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Abstract 
 

 
The University of Manchester 

Faculty of Engineering and Physical Sciences 
 

PhD Thesis 
Uncertainty and State Estimation of Power Systems 

 
 Gustavo A. Valverde Mora 

April, 2012. 

 

The evolving complexity of electric power systems with higher levels of uncertainties is a 
new challenge faced by system operators. Therefore, new methods for power system 
prediction, monitoring and state estimation are relevant for the efficient exploitation of 
renewable energy sources and the secure operation of network assets. 

In order to estimate all possible operating conditions of power systems, this Thesis proposes 
the use of Gaussian mixture models to represent non-Gaussian correlated input variables, such 
as wind power output or aggregated load demands in the probabilistic load flow problem. The 
formulation, based on multiple Weighted Least Square runs, is also extended to monitor 
distribution radial networks where the uncertainty of these networks is aggravated by the lack 
of sufficient real-time measurements. 

This research also explores reduction techniques to limit the computational demands of the 
probabilistic load flow and it assesses the impact of the reductions on the resulting probability 
density functions of power flows and bus voltages. 

The development of synchronised measurement technology to support monitoring of electric 
power systems in real-time is also studied in this work. The Thesis presents and compares 
different formulations for incorporating conventional and synchronised measurements in the 
state estimation problem. As a result of the study, a new hybrid constrained state estimator is 
proposed. This constrained formulation makes it possible to take advantage of the information 
from synchronised phasor measurements of branch currents and bus voltages in polar form.  

Additionally, the study is extended to assess the advantages of PMU measurements in multi-
area state estimators and it explores a new algorithm that minimises the data exchange between 
local area state estimators. 

Finally, this research work also presents the advantages of dynamic state estimators 
supported by Synchronised Measurement Technology. The dynamic state estimator is 
compared with the static approach in terms of accuracy and performance during sudden 
changes of states and the presence of bad data. All formulations presented in this Thesis were 
validated in different IEEE test systems.   
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Chapter 1 Introduction  
 

 
The systematic interconnection of power systems that took place in the second half of the 

twentieth century, as an attempt to strengthen the networks and to facilitate the transmission of 

electricity, brought new operation challenges that could not be faced by power engineers unless 

the state of the network was properly monitored in real-time [1].  

 

The blackout of 1965 in the northeast region of the US encouraged power engineers to develop 

sophisticated tools to collect, transmit and process measurements from all over the network for 

the supervision and control of the system. This was a step before today’s Energy Management 

Systems (EMS) of modern power networks. These EMS are in charge of the data acquisition, 

state estimation, load flow analysis, economic dispatch, voltage-frequency control and security 

assessment of the system, among other sophisticated features.  

 
For many years, these tools were very effective to monitor and control power networks made 

of conventional generation and uncongested transmission corridors. Today, the panorama has 

changed: 

 

• There is a need to reduce CO2 emissions of existing power plants which must be 

gradually replaced by renewable generation, e.g. wind farms or solar panels.  

• This renewable generation is variable, difficult to predict and no longer centralised but 

distributed. 

• The networks follow a deregulated structure to incentivise investment and efficiency in 

electricity utilisation. Based on this, 

• The networks operate closer to their stability limits and transmission corridors are 

stressed due to the restrictions on the building of new transmission lines.  

 

In order to cope with the challenges faced by intermittent generation, congested transmission 

corridors and massive exchange of power between areas, it is necessary to improve the current 

practice to monitor the power networks in real-time and to explore new tools that can be used 
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to analyse the network operation over a range of possible conditions imposed by the 

uncertainty of intermittent generation and demand.  

 

1.1 Research Background 

 

The following subsections present an introduction of previous work related to the topics 

covered in this PhD Thesis. Further literature review is presented at the beginning of each 

Chapter. 

 

1.1.1 Probabilistic Load Flows  

 

The Probabilistic Load Flow (PLF) studies are typically run for network planning purposes and 

they analyse the performance of the power network over most of its working operation 

conditions. The studies determine the likelihood of overstressed transmission corridors and 

unacceptable bus voltage magnitudes and they can assess the impact of intermittent generation 

in power networks [2]. 

 

The PLF takes into account the random nature of generation and demand, represented by 

probability density functions, to determine the probability density of output variables such as 

bus voltages and power flows. It was firstly proposed in [3] by Borkowska in 1974, and it can 

be solved either numerically (e.g. Monte Carlo simulations) or analytically by mathematical 

developments as an alternative to reduce the computational demands of the Monte Carlo 

simulations [4]. 

 

Among the first analytical methods, Allan et al. solved the probabilistic load flow by linear 

approximations of the power flow equations [5]. Here, the probability densities of the power 

flows were approximated by convolution techniques.  

 

In 1990, da Silva and Arienti combined the Monte Carlo Simulations and a multi-linearised 

load flow equations in [6]. In addition, the Weighted Least Square (WLS) method was used in 
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[7] to solve the PLF problem where all of the input variables were treated as Gaussian random 

variables. 

 

Recently in 2005, the Point Estimate method was implemented in probabilistic power flows 

[8]. The method calculates a set of deterministic points to capture the first moments of the 

input random variables. These points are later evaluated in the power flow problem to obtain 

the mean and standard deviation of any power system variable.  

 

An extension of the capabilities of the Point Estimate method was later presented in [9]. 

Normal and Binomial distributions were used to model the input variables. The authors 

compared four Hong’s Point Estimate methods whose differences are the required number of 

deterministic points. They found that for a large number of input random variables m, the 

creation of 2m+1 points provides the best performance i.e. closer to the Monte Carlo 

simulation results.  

 

During the last few decades, the PLF studies were used to study the variability of aggregated 

loads modelled by Gaussian distributions. With the increased penetration of intermittent 

generation, the probabilistic studies have gained more attention due to the need for modelling 

the intermittent power output as random variables that are typically non-Gaussian 

distributed [10, 11]. 

 

Because of the proliferation of these renewable sources, the representation of these non-

Gaussian PDFs is an open field of research. Different approximations have been developed to 

model non-Gaussian input random variables in power systems. For instance, in order to model 

the variability of wind power output, an indirect algorithm based on the Beta distribution was 

proposed in [12] and later considered in [10]. 

 

The probability distribution of the wind speed is typically non-Gaussian and it has been 

modelled by the Gamma, Weibull or the Rayleigh distributions [4]. The Weibull distribution 

has demonstrated better results because of its two flexible parameters k and c [13]. 

Nonetheless, since the wind speed PDF cannot be always approximated as a Weibull 



Chapter 1 - Introduction 

16 

distribution, a mixed Gamma-Weibull distribution and a mixed truncated Normal distribution 

were introduced in [13]. 

