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http://biocontext.smith.man.ac.uk/data/entispecies.csv.gz

GNAT and GeneTUKIit genes/protein mentions:
http://biocont&t.smith.man.ac.uk/data/entitigenes.csv.gz

GETM anatomical entity mentions:
http://biocontext.smith.man.ac.uk/data/entiaasmtomy.csv.gz
BioContext events: http://biocontext.smittamac.uk/data/events.igr



Abstract

The amount of biomedical literaie available is increasing at an exponential rate
and is becoming increasingly difficult to navigate. Fexhing methods cang
tentially mitigate this problem, through the systematic and iacgée extraction

of structured information from inherently stnuctured biomedical text. Thiseh

sis reports the development of four texining systems that, by building on each
other, has enabled the extraction of information about a large numbeb-of pu
lished statements in the biomedical literature. The firsegystINNAEUS, &-
ables highly accurate detectiona(firecogr
tiono) of species names in biomedi cal ar
plemented a range of improvements in the GNAT system, enabling high
throughput gene/ptein detection and identification. Using gene/protein identif
cation from GNAT, we developed the Gene Expression Text Miner (GETM),
which extracts information about gene expression statements. Fimailiging

on GETM as a pilofproject we constructed thBioContextintegrated eventxe
traction system, which was used to extract information about over 11 naiifen
tinct biomolecular processes in 10.9 million abstracts and 230,00€ktlart-

cles. The ability to detect negated statements irBtb€ontex system enabke

the preliminary analysis gfotentialcontradictions in the biomedical literature

All tools (LINNAEUS, GNAT, GETM, andBioContex} are available under
opensource software licenses, and LINNAEUS and GNAT are available as
online webservies. All extracted data (36 millioBioContext statements,
720,000 GETM statements, 72,000 contradictions, 37 million mentionseef sp
cies names, 80 million mentions of gene names, and 57 million mentiona-of an
tomical location names) is available for buldwhload. In addition, the datx-e
tracted by GETM an@ioContextis also available to biologists through e#&gy

use search inttaces.
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IAA Inter-annotator agreement

MeSH Medicd subject headings

NCBI National Center for Biotechnology Information
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ICF Immediate context filter
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NVF Name validation filter

SWF Stopword filter

UNF Unspecific filter

13



Thesis outline
This thesis cosists of five chapters: an introductory chapter, three chapgers d

scribing the development of tools performing increasingly complex tasksi-and f
nally a concluding chapter with a summary of the work.

Chapter 1 gives an overview of previous work relatethi®thesis, describing a
typical textmining workflow, previously available texhining systems, training
and evaluation corpora, and evaluation methods. It also describes the aims of the

project.

Chapter 2 describes work on a species naemtitly recogrtion and normalia-
tion system, LINNAEUS, published in Gernet al. (2010) with some exte-
sions over the published work.

Chapter 3 describes improvements to the GNAT gene/protein rantiéy
recognition and normalization systdiMakenberget al, 2008; Hakenbergt al,
2008) The improvements, publisl in Soltet al. (2010)and Hakenbergt al.
(2011)(and presented by me at the BioCreative Ill conference), rely on (among
other methods) the work on LINNAEUS described in Chapter 2.

Chapter 4 describes the development of two informaddiraction systems,

GETM and BioContex, both utilizing GNAT for gene/protein namehtity

recognition and normalization. The work on GETM, which extracts information

about gene expression statements, has been published prey@esigret al,

2010)and presented by me at a conference. The wolBi@@ontexf which e-

tracts i nformation about Bi oNLPOO9 nevents
submitted toBioinformaticsin the near future aSerner, M., Sarafraz, F., Bgr

man C. M. a n dinteirated dedtniring forGargeséale information

extraction in ology.0

Finally, Chapter 5 concludes the thesis by describing the primary contributions of
the work and future work that can be performed.

As is common for much research, some of the projects described in this thesis
were performed in collaboration with otheesearchers. The work on
LINNAEUS and GETM was performed solely by me. Initial work on GNAT in
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the leadup to the BioCreative Ill challenge, focused on performance ineprov
ments, was performed in collaboration with J6rg Hakenberg (currently at Roche
pharmacaticals, previously at Arizona State University) and lllés Solt (Budapest
University of Technology and Economics), with roughly equal contributions.
Later work on GNAT, primarily focusing on accessibility (code cleanup and r
lease, web service developmamnid deployment, etc.) was performed in callab
ration with Jorg Hakenberg (also with roughly equal contributions). In addition,
all evaluations, analyses, and work on a baseline method for GNAT were pe
formed solely by me. Work oBioContextwas performedn collaboration with
Farzaneh Sarafraz (University of Manchester), wsitfjhtly over half of the work

performed by me.
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Chapter 1: Introduction

1.1 Background and motivation
Scientistsrely on their conceptuaation of knowledge to drive research. They

communicatebase& on this conceptuaation, and adapt according to the latest
findings. In the biomedical domairglectronic data resourcésat represent bt
logical knowledgeare becoming increasinglavailable, e.g. biomedical dat
bases, ontologies and certainly theestfic literature.This last component, the
biomedical scientific literature, idncreasing at an unprecedented pace.
MEDLINE, the main database contained in PubMed, contains citation iaform
tion and abstracts for about 19.6 million articles as of Jdrd ZBigure 1.1a).
MEDLINE is growing at a current rate of 720,000 articles per yeigu(e1.1b)
(National Library of Medicine, 2011and has been growing exponentially at a
rate of about 4% per year over the last 20 ydars2011)

While the increase in biomedical research and its associated publishedainform
tion clearly is very positive, it also presents new challenges relating ttathe
gation of the literature and finding relevant information for research purposes.
Individual biologists can no longer keep up with such enormous flows af info
mation, even in specialized sdomains. As a result, important results may go
unnoticed and uplicated research may be performed because researchers are not
aware of previous research on the same prolfleapertiFurgaet al, 2008)
Likewise, database curation, which often involves reading literature for iaform
tion relating to certain genes, organismsedges and manually extractingerel
vant information, is also experiencing problems due to the amount of available
literature (Baumgartneret al, 2007; Dowellet al, 2009) Curation is incres

ingly lagging behind phiishing efforts,decreasing both the availability and
value ofimportant informationfor users(Howe et al, 2008; Karamanigt al,

2008) These problems are likely to worsen as the amount of published literature
continues to increase if it cannot be mitigated by more powerful searcim-and i

formation etraction systems.

16



(A) Number of citations in MEDLINE

18 —
16
2
5 14
é 12 —
£ 10+
2 8
S
g 6
5]
4 — -
JPREE e — all
27 NPl ---- with abs
> -
[ | | | | | |
1980 1985 1990 1995 2000 2005 2010
year
(B) Number of additions to MEDLINE
700 —
B 600 —
c
©
3 500
(o]
£
£ 400
w
c
S 300
g
° 200 ot — all
el ---- with abs
--0-
I I I I I I I
1980 1985 1990 1995 2000 2005 2010

year

Figure 1.1. The number of total entries and annual additions for
MEDLINE, 1960-2010.

(A) The number of articles contained in MEDLINE from80%0 2010.

(B) The number of annualticle additions to MEDLINE from 180 to 2010.
Shown are both the total number of entries and only the number of e
that have associated abstracts (abs).

In contrast to structured data sources, the scientific literature is largelyainstru
tured. While some structure exisise.g. the sections that often as used in art
cles, authors describe biological knowledge in a range of different ways using
natural language (that is inherently unstructured). Howekissugh largescale,

automated and systematic analyses of literatese¢smining systems offer agp
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tential way to mitigate the pbtem of navigating and extracting information

from the huge volumes of scientifliterature (Zweigenbaumet al, 2007; Lu,

2011) For example, texinining systems that associate articles with entitoés (

e.g. species, genes, or diseases) that are discussed in the article could enhance
search engines by enabling users to easily discover articles about a panicular e
tity of interest(JimenaYepeset al, 2009; Bararet al, 2011) rather than having

to resort to lesfine-grainedword-based indexes. Another use of having entities

linked to articles is that-spahaegoaftom aan

article (through some entity of interest that it mentions) to other articles that

mention the same entity. Alternatively, textining systems can provide meeh

nisms to navigate between the I|i4t4erature

spaceo ( as initheplbpesaitevargHeffthann and Valencia, 200¢)
and the-spge®reomd aed inithe eext2geneme softwafidaels-
sleret al, 2011).

Considerable efforts are also being directed towards developingnieixig

methods for more advanced information extraction téskdbbs, 2002) Many

definitions exist for information extraction, but in the biomedical domain it can

be thought bas the extraction of statements about concrete biomefdictd

from arti cl exgegulawes moteiyd ,A po 0t B ixlcarsedthes e a s e
symptomyo ) . Systematic extract i ocationsffor f act s
example in assisting se&rand navigation (as with linking entities) or in pbvi

ing databases of extracted information for use by resear(Beiffith et al,

2008) Systematically extracted biomedical information could also beepsed

in volume by bioinformaticians, if the data has high enough accy(@utyen and

Hunter, 2004; Ananiadoet al, 2006) In particular, extraction of protejorotein
interactions have seen large interest with conaldlerwork invested in botlof

cused challengg¥rallinger et al, 2008; Kimet al, 2009; Kimet al, 2011)and

individual systemgJaegeet al, 2008; Chowdharet al, 2009. However, while
development of information extraction systems and algorithms has seed-consi
erable progress, few systems have actually been applied umeots on a large

scale (e.g. all of MEDLINE)Lastly, textmining systems could also be applied

aspart ofthe article preparation angublication procesgpr examplein order to

detect potential problems in a manuscript or, with the help of authors, ensure that
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information described in the article is available in actmed format at the time
of publication(Ceolet al, 2008)

1.1.1 Project aims
Overall, this project aims to develop opswsurce teximining methods to support

identification of entities and facts in text. One of the fundamental properties of
all biological sudies is that they are performed on a particular species or set of
species. As such, identifying species names in biomedical articles is a fundame
tal step in many advanced text mining systems, providing important datakfor lin
ing and retrieving articlegSarkar, 2007)As no biomedical species egtitecay-

nition and normalization system capable of local processing existed at the outset
of this project (se&ectionl.3.3, a major aim of the research in this thesis was

to develop a species NER system, LINBS, which is described in Cpiar 2.

Genes and proteins iscare entity typein currentbiomedical knowledgeBe-
cause of thisgene/protein entity recognition and normalization is critioat a-

ly for database curation effortisut also foradvanced iformation extraction @
plications Effective integration of a species normalization system has been ide
tified as a critical component for gene/protein entity normalizatfbo ét al,
2011) Section1.3.4. As no gene/protein entity recognition and normaéiura
system existed at the beginning of this project with a satisfactory degree-of sp
cies NER integration (se®ectionl1.3.4), a second aim of this work was to-i
prove a current gene/protein NER system by integrating it Wah_LtNNAEUS
species normalization system. The integration (and further development) of the
stateof-the-art gene/protein NER and normalization system GNAT with
LINNAEUS is described in Chapter 3.

Processing the complete scientific literature for the ifieation of gene/protein

related events is still a challenge and requires a number of components. Ther
fore, a third aim of this praodjassaecite wa s
the extracted events with contextual information ustadeof-the-art solutions
(including the combing GNAT/LINNAEUS system),and deliver a comprehe

sive overview analysig his work is described in Chapter 4.
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1.2 Overview of typical text -mining methods
Methods used by different tertining applications vary widely, both fappi-

cations that perform different tasks, but also for applications that aim to perform
the same task. However, processing methods that are used by most information
extraction systems can generally be categorized into three different stagies: do
ument retieval, preprocessing and information extraction (illustrated~igure

1.2). The three general stages are described in the following sections. After co
struction of thesystem evaluation of the accuracy of the information eotied

by the system is clearly also very important; methaus$ metrics foevaluation

are discussed i8ectionl.2.4

L.

—_—>»

e i >
Document e Pre- = Information
retrieval S processing = extraction

Figure 1.2. A diagram of a typical information extraction system.

Shown are the three major steps common to most information extracsiol
tems. Dbcument retrieval is used to find documents that are relevant fo
application Selected documents are pgoeocessed (by e.g. NER tools)

preparation dr information extractionInformation extraction methodken

extract structured information from the prepared documents.

1.2.1 Document retrieval
Document retrieval methods are used for selection of docsrtleattare relevant

for some applicationBaezaYates and RibeirdNeto, 1999) There are many
ways to perform document retrieval, the easiest of which, in the biomedical d
main, is a texbased PubMed query. More complicated et could include

for example a binary support vector machine (SVM) class{fiable, 2006)
which could be trained to determine whether a particular document is relevant for

a paticular application.

Instead of using automated methods (such as SVM classifiers), already availabl
documents can also be retrieved on the bafsisanual annotations, such asdne

ical subject headings (MeSH tad®im et al, 2001) MeSH tags arenanually
assigned to douments in PubMed in order to provide higiality indexing of

the literature.
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Document retrieval is often performed to focus application ofrt@ring sys-

tems on a smaller, more relevant document set. For a simple example, consider a
textmining applicaibn that aims to extract information about thyroid cancer.
The application could be applied to the complete set of 19 million documents in
MEDLINE but depending on how timeonsuming the processing is, it may not

be possible to process such a large setooiments. Instead, a PubMed query
for the MeSH tagiThyroid Neoplasn would return 34,000 documentsat

have been assigned as discussing thyroid cgaseof October 2011), and that
much smaller document set could be processed insRradessing a mic
smaller and more focused document set would result in not only lower resource
requirements but it is also possible that it would result in highality data, as

any data which would have been extracted from documents that do not actually

discuss thyral cancer would most likely have been incorrect.

1.2.2 Pre-processing methods
The boundary between what is considered to bgpreessing and what is 1©o

sidered to be the main information extraction may vary depending on thesapplic
tion (and the person makingetjudgment) However, adescription of some
common methods that can be considered to constitufgrpeessing is givenehd

low.

Most information extraction methods make use of results from some type of
grammatical tree parser (software that determthegrammatical structure of
sentences)Examples of ommonly used tree parsers are the Genia dependency
parser(Sagae and Tsujii, 200{i5Dep), the McCloskyCharniak constitueney

tree parse(McCloskyet al, 2006) or the Enju pars€Ninomiyaet al, 2007) In
orderto produceparse treegdescribing the sentence structyresolsusuallyal-

so perform tokenizatio(splitting the text into tokensand parof-speech (POS)
tagging. POS tagging makes it issgihble to learn whether a particular token is,
for example, a verb or a noun. If only the POS tags are required, performing a
full tree parsemay requireunnecessarily heavy processing resources. Instead,
lighter-weight software that specifically perforn®OS tagging would be more
suitable, such as the GENIA tagd@suruokaet al, 2005) An example of the
parsed results from the McCloskKharniak parser for the senteritéhe magin

tude of esponsiveness is cell typegle n d e nt . OFigursl.3.d ookirgmat i n
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theexamplePOS tags, we can for example see liidved has been identified as a
determiner (DT), howimagnitud® has been identifieds a fisingular or mass
nourd (NN), and howfithe magnitude has been identified as a noun phrase
(NP).

A)
(S (NP (NP (DT The) (NN magnitude))
(PP (IN of) (NP (NN responsiveness))))
(VP (AUX is) (ADJP (NN cell) (NN type) (JJ dependéed) (. .))
B)
S
NP VP
NP PP AUX is ADJP
v N v\ I
DT The NN magnitude IN of NP NN cell NN type JJ dependent
NN responsiveness

Figure 1.3. Example parse tree.

Describes the structure and paftspeech tags for the different words an
phraseof t he parsed sentence AThe m
depelent 6. The information is show
and b) a graphical representation.

In addition to grammatical analysis methods, another category -@rpcessing
methods is named entity recognition (NER; Seetion 1.3), which also cann-
clude normalization (i.e. linking of the entities to stable database identifiers). |
formation extraction methods that act on entities, whether drugs, diseases, or
geographical locations, require infaation about where those entities arenme
tioned in the text. Some entity recognition toadétén those that are based on
machinelearning methods) will also require grammatical information, in which
case grammatical parsing (or at least POS tagging) willelquired even if the

information extraction methods strictly do not need such information for their
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opemtion. A more inrdepth overview of recognition systems for the entity classes

that relate to the work in this thesis is giverSectionl.3.

1.2.3 Information extraction methods
Following preparation of the document through-precessing methods, nhet

ods are applied that prepare and extract the desired information for whigh the a
plication is designed. These methods depend heawi the actual application

and what it is aiming to extrganakingit difficult to give general descriptions of
these methods. However, they generally fall into two csiegy machine
learningbased methods, and knowledggsed methods. As the name gesys,
machinelearningbased methods are driven by models that have been trained on
gold-standard data through machine learning. Knowlduigeed methods aressy
tems that include rules, dictionaries, etc. A more detailed overview of seme |
formation extraton systems (and the methods that they use) that have been d

veloped and are relevant to the work in this thesis is giv&action 1.4.

1.2.4 Evaluation of text -mining systems
To assess how well a temtining system is performingy, is necessary to perform

an evaluation study in some form. In order to perform the actual evaluation, a
corpus (or several corpora) with higality annotations is required that can be
used for comparisons against results extracted by the systemelveingtedIt

is important to note that performance measwan only reliably be usetbr
comparisondetweerdifferent software packagésthey weretested on the same

set of preannotated corpora. While the performance of a particular method on
two different corpora may be similar, it is not guaranteed and results from one

corpus are not directly transferable to another.

Evaluations that involve text spans (text rage. some range of texietween

start and end offsein the text) such as entity méonscaneiter be HAstri ct «
iappr oxAppnaimateevaluationsconsder a partial match(i.e., with

mention boundaryoverlap)to be sufficient to be considered a true positive (e.g.

where only half of a gene name was recognized as a gene nansehtiast,

strict evaluations requirghe full entity name (and nothing more) to be tagged for

it to be considered a true positig@lssonet al, 2002) If not otherwise stated,

any accuracy measures mentioned in this thesis refer to strict scoring.
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Throughouthis thesis,a few different measures will be used to estimate the pe
formance of textnining systems. Precision, recall, ands€ore (described ithe
following section) are the most commonly used, while T-RKRdescribed irsub-
sectionl.2.4.3 is used in some cases.

1.24.1 Precision, recall, and F ;-score
Precision ) is a metric for measuring the ratio of predictions (whether entities,

i nteractions, or something else) that ar
set of prdictions made. Recall (r) measures the ratio of all true positives relative

to the total number that should have been predicted. In order to allow ranking of

software where both precision and recall is importantFtkecore (the harmonic

mean of the prasion and recall) ioftenused, giving weight to both measures.

All three measures are used when describingrteming software ecuracy, and

are defined as below (where TP is the number of true positives, FP is the number

of false positives and FN isemumber of false netjves):

_ TP
P=TpiFp

TP

r:

TP+ FN
2 X pXr
Fl=7p

ptr

A more generaFy-scorecan also be calculatevhereb r ef er s t o t he 1
weight of precision and recaly is calculated as below:

_ 2 pXr

Fﬁ_(1+ﬂ)X/EZXp+r
Larger i mportance is pl aced auwmmrgerra-cal | t he
pot ance is placed on precisirpaotbdapwionhrieke

= 1, placing equal weight on precision and recalby far the most common

Throughouthis thesis, th&;-score will simply be denoted assEore.

1.2.4.2 TAP-k
Threshold averagergcisionk (TAP-K) (Carroll et al, 2010; Lu, 201Q)was e-

cently introduced into the texhining community in order to measure thewacc
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racy of systems in the gene normalizatiorktakthe BioCreative Ill challenge

(Lu et al, 2011) The TARk metric is a precisiofbased metric that opstes on a
subset of a ranked list of predictions (i.e., adispredictions that are sorted by
associated scores or confidence values). The varkathgermines how large a
subse of the ranked predictions to evaluate (choosing the highaked predi-

tions), with a largek resuting in larger subsets being evaluated. Once the size of
the subset is determined (for each document, if there are several), the level of
precision is alculated for the subset from each document. Finally, the-K AP
value is calculated as the average of the precision values for athdots in the

collection.

The TARK metric was intended for use in applications where the results were
likely to be retured to and read by humans (e.g., database curators). The ratio
ale was that the person who reads the results would begin with the highest
ranked predictions and work his or her way down the list for some time. Given
this use case, importance was placedhenrelative number of good (true pos
tive) entries among the predictions, which is why only precision is measured.
However, TARk is not used widely, and it is much less common than the more

Astandardo pre-scoresi on, recall, and F

1.3 Named entity recognit ion and normalization systems
Most textmining applications have a common need for named entity recognition

(NER) and normalization, which are discussedrigater depth in this section.

AEnNntityo is an abstract conceegfieldofwi th va
study. In biomedical text mining, it can be considered to refer to some igialog

unit, which can be referred to by authors and thus detected in text. Entities are r

ferred to by using terms, usually described as isaaresynonymsand can be
goupedi nt o fAentity <c¢cl asseso. For exampl e,
sapienso refers to an entity (our speci e
class fAspecieso, and the term AHI VO refe

AfspeciesoocantdaBdesease

Entity recognition refers tthe task of determining the location wientions of
entity terms(common entity classes inclugenes, proteins, or diseap@s text

(e. g. recognizing that I n Ap53 ios involyv
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tein, and Alung cancero refers to a diseas:
NER, entity normalization is the process of linking recognized etetitys (often

si mpl y mentdohs® jJe dnique identifiersi.e. identifying exactly whichre

tity the tem refers to These identifiersvill usually beaccessiondentifiersfrom
somecommondatabase (for example, UniProt:P0468i7 the human version of

p53). Entity normalization systems should optimally link entities to a siragle d

tabase identifier, but wherthis is not possible due to e.g. limited information,

they could also link the entities to sets of identifiers (where the sets should be

kept as small as possible). Entities that are linked to several identifiers rather than

a single identifier are calle A aunluis @ .

