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Abstract  
The amount of biomedical literature available is increasing at an exponential rate 

and is becoming increasingly difficult to navigate. Text-mining methods can po-

tentially mitigate this problem, through the systematic and large-scale extraction 

of structured information from inherently unstructured biomedical text. This the-

sis reports the development of four text-mining systems that, by building on each 

other, has enabled the extraction of information about a large number of pub-

lished statements in the biomedical literature. The first system, LINNAEUS, en-

ables highly accurate detection (ñrecognitionò) and identification (ñnormaliza-

tionò) of species names in biomedical articles. Building on LINNAEUS, we im-

plemented a range of improvements in the GNAT system, enabling high-

throughput gene/protein detection and identification. Using gene/protein identifi-

cation from GNAT, we developed the Gene Expression Text Miner (GETM), 

which extracts information about gene expression statements. Finally, building 

on GETM as a pilot project, we constructed the BioContext integrated event ex-

traction system, which was used to extract information about over 11 million dis-

tinct biomolecular processes in 10.9 million abstracts and 230,000 full-text arti-

cles. The ability to detect negated statements in the BioContext system enables 

the preliminary analysis of potential contradictions in the biomedical literature. 

All tools (LINNAEUS, GNAT, GETM, and BioContext) are available under 

open-source software licenses, and LINNAEUS and GNAT are available as 

online web-services. All extracted data (36 million BioContext statements, 

720,000 GETM statements, 72,000 contradictions, 37 million mentions of spe-

cies names, 80 million mentions of gene names, and 57 million mentions of ana-

tomical location names) is available for bulk download. In addition, the data ex-

tracted by GETM and BioContext is also available to biologists through easy-to-

use search interfaces. 
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Thesis outline  
This thesis consists of five chapters: an introductory chapter, three chapters de-

scribing the development of tools performing increasingly complex tasks, and fi-

nally a concluding chapter with a summary of the work. 

Chapter 1 gives an overview of previous work related to this thesis, describing a 

typical text-mining workflow, previously available text-mining systems, training 

and evaluation corpora, and evaluation methods. It also describes the aims of the 

project. 

Chapter 2 describes work on a species named-entity recognition and normaliza-

tion system, LINNAEUS, published in Gerner et al. (2010), with some exten-

sions over the published work. 

Chapter 3 describes improvements to the GNAT gene/protein named-entity 

recognition and normalization system (Hakenberg et al., 2008; Hakenberg et al., 

2008). The improvements, published in Solt et al. (2010) and Hakenberg et al. 

(2011) (and presented by me at the BioCreative III conference), rely on (among 

other methods) the work on LINNAEUS described in Chapter 2. 

Chapter 4 describes the development of two information-extraction systems, 

GETM and BioContext, both utilizing GNAT for gene/protein named-entity 

recognition and normalization. The work on GETM, which extracts information 

about gene expression statements, has been published previously (Gerner et al., 

2010) and presented by me at a conference. The work on BioContext, which ex-

tracts information about BioNLPô09 ñeventsò (biomolecular processes), will be 

submitted to Bioinformatics in the near future as Gerner, M., Sarafraz, F., Berg-

man, C. M. and Nenadic, G. ñIntegrated text mining for large-scale information 

extraction in biology.ò 

Finally, Chapter 5 concludes the thesis by describing the primary contributions of 

the work and future work that can be performed.  

As is common for much research, some of the projects described in this thesis 

were performed in collaboration with other researchers. The work on 

LINNAEUS and GETM was performed solely by me. Initial work on GNAT in 
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the lead-up to the BioCreative III challenge, focused on performance improve-

ments, was performed in collaboration with Jörg Hakenberg (currently at Roche 

pharmaceuticals, previously at Arizona State University) and Illés Solt (Budapest 

University of Technology and Economics), with roughly equal contributions. 

Later work on GNAT, primarily focusing on accessibility (code cleanup and re-

lease, web service development and deployment, etc.) was performed in collabo-

ration with Jörg Hakenberg (also with roughly equal contributions). In addition, 

all evaluations, analyses, and work on a baseline method for GNAT were per-

formed solely by me. Work on BioContext was performed in collaboration with 

Farzaneh Sarafraz (University of Manchester), with slightly over half of the work 

performed by me. 
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Chapter 1:  Introduction  

1.1 Background and motivation  

Scientists rely on their conceptualization of knowledge to drive research. They 

communicate based on this conceptualization, and adapt according to the latest 

findings. In the biomedical domain, electronic data resources that represent bio-

logical knowledge are becoming increasingly available, e.g. biomedical data-

bases, ontologies and certainly the scientific li terature. This last component, the 

biomedical scientific literature, is increasing at an unprecedented pace. 

MEDLINE, the main database contained in PubMed, contains citation informa-

tion and abstracts for about 19.6 million articles as of Jan 2011 (Figure 1.1a). 

MEDLINE is growing at a current rate of 720,000 articles per year (Figure 1.1b) 

(National Library of Medicine, 2011) and has been growing exponentially at a 

rate of about 4% per year over the last 20 years (Lu, 2011).  

While the increase in biomedical research and its associated published informa-

tion clearly is very positive, it also presents new challenges relating to the navi-

gation of the literature and finding relevant information for research purposes. 

Individual biologists can no longer keep up with such enormous flows of infor-

mation, even in specialized sub-domains. As a result, important results may go 

unnoticed and duplicated research may be performed because researchers are not 

aware of previous research on the same problem (Superti-Furga et al., 2008). 

Likewise, database curation, which often involves reading literature for informa-

tion relating to certain genes, organisms, diseases and manually extracting rele-

vant information, is also experiencing problems due to the amount of available 

literature (Baumgartner et al., 2007; Dowell et al., 2009). Curation is increas-

ingly lagging behind publishing efforts, decreasing both the availability and 

value of important information for users (Howe et al., 2008; Karamanis et al., 

2008). These problems are likely to worsen as the amount of published literature 

continues to increase if it cannot be mitigated by more powerful search and in-

formation extraction systems. 
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In contrast to structured data sources, the scientific literature is largely unstruc-

tured. While some structure exists in e.g. the sections that often as used in arti-

cles, authors describe biological knowledge in a range of different ways using 

natural language (that is inherently unstructured). However, through large-scale, 

automated and systematic analyses of literature, text-mining systems offer a po-

 
Figure 1.1. The number of total entries and annual additions for 

MEDLINE, 1960-2010. 

(A) The number of articles contained in MEDLINE from 1980 to 2010. 

(B) The number of annual article additions to MEDLINE from 1980 to 2010. 

Shown are both the total number of entries and only the number of entries 

that have associated abstracts (abs). 
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tential way to mitigate the problem of navigating and extracting information 

from the huge volumes of scientific literature (Zweigenbaum et al., 2007; Lu, 

2011). For example, text-mining systems that associate articles with entities (of 

e.g. species, genes, or diseases) that are discussed in the article could enhance 

search engines by enabling users to easily discover articles about a particular en-

tity of interest (Jimeno-Yepes et al., 2009; Baran et al., 2011), rather than having 

to resort to less fine-grained word-based indexes. Another use of having entities 

linked to articles is that they allow navigation in the ñliterature-spaceò from an 

article (through some entity of interest that it mentions) to other articles that 

mention the same entity. Alternatively, text-mining systems can provide mecha-

nisms to navigate between the literature and other domains, such as the ñgene-

spaceò (as implemented in the iHop software (Hoffmann and Valencia, 2004)) 

and the ñgenome-spaceò (as implemented in the text2genome software (Haeus-

sler et al., 2011)). 

Considerable efforts are also being directed towards developing text-mining 

methods for more advanced information extraction tasks (Hobbs, 2002). Many 

definitions exist for information extraction, but in the biomedical domain it can 

be thought of as the extraction of statements about concrete biomedical facts 

from articles (e.g., ñprotein x regulates protein yò, or ñthe disease x causes the 

symptom yò). Systematic extraction of facts has many potential applications, for 

example in assisting search and navigation (as with linking entities) or in provid-

ing databases of extracted information for use by researchers (Griffith  et al., 

2008). Systematically extracted biomedical information could also be processed 

in volume by bioinformaticians, if the data has high enough accuracy (Cohen and 

Hunter, 2004; Ananiadou et al., 2006). In particular, extraction of protein-protein 

interactions have seen large interest with considerable work invested in both fo-

cused challenges (Krallinger et al., 2008; Kim et al., 2009; Kim et al., 2011) and 

individual systems (Jaeger et al., 2008; Chowdhary et al., 2009). However, while 

development of information extraction systems and algorithms has seen consid-

erable progress, few systems have actually been applied to documents on a large 

scale (e.g. all of MEDLINE). Lastly, text-mining systems could also be applied 

as part of the article preparation and publication process, for example in order to 

detect potential problems in a manuscript or, with the help of authors, ensure that 
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information described in the article is available in a structured format at the time 

of publication (Ceol et al., 2008). 

1.1.1 Project aims  

Overall, this project aims to develop open-source text-mining methods to support 

identification of entities and facts in text. One of the fundamental properties of 

all biological studies is that they are performed on a particular species or set of 

species. As such, identifying species names in biomedical articles is a fundamen-

tal step in many advanced text mining systems, providing important data for link-

ing and retrieving articles (Sarkar, 2007). As no biomedical species entity recog-

nition and normalization system capable of local processing existed at the outset 

of this project (see Section 1.3.3), a major aim of the research in this thesis was 

to develop a species NER system, LINNAEUS, which is described in Chapter 2. 

Genes and proteins is a core entity type in current biomedical knowledge. Be-

cause of this, gene/protein entity recognition and normalization is critical, not on-

ly for database curation efforts, but also for advanced information extraction ap-

plications. Effective integration of a species normalization system has been iden-

tified as a critical component for gene/protein entity normalization ((Lu et al., 

2011); Section 1.3.4). As no gene/protein entity recognition and normalization 

system existed at the beginning of this project with a satisfactory degree of spe-

cies NER integration (see Section 1.3.4), a second aim of this work was to im-

prove a current gene/protein NER system by integrating it with the LINNAEUS 

species normalization system. The integration (and further development) of the 

state-of-the-art gene/protein NER and normalization system GNAT with 

LINNAEUS is described in Chapter 3. 

Processing the complete scientific literature for the identification of gene/protein-

related events is still a challenge and requires a number of components. There-

fore, a third aim of this project was to extract all BioNLPô09 events and associate 

the extracted events with contextual information using state-of-the-art solutions 

(including the combined GNAT/LINNAEUS system), and deliver a comprehen-

sive overview analysis. This work is described in Chapter 4. 
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1.2 Overview of typical text -mining methods  

Methods used by different text-mining applications vary widely, both for appli-

cations that perform different tasks, but also for applications that aim to perform 

the same task. However, processing methods that are used by most information 

extraction systems can generally be categorized into three different stages: doc-

ument retrieval, pre-processing and information extraction (illustrated in Figure 

1.2). The three general stages are described in the following sections. After con-

struction of the system, evaluation of the accuracy of the information extracted 

by the system is clearly also very important; methods and metrics for evaluation 

are discussed in Section 1.2.4. 

 

1.2.1 Document retrieval  

Document retrieval methods are used for selection of documents that are relevant 

for some application (Baeza-Yates and Ribeiro-Neto, 1999). There are many 

ways to perform document retrieval, the easiest of which, in the biomedical do-

main, is a text-based PubMed query. More complicated methods could include 

for example a binary support vector machine (SVM) classifier (Noble, 2006), 

which could be trained to determine whether a particular document is relevant for 

a particular application. 

Instead of using automated methods (such as SVM classifiers), already available 

documents can also be retrieved on the basis of manual annotations, such as med-

ical subject headings (MeSH tags) (Kim et al., 2001). MeSH tags are manually 

assigned to documents in PubMed in order to provide high-quality indexing of 

the literature. 

 
Figure 1.2. A diagram of a typical information extraction system. 

Shown are the three major steps common to most information extraction sys-

tems. Document retrieval is used to find documents that are relevant for the 

application. Selected documents are pre-processed (by e.g. NER tools) in 

preparation for information extraction. Information extraction methods then 

extract structured information from the prepared documents. 
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Document retrieval is often performed to focus application of text-mining sys-

tems on a smaller, more relevant document set. For a simple example, consider a 

text-mining application that aims to extract information about thyroid cancer. 

The application could be applied to the complete set of 19 million documents in 

MEDLINE but depending on how time-consuming the processing is, it may not 

be possible to process such a large set of documents. Instead, a PubMed query 

for the MeSH tag ñThyroid Neoplasmsò would return 34,000 documents that 

have been assigned as discussing thyroid cancer (as of October 2011), and that 

much smaller document set could be processed instead. Processing a much 

smaller and more focused document set would result in not only lower resource 

requirements but it is also possible that it would result in higher-quality data, as 

any data which would have been extracted from documents that do not actually 

discuss thyroid cancer would most likely have been incorrect. 

1.2.2 Pre-processing methods  

The boundary between what is considered to be pre-processing and what is con-

sidered to be the main information extraction may vary depending on the applica-

tion (and the person making the judgment). However, a description of some 

common methods that can be considered to constitute pre-processing is given be-

low. 

Most information extraction methods make use of results from some type of 

grammatical tree parser (software that determines the grammatical structure of 

sentences). Examples of commonly used tree parsers are the Genia dependency 

parser (Sagae and Tsujii, 2007) (GDep), the McClosky-Charniak constituency-

tree parser (McClosky et al., 2006), or the Enju parser (Ninomiya et al., 2007). In 

order to produce parse trees (describing the sentence structures), tools usually al-

so perform tokenization (splitting the text into tokens) and part-of-speech (POS) 

tagging. POS tagging makes it is possible to learn whether a particular token is, 

for example, a verb or a noun. If only the POS tags are required, performing a 

full tree parse may require unnecessarily heavy processing resources. Instead, 

lighter-weight software that specifically performs POS tagging would be more 

suitable, such as the GENIA tagger (Tsuruoka et al., 2005). An example of the 

parsed results from the McClosky-Charniak parser for the sentence ñThe magni-

tude of responsiveness is cell type dependent.ò is given in Figure 1.3. Looking at 
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the example POS tags, we can for example see how ñtheò has been identified as a 

determiner (DT), how ñmagnitudeò has been identified as a ñsingular or mass 

nounò (NN), and how ñthe magnitudeò has been identified as a noun phrase 

(NP). 

 

In addition to grammatical analysis methods, another category of pre-processing 

methods is named entity recognition (NER; see Section 1.3), which also can in-

clude normalization (i.e. linking of the entities to stable database identifiers). In-

formation extraction methods that act on entities, whether drugs, diseases, or 

geographical locations, require information about where those entities are men-

tioned in the text. Some entity recognition tools (often those that are based on 

machine-learning methods) will also require grammatical information, in which 

case grammatical parsing (or at least POS tagging) will be required even if the 

information extraction methods strictly do not need such information for their 

 

A)  

(S (NP (NP (DT The) (NN magnitude))  

(PP (IN of) (NP (NN responsiveness)))) 

(VP (AUX is) (ADJP (NN cell) (NN type) (JJ dependent))) (. .)) 

 

B) 

 
Figure 1.3. Example parse tree. 

Describes the structure and part-of-speech tags for the different words and 

phrases of the parsed sentence ñThe magnitude of responsiveness is cell type 

dependentò. The information is shown in a) the Penn Treebank (PTB) format, 

and b) a graphical representation. 
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operation. A more in-depth overview of recognition systems for the entity classes 

that relate to the work in this thesis is given in Section 1.3. 

1.2.3 Information extraction methods  

Following preparation of the document through pre-processing methods, meth-

ods are applied that prepare and extract the desired information for which the ap-

plication is designed. These methods depend heavily on the actual application 

and what it is aiming to extract, making it difficult to give general descriptions of 

these methods. However, they generally fall into two categories: machine-

learning-based methods, and knowledge-based methods. As the name suggests, 

machine-learning-based methods are driven by models that have been trained on 

gold-standard data through machine learning. Knowledge-based methods are sys-

tems that include rules, dictionaries, etc. A more detailed overview of some in-

formation extraction systems (and the methods that they use) that have been de-

veloped and are relevant to the work in this thesis is given in Section 1.4. 

1.2.4 Evaluation of text -mining systems  

To assess how well a text-mining system is performing, it is necessary to perform 

an evaluation study in some form. In order to perform the actual evaluation, a 

corpus (or several corpora) with high-quality annotations is required that can be 

used for comparisons against results extracted by the system being evaluated. It 

is important to note that performance measures can only reliably be used for 

comparisons between different software packages if they were tested on the same 

set of pre-annotated corpora. While the performance of a particular method on 

two different corpora may be similar, it is not guaranteed and results from one 

corpus are not directly transferable to another. 

Evaluations that involve text spans (text ranges, i.e. some range of text between 

start and end offsets in the text) such as entity mentions can either be ñstrictò or 

ñapproximateò. Approximate evaluations consider a partial match (i.e., with 

mention boundary overlap) to be sufficient to be considered a true positive (e.g. 

where only half of a gene name was recognized as a gene name). In contrast, 

strict evaluations require the full entity name (and nothing more) to be tagged for 

it to be considered a true positive (Olsson et al., 2002). If not otherwise stated, 

any accuracy measures mentioned in this thesis refer to strict scoring.  



24 

 

Throughout this thesis, a few different measures will be used to estimate the per-

formance of text-mining systems. Precision, recall, and F1-score (described in the 

following section) are the most commonly used, while TAP-k (described in sub-

section 1.2.4.2) is used in some cases. 

1.2.4.1 Precision, recall, and F 1-score  

Precision (p) is a metric for measuring the ratio of predictions (whether entities, 

interactions, or something else) that are ñgoodò (true positive) relative to the total 

set of predictions made. Recall (r) measures the ratio of all true positives relative 

to the total number that should have been predicted. In order to allow ranking of 

software where both precision and recall is important, the F1-score (the harmonic 

mean of the precision and recall) is often used, giving weight to both measures. 

All three measures are used when describing text-mining software accuracy, and 

are defined as below (where TP is the number of true positives, FP is the number 

of false positives and FN is the number of false negatives): 

 

A more general Fɓ-score can also be calculated, where ɓ refers to the relative 

weight of precision and recall. Fɓ is calculated as below:  

 

Larger importance is placed on recall than on precision for ɓ > 1, and larger im-

portance is placed on precision than on recall for 0 Ò ɓ < 1. The F1-score (with ɓ 

= 1, placing equal weight on precision and recall) is by far the most common.  

Throughout this thesis, the F1-score will simply be denoted as F-score. 

1.2.4.2 TAP-k 

Threshold average precision-k (TAP-k) (Carroll et al., 2010; Lu, 2010), was re-

cently introduced into the text-mining community in order to measure the accu-
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racy of systems in the gene normalization task of the BioCreative III challenge 

(Lu et al., 2011). The TAP-k metric is a precision-based metric that operates on a 

subset of a ranked list of predictions (i.e., a list of predictions that are sorted by 

associated scores or confidence values). The variable k determines how large a 

subset of the ranked predictions to evaluate (choosing the highest-ranked predic-

tions), with a larger k resulting in larger subsets being evaluated. Once the size of 

the subset is determined (for each document, if there are several), the level of 

precision is calculated for the subset from each document. Finally, the TAP-k 

value is calculated as the average of the precision values for all documents in the 

collection. 

The TAP-k metric was intended for use in applications where the results were 

likely to be returned to and read by humans (e.g., database curators). The ration-

ale was that the person who reads the results would begin with the highest-

ranked predictions and work his or her way down the list for some time. Given 

this use case, importance was placed on the relative number of good (true posi-

tive) entries among the predictions, which is why only precision is measured. 

However, TAP-k is not used widely, and it is much less common than the more 

ñstandardò precision, recall, and F-scores. 

1.3 Named entity recognit ion and normalization systems  

Most text-mining applications have a common need for named entity recognition 

(NER) and normalization, which are discussed in greater depth in this section. 

ñEntityò is an abstract concept, with varying meaning depending on the field of 

study. In biomedical text mining, it can be considered to refer to some biological 

unit, which can be referred to by authors and thus detected in text. Entities are re-

ferred to by using terms, usually described as names or synonyms, and can be 

grouped into ñentity classesò. For example, the terms ñhumanò and ñHomo 

sapiensò refers to an entity (our species) belonging to (among others) the entity 

class ñspeciesò, and the term ñHIVò refers to an entity that belongs to both the 

ñspeciesò and ñdiseaseò classes. 

Entity recognition refers to the task of determining the location of mentions of 

entity terms (common entity classes include genes, proteins, or diseases) in text 

(e.g. recognizing that in ñp53 is involved in lung cancerò, ñp53ò refers to a pro-
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tein, and ñlung cancerò refers to a disease). Sometimes performed together with 

NER, entity normalization is the process of linking recognized entity terms (often 

simply called ñmentionsò) to unique identifiers, i.e. identifying exactly which en-

tity the term refers to. These identifiers will usually be accession identifiers from 

some common database (for example, UniProt:P04637 for the human version of 

p53). Entity normalization systems should optimally link entities to a single da-

tabase identifier, but where this is not possible due to e.g. limited information, 

they could also link the entities to sets of identifiers (where the sets should be 

kept as small as possible). Entities that are linked to several identifiers rather than 

a single identifier are called ñambiguousò. 

Several challenges need to be overcome for software performing entity recogni-

tion and normalization: 

¶ Homonymy: many terms can each represent a number of different unique 

entities. For example, ñCATò corresponds to different genes in eight dif-

ferent species, e.g. human, fly and sheep (Chen et al., 2005). Another ex-

ample is ñC. elegansò, which on its own can refer to 41 different species 

(Gerner et al., 2010). 

¶ Common English words: some entity names also occur in the English 

language, such as the D. melanogaster gene names ñwinglessò, ñwhiteò, 

ñlost in spaceò, and ñsonic hedgehogò (although the two latter gene 

names probably are unlikely to refer to anything other than the genes if 

they appear in biomedical articles).  

¶ Related meanings: Some entity names have a different meaning in a 

closely related field, such as ñdiabetesò, which is the name for both a dis-

ease and a mouse gene (Chen et al., 2005). 

¶ Abbreviations: Many biological entities are represented in abbreviated 

form, which can match common English words or have multiple homo-

nyms. It has been shown that 81.2% of frequent MEDLINE abbreviations 

have more than one expansion (Liu et al., 2002). Abbreviations are used 

heavily in the biomedical literature (Okazaki and Ananiadou, 2006). 

¶ Overlapping and nested terms: Some entity names can overlap, making it 

challenging to determine which is correct (for example, in ñleft breast 
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cancerò, should ñleft breastò, ñbreast cancerò, or ñleft breast cancerò be 

tagged?).  

 

In many cases, these complications can be attributed to incomplete or poorly fol-

lowed naming conventions (or, in the case of early discoveries, the complete lack 

of such conventions).  

1.3.1 Common entity -recognition and normalization methods  

Depending on the availability of manually annotated corpora, it may be possible 

to train machine-learning models to help identify the location of the entities that 

are of interest. The most commonly used machine-learning methods for entity 

recognition are conditional random fields (CRFs) since they process sequences of 

objects, e.g. tokens. Features are selected that the researcher believes serve as 

good determinants of what tokens (or characters, depending on the level of which 

processing occurs) are part of an entity mention.  