 

The PDFs of power demands of aggregated loads can be also non-Gaussian distributed. For 

example, the Normal, log-normal and Beta distributions were used to evaluate their 

effectiveness to model the load uncertainty [14]. Because of its flexibility to adapt to the 

skewness of the distribution, the Beta distribution was found to be the most appropriate. This 

distribution was also used in [15] to model the variability of load demand. 

 

Recently, a more accurate approximation of the marginal distribution of any power demand 

was introduced in [16]. As the PDF of load demands cannot be represented by a specific 

distribution, the authors proposed the use of the Gaussian mixture distribution. Although the 

work in [16] concentrates on the probability distribution of power demands, Gaussian mixtures 

can be used to represent the variability of any other non-Gaussian variable in electric power 

systems, e.g. renewable energy sources. 

 

The present research work starts from the latter affirmation: it assumes that the marginal 

distribution of any wind farm power output, wind speed or power demands can be represented 

by Gaussian mixtures and this will be the input of the PLF analysis. 

1.1.2 State Estimation 

 
State Estimation is the process of assigning a value to an unknown system state variable based 

on measurements collected from the network [17]. The state variables are the bus voltage 

magnitudes and their phase angles and they are typically estimated by the WLS formulation. 

 

The process involves redundant imperfect measurements that are processed to obtain the best 

estimate of the system state. The state estimator acts as a filter block between the raw 

measurements received from all over the network and the EMS applications that require very 

accurate and reliable information about the actual state of the network [18].  
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The typical sources of errors that affect the performance of modern state estimators are: 

topology errors (undetected by the operator); gross errors in measurements and transducers; 

parameter errors in the data base and the unsynchronised nature of conventional measurements. 

However, the development of synchronised measurements units has opened new opportunities 

to better monitor the power networks. The development of new strategies for incorporating 

these synchronised measurements in current state estimators is one of the main objectives of 

this Thesis. 

 

1.1.3 Synchronised Measurements 

 

A Phasor Measurement Unit (PMU) is a piece of equipment able to measure phasors of voltage 

and currents, usually called synchrophasors. They were firstly introduced in the early 1980s 

and they originally served as disturbance recorders [19].  

 

The PMUs are the base line of wide-area monitoring systems that collect and process 

synchronised measurements across the network to monitor power oscillations during large 

disturbances and to monitor power flows and bus voltages during normal steady state 

conditions [20]. 

 

In 2005, the IEEE published the Standard C.37.118-2005 to establish the data exchange 

requirements in order to facilitate the compatibility of equipment between different 

vendors [21]. Standard C.37.118-2005 also defines a list of steady state performance 

requirements including range of signal frequency, phase angle, and harmonic distortion, among 

others [22]. The performance of PMUs with dynamic measurements was not included in 

C.37.118-2005 but it will be included in an updated version of C.37.118.  

 

Since the PMUs can measure phasors of bus voltages, the state can be measured directly. This 

is an advantage that could not be achieved by conventional unsynchronised measurements of 

power flows. Additionally, as phasors of current can be measured, it is possible to extend the 

voltage measurements to buses where no PMUs are installed.  
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To date, the process of introducing PMUs in power systems is costly and it requires more time 

to see the full benefits of wide area monitoring systems. In the meanwhile, the studies must 

concentrate on making the most of the information provided by few installed PMUs until the 

gradual insertion of PMUs will make the system fully observable. 

 

1.1.4 Hybrid State Estimators 

 

The use of synchrophasors improves the capability to monitor the condition of the system in 

real-time. The inclusion of PMU measurements in existing state estimators increases the 

redundancy levels for better bad data detection, helps to determine the actual topology of the 

network and improves the accuracy of the estimation as synchronised measurements are 

substantially more accurate than conventional measurements [23-26].  

 

If a system becomes fully observable with only PMU measurements, a linear (non-iterative) 

WLS can be used as direct measurements of voltage and current phasors are available. 

However, the high cost of installing hundreds of PMUs in large interconnected power systems 

makes this option unfeasible in the short term. As a consequence, a mixture of existing 

conventional measurements and synchronised measurements is the most practical and feasible 

option to gradually incorporate these synchronised measurements in existing estimators.  

 

An example of this transition is the state estimator proposed in [26]. This state estimator 

consists of a two-step state estimator: a conventional state estimator corrected by a linear state 

estimator that uses synchronised measurements only. The main advantage of this estimator is 

that there is no need to replace the existing conventional state estimator.  

 

An alternative hybrid state estimator was later proposed in [27]. Unlike the two-step hybrid 

estimator, the authors combined both the conventional and synchronised measurements in a 

non-linear state estimator.  

 

Recent studies also proposed new formulations for including synchrophasors in Multi-Area 

State Estimators (MASE). It was found that synchrophasors can be used to improve bad data 
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processing around boundary buses [28], and to measure the phase shift between the slack buses 

of different areas [29, 30].  

 

This Thesis, as extension of the work presented above, explores new methods for combining 

conventional and synchronised measurements in modern state estimators, and assesses the 

impact of the dispersed PMU measurements in single-area and multi-area state estimation. It 

also explores the use of synchrophasors in dynamic state estimation. 

 

 

1.2 Objectives 

 

• To provide a step forward on probabilistic studies to estimate the operating conditions 

of electric power systems in the presence of uncertain input variables such as power 

demand and intermittent generation. 

 

• To improve state estimation practice, enabling it to cope with the uncertainty of the 

system to achieve a better network monitoring by making use of available technology 

based on synchronised measurements. 

 

• To propose and explore different formulations for including synchronised phasor 

measurements in state estimation, including static and dynamic state estimators. 

 
 

1.3 Thesis Structure 

 
 

Chapter 1 – Introduction 
 
This is the introduction of the Thesis. This chapter presents a brief explanation of the 

importance and relevance of this research work. In addition, the Chapter presents the objectives 

and the contribution of this PhD Thesis.  
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Chapter 2 – Classical State Estimation in Power Systems 
 
The Chapter presents an overview of power system state estimation theory including the details 

of the WLS formulation, observability analysis, redundancy analysis and bad data processing. 

It also introduces the equations of power flows and power injections that are used in the WLS 

formulation. The theory presented in this Chapter is later implemented in the following 

Chapters of the Thesis. 

