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ABSTRACT 

 

The University of Manchester 

Mohammed Imdadul Hoque 

Doctor of Engineering 

The Application of Condition Based Monitoring Techniques for the Evaluation of Building 

Energy Performance and HVAC Health 

September 2011 

 

Carbon emissions generated by the building sector have come under stricter limits with the 

amendments to Approved Document L: Conservation of Fuel and Power of the building 

regulations for England and Wales. Building designs are now checked to ensure that new 

constructions have the designed capabilities to operate with a higher standard of efficiency. 

However, there are currently no means of ensuring that the mandatory improvements in 

design and construction are actually translating into real life improvements during the 

actual operation of the building. Assessment methodologies such as the Display Energy 

Certificate are applied annually. The large interval between audits has the potential risk 

that poor performance may go unnoticed for prolonged periods of time. Real time 

assessment of energy performance that is linked to legislative requirements would aid the 

process of ensuring reductions in carbon emissions occur in reality. Evaluating the energy 

performance in real time is not a straight forward task; commercial buildings are complex 

nonlinear dynamic systems with a number of operating states, functions and features. 

These factors need to be taken into consideration for the fair appraisal of energy 

performance.  

 

Condition monitoring has been applied extensively to the field of machine health, 

in which the state of a system is determined through measuring the parameters that are 

indicative of its health. Within this thesis, a unique method of real time energy 

performance has been developed along with the implementation of two condition 

monitoring strategies for the purposes of state evaluation and fault detection and diagnosis. 

Kernel based dimensionality techniques have recently gained popularity as a means of 

modelling nonlinear systems.  

 

It was found that the application of nonlinear condition monitoring strategies for 

determination of building state was proficient in determining slow developing faults and 

abrupt changes in building state. However, the occurrences of non-acceptable incipient 

changes in state were harder to detect. Hence the state evaluation techniques were 

complemented with component level fault detection and diagnosis techniques. These 

techniques have the combined ability to address the requirement for assessing the state of 

operation within a building to allow for fair appraisal of the energy performance.  
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CHAPTER 1 

 

1. Introduction 
 

Reliance on fossil fuel derived energy has become a major issue, raising concerns about 

the sustainability of the current rate of consumption, the increasing difficulties in 

extracting fuel from current oil & gas fields and the future exhaustion of finite fuel 

resources (Perez-Lombarda, Ortiz et al. 2008). Furthermore, the impact of using fossil 

fuels on the environment and climate change have all led to a shift in the perception of how 

energy should be generated and consumed. The combination of all these factors has led to 

the consensus that there is an urgent need to shift the balance of the current fuel mix away 

from fossil fuels towards sustainable, cleaner and renewable sources. However, the 

continuing growth in world population and the rising levels of demand for energy over the 

last several decades have as a consequence meant that energy consumption is still 

continually increasing. A significant improvement is needed in both the capabilities of 

renewable systems and the efficiency of current energy consuming systems in order to 

facilitate this transition towards sustainable energy consumption. The technological 

capabilities of renewable systems are at present inadequate to offset the energy 

requirements that are currently serviced by fossil fuel derived energy. Hence in order to aid 

this transition a greater emphasis must be placed upon improving the efficiency of energy 

consuming end uses to reduce the levels of consumption and gradually eliminate the 

reliance on carbon based fuels for power.  

 

The common metric for measuring the levels of fossil fuel energy consumption is carbon 

(dioxide) or CO2 emissions (or more commonly: Carbon emissions); there have been 

several pieces of legalisation that legally enforce a reduction in the carbon footprint of 

participating states and nations. The most widely known is the Kyoto protocol (UN 1992) 

which placed a cap on the levels of permissible carbon emissions. In addition to Kyoto the 

UK Climate Change Act of 2008 was introduced which is an legally binding agreement to 

cut CO2 emissions (Ruddock 2009). Given that the building sector is a significant 

contributor of carbon emissions (Bordass, Cohen et al. 2001), a reduction in CO2 generated 

by the building sector is essential for meeting such targets. Legislation specifically 
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targeting building operation efficiency has been formulated with the EU Energy 

Performance of Buildings Directive (EPBD) which aimed to promote improvements in 

building energy efficiency (Parliament 2002; Anderson 2006). The directive instigated a 

transition in improving energy behaviour within buildings. Amendments were made to 

Approved Document L (Part L): Conservation of Fuel and Power of the Building 

Regulations for England and Wales in which mandatory improvements on carbon 

emissions rates were set (Regulations 2006). Further improvements were consulted upon 

and implemented in the 2010 version of the Part L regulations (Government 2009; 

DoCaLG 2010). 

 

1.1 Research Background  

 

Historically, the building sector has been a source of poor energy performance; this has led 

to the building sector being identified as a key area in which efficiency can be improved 

(Parliament 2002; PARLIAMENT 2010). The amendments to Approved Document L2A 

(newly built commercial buildings) have now made it mandatory for all new buildings to 

undergo a pre and post construction emissions check. In the latter case, several parameters 

are measured from the building post construction for use in the emissions calculations to 

ensure that the building has the potential ability to operate below the Target Emissions 

Rate (TER). However, despite the post construction test proving the building has the 

designed capability to operate below the TER, without monitoring the actual performance, 

poor operation of the building or unnecessary energy waste by poorly maintained HVAC 

would result in the optimal performance not being achieved in reality. To tackle the issue 

of operational efficiency a secondary piece of legislation was introduced for certain 

buildings; the Display Energy Certificate (DEC). The DEC utilises the metered energy 

consumption data annually for benchmarking energy performance (Government 2008b). 

Retrospectively evaluating performance with an auditing period of a year, leaves open a 

wide window in which poor performance could potentially go unnoticed. There are 

currently no methods for relating the targets set by Part L to actual building consumption 

in real time. Hence it is not possible to determine whether the mandatory improvements in 

design and operation of a building as dictated by Part L are actually leading to a definitive 

reduction in energy consumption. The amendments to the Part L regulations are a 
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welcomed first step; however the net benefit of such legislation will be muted if no actual 

improvements in energy efficiency occur.  

 

The task of real time energy evaluation has largely been left to Monitoring and Targeting 

(M&T) software for commercial building, M&T software is typically installed within 

Building Energy Management Systems (BEMS). These software systems provide a means 

of evaluating energy performance; however their inability to provide a comprehensive 

assessment on the state of the building, their use of historical consumption benchmarks and 

limit thresholds lead to questions over the quality assessment. Buildings are complex 

systems that operate under a number of varied conditions and can possess a large number 

of nominal operating states. Furthermore parameters indicative of performance as well as 

the HVAC systems are all interrelated and interdependent. Examination of each parameter 

in isolation as is common with monitoring and targeting software does not fully capture the 

real state of the system. Hence targeting a single parameter that has reached a threshold 

does not necessarily provide a meaningful evaluation of the entire building. Additionally, 

measuring current performance against past consumption using historical data has its own 

drawbacks. In many cases it is not known what level of performance the historical 

benchmark represents, and therefore a history of past inefficiency would rate the current 

inefficient performance as efficient. Differentiating between the acceptable and non-

acceptable states is essential if a fair appraisal of building performance is to be made. For 

example, it is important to distinguish between occurrences where the energy consumption 

is high but acceptable given the circumstance from periods of poor performance. 

Therefore, it is necessary that the state of the building is taken into consideration when 

performing energy assessment.  

 

The impact on faults and failures of the building services systems on performance must 

also be taken into account if buildings are to perform efficiently in the long term. It has 

been estimated that up to 15-30% of energy wastage within buildings can be attributed to 

poorly performing HVAC systems (Katipamula and Brambley 2005b; Liang and Du 2007). 

There has been a significant level of academic interest in applying Fault Detection and 

Diagnostic techniques to building services plant. However, these are usually applied to a 

single building service plant system and not to the entire range of equipment that is usually 

installed within a typical commercial building. It is important to integrate HVAC health 

with energy assessment to determine the underlying causes of poor energy behaviour. 
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Furthermore, current research has failed to address the link between the effects of a failure 

and the impact on the building as a whole with regards to energy performance. Hence, 

there is no holistic approach currently developed to address these issues.  

1.2 Research Aim and Objectives 

 

This research project seeks to develop and implement Condition Monitoring (CM) 

techniques as a means of evaluating real time energy performance and for the 

determination of building state in conjunction with fault detection and diagnosis of the 

HVAC systems. The utilisation of CM strategies has been successfully implemented in 

other industrial sectors for fault detection and diagnosis. This EngD project plans to adapt 

the traditional concepts of CM strategies with aim of testing the hypothesis that 

 

“Condition Monitoring can be applied to the building sector for the improvement of 

energy performance and maintenance practices.” 

 

In order to test the hypothesis four objectives were identified from studying the 

background literature, these objectives are discussed again in the literature review chapters. 

 

1. Investigating the means of ongoing energy performance evaluation in real time 

through the development of appropriate benchmarks 

2. Creating a means of evaluating the actual building energy performance against the 

legislative design performance  

3. Developing an assessment methodology capable of distinguishing the various states of 

health/efficiency of a building  

4. Developing a means of performing HVAC fault detection that is capable of working in 

tandem with energy evaluation techniques 

 

1.3 Engineering Doctorate Programme 

 

The Engineering Doctorate (EngD) is a 4 year doctoral level programme that is focussed 

solving an industrial problem. Research is performed in collaboration with an industrial 

partner for whom the research topic is of commercial interest. The industrial sponsor 

contributes experience, training, resources and contacts within industry towards the 
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project. As with a traditional PhD the research engineer is required to submit a thesis at the 

end of the programme for viva voce examination, in which the scientific and technological 

contribution to knowledge is examined along with the commercial implications.  

1.3.1 Professional Development 

 

As part of the professional development element of the EngD programme, a postgraduate 

diploma in Management Sciences (awarded by Manchester Business School) was 

undertaken in the first two years. The diploma consisted of 8 modules with taken four in 

the first year and four and in second year. The module topics were Production Systems; 

Industrial Relations; Managerial Economics; Individuals, Groups and Organisations; Total 

Quality Management; Logistics and Supply; Management Accounting and Marketing 

Management. These modules enabled the research engineer to better understand the 

commercial implications of their project and provided a means of understanding how the 

research project may fit into a wider commercial context. 

 

Additionally, courses and workshops were integrated into the EngD programme to enhance 

the research engineer’s professional development. These courses and workshops helped to 

improve a wide range of key skills and abilities including effective project management 

techniques, communication skills, presentation and technical writing and negotiation skills.  

 

1.4 Thesis Outline 

 

Following on from this chapter the literature review is given in two parts in Chapters 2 and 

3. Chapter 2 reviews the legislative requirements for energy evaluation for buildings and 

the current benchmarks used in both academia and in industry for measuring building 

performance. The current shortfalls and gaps in technology are highlighted in both 

academic research and commercial software that is currently offered on the market. 

Chapter 3 provides an introduction to condition monitoring detailing the strengths and 

weaknesses of various condition monitoring approaches. Chapter 3 goes on to review the 

condition monitoring research that has been applied for the purposes of building energy 

evaluation. An overview is then given on fault profiles which details the manner in which 

faults and failures manifest themselves in process data. Information on the key faults and 

failures responsible for poor energy performance within building is then provided. 
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Chapter 4 provides the details of the case study building used in this project for proof of 

concept testing of the condition monitoring and energy evaluation methodologies. A 

preliminary investigation is conducted using a dynamic thermal model representation of 

the case study building to determine the building response to variations in the HVAC 

parameters.  

 

The next two chapters detail the methodologies that were used to address the gaps in 

technology and knowledge that were identified in Chapter 2. Chapter 5 details the use of 

the Target Consumption Rate (TCR) and the Buildings Consumption Rate (BCR) to 

evaluate the actual energy consumption of the building. A real time evaluation 

methodology is presented along with two Energy Performance Indicators. The data driven 

condition monitoring techniques that were used to capture the state and health of the 

building is then presented. This is followed by the fault cases that were developed to test 

the effectiveness of the state evaluation techniques. Chapter 6 details the knowledge based 

methodology that was employed to detect faults with the building HVAC systems 

independently of the methodologies detailed in Chapter 5. The features of the inference 

engine that was developed are then presented with further fault cases for testing the 

knowledge based system.  

 

The results are presented and discussed in Chapters 7 and 8. Chapter 7 presents the real 

time energy evaluation tool results using two cases. The results of the statistical system are 

also presented along with its ability to differentiate between nominal and fault states. 

Chapter 8 provides the test case results from the knowledge based systems in evaluating 

the HVAC systems. 

 

Chapter 9 discusses the commercial implications of the research performed for this thesis 

including the potential benefits, drawbacks and current limitations. Finally, Chapter 10 

concludes the findings from the research project and discusses recommendations for future 

investigations.  
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CHAPTER 2 

 

2. Building Energy Performance Evaluation 
 

The primary role of a typical construction is to provide a comfortable inhabitable 

environment for the occupants to work or live in, sheltered from adverse external weather 

conditions (Chadderton 1991). Within commercial buildings a significant proportion of 

energy consumed can be attributed to those systems utilised to regulate the internal 

environment (Nicholls 2002; Perez-Lombarda, Ortiz et al. 2008). These systems are 

collectively categorised as the HVAC (Heating, Ventilation and Air Conditioning) building 

services systems. In the majority of non-domestic building one or more of these systems 

are employed. For each system there are a range of methods for achieving the target 

internal conditions, heating can be done through radiant panels, under-floor heating 

systems, standalone electric heating. Some buildings may have rooms that require special 

consideration such as server rooms in which the cooling system may be required to run 

continuously in order to maintain a low temperature. In addition to this, occupant 

frequency will have a significant influence on the level of energy consumption and HVAC 

loads. The external climate will also affect the energy requirements for maintaining a 

comfortable internal environment. Any evaluation of performance must take these factors 

into consideration for the provision of a fair appraisal of building efficiency. Aside from 

the HVAC expenditure, the remaining energy consumption can be attributed to the 

equipment or end uses installed within the building; however these consumptions are not 

typically included in the energy evaluation process. 

 

The development of an effective methodology for assessing the energy consumption of 

commercial buildings is a critical factor for meeting the carbon reduction obligations 

within the building sector. As the old management adage states “You can’t manage what 

you don’t measure”.  However, determining the performance of a commercial building is 

not a simple task, unlike domestic properties that have relatively predictable consumption 

patterns and limited functionality; commercial buildings have a wider range of 

functionalities and employ a greater range of building services systems. Furthermore, 

commercial buildings can be structurally complex which creates difficulties in 
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differentiating nominal operation against periods of inefficiency (Casals 2006). As the 

number of variables influencing energy consumption increases the greater the challenges 

encountered in determining the health/state or level of efficiency of the building. 

Variations in HVAC utilisation throughout each day and weekends, irregular occupation 

periods, coupled with unpredictable variables such as external weather conditions, all 

contribute to the difficulties in capturing the operational processes. Furthermore, such 

variation can mask inefficient behaviour making it harder to determine the efficiency of the 

building as a whole. Thus there is a real danger present of misdiagnosing the state of 

building performance if the methodology is unable to differentiate between high energy 

consumption that is permissible given the circumstances for that period and excessive 

consumption due to poor performance. To overcome this, a benchmark or method of 

evaluation is required that provides a means of measuring performance. The next section 

looks into the current legislative requirements, targeting those specifically aimed at 

monitoring and assessing energy consumption. 

 

2.1 Building Sector Legislation 

 

Several pieces of legislation specifically targeting the building sector have shaped the 

current requirements for those involved in the construction and operation of buildings. The 

following subsections detail the legislative requirements aiming to bring about 

improvements in building operation efficiency. 

 

2.1.1 EU Energy Performance of Buildings Directive 

 

The Energy Performance of Buildings Directive (referred to as the EPBD) was the initial 

driver for the improvement of energy efficiency within buildings (Parliament 2002; 

Anderson 2006). For the purposes of this review the recast version of the EPBD 

(sometimes referred to as EPBD 2) shall be considered as it contains the most up to date 

aspirations of the legislation. EPBD 2 continues to focus on promoting the improvements 

laid out in the 2002 EPBD and introduces new initiatives and provides updates to the 

previous version. EPBD 2 comprises of 31 articles on proposed initiatives and standards 

with the most prominent theme being the implementation of energy efficiency strategies 
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for future energy security and to ensure compliance with Kyoto. In order to bring about an 

overall 20% reduction in carbon emission, the building sector has been identified as having 

significant potential for cost effective savings. Additionally, there is mention of the 

importance of managing energy demand on a macroscopic scale; it is the opinion of the 

author that to fully understand and achieve a greater level of control over large scale 

energy demands within the building sector, it must first be clearly assessed on a 

microscopic level (singular building level). Several relevant pieces from the EPBD are 

detailed in the following paragraphs. 

 

Article 3 of the recast EPBD details the proposed adoption of a methodology for 

calculation of the energy performance of a building, this is further expanded upon in 

Annex I, in which it is stated that  

 

“The energy performance of a building shall be determined on the basis of the 

calculated or actual energy that is consumed in order to meet the different needs 

associated with its typical use.” (PARLIAMENT 2010).  

 

Additionally, the energy evaluation methodology shall take into account the local climate, 

the designated function of the building as well as the age of the building. Differentiation 

between differing types of buildings shall also be taken into account (PARLIAMENT 

2010). This is currently being implemented in the form of the Target Emissions Rate 

(further details on the TER are given in the next section) calculations that utilise NCM 

functionality profiles and weather data. As previously detailed energy evaluation must 

integrate such factors to derive a suitable and fair benchmark. Paragraph 2 of Annex I 

prescribes transparency in energy performance with the inclusion of a benchmark or 

performance indicator  (Campbell 2007; PARLIAMENT 2010). 

 

Article 11 details the requirement for the implementation of Energy Performance 

Certificates (EPC’s) in all new buildings, renovations and buildings which are utilised by 

the public with a useable floor space greater than 500m
2
. The EPC shall contain include the  

 

“energy performance of a building and reference values such as the minimum energy 

performance requirements” (PARLIAMENT 2010). 
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This is done for the purposes of providing building owners and operators with the 

opportunity to compare the EPC performance against the actual performance. However, 

EPCs are generated every five years during which the condition and performance of the 

building would undoubtedly change. Further information on EPCs is given further on in 

this chapter.  

 

2.1.2 Approved Document L  

 

Implementation the objectives/requirements detailed in the EPBD is primarily done 

through national legislation. Within England and Wales this is predominantly done through 

Approved Document L (Part L): Conservation of Fuel and Power for England and Wales 

of the Building Regulations. Part L has undergone several iterations since the 2006 version 

which introduced the mandatory target emissions rate. The 2013 version of Part L is 

currently out for consultation. The key points from Part L 2006 are detailed with a section 

following on highlighting the key changes made for 2010.  

 

The most notable change from previous iterations of the Part L Regulations (pre 2006) is 

the inclusion of a mandatory target emissions rate (TER) (Regulations 2006). The main 

focus of Part L 2006 is the cap on energy emissions and the stricter design limits. The 

ideology behind the stricter limits on standards for building fabric and HVAC plant 

specification is to ensure that the building has the potential to operate at a lower 

consumption rate and that as a result this will lead to better energy efficiency in actual 

operation. However, this does not take into account that the building and its HVAC 

systems may be operated inefficiently in reality. 

 

The Building Emissions Rate (BER) is derived from the NCM (National Calculation 

Method) which calculates the theoretical emissions rate for a building. The national 

calculation method is defined by the Department for Communities and Local Government. 

The NCM calculations utilises standard data sets for different activity areas and uses a 

common database of construction and service elements (DoCaLG 2009). Calculation of the 

BER is done at two stages, firstly at pre construction to ensure that the building is of sound 

fundamental design and secondly at post construction (handover stage). In the case of the 

latter, some parametric data from the real building is utilised in the calculation process 
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(such as air permeability and fan efficiencies). The building is deemed to have passed if the 

BER is less than the Target Emissions Rate (TER). Calculation of the TER is done by first 

determining the performance of a notional building. The notional building is of the same 

shape, size and function as the actual building, it must be of the same orientation and use 

the same HVAC systems employed. Where the notional and actual building differs is the 

standards for building fabric, in the notional building they are based on the international 

standards made reference to in Part L 2002. In addition to this the U-values, solar and light 

transmittance values, opening sizes, and efficiency values for HVAC are also fixed 

(Government 2008). The TER is then calculated by Equation 2.1 (Regulations 2006): 

 

TER = CNOTIONAL x (1 – ImpvF) x (1 – LZC)  Equation 2.1 

 

where CNOTIONAL is the carbon emissions (kgCO
2
/m

2
/annum) generated by a notional 

building, ImpvF is the improvement factor for building efficiency, for a heated and 

naturally ventilated building the ImpvF is 0.15. LZC is the low and zero carbon energy 

benchmark, as of 2006 this was set to 10% of the building emissions. Despite the 

introduction of and amendments to the legislation detailed previously, there are limitations 

still present when assessing building efficiency. 

 

It is stated in Part L (paragraph 66) that  

 

“Buildings should be constructed and equipped so that performance is consistent with 

the predicted BER” (Government 2008) 

 

Currently the post construction test is regarded as sufficient to fulfilling this aim. Bordass 

et al (2004) highlight the potential of the legislative requirements as a means of closing the 

‘credibility gap’, the difference between the expectations of the designed energy efficiency 

and that of the actual consumption (Bordass, Cohen et al. 2004). Performance monitoring 

of the actual building falls outside the scope of Part L and whilst the EPBD 2 is aiming to 

improve the methodology for assessing buildings it too does not provide a means of 

determining whether the legislative initiatives actually translate into real improvements in 

building efficiency. As a result there was a significant amount of research performed that 

investigated different methods of implementing the efficiency standards in relation to 

actual building performance (Bordass, Cohen et al. 2001; Maunsell 2003; Roulet and 
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Anderson 2006; Cohen, Bordass et al. 2006a; Cohen, Bordass et al. 2006b). In 2008 the 

DEC was introduced in which it addressed the issue of the ‘credibility gap’; DECs are 

discussed in the next section. 

 

The updated 2010 version of Part L has several changes from the 2006 version, the most 

notable is that the updated version identifies that it is easier (and more cost effective) to 

achieve a reduced consumption in some buildings than others (DoCaLG 2010). A new 

method of defining the TER is given based on two approaches the flat rate (requires a 25% 

reduction on the 2006 TER), and the aggregate approach which uses a newly defined 

notional building so that all new buildings on aggregate would achieve a national target of 

25%.  

 

2.1.3 Display Energy Certificates  

 

The Display Energy Certificate (DEC) is an annual check on performance that uses actual 

metering data from the building. The DEC came into force on the 1
st
 of October 2008 and 

is required for all public authorities and institutional buildings (with a useful floor space 

greater than 1000m
2
) that provide a service to a large number of people (Government 

2008b). DECs grade building performance using a scaled set of grades from A to G, 

providing the owner/facilities management with a visual measure of how the building has 

performed in the previous year. Grading is a useful indicator as it acts as praise for good 

performance and as an incentive for improvement in cases of poor performance. The level 

of performance or Operational Rating (OR) determines the DEC grade and is calculated 

using Equation 2.2 (DoCaLG 2008). 

 

OR=(Building CO2 emissions/A)*(100/Typical CO2 emissions per unit area) Equation 2.2 

 

where A is the Building Area (m
2
). Each building is categorised by the building use typical 

to that type of building, which is then used to select the benchmark (DoCaLG 2008). The 

benchmark uses standardised conditions for a number of parameters including temperature 

and occupancy patterns. 
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There are limitations in the use of the DEC. The DEC annualises building performance 

thus periods of poor efficiency are not distinguishable from periods in which the efficiency 

is good or sufficient. This problem is inherent to annual benchmark evaluation methods 

and possesses the risk of masking the true level of performance throughout the year. For 

example poor performance during the winter months could be offset by periods where the 

building is unoccupied. It is not possible to identify the state or time period when poor 

performance occurs, hence it is difficult to isolate the root causes responsible for increased 

energy consumption. Retrospectively analysing energy efficiency with an auditing period 

of a year has the further risk that the causes of poor performance may only be identified 

long after they have potentially caused months of unnecessary energy wastage.  

 

2.1.4 Energy Performance Certificates  

 

The EPC is mandatory for all new constructions and for buildings that are rented or sold 

(Article 7 of the EU directive) (PARLIAMENT 2010). EPC’s have a validity period of 10 

years and are based upon some parametric values such as HVAC operating specifications. 

Hence, the EPC is similar to the TER in that it is a theoretical benchmark of what the 

building could achieve. EPCs also have a grading system that informs the end user of the 

building performance, with the aim of providing a comparative benchmark against which 

to measure actual performance. This does not take into account factors that may affect 

energy consumption throughout the year and hence the EPC has the same drawbacks as the 

DEC. Additionally, the 10 year validity period leaves a long period of time in which the 

EPC building rating could become highly inaccurate or obsolete. Furthermore the 

performance rating may not actually be checked against what is actually going on in the 

building. 

 

2.1.5 Carbon Reduction Commitment 

 

The final piece of legislation relating to the performance of buildings is the Carbon 

Reduction Commitment (CRC). The CRC is a mandatory scheme to improve energy 

efficiency in large public and private sector organisations (DofEaCC 2010). The CRC 

scheme only applies to companies that have half-hourly metered electricity consumptions 
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greater than 6000MWh per annum. Companies and institutions that are participating in the 

scheme are required to monitor and report their CO2 emissions each year, each company is 

allocated a carbon ‘budget’ and excessive use of energy will require the company to 

purchase additional credit (each credit allowance is currently £12 per tonne of CO2). 