In addition to the actual machine-learning (and whatever methods are used to ex-

tract information for the feature data, such as grammatical parsers), rule-based 

pre- and post-processing methods can also be employed. In particular, rule-based 

methods are sometimes used in order to correct mentions that very likely are FPs 

or FNs (for example, two very simple but highly accurate rules could be to re-

move any ñmentionsò that are only a single character in length, or which only 

contains digits). 

After detecting the location of entities, normalization (linking the entity mention 

to a unique identifier) can be performed. While it in theory is possible to perform 

normalization using machine-learning methods, any entity class that has even a 

moderate number of different identifiers would require very large training corpo-

ra, with sufficient sample sizes for each entity identifier. To the best of our 

knowledge, no biomedical normalization system has been developed that rely on 

machine-learning for entity normalization. Dictionaries can provide both recog-

nition and normalization of mentions for entity types where no manually anno-

tated corpus is available for training of a machine-learning system, or where it is 

too small. For these approaches, dictionaries are required that link entity identifi-

ers (e.g. ñ9606ò from the NCBI taxonomy) to terms (e.g. ñhumanò and ñHomo 
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sapiensò), together with more or less sophisticated methods for applying the dic-

tionaries in an efficient manner. Dictionary-based recognition methods do not re-

quire training corpora but can be more brittle than well-trained machine-learning 

methods since they depend on the quality of the dictionary, the rules used, and 

how challenging the entity type is to recognize). 

A less common way of performing NER without the use of either a training cor-

pus or a dictionary is through a purely rule-based method. Normalization cannot 

be performed as no dictionaries are involved, but it does offer an alternative 

method for entity classes with systematic naming conventions. An example is 

TaxonGrab (Koning et al., 2005), which can recognize taxonomic species names 

through the use of about a dozen rules based on regular expressions. 

1.3.2 Output types and formats  

When recognizing and normalizing entities occurring in a document, software 

can report different information about the entity mentions: 

¶ If not normalized, a list of the entity mentions with or without coordinates 

(location) in the text, 

¶ If normalized, a list of entity identifiers with or without coordinates (loca-

tion) in the text, 

¶ If normalized, a ranked list of the most important entity identifiers in the 

document (as estimated by the software). 

In addition, depending on how the recognition and normalization is performed, 

the software may or may not associate each entry with a confidence value.  

As mentioned previously, entity recognition can be an important first step in a 

larger text-mining process. Text-mining components operating at later stages 

(e.g. identifying protein-protein interactions) would often need information about 

where entities occur (in the case of extraction of interactions among entities, it is 

a requirement). Because of this, it is obvious that the more extensive the output 

from the NER tool is, the more utility can be gained from it by the downstream 

components. 
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The actual format used to represent the details on entity mentions (or the output 

from any other type of text-mining tool for that matter), while arguably less aca-

demically interesting than the actual algorithms used for recognition and nor-

malization, can still have a large impact on the usability of the software. Lack of 

unified output formats for tools means that conversion scripts need to be written, 

converting data from one format to another. These efforts can be redundant, and 

it would be useful if the text-mining community could agree on common formats 

of data exchange (Rebholz-Schuhmann and Nenadic, 2008). Some formats have 

been proposed previously, and are described in the following subsections. How-

ever, the adoption of standard formats is largely a chicken-and-egg problem, and 

no format currently has a particularly large ñmarket shareò in the text-mining 

field. 

1.3.2.1 IeXML 

IeXML (Rebholz-Schuhmann et al., 2006) is an XML-based standard for infor-

mation extraction, with XML tags inserted inline (i.e., inside the main document 

text). IeXML contains details about how to mark sentences, ñchunksò (syntactic 

units), tokens and ñtermsò (entities). Each element (with the exception of sen-

tences) can be tagged with a POS tag and entities can be tagged with semantic 

links, e.g. to gene or protein identifiers in common databases (enabling entity 

normalization). This is a sufficient feature set to capture all output from entity 

recognition and normalization software. The IeXML format is used in e.g. the 

CALBC (Rebholz-Schuhmann, 2011) corpora (ñsilver-standardò annotations of 

different entity types constructed by merging the output from multiple different 

text-mining tools). An example of the IeXML format is shown below, for the 

sentence ñNeutral sphingomyelinase from human urineò (PMID2545711). As the 

focus is on NER here, only the normalized entity mention is tagged; as men-

tioned, IeXML describe ways of capturing e.g. POS information as well. 

<s id=" 0">  

Neutral sphingomyelinase from  

<e id="ncbi:9606::spe">human</e>  

urine.  

</s>  
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The <s> tag denotes a sentence, and the <e> tag denotes an entity. The example 

shows how ñhumanò is tagged as a species (:spe), normalized to NCBI Taxono-

my ID 9606. 

1.3.2.2 IOB2 

The IOB2 (I for Inside, O for Outside, B for Begin) format, used for instance by 

the GENIA Tagger, includes a tag after each word in the text (with ñ|ò used to 

separate the word and the tag). The tag shows whether each word is part of a cer-

tain entity class or not. For each new mention of a certain class k, the tag B-k is 

used, and for consecutive words that are part of the same entity, the tag I-k is 

used. For words that are not part of any class at all, the tag O is used. The IOB2 

format is unfortunately limited, in that entities can only consist of whole tokens 

and that it does not allow normalization. An example is shown below, for the 

sentence example used in the previous section: 

Neutral|O  

sphingomyelinase|O  

from| O 

human|B - species  

urine|O  

.|O  

As can be seen, ñhumanò is tagged as being a species mention, but no species 

identifier can be given. If the species mention would have been ñHomo sapiensò, 

ñHomoò would have had the B-species tag, and ñsapiensò would have had the I-

species tag. 

1.3.2.3 Offset -based formats  

While the IeXML and IOB2 formats contain ñinlineò annotations (made directly 

within the text), offset-based annotations are contained in a separate file from the 

text (and are therefore also called ñstand-offò formats). Stand-off formats are 

common, with NER applications often writing a table of results to an output file 

or database, where each row represents a mention, and the columns contains in-

formation about the entity identifier (if normalized), start and end offsets, the ac-

tual text snippet that was recognized, a confidence level if available, etc. While 

simple and easy to work with, standoff formats requires the processed text to be 

made available with the annotations for there to be no ambiguities, since offsets 

may be misleading if the userôs internal textual representation of the same docu-
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ment is slightly different from that used to generate the annotations. An example 

for the example sentence in the previous section is shown below (with columns 

containing the document PMID, entity identifier, start and end offsets, and men-

tion text, respectively): 

2545711  species:ncbi:9606  30 35 human 

The start and end offsets (30 and 35, respectively) indicate where in the text the 

mention is located, and illustrates how important it is that the text also is availa-

ble together with the annotations. 

1.3.3 Species named entity recognition and normalization  

Authors mention the names of species in articles when they need to refer to par-

ticular species (or groups of species) in order to describe their work and results. 

The importance species have in biology make it one of the most fundamental en-

tity types that can be detected in biomedical text. Being able to detect where spe-

cies names are mentioned in text is useful not only for taxonomy-based searches, 

but also for use in other text-mining systems. For example, a species NER sys-

tem can help information extraction systems determine in what organism a par-

ticular process is occurring, or to which organism a gene mention belongs. The 

latter application is particularly important, where species NER components have 

been identified as being critical for cross-species gene/protein normalization (Lu 

et al., 2011). 

There are two main types of species names: scientific names and vernacular 

names (also known as common names or synonyms). Scientific names follow the 

Linnaean taxonomic system established by Carl von Linnaeus (Linnaeus, 1767). 

The Linnaean taxonomic system is hierarchical, with seven main levels (or taxa): 

kingdom, phylum, class, order, family, genus, and species. Names for species 

(units at the seventh level, such Homo sapiens) are composed of two compo-

nents, genus (e.g. Homo) and species (e.g. sapiens). While scientific names fol-

low strict conventions in terms of abbreviation (e.g. ñH. sapiensò) and italiciza-

tion (taxonomic names should be italicized), vernacular names (e.g. ñhumanò) do 

not. The work in this thesis will primarily focus on species, as opposed to the 

higher-order taxonomic levels. 
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In some cases, rather than being used to refer to a species, species terms may be 

used as an adjective without referring specifically to the species. For example, in 

ñhuman p53ò, the author does not describe the human species as such, but only 

use the term to describe what type of p53 he or she is referring to. For other spe-

cies, terms may be used exclusively as adjectives, such as ñmurineò for mouse or 

ñbovineò for cow. 

Previously developed software systems that perform species NER can be broadly 

categorized into two categories. The first category contains systems primarily 

aimed at the biodiversity community that attempt to find all species names 

(whether they exist in species name dictionaries or not), typically in digitized 

versions of legacy documents, such as the Biodiversity Heritage Library
1
. The 

second category contains systems that aim to recognize (and normalize) mentions 

of species names in biomedical literature, such as the documents in MEDLINE 

or PubMed Central (PMC). Software belonging to the former category often per-

forms better on scientific names (such as ñHomo sapiensò) through use of rule-

based or machine-learning methods that rely on the fact that scientific names fol-

low certain patterns. On the other hand, software belonging to the latter category, 

aimed at biomedical documents, typically performs better on synonyms and 

common names (such as ñhumanò or ñfruit fl yò) through the use of dictionaries. 

Common names do not follow any taxonomic rules and are as a consequence dif-

ficult to detect using rules. 

As the focus of this work is on biomedical text-mining (and in the interest of 

clarity), here we focus on an introduction the systems in the latter category that 

were available at the beginning of this project. A comprehensive discussion 

about the species NER systems that are aimed towards the biodiversity commu-

nity is given in Chapter 2. As of early 2009, only two systems were available that 

could perform mention-level species NER and normalization that were specifi-

cally designed for use by the biomedical community: AliBaba (Plake et al., 

2006) and WhatizitOrganisms (Rebholz-Schuhmann et al., 2007). Alibaba is a 

dictionary-based web service, which includes methods for filtering homonyms 

for common species names. Whatizit is a set of dictionary-based entity recogni-

                                                 
1
 http://www.biodiversitylibrary.org 
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tion services, one of which is WhatizitOrganisms, which is capable of recogniz-

ing and normalizing species names. While the availability of web services for 

these tools makes their adoption easy, the fact that neither system can be run lo-

cally limit their functionality for systems that either require computations on a 

very large scale, or need guaranteed stability. Additionally, the designs of the 

species NER components of these tools were not described in detail, nor was 

source code available to understand their design. 

1.3.3.1 Species t raining and evaluation corpora  

To the best of our knowledge, at the outset of this project, no corpus existed that 

contained manually annotated species names at the mention level. However, 

some data sources exist that can be used to infer that particular documents dis-

cuss particular species. For example, the NCBI Taxonomy (a database of species 

information) contains PubMed references for documents that are relevant to par-

ticular species. Likewise, some MeSH tags (subject headings that are associated 

to all MEDLINE articles) refer to species, enabling the creation of document-

species links. Note that evaluations against automatically-generated test sets like 

these need to be interpreted carefully, as the inferred links do not guarantee that 

the species actually is mentioned in the document. Also, as document-species 

links inferred through these methods are at the document level, their utility is 

limited for our task. 

1.3.4 Gene/protein named entity recognition and normalization  

At the time this project was initiated, there were six major software packages in 

use by text-mining researchers that perform gene/protein NER (with or without 

normalization): BANNER (Leaman and Gonzales, 2008), Abner (Settles, 2005), 

Genia Tagger (Tsuruoka et al., 2005), LingPipe (Carpenter, 2007), Moara (Neves 

et al., 2008), and GNAT (Hakenberg et al., 2008; Hakenberg et al., 2008). A 

summary of the capabilities and methods used by the different tools can be found 

in Table 1.1. Levels of accuracy shown in Table 1.1 are as reported by the au-

thors and evaluations were performed on different corpora.  

As can be seen in Table 1.1, the entity recognition performance of BANNER has 

higher reported accuracy than the other software. BANNER is a CRF-based im-

plementation of best practices in the entity recognition field as realized from the 
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BioCreative II entity recognition challenge. It is also very close in accuracy to 

the best-performing system in the BioCreative II gene mention task (Ando, 2007; 

Leaman and Gonzales, 2008). LingPipe is used quite widely by other text mining 

tools (Smith et al., 2008), despite the fact that the reported accuracies of Abner 

and GeniaTagger are considerably higher than that of LingPipe. Abner uses the 

same underlying CRF library as BANNER, MALLET (McCallum, 2002), albeit 

a considerably older version. Abner uses different features though; for example, 

it does not perform any POS tagging. Because of this, it is possible that the accu-

racy of Abner could be improved by enabling POS tagging.  

Of the six systems, only two (Moara and GNAT) systems are capable of per-

forming normalization. However, Moara need to be trained on the species for 

which it normalize genes, making it difficult to use for species where no training 

data is available. GNAT is limited to genes for which species-specific dictionar-

ies have been generated and loaded. However, the user can generate dictionaries 

for any species that are of interest if they are not already included. 

More recently, gene/protein NER pipelines have also been added to Whatizit 

(Rebholz-Schuhmann et al., 2007), but details and evaluations of these pipelines 

are not yet available. 
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Table 1.1. Comparison of previously available gene NER and normalization systems. 

An overview and comparison is shown for seven different gene/protein NER and normalization systems available at the outset of this 

project. The evaluation corpora (NLPBA, BC1-3, and GNAT-100) are described in Section 1.3.4.1. Under availability, CPL refers to the 

common public license. 

Name Abner LingPipe BANNER GeniaTagger Moara GNAT 

Technique CRF Hidden Markov 
Models (HMMs) 

CRF POS: cyclic depend-
ency network 

Classifier Dictionaries + rules 

Capabilities       

 --- Recognition Yes Yes Yes Yes Yes Yes 

 --- Normalization No No No No Yes Yes 

Accuracy (F-score)       

 --- Recognition 70% (BC1) 56% (BC2) 84.9% (BC2) 73% (NLPBA) 77% (BC2) (not reported) 

 --- Normalization - - - - 42%-89% 
(BC1,2) 

81.4% (GNAT-
100), 75.3% - 
89.6% (BC1,2) 

Based on MALLET   MALLET, 
Dragon toolkit 

  Entrez Gene 

Availability       

 --- Binary Yes Yes Yes Yes Yes Yes 

 --- Source (li-
cense) 

Java API (CPL) Java API (own) Java API 
(CPL) 

C (custom license) None at the time None at the time 

 --- Web service No No No No No No 

 --- Last updated March, 2005 Oct, 2008 Dec, 2007 Oct, 2006 Dec, 2008 2008 

Comment Based on an old 
version of 
MALLET  

Free for non-
commercial use 

 Free to modify and 
redistribute for non-
commercial use 

Accuracy depends 
on method and 
species 

See Chapter 3 for 
an update. 
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1.3.4.1 Gene/protein training and evaluation corpora  

Text-mining systems that use machine-learning approaches require a corpus of 

pre-annotated documents for training purposes. The size, quality and scope of 

this training corpus are therefore of critical importance to these systems. In addi-

tion to training, corpora are also vital for reliable evaluation of software accura-

cy, as mentioned in Section 1.2.4. A number of corpora that contain annotations 

for genes and proteins are available for training and testing, as described in the 

following sections. 

1.3.4.1.1 BioCreative 

BioCreative is a periodic community challenge that addresses various tasks in 

biomedical text mining, including gene and protein NER, extraction of protein-

protein interactions, and protein interaction detection methods. There have been 

three BioCreative gene NER and normalization challenges so far: BioCreative I 

(Hirschman et al., 2005), BioCreative II (Morgan et al., 2008; Smith et al., 

2008), and BioCreative III (Lu et al., 2011). The BioCreative I challenge focused 

on annotations of abstracts related to mouse, fruitfly, and yeast, normalized to 

identifiers from the Mouse Genome Informatics Database
2
, FlyBase (Tweedie et 

al., 2009), and the Saccharomyces genome database
3
, respectively.  The 

BioCreative II challenge focused on human genes in abstracts, normalized to 

Entrez Gene (Sayers et al., 2011) identifiers. The BioCreative III challenge fo-

cused on genes from an unrestricted set of species, also normalized to Entrez 

Gene, from full-text articles. 

The numbers of abstracts and full-text documents annotated for the training and 

evaluation corpora in the different challenge iterations are shown in Table 1.2. It 

is important to note that annotations for all three challenges were performed at 

the document-level (i.e., no information was given about the exact locations of 

mentioned genes). The BioCreative I and II challenges focused on gene normali-

zation in abstracts, where the species of the genes was already known. In addi-

tion to the high-quality manually annotated training data (comprising between 

110 and 281 abstracts, depending on the species), much larger training sets of 

5,000 abstracts with ñnoisyò annotations were also made available for each spe-

                                                 
2
 http://www.informatics.jax.org/ 

3
 http://www.yeastgenome.org/ 
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cies (constructed automatically from model organism databases, where docu-

ments are linked to gene entries as references). While many of the annotations in 

the noisy training data probably were correct, there was no guarantee that genes 

were mentioned in the articles (and even less guarantee that it was mentioned in 

the actual abstract). Because of this, the noisy training sets are of lower quality 

and utility. 

The BioCreative III challenge was different in nature, focusing on cross-species 

annotations (i.e., genes from any species, as opposed to single species), and on 

full -text documents (as opposed to only abstracts). In addition to the high-quality 

training and test data, noisy training was released also in this instance. However, 

the noisy data was created in a different manner, with only the most important 

genes (as determined by curators) annotated (at the document level). 

 

1.3.4.1.2 GNAT-100 

As part of the evaluation of GNAT (Hakenberg et al., 2008; Hakenberg et al., 

2008), its authors released a corpus of 100 abstracts annotated for genes of any 

species (Hakenberg et al., 2008). The abstracts in this set are based on the 

BioCreative I and II corpora (with 25 abstracts chosen from each of the four 

model organisms) and extended with annotations for genes coming from any 

other species. In total, the corpus contains annotations for 320 genes. We note 

that the annotations in the GNAT-100 corpus are at the document-level (since it 

is based on BioCreative I and II resources).  

Table 1.2. Statistics for the BioCreative gene normalization corpora. 

The number of documents (Docs) and entities annotated for the BioCreative I 

(BC1), II (BC2), and III (BC3) gene normalization corpora. The noisy training 

and test sets were generated automatically (see text). In the documents column, 

ñabsò stands for abstracts and ñFTò for full-text documents. 

  

Corpus Training  Training (noisy) Test 

Docs. Genes Docs. Genes Docs. Genes 

BC1 (yeast) 110 (abs) 329 5000 (abs) 15,497 250 (abs) 776 

BC1 (fruit fly) 108 (abs) 596 5000 (abs) 30,433 250 (abs) 1,635 

BC1 (mouse) 250 (abs) 839 5000 (abs) 14,747 250 (abs) 973 

BC2 (human) 281 (abs) 640 5000 (abs) 9,322 262 (abs) 785 

BC3 32 (FT) 641 493 (FT) 839 50 (FT) 1,669 
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1.3.4.1.3 GENIA entity corpus 

The GENIA corpus (Ohta et al., 2002; Kim et al., 2003; Kim et al., 2004) con-

sists of 2,000 annotated abstracts, comprising 18,546 sentences. In these sentenc-

es, a range of entity types were annotated, including e.g. ñproteinò, ñDNAò, 

ñRNAò, ñcell lineò and ñcell typeò. In total, 18,281 entity mentions were anno-

tated. The fact that several entity classes are tagged gives software trained on it 

wider capabilities (allowing it to also recognize e.g. cell types rather than just 

genes). GENIA annotations are on the mention level, but they are not normal-

ized, which limits training and evaluation to entity recognition only. The GENIA 

corpus is also limited in its scope. The abstracts were retrieved from MEDLINE 

through a search composed of ñHumansò [MeSH] AND ñBlood Cellsò[MeSH] 

AND ñTranscription Factorsò [MeSH]. Due to this, the content in the abstracts 

may not be generally representative of the biomedical domain as a whole.  

1.4 Information extraction systems  

As mentioned previously, the concept of information extraction is quite wide and 

there are many definitions of it. Here we take this term to describe systems that 

extract biomedical facts from biomedical texts, such as ñprotein x regulates pro-

tein yò. Some problems in biomedical information extraction have received large 

amounts of attention, such as extraction of protein-protein interactions (PPIs) 

(Skusa et al., 2005; Krallinger et al., 2008; Zhou and He, 2008; Chowdhary et 

al., 2009) or biomedical ñevents,ò a concept describing a specific set of molecu-

lar processes such as gene expression, phosphorylation or regulation (Kim et al., 

2009; Kim et al., 2011). Some overlap exists between the two, as some of the 

processes described by events also describe PPIs. This section will focus primari-

ly on event extraction (as the extraction and contextualization of events is one of 

the goals of this thesis), but also to some degree extraction of PPIs. We do not 

discuss related work on clinical texts (Meystre et al., 2008; Yang et al., 2009; 

Spasic et al., 2010; Uzuner et al., 2010). 

1.4.1 Software examples  

Due to the large amount of work devoted to information extraction, we mention 

only some of the systems that have been developed. More complete overviews of 

event extraction are available in (Kim et al., 2009; Kim et al., 2011) and of PPI 

extraction in (Skusa et al., 2005; Krallinger et al., 2008; Zhou and He, 2008). 
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While there have been numerous systems reported in the literature, to the best of 

our knowledge, only two event extraction systems have been made publicly 

available: the Turku Event Extraction System (TEES) (Björne et al., 2009) and 

very recently, a system by McClosky et al. (2011). TEES combines a machine 

learning approach (relying on dependency parse graph features) with a rule-based 

post-processing step to identify events. The system of McClosky et al. uses a 

multiclass SVN classifier to detect triggers, dependency parse trees, and event 

model features for event extraction. Work is currently underway to provide sev-

eral of the event extraction systems that participated in the BioNLPô11 workshop 

as UIMA
4
 web service components (Jin-Dong Kim and Yoshinobu Kano, per-

sonal communication), but the possibility of applying such services on a large 

scale will probably be limited due to the usually heavy resource requirements in-

volved in event extraction (Björne et al., 2010). 

Chowdhary et al. (2009) have developed and released an application for extrac-

tion of PPIs (consisting of two protein references and one interaction keyword) 

using Bayesian networks (Needham et al., 2007) constructed from 12 different 

features. The AliBaba web service (Hakenberg et al., 2008; Palaga et al., 2009) 

performs PPI information extraction on abstracts that match a userôs PubMed 

query. By using pattern-matching methods, information about the relationships 

between detected entities (e.g. proteins, diseases, and drugs) are extracted and the 

results are displayed to the user. The PPI extraction system RelEx (Fundel et al., 

2007) uses ProMiner (Hanisch et al., 2005) for gene/protein NER and a rule-

based method based on dependency parse trees and a list of ñrestriction termsò 

(essentially, keywords indicating that an interaction is described) in order to ex-

tract interacting pairs of genes or proteins. 

