand side of (4.1) is the desired signal for 

user k, the second term is the interference from other user signals and  is 

the additive white Gaussian noise (AWGN) column vector with  

elements for user k with zero mean and variance 

kn

kN

2[ ]H
k kE σ=n n I . 

 

4.2.1 Perfect channel information at the transmitter and the 
receiver 

  

The details of BD precoding are described as follows. Assuming if K users 

can be supported simultaneously, the channel matrix to include K users is   

 

1 1 1[ , , , , ,k k k K− + ]= " "H H H H H H .           (4.2) 

 

The design of the BD precoding matrix for user k is to find a matrix  that 

meets the following condition: 

kW

 

           ( )k kM,N∈W U          

0k i =H W  for all k i≠  and 1 ,k i K≤ ≤  ,          (4.3) 

 

where  is a matrix with kW kN M×  dimension, ( k )M,NU  stands for the 

class of kM N×  unitary matrix which is a collection of vectors  

and the dimension of 

1( , , )
kN"u u

ju  is  M for 1 kj N≤ ≤ , k kH W  for user k is non-zero. 
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 The method to get the desired  is first to formulate a channel 

matrix to include all channel matrices from other interference users. The 

matrix is given by 

kW

 

1 1 1, , , , ,
TT T T T

k k k K− +
⎡ ⎤
⎢ ⎥⎣ ⎦= " "H H H H H .                      (4.4) 

 

To meet the constraint in (4.3),  shall be in the null space of kW kH . Let kR  

denote the rank of kH , kN  is row size and M  is column size. Performing 

singular value decomposition (SVD) to kH , one has: 

 
** 1 0

k kk m kk k k
⎡ ⎤= = ⎢ ⎥⎣ ⎦

H U V U V VΣ Σ ,               (4.5) 

 
where kU  is a square matrix having the same size as the row of kH , 

*
mV  is 

a square matrix which has the same size as the column of 
*
mV , kU  and 

*
mV  

are unitary matrices,  
*
mV  denotes complex conjugate of mV , kΣ  is an 

kN M× diagonal matrix of singular values of kH ; 
1
kV  contains the first kR  

right singular vectors and 
0
kV  contains the last kM R−  right singular 

vectors of kH . The columns in  are composed from the linear 

combination of those in 

kW

0
kV  because the columns in 

0
kV  form a basis set in 

the null space of kH . 

 

 Assuming that each user terminal is equipped with the same number 

of antennas N and transmitter has M antennas, the maximum simultaneous 

users,  , can be supported by BD algorithm [Q. H. Spencer et al., 

2004]. Subsequently the system sum-rate capacity should be evaluated after 

precoding matrices are found for all simultaneous users in a subset of users.  

Consider that  is the maximum number of simultaneously supportable 

users,  is the set of all users, 

ˆ /K M N=

K̂

{1,2, , }Kκ = " iβ is a subset of  and κ
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cardinality of iβ is less than or equal to , K̂ 1 2{ , , }β β β= "  is the set 

containing all possible iβ  and { }, , ,= "
1 2 K

H H H H  denotes the set of all 

users’ channels. The achievable system sum capacity under BD scheme is 

the capacity maximization problem under transmit power constraint P. The 

maximum capacity can be expressed as [Q. H. Spencer et al., 2004] 

 
2

|( , , ) max ( , , )BD BD i ii
C P C P

β β ββ
2σ σ

∈
=H H ,   (4.6) 

 

where βi
H  denotes the channel matrix for user set iβ  and 2σ  denotes 

Gaussian noise power. The solution for (4.6) is to obtain maximum sum 

capacity for user set iβ  by SVD operation to j jH W  for ij β∈  and water-

filling on the corresponding singular values.  

 

4.2.2 Perfect channel information at the receiver and the 
channel knowledge is available to the transmitter via 
feedback channel from the receiver to the transmitter  

  

In the case of that perfect channel state information is known to the receiver 

and it is not known to the transmitter, the limited feedback from the receiver 

to the transmitter through an uplink feedback channel is a method to convey 

the channel information from the receiver to the transmitter so as to the 

scheduling and BD precoding strategy can be utilized and multiuser 

diversity and multiplexing gain can be explored. Figure 4.1 shows the MU-

MIMO downlink system with B bits feedback for each user. The figure 

shows that each user terminal only has one antenna, the transmitter has M 

antennas and therefore maximum M users can be served simultaneously; the 

channel matrix is 1 2[ , ,..., ]T T T T
M=H h h h  where  1:i for i M=h  is the column 

channel vector with M dimensions for user i.  

 

 108



 
Chapter 4 Two-step scheduling algorithm in MU-MIMO system  

Feedback channel 1, B bits feedback 

Receiver 1

 

Figure 4.1 MU-MIMO downlink system with limited feedback. The transmitter has M 

antennas and each user terminal has one antenna. Each user has B feedback bits. 

  

 In the case of limited feedback and BD precoding applied and the 

maximum number of K users can be served, the precoding vector for user k 

is obtained by using the quantized channel vectors, then (4.1) becomes 

 

, ,
1,

K

k k q k k k q i i
i i k= ≠

= + ∑ k+y H W x H W x n ,    (4.7) 

 

where W  is the precoding vector for user k  and W  for ,q k ,q i 1i =  to .  

Obviously, the second term on the right hand side in above equation can not 

be zero because W  obtained on quantized channel is different in some 

degree from W  obtained on real channel. Therefore, interference from other 

users could not be completely cancelled. The capacity under the limited 

feedback could not achieve the capacity obtained under the perfect CSIT.  

,K i k≠

,q i

i

 

# #
 

Channel H Transmitter 
(M antennas) 

Receiver M

Feedback channel M, B bits feedback 
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4.2.3 The two-step scheduling algorithm proposed for MU-
MIMO downlink system with limited feedback and 
power allocation 

  

In this chapter, a two-step scheduling algorithm is proposed for a limited 

feedback MU-MIMO system. The aim of the algorithm design is to alleviate 

the total feedback load on the feedback channels and to obtain a reasonable 

higher system capacity if there is a feedback constraint on the MU-MIMO 

downlink system. The first step of the algorithm is that users are selected by 

using the volume-based algorithm [L.Jin et al., 2009]. The quantized 

channel information is gained by using low bits codebook stored at the 

transmitter and the receiver. The second step is that only selected users 

feedback their channel information by using higher bits codebook stored at 

the transmitter and receiver. Then the BD precoding matrices for the 

selected users are designed and are applied to the selected uses. The 

maximum capacity achieved by this strategy can be expressed by equation 

(4.6) and the result is the well-known water-filling strategy. However we 

only consider that the transmit power are evenly allocated to the selected 

users in the following performance analysis.  
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4.3 The details of new two-step scheduling algorithm 
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Figure 4.2 MU-MIMO downlink system with limited feedback. Two versions of the 

codebook are stored at the transmitter and the receiver. 

  

 Figure 4.2 shows a MU-MIMO system with limited feedback. 

Assume that two versions of codebooks are stored on each user terminal; 

one version is a codebook with low bits lB  and the other version is a 

codebook with high bits hB . The number of codeword in the low bits 

codebook is 2 lB  and the number of codeword in the high bits codebook is 

2 hB .  These codebooks are also stored on the base station.  

  

 Assume that each terminal has one antenna and each user k  has 

perfect channel knowledge at the receiver (CSIR). In this case each user’s 

channel matrix is a row vector  with M dimensions. At the receiver, its 

normalized channel, also called the direction of the channel (CDI), 

kh

/k k k=�h h h  is quantized to a unit norm row vector  with M dimensions.  kqh
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The quantized vector  is chosen from the codebook that is a unitary 

matrix with unit norm row vector, i.e. codeword, and codebook size is 2

kqh
B , 

i.e. number of rows.  The codebook is expressed as  

 

1 2{ , , , }k k k kNC = ⋅⋅⋅c c c ,      2BN = .                        (4.8) 

 

The codeword  is chosen as the quantization vector  by the minimum 

chordal distance criterion [A. Narula et al., 1998, D. J. Love et al., 2003, 

K.K. Mukkavilli et al., 2003] 

knc kqh

 

1
argmin ( , )c k kii N

n d
≤ ≤

= �h c ,     (4.9) 

 

where  is the chordal distance between two vectors  and . The 

relation between the chordal distance and the inner product of  and  is 

as follows [K. K. Mukkavilli et al., 2003] 

( , )c k kid �h c k
�h kic

k
�h kic

 
2

( , ) 2(1 , )c k ki k kid = −� �h c h c ,      (4.10) 

 

where ,k ki
�h c  denotes the inner product of  and . The codebook is 

designed off-line and stored at the transmitter and the receiver. Each user 

feeds back only the index n of the codeword representing the channel from 

the receiver to the transmitter where the codebook for each user is searched 

and the codeword is obtained. B bits feedback is required for each user.  

k
�h kic

 

4.3.1 Codebook design method: Random Vector 
Quantization (RVQ) and dominant eigenvector based 
LBG (DE-LBG) algorithm 
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There are numerous codebook design methods. We resort Random Vector 

Quantization (RVQ) scheme [W. Santipach, 2008] and a dominant 

eigenvector based LBG (DE-LBG) algorithm [B. Song et al., 2008]. 

 

4.3.1.1 The Random Vector Quantization (RVQ) 

  

A Random Vector Quantization (RVQ) is a scheme [W. Santipach, 2008] 

that a codeword is selected from a codebook consisting of 2B  random 

vectors, which are independent and isotropically distributed in 1 M×^ . The 

codebook is known a priori at the transmitter and receiver. Each codeword 

in the codebook is randomly generated from M-dimensional unit-norm 

complex Gaussian vectors. It is assumed that the codewords of different 

users are independent, i.e. the  codewords thn
1j nC  and 

2j nC  are independent 

when  takes different values k 1j  and 2j .  

 

4.3.1.2 Dominant Eigenvector based LBG (DE-LBG) 

  

DE-LBG vector quantization algorithm is a modified LBG vector 

quantization with splitting algorithm [Y. Linde et al., 1980]. The details of 

the LBG algorithm for acquiring a codebook with its size 2BN =  are as 

follows: 

  

(1) Firstly, a long vector training sequence T  [ ] s
1 2 s= ⋅⋅⋅ ∈^A x , x , , x  with s 

number of vectors is generated, where  for ix ,i 1 s= ⋅⋅⋅  is an M-dimensional 

unit-norm complex Gaussian vector. 

(2) Initialization: Set J = 1 and define ( ) ( )0
ˆ ˆl   =A x A , the centroid of the 

training sequence, i.e., the centroid of one Voronoi region.  

(3) Given the reproduction alphabet ( )0
ˆ JA  containing J vectors 

, “split” each vector ,{ 1, ,i i = ⋅⋅⋅y }J iy  into two close vectors i ε+y and 

 113



 
Chapter 4 Two-step scheduling algorithm in MU-MIMO system  

i ε−y , where ε  is a fixed perturbation vector. The collection �A  of 

{ , ; 1, ,i i i J}ε ε+ − = ⋅⋅⋅y y  has  vectors. Replace J by 2J. Find new Voronoi 

region for each vector in 

2J

�A  and new centroid for each Voronoi region. �A  is 

updated with ( )J�A .  

(4) Is J = N? If so, set ( )0  ˆ  J= �A A  and halt. 0
�A  is then the initial 

reproduction alphabet for the N-level quantization algorithm. If not, run the 

algorithm for an P-level quantizer on ( )J�A  to produce a good reproduction 

alphabet ( )ˆ
0 JA , and then return to step (3). 

 

 More general description of the algorithm is that one starts with a 

one-level quantizer consisting of the centroid of entire training sequence. 

This vector is then split into two vectors and the two-level quantizer 

algorithm is run on this pair to obtain a good two-level quantizer. Each of 

these two vectors is then split and the algorithm is run to produce a good 

four-level quantizer. Finally, one has the quantizers for 1,2,4,8,  ,N⋅⋅⋅  levels. 

  

 In LBG algorithm, each Voronoi region is formulated by allocating 

the vectors  closest to the centroid iy ix  with minimum distance measure 

. New centroid in one region is the mean of all vectors in this region. 

DE-LBG algorithm modifies the nearest neighbour condition from 

minimum distance measure to minimum chordal distance when determining 

each Voronoi region. DE-LBG algorithm also modifies the centroid 

condition that the new centroid is taken as the dominate eigenvector of the 

covariance matrix 

( , )i id y x

1

1 P
H

i i
iJ =

= ∑R y y , where H in 
i

Hy  donates the Hermitian of 

vector
i

y . Therefore the modified centroid condition can capture the 

statistics of the training vectors in a Voronoi region.  

 

 In comparison with RVQ, DE-LBG vector quantization algorithm 

needs more time to find centroids and find their Veronoi regions on a 
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training sequence. Although the codebook for each user can be obtained off-

line, the task to find the codebook with higher bits needs very high 

computation time. It needs 2B M×  multiplication to calculate the 

covariance matrix and about 310 M×  multiplication to get the dominate 

eigenvector of the covariance matrix. Note that the addition is not counted 

here due to the equal number of addition and multiplication in two matrix 

operations mentioned above and the multiplication count being sufficient as 

an indicator of the computational complexity. Only multiplication is used 

for the computational complexity analysis. Therefore DE-LGB algorithm is 

not suitable for high bits codebook generation. 

 

4.3.2 The new proposed scheduling algorithm 

 

The proposed scheduling algorithm is as follows: 

 

1. In a MU-MISO downlink system with K user, a high bits codebook 

and a low bits codebook are stored on each user terminal. These 

codebooks are also stored at the transmitter. The codebooks are 

designed off-line. Each codeword in a codebook holds the direction 

of the user channel which is normalized user channel vector.  A 

codebook can be generated via RVQ algorithm or DE-LBG 

algorithm.  

2. Assume that the channel state information is known at the receiver 

and the channel is characterized as block Rayleigh fading. A user 

channel condition does not vary from the channel state information 

being quantized, the index of the quantized channel vector being sent 

until the transmitted signal being received by the user.  Each user 

uses low bits codebook to find a codeword representing its channel 

by using minimum chordal distance criterion. If user k has a low bits 

codebook  with codebook size1 2{ , , , }
l

l
k k k kN

C = ⋅⋅⋅c c c 2 lB
lN = . The 

codeword  is chosen as the quantization vector  of  and the knc kqh k
�h
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index of the codeword is obtained by following equation: 

. The codeword index  is sent back to the 

transmitter. The transmitter receives feedback from K users.   

1
argmin ( , )

l
kl c k kii N

n d
≤ ≤

= �h c kln

3. The transmitter selects maximum number of users to serve by using 

the feedback information, locating the quantized vector from the low 

bits codebook for each user and finally applying the volume-based 

algorithm.   

4. The transmitter requests the channel information from the selected 

users. At this stage, each selected user k terminal quantizes its 

channel by using high bits codebook 1 2{ , , , }
h

h
k k k kN

C = ⋅⋅⋅c c c  with 

codebook size . The feedback bit for a selected user k is 

obtained via the minimum chordal distance criterion, which can be 

expressed as . Because there are M number of 

antennas at the transmitter and one receive antenna for each user, 

total M number of  are sent back to the transmitter under BD 

precoding scheme.  

2 hB
hN =

1
argmin ( , )

h
h

k ci N
n d

≤ ≤
= �h ck ki

hkn

5. The transmitter finds precoding vector for each user under BD 

scheme and signals for the selected users are sent simultaneously.  

 

4.4 Performance analysis 

  

Limited feedback technique can improve system performance in a MU-

MIMO system when transmitter does not know the channel state 

information. The information conveyed from the receiver through the 

feedback control channel to the transmitter allows the transmitter to design 

the precoding matrix for each selected user and makes it possible to serve 

multiple users simultaneously. Multiuser diversity and the multiplexing gain 

in the MU-MIMO systems can be exploited by using limited feedback 

strategy. However, using feedback creates overhead on uplink feedback 

channel to increase the achievable data rate on the downlink channel. This 
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overhead can sometimes be significant and can not be ignored. Especially in 

the MU-MIMO system, many users are sending feedback to a central 

controller (for example base station) so users are competing for the limited 

feedback resources via multiple access system. In the situation of that the 

system is subject to the limited feedback constraint, high bits feedback from 

all users might not be feasible. The proposed scheduling algorithm is 

designed to solve this issue. To reduce the feedback load, the first step of 

the algorithm is to gather each user’s channel information from all users in 

the system by using low bits feedback; then the second step of the algorithm 

is to congregate only the channel information from those selected users via 

high bits feedback. The second step is to gain more accurate channel 

information for the selected users in order to acquire near-orthogonal 

precoding matrix for signal transmission simultaneously. Because only a 

small number of users are selected due to the number of transmit antenna 

constraint of BD precoding, the feedback load on the feedback control 

channel is low in the second step of the algorithm.  

  

4.4.1 Sum-rate capacity analysis  

  

Let P be the total transmit power at the base station and /P Mρ = , ρ  is the 

transmit power equally allocated to each user in a selected user set (M users). 

For each selected user k,  denotes the BD precoding vector obtained by 

using the low bits feedback whereas  denotes the BD precoding vector 

obtained by using the high bits feedback,  is the channel vector which is 

known to the receiver.  

,kq lw

,kq hw

kh

 

 The sum-rate capacity (Ergodic capacity) k1R  achieved by using the 

low bits feedback can be expressed as 
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2

,
2 2

,
1: ,

,
log 1

1 ,
k kq l

k1

k jq l
j M j k

R E
ρ

ρ
= ≠

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎜=
⎢ ⎥⎜ ⎟

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

+
+ ∑

h w

h w
⎥⎟ ,    (4.11) 

 

where [ ]E i  denotes the expectation operation, ,a b  denotes the inner 

product of vectors a and b. a  denotes the absolute value of a. The term 

2

,
1: ,

,k jq l
j M j k= ≠

∑ h w  in the denominator is the interference from users other 

than k.  

 

 Similarly, the sum-rate capacity khR  achieved by using the high bits 

feedback can be expressed as 

 

2

,
2 2

,
1: ,

,
log 1

1 ,
k kq h

kh

k jq h
j M j k

R E
ρ

ρ

= ≠

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎜
⎢ ⎥⎜ ⎟

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

= +
+ ∑

h w

h w
⎥⎟ ,   (4.12) 

 

where 
2

,
1: ,

,k jq h
j M j k

ρ
= ≠
∑ h w  is the interference from users other than k. 

 

Theorem 1: The sum-rate gap kR∆  due to extra step of the proposed 

scheduling algorithm is  

 

1
2 2log 1 2 log 1 2

hB B
M

kR P P−
− 1

l

M
−

−
⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪⎩ ⎭ ⎩

∆ ≈ − + + +
⎪⎭

.      (4.13) 

 

Proof: the rate gap can be expressed as (4.14) 
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          (4.14) 

 

where (a) follows since the interference from other users 
2

,, 0k jq h
j k≠

≥∑ h w  

and 
2

,,k jq l
j k≠

≥∑ h w 0  is much smaller and can be ignored in the summation 

of two nominators; (b) follows because the channel vector k k= �h h hk .  

 

 Let kθ  denote the angle between  and its quantization vector , 

decompose  into one component in the direction of  and one 

component in the direction of 

k
�h kqh

k
�h kqh

kg  which is a unitary vector being 

perpendicular to .  can be written kqh k
�h cos sink k kq k kθ θ= +�h h g . Then the 

equation (4.14) can be expressed as 
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 (4.15) 

 

where h in the subscript of , ,k h kq h k h, , ,θ h  g  denotes the parameters for high bits 

codebook used; l in the subscript of , ,k l kq l k l, , ,θ h  g  denotes the parameters for 

low bits codebook used. (c) in (4.15) follows because ,jq hw obtained by using 

the quantized channel vectors , in the case of high bits codebook utilized, 

 and  are orthogonal and the inner-product of the vectors should be 

zero if . Same applies to the situation when low bits codebook is used 

so the inner-product of  and 

,kq hh

,jq hw ,kq hh

j k≠

,kq lh ,jq lw  is zero when j k≠ . 

 

 N. Jindal [N. Jindal, 2006] provides the analysis on MU-MIMO 

broadcast channels with finite-rate feedback. Although the analysis is made 

to the system with zero-forcing (ZF) beamforming, the result should be 

applicable to the system with block diagonalisation (BD) precoding. 