Furthermore, a league table is to be made publically available showing the best and worst 

performing companies. The aim of which is to encourage companies to improve their 

efficiencies to save on costs and reduce their respective carbon emissions. Tools that are 

able to monitors the efficiency of the buildings in real time would be of commercial 

benefit, allowing for greater ease in emission/energy budget management and to ensure 

continued improvement to avoid penalties. 

 

2.2 Energy Evaluation Techniques 

 

Further to the methods of energy assessment detailed previously this section shall review 

the relevant academic research that addresses evaluation of building performance. The 

background literature indicates two themes in energy assessment within buildings; the first 

is the use of externalised benchmarks whereby a comparison is drawn between the energy 

consumption of the building with that of other similar buildings. The second is the 

internalised benchmark that offers greater levels of customisation and the use of actual 

building parameters/data in determining the benchmark. The aim of which is to capture 

some of the inherent characteristics of the actual building.    

 

External benchmarks draw upon empirical energy consumption data from similar buildings 

(typically categorised by functionality) as a reference to nominal energy utilisation (Jones 

and Cheshire 1996). To normalise for differing sizes of buildings the energy consumption 

is divided by the useable floor space, hence the Energy Use Intensity (EUI) per m
2
 is the 

primary indicator of performance in these studies. There are a wide variety of databases 

and guides compiling energy consumption data for the purpose of benchmarking energy 

consumption, the most prominently utilised benchmarks along with the studies utilising 

them are detailed within this section. 

 

The Energy Star database utilises data from the Commercial Building Energy 

Consumption Survey (CBECS). The CBECS database is compiled every four years with 
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the latest survey being carried out in 2011; classifications are drawn along generic building 

functionalities such as health care, educational and office buildings. Information such as 

building age, total floor area and occupancy periods are collected during the survey (EPA 

2007). A significant drawback in the Energy Star methodology is the regression model 

utilised to derive the benchmark index only includes physical parameters that relate to the 

building operation (hours occupied per week, number of office equipment installed) and 

excludes those parameters that primarily determine the consumption levels such as the 

efficiency of installed equipment. Another point to note is that data for the survey is 

collected via telephone conversation and cannot be verified unlike a meter reading.  

 

The CBECS database was used by Sharp (1996) to compare energy usage against actual 

the consumption of a building whilst determining the parameters that had the greatest 

impact on consumption for offices (Sharp 1996). Sharp (1996) filtered out data samples 

that had a weighted average floor space due to inconsistencies between the values given by 

building operators in interviews and recorded values for floor space. Additionally the 

weighting factors within the CBECS database were not applied as  

 

“...the uncertainty that these specific weighting factors would produce appropriate 

representations since individual building characteristics like those resulting from this 

analysis can vary so much from building to building.” (Sharp 1996). 

 

The effects on performance due to different HVAC specifications or variations in building 

usage are not taken into account when considering a simple normalised EUI/m
2
 

methodology. It can also be argued that taking this approach over simplifies the 

complexities involving building operation and that, in order to form a credible method of 

benchmarking factors affecting energy consumption must be integrated (Sharp 1996; 

Chung, Hui et al. 2006). Chung (2006) attempts to overcome this by integrating various 

energy influencing parameters within the EUI, however, several assumptions are made 

regarding occupant behaviour that would in the real world be unrealistic (for example, 

lights and air conditioning turned off when not used, assuming regular maintenance of 

HVAC to keep efficiency at good levels). Furthermore, the variations in different buildings 

properties (location, shape and size) cannot be assumed to be accounted for by normalising 

the EUI by floor space. Thus the use of EUI/m
2
 as a benchmark may over simplify the 
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nature of building energy consumption (Monts and Blissett 1982; Liddiard and Wright 

2008). 

 

The CIBSE TM22 provides guidance on evaluating the performance by measuring 

consumption against the benchmarks from ECON19 which was developed by the Carbon 

Trust (Liddiard and Wright 2008). The benchmarks applied depend on the building 

functionality, with classifications for offices, hotels, industrial buildings and so on for a 

range of building functions. Three modelling methodologies are presented for evaluation; 

simple assessment for a building with up to 2 energy supplies, general building assessment 

with zones of differing types of function and non-standard occupancy and energy 

consumption patterns, and the third is a systems assessment that assesses the consumption 

against benchmarks for the HVAC systems (CIBSE 2006c). The ECON19 guide 

specifically targets the performance of office buildings with other guides providing 

benchmarks for other building functionalities. Office buildings are segregated by their 

respective complexity with classification groups ranging from naturally ventilated cell 

offices to air conditioned offices that would typically act as headquarter offices (Energy 

2003). End use consumption is also benchmarked including energy for catering, computer 

rooms and the typical HVAC systems. Energy consumption is categorised as ‘Typical’ if 

the consumption is in line with the median, whilst buildings with a significantly lower 

consumption are rated as ‘Good Practice’. The data from the ECON19 database consists of 

data based upon energy consumption in offices in the 1990’s. Thus advancements in 

technology may render such data irrelevant to operational practices and energy 

consumption. Additionally, the good practice benchmarks for end uses appear to be taken 

from different standards, for example the benchmark for cooling may have come from a 

building with a low demand for cooling, whilst the heating demand from an entirely 

different building (Liddiard and Wright 2008). Given the interrelated nature of HVAC 

operation achieving good practice is far more difficult when considering a ‘whole’ 

building.  

 

Jones et al (2000) have created their own database from local building stock, thereby 

attempting to capture the situational relevance (and impact) of typical weather conditions 

specific to that region, segregating by building functionality (Jones, Turner et al. 2000). 

However, with any external benchmark large numbers of samples are required to 

accurately define the energy consumption, by analysing local stock exclusively and whilst 
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simultaneously grouping buildings by functionality this reduces the number of samples per 

grouping leading to the possibility of creating inaccurate benchmarks. 

 

The use of external benchmarks has several limitations with the greatest drawback being 

unrepresentative samples within the data source affecting the reliability of the database to 

act as a benchmark. Other limitations include the difficulties in determining how 

normalisation was performed and the potential for inconsistencies in the data collection 

process. The latter is especially problematic as it would be difficult to isolate and remove 

such data samples from the database before utilisation. Therefore, depending on the 

benchmark utilised varying conclusions could be drawn as to the performance of the 

building. For example, in the Probe studies conducted by Bordass (2001), buildings were 

selected specifically based upon their ‘good’ performance thereby skewing the benchmarks 

to be overly stringent (Bordass, Cohen et al. 2001). Essentially, these assessment methods 

filter down to a static single figure which acts as a guide for typical performance of 

buildings with a common functionality within that sector. External benchmarks are unable 

to capture the intricate characteristics of individual buildings and therefore are unable to 

provide an assessment that takes into account the parameters that affect building 

performance.  

 

To overcome the limitations that exist with externalised benchmarks there has been work 

performed to provide greater levels of customisation in deriving a benchmark for 

assessment. The aim of which has been to develop a more accurate Energy Performance 

Indicator (EPI) that attempts to capture the characteristics of the building under 

observation. Cohen et al (2004) proposed using energy budgeting for the purpose of 

meeting the EPC requirements and compliance testing. This created the opportunity to 

tailor EPI’s for specific buildings automatically generating the TER (Cohen, Bordass et al. 

2004). However, the study placed the focus upon offices and typical office equipment only, 

significantly narrowing the number of buildings applicable for such a methodology.  

 

Field et al (1997) investigated a means of testing the energy performance of the building 

by analysing the efficiency of the HVAC end-uses by comparing them with external 

benchmarks. The aim of which was to segregate each major end use in order to tailor the 

assessment process for evaluation against the building systems installed (Field, Soper et al. 

1997). Whilst this method captured the characteristics of the building HVAC systems it 
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still used external benchmarks as a means of evaluating them. Aside from the problems 

stated in the previous section regarding external survey data, variations in HVAC 

parameters and occupancy periods can affect how the HVAC is assessed regardless of 

whether additional consumption was as a result of acceptable circumstances or not. 

  

Modelled benchmarks move towards creating a bespoke evaluation of individual buildings 

to allow for a significantly greater level of accuracy in evaluating the energy performance 

of the building. A strength of modelled benchmarks is that they do not require the collation 

of data from similar buildings (Liddiard and Wright 2008). Models typically use 

consumption data, building functionality and the operating parameters of the installed 

HVAC systems to evaluate energy consumption based upon the fundamental principles of 

building operation. Thereby preserving and integrating the inherent characteristics of the 

building and avoiding the generalisation that is intrinsic to external benchmarks. The main 

drawback of modelled benchmarks is that they require intensive modelling to ensure that 

the benchmark consumption is accurate. Given the complex nature of building operation 

this process can be time and cost intensive. Hence, model based approaches are generally 

not widely used to model the whole building but rather individual HVAC systems, further 

details are provided in Chapter 3. 

 

Federspiel (2002) calculated the expected the energy consumption of a laboratory from 

first principles taking into account the building function and specialist equipment 

consumption (Federspiel, Qiang et al. 2002). The model developed by Federspiel (2002) 

used idealised consumption rates to produce a benchmark for laboratory based buildings. 

By incorporating the features of the energy consuming units a normalised benchmark was 

extracted for use with both laboratory and non-laboratory buildings. The laboratory based 

benchmark contained all the relevant information needed to perform analysis for the 

laboratory, however, generalisation of the benchmark in its application to non-laboratory 

buildings was the equivalent of using an external benchmark and lacked the robustness of 

the original modelled benchmark. Whilst modelled based approaches do provide 

favourable levels of accuracy, the time and cost involved in producing models is 

prohibitive for widespread implementation for individual buildings. An alternative would 

be the use of Dynamic Thermal Models which are described later on in this chapter. 
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A subset of modelled benchmarks is baseline models. Baseline models use historical 

consumption data to determine the energy required to operate the building as well as to 

predict future consumption (Dong 2005). Sondregger (1988) created a baseline equation 

utilising utility bill data that took account of both weather and non-weather related 

variables to project future consumptions (Sonderegger 1998). Whilst a number of variables 

were taken into consideration in the development of the baseline equation the study did not 

take into account HVAC efficiencies and other key features. Overall, baseline models are 

typically easier to implement but lack the robustness of modelled benchmarks. 

  

2.2.1 Degree Days and Historical Data 

 

Heating and cooling degree days are used for attributing the level of energy required to 

heat or cool the building when the external temperature falls below (or rises above in the 

case of cooling) a base temperature (CIBSE 2006a). In the case of heating degree days the 

base temperature is typically set to 15.5
o
C. For example, if the external temperature is 

12
o
C on average for a day then the degree days would be equal to 3.5 heating degree days. 

By performing regression analysis on the energy consumption against the number of 

heating/cooling degree days a relationship between energy consumption and external 

temperature can be obtained. The correlation illustrates the base relationship between 

energy consumption and external temperature hence allowing for the performance of the 

building to be evaluated without discriminating in cases of greater consumption due to 

adverse weather conditions. There are problems with exclusively utilising degree days for 

energy evaluation. Degree days omit all other factors such as HVAC efficiency, irregular 

occupancy and so on, meaning that they are unable to account for changes in consumption 

as a result of any other variable aside from temperature changes. There are a multitude of 

possible factors that could affect energy consumption apart from external temperature. 

Furthermore, use of data points in the regression analysis that have increased consumption 

as a result of non-temperature related variables can skew the correlation trend, giving a 

misleading relationship between temperature and energy consumption. Hence, when 

analysis of consumption trends is performed variables aside from temperature need to also 

be considered (Sonderegger 1998). 
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Historical energy data can provide an insight into the energy consumption behaviour of a 

building. Given a relatively predictable HVAC load and similar external weather 

conditions year on year, performance can be analysed for greater or lower consumption. 

However, there are difficulties in determining the operating efficiency of the building in 

the past. Therefore in most cases it is not possible to determine whether the past 

consumption data utilised for comparison was of good or bad behaviour. Additionally, 

historical consumption data fails to provide information on variables that are influencing 

the energy behaviour as the consumption data is considered in isolation. Finally, it may 

take several years of building operation to gain sufficient data for analysis; this is a 

significant disadvantage especially in the case of new buildings.  

 

2.3 Building Energy Management Systems 

 

Building Energy Management Systems (BEMS) are typically installed in the majority of 

sizeable commercial buildings; these systems are employed to provide control over the 

internal environment for occupant comfort (Nicholls 2001). Modern BEMS typically 

comprise of a central BMS station and intelligent outstations (Levermore 2000). The 

central station contains the software that is used to control the internal environment, run 

the daily operational profiles, supervise the outstations and store data that is sent from the 

outstations. The outstations are the units that control the plant equipment; outstations 

receive input from sensors and through closed loop control feedback mechanisms generate 

an output in the form of controlling actuators, valve positions and other systems to regulate 

the internal atmosphere. These systems have the ability to log a range of process parameter 

data, this data can be retrospectively analysed or through the use of on-line monitoring 

systems evaluated in real time. On line evaluation refers the assessment of the current state 

of the system by using each new set of incoming data for evaluation. Currently, the 

commercial state of art for building energy evaluation lies with Monitoring and Targeting 

(M&T) software installed within BEMS that use the incoming data to analyse energy 

performance.  
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2.3.1 Monitoring and Targeting Software Systems 

 

Monitoring and Targeting (M&T) software typically measures and logs the energy 

consumed for end uses and highlight the areas where excessive consumption is occurring. 

Use of M&T software has largely replaced the need for manual energy audits as the 

software algorithms not only collate the data but are also capable of providing analysis on 

the current state of performance. M&T systems tend to operate in four stages; monitor the 

energy consumption and derive a base energy load, determine a residual between expected 

energy consumption and actual energy consumption, CUSUM (CUmulative SUM) charts 

are typically applied to determine the cumulative increase or decrease in energy consumed 

over a set period of time. The next stage is identification of the possible reasons for 

excessive consumption aided by the results from the CUSUM charts and out of bound 

threshold limits. The final stage is to set targets for future consumption by taking measures 

to reduce the consumption of end-uses that are responsible for the increased energy 

expenditure and to monitor for deviations, thus repeating the cycle. In addition to this, 

many M&T software systems utilise historical consumption or set limit thresholds (via 

CUSUM analysis) for out of bounds alarms, variations in external temperature are 

typically dealt with by degree days (Pennycook 2001).  

 

The key limitation of M&T software is that they generally use historical energy data for 

evaluation which may then be used to set benchmarks or limit thresholds. Given the 

shortcomings previously detailed in using historical data its use as a benchmark for 

performance within M&T software has considerable disadvantages. Setting the maximum 

consumption level for a given system or end use is akin to using a limit threshold. Setting a 

threshold for systems that operate without the influence of other variables is acceptable, for 

example, setting a threshold on the maximum boiler outflow temperature to 80
o
C would 

suit the needs of monitoring the outflow temperature during occupied periods as it can be 

evaluated in isolation to the rest of the building. However, setting a maximum value for 

energy consumption (even after compensating for external temperature) does not take into 

account the variety of acceptable causes for increased consumption. They do not take into 

account plausible reasons for excessive consumption hence there is the potential of 

misdiagnosing the consumption trends. The converse also applies, for example, a faulty 

sensor that leads to a reduction in heating being supplied and therefore reducing HVAC 

energy consumption may be overlooked or seen as an improvement in performance. 
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2.4 Dynamic Thermal Model (DTM) 

 

There has been the development of numerous DTMs over the last several decades that 

simulate building operation and energy behaviour. Systems such as Energy Plus, DOE-2 

and BES (Building Energy Simulation) Test were developed to test and optimise building 

design by simulating the operation of a building (Judkoff and Neymark 1995; Crawley, 

Lawrie et al. 2000; Hirsch, Winkelmann et al. 2001). SBEM is better known within the UK 

and has been specifically developed to test building designs to determine if they meet the 

Part L TER. The Virtual Environment by Integrated Environmental Solutions (IES) is 

another commonly used software platform used to evaluate building design. Virtual 

Environment also has a Part L compliance tool used for generation of EPCs and for 

calculating the pre and post construction performance. The post construction IES 

compliance tool integrates the actual features of the building in simulating the BER. This 

includes important factors such as location, weather data, building orientation and physical 

characteristics of the actual building including the number and types of rooms. 

Furthermore, HVAC parameters and the U-values are also used to simulate the building 

behaviour. In essence the DTMs provide a bespoke assessment of the building.  

 

Given that post construction performance testing is now mandatory, the use of DTMs will 

undoubtedly become common place. The DTMs have the ability to model a wide range of 

buildings and functionalities. They are easier to develop than modelled benchmarks as the 

DTM software environment has all the necessary functions and calculation processes built 

in. 

 

2.5 Summary & Project Objectives 

 

The main aim of the EPBD and Part L is a genuine improvement in building efficiency. 

However, the legislation fails to bridge the gap between the legislative design requirements 

and the daily operational performance. Providing a link between the design and operational 

efficiency is essential for tangible improvements in energy efficiency within the building 

sector. The current means of assessing building energy performance largely rely upon the 

use of historical data, external benchmarks, rudimentary limit thresholds or monitoring and 

targeting software. These techniques do not possess the ability to assess the operational 
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performance against legislative targets and more significantly they are incapable of 

capturing the complex, multivariate processes of building operation. Capturing and 

assessing the building characteristics and operational state is crucial to providing an 

unbiased assessment. Hence, there is no current methodology in place that is able to 

provide a link between the design and operational performance of commercial buildings 

whilst concurrently capturing the process state to allow for a fair assessment of 

performance.  

 

It is the author’s opinion that real time energy evaluation would provide a means of 

overcoming the drawbacks of the current methodologies and help further the goal of 

improving energy efficiency in the building sector. Development of a dynamic energy 

assessment tool would allow for faster feedback of building performance and would 

remove the burden of performing manual audits. Hence objective one of the research 

project is: 

 

1. Investigating the means of ongoing energy performance evaluation in real time through 

the development of appropriate benchmarks 

 

As previously noted a major shortcoming in the current legislation is that it fails to address 

the link between theoretical performance and what occurs in reality, whilst the building 

may have the theoretical potential ability to pass the TER this may not actually translate 

into real improvements in building efficiency. Real improvements are required if 

commitments to Kyoto and other initiatives are to be met. Thus objective two of the 

research project is: 

 

2. Creating a means of evaluating the actual building energy performance against the 

legislative design performance  

 

In order to fairly appraise building performance the evaluation methodology must be able 

to distinguish between nominal and poor performance as part of the energy assessment 

process. Commercial buildings can be complex with many interrelated parameters which 

result in numerous nominal and abnormal states of operation. Therefore the evaluation 

technique must be able to assess the building as a whole, taking into account the multitude 
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of parameters that influence performance in order to relate the state of the building to the 

current rate of energy consumption. Thus objective three is 

 

3. Developing an assessment methodology capable of distinguishing the various states of 

health/efficiency of a building  
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CHAPTER 3 

 

3. Introduction to Condition Monitoring 
 

In the previous chapter it was highlighted that in order to effectively evaluate the energy 

performance of a building it is necessary to capture the intrinsically complex nature of 

building operation to provide an accurate assessment. The methodology employed must be 

able to determine the state or health of the building in real time whilst concurrently having 

the capability to identify and differentiate between nominal and poor behaviour. 

Additionally, faults and failures of the HVAC systems that lead to poor energy behaviour 

must also be identified and displayed to the end user to promote a cycle of continuous 

improvement. Condition Monitoring (CM) systems provide a means to achieve these 

objectives. CM is the process from which the health or state of a system is determined by 

measuring the parameters that are indicative of its health (Rao 1996; Davies 1998; 

Korbicz, Koscielny et al. 2004; Randall 2011).  

 

CM was initially developed as a maintenance tool known as Condition Based Maintenance 

(CBM). CBM was applied within the manufacturing industry to determine the state of 

health for manufacturing equipment (Davies 1998). Preceding the introduction of CBM the 

two most common maintenance practices were run to failure and Planned Preventative 

Maintenance (PPM). Whilst the former method would lead to abrupt and unexpected 

breakdowns the machine could usually be operated for longer periods of time. Whereas the 

planned preventative maintenance approach reduced the likelihood of a breakdown 

occurring, however with PPM machine downtime increased as the plant was serviced 

regardless of the state of health of the machinery (IMechE 1992; Tavner, Ran et al. 2008). 

The primary aim of CBM was to provide an alternative to these techniques and to enable 

an intelligent proactive maintenance strategy. By determining the symptoms of failure it 

was possible to take maintenance action only when a fault was likely to occur on a ‘needs 

driven’ basis. The application of CBM techniques to the manufacturing industry has had a 

positive impact; as a result CM was borne as broader approach to system health evaluation 

based upon the same fundamental principles as CBM. Korbicz et al (2004) define CM as 

ability to determine the current state of a system by utilising the current information about 
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the system, thus allowing for diagnosis and the ability to provide a prognosis by predicting 

the future states (Korbicz, Koscielny et al. 2004).  

 

As the CM state of art has developed the ability of CM systems to analyse and evaluate 

complex and sophisticated systems has also advanced. Evidence of which is clearly seen in 

the application (both research and industrial) of CM approaches to safety critical and 

technologically advanced industries such as the aviation and nuclear sectors (Mackey and 

Fenner 1999; King, Bannister et al. 2009; Stephen, West et al. 2009; Alvarez, Aragones et 

al. 2010).  

 

The practical application of CM not only captures the state of the building but detects 

diagnoses faults and failures; therefore the CM process is sometimes referred to as Fault 

Detection & Diagnosis (FDD) (Isermann 1984; Isermann and Balle 1997; Korbicz, 

Koscielny et al. 2004). The main steps involved in FDD are described in the following 

section. 

 

3.1 Fault Detection and Diagnosis 

 

The primary goal of FDD is to automate the process of detecting and identifying the 

symptoms of faults and mapping them to their causes (Palade, Bocaniala et al. 2006). A 

large number of approaches have been developed, typically referred to as CM strategies 

which are detailed in section 3.2. Regardless of the means in which FDD is implemented, 

all strategies are based upon the same fundamental concepts.   

 

The initial stage of FDD is the definition of the characteristics of the system or object 

under consideration. This is required in order to identify the nominal operating envelope as 

well as potential fault paths and failure modes (Isermann 2011). An important criterion 

used for selecting the appropriate CM strategy is the ability of the CM method to capture 

the necessary complexities of the system. CM methods that are unable to do so would 

perform unreliably in differentiating between nominal behaviour and fault occurrences 

(Payne, Hall et al. 2001). The system characterisation process also involves identifying the 

parameters that are indicative of the state of the system. The measurement techniques used 

to obtain parameter data in traditional CBM are largely inapplicable or impractical for 
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evaluation of building performance. Techniques such as analysing the lubrication for 

debris or obtaining vibration measurements of the HVAC equipment (Davies 1998) are not 

typically performed as part of the maintenance practices in buildings. However, the use of 

process parameter data such as temperature values, valve positions and meter readings that 

are logged by the BEMS are useful for determining the state of the building (Randall 

2011).  Furthermore, this process parameter data can be easily logged and stored in the 

BEMS and would therefore, provide a practical means of applying condition monitoring.  

 

Once the state of the building is suitably defined, the CM system is then used to monitor 

for abnormal states. In CM the fault detection process relies upon the assumption that the 

occurrence of a fault will result in a change within the process data. It is this change in 

parameter that is detected by the fault detection method; this in turn requires setting 

thresholds to differentiate between nominal states and fault states. Early methods of 

detecting faults included the use of threshold limits in which an upper and lower boundary 

was set. Parameter values above or below these threshold limits were considered as 

abnormal states for that parameter or the process as a whole. Statistical process control 

methods such as the CUSUM (Cumulative SUM) or Exponentially Weight Moving 

Average (EWMA) control charts were also used to determine in control and out of control 

process states by setting threshold limits (Kourti 2009). However, single value limit 

thresholds for parameters are inadequate for the majority of modern day systems 

(MacGregor and Kourti 1995). Furthermore, univariate process control systems such as 

CUSUM and EWMA charts show poor fault detection properties when applied to 

multivariate systems (Lee, Yoo et al. 2004). In the majority of commercial buildings, the 

operation of the HVAC systems is a multivariate process as a result of the numerous 

interdependent variables. Fine tuning of detection boundaries is often required to avoid 

TYPE I (missed alarm) and II (false alarm) errors. Typically, there is a payoff between the 

number of missed alarms and false alarms leading to the issue of sensitivity for the fault 

detection method. The fault detection itself does not typically convey any information on 

the root causes of faults or what the actual fault is. Thus diagnosis methods are 

implemented. 

 

Once a fault has been detected, the CM system analyses the change in features of the 

parameter data to ascertain the causes of the fault. The most popular methods of 

performing fault diagnosis are through the use of data classification techniques in statistical 
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systems or inference models in knowledge based approaches. It should be noted that within 

the context of this project poor or inefficient energy performance shall be classified as a 

deviation from the norm and thus representative of a faulty state of building operation. 

 

Over the last several decades Condition Monitoring has developed from relatively 

simplistic measurement and threshold setting techniques to complex methodologies that 

are capable to monitoring and diagnosing a wide range of faults for multivariate systems. 

The following section shall describe the main CM approaches that are used for process 

monitoring. 