In order to perform event extraction, a number of components need to be inte-

grated. At the minimum, these include entity recognition (primarily of genes and 

proteins), grammatical sentence parsing, and relationship extraction (determining 

which genes/proteins are involved in the events, and in which way). At the be-

ginning of this project, no information extraction system had been constructed 

which included these components and been applied on a truly large scale, i.e. to 

                                                 
4
 http://uima.apache.org/ 
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all documents in MEDLINE and/or PMC, followed by the release of the ex-

tracted data. Recently, however, results from the application of the Turku event 

extraction system (TEES) (Björne et al., 2009) to the 2009 baseline release of 

MEDLINE have been made available (Björne et al., 2010; Björne et al., 2010; 

Van Landeghem et al., 2011). Through the use of TEES, 19.2 million event re-

cords were extracted and released, with links to gene mentions (which are not 

normalized). To the best of our knowledge, this is the only complete (i.e., includ-

ing entity recognition, grammatical parsing, and event extraction) event extrac-

tion system that has been applied on a large scale. It is possible to go further, 

though: for example, TEES was not applied to full-text documents, and the enti-

ties were not normalized. 

In addition to TEES, two systems have also been applied on a more limited (but 

still relatively large) scale. The RelEx system (Fundel et al., 2007) was applied to 

a million MEDLINE abstracts, and was able to extract 731,000 mentions of 

150,000 different protein pair interactions (the extracted data was not released). 

The PPI extraction system of Chowdhary et al. (2009) was applied to a set of 

680,000 sentences from PubMed as part of its evaluation and was able to extract 

information about 18,400 interacting protein pairs. Note that the sentences were 

selected in order to ensure that previously recorded interactions in the BioGrid 

database (Stark et al., 2006) were not described in the sentences, which may 

mean that a more representative sentence sample could produce higher rates of 

PPIs. The PPIs extracted by the system of Chowdhary et al. (2009) were not re-

leased and while the absolute number of sentences it was applied to is large, the 

documents they are taken from still only represent roughly 0.7% of the 2011 

baseline MEDLINE files.  

1.4.2 Event representation and formats  

Information extracted from text can vary widely from application to application, 

so there are, to the best of our knowledge, no common data formats for informa-

tion extraction. PPIs are often represented as triplets, describing the different 

components of the protein-protein interaction (with two parts of the triplet de-

scribing the two proteins, and the third part describing the interaction).  
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Here, we adopt the representation used in the BioNLPô09 event extraction chal-

lenge. In the BioNLP event extraction challenges, nine types of biological proc-

esses were represented: gene expression, transcription, protein catabolism, phos-

phorylation, localization, binding, regulation, positive regulation, and negative 

regulation. The first five (gene expression to localization) take a single gene/gene 

product (GGP) argument (called ñthemeò). Binding takes one or more themes 

(ñp53 was boundò would result in a single argument, while ñp53 was bound to 

MDM2ò would result in two). The three regulatory event types can take both a 

theme (describing what the event regulates) and an optional ñcauseò (describing 

what it is regulated by). In the case of the three regulatory events, the theme and 

cause can, in addition to GGPs, also be events. Together, the themes and causes 

are called ñparticipantsò. All events are also associated with a ñtriggerò, which 

represents a keyword (or clue) in the text. 

The events in the example sentence ñMDM2 acts as a negative regulator of p53 

expressionò are shown in Figure 1.4. It contains two events: a ñgene expressionò 

event, with the theme p53, and a ñnegative regulationò event, where the cause is 

MDM2 and the theme is the gene expression event. The trigger of the negative 

regulation consists of the two words ñnegative regulatorò from the sentence, and 

the gene expression trigger is the word ñexpressionò. 

 

 

Figure 1.4. A representation of two BioNLPô09 events. 

Two events in the example sentence ñMDM2 acts as a 

negative regulator of p53 expressionò: a ñgene expressionò 

event, with the theme p53; and a ñnegative regulationò 

event, where the cause is MDM2 and the theme is the gene 

expression event. 
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The representation of the two events and their participants in the BioNLP format, 

which was used in the challenge, is shown in the following example: 

 

Events can further be associated with information about speculation and/or nega-

tion (Agarwal et al., 2011), describing whether the author was speculating about 

the process or whether he/she stated that the process did not occur. For example, 

if the sentence had been ñMDM2 might not act as a negative regulator of p53 ex-

pressionò, two additional lines of information would have been provided: 

M1 Negation  E2 

M2 Speculation  E2 

As mentioned, the data used in the challenge was originally constructed from the 

GENIA corpus (Kim et al., 2008), which follows the GENIA event XML for-

mat
5
. Briefly, this format consists of a mix of inline-based and list-based annota-

tions. Entities are marked-up inline in sentences, after which a list of events are 

given. Each event contains identity links for its participants, information about 

negation/speculation, and the sentence text from which it was extracted (with the 

trigger marked inline in the sentence). 

1.4.3 Infor mation extraction training  and evaluation corpora  

As part of the BioNLPô09 event extraction challenge (Kim et al., 2009), the or-

ganizers provided a corpus of events from 950 abstracts (here called the BioNLP 

corpus) (Ohta et al., 2009). The BioNLP corpus was based on the GENIA event 

corpus (Kim et al., 2008). As noted previously, the GENIA corpus was drawn 

from documents matching a PubMed search query for transcription factors in 

human blood cells and may not be completely representative for MEDLINE in 

general. Only a subset of the event types that exist in the GENIA corpus were 

used for the BioNLP corpus and other types of processes annotated as GENIA 

events (e.g. mutagenesis, metabolism, and cell communication) were excluded. 

                                                 
5
 http://www-tsujii.is.s.u-tokyo.ac.jp/~genia/release/GENIA_event_annotation_guidelines.pdf 

T1 Protein  0 4 MDM2 

T2 Protein  37 40 p53  

T3 Gene_ex pression  41 51 expression  

T4 Negative_regulation  15 33 negative regulator  

E1 Gene_expression:T3  Theme:T2  

E2 Negative_regulation:T4  Theme:E1  Cause:T1  
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The numbers of annotated event instances for the types that were not used in the 

BioNLP corpus are in general quite low, however. The total numbers of events 

for each of the nine event types in the training (800 abstracts) and development 

portions (150 abstracts) of the BioNLP corpus are shown in Table 1.3. 

 

Information is also available about whether the events are negated or speculative. 

In the training set, 615 of the events (7.1%) are negated, while 455 (5.3%) are 

speculative. In the development set, 107 (6.0%) are negated, while 95 (5.3%) are 

speculative. In addition to the events themselves, there are also 9,300 and 2,080 

GGP mentions in the training and development portions, respectively. 

Pyysalo et al. (2008) have described an analysis and reconciliation of five differ-

ent PPI corpora: the IEPA corpus (Ding et al., 2002), the LLL challenge corpus 

(Nédellec, 2005), the AIMed corpus (Bunescu et al., 2005), the BioInfer corpus 

(Pyysalo et al., 2007), and the HPRD50 corpus (Fundel et al., 2007). The corpora 

contain information about PPIs from 486, 77, 1,955, 1,100, and 145 sentences, 

respectively. While some differences exist between the different corpora, 

Pyysalo et al. (2008) provide software for converting each corpus to the same 

format, containing information about the location of entities, and interactions in-

volving the entities with information about the direction of the interaction (if an-

notated), and the type of the interaction as mapped to the BioInfer ontology 

Table 1.3. The number of events in the BioNLP 

corpus. 

 

Event type Training  Development 

Gene expression 1,738 356 

Transcription 576 82 

Protein catabolism 110 21 

Phosphorylation 169 47 

Localization 265 53 

Binding 887 249 

Regulation 961 173 

Positive regulation 2,847 618 

Negative regulation 1,062 196 

Total 8,615 1,795 
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(Pyysalo et al., 2007). The actual converted corpora or a merged corpus was not 

distributed directly, most likely as a result of licensing issues. 

1.5 Summary  

As described in Section 1.2, named entities are core to many text-mining applica-

tions, and named-entity recognition and normalization is critical for most ad-

vanced text-mining applications. In particular, recognition and normalization of 

genes and proteins are frequently needed. An important requirement of 

gene/protein normalization is accurate species NER and normalization (see Sec-

tion 1.3). At the outset of this project, no species NER and normalization system 

existed that was aimed at the biomedical literature and could perform local pro-

cessing (Section 1.3.3). Development of such a system is described in Chapter 2. 

Further, the integration of this species identification system with the gene/protein 

NER and normalization system GNAT and further improvement of GNAT is de-

scribed in Chapter 3. At the outset of this project, information extraction systems 

(described in Section 1.4) had only been applied on very limited scales (Section 

1.4.1). Attempting to perform such large-scale application, Chapter 4 describes 

the development of systems for extraction of information about biomolecular 

processes (building on the work in Chapters 2 and 3), and their application to the 

whole of MEDLINE and PMC. 
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Chapter 2:  Species named -entity recognition  

2.1 Abstract  

The task of recognizing and identifying species names in biomedical literature 

has recently been regarded as critical for a number of applications in text and da-

ta mining, including gene name recognition, species-specific document retrieval, 

and semantic enrichment of biomedical articles. In this chapter, we describe an 

open-source species name recognition and normalization software system, 

LINNAEUS, and evaluate its performance relative to several automatically gen-

erated biomedical corpora, as well as a novel corpus of full-text documents man-

ually annotated for species mentions. LINNAEUS uses a dictionary-based ap-

proach to identify species names and a set of heuristics to resolve ambiguous 

mentions. When compared against our manually annotated corpus, LINNAEUS 

performs with 94% recall and 97% precision at the mention level, and 98% recall 

and 90% precision at the document level. Our system successfully solves the 

problem of disambiguating uncertain species mentions, with 97% of all mentions 

in PubMed Central full-text documents resolved to unambiguous NCBI taxono-

my identifiers. LINNAEUS is an open source, stand-alone software system capa-

ble of recognizing and normalizing species name mentions with speed and accu-

racy, and can therefore be integrated into a range of bioinformatics and text-

mining applications. The software and manually annotated corpus can be down-

loaded freely at http://linnaeus.sourceforge.net/. 

2.2 Introduction and background  

The amount of biomedical literature available to researchers is growing exponen-

tially, with over 18 million article entries now available in MEDLINE
6
 and over 

a million full-text articles freely available in PMC
7
. This vast information re-

source presents opportunities for automatically extracting structured information 

from these biomedical articles through the use of text mining. A wide variety of 

biomedical text-mining tasks are currently being pursued (Jensen et al., 2006; 

Krallinger et al., 2008), such as entity recognition (e.g. finding mentions of 

                                                 
6
 http://www.ncbi.nlm.nih.gov/pubmed/ 

7
 http://www.ncbi.nlm.nih.gov/pmc/ 
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genes, proteins, diseases) and extraction of molecular relationships (e.g. protein-

protein interactions). Many of these systems are constructed in a modular fashion 

and rely on the results of other text-mining applications. For example, in order to 

extract the potential interactions between two proteins, the proteins themselves 

first need to be correctly detected and identified. 

One application that could facilitate the construction of more complex text-

mining systems is accurate species name recognition and normalization software 

(i.e. software that can tag species names in text and map them to unique database 

identifiers). For example, if the species and locations of species mentions dis-

cussed in a document were known, it could provide important information to 

guide the recognition, normalization and disambiguation of other entities like 

genes (Hanisch et al., 2005; Hakenberg et al., 2008; Wang and Matthews, 2008), 

since genes often are mentioned in the context of their host species (see section 

2.4.3.3 and 3.4.1). In recent text-mining challenges, such as the identification of 

protein-protein interactions at BioCreative II (Krallinger et al., 2008) or bio-

molecular event extraction at the BioNLP shared task (Kim et al., 2009), some 

groups considered species identification and normalization an essential sub-task 

(Kappeler et al., 2009). Likewise, improved methods for identifying species 

names can assist pipelines that integrate biological data using species names as 

identifiers (Leary et al., 2007; Page, 2007). 

In addition to being useful for more complex text-mining and bioinformatics ap-

plications, species name recognition software would also be useful for ñtaxonom-

ically intelligent information retrievalò (Sarkar, 2007). Document search queries 

could be filtered on the basis of which species are mentioned in the documents 

(Ding et al., 2005), providing researchers more fine-grained control over litera-

ture search results. This use case provides a powerful extension to simple key-

word-based PubMed searches, since all synonyms of a species would be normal-

ized to a standard database identifier, and could therefore be retrieved by any 

synonym used as input. This can currently be done to some degree by specifying 

Medical Subject Heading (MeSH) terms when performing a PubMed query. 

However, MeSH-based queries have limitations since the set of MeSH tags com-

prises only a small subset of all species. Additionally, semantic enhancement 

(marking-up entities in text and hyper-linking them to external databases (Fink et 
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al., 2008; Shotton et al., 2009)) of research articles with species names could 

provide readers with easier access to a wealth of information about the study or-

ganism. Accurate recognition and normalization of species mentions in biologi-

cal literature would also facilitate the emerging field of biodiversity informatics, 

which aims to develop databases of information on the description, abundance 

and geographic distribution of species and higher-order taxonomic units (Bisby, 

2000; Sarkar, 2007; Zauner, 2009).  

The task of identifying species names in biomedical text presents several chal-

lenges (Patterson et al., 2006; Sarkar, 2007; Kappeler et al., 2009), including:  

¶ Species name ambiguity: many abbreviated species names are highly am-

biguous (e.g. ñC. elegansò is a valid abbreviation for 41 different species 

in the NCBI taxonomy). Ambiguity is also introduced because names can 

refer to different NCBI taxonomy species entries (e.g. ñratsò can refer to 

either Rattus norvegicus or Rattus sp.).  

¶ Homonymy with common words: some species common names are wide-

ly used in general English text (e.g. ñSpotò for Leiostomus xanthurus and 

ñPermitò for Trachinotus falcatus). These names introduce a large num-

ber of false positives if not properly filtered.  

¶ Acronym ambiguity: species dictionaries contain acronyms for species 

names (For example, HIV can refer to both ñHuman immunodeficiency 

virusò and ñThe hippocratic irrelevance variableò), which can refer to 

multiple species or other non-species entities. It has previously been 

shown that 81.2% of acronyms in MEDLINE have more than one expan-

sion (Liu et al., 2002). This presents challenges relating to identifying 

when an acronym refers to a species, and, if so, which species (when it 

refers to several). 

¶ Morphological variability: while species dictionaries cover a large num-

ber of scientific names, synonyms and even some common misspellings, 

they cannot match human authors in variability of term usage. In some 

cases, authors use non-standard names when referring to species, spell 

names incorrectly or use incorrect case. 
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Despite these challenges, several attempts have been made to automate the pro-

cess of species name recognition and normalization using a range of different 

text mining approaches. Previous efforts in species name recognition can broadly 

be categorized in two groups: software aiming to identify species names in lega-

cy documents in the field of biodiversity (e.g. the Biodiversity Heritage 

brary
8
), and software aiming to identify species names in current biomedical lit-

erature (e.g. MEDLINE or PMC). The main aim of tools profiled towards the 

field of biodiversity is to recognize as many species names as possible, many of 

which have not been recorded in existing species dictionaries. Biodiversity-

oriented methods can use rule-based approaches that rely on the structure of bi-

nomial nomenclature for species names adopted by Carl Linnaeus (Linnaeus, 

1767). By taking advantage of regularity in naming conventions (see Section 

1.3.3), these approaches do not have to be updated or re-trained as new diction-

ary versions are released or species names change, and can cope with the very 

large number of possible species names in the biodiversity literature. However, 

rule-based methods are often unable to identify common names. For example, 

Drosophila melanogaster follows the typical species name structure, while ñfruit 

flyò does not. 

As an example, TaxonGrab (Koning et al., 2005) is such a rule-based tool, which 

consists of a number of rules based on regular expressions. Using an English-

language dictionary, it finds all words that are not in the common-language dic-

tionary, and applies rules based on character case and term order in order to de-

termine whether a term is a species name or not. It is implemented in PHP and 

available under an open-source license (Koning et al., 2005). TaxonGrab per-

formance is high (94% recall, 96% precision) against a single 5000-page volume 

on bird taxonomy, but it has not been evaluated on biomedical articles and it 

does not perform normalization. ñFind all taxon namesò (FAT) (Sautter et al., 

2006) is a more complex mention-level method related to TaxonGrab, with sev-

eral additional rules aimed at increasing recall and precision. FAT reports better 

accuracy than TaxonGrab (>99% recall and precision) on the same evaluation set 

and can be accessed through the GoldenGate document mark-up system (Sautter 

                                                 
8
 http://www.biodiversitylibrary.org/ 
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et al., 2007). It is important to note, however, that the performance of these 

methods has not been evaluated against normalization to database identifiers. 

The uBio
9
 project provides a set of modular web services for species identifica-

tion and automatic categorization of articles based on the species mentioned in 

them (Leary et al., 2007). FindIT, part of the uBio suite, is a rule-based system 

aiming to perform species name recognition, aided by a range of dictionaries. Af-

ter recognition, a confidence score is given for each match and, where possible, 

any recognized species names are mapped to uBio Namebank records. However, 

like TaxonGrab, FindIT is unable to recognize common names such as ñhumanò. 

TaxonFinder
10,11

 is a related method influenced by both TaxonGrab and FindIT, 

that brings together elements from both systems. MapIT performs species name 

normalization by mapping species names to the full list of hierarchical taxonomic 

names rather than directly to a database identifier. The implementation is not de-

scribed in detail and no evaluation of the system is reported. Our testing of the 

system reveals that MapIT will map common names such as ñhumanò to any 

species with a name or synonym that contains human, e.g. ñHomo sapiens,ò 

ñHuman immunodeficiency virusò and ñHuman respiratory syncytial virus.ò 

Using dictionary-based methods instead of rule-based methods, it is also possible 

to recognize common names, making the software more suitable for processing 

biomedical research articles, where authors often only refer to species by using 

their common (vernacular) names, such as ñhumanò or ñmouse.ò Recognized 

species names are usually normalized against the NCBI taxonomy
12

. For exam-

ple, AliBaba implements a dictionary-based web service for species name recog-

nition in PubMed abstracts and normalization to NCBI taxonomy identifiers, 

which includes methods to filter homonyms for common species names (Plake et 

al., 2006). WhatizitOrganisms (Rebholz-Schuhmann et al., 2007) is another dic-

tionary-based system based on the NCBI species taxonomy, also available as a 

web service, which recognizes and normalizes species as well as other taxonomic 

ranks. It is one module of the more general Whatizit system (Rebholz-

Schuhmann et al., 2007), which provides a number of different entity recognition 

                                                 
9
 http://www.ubio.org 

10
 http://www.ubio.org/index.php?pagename=soap_methods/taxonFinder 

11
 http://code.google.com/p/taxon-finder/  

12
 http://www.ncbi.nlm.nih.gov/Taxonomy/ 
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and normalization pipelines based on dictionaries for different entity types. Nei-

ther the implementation details nor any evaluation of either AliBaba or the 

WhatizitOrganisms system have been reported. However, an analysis of 

WhatizitOrganisms output is presented here (see Section 2.4.3.6). 

Recently, Kapeller et al. (2009) have reported work on species name recognition 

and normalization in an attempt to determine the ñfocus organismsò discussed in 

a document. This system includes a dictionary-based term search combined with 

filters to remove common English words, and then ranks species based on their 

mention frequency in the abstract or main text. Evaluation is performed against a 

set of 621 full text documents where species mentions have been automatically 

generated from corresponding protein-protein interaction entries in the IntAct da-

tabase (Kerrien et al., 2007), with a reported recall of 73.8% and precision of 

74.2%. Since it is aimed at recognizing species in order to guide protein name 

normalization, the system is limited to the 11,444 species with entries in UniProt 

(The UniProt consortium, 2008), and does not implement any disambiguation 

methods since levels of species name ambiguity are low in this dictionary. The 

software is not available either for download or as a web service. 

Wang and colleagues (Wang, 2007; Wang and Grover, 2008; Wang and Mat-

thews, 2008; Wang et al., 2010) have developed a species name recognition sys-

tem to aid the disambiguation and identification of other entities such as 

gene/protein names and protein-protein interactions. This system uses diagnostic 

species names prefixes along with names from the NCBI taxonomy, UniProt and 

custom hand-compiled dictionaries to tag species with either rule-based or ma-

chine learning techniques. This system requires other entities of interest (e.g. 

genes) to be pre-tagged as input, and only attempts to tag species mentions asso-

ciated with these other entities of interest. Training and evaluation is based on 

two related corpora of 217 and 230 full-text documents manually annotated for 

proteins, genes and species. Against these evaluation sets, their rule-based ap-

proaches can achieve either very high precision (91%) with very low recall 

(1.6%) or intermediate values (~45%) of both performance measures (Wang and 

Grover, 2008; Wang and Matthews, 2008). Alternatively, their machine learning 

based approaches that use contextual features around entities of interest to tag 

species yield higher performance (F-score of ~70%), but are highly biased to-
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ward species represented in the training dataset (Wang and Matthews, 2008). Re-

cently, the tool has been made available as a UIMA component and the corpus 

has been made available for download (while linking gene/protein entities to 

species, this does not annotate species terms specifically though) (Wang et al., 

2010). 

Finally, Aerts et al. (Aerts et al., 2008) use a sequence-based approach to detect 

species referred to in biomedical text by extracting DNA sequences from articles 

and mapping them to genome sequences. Based on a set of 9,940 full text articles 

in the field of gene regulation, these authors report that the correct species can be 

identified (relative to the species annotated in the ORegAnno database (Griffith  

et al., 2008)) for 92.9% of articles that contain a DNA sequence that can be 

mapped to a genome (information is not available about how frequently these ar-

ticles contained direct mentions of the species names).. No software for this ap-

proach is available as a web service or standalone application. Additionally, this 

approach requires that articles report a DNA sequence of sufficient length to be 

mapped unambiguously to a genome, which is unlikely for most abstracts. It is 

possible for full-text articles however, with the text2genome system capable of 

recognizing and linking DNA sequences in full-text articles to genomic regions 

in a number of model organisms (Haeussler et al., 2011).  

Here we aim to produce a robust command-line software system that can rapidly 

and accurately recognize species names in biomedical documents, map them to 

identifiers in the NCBI taxonomy, and make this software freely available for use 

in other text-mining and bioinformatics applications. We have named this soft-

ware system LINNAEUS, in honor of the scientist who established the modern 

species naming conventions (Linnaeus, 1767). The goal of this work is not to 

discover all possible species names across publications in all domains of the life 

sciences, but to provide efficient methods to link species names in the biomedical 

literature to standard database identifiers. We perform recognition and normali-

zation for all species names at the mention level, rather than at a document level, 

as document-level properties (such as focal organisms (Kappeler et al., 2009)) 

can be inferred from the mention level. This also enables software built upon 

LINNAEUS to use the precise location of species mentions, such as in the dis-

ambiguation and normalization of other positional entities (such as genes or pro-
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teins) or in direct link-outs from mentions in semantically enhanced documents. 