 

Chapter 3 – Estimation of Probabilistic Load Flows: Theory and Modelling  
 
This Chapter extends the Gaussian Component Combination Method (GCCM), originally 

introduced in [31] as an alternative to Monte Carlo simulations, to estimate probability density 

functions of power flows and bus voltages in the presence of non-Gaussian correlated random 

input variables (papers 4 and 5 in Appendix H). Additionally, the use of Gaussian mixture 

reduction techniques to limit the computational demand of the GCCM is proposed (Paper 9 in 

Appendix H).  

 

Chapter 4 – Estimation of Probabilistic Load Flows: Simulations 
 

The probabilistic load flow study introduced in Chapter 3 is implemented in three 

representative test systems. The study includes the impact of the correlation between input 

variables in power flow studies of transmission networks and state estimation of distribution 

networks (Papers 4 and 5 in Appendix H).   

 

Chapter 5 – Synchronised Measurements in State Estimation 
 

This Chapter explores different methods to include synchronised measurements in state 

estimation based on the WLS formulation. The study focuses on how the PMU measurements 

of currents can be used to improve the accuracy of hybrid state estimators.  

 

Based on the inability to include current measurements in polar form, this study proposes the 

use of a Hybrid Constrained State Estimator (HCSE) that avoids the propagation of 

measurement uncertainties because it does not use any transformation of measurements. A 
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comparison with other hybrid state estimators is included in the analysis (Paper 2 in 

Appendix H). 

 

Chapter 6 – Multi-Area State Estimation 
 

This Chapter deals with the problem of state estimation in multi-area power systems. The study 

proposes a Multi-Area State Estimator (MASE) based on wide area synchronised 

measurements to estimate the angle difference between reference buses and to improve the 

estimation accuracy in boundary buses.  

 

The main objective of the proposed MASE is to reduce the data exchange between local area 

and the coordination state estimators, and consequently to reduce the number of estimated 

states of the coordination level. The impact of the proposed simplified MASE is also assessed 

in terms of accuracy in a 300 bus test system (paper 6 in Appendix H). 

 

Chapter 7 – Dynamic State Estimation 
 

Due to the possibility to process scans of measurements with higher sampling rates, this 

Chapter explores the use of power system dynamic state estimators supported by synchronised 

measurements. In addition, this study explores the use of the Unscented Kalman Filter (UKF) 

as an alternative to the Extended Kalman Filter (EKF) to cope with the non-linearities of the 

measurement equations used in dynamic state estimators. 

 

Finally, this Chapter compares the performance of dynamic and static estimators under normal 

conditions, the presence of bad data and sudden changes of states. This study was implemented 

in two test systems (paper 1 in Appendix H). 

 

Chapter 8 – Conclusions and Future Work 
 
This Chapter summarises the conclusions drawn from the tests executed in Chapters 3 

through 7. Furthermore, it discusses the limitations of the presented work and presents new 

ideas for future work as consequence of this research.  
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Figure 1.1 presents a diagram with the structure of the PhD Thesis to summarise the 

organisation of the research work.  

 

 
 

Figure 1.1: PhD Thesis Structure 

 

1.4  Contribution of this Research 

 
In order of appearance, the main contributions of this Thesis are: 

 

• Proposal of a probabilistic load flow to estimate power flows and bus voltages in the 

presence of non-Gaussian correlated input variables (demand and intermittent 

generation). The proposed method uses the actual probability density functions as input 

variables – represented as Gaussian mixtures.  
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• Development of a methodology to run Monte Carlo simulations with Gaussian mixture 

models as input variables. 

• Simplification of Gaussian mixture models (with fewer components) to reduce the 

computational demands of the proposed probabilistic load flow (and state estimator). 

• Evaluation of the impact of including (or neglecting) the correlation between input 

variables on the estimated probability densities of voltages and power flows of 

transmission and distribution networks. 

• Proposal of a state estimator for distribution networks that uses few real real-time 

measurements and pseudo-measurements of power injections expressed by probability 

densities. This state estimator not only provides the estimated mean values of any 

variable but also calculates the corresponding density function of voltages, power flows 

and power injections of poorly monitored areas. 

• Assessment of the impact of the reduced models in the calculation of the probability 

densities in both the probabilistic load flow and the state estimator. 

• Proposal of a hybrid constrained state estimator that uses synchronised measurements 

in polar form. This method avoids the propagation of measurement uncertainties as no 

transformation of measurements is required. 

• Application of the Unscented Transformation to calculate the propagation of 

measurement uncertainties when synchronised measurements are transformed (from 

polar to rectangular form or as pseudo-measurements of voltages). 

• Proposal of a multi-area state estimator, supported by synchronised measurements, 

which requires minimum data exchange between the local and coordination estimators. 

• Assessment of the impact of not including power injection measurements of boundary 

buses in two-level multi-area state estimators.  

• Implementation of the Unscented Kalman filter in power system dynamic state 

estimation supported by synchronised measurements. 

• Comparison of dynamic versus static state estimators in the presence of bad data and 

after sudden changes of states.  

 

A list of the publications achieved as a result of the research carried out during this PhD project 

has been included in Appendix H. 
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Chapter 2  Classical State Estimation in Power 
Systems 

 
 
Power system State Estimation (SE) is one of the most critical on-line applications necessary 

for efficient Energy Management System (EMS) applications. The solution of a state estimator 

is used as input for optimal power flow studies and contingency analysis and it is also used for 

real-time security assessment to determine, and subsequently correct, unacceptable voltage and 

power flow levels, to determine network losses, to alert network topology changes and to 

monitor transferred power flows between areas. 

 

The state estimator provides the best estimate of the system states (voltage angles and 

magnitudes) commonly using the non-linear Weighted Least Square (WLS) technique based on 

available measurements in the network.  

 

Figure 2.1: 14-bus system with conventional set of measurements 
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Figure 2.1 presents an example of a small power system with dispersed conventional 

measurements across the system which are commonly collected and transmitted through a 

Supervisory Control and Data Acquisition (SCADA) system. These conventional 

measurements and the set of virtual measurements (extended in Section 2.1.2.) are processed to 

obtain the best estimate of voltages, power injections and power flows of directly and non-

directly monitored buses and transmission lines. The inclusion of more sophisticated, reliable 

and synchronised measurements is presented in Chapters 5 to 7. 

 

Figure 2.2 presents the functions of a SE [1]. In the pre-filtering step, the operator corrects and 

eliminates measurements that are clearly wrong. The topology processor is implemented to 

estimate the physical layout of substations and the connectivity between buses based on 

information of Circuit Breaker (CB) status and available measurements. 

 

The observability analysis is carried out to determine if the system state can be obtained from 

the available set of measurements. In case the system is not fully observable, the SE determines 

the unobservable zones/branches and the required set of measurements to make the system 

fully observable. 