 

3.2 Condition Monitoring Strategies 

 

There are numerous CM strategies that perform fault detection and diagnosis ranging from 

heuristic qualitative based systems to artificial intelligence methodologies. Condition 

monitoring approaches are commonly categorised into three broad classifications (Chiang, 

Russel et al. 2001; Wang 2003; Venkatasubramanian, Rengaswamy et al. 2003a): 

 

1. Data driven techniques  

2. Knowledge Based Systems 

3. Model/Analytical models 

 

The CM strategies within each of these classifications possess their own advantages and 

disadvantages, the subsequent sections detail the various strategies and their respective 

strengths and weaknesses.  

 

3.2.1 Data Driven Systems 

 

Data driven systems rely on exclusively on process data to capture the nominal or fault 

states of a system. Historical data is sometimes used to train the data driven methodologies 

in defining nominal and abnormal states of operation. The preferable method of obtaining 

training data is the collection of process data under controlled conditions to ensure that the 

training data is free from noise and anomalous disturbances. Data driven approaches have 

the ability to analyse complex systems as a whole. There are two main subgroups for data 
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driven systems, statistical and non-statistical approaches. The most well known non-

statistical method is Neural Networks (NN). Neural Networks imitate human learning by 

using ‘experience’ of the process obtained from training data to make observations about 

the state of the system (Swingler 1996; Wang 2003). Considerable research has been 

performed in using NNs for fault diagnosis, namely through classification of the process 

data (Venkatasubramanian, Rengaswamy et al. 2003c). A typical Neural Networks consists 

of a number of interconnected process elements, each process element can have many 

inputs upon which an individual bias or weighting may be applied. The process element 

computes the total input with respect to each inputs weighting. Despite the high number of 

possible inputs only one output from the processing element is possible and depending 

upon the threshold the process element may or may not produce an output (Wang 2003). In 

a typical NN numerous processing elements are interconnected, the process elements are 

arranged into one of three layers; the input layer which receives external outputs, the 

hidden layer which has inputs and outputs within the Neural Network and the output layer 

which produces the final output outside of the system (Palade, Bocaniala et al. 2006). 

Neural networks have the advantage of being able to compute solutions to a wide range of 

processes and problems. They do not require prior knowledge of the process itself and can 

handle both discrete and continuous data. Furthermore, NN are able to derive functions for 

non-linear processes and thus they have a significant advantage over traditional statistical 

and model based approaches (further details given within the next several sections). 

However, the use of Neural Networks does have the significant disadvantage in that the 

decision making process is not traceable (as it occurs within the hidden layer) and as such 

Neural Networks are effectively black boxes in which it is not possible to determine how 

the NN came to a particular output. Aside from Neural Networks other non-statistical 

process monitoring techniques of note include Genetic Algorithms and Fuzzy Logic 

Systems.   

 

There are numerous statistical methods in the field of process monitoring; the most widely 

applied techniques are Principal Component Analysis (PCA), Partial Least Squares (PLS) 

and more recently Fisher Discriminant Analysis (FDA) (Chiang, Russel et al. 2001). These 

three techniques have all been applied for the purposes of reducing the dimensionality of 

complex processes to evaluate the state of a system (Chiang, Russel et al. 2001). PCA 

seeks to reduce dimensionality within a process by maximising the variance within a linear 

combination of variables (Rencher 1995). Essentially it allows for the visualisation of 
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multivariate data by generating new variables called principal components. For systems 

with a significant numbers of variables the complexity can be greatly reduced by replacing 

the process variables with 2 or 3 new principal component variables representing the 

characteristics of the system. This multivariate approach is particularly effectual when the 

process under consideration has multiple interrelated variables that continuously interact. 

The principal components are commonly able to capture the variance of process variable 

data within 2 or 3 principal components for linear systems (MacGregor and Kourti 1995).  

 

Partial Least Squares also seeks to reduces dimensionality by maximising the covariance 

between a predictor (independent) matrix and a predicted (dependent) matrix (Geladi and 

Kowalski 1986). A common approach in using PLS for process or quality monitoring 

stacks the predicted matrix with product quality data and the predictor matrix with the 

process variables (Manne 1987; Chen, McAvoy et al. 1998), from which it is possible to 

deduce the state of the system. 

 

Fisher Discriminant Analysis (also known as Linear Discriminant Analysis) has been 

employed extensively in pattern classification research (Chiang, Russell et al. 2000; 

Chiang, Kotanchek et al. 2004). Unlike classification techniques such as Bayes Classifier, 

FDA does not suffer from the problems of dimensionality as process data is projected onto 

a lower Fisher feature dimension. FDA operates by maximising the distance between 

classes and reducing the scatter within classes (Duda and Hart 1973). Hence, FDA is able 

to maximise the distance between the nominal process class and the various classes that 

represent different faults. The weakness of statistical techniques is that there are very few 

methods for tackling non-linear processes. Furthermore, good quality training data is a 

requisite which may not be readily available; the use of noisy or poor quality training data 

would significantly diminish the effectiveness of the system. 

 

The strength of all data driven methods is that no prior knowledge of the system is required 

in order to perform FDD, however quality training data is required in order to adequately 

define the nominal case. Additionally, the use of process data for known faults is 

sometimes used to train the data driven system in defining the fault states for diagnosis 

purposes.  
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3.2.2 Knowledge Based Systems 

 

Knowledge Based Systems (KBS) are rooted on Artificial Intelligence (AI) methodologies 

and techniques, commonly referred to as Expert Systems (ES). They utilise human 

knowledge and experience of a system to identify, diagnose and provide solutions for 

faults and failures that would ordinarily require human expertise (Janusz and 

Venkatasubramanian 1991; Wang 2003; Venkatasubramanian, Rengaswamy et al. 2003b). 

There are various manifestations of KBSs that have been developed however, they all 

utilise the same fundamental principle in that they make use of human knowledge and 

experience to provide a diagnosis on the state of the system (Jackson 1999). The two most 

prevalent KBS techniques are Rule Based Systems (RBS) and Case Based System (CBS). 

The basic premise for the expert system is that the end user supplies information and facts 

to the Expert System, the Expert System then returns a diagnosis on the fault/state of the 

system and provides a remedial solution if needed. The principal elements of expert 

systems are shown in Figure 3.1. 

 

 

Figure 3.1 – Rule based expert system (Davies 1998) 

 

The two key elements that Expert Systems contain are the knowledge or rule base and the 

inference engine. The knowledge/rule base consists of inference rules that describe fault 

hypotheses which are used by the inference engine to infer if the state of the parameters are 

reflective of a fault state (Prasad and Davis 1992). Inference rules use either forward or 
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backward chaining to reach a conclusion (Giarratano and Riley 1994; 

Venkatasubramanian, Rengaswamy et al. 2003b). Further details on backward and forward 

chaining are provided in Chapter 6. Converting human knowledge into computer 

programming can be done relatively simply using IF/AND/OR statements. However, for 

complex nonlinear systems with interrelated variables it would require substantial 

programming in order to create a robust method of evaluating the system (Luker and 

Schmidt 1991). Hence, Expert Systems are typically employed at machine 

component/plant level. 

 

CBSs use past fault case data instead of rules. Diagnosis is performed by matching the 

cases that most fit the information provided by the user. CBSs use human reasoning and 

past failure data to analyse the current state of a system. CBSs are problematic in that past 

cases may be inaccurate and changes in the system are difficult to amend. Whereas with 

RBSs new rules can be implemented, fine tuned and eliminated with relative ease.  

 

KBSs do not need large amounts of training data unlike data driven systems. Furthermore, 

the decisions making process is easily traceable. However, the fault modes of the system 

must be well understood in order to create the rules. Therefore, a pre-requisite of KBS is 

the need for expert knowledge of a system. User interfaced systems rely on the user being 

sufficiently knowledgeable in that specific knowledge domain to supply facts. 

Additionally, fault diagnosis is reliant upon the user to querying the Expert System. Thus 

the human operator is responsible for the fault detection phase. Furthermore, the fault rule 

base is static hence the Expert System is unable to explain novel changes in the building 

state that are not currently described in the fault rule database. 

 

3.2.3 Model Based Systems 

 

Model based approaches create mathematical models to represent the system under 

consideration (Isermann 2011). They describe the relationship between the input to the 

system and the output that is measured (Patton, Frank et al. 2000). The relationship is 

derived using the fundamental principles that govern the process. The model aims to 

emulate the system operating under nominal conditions. The model uses the same input 

data as the actual system and calculates what the output should be. The measured output 
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from the system is compared to that of the model output; discrepancies between the two 

are called residuals (Isermann 1984). The residuals represent deviation of the system from 

a nominal state to an abnormal state, thus faults are detected when a residual is generated 

(Kothamasu, Huang et al. 2006). Generation of residuals can be performed in a number of 

ways; the most common methods are the use of parity equations, observers and parameter 

estimation(Isermann and Balle 1997; Patton, Frank et al. 2000). Model based methods are 

generally used for fault detection purposes. However, by extracting the features of the 

residual, fault diagnosis can be performed through the use of structured residual sets.   

 

The key problem with utilising a model based approach is that the output from 

mathematical model rarely matches with the actual system unless considering only very 

simplistic or basic systems. There is generally a payoff between the complexity of a system 

and the performance of the model based approach (Isermann 1984). In cases where the 

process is nonlinear there are difficulties in developing a practical means of applying 

model based FDD (Venkatasubramanian, Rengaswamy et al. 2003a; Frank, Ding et al. 

2000). Methods were developed to overcome nonlinearity and improve correlation 

between the model and the process, however in such cases this resulted in greater levels of 

uncertainty in the mathematical model (Gertler and Yin 1996; Venkatasubramanian, 

Rengaswamy et al. 2003a). Noisy signals or unknown disturbances can also lead to large 

numbers of false detections. This can lead to difficulties in distinguishing between nominal 

and fault conditions.  

 

3.3 CM Building State Evaluation and HVAC maintenance 

 

Evaluation of the building state for energy and FDD purposes can be performed in one of 

two ways, bottom-up or top-down (Claridge, Liu et al. 1999; House and Kelly 1999). The 

bottom-up approach evaluates buildings from a component level, analysing the state of 

health of each individual HVAC system and its subcomponents. The top-down approach 

applies whole building diagnostics. Each method has its own advantages and 

disadvantages, however, in order to perform an accurate assessment of the building a 

holistic technique is required in which both approaches are used. The academic literature 

surveyed revealed that the majority of FDD applications to the building industry has taken 

the bottom-up approach in which condition monitoring strategies were applied to 
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individual HVAC systems. The complete list of works is exhaustive; the review provided 

by Katipamula and Brambley (2005a, 2005b) provides an overview of the work performed 

for HVAC fault detection and diagnosis (Katipamula and Brambley 2005a; Katipamula 

and Brambley 2005b). Bottom-up approaches analysing individual HVAC systems in 

isolation are not directly relevant to the work performed in this thesis, hence condition 

monitoring methods that take the top-down approach or combine both approaches are 

reviewed here.  

 

Seem (2007) defined a methodology from which abnormal energy consumptions were 

identified using daily consumption and peak energy readings (Seem 2007). Essentially, this 

method used deviations in the energy consumption to perform fault detection on building 

systems. The aim of which was to provide feedback on issues such as poor building control 

or poor design of ventilation services. Seem (2007) did not take into account the 

characteristics of the building and relied purely upon energy based deviations. There are a 

number of plausible explanations that could relate to the cause of the deviation which may 

not be identifiable from energy readings alone.   

 

Work by Doukas et al (2007) made use of a rule based system for the purposes whole 

building energy evaluation (Doukas, Patlitzianas et al. 2007). Doukas et al (2007) 

integrated a database that held information on the building characteristics. The inclusion of 

the building characteristics is a useful tool in providing a benchmark. However, the use of 

the rule based approach for whole building state evaluation on a large commercial building 

would severely lack the depth to analyse the nonlinearities of the building operation 

without extensive mapping of the numerous states of operation. Whilst the building 

characteristic database is useful determining the operation envelope, independent variables 

such as external temperature and varied occupancy would constitute a novel situation for 

which the rule base would need continual maintenance and updating in order to remain 

relevant.  

 

Katipamula et al (2003) presented the Outdoor-Air-Economiser (OAE) module of the 

Whole Building Diagnostician (WBD) (Pratt, Bauman et al. 2002; Katipamula, Brambley 

et al. 2003). The OAE module used rules derived from engineering principles to determine 

the state of the OAE akin to a model based approach. So far the work presented for the 
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WBD has been exclusively on ventilation systems such as the OAE and Air Handling 

Units.  

 

3.4 Faults and Failures 

 

Faults are defined as non-permitted deviations from the normal operating envelope of a 

system that results in an adverse effect on performance (Patton, Frank et al. 2000). Failures 

are said to occur when a fault results in the total inability of a system to perform its 

required task. Faults can occur due to a number of reasons such as poor operation of the 

system, degradation of components, disturbances and external shocks (Isermann 1984; 

Owoo and Suen 2002). Faults are typically classified by the manner in which they express 

their presence within the parameter data; this is commonly referred to as the fault profile. 

There are 3 general fault profiles that are most commonly used for fault detection and 

diagnosis. The hard/abrupt fault leads to a sharp near instantaneous step change in the 

feature of the parameter data. Incipient faults are slow developing faults that occur over 

time and the third fault profile is the intermittent fault in which the fault may manifest 

itself sporadically or at frequent intervals, the magnitude of the feature change may also 

vary over time. The 3 fault profiles are illustrated in Figure 3.2 (Isermann and Balle 1997) 
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Figure 3.2 – Overview of fault profiles (Isermann 1984) 

 

The next section looks into the common faults related to building operation. 

 

3.4.1 Building Sectors Faults and Failures 

 

They are four main factors that are responsible for poor efficiency within buildings, these 

are given along with the most common faults for each group in Table 3.1 (Haves 1999; 

CIBSE 2004a). 
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Table 3.1 – Fault groupings 

Fault Classification Most common faults 

Building construction 
- Degradation of building fabric 

- Errors during the construction process 

HVAC 
- HVAC inefficiencies 

- Mechanical faults and failures in HVAC system 

Control 

- Poor  or incorrect programming of BEMS control 

profiles 

- Fault masking via control based compensation 

Human 
- Unnecessary energy wastage 

- Poor maintenance practices 

 

The faults that are taken into consideration for this thesis are the HVAC faults and the 

faults relating to the poor operation of the building which may be as a result of human 

based errors or poor HVAC operation/maintenance. It is important to be able to classify 

both these faults given that up to 15-20% of wasted energy can be attributed to poorly 

performing HVAC systems (Katipamula and Brambley 2005a). The construction based 

faults/errors have been largely addressed by Part L. Specific control based problems are the 

responsibility of the controls companies, however the faults that occur as a result of poor 

control set ups can be identified through the use of FDD. This includes the compensation 

of faults by the control systems as state evaluation methodologies are able to extract the 

feature changes within the parameters.  

 

 

3.5 Summary & Project Objectives 

 

As was detailed in the previous chapter determining the state of the building is essential for 

assessing building energy performance. Evaluation of large commercial buildings is a 

complex task as a result of the multitude of interrelated variables and numerous nominal 

operating states that can occur. Thus, objective 3 of the research project was 

 

“Developing an assessment methodology capable of distinguishing the various states of 

health/efficiency of a building”  
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The condition monitoring strategies detailed within this chapter provide a means of state 

determination for the system under consideration. However, in order to develop a truly 

holistic approach a method of performing FDD on the HVAC systems is required. Thus 

objective 4 of the project was to 

 

“Developing a means of performing HVAC fault detection that is capable of working in 

tandem with energy evaluation techniques” 

 

The condition monitoring strategies provide the means to tackle both top-down and 

bottom-up evaluation of the building and its HVAC systems. Furthermore, they have been 

shown to possess the capabilities to address the various fault groups that affect building 

performance.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 56 

CHAPTER 4 

 

4. Case Study Building – Middleton Technology School 
 

A case study building was selected to test the Condition Monitoring strategies detailed in 

Chapters 5 and 6. The Middleton Technology School is a further education building 

located in the North West of England. The school is a 3 storey building built in 2009 thus 

falling under the Part L 2006 Regulations. Therefore all analysis that utilises BER data is 

based upon the requirements of the 2006 Regulations. The occupancy levels are 

comparable to those of a secondary school, for example unoccupied during summer 

months for summer holidays.  There is a range of room function types within the building 

ranging from offices and meeting rooms to laboratory teaching rooms. There are a variety 

of HVAC systems installed to regulate the internal environment; the relevant systems are 

described below. 

 

The heating is predominantly served by 3 gas fired condensing boilers via the Low 

Pressure Hot Water (LPHW) heating system. The LPHW has two variable temperature 

circuits. The first circuit distributes heat via radiant panels, radiators and the door heaters, 

whilst the second serves the ground floor under-floor heating system. Additionally, a third 

circuit is located within the plant-room, providing constant temperature heating to the 

domestic hot water service calorifier indirect coil. The variable and constant temperature 

pumsets are regulated by the BEMS. There is sufficient sensor coverage to detect faults for 

the boiler system including identification of the faulty boiler and the cause of the fault 

alarm. The radiant panels are automated with 2 port control valves that act in response to 

the sensor feedback of local temperature sensors, whilst the radiators are regulated by the 

thermostatic control valves on the flow connection.  

 

There are 8 heat recovery Mitsubishi Lossnay units (heat transfer is achieved via cross 

flow heat exchangers) installed in the ceiling voids supplying fresh air and removing foul 

air from landlocked rooms as well as special purpose rooms such as the hot metal areas and 

nursery washroom.  
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The ground and second floor have natural ventilation for specified rooms in which 

acoustically treated air transfer grilles have been installed. These grilles are inlets to 

passive ducts that allow the passage of air from the atrium into the rooms and from rooms 

to the atria. The grilles operate in conjunction with the automatic windows located at the 

top of the atrium to control the flow of air, all of which is controlled by the BEMS. 

 

Two Variable Refrigerant Flow (VRF) systems are installed with the first serving the 

second floor ICT room and the second serving the first floor learning resource centre. 

Within these rooms, heat pumps have been installed to provide local air conditioning via 

ceiling void mounted fan coil unit cassettes, these systems (VRF) are controlled via the 

centralised AC system with each unit being controlled locally from the wall mounted 

controller.  

 

Whilst many of these HVAC systems have connections to the BEMS for control purposes, 

not all of the parameter data from these systems are logged. The following section shall 

detail the parameter data that is accessible from the BEMS for use in this project. 

 

4.1 BEMS Monitored Parameters 

 

The case study BEMS is able to monitor a wide range of process parameter data. However, 

due to the setup of the BEMS by the controls company a significant number of parameters 

are not logged or stored. The reasoning behind this decision is that the client (building 

owner) did not require this data to be logged. The data that is accessible from the BEMS 

can be categorised into six groups: 

 

 Meter / Energy data 

 Radiant panel Temperatures  

 Control setpoints 

 Natural Ventilation: Atrium window opening percentage 

 Valve positions 

 Weather station data: External temperature 

 



 58 

This data is sampled and stored every 15 minutes by the BEMS. The majority of control 

set-points were static and thus of little use, however the remaining parameter data did 

contain useful information that was used in the methodologies detailed in the following 2 

chapters. Whilst the accessible number of parameters is not comprehensive there is 

sufficient amount of data available for the purposes of this project.  

 

4.2 Case Study DTM Model 

 

A Dynamic Thermal Model (DTM) representation of the case study building was built in 

the IES Virtual Environment software program. The IES modelling environment is able to 

emulate the operation of a building throughout the year using parameters such as the 

building fabric U-values, occupancy frequency and NCM HVAC profiles to simulate the 

building behaviour. The Manchester weather file was selected for use in the simulations as 

it was the closest weather measurement location to the site of the building. Parametric data 

such as the U-values for external/internal walls and windows were selected using the 

fabric/material data supplied by the construction firm. The building functionality was set to 

educational; the functionality also dictates the occupancy profile and HVAC utilisation 

throughout the year. The HVAC equipment specifications were entered based upon the 

information supplied by the manufacturers. The DTM was used to produce the BER 

figures for the post construction handover evaluation. A visual representation of the case 

study building in the IES software environment is shown in Figure 4.1. 

 

 

Figure 4.1 – DTM representation of the case study building 
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Taking into account the fact that all new buildings must be tested post construction, usage 

of software packages for Part L emissions testing shall become commonplace. This 

provides the opportunity to obtain and store useful energy consumption data, thereby 

creating the opportunity to utilise such data for the application of performance evaluation. 

The DTM can be viewed as an equivalent to modelled benchmarks given that it integrates 

the fundamental features of the building in the energy calculation process. The DTM forms 

an alternative to using external benchmarks and would provide a bespoke consumption 

benchmark for each building. Hence they are of significant value for the purposes of 

evaluating energy efficiency within buildings. The data obtained from the DTM model is 

an integral part of the real time evaluation methodology detailed in the subsequent chapter. 

 

It should be noted that the data obtained from the DTM may not wholly reflect the 

performance of the real building; this is due to the real building potentially having differing 

occupation frequencies, lux levels and the addition of external lighting. These factors are 

not taken into account when calculating the BER. However, by adjusting the BEMS data 

(as detailed in section 5.1.1) the DTM of the case study building was able to achieve an 

accurate fit as shown in section 5.1.2.  

 

4.3 Characterisation of Building Behaviour  

 

To provide an understanding of the characteristics of the building and its behaviour under 

varied conditions, fault tests were run altering the operating parameters within the DTM to 

measure the building response. Whilst the real case study building may not respond in the 

exact same manner, given that the DTM integrates the key features of the case study 

building the results are expected to provide a reasonable approximation. The heating and 

ventilation systems were selected for testing as they service the majority of the building 

whereas the air conditioning and cooling systems are limited to a few rooms. The purpose 

of the fault tests was to identify two important characteristics about the case study 

building. Firstly, determining which faults had the largest effect on energy consumption, 

and secondly, identifying how these faults would manifest themselves in the process data. 

Additionally, determining the suitability of the CUSUM and EWMA charts to detect faults 

was also tested (more details are provided in the following section).  
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Two sets of experiments were run; set 1 varied the efficiency of the heating and ventilation 

systems by increasing and decreasing the Seasonal Boiler Efficiency (SBE) and the 

Specific Fan Power (SFP) respectively. The SBE is given by Equation 4.1 (Maunsell 

2004): 

 

 Equation 4.1
 

 

where Eff% represents the efficiency of the boiler at 15%, 30% and 100%. The Specific 

Fan Power (SFP) is given by Equation 4.2 (Eastop and Watson 1992). 

 

vq

P
SFP


    Equation 4.2 

 

where the summation of P (kW) is the electrical power used by the sum of all the fans 

(both supply and extract) in the ventilation system and qv (m
3
/s) is the total amount of air 

passing through the fan. For each test set, the efficiency was increased and decreased over 

the range of 10% (-10% to +10%) in increments of 5%.  

 

The second set of tests introduced a fault to the heating system only; this was due to 

restrictions in the DTM program not allowing for variation of the necessary ventilation 

parameters required to replicate faults cases. A sensor / HVAC fault was investigated in 

which the set point for initiating heating to a room was increased from the nominal value 

of 19
 o
C to 30

o
C. The aim of which was to emulate a fault that resulted in no heating being 

supplied to the room such as the temperature sensor providing an incorrect reading.  Given 

that there are a large number of rooms, it would have not been feasible to apply this fault 

variation to all rooms, thus the fault test was applied to a single room. It was decided that 

the Multi-conference meeting room was to be used. The fault test simulation was 

performed for the months of May and November representing the warmer and cooler 

periods in which the building is operating under normal occupancy. The data for the 

second week of the selected months were extracted and slotted into the data set of the 

original model that had no changes applied, thus giving the impression that the fault 

occurred at the start of the second week and was resolved after one week. Running the 

simulation for the entire year with these fault conditions would yield very little useful 

)(*3.0)(*2.0)(*5.0 %100%30%15 EffEffEffSBE 
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information as it would be improbable that the fault would persist for such a period without 

remedial action being taken.  

 

It was hoped that a third set of tests investigating the effects of poor occupant behaviour 

could have been tested by varying the occupancy frequency parameters. However, in order 

to do so it would have required modification of all heating, lighting and occupancy profiles 

for each individual room, given the large number of rooms this process was impractical 

and was therefore not tested. 

 

The total energy consumption data was extracted from the model for analysis. In order to 

analyse the data, the data from the tests were compared against a base model in which no 

parameters had been changed. The following section details the analysis techniques 

implemented to analyse the results of the preliminary tests.  

 

4.3.1 Model Data Analysis  

 

Analysis of the resulting data was performed by two sets of techniques. The first was to 

utilise the statistical approach of covariance and correlation. This determined the variance 

observed of each test case against the base model. Covariance describes the level of 

variance between two sets of data and is defined by Equation 4.3 (Rice 2007). 
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where A represents the base model energy consumption and B the test case energy 

consumption, Ai and Bi are observations from their respective data sets.   and   are the 

means of their respective sets. n is the number of samples and was set to 24 to assess daily 

variations. To standardise the covariance value to a value between 1 to -1 Equation 4.3 was 

divided by the product of the standard deviations of A and B as shown in Equation 4.4 - 

4.5 thus giving the correlation. 
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where: 
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 Equation 4.5 

 

where  is the standard deviation, Xi is an observation from the data set, and X  is the 

mean of the data set. A resulting correlation value of greater than 0 up to a value of 1 

indicates that the data sets move up/down together, 0 would indicate independence 

between the datasets and a value less than 0 to -1 would indicate a divergence. A value of 

one would indicate perfect correlation in that the datasets move together in equal 

magnitude. Thus the correlation value is able to indicate the level of dissimilarity that 

occurs due to the variation in parameters. It should be noted that a value of one does not 

necessarily equate to identical datasets. 