Additionally, we aim to address which dataset is best suited for evaluating the 

accuracy of species name recognition software. To do so, we evaluate several au-

tomatically generated biomedical document sets with species names attached to 

them, and conclude that a manually annotated gold standard is necessary to re-

veal the true performance of species name identification systems such as 

LINNAEUS. We therefore also provide a new gold-standard corpus of full-text 

articles with manually annotated mentions of species names. 

In addition to the main species named-entity recognition and normalization 

methods, we also aim to explore how species NER systems can be used to aid au-

thors and publishers. As part of this, we aim to provide LINNAEUS with meth-

ods for detecting misspelled species names, and instances where authors use dep-

recated or otherwise incorrect synonyms, and provide a service which a publisher 

(or author) could use to improve the quality of their published articles. While 

these types of problems are not very common (see Section 2.4.5), they can poten-

tially be embarrassing. For example, despite having 113 authors, the Nature pa-

per which reported on the sequencing of the giant panda genome misspelled the 

taxonomic name of the species whose genome they sequenced, Ailuropoda 

melanoleuca (misspelled as ñAiluropoda melanoleuraò). Some work of this type 

have been performed previously, with PaperMaker (Rebholz-Schuhmann et al., 

2010) released recently. Papermaker attempts to for example detect previously 

unknown terms, detect possibly incorrect references, and suggest relevant MeSH 

and Gene Ontology (GO) terms for the document (Rebholz-Schuhmann et al., 

2010). It does not seem to be accessible programmatically though, making it 

more suitable for authors than publishers. 

2.3 Methods  

2.3.1 Overview of the LINNAEUS system  

Using the NCBI taxonomy
13

 and a custom set of species synonyms, we created 

species dictionaries optimized for time-effective document tagging (Figure 

2.1A). These dictionaries are used for tagging the documents, after which a num-

                                                 
13

 http://www.ncbi.nlm.nih.gov/Taxonomy 
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ber of post-processing steps are performed (Figure 2.1B): ambiguous mentions 

are disambiguated where possible using a set of heuristics, acronym definitions 

are detected and mentions corresponding to commonly occurring non-species 

terms are filtered out. Last, the species alternatives for any mentions that remain 

ambiguous are assigned probabilities based on their relative mention frequencies. 

 

2.3.2 Dictionary for locating species names  

The NCBI taxonomy (the names data file, downloaded June 1st, 2009) was used 

to construct the species name dictionary. This dictionary covers 386,108 species 

plus 116,557 genera and higher-order taxonomic units. During this work, only 

species were considered, but the software could easily be adapted to recognize 

genera or other higher-order taxonomic units as well (Chapter 3 describes the 

construction of dictionaries that recognize genus terms as proxies for species, 

such as ñDrosophilaò for Drosophila melanogaster). All species terms in the 

NCBI taxonomy database are categorized according to type, such as scientific 

name (e.g. ñDrosophila melanogasterò), or common name (e.g. ñfruit flyò). All 

types were included except for acronyms, where only a smaller subset was used 

(see the following section). Based on the scientific species names, abbreviated 

versions of each scientific name were generated and included in the dictionary, 

such as ñD. melanogasterò from ñDrosophila melanogasterò (see also (Kappeler 

et al., 2009)). On average, each species had 1.46 names provided in the NCBI 

 
Figure 2.1.  Overview of the LINNAEUS species name identification sys-

tem. 

(A) A diagram of the species name dictionary construction. (B) A diagram of 

species names recognition, normalization, and post-processing. 
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taxonomy (giving a metric on the level of variability among species names), 

which rose to 2.46 names per species when abbreviations were included.  

In contrast to previous work that used the UniProt species dictionary (Kappeler et 

al., 2009), substantial ambiguity is inherent in our NCBI taxonomy based dic-

tionary, where the same term can refer to several different species. This is mostly 

the case with abbreviations; when abbreviated species names are not considered, 

the average number of species per term is 1.00088 (527,592 terms and 528,058 

term-species pairs), giving a metric on the level of ambiguity among species 

names. If abbreviations are included, the number of species per term rises to 

1.066 (669,578 terms, 713,525 term-species pairs). Considering only common 

names, the number of species per term is 1.017 (33,591 terms, 34,156 species-

term pairs). 

Acronyms listed for species in the NCBI taxonomy are not always exact and un-

ambiguous, in that a specific acronym can be mapped to a specific species, but in 

reality might be used more commonly for something else (either another species 

or even a non-species term). Acromine (Okazaki and Ananiadou, 2006) is a text-

mining tool that has been used to detect acronym definitions in MEDLINE, and 

allows users to query acronyms through a web service in order to view the decla-

ration frequencies of that acronym. An example of an overloaded species acro-

nym is ñCMVò, which in the NCBI taxonomy is mapped to ñCucumber mosaic 

virusò. According to data generated by Acromine, CMV has been defined as 

ñCucumber mosaic virusò 233 times in MEDLINE, but is also much more com-

monly defined as ñCytomegalovirusò (7128 times). Another example is the acro-

nym ñPCVò, which in the NCBI dictionary is mapped to ñPeanut clump virusò. 

In total, PCV declarations have been detected 912 times by Acromine, of which 

only 15 refer to different terms for ñPeanut clump virusò (the most common long 

form is ñpacked cell volumeò, seen 490 times). 

In order to overcome this problem, all acronyms listed in the NCBI taxonomy 

were queried against Acromine in order to retrieve frequency counts for the vari-

ous expanded forms that the acronyms appear with in MEDLINE. Species recog-

nition using LINNAEUS was then performed on the expanded-form terms in or-

der to determine for which species each acronym was used, and their relative 
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mention frequency (including non-species terms). The acronyms were then in-

cluded in the dictionary, and the species frequencies imported from Acromine for 

each acronym was assigned to each potential match to the acronym. From this, it 

is also possible to estimate how probable it is that the acronym refers to a non-

species entity. For example, the probability that PCV would refer to the ñPeanut 

clump virusò species would be 1.6% (15/912). The full list of acronyms and their 

associated species probabilities is available as Supplementary file 1. 

In addition to the entries in the NCBI taxonomy, a set of additional synonyms 

were included that occur very frequently in the literature (see also (Wang and 

Grover, 2008; Kappeler et al., 2009)), such as the terms ñpatient,ò and ñwomanò 

that we assume refer to human. These could be particularly useful if no scientific 

names have been mentioned in a document, as often occurs in the medical litera-

ture. A full list of additional synonyms is available in Supplementary file 2.  

2.3.3 Matching metho ds 

Texts can be matched by directly using the regular expressions in the dictionary 

(such as ñD(rosophila|\.) melanogaster|fruit fl(y|ies)ò), but the large number of 

expressions would result in very high time requirements. Regular expressions of 

species names in our dictionary are strict enough that each only matches a few 

different alternative strings. This enabled the conversion of the dictionary (based 

on regular expressions) into a dictionary of all fixed strings that the regular ex-

pressions could match using the dk.brics.automaton package (Møller, 2008). This 

alternative dictionary format subsequently allowed the development of a new al-

gorithm for dictionary matching, described in Algorithm 2.1. The algorithm as-

sumes that the text is tokenized, and will only detect mentions that consist of 

whole tokens. Using a simple tokenization method of the regular expression ñ\bò, 

this means that it for example would detect ñhumanò in ñhuman-inducedò or 

ñhuman/mouseò, but ñsalmonò would not be detected in ñsalmonellaò. Note that 

while LINNAEUS uses tokens, the algorithm makes no assumption on the length 

of the tokens, so it would run equally well (although a bit slower) if all characters 

in the text were considered to be tokens. The algorithm runs in average time 

O(nlog2 m) and space O(n + m), where n is the number of tokens and m is the 

number of terms in the dictionary. In practice, with the dictionaries of 

LINNAEUS, this means that it is fast enough that the speed normally  is limited 
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by document XML parsing, system I/O, or other external factors rather than the 

matching method (see Section 2.4.4). 
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Algorithm 2.1. The dictionary-matching method of LINNAEUS. 

Given a list W of text tokens Wi (the text; 0 Ò i < n) and a sorted list T of dictionary 

terms Ti (0 Ò i < m) with its associated list Q of dictionary identifiers Qi (0 Ò i < 

m), the algorithm finds all mentions of any dictionary term in W. 

1. Loop start over 0 Ò start < n 

a. extension Ŷ 0 (determines how many tokens, in addition to Wstart, 

are searched)  

b. tokens Ŷ the concatenation of Wstart ... Wstart + extension (these are the 

tokens that will searched for in the dictionary; initially tokens=Wstart 

when extension=0). 

c. bsresult Ŷ binary search in T for tokens (note that if binary search 

does not locate a match in T for tokens, it can indicate where the 

match should have been if it was there. In our implementation, this 

is performed through a negative result. For example, bsresult = -3 

indicates that there was no match, but that if there would have been, 

it should have been at position 3 in T.) 

d. If bsresult Ó 0: 

(a dictionary match was found, but there may also be longer 

matches that start with the same tokens) 

i. Emit a mention for the tokens Wstart ... Wextension with the 

identifiers Qbsresult. 

ii.  extension Ŷ extension + 1. 

iii.  If start + extension < n, jump to b 

e. If  -bsresult - 1 < m and T-bsresult-1 starts with tokens: 

(a dictionary match was not found, but there may be longer 

matches that start with the current tokens) 

i. extension Ŷ extension + 1. 

ii.  If start + extension < n), jump to b. 
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2.3.4 Identification of misspelled species names  

In order to enable recognition of taxonomic species names that do not exist in the 

dictionaries, the rule-based algorithm for species recognition used by TaxonGrab 

(Koning et al., 2005), originally implemented in PHP, was reimplemented in Ja-

va and integrated with LINNAEUS. Through the results of TaxonGrab, it is also 

possible to detect misspelled species names.  

Using the reimplemented version of TaxonGrab and a normalized version of the 

Levenshtein similarity distance (Levenshtein, 1966), it is possible to determine 

which term in the species dictionary is most similar to the term recognized by 

TaxonGrab. When the most similar term has been found, the mention is normal-

ized to that species and associated with the similarity score. Note that the similar-

ity scores should subsequently be combined with some cutoff level by the user in 

order to determine which entries to trust, as all mentions will be associated with 

some identifier, whether the match is good or not. The results from the similarity 

search are cached, allowing subsequent searches for terms appearing multiple 

times to be avoided. As part of the caching, older results are automatically re-

moved if the cache grows beyond 100 MB in size (this is unlikely to occur dur-

ing local computations, but may happen in web service scenarios). String similar-

ity tests are relatively resource-intensive (see Section 2.4.4), so the user needs to 

explicitly enable it. 

2.3.5 Document problem detection for authors and publishers  

As mentioned in the introduction, a secondary aim of LINNAEUS is to provide a 

method for document checking, where authors and/or publishers can be alerted to 

potential issues with species name usage prior to publication or during produc-

tion. The hypothesis is that such a method, or collection of methods, could im-

prove the quality of the published literature. The species NER-based method we 

propose would attempt to detect three types of problems: i) instances where au-

thors use ambiguous species names, without clarifying them; ii) instances where 

authors misspell species names; and iii) instances where authors use species 

names that are deprecated or otherwise incorrect. The first type of issue, ambigu-

ous species names, can trigger if the disambiguation methods of LINNAEUS 
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(see the following Section, 2.3.6.1). The second type, referring to misspelled 

species names, is detected both through the TaxonGrab/Levenshtein method de-

scribed in section the previous section (with a cutoff of 0.85) and through use of 

metadata associated to entries in the NCBI Taxonomy (some of which are 

marked as known misspellings). 

Deprecated species names are detected through NCBI Taxonomy metadata and 

through the Catalogue of Life (CoL) (Bisby et al., 2011). The Catalogue of Life 

provides a web service where searches can be made to discover if a particular 

species name is deprecated/incorrect or not. Such queries were performed for all 

names in the LINNAEUS dictionaries. A graphical overview of how the docu-

ment checking is performed is shown in Figure 2.2. 

 

For each issue that is detected, whether it is an ambiguous species name, a mis-

spelled name, or a deprecated/incorrect name, an alternative species name is sug-

gested that the author probably should use instead. 

 

Figure 2.2. The processing workflow of the LINNAEUS 

document-checking method. 

Shows how documents first are processed with the 

LINNAEUS species NER and normalization (Section 2.3.1), 

followed by detection of misspelled names (through Taxon-

Grab and NCBI Taxonomy metadata) and detection of depre-

cated or otherwise incorrect species names (through NCBI 

Taxonomy and Catalogue of Life metadata). 
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2.3.6 Post -processing  

After performing species name recognition and normalization using the methods 

described in Section 2.3.3 and/or 2.3.4, a number of post-processing steps are 

performed, described in the following sections (see Figure 2.1B for an overview). 

2.3.6.1 Disambiguation  

In the case of overlapping mentions of different length, the longer mention is re-

tained and the shorter mention is removed (following the longest-match princi-

ple). This resolves cases such as ñnude mice,ò where both the full term and the 

term ñmiceò will match (in this case to the same species), and ñHuman immuno-

deficiency virus 1ò where both the full term and the shorter terms ñHuman im-

munodeficiency virusò and ñHumanò will match (to different species). No an-

choring is performed on either side of the word; that is, the longest match is se-

lected, regardless of whether it extends to the left or the right. 

For mentions that remain ambiguous and where one of the possible candidate 

species is mentioned explicitly elsewhere in the text, all occurrences of the am-

biguous term are resolved to refer to the explicitly mentioned species. This is 

very common, as authors often mention the full name of a species with subse-

quent mentions being abbreviated: for example, texts first mentioning 

Caenorhabditis elegans (an explicit mention) followed by a number of mentions 

of C. elegans (an ambiguous mention matching 41 different species) are com-

mon. If several of the candidate species are mentioned explicitly (e.g. both 

Caenorhabditis elegans and Croton elegans followed by a mention of C. 

elegans), the mention is set to refer to all the explicitly mentioned species, which 

(while not completely disambiguating the mention) would reduce the number of 

potential species to which it could refer. 

2.3.6.2 Acron ym declaration detection  

In addition to the acronyms annotated by LINNAEUS that are included in the 

dictionary, novel acronym declarations are also detected on a per document ba-

sis. When an acronym definition is detected (of the form ñspecies (acronym),ò 

where species was in the dictionary and acronym is a sequence of capital letters, 

digits or hyphens), all subsequent occurrences of that acronym are also tagged 

within the document.  
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2.3.6.3 Removing common English words  

Based on a simple list of species names that occur commonly in the English lan-

guage when not referring to the species (see Supplementary file 2), we remove 

any mention where particular terms have been associated with particular species 

(see also (Wang and Grover, 2008; Kappeler et al., 2009)). For example, this 

would remove synonyms such as ñspotò (for Leiostomus xanthurus) and ñpermitò 

(for Trachinotus falcatus), and greatly reduces the number of false positives gen-

erated by the system. 

2.3.6.4 Assigning probabilities t o ambiguous mentions  

Finally, any mentions that remain ambiguous are assigned probabilities of how 

likely that mention refers to a particular species. The probabilities for ambiguous 

mentions are based on the relative frequency of explicit mentions (i.e., that are 

not ambiguous) of the involved species across all of MEDLINE and the open-

access subset of PMC full -text documents. The probabilities for acronyms are 

based on the relative frequencies of acronym definitions as detected by 

Acromine. For example, for the ambiguous mention ñC. elegans,ò the probability 

for Caenorhabditis elegans would be very high (99.4%) while the probability for 

Ceramium elegans would be much lower (0.001%), as Caenorhabditis elegans is 

mentioned much more frequently than Ceramium elegans. For the acronym 

ñHIVò (which might refer to both ñHuman immunodeficiency virusò and, much 

less commonly, ñthe Hippocratic irrelevance variableò), the probability for it re-

ferring to ñHuman immunodeficiency virusò would be very high. 

These probabilities enable an additional form of heuristic disambiguation: in the 

cases where an ambiguous mention has a species alternative with a probability 

higher than a given cut-off (e.g. 99%), the mention could be fully disambiguated 

to that species (such as for the term ñC. elegansò which can be disambiguated as 

Caenorhabditis elegans). Likewise, a mention could be removed if the sum of all 

species-related mention probabilities is smaller than a given threshold (e.g. 1%); 

this can happen for acronyms where in more than 99% of cases the acronym is 

used for a non-species term. These levels present a trade-off between accuracy 

and minimization of ambiguity, and could be adjusted after tagging depending on 

the individual needs of the user.  
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2.3.7 Input and output formats  

LINNAEUS contains methods for reading documents from multiple input 

sources: 

¶ Plain-text files: 

o Single text files. 

o Directories of multiple text files. 

¶ XML:  

o MEDLINE XML
14

 

o PMC XML
15

 

o Biomed Central XML
16

 

o Open Text Mining Interface XML
17

 

¶ Documents stored in databases 

¶ MEDLINE documents matching a particular PubMed query (using this 

method, documents are downloaded on the fly through the NCBI e-utils
18

 

web services). 

The document-parsing methods contained in LINNAEUS can be used not only 

by LINNAEUS, but also by any other software that requires a convenient docu-

ment input method. In addition to containing document-parsing features for mul-

tiple types of document sources, LINNAEUS can also write results to four dif-

ferent types of output formats: 

¶ Standoff-based, tab-separated, files. 

¶ XML documents. 

                                                 
14

 http://www.nlm.nih.gov/bsd/licensee/data_elements_doc.html 
15

 http://www.ncbi.nlm.nih.gov/pmc/pmcdoc/tagging-guidelines/article/style.html 
16

 http://www.biomedcentral.com/about/xml 
17

 http://opentextmining.org/wiki/OTMI_Specification 
18

  http://eutils.ncbi.nlm.nih.gov/ 
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¶ HTML documents (for simple visualization of results). 

¶ Remote database tables (in standoff format). 

2.3.8 Document sets for large -scale species NER  

Throughout this work, three different document sets were used to recognize and 

normalize species names. For all sets, any documents published after 2008 were 

removed to create fixed and reproducible sets of documents and avoid possible 

discrepancies during the course of the project resulting from updates to database 

records. 

2.3.8.1 MEDLINE 

MEDLINE is the main database of abstracts for articles in PubMed. As men-

tioned in section 1.1, MEDLINE contained 19.6 million abstracts as Jan 2011. 

However, the release of MEDLINE used in this work (performed in 2009) con-

tained 18 million entries. Many of those entries do not actually contain any ab-

stract. The number of documents, if counting only entries containing an abstract 

published up to the end of 2008, is just over 9.9 million. 

2.3.8.2 PubMed Central open access subset  

PMC provides a set of over a million full-text articles free of charge. Unfortu-

nately, only about 10% (105,106 published up to the end of 2008) of these are 

truly open access and available for unrestricted text mining. The articles in this 

open-access (OA) subset of PMC are referred to here as ñPMC OA.ò The majori-

ty of the articles in PMC OA are based on XML files, but some have been creat-

ed by optical character recognition (OCR) of scanned, non-digital articles 

(29,036 documents), and a few have been created by converting portable docu-

ment format (PDF) documents to text (9,287 documents). We note that for the 

PMC OA documents that were generated with OCR or pdf-to-text software, ref-

erences are not removed from these documents. Because of this, species names 

occurring in reference titles may be tagged. For all other documents (MEDLINE, 

PMC OA abstracts and PMC OA XML documents), only the title, abstract and 

(if available) body text is tagged (i.e. reference titles are not processed).  

 

 



64 

 

Abstracts from PMC OA 

The abstracts of all articles in the PMC OA set form a set referred to as ñPMC 

OA abs.ò PMC OA abstracts were obtained from the abstract part of the PMC 

OA XML files, or from the corresponding MEDLINE entry if no such section 

existed in the XML file (this happens when the article has been produced through 

OCR or pdf-to-text tools). PMC OA abstracts consists of 88,962 documents, 

which notably is fewer than the number of documents in PMC OA (105,106). 

The reason that not all PMC articles are indexed in MEDLINE, and therefore 

some OCR or pdf-to-text documents did not have a corresponding MEDLINE 

entry, making it infeasible to accurately extract the abstract. Of the 88,962 ab-

stracts, 65,739 abstracts (74%) were extracted from XML documents, while the 

remainder was extracted from corresponding MEDLINE documents.  

Division of the PMC OA full -text document set 

As explained in the previous section, it is not possible to reliably extract an ab-

stract for roughly one-fifth of all full -text articles in PMC since they do not have 

an abstract section in the PMC XML or a corresponding MEDLINE entry. We 

chose not to eliminate these full-text articles from our analyses since they com-

prise a substantial subset of documents in PMC and their exclusion may bias our 

results. However, their inclusion makes direct comparisons of results based on 

PMC OA abstracts and all PMC OA full-text documents difficult, since some 

documents are present in the PMC OA full-text set that are missing from the 

PMC OA abstract set. To solve this problem at the document level, we created 

the ñPMC OA full (abs)ò set, which contains the 88,962 full-text documents 

where an abstract could be extracted, allowing direct comparisons between full-

text documents and abstracts on exactly the same articles. Unfortunately, this 

document set still does not allow direct mention-level comparisons between ab-

stracts and full text since the offset coordinates from MEDLINE entries and 

PMC OA full-text documents are not compatible. Because of this, we created the 

ñPMC OA full (xml)ò set, which consists of only the 65,739 full-text documents 

where abstracts could be extracted from the corresponding PMC XML files. Us-

ing this PMC OA full-text XML set, it is also possible to perform mention-level 

comparisons on the same set of documents on the same offset coordinates. We 
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note that ñPMC OAò refers to the complete set of 105,106 full-text documents, 

which we alternatively denote as ñPMC OA full (all)ò. 

2.3.9 Document sets for evaluation  

At the outset of this work, no open-access corpus of biomedical documents exist-

ed that was annotated for species mentions. Thus we created a number of auto-

matically generated evaluation sets in order to analyze the accuracy of 

LINNAEUS and other species name tagging software. Because of the nature of 

the data they are based on, many of these evaluation sets can only be analyzed at 

the document level. Additionally, none of these automatically generated evalua-

tion sets were based on data specifically created in order to annotate species 

mentions. Because of this, we created an evaluation set of full-text articles manu-

ally annotated for species mentions (this has also been made available at the pro-

ject web page). The different document sets are described in the following sec-

tions. 

2.3.9.1 NCBI taxonomy citations  

Some species entries in the NCBI taxonomy contain references to research arti-

cles where the species is discussed. For these documents, we assume the species 

are most likely mentioned somewhere in the article, allowing relative recall (at 

the document level) to be a useful measure. NCBI taxonomy citations were 

downloaded on June 1st, 2009. The number of documents, species, and total en-

tries for the evaluation set are shown in Table 2.1. 

 

2.3.9.2 Medical subject heading terms  

Each article in MEDLINE has associated MeSH terms specifying which subjects 

are discussed in the article. A subset of these terms relates to species, and can be 

Table 2.1. Statistics for the NCBI Taxonomy evaluation set. 