Prefiltering

State Estimation

Error Detection
Error 

Identification

Observability 

Analysis

Topology

Processing

Network 

Parameters
Dynamic Data

Man-machine interface

Measurements

on/off switch indicators

and measurements

Errors Non-observable 

zones
Estimated States

 

Figure 2.2: Building block of a state estimator 
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The estimated states are obtained from the WLS method and it performs quite well under 

quasi-steady state conditions. However, the good performance of the state estimator depends 

on measurement accuracy and redundancy levels. Therefore, bad data detection and 

elimination constitutes an important part of the state estimator.  

 

The following sections present an overview of classical power system state estimation analysis 

including the WLS formulation, observability analysis, redundancy analysis and bad data 

processing. All the theory presented in this Chapter is later implemented in the following 

Chapters of this Thesis. 

 

2.1 WLS Formulation  

 
The classical approach of state estimation in power systems consists of the application of the 

Weighted Least Square (WLS) methodology, in which a set of measurements z can be 

represented as [18]: 

 
� = ���� + � (2.1)

 
where h(x) is the set of equations relating the error free measurements with the state variables x 

and e  is the vector of uncorrelated measurement errors with mean value E[e] = 0. The n×1 

state vector x is defined as the set of bus voltage magnitudes and angles. For instance, for an N-

bus system with reference at bus 1:  

 

2 3 1 2[ , , , , , , , ]T

N N
V V Vθ θ θ= ⋅⋅⋅ ⋅⋅⋅x  (2.2)

 

Now let 	 = � − ���� be a vector of residuals. The best estimate of x is the vector ��  that 

minimises the weighted sum of the squares of the measurement residuals r:  

 


��� = �� − ����������� − ����� (2.3)

 

where � = ��� ∙ ��� = ��������, ���, … , ���   is the error covariance matrix and �!� is the i-th 

variance for the i = 1, 2,…, m measurements. The solution of (2.3) is obtained when the first 

derivative of J ���, evaluated at the optimum state vector ��, gives a zero value.  
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"
��#�
"� = 0 (2.4)

 
As the problem is non-linear, an iterative procedure is necessary to find the optimal vector ��. 

See Appendix A.1 for further details. At iteration k, the following holds: 

 

%��&�∆�& = (���&� ����� − ���&�� (2.5)

 

where (��&� = "���&� "�⁄  is the m×n Jacobian matrix and %��&� = (���&� ���(��&� is the 

n×n Gain matrix. The iteration procedure finishes when ∆�* = �k+1−�& is smaller than a pre-

defined value. The result is the state estimate ��. 

 

Since the set of measurements in electric networks are obtained from bus voltages, power 

flows and injected powers, the set of equations h(x) must relate the error free measurements 

with the state variables. In the case of voltage measurements, there is a linear relation between 

the state variable (voltage magnitude) and the measurement itself. In the case of injected and 

transferred powers, the non-linear equations are: 
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And the transferred power relationships are given as: 
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Here Gij+jBij is the ij-term of the power network admittance matrix and gsi+jbsi corresponds to 

the admittance of the shunt branch connected to bus i, as presented in Figure 2.3. 
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Figure 2.3: Pi-model of network branch including tap modelling 

 

Also, aij is the off-nominal tap position of transformer connected to buses i and j. In case that 

branch ij is a transmission line, aij = 1. 

2.1.1 Jacobian Elements 

 
The elements of the Jacobian matrix H(x) correspond to the partial derivatives of equations 

(2.6) – (2.11) with respect to the state variables x, as presented in Tables 2.1 and 2.2.  In 

addition, the partial derivatives of the bus voltage magnitude with respect to the state variables 

are presented in Table 2.3. Other types of measurements including synchronised and current 

magnitude measurements will be presented in Chapter 5. The way how these measurements are 

included and expressed in the SE is a key part of this work. 

 
Table 2.1: Elements of H corresponding to power injections 
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Table 2.2: Elements of H corresponding to line power flows 
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Table 2.3: Elements of H for bus voltages 
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2.1.2 Equality Constrained WLS 

 

Even when the classical WLS method for state estimation provides reasonable results of power 

injections at all buses, it may not provide a zero value for null power injections (no load or 

generation connected). In order to improve the accuracy of the estimations, particularly around 

the null power injection buses, a set of virtual measurements with mean value equal to zero and 

small variance  can be included in the formulation. However, the presence of very small 

variances (large weights) in some measurements may lead to ill-conditioned Gain Matrix [18]. 
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Alternatively, a set of constraints can be included in the formulation to guarantee zero power 

injections in those buses but also to avoid large weights in  �−1, which is one source of ill-

conditioning the Gain Matrix [18]. 

 

The minimization problem stated in equation (2.3) is now extended to meet a set of constraints 

c(x) = 0. The Lagrange multipliers are used to account for the equality constraints as follows 

[32, 33]:  

,��, -.� = �� − ����������� − ����� − -/�/��� (2.12)

 

where λc is the vector of Lagrange multipliers. Thus, partial derivatives of L(x, λc) with respect 

to x and λc are obtained to minimise this function, see Appendix A.2 for details.  Solving for 

∆x  and λc, it is possible to establish the iterative procedure to find the vector �� that minimises 

L(x, λc):  

 

0(���&� ���( −1���&�
−1��&� 2 3 0 ∆�&

-.&4�3 = 0(���&� ����� − ���&��
/��&� 3 (2.13)

 

where 1��&� = ∂/��&� ∂�⁄ .  

 
As seen from equation (2.13), the state vector is extended with a set of Lagrange multipliers. 

Also, the Jacobian matrix is partitioned into a block corresponding to constraints and another 

block related to all measurements in the system [33].  

 

2.2 Observability Analysis 

 

A power system is observable if the number of linearly independent measurements is equal or 

larger than the number of states [1] . It means that for each state variable there must be at least 

one measurement “observing” it. Reference [34] indicates in a simple way that a system is 

observable if there are sufficient measurements to run a state estimator. 

 

If one or more states are unobserved, the Gain Matrix G defined in (2.5) would become 

singular, i.e. non invertible, and equation (2.5) could not be solved. Because of this, the system 

is said to be unobservable due to insufficient number of measurements in the system. 
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Two different concepts of observability are found in the literature [35]: Topological 

Observability and Numerical Observability. The first one is based on Graph Theory, and the 

second one is based on linear algebra formulation [36]. This research work focuses and applies 

Numerical Observability as it also implies Topological Observability.  

 

2.2.1 Numerical Observability  

 
A system is said to be numerically observable if the Jacobian matrix is of full rank i.e. the 

Gain Matrix is non-singular which is the condition for the state estimator to have a unique 

solution.  