Especially in the case of MISO system, ZF beamforming is equivalent to 

BD precoding [Q. H. Spencer et al., 2004]. Therefore, some of the results in 

[N. Jindal, 2006] are referred for our performance analysis. Because vectors 

 and  are independent and isotropically distributed in k
�h ,kq hw 1 M×^  when the 

codebook is generated via RVQ, 
2

,,k kq h
�h w in the nominator of the first 
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item of (4.15) can be replaced by (1, 1)Mβ −  which is a Beta-distributed 

random variable with parameters (1,M-1) [N. Jindal, 2006]. Also in the 

denominator of the first item of (4.15),  and  for any  are unit 

i.i.d. isotropic vectors in the (

,k hg ,jq hw j k≠

1M − ) null space of . The quantity ,kq hh

2

, ,,k h jq hg w  is (1, 2)Mβ −  distributed and independent of ,sin k hθ  [ N. Jindal, 

2006, Lemma 2].  

 

 Similarly, the second item in the above equation can be manipulated 

for the case of low bits codebook. Therefore, (4.15) becomes 
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where 

 121



 
Chapter 4 Two-step scheduling algorithm in MU-MIMO system  

2 2
2 ,1 log 1 sin (1, 2)k k k h

j k
R E Mρ θ β

≠

⎧ ⎫⎡ ⎤⎪ ⎪
⎨ ⎬⎢ ⎥
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∆ = + −∑h   (4.17) 

 

and  

 

2 2
2 ,2 log 1 sin (1, 2)k k k l

j k

R E Mρ θ β
≠
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⎨ ⎬⎢ ⎥
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∆ = + −∑h .                  (4.18) 

 

(4.16) shows that the rate gain via the two-step scheduling algorithm is 

determined by the interference from other users due to the channel 

quantization process.  

 

 Applying Jensen’s inequality to (4.17), it becomes 
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where (a) follows since ( )2
kE M=h  due to the independence of the 

channel norm, (b) follows since the expectation of (1, 2)Mβ −  random 

variable is 1
1M −

 and (c) follows since the upper bound of expected 

quantization error ( )2
,sin k hE θ  is 12

hB
M

−
−  [N. Jindal, 2006, Lemma 1].  

 

 Similarly, applying Jensen’s inequality to (4.18), it becomes 
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where (a) follows since ( )2
kE M=h  due to the independence of the 

channel norm, (b) follows since the expectation of (1, 2)Mβ −  random 

variable is 1
1M −

 and (c) follows since the upper bound of expected 

quantization error ( )2
,sin k lE θ  is 12

lB
M

−
−  [N. Jindal, 2006, Lemma 1]. 

  

4.5 Numerical results 

  

This section presents the simulation results by using the proposed 

scheduling algorithm. The simulation result in Figure 4.3 shows the sum-

rate capacity versus signal-to-noise-ratio (SNR). The scenario setting is that 

the MISO downlink systems with four transmit antennas on base station and 

one antenna for each user terminal, i.e. 4 1×  antenna combination. Assume 

that the total number of users in the system is 4. In this case, the user 

selection is not needed and the simulation result can demonstrate that 

increasing feedback bits improve the system performance. The sum-rate 

capacity in the graph is the Ergodic capacity, each data point for a SNR 

value is the sum-rate value averaged over 500 channel realization per user. 

A codebook for each user is obtained via the codebook design methods of 

RVQ and DE-LBG. The upper bound of sum-rate capacity by using DPC 

scheme is also shown in the figure, which is the theoretical calculation result 
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from [M. Sharif and B. Hassibi, 2007]. The result demonstrates that the 

sum-rate capacity is improved under the high bits feedback although it is 

interference limited at high SNR. The curve obtained with 16 bits feedback 

is closest to the curve attained under the perfect channel condition. It is also 

shown, in the cases of 4 bits and 8 bits feedback, that there is no difference 

between the sum-rate capacities when the codebook is acquired either by 

RVQ or by DE-LBG. However, generating high bits codebook via DE-LBG 

is time consuming even if it is done off-line. Therefore RVQ is used for 

creating high bits codebooks.  
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Figure 4.3  The sum-rate capacity versus SNR. There is total number of 4 users in the 

system and the user selection algorithm is not needed. 4 transmit antenna and 1 

receive antenna per user terminal. BD precoding is applied. 

 

 Figure 4.4 shows the sum-rate capacity against SNR when there is a 

large number of users in the MISO downlink system and the volume-based 

scheduling algorithm is used [L. Jin et al., 2009]. The antenna combination 

in the scenario is 4 transmit antennas and 1 receive antenna for each user 

terminal. The maximum supportable users are 4 and codebook generation 
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method is RVQ. The sum-rate capacity is Ergotic capacity, each data point 

for a SNR value is the sum-rate value averaged over 500 channel realization 

for each user. The upper bound of sum-rate capacity via DPC is also 

displayed in the figure, which is the theoretical calculation result from [M. 

Sharif and B. Hassibi, 2007]. The result demonstrates that the system 

performance is improved under the condition of high bits feedback. The 

sum-rate capacity achieved by using 8 bits feedback is higher than the 

capacity obtained via 4 bits feedback. Also in comparison with Figure 4.3, 

the system with a large number of users and the user selection algorithm 

being used shows better performance than the system with a small number 

of users and without user selection algorithm applied. For example, 4bps/Hz 

better off at SNR 20dB when 8 bits feedback is applied.  
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Figure 4.4 Total number of 50 users is in the MISO downlink system. Antenna 

combination is 4 transmit antennas and 1 receive antenna per user terminal. The 

volume-based scheduling algorithm is applied. Maximum supportable users are 4.  

 

 Figure 4.5 presents the simulation result when the proposed two-step 

scheduling algorithm is utilized in the MISO downlinks system. It is 

assumed that total number of 50 users is in the system. The transmit/receive 
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antenna combination is 4  for each user and the volume-based algorithm 

is applied for user selection. Maximum 4 users can be served 

simultaneously. The method of codebook generation is RVQ and BD 

precoding is applied.  

1×

 

 The two-step scheduling algorithm works like this:  the maximum 4 

users are selected first by using 4 bits feedback channel information, then a 

BD precoding vector is obtained for each user by using 12 bits feedback 

channel information and finally the signals for the selected users are 

transmitted. It is found that the sum-rate capacity acquired by the proposed 

algorithm is, in general, improved in comparison with the sum-rate capacity 

obtained only by 4 bits feedback. An improvement is observed when SNR is 

high from 4dB and beyond ( ). The sum-rate gap increases as the 

SNR increases. This gap increment is as a result of the fact that the 

interference from the signals transmitted to other users due to non-perfect 

precoding and non-perfect channel condition is reduced by using additional 

high bits feedback. However, as shown in the graph, the sum-rate capacity 

of the algorithm can not achieve as high as that is realized by 12 bits 

feedback only for user selection and precoding vector obtaining. The benefit 

of the proposed algorithm is that the sum-rate capacity curve of 4 bits 

feedback for user selection and then 12 bits feedback for precoding design 

shows similar trend with the 12 bits feedback only algorithm. With the 

proposed algorithm, the sum-rate capacity can be raised in the range of high 

SNR. 

4SNR dB>

   

 Table 4.1 gives total feedback bits required for 4 bits feedback, 12 

bits feedback and the proposed scheduling algorithm with 4 bits feedback 

followed by 12 bits feedback in the system having 50 users. Using 12 bits 

feedback needs total of 600 bits feedback which is higher than the 200 bits 

feedback needed by using 4 bits feedback. In the situation that the high bits 

feedback might not be practical if there are a large number of users in the 

system and there is feedback resource constraint, the proposed feedback 
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algorithm can be a potential solution for the problem. The proposed 

algorithm applies low bits feedback for user selection, then high bits 

feedback is used to get precoding vector for the selected users. Because the 

selected user number is much less than the total number of users, the 

additional step only adds a fraction of feedback load to the system, for 

example, 1/5 load as indicated in Table 4.1. The extra step in the algorithm 

can obtain more accurate channel information for the selected users; 

therefore, the sum-rate at high SNR end can be significantly increased.  

 

Table 4.1 Summary of feedback load 

Feedback strategy Total of feedback bits 

4 bits feedback 4 50 200× =  

12 bits feedback 12 50 600× =  

Proposed algorithm 4 50 4 12 248× + × =  
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Figure 4.5 Sum-rate capacity versus SNR. Total number of 50 users is in the MISO 

downlink system. Antenna combination is 4 transmit antennas and 1 receive antenna 

per user terminal. The two-step scheduling algorithm is applied. Maximum 

supportable users are 4. 

 

4.6 Summary  

  

In this chapter, a new two-step scheduling algorithm is proposed for 

optimizing the sum-rate gain in a MU-MIMO downlink system with limited 

feedback and Block Diagonalisation (BD) precoding [L. Jin et al., 2010]. 

The two-step algorithm is that the user selection is accomplished via a low 

bits feedback, and then precoding design is completed by a high bits 

feedback. Based on the performance analysis and the simulation result in 

this chapter, the newly proposed algorithm can be a potential solution to a 

MU-MIMO downlink system with feedback resource constraint. A key 

finding is that an extra step with a high bits feedback in the proposed 

algorithm can increase the system capacity, especially when signal-to-noise 

ratio is at high value.  
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Chapter 5 Signal detection scheme based 
on free probability theory in MIMO cognitive 
radio systems 
 

In previous two chapters, we have investigated suboptimal scheduling 

strategy in MU-MIMO wireless system to improve the system performance 

with practical system in mind and the channel state information feedback 

strategy under the feedback bit constraint in the MU-MIMO system. In this 

chapter, we will explore the area of applying cognitive radio technology in 

the MU-MIMO network, which is a hot research topic in recent years to 

solve the increasing scarce spectrum problem with emergence of new 

wireless applications and services. The chapter is organised as follows. 

Section 5.1 introduces the background of cognitive radio, especially in the 

area of spectrum sensing methods. Section 5.2 presents a new proposed 

spectrum sensing method based on Free Probability Theory (FPT). The 

details of the Free Probability Theory, the description of FPT detection 

method, simulation results and the summary are given in the subsection of 

section 5.2. Section 5.3 provides the details of the cooperative spectrum 

sensing strategy in MU-MIMO system by utilising FPT detection method in 

each user terminal.  

 

5.1 Introduction 

 

With the rapid development of wireless communication over the last decade, 

the demand for capacity and bandwidth has become increasingly high. As a 

result, the available resources such as bandwidth and capacity become 

limited. These resources need to be allocated and distributed effectively. 

Cognitive radio (CR) [I. Mitola, J. and J. Maguire, G. Q., 1999, J. Mitola, 

2000, S. Haykin, 2005] and multiple-input multiple-output (MIMO) [A. 

Paulraj et al., 2003] have been regarded as two promising techniques to 
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solve the resource limitation issue. The utmost goals of the cognitive radio 

technology are to utilize the radio spectrum efficiently and to ensure reliable 

communications as the radio spectrum becomes a scarce resource. The 

capacity of a wireless system can be improved through multiplexing gain 

and diversity gain in a MIMO system. MIMO technology can also mitigate 

the fading effect characterized in the wireless system. 

    

  In cognitive radio communications, spectrum sensing must be 

performed [T. Yücek and H. Arslan, 2009]. Examples of spectrum sensing 

methods published in the literatures are energy detector based sensing [H. 

Urkowitz, 1967], waveform-based sensing [H. Tang, 2005] and matched-

filtering [A. Sahai and D. Cabric, 2005]. Different sensing methods are 

suitable to different circumstances. For example, the waveform-based 

sensing performs better than energy detector because of the coherent 

processing that comes from using deterministic signal component if a priori 

information about the primary user’s characteristics is available. 

Cooperative sensing is a strategy to solve the problem existed in the 

spectrum sensing due to noise uncertainty, fading, and shadowing. With 

cooperative sensing, it can also solve hidden primary user problem and it 

can decrease sensing time. Before introducing our new proposed Free 

Probability Theory (FPT) spectrum sensing method, we present a review of 

some of the common spectrum sensing methods in this section. 

  

5.1.1 Energy detector based sensing  

 

Energy detector is the most common spectrum sensing method because of 

its low computational and implementation complexities [H. Urkowitz, 1967]. 

The way of energy detection is to compare the output of the energy detector 

with a threshold which can be set according to the system performance 

requirement and depends on the noise floor [H. Urkowitz, 1967]. The 

advantage of the energy detection is that the receivers do not need any 
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knowledge on the primary users’ signal. The drawback of the energy 

detection is that interference from primary users and noise can not be 

distinguished. Therefore, it brings the uncertainty to select the threshold for 

detecting primary users if the noise characteristic is not known to the 

receiver. The poor performance under low signal-to-noise ratio (SNR) 

values is observed [H. Tang, 2005]. Energy detectors do not work 

efficiently for detecting spread spectrum signals either [D. Cabric et al., 

2004, T. Yücek and H. Arslan, 2006] since the power of the primary user is 

distributed over a wide frequency range even though the actual information 

bandwidth is much narrower. Hence primary users who use spread spectrum 

signalling are difficult to detect.  

 

 Assume SISO case and discrete time system. Let x(t) represent the 

signal from the transmitter and h(t) be the channel response at time t, the 

received signal at time t can be expressed as  

 

( ) ( ) ( ) ( )  y t h t x t n t= +  ,    (5.1)  

 

where n(t) is additive white Gaussian noise (AWGN) with zero mean and 

variance 2
nδ . Assume that the number of observation is N, then the decision 

metric for the energy detector is defined as  

 
2

1

( )
N

t

M y t
=

= ∑ .      (5.2)  

 

Let  be the hypothesis when signal is absent, and  be the hypothesis 

when signal is present. The binary hypothesis testing based on the received 

signal is [C. W. Helstrom, 1968]:  

0H 1H

 

  ( )0 :   (H y t n t)= ,      (5.3)    

( ) ( ) ( )1 :    H y t s t n t= + ,     (5.4)  
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where s(t) = h(t)x(t) is the received signal excluding the noise component. 

The decision on the occupancy of a band is made on if the decision metric 

M is greater than the threshold λ that is chosen according to the performance 

requirement of the system.  

 

The probability of detection Pd and the probability of false alarm Pf 

are two measures of the performance of the energy detection algorithm: Pd 

is the probability of detecting a signal on the considered spectrum when it is 

present and Pf is the probability that the test incorrectly decides that the 

considered spectrum is occupied when it actually is not. Pd and Pf can be 

expressed as 

 

Pd = prob (M >λ|H1),      (5.5)  

Pf = prob (M >λ|H0).      (5.6)  

 

High probability of detection is desirable and at the same time the 

probability of false alarm should be low so the frequency band can be 

utilized efficiently. Because the characteristic of the signal and noise are not 

known to the receiver, choosing threshold λ can be a challenging task to 

balance high Pd and low Pf . In practice, the threshold is chosen to a 

predefined false alarm rate [M. J. Lehtomäki et al., 2005]. Hence, 

knowledge of noise variance is sufficient for selection of a threshold.  

 

Consider that a simple case of the s(t) is a zero-mean Gaussian 

distributed variable with variance 2
sδ  and the noise is white Gaussian noise 

with zero mean and variance 2
nδ . The summation of the N samples of the 

received signal in (5.2) follows chi-square distribution with 2N degrees of 

freedom 2
2Nχ . Therefore, the decision metric in (5.2) can be expressed as  
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The expression of probability of detection and the probability of false alarm 

of the energy detector can be written as [F. Digham et al., 2003] 

 

( , )
2

( )f

u
P

u

λ
Γ

=
Γ

 ,     (5.8) 

( 2 , )d uP Q γ λ= ,     (5.9) 

 

where u=TW  is time bandwidth product if T is the observation time interval 

in seconds and W is one-sided bandwidth in Hz, ( , )a bΓ  represents the 

incomplete gamma function of variables a and b [E. Kreyszig, 1993] , γ  is 

signal-to-noise ratio (SNR), and  is the generalized Marcum Q-

function of variable c and d [J. G. Proakis, 2001]. From (5.8) and (5.9), the 

pair values of P

( , )uQ c d

d and Pf  is a function of the threshold value λ. Each pair of 

values of performance measures Pd and Pf corresponds to a chosen threshold 

value λ if the received signal-to-noise-ratio is fixed. Receiver operating 

characteristic (ROC) curves can be applied to demonstrate the relationship 

between the probability of detection and the false alarm rate, which are the 

sets of curves of Pd versus Pf  under different SNR values [P. Varshney, 

1996]. It is in general that better performance can be achieved under high 

SNR at a fixed threshold value.   

 

5.1.2 Waveform based sensing 

 

Waveform based sensing can be applied if the transmitted signal is known 

to the receiver. We assume that total number of received signal sample is N, 
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transmitted signal is x(t), the channel response h(t) at time t and n(t) is the 

white Gaussian noise, the received signal y(t) can be expressed as 

 

( ) ( ) ( ) ( )y t h t x t n t= + .      (5.10) 

 
The decision metric is defined as 
 

1

( ) *( )
N

t

M Re y t x t
=

⎡= ⎢⎣ ⎦
∑ ⎤

⎥ ,      (5.11) 

 

where x*(t) denots conjugate of x(t). If there is no signal coming from the 
transmitter, the decision metric becomes, 
 

1

( ) *( )
N

t

M Re n t x t
=

⎡= ⎢⎣ ⎦
∑ ⎤

⎥ .     (5.12) 

 

Similar to the energy detector, the decision on the presence of a primary 

user signal is based on if M is greater than a fixed threshold λ. The 

probability of detection Pd and the probability of false alarm Pf can also be 

expressed by (5.5) and (5.6). The waveform based sensing performs better 

than the energy detector based sensing in terms of reliability and 

convergence time [H. Tang, 2005]. However, the drawback of the waveform 

based sensing is that the receiver must have the knowledge of the signal 

from the transmitter.  

 

5.1.3 Matched-filtering 

 

Assume SISO case and discrete time system. Consider a signal x in the 

presence of additive Gaussian noise n have zero mean and variance 2
nδ . The 

signal y at time t is the summation of x and n: 

 

( ) ( ) ( )y t x t n t= + .       (5.13) 
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When the signal is filtered with a filter having response MFh , the output z of 

the filter at time t is the convolution of MFh  and y(t), that is,   

 

( ) * ( )MFz t h y t= ,     (5.14) 

 

where * denotes convolution here. If  denotes the signal component 

and  is the noise component at time instance t

0( )xz t

0( )nz t 0 at the output of the 

filter, the matched filter is to maximize the output signal-to-noise ratio 

(SNR) [N. Benvenuto and G. Cherubini, 2002] 

 

  
2

0
2

0

( )
: max

[ ( ) ]MF

x
MF h

n

z t
h

E z t
= .    (5.15) 

 

Assume that the signal x(t) is known to the receiver and hypothesis testing 

problem based on N signal samples, the test statistics for matched filter 

detector is [Y. Zeng et al., 2010]  

 
1

0
( ) ( )

N

t
M x t y t

−

=

= ∑ .    (5.16) 

 

In next section, we will present a new spectrum sensing method based on 

free probability theory (FPT) [Ø. Ryan and M. Debbah, 2007] for the 

MIMO cognitive radio system. 

 

5.2 A new signal detection scheme based on free 

probability theory for multiple-input multiple-

output cognitive radio systems  

 

It is known that a digital communications system can be modelled with 

random matrices, where the received signal is the summation of the 
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transmitted signal and the noise. In this case, FPT can be utilized to describe 

the asymptotic behaviour of the system. More details of the FPT will be 

provided in Section 5.2.1. We propose a new signal detection algorithm for 

spectrum sensing using FPT for MIMO cognitive radio systems [L. Jin et al., 

2010]. The idea of FPT detection is to estimate the covariance matrices of a 

large number of observations of the received signals in order to obtain the 

covariance matrices of the transmitted signals through asymptotic behaviour 

of random matrices. The performance comparison between the FPT 

detection and the energy detection will be given because two methods are 

suitable for the circumstance of the receiver without knowing any 

information of the signal from the transmitter. 

 

 Next four subsections are organized as follows. Section 5.2.1 

presents the system model and basics of the free probability theory. Section 

5.2.2 describes the new proposed signal detection algorithm based on FPT. 

Section 5.2.3 provides the simulation results and the summary is given in 

section 5.2.4. In this thesis, upper boldface is used for matrices and low 

boldface is used for vectors. (·)* denotes conjugate operator, (·)H denotes 

Hermitian transpose, I is used for identity matrix and E(·) denotes 

expectation operator. 

 

5.2.1 MIMO cognitive radio system model and free 
probability theory 

5.2.1.1 MIMO cognitive radio system model 

 

Figure 5.1 shows a typical cognitive radio system consisting of a primary 

network and a neighbouring secondary network. Consider that there exist 

one primary base station and several primary users (PU) in the primary 

network; one secondary base station serves numbers of secondary users (SU) 

in the secondary network. Assume that a secondary user attempts to detect if 

there is a primary user in his vicinity using a frequency band and the SU 

 136



 
 Chapter 5 FPT spectrum sensing  

without any knowledge of the signals transmitted from the PU. In this case, 

the PU is regarded as the transmitter and the SU is regarded as the receiver. 