Shows the number of species-containing documents, the number 

of unique species, and the total number of species entries in the 

NCBI Taxonomy set, limited to the abstracts in MEDLINE, the 

abstracts in PMC OA, and the PMC OA full-text articles. 

Document set Documents Species Mentions 

MEDLINE 5,237 6,871 8,701 

PMC OA abs 10 21 21 

PMC OA 12 26 26 

 

 



66 

 

mapped to NCBI taxonomy species entries through the Unified Medical Lan-

guage System (UMLS). However, the number of species represented by MeSH 

terms is limited. In total, there are MeSH terms for only 1,283 species, and only 

824 species actually occur in the MeSH tags in MEDLINE. Moreover, a MeSH 

term given to an article is no guarantee that a term is explicitly mentioned in the 

document. Additionally, only a small number of the total species mentions in a 

document are expected to be represented in the MeSH tags (only so-called focus 

species), causing estimates of precision using this corpus to be less informative 

than recall. MeSH terms were extracted from the 2009 MEDLINE baseline dis-

tribution. The number of documents, species, and total entries for the evaluation 

set are shown in Table 2.2. 

 

2.3.9.3 Entrez Gene  entri es 

Entrez Gene (Maglott et al., 2005) provides database entries for genes with both 

article references and species information. Based on these data, articles can be 

mapped to species. While species are often mentioned together with a gene, ex-

plicit species mentions are not guaranteed in those articles. Additionally, as the 

database focuses on genes rather than species, a large proportion of species men-

tions in this document set may not be included (for example, there will be many 

human mentions that do not pertain to genes, and therefore are not tagged). Thus, 

relative precision on the Entrez Gene document set is expected to be low regard-

less of the real software accuracy. Entrez Gene data were downloaded on June 

1st, 2009. The number of documents, species, and total entries for the evaluation 

set are shown in Table 2.3. 

Table 2.2. Statistics for the MeSH evaluation set. 

Shows the number of species-containing documents, the number 

of unique species, and the total number of species entries in the 

NCBI Taxonomy set, limited to the abstracts in MEDLINE, the 

abstracts in PMC OA, and the PMC OA full-text articles. 

Document set Documents Species Mentions 

MEDLINE 6,817,973 824 7,388,958 

PMC OA abs 44,552 518 51,592 

PMC OA 88,826 527 57,874 
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2.3.9.4 EMBL records  

Similarly to the Entrez Gene records, many EMBL (Cochrane et al., 2009) se-

quence records also contain information about both which species the sequence 

was obtained from and in which article it was reported (see also (Miller  et al., 

2009)). This enables extraction of species-article mappings, assuming that the 

species is explicitly mentioned in the paper reporting the nucleotide sequence. As 

with the Entrez Gene set, this is however not guaranteed, and any species that are 

discussed in addition to those with reported sequences will not be present in the 

evaluation set (again causing precision measures to be uninformative). Version 

r98 of EMBL was used for this evaluation set. The number of documents, spe-

cies, and total entries for the evaluation set are shown in Table 2.4. 

 

2.3.9.5 PubMed Central linkouts  

Although not described in any publication, NCBI performs species recognition 

text mining on full-text articles included in PMC. These taxonomic ñlinkoutsò 

can be accessed when viewing an article on PMC, and can also be downloaded 

Table 2.4. Statistics for the EMBL evaluation set. 

Shows the number of species-containing documents, the number 

of unique species, and the total number of species entries in the 

NCBI Taxonomy set, limited to the abstracts in MEDLINE, the 

abstracts in PMC OA, and the PMC OA full-text articles. 

Document set Documents Species Mentions 

MEDLINE 174,074 149,598 396,853 

PMC OA abs 5,157 7,582 12,775 

PMC OA 7,374 7,867 15,136 

 

 

Table 2.3. Statistics for the Entrez Gene evaluation set. 

Shows the number of species-containing documents, the number 

of unique species, and the total number of species entries in the 

NCBI Taxonomy set, limited to the abstracts in MEDLINE, the 

abstracts in PMC OA, and the PMC OA full-text articles. 

Document set Documents Species Mentions 

MEDLINE 440,084 3,125 486,791 

PMC OA abs 8,371 406 9,307 

PMC OA 9,327 428 10,294 
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through the NCBI e-utils web services
19

. By downloading these linkouts it is 

possible to create an evaluation set that is relevant to both recall and precision 

(although only at the document level). The PMC linkout data were downloaded 

on June 1st, 2009. The number of documents, species, and total entries for the 

evaluation set are shown in Table 2.5. 

 

2.3.9.6 WhatizitOrganisms  

In order to evaluate mention-level accuracy and benchmark LINNAEUS against 

another species name recognition system, all documents in the PMC OA set were 

sent through the WhatizitOrganisms web service pipeline. Unfortunately, the 

Whatizit web service could not process around 10% of PMC OA, which are 

therefore unavailable for comparison. The WhatizitOrganisms tagging was per-

formed June 25th, 2009. The number of documents, species, and total entries for 

the evaluation set are shown in Table 2.6. 

 
                                                 
19

 http://eutils.ncbi.nlm.nih.gov/ 

Table 2.6. Statistics for the WhatizitOrganisms evaluation set. 

Shows the number of species-containing documents, the number of 

unique species, and the total number of species entries in the NCBI Tax-

onomy set, limited to the abstracts in MEDLINE, the abstracts in PMC 

OA, and the PMC OA full-text articles. Numbers in parentheses show 

the portion of abstracts that can be extracted from the document XML 

files, enabling mention-level accuracy comparisons (see Section 2.3.8 for 

details). 

Document set Documents Species Mentions 

MEDLINE 71,856 23,598 3,328,853 

PMC OA abs 82,410 (64,228) 25,375 3,791,412 

PMC OA 94,289 26,557 4,075,644 

 

 

Table 2.5. Statistics for the PMC linkouts evaluation set. 

Shows the number of species-containing documents, the number 

of unique species, and the total number of species entries in the 

NCBI Taxonomy set, limited to the abstracts in MEDLINE, the 

abstracts in PMC OA, and the PMC OA full-text articles. 

Document set Documents Species Mentions 

MEDLINE 35,534 29,351 248,222 

PMC OA abs 41,054 41,070 286,998 

PMC OA 42,910 32,187 289,411 
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2.3.9.7 Manually annotated gold -standard corpus  

Because all of the previously described evaluation sets are limited by the fact that 

they are not specifically annotated for species names, it became clear that such a 

set was needed in order to measure the true accuracy of LINNAEUS. Because no 

such evaluation set was available, 100 full-text documents from the PMC OA 

document set were randomly selected and annotated for species mentions. As the 

focus of this work is on species rather than on genera or other higher-order taxo-

nomic units, the corpus was only annotated for species (except for the cases 

where genus names were incorrectly used when referring to species).  

All mentions of species terms were manually annotated and normalized to the 

NCBI taxonomy IDs of the intended species, except for terms where the author 

did not refer to the species. A commonly occurring example is ñFisher's exact 

testò (ñFisherò is a synonym for Martes pennanti, but in this case refers to Sir 

Ronald Aylmer Fisher, who invented the statistical test). In the cases where a 

species ID did not exist in the NCBI taxonomy (mostly occurring for specific 

species strains), they were given a species ID of 0 (which is not used in the NCBI 

taxonomy).  

Annotated mentions were also assigned to the following categories that indicated 

specific features of mentions, which can be used in evaluation analyses: 

(i) Lexical categories: 

¶ Author misspelling. 

¶ Incorrect case usage (e.g. ñDrosophila Melanogasterò). 

¶ Misspelling, owing to an OCR or other technical error. 

(i) Syntactic categories: 

¶ Enumeration of species names (e.g. ñV. vulnificus CMCP6 and YJ016ò, 

referring to two different strains of Vibrio vulnificus).  

(iii) Semantic categories: 

¶ Incorrect name usage (e.g. using the genus name ñDrosophilaò when re-

ferring specifically to Drosophila melanogaster or just ñPileatedò when 

referring to the Pileated woodpecker, Dryocopus pileatus). 
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¶ Use of the species name as an adjectival ñmodifier,ò such as in ñhuman 

p53ò (where the author is not actually referring to the human species, but 

rather a gene). Note that although the author was not referring directly to 

the species, these mentions are still important when extracting species 

mentions in order to perform, for instance, gene name recognition. We al-

so note that while the adjective ñhumanò in ñhuman p53ò is considered a 

modifier, we do not consider it a modifier in phrases such as ñthe p53 

gene in humanò, where the noun ñhumanò refers directly to the human 

species. 

 

A mention may belong to several categories (for example, it may be both used as 

a modifier and misspelled), or not belong to any category at all (i.e. just being a 

ñnormalò mention, which is the most common case). The number of documents, 

species, and total entries for the evaluation set are shown in Table 2.7 and a 

summary of the number of species mentions associated with each category is 

shown in Table 2.8. The categories give insights into how often species names 

are misspelled or used incorrectly in the literature. They also enable deeper anal-

yses of any prediction errors made by LINNAEUS or any other software evaluat-

ed against this corpus. Of the 4,259 species mentions annotated in this corpus, 

72% (3,065) are common names, reinforcing the importance of being able to ac-

curately identify common names when processing biomedical research articles. 

 

Table 2.7. Statistics for the manually annotated evaluation set. 

Shows the number of species-containing documents, the number 

of unique species, and the total number of species entries in the 

NCBI Taxonomy set, limited to the abstracts in MEDLINE, the 

abstracts in PMC OA, and the PMC OA full-text articles. Num-

bers in parentheses show the portion of abstracts that can be ex-

tracted from the document XML files, enabling mention-level ac-

curacy comparisons (see Section 2.3.8 for details). 

Document set Documents Species Mentions 

MEDLINE 75 176 3,205 

PMC OA abs 89 (76) 215 3,878 

PMC OA 100 233 4,259 
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In order to estimate the reliability of the manual annotations, 10% of the corpus 

(10 documents) was also annotated by a second annotator and the inter-annotator 

agreement (IAA) was calculated. In total, there were 406 species mentions anno-

tated in the 10 documents by at least one annotator. Of these 406 mentions, 368 

were annotated identically by the two annotators (both mention position and spe-

cies identifier). Cohen's k measure for inter-annotator agreement (Cohen, 1960) 

was calculated as ə = 0.89. This value is high; Landis and Koch (1977) describe 

kappa values above 0.8 as indicating ñnearly perfectò agreement (also described 

as ñexcellentò by Bertin et al. (2009)). Other studies that used Cohenôs kappa for 

inter-annotator agreements include annotation of disease entities (Jimeno et al., 

2008) (ə =0.51, but no guidelines had been given to the annotators), annotation 

of article section categories  (ə = 0.71), and annotation of smoking status in clini-

cal notes (Uzuner et al., 2008) (ə =0.84). For further discussion about the inter-

pretation of different values of Cohenôs kappa, see Artstein and Poesio (2008). 

Numerical details of the IAA analysis can be found in Supplementary file 4. 

2.3.10 Performance evaluation  

Mentions produced by LINNAEUS were compared to those in the evaluation 

reference sets to determine the performance of the system. If a specific mention 

occurs in both the LINNAEUS set and the reference set, it is considered a true 

positive (TP); if it occurs only in the LINNAEUS set it is considered a false posi-

tive (FP); and if it occurs only in the reference set it is considered a false negative 

(FN). This is performed both at the document level (where the location of a men-

Table 2.8. Statistics and false negative LINNAEUS extraction counts for 

the manually annotated corpus. 

Shown are the composition of species mentions in the manually annotated 

corpus and false negative predictions by LINNAEUS relative to the manu-

ally annotated corpus. A detailed description of the different categories is 

provided earlier in this section. 

Category Total corpus mentions False negatives 

Misspelled 46 11 

Incorrect case 130 128 

OCR / technical errors 18 16 

Enumeration 2 1 

Incorrectly used name 79 66 

Modifier 1,217 125 

Normal mention 2,788 12 
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tion within a document is not considered) and mention level (where the mention 

locations have to match exactly). For the evaluation sets where information is on-

ly available at the document level, mention level evaluation is not performed. In 

the case of ambiguous mentions, the mention is considered a TP if the mention 

contains at least the ñtrueò species (and, for mention level analyses, the location 

is correct). We note that LINNAEUS attempts to identify all species mentioned 

in a document, and thus there is no limit on the number of species reported. 

2.4 Results  

2.4.1 Large -scale species identific ation in MEDLINE and PMC OA  

We applied the LINNAEUS system to nearly 10 million MEDLINE abstracts 

and over 100,000 PMC OA articles that were published in 2008 or before (Table 

2.9).  

 

Tagging of the document sets took approximately 5 hours for MEDLINE, 2.5 

hours for PMC OA abstracts and 4 hours for PMC OA, utilizing four Intel Xeon 

3GHz CPU cores and 4 GB memory. We note that the main factor influencing 

processing time is the Java XML document parsing rather than the actual species 

name tagging. These species tagging experiments far exceed the scale of any 

previous report (Ding et al., 2005; Koning et al., 2005; Sautter et al., 2006; 

Wang, 2007; Aerts et al., 2008; Wang and Grover, 2008; Wang and Matthews, 

2008; Kappeler et al., 2009), and represent one of the first applications of text 

mining to the entire PMC OA corpus (see also (Fink et al., 2008; Xu et al., 2008; 

Rodriguez-Esteban and Iossifov, 2009)). Over 30 million species mentions for 

over 57,000 different species were detected in MEDLINE, and over four million 

species mentions for nearly 19,000 species in PMC OA. LINNAEUS identifies 

Table 2.9. Extraction results for LINNAEUS on MEDLINE and PMC OA.  

Shown are the numbers of documents, unique species, and species mentions ex-

tracted by LINNAEUS from the MEDLINE, PMC OA abs (abstracts of full-text 

documents) and PMC OA document sets. Numbers in parentheses show the por-

tion of abstracts that can be extracted from the document XML files, enabling 

mention-level accuracy comparisons (see Section 2.3.8 for details). 

Document set Documents Species Mentions 

MEDLINE 9,919,312 57,802 30,786,517 

PMC OA abs 88,962 (65,739) 5,114 303,146 

PMC OA 105,106 18,943 4,189,681 
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species in 74% of all MEDLINE articles, 72% of PMC OA abstracts, and 96% of 

PMC OA full-text articles. In terms of the total number of species in the NCBI 

taxonomy dictionary, 15% of all species in the NCBI dictionary were found by 

LINNAEUS in MEDLINE, 1.3% were found in PMC OA abstracts and 4.9% 

were found in the PMC OA full-text articles. The density of species names in 

MEDLINE or PMC OA abstracts is 30-fold and 3-fold lower, respectively, than 

that for PMC OA full-text articles; the density of species mentions is 11-fold 

lower in both sets of abstracts relative to full-text documents.  

2.4.2 Ambiguity of species mentions in MEDLINE and PMC 

Across all of MEDLINE and PMC OA, between 11-14% of all species mentions 

are ambiguous. Thus, the levels of species name ambiguity are on the same order 

as cross-species ambiguity in gene names (Chen et al., 2005), and indicate that 

some form of disambiguation is necessary for accurate species names normaliza-

tion. Levels of ambiguity for the tagged document sets before and after the dis-

ambiguation step by LINNAEUS are shown in Table 2.10. Ambiguity levels are 

calculated as the number of ambiguous mentions divided by the total number of 

mentions, where an ambiguous mention is counted when a mention maps to sev-

eral species. The disambiguation method ñnoneò shows values prior to any dis-

ambiguation; ñearlierò disambiguates by scanning for explicit mentions earlier in 

the document and, for comparison, ñwholeò disambiguates by scanning for ex-

plicit mentions in the whole document. ñStrictò disambiguation does not consider 

the associated probabilities of correct species mentions, whereas ñapproximateò 

represents the disambiguation of any mentions where a single species has higher 

than 99% probability, or the sum of all species probabilities is lower than 1%. 
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Scanning for explicit species mentions elsewhere in the text leads to roughly a 

two-fold reduction in ambiguity for abstracts, but nearly a five-fold reduction for 

full text. Approximate tagging based on probabilities of correct species usage 

leads to roughly a two-fold reduction in levels of ambiguity, in both abstracts and 

full text. Overall, less than 2.9% of mentions in full-text documents remain am-

biguous when explicit mentions are sought elsewhere in the text and, combined 

with approximate disambiguation based on probabilities of correct species usage, 

levels of ambiguity drop to less than 1.5%.  

2.4.3 Evaluation of LINNAEUS species name tagging  

Evaluation of species mentions found by LINNAEUS compared to those in the 

evaluation sets are shown in Table 2.11. For the document-level evaluation sets 

(NCBI taxonomy references, MeSH tags, Entrez-gene references, EMBL refer-

ences and PMC linkouts), the document-level links are compared directly against 

the mentions found by LINNAEUS in MEDLINE abstracts, PMC OA abstracts 

or PMC OA full -text documents. For the mention-level evaluation sets 

(WhatizitOrganisms output and the manually annotated set), links are only com-

pared directly between the evaluation sets and PMC OA XML, since PMC OA 

XML is the only document set on the same offset coordinates as the evaluation 

sets (see Section 2.3.8). For the automatically generated sets, we interpret recall 

and precision in the context of how species are annotated in the evaluation set to 

provide a qualitative analysis of the false positives and false negatives. For the 

Table 2.10. Levels of ambiguity in extracted LINNAEUS species men-

tions.  

ñNoneò refers to the baseline case where no disambiguation is performed, 

ñearlierò refers to disambiguation of an ambiguous mention by searching for 

its explicit species mentions earlier in the document, and ñwholeò refers to 

disambiguation by searching for its explicit mentions across the whole docu-

ment. In the ñapproximateò mode, a heuristic is employed to further disam-

biguate ambiguous mentions based on the probability of correct species usage. 

 

 None Earlier  Whole 
Strict  Approx. Strict  Approx. Strict  Approx. 

MEDLINE 0.111 0.053 0.059 0.030 0.054 0.028 

PMC OA abs 0.110 0.061 0.054 0.031 0.049 0.028 

PMC OA 0.143 0.075 0.029 0.015 0.027 0.013 
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manually annotated gold standard evaluation set, a quantitative analysis of false 

positives and false negatives was also performed.  

 

Table 2.11. Evaluation results of LINNAEUS on different evaluation sets.  

PMC OA full (all) shows accuracy for all full-text documents. PMC OA full (abs) 

shows accuracy for all full-text documents with an abstract that can be extracted, al-

lowing comparison of document-level accuracy between full-text and abstract. PMC 

OA full (xml) shows accuracy for all full-text documents with XML abstract, allowing 

comparison of mention-level accuracy between full-text and abstracts. Values in pa-

rentheses are for comparisons between document sets of different type (for example, 

evaluation tag sets based on full text compared against species tags generated on ab-

stracts), or when the evaluation set is likely to exclude a large number of species men-

tions. 

Set Level Main set TP FP FN Recall Prec. 

NCBI 

taxonomy 

Doc. MEDLINE 6,888 10,032 (1,807) 0.7922 (0.4071) 

PMC OA abs 15 20 (6) 0.7143 (0.4286) 

PMC OA full (abs) 16 166 (3) 0.8421 (0.0791) 

PMC OA full (all) 22 196 (4) 0.8462 (0.1010) 

MeSH Doc. MEDLINE 5,073,147 4,577,293 2,315,811 0.6866 0.5257 

PMC OA abs 36,641 49,151 (14,797) 0.7123 (0.4271) 

PMC OA full (abs) 46,484 291,872 (2,219) 0.9544 (0.1374) 

PMC OA full (all) 54,814 346,071 (2,880) 0.9201 (0.1367) 

Entrez Gene Doc. MEDLINE 346,989 171,001 (139,702) 0.7130 (0.6699) 

PMC OA abs 6,946 4,110 (2,357) 0.7466 (0.6283) 

PMC OA full (abs) 8,184 38,275 (470) 0.9457 (0.1762) 

PMC OA full (all) 9,662 42,209 (628) 0.9390 (0.1863) 

EMBL Doc. MEDLINE 158,462 183,950 (235,745) 0.4020 (0.4627) 

PMC OA abs 4,807 4,360 (7,902) 0.3782 (0.5244) 

PMC OA full (abs) 6,601 34,447 (3,859) 0.6311 (0.1608) 

PMC OA full (all) 9,433 40,212 (5,613) 0.6269 (0.1900) 

PMC linkouts Doc. MEDLINE (27,259) (23,377) (122,596) (0.1819) (0.5383) 

PMC OA abs (30,315) (27,192) (141,735) (0.1762) (0.5272) 

PMC OA full (abs) 110,288 156,012 61,656 0.6414 0.4141 

PMC OA full (all) 11,2069 163,052 61,671 0.6450 0.4073 

Whatizit-

Organisms 

Doc. PMC OA abs 64,686 29,222 12,930 0.8334 0.6888 

PMC OA full (abs) 308,410 67,171 100,079 0.7550 0.8211 

PMC OA full (all) 344,445 73,489 109,668 0.7585 0.8242 

Mention PMC OA abs 139,077 147,426 39,351 0.7794 0.4854 

PMC OA full (xml) 1,164,799 1,596,615 527,284 0.6883 0.4218 

PMC OA full (all) 1,304,620 2,398,321 1,133,018 0.5352 0.3523 

Manual Doc. PMC OA abs 101 0 3 0.9712 1.0000 

PMC OA full (abs) 421 46 9 0.9791 0.9015 

PMC OA full (all) 462 49 9 0.9809 0.9041 

Mention PMC OA abs 326 3 19 0.9449 0.9909 

PMC OA full (xml) 3,190 92 222 0.9350 0.9720 

PMC OA full (all) 3,973 120 241 0.9428 0.9707 
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2.4.3.1 NCBI taxonomy citations  

Results for PMC OA and PMC OA abstracts relative to the NCBI taxonomy are 

difficult to assess because of the low number of intersecting documents (n=12). 

When comparing NCBI taxonomy citations to LINNAEUS predictions on 

MEDLINE, no particular species or set of terms stand out among the incorrect 

predictions. From an analysis of the false negatives (ñmissedò mentions), it 

seems that the majority of false negatives are not actually mentioned in the ab-

stract, although they still could be mentioned in the main body text. The reason 

for the apparent low precision and high number of false positives is that the ma-

jority of species mentioned in the articles are not included in the evaluation tag 

set. 

2.4.3.2 Medical subject headings  

For MeSH, very few mentions are actually included in the evaluation set, as the 

purpose of MeSH is to identify the main themes discussed in a paper rather than 

each individual species mentioned. This greatly affects the number of false posi-

tives. Human stands out among the false negatives, representing 84% (1,950,767) 

of all false negatives in MEDLINE and 31% (1,316) in PMC OA. Inspecting a 

sample of documents shows that, both for human and other species, the false 

negatives are not explicitly mentioned in the documents. As expected, full-text 

documents offer higher recall relative to abstracts, since mentions located in the 

main body text are available to both LINNAEUS and the MeSH curators. 