Several challenges need to be overcome for software performing entityirecogn

tion and normalizatian

1 Homonymy: many terms can each represent a number of different unique
entities. For examplgdiCATO corresponds to different genes in eigtt di
ferent species, e.g. human, fly and sh@penet al., 2005) Another &-
ample isfiC. elegang which on its own can refer to 41 different species
(Gerneret al, 2010)
1 Common English words: some entity names also occur in the English
language, such as tliz melanogasteg e ne names Awi ngl esso
Al ost i n spaceehogand( adl ¢ dmiug hhdadcge t w
names probably are unlikely to refer to anything other than the genes if
they appear in biomedical articles).
1 Related meanings: Some entity names have a different meaning in a
closely related field, such ddiabetes, which is the name for both asdi
ease and a mouse gd@henet al, 2005)
1 Abbreviations: Many biological entities are represented in abbreviated
form, which can match common English words or have multipledaom
nyms. It has been shown that 81.2% of frequent MEDLINE abbreviations
have more than one expansigiu et al, 2002) Abbreviations are used
heavily in the bbomedical literaturéOkazaki and Ananiadou, 2006)
1 Overlappingand nestederms: Some entity names can overlap, making it

challenging to determine which is corre€t @ r exampl e, I n fAl e
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canceo , shoul d nl eft breast o, fbr east

tagged’.

In many caseshese complications can be attributed to incomplete or pod+ly fo
lowed naming conventions (or, in the case of early discoveries, the complete lack

of such convations).

1.3.1 Common entity -recognition and normalization methods
Depending on the availability of manually annotated corpora, it may be possible

to train machindearning models to help identify the location of the entities that

are of interest. The most coronly used machiniearning methods for entity
recognition are conditional random fields (CRFs) since they process sequences of
objects, e.g. tokens. Features are selected that the researcher believes serve as
good determinants of what tokens (or charactpending on the level of which

processing occurs) are part of an entity mention.

In addition to the actual machibearning (and whatever methods are usedto e
tract information for the feature data, such as grammatical parsershasdd
pre- and pat-processing methodsan also bemployed In particular, rulebased
methods are sometimes usedrder to correct mentions that very likely are FPs
or FNs (for example, two very simple but highly accurate rules could be to r
move anyfimention® that areonly a single character in length, or which only

contains digits).

After detecting the location of entities, normalization (linking the entity mention
to a unique identifier) can be performed. Whilsitheoryis possible to perform
normalzation usingmachinelearning methods, any entity class that has even a
moderate number of different identifiers would require very large trainingp€orp
ra, with sufficient sample sizes for each entity identifier. To the best of our
knowledge, no biomedical normalizatisystem has beeateveloped that rely on
machinelearning forentity normalization.Dictionaries can providéoth recay-
nition and normalization of mentiorisr entity types where no manually &an
tated corpus is available for training of a macHesningsystem, or where it is
too small For these approaches, dictionaries are required that link entity identif
ers (e.gf9606 from the NCBI taxonomy) to terms (e.ghumard and iHomo
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sapiens), together with more or less sophisticated methods for applyendith
tionaries in an efficient manner. Dictionapgsed recognition methods do net r

quire training corpora but can be more brittle than avalhed machindearning
methods since they depend on the quality of the dictionary, the rules used, and

how chalenging the entity type is to recognize).

A less common way of performing NER without the use of either a training co
pus or a dictionary is through a purely rbl@sed method. Normalization cannot
be performed as no dictionaries are involved, but it dds an alternative
method for entity classes with systematic naming conventions. An example is
TaxonGrab(Koning et al, 2005) which can recognize taxonomic species names

through the use of about a dozen rules based on regular expressions.

1.3.2 Output types and formats
When recognizing and norniaihg entities occurring in a document, software

can report different information about the entity mentions:

1 If not normalized, a list of the entity mentions with or without coordinates

(location) in the text

1 If normalized, a list of entity identifiers #i or without coordinates (lee

tion) in the text

1 If normalized, a ranked list of the most important entity identifiers in the

document (as estimated by the software)

In addition, depending on how the recognition and normalization is performed,

the softwae may or may not associate each entry with a confidence value.

As mentioned previously, entity recognition can be an important first step in a
larger textmining process. Texnining components operating at later stages
(e.g. identifying proteirproteininteractions) would often need information about
where entities occur (in the case of extraction of interactions among entities, it is
a requirement). Because of this, it is obvious that the more extensive the output
from the NER tool is, the more utilityan be gained from it by the downstream

components.
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The actual format used to represent the details on entity mentions (or the output
from any other type of texnining tool for that matter), while arguably lessac
demically interesting than the actual @lighms used for recognition and o
malization, can still have a large impact on the usability of the software. Lack of
unified output formats for tools means that conversion scripts need to be written,
converting data from one format to another. Thesarisf€an be redundant, and

it would be useful if the textnining community could agree on common formats

of data exchangéRebholzSchuhmann and Nenadic, 2008pme formats have
been proposed previously, and are described in the following subsections. Ho
ever, the adoption of standard formatsargely a chickerandegg problem, and

no for mat currently has a par-mnimgul arl y |
field.

1.3.2.1 leXML
leXML (RebholzSchuhmanret al, 2006)is an XML-based standard for info

mation extraction, with XML tags inserted inline (i.e., inside the main document
text). leXML contains details aboubt to mark sentenceB¢chunk® (syntactic
units), tokens anditerm® (entities). Each element (with the exception af-se
tences) can btagged with a POS tag and entities can be tagged with semantic
links, e.g. to gea or protein identifiers in common datses (enabling entity
normalization). This is a sufficient feature set to capture all output from entity
recognition and normalization softwarEhe leXML format is used in e.g. the
CALBC (RebholzSchuhmann, 20119 or por as t(adirsddrvded annot at i
different entity types constructed by merging the output from multiple different
text-mining tools). An example of the leXML format is shown below, for the
sentence ANeutral sphingom3p4sTl) Asatlsee from
focus is on NER here, only the normalized entity mention is tagged; as me
tioned, leXML describe ways of caping e.g. POS information as well.

<sid=" 0">

Neutral sphingomyelinase from

<e id="ncbi:9606::spe">human</e>

urine.
<[s>
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The <s> tag denosea sentence, and the <e> tag desate entity. The example

shows how Ahumano i s t aajzgktdNCBIsTaxao- speci es
my 1D 9606.
1.3.2.2 I0B2

The IOB2 (I for Inside, O for Outside, B for Begin) format, used for instance by

t he GENIA Tagger, includes a tag after €
separate the word and the tag). The tag shows whethenead is part of a ace

tain entity class or not. For each new mention of a certain kldke tag Bk is

used, and for consecutive words that are part of the same entity, th& tag |

used. For words that are not part of any class at all, the tagiseds The I0B2

format is unfortunately limited, in that entities can only consist of whole tokens

and that it does not allow normalization. An example is shown below, for the

sentence example used in the previous section:

Neutral|O
sphingomyelinase|O
from| O

human|B - species
urine|O

i[e]

As can be seen, Ahumano is tagged as bei
identifier can be given. I f the species
AHomMooO would -9peeci dadt ade &Bnd fdledpi enso
species tag.

1.3.2.3 Offset -based formats
While the leXML and 10B2formatscontainfiinlined annotations (made directly

within the text),offsetbasedannotations areontainedn a separate file from the

text (and arethereforea | s 0o  standdffefdrmai). Standoff formats are
common, with NER applications often writing a table of results to an output file
or database, where each rospresenta mention, and the columentainsin-
formation about the entity identifier (if normalized), start and efebtd, the e

tual text snippet that was recognized, a confidence level if available, etc. While
simple and easy to work with, standoff formats requires the processed text to be
made available with the annotations for there to be no ambiguities, sinds offse

may be mi sl e a bhternagextuaf reptesertatian ofdahe dasne woc
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ment is slightly different from that used to generate the annotafdonsxample

for the example sentence in the previous section is shown below (with columns
containing tle document PMID, entity identifier, start and end offsets, ana me
tion text, respectively):

2545711  species:ncbhi:9606 30 35 human

The start and end offsets (30 and 35, respectively) indicate where in the text the
mention is located, and illustrates how onfant it is that the text also is aail

ble together with the annotations.

1.3.3 Species named entity recognition and normalization
Authors mention the names of species in articles when they need to refer to pa

ticular species (or groups of species) in ordeddscribe their work and results.
The importance species have in biology malané of the most fundamentai-e

tity typesthat can be detected in biomedical tdeing able to detect whereesp

cies names are mentioned in text is useful not only for taxgHiased searches,

but also for use in other tertining systems. For example, a species NER sy
tem can help information extraction systems determine in what organism a pa
ticular process is occurring, or to which organism a gene mention belongs. The
latter application is particularly important, where species NERpmanents have
been identified as being critical for cresgecies gene/protein moalization(Lu

et al, 2011)

There are two main types of species names: scientific nhameseandcular
names 4lso known as common namassynotyms). Scientific names follow the
Linnaean taxonomic system established by Carl von Linndeasaeus, 1767)

The Linnaean taxonomic system is hierarchical, with seven main levets<@or
kingdom, phylum, class, order, family, genus, and species. Names for species
(units at the seventh leyetuchHomo sapien$ are composed of two cormp
nents, genus (e.g. Homo) and species (e.g. sapiens). While scientific names fo
low strict conventions in terms of abbreviati@ng. iH. sapiené Jand italicia-

tion (taxonomic names should be italicizeg@rnaculamamege.g.fhumar) do

not. The work in this thesis will primarily focus on species, as opposed to the

higherorder taxonomic levels.
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In some cases, rather than being used to refer to a species, species terms may be

used as an adjective without referring speally to the species. For example, in

Ahuman p530, the author does not describ

use the term to describe what type of p53 he or she is referring to. For @her sp
cies, terms may be used exclusively as adjectives,aswch A mur i neo f or

fibovineo for COWw.

Previously developed software systems that perform species NER can be broadly
categorized into two categories. The first category contains systems primarily
aimed at the biodiversity community that attempt to fadtl species names
(whether they exist in species name dictionaries or not), typically in digitized
versions of legacy documents, such as the Biodiversity Heritage Libiirg
second category contains systems that aim to recognize (andizejmeentios

of species names in biomedical literature, such as the documents in MEDLINE
or PubMed Central (PMC). Software belonging to the former catexgftey per-

forms better on scientific names (suchfielomo sapiend through use of rule
based or machinkearning methods that rely on the fact that scientific names fo
low certain pattern€©n the other handpfiware belonging to the latter egory,
aimed at biomedical documents, typically performs better on synonyms and
common names (such a@sumar or fifruit flyd) through the use of dictiornias.
Common namedo not follow any taxonomic rules aageas a consequence-di

ficult to detect ging rules

As the focus of this work is on biomedical tewining (and in the interest of
clarity), here we focus on an inttaction the systems in the latter category that
were available at the beginning of this project. A comprehensive discussion
about the species NER systems that are aimed towards the biodiversity-comm
nity is given in Chapter 2. As of early 2009, only twstsyns were available that
could perform mentiothevel species NER and normalization that were specif
cally designed for use by the biomedical community: AliBéB&ke et al,
2006) and WhatizitOrganismgRelholz-Schuhmanret al, 2007) Alibaba is a
dictionarybased web service, which includes methods for filtering homonyms

for common species names. Whatizit is a set of dictichasgd entity recogn

! http://www.biodiversitylibrary.org
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tion services, one of which is WhatizitOrganisms, whicbapable of recognt

ing and normalizing species names. While the availability of web services for

these tools makes their adoption easy, the fact that neither system candse run |

cally limit their functionality for systems that either require computatmmsa

very large scale, or need guaranteed stability. Additionally, the designs of the
species NER components of these tools were not described in detail, nor was

source code available to umdiand their design.

1.33.1 Species t raining and evaluation corpora
To the best of our knowledge, at the outset of this project, no corpus existed that

contained manually annotated species names at the mention level. However,
some data sources exist that can be used to infer that particular docureents di
cuss particular specieBor example, the NCBI Taxonomy (a database of species
information) contains PubMed references for documents that are relevant to pa
ticular species. Likewise, some MeSH tags (subject headings that are associated
to all MEDLINE articles) refer to speciesnabling the creation of document
species links. Note that evaluations against automatigatherated test sets like
these need to be interpreted carefully, as the inferred links do not guarantee that
the species actually is mentioned in the documerdo,Ahs documerdpecies

links inferred through these methods are at the document level, their utility is

limited for our task.

1.3.4 Gene/protein named entity recognition and normalization
At the time this project was initiated, there were six major softwarkagas in

use by teximining researchers that perform gene/protein NER (with or without
normalization): BANNER(Leaman and Gonzales, 2008bner (Settles, 2005)
Genia Tagge(Tsuruokaet al, 2005) LingPipe(Carpenter, 2007 Moara(Neves

et al, 2008) and GNAT (Hakenberget al, 2008; Hakenbergt al, 2008) A
summary of the capabilities and methods used by the different tools can be found
in Table1.1. Levels of accuracy shown ifable 1.1 are as rported by the @&

thors and evaluations were performed on different corpora.

As can be seen ihablel.1, the entity recognition performance of BANNER has
higher reported accuracy than the other software. BANNER is allaRé&d in-
plementation of best practices in the entity recognition field as realized from the
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BioCreative Il entity recognition challenge. It is also very close in accuracy to
the bestperforming system in the BioCreative Il gene mention {é@sido, 2007;
Leaman and Gonzales, 2008)ngPipe is used quite widely byher text mining

tools (Smith et al, 2008) despite the fact that the reported accuracies of Abner
and GeniaTagger are considerably higher than that of LingPipe. Abner uses the
same underlying CRF library as BANNER, MALLEMcCallum, 2002) albeit

a considerably older version. Abner uses different features thoughxaomée,

it does not perform any F®tagging. Because of this, it is possible that the-acc

racy of Abner could be improved by enabling POS tagging.

Of the six systems, only two (Moara and GNAT) systems are capable-of pe
forming normalization. However, Moara need to be trained on the sptmie
which it normalize genes, making it difficult to use for species where no training
data is available. GNAT is limited to genes for which spespeific dictiona

ies have been generated and loaded. However, the user can gertoatarigis

for any species that are of interekthey are not already included.

More recently, gene/protein NER pipelines have also been added to Whatizit
(RebholzSchuhmanret al, 2007) but details and evaluations of segipdines
are not yet available.
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Table 1.1. Comparison ofpreviously available gene NER and normalization systems.
An overview and comparisas shown forseven different gene/protein NER and normalization systevailable at the outset of this
project The evaluation corpora (NLPBA, B&3, and GNAT100) are described iBectionl.3.4.1 Under availability, CPL refers to the

common public license.

Name Abner GeniaTagger Moara GNAT
Technique CRF POS: cyclic depetr Classifier Dictionaries + rules
Models (HMMSs) ency network

Capabilities

--- Recognition Yes Yes Yes Yes

--- Normalization No No Yes Yes

Accuracy (Fscore)

--- Recognition 70% (BC1) 56% (BC2) 84.9% (BC2) 73% (NLPBA) 77% (BC2) (not reported)

--- Normalization - - 42%-89% 81.4% (GNAT
(BC1,2) 100), 75.3% -

89.6% (BC1,2)
Based on MALLET Entrez Gene
Dragon toolkit
Availability
--- Binary Yes Yes Yes Yes

---  Source ({ Java API(CPL)

cense)
--- Web service No

--- Last updated  March, 2005

Comment Based on an ol Free
version of commercial use

MALLET

Java API (own)

Dec, 2007

C (custom license)

No
Oct, 2006

None at the time

No
Dec, 2008

None at the time

No
2008

Free to modify anc Accuracy depend: See Chapter 3 fo
on method anc an update.

redistribute for non
commercial use

species
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1.34.1 Genel/protein training and evaluation corpora
Textmining systems that use machuarning approachesquire a corpus of

pre-annotated documents for training purposes. The size, quality and scope of
this training corpus are therefore of critical importance to these systems.4n add
tion to training, corpora aresa vital for reliable evaluation of software ac@ur

cy, as mentioned i®ection1.2.4 A number of corpora that contain annotations

for genes and proteins are available for training and testing, as described in the

following sedions.

1.34.1.1 BioCreative
BioCreative is a periodic community challenge that addresses various tasks in

biomedical text mining, including gene and protein NER, extraction of protein
protein interactions, and protein interaction detection methods. There have been
three BioCreative gene NER and normalization challenges so far: BioCreative |
(Hirschmanet al, 2005) BioCreative Il (Morgan et al, 2008; Smithet al,

2008) and BioCreative II[Lu et al, 2011) The BioCreative | challenge focused

on annotations of abstracts related to mouse, fruitfly, and yeast, normalized to
identifiers from the Mouse Genome Informatics DatahaSgBase(Tweedieet

al., 2009) and the Saccharomycesjenome databa$e respectively. The
BioCreative 1l challenge focused on human genes in abstracts, normalized to
Entrez GengSayerset al, 2011)identifiers. The BioCreative 1l challenge-f

cused on genes from an unrestricted set of species, also normalized to Entrez

Gene, from fultext artcles.

The numbers of abstracts and fidkt documents annotated for the training and
evaludion corpora in the different challenge iterations are showiralrie 1.2. It

is important to note that annotations for all three challenges were performed at
the documentevel (i.e., no information was given about the exacttlona of
mentioned genes). The BioCreative | and Il challenges focused on geneihormal
zation in abstracts, where the species of the genes was already knowni- In add
tion to the highguality manually annotated training data (comprising between
110 and 281 atracts, depending on the species), much larger training sets of

5,000 abstracts with n o iasngtations were also made available for ea€h sp

2 http://www.informatics.jax.org/
? http://www.yeastgenome.org/
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cies (constructed automatically from model organism databases, whare doc
ments are linked to gene entries asnaiees). While many of the annotations in

the noisy training data probably were correct, there was no guarantee that genes
were mentioned in the articles (and even less guarantee that it was mentioned in
the actual abstract). Because of this, the noisgitrg sets are of lower quality

and utility.

The BioCreative Il challenge was different in nature, focusing on spssies
annotations (i.e., genes from any species, as opposed to single species), and on
full-text documents (as opposed to only abstyattsaddition to the higiguality

training and test data, noisy training was released also in this instance. However,
the noisy data was created in a different manner, with only the most important

genes (as determined by curators) annotated (at the dotclawel).

Table 1.2. Statistics for the BioCreative gene normalization corpora.

The number of documents (Docs)daentities annotated for the BioCreative
(BC1), Il (BC2), and Ill (BC3) gene normalization corpora. The noisy traini
and test sets were generated automatically (see text). In the documents cc
Afabsodo stands f or atéxsdocunantsst s and fAF°

Corpus Training Training (noisy) Test
Docs. Genes| Docs. Genes | Docs. Genes

BC1 (yeast) | 110(abs) 329 5000 (abs) 15,497| 250 (abs) 776
BC1 (fruit fly) | 108(abs) 596 5000 (abs) 30,433| 250 (abs) 1,635
BC1 (mouse) | 250(abs) 839 5000 (abs) 14,747| 250(abs) 973
BC2 (human) | 281 (abs) 640 5000 (abs) 9,322| 262 (abs) 785
BC3 32 (FT) 641 493 (FT) 839| 50 (FT) 1,669

1.34.1.2 GNAT-100
As part of the evaluation of GNA[Hakenberget al, 2008; Hakenbergt al,

2008) its authors released a corpus of 100 abstracts annotated for genes of any
species(Hakenberget al, 2008) The abstracts in this set are based on the
BioCreative | and Il corpora (with 25 abstracts chosen from each of the four
model organisms) and extended with annotatifmnsgenes coming from any
other species. In total, the corpus contains annotations for 320 §éaasote

that he anotations in the GNATLOO corpus are at the documdael (since it

is based on BioCreative | and #sources).
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1.3.4.1.3 GENIA entity corpus
The GENIA corpus(Ohtaet al, 2002; Kimet al, 2003; Kimet al, 2004)con-

sists of 2000annotated abstracts, comprisit®,546sentences. In these serden

es,a range of entity typesproerd dONAB N not at e
ARNAO, ficell lined and ficell typed . | n t oentidy mentichsBwer2 &udh

tated The fact that several entity classes are tagged gives software trained on it
wider capabilities (allowing it to also recognieay. cell types rather thajust
genes).GENIA annotations are on the mention level, but they are not horma

ized, which limits training and evaluation to entity recognition only. The GENIA

corpus is also limited in its scope. The abstracts were retrieved from MEDLINE
through a searchomposed oi Humans o [ Me SH] AND ABl ood
AND ATranscri pt i.Dne tdths; theocorgedt in[thd aliStHhfts

may not be generally representative of the biomedical domain as a whole.

1.4 Information extraction systems
As mentioned previaly, the concept of information extraction is quite wide and

there are many definitions of it. Here we take this term to describe systems that
extract biomedical facts from biomedical texts, suckipmetein x regulates pr

tein yo. Some problems in biomexdil information extraction have received large
amounts of attention, such as extraction of prepeotein interactions (PPIs)
(Skusaet al, 2005; Krallingeret al, 2008; Zhou and He, 2008; Chowdhaty

al., 2009)or biomedicalfevents) a concept describing a specific set of maolec

lar processes such as gene expression, phosphorydatiegulation(Kim et al,

2009; Kimet al, 2011) Some overlap exists between the two, as some of the
processes described by events also describe PPIs. This section will focus primar
ly on event extiction (as thexdraction and contextualization of events is one of
the goals of this thesis), but also to some degree extraction of PPIs. We do not
discuss related work on clinical textsleystreet al, 2008; Yanget al, 2009;
Spasicet al, 2010; Uzuneet al, 2010)

1.4.1 Software examples
Due to the large amount of work devoted to information extraction, we mention

only some of the systems that have been developed. More complete overviews of
event extraction are aNable in (Kim et al, 2009; Kimet al, 2011)and of PPI
extraction n (Skusaet al, 2005; Krallingeret al, 2008; Zhou and He, 2008)
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While there have been numerous systems reported in the literature, to the best of
our knowledge, only two event extraction systems have been madiely
available: the Turku Event Extraction System (TEEjprne et al, 2009)and

very recently, a system by McClosky al. (2011) TEEScombines a machine
learning approach (relying on dependency parse graph features) mittbased
postprocessing step to identify evenihe system oMcClosky et al. uses a
multiclass SVN classifier to detect triggeteependency parse treemd event

model features for event extraction. Work is currently underway to provide se
eraloft he event extraction systemskhophat part
as UIMA* web service components (dbong Kim and Yoshinobu Kano, pe

sonal communication), but the possibility of applying such services on a large
scale will probably be limited due theusuallyheavy resource requirements i

volved in event extractio(Bjorneet al, 2010)

Chowdharyet al. (2009) have developed and released an application foa@xtr

tion of PPIs (consisting of two protein references and one interaction keyword)

using Bayesian network®Needhamet al, 2007)constructed from 12 different

features. The AliBaba web servi@dakenberget al, 2008; Palag&t al, 2009)

performs PPI informatioe xt r acti on on abstracts that
query. By using pattermatching methods, information about the relationships
between detected entities (e.g. proteins, diseases, and drugdyacted and the

results are displayed to the user. Thé &®raction system RelEfFunde et al,

2007) uses ProMine(Hanischet al, 2005)for gene/protein NER and a rule

based method based on dependency parse t
(essentially, keywords inditiag that an interaction is described) in orderxe e

tract interacting pairs of genes or proteins.