 

The second set of techniques was the use of Statistical Process Control (SPC) charts, 

namely CUSUM (CUmulative SUM) and EWMA (Exponentially Weighted Moving 

Averages) charts. The CUSUM method allowed for calculation of the cumulative effect of 

the variations of each test case. This was done by adding the cumulative difference 

between the nominal data and the test case data for each sample point. For the CUSUM 

methodology the sum of 24 data points were used to form each observation. For illustrative 

purposes a rudimentary method of fault detection was implemented by setting a limit 

threshold. The threshold was arbitrarily set at 30% of the total energy consumed, thus 

when the difference in energy consumption between the original dataset and the test cases 

exceeded 30% it indicated that a fault had occurred. A point to note for the EWMA and 

CUSUM charts is that they analyse the variable under consideration in isolation and do not 

take into account the state of any other variables. This in effect disregards the correlation 

between the various interdependent parameters and as was previously highlighted would 

be unsuitable for exclusive implementation as a FDD system.  

 

EWMA charts have been utilised for SPC in the manufacturing industry to monitor for out 

of bounds parameters. EWMA is different to a normal moving average in that it gives a 

weighting to a observation dependent on the age of the sample (with the most recent 

having the highest value), the EWMA is given by Equation 4.6 (Ryan 2007). 
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1)1(  ttt EWMAXEWMA     Equation 4.6 

 

where the initial value of EWMAt (EWMA0) is the mean of the training data,  dictates the 

weighting given to the previous data entries and is typically set to 0.3 and Xt is the ‘newest’ 

data observation. The variance of the EWMA (sEWMA) is given by Equation 4.7 

 

TREWMA ss 















2
    Equation 4.7 

 

where sTR is the variance of the training set, in this case the base set data. The upper and 

lower control limits are given by Equation 4.8 and 4.9 respectively. 

 

EWMAkEWMAUL  0    Equation 4.8 

 

 

EWMAkEWMALL  0    Equation 4.9 

 

where the factor k is typically set to the arbitrary value of 3 and EWMA is given by 

Equation 4.10. 

 

EWMAEWMA s     Equation 4.10 

 

The upper and lower control limits were used for determining the points at which there is 

significantly higher or unusually lower energy consumed. The daily totals were summed to 

form a single observation. In order to avoid skewing the mean value due to the reduced 

consumption over the weekend only the consumption data for the week days were 

considered in the evaluation. For both the EWMA and CUSUM charts it was assumed that 

the building was performing optimally at the start of the month and the deviations in the 

test data occurred from that point onwards. 
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4.4 Test 1 – Efficiency Variation Results 

 

The efficiency test case data for the heating and ventilation systems were compared to the 

dataset obtained from the model with the original HVAC parameters. The SBE and SPE 

were increased and decreased in increments of 5% up to plus and minus 10% to assess the 

impact on energy consumption. Figure 4.2 shows the for the correlation values for May for 

the heating system (calculated using from Equation 4.4).  

 

 

 

Figure 4.2 – Heating efficiency correlation value for May 

 

As can be seen in Figure 4.2, smaller efficiency changes (plus and minus 5%) display 

greater correlation as the magnitude of difference between the changes in energy consumed 

is not as large as the ±10% test cases. It is also shown that in both cases that a reduction in 

efficiency, test case -10% and -5%, leads to a greater deviation than improving the 

efficiency. The correlation analysis for November, shown in Figure 4.3, illustrates that 

variation in heating efficiency results in a larger deviation during the colder periods. Given 

that the heating load remains constant for all test simulations and that the heating system is 

under greater demand during the colder periods, inefficiencies in the boiler systems are 

more pronounced as more energy is needed to serve the same heating demand.  
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Figure 4.3 – Heating efficiency correlation for November 

 

In both Figures 4.2 & 4.3 the peaks and troughs in the trend lines all follow the same 

general pattern this is due to the DTM software algorithms recalculating the energy 

consumption with only one changed parameter for each test case. As a result there was a 

strong correlation value (approaching 1) exhibited. Figure 4.4 displays the changes in 

correlation throughout the year; this was done by taking the monthly correlation average 

for each test on efficiency. 

 

 

 

Figure 4.4 – Monthly correlation averages for heating efficiency 
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The results from the heating efficiency variations confirms the expected result that due to 

greater utilisation of the heating system in the winter and autumn months, a greater 

variation from the base set is observed as improvements and inefficiencies both become 

more pronounced.  

 

The variations in the ventilation efficiencies (changes in the SFP) resulted in a minimal 

change. Figure 4.5 illustrates the variation in SPF results in a minimal change in deviations 

from the base dataset.  

 

Figure 4.5 – May ventilation efficiency correlation  

 

The results for November have not been included here as it shows no significant 

differences from Figure 4.5. Similarly the monthly averages showed that there was 

negligible variation in correlation throughout the year. Thus it can be seen that changes in 

ventilation have a negligible effect when compared to heating variations. This is further 

demonstrated in the CUSUM/EMWA charts. Figure 4.6 shows the heating CUSUM chart 

for November, with the threshold limits in black (30% of the total energy consumed for 

that month). The lower threshold is equally important as it could signify a failure in HVAC 

plant thus leading to an unusually lower consumption.  
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Figure 4.6 – November CUSUM chart (heating efficiency) 

 

The CUSUM chart for November has been presented here as both the CUSUM graphs for 

May and November have similar trend patterns. Figure 4.7 displays the ventilation 

CUSUM chart for November. 

 

 

 

Figure 4.7 – CUSUM chart for November (ventilation) 
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As can be seen in Figure 4.7 the cumulative sum of differences for the ventilation system is 

significantly smaller than that of the heating system and does not cross the threshold 

boundary unlike the CUSUM for the heating system in Figure 4.6. This illustrates a key 

deficiency in utilising threshold limits for individual parameters in isolation. Whilst the 

30% energy consumption limit was viable means for detecting large scale deviations (such 

as inefficiency in the heating system) it was unsuited to act as a threshold with faults 

related to the ventilation efficiency due to the change in energy consumption manifesting 

itself inside the boundary limits.  

 

The EWMA chart with the upper and lower limits for the heating efficiency test case for 

the month of May is shown below in Figure 4.8. 

 

 

 

Figure 4.8 – EWMA chart for May (heating efficiency) 

 

As can be seen from Figure 4.8 the threshold for the upper limit has been breached due to 

the greater levels of energy consumed due reduced efficiency in the heating system. A 

significant advantage in using the EWMA approach over the CUSUM method is that is 

able to operate in real time and can identify the day(s) in which there was excessive 

consumption. However, unlike the CUSUM method, the EWMA charts are unable to log 

daily cumulative additional consumption, thus faults that slowly develop over time 

resulting in an increase in consumption are not detectable. As with the CUSUM chart a 
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similar problem is seen in setting the threshold. Figure 4.9 shows the EWMA chart for 

ventilation efficiency test cases for the month of May. 

 

 

Figure 4.9 – EWMA chart for May (ventilation efficiency) 

 

It can be seen from Figure 4.9 that EWMA charts suffer from the same inability to set 

adequate thresholds for detecting faults with both the heating and ventilation efficiency 

tests. Whilst the threshold limits can be reduced by changing the value of k, it would lead 

to a greater number of false alarms triggered by acceptable changes in the heating 

consumption. As has been previously mentioned threshold limits are unable to factor in the 

variables that influence the overall energy consumption, thus unable to differentiate 

between acceptable high energy consumption and low unacceptable energy consumption.  

 

4.5 Test 2 –Fault Introduction Results 

 

The results of the emulated sensor/HVAC fault introduced a problem with the heating 

system for multi-conference room in the second week for the months of November and 

May. As would be expected the correlation results shown in Figure 4.10 for November 

show a deviation from the base set data for that period after a week (7 data samples) the 

correlation value returns to a value of 1. 
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Figure 4.10 – Introduced fault correlation for November 

 

The correlation test shows that the DTM model is clearly able to identify the periods in 

which the fault has occurred even at local room level. The correlation value shown in 

Figure 4.10 is lower than that of the heating efficiency tests as the test energy consumption 

trend did not move with the original data set but instead expressed independence. This is 

due to the heating efficiency test trends mirroring the movements of the base dataset trend 

with the only difference being the quantity of energy consumed. Whereas with the fault 

correlation seen in Figure 4.10 the change energy consumption does not move with the 

original dataset but is independent to it. The May results showed a similar result but with a 

smaller deviation, giving an approximate average correlation value of 0.96 compared to 0.9 

for November. The variation in the daily consumption is shown in Figure 4.11.  
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Figure 4.11 – Daily consumption comparison for November with introduced fault 

 

The fault data was introduced on a Monday thus explaining the large initial change and the 

gradual trail off at the end of the week in which the weekend period occurs. The May 

graph showed a similar pattern but with a lower change in consumption. Figure 4.12 shows 

the CUSUM chart however, usage of the previously set thresholds were not able to detect 

the fault, the same occurs with the EWMA charts. 

 

 

Figure 4.12 – CUSUM chart for November with fault introduced 
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The inability to detect smaller changes at local level further highlights the need to find an 

alternative means of fault detection in order to account for the numerous ways in which 

faults express themselves in the process data.  

 

4.6 Summary of Test Results 

 

The results of the test cases showed that faults with the heating system lead to a far larger 

energy consumption penalty. The DTM was able to successfully evaluate changes to the 

building system on both a local (room) level and a global whole building level and whilst 

the actual building may not vary in the exact same manner it does provide an insight into 

how the fault may manifest itself the process data. Figure 4.13 and 4.14 show the annual 

percentage change (against the base dataset) in energy consumption due to variations in 

efficiency. Figures 4.13 shows that a 10% reduction in heating system efficiency leads to 

4.55% change in total energy consumption over the period of a year compared to 0.05% 

for ventilation as shown in Figure 4.14. 

 

 

 

 

Figure 4.13 – Annual Energy percentage difference (heating efficiency) 
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Figure 4.14 – Annual Energy percentage difference (ventilation efficiency)  

 

The covariance/correlation analysis was successfully able to detect changes in the energy 

consumption for both increased and reduced consumption; however it only has the 

capability of measuring two parameters against each other and is therefore not suitable to 

monitor several parameters in concurrently. Furthermore, correlation analysis is only able 

to detect a change but not the direction of the change (increased or reduced consumption). 

The efficiency variation tests showed that the disparity between the trend lines is far larger 

for the heating system than for the ventilation system. As a result neither the CUSUM nor 

the EWMA charts were successfully able to detect both faults, variation of the threshold 

limits would lead to missed faults or false alarms. Hence, performing fault detection by 

monitoring parameters isolation (using threshold limits) was unsuited for the purposes of 

the project as they lacked the depth required to accurately detect faults. 
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CHAPTER 5 

 

5.  Whole Building Energy Evaluation Methodology  
 

In Chapter 2 the current methods of evaluating building energy performance including the 

legislative requirements were detailed along with the academic research and commercial 

methods of energy evaluation. The present shortcomings in effectively evaluating the 

energy consumption were identified from which the objectives of this research project 

were set. The techniques evaluated in Chapter 3 provided a means of determining the 

state/health of the building. The research approach taken within this project was to develop 

a ‘whole building’ energy evaluation method applied in real time through the use of the 

DTM energy data as a benchmark. The DTM data (post construction design) acted as a 

benchmark against which the actual consumption was compared. Additionally, two 

indicators of performance were developed to provide feedback on building performance. 

The second method analysed a selection of energy, HVAC and temperature process 

parameters from the BEMS for determination of the building state through the use of data 

driven statistical techniques. The data driven CM system operated on a whole building 

level and a HVAC component level simultaneously. The purpose of which was to provide 

an in-depth assessment of the state of the building and to identify the possible root causes 

responsible for poor energy performance. The use of a rule based system (detailed in 

Chapter 6) was employed to address the issue of HVAC FDD to provide a holistic 

evaluation of building health.  

 

All CM modelling processes were performed within the Matlab programming environment 

using data from the case study BEMS, which was extracted on a weekly basis. Fault cases 

were developed utilising the information obtained in Chapter 4 to test the CM systems. The 

CM architecture was segregated into two parts in which there are three methods of health 

evaluation techniques applied as illustrated in Figure 5.1.  
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Figure 5.1 – Condition monitoring methodology architecture  

 

Unfortunately, the author was unable to gain access to the maintenance logs and was 

therefore unable to correlate the parameter trends against fault occurrences in the actual 

building. Therefore, in order to test the capabilities of the CM systems fault cases were 

designed under the assumption that the data from the BEMS represented nominal operating 

conditions. The exception being the unoccupied periods in which the off peak loads was 

adjusted for the real time evaluation tool. 

 

5.1 Real time energy evaluation methodology 

 

Chapter 2 highlighted the need to bridge the gap between the design performance and 

actual performance of the building. Whilst the DEC was able to perform this role, the large 

time period between audits had significant disadvantages such as the degradation of 

performance in between audits. Evaluation performed on a weekly or daily basis would be 

more beneficial as it would reduce the time frame in which feedback would be delivered 

allowing for a virtuous cycle of continuous improvement (Cohen, Standeven et al. 2001; 

Bordass, Cohen et al. 2004). Furthermore, real time evaluation avoided the drawbacks of 

the DEC allowing for identification of the periods in which inefficient behaviour occurred. 

This would allow for isolation of the root causes of poor performance. In order to achieve 

this, an appropriate benchmark was needed. A benchmark based upon the simulated energy 

consumption data from the DTM was selected over external benchmarks given the 

drawbacks highlighted in chapter 2. Whilst the increasing levels of customisation for 

external benchmarks afford greater flexibility they are generally static annual figures that 
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are unsuited for real time evaluation. The DTM based benchmarks provided a closer 

contextual fit to the building.  

 

As detailed in chapter 2 and 4, the process of post construction modelling allows for the 

evaluation of the building with the inclusion of actual parameter information. This creates 

a simulated model in which the energy consumption of the actual building can be 

compared against. The DTM is the equivalent to the model based approach detailed in 

chapter 3 in that uses physical equations and mathematical models to determine energy 

loads whilst incorporating building specific characteristics such as the on-site HVAC 

systems, building fabric U-values, building function and occupation frequency. Location 

and typical weather conditions are also taken into account using a weather data file.  Hence 

for the purposes of the project the DTM model using the NCM methodology for 

calculating energy consumption was utilised. This allowed for the development a 

benchmark that is contextually relevant to the building in question and more importantly 

created bespoke Energy Performance Indicators (EPI). Additionally, the use of a DTM 

allowed for the data to be extracted and analysed on an hourly basis which provided a level 

of flexibility typically not available to external benchmarks. The EPI’s detailed in section 

5.2.2 provide the basis of a bespoke performance indicator without the need for an 

additional separate model by using the post construction model.  

 

There was not sufficient metering coverage to differentiate between gas and electrical 

consumption; hence conversion to Carbon emissions was not performed. Therefore, whilst 

the legislation refers to carbon efficiency or reduction of carbon emissions, the work 

performed here shall focus on energy efficiency. The simulated energy consumption is 

analogous to the energy equivalent of the BER. Hence, the simulated Building 

Consumption Rate (BCR) is used in lieu of the BER and Target Consumption Rate (TCR) 

in place of the TER. For clarity the Actual Consumption Rate (ACR) is the energy 

consumption from the case study building. 

 

 

 

 

 



 77 

The post construction Part L test was run in the DTM; the key annual post-construction 

values obtained for energy consumption are displayed in Table 5.1. 

 

Table 5.1 – Case Study Building DTM Annual Consumption Figures 

Key Values Consumption (kWh/annum) 

Simulated Building Consumption Rate 252690.70 

Notional Building Consumption Rate 352519.45 

Target Consumption Rate 264389.58 

 

The figures in Table 5.1 provide a snapshot of the simulated performance over the period 

of the year. An initial test was performed to segregate the consumption values into monthly 

energy budgets. This was done by simply dividing the monthly BCR values by the annual 

BCR to provide a ratio which is then multiplied by the total TCR value. Table 5.2 provides 

the monthly ratios and target figures for the case study building. 

 

Table 5.2 – Monthly allotted TCR  

Month 

Simulated Total 

Consumption –BCR 

(kWh/month) 

Weighting 
Monthly - TCR 

(kWh/month) 

Jan 31454.96 0.124 32911.24 

Feb 26962.77 0.107 28211.08 

Mar 24596.25 0.097 25734.99 

Apr 22043.09 0.087 23063.63 

May 19520.21 0.077 20423.95 

Jun 13901.37 0.055 14544.96 

Jul 11803.68 0.047 12350.16 

Aug 11786.24 0.047 12331.91 

Sep 12692.67 0.050 13280.31 

Oct 22572.73 0.089 23617.78 

Nov 28965.71 0.115 30306.74 

Dec 26391.01 0.104 27612.84 

Total 252690.70 1.000 264389.58 

 

Figure 5.2 graphically illustrates the monthly target method in which the Target 

Consumption Rate (and simulated Building Consumption Rate) is displayed throughout the 

year. This approach took into account seasonal variations in consumption and provided 

monthly targets as a benchmark; it is also more reflective of the building consumption 

patterns throughout the year. However, assessment would have to be performed 



 78 

retrospectively on a monthly basis which still possessed the disadvantages of the longer 

auditing periods albeit on a reduced scale.  

 

 

 

Figure 5.2 – Monthly BRC and TCR values 

 

The methodology developed for the purposes of evaluating the real time energy 

performance took the next iterative step. Two EPIs were implemented in which the first 

provided a dynamic target, with a secondary EPI that measured the real time energy 

consumption against the simulated (BCR) consumption for grading purposes. Before the 

EPIs were applied, the data from the BEMS was first calibrated as there are differences 

between the parameters utilised to calculate the BCR and the output from the BEMS data. 

Additionally several assumptions were necessary in order to make use of the DTM data, 

this is further detailed in the following section. 

 

5.1.1 Data Calibration 

 

To provide a like-for-like evaluation of the building energy consumption against the BCR 

and TCR, calibration of the BEMS data was required. The data from the DTM post 

construction model contains real parametric data however, in accordance with the National 

Calculation Method the occupancy of the actual building does not be the same as the NCM 

template used within the model, for example out of hours or weekend classes in which the 
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building is occupied. Hence, care was taken to ensure that the occupancy periods matched 

up between the DTM and actual building. This was done by checking the energy 

consumption peaks. The energy consumption of the lifts, small power and external lighting 

are not included in the simulated building calculations, these were removed from the 

energy consumption total for the case study building. This allowed for a fair assessment of 

the building as energy usage from the lifts and small power are mainly influenced by 

human behavioural patterns and the specification of the equipment installed, and as such 

have no impact on the health of the building itself. The removal of these three end uses 

provided a reasonable approximation between the DTM and the real energy consumption, 

further details are provided in the following section. Additionally two other assumptions 

were made. Firstly, the difference between the modelled and real building lighting lux 

levels were negligible. Secondly, it was assumed that the energy consumption of the 

external lighting was a relatively small percentage of the total energy consumed and that it 

would not adversely affect the energy evaluation process by neglecting the external 

lighting consumption.   

 

5.1.2 Validation of model  

 

The total energy consumption results obtained from the DTM model was compared to that 

of the actual building. For illustration purposes the Figure 5.3 compares the actual energy 

consumption of the building against the DTM simulate BCR.  
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Figure 5.3 – Total energy consumption comparison for May 

 

Figure 5.3 shows that the operation pattern and peaks are in agreement, however, during 

the unoccupied periods (evenings/nights and weekends) there is a significant discrepancy. 

Analysis of the BEMS data showed that the HVAC consumption is the primary cause of 

the difference between the actual and modelled energy consumptions. Inspection of the 

control setup of BEMS showed that HVAC systems were still utilising a significant 

amount of energy even during the unoccupied periods leading to the increased 

consumption. The design specification for the off-peak/unoccupied periods for the HVAC 

was that the main HVAC systems were to be turned off (or on a reduced load) during these 

periods. However, due to the incorrectly configured controls setup the HVAC systems 

were left running. To illustrate the energy evaluation methodology two cases shall be 

presented one in which the off peak load of the BEMS data was untouched and a second 

case where the off peak loads was adjusted to emulate the intended/designed HVAC 

consumption patterns. 

 

5.1.3 Degree Day Adjustment & Occupation Profiles 

 

To ensure that variations in seasonal consumption were accounted for, regression analysis 

was performed on the heating degree day data to determine an approximate the level of 

additional energy consumed attributable to external temperature conditions. Given that 

there are limited cooling systems installed within the case study building only heating 
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degree days analysis was performed. The base temperature was selected as 15.5
o
C. The 

external temperature sensor at the case study building in combination with the energy 

consumption data was utilised to extrapolate the relationship between energy consumed 

and external temperature. The temperature data for the occupied periods was averaged to 

calculate the degree days. Data samples for the non-occupied periods (in this case 

weekends and school holidays) were omitted to avoid skewing the trend line.  

 

As previously detailed the actual occupational frequency of the building may differ from 

the NCM functionality template, as the template is simply used for energy/emissions 

calculation purposes. It was not necessary to create occupation profiles for this project as 

the occupation profiles/periods were fitted retrospectively. For the practical application of 

the system, care would need to be taken to ensure that correct and fair evaluation occurs. 

The addition of an algorithm to adjust energy consumption due to variations in 

occupational frequency could be implemented to allow facilities management to make 

amendments as needed. A sensor based means (for example swipe card login data or PIR 

motion data) could also be a means of determining the level of occupancy and would be 

more desirable as it would automate the process and reduce the possibility of human errors.  

 

5.1.4 Energy Performance Indicators 

 

Two EPIs were developed by the author; the first was a dynamic Target Consumption Rate 

which was calculated using a rolling average as shown in Equation 5.4 and utilised the data 

from the DTM.  A second EPI provided a grading system that aimed to provide a similar 

output to the DEC/EPCs. The EPIs were adjusted for variations in external temperature. 

Figure 5.4 gives an overview of the real time evaluation architecture used to evaluate the 

data of the case study building.  
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Figure 5.4 – Real time performance architecture  

 

In order to determine an upper limit for energy consumption a dynamic method of target 

setting is proposed. The DTM provides the total BCR and TCR for the building annually as 

well as the BCR hourly consumption. Utilising the cumulative consumption over the last 

28 days (4 complete weeks) of operation a weighting was derived by Equation 5.1.  

  

Total

N

N

BCR

BCR

W








28

1

28

   

Equation 5.1 

 

where, W is the weighting, BCRN-28 is the summed simulated daily consumption for the 

last 28 days of operation, N represents the day operating in the range of the last 28 days. 

BCRTotal is the total simulated consumption of the building for the year.  The weighting is 

then multiplied by the annual TCR (TCRTotal) to determine the upper limit for energy 

consumption as shown in Equation 5.2. 

 

TotalTCRWTCR *

   

Equation 5.2

 
 

Substituting Equation 5.1 into Equation 5.2 gives the complete equation as shown in 

Equation 5.3 
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Equation 5.3

 

 

The TCR was re-calculated on a daily basis to provide a dynamic daily target. The first EPI 

(EPI1- dynamic TCR) was then compared with the total consumption of energy of the real 

building over the last 28 days on a rolling basis. This would inform the end user of whether 

the building was operating above or below the target threshold.  

 

The second EPI graded the actual energy consumption against the BCR, the purpose of 

which was to provide the end user with qualitative measure of performance. The rating 

system was determined by use of the relationship shown in Equation 5.4.  

 

1

28

1

28

EPI

ACR

Rating N

N




  Equation 5.4 

 

where ARCN-28 is the total energy consumed for the last 28 day in the case study building. 

In the case of the building consuming the same amount of energy as the first EPI1 the 

performance rating would be 1, the band thresholds (size of increments) for each rating 

was obtained by first substituting Equation 5.3 for the EPI1 (given that EPI1 is akin to the 

TCR) into Equation 5.4 thus giving Equation 5.5. 
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Equation 5.5

 

 
From Equation 5.5 if the consumption of the actual building were equal to the BCR the 

rating would be equal to the ratio of the BCRTotal to TCRTotal, for the case study DTM the 

ratio was 0.95. This provides the rating band increments of 0.05 between ratings. Table 5.3 

displays the ratings and thresholds for the case study building, where ACR is the actual 

consumption rate of the building. 
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Table 5.3 – Compliance and advisory thresholds 

EPI 1 : Performance 

Threshold 

EPI 1 : Output EPI 2 : BCR 

Comparison 

EPI 2 : Output 

ACR=<TCR  

 
Acceptable 

<0.95 Very Good 

0.95-0.99 Good 

0.99<EPI2 <1.01  Satisfactory 

ACR>TCR Unacceptable 
1.01-1.05 Poor 

>1.05 Very Poor 

 

The satisfactory rating band was set to 0.02 to create a region for the ‘Satisfactory’ rating 

rather than have a single value limit. In conjunction with the energy evaluation the health 

and state of the building was also assessed through the use of a data driven CM system that 

forms the second whole building evaluation tool. 