2.4.3.3 Entrez Gene  entries  

Relative to Entrez Gene, our tagging precision is low (19.0% for full-text docu-

ments) due to the fact that far from all species mentions are included in the eval-

uation tag set. Recall is high for full-text articles, with 93.9% of species links in 

the PMC OA set correctly found by LINNAEUS. Among the entries that still 

were missed, Drosophila melanogaster stands out, comprising 28.7% (184) of 

false negatives. Inspection shows that false negatives often appear because only 

the genus name ñDrosophilaò was used in the article as shorthand for the species 

Drosophila melanogaster, potentially warranting the addition of ñDrosophilaò as 

a synonym for Drosophila melanogaster (see also (Kappeler et al., 2009)). 

Among the remaining false negatives, the species seems not to be mentioned in 

the documents. The lower recall for abstracts relative to full text is most likely 
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due to the species associated with a gene being mentioned in the main body text 

rather than in the abstract. 

2.4.3.4 EMBL records  

For the EMBL set, no species is especially over-represented among the false 

negatives. An inspection of the false negative samples from all three document 

sets reveals that the species is often not explicitly mentioned in the article. Some-

times this is because nucleotide sequences are reported in a paper for a species 

but only discussed in supplementary data files, which are not available to be 

tagged by the software. Higher recall values for full-text articles as compared to 

abstracts indicate that species names are more likely to be mentioned in the main 

body. As with the MeSH and Entrez Gene document sets, precision values are of 

low relevance due to the evaluation set not including all species mentions. 

2.4.3.5 PubMed Central linkouts  

Performance of LINNAEUS compared to PMC linkouts reveals recall levels sim-

ilar to those obtained on the EMBL document set, but lower than those for MeSH 

or Entrez Gene, despite the fact that this evaluation set has been constructed with 

the similar aim of performing species tagging as LINNAEUS (although at a doc-

ument level). Inspecting a number of false positives and negatives reveals that 

virtually all were incorrectly tagged in the PMC linkout evaluation set, often for 

no apparent reason. For some false negative cases, articles have been tagged with 

species whose names can only be found in the titles of the references. This sug-

gests that species names in the PMC linkouts are detected also in referenced arti-

cle titles (while in some cases linkouts are missed even when species are men-

tioned in the main article title). Lower performance for MEDLINE and PMC OA 

abstracts is due to comparing species names found by LINNAEUS only in ab-

stracts to those found in the full documents in PMC linkouts, and as such are not 

directly relevant. 

2.4.3.6 WhatizitOrganisms  

The last automatically generated evaluation set we considered was from Whatizit 

Organisms, which provided the opportunity to investigate the performance of 

LINNAEUS species tagging at both the document and mention level. 

LINNAEUS recall is worse at the document level when evaluated against 
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WhatizitOrganisms relative to MeSH or Entrez Gene, but better than EMBL or 

PMC linkouts, while precision is higher than all the other datasets. At the men-

tion level, relatively low values of both recall and precision of LINNAEUS men-

tions evaluated against WhatizitOrganisms indicate substantial differences in the 

tagging of these two methods. When inspecting these differences, they can be 

seen to form three main error classes, described in the following sections. 

Disambiguation errors 

When a species term is ambiguous, WhatizitOrganisms will always return only a 

single ID, which can be incorrect (for example, for all instances of ñC. elegansò, 

the ID for Celeus elegans is returned). In the cases where LINNAEUS has cor-

rectly disambiguated these mentions, they will result in both a false negative and 

a false positive relative to WhatizitOrganisms. Using the example above, the 

false negative would stem from Celeus elegans not being found, and the false 

positive would be caused from Caenorhabditis elegans being found, despite not 

being in the WhatizitOrganisms reference set. Most ambiguous terms (mainly 

abbreviations and in some cases acronyms) give rise to this kind of error. 

Acronym errors 

Acronym errors are introduced both because of ambiguities as described in the 

previous section (for example, ñHIVò mentions are systematically tagged as Sim-

ian-Human immunodeficiency virus), but also because some acronyms in the 

NCBI taxonomy have been excluded from the LINNAEUS dictionary (this will 

happen if Acromine has not recorded any occurrences at all of species being ab-

breviated for a given acronym). 

Manual dictionary modifications 

The last class consists of the terms that either are added manually as synonyms to 

the LINNAEUS dictionary, or are filtered out during post-processing by 

LINNAEUS. Common ñfalse positiveò mentions in PMC OA arise from addi-

tional synonyms including ñpatientò and ñpatientsò (681,166 total) and women 

(120,492). Common ñfalse negativeò mentions in PMC OA arise from manually 

removed terms including ñspotò and ñspotsò (32,701 total), as well as ñnameò 

and ñnamesò (29,848 total). 
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2.4.3.7 Manually annotated corpus  

To understand the true performance of the LINNAEUS system, we generated a 

gold standard dataset specifically annotated to evaluate species name identifica-

tion software. The reliability of this gold standard is high, however some species 

names are likely to be omitted from this evaluation set, as shown by IAA analy-

sis (see Section 2.3.9.7 on page 69). Performance of species tagging by 

LINNAEUS on full-text articles is very good, with 94.3% recall and 97.1% pre-

cision at mention level, and 98.1% recall and 90.4% precision at document level. 

Inclusion of mentions from our additional synonyms such as ñpatientò does not 

explain this high level of performance alone, as we observe 91.4% recall and 

96.9% precision at mention level when mentions for additional synonyms are fil-

tered out. When compared against the abstracts of the manually annotated cor-

pus, LINNAEUS was shown to perform with 94.5% recall and 99.1% precision 

at the mention level, a level similar to the accuracy achieved against full-text 

documents. These high levels of performance for species name tagging also im-

ply that our disambiguation methods typically identify the correct species when 

confronted with multiple options. 

We also compared output from WhatizitOrganisms to our manually annotated 

corpus to understand the performance of LINNAEUS relative to another men-

tion-level species name tagging system. Compared to our manually annotated 

corpus, WhatizitOrganisms achieved recall of 42.7% and precision of 66.2% at 

the mention level, and recall of 80.3% and precision of 69.1% at the document 

level. When all additional synonyms (which are not present in the 

WhatizitOrganisms dictionary and therefore cannot be predicted by this system) 

are filtered out from the evaluation set, WhatizitOrganisms achieved recall of 

64.4% and precision of 66.2% at the mention level, and recall of 84.7% and pre-

cision of 69.1% at the document level. Differences in performance between the 

two methods arise from the discrepancies in tagging discussed in the direct eval-

uation between LINNAEUS and WhatizitOrganisms in the previous section.  

Based on the categorization of manually annotated mentions, it is possible to 

analyze the type of false negative and false positive predictions made by 

LINNAEUS. False negatives are mainly due to incorrect case being used (see 

Table 2.8), suggesting that an approach that ignores case might be worth explor-
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ing. False positives are more diverse: they are mostly caused by species syno-

nyms occurring in common English, or because LINNAEUS tagged author 

names as species (an example is ñRice,ò which occurred in author names four 

times in the corpus). Nearly 10% of all false positives were acronyms that had 

been marked as probably not referring to species (the sum of mention probabili-

ties were lower than 5%). Approximately 20% of all false positives were due to 

mentions being missed during manual annotation. This result is consistent with 

the IAA analysis, which revealed that a second curator could identify additional 

species mentions in these documents. These omissions were not corrected during 

the course of evaluation in order to preserve the integrity of the evaluation set. 

Future work will involve the release of not only the original gold-standard cor-

pus, but also a version where these errors have been corrected. 

2.4.4 Identifying misspelled species names  

As mentioned in Section 2.3.4, all entries recognized by TaxonGrab are associat-

ed to a species identifier by LINNAEUS through the approximate string match-

ing method, whether the terms resemble each other or not. Because of this, the 

use of some cutoff score (or other method of determining if a particular associa-

tion is reliable) is critical if the normalized identifiers of TaxonGrab mentions are 

used. For example, the misspelled term ñBaccillus subtilisò (from the title of 

PMID 169225) was correctly associated to Bacillus subtilis (NCBI taxonomy ID 

1423) by LINNAEUS, with similarity score 0.94. On the other hand, the term 

ñXeroderma pigmentosumò (PMID 1171827) was incorrectly assigned to 

Trichoderma tomentosum (Taxonomy ID 63591) with similarity score 0.64. 

While ñXeroderma pigmentosumò at a glance does look like a species name, it 

actually refers to a genetic disorder, and as such represents an FP on behalf of 

TaxonGrab. 

In order to determine the utility of integrating the TaxonGrab algorithm with 

LINNAEUS as a method for identifying misspelled species names, the complete 

set of documents in MEDLINE (2011 baseline) and PMC OA (downloaded May 

2011) were processed using the TaxonGrab algorithm and approximate matching 

(as described in section 1.2.4) enabled. The addition of TaxonGrab enabled the 

recognition of 374,937 term mentions in addition to what LINNAEUS had al-
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ready recognized (representing 1% of all mentions). The distribution of the simi-

larity scores can be seen in Figure 2.3. 

 

As we expected the string similarity searches to be relatively slow, we measured 

the speed at which LINNAEUS operated in i) its default configuration, ii) with 

TaxonGrab, and iii) with both TaxonGrab and the string similarity searches ena-

bled. While absolute measurements of software time requirements is of limited 

value due to ever-changing computational hardware, comparisons between dif-

ferent methods can be useful in order to get a rough idea about their relative re-

source requirement differences. Using the default settings and a single computa-

tional thread operating on a 3 GHz core, LINNAEUS requires on average 1.1 ms 

 

Figure 2.3. Distribution of potentially misspelled species 

names identified by TaxonGrab. 

Shown is the number of species mentions in MEDLINE and 

PMC that were recognized by TaxonGrab while not recognized 

by LINNAEUS, as a function of their similarity to species 

names in the NCBI Taxonomy (presented in bins of width 0.05). 

Mentions with high name similarities are very similar to at least 

one name in the NCBI Taxonomy, while mentions with low 

similarity are not similar to any species names. 
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per MEDLINE abstract (on a sample of 10,000 randomly selected abstracts, 

stored as text files). On the same sample, LINNAEUS requires 2.2 ms per ab-

stracts when TaxonGrab is enabled (an increase by a factor of 2), and 120 ms per 

abstract when also the string similarity normalization is enabled (an increase by a 

factor of 109). It is clear that the addition of the approximate-string method slows 

down the operation of LINNAEUS dramatically. Nevertheless, we believe that it 

is still not prohibitively heavy for applications where identification of misspelled 

species names is important (such as authoring support, described in the following 

section). 

All potentially misspelled entries found in MEDLINE are available in Supple-

mentary file 5. We believe that this could be useful for inclusion in dictionaries 

by other dictionary-based species NER tools. Note that, as mentioned previously, 

any inclusion will need to use a cutoff at some similarity level (which will de-

pend on how important precision is compared to recall). In order to reduce the 

number of FNs for LINNAEUS users that do not enable the spell-checking fea-

ture (for performance-related or other reasons), all potential species misspellings 

with a similarity score Ó0.9 (n=14,783) were added to a custom dictionary that 

can be enabled by the users. While no quantitative evaluation of the use of this 

custom dictionary was performed, we did scan a random selection of about 50 

associations (with similarity score Ó0.9), and have been unable to find any error 

among them (errors do begin to appear as similarity scores get closer to 0.8 

though). The new dictionary of misspellings was not used during the evaluations 

(reported in Section 2.4.3) as it was constructed at a later date, but it should only 

have a minimal impact on overall accuracy as the absolute number of mentions it 

affects is small. A sample of 100 misspellings included in the dictionaries (all 

with similarity score = 0.9, representing the lowest quality of entries added to the 

dictionaries) can be seen in Additional table A1.1 (page 156). The table includes 

nine alternative spellings of Arabidopsis thaliana, but if all misspellings with 

score Ó 0.9 are considered, the species that have been associated with the largest 

number of misspelled variations, Pseudomonas aeruginosa, have been mis-

spelled in no less than 119 different ways. 
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2.4.5 Document problem detection f or authors and publishers  

As mentioned in Section 2.3.5, development was performed to provide a unified 

method for detecting potential species name usage issues. These issues include 

the detection of instances where authors use ambiguous species names without 

explicitly stating which species they refer to, when species names are misspelled, 

and when deprecated or otherwise incorrect species names are used. This method 

was applied to all documents in the MEDLINE 2011 baseline files and the open-

access subset of PMC (download May 2011). In total, the tool detected 2,073,553 

issues; a breakdown by type and document source can be seen in Table 2.12. In 

total, 6.4% and 15.7% of the MEDLINE and PMC documents had at least one is-

sue with species name usage, respectively. As expected, the ratio of documents 

that contain at least one issue is considerably higher for full-text documents than 

for abstracts. 

 

When applied to the main text of this thesis, the document checker detected three 

instances: ñAIDS virusò (deprecated name for Human immunodeficiency virus), 

ñCroton elegansò (the more accepted name for which is ñCroton ferrugineusò, 

according to CoL), and the misspelled ñAiluropoda melanoleuraò (giant panda). 

The LINNAEUS document-checking software is available as a web service on 

http://linnaeus.smith.man.ac.uk and can be integrated for authoring support sys-

tems. 

Table 2.12. Number of document issues detected in MEDLINE and PMC 

by the LINNAEUS document checker. 

Shows the number of misspellings, the number of deprecated or incorrect 

names used (as detected by either NCBI or Catalogue of Life sources), and the 

number of ambiguous names used without clear disambiguation. The depre-

cated species names may not necessarily have been formally deprecated at the 

time when they were used. 

Type MEDL INE PMC 

Misspelling 77,359 12,297 

Deprecated/incorrect, NCBI 113,588 17,184 

Deprecated/incorrect, CoL 58,590 7,809 

Ambiguity 1,677,891 108,635 

Total 1,927,528 146,025 
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2.4.6 Trends in species mentions  

To provide an overview of commonly mentioned species in biomedical research, 

and to determine if our system generated interpretable results on large sets of 

documents, we used LINNAEUS mentions to estimate the frequency of species 

mentions in all of MEDLINE. The ten most commonly mentioned species at the 

document level are shown in Table 2.13, and the 100 most frequently mentioned 

species across MEDLINE can be found in Supplementary file 6. This analysis 

counts all unambiguous mentions of a species, plus the single most likely species 

for ambiguous mentions. Mentions are at the document level and a single docu-

ment can mention multiple species. 

Humans constitute by far the most frequently discussed organism in all of 

MEDLINE, with almost half of all species mentions (48.4%), as has been report-

ed previously in analyses of data used for training and testing species recognition 

software (Wang and Matthews, 2008; Kappeler et al., 2009). Other commonly 

used model organisms such as rat, mouse and baker's yeast are also represented, 

but somewhat more surprising is the frequent occurrence of cow, rabbit, dog and 

chicken. The high number of mentions for cow and rabbit are partially explained 

by indirect mentions of these species for their role in generating experimental re-

agents such as ñbovine serumò or ñrabbit polyclonal antibody.ò 

Utilizing species mentions from MEDLINE, it is also possible to extract infor-

mation about how many papers mention a species over time. Previous work on 

measuring trends in organism names over time has focused on the first descrip-

tion of new taxa (Sarkar et al., 2008), while here we are interested in understand-

ing the frequency that known species are discussed within the biomedical litera-

ture over time. Figure 2.4 shows document-level species mentions per year for 

the five most frequently mentioned species plus HIV from 1975 to the present, a 

timeline previously investigated for trends in gene names over time (Hoffmann 

and Valencia, 2003). For clarity, data for the remaining species in top ten (E. 

coli, dog, bakerôs yeast and chicken) is not shown, but all four of these species 

follow the same pattern as the top five species. With the exception of HIV, all of 

the most frequently mentioned species have consistently been referred to at high 

levels over the last three decades. In contrast, the number of mentions for HIV 

increases rapidly after its discovery in 1983 (Barré-Sinoussi et al., 1983). Thus, 
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while HIV is only the seventh most frequently mentioned species in all of 

MEDLINE (1975-2008) (Table 2.13), it was in 2008 the fourth most frequently 

mentioned species after human, mouse and rat. We note that all mentions in 1985 

are of the synonym ñAIDS virus,ò since the term ñHuman immunodeficiency vi-

rusò was not suggested until in 1986 (Coffin et al., 1986). These results demon-

strate that our species name tagging system generates meaningful predictions 

when applied to large sets of biomedical documents and confirm the human-

centric nature of biomedical research. 

 

 

Table 2.13. The ten most commonly mentioned species in MEDLINE.  

Mentions are calculated at the document level in MEDLINE relative to the to-

tal number of document-level mentions (n=10,122,214) and the total number 

of documents (n=9,919,312). 

Species  Mentions Ratio of mentions Ratio of documents 

Human 4,801,489 0.4743 0.4840 

Rat 831,552 0.0821 0.0838 

Mouse 655,695 0.0647 0.0661 

Cow 186,091 0.0183 0.0187 

Rabbit 162,487 0.0160 0.0163 

Escherichia coli 144,077 0.0142 0.0145 

HIV 117,441 0.0116 0.0118 

Dog 112,366 0.0111 0.0113 

Baker's yeast 112,254 0.0110 0.0113 

Chicken 75,440 0.0074 0.0076 

 

 

Figure 2.4. Number of articles per year in MEDLINE mentioning human, 

rat, mouse, cow, rabbit and HIV since 1975.  

Note that the rapid rise in mentions of the term HIV occurs just after its dis-

covery in 1983 (Barré-Sinoussi et al., 1983). 
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2.5 Discussio n 

Species name recognition and normalization is increasingly identified as an im-

portant topic in text mining and bioinformatics, not only for the direct advantages 

it can provide to end-users but also for guiding other software systems. While a 

number of tools performing species name recognition and/or normalization of 

both scientific names and synonyms have been reported previously (Ding et al., 

2005; Koning et al., 2005; Sautter et al., 2006; Rebholz-Schuhmann et al., 2007; 

Wang, 2007; Aerts et al., 2008; Wang and Grover, 2008; Wang and Matthews, 

2008; Wang and Matthews, 2008; Kappeler et al., 2009), the work presented here 

contributes to the field in a number of unique ways. These include availability of 

a robust, open-source, stand-alone application (other tools are either not publical-

ly available, only available as web services or not capable of recognizing com-

mon names), the scale of species tagging (all of MEDLINE and PMC OA until 

2008), depth and rigor of evaluation (other tools do not perform evaluation 

against normalized database identifiers, or are limited to a small sample of doc-

uments) and system accuracy (compared to other available tools, LINNAEUS 

shows better performance, primarily due to better handling of ambiguous men-

tions and inclusion of additional synonyms). Moreover, we provide the first 

open-access, manually annotated dataset of species name annotations in biomed-

ical text that can be used specifically to evaluate the performance of species 

name recognition software. 

2.5.1 Evaluation of species name identification software requires 
manually annotated gold st andards  

The relative performance of any bioinformatics application is only as good as the 

evaluation set against which it is compared. In the case of species name recogni-

tion software, no open-access manually annotated dataset of species name anno-

tations in biomedical text existed as a gold standard for evaluation prior to the 

current work. During this project, we investigated four different automatically 

generated evaluation sets (NCBI taxonomy citations, MeSH tags, Entrez Gene 

references, EMBL citations) based on curated document-species pairs. We also 

investigated two different automatically generated evaluation sets based on doc-

ument-species pairs predicted using text-mining software (PMC linkouts and 

WhatizitOrganisms). Although it was possible to interpret the recall of 

LINNAEUS when the document set and the evaluation set were of the same type 
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(e.g. full -text), the precision of our system could not be accurately evaluated be-

cause of incomplete or imperfect annotation of species mentions in any of these 

evaluation sets. We conclude that evaluation sets of document-species mappings 

automatically inferred from ñsecondaryò sources such as document-gene (e.g. 

Entrez Gene) or document-sequence (e.g. EMBL) mappings are of limited value 

in evaluating species name recognition software.  

Because of the inherent limitations with the automatically-generated evaluation 

sets (including incomplete annotation of species names or incorrect disambigua-

tion), a manually annotated evaluation corpus was created. Evaluation against the 

manually annotated evaluation corpus showed very good performance for 

LINNAEUS with 94.3% recall and 97.1% precision at a mention level, and 

98.1% recall and 90.4% precision at a document level. None of the automatically 

generated evaluation sets come close to revealing this level of precision for spe-

cies name recognition using LINNAEUS. These results underscore the im-

portance of our manually annotated gold standard evaluation set, and suggest that 

evaluation of other systems on automatically generated evaluation sets (e.g. 

(Kappeler et al., 2009)) may have underestimated system precision. One interest-

ing observation afforded by having a high quality evaluation set is that recall is 

higher than precision at a document level, while precision is higher than recall at 

a mention level. One reason for this is that when authors use non-standard or 

misspelled names, they will usually use those names multiple times throughout 

the document, leading to several false negatives at a mention level but a single 

only at document level. Conversely, false positives are more spread out among 

documents, leading to small differences in false positive counts for mention and 

document level evaluations. 

2.5.2 Improved accuracy of species name identification in full -text 
articles  

The vast majority of text-mining research is currently conducted on abstracts of 

biomedical articles since they are freely available in PubMed, require fewer 

computational resources for their analysis, and are thought to contain the highest 

density of information (Shah et al., 2003; Schuemie et al., 2004). Nevertheless, 

increasing evidence suggests that information retrieval is better on full-text arti-

cles since the total number of biomedical terms is higher relative to abstracts 
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(Shah et al., 2003; Corney et al., 2004; Schuemie et al., 2004; Eales et al., 2008; 

Lin, 2009). Our results for species names identification results support this con-

clusion, with recall of species names being higher for full-text articles relative to 

abstracts for the majority of evaluation sets tested (Table 2.11) and virtually all 

(96%) full-text articles being tagged with at least one species name.  

Our results also clearly demonstrate that disambiguation of species mentions by 

searching for explicit mentions is more successful in full-text articles than in ab-

stracts. Thus, as has been found previously for gene names (Schuemie et al., 

2004), the increased coverage of full-text has additional benefits for species 

name disambiguation, since more information is available to the disambiguation 

algorithms when processing full-text articles. Interestingly, we find that levels of 

ambiguity drop regardless of whether explicit mentions are scanned for either 

earlier in the text or in the whole text, possibly since the materials and methods 

sections of articles are often at the end of papers. After searching for explicit 

mentions, we find that ambiguity levels of species names in biomedical text are 

low (3-5%), and can be reduced even further (1-3%) using probabilistic methods 

if a small degree of error can be tolerated. 

2.6 Summary  

This chapter described the design, evaluation, and application of the LINNAEUS 

species NER and normalization system. Using dictionaries, disambiguation 

methods and filters, it achieves high accuracy (94% recall and 97% precision). 