Suppose that the transmitter is equipped with m antennas and the receiver is 

equipped with l antennas. The channel matrix between the transmitter and 

the receiver is denoted as l m×H  with row size l (number of receive antennas) 

and column size m (number of transmit antennas). In order to know whether 

a frequency band is used by the PU, the SU needs to detect the signal from 

the PU so the decision can be made to use the frequency band when it is 

vacant. Assume that the signal from the PU is a column vector x with row 

size m. Then the signal y received by the SU is  

 

= +y Hx n ,             (5.17)  

 

where vector n with row size m is the additive white Gaussian noise 

(AWGN) vector with zero mean and covariance matrix 2
lσ I . Rayleigh 

fading channel is assumed, therefore each entry in l m×H  following an 

independent and identically distributed (i.i.d.) complex Gaussian 

distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

Primary network Secondary network
Primary base station
Primary user

Secondary base station

Secondary user

Hl×m

Figure 5.1 Cognitive radio system 
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5.2.1.2 Free probability theory 

 

The FPT is related to the random matrices and what we are interested in this 

work is the limiting eigenvalue distribution of square random matrices [A. 

Nica and R. Speicher, 2006]. Random matrices are useful tool for modelling 

a digital communications system [Ø. Ryan and M. Debbah, 2007]. A typical 

random matrix model can be used to describe the information-plus-noise 

model presented in (5.17). Let M denote the number of samples of the 

received signals, A be the concatenated matrix of Hx  from M observations 

and N represents the concatenated noise samples from M observations, the 

sample covariance matrix  is defined as follows: lW

 

1 ( )( )H
l M

= + +W A N A N .    (5.18) 

 

 In the area of classical signal processing, a large number of 

observations are normally required, that is, the number of samples is much 

greater than the dimension of matrix  (i.e.M >>l), therefore (5.18) can be 

expressed approximately as  

lW

 
2

l l lσ= +W B I ,      (5.19) 

 

where  is the covariance matrix of the received signals excluding the 

noise component, i.e., 

lB

1 H
l M

=B AA . Hence, the information of  can be 

used to extract the transmitted signals. The concept of free convolution was 

developed in [Ø. Ryan and M. Debbah, 2007, Ø. Ryan and M. Debbah, 

(online), 2007] to provide a method to evaluate  when  is known and 

vice versa. The implementation of the free convolution is solely based on 

the moments of random matrix.  

lB

lB lW
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 The definition of free probability is analogous to the concept of 

independence in classical probability [A. Nica and R. Speicher, 2006]. The 

definition of freeness is as follows: a) The free probability developed as a 

probability theory can be applied for non-commutative random variables 

like matrices, b) These random variables are the elements in a non-

commutative probability space that can be defined by a pair (A, φ), where A 

is a unital *-algebra with unit I, and φ is a normalized linear functional on A. 

The elements of A are called random variables and A is composed of l l  

matrices or random matrices, and c) If a is denoted a random variable in A, 

then φ is the normalized trace  for matrices, which is defined as  

×

ltr

 

1( ) ( )ltr a trace al= ,    (5.20) 

 

or ( )l aτ  for random matrices, which is defined as 

  

( ) ( ( ))l la E tr aτ = .    (5.21) 

 

 In the non-commutative probability space, the moments approach is 

to obtain the moments of a random variable which uniquely identifies a 

probability measure. One important probability measure cµ  is Marčhenko-

Pastur law [A. M. Tulino and S. Verdo, 2004] which has the density 

function 

 

2 2
0

1 1( ) (1 ) ( ) ( (1 ) ) ((1 ) )
2

cf x x x c c
c cx

µ δ
π

+ += − + − − + − x + ,  (5.22) 

 

where  and ( ) max(0, )d d+ = 0 ( )xδ  is Dirac measure at 0 and cµ  depends on 

the parameter c. Figure 5.2 shows the density distribution from Marčhenko-

Pastur law when . One important application of Marčhenko-

Pastur law is when it is used to the matrix random variables and the matrices 

are Wishart matrices that have the form 

1,0.3,0.1c =

1 H

q
DD  from a random matrix p q×D  
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with each entry following independent standard complex Gaussian 

distribution, and p c
q

→ . It is found that the discrepancy between the 

moments obtained from Marčhenko-Pastur law and the empirical eigenvalue 

distribution of Wishart matrices characterized in (5.19) tends to zero when 

. Therefore, Marčhenko-Pastur law can be used to depict asymptotic 

distributions of Wishart matrices. 

q → ∞
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Figure 5.2 Density function of Marčhenko-Pastur law. 

  

 Suppose that two random variables  and  are matrices in the 

non-commutative probability space and they are free, the probability 

measures of the distributions of 

1a 2a

1 2+a a  and  will depend only on the 

probability measures associated with  and . Two defined operations of 

additive free convolution and multiplicative free convolution are useful, the 

former is the operation for the sum of free random variables and the later is 

the operation for the product of the random variables [A. M. Tulino and S. 

Verdo, 2004].   

1 2a a

1a 2a
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 Definition 1: Assume that  has an eigenvalue distribution which 

converges to 

1a

1γ  and  has an eigenvalue distribution which converges to 2a

2γ , the eigenvalue distribution of  converges to 1a + a2 γ  that depends only 

on 1γ  and 2γ . Then the measure γ  is said additive free convolution of 1γ  

and 2γ  and it is denoted by 1γ 	 2γ . 

 

 Definition 2: Assume that  has an eigenvalue distribution which 

converges to 

1a

1γ  and  has an eigenvalue distribution which converges to 2a

2γ , the eigenvalue distribution of  converges to 1 2a a γ  (the eigenvalue 

distribution of 1
2

1 2 1a a a 1
2 ) that depends only on 1γ  and 2γ . Then the measure 

γ  is termed as multiplicative free convolution of 1γ  and 2γ , which is 

denoted by 1γ 
 2γ . 

 

 Associated with the definition 2, multiplicative free deconvolution is 

defined to deal with the situation where if a unique probability measure 

γ = 1γ 
 2γ  is given for the product of two random variables and the 

probability measure of one of the variables is known, such as 1γ , then the 

probability measure of the other random variable 2γ  can be acquired by the 

multiplicative free deconvolution, which is denoted by 2γ =γ 1γ . Similarly 

related to definition 1, additive free deconvolution is defined to get 2γ  if a 

unique probability measure γ = 1γ 	 2γ  is given for the sum of two random 

variables and the probability measure of one of the variables 1γ  is known. 

The operation is designated by γ � 1γ . 

  

 The concepts of free convolution and free deconvolution are useful 

since they can be applied to the signal processing of communications 

systems characterized by (5.17), (5.18) and (5.19). The relation between the 

covariance of the received signal and the covariance of the input including 
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real transmitted signal and channel information can be expressed by 

following equation: 

 

Wα cµ = ( Bβ cµ ) 	 2σ
δ ,    (5.23) 

 

where Bβ  is a probability measure that the empirical eigenvalue distribution 

of 1 H
l M

=B AA  converges to, Wα  is a probability measure that the empirical 

eigenvalue distribution of  converges to and lW 2σ
δ  is Dirac measure at 2σ . 

Correspondingly if the covariance of the received signal is known, the 

covariance of the input Bβ  can be discovered by the equation: 

 

 Bβ = (( Wα cµ ) � 2σ
δ ) 
 cµ .   (5.24) 

 

 We will present a new spectrum sensing algorithm for MIMO 

cognitive radio system by using FPT. The details are given in next section. 

 

5.2.2 Free probability theory signal detection algorithm for 
MIMO cognitive radio systems 

 

We propose to use FPT method to detect signals for a MIMO cognitive 

radio system [L. Jin et al., 2010]. Assume that the system model can be 

described by (5.17); in addition, the secondary user lacks any knowledge of 

the signal character coming from the primary user.  

 

The new signal detection algorithm based on FPT is given below: 

 

1. For the system represented by (5.17), take M samples of the received 

signal and M l>> . 
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2. Concatenate the M samples horizontally and obtain the sample 

covariance matrix  which is expressed in (5.18).  lW

3. Calculate the first k moments of the sample covariance matrix , i.e., 

 for 1 . 

lW

( )i
l ltr W i k≤ ≤

4. By applying FPT and using (5.24), obtain corresponding k moments of 

lB  indicated in (5.19). lB  is the covariance matrix of the received 

signals excluding noise component and it is the approximation of the 

real covariance of  ( )( ) =H H HHx Hx Hxx H . 

5. Assume that the antennas are independent to each other in the MIMO 

cognitive radio system. Rayleigh fading channel is assumed therefore 

each entry in l m×H  following an independent and identically distributed 

(i.i.d.) complex Gaussian distribution with real and imaginary parts 

being Gaussian distributed with zero mean and unit variance. From lB  

and the covariance matrix of channel matrix H, it is not difficult to find 

that the transmit signal power can be retrieved, i.e.   

                        

   

1

2

0 0 0
0 0
0 0 0
0 0 0 m

P
P

P

0
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= =
%

HP xx ,                (5.25) 

                

where *
i iP x xi=  for 1  is the allocated signal power on  transmit 

antenna. However, it is usually the case that the channel information is 

not known to the SU and, therefore it is not easy to obtain the matrix 

i m≤ ≤ thi

HHH . Instead, we will use the estimated covariance matrix 2
Hσ

HH
I , 

where 2
Hσ

HH
 is the variance of the distribution of the entry elements for 

the matrix HHH . In theory, if the retrieved power P > 0 , we can say 

that the signal is detected and therefore the secondary user can use the 

frequency band.  In practice, we need to set a threshold  and compare 

P with it for following two factors: a) extracted power P might not be 

zero even if the signal is not transmitted due to the estimation error of 

TV
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the FPT detection method; b) how confident we can be to make our 

decision based on very small P if real signal is transmitted. Hence, It is 

considered that noise covariance matrix 2σ I  is a reasonable reference 

value for choosing .  TV

6. Set the threshold  which should be comparable to the noise 

covariance matrix 

TV
2σ I .  Recall also that signal detection is a test of 

following two hypotheses [C. W. Helstrom, 1968]:    

     

   0

1

: ( ) ( ),

: ( ) ( ) ( ),

H t t

H t t t

=

= +

y n

y s n
               (5.26) 

 

where  is the hypothesis that the received signal y at time t is only 

contributed by the noise ,  is the hypothesis that the received 

signal y at time t is contributed by the noise  and signal  coming 

from the transmitter through the transmission channel.  

0H

( )tn 1H

( )tn ( )ts

7. Finally, the probability of false alarm  for a given threshold fP

2
T ασ=V I

f iP prob P H

 , where α is a constant, is given by     

 
2

0( | )ασ= > i m for 1 .          (5.27)        ≤ ≤

d irob P H

 

The probability of detection  is given by  dP

 

   P p 2
1( | )ασ= > i m for 1 .       (5.28) ≤ ≤

 

 Both probability of false alarm  and probability of detection  

can measure the performance of the detection algorithm. It is desirable that 

 has a high value when the signal is truly present on the considered 

frequency band. On the other hand, the detection algorithm works well if the 

probability of false alarm  has low value, which means that unoccupied 

frequency band can be utilized more efficiently. Therefore, the decision 

fP dP

dP

fP
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threshold  should be chosen to ensure an optimum balance between  

and . In practice,  is usually selected against the predefined probability 

of false alarm and  is determined by the noise covariance.  

TV fP

dP TV

fP

  

 Although the Free Probability Theory (FPT) presented in section 

5.2.1.2 seems complex, the detection method based on FPT is actually 

matrix operation on received signals. The complexity of the FPT detection 

method depends on how many number of samples that are used.    

 

5.2.3 Simulation results 

 

This section presents the simulation results of the spectrum sensing by 

applying the proposed FPT detection algorithm. The performance 

comparison of signal detection will be made between the FPT detector and 

the energy detector [H. Urkowitz, 1967] because these detection methods 

are suitable for the circumstance of the receiver (the secondary user) without 

any knowledge of the signal coming from the transmitter (the primary user). 

The energy detector (ED) based approach is a conventional technique for 

spectrum sensing, which has the advantage of low computational and 

implementation complexity. The simplicity of the ED technique is that the 

decision rule is based on comparing the output of the ED with a threshold 

depended on the noise floor. However, it does not distinguish real signal 

from the noise background and it exhibits poor performance when the 

signal-to-noise-ratio (SNR) is low. 

 

 Consider a simulation scenario that in a cognitive radio system, one 

primary user has four transmit antennas and one secondary user has three 

receive antennas; each entry of the MIMO channel matrix are following an 

independent and identically distributed (i.i.d.) complex Gaussian 

distribution CN (0,1); the noise component is the additive white Gaussian 

noise (AWGN) with zero mean and unit variance; equal power allocation on 
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each transmit antenna is assumed and the receiver without any knowledge of 

signal transmitted by primary user is presumed. The number of samples 

taken for the detection scheme is 100 which are considered large enough for 

the proposed FPT detection algorithm. 

  

 Figure 5.3 demonstrates the result that the probability of detection 

varies with the SNR via the FPT detection algorithm under a set of threshold 

values. It shows that the performance of the FPT detector is good when 

SNR is greater than -5dB. Furthermore, the probability of detection 

increases as the  increases (or  decreases). However, high  is not 

desirable because the vacant frequency band can not be correctly detected 

under this condition. On the other hand,  is low when the threshold value 

is set high, but the low probability of detection under high threshold is also 

not desirable. Therefore, to detect the signal presence of primary user, the 

threshold  must be chosen to balance between the predictions of the 

probability of false alarm and the probability of detection.  

fP TV fP

fP

TV
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 FPT detector
VT=0.90, Pf=0.655

VT=0.93, Pf=0.368
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Figure 5.3 The probability of detection versus SNR(dB) via FPT detection algorithm 

for MIMO cognitive radio system. Thresholds values VT are set to 0.90, 0.93, 0.95, 1.0 

and 1.05. Corresponding fP  values to V  are 0.655, 0.368, 0.204, 0.024, and 0.001. T
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Figure 5.4 Performance comparison between FPT detector and energy detector when 

probabilities of false alarm are 0.2 and 0.66. 

 

 Figure 5.4 shows the performance comparison of the spectrum 

sensing between FPT detector and energy detector when the probabilities of 

false alarm are set to 0.2 and 0.66. The figure illustrates that the FPT 

detection scheme works better than the energy detection scheme. The 

detection probability of the FPT detector is higher than that of the energy 

detector when  and the signal-to-noise-ratio is in the range from  

-25dB to -5dB. Similarly, the FPT detector shows better performance when 

the probability of false alarm  is set to 0.2 and the signal-to-noise-ratio is 

in the range from -25dB to -3dB. From the simulation results, we can see 

that FPT scheme can predict the occupancy of the frequency band more 

accurately than the ED scheme. Better performance of the FPT method 

implies that the decision rule of the algorithm can be made more precisely 

by exploring the free probability property of the random matrices and 

segregating the real signal from the background noise. 

0.66fP =

fP
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5.2.4 Summary 

 

The main contribution of section 5.2 is that a new FPT detection scheme for 

spectrum sensing is proposed for MIMO cognitive radio system. By 

utilizing the asymptotic behaviour of random matrix based on the free 

probability theory, the covariance matrix of true signals can be estimated 

through a large number of observations of the received signals. The real 

signal power is then extracted. The simulation results demonstrate that the 

FPT detection algorithm achieves better performance in comparison with 

the traditional energy detection algorithm. Although the signal power is 

utilized for the decision rules of FPT detector and energy detector, it is 

evident that the FPT detection algorithm benefits from the decision rule 

based on the estimation of real signal power instead of the received signal 

power (real signal plus noise). 

 

5.3 Cooperative FPT spectrum sensing technique in 

MIMO cognitive radio system  

5.3.1 Introduction 

 

As we know that spectrum sensing is the key technology in cognitive radio 

system from previous section. Our previous work on a spectrum sensing 

method based on free probability theory (FPT) [Ø. Ryan and M. Debbah, 

2007] for the MIMO cognitive radio system is shown in [L.Jin et al., 2010], 

which demonstrates that the FPT detector outperforms the traditional energy 

detector [H. Urkowitz, 1967]. The idea of FPT detection is to estimate the 

covariance matrices of a large number of observations of the received 

signals in order to obtain the covariance matrices of the transmitted signals 

through asymptotic behaviour of random matrices because a digital 
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communications system can be modelled with random matrices, where the 

received signal is the summation of the transmitted signal and the noise.   

  

 In a cognitive radio network, a reliable spectrum sensing can be 

achieved through cooperation among secondary users [T. Yücek and H. 

Arslan, 2009]. One of the advantages of cooperative sensing is that different 

users take their own measurements and therefore the system performance 

can be improved at low SNR due to the diversity of the measurements. In 

addition, the hidden-terminal problem can be greatly reduced because the 

cooperative users are scattered in a wide area of the network and thus the 

possibility of all users shadowed away from the primary user is relatively 

small.   

  

 Many cooperative spectrum sensing schemes are presented in current 

research papers. In [J. Unnikrishnan, 2008], it is assumed that the 

cooperating users use identical energy detectors, the received signals are 

considered as correlated log-normal random variables and decision fusion 

strategy is adopted at the fusion centre. The results demonstrate that a 

proposed linear-quadratic (LQ) fusion strategy, which takes into account the 

correlation between the nodes, outperforms the Counting Rule (or Voting 

Rule) [V. Aalo and R. Viswanathan, 1992], which is the fusion rule that is 

obtained by ignoring the correlation. Counting Rule just counts the number 

of sensor nodes that vote in favour of H1 in the case of the hypothesis test 

(H1 when signal existing and H0 with noise only) and compares it with a 

threshold.  

 

 In [part1 and part 2, G. Ganesan, 2007], the evidence shows that the 

cooperation among multiple cognitive users in the same band can reduce the 

detection time and thus increase the overall system agility. Two cognitive 

users’ case demonstrates that the agility of the cognitive network can be 

increased as much as 35% by using the amplify-and-forward (AF) 

cooperation scheme. For multiple cognitive user networks, a user pairing 
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cooperation scheme (one weaker user is in a users’ set with low received 

signal power and the other strong user is in users’ set with a high received 

signal power) can achieve a certain degree of the reduction of the detection 

time, which depends on the relative location of the paring users. The user 

pairing cooperation scheme can also improve the probability of detection of 

the weak user.  

 

 A linear cooperation framework for spectrum sensing of CR network 

is proposed in [Z. Quan et al., 2008]. The idea of the scheme is that the 

global decision is based on simple energy detection over a linear 

combination of the local statistics from individual nodes. The sensing 

problem is treated as a nonlinear optimization problem. A cluster-based 

method in [C. Sun et al., 2007] is proposed for cooperative spectrum sensing 

over imperfect reporting channels between the cognitive users and the 

fusion centre in cognitive radio systems. Two fusion schemes of decision 

fusion and energy fusion are adopted for the cluster-based cooperative 

spectrum sensing. Both performance analysis and simulation results show 

that the sensing performance of the cluster-based method is improved in 

comparison with conventional spectrum sensing. The error rate can be 

reduced via the user selection diversity in each cluster under the condition of 

the fading report channels.  

 
In [J. Ma and Y. Li, 2007], the cooperative spectrum sensing based 

on energy detection in cognitive radio networks is considered. The idea of 

soft combination in the paper is that accurate energy values observed by 

different CR users are combined to make a better decision. Two schemes of 

the soft combination are maximal ratio combination (MRC) and equal gain 

combination (EGC). MRC is theoretically proved to be nearly optimal in 

low signal-to-noise ratio (SNR) region. In comparison with conventional 

hard combination that CR users exchange only one bit of information 

regarding whether their observed energy value is above a certain threshold, 

both MRC and EGC schemes show the performance improvement. Also a 

proposed softened hard combination scheme with two-bit overhead for each 
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cognitive user can accomplish a good trade off between detection 

performance and complexity. An advantage of the cooperation among 

independent cognitive radio users is that the SNR wall due to the noise 

power uncertainty can be reduced. 

    

 In general, there are two categories of cooperative sensing: 

centralized sensing and distributed sensing.  

 

Centralized sensing – In centralized sensing, a fusion centre receives the 

sensing data from secondary users and makes final detection decision. 

Regarding to how to make the final detection decision in a fusion centre, 

there are two kinds of cooperative spectrum sensing strategies, namely (1) 

data fusion and (2) decision fusion. The data fusion strategy is that the final 

decision in the fusion centre is based on the raw data sent by each secondary 

user. The decision fusion is that the final decision in the fusion centre is 

made on the decisions sent by each secondary user who process his data 

individually. More details on this topic can be found in the review paper by 

Zeng [Y. Zeng, 2010] and the references within. 