 

A decoupled Jacobian matrix can be used to simplify the problem. The decoupling is based on 

the fact that under normal operating conditions, changes of active powers are weakly related to 

variations of magnitudes of bus voltages. In a similar way, changes of reactive powers are 

weakly related to changes of bus angles [34].  

 

The Jacobian matrix is approximated as:  
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∂

h V θ
H

θ
 and 

( , )
Q

QV

∂
=

∂

h V θ
H

V
. The subscripts P and Q refer to active and 

reactive power equations, respectively. And the Gain Matrix will be: 

 

V

θ 
 
 

G 0
G =

0 G
 (2.15)

 

where 1T

P P Pθ θ θ
−=G H R H and 1T

V QV Q QV

−=G H R H . In other words, the observability of the system 

can be obtained separately.  

 

A power system with N buses is said to be P-θ numerically observable if the rank of Gθ, the 

maximum number of linearly independent equations, is “N-1”. Also, the system is said to be Q-

V numerically observable if the rank of GV is “N” [37] . If the system is found to be P-θ 
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numerically observable, it will be assumed to be Q-V numerically observable considering that 

power measurements are obtained in pairs (active and reactive) and the existing of at least one 

voltage magnitude measurement [38].  

 
A linear model of the power measurements simplifies even more the problem to obtain the 

factorization of the Gain Matrix Gθ. Since the numerical observability is independent of the 

branch parameters and the operating state of the system, the voltage magnitudes at all buses 

and the reactances at all branches are assumed to be 1 p.u.. Based on the previous assumptions, 

the active power flow from bus i to j can be modelled as [39]: 

 

ij i j
P θ θ= −  (2.16)

 

And the linear Jacobian matrix becomes: 
 

0 1 1 0

i j

ij

P

P
θ

θ θ

 
 − =
 
 
 

H

� � � � � �

�

� � � � � �

� � � � � �

 (2.17)

 

Here, the reference angle is also included in the set of states. Then, the Gain Matrix Gθ can be 

easily decomposed using triangular factorization to obtain the new matrix θG . In case a zero 

pivot is found during the factorization, it will be necessary to make permutation of rows in Gθ 

and then continue with the decomposition. 

 

If the system is not fully observable, more than one element will be zero in the diagonal of θG . 

Otherwise, under full network observability, the last diagonal element of θG  will be zero and 

the rank of Gθ will be N-1. Note that, if one determines that the system is numerically 

observable with the simplified linear model, one also ensures that the system is topologically 

observable. 
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2.2.2 Identification of Observable Islands  

 

Based on a linear P-θ measurement model with unitary covariance matrix, the solution of the 

estimated states, starting from (2.5), is: 

 

ˆ
P Pθ =G θ H z  (2.18)

 

where zP is the set of active power measurements. Consider the case where all the 

measurements are all set to zero: 

 

ˆ
θ =G θ 0  (2.19)

 

Under full network observability conditions, the estimated active powers obtained from (2.16) 

should be also equal to zero. Any other value different from zero would imply that such branch 

is not being observed with the available measurements. 

 

From the decomposed matrix θG , it is possible to determine which branches are unobserved 

and need measurement allocation. The algorithm is as follows [40]: 

 

1. Initialize the measurement set with available measurements 

2. Create the new gain matrix Gθ 

3. Perform triangular factorization of Gθ (called θG ). A θ pseudo measurement is 

introduced whenever a zero pivot is encountered. If only one zero pivot occurs 

(necessary at the end), stop. Otherwise: 

4. Solve the DC estimator from equation (2.18), considering all the measured values equal 

to zero, except for the θ pseudo-measurements, that assume the values θk = 0, 1, 2 … 

5. Evaluate the branch flows from equation (2.16). 

6. Update the power network by removing all branches with Pij ≠ 0. These are 

unobservable branches. 
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7. Update the measurements set of interest by removing power injection measurements 

from buses adjacent to at least one of the branches removed in Step 6. These are 

irrelevant measurements. 

8. Return to Step 2. 

 

The iteration is required because the sub networks identified can only be theoretically 

classified as candidate for observable islands [34]. Once all the unobserved branches are 

removed, it is possible to identify all observable islands in the system. Allocation of new 

measurements will be necessary to unify the observable islands and make the system fully 

observable. 

 

On the other hand, reference [41] uses a non-iterative numerical method to remove the non-

observable branches. From the decomposition of matrix Gθ, it is obtained the factors L (non-

singular unitary lower triangular matrix), and U (upper triangular matrix) such that Gθ = LU. 

The decomposition is based on Gaussian elimination by using the Peters and Wilkinson 

method explained in [42], see Appendix B.1.  

 

Later, a singular diagonal matrix D is built up from D = L-1
Gθ L

-T containing zero diagonal 

elements in those rows corresponding to the zero pivots found during the factorization of Gθ. 

By taking the inverse of L, and keeping the rows of L-1 corresponding to the zero diagonals of 

D, it is obtained a Test Matrix W. 

 

Finally, compute C matrix from the branch-bus incidence matrix A and matrix W: 

T=C AW  (2.20)

 

where the entry Aij is 1 (-1) if the sending (receiving) end of branch i connects to bus j, or zero 

otherwise. If at least one element in a row of C is non-zero, then the corresponding branch is 

unobservable. The observable islands are found once these branches are removed. 
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2.3 Redundancy Analysis 

 
In power system state estimation, a measurement can be classified as either critical or 

redundant [39]. Redundant measurements can be removed from the system without causing 

loss of observability. However, the removal of a critical measurement makes the system 

unobservable. This is equivalent to say that the removal of a critical measurement decreases 

(by one) the rank of the Jacobian Matrix H. The row of the Jacobian matrix corresponding to a 

critical measurement is linearly independent of the other rows (other measurements) of H [43]. 

 
The residual ri =zi-hi(��) of any critical measurements i, is always zero (irrespective of good or 

bad data) which means that any error in a critical measurement can not be detected, affecting 

the performance of the state estimator [18]. 

 

A critical pair is a set of two measurements that when removed make the system unobservable, 

a critical trio is a set of three measurements that when removed makes the system unobservable 

and so on. An optimal placement of measurements can eliminate any critical measurement and 

improve local redundancy levels (can eliminate critical pairs or trios).  

 

Similar to Observability Analysis, the decoupled Jacobian matrix, based on a linear model of 

the power measurements, is enough to identify critical measurements and redundancy levels. 

 
The first step consists on the decomposition of the Jacobian matrix by using LU decomposition. 