In order to perform event extraction, a number of components need toebe int
grated.At the minimum, these include entity recognition (primarily of genes and
proteins), grammatical sentence parsing, and relationship extraction (determining
which genes/proteins are involved in the events, and in which wayhe be-
ginning of this project, no information extraction system had lwesstructed
which included thee components and beapplied on a truly large scale, i.e. to

* http://uima.apache.org/
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all documents in MEDLINE and/or PMC, followed by the release of the e
tracted data. Recently, however, results from the application of the Turku event
extraction system (TEESBjorne et al, 2009)to the 2009 baseline release of
MEDLINE have been made availab|Bjorne et al, 2010; Bj6érneet al, 2010;

Van Lardeghemet al, 2011) Through the use of TEES, 19.2 million evest r
cords were extracted and released, with links to gene mentions (which are not
normalized).To the best of our knowledge, this is the only complete (i.e.,dnaclu

ing entity recognition, gramatical parsing, and event extraction) event extra
tion system that has been applied on a large sttale possible to go further,
though: for example, TEES was not applied to-fedt documents, and the ent

ties were not normalized.

In addition to TEE, two systems have also been applied on a more limited (but
still relatively large) scale. The RelEx systéRundelet al, 2007)was applied to

a million MEDLINE abstracts, and was able to extract 731,000 mentions of
150,000 diferent protein pair interactions (the extracted data nedgeleased).

The PPI extraction system of Chowdhatyal. (2009) was applied to a set of
680,000 sentences from PubMed as part of itsuatiah and was able to extract
information about 18,400 interacting protein pairs. Note that thiersees were
selected in order to ensure that previously recorded interactions in the BioGrid
databasgStark et al, 2006) were not described in the sentences, which may
mean thata more representative sentence sample could produce higher rates of
PPIs. The PPIs extracted by the system of Chowdéiagy. (2009)were rot re-

leased and while the absolute number of sentences it was applied to is large, the
documents they are taken from still only represent roughly 0.7% of the 2011
baseline MEDLINE files.

1.4.2 Event representation and formats
Information extracted from text carary widely from application to application,

so there are, to the best of our knowledge, no common data formats foranform
tion extraction. PPIs are often represented as triplets, describing the different
components of the proteprotein interaction (wit two parts of the tripleted
scribing the two proteins, and the third part describing the interaction).
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Her e, we adopt the representati oln

lenge. In the BioNLP event extraction challenges, nine types of biolquioa

used i

esses were represented: gene expression, transcription, protein catabolssm, pho

phorylation, localization, binding, regulation, positive regulation, and negative

regulation. The first five (gene expression to localization) take a single gene/gene

produ c t ( GGP) argument (called Athemeo) . E
(Ap53 was boundd would result in a singl
MDM20 would result in two). The three re

theme (describing whatthe evene gul at es) and

esaribimgp t i on al

what it is regulated by). In the case of the three regulatory events, the theme and

cause can, in addition to GGPs, also be events. Together, the themes and causes

are called fApartico pangcoi.atAdd

represents a keyword (or clue) in the text.

vweivtehn t &8 atr

The events i n t MBM2actsaama hegativegelatorad p58 e A
exXpressi on oFigareld. It sontaing two evat s : a figene expr
event, with the theme p53, and a fAnegat.

MDM2 and the theme is the gene expression event. The trigger of the negative

regul ation consists of the twocewuwlrds fAne

the gene expression trigger i
negative .
expression
regulator
Ttrigger Ttrigger
Negative Gene 53
regulation {heme €XPression ineme P
¢cause
MDM2
Figurel4. A representation o
Two events i n t hKEdDM2 acssmap &
negative regulator of pb5:
event, with the theme pt

event, where the cause is MDM2 and the theme is the
expression event.
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The representation of the two events and their participants in the BioNLP format,

which was used in the challenge, is shawthe following example

T1 Protein 0 4 MDM2

T2 Protein 37 40 p53

T3 Gene_expression 41 51 expression

T4 Negative_regulation 15 33 negative regulator
E1l Gene_expression:T3 Theme:T2

E2 Negative regulation:T4 Theme:E1l Cause:T1

Events cariurtherbe associated with information about speculation and/a-neg

tion (Agarwalet al, 2011) describing whether the author was speculating about
the process or whether he/she stated that the process did not occur. For example,
if the sentence had be@MDM2 might notact as a negativegulatorof p53 -

pressio, two addtional lines of information would have beprovided

M1 Negation E2
M2 Speculation E2

As mentioned, the data used in the challenge was originally constructed from the
GENIA corpus(Kim et al, 2008) which follows the GENIA event XML fe

maf. Briefly, this format consists of a mix of inlifgased and lisbased annat

tions. Entities are markeap inlinein sentences, after which a list of events are
given. Each event contains identity links for its participants, information about
negion/speculation, and the sentence text from which it was extracted (with the

trigger marked inline in the sentence).

1.4.3 Infor mation extraction training and evaluation corpora
As part of the Bi oNLPO®@B®etaly2000) theewxt r act i o

ganizers provided a corpus of events from 950 alist(aere called the BioNLP
corpus)(Ohtaet al, 2009) The BioNLP corpus was based on the GENIA event
corpus(Kim et al, 2008). As notedpreviously the GENIA corpus was drawn
from documents matching a PubMed search query for transcription factors in
human blood cells and may not be completely representative for MEDLINE in
general. Only a subset of the event types that axigie GENIA corpus were
used for the BioNLP corpus and other typégrocesses annotated GENIA

events(e.g. mutagenesis, metabolism, and cell communication) were excluded.

® http://wwwe-tsuijii.is.s.utokyo.ac.jp/~genia/release/GENIA_event_annotation_guidelines.pdf
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The numbers of amtated event instances for the types that were not useé in th
BioNLP corpus are in general quite low, however. The total numbers of events
for each of the nine event types in the training (800 abs)rant development
portiors (150 dstracts) of the BioNLP corpus are showTablel.3.

Table 1.3. The number of events in the BioNLP

corpus.

Event type Training Development
Gene expression 1,738 356
Transcription 576 82
Protein catabolism 110 21
Phosphorylation 169 a7
Localization 265 53
Binding 887 249
Regulation 961 173
Positive regulation 2,847 618
Negative regulation 1,062 196
Total 8,615 1,795

Information is also available about whether the events are negated or speculative.
In the training set, 615 of the events (7.1%) are negated, while 455 (5.3%) are
speculative. In the development set, 107 (6.0%) are negatdd,38n(5.3%) are
speculativeln addtion to the events themselves, there are also 9,300 and 2,080

GGP mentions in the training and development portions, respectively.

Pyysaloet al. (2008)have described an analysis and reconciliatiofive differ-

ent PPI corpora: the IEPA corp(Bing et al, 2002) the LLL challenge corpus
(Nédellec, 2005)the AlMed corpugBunescuet al, 2005) the Biolnfer corpus
(Pyysaloet al, 2007) and the HPRD50 corpiBundelet al, 2007) The corpora
contain information about PPIs from 486, 77, 1,955, 1,100, and 145 sentences,
respectively. While some differences exist between the different corpora,
Pyysaloet al. (2008) provide software for converting each corpus to the same
format, containing information about the location of entities, and interactions i
volving the entities with information about the direction of the interactiom(if a

notated), and the type of the interaction as mapped to the Biolnfer ontology
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(Pyysaloet al, 2007) The actual converted corpora or a merged corpus was not

distributed directly, most likely as a result of licensisgyes.

1.5 Summary
As described irSectionl.2, named entities are core to many {exhing appli@a-

tions, and namedntity recognition and normalization is critical for most a
vanced teximining applications. In particular, recognition and normalization of
genes and proteins are frequently needé&n important requirement of
gene/protein normalization is accurate species NER and normalizatioBesee
tion 1.3). At the outset of this project, no species NER and normalization system
existed that was aindeat the biomedical literature and could perform local pr
cessing $ectionl.3.3. Development of such a system is described in Chapter 2.
Further, the integration of this species identification system witlyehe/protein
NER and normalization system GNAT and further improvement of GNA®-is d
scribed in Chapter 3. At the outset of this project, information eidrasystems
(described irSectionl.4) had only been ggtied on very limited scalesSgéction
1.4.1. Attempting to perform such largeeale application, Chapter 4 describes
the development of systems for extraction of information about biomolecular
processes (buildg on the work in Chapters 2 and 3), and thgmlieation to the
whole of MEDLINE and PMC.
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Chapter 2: Species named -entity recognition

2.1 Abstract
The task of recognizing and identifying species names in biomedical literature

has recently been regarded as criticaldfmmumber of applications in text and-d

ta mining, including gene name recognition, spesfcific documentetrieval,

and semantic enrichment of biomedical articlesthis chapter,we describe an
opensource species name recognition and normalizatiofiware system,
LINNAEUS, and evaluate its performance relative to several automaticailty ge
erated biomedical corpora, as well as a novel corpus effefxtiidocuments nma

ually annotated for species mentions. LINNAEUS uses a dictidresgd p-
proach to dentify species names and a set of heuristics to resolve ambiguous
mentions. When compared against our manually annotated corpus, LINNAEUS
performs with 94% recall and 97% precision at the mention level, and 98% recall
and 90% precision at the documentdevOur system successfully solves the
problem of disambiguating uncertain species mentions, with 97% of all mentions
in PubMed Central fultext documents resolved to unambiguous NCBI taxon

my identifiers.LINNAEUS is an open source, staatbne softwaresystem cag-

ble of recognizing and normalizing species name mentions with speed and acc
racy, and can therefore be integrated into a range of bioinfosratnt text
mining applications. The software and manually annotated corpus can be dow

loaded freely ahttp://linnaeus.sourceforge.net/.

2.2 Introduction and background
The amount of biomedical literature available to researchers is growing @xpone

tially, with over 18 million article entries now available in MEDLIR&nd over
a million full-text articles fregl available in PMC. This vast informatione-
source presents opportunities for automatically extracting structured information
from these biomedical articles through the use of text mining. A wide variety of
biomedical texdmining tasks are currently beimmrsued(Jensenret al, 2006;

Krallinger et al, 2008) such as entity recognitiore.g. finding mentions of

® http://www.ncbi.nim.nih.gov/pubmed/
" http://www.ncbi.nlm.nih.gov/pmc/
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genes, proteins, diseases) and ektva of molecular relationship® (. protein

protein interactionsMany of these systems are constructed in a modular fashion
and ely on the results of other textining applications. For example, in order to
extract the potential interactions between two proteins, the proteins themselves
first need to be correctly detied and identified.

One application that could facilitate the construction of more complex text
mining systems is accurate species name recognition and normalization software
(i.e. software that can tag species names in text and map them to uniqueedatabas
identifiers). For example, if the species and locations of species mentgns di
cussed in a document were known, it could provide important information to
guide the recognition, normalization and disambiguation of other entities like
genegHanischet al, 2005; Hakenbergt al, 2008; Wang and Matthews, 2008)
since genesftenare mentionedn the context of theihost speciegsee section
2.4.3.3and3.4.]). In recent texmining challengessuch as the identification of
proteinprotein interactions at BioCreative I(Krallinger et al, 2008) or bio-
molecular event extraction at the BioNLP shared (&S et al, 2009) some
groups caosidered species identification and normalization an essentidbskb
(Kappeleret al, 2009) Likewise, improved methods for identifying species
names can assist pipelines that integrate biological data using species names as
identifiers(Learyet al, 2007; Page, 2007)

In addition to being useful for mor@mplex textmining and bioinformaticspa
plications, species name recognition software would also be usefidanan-

ically intelligent information retrieval (Sarkar, 2007)Document search queries
could be filtered on the basis of which species are mentioned in the documents
(Ding et al, 2005) providing researchers more figeained control over liter

ture search results. This use case provides a powerful extension to sigple ke
word-based PubMed searches, since all synonyms of a species would bé norma
ized to a standard database identifier, and could therefore be retrievey by a
synonym used as input. This can currently be done to some degree ifbyirspec
Medical Subject Heading (MeSH) terms when performing a PubMed query.
However, MeSHbased queries have limitations since the set of MeSH tags co
prises only a small subset afl species. Additionally, semantic enhancement

(markingup entities in text and hypdinking them to external databaggsnk et
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al., 2008; Shottoret al, 2009) of research articles with species names could
provide readers with easier access to a wealth of information about the study o
ganism. Accurate recognition and normalization of species mentions inibiolog
cal literature would also facilitate the emerging field of biodiversity informatics,
which aims to deMep databases of information on the description, abundance
and geographic distribution of species and higirder taxonomic unitéBisby,
2000; Sarkar, 2007; Zauner, 2009)

The task of identifying species nameshiomedical text presents several keha
lengeg(Pattersoret al, 2006; Sarkar, 2007; Kappeletral, 2009) including:

1 Species name ambiguity: many abbreviated species names are highly a
biguous é.9.7iC. elegangis a valid abbreviation for 41 different species
in the NCBI taxonomy). Ambiguity is also introduced because names can
refer to different NCBI taxonomy species entriegy(firat can refer to

eitherRattus novegicusor Rattus sp.

1 Homonymy with commonvords: some species common names are-wid
ly used in general English texé.§.ASpobd for Leiostomus xanthuruesnd
fiPermib for Trachinotus falcatus These names introduce a largemu

ber of false positives if not properly filtered.

1 Acronym ambiguity: secies dictionaries contain acronyms for species
namesfFor exampl e, H | \Huntcaa mmunadéfieiencyt o b ot |
Viruso and AThe hippocratic irrelevar
multiple species or other nepecies entitieslt has previously been
shown that 81.2% of acronyms in MEDLINE have more than onenexpa
sion (Liu et al, 2002) This presents challenges relating to identifying
when an acronym refers to a species, and, if so, which spedies it

refers to sesral).

1 Morphological \ariability: while species dictionaries cover a largenau
ber of scientific names, synonyms and even some common misspellings,
they cannot match human authors in variability of term usage. In some
cases, authors use netandard nameshen referring to species, spell

names incorrety or use incorrect case.
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Despite these challenges, several attempts have been made to automate the pr
cess of species hame recognition and normalization using a range of different
text mining approaches. Pieus efforts in species name recognition can broadly
be categorized in two groups: software aiming to identify species namesin leg
cy documents in the field of biodiversity (e.g. the Biodiversity Heritage
brary?), and software aiming to identify speciemmes in current biomedicat-li
erature (e.g. MEDLINE oPMC). The main aim of tools profiled towards the
field of biodiversity is to recognize as many species names as possible, many of
which have not been recorded in existing species dictionaries. Bisdiy
oriented methodsanuse rulebased approaches that rely on the structurg-of b
nomial nomenclature for species names adopted by Carl Linrfaguseus,
1767) By taking advantage of regularity in naming conventi(see Section

1.3.3, these approaches do not have tapdated or ré¢rained as new dictio

ary versions are released or species names change, andpeawith the very

large number of possible species names in the biodiversity literature. However,
rule-based methods are often unable to identify common nafoesexample,
Drosophila melanogastdpllows the typical species hame structure, whiiteit

flyo does not.

As an exampleTaxonGrab(Koning et al, 2005)is such a ruldbased tool, which
consists of a number of rules based on regular expressions. Usingleh-En
language dictionary, it fois all words that are not in the commanguage di-
tionary, and applies rules based on character case and term order in oeder to d
termine whether a term is a species name or not. It is implemented in PHP and
available under an opeource licens€éKoning et al, 2005) TaxonGrab pe
formanceis high (94% recall, 96% precision) against a single §0¥§e volume

on bird taxonomy, but it has not been evaluated on biomedical ardictest

does not perform normalizatiofiFind all taxon names(FAT) (Sautteret al,
2006)is a more complex mentieievel method related to TaxonGrab, withvse

eral addtional rules aimed at increasing recall and precision. FAT reports better
accuecy than TaxonGrab (>99% recall and precision) on the same evaluation set

and can be accessed through the GoldenGate documentmaykten(Sautter

8 http://www.biodiversitylibrary.org/
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et al, 2007) It is important to note, however, that the performance of these

methods has not been evaluated against normalization to database identifiers.

The uBid project provides a set of modular web services for species idantific
tion and automatic categaation of articles based on the species mentioned in
them(Learyet al, 2007) FindIT, part of the uBio suite, is a ret@ased system
aiming to perform species name recognition, aided by a range of dictiondries. A
ter recognition, a confidence score is given for each match dretewpossible,

any recognized species names are mapped to uBio Namebank records. However,
like TaxonGrab, FindIT is unable to recognize common names suthas ma n 0 .
TaxonFindet®!! is a related method influenced by both TaxonGrab and FindIT,
that brings tgether elements from both systems. MapIT performs species hame
normalization by mapping species nameth®full list of hierarchical taxonomic
namegather than directly to a database identifier. The implementation isenot d
scribed in detail and no evaltion of the system is reported. Our testing of the
system reveals that MapIT will map common names sucfhasiam to any
species with a name or synonym that contains huraanfiHomo sapiens,

AiHuman immunodeficiency vir@sandfiHuman respiratory syntgl viruso

Using dictionarybased methods instead of ridlased methods, it is also possible

to recognize common names, making the software more suitable for processing
biomedical research articles, where authors often only refer to species by using
their common (vernacular) names, suchflsimam or Aimoused Recognized
species names atsuallynormalized against the NCBI taxonothyFor exan-

ple, AliBaba implements a dictionabased web service for species namegeco
nition in PubMed abstracts and normation to NCBI taxonomy identifiers,
which includes methods to filter homonyms for common species néPhaseet

al., 2006) WhatizitOrganismgRebholzSchuhmanret al, 2007)is another -
tionary-based sytem based on the NCBI species taxonomy, also available as a
web service, which recognizes and normalizes species as well as otinentax
ranks. It is one mode of the more general Whatizit systeiRebholz

Schuhnannet al, 2007) which provides a number of different entity reciigm

® http://www.ubio.org

19 http://www.ubb.org/index.php?pagename=soap_methods/taxonFinder
" http://code.google.com/p/taxdimder/

12 http://www.ncbi.nim.nih.gov/Taxonomy/
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and normalization pipelines based on dictionaries for different entity typées. Ne
ther the implementation details nor any evaluation of either AliBabther
WhatizitOrganisms syste have been reportedHowever an analysis of
WhatizitOrganisms output is presented hiseeSection2.4.3.9.

Recently, Kapelleet al. (2009)have reported work ompecies name recognition
and normalization in an attempt to determinefiftoeus organisnsdiscussed in

a document. This system includes a dictioraaged term search combined with
filters to remove common English words, and then ranks species basegiron th
mention frequency in the abstract or main text. Evaluationrfenpeed against a

set of 621 full text documents where species mentions have been automatically
generated from corresponding protgiotein interaction entries in the IntAcad
tabase(Kerrien et al, 2007) with a reported recall of 73.8% and precision of
74.2%. Since it is aimed at recognizing @pe in order to guide protein name
normalization, the system is limited to the 11,444 species witles in UniProt

(The UniProt consortium, 2008and does not implement any disambiguation
methods since levels of species name ambiguity are low in this dictionary. The
software is not available either for download or as a wehcsee

Wang and colleague@Vang, 2007; Wang and Grover, 2008; Wang and-Ma
thews, 2008; Wangt al, 2010)have developed a species name recognitisn sy
tem to aid the disambiguation and identification of other estitsuch as
gene/protein names and prot@irotein interactions. This system uses diagnostic
species names gixes along with names from the NCBI taxonomy, UniProt and
custom hangtcompiled dictionaries to tag species with either-hdsed or ra-
chine learing techniques. This system requires other entities of inteeegt (
genes) to be pragged as input, and only attempts to tag species mentians ass
ciated with these other entities of interest. Training and evaluation is based on
two related corpora of1Z and 230 fultext documents manually annotated for
proteins, genes and species. Against these evaluation sets, théasedep-
proaches can achieve either very high precision (91%) with very low recall
(1.6%) or intermadiate values (~45%) of both ermance measurgsVang and
Grover, 2008; Wang and Matthews, 2008kernatively, their machine learning
based approaches that use conigixfeatures around entities of interest to tag

species yield higher performandé-gcore of~70%), but are highly biased-t
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ward species represented in the training da(@gahg and Matthews, 2008e-

cently, the tool has been made available as a UIMA component and the corpus
has been made available for download (while linking gene/protein entities to
speciesthis does not annotate species terms specifically thoMyhhget al,

2010)

Finally, Aertset al. (Aertset al, 2008)use a sequendsased approach to detect
species referred to in biomedical text by extracting DNA sequences from articles
and mapping them to genome sequences. Based on a set of 9,94Q &utidkes

in the field of gene regulation, these authors report that the correct species can be
identified (relative to the species annotated in the ORegAnno dat@bafith

et al, 2008) for 92.9% of articleghat contain a DNA sequence that can be
mapped to a genon{eformation is not available about how frequently these a
ticles contained direct mentions of the species namés)software for this @
proach is available as a web service or standalone agpgiicAdditionally, this
approach requires that articles report a DNA sequence of sufficient length to be
mapped unambiguously to a genome, which is unlikely for most abstitaists.
possible for fultext articles however, with the text2genome systenalaigpof
recognizing and linking DNA sequences in ftdkt articles to genomic regions

in a number of model orgsms(Haeussleet al, 2011)

Here we aim to produce a robust commind software system that can rapidly
and accurately recognize species names in biomedical documents, map them to
identifiers in the NCBI taxonomy, and make this software freely available for use
in other textmining and bioinformatics applications. We have named this sof
ware system LINNAEUSIn honor of the scientist who established the modern
species naming conventioffsinnaeus, 1767)The goal of this work is not to
discover all possible species names across publications in all domains of the life
sciences, but to provide efficient methods to link species names irothedical
literature to standard database identifiers. We perform recognition and mormal
zation for all species names at the mention level, rather than auedotlevel,

as documenlevel properties (such as focal organis(sppeleret al, 2009)

can be inferred from the mention level. This also enables software built upon
LINNAEUS to use the precise location of species mentions, such as insthe di

ambiguation and normalization of other positional ergti{®ich as genes oropr
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teins) or in direct linkouts from mentions in semantically enhanceduduents.
Additionally, we aim to address which dataset is best suited for evaluating the
accuracy of species name recognition software. To do so, we evaluatd agve
tomatically generated biomedical document sets with species names attached to
them, and conclude that a manually annotated gold standard is necesgary to r
veal the true performance of species name identification systems such as
LINNAEUS. We thereforealso provide a new golstandard corpus of futext

articles with manually annated mentions of species names.