 

Distributed sensing – In distributed sensing, a central control unit does not 

exist. Each secondary user accomplishes his spectrum sensing based on his 

own measurement; however information is shared among secondary users. 

This sensing strategy appears less complex and cost effective in comparison 

with the centralized strategy. The system performance also depends on the 

approach of information sharing and utilization.  

   

 In this section, we will discuss cooperative sensing in MIMO 

cognitive radio system by using FPT detection algorithm.  

 

5.3.2 System model  
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The complexity of a cognitive radio system varies considerably depending 

on number of primary users and secondary users in the system as well as the 

geographical area concerned. The simplest form of the cognitive radio 

system is that only one primary user and a few secondary users are in the 

area that we are interested in.   
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Figure 5.5 Cognitive radio system. 

 

 Figure 5.5 shows two dimensional geographical distributions of a 

primary user and secondary users in a cognitive radio system. The figure 

demonstrates that one primary user is located at the centre of an area with a 

radius of 30km and K numbers of secondary users are randomly dotted in 

the area. Assume that the transmit power from the primary user is P and the 

received power for the secondary user i is Pr,i for 1≤ i≤ K. If the distance 

between the PU and ith SU is di, the path loss is considered and it is 

represented by the path loss exponent factor β, the received power Pr,i for ith 

secondary user is proportional to 1/ id β∝ . Depending on the environment in 
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which the PU and the SU are situated, the value of β is in the range of 2~6 

[T. S. Rappaport, 2002]. In the case of free space attenuation, β takes the 

value of 2.  

 

 Suppose that the noise at each SU terminal and PU terminal is 

independent and identical distributed (i.i.d) and follows the standard 

Gaussian distribution with zero mean and unit variance (i.e., 2 1σ = ) . The 

signal-to-noise ratio (SNR) at the PU is  

 

( )2
1010log /SNR P σ=  ,    (5.29) 

 

and SNR at the ith SU is  

 

( )2
10 ,10log /r iSNR P σ=  for 1 i K≤ ≤ .   (5.30) 

 

The SNR measurements at each secondary user will contribute to the 

considered spectrum sensing algorithm for the cooperation sensing strategy 

of the cognitive radio system in this chapter.   

 

5.3.3 FPT detection and binary hypothesis test  

  

As it is introduced in section 5.2, a spectrum sensing method based on FPT 

[Ø. Ryan and M. Debbah, 2007] is one of the newly developed spectrum 

sensing techniques for the cognitive radio system. The FPT spectrum 

sensing method will be used for each secondary user in the considered 

cooperative spectrum sensing scheme. Assume that each SU terminal is 

equipped with number of l antennas and the transmitter (PU) is equipped 

with m antennas. The channel matrix for the link between the primary user 

and each SU is iH  for 1 . The sizes of the row and column of the 

channel matrix 

i K≤ ≤

iH  are l (number of receive antennas) and m (number of 

transmit antennas), respectively. Let x be the transmitted signal column 
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vector with m dimension;  for 1in i K≤ ≤  be the noise column vector with l 

dimension. Then the received signal iy  for ith SU can be expressed as  

 

= +i i i .       (5.31) y H x n

 

It is known that signal detection is a test of two hypotheses [C. W. Helstrom, 

1968]. H0 is defined as the hypothesis that the received signal y at time t is 

contributed by the noise n(t) only. H1 is the hypothesis that the received 

signal y at time t is contributed by the transmitted signal through the channel 

and the noise component n(t). The test of two hypotheses can be expressed 

as  

 

( ) ( )

( ) ( ) ( ) ( )
0

1

                   :   

:  

H t t

H t t t

=

= +

y n

ty H x n
.     (5.32) 

  

In the signal detection algorithm, the probability of detection Pd is defined 

as the probability of detecting a signal on the frequency band when the 

signal is truly present. The probability of false alarm Pf is the probability 

that the test decision declares that the frequency band is occupied by the 

primary user when the frequency is actually vacant. Both Pd and Pf depend 

on a predefined threshold value VT. In the FPT detection algorithm, the 

threshold value VT is the value of the detected signal power predefined 

under a fixed overall system probability of false alarm Pf. Rayleigh fading 

channel is assumed. The probability of false alarm Pf,i for ith SU at a given 

threshold VT  is 

 
, ,( |f i r i TP prob P V H= > 0 )

1)

 for 1≤ i≤ K.      (5.33)            

 
The probability of detection Pd,i for ith SU at a given threshold VT is given by  

 
, ,( |d i r i TP prob P V H= >  for 1≤ i≤ K.    (5.34) 
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Here, we consider the cooperative spectrum sensing scheme of the cognitive 

radio system. The assumption of the scheme is that all SUs apply same 

threshold value VT to make their decision. It is also considered that the 

extracted signal power should be comparable to the noise variance, hence VT 

is set to 2δ . 

  

 Having examined the MIMO single user FPT spectrum sensing 

algorithm, we now move on to the cooperative spectrum sensing in a MU-

MIMO cognitive radio network. It is known that cooperative sensing in the 

cognitive radio network can improve system performance of detection and 

avoid hidden node problem. In the following section, we will consider the 

cooperative scheme of centralized sensing in the multiuser cognitive radio 

network. We assume that each user in the cognitive radio network applies 

FPT detection individually and his detection data or decision is sent to the 

fusion centre where the final decision is made.  

 

5.3.4 Cooperative detection with false alarm rate constraint 

  

We consider a cognitive radio parallel fusion network and the cooperative 

detection under the condition that the acceptable probability of false alarm 

value at the system level is less than a predefined value [P. K. Varshney, 

1996]. Figure 5.6 shows the block system diagram of the parallel fusion 

network for the cognitive radio system. One primary user and K secondary 

users are in the system. In this cooperative detection scheme, each 

secondary user i detects independently from the received signal yi for 

 and makes his decision whether the interested spectrum is 

occupied by the primary user. Then the decision δ

1 i K≤ ≤

i for 1 i K≤ ≤  from all 

secondary users are sent to a fusion centre where the final decision δs is 

made. Both δi and δs takes the binary decision {0, 1}, the decision 0 declares 

the primary user being vacant on the band whereas the decision 1 says the 

primary user occupying the band.   
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Figure 5.6 A cognitive radio parallel fusion network 

 

 The system detection depends on the fusion rule at the fusion centre 

as well as the local decision rule at each secondary user. The aim of the 

system detection is to maximize the probability of the detection Pd on the 

system level and to meet the requirement of the system probability of false 

alarm Pf limitation. 

 

 There are some fusion rules commonly used, such as the AND 

fusion rule, the OR fusion rule and “k out of K” fusion rule [P. Varshney, 

1996 and Y. Zeng et al., 2010]. The brief descriptions of these decision 

fusion rules are as follows.  

 

5.3.4.1 AND fusion rule 

 

The basics of the AND fusion rule is that the system decision value is 1 only 

if all K secondary users decision values are 1.  In this case, the probability of 

detection Pd on the system level is  
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,
1

K

d
i

P P
=

= ∏ d i

f i

)d iP

)f iP

,      (5.35) 

 

where Pd,i  is the probability of detection for ith secondary user. The 

probability of false alarm Pf on the system level is 

  

,
1

K

f
i

P P
=

= ∏ ,      (5.36) 

 

where Pf,i  is the probability of false alarm for ith secondary user.  

 

5.3.4.2 OR fusion rule 

 

For the OR fusion rule, the system decision value takes 1 if at least one of K 

secondary users takes the decision value 1. Therefore, the probability of 

detection Pd on system level under OR fusion rule is expressed as 

 

 ,      (5.37) ,
1

1 (1
K

d
i

P
=

= − −∏

 

and the probability of false alarm Pf  on the system level is 

  

,
1

1 (1
K

f
i

P
=

= − −∏ .     (5.38) 

  

We discuss here the cooperative sensing with false alarm constraint by 

utilizing FPT detection algorithm for each user and applying OR fusion rule 

at the fusion centre of the cognitive radio system. Moreover, since each user 

in the system will have different received SNR, the secondary users with the 

maximum received SNR are chosen to cooperate. In this way, the higher 

system probability of detection can be achieved under the system 

probability of false alarm constraint. It is assumed that all secondary users 
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apply the same threshold value VT to make their decisions. The number of 

cooperative secondary users will depend on the system false alarm 

limitation.   

 

5.3.4.3 “k out of K” fusion rule 

 

Assume that 1 , the “k out of K” rule states that if and only if k 

decisions or more are 1, the final decision is 1. Two extreme cases are OR 

rule if k=1 and AND rule if k=K. It is Majority rule if k = K/2 [P. K. 

Varshney, 1996]. 

k K≤ ≤

 

5.3.5 Simulation result 

 

Receiver operating characteristics (ROC) graph, which is a plot of the 

probability of the detection Pd against the probability of false alarm Pf, is 

often used to describe the performance of a spectrum detection technique. 

Figure 5.7 is the receiver operating characteristics of the FPT detector when 

the signal-to-noise ratio at receiver is -10dB, -15dB and -20dB. The ROC 

curve is obtained under following system parameters. One SU terminal is 

equipped with 3 receive antennas and one PU terminal has 4 transmit 

antennas. Rayleigh fading channel is assumed so both real and imaginative 

parts of each entry in the channel matrix are following Gaussian distribution 

with zero mean and unit variance. The noise component is an additive white 

Gaussian noise (AWGN) with zero mean and unit variance. Assuming equal 

power allocation on each antenna of PU terminal and the SU terminals 

without any knowledge of signal transmitted from the primary user. The 

number of samples taken for the detection scheme is 100 which are 

considered large enough for the FPT detection algorithm. The threshold for 

FPT detector is set to 1dBW. The result data in the simulation is acquired 

via 10000 channel realization. 
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Figure 5.7 ROC graph of FPT detector. 

 

 Figure 5.8 shows the probability of detection on the system level Pd 

versus SNR at the primary user terminal when numbers of secondary user 

are 1, 2, 5 and 10. The antennas configuration for each receiver and 

transmitter pair is 3  in the simulation. The FPT detection method is 

utilized and the threshold value for each detector is set to dBW. 

Arbitrary choice of different decision fusion rules results in different 

sensing performances in a designated multiuser CR system. Furthermore, 

spectrum sensing by using one chosen fusion rule might perform better in 

one wireless environment setting than in the other. Hence, OR decision rule 

is only applied in the simulation, that is, the system decision is set to 1 as 

long as at least one of the binary decisions received from secondary users at 

the fusion centre is 1. The result graph demonstrates that the system 

probability of detection P

4×

1TV =

d increases as number of cooperative SUs increases 

at a given SNR value. Hence, the system performance of cognitive radio 
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system can be improved in terms of the probability of detection via 

cooperation among secondary users. 
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Figure 5.8 Probability of detection versus SNR at transmitter (PU) in a cooperative 

cognitive radio system.    

 

 On the other hand, the system false alarm rate Pf  increases as the 

number of SUs K increases under the OR decision rule. If we treat each SU 

the same and the false alarm rate for each user is represented by an average 

value ,f iP  (i.e., ,,1 ,2 , f if f f KP P P P= ⋅⋅⋅ = = ), the system false alarm rate in 

(5.38) becomes ( ,1 1 )K
f ifP P= − − . Because ,f iP  is less than 1.0, the system 

false alarm rate Pf increases as K increases. This reveals that the total 

number of cooperative users is limited by the system false alarm Pf  

constraint. Therefore, a cooperative strategy is to maximize the probability 

of detection under the limited number of cooperative users determined by 

the probability of false alarm constraint.  
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 Figure 5.9 shows the system false alarm rate against total number of 

secondary users in a cognitive radio. The average false alarm rate for each 

SU is 0.0228 when the threshold for FPT detector is set to 1. It demonstrates 

that the system false alarm rate Pf increases as the total number of SUs 

increases in the system. It raises a question that the total number of 

cooperative users is limited by the system false alarm Pf  constraint.    
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Figure 5.9 System false alarm rate versus number of secondary users. The false alarm 

rate for each SU is 0.0228 when the threshold for FPT detector is set to 1. 

 

 We consider a scenario that only a limited number of secondary 

users k out of total number of secondary users K are selected for cooperation 

under the system false alarm constraint Pf. This scheme is described as the 

selective cooperative scheme. The value k is determined by the system false 

alarm constraint. Assume that k K≤  and OR decision rule is applied. In the 

case of k , all secondary users can participate cooperative sensing and 

the system probability of false alarm meets the system false alarm constraint. 

K=
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In the case of k , assume that each secondary user terminal sends to a 

fusion centre not only its binary decision but also its received SNR. Only k 

users with the highest SNR out of K secondary users are chosen for 

cooperation. However, the drawback of this scheme is more traffic 

generated in the channel between the SU and fusion centre due to the 

detected SNR data sent to the fusion centre. We expect that the system 

performance can be improved if more secondary users exist in the system 

and users with the highest SNR are chosen for cooperation. Figure 5.10 

shows the system probability of detection P

K<

d versus SNR at the primary user. 

It can be seen that the system performance can be improved if the secondary 

users with the highest SNR out of a large number of secondary users in the 

system are selected for cooperation. In Figure 5.10, it is assumed that the 

system false alarm constraint is set to 0.1, therefore the number of 

cooperative users is limited to 4. The result shows that the cooperation 

among 4 secondary users with the highest SNR out of total number of 10 

secondary users achieves higher system Pd than the cooperation of 4 

secondary users out of total number of 4 secondary users in the system. The 

result shows that the performance of 4 SUs cooperative scheme out of 10 

users is close to the performance of all 10 users cooperation. The benefit of  

4 SUs cooperative scheme out of 10 SUs is that the system false alarm 

constraint can be met while all 10 secondary users cooperation result the 

probability of false alarm Pf=0.2 over predefined false alarm constraint 0.1. 
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Figure 5.10 Probability of detection Pd versus SNR at the transmitter (PU). 

 

5.3.6 Summary 

 

Section 5.3 presents the cooperative spectrum sensing using Free 

Probability Theory (FPT) detection method in a MU-MIMO cognitive radio 

system. The advantage of FPT detection is that it is a blind spectrum sensing 

method and it performs better than traditional energy detection technique. 

Maximizing the system probability of detection is a paramount goal under 

pre-defined system false alarm constraint. High probability of detection 

under false alarm constraint can be achieved via the selective cooperative 

spectrum sensing approach. The simulation results demonstrate that the 

system performance can be improved by such cooperative scheme in the 

multiuser cognitive radio system. 
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Chapter 6 Spectrum sensing based on 
higher-order statistics and receiver diversity in 
SIMO cognitive radio systems 
  

In this chapter, we present a new spectrum sensing method with higher-

order statistics (HOS) and receiver diversity for improved sensing 

performance in single-input multiple-output (SIMO) cognitive radio (CR) 

system. In comparison with classic energy detection method that is one of 

the blind spectrum sensing methods, the HOS spectrum sensing has the 

advantage of suppressing Gaussian noise. The HOS spectrum sensing works 

better than the traditional energy detection method when the signal-to-noise 

(SNR) ratio is low in the CR system [F. Xu et al., 2009]. We consider the 

SIMO wireless cognitive radio system, where a primary user (PU) is 

considered as the transmitter with one antenna and a secondary user (SU) is 

considered as the receiver equipped with multiple antennas. The secondary 

user detects if the licensed band is occupied by the primary user. The 

spectrum sensing method proposed combines the third-order statistics 

(bispectrum) spectrum sensing with receiver diversity in the SIMO wireless 

cognitive radio system. It is known that multiple-input multiple-output 

(MIMO) technique can be employed to improve the performance of multiple 

antenna wireless system [A. J. Paulraj et al., 2004]. The system capacity can 

be increased via multiplexing gain; the signal-to-noise (SNR) at the receiver 

can be enhanced due to the diversity gain and array gain in the MIMO 

system. MIMO technology can also mitigate the channel fading in the 

wireless system. Therefore, the receiver diversity is also applied in our 

proposed spectrum sensing algorithm. In the signal detection in our 

proposed algorithm, the independent fading paths associated with multiple 

receive antennas are combined to obtain a signal which is then used for 

bispectrum estimation.  
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6.1 Introduction  

 

In a cognitive radio system, primary users are the users who have exclusive 

right to use a frequency band allocated to them; secondary users are those 

who are not allocated to the frequency band and hence they have no 

privilege to use the frequency band.  Cognitive radio technology [I. Mitola, 

J. and J. Maguire, G. Q., 1999, J. Mitola, 2000, S. Haykin, 2005] allows 

secondary users exploit the spectrum that is not occupied by the primary 

users. To use the frequency band, secondary users must perform the task of 

spectrum sensing and discover if primary users are present in the band. 

There are many spectrum sensing methods used in the cognitive radio 

systems. Examples of the sensing methods are energy detection, matched 

filtering and free probability theory (FPT) detection, which are introduced in 

previous chapters, as well as cyclostationary feature detection [T. Yücek and 

H. Arslan, 2009, L. Jin et al., 2010]. Energy detection method is a blind 

spectrum sensing method that is a simple detection technique and does not 

require any knowledge of transmitted signal. In contrast, matched filtering is 

a detection method applied when the transmitted signal is known to the 

receiver. Cyclostationary feature detection is a method for detecting primary 

user transmission by exploiting the cyclostationary features of the received 

signals. FPT spectrum sensing is a blind detection method that utilizes the 

asymptotic behaviour of random matrix based on the free probability theory 

in the wireless communication system. By extracting the information of 

covariance matrix of received signal excluding noise background, the FPT 

method performs better than the traditional energy detection.    

  

 We here focus on a blind spectrum sensing method based on high-

order statistics. The application of higher-order statistics in the signal 

processing has been studied in past two decades [C. L. Nikias and J. M. 

Mendel, 1993, C. L. Nikias and M. R. Raghuveer, 1987, J. M. Mendel, 

1991]. The benefit of signal detection based on HOS is that this technique 

can eliminate Gaussian noise in a typical signal-plus-Gaussian noise 
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wireless system. In recent years, researches on HOS detection applied in a 

cognitive radio system have been presented in [Y. Sun et al., 2008, F. Xu et 

al., 2009]. In [Y. Sun et al., 2008], an indirect bispectrum spectrum sensing 

method is applied to a cognitive radio system. It proves that the bispectrum 

spectrum sensing can effectively detect the existence of the primary user in 

low signal-to-noise environment. The sensing method based on the 

simplified bispectrum slide analysis is presented in [F. Xu et al., 2009]. The 

result in the paper demonstrates that the sensing method performs better 

than the traditional energy detection technique in noisy environment. The 

sensing technique in [F. Xu et al., 2009] appears to be useful to detect 

wireless broadcast TV signal and wireless microphone signals under low 

SNR situation.  

 

 In this chapter, a new spectrum sensing method is proposed for a 

multiple antenna receiver cognitive radio system [L. Jin and Z. Hu, 2011]. 

The sensing method combines bispectrum of higher-order statistics and 

multiple antenna diversity for a specified SIMO cognitive radio system. In 

comparison with estimating the first-order and the second-order statistics, 

the computational complexity to evaluate higher-order statistics (the third-

order and fourth-order statistics etc) is much higher. Therefore, the SIMO 

cognitive radio system is considered in this chapter in order to focus on 

spectrum sensing at receiver side. The work presented in this chapter can be 

extended to MIMO cognitive radio system. The simulation result 

demonstrates that the new proposed spectrum sensing method achieves high 

performance of signal detection under the condition of low SNR. High 

probability of detection of the proposed method can be achieved through 

multiple antennas diversity at the receiver and Gaussian noise suppression 

inherited from the bispectrum sensing technique. Furthermore, cooperative 

spectrum sensing in multiuser cognitive radio network by using the 

proposed detection method is discussed in the chapter. 
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 The remaining of the chapter is organized as follows. Firstly, section 

6.2 presents spectrum sensing method based on HOS and receive diversity. 

Section 6.2.1 presents the system model of the SIMO cognitive radio system. 

Section 6.2.2 depicts the definitions of the higher-order statistics and the 

method to estimate the third-order statistics (bispectrum). Section 6.2.3 

presents the algorithm of the proposed spectrum sensing method. The 

simulation results are presented in section 6.2.4 and the summary is in the 

section 6.2.5. Secondly, section 6.3 presents cooperative spectrum sensing 

by utilizing proposed spectrum sensing method based on HOS and receive 

diversity in a multiuser cognitive radio system. Section 6.3.1 depicts the 

system models of multiuser CR system with either a small number of users 

or a large number of users. Section 6.3.2 describes the concept of hypothesis 

test. Section 6.3.3 presents cooperation detection algorithms in the cases of 

multiuser CR networks with a small number of users and a large number of 

users. The simulation results are in section 6.3.4 and the summary is given 

in section 6.3.5. 