 

5.2 Building State Evaluation and Fault Detection & Diagnostics  

 

There were a number of CM approaches that were initially considered to perform whole 

building state evaluation. The advantages and disadvantages of each CM system were 

taken into consideration before selecting an appropriate methodology. The large number of 

operating states within typical commercial building (dependent upon several factors, 

including independent variables such as external temperature) meant that implementation 

of a knowledge based system for whole building evaluation was not feasible without 

extensive modelling. Whilst the development of a knowledge based model can be effective 

for smaller systems such as the HVAC systems it is difficult to build a robust enough 

model evaluate the whole building without it being prone to false or missed alarms. A 

model based approach for state evaluation of the building requires the inclusion of more 

than just energy data thus the DTM could not be used. Given the multivariate and non-

linear nature of building operation, development of an accurate mathematical model would 

be difficult. Furthermore, without sufficient sensor coverage of the HVAC and non-HVAC 

parameters the level of uncertainty would render the model inaccurate and of limited use. 

As a result, a data driven methodology was deemed most suited to handle the complexities 

of building operation. As was highlighted in chapter 3 there are a variety of data driven 

methods, however the two main subgroups are statistical and non-statistical 
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methodologies. Neural Networks have the ability to compute non-linear processes 

effectively and efficiently provided that there is sufficient training data. However, Neural 

Networks act as ‘black boxes’ and hence it is not possible to trace the decision making 

process within the hidden layer. This is a critical feature as decisions need to be traceable 

in order to seek out the root causes of faults and failures. Hence a statistical based 

technique was selected. In order to analyse the large quantity of process data, 

dimensionality reduction techniques were selected. Initially three systems were tested; 

these were Principal Component Analysis (PCA), Partial Least Squares (PLS) and Fisher 

Discriminant Analysis (FDA). These three systems are all capable of handling large 

quantities of data and are able to capture the state of a system by evaluating the data in a 

lower dimension space (Chiang, Russel et al. 2001; Heijden, Duin et al. 2004). These 

dimensionality reduction techniques have been the focus of CM research and have been 

employed for health / quality monitoring within industrial processes (Zhonggai and Fei 

2004; Fuente, Garcia et al. 2008; Facco, Doplicher et al. 2009; Yongsheng, Pu et al. 2010). 

The traditional applications of these three systems are only suited for linear processes 

(Chiang, Russel et al. 2001). As a result the initial testing found that these systems were 

unable to adequately represent the nonlinear building state leading to poor fault detection 

properties. Furthermore, the inability of these systems to map the non-linear components 

of the parameter data led to a greater number of false alarms. As a result the non-linear 

equivalents were investigated. The nonlinear method of Kernel PCA was used in which 

the data was mapped into a higher feature space in before PCA was performed (further 

details in section 5.2.2). Unlike PCA, PLS did not have a well established nonlinear 

equivalent for process monitoring and was therefore not tested. Whilst non-linear Kernel 

based FDA methodologies do exist, the most notable strength of FDA is in its ability to 

maximise the distance between data groupings (Duda and Hart 1973). Hence FDA was 

found to be more effective for the diagnosis phase with the ability to maximise the 

distance between nominal and fault data clusters. The final FDD architecture that was used 

in this project is shown in Figure 5.5. 
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Figure 5.5 – Data driven approach overview 

 

Kernel Principal Component Analysis (KPCA) was used to create a representation of the 

building in a lower dimension feature space. Hotelling’s T
2
 (Jackson 1959) statistic was 

utilised for the fault detection phase. Kernel Fisher Discriminant Analysis (KFDA) in 

conjunction with K-nearest neighbour algorithms was used as a novel means of performing 

fault diagnosis. The subsequent sections provide further details for each of these 

techniques. 
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Application of the data driven systems required training data to define the nominal state. 

Typically, historical data or data collected under supervised conditions is utilised for this 

purpose. However, due to the lack of availability of such data, the data extracted from the 

BEMS was used under assumption that the BEMS data was analogous to the behaviour of 

the building under nominal operating conditions. The months of February and May were 

selected to test the data driven methodology as this provided two seasons with varying 

external weather conditions and kept the results to manageable levels. 

 

An overview of PCA theory is given in the next section which then built upon in 

subsequent sections detailing Kernel based PCA. 

 

5.2.1 Principal Component Analysis 

 

The initial application of the PCA methodology utilised the DTM data as the training data. 

This was due to the DTM data possessing a more distinguishable relationship between the 

parameters given that they were generated using fixed profiles and functions. Hence the 

data did not contain any disturbances to nominal operation such as extended operating 

hours or faults with the HVAC that would pollute the training data with noise. 

Furthermore, any detected ‘faults’ were easier to isolate as a result. Pre-treatment of the 

data was performed to prevent certain variables from having a disproportionate weight 

(those with large operating ranges) in the evaluation process. In order to pre-treat the data, 

the training data was auto-scaled by subtracting the mean of a variable from the 

observations of that variable as the aim was to capture the variation from the mean. The 

observations were then divided by the standard deviation for each variable thus scaling 

each variable to its respective unit variance. The training data set was then stacked into the 

matrix TD shown in equations 5.6. 
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  Equation 5.6 

 

where m is the number of variables and n is the number of observations (data points) being 

utilised to build the PCA model. Ordinarily the training data would aim to contain all 
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necessary information to explain the acceptable variance within the process. However, the 

normal range of values for certain parameters change over time such as external 

temperature meaning that the nominal variance is not static. Recursive PCA techniques are 

sometimes used to overcome this problem, however in the case of this project, the training 

data shall be separated into months thereby performing a rudimentary form of recursive 

modelling.  

 

The training data consisted of the building services consumption, the lighting consumption, 

the total energy consumption and the external temperature. The covariant matrix was then 

constructed for the training data as shown in Equation 5.7 (Rencher 1995; Patton, Frank et 

al. 2000). 
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Equation 5.7

  

where TD
T
 is the transpose of the matrix TD and STD is the covariance matrix. Eigenvalue 

decomposition of STD was then performed through Equation 5.8. 

 

T

TD VVS 

    

Equation 5.8 

 

where V is the orthogonal loading vectors (also known as the transformation matrix) and  

is a diagonal matrix contains the non-negative real eigenvalues in decreasing magnitude. 

The loading vector corresponding to the largest value of  ( 11) is the first principal 

component that captures the largest amount of variance. Selecting the loading vector 

columns corresponding to the largest eigenvalues created a loading matrix PCL containing 

the principal components to be utilised, shown in Equation 5.9 (Chiang, Russel et al. 

2001). 

 

mxa

L KPC     Equation 5.9 

 

where K is a matrix containing the principal loading vectors, and ‘a’ is the number of 

number of largest eigenvalues that have been retained. Projecting the data points on to the 

newly reduced dimension place was done via Equation 5.10 
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LD PCTZ     Equation 5.10

  

where Z is a matrix containing the projections of TD in the new dimension space, 

commonly referred to as the scores (commonly called T-scores) matrix. 

 

5.2.1.1 PCA Fault Threshold Generation & Detection 

 

Defining the fault threshold was done utilising two statistics that observe the reduced 

dimensionality space generated by PCA, Hotelling’s T
2
 statistic (Jackson 1959) and the 

Square Prediction Error (SPE - commonly referred to as the Q statistic) (Johnson and 

Wichern 1992). Hotelling’s T
2
 statistic detects the distance of each observation point from 

the centre of the data set (in the case of PCA, the zero mean centre). If the sample 

covariance matrix shown in Equation 5.8 is invertible, then the T
2
 is defined by Equation 

5.11 

 

zzT T2
   Equation 5.11 

 

where the vector of scores,  z  is given by Equation 5.12 

 

   Equation 5.12 

 

where x is an observation vector within the matrix of variables. Application of the T
2
 

statistic for threshold generation is dependent upon the level of significance () from a 

normal multivariate distribution (X
2
). Equation 5.13 was used to define the threshold 

boundary. 
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    Equation 5.13 

 

where F(m, n-m) is the upper critical point of the F (continuous probability) distribution 

with m and n-m degrees of freedom (Rencher 1995). The T
2
 statistic can be applied 

directly to principal component observations using Equation 5.14. 

  

xVz T2/1
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    Equation 5.14 

 

To allow for the use of smaller eigenvalues should they contain essential data to the 

process the Q statistic was utilised as given in Equation 5.15 

 

rrQ T    Equation 5.15 

 

where r is the residual vector, given by equation 5.16 
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LL )(    Equation 5.16 

 

where I is the identity matrix. The Q statistic is primarily used to observe the threshold of 

lower eigenvalue loading vectors, the Q statistic distribution was approximated to Equation 

5.17 (Jackson and Mudholkar 1979). 
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where; 
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Equation 5.18 

and 
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Equation 5.19 

 

These two statistics are typically used as a means of observing any fault points within the 

process. As a test of traditional PCA they were used to detect any faults within the nominal 

data. Those points were then evaluated for the causes of the threshold breaches the results 

of which are shown in section 7.2.1. 
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5.2.2 Kernel Principal Component Analysis  

 

Traditional PCA makes the assumption that the process data is linear and as a result PCA 

performs poorly when nonlinearities are present (Dong and McAvoy 1996; Cho, Lee et al. 

2005). Kernel PCA was developed with the aim of overcoming the non-linear problem, it 

does so by mapping the input space into a feature space using a nonlinear mapping and 

then calculating the Principal components in the feature space (Scholkopf, Smola et al. 

1998). The process monitoring concepts detailed by Cho et al (2005) and Lee et al (2005) 

was applied to the nonlinear data from the case study building via Equations 5.20 – 5.43 

(Cho, Lee et al. 2005; Ji-Hoon, Jong-Min et al. 2005). The full mathematical proof of 

which has been verified in numerous published articles (Scholkopf, Smola et al. 1998; Lee, 

Yoo et al. 2004; Cho, Lee et al. 2005). Taking the case where the training samples are part 

of the set R as shown in Equation 5.20, where the mean is zero. 
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  Equation 5.20 

 

Using a nonlinear mapping (R
M

 F) the training data was mapped onto a high 

dimensional feature space F, where F has an arbitrarily high number of dimensions. The 

covariance matrix was then built in the feature space F via Equation 5.21. 
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 Equation 5.21 

 

The eigenvalues of the covariance matrix were extracted in the high feature space by 

solving Equation 5.22. 

 

 vCv F     Equation 5.22 

 

where v is the eigenvector of C
F
 and is considered to be a linear combination of the 

mapped input, given that the eigenvalues do not equal zero.  is the eigenvalues. Equation 

5.22 can be re-written as  
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Equation 5.23 

 

Multiplying both sides of 5.21 by (xk) gives the following form: 
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Equation 5.24 

 

By using the Kernel trick Equation 5.24 can be expressed in the simpler form of Equation 

5.25. 
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Equation 5.25 

 

where K is the gram matrix  
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Equation 5.27 

 

K is obtained by solving the eigenvalue problem of 

 

 KN 

     

Equation 5.28 

 

In order to solve the eigenvalue problem a kernel function is used, kernel functions take the 

general form of: 

)(),(),( yxyxk 

                     

Equation 5.29 

 

The kernel functions tested in this project were linear, polynomial and Gaussian and are 

given by Equations 5.30 – 5.32 respectively 
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Equation 5.32 

 

Where d is the polynomial order and  is determined through fine tuning of the kernel. The 

gram matrix K is first centred before the application of PCA. The centred gram matrix   is 

given by Equation 5.33. 
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Equation 5.33 

 

Where 1N is given by 
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Equation 5.34 

 

Using the centred   kernel matrix the eigenvalue shown in Equation 5.35 was solved. 

 

 KN 

     

Equation 5.35 
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Equation 5.36 

 

 

For the nominal operating data (training data) the selected nonlinear principal components 

was extracted via Equation 5.37 to gain the KPCA equivalent T-scores, tk. 
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Equation 5.37  
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The T
2
 statistic was then obtained using Equation 5.38 
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2     Equation 5.38 

 

The confidence limit or threshold boundary was obtained using Equation 5.13. The T
2
 

values for the nominal data were then checked to ensure that the nominal case fell within 

the threshold limits. In cases where the operating data falls outside the T
2
 threshold the 

threshold would ordinarily be adjusted. 

 

5.2.3 KPCA Fault Detection 

 

The fault case data described in section 5.2.7 was analysed one sample at a time to perform 

to the fault detection process described below. This was done as means of emulating the 

practical application of the KPCA in which the latest incoming data from the BEMS would 

be used to determine the state of the building, as would occur in an online monitoring 

system.  

 

Detection of the fault case data was done through the following steps. Firstly the fault test 

sample was pre-treated within the nominal data set to have a zero mean and unit variance. 

The kernel vector was mapped to R as shown in Equation 5.39. 
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And was obtained by 
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where xj is the normal operating data and xt is the fault data. The test kernel vector was 

mean centred by 
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Equation 5.41 
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where 1t is obtained from 
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Equation 5.42 

 

The fault test T-scores were extracted using  
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Equation 5.43 

 

The T
2
 value was obtained from the T-scores of the test data using Equation 5.38. The T

2
 

statistic provided reasonable results given that the variance captured within the principal 

components was high. However, for the SPE methodology the control limits were 

extremely large and thus ineffective at capturing the state, this is primarily due to the 

arbitrarily high number of dimensions for the feature space (Cho, Lee et al. 2005). 

 

In traditional application of PCA for process monitoring, contribution plots are often used 

to isolate the parameters that contribute greatest to the threshold breaches. However, 

performing fault isolation in KPCA is not simple as the relationship between the original 

data and feature projections are nonlinear. Furthermore there are difficulties in linking the 

high feature space contributions back to normal space variables (Choi, Lee et al. 2005). 

Hence as a result fault isolation was not performed as part of the data driven FDD. 

 

5.2.4 Fault Diagnosis (Pattern Classification) 

 

The final stage in the FDD process was to diagnose faults through classification techniques 

using the KPCA T-scores for the nominal and the fault test cases. This was done in two 

stages, KFDA (Kernel Fisher Discriminant Analysis) was used to project the T-scores onto 

a lower dimension feature space upon which the data was separated between classes 

(Zhang, Yan et al. 2007). The second phase was to introduce smaller fault samples which 

contained similar but not identical characteristics to the fault cases to determine if a K-

nearest neighbour (KNN) algorithm was able to effectively classify the fault under the 

belief that the faults would migrate away from the nominal cluster towards the fault cluster 
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it was most similar to. Incoming data samples that fell within the nominal cluster would be 

considered as normal building operations, whereas those that migrated away were 

considered fault states. This in itself provides a secondary method of fault detection.  

 

The application KFDA for classification is verified within numerous published journal 

literature, this project utilises the following theorem shown in Equations 5.44 – 5.49 (Guo, 

Li et al. 2003; Zhang, Yan et al. 2007) for the purposes of maximising the separation 

between the nominal T-scores and the fault case T-scores that was collated from the KPCA 

method.  

 

The T-scores for the nominal data and fault data were loaded into an array in which there 

were M classes and each class has Ni samples with N being the total number of data 

samples. Using the nonlinear mapping  the T-scores were mapped on a high dimensional 

feature space similar to KPCA. The mathematical derivations have been omitted as they 

are not explicitly required; the full derivation can be viewed in the paper by Zhang et el 

(Zhang, Yan et al. 2007). The equations that are pertinent to the methodology are detailed 

here.  

 

The kernel sample vector and is defined as  
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Using Equation 5.44 the kernel sample vectors for the nominal case (NOM and the fault 

cases (TEST were obtained. These kernel sample vectors were considered to be different 

classes. The kernel between class matrix, Kb and kernel within class matrix Kw was then 

calculated using Equations 5.45 and 5.46 respectively. 
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where the kernel mean vector the within class, i and the kernel mean vector of all mapped 

samples, 0 are given by Equations 5.47 and 5.48 respectively. 
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The kernel sample vectors for the nominal case (NOM and the fault cases (TEST were 

then projected to the optimal kernel Fisher Discriminant (lower Fisher Dimension). The 

optimal kernel Fisher Discriminant was obtained by solving the generalised feature 

equation as shown in Equation 5.49.   

 

aKaK wb        Equation 5.49 

 

where a is the vector coefficients. 

 

The sample faults (test case samples defined in section 5.2.7) were then projected onto the 

feature space. The sample faults had similar characteristics to one of the fault cases. In 

order to diagnose the fault samples a K-Nearest Neighbour (KNN) algorithm was used to 

calculate the Euclidean distance between the nominal, fault case and fault sample clusters 

on the projected feature space. The KNN classifier attributed each fault sample observation 

to the nearest data cluster (either the nominal data cluster or one of the 5 fault case 

clusters).  

 

5.2.5 System Training Methodology  

 

The training used in data driven techniques would ideally contain all the necessary 

parameter variations that are representative of nominal building behaviour. The lack of 

availability of training data meant that in order to test the data driven methodologies it was 

necessary to make the assumption that the BEMS data represented the nominal building 

operation. It was also assumed that this training data contained all the nominal variations 
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that would typically occur. The training data consisted of a range of process parameter data 

that is described in the following section. 

 

The training data was then segregated into two groups, one that contained the training data 

for the occupied hours and the other containing the unoccupied hours. Segregating the data 

by the operational state of the building led to improved accuracy of the methodologies 

employed. This was due to the segregation limiting the operating range for each parameter 

thereby improving the CM systems ability to detect smaller variations from the nominal 

state. For example the maximum and minimum values for the total energy consumed 

ranged from, on average, 25-55kW over a 24 hour period. By segregating the data this 

range became 45-55kW for occupied periods and 25-35kW for unoccupied periods. Figure 

5.6 illustrates the segregation boundaries.  

 

 

 

Figure 5.6 – Segregation boundaries of PCA model 

 

The data observations for the month were separated into their respective groupings, 

forming two training matrices TDAY and TUNOC. Where TDAY contained all the data for the 

occupied periods and TUNOC contained the data for the unoccupied periods such as the 

weekends and evening/nights for weekdays. Table 5.4 details the segregation sections by 

time. 
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Table 5.4 – Time based segregation 

Segregation Band Time period 

Weekday – Occupied 0800-1700 hrs 

Weekday – Unoccupied 1715 – 0745 hrs  

Weekend 1700hrs Friday – 0700hrs Monday 

 

Given that the unoccupied periods were known to contain excessive HVAC consumption, 

only the occupied training matrix (TDAY) was used in the methodologies described 

previously. 

5.2.6 Process Parameters  

 

The parameters that were selected for the state evaluation methodologies included energy, 

temperatures and HVAC data. Whilst there were more parameters available not all were 

necessary for the purposes of demonstrating the abilities of the methodologies presented in 

this thesis. The four main groups of parameters that were utilised are detailed in Table 5.5. 

 

Table 5.5 – Data driven process parameters 

Parameter Group Parameter 

HVAC - Temperature 

sensors 

 

Atrium under-floor heating flow temperature 

Boiler flow temperature 

Boiler return temperature 

Multi conference room radiant temperature 

Radiant heating flow temperature  

Atrium vent temperature 

 

HVAC - Valves and Window 

Actuator positions 

 

Natural ventilation north facade 

Natural ventilation south facade 

Multi-conference radiant valve 

 

Temperature 

 

GF Atrium temperature Zone 1 / 2 / 3 

Outside air temperature (OAT) 

 

Energy Meters 

 

Mechanical services consumption 

GF/1F/2F lighting consumption 

Multi conference consumption  

Total energy consumption 
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GF – Ground Floor 

1F – 1
st
 Floor 

2F – 2
nd

 Floor 

 

The data was sampled at 15 minute intervals. It was assumed that these parameters 

contained enough information to describe the nominal state of the building. Several of 

these parameter values were changed to create the fault cases detailed in the following 

section. Whilst certain parameters were not change for the fault cases such as the OAT and 

lighting energy consumption, these parameters were needed to define the nominal 

relationship/variance between parameters.  

 

5.2.7 Fault Test Cases and Fault Samples 

 

To test the CM methodologies five test cases were devised. The aim of the fault tests was 

to determine the capabilities of the proposed CM systems at handling a range of fault types 

that were expressed in the process data using various fault profiles. The five fault cases 

aimed to simulate both the poor operation/maintenance of the building (Fault 1 and 2) and 

HVAC faults and failures (Faults 3, 4 and 5). In the methodology presented in this thesis, 

the diagnosis process requires supervision to classify any newly generated clusters outside 

of the nominal case with an appropriate fault label. Hence, given the that deviations in the 

process data are classified through supervision, the actual faults themselves are not so 

important here but rather the ability of the methodologies to successfully detect, separate 

and diagnose (for different fault characteristics and profiles) the expression of the fault 

data from the nominal case.  

 

Table 5.6 provides an overview of the fault test cases. 
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Table 5.6 – Test fault cases for statistical condition monitoring methodology 

Test Case: HVAC System Fault Fault Profile Affected (modified) Parameters 

1 Heating Poor efficiency 

- Step Change 

- Slow developing / 

incipient  

HVAC energy consumption 

Total Energy consumption 

2 Ventilation Poor efficiency 

- Step Change 

- Slow developing / 

incipient  

HVAC energy consumption 

Total Energy consumption 

3 HVAC Valve 
Stuck radiant panel 

valve  
Abrupt – Step change  

Multi-conference valve 

Multi-conference radiant panel temperature  

HVAC energy consumption 

Total Energy consumption 

4 Heating 
Central atrium heating 

fault/failure  
Intermittent 

Ground Floor atrium temperature sensors  

HVAC consumption 

Total consumption  

5 Ventilation 
Central Atrium window 

actuator failure 
Intermittent 

Natural ventilation north facade 

Natural ventilation south facade 

GF atrium temperature sensors  

Atrium vent temperature 
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Fault 1 and 2 related to reduced efficiency of the HVAC systems, namely the heating and 

ventilation systems, imitating poor HVAC maintenance practices. Three types of 

degradation patterns were used. The first introduced a 10% reduction in efficiency. Using 

the findings in Chapter 4, this was equivalent to increasing the HVAC energy consumption 

by 4.5% for Fault 1 (heating) and 0.055% for Fault 2 (ventilation). The second and third 

methods used a linear and parabolic degradation in efficiency over time in which the 

efficiency was nominal at the start of the month and was degraded to 15% reduced 

efficiency at the end of the month. The fault profiles for faults 1 and 2 was a step change 

for the 10% reduction case and slow developing for the linear and parabolic cases. This test 

case also measured whether the T
2
 statistic was an appropriate threshold to handle both 

large and small changes to the process parameter data.  

 

Fault 3 represented a fault with the radiant panel valve in the multi-conference room in 

which the room is left without heating. Whilst it would have been preferable to utilise local 

temperature sensors, these sensors were not connected to the BEMS. Thus the radiant 

panel temperature was used instead. The fault symptoms were applied abruptly in the 

second week using a step change in the process parameter data. The effects of the fault was 

a reduction in energy consumption for the HVAC system, a drop in the radiant panel 

temperature to 10
o
C and a radiant panel valve position set to closed.  

 

The fourth fault was an intermittent fault in the heating system in which heating was not 

supplied to the central atrium zone via the under-floor heating system.  The heating output 

slowly fell over time indicating a fault with the heating circuit valve. The heating circuit 

valve was not directly monitored hence the cause of the fault was inferred by the changes 

in the parameter data. This was emulated by reducing the internal temperature of the 

ground floor atrium by greater amounts over time and allowing it to vary with the external 

temperature. There was also a slight decrease made to the HVAC and total energy 

consumed to represent the reduced energy load. The intermittent profile was such that the 

fault only clearly manifested itself in the process data when there was a need for heating. 

The fault was further masked as the ground floor atrium temperature varied with the 

external temperature and was not step changed to a fixed value.  

 

The fifth fault was intermittent breakdown in the atrium chimney windows actuators. The 

actuator positions were not opening as fully despite the need for it. The ground floor atrium 
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temperature was slightly increased to represent a lack of exhaust in the atrium and was also 

varied with the external temperature in moving up or down. The atrium vent temperature 

steadily increased during the day time periods fell during the nights/evening. 

 

The fault case parameter changes were applied to the BEMS data for February and May. 

The fault data was then analysed one sample at a time, emulating an online monitoring 

strategy, to determine the ability of the KPCA to model the data and the T
2
 statistic to 

detect faults. The T-scores from the fault cases were then collated so that each fault case 

was considered to be a distinct and separate class to the nominal class. To test the ability of 

KFDA and the KNN algorithms, fault samples were designed. The fault samples were 

created by first selecting 12 random data samples from each month and applying a change 

in the process parameter. Three fault samples were devised in which the applied changes 

resembled the parameter changes of fault cases 1, 3 and 4. The changes made to the fault 

samples were similar but not identical to the changes applied to the fault cases. For fault 

sample 1, the heating efficiency was reduced by 7% leading an increase in both the HVAC 

and total energy consumption. Fault sample 2 was an approximation of fault case 3, 

however unlike fault case 3 the valve was able to open up to 10% and the radiant panel 

temperature was able to increase to 15
o
C. No changes were made to the energy 

consumption for fault sample 2. Fault sample 3 approximated fault case 4, the temperature 

and HVAC consumption data for fault case 4 was increased by 5% and reduced by 2% 

respectively Table 5.7 summarises the properties of the fault samples. 