In addition to the main species nameity recognition and normalization
methods, we also aim to explore how species NER systems can lie agkadl-

thors and publishers. As part of this, we aim to provide LINNAEUS withhmet

ods for detecting misspelled species hames, and instances where authops use de
recated or otherwise incorrect synonyms, and provide a service whitthsheu

(or author)could use to improve the quality of their published articles. While
these types of problems are not very common $&stion2.4.5, they can pote

tially be embarrassindzor example, despite having 113 authdohe Nature pa-

per which reported on the sequencing of the giant panda genome misspelled the
taxonomic name of the species whose genome they sequehitepoda
melanoleucgd mi sspel |l ed as rdAdo Jomerwonk of ths typee | anol e
have been perfared previously, with PaperMaké@RebholzSchuhmanret al,

2010) released recently. Papermaker attempts to for example detect previously
unknown terms, det¢ possibly ncorrect references, and suggest relevant MeSH
and Gene Ontology (GO) terms for the docum@ebholzSchuhmanret al,

2010) It does not seeno be accessible programmatically though, making it

more suitable for authors than pubéss.

2.3 Methods

2.3.1 Overview of the LINNAEUS system
Using the NCBI taxonomy and a custom set of species synonyms, we created

species dictionaries optimized for tirefecive document tagging F{gure

2.1A). These dictionaries are used for tagging the documents, after which-a nu

13 http://www.ncbi.nim.nih.gov/Taxonomy
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ber of posiprocessing steps are performédg(re 2.1B): ambigwus mentions
are disambiguated where possible using a set of heuristics, acronym definitions
are detected and mentions corresponding to commonly occurringpecies
terms are filtered out. Last, the species alternatives for any mentions that remain

ambiguous are assigned probabilities based on their relative mention frequencies.

Y

@’ [
synonyms ]
Generate regular Optimize Dmtinnawes/
expressions dictionaries
MBI
Tazonomy

{ Dictionaries |' . Acronym Background
B Stop terms frequencies freguencies
h

. Frequence —
MNCBI Tagging — Disambiguation | l:;‘tggl\;g:’] — d\sr\i?i?itr?;emn — probability | Final species
Taxonomy assignment memiUrE/

Figure 2.1. Overview of the LINNAEUS spedes name identification sg-

tem.
(A) A diagram of the spees name dictionary construction. (B)ddagramof

species namagcognition, normalizatiorgand posfrocessing.

2.3.2 Dictionary for locating species names
The NCBI taxonomytfie names data filedownloaded June 1st, 2009) was used

to construct the species name digdoy. This dictionary covers 386,108 species
plus 116,557 genera and higlmder taxonomic units. During this work, only
species were considered, but the software could easily be adapted to recognize
genera or other highearder taxonomic units as weglChapter 3 describes the
construction of dictionaries that recognize genus terms as proxies for species,
such as 0 DrDrosaphld idlanogastir Allr species terms in the
NCBI taxonomy database are categorized according to type, such as scientific
name €.g.fiDrosophila melanogas®r or common namee(g. fifruit fly 0). All

types were included except for acronyms, where only a smaller subset was used
(see the following section). Based on the scientific spetwdses, abbreviated
versions of each semtific name were generated and included in the dictionary,
such agiD. melanogastérfrom fiDrosophila melanogaste(see alsqKappeler

et al, 2009). On average, each species had 1.d®as provided in the NCBI
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taxonomy(giving a metric on the level of variability among species names)

which rose to 2.46 names per species when abbreviations were included.

In contrast to previous work that used the UniProt species dictiGhappeleret

al., 2009) substantial ambiguity is inherent in our NCBI taxonomy based di
tionary, where the same term can refer to several different species. This is mostly
the case with abbreations when abbreviated species names are not considered,
the average number of species per term is 1.00088 (527,592 terms and 528,058
termspecies pairs)giving a metric on the level of ambiguity among species
names If abbreviations are included, the numlwérspecies per term rises to
1.066 (669,578 terms, 713,525 tegmecies pairs)Considering only common
names, the number of species per term is 1.017 (33,591 terms, 34,156-species

term pairs).

Acronyms listed for species in the NCBI taxonomy are not avexyact and -
ambiguous, in that a specific acronym can be mapped to a specific species, but in
reality might be used more commonly for something else (either another species
or even a noispecies term). Acromin@®kazaki and Ananiadou, 2008)a text

mining tool that has been used to deterbaym definitions in MEDLINE, and
allows users to query acronyms through a web service in order to view the decl
ration frequencies of that acronym. An example of an overloaded speaes acr
nym isACMV0O which in the NCBI taxonomy is mappedfioC u ¢ u misacr mo
v i r Axarding to data generated by Acromine, CMV has been defined as
fiCucumber mosaic viré233 times in MEDLINE, but is also much morento

monly defined agiCytomegalovirus (7128 times). Another example is theacr

nym APCVO, which in the NCBI ditionary is mappedtd Peanut c¢cl| ump
In total, PCV declarations have been detected 912 times by Acromine, of which
only 15 refer to different terms f@Peanut clump virus(the most common long
formish pac k ed c asdeh490timésy me 0 ,

In orde to overcome this problem, all acronyms listed in the NCBI taxonomy
were queried against Acromine in order to retrieve frequency counts for the var
ous expanded forms that the acronyms appear with in MEDLINE. Specigs reco
nition using LINNAEUS was then permed on the expandddrm terms in ¢

der to determine for which species each acronym was used, and their relative
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mention frequency (including nespecies terms). The acronyms were then i
cluded in the dictionary, and the species frequencies impodedAcromine for

each acronym was assigned to each potential match to the acronym. From this, it
is also possible to estimate how probable it is that the acronym refers te a non
species entity. For example, the probability that PCV would refer tRbant

clump viru® species would be 1.6% (15/912). The full list of acronyms and their

associated species probabilities is availablBwgsplementary fild.

In addition to the entries in the NCBI taxonomy, a set afitaxhal synonyms
were included that occur very frequently in the literature (see (8#&mg and
Grover, 2008; Kappelest al, 2009), such as the ternifpatientd andfiwomaro

that we assume refer to human. Thesedtbel particularly useful if no scientific
names have been mentioned in a document, as often occurs in the medéeal liter

ture. A full list of additional synonyms is aVable inSupplementary fil&.

2.3.3 Matching metho ds
Texts can be matched by directly using the regular expressions in the dictionary

(such as YD(rmeed amioiglass|t er | fruit fl (y|]ies)
expressions would result in very high time requirements. Regular expressions of

species naes in our dictionary are strict enough that each only matches a few

different alternative strings. This enabled the conversion of the dictionary (based

on regular expressions) into a dictionary of all fixed strings that the regular e

pressions could matarsing the dk.brics.automaton packdlyssller, 2008) This

alternative dictionary format subsequently allowed the development of alnew a

gorithm for dictionary matchingjescribed in Algorithm 2.1The algorithm s-

sumes that the texs tokenized, and will only detect mentions that consist of
wholetokens Using a simple tokenization method of the reguiqr e e s ¥idogn
this means that it for ex amiphaa&uoveodid dord e
Ahuman/ mouseo, but dfeg a&lcrmerdo e lwlo afids.ch | kot e bte
while LINNAEUS uses tokens, the algorithm makes no apomon the length

of the tokens, so it would run equally well (although a bit slower) if all characters

in the text were considered to be tokens. The algorithms m average time

O(nlog; m) and space @(+ m), wheren is the number of tokens amd is the

number of terms in the dictionary. In practice, with the dictionaries of
LINNAEUS, this means that is fast enough that thepeednormally is limited
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by docunent XML parsing, system 1/O, or other external factors rather than the
matching method (se®ection2.4.4).
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Algorithm 2.1. The dictionary-matching method of LINNAEUS.
Given a listWof text token3M ( t h e ti € m and a sortedlist of dictionary

termsT; ( 0 i <On) with its assoiated listQ of dictionary identifiersQ; ( 0 i <O

m), the algorithm finds all mentions of any dictionary terniin
1. Loopstarto v e rsta@<nO

a. extensionY 0 (determines how mMédy

are searched)

b. tokensY t he ¢ o nof \lhie.Waak+ bxéhsin(these are the
tokens that will searched for in the dictionary; initigthkensWstart

whenextensior0).

c. bsresultY bi nar y T®rackensnote than if binary searcl
does not locate a match infor tokens it canindicate where the
matchshouldhave been if it was there. In our implementation, 1
is performed through a negative result. For exampegsult= -3
indicates that there was no match, but that if there would have |
it should have been at positiBrnT.)

d. If bsresultO0 O :

(a dictionary match was found, but there may also be lo
matches that start with the same tokens)

i. Emit a mention for the token®kiar ... WextensionWith the

identifiersQpsresutt
ii. extensior extension+ 1.
iii. If start+ extensior< n, jumpto b
e. If -bsresult- 1 <mandT.psresui1 Starts withtokens

(a dictionary match was not found, but there may be lor
matches that start with the current tokens)

i. extensiorY extension+ 1.

i If ctart4+ avitancinne N limn tn h
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2.3.4 Identification of misspelled species hames
In order to enable recognition of taxonomiesigs names that do not exist in the

dictionaries, the rukpased algorithm for species recognition used by TaxonGrab
(Koning et al, 2005) originally implemented in PHP, was reimplementedan J
va and integrated with LINNAEUS. Through the results of TaxonGrab, it is also

possible to detect r8pelled species names.

Using the reimplemented version of TaxonGrab amsbrmalized version of the
Levenshtein similarity distancg.evenshtein, 1966)it is possible to determine
which term in the species dictionary is most similar to the term recognized by
TaxonGrab. When thmost similarterm has been found, tmeention is normia

ized to that species and associated with the similarity sdote.that he simila-

ity scores should subsequentlydmmbined withsome cutoff leveby the usem
order to determine which entries to trust, as all mentions will be assbevith
some identifierwhether the match is good or not. The results from the similarity
search are cachedllowing subsequent searches for terappearing multiple
times to be avoidedAs part of the caching, older results are automaticaHly r
moved f the cache grows beyond 100 MB in size (this is unlikely to occur du
ing local computations, but may happen in web service scenarios). String-simila
ity tests are relatively resourggensive (se&ection2.4.4), so the useneeds to

explicitly enable it.

2.3.5 Document problem detection for authors and publishers
As mentioned in the introduction, a secondary aim of LINNAEUS is to provide a

method for document checking, where authors and/or publishers can betalerted
potential issues with species hame usage prior to publication or duringcprodu
tion. The hypothesis is that such a method, or collection of methods, ocould i
prove the quality of the published literature. The species-N&fed method we
propose would attapt to detect three types of problems: i) instances where a
thors use ambiguous species names, without clarifying them; ii) instances where
authors misspell species names; and iii) instances where authors use species
names that are deprecated or othenwiserrect. The first type of issue, ambig

ous species names, can trigger if the disambiguation methods of LINNAEUS
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(see the followingSection 2.3.6.). The second type, referring to misspelled
species names, is detected bdtlotigh the TaxonGrab/Levenshtein methed d
scribed in section the previous section (with a cutoff of 0.85) and through use of
metadata associated to entries in the NCBI Taxonomy (some of which are

marked as known misspellings).

Deprecated species names detected through NCBI Taxonomy metadata and
through the Catalogue of Life (Colisby et al, 2011) The Catalogue of Life
provides a web service where searches can be made to discover if a particular
species name is pdeecated/incorrect or not. Such queries were performed for all
names in the LINNAEUS dictionaries. graphical overview of how the doe

ment checking is performed is showrFigure2.2.

A -

!

»/ Ambiguous
TaxonGrab +
g Levenshtein
LINNAEUS species _
NER + norm. m Misspelled
Check
> metadata
A
Ly Check Deprecated,
metadata incorrect

N
[] (]

Figure 2.2. The processing workflow of the LINNAEUS
documentchecking method.

Shows how documents first are processed with
LINNAEUS species NER and normalization (Section 2.3
followed by detection of misspelled names (through Tax
Grab and NCBI Taxonomy metadata) and detection ofede
cated or otherwise incorrect species man{through NCBI
Taxonomy and Catalogue of Life metadata).

For each issue thas detected, whether it is an ambiguous species names-a mi
spelled name, or a deprecated/incorrect name, an alternative species nagne is su

gested that the author probably should use instead.
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2.3.6 Post-processing
After performing species namecognition and armalization using the methods

described inSection2.3.3and/or2.3.4 a number of pogbrocessing steps are

performed described in the following sectiorsegFigure2.1B for an oveview).

2.3.6.1 Disambiguation
In the case of overlapping mentions of different length, the longer mentien is r

tained and the shorter mention is removed (following the longasth princ
ple). This resolves cases suchfimade mica) where both theull term and the
term fimiced will match (in this case to the same species), fididman immuno-
deficiency virus ® where both the full term and the shorter tefilsiman m-
munodeficiency virug and iHumaro will match (to different speciesNo an-
choring is peformed on either side of the word; that is, the longest mataoi-is s

lected, regardless of whether it extends to the left or the right.

For mentions that remain ambiguous and where one of the possible candidate
species is mentioned explicitly elsewherehg text, all occurrences of thena
biguous term are resolved to refer to the explicitly mentioned species. This is
very common, as authors often mention the full name of a species witlt subs
quent mentions being abbreviated: for example, texts first memgoni
Caenorhabditis elegan@n explicit mention) followed by a number of mentions

of C. elegangan ambiguous mention matching 41 different species) are co
mon. If several of the candidate species are mentioned explieitdy oth
Caenorhabditis elegangnd Croton elegansfollowed by a mention ofC.
elegan$, the mention is set to refer to all the explicitly mentioned species, which
(while not completely digabiguating the mention)vould reducehe number of

potential species to which it could refer.

2.3.6.2 Acron ym declaration detection
In addition to the acronyms annotated by LINNAEUS that are included in the

dictionary, novel acronym declarations are also detected on a per docwnent b
sis. When an acronym definition is detected (of the féspecies(acronymn),0
wherespeciesvas in the dictionary anacronymis a sequence of capital letters,
digits or hyphens), all subsequent occurrences of that acronym are also tagged

within the document.
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2.3.6.3 Removing common English words
Based on a simple list of species namesdibatir commonly in the Englishra

guage when not referring to the species Sepplementary file 2 we remove
any mentionwhere particular terms have been associated witiicpkar species
(see alsqWang and Grover2008; Kappeleret al, 2009). For example, his
would removesynonyms such aspob (for Leiostomus xanthurdisindiipermi
(for Trachinotus falcatus and greatly reduces the number of false positivas ge
erated by the sfem.

2.3.6.4 Assigning probabilitiest o0 ambiguous mentions
Finally, any mentions that remain ambiguous are assigned probabilities of how

likely that mention refers to a particular species. The probabilities for ambiguous
mentions are based on the relative frequencgxplicit mentions(i.e., that are

not ambiguouspf the involved species across all of MEDLINE and the epen
access subset &MC full-text documents. The probabilities for acronyms are
based on the relative frequencies of acronym definitions as detected by
Acromine. For gample, br the ambiguous mentidiC. elegans the probability

for Caenorhabditis elegansould be very high{99.4%)while the probability for
Ceramiumeleganswvould be much lowef0.001%), aaenorhabditis elegans
mentioned much more frequently th&eramiumelegans For the acronym
AHIV o (which might refer to botliHuman immunodeficiency virésand, much

less commonlyfithe Hippocratic irrelevance variab)e the probability for it e-

ferring tofiHuman imnunodeficiency virus would be very high.

These probahiies enable an additional form of heuristic disambiguation: in the
cases where an ambiguous mention has a species alternative with a probability
higher than a given cutff (e.g. 99%), the mention could be fully disambiguated

to that species (such as the termfiC. elegang which can be disambiguated as
Caenorhabditis elegahsLikewise, a mention could be removed if the sum of all
speciegelated mention probabilities is smaller than a given threshold (e.g. 1%);
this can happen for acronyms where in entran 99% of cases the acronym is
used for a norspecies term. These levels present a tadtlbetween accuracy

and minimization of ambiguity, and could be adjusted after tagging depending on

the individual needs of the user.
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2.3.7 Input and output formats
LINNAEUS contains methods for reading documents from multiple input

sources:
1 Plaintext files:
o Single text files.

o Directories of multiple text files.

o MEDLINE XML ™

o PMC XML®

o Biomed Central XME®

o Open Text Mining Interface XMY’
1 Documents stored in databases

1 MEDLINE documents matching a particular PubMed query (using this
method, documents are downloaded on the fly through the NOQBIsE

web services).

The documenparsing methods contained in LINNAEUS can be used not only
by LINNAEUS, but also by any otheoftware that requires a convenient aoc
ment input method. In addition to containing docurqeantsing features for ntu
tiple types of document sources, LINNAEUS can also write results to féur di

ferent types of output formats:
1 Standoftbasedtab-separatd, files.

M XML documents

% http://www.nlm.nih.gov/bsd/licensee/data_elements_doc.html

'3 http://www.ncbi.nim.nh.gov/pmc/pmcdoc/taggirguidelines/article/style. html
'8 http://www.biomedcentral.com/about/xml

7 http://opentextmining.org/wiki/OTMI_Specification

'8 http://eutils.nchi.nlm.nih.gov/
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1 HTML documents (for simple visualiian of results).
1 Remote database tabl@s standoff format)

2.3.8 Document sets for large -scale species NER
Throughout this work, three different document sets were used to recognize and

normalize pecies names. For all sets, any documents published after 2008 were
removed to create fixed and reproducible sets of documents and avoid possible
discrepancies during the course of the project resulting from updates to database

records.

2.3.8.1 MEDLINE
MEDLINE is the main database of abstracts for aticin PubMed. As nme

tioned in sectiorll.1, MEDLINE contained 19.6 million abstracts as Jan 2011.
However, the release of MEDLINE used in this work (performed in 20609)
tained 18 million entries.Many of thoseentries do not actually contain anly-a
stract. The number of documents, if counting only entries containing an abstract

published up to the end of 2008, is just over 9.9 million.

2.3.8.2 PubMed Central open access subset
PMC provides a satf over a million fultltext articles free of charge. Unfart

nately, only about 10% (105,106 published up to the end of 2008) of these are
truly open access and available for unrestricted text mining. The articles in this
openaccess (OA) subset of PMC aederred to here a@PMC OA0 The majoi-

ty of the articles in PMC OA are based on XML files, but some have bedn crea
ed by optical character recognition (OCR) stanned,nondigital articles
(29,036 documents), and a few have been created by convertiaglealoa-

ment format (PDF) documents to text (9,287 documents). We note that for the
PMC OA documents that were generated with OCR oitqttixt software, re
erences are not removed from these documents. Because of this, species names
occurring in refeence titles may be tagged. For all other documents (MEDLINE,
PMC OA abstracts and PMC OA XML documents), only the title, abstract and

(if available) body text is tagged. €. reference titles are not processed).
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Abstracts from PMC OA

The abstracts of karticles in the PMC OA set form a set referred tgiRSIC

OA abso PMC OA abstracts were obtained from the abstract part of the PMC
OA XML files, or from the corresponding MEDLINE entry if no such section
existed in the XML file (this happens when théi@de has been produced through
OCR or pdfto-text tools). PMC OA abstracts consists of 88,962 documents,
which notably is fewer than the number of documents in PMC OA (105,106).
The reason that nall PMC articles are indexed in MEDLINE, and therefore
same OCR or pdto-text documents did not have a corresponding MEDLINE
entry, making it infeasible to accurately extract the abstract. Of the 88062 a
stracts, 65,739 abstracts (74%) were extracted from XML documents, while the
remainder wasxracted from orresponding MEDLINE documents.

Division of the PMC OA full-text document set

As explained in the previous section, it is not possible to reliably extradi-an a
stract for roughly ondifth of all full-text articles inrPMC since they do not have

an abstracsection in the PMC XML or a corresponding MEDLINE entry. We
chose not to eliminate these ftdixt articles from our analyses since theyeo
prise a substantial subset of documentBMC and their exclusion may bias our
results. However, their inclusiomakes direct comparisons of results based on
PMC OA abstracts and all PMC OA fu#xt documents difficult, since some
documents are present in the PMC OA-talit set that are missing from the
PMC OA abstract set. To solve this problem at the documeel, iee created

the APMC OA full (absd set, which contains the 88,962 ftdixt documents
where an abstract could be extracted, allowing direct comparisons between full
text documents and abstracts on exactly the same articles. Unfortunately, this
documen set still does not allow direct mentibevel comparisons betweeb-a
stracts and full text since the offset coordinates from MEDLINE entries and
PMC OA full-text documents are not compatible. Because of this, we created the
APMC OA full (xml)o set, whichconsists of only the 65,739 fetbxt documents
where abstracts could be extracted from the corresponding PMC XML fies. U
ing this PMC OA fulitext XML set, it is also possible to perform mentienel

comparisons on the same set of documents on the cliset coordinates. We
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note thatiPMC OAOQ refers to the complete set of 105,106-tekt documents,
which we alternatively denote 8BMC OA full (all)o.

2.3.9 Document sets for evaluation
At the outset of this workno operaccess cormiof biomedical documenexig-

ed that wasannotated for species mentions. Thus we created a numberef aut
matically generated evaluation sets in order to analyze the accuracy of
LINNAEUS and other species name tagging software. Because of the nature of
the data they are based, omany of these evaluation sets can only be analyzed at
the document level. Additionally, none of these automatically generatecaevalu
tion sets were based on data specifically created in order to annotate species
mentions. Because of this, we created aaleation set of fultext articles mam-

ally annotated for species mentiditisis has also been made available at tloe pr

ject web page)The different document sets are described in the following se

tions.

2.3.9.1 NCBI taxonomy citations
Some species entries in tNEEBI taxonomy contain references to research art

cles where the species is discussed. For these documents, we assume the species
are most likely mentioned somewhere in the article, allowing relative retall

the document leveljo be a useful measure.GBl taxonomy citations were
downloaded on June 1st, 200%he number of documents, species, and tatal e

tries for the evaluation set are showTable2.1.