 

6.2 Spectrum sensing based on HOS  

6.2.1 SIMO cognitive radio system model 

 

Assume that a primary network and a secondary network coexist in a 

cognitive radio system, as shown in Figure 6.1.  Consider that the primary 

network has a primary base station and multiple primary users; the 

secondary network contains one secondary base station which serves 

numbers of secondary users. The task of a secondary user is to detect if a 

frequency band concerned is occupied by a primary user nearby in the 

system. Therefore, the PU is regarded as the transmitter and the SU is seen 

as the receiver. A single-input multiple-output (SIMO) scenario is 

considered, that is, PU is perceived as a transmitter with single antenna and 

SU is observed as a receiver with m antennas. The channel matrix between 

the transmitter and the receiver is denoted as a column vector h with m 
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elements (number of receive antennas). In order to know whether a 

frequency band is used by the PU, the SU needs to detect the signal from the 

PU so the decision can be made to use the frequency band when it is vacant.  

Assume that the signal from the PU is x, then the signal y received by the 

SU is 

 

 x= +y h n ,       (6.1)  

 

where y is a column vector with m dimension; vector n with row size m is 

the additive white Gaussian noise (AWGN) vector with zero mean and 

variance 2σ . Rayleigh fading channel is assumed, therefore each entry in h 

following an independent and identically distributed (i.i.d.) complex 

Gaussian distribution.  
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Figure 6.1 Cognitive radio system 

 

 Figure 6.2 shows receiver diversity of SIMO antenna system. In the 

receiver diversity, the independent fading paths associated with m receive 
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antennas are combined to obtain a signal that is then processed for signal 

detection. The linear combining techniques are commonly used, that is, the 

output of the combiner is a weighted sum of the different fading paths. The 

receiver diversity with linear combining technique in the SIMO system will 

be considered in the proposed spectrum sensing method. 
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Figure 6.2 SIMO system and receiver diversity. 

T – transmitter antenna, R1, R2, … Rm – receive antennas 

 

6.2.2 Higher-order statistics 

 

In this section, we describe high-order statistics. The earlier work on signal 

processing based on high-order statistics, i.e. cumulants, can be found in [C. 

L. Nikias and J. M. Mendel, 1993, C. L. Nikias and M. R. Raghuveer, 1987, 

J. M. Mendel, 1991]. Two special cases of higher-order spectra are the 

second-order spectrum and the third-order spectrum. The second-order 

spectrum is the power spectrum of a signal while the third-order spectrum is 

 170



 
Chapter 6 Spectrum sensing based on HOS and receiver diversity  

defined as the Fourier transform of the third-order statistics of a stationary 

signal. The third-order spectrum is also termed as bispectrum. To detect a 

signal, a simple method is to evaluate the power spectrum of the signal. If 

the signal is a Gaussian signal, the information obtained in the power 

spectrum is normally sufficient to describe the statistical feature of the 

signal. In this case, the relations between frequency components are 

suppressed. However, if the signal does not completely conform to Gaussian 

character, the power spectrum of a signal alone can not describe the signal 

sufficiently. Under this circumstance, the third-order spectrum can be used 

to extract the information that represents the deviations from Gaussian 

character and presence of phase relations between frequency components. In 

our proposed spectrum sensing algorithm, bispectrum method is utilized 

since the random process of channel condition is non-symmetrically 

distributed for the Rayleigh channel assumed [J. M. Mendel, 1991]. It is 

anticipated that the performance of signal detection will be improved by 

using the bispectrum information obtained in the sensing method. The 

details of the third-order spectrum (bispectrum) are presented at the end of 

this section. The bispectrum will be utilized in the proposed spectrum 

sensing algorithm in this chapter.   

 

 The definition of higher-order spectra will be introduced in next two 

subsections. Firstly the definition of higher-order moment and cumulant of 

one dimensional random variable is introduced in section 6.2.2.1.1. Then the 

details of the definition of higher-order moment and cumulant of high 

dimensional random variables are given in section 6.2.2.1.2. Finally, the 

polyspectra of zero-mean qth-order stationary random process is presented 

in section 6.2.2.2. The third-order spectrum (the bispectrum) will be used in 

the proposed spectrum sensing. 
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6.2.2.1 The definition of higher-order spectra 

6.2.2.1.1 Definition of higher-order moment and cumulant for one 
dimensional random variable 

 

In the realm of signal processing, let x be a random variable in the time 

domain, angular frequency 2 fω π=  be a random variable in the frequency 

domain and f be the frequency. The first characteristic function of x is 

defined as  

 

( ) ( ) ( )j x j xE e e p xω ω dxψ ω ∞

−∞
= = ∫ ,    (6.2) 

 

where  denotes the expectation operator and p(x) denotes probability 

density function of the random variable x. The kth-order moment can be 

expressed as  

·( )E

 

( ) ( )k k km E x x p x dx∞

−∞
= = ∫ .     (6.3) 

 

Assume that the first characteristic function of x can be expanded in a 

Taylor series about the point 0ω = , ( )ψ ω  can be written as [J. G. Proakis, 

2001] 

 

0 1

( ) ( )( ) 1!
k k

k

k k !
kj jm mk k

ω ωψ ω
∞ ∞

= =

= = +∑ ∑ .    (6.4) 

 

If there exists up to nth-order moment, i.e. , 1,2,...,km k n= , the equation 

above can be approximated as  

 

0 1

( ) ( )( ) 1!
k kn n

k

k k !
kj jm mk k

ω ωψ ω
= =

≈ = +∑ ∑ .    (6.5) 
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The pth-order cumulants pc  of the random variable x are defined via the 

cumulant-generating function  

 

1

( )( )
!

p
p

p

jc
p
ωφ ω

∞

=

= ∑ .     (6.6) 

 

The cumulant generating function is also defined as the natural logarithm of 

the first characteristic function, which is also called the second characteristic 

function. The expression of the cumulant generating function is given below 

 

( ) ln ( ) ln ( )j xE e ωφ ω ψ ω= = .    (6.7) 

 

If the Taylor series of the expansion of (6.7) exists, (6.7) can be expressed 

as  

 

1 1 1

( )1 1( ) (1 ( ))
!

pk
j x p k

p p k

jE e m
p p

ω ωφ ω
∞ ∞ ∞

= = =

⎛
⎜
⎝ ⎠

= − − = − −∑ ∑ ∑ k
⎞
⎟  .    (6.8) 

 

Then the relationship between pth-cumulant pc  and the kth-moment  can 

be found.  

km

 If the random variable x is Gaussian distributed with zero mean and 

variance 2σ , the probability density function of x is as follows 

 
2

221( )
2

x

p x e σ

πσ
−

= .     (6.9) 

 

The cumulants pc  for 1,2,...p =  of x are 1 2 20, , 0, 2pc c c pσ= = = > . 

Therefore, the higher-order cumulants of Gaussian random variable x are 

zero. 

 

6.2.2.1.2 Definition of higher-order moment and cumulant of high 
dimensional random variables 
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Let angular frequency ω a q-dimensional random variables 1 2( , ,..., )qω ω ω  

and x a q-dimensional random variables 1 2( , ,..., )qx x x . The q-dimensional 

characteristic function is defined as [John G. Proakis, 2001] 

 

1 2
1

( ) ( , ,..., ) exp( )
q

q
i

i ij j j E j xψ ψ ω ω ω ω
=

⎡ ⎤
⎢ ⎥
⎣ ⎦

= = ∑ω .   (6.10) 

 

From (6.10), the higher-order moments can be generated. For example, the 

two-dimensional characteristic function is 

 

1 1 2 2

2

1 2
1

( )
1 2 1 2

( ) ( , ) exp( )

( , )

i i
i

j x x

j j E j x

e p x x dx dxω ω

ψ ψ ω ω ω
=

∞ ∞ +

−∞ −∞

⎡ ⎤
⎢ ⎥
⎣ ⎦

= =

=

∑

∫ ∫

ω
,   (6.11) 

 

where 1 2( , )p x x  is the joint probability of density function of two 

dimensional variable 1 2( , )x x . The joint moment of 1 2( , )x x  can be obtained 

by partial derivatives of 1 2( , )j jψ ω ω  with respect to 1ω  and 2ω , that is, 

 

1 2

2
1 2

1 2
1 2 0

( , )( , ) j jE x x
ω ω

ψ ω ω
ω ω

= =

∂= −
∂ ∂

.   (6.12) 

 

The second characteristic function, which is also called the cumulant 

generating function, is defined as  

 

1

)( ) ln ( ) ln exp(
q

i i
i

E j xφ ψ ω
=

⎡ ⎤
⎢ ⎥
⎣ ⎦

= = ∑ω ω .    (6.13) 

 

If the Taylor series expansion of the cumulant-generating function exits, the 

qth-order cumulant of these random variables is defined as the coefficient of 

1 2( ... )qω ω ω  in the Taylor series expansion of ( )φ ω . Therefore the qth-order 
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cumulant is defined in terms of its joint moments of orders up to q.  The 

details of relationship between cumulants and moments can be found in 

[J. M. Mendel, 1991]. 

 

6.2.2.2 Polyspectra of zero-mean qth-order stationary 

random process 

 

Consider { ( )}x t  is a zero mean qth-order stationary random process. The 

qth-order cumulant is defined as the joint qth-order cumulant of the random 

variables 1 2( ), ( ), ( ),..., ( )qx t x t x t x tτ τ+ + +τ

1

, which is expressed as 

 

, 1 2 1

1 2

( , ,..., )

( ( ), ( ), ( ),..., ( ))
q x q

q

C

cum x t x t x t x t

τ τ τ

τ τ τ

−

−= + + +
,   (6.14) 

 

where , 1,2,..., 1i for i qτ = −  denotes the ith time lag, , 1 2 1( , ,..., )q x qC τ τ τ −  

denotes qth-order cumulant and  denotes the joint qth-order cumulant 

of the random variables in the bracket.  

·( )cum

 

 Polyspectra are related to the higher-order spectra in terms of 

cumulants and their Fourier transforms. Assuming that , 1 2 1( , ,..., )q x qC τ τ τ −  is 

absolutely summable, the qth-order polyspectrum denoted as 

, 1 2 1( , , , )q x qS ω ω ω −⋅⋅⋅  is defined as the (q-1)-dimensional discrete-time Fourier 

transform of the qth-order cumulant, which can be expressed as 

 

1 1

, 1 2 1

1

, 1 2 1
1

( , , , )

( , , , ) exp
q

q x q

q

q x q i i
i

S

C j
τ τ

ω ω ω

τ τ τ ωτ
−

−

−+∞ +∞

−
=−∞ =−∞ =

⎡ ⎤
⎢ ⎥
⎣ ⎦

⋅⋅⋅

= ⋅⋅⋅ ×∑ ∑ ∑iii −
.      (6.15) 

 

In this chapter, one special case is considered when 3q = . Let 3, 1 2( , )xS ω ω  

denote as the third-order spectrum (bispectrum), which can be expressed as  
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1 2

3, 1 2 3, 1 2 1 1 2 2( , ) ( , ) exp( )x xS C j
τ τ

jω ω τ τ ωτ
+∞ +∞

=−∞ =−∞

= × −∑ ∑ ω τ− .    (6.16)  

 

It is known [J. M. Mendel, 1991] that first-order cumulant 1,xC  is the mean 

value of { ( )}x t  and the second-order cumulant 2, 1( )xC τ  is the 

autocorrelation of { ( )}x t  and 1{ ( )}x t τ+ . The important feature of the third-

order cumulant 3, 1 2( , )xC τ τ  is that it can be used to extract the information 

that differs from the Gaussian random process with same second-order 

statistics as { ( )}x t . Therefore, the third-order spectrum can be used to gain 

the information of the transmitted signal immersed in the Gaussian noise in 

the digital communication system. The third-order spectrum is a simple 

form of polyspectra and it is applied to the proposed spectrum sensing 

algorithm for the SIMO cognitive radio system in this chapter.  

 

 The methods to estimate the bispectrum are presented in [C. L. 

Nikias and M. R. Raghuveer, 1987]. The indirect method is adopted to 

evaluate the bispectrum in this thesis. Assume that { }(1), (2), , ( )X X X N⋅⋅⋅  is 

the data set of the received signals. For the SIMO case, the data set is the 

summation of the signals received from each antenna of the receiver. The 

details of the method are given below: 

 

1. Segment the data N into K records of M samples each, i.e., N=KM. 

2. Substrate the average value of each record.  

3. For each segment 1,2, ,i K= ⋅⋅⋅ , the data set is expressed as 

{ }( ), 1,2, ,ix k k M= ⋅⋅⋅ ( )ix k where  denotes ith record and kth sample. 

Obtain an estimation of the third-order cumulant sequence 
2

1

3 1 2 1 2
1( , ) ( ) ( ) ( )

s
i i i i
x

k s
C x k x k x

M
kτ τ τ

=

= +∑ τ+ 2, where 1 1,max(0, )s τ τ= − −  

and 2 1min( 1, 1 , 1 )s M M M 2τ τ= − − − − − . 
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4. Average 3 1 2( , )i
xC τ τ  over all segments 3 1 2 3 1 2

1

1( , ) ( , )
K

i
x x

i
C CKτ τ τ

=

= ∑ τ

j

. 

5. Generate the bispectrum estimation 

1 2

1 2 3 1 2 1 2 1 1 2 2( , ) ( , ) ( , )exp( )x xB C w j
τ τ

ω ω τ τ τ τ ωτ
∞ ∞

=−∞ =−∞

= −∑ ∑ ω τ− , where 1 2( , )w τ τ  is 

two-dimensional window function. 

 
 

6.2.3 Proposed spectrum sensing based on third-order 
spectrum and receiver diversity 

 

In this section, we will describe the proposed algorithm of spectrum sensing 

based on third-order spectrum and receiver diversity in SIMO cognitive 

radio system.  The details of the algorithm are given below: 

 

1. Apply receiver diversity and obtain the signal for bispectrum 

estimation by utilizing linear combining technique to the received 

signals from all antennas of the receiver. It is assumed that the SU has 

no knowledge of the signal from the PU. Therefore, equal weight is 

applied to each antenna of the receiver. The signal for calculation of 

bispectrum is the summation of the signals from all antennas. 

2. Calculate the bispectrum of the signal by using the indirect method 

stated in the section above. 

3. Compare the amplitude of bispectrum to the predefined threshold λ. 

Then the occupancy of the frequency band by the primary user is 

decided if the amplitude of bispectrum is greater than the threshold. 

Otherwise, the frequency band is empty.  

 

The choice of the threshold λ depends on the requirement of the probability 

of false alarm in the system considered. Large threshold value results in low 

probability of false alarm whereas the small threshold value results in high 
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probability of false alarm. To avoid harmful interference to the primary user, 

high threshold value should be chosen and therefore low false alarm 

probability is assured. In this case, the probability of detection of PU is low 

as well. On the other hand, if the detection of the vacant band is paramount, 

low threshold value should be chosen. In this case, high probability of 

detection of PU is achieved. Therefore, the aim of choosing threshold λ is to 

balance Pd and Pf as required in the design of signal detection. 

 

6.2.4 Simulation result 

 

In the simulation, the transmitted signal is BPSK signal with carrier 

frequency 4 MHz, signal sample rate is 1024×105 sps (sample per second). 

Two-dimensional window function is Parzen window for bispectrum 

estimation and the number of cumulant lags is 100. The channel is 

frequency-flat Rayleigh fading channel with maximum Doppler shift 10Hz. 

The noise is additive white Gaussian noise.  
 

 Figure 6.3 shows the probability of detection Pd versus the received 

SNR in the case of one SU by using the proposed detection method. The 

result compares the probabilities of detection when number of receive 

antenna is 1, 2 and 3; the false alarm rate is set to 0.04fP = . It demonstrates 

that receiver with three antennas achieves higher probability of detection 

than the receiver with two antennas in the range of  to 

. Similarly, the receiver with two antennas attains higher 

probability of detection than the receiver with one antenna in the range of 

 to . The receiver with three antennas achieves 

the highest probability of detection in the range of low SNR. The result 

demonstrates that the HOS spectrum sensing method performs well in the 

range of low received SNR. The performance of HOS detection method is 

improved significant by utilizing the multiple receive antenna diversity in 

the SIMO CR system. 

16dBSNR = −

6dBSNR = −

16dBSNR = − 3dBSNR = −
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Figure 6.3 Probability of detection Pd versus SNR at receiver, Pf =0.04 

 

 Figure 6.4 shows the image of the bispectrum magnitude of the 

received signal at the receiver by using the proposed spectrum sensing 

method. The axes f0 and f1 in the figure are the normalized signal sample 

frequencies. Figure 6.4 (a) – (c) demonstrate the images of the bispectrum 

magnitudes of the received signal at the receiver when number of receive 

antenna increases. Figure 6.4 (a) is the SISO case when received 

. Both Figure 6.4 (b) and Figure 6.4 (c) are the SIMO cases 

with received . The number of receive antenna for Figure 6.4 

(b) and Figure 6.4 (c) is 2 and 3 respectively. Figure 6.4 (d) shows the 

image of bispectrum magnitude of the received signal when received SNR is 

at high value of 20dB; which serves as a reference image that the pattern of 

the bispectrum magnitude of the received signal is mainly contributed by the 

transmitted signal. In comparison with Figure 6.4 (d), the data points 

contributed by the transmitted signal itself in Figure 6.4 (a) are not clearly 

10dBSNR = −

10dBSNR = −
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seen and are submerged in the data points contributed by the noise 

background.  In the case of two receive antennas, the data points due to the 

transmitted signal itself become more visible by comparing Figure 6.4(b) to 

Figure 6.4 (a). The data points originated from the transmitted signal are 

more observable in Figure 6.4 (c) by comparing the image to Figure 6.4 (a) 

and (b).  The result demonstrates that the image of bispectrum magnitude is 

more close to the image of bispectrum magnitude at high SNR value when 

the number of antennas at receiver increases. In other words, the probability 

of detection in a cognitive radio system can be improved if multiple receive 

antennas are utilized at the secondary user. Therefore, the proposed 

spectrum sensing method can further improve the performance of signal 

detection based on the bispectrum estimation at low received SNR value due 

to receiver diversity.  
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Figure 6.4 Image of bispectrum magnitude of BPSK signal, carrier frequency is 

4MHz. 
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6.2.5 Summary  

 

In section 6.2 of this chapter, a new spectrum sensing method is proposed 

for a SIMO cognitive radio system. The detection scheme utilizing higher-

order statistics and receiver diversity of multiple antenna system 

demonstrates high performance of signal detection under low SNR 

condition. The feature of the proposed scheme is two-fold: (1) the sensing 

method inherits the character of higher-order statistics spectrum sensing; (2) 

depending on the number of receive antennas, the effect of the receiver 

diversity of secondary user can increase the received signal SNR. The new 

detection scheme performs better than the HOS spectrum sensing without 

receive diversity. Therefore, the proposed scheme can enhance the 

probability of detection in the cognitive radio system at the expense of the 

increased number of receive antenna at the SU terminal. The new method 

can improve the efficiency of the spectrum utilization in the cognitive radio 

system. 

 

6.3 Cooperative detection based on HOS in SIMO 

cognitive radio systems 

 

In this section, we present cooperative spectrum sensing by using the 

proposed spectrum sensing method based on higher-order statistics (HOS) 

and receive diversity in multiuser SIMO cognitive radio (CR) system. As 

being described in section 6.2, the spectrum sensing scheme based on HOS 

and receiver diversity is a blind detection method and has the advantage of 

suppressing Gaussian noise. In the SIMO cognitive radio system, a primary 

user (PU) is considered as the transmitter with one antenna and a secondary 

user (SU) is considered as the receiver equipped with multiple antennas. The 

secondary user detects if the licensed band is occupied by the primary user.  
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 In a cognitive radio network, a reliable spectrum sensing can be 

achieved through cooperation among secondary users. One of the 

advantages of cooperative sensing is that different users take their own 

measurements and therefore the system performance can be improved at low 

SNR due to the diversity of the measurements. In addition, the hidden-

terminal problem can be greatly reduced because the cooperative users are 

scattered in a wide area of the CR network and thus the possibility of all 

users shadowed away from the primary user is relatively small [Y. Zeng et 

al., 2010]. We consider cooperative spectrum sensing that is regarded as the 

centralized detection problem with false alarm constraint in multiuser SIMO 

CR system. Each SU will apply the spectrum sensing method based on HOS 

and receive diversity for detecting the existence of PU in a frequency band. 

The final detection decision is made in the fusion centre by applying OR 

decision fusion rule to the detect decision received from all secondary users. 