 

Table 5.7 – Fault samples characteristics  

Fault Sample Parameter change 
Fault case 

approximation 

1 
7% reduction in efficiency leading to a reduction in 

HVAC and total energy 
1 

2 
Multi-conference valve – maximum value 10% 

Multi-conference radiant panel temperature - 15
o
C  

3 

3 

Ground Floor atrium temperature sensors – 

increased 5% more than fault test case 4 data 

HVAC consumption – 2% reduction on fault case 4 

consumption 

4 
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The aim of introducing fault samples was to determine if the KFDA and KNN algorithms 

would be able to successfully detect the migration away from the nominal case in order to 

attribute the fault sample to the fault case it was approximating. The results from the state 

evaluation methodology are presented in 7.2. 
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CHAPTER 6 

 

6. HVAC Fault Detection and Diagnosis Methodology 
 

The data driven building evaluation tool detailed in the previous chapter was supplemented 

with an additional method focussed on diagnosing faults and failures specifically targeting 

the operation of the HVAC systems, thereby creating a holistic approach to building state 

evaluation. In order to perform HVAC diagnostics an Expert System was implemented. As 

detailed in Chapter 3, Expert Systems (ES) aim to simulate a ‘human’ knowledge domain 

by emulating the reasoning process of an expert (in that field) on the state of health of a 

system (Jackson 1999). Typically an expert system is supplied with the qualitative state of 

several relevant process parameters by the user from which an diagnosis similar to the 

judgement of an expert in the field is returned by the ES (Rao 1996; Jackson 1999). The 

traditional application of an ES for fault detection and diagnosis has a significant drawback 

in that there is no linkage between the fault detection and fault diagnosis stages. Fault 

diagnosis only occurs when the end user notices a problem with the system and queries the 

ES. Thus leading to the possibility where noticeable deterioration may be needed for the 

fault to be detected. This problem is further compounded if the symptoms of a fault can be 

masked by overcompensation by the control system or if the fault profile is incipient or 

intermittent. A system that removes the need and reliance upon the end user to perform the 

fault detection phase would be an enhancement to the traditional ES. This would provide a 

method by which continual and consistent focus is placed upon on the performance and 

state of the HVAC systems whilst bridging the gap between fault detection and diagnosis.  

 

The Automated Expert System (AES) developed for the purposes of this project collated 

parameter information from the BEMS and converted them into rules from which the AES 

determined the state of the HVAC systems. Whilst this method removed the need for 

human fault detection it did possess one disadvantage in that observed/heuristic symptoms 

such as the “Air Handling Unit is making a rattling sound” cannot be utilised in the 

diagnosis process and as such the AES is reliant on the need for sufficient process 

information to make accurate decisions. However, it is likely that a significant proportion 

of heuristically observed fault symptoms would also manifest themselves in deviations in 
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the measured process data. Hence, it is envisaged that application of the AES will not be 

significantly impeded by the lack of user input. The basic operating premise for the 

Automated ES is shown in Figure 6.1 which is an adaptation of the traditional ES 

methodology shown in Figure 3.2. 

 

 

Figure 6.1 – Automated expert system architecture (Adapted from - (Davies 1998)). 

 

The AES used an inference engine to combine the rule base and the BEMS data to interpret 

the state of the HVAC systems and to infer whether or not a fault had occurred. The rules 

contained within the rule/knowledge base represent the states of the process parameters 

when a fault has occurred. Traditional Expert System inference engines use fault rules such 

as Fault 1 has occurred if Rule 1 and Rule 2 have been triggered. Where Rule 1 and 2 

describe the state of a parameter, for example the Radiant Panel Temperature is greater 

than 84
o
C or the Flow rate is equal to zero. However, the AES used a Fuzzy Expert System 

approach in which the process parameter data was converted to qualitative class/rule for 

comparison with the Fault rule database. Figure 6.2 illustrates the full architecture of the 

AES.  
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Figure 6.2 – Complete automated expert system architecture 

 

The AES converted the process parameter data into a fuzzy value and a membership grade 

for each qualitative class; this allowed the inference engine to detect faults by comparing 

the state of the system against user defined fault rules via the fault database. Qualitative 

statements were used to describe the state of a parameter such as “hot/warm/cool” for 

temperature readings as opposed to numerical values in the same manner as the traditional 

ES methodology. The Fuzzy values were then used within the inference engine and 

compared against the fault rules. The fault rules contained the states of the relevant 

parameters that which indicated a fault had occurred. The use of fuzzy rules in an ES is 

typically referred to as a Fuzzy Expert System. Fuzzy ES have the benefit of being able 

capture the state of a problem in a more natural fashion (Kandel 1991). This allows for a 

natural evolution of the fault database with new rules and fine tuning of the current fault 

rules as user experience grows. 
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Once a fault has been detected and diagnosed, the membership grade values were then 

utilised for use by the decision confidence algorithm which arranged the probability of a 

fault by the supporting evidence, this is critical to differentiate between faults with similar 

fault symptoms. The end user is then supplied with the diagnosis made by the AES, a list 

of potential fault causes may also be supplied along with the decision confidence of each 

of those faults occurring. 

 

The process steps of the AES are further expanded upon in the following sections.  

 

6.1 Inference Rules, Membership Grades and Parameter Classification 

 

The automation of the ES required that process parameters were converted into both 

qualitative fuzzy values and numeric membership grades for use by the inference engine 

and fault confidence calculations respectively. Fuzzy Logic uses ‘vague’ classifications as 

opposed to ‘crisp’ number sets (Zadeh 1965; Chen and Tan 1994). Traditional 

classification methods deal in absolute (truth) values, for example, the ‘truth’ that a set ‘X’ 

(consisting of the elements (x1,x,2…xn)) belongs to the universal set U can be represented 

by Equation 6.1 (Buckley and Eslami 2002): 

 










Axif

Axif
xXU

0

1
)(    Equation 6.1 

 

where the elements within the set of X can be mapped within the domain of [0, 1] in which 

a value of either 0 (not belonging to U) or 1 (belonging to U) is attributed to the element, 

for example this could correspond to the on/off states of a control switch. Whilst this is 

sufficient for classifying the state of a parameter with only two possible states, it is 

insufficient for classification of parameters that contain a range of values for which a 

number of subjective states can occur.  

 

Membership equations were used to derive a membership grade of a monitored parameter 

based upon its level of membership to a qualitative class. Membership equations define the 

level (grade) of membership to a class or group, for example as illustrated in equation 6.2, 

a value of x greater than 100 has full membership to the class ‘Open’. 
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Equations 6.2 is shown graphically in Figure 6.3. 

 

Figure 6.3 – Single class membership grade 

 

Since the majority of parameter groups contain several classes, multiple classification 

boundary lines were plotted corresponding to each group, overlaps were intentionally 

included to prevent the alpha cuts (boundaries) from becoming discrete intervals as shown 

in Figure 6.4.  
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Figure 6.4 – Example room temperature fuzzy classification 

 

Figure 6.4 illustrates that at a room temperature of 14
o
C the parameter has a 0.15 

membership to the class ‘Cold’, and a 0.45 membership to the class ‘Nominal Room 

Temperature’. Overlaps in the class boundaries ensured that certain premises were not 

entirely disregarded if the parameter value bordered close to the upper or lower limit of a 

class. For example, if the temperature in Figure 6.4 was 12.5
o
C then with no overlaps the 

classification would be ‘nominal room temperature’ only dismissing the premise that the 

room temperature was ‘cold’. 

 

The application of AES utilised a several selected HVAC parameters that were converted 

into fuzzy values and membership grades. These parameters were grouped into 3 broad 

classifications based upon their nominal operating range as shown in Table 6.1. 

 

Table 6.1 – Parameter groupings 

Group Parameter Information Nominal Operation Range 

1 Boiler flow/return temperatures Sensor data 53 - 85
 o
C 

2 Valve and actuator data 0 – 100% 

3 Local Heating Temperature Sensor data 17 - 27
 o
C 

 

The temperature based parameter values (group 1 and 3) were converted to fuzzy values 

and membership grades using a generalised bell shaped curve membership function with 

the parameters a, b and m (Equation 6.3). 
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Equation 6.3 

 

The values of a,b and m were amended to create the appropriate classification boundaries 

using the ‘gbellmf’ function in Matlab. For group 2 a trapezoidal membership function 

(trapmf - Matlab function) was utilised due to it providing broader peaks for each class as 

shown in Equation 6.4. 

 

                   

 

  Equation 6.4 

 

 

 

The parameter values for Equation 6.3 and 6.4 along with the number of Classes and Fuzzy 

Values are shown in Table 6.2. 
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Table 6.2 – Membership parameter values and fuzzy value classifications  

Group Parameter 
Number of 

Classes 
Fuzzy Values 

Membership 

Equation 

Parameters 

1 

- Boiler Flow Temp 

 

- Boiler Return Temp 

 

 - Radiant Flow Temp 

4 

Cool a –8 , b –6 , m – 50 

Warm a –4 , b –4 , m – 62.5 

Hot a –4 , b –4 , m – 72.5 

Very Hot a –8 , b –6  , m – 85 

2 

- Natural Ventilation 

North Facade 

 

 - Natural Ventilation 

South Facade 

 

 - Conference Room 

Radiant Panel Valve 

4 

Closed 
c – 0, d – 0, 

e – 20,f -30 

Mostly Closed 
c – 20, d – 30, 

e – 45, f -55 

Mostly Open 
c – 45, d – 55, 

e – 70, f -80 

Open 
c – 70, d – 80, 

e – 100, f -100 

3 

 - Conference Room 

Radiant Temp 

 

 - Atrium Vent 

Temperature 

 

3 

Cool 
a – 2, b –  5, 

 m –17 

Warm 
a –2, b –  5, 

 m –22 

Hot 

 

a – 5, b – 5, 

 m – 27 

 

 

The conversion of data to fuzzy values was then utilised by the inference engine to analyse 

the state of the building against the fault rule database. External temperature and energy 

consumption data was omitted as the AES was built to target HVAC specific changes only, 

with the data driven methodology providing whole building process monitoring for 

independent verification of the results. In the actual application external temperature and 

energy consumption could be taken into consideration to further define the fault rules, 

however given the deterministic nature of the fault rules detailed later on in the chapter it is 

not required. 



 113 

6.2 Inference Engine Architecture 

 

The diagnosis of the HVAC systems was performed within the inference engine; the 

inference engine interpreted the fuzzy values to determine the state of the system. There 

are several ways of enabling an inference engine including semantic nets, procedural 

representations and production rules/frames (Giarratano and Riley 1994). For fault 

detection and diagnosis production rules are the most relevant method. Production 

rules/frames determine if an outcome has occurred if a sequence of states representing a 

fault is activated. For example IF Rule 1 AND Rule 2 are true THEN Fault 1 has occurred, 

in the case of the AES the rules described the fuzzy state of a parameter. Fault detection 

can be performed in two manners, the first being forward chaining. Forward chaining 

selects the rules and tests the fault hypothesis for any matching sequences, whilst 

conversely backward chaining tests each fault hypothesis and checks to see if the relevant 

that rules match, both systems should essentially arrive at the same conclusions 

(Giarratano and Riley 1994). Backward chaining has been implemented with the AES. 

Each fault hypothesis (referred to as fault rules and detailed in section 6.3) was evaluated 

using the current state of the relevant fuzzy parameter values. Hence interpreting the state 

of several parameters as a human expert would do to form a judgement on the health of the 

system.  

 

 

6.2.1 Inference Engine Features 

 

The AES was designed to be able to deal with incipient, intermittent and abrupt faults and 

failures. Additionally, through the use of a decision confidence algorithm faults with 

similar symptoms can be ordered by supporting evidence, the decision confidence 

algorithm is detailed in section 6.4.  

 

In order to enable the fault detection features of the AES the following the fault rule array 

structure was created as shown in Equation 6.5. 

 

 321 ,, EEEFN 
    

Equation 6.5 
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FN was the N
th

 fault rule which consisted of 3 elements. The element E1 indicated to the 

inference engine the time required for a fault to fully propagate. E1 held the number of 

consecutive cycles a fault rule needed to be triggered before the fault was confirmed and 

reported to the end user. It should be noted that once a fault rule was triggered it was 

analysed by the decision confidence algorithm regardless of whether the fault has reached 

the full number of cycles of E1. The element E2 was the number of clear cycles in which 

the fault symptoms were not triggered needed to reset E1. This allowed for detection of 

slow developing (incipient) and intermittent faults to be investigated by setting E2 to a 

large figure. Slow developing and intermittent faults were separated by E1 values, in which 

intermittent faults had a smaller E1 values than incipient faults. The elements E3 contain 

the parameter states that constituted the fault rule, E3 was an array that contained the name 

of the parameters that that were indicative of the fault and also contained the state those 

parameters would be in for that fault to have occurred.  

 

Given the nature of fuzzy logic the value of a parameter could belong to two possible fuzzy 

states with their respective membership grades due to the overlap between fuzzy classes. 

Therefore the state of the HVAC system could also be represented by more than one state. 

The total number of combinations is given by c
r
 where c is the number of possible fuzzy 

states in this case 2 and r is the number of rules that possessed more than one fuzzy state. 

Each of the HVAC parameter states was then compared against their corresponding values 

in the fault rules to determine if they triggered a fault signal. The fault rules that were 

triggered are then analysed for the level of evidence supporting that particular fault 

hypothesis. For the purposes of testing the methodology 4 test cases have been developed, 

these test cases are detailed in the following section. 

 

6.3 Automated Expert System Fault Test Cases 

 

To test the automated expert system methodology faults were designed that simulated 

abnormal behaviour in both the ventilation and heating systems. In order to develop the 

faults the assumption was made that the data from the BEMS was characteristic of normal 

HVAC operation. This provided a nominal baseline from which the parameter data was 

altered to create fault events. The fault events were deterministic and were primarily used 

to illustrate the capabilities and operating principles of the AES. The fault cases used to 
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test the AES are labelled here as “AES Fault Case” to differentiate from the fault test cases 

used in Chapter 5. The design philosophy of the faults was to test the AES at both plant 

and room level using differing fault profiles. Additionally, AES Fault Cases 1 and 2 had 

similar symptoms but different fault profiles for the purpose validating the decision 

confidence algorithm.  

 

The BEMS data was analysed to determine the nominal states of the HVAC parameters. 

The relationship between the HVAC parameters under various conditions was identified; 

this information was then used to alter the data for each fault event. The BEMS data for the 

month of May was selected for alteration.  

 

AES Fault Cases 1 and 2 introduced a fault with the heating system. It was initially 

envisaged that there would be further heating fault events using the parameters monitoring 

the central atrium. However, there was no easily identifiable correlation between the 

parameters. Given that not all the parameters were logged by the BEMS there was the 

possibility one of the unlogged parameters held the connecting relationship between the 

parameters. Hence, for AES Fault Cases 1 and 2 the boiler flow and return temperatures as 

well as the radiant flow temperature was reduced in an incipient manner for fault 1 and an 

intermittent manner for fault 2.  

 

AES Fault Case 3 was identical to fault test case three used in chapter 5 in which there was 

a problem with the radiant panel valve for the multi-conference room. The fault symptoms 

were identical, thus the valve position set was to 0 and the radiant temperature reduced to 

10
o
C. 

 

AES Fault Case 4 relates to a motor actuator failure for the automatic windows in the 

atrium chimney. The data was altered to reflect a slow degradation in the window actuators 

ability to fully open. For AES Fault Case 4 the value of E2 was set to a large number (150) 

as the use of the atrium chimney windows for ventilation in the month of May only occurs 

for three periods with the rest of the time remaining closed. 

 

Fault rules were then developed that described these fault events for fault detection and 

diagnosis purposes. Table 6.3 details the faults rules their characteristics, each numbered 

fault rule corresponds to the fault number described above.  
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Table 6.3 – Expert system fault rules 

 

 

Fault Rule HVAC System Fault Fault Profile E1 E2 E3 

F1 Heating 

Reduced output from Boiler(s) Slow 

developing 20 5 

Boiler Flow Temp = WARM 

Boiler Return Temp = WARM 

Radiant Heating Flow Temp =COOL 

F2 Heating 

Intermittent drops in boiler 

output 

Intermittent 

 10 40 

Boiler Flow Temp = WARM 

Boiler Return Temp =WARM 

Radiant Heating Flow Temp = COOL 

F3 
Heating 

(distribution) 

Valve stuck / control sensor 

issue 

Abrupt  
4 4 

Conference Radiant Valve = CLOSED 

Conference Radiant Temperature = COOL 

F4 Ventilation 

Slow actuator failure for south 

side Facade 

Slow 

developing / 

Intermittent 

20 150 

Natural Ventilation North Facade =CLOSED 

Natural Ventilation South Facade =CLOSED 

Max Vent Atrium Space Temp = HOT 
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The E1 and E2 numbers displayed in Table 6.3 are tailored to describe different fault 

profiles. For example, in AES Fault Case 1, an incipient fault is accounted for by keeping a 

large E1 value (number of consecutive cycles before the fault is confirmed) and a small E2 

value. Thus, a persistent slow developing fault can be differentiated from other faults with 

differing fault profiles such as intermittent faults which require large E2 values to avoid the 

fault rule being disregarded. 

 

Whilst there were other parameters available for use, the parameters listed in Table 6.2 

provided sufficient information to analyse the introduced faults with adequate depth for 

proof of concept testing. 

 

6.4 Decision Confidence 

 

In order to determine the confidence of the output from the AES, a confidence algorithm 

was incorporated into the system. This was also used for differentiating between 2 faults 

with similar fault symptoms by selecting the fault that had the greatest amount of 

supporting evidence. The decision confidence algorithm was based upon Equation 6.6 

 

1

1 *
E
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G

MB
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G


    
Equation 6.6 

 

where G is the number of parameters that make up the fault rule in E3, MB is the 

membership grade of each parameter. The Fault Counter (FC) counted the consecutive 

number of times a fault rule was triggered. FC was capped to a maximum value of E1. 

Essentially, Equation 6.6 derived the average membership grade value for all the 

parameters that had matched their counterparts in the fault rule. The fault counter was used 

to differentiate between long term and intermittent faults and to confirm abrupt faults 

quickly. A DC value of 1 may not always be obtained even after a fault is confirmed as the 

parameters do not necessarily need to have full membership to a fuzzy class to trigger the 

fault rule. 
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6.5 Data Fusion 

 

A method of data fusion was investigated to combine the outputs from the data driven and 

expert system methodologies. In the data driven system the number of incoming samples 

belonging to a fault classification cluster could be used as a measure of confidence. 

Combining the two methods could be done relatively simply using Equation 6.7. 

 

CCDCOUTConf *5.0*5.0 
  

Equation 6.7 

 

where OUTConf is the total confidence of the output, and CC is classification confidence of 

the data driven system. CC is given by Equation 6.8. 

 

S

S

T

C
CC 

   
Equation 6.8 

 

where CS is the number of samples attributed to a fault cluster and TS is the total number of 

samples used. For example, if the data driven system revealed that the latest incoming 

samples had 70% (CC equal to 0.7) of the observations closest to fault 3 and the AES 

revealed that DC was equal 0.8 for fault 3 then the total confidence output would be equal 

to 0.75. Given the deterministic nature of the fault cases the results of Equation 6.7 would 

be predetermined, furthermore the AES and data driven systems only shared one common 

fault case (fault 3) thus the data fusion method was not applied.  
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CHAPTER 7 

 

7. Performance Evaluation: Results and Discussion 
 

The results for the real time evaluation method and the data driven CM system are 

presented here. The months of February and May were selected as they provided a suitable 

difference in external temperature to test the robustness of the CM systems.  

 

7.1 Real Time Energy Evaluation  

 

The real time energy evaluation methodology detailed in section 5.1 utilised the DTM 

BCR values to compare the actual energy consumption against the Part L based design 

consumption. This section presents the results and discussion of this methodology with two 

cases, section 7.1.1 evaluates the original BEMS data without amendments to the off peak 

load and 7.1.2 evaluates the BEMS data where the HVAC off peak hours were adjusted to 

emulate the HVAC being switched off during unoccupied periods. The output from both 

cases was then further assessed taking into account the impact of adverse external 

temperatures resulting in additional energy consumption.  

 

7.1.1 Case 1 – Original BEMS Data 

 

The daily consumption levels are shown in Figure 7.1 for February. The simulated BCR 

shows good correlation during the occupied periods and significant dissimilarity during the 

weekend and evening periods comparable to that of the May consumption graph shown in 

chapter 5. 
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Figure 7.1 – February daily energy consumption comparison  

 

As a result of the difference in off peak consumption the energy performance indicator 

(EPI 2) rated the energy performance of the building as being in the ‘very poor’ rating 

band and far greater than that of the TCR. Figure 7.2 shows the dynamic performance 

indicator. 

 

 

Figure 7.2 – Dynamic energy consumption evaluation for February 
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As can be seen from Figure 7.2 the actual consumption is significantly higher than both the 

dynamic TCR and BCR. Comparison of the actual energy consumption against the 

TCR/BCR for May can be seen in Figure 5.3. Figure 5.3 displayed similar off peak HVAC 

consumption properties as February. Thus the energy consumption for the month of May 

was also higher than the TCR for the majority of the time as shown Figure 7.3. 

 

 

Figure 7.3 – Dynamic energy consumption evaluation for May 

 

For both months the significantly higher energy consumption is attributable to the HVAC 

consumption. The first two days of the May evaluation show the building achieving a 

lower consumption rate than the TCR; this is mainly due to the better energy performance 

of the building in April. The previous months performance has a strong influence on the 

evaluation given that the past 28 days consumption is used to calculate the actual 

consumption rate. The distance between the actual consumption and the TCR is also much 

smaller when compared to February. In addition to April’s performance this can be 

attributed to the lower off peak consumption, approximately 30kW compared to 40kW for 

February.  
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7.1.2 Case 2 – Adjusted off peak BEMS Data 

 

The off peak load was set to a flat rate of 15kW this is approximately half the value of the 

peaks calculated by the DTM during the weekend. The assumption was made that the 

building was operating nominally during these periods and the high HVAC consumption 

detailed in the previous section was a result of poor BEMS configuration that was 

remedied. The same adjustments were applied to the previous months (January and April) 

for balanced evaluation of the energy consumption. This adjustment alters the perception 

of the building performance significantly, which was seen to be in better alignment with 

the DTM consumption as shown in Figure 7.4 for the February consumption. 

 

 

Figure 7.4 – February daily consumption with base load removed 

 

As a result of the adjustments the building performance was found to be far better than the 

case 1 results as would be expected. Figure 7.5 shows the dynamic energy evaluation for 

February with adjusted off peak consumption.  
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Figure 7.5 – Adjusted dynamic energy consumption evaluation for February 

 

Figure 7.5 displays a range of performance ratings in which the building was seen to have 

a ‘Good’ or ‘Very Good’ performance for the majority of the time. A single data point in 

which the actual performance is greater than the dynamic TCR is observed on Day 14. 

However, it would be acceptable to assume that this is an anomalous reading given that the 

performance of the building returns to improved levels later on. Persistent failure to 

achieve a lower consumption than the TCR would provide a stronger indication that the 

building health is not acceptable and that action must be taken to remedy the root causes of 

poor performance. For the month of May the simulated BCR is compared with the adjusted 

BEMS data in Figure 7.6 
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Figure 7.6 – Adjusted consumption profile for May 

 

The adjusted data results in a better performance for the building consumption against the 

dynamic target as shown in Figure 7.7.  

 

 

 

Figure 7.7 – Adjusted dynamic energy consumption evaluation for May 
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As with the unadjusted case, the month of May performs more favourably than that of 

February. To account for increased energy consumption due to adverse external 

temperatures degree day analysis was performed, which is detailed in the following 

section.  

 

7.1.3 Degree Day Adjustment 

  

The adjustment for external temperatures conditions was only applied for additional 

heating loads with the base temperature for heating degree days set at 15.5
o
C. As can be 

seen in Figure 7.8 the actual temperatures measured at the building weather station 

indicated that the external temperature for February was significantly colder than that of 

the CIBSE weather file utilised by the DTM.  

 

 

Figure 7.8 – CIBSE and actual weather data comparison 

 

A plot of the energy consumption against the heating degree days is shown in Figure 7.9 

from which a relationship between the daily energy consumption and external temperature 

is obtained by regression. The external temperatures recorded for use in the heating degree 

analysis did not include the temperatures for weekend and unoccupied periods. 
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Figure 7.9 – Heating degree days regression analysis 

 

Figure 7.9 shows the correlation (R
2
) between the two parameters is relatively weak with 

an R
2
 value of 0.413. However, the general trend line does concur with the BEMS data that 

the cumulative baseload energy consumption is approximately 950kW per day. A point to 

declare is that 2 outlier data points were removed as they distorted the trend line 

disproportionately. Whilst using heating degree days can provide a means of linking 

energy consumption and external temperature it would be inaccurate to assume a linear 

relationship applies. Furthermore, the heating system was not individually sub-metered 

hence the total energy consumption was used to evaluate how the building as a whole 

responded to temperature changes. As was detailed previously heating degree days do not 

take into account non-temperature related changes in energy consumption. As a result of 

these factors and the weak correlation a reduction weighting of 0.413 was applied to any 

additional energy allocation to avoid the TCR becoming too lenient. Thus Equation 7.1 

gives the final relationship (which includes the removal of the baseload): 

 

413.0**72.58 HDDAddEnrg 
  

Equation 7.1

  

where AddEnrg is the additional energy allotment and HDD is the heating degree day.  
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7.1.4 Final evaluation output  

 

Application of the heating degree day adjustments were made to the original BEMS data, 

the results of which are shown in Figures 7.10 and 7.11. 

 

 

Figure 7.10 – Weather adjusted evaluation for February 

 

 

Figure 7.11 – Weather adjusted evaluation for May 

Whilst there is a slight reduction (the dynamic TCR and BCR trend lines are shifted up) in 

the distance between the actual consumption and the TCR in both cases the actual 
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consumption still remained significantly higher. This was as a result of the higher off peak 

consumption offsetting any additional energy allocated via the heating degree day 

adjustments. For the second case in which the adjustments to the off peak consumption 

were made a visible shift occurs in building performance when comparing figures 7.5 and 

7.7 to the final evaluation trend-lines shown figures 7.12 and 7.13 respectively.  