Table 2.1. Statistics for the NCBI Taxonomy evaluation set.
Shows the number of speciegntaining documentshe number
of unique species, and the total number of species entries in
NCBI Taxonomy set, limited to the abstracts in MENE], the
abstracts in PMC OA, and the PMC OA fidit articles.

Document set Documents Species Mentions

MEDLINE 5,237 6,871 8,701

PMC OA abs 10 21 21

PMC OA 12 26 26
2.3.9.2 Medical subject heading terms

Each articlem MEDLINE has associated MeSH terms specifying which subjects

are discussed in the article. A subset of these terms relates to species, and can be
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mapped to NCBI taxonomy species entries through the Unified Medical La
guage System (UMLS). However, the nuanlof species represented by MeSH
terms is limited. In total, there are MeSH terms for only 1,283 species, and only
824 species actually occur in the MeSH tags in MEDLINE. Moreover, a MeSH
term given to an article is no guarantee that a term is explogiytioned in the
document. Additionally, only a small number of the total species mentions in a
document are expected to be represented in the MeSH tags (ardlfezbfocus
species), causing estimates of precision using this corpus to be less informative
than recall. MeSH terms were extracted from the 2009 MEDLINE basebre di
tribution. The number of documents, species, and totiiless for the evaluation

set are shown imable2.2.

Table 2.2. Statistics for the MeSH evaluation set.

Shows the number of specie®ntaining documentshe number
of unique species, and the total number of species entries in
NCBI Taxonomy set, limited to the abstracts in MEDLINE, th
abstracts in PMC OA, and the PMC OA ftdixt articles.

Document set Documents  Species Mentions

MEDLINE 6,817,973 824 7,388,958

PMC OA abs 44,552 518 51,592

PMC OA 88,826 527 57,874
2.3.9.3 Entrez Gene entries

Entrez GenéMaglott et al, 2005)provides database entries for genes with both
article references and species information. Based on these data, articles can be
mapped to species. While species are often mentioned together with axgene, e
plicit species mentions are not guaranteed in those articles. Additionally, as the
database focuses on genes rather than species, a large proportion of species me
tions in this @cument set may not be included (for example, there will be many
human mentions that do not pertain to genes, and therefore are not tagged). Thus,
relative precision on thEntrez Genelocument set is expected to be low relgar

less of the real software acecy. Entrez Genalata were downloaded on June

1st, 2009.The number of documents, species, and tatiaies for the evaluation

set are shown imable2.3.
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Table 2.3. Statistics for the Entrez Gene evaluation set.

Shows the number of speciegntainng documentsthe number
of unique species, and the total number of species entries in
NCBI Taxonomy set, limited to the abstracts in MEDLINE, th
abstracts in PMC OA, and the PMC OA ftdixt articles.

Document set Documents Species Mentions

MEDLINE 440,084 3,125 486,791

PMC OA abs 8,371 406 9,307

PMC OA 9,327 428 10,294
2.3.9.4 EMBL records

Similarly to theEntrez Geneecords, many EMBL(Cochraneet al., 2009) se-
guence records also main information about both which species the sequence
was obtained from and in which article it was reported (see(Miker et al,

2009). This enables extraction of speecgsicle mappings, assuming that the
species is explicitly mentioned in the papsparting the nucleotide sequence. As
with theEntrez Geneet, this is however not guaranteed, and any species that are
discussed in addition to those with reported sequences will not be present in the
evaluation set (again causing precision measures toinéormative). Version

r98 of EMBL was used for this evaluation s€he number of documents, esp

cies, and totalmries for the evaluation set are showT able2.4.

Table 2.4. Statistics for the EMBL evaluation set.

Shows the number of speciesntaining documentshe number
of unique speciesand the total number of species entries in i
NCBI Taxonomy set, limited to the abstracts in MEDLINE, th
abstracts in PMC OA, and the PMC OA ftdixt articles.

Document set Documents Species Mentions

MEDLINE 174,074 149,598 396,853

PMC OA abs 5,157 7,582 12,775

PMC OA 7,374 7,867 15,136
2.3.95 PubMed Central linkouts

Although not described in any publication, NCBI performs species recognition
text mining on fulltext articles included in PMC. These taxonoriiokoutso
can be accessed when viewing an article on PMC, and can also be downloaded
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through the NCBI aitils web serices®. By downloading these linkouts it is
possible to create an evaluation set that is relevant to both recall and precision
(although onlyat the document level). The PMC linkout data were downloaded
on June 1st, 2009he number of documents, speciesd @otal entries for the

evaluation set are shown Trable2.5.

Table 2.5. Statistics for the PMC linkouts evaluation set.
Shows the number of speciegntaining documentshe number
of unique species, and the total number afcggs entries in the
NCBI Taxonomy set, limited to the abstracts in MEDLINE, th
abstracts in PMC OA, and the PMC OA ftdixt articles.

Document set Documents Species Mentions

MEDLINE 35,534 29,351 248,222

PMC OA abs 41,054 41,070 286,998

PMC OA 42,910 32,187 289,411
2.3.9.6 WhatizitOrganisms

In order to evaluate mentidavel accuracy and benchmark LINNAEUS against
another species name recognition systengauments in the PMC OA set were
sent through the WhatizitOrganisms web service pipeline. Unfortunately, the
Whatizit web service could not process around 10% of PMC OA, which are
therefore unavailable for comparison. The WhatizitOrganisms tagging was pe
formed June 25th, 2009he number of documents, species, and tatiales for

the evaluation set are shownTiable2.6.

Table 2.6. Statistics for the WhatizitOrganisms evaluation set.

Shows the number of speciesntaining documentsthe number of
unigue species, and the total number of species entries NGBI Ta-
onomy set, limited to the abstracts in MEDLINE, the abstracts in Pl
OA, and the PMC OA fultext articles.Numbers in parentheses shov
the portion of abstracts that can be extracted from the document X
files, enabling mentiotevel accuracy amparisons (se8ection2.3.8for
details).

Document set Documents Species Mentions

MEDLINE 71,856 23,598 3,328,853
PMC OA abs 82,410 (64,228 25,375 3,791,412
PMC OA 94,289 26,557 4,075,644

19 http://eutils.ncbi.nlm.nih.gov/
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2.3.9.7 Manually annotated gold -standard corpus
Because all of the previously descdbevaluation sets are limited by the fact that

they are not specifically annotated for species names, it became clear that such a
set was needed in order to measure the true accuracy of LINNAEUS. Because no
such evaluation set was available, 100-fet documents from the PMC OA
document set were randomly selected and annotated for species mentions. As the
focus of this work is on species rather than on genera or other Hoiglegrtax-

nomic units, the corpus was only annotated for species (except faases

where genus names were incorrectly used when referring to species).

All mentions of species terms were manually annotated and normalized to the
NCBI taxonomy IDs of the intended species, except for terms where the author
did not refer to the spe@e A commonly occurring example i#isher's exact

tesb (AFisheb is a synonym foMartes pennantibut in this case refers to Sir
Ronald Aylmer Fisher, who invented the statistical test). In the cases where a
species ID did not exist in the NCBI taxonorfiostly occurring for specific
species strains), they were given a species ID of 0 (which is not used in the NCBI

taxonomy).

Annotated mentions were also assigned to the following categories that indicated

specific features of mentions, which can be usesl/aluation analyses:
() Lexical categories:

1 Author misspelling.
1 Incorrect casesagge.g.fiDrosophila Melangasteo).
1 Misspelling,owing to an OCR or other thwgical error.

(i) Syntactic categories:

1 Enumeration of species nameasd. V. vulnificus QMCP6 and YJO1G
referring to two different strains &fibrio vulnificug.

(iif) Semantic categories:

71 Incorrect nameaisage(e.g. usingthe genus naméDrosophila when e-
ferring specifically toDrosophila melanogasteor just fiPileated when
referring tothe Pileated woodpeckddryocopus pileatus
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1 Use of the species nanas an adjectivalimodifierd such as ifhuman
p530 (where the author is not actually referring to the human species, but
rather a gene). Note that although the author was not refelirejly to
the species, these mentions are still important when extracting species
mentions in order to perform, for instance, gene name recognitionl-We a
so note that while the adjectibumard in fihuman p58 is considered a
modifier, we do not considdat a modifier in phrases such éthe p53
gene in humad where the nourihumar refers directly to the human
species.

A mention may belong to several categories (for example, it may be both used as
a modifier and misspelled), or not belong to any categoall (i.e. just being a
finormab mention, which is the most common casd)e number of documents,
species, and total entries for the evaluation set are showahle 2.7 and a
summary of the number of species mentions aateat with each category is
shown inTable2.8. The categories give insights into how often species names
are misspelled or used incorrectly in the literature. They also enable dedper ana
yses of any prediction emwrs made by LINNAEUS or any other software evialua

ed against this corpus. Of the2B9 species mentions annotated in this corpus,
72% (3065) are common names, reinforcing the importance of being abde to a

curatly identify common names when processingiéalical research articles.

Table 2.7. Statistics for the manually annotated evaluation set.
Shows the number of speciegntaining documentshe number
of unique species, and the total number of species entries in
NCBI Taxonomy set, limited to the abstractsMEDLINE, the
abstracts in PMC OA, and the PMC OA ftdixt articles.Num-
bers in parentheses show the portion of abstracts that cat be
tracted from the document XML files, enabling mentievel a-
curacy comparisons (s&ection2.3.8for details).

Document set Documents Species Mentions

MEDLINE 75 176 3,205
PMC OA abs 89 (76) 215 3,878
PMC OA 100 233 4,259
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Table 2.8. Statistics and false negidve LINNAEUS extraction counts for
the manually annotated corpus.

Shown are theamposition of speciementionsin the manuallyannotated
corpus and false negative predictions by LINNAEke¢ttive tothe mam-
ally annotated corpusA detailed description fothe different categories is
providedearlier in this sectian

Category Total corpus mentions False negatives
Misspelled 46 11
Incorrect case 130 128
OCR / technical errors 18 16
Enumeration 2 1
Incorrectly used name 79 66
Modifier 1,217 125
Normalmention 2,788 12

In order to estimate the reliability of the manual annotations, 10% of the corpus

(10 documents) was also annotated by a second annotator and taa nator
agreemen(lAA) was calculated. In total, there were 406 species mentiors ann

tated in the 10 documents by at least one annotator. Of these 406 mentions, 368

were annotated identically by the two annotators (both mention position @nd sp

cies identifier). Cohen's kneasure for inteannotator agreemef€ohen, 1960)

was calculaté asa = 0.89.This value is high; Landis and Ko¢h977)describe

kappa values above 0.80aagli eadmert i hgl siame
as fAexcell etalt(2009h @t Beerr tstnudi es t hat wused (
interrannotator agreements include annotation of disease eiffitiesnoet al,

2008) (8 =0.51, but no guidelines had been given to the annotators), aonotati

of article section categories £ 0.71) and annotation of smoking status in Elin

cal notegUzuneret al, 2008)(a =0.84). For further discussion about the inte
pretation of different values (2008) Cohenods

Numerical etails of the IAA analysis can be foundSapplementary fild.

2.3.10 Performance evaluation
Mentions produced by LINNAEUS were compared to thips¢he evaluation

reference sets to determine the performance of the system. If a specific mention
occurs in both the LINNAEUS set and the reference set,dbnsidereda true
positive (TP); if it occurs only in the LINNAEUS set itagsnsidered falsepos-

tive (FP); and if it occurs only in the reference set toissideredh false negative

(FN). This is performed botat thedocument level (where the location of arme
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tion within a document is not considered) and mention level (where the mention
locations have to match exactly). For the evaluation sets where information is 0

ly availableat thedocument level, mention level evaluation is not performed. In
the case of ambiguous mentions, the mention is considered a TP if the mention
contains at least #fitrued species (and, for mention level analyses, the location

is correct). We note that LINNAEUS attempts to identify all species mentioned

in a dowment, and thus there is no limit on the number of species reported.

2.4 Results

2.4.1 Large-scale species identific ation in MEDLINE and PMC OA
We applied the LINNAEUS system to nearly 10 million MEDLINE abstracts

and over 100,000 PMC OA articles that were published in 2008 or béfalnée(
2.9).

Table 2.9. Extraction results for LINNAEUS on MEDLINE and PMC OA.
Shown are the numbers of documents, unique species, and species ma&ntic
tracted by LINNAEUS from the MEDLINE, PMC OAba (abstracts of fullext
documents) and PMC OA document sétsmbers in parentheses show the-po
tion of abstracts that can be extracted from the document XML files, enak
mentionlevel accuracy comparisons (seection2.3.8for details).

Document set Documents Species Mentions

MEDLINE 9,919,312 57,802 30,786,517
PMC OA abs 88,962 (65,739 5114 303,146
PMC OA 105,106 18,943 4,189,681

Tagging of the document sets took approximately 5 hours for MEDLINE, 2.5
hours for PMC OA abstracts and 4 hours for PMC OA, utilizing four Intel Xeon
3GHz CPU cores and 4 GB memory. We note that the main factor influencing
processing time is the Java XML douent parsing rather than the actual species
name tagging. These species tagging experiments far exceed the scale of any
previous report(Ding et al, 2005; Koninget al, 2005; Sautteet al, 2006;
Wang, 2007; Aedet al, 2008; Wang and Grover, 2008; Wang and Matthews,
2008; Kappeleet al, 2009) and represent one of the first applications of text
mining to the entire PMC OA corpus (see gBmk et al, 2008; Xuet al, 2008;
RodriguezEsteban and lossifov, 2009)0ver 30 million species mentions for
over 57,000 different species were detected in MEDLINE, andfouemillion

species mentions for nearly 19,000 species in PMC OA. LINNAEUS identifies
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species in 74% oflaMEDLINE articles, 72% of PMC OA abstracts, and 96% of
PMC OA full-text articles. In terms of the total number of species in the NCBI
taxonomy dictionary, 15% of all species in the NCBI dictionary were found by
LINNAEUS in MEDLINE, 1.3% were found in PMOA abstracts and 4.9%
were found in the PMC OA fullext articles. The density of species names in
MEDLINE or PMC OA abstracts is 3@ld and 3fold lower, respectively, than
that for PMC OA fulitext articles; the density of species mentions idald
lower in both sets of abstracts relative to-takt documents.

2.4.2 Ambiguity of species mentions in MEDLINE and PMC
Across all of MEDLINE and PMC OA, between-14% of all species mentions

are ambiguous. Thughelevels of species name arghity are on thesame order
ascrossspecies ambiguity in gene nam@&henet al, 2005) and indicate that
some form of disambiguation is necessary for accurate species names @ermaliz
tion. Levels of ambiguity for the tagged document sets before and aftersthe di
ambiguation step by LINNAEUS are shownTiable2.10. Ambiguity levels are
calculated as the number of ambiguous mentions divided by the total number of
mentions, where an ambiguous mention is counted when a mention maps to se
eral species. The disambiguation metlindne shows values prior to anydi
ambiguationfieariero disambiguates by scanning for explicit mentions earlier in
the document and, for comparisdiwholed disambiguates by scanning fax-e
plicit mentions in the whole documefiStrictd disambiguation does hoonsider

the associated phabilities of correct species mentions, whergggproximate
represents the simbiguation of any mentions where a single species has higher

than 99% proability, or the sum of all species probabilities is lower than 1%.
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Table 2.10. Levels of ambiguity in extracted LINNAEUS species me-
tions.

fiNoned refers to the baseline case where no disambiguation is perforr
fearlieio refers to disambiguation of an ambiguous mention by searching
its explicit species mentions earlier in the documant fiwholeo refers to
disambiguation by searching for its explicit mentions across the whole d
ment. In theflapproximaté mode, a heuristic is employed to further disa
biguate ambiguous mentions based on the probability of correct species u

None Earlier Whole
Strict Approx. | Strict Approx. | Strict Approx.
MEDLINE 0.111 0.053 0.059 0.030 0.054 0.028
PMC OA abs | 0.110 0.061 0.054 0.031 0.049 0.028
PMC OA 0.143 0.075 0.029 0.015 0.027 0.013

Scanning for explicit species mentions elsewhere in the text leads to roughly a
two-fold reduction in ambiguity for abstracts, but nearly a-fimiel reduction for

full text. Approximate tagging based on probabilities of correctispeusage
leads to roughly a twéold reduction in levels of ambiguity, in both abstracts and
full text. Overall, less than 2.9% of mentions in figkt documents remaima
biguous when explicit mentions are sought elsewhere in the text and, combined
with approximate disambiguation based on probabilities of correct species usage,

levels of ambiguity drop to less than 1.5%.

2.4.3 Evaluation of LINNAEUS species name tagging
Evaluation of species mentions found by LINNAEUS compared to those in the

evaluation setsre shown infable2.11. For the documerevel evaluation sets
(NCBI taxonomy references, MeSH tags, Ernigene references, EMBL refe
ences and PMC linkouts), the documbavtel links are compared directly agains

the mentions found by LINNAEUS in MEDLINBbstractsPMC OA abstracts

or PMC OA full-text documents. For the mentidevel evaluation sets
(WhatizitOrganisms output and the manually annotated set), links are anly co
pared directly between the evaluatiegts and PMC OA XML, since PMC OA
XML is the only document set on the same offset coordinates as the evaluation
sets (se&ection2.3.9. For the automatically generated sets, we interpret recall
and precsion in the context diow species are annotated in the evaluation set to

provide a qualitative analysis of the false positives and false negatives. For the
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manually annotated gold standard evaluation set, a quantitative analysis of false

positives and false nefives was alsperformed.

Table 2.11. Evaluation resultsof LINNAEUS on different evaluation sets

PMC OA full (all) shows accuracy for all fulext documents. PMC OA full (abs)
shows accuracy for all futext documents with an abstract that can be extracked,
lowing comparison of documetdvel accuacy between fultext and astract. PMC
OA full (xml) shows accuracy for all fulext documents with XML Iastract, allowing
comparison of mentiofevel accuracy between fetéxt and abstractd/alues in @-
rentheses are for comparisons between documenbgdifferent type (for example,
evaluation tag sets based on full text compared against species tags generhted
stracts) or when the evaluation set is likely to exclude a large number of speaies 1
tions.

Set Level Main set TP FP FN Recall Prec.
NCBI Doc. MEDLINE 6,888 10,032  (1,807) 0.7922 (0.4071)
taxonomy PMC OA abs 15 20 (6)  0.7143 (0.4286)
PMC OA full (abs) 16 166 (3) 0.8421 (0.0791)

PMC OA full (all) 22 196 (4) 0.8462 (0.1010)

MeSH Doc. MEDLINE 5,073,147 4,577,293 2,315,811 0.6866 0.5257
PMC OA abs 36,641 49,151 (14,797) 0.7123 (0.4271)

PMC OA full (abs) 46,484 291,872  (2,219) 0.9544 (0.1374)

PMC OA full (all) 54,814 346,071  (2,880) 0.9201 (0.1367)

Entrez Gene  Doc. MEDLINE 346,989 171,001 (139,702) 0.7130 (0.6699)
PMC OAabs 6,946 4110  (2,357) 0.7466 (0.6283)

PMC OA full (abs) 8,184 38,275 (470)  0.9457 (0.1762)

PMC OA full (all) 9,662 42,209 (628)  0.9390 (0.1863)

EMBL Doc. MEDLINE 158,462 183,950 (235,745) 0.4020 (0.4627)
PMC OA abs 4,807 4360  (7,902) 0.3782 (0.5244)

PMC OA full (abs) 6,601 34,447  (3,859) 0.6311 (0.1608)

PMC OA full (all) 9,433 40,212  (5,613) 0.6269 (0.1900)

PMC linkouts  Doc. MEDLINE (27,259) (23,377) (122,596) (0.1819) (0.5383)
PMC OA abs (30,315) (27,192) (141,735) (0.1762) (0.5272)

PMC OA full (abs) 110,288 156,012 61,656 0.6414 0.4141

PMC OA full (all) 11,2069 163,052 61,671 0.6450 0.4073

Whatizit Doc. PMC OA abs 64,686 29,222 12,930 0.8334 0.6888
Organisms PMC OA full (abs) 308,410 67,171 100,079 0.7550 0.8211
PMC OAfull (all) 344,445 73,489 109,668 0.7585 0.8242

Mention PMC OA abs 139,077 147,426 39,351 0.7794 0.4854

PMC OA full (xml) 1,164,799 1,596,615 527,284 0.6883 0.4218
PMC OA 1ull (all) 1,304,620 2,398,321 1,133,018 0.5352 0.3523

Manual Doc. PMC OA ats 101 0 3 0.9712 1.0000
PMC OA full (abs) 421 46 9 0.9791 0.9015

PMC OA full (all) 462 49 9 0.9809 0.9041

Mention PMC OA abs 326 3 19 0.9449  0.9909

PMC OA full (xml) 3,190 92 222 0.9350 0.9720

PMC OA full (all) 3,973 120 241 0.9428 0.9707
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24.3.1 NCBI taxonomy citations
Results for PMC OA and PMC OA abstracts relative to the NCBI taxonomy are

difficult to assess because of the low number of intersecting documents (n=12).
When comparing NCBI taxonomy citat®nto LINNAEUS predictions on
MEDLINE, no particular species or set of terms stand out among the incorrect
predictions. From an analysis of the false negativiesissed mentions), it
seems that the majority of false negatives are not actually mentiorled #-

stract, although they still could be mentioned in the main body text. The reason
for the apparent low precision and high number of false positives is thatathe m
jority of species mentioned in the articles are not included in the evaluation tag

set.

2.4.3.2 Medical subject headings
For MeSH, very few mentions are actually included in the evaluation set, as the

purpose of MeSH is to identify the main themes discussed in a paper rather than
each individual species mentioned. This greatly affects the numbaisefdos

tives. Human stands out among the false negatives, representing 84% (1,950,767)
of all false negatives in MEDLINE and 31% (1,316) in PMC OA. Inspecting a
sample of documents shows that, both for human and other species, the false
negatives are nagxplicitly mentioned in the documents. As expected;thit
documents offer higher recall relative to abstracts, since mentions located in the
main body text are available to both LINNAEUS and the MeSH curators.