In the case of cognitive radio network with a small number of secondary 

users, we consider two cases. The first case is that each SU only sends his 

detection decision to the fusion centre. The second case is that each SU not 

only reports his detect decision to the fusion centre but also send measured 

SNR value to the fusion centre. Assume that the CR network is under 

system-level false alarm constraint, the system-level probability of detection 

can be improved via choosing the secondary users with the high SNR values 

to cooperate. In the case of CR network with a large number of SUs, all 

users reporting to central fusion centre may not be most efficient because 

large amount of network resources can be consumed. To solve this problem, 

the considered geographical area of CR network can be divided into many 

sub-areas. Assume that the users in a sub-area form a cluster and each 

cluster has a cluster head that serves as a local fusion centre. The users in 

the cluster send their detection decision to the cluster head where the 

detection decision is made for the cluster. All cluster heads will send their 

decisions to the central fusion where final detection decision is made. More 

details will be presented in following sections.  
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 Following sections are organized as this. Section 6.3.1 presents the 

system model of the SIMO CR system. Section 6.3.2 presents the 

hypothesis test by applying the proposed spectrum sensing method. Section 

6.3.3 describes cooperative spectrum sensing in multiuser CR system. The 

simulation results are presented in section 6.3.4 and the summary is in 

section 6.3.5. Low boldface is used for vectors.  denotes expectation 

operator. 

(·)E

 

6.3.1 Multiuser cognitive radio system model 

 
We consider two models of multiuser cognitive radio system. Firstly 

consider multiuser CR network with a small number of users. Secondly 

consider multiuser network with a large number of users. The details are 

given below in next two sections. 

 

6.3.1.1 Multiuser CR network with a small number of users 

 

Figure 6.5 shows two dimensional geographical distribution of users in a 

cognitive radio network that comprise one primary user and a small number 

of secondary users. This case can be extended to three dimensional user 

distribution in a CR network. In this thesis, we only consider two 

dimensional distribution of users in the network. It is assumed that one 

primary user is located at the centre of an area with a radius of 20km and K 

numbers of secondary users are randomly dotted in the area. The transmit 

power from the primary user is P and the received power for the secondary 

user i is Pr,i for 1≤ i≤ K. Consider that the signal from the PU experiences 

path loss, the received power for ith secondary user can be expressed as 

 

, 1r i
i

PP
d βα

=
+

  for 1≤ i≤ K ,     (6.17) 
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where di is the distance between the PU and the SU i, α is a scalar and β is 

the path loss exponent factor. Depending on the environment in which the 

PU and the SU are situated, the value of β is in the range of 2~6 [T. S. 

Rappaport, 2002]. In this paper, β takes the value of 2 and α takes the value 

0.07. The constant value ‘1’ is added in the denominator of (6.17) to 

accommodate the extreme case where di is zero or tends to zero. Since the 

secondary users are spread in a very large area, the difference between 

(6.17) and the path loss expression ( i.e. ,r i
i

PP
d βα

= ) commonly found in the 

wireless reference articles can be ignored. In the extreme case of very small 

di , the received signal power at ith SU is equivalent to the transmitted signal 

power at the PU since the path loss can be ignored.  

 

 Suppose that the noise at each SU terminal is i.i.d (independent and 

identically distributed) and follows standard Gaussian distribution with zero 

mean and unit variance ( 2 1δ = ). The path loss can be ignored when the 

distance between a SU and the PU is near zero. Let the received signal-to-

noise ratio of SU at the location of PU be defined as 

 
2

1010log ( / )tSNR P δ= .     (6.18) 
 

If  is large enough and the path loss has to be considered, the received 

signal-to-noise ratio for the i

id
th SU is defined as  

 
2

10 ,10log ( / )i r iSNR P δ=  , for 1≤ i≤ K.     (6.19) 
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Figure 6.5 Cognitive radio network with one primary user and a small number of 

secondary users. 

 

Assume that the spectrum sensing method based on the HOS and receive 

diversity is applied at each SU.  Consider that the PU terminal is equipped 

with single antenna and each SU terminal is equipped with m antennas. The 

channel matrix between the transmitter and the ith receiver is denoted as a 

column vector   i for 1 i K≤ ≤h  with m elements. Assume that the signal 

from the PU is a scalar x, the signal iy   for 1 i K≤ ≤   received by the ith 

SU is 

 
 1 i i ix for i K= + ≤ ≤y h n ,    (6.20)  

 

where yi is a column vector with m dimension; vector ni  for 1 i K≤ ≤  with 

row size m is the additive white Gaussian noise (AWGN) vector with zero 

mean and variance δ2 at the ith SU. Rayleigh fading channel is assumed 

therefore each entry in hi following an independent and identically 
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distributed (i.i.d.) complex Gaussian distribution. The detection method 

explores receive diversity at each receiver. The signals from the independent 

fading paths associated with m receive antennas are combined to obtain a 

signal that is then processed for signal detection. The linear combining 

techniques are commonly used, that is, the combined signal at the receiver is 

a weighted sum of different fading paths. The channel information is usually 

not known to the SU in the CR system, therefore equal weight will be 

applied to each receive antenna. 
 

 Consider that the spectrum sensing based on third-order spectrum 

and utilizing receive diversity is used in the multiuser SIMO cognitive radio 

system. The details of the algorithm are described in section 6.2.3. Assume 

that same threshold λ is set at all SU terminals and the signal attenuation is 

fast in large area of the SU distribution as shown in Figure 6.5. Hence weak 

signal powers are received at the secondary users who are distant from the 

PU, which may well below the threshold λ at those SU terminals. Only the 

secondary users near the PU can receive strong signals from PU, which may 

be above the threshold value λ.   

 

6.3.1.2 Multiuser CR network with a large number of users 

 

In the scenario described here, consider that a large number of secondary 

users K are in a region that is a square area with edge length 40km.  Assume 

that each secondary user represents as a spectrum sensor and detects 

independently by utilizing HOS spectrum sensing method. The spectrum 

sensors are independent and identically and uniformly distributed in the 

region. Suppose that one primary user is in the region and secondary users 

detect cooperatively if the primary user is occupying the frequency band. 

Supposing the noises at all secondary users are i.i.d and follow Gaussian 

distributed with zero mean and unit variance. There exits a central fusion 

centre in the region. 
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 Since the area of the secondary users’ distribution is very large, the 

strength of the received signal at a detector varies with the distance between 

the PU and SU due to large scale path loss. It is more likely that the 

secondary users near the PU have high received signal-to-noise ratio, the 

secondary users are distant from the PU having low received SNR and a 

group of secondary users close by will have similar detection decisions. It is 

not an efficient way to send all local decisions from all secondary users to a 

central fusion centre when there are a large number of users in the system. 

To solve this problem, we can adopt an approach of dividing the area into 

several sub-regions, as shown in Figure 6.6. The sensors in each sub-region 

form a cluster and each cluster has its own cluster head that serves as local 

fusion centre.  

 

 We accept all symbol definitions described in section 6.3.1.1 for 

path loss, if the transmit power from the primary user is P and the received 

power for the secondary user (SU) i is Pr,i for 1≤ i≤ K. The received power 

for ith secondary user can also be expressed by (6.17). The received SNR at 

ith SU can be expressed as (6.19). The channel model for signal transmission 

for each SU expressed as (6.20) is applied here. The HOS detection method 

described in 6.3.1.1 will also be applied here.   
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Figure 6.6 Cognitive Radio system with a large number of users. The SUs form a 

cluster in each sub-region and the cluster head in a sub-region serves as local fusion 

centre.  

 

6.3.2 Hypothesis test at each secondary user 

 

Since (6.20) represents the signal received by the ith SU yi  for 1 i K≤ ≤ , 

the signal detection at ith SU is a test of following two hypotheses [C. W. 

Helstrom, 1968]:  

  

0

1  

: ( ) ( )

: ( ) ( ) ( ) (t)

i
i i

i
i i i i

H t t

H t t x t

=

= +

y n

y h n
 1 for i K≤ ≤ ,      (6.21) 

 

where  is the hypothesis that the received signal  at time t is only 

contributed by the noise ,   is the hypothesis that the received signal 

0
iH ( )iy t

( )i tn 1
iH

( )i ty  at time t is the summation of the noise and the transmitted signal 
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experienced path loss and channel fading. Rayleigh fading channel is 

assumed. The probability of false alarm ,f iP  at a given threshold λ is 

 

, 0 )( | i
f i iP prob B Hλ= > ,   (6.22)            

 

where Bi is the amplitude of bispectrum obtained by using the proposed 

detection method. The probability of detection  at a given threshold λ is 

given by  

,d iP

 

, ( | i
d i iP prob B H1 )λ= > .    (6.23) 

 

The threshold value λ is in general determined by predefined false alarm 

 constraint.  ,f iP

 

6.3.3 Cooperative detection  

6.3.3.1 All SU detect in a small network 
 
 
Assume that there exists a fusion centre in a multiuser CR network with a 

small number of secondary users. To detect if a frequency band is occupied 

by a primary user, each secondary user detects independently by applying 

HOS spectrum sensing method and sends his detect decision to the fusion 

centre.  The final detection decision at fusion centre is made upon receiving 

the detection decision from all secondary users. Suppose that the OR fusion 

rule is utilized at the fusion centre.  

 

 For the system model with a small number of SUs described in 

section 6.3.1.1, assume that one primary user and K secondary users are in 

the system and the distribution of the SUs is shown in Figure 6.5. The 

parallel fusion network is demonstrated in Figure 6.7. We consider that all 

secondary users detect, each SU i detects independently from the received 
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signal yi for 1≤i≤ K and makes his decision whether the interested spectrum 

band is occupied by the PU. Then all decisions δi for 1≤i ≤ K are sent to a 

fusion centre where the final decision δs is made.   
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Figure 6.7 A cognitive radio parallel fusion network 

 

 Depending on the requirement of system-level probability of false 

alarm, the cooperative detection problem is the Neyman-Pearson detection 

formulation of the binary hypothesis testing problem [P. K. Varshney, 1996]. 

The Neyman-Pearson detection is to maximize the system detection 

probability under a constant false alarm rate constraint. The aim of the 

system detection is to design the fusion rule and the local decision rules to 

maximize the probability of the detection Pd at the fusion centre and to meet 

the requirement of the system probability of false alarm Pf constraint. 

Assume that each secondary user sends only binary decision δi={1,0} for 

1≤i≤K, the fusion rule at the fusion centre takes the form 
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1

1 0

1, ( ) (
( ) (0,s

if prob H Tprob H
if prob H Tprob Hδ

⎧⎪
⎨
⎪⎩

>
=

<
δ
δ

0 )
)

δ
δ ,   (6.24) 

 

where H0 is the hypothesis that the received signal at any time is only 

contributed by the noise; H1 is the hypothesis that the received signal at any 

time is when the signal is present; 1 K,...,δ δ( )δ =  is the decision vector 

containing the local decisions; 1( )prob Hδ  is the probability of δ under 

hypothesis H1 and 0( )prob Hδ  is the probability of δ under hypothesis H0; 

T is the threshold value at the fusion centre for the Neyman-Pearson 

detection problem. Therefore, the final system detection performance is the 

collective result of local decision rule at each SU and the fusion rule at the 

fusion centre.  

 

 In this chapter, we only consider the OR fusion rule applied at the 

fusion centre. For the OR fusion rule, the probability of detection Pd on the 

system level is expressed as 

  

,
1

1 (1
K

d
i

P
=

= − −∏ )d iP

)f iP

 for 1≤i≤ K,    (6. 25) 

 

and the probability of false alarm Pf on the system level is 

 

   for 1≤i≤ K.     (6.26) ,
1

1 (1
K

f
i

P
=

= − −∏

 

6.3.3.2 k out of K SUs (k<K)  cooperative detection in a CR 

network with a small number of users  

 

Additional to the system model described in previous section, we consider 

that the system-level detection performance is under false alarm constraint. 
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Assume that all secondary users not only detect and send their detect 

decision to the fusion centre, but also send their detected SNR to the fusion 

centre, as shown in Figure 6.8. If same threshold is applied to all HOS 

detectors, all detectors will have same probability of false alarm value. 

Suppose that the system-level of probability of false alarm will be over the 

false alarm constraint if the detection decisions from all secondary users are 

used for final decision at the fusion centre. Based on the SNR values 

received at the fusion centre, the k secondary users with the highest SNR 

values are selected to contribute to the final system-level detection decision. 

This strategy can ensure high system-level probability of detection and to 

meet the requirement of system false alarm constraint.  
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Figure 6.8 A cognitive radio parallel fusion network, each SU sends his detection 

decision and detected SNR to central fusion centre. 
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6.3.3.3 Cooperative detection in a CR network with a large 
number of users 

 

In a CR network with a large number of users, consider that there exists a 

central fusion centre and the CR network region is divided into sub-regions. 

The secondary users in each sub-region form a cluster in which there exists 

a cluster head. The cluster head is also used as a local fusion centre. The 

SUs in each cluster send their detection decisions to their cluster head where 

local detect decision is made. Then all cluster heads send their decisions to 

the central fusion centre where final system-level detection decision is made. 

 

 Assume that total number of Z cluster heads are in the network, 

which are represented as   1iCH for i Z≤ ≤ . Figure 6.9 shows that the local 

detection decision in each cluster is made at the cluster head upon receiving 

the detection decision from all SUs in the cluster. Then, the cluster heads 

will send their decisions  ={0,1}  1CHi for i Zδ ≤ ≤  to the central fusion 

centre where final detection decision sδ  will be made if the PU occupies a 

frequency band. Assume that OR fusion rule is implemented at all cluster 

heads and central fusion centre. 
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Figure 6.9 CR network with a large number of users.  1 iCH for i Z≤ ≤  - cluster head. 

 ={0,1}  1i for i Kδ ≤ ≤  - detect decision from ith SU.  ={0,1}  1CHi for i Zδ ≤ ≤  - detect 

decision from ith cluster head.  - final detection decision from central fusion 

centre. 

{0,1}sδ =

 

6.3.4 Simulation Result 

 

This section presents the simulation results. In the simulation, the 

transmitted signal is BPSK signal with carrier frequency 4 MHz, signal 

sample rate is 1024×105 sps (sample per second). Two-dimensional window 

function is Parzen window for bispectrum estimation and the number of 

cumulant lags is 100. The channel is frequency-flat Rayleigh fading channel 

with maximum Doppler shift 10Hz. The noise is additive white Gaussian 

noise. In the CR system described in section 6.3.1, the distance between a 

SU (receiver) and a PU (transmitter) is a variable that depends on the 

location of the SU in the area considered at a given time t. The received SNR 
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at each SU varies with the distance between the transmitter and receiver and 

the path loss suffered in the channel. To compare the system performance of 

the signal detection in the cooperative CR system, it is more meaningful to 

show the probability of detection of the system Pd versus transmit power (in 

dBW) at the PU in our result curves below.  

 

 Figure 6.10 shows the probability of detection of CR system versus 

the transmit power at the transmitter in a CR network with a small number 

of SUs. The result curves are obtained by setting the threshold value of each 

HOS detector according to the predefined probability of false alarm Pf=0.04. 

All SUs detect and send their detect decisions to the central fusion centre. 

Final system-level decision is based on the decision obtained by applying 

OR decision rule to the decisions received from all SUs at the central fusion 

centre. In each scenario of 4, 8 and 16 SUs in the CR network, the result 

demonstrates that the system-level Pd obtained in the case of multiple 

receive antennas is higher than the system Pd achieved in the case of single 

receive antenna. The simulation result also shows that more SUs 

cooperation results in high system-level probability of detection.    
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Figure 6.10 Probability of detection versus transmit power at transmitter (PU) in a 

CR network with a small number of users. All SUs detects and contributes to the final 

system-level detect decision. 

 

 Figure 6.11 demonstrates the system-level probability of detection 

versus the transmit power at the transmitter in a CR network with a small 

number of users. The result curves are obtained by setting the threshold 

value of each HOS detector according to the predefined probability of false 

alarm Pf=0.04. OR decision rule is applied at the central fusion centre in the 

simulation. In addition, the system-level probability of false alarm constraint 

is set to 0.1. The fact is that the system-level false alarm rate Pf  increases as 

the number of SUs K increases under the OR decision rule. If we treat each 

SU the same, the false alarm rate for each user is represented by an average 

value , ,  1,2,...,f iP for i K= . From the Pf expression , we 

can decide that maximum number of SUs can contribute to the final detect 

decision making under OR fusion rule and fixed system-level false alarm 

,
1

1 (1
K

f f
i

P P
=

= − −∏ )i
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constraint. In the simulation, assume that all SUs send their detect decisions 

as well as detected SNR data to the central fusion centre, two users with 

highest SNR values are selected to contribute to final system detect decision. 

Figure 6.11 demonstrates that the system probability of detection Pd 

increases as the number of SUs in CR network increases at a given SNR 

value. Hence, the system performance for CR system can be improved in 

terms of Pd via the cooperative spectrum sensing among SUs.  
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Figure 6.11 Probability of detection versus transmit power at transmitter (PU) in the 

CR network with 2, 4, 8 secondary users. 2 users with highest received SNR are 

selected and contributed to the final system-level detect decision. 

 
 Figure 6.12 is the result graph of system-level Pd versus transmit 

power at PU in a multiuser network with a large number of users. The 

system model is described in section 6.3.1.2. Assume that there are 32 

secondary users in the system, the geographical area of 40  are 

divided into 16 sub-areas (clusters). There exist one central fusion centre in 

the system and one cluster head in each cluster. The result curves are 

obtained by setting the threshold value of each HOS detector according to 

40km km×
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the predefined probability of false alarm Pf=0.04. The first step of the 

cooperative detection algorithm is that the users in each cluster report their 

detect decisions to their cluster head. Then all cluster heads send their local 

decisions to the central fusion centre where the final detection decision is 

made. OR fusion rule is implemented at each cluster head and central fusion 

centre. Figure 6.12 shows that system-level probability of detection Pd is 

above 0.7 with cooperative detection of 32 users when transmit power is 

greater than -15dBW. Furthermore, HOS detector with two receive antennas 

achieves better probability of detection in comparison with HOS detector 

with single receive antenna.  
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Figure 6.12 System-level Pd versus transmit power at PU in a multiuser network with 

a large number of users.  

 

6.3.5 Summary 

 

In section 6.3, we discussed cooperative spectrum sensing in multiuser 

cognitive radio network with a small or a large number of users [L. Jin and 
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Z. Hu, 2011]. The spectrum sensing method utilized is the proposed 

spectrum sensing method based on higher-order statistics and receiver 

diversity, which is described in section 6.2. The performance of new 

detection scheme can be enhanced when the number of receive antennas 

increases. We considered three simulation scenarios: (A) multiuser CR 

network with a small number of users, all users contribute to final system-

level detect decision. (B) Multiuser CR network with a small number of 

users, only k users with highest SNR out of all SUs are selected for 

participating final system-level detect decision. (C) Multiuser CR network 

with a large number of users, the secondary users are grouped into number 

of clusters according to their geographical locations. Each cluster has a 

cluster head and all users in the cluster report their detect decisions to the 

cluster head. One central fusion centre in the network collects the detect 

decisions from all cluster heads and make final system-level detect decision. 

OR fusion rule is applied either at cluster heads or central fusion centre. All 

simulation results show that cooperative detection among secondary users 

can further increase the probability of detection of the system and improve 

the efficiency of the spectrum utilization in the cognitive radio system. 
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Chapter 7 Conclusions & future work 
 

To improve two performance measures of capacity and efficient use of 

spectrum, main contributions of this thesis in the research area of MU-

MIMO system are:  

  

• We have developed a new volume-based scheduling algorithm under the 

perfect conditions of CSIR and CSIT in MU-MIMO system. The 

scheduling algorithm offers low computational complexity and it can 

also achieve high system sum-rate capacity. The volume-based 

scheduling algorithm can be used in a practical MU-MIMO system with 

a large number of users.   

• We have developed a two-step scheduling algorithm under perfect CSIR 

and the transmitter gaining channel state information via limited 

feedback in MU-MIMO system. This two-step scheduling algorithm is 

designed for a MU-MIMO system that is under the feedback resource 

constraint and has a large number of users.  The algorithm uses low bits 

feedback to select users before the precoding vectors are generated for 

the selected users, which can significantly reduce feedback load in the 

feedback control channels.  

• We have developed a Free Probability Theory (FPT) spectrum sensing 

method for cognitive radio MU-MIMO system. The FPT method utilizes 

the asymptotic behaviour of random matrix based on FPT. The method 

performs better than traditional energy spectrum sensing method. The 

FPT method is easy to be implemented and can be applicable in real 

MU-MIMO CR systems.  