 

 

Figure 7.12 – Weather and data adjusted evaluation for February 

 
 

Figure 7.13 – Weather and data adjusted evaluation for May 
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The heating degree day adjustments resulted in the building having a better rating for a 

greater number of days. Given that non-occupied periods are not adjusted for heating 

degree days these points remained static thus for day 14 on the February graph the actual 

consumption still exceeds both the dynamic BCR and TCR. Whilst the evaluation graphs 

are useful for monitoring the trends a qualitative output would be of greater value to the 

end user. In order to do this Energy Performance Indicator 2 (EPI2) values were plotted 

against time, the graph was segregated with the boundaries of each rating classification. 

Figures 7.14 and 7.15 illustrate the EPI2 output for the months of February and May 

respectively. The EPI2 graphs for the unadjusted data were omitted from this section as 

they simply showed that the building was operating poorly for the majority of the time.  

 

 

 

Figure 7.14 – EPI2 plot for February (adjusted off peak load and weather) 
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Figure 7.15 – EPI2 plot for May (adjusted off peak load and weather) 
 

 

The output from the evaluation methodology as shown in figures 7.14 and 7.15 have the 

potential to be integrated into a BEMS providing the facilities management with a clear 

indication of the performance of the building on a daily basis. Removal of the weekends 

would provide a method of reviewing the performance of the previous 28 days of operation 

and the potential to extrapolate possible future consumption. For example, if the energy 

performance was slowly degrading (trending upwards) this methodology would deliver 

feedback to the end user who could then take action to ensure that energy efficiency is 

improved upon to avoid a negative change in the buildings rating. Conversely, 

improvements in the energy consumption would be clearly distinguishable in terms of 

affect on performance promoting a virtuous cycle of continuous improvement. The use of 

colour coding for each classification band would provide a dynamic alternative to the DEC 

that could be displayed on screen.  

 

The real time evaluation approach could potentially be integrated within any BEMS system 

given that all processor intensive phases are completed prior to integration into the BEMS. 

The DTM calculation of the dynamic BCR and TCR need only be performed once and 

stored on the BEMS database, therefore only requiring adjustments for adverse weather 

conditions to be made. Given that many BEMSs are programmable for flexibility and that 

external temperatures are now routinely logged it would be a relatively simple task to 
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seamlessly integrate into the calculation of the daily EPIs into any BEMS. However, there 

are limitations to the system in that additional holidays or unoccupied periods that are not 

covered by the occupancy profile in the DTM would require adjustment as they would 

unfairly provide greater performance rating than was achieved. The variations in 

occupancy prevent the system from becoming fully automated and would require time and 

effort from the end user to regularly check and update the occupancy frequencies. 

Furthermore, changes to the HVAC or building construction would require re-calculation 

of the DTM output.  

 

7.2 CM Building Evaluation  

 

This section first presents the initial findings from the traditional application of PCA for 

process monitoring highlighting the weaknesses of PCA when applied to non-linear data. 

The nonlinear methodology results are then given in which the fault test cases were used to 

test the ability of the nonlinear method to detect and diagnose faults. In order to keep the 

results manageable the months of February and May are presented using the day time data 

only.  

 

7.2.1 Traditional PCA method  

 

Initially, the traditional method of PCA was applied to the DTM data to investigate the 

effectiveness of PCA for state evaluation of the building. The aim of which was to 

establish two key features about the ability of PCA, firstly to ascertain how well PCA was 

able to model the nonlinearities within the data and secondly to determine the number of 

principal components needed to capture over 90% of the variance. The DTM data was used 

for illustrative purposes as the correlations between the ‘fault’ points (points that breached 

the T
2
 and SPE thresholds) and the variance of the parameters was easier to observe. The 

data was segregated by occupied and unoccupied time periods as per the methodology 

detailed in chapter 5. The energy consumption and weather energy data were stacked into 

the occupied training data matrix. The traditional method of PCA was then applied. A 

visualisation of the T-score plots for the training data was obtained for the month of 

February. In order to capture over 90% of the variance the first 4 Principal Components 
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were needed. For illustration purposes the 3D and 2D plots are shown selecting the first 3 

principal components in Figure 7.16 and the first 2 principal components in Figure 7.17.  

 

Figure 7.16 – 3 Principal Components for DTM February data 

 

The scatter points of the T scores shown in Figure 7.16 represented the PCA model for the 

nominal operation of the building. The T
2
 threshold defines an elliptical boundary, points 

within this boundary are considered to be ‘in-control’. There is a wide level of scatter from 

the mean-centre displayed within the first 3 principal components. This is more clearly 

observable in Figure 7.17 which plots the first two principal components. 

 

 

Figure 7.17 – 2 Principal Components for DTM February data 
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The lack of T score clustering was problematic as it demonstrated less variance captured 

along the main principal component axis. A PCA representation of process that contained 

low captured variance would lead to difficulties in differentiating between nominal 

operating data and data that represented a faulty state of operation. The T
2
 and SPE values 

were then obtained and plotted against the process data. A plot of the process parameters 

against the occurrences where the T
2
 and SPE limits were breached is shown in Figure 

7.18. 

 

 

 

Figure 7.18 – Process variance PCA Fault Points 

 

Figure 7.18 shows that the majority of the fault points occur when the variations in energy 

consumption do not move proportionally or linearly with the external temperature. 

Increasing the Alpha confidence value would expand the confidence region; however this 

would potentially lead to a greater number of missed faults leading to issues with 

sensitivity. Furthermore, it does not overcome the problem of the inability of PCA to 

model nonlinearities. The key values used in the computation are shown in Table 7.1 along 

with the number of false alarms (threshold breaches). 
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Table 7.1 – PCA data for day time segregation 

Month PCA Parameter Value 

February 

Alpha confidence 95% 

Sample size 260 

Number of Principal components (to 

capture 90% variance) 

4 

Threshold breaches 11 

May 

Alpha confidence 95% 

Sample size 296 

Number of Principal components (to 

capture 90% variance) 

4 

Threshold breaches 6 

 

The inability of the traditional PCA method to represent nonlinear processes made it 

unsuitable for capturing the process state of building operation. In addition to this, the need 

for a high number of principal components to capture the nominal variance was a 

significant disadvantage. Non-linear methods of PCA were then employed to overcome 

these issues and the results of which are presented in the next section. 

 

7.2.2  Kernel PCA  

 

In order to create a KPCA representation of the building a suitable kernel function had to 

be selected. The kernel functions tested were linear, Gaussian and Polynomial. The 

selection criterion of the kernel was that it needed to capture at least 90% of the variance 

within the first 3 (preferably 2) principal components and that the projections of the data 

on the lower dimension space should display clustering along the first principal axes. The 

reduction of scatter and the ability of KPCA to model the nonlinearities were crucial to 

creating an effective means of modelling the building state. 
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7.2.2.1 Kernel Evaluation 

 

Implementation of the Linear, Gaussian and Polynomial kernel functions all adequately 

mapped nonlinearity of the data thus the projected T-scores were able capture a high 

proportion of variability within the first principal component alone. The T-score plots 

within this section are for the month of February using the occupied training matrix data. 

The 3D plot of three principal components for the Gaussian kernel is shown Figure 7.19.  

 

 

 

Figure 7.19 – Gaussian kernel process representation – 3 principal components 

 

As can be seen in Figure 7.19 the T-scores are predominantly located along the first 

principal component, the T-scores are also packed into a far tighter packed cluster. Given 

that all three kernels displayed favourable clustering of the T-scores in the first two 

principal components, the second and third components were also analysed to determine 

the level of clustering within the lower principal axes. Figure 7.20 shows the Gaussian 

kernel T score plots for the 2
nd

 and 3
rd

 principal components.  
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Figure 7.20 – Gaussian kernel process representation – 2
nd

 and 3
rd

 principal components 

 

Whilst it may appear that there is significant clustering shown in Figure 7.20 where the 

axes meet, the two points located further away from the main cluster region obscure the 

separation of the T scores located at the centre. A 3
rd

 order polynomial kernel function was 

then tested. The first and second principal components for the polynomial kernel 

representation are shown in Figure 7.21. 

 

 

Figure 7.21 – Polynomial kernel 1
st
 and 2

nd
 principal components 
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Figure 7.21 shows slightly better clustering than the Gaussian T scores and similarly strong 

levels of variance captured along the first principal component. The scatter for the 2
nd

 and 

3
rd

 principal components is shown in Figure 7.22. 

 

 

Figure 7.22 – Polynomial kernel 2
nd

 and 3
rd

 principal components 

 

In Figure 7.22 there are 3 main clusters of the T scores all within a closer distance to each 

other than the Gaussian kernel. However, there are several smaller secondary clusters and 

in between and a moderate amount of scatter. The linear kernel function produced a similar 

T-score plot to the polynomial kernel for the 1
st
 and 2

nd
 principal components which was 

nearly identical to Figure 7.21 only differing on the scale of the axes. The 2
nd

 and 3
rd

 

Principal component plots for the linear kernel displayed two main clusters and are shown 

in the following section. Table 7.2 summarises the variance capturing properties of the 

kernel functions. 
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Table 7.2 – Kernel function variance captured 

Variance captured 

Kernel PC 1 PC2  PC3 

Linear  99.9997 99.9999 100.0000 

Gaussian  99.9913 99.9957 100.0000 

Polynomial (3
rd

 order)  99.9994 99.9998 100.0000 

 

Whilst all three kernels were able to adequately capture the variance within the data, the 

linear kernel function had significantly less scatter between clusters on the 2
nd

 and 3
rd

 

principal components and was therefore selected as the kernel function for the KPCA 

methodology. The following section shows the KPCA representations of the case study 

building using the linear kernel.   

 

7.2.3 KPCA Process Representation and T
2
  

 

The linear kernel function representation of the building process for the 2
nd

 and 3
rd

 

Principal components is shown in Figure 7.23 for February.  Whilst there is scatter present 

there are two main clusters of data in which the majority of T – scores can be associated 

with. 

 

 

 

Figure 7.23 – Linear kernel 2
nd

 and 3
rd

 principal components (February) 
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The T-scores shown Figure 7.23 was assumed to representative of the nominal state of the 

building. To determine whether the T
2
 limit threshold required adjusting, the T

2
 values for 

the nominal case were calculated. The T
2
 limit for February was 6.1524. Figure 7.24 shows 

the T
2
 plot for February. 

 

 

Figure 7.24 – T
2
 Threshold plot for February (nominal case) 

 

In Figure 7.24 there are no threshold breaches signifying that the current threshold was 

adequate albeit significantly higher than necessary. The identical process was performed 

for the month of May. Figure 7.25 shows the 2
nd

 and 3
rd

 principal component T-score plot 

for the occupied training matrix for May. 
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Figure 7.25 – Linear kernel 2
nd

 and 3
rd

 principal components (May) 

 

Figure 7.25 shows a similar clustering pattern to the February T-score plot. Although for 

the May data a greater number of the T scores are located closer to the two main clusters 

giving reduced scatter between clusters. The T
2
 threshold for May was 6.1138. Figure 7.26 

shows the T
2
 plot for the nominal operating data. 

 

 

Figure 7.26 – T
2
 Threshold plot for May (nominal case) 
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The T
2
 values fall all below the threshold limit, thus the alpha confidence region was kept 

at 95%.  

 

7.2.4 Fault Detection 

 

The fault cases described in Chapter 5 contain a varied number of fault profiles; test case 1 

& 2 varied the energy consumption of the HVAC and total energy consumption in several 

ways. A flat rate increase in consumption was used to represent a 10% degradation in the 

heating and ventilation HVAC efficiencies. These flat rate changes produced similar T
2
 

plots with only variations in magnitude for the T
2
 value. Figure 7.27 shows the T

2
 plot for 

test case 1 with the 4.5% change in energy consumption representing a 10% degradation in 

the heating efficiency.  

 

 

Figure 7.27 – Fault case 1 T
2
 plot (10% degradation in heating efficiency) 

 

In Figure 7.27 a significant number of threshold breaches occur within the first 50 T score 

samples. The nominal data encompasses a range of operating variances captured by the 

KPCA, the T
2
 plot for the nominal data shows certain peaks such as the one at 

approximately sample 10 for the February T
2
 graph. This T score represented one of the 

normal variances that the case study building experiences but is closer to the threshold than 

the other T
2
 values and therefore and further changes that occur at this condition (such as 

the fault cases) leads to quicker threshold breaches. Instantaneous detection is possible by 
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lowering the threshold to a point just above the highest peak, leading to any changes 

instantaneously breaching the threshold. In order to do so it would require that the training 

data is comprehensive in that it contained all known acceptable variances. In reality this 

can rarely be achieved for a complex system with unknown variables such as external 

temperature and varied occupancy. However, in the case of the February T
2
 limit, the 

detection rate would benefit greatly from a reduction to approximately 4.5. A T
2
 limit of 

4.5 is the minimum value needed to pass the nominal case and produce a stronger detection 

rate. Changing the threshold limit to this value would be valid but care would need to be 

taken to ensure that a well developed nominal and fault database was built and tested 

before applying such changes. For the purposes of illustrating the KPCA and T
2
 fault 

detection abilities for different fault profiles the threshold limit has been kept to the 

original value as changing the threshold limit would achieve a near 100% detection rate for 

all test cases with the exception of fault case 2. However in test case 2 the detection rate 

would be significantly improved. 

 

Figure 7.28 illustrates the T
2
 values for fault case 2 in which the 10% degradation in 

ventilation efficiency results in 0.55% change in energy consumption. 

 

 

Figure 7.28 – Fault case 2 T
2
 plot (10% degradation in ventilation efficiency) 

 

 

Figure 7.28 shows a similar upwards translation of the T
2
 values from the nominal case; 

however fewer peaks breach the threshold limit. Hence in this case a poorer detection rate 
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is observed under the original threshold. However, unlike CUSUM/EWMA charts smaller 

changes to the process data were still detectable using the same threshold limit.  

 

Test 1 also used a linear and a parabolic increase in energy consumption representing a 

linear degradation in the heating efficiency from 0% at the start of the month to 15% at the 

end of the month. Figures 7.29 and 7.30 show the T
2
 chart for the linear and parabolic 

degradation to the heating system efficiency. 

 

 

 

Figure 7.29 – Fault case 1 T
2
 plot (Linear degradation) 
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Figure 7.30 – Fault Case 1 T
2
 plot (Parabolic degradation) 

 

The linear and parabolic test cases show similar patterns in that the fault is only detected 

when there is sufficient change in the energy consumption from the nominal operating 

conditions to breach the threshold. Detection of the parabolic deviations was more 

apparent than for the linear case towards the end of the month. As was stated previously, 

the conditions at which the fault changes were applied had an influencing effect on 

whether the T
2
 value resulted in crossing the threshold boundary or not. Whilst this may 

appear to infer that the fault detection system is only effective for certain operating 

conditions, the boundary change discussed previously would have been effective for 

detecting all the faults presented. Furthermore, with greater levels of training data fine 

tuning this boundary would have less associated risk of false or missed detections. 

 

Fault test 3 introduced a step change in the process parameter in which 4 parameters 

deviate from the nominal case. Figure 7.31 shows the T
2
 plot for Fault test 3. The changes 

to the process data occurred at sample 40. 
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Figure 7.31 – Fault case 3 T
2
 plot 

 

Figure 7.31 shows a step increase in the T
2
 values occurring from sample point 40 at which 

the parameters were changed to emulate the fault of a stuck valve in the multi-conference 

room. A far better detection rate is observed in step changes than for slower developing 

faults as would be expected in any FDD methodology. Furthermore, the sudden step 

change away from the nominal operating range is exhibited by a continuously high T
2
 

value. Step changes are statistically independent to the nominal variance thus lead to a 

greater increase in the T
2
 plot.   

 

The KPCA methodology was proficient in detecting incipient and abrupt faults that had 

significant parameter changes applied. However, for intermittent faults the system did not 

perform as well comparatively. Figures 7.32 and 7.33 show the T
2
 plots for fault case 4 & 

5. 
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Figure 7.32 – Fault case 4 T
2
 plot 

 

 

Figure 7.33 – Fault case 5 T
2
 plot 

 

As can be seen in Figures 7.32 and 7.33 a similar occurrence to test 2 (Figure 7.28) can be 

observed in which a certain number of peak breach the T
2
 limit but with the majority of 

points only slightly higher than the nominal case. The increased level of detections 

compared to fault test 2 can be attributed to a higher number of parameters that were 

altered to simulate the fault. The intermittent nature of the fault and the fact that certain 



 147 

parameters still varied with the nominal case (albeit by a different amount) resulted in the 

oscillations in the peaks with no sustained increase in T
2
 values. Fault test 5 was easier to 

detect than fault test 4 and this may have been due to the alterations made to the window 

opening positions. As was detailed in Chapter 6 the atrium windows are used only 

sporadically but the change applied reduced the nominal opening position by 50% 

intermittently. This would result in a larger change in feature; however, given that it is not 

possible to map the parameters responsible for the faults back to the normal input space it 

cannot be confirmed. 

 

The May results reported similar findings for the test cases with comparable proficiencies 

in detecting the various fault profiles. This in itself confirms the ability of the KPCA to 

capture the state of operation (including the nonlinearities) so that the external temperature 

variable did not mask fault or hinder the detection rate by a significant amount. Given the 

similarities in the results for February and May only test case 2 is presented here to 

illustrate the primary difference between the two sets of results. The most notable 

difference between the February and May results was a higher detection rate for May.  This 

was in part due to the greater number of samples used (31 days in May compared with 28 

days in February) which resulted in a lower T
2
 limit. However, the key factor was the 

significant spike in T
2
 values observed in the latter quarter of the nominal case. Figure 7.34 

shows the T
2
 plot for the 10% degradation in ventilation efficiency. 

 

 

Figure 7.34 – May T
2
 plot (10% degradation in ventilation efficiency) 
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The higher detection rate is mainly attributable to the large peak located at the 150
th

 sample 

region. Overall, the trend is similar to the February test case 2 results with the T
2
 values 

shifted up compared to the nominal case. Comparing Figure 7.34 with 7.28 (February Test 

2 – 10%) there are a greater number of the data points are far closer to the boundary 

threshold. The number of fault detections for May and February are summarised in Table 

7.3. 

 

Table 7.3 - Summary of February and May fault detection 

Test case Number of successful detections 

For February 

Number of successful detections 

For May 

Test 1 – 10% 34 42 

Test 1 Linear 14 21 

Test 1 – Parabolic 21 35 

Test 2 – 10% 10 23 

Test 3 30 43 

Test 4 14 15 

Test 5 24 31 

 

There are two disadvantages to using the KPCA and T
2
 statistic for fault detection. The 

first drawback of the T
2
 fault detection methodology is the requirement for faults to 

manifest at certain operating periods in order to ensure detection. However, with sufficient 

training data the nominal variances would be better defined thus the T
2
 limit could safely 

be adjusted. In cases where training data is sparse the diagnosis methodology presented in 

this thesis could be utilised as a secondary fault detection system. Data sample migration 

from the nominal class to a fault class could be used as a secondary indicator of building 

state. The second disadvantage is that performing fault isolation in KPCA is not a simple 

task and has associated difficulties. Hence the primary function of the classification 

techniques is to trace the feature changes in the parameters to a fault via supervised 

classification as an alternative means of connecting the parameter changes to a fault or 

non-fault (permitted deviation) event. 
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7.2.5 Fault Diagnosis  

 

The fault diagnosis methodology employed KFDA to maximise the separation between the 

nominal and fault case T-scores. The limitation of using only 5 fault cases was that it 

allowed for perfect classification of the fault samples, in reality there would be a multitude 

of possible fault states thus the results were not reflective of how the diagnosis 

methodology would perform in practical applications. It was found that the strengths and 

weaknesses of the classification process were more effectively highlighted by using the 2
nd

 

and 3
rd

 principal axes T-scores. This allowed for demonstration of the potential problems 

that could be encountered in the comprehensive application of the CM methodologies. 

Furthermore, the fundamental characteristics for each fault profile were the same 

regardless of whether principal components 1 and 2 were used or 2 and 3, the only 

difference being the scale of the separation.  

 

A Gaussian kernel function was employed as it was the most effective kernel function at 

separating the T-score clusters. Figure 7.35 shows the nominal T-score cluster for 

February.  

 

 

Figure 7.35 – Nominal T-score scatter for February 
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There was significant dispersion of the cluster on the left hand side but as was previously 

noted there are two general clusters observable. The fault test T-scores were then collated 

and plotted with the nominal case. Figure 7.36 shows the nominal T score scatter along 

with T-scores for test case 1 (10% increase).  

 

 

Figure 7.36 – Nominal and fault case 1 T-score scatter  

 

The fault T-scores shown in Figure 7.36 also shows two main clusters of scatter. 

Furthermore the scatter between the two classes (nominal and Fault case) was interspersed. 

Classification of the scatter groups was difficult as a result. Application of the KFDA 

provided a clear separation between the classes as is shown in Figure 7.37. 
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Figure 7.37 – Nominal and fault case 1 KFDA scatter  

 

Figure 7.37 shows significant separation between the fault class and the nominal case. 

Some minor scatter is observed along the Second Fisher Direction however, the two 

clusters are successfully separated along the first Fisher feature Direction. Fault test 1 for 

the linear increase in HVAC consumption had a greater level of scatter present when 

compared to Figure 7.36. The linear increase test case scatter is shown in Figure 7.38. 

 

 

 

Figure 7.38 – Nominal and linear case T-score scatter  
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The fault data in Figure 7.38 has four main cluster regions with a greater level of overlap 

on the left side cluster of the nominal T scores. The parabolic T score scatter had different 

cluster regions but did not illustrate any noteworthy differences to Figure 7.38 and thus is 

not presented here. Despite the increase in overlaps in T-score scatter the KFDA 

methodology was able to provide proficient separation between the faulty data and the 

nominal data as seen in Figure 7.39 for the linear case and Figure 7.40 for the parabolic 

case.  

 

 

Figure 7.39 – Nominal and linear case KFDA scatter  

 
 

Figure 7.40 – Nominal and parabolic test case KFDA scatter  
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In both Figure 7.39 and 7.40 the data separated the most along the first Fisher Feature 

Direction with minimal scatter present on the second feature direction. In Figure 7.40 there 

are two points residing between the two main classes however, given that the majority of 

the scatter points have been segregated, the effects of these two points would not be 

significant. The results from fault case 1 so far show that the KFDA is successful at 

separating the classes of incipient faults.  

 

The abrupt step change in fault case 3 alters the spread of the fault case T scores. Figure 

7.41 shows a higher level of congregation in the fault scatter with the majority of the T 

score points located along an elongated scatter group. However, there is a secondary 

smaller collection of T scores located on the right hand side.   

 

 

Figure 7.41 – Nominal and fault case 3 T-score scatter 

 

Despite the greater levels of clustering in the 2
nd

 and 3
rd

 principal components seen in 

Figure 7.41 there was less separation achieved using the KFDA method as can be seen in 

Figure 7.42. 
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Figure 7.42 – Nominal and test case 3 KFDA scatter 

 

There is a significantly greater level of scatter for the fault case T-score projections 

compared with the previous cases. Whilst the step change showed a greater level of 

clusters along the principal component axes there was less separation on the Fisher Feature 

Space. However, overall there are still two distinct clusters observable. Additionally, the 

scatter of the nominal case is far less than that of the fault case; in the previous fault cases 

the converse was true. The KPCA T-score scatter graphs for Test 4 and 5 shared similar 

characteristics and thus only Test 4 is presented here. Figure 7.43 shows the T-score scatter 

for Test 4. 
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Figure 7.43 – Nominal and fault case 4 T-score scatter 

 

Given that the atrium temperatures vary with external temperature there are no strong lines 

of distinction between the classes. Intermittent faults or those that move with nominal case 

but on a lesser scale do not produce a strong change in feature in the process data. Hence, 

the KFDA separation of the class is not as strong as with the previous test case shown as in 

Figure 7.44 and also in Figure 7.45 for test case 5. 

 

Figure 7.44 – Nominal and test case 4 KFDA scatter 
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Figure 7.45 – Nominal and test case 5 KFDA scatter 

 

Unlike the previous test cases there are no distinct lines of separation along the first Fisher 

feature direction. Furthermore there is an overlap occurring where the two clusters meet. 

Given that fault case 4 & 5 showed similar T score scatter in the 2
nd

 and 3
rd

 principal 

components it is not surprising that there are similarities between the KFDA results as 

well. These similarities can be attributed to the fact that both test cases have varying fault 

symptoms that move both up and down with the nominal variance as opposed to an abrupt 

step change or an incipient divergence.  

 

In order to perform fault diagnosis the generalised form of KFDA was used in which 

separation of multiple classes was performed. Multi way KFDA was applied to the 6 fault 

groups and the nominal T-score data. Fault test 2 was omitted as the similarities with fault 

test 1 would obscure the classification process. The clusters from test case 4 and 5 were far 

closer to the nominal case than the other test cases which led to the separation between 

these classes becoming obscured when all fault classes were plotted simultaneously. Hence 

two separate plots of the multiclass KFDA are shown. Figure 7.46 shows the nominal case 

and the three test 1 cases and test case 3. Figure 7.47 shows the nominal case and test case 

4 and 5. It should be noted that whilst the KFDA plots are presented separately, the clusters 

were computed simultaneously for use by the KNN algorithms.  
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Figure 7.46 – February multi way KFDA scatter  

 

Figure 7.46 shows a proficient level of separation between the different fault types and the 

fault profiles for the test 1 cases and test case 3. The fault classes for tests 4 and 5 are 

shown along with the nominal case in Figure 7.47. 