2.4.3.3 Entrez Gene entries
Relative toEntrez Gee our tagging precision is low (19.0% for fudixt doa-

ments) due to the fact that far from all species mentions are included in the eva
uation tag set. Recall is high for fa#xt articles, with 93.9% of species links in

the PMC OA set correctly foundy LINNAEUS. Among the entries that still

were missedProsophila melanogastestands out, comprising 28.7% (184) of
false negatives. Inspection shows that false negatives often appear because only
the genus nami@Drosophila wasused in the article as atthand for the species
Drosophila melanogastepotentially warranting the addition @brosophlao as

a synonym forDrosophila melanogaste(see also(Kappeleret al, 2009).

Among theremaining false negatives, the species seems not to be mentioned in

the documents. The lower recall for abstracts relative to full text is most likely
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due to the species associated with a gene being mentioned in the main body text
rather than in the abstia

2434 EMBL records
For the EMBL set, no species is especially enegaresented among the false

negatives. An inspection of the false negative samples from all three document
sets reveals that the species is often not explicitly mentioned in the article: Som
times this is because nucleotide sequences are reported in a paper for a species
but only discussed in supplementary data files, which are not available to be
tagged by the software. Higher recall values for-teit articles as compared to
abstracts indiate that species names are more likely to be mentioned in the main
body. As with the MeSH anBintrez Genelocument sets, precision values are of

low relevance due to the evaluation set not including all species mentions.

2.4.3.5 PubMed Central linkouts
Performane of LINNAEUS compared to PMC linkouts reveals recall levets si

ilar to those obtained on the EMBL document set, but lower than those for MeSH
or Entrez Gengdespite the fact that this evaluation set has beestraated with

the similar aim of performingpecies tagging as LINNAEUS (althougtea dcc-

ument level). Inspecting a number of false positives and negatives reveals that
virtually all were incorrectly tagged in the PMC linkout evaluation set, often for
no apparent reason. For some false negatisescarticles have been tagged with
species whose names can only be found in the titles of the references.gFhis su
gests that species names in the PMC linkouts are detected also in referenced art
cle titles (while in some cases linkouts are missed evem \whecies are me

tioned in the main article title). Lower performance for MEDLINE and PMC OA
abstracts is due to comparing species names found by LINNAEUS onby in a
stracts to those found in the full documents in PMC linkouts, and as such are not

directly relevant.

2.4.3.6 WhatizitOrganisms
The last automatically generated evaluation set we considered was fromzitWhat

Organisms, which provided the opportunity to investigate the performance of
LINNAEUS species tagging at both the document and mention level.

LINNAEUS recall is worse at the document level when evaluated against
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WhatizitOrganisms relative to MeSH &ntrez Gengbut better than EMBL or

PMC linkouts, while precision is higher than all the other datasets. At the me
tion level, relatively low values of bio recall and precision of LINNAEUS me

tions evaluated against WhatizitOrganisms indicate substantial differences in the
tagging of these two methods. When inspecting these differences, they can be

seen to form three main error classes, desciib#dte fdlowing sections

Disambiguation errors

When a species term is ambiguous, WhatizitOrganisms will always @lyia
single ID, which can be incorrect (fexample for all instances ofiC. elegang

the ID for Celeus elegans returned). In the cases aie LINNAEUS has oo

rectly dsambiguated these mentions, they will result in both a false negative and
a false positive relative to WhatizitOrganisms. Using the example above, the
false negative would stem froeleus elegansot being found, and the false
positive would be caused fro@aenorhabditis elegarniseing found, despite not
being in the WhatizitOrganisms reference set. Most ambiguous terms (mainly

abbrevétions and in some cases acronyms) give rise to this kind of error.

Acronym errors

Acronym erros are introduced both because of ambiguities as desarlibe
previous sectioiffor examplefiHIV 6 mentions are systematically taggedSim-
ian-Human immunodeficiency virysbut also because some acronyms in the
NCBI taxonomy have been excluded frone tLINNAEUS dictionary (this will
happen if Acromine has not recorded any occurrences at all of specieslpeing a
breviated for a given acronym).

Manual dictionary modifications

The last class consists of the terms that either are added manually as sytmonyms
the LINNAEUS dictionary, or are filtered out during p@sbcessing by
LINNAEUS. Commonfifalse positivé mentions in PMC OA arise from aidd
tional synonyms includingipatiend and fipatient® (681,166 total) and women
(120,492). Commofifalse negativé mentions in PMC OA arise from manually
removed terms includingspob and fispot® (32,701 total), as well ahame
andiinames (29,848 total).
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2.4.3.7 Manually annotated corpus
To understand the true performance of the LINNAEUS system, we generated a

gold standardiataset specifically annotated to evaluate species name identific
tion software. The reliability of this gold standard is high, however some species
names are likely to be omitted from this evaluation set, as shown by IA%anal
sis (seeSection 2.3.9.7 on page 69). Performance of species tagging by
LINNAEUS on full-text articles is very good, with 94.3% recall and 97.1% pr
cisionatmention level, and 98.1% recall and 90.4% precisicfocument leel.
Inclusion of mentions from our additional synonyms sucfipagient does not
explain this high level of performance alone, as we observe 91.4% recall and
96.9% precisiorat mention level when mentions for additional synonyms &re fi
tered out. When conagped against the abstracts of the manually annotated co
pus, LINNAEUS was shown to perform with 94.5% recall and 99.1% precision
at the mention level, a level similar to the accuracy achieved againsexXull
documents. These high levels of performancgesfiecies name tagging also-i

ply that our disambiguation methods typically identify the correct species when
confronted with multiple options.

We also compared output from WhatizitOrganisms to our manually annotated
corpus to understand the performanceLliNNAEUS relative to another nme
tion-level species name tagging system. Compared to our manually annotated
corpus, WhatizitOrganisms achieved recall of 42.7% and precision of 68.2%
the mention level, and recall of 80.3% and precision of 6%i#e daument

level. When all additional synonyms (which are not present in the
WhatizitOrganisms dictionary and therefore cannot be predicted by this system)
are filtered out from the evaluation set, WhatizitOrganisms achieved recall of
64.4% and precision of 68% at the mention level, and recall of 84.7% and-pr
cision of 69.1%at the document level. Differences in performance between the
two methods arise from the discrepancies in tagging discussed in the diftect eva

uation ketween LINNAEUS and WhatizitOrganismis the previous section

Based on the categorization of manually annotated mentions, it is possible to
arelyze the type of false negative and false positive predictions made by
LINNAEUS. False negatives are mainly due to incorrect case being used (see

Table2.8), suggesting that an approach that ignores case might be worth-explo
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ing. False positives are more diverse: they are mostly caused by species syn
nyms occurring in common English, or because LINNAEUS tagaeithor
names as species (an exampléRsced which occurred in author names four
times in the corpus). Nearly 10% of all false positives were acronyms that had
been marked as probably not referring to species (the sum of mention probabil
ties were lowethan 5%). Approximately 20% of all false positives were due to
mentions being missed during manual annotation. This result is consistent with
the IAA analysis, which revealed that a second curator could identify additional
species mentions in these docunise These omissions were not corrected during
the course of evaluation in order to presetwe integrity of the evaluation set.
Future work will involve the release of not only the original gsti@ndard ce

pus, but also a version where these errors haea corrected.

2.4.4 ldentifying misspelled species names
As mentioned irBection2.3.4 all entries recognized by TaxonGrab are associa

ed to a species identifidény LINNAEUS through the approximate string miatc
ing method, whether the terms resemble each other or not. Because of this, the
use of some cutoff score (or other method of determining if a particular @associ
tion is releble) is critical if the normalized identifiers of TaxonGrab mentions are
used. For exapie, the misspelled termBaccillus subtili® (from the title of
PMID 169225 was correctly associated Bacillus subtilis(NCBI taxonomy ID
1423 by LINNAEUS, with similarity score 0.94. On the other hand, the term
fiXeroderma pigmentosuin (PMID 1171827 was incorrectly assigned to
Trichoderma tomentosurtifaxonomy ID 63591 with similarity score 0.64.
While fiXeroderma pigmentosuirat a glance does look like a species name, it
actually refers to a genetic disorder, and as such represeR an behalf of

TaxanGrab.

In order to determine the utility ahtegratingthe TaxonGrabalgorithm with
LINNAEUS as amethod for identifying misspelled species nantles complete
set of documents in MEDLINE2011 baselineand PMCOA (downloaded May
2011)were processedsing theTaxonGrahbalgorithmand approximate matching
(as described in sectidn2.4 enabled.The addition ofTaxonGrabenabled the
recognition 0f374,937 term mentions in addition to what LINNAEUS h&d a
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ready recognized (peesenting 1% of all mentions). The distribution of theisim

larity scores can be seenhkigure2.3.
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Figure 2.3. Distribution of potentially misspelled species
names identified by TaxonGrab

Shown is the number of species mentions in MEDLINE
PMC that were recognized by TaxonGrab while not recogn
by LINNAEUS, as a function of their similarity to specit
names in the NCBI Taxonomy (presented in bins of width 0.
Mentions with high name similarities are very similar to at le
one name in the NCBI Taxonomy, while mentions with I
similarity are nosimilar to any species names.

As we expected the string similarity searches to be relatively slow, we measured
the speed at whichINNAEUS operated in i) its default configuration, ii) with
TaxonGrab, and iii) with both TaxonGrab and the string similarity searclaes en
bled. While absolute measurements of software time requirements is of limited
value due to evecthanging computationdlardware, comparisons betweeift di
ferent methods can be useful in order to get a rough idea about their redative r
source requirement differences. Using the default settings and a single @omput
tional thread operating on a 3 GHz core, LINNAEUS requireavanage 1.1 ms
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per MEDLINE abstract (on a sample of 10,000 randomly selected abstracts,
stored as text files). On the same sample, LINNAEUS requires 2.2 mb-per a
stracts when TaxonGrab is enabled (an increase by a factor of 2), and 120 ms per
abstract whemlso the string similarity normalization is enabled (an increase by a
factor of 109). It is clear that the addition of the approxirsateg method slows

down the opeaation of LINNAEUS dramatically. Neverthelesse believe that it

is still not prohibitvely heavy for applications where identification of misspelled
species names is importgstich as authoring support, described in the following

section)

All potentially misspelled entries found in MEDLINE are availableSimppk-

mentary file5. We believe that this could be useful for inclusion in dictionaries

by other dictionarsbased species NER tools. Note ffzt mentioned previously,

any inclusion will need to use a cutoff at some similarity level (which deHl

pend on how important precision is compared to recall). In daderduce the

number of FNs for LINNAEUS users that do restablethe spelchecking fa-

ture (for performanceelated or other reasons), pitentialspecies misspkhgs
with a similariy score O00. 9 (n=14,783) wmre addec
can be enabled by the users. While no quantitative evaluattitire use of this

custom dictionarywas performed, we did scan a random selection of about 50
associations (with similarity sco@0 . 9) , and have bmeoen unabl
among them (errors do begin to appear as similarity scores get closer to 0.8
though). The new dictionary of misspellings was not used during the evaluations
(reported inSection2.4.3 as it was constructeat a later datebut it should only

have a minimal impact ooverallaccuracy as the absolute number of mentions it

affects is smallA sample of 100 misspellings included in the dictionaries (all

with similarity score = 0.9, representing the lowest quality of entries added to the
dictionaries) can be seen Additional table A1l (pagel56). The table includes

nine alternative spellings dArabidopsis thalianabut if all misspellings with

score O 0.9 are considered, the species
number of misspelled variationgseudomonas aerugingshave been s

spelled in no less than 119 diféat ways.
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2.4.5 Document problem detection f or authors and publishers
As mentioned irSection2.3.5 development was performed to provide a unified

method for detecting potential species hame usage issues. These issues include
the detection of instances where authors arebiguous species names without
explicitly stating which species they refer to, when species names are misspelled,
and when deprecated or otherwise incorrect species names are used. This method
was applied to all documents in the MEDLINE 2011 baselies find the open

access subset of PMC (download May 2011). In total, the tool de®20#2553

issues; a breakdown by type and document source can be SesnaR.12. In

total, 6.4% and 15.7% of the MEDLINE and PMC documeants &t least ones4

sue with species name usage, respectively. As expected, the ratio of documents
that contain at least one issue is considerably higher feteftlldocuments than

for abstracts.

Table 2.12. Number of document issues detected in MEDLINE and PMC
by the LINNAEUS document checker.

Shows the number of misspellings, the number of deprecated or inco
name used (as detected by either NCBI or Catalogue of Life sources), ant
number of ambiguous names used without clear disambiguation. The- d
cated species names may not necessarily have been formally deprecated
time when they were used.

Type MEDL INE PMC

Misspelling 77,359 12,297
Deprecated/incorrect, NCB 113,588 17,184
Deprecated/incorrect,aC 58,590 7,809
Ambiguity 1,677,891 108,635
Total 1,927,528 146,025

When applied to the main text this thesis, the document checker detected three

i nstances: AAI DS viruso (deprecated name
ACroton eleganso (the more accepted name
according to ColL)Ailuropodadnest nhoel enuirsasop e(lglieadn ti |
The LINNAEUS documenthecking software is available as a web service on
http://linnaeus.smith.man.ac.@kd can be integrated for authoring suppost sy

tems
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2.4.6 Trends in species mentions
To provide an overview of commonly mentiongeksies in biomedical research,

and to determine if our system generated interpretable results on large sets of
documents, we used LINNAEUS mentions to estimate the frequency of species
mentions in all of MEDLINE. The ten most commonly mentioned specitseat
document level are shown Trable2.13, and the 100 most frequently mentioned
species across MEDLINE can be foundSaopplementary files. This analysis
counts all unambiguous mentiooka species, plus the single most likely species
for ambiguous mentions. Mentions aethedocument level and a single dsc

ment can mention multiple species.

Humans constitute by far the most frequently discussed organism in all of
MEDLINE, with almosthalf of all species mentions (48.4%), as has beentrepor

ed previously in analyses of data used for training and testing specigsitieco
software(Wang and Matthews, 2008; Kappekdral, 2009) Other commonly

used mdel organisms such as rat, mouse and baker's yeast are also represented,
but somewhat more surprising is thedquent occurrence of cow, rabbit, dog and
chicken. The high number of mentions for cow and rabbit are partially explained
by indirect mentions of these species for their role in generating experineental r

agents such a@bovine seruraor firabbit polyclonakntibody.o

Utilizing species mentions from MEDLINE, it is also possible to extractrinfo
mation about how many papers mention a species over time. Previous work on
measuring trends in organism names over time has focused on the firgt-descri
tion of new taxgSarkaret al, 2008) while here we are interested in underdtan

ing the frequency that known species are discussed within the biomedieal liter
ture over timeFigure 2.4 shows documerevel species mentions per year for

the five most frequently mentioned species plus HIV fa®#5 to the msent, a
timeline previously investigated for trends in gene names over(itagmann

and Valencia, 2003)For clarity, data for the remaining species in top tn (

coli, dog, bakerb6s yeast and chicken) i
follow the same pattern as the top five species. With theption of HIV, all of

the most frequently mentioned species have consistently been referred to at high
levels over the last three decades. In contrast, the number of mentions for HIV

increases rapidly after its discovarny1983(Bamé-Sinoussiet al, 1983) Thus,
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while HIV is only the seventh most frequently mentioned species in all of
MEDLINE (19752008) {Table2.13), it was in 200&he fourth most frequently
mentioned species after humamouseand rat We note that all mentions in 1985

are of the synonymAIDS virus 0 since the ternfiHuman immunodeficiencyiv

ruso was not suggested until in 19860ffin et al, 1986) These results deme

strate that our species name tagging system generates meaningful predictions
when applied to large sets bfomedical documents and confirm the human

centric nature of biomedicadgearch.

Number of document-level mentions over time
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Figure 2.4. Number of articlesper year in MEDLINE mentioning human,
rat, mouse, cow, rabbit and HIV since 1975.

Note that the rapid rise in mentions of the term HIV occurs just aftersits
covery in 1983BarréSinoussket al, 1983)

Table 2.13. The ten most commonly mentioned species in MEDLINE.
Mentions are calculateat thedocument level in MEDLINE relative to the-t
tal number of documedével mentions (n=10,122,214) and the total numb
of documents (n=919,312).

Species Mentions  Ratio of mentions Ratio of documents
Human 4,801,489 0.4743 0.4840
Rat 831,552 0.0821 0.0838
Mouse 655,695 0.0647 0.0661
Cow 186,091 0.0183 0.0187
Rabbit 162,487 0.0160 0.0163
Escherichia coli 144,077 0.0142 0.0145
HIV 117,441 0.0116 0.0118
Dog 112,366 0.0111 0.0113
Baker's yeast 112,254 0.0110 0.0113
Chicken 75,440 0.0074 0.0076
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2.5 Discussio n
Species nhame recognition and normalization is increasingly identified a&s-an i

portant topic in text mimg and bioinformatics, not only for the direct advantages
it can provide to endisers but also for guiding other software systems. While a
number of tools performing species name recognition and/or normalization of
both scientific names and synonyms haeerbreported previous(ping et al,

2005; Koninget al, 2005; Sautteet al, 2006; RebhokSchuhmanret al, 2007;
Wang, 2007; Aertet al, 2008; Wang and Grover, 2008; Wang and Matthews,
2008; Wang and Matthew2008; Kappeleet al., 2009) the work presented here
contributes to the field in a number of unique ways. These include availability of
a robust, opetsource, standlone application (other tools are either not publica

ly available, only available asel services or not capable of recognizingheo
mon names)the scale of species tagging (all of MEDLINE and PMC OA until
2008), depth and rigor of evaluation (other tools do not perform evaluation
against normalized database identifiers, or are limitedsimall sample of do
uments) andsystemaccuracy (compared to other available tools, LINNAEUS
shows better performancptimarily due to better handling of ambiguousme
tions and inclusion of additional synonyms). Moreover, we provide the first
openaccessmanually annotated dataset of species hame annotations indbiome
ical text that can be used specifically to evaluate the performance of species

name recognition sbfare.

2.5.1 Evaluation of species name identification software requires
manually annotated gold st andards

The relative performance of any bioinformatics application is only as good as the
evaluation set against which it is compared. In the case of species namé-recogn
tion software, no opeaccessnanually annotated dataset of species name-ann
tationsin biomedical text existed as a gold standard for evaluation prior to the
current work. During this project, we investigated four different automatically
generated evaluation sets (NCBI taxonomy citations, MeSH Egsez Gene
references, EMBL citationd)ased on curated documesptecies pairs. We also
investigated two different automatically generated evaluation sets based-on do
umentspecies pairs predicted using texining software (PMC linkouts and
WhatizitOrganisms). Although it was possible to iptet the recall of

LINNAEUS when the document set and the evaluation set were of the same type
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(e.g.full-text), the precision of our system could not be accurately evaluated b
cause of incomplete or imperfect annotation of species mentions in any ®f thes
evaluation sets. We conclude that evaluation sets of doctspeates mappings
automatically inferred fronfisecondary sources such as docume@ne €.g.
Entrez Gengor documensequenced.g. EMBL) mappings are of limited value

in evaluating speciesame recognition software.

Because of the inherent limitations with the automatiegdigerated evaluation

sets (including incomplete annotation of species hames or incorrect disambigu
tion), a manually annotated evaluation corpus was created. Evalugdimistathe
manually annotated evaluation corpus showed very good performance for
LINNAEUS with 94.3% recall and 97.1% precisi@a a mention level, and
98.1% recall and 90.4% precisiaha document leveNone of the automatitg
generated evaluation setome close to revealing this level of precision f@&-sp
cies name recognition using LINNAEUS. These results underscoremnthe i
portance of our manually annotated gold standard evaluation set, and suggest that
evaluation of other systems on automatically eyated evaluation sets (e.g.
(Kappeleret al, 2009) may have underestimated system precision. One itteres
ing observation afforded by having a high quality evaluation set is that i®call
higher than precisioat a document level, while precision is higher than reatall

a mention level. One reason for this is that when authors usstawodard or
misspelled names, they will usually use those names multiple times throughout
the documentleading to several false negativasa mention level but a single
only at document level. Conversely, false positives are more spread out among
documents, leading to small differences in false positive counts for mention and

document level evaluations.

2.5.2 Improved accuracy of species name identification in full -text
articles

The vast majority of texinining research is currently conducted on abstracts of
biomedical articles since they are freely available in PubMed, require fewer
computational resources ftreir analysis, and are thought to contain the highest
density of information(Shahet al, 2003; Schuemiet al, 2004) Nevertheless,
increasing evidence suggests that information retrieval is better etexXtdrt-

cles sincethe total number obiomedical terms is higher relative to abstracts
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(Shahet al, 2003; Corneet al, 2004; Schuemiet al, 2004; Ealet al, 2008;
Lin, 2009) Our results for species names idgcdation results support this ne
clusion, with recall of species names being higher fortéxt articles relative to
abstracts for the majority of evaluation sets tesiable 2.11) and virtually all

(96%) fulltext articles king tagged with at least one species name

Our results also clearly demonstrate that disambiguation of species mentions by
searching for explicit mentions is more successful inteit articles than inta
stracts. Thus, as has been found previouslygiare nameg¢Schuemieet al,

2004) the increased coverage of ftdixt has additional benefits for species
name disambiguation, since more information is available to the disambiguation
algorithms when processinglf-text articles. Interestingly, we find that levels of
ambiguity drop regardless of whether explicit mentions are scanned for either
earlier in the text or in the whole text, possibly since the materials and methods
sections of articles are often at teed of papers. After searching for explicit
mentions, we find that ambiguity levels of species names in biomedical text are
low (3-5%), and can be reduced even furtheBY4) using probabilistic methods

if a small degree of error can be taited.