• We have developed a spectrum sensing method based on higher-order 

statistics (HOS) and receive diversity in SIMO CR system. This method 

can be used to detect the signal that the signal statistical feature differs 

from Gaussian character. We demonstrate that the sensing performance 

can be improved considerably via receive diversity.   
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• We have also considered cooperative spectrum sensing by using either 

FPT method or HOS method in MU-MIMO CR system. Our study 

demonstrates that cooperative spectrum sensing can improve the 

performance of spectrum sensing. High probability of detection can be 

achieved if the users with the best received SNR are chosen to perform 

cooperative sensing when the system is under false alarm constraint.   

 

 In this thesis, we have investigated the methods that can be used to 

improve the system performance of MU-MIMO wireless communication 

channels. The studies are focused on two broad areas: (1) Explore multiuser 

nature and multiple antennas character of the MU-MIMO wireless system. 

A new volume-based scheduling algorithm is proposed for MU-MIMO 

downlink wireless system. The system transmission strategy is designed to 

find users with best channel conditions. The channels of chosen users are 

virtually orthogonal as a result of applying BD precoding matrices to the 

channels of these users. Therefore the signals to chosen users can be 

transmitted concurrently. The new scheduling algorithm is efficient in terms 

of less computational complexity and high achievable sum-rate capacity. (2) 

We investigated spectrum sensing methods in cognitive radio technology in 

MU-MIMO wireless network, namely Free Probability Theory (FPT) 

spectrum sensing and Higher-Order Statistics (HOS) spectrum sensing. We 

combine these methods with multiple antennas feature in the MU-MIMO 

system. It is found that these methodologies can improve the system sensing 

performance. We also studied the benefit of cooperative sensing in such 

network. It is found that CR user cooperation can enhance the system-level 

detection performance.  

 

 In searching for an efficient transmission scheme to multiple users in 

a MU-MIMO downlink system, we found that DPC [M. Costa, 1983] 

scheme can achieve theoretically maximum capacity limit while RBF [M. 

Kountouris et al., 2008] attain only data rate which is very much lower than 

the ideal upper bound system capacity limit. However, DPC strategy is 
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complex to be implemented and might be impractical in a real system. The 

advantage of the RBF is that it is simple and the fairness to users is 

considered, and therefore each user has equal chance to be served. These 

two strategies represent two extreme cases of transmission scheme for MU-

MIMO system reported in research papers. In view of this and with 

feasibility of a proposed scheduling scheme in mind, we propose the 

scheduling algorithm called volume-based scheduling algorithm for MU-

MIMO downlink system with the aim of achieving as high as possible 

system data rate with reduced implementation complexity. The algorithm is 

presented in Chapter 3. The volume-based scheduling algorithm belongs to 

the category of suboptimal scheduling algorithm. First, the design of the 

volume-based algorithm is realized under the assumption of perfect channel 

information and BD precoding is applied in a cellular downlink system. 

Because number of users served concurrently is limited by the number of 

antennas of a transmitter due to BD precoding employed, the users to be 

served in the MU-MIMO system with a large number of users must be 

selected according to the criterion that these selected users appear to have 

best channel conditions. The criterion is that the first user selected must 

have the maximum Frobenius norm; the second user is selected when QR 

factorization via householder reduction is performed to the combined 

channel matrix from these two users, and the multiplication of diagonal 

elements of the upper triangular matrix is maximised; continue this process 

via using the criterion the same as selecting the second user until final user 

is selected. Once user selection is complete, the signals to the selected users 

are transmitted simultaneously. The channels of selected users are virtually 

orthogonal when BD precoding is applied. Therefore, the signal from one 

user does not cause interference to other users and multiuser multiplexing 

gain can be explored. Furthermore, transmit power to users is allocated by 

using water-filling algorithm. Our study demonstrates that the volume-based 

scheduling algorithm can achieve good performance in terms of high data 

rate achievement and low computational complexity in comparison with the 

capacity-based scheduling algorithm and SUS scheduling algorithm. The 
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contribution of this study is that the volume-base scheduling algorithm can 

be suitable to use in a real wireless MU-MIMO system.  

 

 Most of the scheduling algorithms function properly under the 

assumption of both transmitter and receiver having perfect channel state 

information. However, the channel state information in wireless channel is 

not so accessible for a transmitter while the receiver may gain channel 

information via direct measurement. In order to send the channel state 

information from the receiver to the transmitter, a feedback channel can be 

established between the transmitter and receiver. However, multiple 

feedback channels may cause resource constraint of uplink channels in the 

wireless system with a large number of users. In view of this, we have 

proposed a two-step scheduling algorithm presented in chapter 4. The 

algorithm can be used in a MU-MIMO wireless system under the 

assumption of perfect channel state information at the receiver and the 

channel state information made available to a transmitter through feedback 

channel between the transmitter and receiver. Assuming that two copies of 

codebooks generated via RVQ are stored at one transmitter and each 

receiver, one copy of low bits codebook and one copy of high bits codebook. 

Each codeword in a codebook mimics any instant channel condition 

between each transmitter and receiver pair. The codeword in the high bits 

codebook represents more accurately the channel conditions between one 

transmitter and one receiver. The proposed algorithm works in two steps. (1) 

By using the channel information acquired through the feedback link and 

using the low bits codebook, select users with best channel conditions out of 

a large number of users via volume-based scheduling algorithm. The 

number of users served is limited by the number of transmit antennas in BD 

precoding scheme. (2) By using the high bits codebook, find a codeword 

representing instant channel condition of one transmitter and one selected 

user pair. This process applies to all selected users. The signals are 

transmitted concurrently to the selected users via BD precoding. This two-

step scheduling algorithm can be used for wireless system under feedback 
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channel resource constraint because it requires less feedback resource 

during user selection stage. Furthermore, the system data rate can be 

improved by using the high bits codebook.  

 

 Then we moved on to the area of cognitive radio technique that can 

be applied in MU-MIMO wireless communication system. In particular, we 

focused our studies on finding a new spectrum sensing method with the goal 

that the new method can achieve high signal detection performance and 

better spectrum utilization. There are numerous spectrum sensing methods 

reported in current research papers. Some works are based on the 

assumption of detector knowing the information of transmitted signals and 

noise component. Others work when only partial knowledge of the signal 

and noise interference. The rest of spectrum sensing methods function 

without need of any information of transmitted signal and noise. In chapter 

5, we present a new proposed spectrum sensing method called Free 

Probability Theory (FPT) signal detection. The FPT spectrum sensing 

method is a blind signal detection method. The technique exploits the fact 

that FPT can be used to describe asymptotic behaviour of random matrix of 

a digital communication system. We can estimate the covariance matrices of 

a large number of observations of the received signals, and then obtain the 

covariance matrices of the transmitted signals through asymptotic behaviour 

of random matrices. Our results demonstrate that the performance of the 

FPT spectrum sensing method is better than the conventional energy 

detection method. This FPT method is easy to implement at a secondary 

user terminal in a cognitive radio network. Also by utilizing multiple 

antennas feature in a secondary user terminal, the spectrum sensing 

performance can be improved significantly since combined signal from 

received signals of multiple antennas effectively increase the SNR value 

detected. Moreover, multiuser cooperative spectrum sensing can improve 

signal detection in MU-MIMO cognitive radio system. A scenario is 

assumed that (a) primary network and secondary network coexist, (b) 

secondary users detect if a portion of spectrum is occupied by a primary 
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user and (c) in secondary network, there is a central fusion centre where the 

sensing data from all secondary are received and OR fusion rule is applied. 

It is demonstrated that cooperative sensing can enhance probability of 

detection on the system level in multiuser wireless network. One benefit of 

the cooperative sensing is that channel fading and shadowing effect in 

wireless channels can be mitigated due to different geographical location of 

users. Furthermore, assuming the system under the probability of false 

alarm constraint, the sensing performance can be improved if central fusion 

centre can accept the SNR raw data detected from secondary users and make 

final system detection decision based on the decisions from SUs with the 

highest SNR values.  

 

 Finally a spectrum sensing algorithm based on third-order statistics 

(bispectrum) and multiple antennas is proposed in Chapter 6. The second-

order and third-order statistics are two simplest forms among the definition 

of higher-order statistics of a stationary signal. The second-order spectrum 

is the power spectrum of a signal, the information obtained in the power 

spectrum is normally sufficient to describe the statistical feature of a 

Gaussian signal. However, if the signal does not completely conform to 

Gaussian character, the third-order spectrum can be used to extract the 

information that represents the deviations from Gaussian character and 

presence of phase relations between frequency components. In our proposed 

spectrum sensing algorithm, bispectrum method is utilized to describe the 

random process of channel condition of the Rayleigh channel assumed. We 

have also examined the benefit of multiple receive antennas in a secondary 

user terminal for spectrum sensing in SIMO wireless system. Multiple 

antennas on receiver can increase received SNR values and therefore can 

improve probability of detection of spectrum sensing. Cooperative spectrum 

sensing is discussed for the cognitive radio SIMO system in the case of a 

small number of users as well as a large number of users. The simulation 

results demonstrate that user cooperative sensing can improve system-level 

probability of detection. If system is under probability of false alarm 
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constraint, system-level probability of detection can be improved if users 

with the highest received SNR are selected for the cooperative detection. 

  

Future work 

  

 In our work presented in this thesis, the interference from other users 

was not considered when we investigate the spectrum sensing in cognitive 

radio network. To deal with more realistic scenario where inter-user signal 

interference is inevitable, we can extend our work of spectrum sensing in 

future by taking into account of the interference from other users. More 

efficient user cooperation can also be considered in terms of reducing the 

effect of inter-user interference. The aim of future work in considering the 

interference from other users is to increase the accuracy of signal detection 

and to enhance system performance of MU-MIMO cognitive radio network. 

 

 We considered that the HOS spectrum sensing method is applied to 

the SIMO wireless system. This work can be extended to the MIMO system.  

 

 We utilized the OR fusion rule in the area of cooperative spectrum 

sensing of multiuser cognitive radio system. It is known that commonly 

used fusion rules are the OR fusion rule, the AND fusion rule and the 

Majority rule [P.K. Varshney, 1996]. The choice of the fusion rule depends 

on the circumstances of the applications. These rules are optimum only for 

certain ranges of parameter values. OR fusion rule is that the final system 

detect decision is 1 if at least one of the users takes the detect decision 1. 

However, this method might not be reliable if one of the users experiences 

strong signal interference from other sources in the wireless system and 

falsely detect the signal. On the contrary, AND fusion rule is that the final 

system detect decision is 1 if the detect decisions from all users are 1. The 

signal can not be detected if one of the users can not detect the signal due to 

channel impairment, such as shadowing effect. In view of this, We can 

extend our work of the cooperative spectrum sensing by using “k out of K” 
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rule, such as 1  or k K< < / 2k K=  (Majority rule). The aim of the future 

work is to improve the reliable system spectrum sensing performance in real 

system by using the “k out of K” rule. 

 

 207



 
 Appendix  

Appendix 

List of publications 
 
Journal paper 

     
1. L. Jin, X. Gu and Z. Hu, “Low Complexity Scheduling Strategy for Wireless Multiuser 

Multiple-Input Multiple-Output Downlink System,” IET Communication Journal, Vol. 

5, Iss. 7, pp. 990-995, May 2011.  

      
Conference Paper 
 
2. L. Jin, Z Hu and X. Gu, “A New Scheduling Algorithm with Low Complexity for 

Multiuser Multiple-Input Multiple-Output Downlink System,” 2009 International 

Conference on Wireless Communications and Signal Processing (WCSP 2009), 

Nanjing, China, pp. 1-5, Nov. 2009.  

3. L. Jin, X. Gu, and Z. Hu, “A Novel Volume-Based Scheduling Scheme for Multiuser 

Multiple-Input Multiple-Output Downlink System,” 2010 IEEE Radio & Wireless 

Symposium, Sheraton hotel, New Orleans, LA, pp. 448-451, Jan. 2010. 

4. L. Jin, Z. Hu, X. Gu, “A New Signal Detection Scheme Based on Free Probability 

Theory for Multiple-Input Multiple-Output Cognitive Radio Systems,” in Proceedings 

of the 2010, 7th International Symposium on Wireless Communication Systems 

(ISWCS' 10), University of York, York, UK, pp746-750, Sep. 2010. 

5. L. Jin, Z. Hu, X. Gu, “Analysis of Sum-rate Gain for Multiuser MIMO Downlink 

System with Limited Feedback and Feedback Resource Constraint,” European 

Microwave Week 2010, CNIT La Défence, Paris, France, in Proceeding of the 3rd 

European Wireless Technology conference, 2010 European, pp 73-76, Issue date: 27-

28 Sep. 2010.  

6. L. Jin and Z. Hu, “Spectrum Sensing Using Higher-Order Statistics and Receive 

Diversity and Cooperative Detection in SIMO Cognitive Radio System,” 2011 IET 

International Communication Conference on Wireless Mobile & Computing ( IET 

CCWMC2011), Shanghai, China, pp. 247-253, 14-16 Nov. 2011. 

 

 

 208



 
Reference  

Reference 
 
[1] 802.22 Working Group, “IEEE 802.22 D1: draft standard for wireless regional area 

networks,” March 2008. [Online]. Available: http://grouper.ieee.org/groups/802/22/.  

[2] A. Ghasemi and E. S. Sousa, “Collaborative spectrum sensing for opportunistic 

access in fading environments,” in IEEE Int. Symp. New Frontiers Dyn. Spectrum 

Access Netw (DySPAN 2005), Baltimore, Md, USA, pp. 131-136, Nov. 2005.  

[3] A. Goldsmith, Wireless Communications, Cambridge University Press, New York, 

USA, 2005. 

[4] A. Goldsmith, S. Jafar, I Maric and S. Srinivasa, “Breaking Spectrum Gridlock with 

Cognitive Radios: An Information Theoretic Perspective,” in Proc. IEEE, Vol. 97, 

No. 5, pp. 894-914, May 2009. 

[5] A. Goldsmith, S. Jafar, N. Jindal, and S. Vishwanath, “Capacity limits of MIMO 

channels,” IEEE J. Sel. Areas Commun., Vol. 21, No. 5, pp. 684–702, Jun. 2003.  

[6] A. J. Paulraj, D. A. Gore, R. U. Nabar and H. Bölcskei, “An overview of MIMO 

communications-A key to gigabit wireless,” in Proc. IEEE, Vol. 92, No. 2, pp. 198-

218, Feb. 2004. 

[7] A. M. Tulino and S. Verdo, Random Matrix Theory and Wireless Communications 

(2004). [Online]. Available: www.nowpublishers.com.  

[8] A. Narula, N. J. Lopez, M.D. Trott, and G.W. Wornell, “Efficient use of side 

information in multiple-antenna data transmission over fading,” IEEE J. Sel. Areas 

Commun., Vol. 16, No 8, pp. 1423-1436, Oct. 1998. 

[9] A. Nica and R. Speicher, Lectures on the Combinatorics of Free Probability, 

Cambridge University Press, 2006. 

[10] A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless 

Communications, Cambridge University Press, Cambridge, UK, 2003. 

[11] A. Sahai and D. Cabric, “Spectrum sensing: fundamental limits and practical 

challenges,” in IEEE International Symposium on New Frontiers in Dynamic 

Spectrum Access Networks (DySPAN ’05), Baltimore, Md, USA, Nov. 2005. 

[12] A. Sahai, N. Hoven, S. M. Mishra, and R. Tandra, Fundamental tradeoffs in robust 

spectrum sensing for opportunistic frequency reuse (Mar.2006). [Online]. Available: 

http://www.eecs.berkeley.edu/ ~sahai/Papers/CognitiveTechReport06.pdf.  

[13] B. Song, F. Roemer, and M. Haardt, “Efficient channel quantization scheme for 

multi-user MIMO broadcast channels with RBD precoding,” in Proc. IEEE Int. Conf. 

 209



 
Reference  

Acoust., Speech and Sig. Proc. (ICASSP 2008), Las Vegas, NV, pp. 2389-2392, 

March- April 2008. 

[14] B. Suard, G. Xu, H. Liu, and T. Kailath, “Uplink Channel Capacity of Space-

Division-Multiple-Access Schemes,” IEEE Trans. Info. Theory, Vol. 44, No. 4, 

pp.1468-1476, Jul. 1998. 

[15] C. D. Meyer, Matrix Analysis and Applied Linear Algebra, (SIAM, 2000).  

[16] C. E. Shannon, “A mathematical theory of communication,” Bell System Technical 

Journal, Vol. 27, pp. 379-423 and 623-656, Jul. and Oct. 1948. 

[17] C. Etielle et al., “Transmitter directed, multiple receivers system using path diversity 

to equatably maximize throughput,” patent, Sep. 10, 2002. 

[18] C. L. Nikias and J. M. Mendel, “Signal processing with higher-order spectrum,” 

IEEE Signal Processing Magazine, Vol. 10, pp. 10-37, Jul. 1993. 

[19] C. L. Nikias and M. R. Raghuveer, “Bispectrum estimation: a digital signal 

processing framework,” Proc. IEEE, Vol. 75, pp. 869-891, Jul. 1987.  

[20] C. Lv, S. Zhou, Y. Li, and T. Wang, “Low complexity scheduling technique for 

multiuser MIMO systems,” Vehicular Technology Conference (VTC-2008 Spring), 

Marina Bay, Singapore, pp. 1345-1349, 2008. 

[21] C. Peel, B. Hochwald, and A. Swindlehurst, “A Vector-Perturbation Technique for 

Near-Capacity Multiantenna Multiuser Communication-Part I: Channel Inversion 

and Regularization,” IEEE Trans. Commun., Vol. 53, No. 1, pp. 195-202, Jan. 2005. 

[22] C. Stevenson, G. Chouinard, Z. D. Lei, W. D. Hu, S. Shellhammer, and W. Caldwell, 

“IEEE 802.22: the first cognitive radio wireless regional area network standard,” 

IEEE Communications Magazine, Vol. 47, No. 1, pp. 130-138, Feb. 2009. 

[23] C. Sun, W. Zhang, and K. B. Letaief, “Cluster-based cooperative spectrum sensing 

in cognitive radio systems,” in Proceedings of the 18th International Symposium on 

Personal, Indoor and Mobile Radio Communications (PIMRC ’07), Athens, Greece, 

pp. 2511-2515, Sep. 2007.  

[24] C. W. Helstrom, Statistical Theory of Signal Detection, Pergamon Press, 2nd edition, 

1968.  

[25] C.-B. Chae, D. Mazzarese, and R.W. Heath Jr., “Coordinated beamforming for 

multiuser MIMO systems with limited feedforward,” in Proc. Asilomar Conf. Sign., 

Syst. Computers, Pacific Grove, CA, pp. 1511-1515, Oct.–Nov. 2006. 

 210



 
Reference  

[26] D. Cabric, S. Mishra, and R. Brodersen, “Implementation issues in spectrum sensing 

for cognitive radios,” in Proc. Asilomar Conf. on Signals, Systems and Computers, 

Pacific Grove, California, USA, Vol. 1, pp. 772–776, Nov. 2004. 

[27] D. Gesbert, M. Kountouris, R. W. Heath Jr. and Chan-Byoung Chae, “Shifting the 

MIMO Paradigm: From single-user to multiuser communications,” IEEE Signal 

Processing Magazine, Vol. 24, No. 5, pp. 36-46, Oct. 2007.  

[28] D. J. Love, R. W. Heath Jr. and T. Strohmer, “Grassmannian beamforming for 

multiple-input multiple-output wireless systems,” IEEE Trans. Inf. Theory, Vol. 49, 

No. 10, pp. 2735-2747, Oct. 2003.  

[29] D. Love, R. Heath Jr, V. Lau, D. Gesbert, B. Rao, and M. Andrews, “An Overview 

of Limited Feedback in Wireless Communication Systems,” IEEE J. Sel. Areas 

Commun., Vol. 26, No. 8, pp. 1341-1365, Oct. 2008.  

[30] D. Tse and P. Viswanath, Fundamentals of Wireless Communication, Cambridge 

University Press, Cambridge, UK, 2005.  

[31] E. Kreyszig, Advanced Engineering Mathematics, 7th edition, JOHN WILEY & 

SONS, INC., New York, 1993.  

[32] E. Larsson and P. Stoica, Space-Time Block Coding for Wireless Communications, 

Cambridge University Press, Cambridge, UK, 2nd edition, 2003.  

[33] E. Telatar, “Capacity of Multi-antenna Gaussian Channels,” Euro. Trans. 

Telecommun., Vol. 10, No. 6, pp. 585-596, Nov. 1999.  