Since its release, LINNAEUS has been used not only for species NER in general 

(Pyysalo et al., 2011; Stenetorp et al., 2011), but also to aid document retrieval 

(French and Pavlidis, 2011) and gene/protein normalization (Móra and Farkas, 

2010; Lu et al., 2011; Vroling et al., 2011). The latter use case, support of cross-

species gene normalization, is discussed further in the next chapter. 
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Chapter 3:  Gene named -entity recognition and 
normalizatio n 

3.1 Abstract   

Gene mention normalization refers to the automated mapping of gene names to a 

unique identifier, such as an NCBI Entrez Gene ID. Such knowledge helps in in-

dexing and retrieval of articles discussing particular genes, linking to additional 

information (such as sequences), database curation, and is required for more 

complex information extraction related to genes. We present here an ensemble 

text-mining system encompassing LINNAEUS for recognition of organism 

names and GNAT for recognition and normalization of gene mentions. Candi-

date gene mention identifiers are filtered through a series of steps that take the 

local context of a given mention into account. Evaluated against a manually an-

notated set of 100 abstracts, the system achieved precision and recall levels of 

66% and 64%, respectively; evaluated against the BioCreative III corpus of 82 

full -text documents, the system achieved precision and recall levels of 31% and 

20%, respectively. The difference in the accuracy of the system on these two 

corpora seems to largely be due to large differences in species composition be-

tween the corpora. This ensemble system is available in the latest GNAT release 

at http://gnat.sourceforge.net, under the open-source BSD license. Document-

level results extracted using an earlier release of GNAT are available at 

http://pubmed2ensembl.org. Mention-level results extracted from the release of 

GNAT presented in this chapter are available at http://biocontext.org. 

3.2 Introduction  and background  

The extremely rapid growth of published literature in the biological sciences ne-

cessitates constant improvement of automated text-mining tools to extract rele-

vant information and convert it into structured formats. Terms for the same enti-

ties used in biomedical articles can vary widely between authors and across time 

(Tamames and Valencia, 2006). Thus, two key tasks in biomedical text mining 

are named entity recognition (NER; finding names of genes, cell lines, drugs, 

etc.) and entity mention normalization (mapping a recognized entity to a reposi-

tory, such as Entrez Gene or PubChem). Both tasks enable indexing, retrieval, 
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and integration of literature with other resources. Gene and protein names in par-

ticular represent central entities that are discussed in biomedical texts. While a 

growing number of tools for gene NER are freely available (e.g., (Settles, 2005; 

Leaman and Gonzales, 2008)), only a limited number of tools provide gene nor-

malization capabilities that can be used off-the-shelf by end users (Huang et al., 

2011), and to the best of our knowledge none are available under an open-source 

license. 

Earlier versions of GNAT (Hakenberg et al., 2008; Hakenberg et al., 2008), a 

gene/protein named-entity recognition and normalization system, have been 

made available previously through personal communication, but until now their 

utility have been limited in several aspects. First, large amounts of memory were 

required. Second, the large number of dependencies meant that deployment of 

GNAT was complicated. Third, it relied on a species NER web service, AliBaba 

(Plake et al., 2006), to help guide its normalization that was not always function-

al. Fourth, as the source code was not publicly available, direct integration with 

other software was challenging. Thus, we initiated a collaboration with the origi-

nal developers of GNAT to develop and release an improved open-source ver-

sion of the GNAT. 

Here we present this new version of the GNAT system for gene mention recogni-

tion and normalization, and describe the evaluation results compared against both 

the BioCreative III gene normalization corpus and a corpus of 100 abstracts 

manually annotated for gene mentions (Hakenberg et al., 2008). GNAT now re-

lies on a modular architecture, allowing integration of new components by im-

plementing relatively simple HTTP interfaces, which allows individual compo-

nents to be distributed on servers (that can be either local or remote, and either 

public or private). The framework allows end-users to send PubMed or PMC 

document identifiers as well as free text to our server (or any other server run-

ning the GNAT service), which will return lists of gene mentions with Entrez 

Gene IDs. As we provide public endpoints for these HTTP interfaces, the 

memory requirements of GNAT are now much lighter. Text mining application 

developers can make use of the same service by using GNAT as a component in 

their own processing pipelines or by customizing GNAT for their requirements. 

We also describe how GNAT was integrated with LINNAEUS (see Chapter 2), 
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which enables local (or remote) species NER, making the system much more 

stable. In addition to the modularization, remote interfaces, and LINNAEUS in-

tegration, we also report on improvements to the underlying recognition and 

normalization pipeline, notably through the use of BANNER (Leaman and Gon-

zales, 2008). In addition, we also report that we have now released the source 

code of GNAT under the BSD license. 

3.3 Materials and methods  

3.3.1 GNAT system overview  

GNAT consists of a set of modules to handle all steps required in the gene NER 

and normalization pipeline, from document retrieval to final output of results. 

GNAT pipelines can be specified by the user, but the default processing pipeline 

(see Figure 3.1) consists of modules that perform the following steps:  

1. Retrieve documents,  

2. Pre-process each text,  

3. Perform named entity recognition for species and genes,  

4. Remove likely false positive gene mentions,  

5. Assign candidate identifiers to genes,  

6. Validate identifiers, and  

7. Rank candidate gene identifiers. 

Each step is described in more detail in the remainder of this section. 
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Steps 1 and 2 comprise essential document retrieval and pre-processing tasks. 

Document retrieval uses NCBI e-utils
20

 to obtain records from PubMed and PMC 

when such identifiers are given. Users can also provide text files directly as in-

put. The default preprocessing methods of documents consists of name range ex-

                                                 
20

 http://eutils.ncbi.nlm.nih.gov/ 

 

Figure 3.1. Overview of the default GNAT processing pipeline. 

Shown are typical GNAT components (1 through 7; see main text for details) 

and final output (8). GNAT is designed in a modular manner, where data ex-

change is performed using the HTTP protocol. It allows memory- and CPU-

intensive components (A and B) to be run separately on appropriate hard-

ware. Memory-intensive components typically run as (remote or local) ser-

vices, as they require longer startup times less suited for small queries. The 

GNAT client (center) manages which components to invoke in which man-

ner, and sends data to the components for annotation. Some components rely 

on annotations provided by other components, such as the assignment of 

candidate identifiers during step 5, which requires species annotations from 

step 3a.  
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pansion, which replaces mentions such as ñfreac1-3ò with ñfreac1, freac2, and 

freac3ò, in order to aid subsequent gene NER.  

In step 3, the default version of GNAT recognizes named entities for both species 

and genes using a dictionary-based approach. To identify species names, the cur-

rent version of GNAT incorporates LINNAEUS (Gerner et al., 2010) (3a in Fig-

ure 3.1), whose output determines which gene dictionaries to apply, and to nar-

row down identifiers for ambiguous gene names later in the pipeline (step 6). The 

gene NER modules available in the current default version of GNAT include the 

dictionary lookups present in previous versions (Hakenberg et al., 2008) for 10 

common model organisms (see Section 3.3.5 for more details). A set of candidate 

Entrez Gene identifiers is then assigned to each gene mention in this step as well, 

comprising all potential matches based on the geneôs name alone. We note that in 

addition to the dictionary-based gene NER taggers, we now provide an interface 

to BANNER (Leaman and Gonzales, 2008), which uses conditional random 

fields to recognize candidate gene names. Users can select either of these NER 

modules, the joint results of both methods, or implement their own NER compo-

nent (3b in Figure 3.1).  

Steps 4 to 7 comprise the actual gene mention normalization, in which we have 

implemented a range of filters to remove likely false positive (FP) gene mentions 

and/or candidate IDs. Removal of FPs uses information in the gene name itself, 

the surrounding text, as well as entire paragraphs or full text to ensure that a 

found name refers to a specific gene, and not another non-gene term. Additional 

false positives are removed if they are not also recognized by BANNER. In con-

trast to most gene name identification tools, mentions that refer to gene families 

are considered false positives in the current version of GNAT, since the aim is to 

find gene mentions that can be mapped to a specific entry in Entrez Gene. Thus, 

one of the filters removes mentions such as óG proteinsô, although this step can 

be customized by the user depending on their specific needs.  

Candidate identifiers can then be further filtered or validated, for example, by 

removing genes from species not mentioned in the text, or by other user-defined 

methods (step 6). In step 7, the remaining ambiguous cases (gene mentions with 

more than one potential Entrez Gene ID) are ranked by comparing contextual in-
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formation found in the text surrounding the mention with knowledge about each 

gene. For example, known Gene Ontology annotations for a gene increase its 

rank when that GO term is found in the nearby text, and similar methods are used 

for chromosomal locations, associated diseases, enzymatic activity, tissue speci-

ficity, etc. For further details on the filtering methods, see (Hakenberg et al., 

2008). 

3.3.2 Modifying and using LINNAEUS for species NER  

In order to identify the species that are discussed in a paper (which in turn deter-

mines what genes to search for), we utilize LINNAEUS (Gerner et al., 2010) (see 

also Chapter 2). LINNAEUS uses a dictionary of expanded species terms from 

the NCBI taxonomy together with a variety of rule-based methods and distribu-

tional statistics, in order to disambiguate ambiguous species mentions and reduce 

the number of false positives and negatives. Compared against a corpus of 100 

full -text articles manually annotated for species names, LINNAEUS achieves 

94% precision and 97% recall (Gerner et al., 2010). It has previously been shown 

that for articles linked to genes in Entrez Gene, LINNAEUS can find the species 

of the referenced gene in 94% (9,662/10,290) of cases where full-text was avail-

able (Gerner et al., 2010), indicating that only a relatively small number of false 

negatives are introduced when gene searches are limited to the species that are 

recognized in the document. 

In order to further increase the utility of LINNAEUS for detecting focus organ-

isms of articles, even if they are not mentioned directly, LINNAEUS was modi-

fied to use additional ñproxyò dictionaries that link cell -lines and genera to corre-

sponding species. The cell-line dictionary, linking for example ñHeLa cellsò to 

human, was created from the database of Romano et al. (2009). Genera are also 

tagged and linked to the member species that is most commonly mentioned in 

MEDLINE (for example, ñDrosophilaò is linked to Drosophila melanogaster).  

Some technical re-linking of standard NCBI Taxonomy identifiers was also nec-

essary in GNAT due to recent changes in species associations in Entrez Gene. 

For example, all genes that previously were linked to Saccharomyces cerevisiae 

(NCBI Taxonomy ID 4932) are now linked to a specific strain, S. cer. S288c 

(NCBI Taxonomy ID 850287). This re-linking ensured that in addition to specif-
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ic mentions of the S288c strain, more general mentions of S. cerevisiae would al-

so enable searches for genes linked to NCBI Taxonomy ID 850287. This was 

performed for all species where we could determine that such changes had re-

cently occurred in Entrez Gene. 

3.3.3 Constructing and applying species -specific gene dictionaries  

GNAT gene/protein dictionaries (3b in Figure 3.1) were constructed from NCBI 

Entrez Gene (Sayers et al., 2011) and UniProt (The UniProt consortium, 2008), 

which both link Entrez Gene gene records to (among other things) NCBI taxon-

omy species identifiers, official symbols and synonyms.  

Using custom rules, gene name synonyms were expanded to regular expressions 

in order to cover possible variants that authors might use. For example, P53 and 

IL2 were automatically expanded to also cover p53 and IL-2, respectively. Large 

numbers of regular expressions cannot be applied to texts directly without pro-

hibitively large time requirements. Because of this, the regular expressions were 

grouped by which species the genes were associated to, and each ñspecies groupò 

was converted to a deterministic finite-state automaton (DFA) using the Java 

BRICS library (Møller, 2008). Using BRICS DFAs allowed very CPU-efficient 

matching (requiring on the order of a millisecond for a normal-sized abstract 

with a normal desktop computer), but instead imposed relatively heavy memory 

requirements (roughly 0.1-2 GB per species, depending on the number of records 

and synonyms for the species). Because of this, the number of species concur-

rently searched was restricted to a set of main model organisms, and the diction-

aries were designed to run as independent network services, responding to re-

quests for dictionary matching. This allows dictionaries to be distributed over 

multiple machines (where each does not strictly need to have very much 

memory). GNAT client instances can also offload the dictionary matching to a 

web service, resulting in lower client memory requirements. The set of dictionar-

ies applied to a document is selected based on the species identified by 

LINNAEUS (see Section 3.3.5). 

3.3.4 Filtering gene names and candidate identifiers  

Following species-specific dictionary matching, the set of candidate identifiers 

for each gene mention is narrowed down successively by removing gene IDs that 
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are believed to be FPs. Table 3.1 describes the full list of filtering methods (see 

(Hakenberg et al., 2008) for further details). Filtering includes: (i) use of the sen-

tence and paragraph context surrounding the mention. The context is matched 

against pre-computed textual profiles around known gene mentions and scanned 

for clues indicating the presence of false positives, and (ii) cross-species disam-

biguation through use of species name mentions located close to the gene men-

tion. In addition, ambiguous gene mentions (those that have been recognized for 

several different gene identifiers) are also compared against the original unex-

panded terms of the potential gene identifiers using string similarity searches. By 

determining how similar the original terms are to the variants that were actually 

recognized, additional weight can be given to some of the potential identifiers 

over others. If enough information for a complete disambiguation of an ambigu-

ous mention is not available, the mention is left ambiguous and all potential iden-

tifiers are reported. 

 

3.3.5 Selecting the set of species -specific dictionaries  

As noted in previous sections, the gene name dictionaries used by GNAT are re-

stricted to a set of model organisms due to memory constraints. The selection of 

what species to include is critical since it determines the species for which 

GNAT can recognize gene names. The default set of species were chosen based 

on the number of PubMed references per species for papers associated with en-

Table 3.1. List of major gene mention filtering methods used by GNAT.  

Method Description 

DICTS Apply species-specific dictionaries, locating tentative mentions. 

LRCF Match the text surrounding the mention against context models 
of FPs. 

ICF Filter mentions based on keywords in their immediate context. 

SWF A stop-word filter, removing mentions that match common Eng-
lish words. 

BANNER Remove any mentions that do not overlap with results from 
BANNER. 

UNF Filter names that refer to gene families and other un-specific 
mentions. 

AF Score mentions by string similarity against unexpanded gene 
synonyms. 

NVF Restore names removed during UNF where a synonym is used 
elsewhere. 

MSDF Gene mention disambiguation by context profile. 
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tries in Entrez Gene (as of April 2011). Each PMID was counted a maximum of 

once against each species, to avoid biases caused by some papers being used as 

references for very large numbers of genes (for example, the PubMed document 

that describes the sequencing of the Trichomonas vaginalis genome, with PMID 

17218520, is used as a reference for over 59,000 different genes from that spe-

cies). In total, we selected gene name dictionaries for 10 species (see Table 3.2) 

to use in the current default version of GNAT that cover 87.6% of all references 

in Entrez Gene. 

 

3.3.6 Evaluation  

We evaluated GNAT against two corpora: a manually annotated corpus of 100 

abstracts (Hakenberg et al., 2008), and the BioCreative III gene normalization 

corpus of full-text documents. The former corpus (hereafter called ñGNAT-100ò) 

was derived from the BioCreative I and II corpora. The original BioCreative I 

and II corpora contain gene annotations only for a limited set of species (humans, 

mice, fruit flies and yeast), but the annotations for the 100 abstracts were extend-

ed to cover all species. The BioCreative III corpus is split in two parts: training 

(32 full-text articles) and test (50 full-text articles). Evaluation here was per-

Table 3.2. List of species-specific GNAT dictionaries. 

List of species for which we built and used gene name 

dictionaries in the current version of GNAT, and the 

number of document-level article-gene references in 

Entrez Gene belonging to that species. Percentages are 

relative to the total number of document-level article-

gene references in Entrez Gene. 

Species Entrez Gene frequency 

Human 304,279 (41.7%) 

Mouse 171,079 (23.4%) 

Rat 52,323   (7.2%) 

E. coli 31,193   (4.3%) 

Fruit fly 28,463   (3.9%) 

Baker's yeast 16,733   (2.3%) 

A. thaliana 6,294   (1.3%) 

Cow 6,916   (0.9%) 

Zebrafish 6,499   (0.9%) 

Chicken 5,214   (0.7%) 

Total 628993 (87.6%) 
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formed against all 82 documents, since the software was not trained on these da-

ta. Both corpora are annotated at the document level (that is, mention-level coor-

dinate offsets were not available). 

In order to evaluate the utility of the pre- and post-processing methods of GNAT 

that are performed in addition to the application of the species-specific dictionar-

ies, a baseline system for gene/protein normalization using dictionary matching 

but no subsequent filtering was also constructed and evaluated against the two 

corpora. This system was based on a modified version of LINNAEUS that uses 

custom gene/protein dictionaries from Entrez Gene and UniProt. Species NER 

results (using the species-proxy version of LINNAEUS also used in GNAT) de-

termined which species-specific gene dictionaries were applied to a particular 

document. The baseline system used the same set of species as the current default 

version of GNAT for evaluation. 

3.4 Results and discussion  

3.4.1 Species normalization results and dictionary overlap  

By applying LINNAEUS to the GNAT-100 and BioCreative III corpora and 

comparing the extracted species mentions to the species belonging to the anno-

tated gene mentions, we evaluated to what extent LINNAEUS was able to find 

the species that are associated with annotated genes in a given document. This is 

important, as a FN in the species NER step (because of either bad species NER 

or the author not mentioning the species) means that genes of that species cannot 

be normalized. Results from the evaluation can be seen in Table 3.3, which 

shows the benefit of using ñproxyò species terms (e.g. ñpatientò and ñHeLa cellsò 

for human). The ability to identify the species of annotated genes was higher in 

the GNAT-100 abstracts (where 92.7% of the annotated genes had species that 

were found) than in the BioCreative III full-text articles (78.3%). Inspection of 

some false negatives (FNs) suggest that the main cause for the larger number of 

FNs among the full-text documents is that authors do not mention the full species 

name (either omitting it completely or only mentioning part of it). The results are 

lower than those of the LINNAEUS evaluation against the Entrez Gene corpus in 

Section 2.4.3.3 (where 93.9% of species associated to genes in Entrez Gene ref-
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erence records could be extracted from full-text documents using standard, non-

proxy, species dictionaries). The reasons for this are unclear. 

 
Information about how well the GNAT-100 and BioCreative III corpora species 

distributions overlapped with the species dictionaries can be seen in Table 3.4. 

The data shows a large overlap between the dictionaries and the GNAT-100 cor-

pus (where 96.4% of genes entries are covered by the species dictionaries), but a 

much lower overlap between the species dictionaries and the BioCreative III cor-

pus (at 55.8%). 

 

Table 3.4. Species overlap between the GNAT dictionaries and 

the GNAT-100 corpus. 

Absolute and relative species mention frequencies in the GNAT-100 

and BioCreative III corpora for genes belonging to each of the 10 

species included as default dictionaries in the current version of 

GNAT. 

Species GNAT-100 BioCreative III  

Human 72 (22.9%) 305 (13.2%) 

Mouse 83 (26.3%) 326 (14.1%) 

Rat 8   (2.5%) 57   (2.5%)  

E. coli 2   (0.6%) 5   (0.2%) 

Fruit fly 60 (19.0%) 125   (5.4%) 

Baker's yeast 78 (24.8%) 206   (8.9%) 

A. thaliana 1   (0.3%) 39   (1.7%) 

Cow 0 12   (0.5%) 

Zebrafish 0 53   (2.3%) 

Chicken 0 15   (0.7%) 

Total 304 (96.4%) 1143 (55.8%) 

 

Table 3.3. Species NER evaluation results on the GNAT-100 and 

BioCreative III corpora.  

The number of species associated with annotated genes that were de-

tected by LINNAEUS using either standard or standard+proxy spe-

cies dictionaries (both absolute and relative to the total number of 

annotated species). 

Corpus Standard Standard + proxy 

GNAT-100 243 (77.1%) 292 (92.7%) 

BioCreative III 1,683 (73.0%) 1,805 (78.3%) 
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3.4.2 Baseline gene/protein normalization results  

Evaluation of the baseline gene/protein dictionary-matching method can be seen 

in Table 3.5. It achieved a relatively high level of recall for the GNAT-100 cor-

pus, but precision levels were very low. High levels of recall but low levels of 

precision are what would be expected when no methods for detection and filter-

ing of potential FPs are utilized. The level of recall for the BioCreative III corpus 

was much lower than that of the GNAT-100 corpus, most likely due to lower 

overlap between the species composition of the corpus and the set of supported 

species (see Table 3.4). 

 

3.4.3 GNAT gene/protein normalization results  

Entities extracted by the default processing pipeline of GNAT were compared 

against the manual annotations in the GNAT-100 and BioCreative III corpora. 

These results can be seen in Table 3.6. The results show a large difference in ac-

curacy between the two corpora. The primary reason for the low performance on 

the BioCreative III corpus is the unexpected distribution of the species that are 

associated to the annotated genes, and the fact that many of these species could 

not be found in the documents (as described in Section 3.4.1). The unexpected 

species composition in the BioCreative III corpus can be illustrated by the fact 

that the most common species in the BioCreative III corpus is not human as one 

might expect, but Enterobacter sp. 638, with 375 annotated gene entries (com-

prising 16% of the corpus). Enterobacter sp. 638 only seems to be mentioned in 

four articles in MEDLINE (one of which reports on the sequencing of the species 

and is included in the corpus). The impact that the species composition had on 

results of participants was also noted by the organizers of the BioCreative III 

challenge (Lu and Wilbur, 2011). Since common model species are heavily over-

represented in research (Gerner et al., 2010), we believe the results on the 

GNAT-100 corpus may be a better reflection of GNAT's general performance. 

Nevertheless, the use of a finite number of species-specific gene dictionaries by 

Table 3.5. Baseline evaluation results on the GNAT-100 and Bio-

Creative III corpora.  

Corpus Precision Recall  F-score 

GNAT-100 21.7% 66.8% 32.7% 

BioCreative III 10.8% 33.7% 16.4% 
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GNAT represent a limitation for articles that discuss genes of less frequently 

mentioned species, such as Enterobacter sp. 638. 

 

It is likely that more general differences between abstracts and full-text docu-

ments also contribute to the differences in performance between the two corpora, 

with gene NER on full-text documents presenting a more challenging task than 

abstracts (as has previously been shown to be the case for gene NER (Cohen et 

al., 2010)). Experiments using LINNAEUS show that full-text documents dis-

cuss a larger number of species per document on average than abstracts (see 

Figure 3.2). On average, abstracts with species mentions in MEDLINE mention 

1.3 species, whereas full-text articles with species mentions in PMC mention 4.6 

species. This makes it more challenging to determine which species a particular 

gene mention belongs to in full-text articles. A method using localized searches 

for species mentions around the gene mention should improve gene NER on full-

text documents, but is not a sufficient solution to this general problem. 

 

 
Figure 3.2. The proportions of PMC and MEDLINE documents that 

mention 1, 2, ...,  or 15 species. 

Table 3.6. Evaluation results for GNAT on the GNAT-100 and Bio-

Creative III corpora.  

Corpus Precision Recall  F-score 

GNAT-100 74.8% 48.9% 59.1% 

BioCreative III 34.9% 18.2% 23.9% 
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Comparing the gene mention evaluation results of GNAT (Table 3.6) to those of 

the baseline method (Table 3.5) shows the impact that GNATôs pre-processing 

and filtering methods (steps 2 and 4-7 in Figure 3.1) have on the quality of the 

extracted data by dramatically reducing the number of FPs. The methods are not 

perfect, however: TPs are sometimes filtered away, resulting in reductions of the 

recall levels. This was especially clear in the case of the BioCreative III corpus, 

where the filtering methods were not as accurate as for the documents in the 

GNAT-100 corpus. 