2.6 Summary
This chapter described the design, evaluation, and application of the LINNAEUS

species NER and normalization system. Using dictionaries, disambiguation
methods and filters, it achieves high accurg@424 recall and 97% precisipn
Since its release, LINNAES has been used not only for species NER in general
(Pyysaloet al, 2011; Stenetorpt al, 2011) but also to aid document retrieval
(French and Pavlidis, 201Bnd gene/protein normalizatiqiMéra and Farkas,
2010; Luet al, 2011; Vrolinget al, 2011) The latter use case, support of cross

species gene normalization, is discussed further in the next chapter.
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Chapter 3: Gene named -entity recognition and
normalizatio n

3.1  Abstract
Gene mention normalization refers to the automated mapping of gene names to a

unique identifier, such as an NCBhtrez GendD. Such knowledge helps in4

dexing and retrieval of articles discussing particular genes, linking to additional
information (such as sequences), database curation, and is required for more
complex information extraction related to genes. We present here an ensemble
textmining system encompassing LINNAEUS for recognition of organism
names and GNAT for recognition and malization of gene mentions. Cand

date gene mention identifiers are filtered through a series of steps that take the
local context of a given mention into account. Evaluated against a manorally a
notated set of 100 abstracts, the system achieved precrsioreeall levels of

66% and 64%, respectively; evaluated against the BioCreative IIl corpus of 82
full-text documents, the system achieved precision and recall levels of 31% and
20%, respectively. The difference in the accuracy of the system on these two
corpora seems to largely be due to large differences in species composition b
tween the corpora. This ensemble system is available in the latest GNAT release
at http://gnat.sourceforge.net, under the epamrce BSD license. Document
level results extractedising an earlier release of GNAT are available at
http://pubmed2ensembl.org. Mentievel results extracted from the release of
GNAT presented in this chapter are available at http://biocontext.org.

3.2 Introduction and background
The extremely rapid growtbf published literature in the biological sciences n

cessitates constant improvement of automatednbéxing tools to extract ret

vant information and convert it into structured formats. Terms for the same ent
ties used in biomedical articles can vary e@lydbetween authors and across time
(Tamames and Valencia, 2008hus, twokey tasks in biomedical text mining
are named entity recognition (NER; finding names of genes, cell lines, drugs,
etc.) and entity mention normalization (mapping a recognized entity to a-repos

tory, such a€ntrez Geneor PubChem). Both tasks enable inaxiretrieval,
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and integration of literature with other resources. Gene and protein names in pa
ticular represent central entities that are discussed in biomedical texts. While a
growing number of tools for gene NER are freely available (€Eettles, 2005;
Leaman and Gonzales, 20p&)nly a limited humber of tools provide genea-no
malization capabilities that can be usedtbfshelf by end userdHuanget al,

2011) and to the best of our knowledge none are available under arsopee

license.

Earlier versions of GNATHakenberget al, 2008; Hakenbergt al, 2008) a
gene/protein nameentity recognition and normalization system, have been
made avadble previously through personal comnuation, but until now their
utility have been limited in several aspects. First, large amounts of memory were
required. Second, the large number of dependencies meant that deployment of
GNAT was complicated. Thirdt relied on a species NER web service, AliBaba
(Plakeet al, 2006) to help guide its normalization that was not always funetio

al. Fourth, as the source code was not publicly available, direct integration with
other software was challenging. Thug initiated a collaboration with the orig

nal developers of GNAT to develop and release an improvedsmjene ve

sion of the GNAT.

Here we present this new version of the GNAT system for gene mention irecogn
tion and normalization, and describe the eatibn esults compared against both

the BioCreative Ill gene normalization corpus and a corpus of 100 abstracts
manually annotated for gene mentidhtakenberget al, 2008) GNAT now e-

lies on a modular architecture, allowing integration of new componentsiby i
plementing relatively simple HTTP interfaces, which allows individual apmp
nents to be distributed on servers (that can be either doaaimote, and either
public or private). The framework allows enders to send PubMed or PMC
document identifiers as well as free text to our server (or any other semver ru
ning the GNAT service), which will return lists of gene mentions with Entrez
Gere IDs. As we provide public endpoints for these HTTP interfaces, the
memory requirements of GNAT are now much lighter. Text mining application
developers can make use of the same service by using GNAT as a component in
their own processing pipelines or bystomizing GNAT for their requirements.
We also describe how GNAT was integrated with LINNAEUS (see Chapter 2),
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which enables local (or remote) species NER, making the system much more
stable. In addition to the modularization, remote interfaces, and AR in-
tegration, we also report on improvements to the underlying recognition and
normalization pipeline, notably through the use of BANNERaman and Qo

zales, 2008)In addition, we also report that we have now released the source
code of GNAT under the BS[knse.

3.3 Materials and methods

3.3.1 GNAT system overview
GNAT consists of a set of modulestiandle all steps required in the gene NER

and normalization pipeline, from document retrieval to final output of results.
GNAT pipelines can be specified by the user, but the default processing pipeline
(seeFigure3.1) consistoof modules that perform the following steps:

1. Retrieve documents,

2. Preprocess each text,

3. Perform named entity recognition for species and genes,
4. Remove likely false positive gene mentions,

5. Assign candidate identifiers to genes,

6. Validate identifiers, ad

7. Rank candidate gene identifiers.

Each step is described in more detail in the remainder of this section.
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Figure 3.1. Overview of thedefault GNAT processing pipeline

Shown araypical GNAT compnents (1 through 7; seeaintextfor detail9
and final output (8). GNAT is designed in a modular manner, where xiat
change is performed using the HTTP protocol. It allows menarg CPU
intensive components (A and B) to be run separately on appeopidal-
ware. Memoryintensive components typically run as (remote or locah
vices, as they require longer startup times less suited for small querie:
GNAT client (center) manages which components to invoke in whict r
ner, and sends data to the @mments for annotation. Some components |
on annotations provided by other components, such as the assignm
candidate identifiers during step 5, which requires species annotations
step 3a.

Steps 1 and 2 comprise essential document retrieval argrquessing tasks.
Docurrent retrieval uses NCBUHetils™ to obtain records from PubMed and PMC
when such identifiers are given. Users can also provide text files directty as i

put. The default preprocessing methods of documents consists of hamexrange e

2 http://eutils.ncbi.nlm.nih.gov/
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pansion, which replaces mentions suchifasact30 with fifreacl, freac2, and

freacd, in order to aid subsequent gene NER.

In step 3, the default version of GNAT recognizes named entities for both species
and genes using a dictiondogsed approach. To identify species names, the cu
rent version of GNAT incorporaseLINNAEUS (Gerneret al, 2010)(3a inFig-

ure 3.1), whose output determines whigenedictionaries to apply, and to na

row down identifiers for ambiguous gene names later in the pipeline (step 6). The
gene NER modules available in the current default versi@NAT include the
dictionary lookups present in previous versigiskenberget al, 2008)for 10
common model organisms (s8ection3.3.5for more details). A set of adidate

Entrez Genédentifiers is then assigned to each gene mention in this step as well,
comprising all potential matches based o
addition to the dictionarpased gene NER taggers, we now provide an interface

to BANNER (Leaman and Gonzales, 2008yhich uses conditional random
fields to recognize candidate gene names. Users can select either of these NER
modules, the joint results of both methods, or implement their own NERczomp
nent (3b inFigure3.1).

Steps 4 to 7 comprighe actual gene mention normalization, in which we have
implemented a range of filters to remove likely fagtesitive (FP) gene mentions
and/orcandidate IDs. Removal of FPs uses information in the gene name itself,

the surrounding text, as well as eatparagraphs or full text to ensure that a

found name refers to a specific gene, and not anotheg@&oa term. Additional

false positives are removed if they are not also recognized by BANNERnN{n co

trast to most gene name identification tools, mentibas riefer to gene families

are cmsidered false positives in the current version of GNAT, since the aim is to

find gene mentions that can be mapped to a specific enkgtmez GeneThus,

one of the filters removes mhsstépicanns such

be customized by the user dependindlair specific needs.

Candidate identifiers can then be further filtered or validated, for example, by
removing genes from species not mentioned in the text, or by othedefgerd
methods (step 6)n step 7, the remaining ambiguous cases (gene mentions with
more than one potenti&ntrez GendD) are ranked by comparing contextua i
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formation found in the text surrounding the mention with knowledge about each
gene. For example, known Gene Ontologyatations for a gene increase its
rank when that GO term is found in the nearby text, and similar methods are used
for chromosomal locations, associated diseases, enzymatic activity, tissue spec
ficity, etc. For further details on the filtering methodsege $Hakenberget al,

2008)

3.3.2 Modifying and using LINNAEUS for species NER
In order to identify the species that are discussed in a papeh(imhicrn dete

mines what genes to search for), we utilize LINNAEG®rneret al, 2010)(see

also Chapter 2). LINNAEUS uses a dictionary of expanded species terms from
the NCBI taxonomy together with a variety of rlidlased methods and disuiib
tional statistics, in order to disambiguat®biguous species mentions and reduce
the number of false positives and negatives. Compared against a corpus of 100
full-text articles manually annotated for species names, LINNAEUS achieves
94% precision and 97% rec@lberneret al, 2010) It has previously been shown
that for aticles linked to genes i&ntrez GeneLINNAEUS can find the species

of the referenced gene in 94% (9,662/10,290) of cases whetexXuivas avai
able(Gerneret al, 2010) indicating that only a relatively small number of false
negatives are introduced when gene searches are limited $pdhies that are

recognized in the document.

In order to further increase the utility of LINNAEUS for detecting focus orga
isms of articles, even if they are not mentioned directly, LINNAEUS was-mod
fied to use additiondiproxyo dictionaries that link delines and genera to ces
sponding species. The céithe dictionary, linking for exampléHelLa cell® to
human, was created from the databasBRahanoet al. (2009) Genera are also
tagged and linked to the member species that is most commonly mentioned in
MEDLINE (for examplefiDrosophilais linked toDrosophila mehnogastey.

Some technical rénking of standard NCBTaxonomyidentifiers was ao ne-
essaryin GNAT due to recent changes in species associatioitirez Gene
For example, all genes that previously were linke&aocharomyces cerevisiae
(NCBI Taxonomy ID 4932) are now linked to a specific str&n,cer. S288c
(NCBI Taxonomy ID $0287). This rdinking ensured that in addition to speci
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ic mentions of the S288c strain, more general mentioss oérevisiasvould d-
so enable searches for genes linked to NCBI Taxonomy ID 850287. This was
performed for all species where we could daiee that such changes hast r

cently occurred ifentrez Gene

3.3.3 Constructing and applying species -specific gene dictionaries
GNAT gene/protein dictionaries (3b Figure3.1) were constructed from NCBI

Entrez GendSayerset al, 2011)and UniProt(The UniProt consomiim, 2008)
which both linkEntrez Geneene records to (among other things) NCBI taxo

omy species identifiers, official symbols and synonyms.

Using custom rules, gene name synonyms were expanded to regular expressions
in order to cover possible variarttgeat authors might use. For example, P53 and
IL2 were automatically expanded to also cover p53 an#, llespectively. Large
numbers of regular expressions cannot be applied to texts directly witlmut pr
hibitively large time requirements. Because of tthg, regular expressions were
grouped by which species the genes were associated to, arfipecies group

was converted to a deterministic fingtate automaton (DFA) using the Java
BRICS library(Mgller, 2008) Using BRICS DFAs ltdowed very CPUefficient
matching (requiring on the order of a millisecond for a norsim@d abstract

with a normal desktop computer), but instead imposed relatively heavy memory
requirements (roughly 0:2 GB per species, depending on the number ofrdsco

and synonyms for the species). Because of this, the number of species concu
rently searched was restricted to a set of main model organisms, and the dictio
aries were designed to run as independent network services, respondeg to r
quests for dictiongr matching. This allows dictionaries to be distributed over
multiple machines (where each does not strictly need to have very much
memory). GNAT client instances can also offload the dictionary matdbirzg

web serviceresulting in lower client memory geirementsThe set of dictiona

ies applied to a document is selected based on the species identified by
LINNAEUS (seeSection3.3.5.

3.3.4 Filtering gene names and candidate identifiers
Following speciespecific dictionary matchm the set of candidate identifiers

for each gene mention is narrowed down successively by removing gene IDs that
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are believed to be FP$able 3.1 describes the full list of filtering methods (see
(Hakenberget al, 2008)for further details). Filtering includes: (i) use of the-se
tence and paragraph context surrding the mention. The context is matched
against precomputed tetual profiles around known gene mentions and scanned
for clues indicating the presence of false positives, and (i) -Gpssies diga-
biguation through use of species name mentions locibse to the gene me

tion. In addition, ambiguous gene mentions (those that have been recognized for
several different gene identifiers) are also compared against the original une
panded terms of the potential gene identifiers using string similaritgteearBy
determining how similar the original terms are to the variants that were actually
recognized, additional weight can be given to some of the potential identifiers
over others. If enough information for a complete disambiguation of an ambig
ous meribn is not available, the mention is left ambiguous and all potentia ide

tifiers are reported.

Table 3.1. List of major gene mention filtering methodsused by GNAT.

Method Description

DICTS Apply speciesspecific dictionaries, locating tentative mentions

LRCF I\/]Icatch the text surrounding the mention against context mc
of FPs

ICF Filter mentionsbased on keywords in themmediate context

SWF A stopword filter, removing mentions that match commorgE
lish words.

BANNER Remove any mentions that do not overlap with results f
BANNER.

UNF Filter names that refer to gene families and othespatific
mentions

AF Score mentions by string similarity against unexpanded
synonyms

NVF Restore names removed during UNF where a synonym is
elsewhere

MSDF Gene mention disambiguation by context profile

3.3.5 Selecting the set of species -specific dictionaries
As noted in previous sections, the gene name dictionaries used by GNASF are r

stricted to a set of model organisms due to memory constraints. The selection of
what species to include is critical since it determines the species for which
GNAT can recognize gene names. The default set of species were chosen based

on the number of PubMegferences per species for papers associated with e
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tries inEntrez Gendas of April 2011). Each PMID was counted a maximum of

once against each species, to avoid biases caused by some papers being used as
references for very large numbers of genes (fan®le, the PubMed document

that describes the sequencing of Twehomonas vaginaligenome, with PMID
17218520, is used as a reference for over 59,000 different genes fromethat sp
cies).In total, we selected gene name dictionaries for 10 specied #bé=3.2)

to use in the current default version of GNAT that cover 87.6% of all references

in Entrez Gene

Table 3.2. List of speciesspecific GNAT dictionaries.
List of species for which we built and used gene nar
dictionariesin the current version of GNATand the
number of documemndevel articlegene referencen
Entrez Genébelonging to tht speciesPercentages are
relative to the total number of documedevel article
gene referencdn Entrez Gene.

Species Entrez Genefrequency
Human 304,279 (41.7%,
Mouse 171,079 (23.4%,
Rat 52,323 (7.2%)
E. coli 31,193 (4.3%)
Fruit fly 28,463 (3.9%)
Baker's yeast 16,733 (2.3%)
A. thaliana 6,294 (1.3%)
Cow 6,916 (0.9%)
Zebrafish 6,499 (0.9%)
Chicken 5,214 (0.7%)
Total 628993 (87.6%),

3.3.6 Evaluation
We evaluated GNAT against two corpora: a manually annotated corpus of 100

abstractgHakenberget al, 2008) and the BioCreative Il gene normalization
corpus of fulltext dowments. The former corpus (hereafter cal€NAT-1000)

was derived from the BioCreative | and Il corpora. The original BioCreative |
and Il corpora contaigeneannotations only for a limited set of species (humans,
mice, fruitflies and yeast), but the annotations for the 100 abstracts were-exten
ed tocover all species. The BioCreative Ill corpus is split in two parts: training

(32 full-text articles) and test (50 fetiext articles). Evaluation here wasrpe
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formed against all 82 documents, since the software was not trained onahese d
ta. Both corporare annotatedtthe document level (that is, mentimvel coa-

dinate offsets were not available).

In order to evaluate the utility of the prend pos{processing methods of GNAT

that are performed in addition to the application of the sp&gesific dctionar-

ies, a baseline system for gene/protein normalization using dictionary matching
but no subsequent filtering was also constructed and evaluated against the two
corpora. This system was based on a modified version of LINNAEUS that uses
custom gene/ptein dictionaries fronEntrez Geneand UniProt. Species NER
results (using the specipsoxy version of LINNAEUS also used in GNATg4d
termined which speciespecific gene dictionaries were applied to a particular
document. The baseline system used theessehof species as the current default
version of GNAT for evaluation.

3.4 Results and discussion

3.4.1 Species normalization results and dictionary overlap

By applying LINNAEUS to the GNATL00 and BioCreative Il corpora and
comparing the extracted species mergitm thespecies belonging to trenro-

tated gene mentions, we evaluated to what extent LINNAEUS was able to find
the species that are associated with annotated genes in a given dodimsest.
important, as a FN in the species NER step (because of biétlespecies NER

or the author not mentioning the species) means that genes of that species cannot
be normalizedResults from the evaluation can be seerTable 3.3, which

shows the benefit of usirfgproxyo speces terms (e.gipatiend andfiHeLa cell®

for human). The ability to identify the species of annotated genes was higher in
the GNAT-100 abstracts (where 92.7% of the annotated genes had species that
were found) than in the BioCreative Il fiibxt articles (78.3%). Inspection of
some false negatives (FNs) suggest that the main cause for the larger number of
FNs among the fultext documents is that authors do not mention the full species
name (either omitting it completely or only ni®ning part of it).The results are

lower than those of the LINNAEUS evaluation against the Entrez Gene corpus in
Section2.4.3.3(where 93.9% of species associated to genes in Entrez Gene re
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erence records could be extracted from-fiet documets using standard, nen

proxy, species dictionaries). The reasons for this are unclear.

Table 3.3. Species NER evaluation results on theNAT -100 and
BioCreative Il corpora.

The number of species associated with annotated genes thatewer
tected by LINNAEUS using either standard or standard+prory s
cies dictionaries (both absolute and relative to the total numbel
annotated species).

Corpus Standard  Standard + proxy

GNAT-100 243 (77.1%) 292 (92.7%)
BioCreative Il 1,683 (73.0%) 1,805 (78.3%)

Information about how well the GNATO00 and BioCreative Ill corpora species
distributions overlapped with the species dictionaries can ém iselable 3.4.
The data shows a large overlap between the dictionaries and the-GMNAJa-
pus (where 96.4% of genes entries are covered bgpthaeglictionaries), but a
much lower overlap between tBpecieslictionaries andhe BioCreative Il co
pus (at 55.8%).

Table 3.4. Species overlap between th&NAT dictionaries and
the GNAT-100 corpus

Absolute andelative species mention frequencies in the GNAD
and BioCreative Ill corpora for genes belonging to each of the
species included as default dictionaries in the current version

GNAT.

Species GNAT-100 BioCreative Il

Human 72(22.9%) 305(13.2%)
Mouse 83(26.3%) 326(14.1%)
Rat 8 (2.5%) 57 (2.5%)
E. coli 2 (0.6%) 5 (0.2%)
Fruit fly 60 (19.0%) 125 (5.4%)
Baker's yeast 78(24.8%) 206 (8.9%)
A. thaliana 1 (0.3%) 39 (1.7%)
Cow 0 12 (0.5%)
Zebrafish 0 53 (2.3%)
Chicken 0 15 (0.7%)
Total 304(96.4%) 1143(55.8%)
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3.4.2 Baseline gene/protein normalization results
Evaluation of the baselingene/proteirdictionarymatching method can be seen

in Table3.5. It achieved a relativeliigh level of recall for the GNATLOO ca-

pus, but precision levels were very low. High levels of recall but low levels of
precision are what would be expected when no methods for detection and filte
ing of potential FPs are utilized. The level of recatlthe BioCreative Ill corpus

was much lower than that of the GNADO corpus, most likely due to lower
overlap between the species composition of the corpus and the set of supported
species (se€able3.4).

Table 3.5. Baseline @aluation results on the GNAT-100 and Bb-
Creative Ill corpora.

Corpus Precision Recall F-score
GNAT-100 21.7% 66.8% 32.7%
BioCreative I 10.8% 33.7% 16.4%

3.4.3 GNAT gene/protein normalization results
Entities extracted by the default processing pipeline of GNAT were compared

against the manual annotations in the GNKID and BioCreative IIl corpora.
These results can be seemable3.6. The results show a large difference m a
curacy between the two corpora. The primary reason for the low performance on
the BioCreative Ill corpus is the unexpected distribution of the species that are
associated to the annotatechge, and the fact that many of these species could
not be found in the documents (as describe8ention3.4.1). The unexpected
species composition in the BioCreative Ill corpus can be illustrated by the fact
that the most comon species in thBioCreative Illcorpus is not human as one
might expect, buEnterobacter sp. 638with 375 annotated gene entriesr{co
prising 16% of the corpuslnterobacter sp. 638nly seems to be mentioned in
four aticles in MEDLINE (one of whichieports on the sequencing of the species
and is included in the corpus). The impact that the species composition had on
results of participants was also noted by the organizers of the BioCreative IlI
challengg(Lu and Wilbur, 2011)Since common model species are heavily-over
represented in researcl®erneret al, 2010) we believe the results on the
GNAT-100 corpus may be a better reflection of GNAT's general performance.

Nevertteless, the use of a finite number okespesspecific gene dictionaries by
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GNAT represent a limitation for articles that discuss genes of less frequently

mentioned species, suchk&sterobacter sp. 638

Table 3.6. Evaluation results for GNAT on the GNAT-100 and Bb-
Creative Il corpora.

Corpus Precision Recall F-score
GNAT-100 74.8% 48.9% 59.1%
BioCreative I 34.9% 18.2% 23.9%

It is likely that more general differences between abstraatsfahtext dow-

ments also contribute to the differences in performance between the two corpora,
with gene NER on fultext documents presenting a more challenging task than
abstracts (as has previously been shown to be the case for gengCblieRet

al., 2010). Experiments using LINNAEUS show that ft#ixt documents di

cuss a lager number of species per document on average than abstracts (see
Figure 3.2). On average, abstracts with species mentions in MEDLINE mention
1.3 spcies, whereas fullext articles with species mentions in PMC mention 4.6
species This makes it more challenging to determine which species a particular
gene mention belongs to in fuéxt articles. A method using localized searches
for species mentions around the gene mention should improve gene NER on full

text documents, but is ha sufficient solution to this general problem.

0.8
—— MEDLINE
- PMC
% 0.6 —
@
E
=
Q
S 04
©
R
5 02 -
0.0 - e
T T x l ' ! ! !
1 3 5 7 9 11 13 15

Number of species mentioned

Figure 3.2. The proportions of PMC and MEDLINE documents that
mention 1, 2, ..., or 15 species.
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Comparing the gene mention evaluation results of GNPable 3.6) to those of

the baseline methodl'éble 3.5) shows the impact thas N A T j@resprocessing

and filtering methods (steps 2 and/ 4n Figure 3.1) have on the quality of the
extracted data by dramatically reducing the number of FPs. The methods are not
perfect, howeverTPs aresometimes filtered awayesulting in reductions dhe

recall levels This was especially clear in the case of the(Beative Il corpus,
where the filtering methods were not as accurate as for the documents in the
GNAT-100 corpus.