[34] F. Digham, M. Alouini, and M. Simon, “On the energy detection of unknown 

signals over fading channels,” in Proc. IEEE Int. Conf. Commun., Seattle, 

Washington, USA, Vol. 5,  pp. 3575- 3579, May 2003.  

[35] F. Xu, J. Hui, X. Zheng, and Z. Zhou, “Accurate Blind Spectrum Sensing Based on 

High Order Statistical Analysis in Cognitive Radio System,” IEEE Int. Conf. 

Commun. Tech. App. (ICCTA ’09), Beijing, China, pp. 386-391, 2009.  

[36] Federal Communications Commission, “Notice of proposed rule making and order: 

Facilitating opportunities for flexible, efficient, and reliable spectrum use employing 

cognitive radio technologies,” ET Docket No. 03-322, Dec. 2003. [Online]. 

Available: http://hraunfoss.fcc.gov/edocs_public/attachmatch/FCC-03-322A1.pdf.  

[37] G. Caire and S. Shamai, “On the achievable throughput of a multiantenna Gaussian 

broadcast channel,” IEEE Trans. Inf. Theory, Vol. 49, No. 7, pp. 1691-1706, Jul. 

2003.  

[38] G. G. Raleigh and J. M. Cioffi, “Spatio-temporal coding for wireless 

communication,” IEEE Trans. Commun., Vol. 46, No. 3, pp. 357-366, Mar. 1998.  

 211



 
Reference  

[39] G. G. Raleigh and J. M. Cioffi, “Spatio-temporal coding for wireless 

communications,” Proc. IEEE Global Telecommunications Conf. 

(GLOBECOM ’96), Vol. 3, pp. 1809-1814, Nov. 18-22, 1996.  

[40] G. Ganesan and Y. Li, “Cooperative spectrum sensing in cognitive radio-part II: 

multiuser networks,” IEEE Trans. Wireless Commun., Vol. 6, pp. 2214-2222, Jun. 

2007.  

[41] G. Ganesan and Y. Li, “Agility improvement through cooperative diversity in 

cognitive radio,” in Proc. IEEE Global Commun. Conf. (GLOBECOM '05), Vol. 5, 

pp. 2505-2509, Nov.-Dec. 2005.  

[42] G. Ganesan and Y. Li, “Cooperative spectrum sensing in cognitive radio-part I: two 

user networks,” IEEE Trans. on Wireless Commun., Vol. 6, pp. 2204-2213, Jun. 

2007.  

[43] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading 

environment when using multiple antennas,” Wireless Pres. Commun., Vol. 6, pp. 

311-335, Mar. 1998.  

[44] H. Tang, “Some physical layer issues of wide-band cognitive radio systems,” in 

Proc. IEEE Int. Symposium on New Frontiers in Dynamic Spectrum Access 

Networks, Baltimore, Maryland, USA, pp. 151-159, Nov. 2005,   

[45] H. Urkowitz, “Energy Detector of Unknown Deterministic Signals,” Proc. IEEE, 

Vol. 55, No. 4, pp. 523-531, Apr. 1967.  

[46] I. Akyildiz, W. Lee, M. Vuran, and S. Mohanty, “NeXt generation/dynamic 

spectrum access/cognitive radio wireless networks: A survey,” Computer Networks, 

Vol. 50, No. 13, pp. 2127-2159, Sep. 2006.  

[47] I. Mitola, J. and J. Maguire, G. Q., “Cognitive radio: making software radios more 

personal,” IEEE Personal Commun. Mag., Vol. 6, No. 4, pp. 13-18, Aug. 1999.  

[48] J. G. Proakis, Digital Communications, McGraw-Hill, New York, 4th ed., 2001.  

[49] J. Ma and Y. Li, “Soft combination and detection for cooperative spectrum sensing 

in cognitive radio networks,” in Proc. IEEE Global Communications Conference 

(GlobeCom ’07), Washington, DC, USA, pp. 3139-3143, Nov. 2007. 

[50] J. Mitola, “Cognitive radio: An integrated agent architecture for software defined 

radio,” Doctor of Technology, Royal Inst. Technol. (KTH), Stockholm, Sweden, 

2000. 

[51] J. Unnikrishnan and V. V. Veeravalli, “Cooperative sensing for primary detection in 

cognitive radio,” IEEE J. Sel. Topics in Signal Process., Vol. 2, No. 1, pp. 18-27, 

2008. 

 212



 
Reference  

[52] J. Winters, “On the Capacity of Radio Communication Systems with Diversity in a 

Rayleigh Fading Environment,” IEEE J. Sel. Areas in Commun., Vol. SAC-5, No. 5, 

pp. 871-878, Jun. 1987. 

[53] J. M. Mendel, “Tutorial on Higher-Order Statistics (Spectra) in Signal Processing 

and System Theory: Theoretical Results and Some Applications,” Proc. IEEE, Vol. 

19, No. 3, pp. 279-305, Mar. 1991. 

[54] K. K. Mukkavilli, A. Sabharwal, E. Erkip, and B. Aazhang, “On beamforming with 

finite rate feedback in multiple-antenna systems,” IEEE Trans. Inf. Theory, Vol. 49, 

No 10, pp. 2562-2579, Oct. 2003. 

[55] L. U. Choi and R. D. Murch, “A transmit precoding technique for multiuser MIMO 

systems using a decomposition approach,” IEEE Trans. Wireless Commun., Vol. 3, 

No. 1, pp. 20-24, Jan. 2004. 

[56] L.Jin, Z Hu and X. Gu, “A New Scheduling Algorithm with Low Complexity for 

Multiuser Multiple-Input Multiple-Output Downlink System,” 2009 International 

Conference on Wireless Communications and Signal Processing (WCSP 2009), 

Nanjing, China, pp. 1-5, Nov. 2009. 

[57] L. Jin, X. Gu, and Z. Hu, “A Novel Volume-Based Scheduling Scheme for 

Multiuser Multiple-Input Multiple-Output Downlink System,” 2010 IEEE Radio & 

Wireless Symposium, Sheraton hotel, New Orleans, LA,  pp. 448-451, Jan. 2010. 

[58] L. Jin, Z. Hu, X. Gu, “A New Signal Detection Scheme Based on Free Probability 

Theory for Multiple-Input Multiple-Output Cognitive Radio Systems,” in 

Proceedings of the 2010, 7th International Symposium on Wireless Communication 

Systems (ISWCS' 10), University of York, York, UK, pp746-750, Sep. 2010. 

[59] L. Jin, Z. Hu, X.Gu, “Analysis of Sum-rate Gain for Multiuser MIMO Downlink 

System with Limited Feedback and Feedback Resource Constraint,” European 

Microwave Week 2010, CNIT La Défence, Paris, France, in Proceeding of the 3rd 

European Wireless Technology conference, 2010 European, pp 73-76, Issue date: 

27-28 Sep. 2010.  

[60] L. Jin and Z. Hu, “Spectrum Sensing Using Higher-Order Statistics and Receive 

Diversity and Cooperative Detection in SIMO Cognitive Radio System,” 2011 IET 

International Communication Conference on Wireless Mobile & Computing ( IET 

CCWMC2011), Shanghai, China, pp. 247-253, 14-16 Nov. 2011. 

[61] L. Jin, X. Gu and Z. Hu, “Low Complexity Scheduling Strategy for Wireless 

Multiuser Multiple-Input Multiple-Output Downlink System,” IET Communication 

Journal, Vol. 5, Iss. 7, pp. 990-995, May 2011. 

 213



 
Reference  

[62] M. Cooper and M. Goldburg, “Intelligent antennas: Spatial division multiple 

access,” ArrayComm: Annu. Rev. Commun., pp. 999–1002, 1996.  

[63] M. Costa, “Writing on dirty paper,” IEEE Trans. Inf. Theory, Vol. 29, No. 3, pp. 

439-441, May 1983.  

[64] M. Gudmundson, “Correlation model for shadow fading in mobile radio systems,” 

Elec. Lett., Vol. 27, No. 23, pp. 2145-2146, Nov. 1991.  

[65] M. J. Lehtomäki, M. Juntti, H. Saarnisaari, and S. Koivu, “Threshold setting 

strategies for a quantized total power radiometer,” IEEE Signal Proc. Lett., Vol. 12, 

No. 11, pp. 796–799, Nov. 2005.  

[66] M. J. Feuerstein, K. L. Blackard, T. S. Rappaport, S. Y. Seidel, and H. H. Xia, “Path 

Loss, Delay Spread, and Outage Models as Functions of Antenna Height for 

Microcellular System Design,” IEEE Trans. Veh. Tech., Vol. 43, No. 3, pp. 487-498, 

Aug. 1994.  

[67] M. Jankiraman, Space-time codes and MIMO systems, ARTECH House, INC., 

Norwood, MA, 2004. 

[68] M. Jiang and L. Hanzo, “Multiuser MIMO-OFDM for Next-Generation Wireless 

Systems,” Proc. IEEE, Vol. 95, No. 7, pp.1430-1469, Jul. 2007.  

[69] M. Kountouris, David Gesbert, and T. Sälzer, “Enhanced Multiuser Random 

Beamforming: Dealing With the Not So Large Number of Users Case,” IEEE J. Sel. 

Areas Commun., Vol. 26, No. 8, pp. 1536-1545, Oct. 2008. 

[70] M. Sharif and B. Hassibi, “A Comparison of Time-Sharing, DPC, and Beamforming 

for MIMO Broadcast Channels with Many Users,” IEEE Trans. on Commun., Vol. 

55, No. 1, pp. 11-15, Jan. 2007. 

[71] M. Sharif and B. Hassibi, “On the capacity of MIMO broadcast channel with partial 

side information,” IEEE Trans. Inf. Theory, Vol. 51, No. 2, pp. 506–522, Feb. 2005. 

[72] M. Trivellato, F. Boccardi and H. Huang, “On Transceiver Design and Channel 

Quantization for Downlink Multi-user MIMO Systems with Limited Feedback,” 

IEEE J. Select. Areas Commun., Vol.26, No. 8, pp. 1494-1504, Oct. 2008. 

[73] N. Benvenuto and G. Cherubini, Algorithms for Communications Systems and their 

Applications, John Wiley & Sons, Ltd, Chichester, England, UK, 2002.  

[74] N. Benvenuto, E. Conte, S. Tomasin, and M. Trivellato, “Joint Low-Rate Feedback 

and  Channel Quantization for the MIMO Broadcast Channel,” Proc. IEEE 

Africon’07, Windhoek, Nambia, pp. 1-7, Sep. 2007.  

 214



 
Reference  

[75] N. Jindal and A. Goldsmith, “Dirty-paper coding versus TDMA for MIMO 

broadcast channel,” IEEE Trans. Info. Theory, Vol. 51, No. 5, pp. 1783-1794, May 

2005.  

[76] N. Jindal, “MIMO Broadcast Channels with Finite-Rate Feedback,” IEEE Trans. Inf. 

Theory, Vol. 52, No. 11, pp. 5045-5060, Nov. 2006.  

[77] N. Jindal, U. Mitra, and A. Goldsmith, “Capacity of ad-hoc networks with node 

cooperation,” in Proc. IEEE Int. Symp. Inf. Theory, p. 271, Jun. 2004.  

[78] N. Ravindran and N. Jindal, “Limited Feedback-Based Block Diagonalization for 

the MIMO Broadcast Channel,” IEEE J. Sel. Areas Commun., Vol. 26, No. 8, pp. 

1473-1482, Oct. 2008.  

[79] National Telecommunications and Information Administration, “Unite States 

Frequency Allocations – The Radio Spectrum ,” Oct. 2003. [Online]. Available: 

http://www.ntia.doc.gov/osmhome/allochrt.pdf.  

[80] Ø. Ryan and M. Debbah, “Free Deconvolution for Signal Processing Applications,” 

Inf. Theory, 2007, IEEE International Symposium on (ISIT2007), Nice, France, pp. 

1846-1850, Jun. 2007. 

[81] Ø. Ryan and M. Debbah, “Multiplicative free convolution and information-plus-

noise type matrices,” 2007. [Online]. Available: 

http://arxiv.org/abs/math.PR/0702342.Feb. 2007. 

[82] O. S. Shin and K.B. Lee, “Antenna assisted round-robin scheduling for MIMO 

cellular systems,” IEEE Commun. Letters, Vol. 7, No. 3, pp. 109-111, Mar. 2003.  

[83] Ofcom, “United Kingdom Frequency Allocation Table,” issue no. 15, 2008. [online]. 

Available: http://www.ofcom.org.uk/radiocomms/isu/ukfat/ukfat08.pdf.  

[84] Ofcom, “Cognitive Radio,” [Online]. Available: 

http://www.ofcom.org.uk/research/technology/research/emer_tech/cograd/.  

[85] P. Ding, D. Love, and M. Zoltowski, “Multiple antenna broadcast channels with 

shape feedback and limited feedback,” IEEE Trans. Signal Process., Vol. 55, No. 7, 

pp. 3417-3428, Jul. 2007.  

[86] P. K. Varshney, Distributed Detection and Data Fusion, Springer, New York, NY, 

USA, 1996.  

[87] P. Vishwanath and D. N. C. Tse, “Sum capacity of the vector Gaussian broadcast 

channel and uplink-downlink duality,” IEEE Trans. Inf.. Theory, Vol. 49, No. 8, pp. 

1912-1921, Aug. 2003. 

 215



 
Reference  

[88] P. Viswanath, D. Tse, and R. Laroia, “Opportunistic beamforming using dumb 

antennas,” IEEE Trans. Inf. Theory, Vol. 48, No. 6, pp. 1277-1294, Jun. 2002.  

[89] Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zeroforcing methods for 

downlink special multiplexing in multi-user MIMO channels,” IEEE Trans. Signal 

Process., Vol. 53. No.2, pp. 461-471, Feb. 2004. 

[90] R. H. Clark, “A Statistical Theory of mobile-Radio Reception,” Bell Systems 

Technical Journal, Vol. 47, pp. 957-1000, 1987. 

[91] R. S. Ranasinghe, L. Andrew, D. A. Hayes, and D. Everittt, “Scheduling disciplines 

for multimedia WLANs: Embedded round robin and wireless dual queue,” IEEE Int. 

Conf. Commun. (ICC 2001), Helsinki, Finland, Vol. 4, pp. 1243-1248,  Jun. 2001. 

[92] R. Zakhour and D. Gesbert, “A Two-Stage Approach To Feedback Design In Multi-

user MIMO Channels With Limited Channel State Information,” in the 18th Annual 

IEEE International Symposium on Personal, Indoor and Mobile Radio 

Communications (PIMRC’07), Athens, Greece, pp. 1-5, Sep. 2007. 

[93] Roke, “The UK Frequency Alocations,” 2007. [Online]. Available: 

http://www.roke.co.uk/resources/datasheets/UK-Frequency-Allocations.pdf. 

[94] S. Alamouti, “A simple transmit diversity technique for wireless communications,” 

IEEE J. Sel. Areas Comm., Vol. 16, No. 8, pp. 1451-1458, Oct. 1998. 

[95] S. Haykin, “Cognitive Radio: Brain-Empowered Wireless Communication,” IEEE J. 

Sel. Areas Comm, Vol. 23, No. 2, pp. 201-220, Feb. 2005. 

[96] S. M. Mishra, A. Sahai, and R. W. Brodersen, “Cooperative sensing among 

cognitive radios,” in Proc. IEEE Int. Conf. Commun., Vol. 4, pp. 1658–1663, Jun. 

2006. 

[97] S. Vishwanath and N. Jindal, and A. J. Goldsmith, “Duality, achievable rates, and 

sum-rate capacity of Gaussian MIMO broadcast channels,” IEEE Trans. Inf. Theory, 

Vol. 49, No. 10, pp. 2658-2568, Oct. 2003.  

[98] T. Cover and J. Thomas, Elements of Information Theory, John Wiley & Sons, 

INCNew York, 2nd edition, 1991. 

[99] T. Lo, “Maximal ratio transmission,” IEEE Trans. Commun., Vol. 47, No. 10, pp. 

1458-1461, Oct. 1999. 

[100] T. Yoo and A.Goldsmith, “On the optimality of multiantenna broadcast scheduling 

using zero-forcing beamforming,” IEEE J. Sel. Areas Commun., Vol. 24, No. 3, pp. 

528-541, Mar. 2006.  

 216



 
Reference  

[101] T. Yoo, N. Jindal, and A. Goldsmith, “Multi-Antenna Downlink Channels with 

Limited Feedback and User Selection,” IEEE J. Sel. Areas Commun., Vol. 25, No. 7, 

pp. 1478-1491, Sep. 2007.  

[102] T. Ÿucek and H. Arslan, “Spectrum characterization for opportunistic cognitive 

radio systems,” in Proc. IEEE Military Commun. Conf., Washington, D.C., USA, pp. 

1-6, Oct. 2006. 

[103] T. S. Rappaport, Wireless Communications Principles and Practice, Prentice Hall 

PTR, New Jersey, 2nd edition, 2002.  

[104] Tevfik Yücek and Hüseyin Arslan, “A Survey of Spectrum Sensing Algorithms for 

Cognitive Radio Applications,” IEEE Communications. Surveys & Tutorials, Vol. 

11, No. 1, pp. 116-130, first quarter 2009. 

[105] V. Aalo and R. Viswanathan, “Asymptotic performance of a distributed detection 

system in correlated Gaussian noise,” IEEE Trans. Signal Process., Vol. 40, pp. 211-

213, 1992. 

[106] V. Erceg, L. J. Greenstein, S. Y. Tjandra, S. R. Parkoff, A. Gupta, B. Kylic, A. A. 

Julius, and R. Bianchi, “An empirically based path loss model for wireless channels 

in suburban environments,” IEEE J. Sel, Areas Commun., Vol. 17, no.7, pp. 1205-

11, Jul 1999.  

[107] W. Santipach and M. Honig, “Signature optimization for CDMA with limited 

feedback,” IEEE Trans. Info. Theory, Vol. 51, No. 10, pp. 3475-3492, Oct. 2005.  

[108] W. Santipach and M. Honig, “Asymptotic capacity of beamforming with limited 

feedback,” in Proc. IEEE Int. Symp. Information Theory, Chicago, IL, pp. 290, 

Jun./Jul. 2004.  

[109] W. Santipach, “Asymptotic performance of DS-CDMA with linear MMSE receiver 

and limited feedback,” in Proc. IEEE Int. Conf. on Commun. (ICC 08), Beijing, 

China, pp. 1393-1397, May 2008. 

[110] W. Wiroonsak and M. Honig, “Capacity of a Multiple-Antenna Fading Channel 

With a Quantized Precoding Matrix,” IEEE Trans. Inf. Theory, Vol. 55, No. 3, pp. 

1218-1234, Mar. 2009. 

[111] W. Yu, and J. M. Cioffi, “Sum Capacity of Gaussian Vector Broadcast Channels,” 

IEEE Trans. Inf. Theory, Vol. 50, No. 9, pp. 1875-1892, Sep. 2004. 

[112] Wireless Innovation Alliance. [Online]. Available: 

http://www.wirelessinnovationalliance.com/2008. 

[113] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer design,” in 

Proc. IEEE Trans. Commun., Vol. 50, No. 1, pp. 195-202, Jan. 1980. 

 217



 
Reference  

[114] Y. Sun, Y. Liu, and X. Tan, “Spectrum Sensing for Cognitive Radio based on 

Higher-Order Statistics,” 4th International Conference on Wireless Communications, 

Networking and Mobile Computing, WiCOM ’08, Dalian, China, pp. 1-4, 12-14 Oct. 

2008.  

[115] Y. Zeng, Y. Liang, A. Hoang, and R. Zhang, “A review on Spectrum Sensing for 

Cognitive Radio: Challenges and Solutions,” EURASIP Journal on Advances in 

Signal Processing, Volume 2010, 2010.  

[116] Z. Quan, S. Cui, and A. H. Sayed, “Optimal linear cooperation for spectrum sensing 

in cognitive radio networks,” IEEE J. Sel. Topics in Signal Process., Vol. 2, No. 1, 

pp. 28-40, Feb. 2008.  

[117] Z. Shen, R. Chen, J. Andrews, R. Heath, and B. Evans, “Low complexity user 

selection algorithms for multi-user MIMO Systems with block diagonalization,” 

IEEE Trans. Signal Process., Vol. 54, No. 9, pp. 3658-3663, Sep. 2006.  

[118] Z. Tian and G. B. Giannakis, “A wavelet approach to wideband spectrum sensing for 

cognitive radios,” in Proceedings of the 1st International Conference on Cognitive 

Radio Oriented Wireless Networks and Communications (CROWNCOM ’06), 

Mykonos, Greece, pp. 1-5, June 2006. 

 

 

 218