In order to further evaluate the utility of the different processing methods, evalu-

ation experiments were performed after each major stage in the GNAT pro-

cessing pipeline. The results of these experiments, shown in Figure 3.3, show 

how the levels of precision and recall change during the course of the pipeline 

(the method abbreviations correspond to rows in Table 3.1, which also gives 

brief descriptions of each method). As expected, in the early stages of the pipe-

line (immediately following the application of the dictionaries), precision is very 

low while recall is higher. At this stage, precision and recall levels are very simi-

lar to those of the baseline method (although not exactly the same, as a small 

amount of pre-processing is performed prior to the application of the dictionar-

ies). As filtering methods are applied, performance shifts from high-recall to 

high-precision, with precision increasing substantially (due to removed FPs) and 

recall being reduced slightly (due to TPs being incorrectly removed). From the 

results, the primary methods that reduce FPs appear to be the context filters 

(LRCF and ICF) and BANNER. The primary methods that increase the level of 

normalization (i.e. determines what specific gene an ambiguous mention belongs 

to) are the alignment filter (AF) and the species disambiguation filter (MSDF).  
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3.4.4 Comparison with GeneTUKit  

Lastly, this section describes the comparison of GNAT to GeneTUKit (Huang et 

al., 2011), which to the best of our knowledge is the only other system that is 

available for download and capable of cross-species normalization. Like GNAT, 

GeneTUKit also uses components of the proxy version of LINNAEUS for spe-

cies NER and normalization. Also like GNAT, GeneTUKit was evaluated against 

the BioCreative III corpus. Unfortunately, only TAP-k (Carroll et al., 2010) 

  
Figure 3.3. Performance of GNAT components on the GNAT-100 and 

BioCreative III corpora.  

Shown are graphs of how the levels of precision (p), recall (r), and com-

pletely normalized mentions (n), change as different methods in the pipeline 

are run when compared against (A) the GNAT-100 corpus, and (B) the Bio-

Creative III corpus. 
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evaluation scores are provided in the GeneTUKit paper Huang, 2011 #260}, 

which cannot be compared directly against precision/recall/F-score scores that 

were reported in the previous section. The TAP-5, TAP-10, and TAP-20 scores 

of GeneTUKit, compared against the BioCreative III corpus, were 29.7%, 31.3%, 

and 32.5%, respectively. In order to be able to compare GeneTUKit to GNAT, 

we applied GeneTUKit (using its default settings) to both corpora, which allowed 

us to evaluate it against the manual annotations of the two corpora. The levels of 

precision, recall, and F-score are shown in Table 3.7. 

 

The evaluation results for BioCreative III shows considerably higher levels of re-

call for GeneTUKit (33.7%) compared to GNAT (18.2%), but lower levels of 

precision (27.7% for GeneTUKit compared to 34.9% for GNAT). The evaluation 

results for the GNAT-100 corpus of 100 abstracts shows a somewhat higher level 

of recall for GeneTUKit (56.7%) compared to GNAT (48.9%), but a considera-

bly lower level of precision (43.0% for GeneTUKit compared to 74.8% for 

GNAT). The reason for the differences in recall is most likely a combination of 

the fact that the dictionary-matching method of GeneTUKit is not limited by spe-

cies and that GNAT uses a heavier degree of filtering. The lower levels of preci-

sion for GeneTUKit is to be expected given the higher levels of recall, since re-

call and precision typically are balanced against each other, with an increase in 

one of the two often leading to a reduction in the other.  

3.5 Summary  

This chapter described the integration of GNAT and LINNAEUS, improvements 

to the GNAT filtering methods, and the availability of GNAT as a web service 

and for download under the BSD open-source license. Evaluation results show 

that GNAT appears to perform better on abstracts (59.1% F-score) than on full-

text documents (23.9% F-score). We compared GNAT to GeneTUKit (48.9% 

and 30.4% F-score for abstracts and full-text documents, respectively), to the 

Table 3.7. Evaluation results for GeneTUKit on the GNAT-100 

and BioCreative III corpora.  

Corpus Precision Recall  F-score 

GNAT-100 43.0% 56.7% 48.9% 

BioCreative III 27.7% 33.7% 30.4% 
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best of our knowledge the only other gene normalization system available for 

download. This comparison suggest that it could be useful to combine results 

from the two tools for downstream applications, as GNAT appears to perform 

better on abstracts while GeneTUKit appear to perform better on full-text arti-

cles. In addition, GNAT has higher levels of precision than recall, while the op-

posite is true for GeneTUKit. The following chapter describes the design of an 

information-extraction system that, among other components, uses the combina-

tion of GNAT and GeneTUKit for gene/protein NER and normalization. 
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Chapter 4:  Integrated text  mining for large -scale 
information extraction in biology  

4.1 Abstract  

The amount of published information in biology is rapidly increasing and critical 

data for understanding biological events like phosphorylation or gene expression 

remains locked in the biomedical literature. Most current text mining approaches 

to extract information about biological events are focused on either limited-scale 

studies and/or abstracts, with extracted data rarely available to support further re-

search. Here we present BioContext, an integrated text mining system which ex-

tracts, extends and integrates results from a number of tools performing entity 

recognition, event extraction, negation/speculation detection and anatomical as-

sociation. Application of our system to 10.9 million MEDLINE abstracts and 

234,000 open-access full-text articles from PubMed Central yielded over 36 mil-

lion mentions representing 11.4 million distinct events. Event participants in-

cluded over 290,000 distinct genes/proteins that are mentioned more than 80 mil-

lion times and are, when possible, linked to Entrez Gene identifiers. Over a third 

of events contain contextual information such as the anatomical location of the 

event occurrence or whether the event is reported as negated or speculative. We 

also present results from an earlier pilot project, GETM, which specifically ex-

tracts information about gene expression in an anatomical context. The BioCon-

text pipeline is available for download (under the BSD license) at 

http://www.biocontext.org, along with the extracted data for online browsing. 

GETM and its results are available from http://getm-project.sourceforge.net. 

4.2 Introduction  

The amount of information available in the biomedical literature is increasing 

rapidly, with over 2,000 articles published daily
21

. While the information avail-

able in these articles (now exceeding 18 million in number) represents a vast 

source of knowledge, its sheer size also presents challenges to researchers in 

terms of discovering relevant information. Efforts in biomedical text mining 

                                                 
21

 http://www.nlm.nih.gov/bsd/index_stats_comp.html 
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(TM) seek to mitigate this problem through systematic extraction of structured 

data from literature (Lu, 2011). To date, progress in biomedical TM research has 

primarily focused on tools for entity recognition (locating mentions of species, 

genes, diseases, etc.) and the extraction of gene/protein relationships (Krallinger 

et al., 2008). 

Recently, there has been increasing interest to develop TM tools for the extrac-

tion of information about a wider array of biological and molecular processes 

(often referred to as ñeventsò), such as expression, phosphorylation, binding, and 

regulation of genes and proteins (a complete list of event types considered is 

given in the next section). Community challenges (Kim et al., 2009; Kim et al., 

2011) have shown that extracting such events is often difficult because of the 

complex and inconsistent ways in which such processes are reported in the litera-

ture. Most efforts to extract events have thus been restricted to either limited-

scale studies or abstracts only. In addition, while some event extraction tools are 

now publicly available, their usefulness for supporting biological discovery is 

still unknown given the difficulties in applying and integrating data from these 

systems on a large scale. To overcome these limitations, in this chapter we pre-

sent two systems, GETM and BioContext, for large-scale event extraction from 

the biomedical literature.  

BioContext is an integrated TM system which extracts, extends and integrates re-

sults from a number of TM tools for entity recognition and event extraction. The 

system also provides contextual information about extracted events including 

anatomical association and whether extracted processes have been reported as 

speculative or negated (i.e. not taking place). In addition to making the integra-

tion platform available under an open-source license, we also provide the data re-

sulting from processing the whole MEDLINE and the open-access subset of 

PubMed Central (PMC) both for batch download and for online browsing. 

GETM was a pilot developed prior to the larger BioContext system (Gerner et 

al., 2010), which specifically performs extraction of gene expression discussions 

and associates the normalized gene with an anatomical location. GETM was de-

veloped in order to evaluate whether anatomical association of events was feasi-

ble, and to understand the volume of data that is available for extraction. In addi-
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tion to the software itself, we also report on the accuracy of data extracted by 

GETM, and the volume of information that could be extracted from MEDLINE 

and PMC using it.  

4.3 Background  

4.3.1 Extraction of in formation about biomedical events  

Molecular events are frequently reported and discussed in the literature, and are 

critical for understanding a diversity of biological processes and functions. While 

some databases exist that contain information about molecular processes (e.g. 

protein-protein interactions, PPIs) (Chatr-aryamontri et al., 2006; Kerrien et al., 

2007; Ceol et al., 2009; Szklarczyk et al., 2011), extraction of a more general set 

of events using TM systems will present a valuable addition to PPI data and en-

able focused navigation of the literature through a variety of biological processes.  

Identification of molecular events in the literature has been acknowledged as a 

challenging task (Zhou and He, 2008; Kim et al., 2009) and has been the topic of 

several recent text-mining challenges (Krallinger et al., 2008; Kim et al., 2009). 

The shared task 1 of BioNLPô09, for example, aimed to identify and characterize 

nine types of molecular events: gene expression, transcription, protein catabo-

lism, localization, phosporylation, binding, regulation, positive regulation and 

negative regulation. Depending on the event type, the task included the identifi-

cation of either one (for the first five event types mentioned above) or more (for 

binding) participating proteins/gene (sometimes referred to as themes). Regula-

tory events could also have a cause (which could be a protein/gene or another 

event) in addition to one theme/target of regulation (also a protein/gene or an-

other event). The task also included the identification of a textual span (called 

ñtriggerò) that indicated the occurrence of an event. 

For example, the sentence ñMDM2 acts as a negative regulator of p53 expres-

sionò contains two events: (i) a ñgene expressionò event, with the theme p53, and 

(ii)  a ñnegative regulationò event, where the theme is the gene expression event 

in (i) and the cause is MDM2 (see Figure 1.4 on page 41). The gene expression 

trigger is the word ñexpressionò and the trigger of the regulatory event is ñnega-

tive regulatorò. 
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While many systems have been developed for specifically extracting PPIs (Zhou 

and He, 2008), only a few general event extraction tools are publicly available. 

These include the Turku event extraction system, TEES, (Björne et al., 2009), 

which was the best performing system in the BioNLPô09 challenge (Kim et al., 

2009). TEES combines a machine learning approach (relying on dependency 

parse graph features) with a rule-based post-processing step to identify complex, 

nested events. Another tool, called Eventminer, based on the work of Miwa et al. 

(2010), is available through U-compare, which also uses machine-learning meth-

ods and a set of rich features. Finally the Stanford Biomedical Event Parser 

(McClosky et al., 2011), which has been made available very recently, also uses 

dependency parses to extract events. 

4.3.2 Named entity recognition and normalization  

Named entity recognition (NER, locating entities in text; see Section 1.3) is typi-

cally performed before information extraction in TM systems. Entity classes that 

have received attention vary widely and include genes/proteins (Settles, 2005; 

Tsuruoka and Tsujii, 2005; Leaman and Gonzales, 2008), species (Gerner et al., 

2010), and chemical molecules (Hawizy et al., 2011). Depending on the applica-

tion, recognized entities may also be normalized (i.e. linked to standard database 

identifiers) in order to enable integration of extracted information with biological 

databases. GNAT (Hakenberg et al., 2008; Solt et al., 2010) and GeneTUKit 

(Huang et al., 2011), for example, are capable of performing both recognition 

and normalization of genes and proteins on a large scale by linking their men-

tions to Entrez Gene identifiers. 

4.3.3 Data integration  

Linking data from various resources is one of the main challenges in bioinfor-

matics. Integrating TM results with existing resources (such as organism-specific 

databases, pathway databases or general gene or protein databases) would not 

only give biologists more comprehensive access to data in the literature, but 

would also allow bioinformaticians to run more powerful integrative analyses us-

ing information extracted from the literature. Recently, some attempts have been 

made to provide such integrated views over databases and literature. For exam-

ple, pubmed2ensembl (Baran et al., 2011) links genomic data from Ensembl to 

publications in MEDLINE/PMC and vice-versa, providing linkouts between over 
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two million articles and nearly 150,000 genes from 50 species. Similarly, Onto-

grator (Morrison et al., 2011) provides links between four genomic, meta-

genomic, marker gene sequences and culture collection databases with a subset 

of MEDLINE abstracts. 

4.4 Materials and methods  

As mentioned previously, this chapter presents two systems: a pilot gene expres-

sion event extraction system, GETM (Gerner et al., 2010), and the more general 

event extraction and contextualization system BioContext. GETM, described in 

the following section, extracts information about gene expression events and as-

sociates them to anatomical locations from sentences such as ñHusain et al. 

(1998) demonstrated that acquisition of further resistance to cisplatin was associ-

ated with an increase in the expression  of BRCA1 in MCF-7 cellsò 

(PMC2716781). 

BioContext, described in Section 4.4.2, extracts a wider range of events (using a 

larger number of NER and event extraction systems), associates them to anatom-

ical locations, performs detection of negation and speculation, and detects poten-

tial contradictions in the extracted data from sentences such as the previously 

mentioned ñMDM2 acts as a negative regulator of p53 expressionò. 

4.4.1 GETM: Rule-based gene expression extracti on 

An overview of GETM can be seen in Figure 4.1, showing how articles are first 

processed for named entity recognition and normalization, trigger detection 

(keywords indicating the discussion of a gene expression), sentence splitting, and 

association of gene/protein and anatomical targets to the triggers. Each of the 

methods involved are described in more detail in the following sections. 
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4.4.1.1 Named-entity recognition  

In order to extract information about the expression of genes and their anatomical 

locations, a key requirement is the accurate recognition and normalization (map-

ping the recognized terms to database identifiers) of both the genes and anatomi-

cal locations in question. In order to locate and identify gene names, we utilized 

GNAT (Solt et al., 2010; Hakenberg et al., 2011), which was previously de-

scribed in Chapter 3. The species identification component of GNAT, used to 

help disambiguate gene mentions across species, was performed by LINNAEUS 

(Gerner et al., 2010), previously described in Chapter 2. 

In order to perform NER of anatomical locations, we investigated the use of var-

ious anatomical ontologies. A key challenge with these ontologies is that anatom-

ical parts (and subsequently, their associated terms) vary significantly from one 

species to another. For a simple example, consider that fruit flies have wings, 

whereas humans do not and humans have fingers, while fruit flies do not. Efforts 

have been made in creating unified species-independent anatomical ontologies, 

such as Uberon (Haendel et al., 2009; Mungall et al., 2010). However, in prelim-

inary experiments, we found that the coverage of Uberon was not extensive 

enough for this particular application (data not shown), motivating us to instead 

use a combination of various species-specific anatomical ontologies hosted at the 

OBO Foundry (Smith et al., 2007). These ontologies (n = 13) were chosen in or-

der to cover terms from the main model organisms that are used in research (e.g. 

 
Figure 4.1. Overview of the processing workflow of GETM. 

Shows how entities (and enumerations and abbreviations of them) are first de-

tected in the NER stage, followed by detection of triggers (keywords indicat-

ing gene expression mentions), and finally association of the entities to the 

triggers. GDep: Genia depency parser; LINNAEUS: see chapter 2; GNAT: 

see chapter 3. 
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human, mouse, fruit fly, Caenorhabditis elegans) and a few larger groups of or-

ganisms such as e.g. amphibians and fungi. It is worth noting that more general 

terms, such as ñbrainò, are likely to match anatomical locations in multiple spe-

cies at the same time. In total, the combined ontologies contain terms for 38,459 

different anatomical locations. The approach of using OBO Foundry ontologies 

for anatomical NER is also the approach that Pyysalo et al. (2011) used when 

developing a tool for anatomical NER. Unfortunately, this resource was only 

made available recently, after the anatomical work described here had already 

been completed and published (Gerner et al., 2010). 

In order to link terms in the OBO ontologies to each other, a node A is consid-

ered to be equivalent to a node B if A has a name or synonym which also is a 

name or synonym of B (allowing for a possible additional ñsò at the end of the 

term). For example, consider three nodes in three different ontologies, all de-

scribing the same cell type: A) ñT cellò; B) ñT lymphocytesò; and C) ñT cellsò, 

with synonym ñT lymphocytesò. In this example, A and C would initially be 

linked to each other (ñT cellò is equal to ñT cellsò, if the additional ñsò is al-

lowed), and the merged AC node would be linked to B through ñT lymphocytesò. 

The new, merged, nodes were given new identifiers. The quality of the merge 

process was not evaluated quantitatively due to time constraints, but no errors 

have been discovered so far. The links between the merged nodes and the origi-

nal ontologies were preserved, in order to enable linking of extracted data to the 

original OBO ontologies (and thus to the model organism databases that some of 

the ontologies originally came from, such as FlyBase). 

We also utilized an ontology of cell lines (Romano et al., 2009), containing terms 

for a total of 8,408 entries (ranging across 60 species), as cell lines can be viewed 

as biological proxies for the anatomical locations that gave rise to them. For ex-

ample, the HeLa cell line was derived from human cervical cells, and the THP1 

cell line was derived from human monocytes (Romano et al., 2009). 

The anatomical and cell line NER, utilizing the OBO Foundry and cell line on-

tologies, was performed using dictionary-matching methods employed by 

LINNAEUS (Gerner et al., 2010), described in Section 2.3.3. 
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After performing gene and anatomical NER on the document, abbreviations were 

detected, using the algorithm by Schwartz and Hearst (2003), in order to allow 

the detection and markup of abbreviated entity names in the cases where the ab-

breviations do not exist in any of the ontologies that are used. 

4.4.1.2 Trigger detection  

The trigger keywords indicating that an author is discussing the expression of 

one or several genes, such as e.g. ñexpressionò and ñexpressed inò were detected 

using a manually created list of regular expressions. The regular expressions 

were designed to match variations of a small set of terms that were identified 

when inspecting documents not used when building the gold-standard corpus 

(see Section 4.4.1.5). The terms used to construct the trigger regular expressions 

were orthographical, morphological and derivational variations of the following 

terms:  

¶ expression 

¶ production 

¶ transcription 

Descriptions of the different levels of expression were also considered for the 

different terms, such as ñover-expression,ò ñunder-expression,ò ñpositively ex-

pressed,ò ñnegatively expressed,ò etc. Each gene expression mention that was ex-

tracted by GETM contains information about the trigger term used by the author, 

allowing users to view, for example, only entries where genes are ñunder-

expressedò, ñnegatively expressedò or ñover-expressedò. 

4.4.1.3 Association of entities to the trigger  

To help associate triggers with the correct gene and anatomical entities, articles 

were first split into sentences, allowing each sentence to be processed in turn. In 

order to reduce the number of false positives and preserve a high level of preci-

sion, any sentences that did not contain a trigger, at least one gene mention and at 

least one anatomical mention were ignored. Following this, the sentences were 

processed by the GENIA dependency parser (GDep) (Sagae and Tsujii, 2007), 

and the following pattern- and tree-based rules were employed in order to associ-

ate each trigger with the correct gene and anatomical mention: 
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1. If there is only one gene mention and only one anatomical mention in the 

sentence, the trigger is associated with those mentions. 

2. If there is one gene mention G and one anatomical mention A in the sen-

tence such that they match one of the patterns ñG is expressed in Aò, ñex-

pression of G in Aò, ñA transcribes Gò or ñA produces Gò, the gene men-

tion G and anatomical mention A are associated with the trigger (varia-

tions of the triggers, such as ñover-expressedò and ñnegative expressionò 

are considered as well). Additional gene or anatomical mentions that fall 

outside the pattern are ignored. 

3. If neither of the above rules applies, the trigger is associated with the 

gene and anatomical mentions that have the shortest dependency tree path 

to the trigger. 

Each trigger was processed independently, allowing the potential extraction of 

multiple gene expression statements from a single sentence. Initially, experi-

ments were performed using stricter rules where only variations of rule 2, requir-

ing gene and anatomical mentions to conform to certain patterns, were used. 

However, recall was in these cases found to be extremely low (below 5%; data 

not shown). The union of rules 1-3 are more permissive, allowing higher recall. 

The fact that the method requires a combination of a trigger, a gene and an ana-

tomical location makes it susceptible to false negatives: if any one of them can-

not be found by the NER or trigger detection methods, the whole combination is 

missed. 

4.4.1.4 Expansion of extracted data through enumerated entity 
mentions  

We noted that a relatively large number of gene/protein and anatomical mentions 

in MEDLINE are part of entity ñenumerationsò, i.e. lists of more than one entity 

connected within a conjunctive phrase (see Section 4.5.1.2). We hypothesized 

that, where an event is associated with a gene/protein or anatomical entity that is 

part of such an enumeration, we could infer additional events by substituting the 

original entity with each of the other entities in the enumeration. For example, 

consider the sentence ñIn the present study, we describe three novel genes, Dor-

socross1, Dorsocross2 and Dorsocross3, which are expressed downstream of 
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Dpp in the presumptive and definitive amnioserosa, dorsal ectoderm and dorsal 

mesodermò (PMID 12783790). Here, gene expression events should be extracted 

for all three Dorsocross genes, and each of those events should be associated 

with each of the three anatomical locations mentioned. If any of these nine events 

are not extracted directly, the enumeration processing would allow them to be in-

ferred indirectly.  

In order to implement this inference, we used regular expression patterns to de-

tect groups of enumerated entities. Where at least one of these entities (e.g. T1) 

were part of an event (e.g. E1), we constructed a new event E2 with the entity 

T2, where T2 was mentioned in the same enumeration group as T1. Except for 

T1, all other properties of E1 were duplicated in E2. 

4.4.1.5 Evaluation  

To the best of our knowledge, no gold-standard corpus linking gene expression 

events to anatomical locations was available. The closest candidate corpus is the 

BioNLP corpus (Ohta et al., 2009), which contains annotations about different 

biological processes, including gene expression. Annotations in the corpus con-

tain trigger terms that are linked to genes (or gene products) where the authors 

discuss gene expression. However, anatomical locations have not been annotated 

in this corpus.  

In order to allow evaluation of the accuracy of GETM, we extended the annota-

tions of gene expression events in part of the BioNLP corpus. Each gene expres-

sion entry in the corpus was linked to the anatomical location or cell line that the 

author mentioned. In cases where gene expression was only discussed generally 

without referring to expression in a particular location, no association to an ana-

tomical location could be made (these entries were ignored during evaluation). 

The named entities in the BioNLP corpus were only linked to their locations in 

the text, not to unique database identifiers (i.e., Entrez Gene or OBO Foundry 

identifiers for genes/proteins and anatomical locations, respectively). Because of 

this, subsequent evaluation in this extended corpus is limited to the accuracy of 

recognition (locating the entities in the text), but not normalization (linking the 

entities to database identifiers). 
































































