In order to further emluate the utility of the different processing methods,eval
ation experiments were performed after each major stage in the GNAT pr
cessing pipeline. The results of these experiments, showigime 3.3, show

how the levels of m@cision and recall change during the course of the pipeline
(the method abbreviations correspond to rowd able 3.1, which also gives
brief descriptions of each method). As expected, in the early stages ope¢he pi
line (immediately following the application of the dictionaries), precision is very
low while recall is higher. At this stage, precision and recall levels are very sim
lar to those of the baseline method (although not exactly the same, as a small
amountof preprocessing is performed prior to the application of the dictiona
ies). As filtering methods are applied, performance shifts from-i@gall to
high-precision, with precision increasing substantially (due to removed FPs) and
recall being reduced glhtly (due to TPs being incorrectly removed). From the
results, the printy methods that reduce FPs appear to be the context filters
(LRCF and ICF) and BANNER. The primary methods that increase the level of
normalization (i.e. determines what specific ganeambiguous mention belongs

to) are the alignment filter (AF) and the species disambiguation filter (MSDF).
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Figure 3.3. Performance of GNAT components on the GNATL00 and

BioCreative Il corpora.

Shown are graphs dfow thelevels of precision (p) recall (r), and cm-

pletely normalizedmentions (n), change as different methods in the pipe
are run when compared agaifa) the GNAT-100 corpus, an(B) the B-

Creative llicorpus.

3.4.4 Comparison with GeneTUKit
Lastly, this section describes the comparison of GNAT to GeneTUkKihanget

al., 2011) which to the best of our knowledge is the only other system that is
available for download and capable of crepscies normalization. Like GNAT,
GeneTUKIit also uses components of the proxy version of LINNAEUS fexr sp
cies NER and nonalization. Also like GNAT, GeneTUKit was evaluated against
the BioCreative IIl corpus. Unfortunately, only TA®(Carroll et al, 2010)
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evaluation scores are provided in the GeneTUKitepaguang, 2011 #260},
which cannot be compared directly against precision/reestifife scores that
were reported in the previous section. The TR AP-10, and TAP20 scores

of GeneTUKit, compared against the BioCreative Ill corpus, were 29.7%, 31.3%,
and 32.5%, respectively. In order to be able to compare GeneTUKit to GNAT,
we applied GeneTUKIit (using its default settings) to both corpora, which allowed
us to evéuate it against the manual annotations of the two corpora. The levels of
precision, recalland Fscore are shown ifiable3.7.

Table 3.7. Evaluation results for GeneTUKit on the GNAT-100
and BioCreative Il corpora.

Corpus Precision Recall F-score
GNAT-100 43.0% 56.7% 48.9%
BioCreative Il 27.7% 33.7% 30.4%

The evaluation results for BioCreative Il shows considerably higher levets of r
call for GeneTUKit (33.7%) compared to GNAT (18.2%), but lower |\
precision (27.7% for GeneTUKaompared t34.9% for GNAT). The evaluation
results for the GNATLOO corpus of 100 abstracts shows a somewhat higher level
of recall for GeneTUKit (56.7%) compared to GNAT (48.9%), but a coresider
bly lower level of presion (43.0% for GeneTUKitompared to74.8% for
GNAT). The reason for the differences in recall is most likely a combination of
the fact that the dictionamatching method of GeneTUKit is not limited byesp
cies andhat GNAT uses heavier degree of fdting. The lower levels of prec

sion for GeneTUKit is to be expected given the higher levels of recall, ®nce r
call and precision typically are balanced against each other, with an increase in

one of the two often leading to a reduction in the other.

3.5 Summary
This chapter described the integration of GNAT and LINNAEUS, improvements

to the GNAT filtering methods, and the availability of GNAT as a web service
and for download under the BSD opsource license. Evaluation results show
that GNAT appeato peform better on abstracts (59.1%sEore) than on full

text documents (23.9%-$core). We compared GNAT to GeneTUKit (48.9%

and 30.4% Fscore for abstracts and fiéixt documents, respectively), to the
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best of our knowledge the only other gene normalinatgstem available for
download. This comparison suggéiat it could be useful to combine results
from the two tools for downstream applications, as GNAT appears to perform
better on abstracts while GeneTUKIit appear to perform better ctektliart-

cles. In addition, GNAT has higher levels of precision than recall, while phe o
posite is true for GeneTUKIiThe following chapter describes the design of an
informationextraction system that, among other components, uses the eembin

tion of GNAT and GeneTUK for gene/protein NER and normalization.
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Chapter 4: Integrated text mining for large -scale
information extraction in biology

4.1 Abstract
The amount opublishedinformation inbiology is rapidly increasingndcritical

data forunderstanding biologicavents like pbsphorylation or gene expression
remains locked in the biomedical literatukéost currenttext mining approaches
to extract information about biological evearg focused on either limitestale
studies and/or abstracts, wiRtracteddata rarely availale to support furtherer
searchHere we preserBioContext an integrated text miningystem which x-
tracts, exendsand integrates results from a number of tqmsforming entity
recognition, event extraction, negation/speculation detection and analt@siic
sociation.Application of our system td40.9 million MEDLINE abstracts and
234,000 operaccess futtext artcles from PubMed Central yieldeder 36 mi-
lion mentions representing 11.4 milliafistinct events. #ent participantan-
cluded over290,000distinctgenes/proteinthat arementionednore thar80 mi-
lion timesandare, when possible, linked Entrez Gene identifier©ver a third
of events contain contextual informati@uch as thenatomical locatiorof the
event occurrence avhether theevent isreported as negated or speculativie
also present results from an earlier pilot project, GETM, which specifically e
tracts information about gene expressioran anatomical contexthe BioCon-
text pipeline is available for download (under th&SD license) at
http://wwwbiocontextorg, along with the extracted data fonline browsing

GETM and its results are available from http://ggtroject.sourceforge.net.

4.2 Introduction
The amount of information available in the biomedical literature is inicrgas

rapidly, with over 2,000 articles published daflywhile the information avéi
able in these articles (now exceeding 18 million in number) represents a vast
source of knowledge, its sheer size also presents challémgesearchersn

terms of discoveing relevant information. Efforts in biomedical text mining

L hitp://www.nlm.nih.gov/bsd/index_stats_comp.html
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(TM) seek to mitigate this problemhrough systematic extraction of structured
data fromliterature(Lu, 2011) To date, progress biomedical TM esearchhas
primarily focused on tools foentity recognition (locating mentions of species,
genes, diseases, etc.) &hd extraction ofyene/protein relationshsgKrallinger

et al, 2008)

Recently,there has been increasing interest to devéhldptools for the extre-
tion of information aboutn wider array ofbiological and molecular processes
(oft en r ef er r e dsuch aexpession phosphorylation) binding, and
regulation of genes and protei(s complete list of event types considered is
given in the next sectionCommunity challengegKim et al, 2009; Kimet al,
2011) have shown that extracting such eventsften difficult because of the
complex and inconsistent ways in which such processes are reported in #he liter
ture. Most effortsto extract eventhavethus been restricted teither limited
scale studies or abstracts only. Iniéidd, while some event extractiaciols are
now publicly available, their usefulness for supporting biologideicoveryis
still unknowngiven the difficulties inapplying andintegratingdata from these
systems on a large scaleo overcome these limitations, in this chapter pie-
sent two systemsGETM andBioContext for largescaleeventextraction from

the biomedical literature.

BioContextis anintegrated TMsystem which extracts, eendsand integrateser

sults from a number ofFM toolsfor entity recognitiorandevent extraction. Td
system alsgprovides contextual information about extracted events including
anatomical association amwhether extracted processes have been reported as
speculative or negated (i.e. not taking place). In addition to making theantegr
tion platform avaébleunder an opesource licensewe also provide the data-r
sulting from processing the whole MEDLINE and the openess subset of
PubMed CentralPMC) both forbatchdownload and foonline browsing

GETM was a pilot developed prior to the larger Bio@xt system(Gerneret

al., 2010), which specifically performs extraction of gene expression sssmos

and associates the normalized gene with an anatomical location. GETk&was
veloped in order to evaluate whether anatomical association of events was feas

ble, and taunderstand theolume of datdhatis available for extraction. In add
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tion to the software itself, we also report on the accuracy of data extracted by
GETM, andthe volume of informatiorthat could be extracted from MEDLINE
and PMC using it.

4.3 Background

4.3.1 Extraction of in formation about biomedical events
Molecular events ar&requently reported and discussed in the literature,aaed

critical for understanding diversityof biological processes and functions. While
some databases exist that contain information abwlécular processege.g.
proteinprotein interactionsPPIs)(Chatraryamontriet al, 2006; Kerrieret al,
2007; Ceokt al, 2009; Szklarczylet al, 2011) extraction ofa more general set
of eventsusing TM systermawill present avaluableaddition to PPI data anah-

able focused navigatioof the literaturehrough a variety of biological pcesses

Identification of molecular events in the literature has been acknowledged as a
challenging taskZhou and He, 2008; Kirat al, 2009)and has been the topic of
several recent texhining challengeg¢Krallinger et al, 2008; Kimet al, 2009)

The shared t ask xample faneB io mentifyfPaddocBaracide or e
nine types of moleculagvents:gene expression, transcription, protein caiab

lism, localzation, phosporylation, binding, regulation, positive regulatimmd
negative regulationDepending on the event type, the task idetlithe identit

cation of either one (for the first five event types mentioned above) or more (for
binding) participating proteis/gene(sometimes referred to as themdg¢guhb-

tory events could also hawe causewhich could bea proteirigeneor another
event) in addition to one theme/target of regulatiats¢ a proteilgeneor an-

other event). The task also included the identification of a textual span (called

Atriggero) that | ankventat ed t he occurrence

For example, the senten@MDM?2 acts as aegativeregulatorof p53 expre-

siono cont af)psfigwoeeergptsessi ono event, w
()a Anegative regulationo event, where tl
in (i) andthe cause is MDMZseeFigure 1.4 on page4l). The gene expression
trigger i s t haeandtvedriggerofitbex pgebat onga-event i

tive regul atoro.
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While many systems have been developed for specifically extractiisg Afou
and He, 2008)only a few general evenéxtraction tools are publicly available.
These inclde the Turku event extraction s, TEES, (Bjorne et al, 2009)
which wasthe best performingystemi n t h e BchatleNde(Rig @t%l,
2009) TEES combines a machine learning approach (relying on dependency
parse graph features) with a ridased posprocessing step to identify complex,
nested eventg\nother tool, calledeventmner, based on the work of Mive al.
(2010) is available through domparewhich also uses machidearning met-
ods and a set of rich featurdsnally the Stanford Biomedical Event Parser
(McCloskyet al, 2011) which has been made available vesgenty, also uses
dependency parsdo etract events.

4.3.2 Named entity recognition and normalization
Named entity recognition (NER, locating entities in tesgeSectionl.3) is typ-

cally performed before informatioextractionin TM systems. Entity classes that
have received attention vary widely and include genes/pro(Sieitles, 2005;
Tsuruoka and Tsujii, 2005; Leaman and Gonzales, 2@@&ciefGerneret al,
2010) and chemical moleculdglawizy et al, 2011) Depending on the appée
tion, recogrzed entities may alsbe normatlted (i.e. linked testandarddatabase
identifiers) in order to enable integration of extracted information with biological
databasesGNAT (Hakenberget al, 2008; Soltet al, 2010)and GeneTUKit
(Huanget al, 2011) for example, are capable of performing both recognition
and normalization of genes and proteins on a large scdialigg ther men-

tions toEntrez Gendadentifiers.

4.3.3 Data integration
Linking data from various resources is one of the main challenges in Isioinfo

matics. Integrating TM results with existirrgsourcegsuch as organistspecific
databases, pathway databasegieneral gne or protein databagesould not
only give biologists more comprehensigecess tadatain the literature but
would also allow bioinformaticians to run more powerifulegrative analysess-

ing information extracted from the literatur@ecently someattempts have been
made to provide such integrated views over databases and literature. fer exa
ple, pubmed2ensemfBaranet al, 2011)links genomic data from Ensembl to

publications iIMEDLINE/PMC and viceversa, providing linkoutsdiween over
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two million articles and neby 150,000 genes from 50 species. Similarly, @nt
grator (Morrison et al, 2011) provides links between four genomic, meta
genomic, marker gene sequences and culture collection databas@essulibet
of MEDLINE abstracts

4.4 Materials and methods
As mentioned previouslyhis chaptepresents two systema:pilot geneexpres-

sion eventextraction systeimGETM (Gerneret al, 2010) and the more general
event extraction and contextualization syst®mContext GETM, described in

the following sectia, extracts information about gene expression events &nd a
sociates them to anatomical locatiohs om s ent e nHusaset alu c h
(1998) demonstrated that acquisition of further resistance to cisplatin was assoc
ated with an increase in the expressiomf BRCA1l in MCF-7 cell®
(PMC2716781).

BioContext described irSection4.4.2 extractsa wider range of events (using a
larger number of NER and event extraction systems), associates them to-anato
ical locatbns, performs detection of negation and speculation, etetts pote-

tial contradictions in the extracted data from sentences such as the previously

me nt i BDMRdctsias ameqgativerequlatorof p53expression.

4.4.1 GETM: Rule-based gene expression extracti on
An overview of GETM can be seen kigure4.1, showing how articles are first

processed for named entity recognition and normalization, trigger detection
(keywords indicating the discussionafiene expression), sentence sipli, and
association of gene/protein and anatomical targets to the triggers. Each of the

methods involved are described in more detail in the following sections.
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Y_ ¥ 4
Detect . .
NER »| enumeration, ' Trlgggr > Entity, a.na.tomy
L detection association
abbreviations

Figure 4.1. Overview of the processing workflow of GETM.

Shows how entities (and enumerations and abbreviations of them) areil
tected in the NER stage, followed by detection of triggers (keywords tnc
ing geneexpression mentions), and finally association of the entities tc
triggers. GDep: Genia depency parser; LINNAEUS: see chapter 2; GI
see chapter 3.

44.1.1 Named -entity recognition
In order to extract informatioaboutthe expression of genes and their anatomical

locations, a key requirement is the accurate recognition and normalizatipn (ma
ping the recognized terms to database identifiers) of both the genes andi-anatom
cal locations in question. In order to locate ananitde gene names, we utilized
GNAT (Solt et al, 2010; Hakenbergt al, 2011) which was previously et
scribed in Chapter.3The species identification component of GNAT, used to
help dsambiguate gene mentions agsspecies, was performed by LINNAEUS

(Gerneret al, 2010) previously described iBhapter 2

In order to perform NER of anatomical locations, we investigated the use-of va
ious anatomical ontologies. A key challenge with these ontologies is thatranato
ical parts (and subsequently, thassociatederms) vary significantly from one
species to another. For a simple examptmsider thafruit flies have wings
whereashumans do not and humans have fingers, while fruit flies do not. Efforts
have been made in creating unified speaegpendent anatomical ontologies,
such as Ubero(Haendelet al, 2009; Mungalkt al, 2010) However, in pren-
inary experimentswe found that the coverage of Uberon was not extensive
enough for this particular apphtion (data not shown), motivating us to instead
use a combination of various speegggcific anatomical ontologies hosted at the
OBO Foundry(Smithet al, 2007) These ontologies (n = 13) were chosenrin o

der b cover terms from the main model organisms that are used in research (e.g.
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human, mouse, fruit flyCaenorhabditis elegapsnd a few larger groups of-o
ganisms such as e.g. amphibians and fungi. It is worth noting that more general
terms, such afbraind, are likely to match anatomical locations in multiple-sp

cies at the same time. In total, tt@mbinedontologies contain terms for 38,459
different anatomical location.he approach of using OBO Foundry ontologies

for anatomical NER is also the approablat Pyysalocet al. (2011) used when
developing a tool for anatomical NER. Unfortunately, this resource was only
made available recently, after the anatomical work described here had already
been completed and publish@lerneret al, 2010)

In order to link terms in the OBO ontologies to each other, a Aadeconsd-

ered to be equivalent to a noBaf A has a nhame or synonym which also is a

name orsynonymad ( al | owing for a possible addit
term). For example, consider three nodes in three different ontologies-all d

scribingtte s ame cel | type: A) AT cell o0; B) -
with synonym AT | ymphocyteso. I n this e;:
linked to each other (AT cell o i-s equal
lowed), and the merged ACnodew | d be | inked to B throug

The new, merged, nodes were given new identifiers. The quality of the merge

process was not evaluated quantitatively due to time constraintapbertrors

have been discovered so.faihe links between the mexg nodes and the orig

nal ontologies were preserved, in order to enable linking of extracted data to the
original OBO ontologies (and thus to the model organism databases that some of

the ontologies originally came from, such as FlyBase).

We also utilizedan ontology of cell lineRomancet al, 2009) containing terms

for a total of 8,40&ntries(ranging across 60 species), as cell lines eavidwved

as biological proxies for the anatomical locations that gave rise to themx+or e
ample, the HelLa cell line was derived from human cervical cells, and the THP1

cell line was drived from human monocyt¢Romancet al, 2009)

The anatomical and cell line NER, utilizing the OBO Foundry and cell lme o
tologies, was performed using dictionanatching methods employed by
LINNAEUS (Gerneret al, 2010) described irSection2.3.3
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After performing gene and anatomical NER on the document, abbreviations were
detected, using the algorithm by Schwartz and Ha6513) in order to allow

the detection and markup of abbreviated entity names in the cases whdye the a
breviations do not exist in any of the ontologies that are used.

44.1.2 Trigger detection
The trigger keywords indicating that an author is discussing the expression of

one or several genes, such as expression andfiexpressed imwere detected

using a manually created list of regular expressions. The regular expressions
were designed to match nations of asmall set of terms that were identified
when inspecting documents not used when building the-galttard corpus
(seeSection4.4.1.5. The terms used to construct the trigger regular expressions
were orthograplaal, morphological and derivational variationstioé following

terms:
1 expression
1 production
1 transcription

Descriptions of thalifferent levels of expression were also considered for the
different terms, such aloverexpressiony Aunderexpression fipostively ex-
pressed finegatively expressatletc. Each gene expression mention that was e
tracted by GETM contains information about the trigger term used by the author,
allowing usersto view, for example,only entrieswhere genes aréunder

expressed ,negétively expresséd fmverexpressed

4.4.1.3 Association of entities to the trigger
To help associate triggers with the correct gene and anatomical entities, articles

were first split into sentences, allowing each sentence to be processed in turn. In
order toreduce the number of false positives and preserve a high level 6f prec
sion, any sentences that did not contain a trigger, at least one gene mention and at
least one anatomical mention were ignored. Following this, the sentences were
processed by the GENIdependency parser (GDef§agae and Tsujii, 2007)

and the following patterrand treebased rules were employed in order to assoc

ate each trigger with the correct gene and anatomical mention:
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1. If there is only one genmention and only one anatomical mention in the

sentence, the trigger is associated with those mentions.

2. If there is one gene mentiond&hd one anatomical mentioniAthe sa-
tence such that they match one of the pattd&s expressed in @ fiex-
pressiorof G in Ao, fA transcribes @ or AA produces @, the gene nme
tion G and anatomical mention A are associated with the triggea{vari
tions of the triggers, such @ieverexpressedandfinegative expressian
are considered as well). Additional gene or an&ahmentions that fall

outside the pattern are ignored.

3. If neither of the above rules applies, the trigger is associated with the
gene and anatomical mentions that have the shortest dependency tree path

to the trigger.

Each trigger was processed indepenilye allowing the potential extraction of
multiple gene expression statements from a single sentémtally, expei-
ments were performed using stricter rules where only variationgeo®, requi-
ing gene and anatomical mentions to conform to cepaiterns, were used.
However, recall was in these cases found to be extremely low (belowldiéo

not shown). Theinion ofrules1-3 are more permissive, allowing higher recall.

The fact that the method requires a combination of a trigger, a gene ang-an an
tomical location makes it susceptible to false negatives: if any one of them ca
not be found by the NER or trigger detection methods, the whole combination is

missed.

4414 Expansion of extracted data through enumerated entity
mentions

We noted that a relativelarge number of gene/protein and anatomical mentions

in MEDLINE are part of entityienumeration i.e. lists of more than one entity

connected within a conjunctive phra@eeSection4.5.1.9. We hypothesied

that, where an event is associated with a gene/protein or anatomical entity that is

part of such an enumeration, we could infer additional events by substituting the

original entity with each of the other entities in the enumeration. For example,

conside t he sentence Aln the presenrt study,

socrossl, Dorsocross2 and Dorsocross3, which are expressed downstream of
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Dpp in the presumptive and definitive amnioserosa, dorsal ectoderm and dorsal
mesoder mo ( PMI D gdne éx@essiod events shdddrbe extracted
for all three Dorsocross genes, and each of those events should be associated
with each of the three anatomical locations mentioned. If any of these nine events
are not extracted directly, the enumeration proogssiould allow them to beni

ferred indirectly.

In order to implement this inference, we used regular expression patteras to d
tect groups of enumerated entities. Where at least one of these entities (e.g. T1)
were part of an event (e.g. E1), we stuctel a new event EQith the entity

T2, where T2 was mentioned in the same enumeration group as T1. Except for

T1, all other properties of E1 were duplicated in E2.

4.4.1.5 Evaluation
To the best of our knowledge, no gathndard corpus linking gene expression

evens to anatomical locationgasavailable. The closest candidate corpus is the
BioNLP corpus(Ohtaet al, 2009) which contains annotations about different
biological processes, including gene expression. Annotations in the compus co
tain trigger terms that are linked to gen@r gene products) where the authors
discuss gene expression. However, anatomical locations have not been annotated

in this corpus.

In order to allow evaluation of the accuracy@ETM, we extended the anrmoet

tions of gene expression events in part ef BioNLP corpus. Each gene expre

sion entry in the corpus was linked to the anatomical location or cell line that the
author mentioned. In cases where gene expression was only discussed generally
without referring to expression in a particular locationasseociation to an an
tomical location could be made (these entries were ignored during evaluation).
The named entitiesn the BioNLP corpusvere only linked to their locations in

the text, not to unique database identifiers.,(Entrez Gener OBO Foundy
identifiersfor genes/proteins and anatomical locations, respeclivegcause of

this, subsequent evaluation in this extended corpus is limited to the accuracy of
recognition (locating the entities in the text), but not normalization (linking the

entities to database identifiers).
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