The set of measurements in the Jacobian matrix will include only the linear model of all 

available real power measurements. The set of states are the bus phase angles but excluding the 

reference bus.  

 

After decomposition of 
PθH  (and possible needed exchange of rows), the equivalent matrix 

becomes [39]: 

( 1)

( -1)

N

m N

red

−

×

 
=  
 

I
H

K
�  (2.21)

 
where, 
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I(N-1) is the identity matrix of dimension (N-1) and Kred is the equivalent sub-matrix with all the 

redundant measurements.  

 

The columns of H� represent the bus angles and the rows of H�  correspond to the available 

measurements. Matrix I(N-1) represents the basic set of measurements which makes the system 

fully observable whereas the measurements grouped in Kred are the redundant measurements 

[38]. In case that all elements in a column of Kred are all zero, the corresponding measurement 

in I(N-1) is identified as a critical measurement.  

 

The non-zero elements that appear in each column of H� , identify the measurements that 

contain information about the state corresponding to that column. From here, one can identify 

critical pairs or critical trios formed by only one basic measurement. Of course, there can be 

critical sets with more than one basic measurement. These critical sets can be identified based 

on the method proposed in [38] .  

 
Elimination of critical measurements or critical sets can be carried out by including new 

measurements into the Jacobian matrix and then check if the column of interest has a new non-

zero element in the row corresponding to the new measurement. Once critical measurements 

are eliminated, and local redundancy is improved, it is possible to rely on bad data processing 

techniques. 

 

2.4 Bad Data Processing 

 
Measurement readings are exposed to errors due to failure of communications, wrong wiring, 

inaccuracy of measurement transformers, transducers, etc. There are other causes of bad data 

which are related to topology and line parameter errors [44] but they are not considered in this 

work.  

 

The first task in Bad Data Processing (BDP) consists of detecting the presence of wrong 

measurements which can be carried out using statistical procedures. Once the system operator 
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knows that bad data are present in the set of measurements, it is necessary to eliminate it or 

correct the bad data from other available information.  

2.4.1 Chi square Distribution Test 

 
Consider a set of independent random variables grouped in a vector v. If each element vi 

follows a normal standard distribution N(0,1),  the chi square distribution 2

m
χ , with m degrees 

of freedom, is the distribution of the random variable y defined as [18], [45]: 

 

2

i

i=1

m

y v=∑  (2.22)

 

The degrees of freedom m represent the number of independent variables in the sum of squares. 

This value will decrease if any of the variables vi form a linearly dependent subset. 

 

Figure 2.4 presents the Probability Density Function (PDF) for a chi square distribution with 

20 degrees of freedom. As the number of degrees of freedom m increases, the PDF of χ2 will 

tend to a normal distribution [45]. 

 

Figure 2.4: Chi Square PDF for 20 degrees of freedom 

 
The larger area under the PDF of Figure 2.4 represents the probability of finding a value of y 
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is 95%. This probability calculation can be used to detect presence of bad data in the set of 

measurements. 

 

If there is no bad data in the set of power system measurements and the m measurement errors 

ei (i=1, 2, …, m) have normal distribution N(0, 2

i
σ ), the performance index J( x̂ ), defined in 

equation (2.3), will follow a chi-square distribution χ2
m-n. Here, m is the number of 

measurements, n is the number of states and vector x̂  refers to the estimated states [46]. The 

degrees of freedom must be constrained to m-n because it is considered that there are at the 

most m-n linearly independent equations. 

 

One can determine that J( x̂ ) follows a chi square distribution, i.e. free of bad data, if J( x̂ ) is 

smaller than a threshold y1 at a certain level of confidence α. This level of confidence α is 

usually specified at 95% but may change depending on the system or application. Using the 

example of Figure 2.4, if the estimated J( x̂ ) for a given system with 20 degrees of freedom is 

smaller than 31.4, bad data will not be suspected with a confidence level of 95%. 

2.4.2 Measurement Residuals  

 

This section introduces the identification of bad data based on the measurement residuals 

approach  [18]. Consider the linearized measurement equation around the estimated point x0: 

 

∆ ∆z = H x + e  (2.23)

 

where �z = z-h(x0) is the mismatch between the measurement vector and its calculated value at 

an estimate x0. Also �x = x-x0, 0( )∂ ∂H = h x x  and e is the set of uncorrelated measurement 

errors with Gaussian distribution and covariance matrix R. Similar to (2.5), the WLS 

estimation solution of the linearized state vector will be: 

 

1 1 1ˆ ( )T T− − −∆ ∆x = H R H H R z  (2.24)
1 1ˆ T− −∆ ∆x = G H R z  (2.25)
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And the estimated value of �z will be: 

 

ˆ ˆ∆ ∆ = ∆z = H x K z  (2.26)

 

where 1 1T− −=K HG H R .  

 

For a set of m measurements, the m × 1 vector of measurement residual will be denoted as: 

 

ˆ= ∆ − ∆r z z  (2.27)

( )= − ∆r I K z  (2.28)

 

where I is the Identity Matrix. By substitution of equation (2.23) into (2.28) it is obtained: 

( )( )= − ∆ +r I K H x e  (2.29)

 

Based on the property that (I-K)H = 0, equation (2.29) can be expressed as [18], [44] : 

( )= −r I K e  (2.30)

=r Se  (2.31)

 

Matrix S is called the Residual Sensitivity Matrix. Based on the relation above, it is possible to 

calculate the probability distribution of the measurement residuals as follows: 

 

( ) ( ) ( ) 0E E E= = =r Se S e  (2.32)

cov( ) [ ]T
E= =Ω r rr  (2.33)

[ ]T T
E=Ω S ee S  (2.34)

T= =Ω SRS SR  (2.35)

 

The off diagonal elements of the m × m matrix Ω identify strong versus weakly interacting 

measurements. The higher the element Ωij, the stronger the interaction between measurements i 

and j.  

 

The covariance matrix Ω is also used to calculate the normalized residuals to identify and 

reject any bad data in the set of measurements. 
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2.4.3 Normalized Residual Test 

 
Once the state estimation is obtained using WLS, the residual vector is calculated as the 

difference between each measurement and the corresponding function h( x̂ ): 

 
ˆr = z - h(x)  (2.36)

 
The normalized residuals are obtained by dividing its absolute value by the corresponding 

diagonal entry in the residual covariance matrix Ω [45], [46]: 

 

iN

i

ii

r
r =

Ω
 (2.37)

Once the normalized residuals are obtained for all the measurements, the largest normalized 

residual is compared with a pre-defined threshold. If this value is larger than the threshold, the 

corresponding data will be removed and a new estimation is performed. This procedure is 

repeated until the largest normalized residual is lower than the threshold previously 

established.  