 

 

Figure 7.47 – February multi way KFDA scatter (Test 4 and 5) 
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Comparatively, the fault classes are far closer together reflecting the similarities shown in 

the Figure 7.44 and 7.45. Test 5 shows a particularly closeness to the nominal case. The 

sample fault cases were then introduced. Using the KNN algorithms the distance between 

the sample cluster and the closest class was determined. The results of which are given in 

Table 7.4. 

 

Table 7.4 – Sample classification results (February) 

Class Sample 1 Sample 2 Sample 3 

Nominal 0 0 0 

Test 1 – 10% 100% 0 0 

Test 1 – Linear 0 0 0 

Test 1 – Parabolic 0 0 0 

Test 3 0 83.66% 0 

Test 4  0 1.96% 76.92% 

Test 5 0 14.38% 23.08% 

 

It should be noted that whilst the samples are approximating a fault test they were not 

identical to it hence as is shown in Samples 2 and 3 the classification rate may not be 

100%. Sample 1 does have a 100% classification but was this due fault sample 1 sharing 

nearly all the same characteristics as fault case 1. As a result fault sample 1 only has one 

nearest neighbour the fault test 1 cluster. The classification rate for Februarys fault samples 

was satisfactory. However, the diagnosis of the fault samples for May performed poorly by 

comparison. Figure 7.48 shows the increased level of scatter for May.  
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Figure 7.48 – May multi way KFDA scatter 

 

The classes were significantly closer together; as a result there is an observable level of 

scatter amongst the classes. The KFDA was unable to separate test case 4 from the nominal 

case as is seen in Figure 7.49.  

 

 

Figure 7.49 – May multi way KFDA scatter (Test 4 and 5) 
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The classification for the month of May was far less successful given that the clusters are 

closer together and that fault 4 was overlapping with nominal data with a huge spread of 

projected data. Thus the results shown in Table 7.5 display a poorer classification rate. 

 

Table 7.5 – Sample classification results (May) 

Class Sample 1 Sample 2 Sample 3 

Nominal 26.5% 21.5% 36.5% 

Test 1 – 10% 35.5% 4 0.5% 

Test 1 – Linear 1% 0 0 

Test 1 – Parabolic 7.5% 0 0.5% 

Test 3 9% 51.5% 17.5% 

Test 4  20.5% 23% 44.5% 

Test 5 0 0 0.5% 

 

Removal of fault case 4 from the fault classes resulted a 53% successful classification rate 

for fault sample 1. This demonstrated the weakness of KFDA in that multiple 

classifications that were inseparable can entirely disrupt the classification process with 

nominal data being classified as faulty and vice versa. Despite the greater levels of scatter, 

all 3 fault samples had the highest level of association attributed to their approximated fault 

cases. 

 

7.3 Summary 

 

The aim of applying multivariate statistics to the building process parameters was to 

capture the variance expressed in the data and thereby capture the building operation state. 

The KPCA method was successful in reducing the dimensionality of the data so that the 

fault detection statistic (T
2
) was able to differentiate between nominal and abnormal 

conditions. The T
2 

detection method was sufficient at detecting all but the intermittent fault 

profiles. However, with further training data the T
2
 limit threshold could be altered to 

increase the detection rate. The main drawback of altering the T
2
 limit is that acceptable 

deviations such as extended operating hours could increase the number of false alarms. The 

KFDA and KNN algorithms would be better suited to ensuring acceptable deviations are 
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accounted for. The acceptable deviations would be allocated their own class under a non-

fault label similar to fault case classes. Monitoring the energy consumption during these 

non-fault deviations would allow for allocating an energy value to each non-fault class. 

The energy value could then be used as a means of adjusting the dynamic targets. The 

drawback of using classification techniques is that unless the T-score projections onto the 

Fisher feature space are significantly different to the other classes there will inevitably be 

an overlap as was seen for the May test cases. Management of the classification database 

would be required to ensure that there were no overlaps in the classification clusters; 

however this could mean certain faults would need to be disregarded. In the practical 

application of the system there would be a finite number of classifications that could be 

stored and used without compromising the abilities of the KNN algorithm to diagnose the 

faults. Hence the fault types that are representative of the greatest energy costs would need 

to be retained along with the non-fault acceptable deviations. Lesser faults or the faults that 

obscure the classification process would require an alternative means of detection and 

diagnosis. 
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CHAPTER 8 

 

8. HVAC FDD Results and Discussion 
 

The automated expert system was tested via the 4 AES Fault Cases/events described in 

Chapter 6. Each fault event had an equivalent fault rule. The fault rules described the state 

of the relevant parameters when the fault was present. In order to develop the fault events 

and fault rules the nominal relationships were first determined. Details of the nominal case 

for each fault event are given in the next section.  

 

8.1 Nominal Case 

 

The 1
st
 and 2

nd
 fault events used the boiler flow and return temperatures and the radiant 

heating flow temperature. The nominal relationship for the parameters was not easily 

identifiable; hence there were difficulties in altering the parameters to replicate a specific 

fault. However, this problem was circumnavigated by changing the process parameter data 

to emulate a fault profile rather than a specific fault. Two separate fault profiles were 

implemented for fault event 1 and 2 in which the fault symptoms were identical. This 

provided the opportunity to test the AESs ability to differentiate between an incipient and 

intermittent fault profile. Figure 8.1 shows the nominal relationship for the parameters used 

for fault events 1 and 2. 
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Figure 8.1 – Nominal relationship for fault event 1 and 2 parameters 

 

The 3
rd

 fault event modified the radiant panel valve and temperature parameters for the 

multi-conference room to replicate an abrupt fault with the valve. Under nominal operating 

conditions the valve position closes when the temperature is 22
o
C or above. The opening 

condition for the valve was at a radiant panel temperature of 20
o
C. Figure 8.2 shows the 

relationship between the two parameters. 

 

 

Figure 8.2 – Nominal relationship for fault event 3 Parameters 
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The 4
th

 test case altered the window opening positions for the atrium chimney. The atrium 

windows open when the atrium vent temperature surpasses 24
o
C; once the windows were 

opened they did not close until the vent temperature fell to 21
o
C. Figure 8.3 shows the 

nominal relationship between the atrium vent temperature and the window positions. 

 

 

Figure 8.3 – Nominal relationship for fault event 4 Parameters 

 

As can be seen in Figure 8.3 there only 3 occurrences where the windows were required to 

open. The sporadic utilisation of the chimney windows reduces the number of occasion in 

which the fault would manifest.  

 

8.2 Fault Cases 

 

Once the nominal operating relationship between the parameters for each fault event was 

established the process data was then altered to simulate a fault or a fault profile. The 1
st
 

fault event was a slow developing fault in which the boiler output was reduced leading to a 

lower boiler flow and return temperature and a lower radiant heating flow temperature. As 

was detailed in the previous section there was no clearly identifiable relationship hence a 

linear reduction was applied to all three parameters. Figure 8.4 shows the effect of the fault 

profile on the parameter data.  
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Figure 8.4 – Parameter modifications for fault event 1  

 

In fault event 2 the reduction in boiler output occurred intermittently. The fault was 

designed to manifest on 3 occasions. On the first two occasions the duration of the 

intermittent fault was less than the value of E1 in the fault rule. The time period between 

the faults occurring was less than E2. The symptoms of the intermittent fault on the process 

data can be seen in Figure 8.5, where the faults occur at the 98
th

, 125
th

 and 160
th

 samples. 

 

 

Figure 8.5 – Parameter modifications for fault event 2 
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For the 3
rd

 fault case the changes to the process data was applied at the 600
th

 sample. As 

can be seen from Figure 8.6 the valve position was set to close with the radiant panel 

temperature falling to 10
o
C. The abrupt nature of the fault was reflected in the step change 

in the process parameter data. 

 

 

Figure 8.6 – Parameter modifications for fault event 3 

 

In order to emulate a slow developing fault with the atrium chimney actuators a linear 

reduction in the maximum opening position was applied for fault event 4. Hence as the 

vent temperature rose above 24
o
C the window position was unable to open to the nominal 

amount as time passed. By the 1100
th

 sample the windows are unable to open more than 

15% of the normal capacity as is shown in Figure 8.7.  
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Figure 8.7 – Parameter modifications for fault event 4 

 

 

8.3 Detection, Diagnosis and Decision Confidence 

 

In the automated expert system the fault rules were used to detect whether a fault event had 

occurred. Given that the fault rules each described a specific fault event the activation of a 

fault rule not only provided fault detection but also simultaneous diagnosis. However, 

diagnosis through the use of heuristic knowledge representation is subjective and will 

therefore always contain imprecision. To prevent the inherent imprecision leading to poor 

decisions being made, a decision confidence algorithm was implemented in which the level 

of supporting evidence determined the confidence of the output.  

 

The first two fault events had identical fault symptoms but differing fault profiles. The 

ability of the ES to distinguish between the two fault profiles had mixed results. In fault 

event 1 the slow developing reduction of the boiler output lead to both fault rules 1 and 2 

being triggered as can be seen in Figure 8.8. 

 



 168 

 

Figure 8.8 – Decision confidence for fault event 1 

 

The structure of the fault rules was such that intermittent faults needed fewer occurrences 

for confirmation (E1) and a longer period of clear operation before the fault counter was 

reset (E2) when compared to incipient fault rules. This was to ensure that intermittent faults 

that occurred for short periods of time and had large intervals between occurrences could 

be detected. Whilst these properties may have resulted in the incorrect diagnosis for the 

incipient fault the converse does not apply. Figure 8.9 shows that the intermittent fault is 

successfully detected by fault rule 2 and has a higher level of confidence than fault event 1.  

 

Figure 8.9 – Decision confidence for fault event 2 
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The stepped increase in the decision confidence is attributed to the three occurrences of the 

intermittent fault which was sufficiently captured by the fault rule. Figure 8.9 also shows 

that the ES has ability to diagnose intermittent deviations more accurately than incipient 

faults. This characteristic could be used to separate the two fault profiles by using semantic 

relations on the decision confidence output. For example, if the decision confidence values 

indicated that there was evidence for both fault events 1 and 2 then it would be possible to 

infer that fault 1 had likely occurred from the evidence shown in Figures 8.8 and 8.9. 

Furthermore, the likelihood of fault event 2 occurring was if the majority of evidence 

indicated it. Additionally, the characteristics of the process parameters also influenced the 

effectiveness of the detection methodology. Parameters that possessed a wide operating 

range in which the values of the parameters changed quickly over time had far greater 

chance of being misdiagnosed especially if the fault rule monitored for subtle or incipient 

changes to the process data.  

 

The ability of the AES to detect the step change (abrupt) fault profile is optimal. Step 

changes are simpler to detect if the range and operating trend of the parameters are 

predictable under normal operating conditions. Figure 8.10 shows the change in decision 

confidence after the introduction of the fault symptoms at sample 600. 

 

 

 

Figure 8.10 – Decision confidence for fault event 3 
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The change in decision confidence was not an instantaneous step change from 0 to 1 due to 

the fault confirmation process which required 4 occurrences of fault event 3 in order for 

the fault counter to equate to element E1 of the fault rule. For abrupt faults the value of E1 

can be kept to a relatively small value as long as the magnitude of the step change in the 

process data is distinguishable from normal operation patterns.  

 

Detection of the 4
th

 fault event displayed a confident output from the AES about the 

occurrence of the window actuator fault as can be seen in Figure 8.11. 

 

 

Figure 8.11 – Decision confidence for fault event 4 

 

Whilst the AES was able to diagnose the fault with a decision confidence value of higher 

than 0.8, the fault was only identified when the atrium chimney window was not able to 

open. Condition monitoring predominantly relies upon a change in feature to detect faults 

however, for parameters which are utilised sporadically or infrequently it is not possible to 

determine the change when the system is not in use. Degradation could occur in-between 

the time periods where the system is activated during which the fault would be 

undetectable until the system is called upon. In such cases planned preventative 

maintenance practices would be a more effective means of ensuring the optimal operation 

of the system.  
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8.4 Summary 

 

There has been considerable research performed in applying expert systems to the process 

of detecting and diagnosing faults for the HVAC systems. The majority of the work has 

focussed on a single HVAC system. A possible explanation for this is that in order to fully 

describe a complex fault the fault rule may consist of multiple qualifying or conditional 

statements. A system with a number of complex fault paths would require substantial 

amounts of programming to sufficiently depict the fault in a robust manner. Whilst proper 

maintenance of the HVAC is necessary to ensure minimal energy wastage, the level of 

programming required when considering several HVAC systems can be time and cost 

prohibitive. An alternative approach would be to use the expert system to focus exclusively 

on the identification of the faults that had the largest energy penalties if left uncorrected. In 

the case of the research performed in this thesis it is far easier to classify new data clusters 

as faults using the statistical methodologies than it is to build a comprehensive fault rule 

describing that fault. The focus of the HVAC expert system would be as a means of 

confirming the occurrence of a fault and to compensate for the weaknesses of the data 

driven methodologies such as the identification of intermittent fault profiles. In doing so, it 

would provide a practical means of tackling the bottom-up maintenance and top-down 

whole building assessment requirements for use in the energy evaluation process. 

 

The fault events developed to test the AES were deterministic and simple in order to 

illustrate the decision confidence algorithm which presented a novel manner in which to 

handle the imprecision of the fuzzy knowledge representation. The structure of the fault 

rule was designed to differentiate between the fault profiles and with the exception of 

incipient faults this was successfully achieved. It was also determined that faults that 

involved parameters with irregular or sporadic change of features were more effectively 

handled by planned preventative maintenance. 
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CHAPTER 9 

 

9. Commercial Implications  
 

This chapter shall cover the commercial implications of the research detailed in this thesis. 

The development of a holistic and comprehensive means of evaluating building energy 

performance has been investigated in both academic and commercially commissioned 

research. There are a number of participants for whom developments in the field of energy 

assessment would have important implications, namely those involved in the design, 

construction and operation of buildings. These shareholders are wide ranging from 

architects and building services engineers to the owners and operators of buildings to name 

a few. The response of these participants to the particular research performed in this 

project would depend on several drivers. As with most industries the financial implications 

typically take precedence over other factors, these financial drivers are discussed in the 

following section.  

 

9.1 Financial Drivers 

 

The increasing levels of globalisation within the world markets has meant that companies 

need to lower operational costs in order to remain competitive and protect profit margins. 

Additionally, the rising cost of energy commodities has meant that there is now a greater 

emphasis placed upon energy savings.  Cost effective means of energy reduction are now 

more likely to be implemented by the owner/occupants of buildings than in previous years 

in order to achieve lower operational costs. The financial incentives for implementing the 

methodologies in this thesis can be summarised within the following bullet points: 

 

- Greater visibility of energy performance  

- Differentiation between energy wastage and energy efficient behaviour irrespective of 

past consumption 

- Greater levels of energy accountability by relating non-fault deviations to an energy 

cost 

- Proactive cost reduction through the use of targeting inefficient HVAC systems 
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- Active monitoring and budgeting of energy consumption 

 

The last point is especially pertinent given implementation of carbon monitoring schemes 

such as the Carbon Reduction Commitment in which there are penalties for poor energy 

management.  

 

The financial viability of investing money and resources in new technologies is generally 

determined by the payback period. Payback periods of 5 years or less are generally 

considered to be acceptable investments. Assuming that the methodologies in this project 

have been fully developed and a product released to market the payback period of 

implementing the product would depend on several factors. The maintenance practices of 

the Facilities Management (FM) would play an integral role, FM teams that are more likely 

to act upon the feedback would see greater returns in a shorter period of time. Additionally, 

the operation efficiency of the building before the system was implemented would also be 

a significant factor; buildings that were performing poorly previously would likely see 

greater benefits than a building that is already operating in an efficient manner. The 

research within this thesis did not extend to actual building prototype testing as was first 

envisaged. And as such cannot provide any data on payback periods. However, given that 

15-30% of energy wastage occurs in the HVAC, a reduction in that figure by only 30-40% 

would account for a sizeable cost saving and provide an attractive financial incentive for 

investment. 

 

9.2 Commercial Adoption  

 

Despite the potential commercial benefits of implementing condition monitoring 

techniques and real time assessment to the building sector, commercial uptake would 

largely be dependent on the attitudes of the participants engaged in designing and 

constructing buildings. Construction firms, architects, building services engineers and 

controls companies would all need to share the belief that adoption of a new energy 

evaluation method would be more beneficial then continuing with the current modus 

operandi. Whilst significant research has already been performed within the building sector 

relating to the implementation of FDD for HVAC systems there has been very few 

commercial applications (Katipamula and Brambley 2005b). This is largely attributed to 
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the inertia associated with construction firms and architects in adopting novel solutions for 

fear of increasing costs and the associated liabilities that may be incurred. Given that the 

construction companies do not directly benefit as a result of energy savings, other 

incentives must be provided in order for these companies to share in the vision of 

improving energy consumption. Sadly the evidence so far has indicated that legislative 

enforcement is needed in order to enact any real changes in the building industry. 

However, it should be noted that impetus to improve energy efficiency has translated into 

real changes in how buildings are now designed and constructed via the legislative 

amendments to Part L. Whilst the current legislative requirements have already been 

discussed in Chapter 2, the implementation and enforcement of the higher standards within 

the building sector can be viewed as the Government taking its commitment on improving 

efficiency in the building sector seriously. The underlying motivation can be seen in the 

manner in which the improvement targets are set. Each iteration of Part L post 2006 

requires better emissions performance than the previous version. With this in mind there is 

the distinct possibility that future energy evaluation methodologies such as the one made 

reference to in the EPBD would eventually stipulate some form of real time energy 

evaluation. Ultimately, without legislative enforcement it would be the client who would 

need to demand and be willing shoulder the costs of investing in new energy evaluation 

methodologies.  

 

9.3 System Development  

 

The methodologies detailed in this thesis use a limited number process parameters and 

fault test cases for the purposes of demonstrating the capabilities of the CM methodologies. 

The use of stochastic fault cases would allow for robust testing of the methods presented 

here and would determine the operating limits of the CM systems. Greater levels of 

investment are needed for the commercial development of a holistic real time energy 

evaluation tool; the use of a dedicated test case construction would be beneficial to validate 

the methodology and to develop a database of fault states. The long term objective of 

which would be the development of a modular ‘plug and play’ system. However, in order 

for this to happen, further integration of the HVAC systems is required and a standardised 

approach to building feature representation within BEMSs.  
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Given that the real time evaluation tool uses relatively simple calculations, integration of 

this methodology into a BEMS would not be problematic. It would require a token level of 

data storage space to hold the DTM data and some simple math functions for degree day 

adjustment. Open source BEMS software platforms such as BACnet offer substantial 

flexibility in programming the HVAC systems and thus include a number of programmable 

functions. This would also allow for the integration of knowledge based models which use 

standard programming syntax. However the integration of data driven condition 

monitoring methodologies would be a more difficult task requiring higher levels 

computational effort and the use of mathematically complex functions that are not 

available within BEMSs. This could be overcome with cross-licensing agreements between 

BEMS software developers and computational software companies such as Mathworks, the 

developers of the Matlab programming environment. A stand alone piece of software 

would overcome this problem, however the costs surrounding the development of such a 

system would be considerable, hence work in this field is most likely to be driven by 

changes in legislation rather than through commercial exploitation.  

 

9.4 Industrial Contribution  

 

The performance and maintenance systems that have been developed for this research 

project not only address a gap in knowledge with respects to the project hypothesis but also 

deliver an industrial contribution. The development and application of the data driven 

Condition Monitoring system is novel within the building sector. As was previously 

highlighted, the majority of industrial systems rely upon limit thresholds and therefore lack 

the ability to capture the state of complex, multivariate systems such as large commercial 

buildings. The state evaluation techniques have the ability to not only capture the 

characteristics of a building but are able to do so without intensive programming. 

Furthermore, the dynamic benchmark (TCR) would be of significant commercial benefit to 

building owners and facilities management teams who wish to achieve greater control over 

operational costs. Further development of these novel systems could potentially lead to a 

commercial product in which intelligent real time evaluation and building performance 

representation is delivered, thus providing an alternative to current monitoring and 

targeting software. As with monitoring and targeting software, the system would be 

integrated within the BEMS. The system would be capable of not only providing analysis 
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on energy performance but additionally would be able to target areas of poor performance 

and their causes as well as maintenance faults. The development of the prognostic features 

would allow for extrapolation of future trends for improved long term performance and 

remediation of maintenance faults before they fully propagate. These innovative features 

would differentiate this product from commercial competitors and allow for the formation 

of the next generation of performance evaluation software within the building sector.  
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CHAPTER 10 

 

10. Conclusions & Future Recommendations 
 

The primary aim of this research project was to apply condition monitoring strategies for 

the evaluation of building performance and maintenance practices. A literature survey of 

the current methods of energy evaluation in commercial building revealed that there was a 

lack real time energy assessment outside of monitoring and targeting software. The 

nonlinear and dynamic nature of building operation resulted in many evaluation methods 

simply using annualised benchmarks that did not take into account the actual features of 

the building under question. Furthermore, it was determined that the fair appraisal of 

building performance necessitates that the parameters that affect energy consumption are 

accounted for. Evaluating energy deviations in isolation was not enough to infer the state 

of the building. In addition to this, genuine improvements in building performance can 

only be attained by ensuring that inefficiencies, faults with HVAC and poor operation of 

the building are identified and remedied.  

 

Three individual techniques were developed aimed at addressing the current shortfalls in 

building performance evaluation. These methods provided a real time energy performance 

indicator measuring the actual energy consumption against the design consumption and 

two condition monitoring strategies targeting building state evaluation and HVAC fault 

detection and diagnosis.  

 

The real time evaluation methodology provided a basis from which actual energy 

performance could be measured against. There was a need to calibrate the off peak load 

which illustrated that it would be highly unlikely that the model output and the actual 

energy consumption will be completely the same. This can largely be attributed to the fact 

that variations in building control strategies cannot fully be accounted for using the NCM 

profiles. Furthermore, variations in the occupancy were not explained by the energy 

performance indicators. Additionally, permitted or acceptable increases in consumption 

would negatively impact on the performance rating and conversely, unpermitted reductions 

in energy consumption as a result of a fault or breakdown would show an improvement. 
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The key deficiency in the real time evaluation methodology was that it could not 

differentiate between the various states of operation and therefore could not in isolation 

fairly appraise the performance of the building. To overcome these deficiencies condition 

monitoring techniques were employed that would work in tandem with the real time 

energy tool to provide fair assessment.  

 

The building state evaluation methods had the capability to identify the faulty states of 

building operation regardless of whether it resulted in an increase or decrease in energy 

consumption. The state evaluation system required the use of a nonlinear kernel function to 

accurately represent the building processes. The KPCA method lacked the ability to trace 

the parameters responsible for the threshold breaches back to the input space for fault 

isolation. Evaluation of the fault test cases revealed that the KPCA method had the ability 

to detect the three main fault profiles effectively, with further improvements possible by 

adjustment of the T
2
 threshold limit and sufficient training data. The use of the KFDA and 

KNN algorithms for fault diagnosis provided a means of establishing classes or groupings 

of operating states. Supervised training would be required for diagnosis to ensure various 

building states are accurately classified. Distinguishing between fault events and permitted 

deviations in energy consumption could be achieved with creation of a separate non-fault 

class to ensure that acceptable deviations to the nominal case do not result in false alarms. 

By attributing an energy cost with each classification group the benchmark could be 

adjusted appropriately to ensure a fair appraisal of building performance. Aside from 

intermittent faults the statistical based methods were able to successfully detect and 

diagnose the abrupt and incipient fault cases.  

 

The knowledge models had the ability to detect the intermittent fault profiles far more 

effectively than the data driven methodology, however, it lacked the versatility to easily 

adapt to novel situations without the creation of new rules. Introduction of new rules to the 

rule base would require examination of the process parameters and robust testing to ensure 

the fault rules did not coincide with other normal operating conditions. It was concluded 

that the expert system would perform more effectively as a complement to the data driven 

systems in targeting the fault types that that the statistical methods were ineffective at 

diagnosing, namely intermittent faults. By compensating for the weaknesses of each 

system, a comprehensive solution to state evaluation was found that could be used to 

provide the real time energy evaluation tool with the necessary adjustments to ensure fair 
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evaluation. Additionally, the condition monitoring methodologies would be able to provide 

feedback to the building user on the faults that were impacting on energy efficiency.  

 

10.1 Future Recommendations  

 

The research performed within this thesis has largely focussed on the effects of individual 

faults occurring in isolation. Consideration of multiple faults would be an important area of 

investigation in the process of developing a robust methodology of building state 

evaluation. The development of a fault classification database would also be a valuable 

tool in characterising the features of both fault and non-fault events. This in turn would 

provide a means of determining a relationship between the successful classification rate 

and the number of classifications held in the database for both fault and non fault 

parameter changes. 

 

The migration of the fault samples from the nominal data cluster has been mentioned 

previously. This phenomenon provides a means of fault detection but more importantly by 

examination of the direction the data samples migrate in also allow for a potential means of 

prognostics. Work looking into fault paths and fault propagation would offer the means to 

develop an early warning system for less energy wastage.  

 

Finally, investigations into the limiting factors in the development of a plug and play 

evaluation system would be useful for identifying the areas in which further research and 

development is required to progress the field of building performance evaluation.  
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