 

If the value of the threshold is too small, the program would filter data that may not be wrong, 

reducing redundancy, and it may lead to unobservable conditions. However, if the threshold is 

large, it is possible that wrong data is still present. Generally, a threshold value of 3.0 is enough 

to reject gross errors in the set of measurements. 

 

There is a different approach where the bad data is not rejected at all but it is corrected instead. 

This is achieved by subtracting the estimated error from the identified bad measurement. 

However, this method may not be accurate enough for large errors [45]. The measurement 

residual of the identified bad measurement is: 

 

bad bad ˆ( )
i i ii i

r z h S e= ≈- x  (2.38)

 

By solving for ei:  

1 bad

i i

ii

e r
S

≈  (2.39)
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And subtracting this estimated error from the identified bad measurements yields: 

 

1bad bad

i i i

ii

z z r
S

≈ −  (2.40)

 

The normalized residual approach is generally very effective but its main limitations are listed 

below: 

• It can not identify errors in critical measurements because the corresponding column in 

S is zero. So, an error in that measurement could not be detected since it will have no 

effect on the measurement residual [47] . Here the importance of having high redundant 

systems. 

• It may fail to identify erroneous measurements when two interacting measurements 

have errors that are in agreement (multiple interacting and conforming bad data) [18].  

 

2.5 Summary 

 
This chapter introduced the classical techniques applied to state estimation, redundancy 

analysis, observability analysis and bad data detection and elimination.  The chapter also 

presented the equations of power flow and power injection as function of the state variables 

that are used in the WLS formulation. The following chapters will make reference to the 

equations and formulations presented in Chapter 2.  
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Chapter 3 Estimation of Probabilistic Load Flows: 
Theory and Modelling 

 
 
The insertion of intermittent wind power generation at the transmission level has increased the 

level of uncertainty of the power networks. Distributed generation and emerging technologies 

such as storage devices will also increase the uncertainty of the aggregated loads. This leads to 

running stochastic/probabilistic studies where the input variables can no longer be treated as 

deterministic values, but as stochastic ones [48]. 

 

Probabilistic load flow studies take into account the random nature of generation and demand 

for a certain period. The information obtained from the probabilistic load flows can be used for 

planning purposes when power engineers need to make decisions in terms of investment or for 

operation purposes when it is needed to determine all the possible operating conditions of the 

power system for a short period [49]. These studies provide valuable information about the 

likelihood that certain bus voltage or power flow/injection will remain within some acceptable 

limits.  

 

Most of the work mentioned in Section 1.1.1 was concentrated on the uncertainty of power 

injections, which were usually assumed to be Gaussian distributed with 5% to 10% of 

variability. Recent studies have shown that the marginal distribution of wind power production 

has larger variability and it is non-Gaussian distributed [4, 10].  

 

Reference [31] uses a weighted sum of Gaussian distributions to model any non-Gaussian 

distribution. The method uses multiple WLS runs to deal with the Gaussian components for 

each non-correlated input variable.  

 

To date, little attention has been paid to non-Gaussian correlated input variables. This is, 

however, the most general and realistic scenario to be considered in probabilistic load flows 

studies. Examples of non-Gaussian correlated variables are power demands of aggregated loads 

with similar consumption patterns or wind/solar generation in the same geographic area.  
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References [2, 50] introduced non-Gaussian correlated variables to represent the stochastic 

power output of wind farms in probabilistic power flows studies. The statistical moments were 

estimated using the Point Estimate method and the Probability Density Functions (PDFs) were 

approximated with the Cornish–Fisher expansion series.  

 

In this work, the non-Gaussian PDFs are approximated by the Gaussian Mixture Model 

(GMM), which is able to model any marginal distribution (standard or not) with a finite 

number of components.  

 

The contribution of this work is to extend the Gaussian Component Combination Method 

(GCCM) introduced in [31] to estimate the PDF of power flows in presence of non-Gaussian 

correlated random input variables.  

 

The advantage of this approach is that it does not need any expansion series to approximate the 

resulting PDF of the system variables. The resulting PDF of any electrical variable is made of 

Gaussian components extracted from multiple WLS runs. As the number of WLS runs depends 

only on the number of Gaussian components of the input variables, a Gaussian mixture 

reduction technique is also proposed to limit the number of WLS runs.  

 

The first part of this chapter introduces the Gaussian mixture distribution and the Gaussian 

Mixture Model (GMM) to represent non-Gaussian random variables. Section 3.2 explains a 

methodology to reduce the number of Gaussian components to simplify the GMMs. 

Subsequently, Section 3.3 presents the Monte Carlo simulations and the Gaussian Component 

Combination Method (GCCM) for probabilistic load flow studies in the presence of non-

Gaussian correlated variables, whereas Section 3.4 presents the summary of the Chapter. 

 

3.1 Gaussian Mixture Distribution 

 

A Gaussian mixture distribution is the mixture of L Gaussian distribution components. For a 

one-dimensional random variable Y, the probability density function fY(y) is defined as [31]: 
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2( , )
1

( ) ( )
i i

L

Y i N
i

f y f yµ σω
=

=∑  (3.1)

where ωi, µi and 2

i
σ  are the proportion, mean, and variance of the i-th component of the 

Gaussian mixture, respectively. In order to maintain the characteristics of a probability 

distribution, the proportions parameters are constrained to be: 

1

0 1 and 1
L

i i

i

ω ω
=

< ≤ =∑  (3.2)

In addition, the distribution of the i-th Gaussian component is [51]:  
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The mean and variance of the random variable are respectively [52]: 

1

L

Y i i

i

µ ω µ
=

=∑  (3.4)

( )2 2 2

1

( )
L

Y i i i Y

i

σ ω σ µ µ
=

= + −∑  (3.5)

The probability density of the Gaussian Mixture is obtained by evaluating fY(y) for ־∞ < y < ∞. 

For example, consider a Gaussian mixture distribution (L = 7) with the parameters given in 

Table 3.1: 

 

Table 3.1: Parameters of a Gaussian mixture distribution with seven components 

Component i=1 i=2 i=3 i=4 i=5 i=6 i=7 

ωi 0.20 0.20 0.20 0.20 0.10 0.05 0.05 

µi 43.0 50.0 52.0 58.0 62.0 72.0 80.0 

σi
2

 9.0 16.0 9.0 64.0 4.0 4.0 25.0 

 
Figure 3.1 presents the probability density of the variable Y modelled by the Gaussian mixture 

parameters of Table 3.1. The sum of the individual weighted Gaussian components creates the 

Gaussian mixture distribution. This variable Y represents any random variable such as power 

demands, generation power outputs, or bus voltage magnitudes for a certain period. From 

Figure 3.1, it can be concluded that the PDF of the variable Y is non-Gaussian and that it does 

not fit any other typical marginal distribution. 
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Figure 3.1: Gaussian mixture distribution with 7 Gaussian components 

 

The Cumulative Distribution Function (CDF) of the random variable is the probability that Y 

assumes a value in the range −∞ < Y ≤ y [51]: 

( ) Prob( ) ( )

y

Y YF y Y y f u du
−∞

= ≤ = ∫  (3.6)

 

Figure 3.2 presents the CDF of the seven components Gaussian mixture with the parameters 

listed in Table 3.1. The values of FY(y) represent probabilities and they lie in the range 0 to 1. 

This is particularly important when creating Gaussian mixture random variables for Monte 

Carlo simulations. 

 

The main advantage of the Gaussian Mixture distribution is that it can approximate any PDF 

with a finite number of components. This is of particular interest when the distribution of the 

random variable does not fit the typical distributions (e.g. Gaussian, Uniform, Gamma, etc). 

The higher the number of components of the Gaussian Mixture Model (GMM), the more 

accurate the approximation becomes.  

 

The most effective methodology to determine the GMM that best approximates the distribution 

of the samples of Y is the Expectation Maximisation (EM) algorithm. For example, reference 
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[16] uses the EM algorithm to determine the parameters of the GMM to model PDFs of power 

demands. 

 

Figure 3.2: CDF for Gaussian mixture with seven components 

 

The input of the EM algorithm is the set of samples γ = [y1, y2,…, ys] of the random variable Y 

and the desired number of Gaussian components of the GMM. Given γ and the initial (or 

updated) Gaussian mixture parameters η, the algorithm computes the expectation of the log-

likelihood of the complete data with respect to the unknown samples. Later, η is updated to 

maximise the log-likelihood expectation found before. This procedure is iteratively executed 

until convergence is achieved. The Statistics Toolbox of MATLAB offers the function 

gmdistribution.fit to estimate η using the EM algorithm given the samples γ and the desired 

number of Gaussian components [53]. 

 

Figure 3.3 presents the GMM of a Uniform random variable approximated by 10 components 

using the EM algorithm. In fact, the Uniform distribution is one of the most difficult 

distributions to approximate with a GMM. The approximation can be improved with a higher 

number of Gaussian components. 
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Figure 3.3: Uniform distributed random variable modelled by GMM 

 

Figure 3.4 presents the GMM approximation of a Gamma distributed random variable with 10 

components. In this case, the mismatch between the GMM and the random variable density is 

negligible. 

 

Figure 3.4: Gamma distributed random variable modelled by GMM 
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The number of components needed to approximate any probability density function depends on 

the degree of required accuracy. Although adding an extra component to the GMM will always 

improve the approximation, the number of components is sufficient when adding an extra 

component produces a negligible improvement in the approximation. The Chi-Square goodness 

of fit test can be used to quantify the degree of fitness of the set of samples and the GMM [16]. 

By using a pre-defined threshold, it is possible to determine the number of components of the 

GMM. 

3.2 Reduction of Gaussian Mixtures  

 
The number of components may be a limitation when dealing with simulations that involve a 

large number of GMM at the same time. Based on this, it is very useful to decrease the number 

of components of the mixtures in order to reduce the computation demands while keeping a 

good level of accuracy of the original GMMs. 

 

If one starts from the simplest GMM to represent a non-Gaussian variable and then increases 

the number of components, it would be necessary to run the Expectation Maximisation (EM) 

(fitting) technique each time it is desired to improve the accuracy of the GMM. This is both 

time consuming and impractical. The proposed reduction method no longer requires the use of 

the raw data (observations). Instead, it starts from the actual accurate model parameters of the 

GMM and then reduces one component at a time.  

 

The idea of the Gaussian mixture components reduction is to approximate the original GMM in 

(3.1) as a new GMM with fewer components: 

 

2( , )
1

( ) ( )
j j

M

Y j N
j

g y f yµ σω
=

=∑ � �
�  (3.7)

where M < L and jω� , jµ� and 2

jσ�  are the proportion, mean, and variance of the j-th component, 

respectively. 

 

Different reduction algorithms have been presented in recent years. The main requirements of a 

good reduction algorithm can be summarised as [52]: 
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• The algorithm should be efficient and easy to execute. 

• The algorithm should maintain the mean and variance of the original mixture. If not, 

the deviation should be negligible. 

• The resulting GMM should maintain, within some acceptable limits, the structure of 

the original mixture. 

These requirements may not all be achieved with one single algorithm but it is possible to 

choose one algorithm or a mixture of algorithms that can achieve most of the requirements 

listed above. 

 

The approach based on merging pairs of components is the simplest method to reduce 

Gaussian mixture components. The algorithm starts with gY(y) = fY(y). The merging is applied 

to the pair of components of gY(y) that when merged produce the minimum discrepancy 

between fY(y) and gY(y) [54], [55].  

 
Once the pair of components i and j are identified, they are merged together to obtain a new 

resulting component ij with the following component parameters [55]:  

ij i j
ω ω ω= +� � �  (3.8)

 
The mean and variance of the new Gaussian component is: 

( )1
ij i i j j

i j

µ ω µ ω µ
ω ω

= +
+

� �� � �
� �

 (3.9)

2 2 2 21
( )

i j

ij i i j j i j

i j i j

ω ω
σ ω σ ω σ µ µ

ω ω ω ω

 
= + + −  + + 

� �
� �� � � � �

� � � �
 (3.10)

 
The new component ij replaces the i-th and j-th components previously identified. 

Consequently, gY(y) loses one component but keeps the mean and variance of the original 

mixture. This procedure is repeated until the desired number of components is reached. 

 
The identification of the i-th and j-th components of gY(y) depends on the selection criteria. The 

Salmond method identifies the pair of components i and j that produce the minimum increase 

of the first summand in (3.5) [56]. The increase of the first summand in (3.5) is related to the 

Square Distance (SD) measure: 
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2

2

2

( )
i j i j

ij

i j Y

d
ω ω µ µ

ω ω σ

−
= ⋅

+

� � � �

� �
 (3.11)

 

The smallest squared distance identifies the merged components i and j that produce the 

minimum value of the cost function. The main disadvantage of this methodology is that it 

merges the pair of components with the closest means even if their variances are very 

different [55]. 

 

The Williams method identifies the pair of components to be merged that produce the 

minimum difference between the original fY(y) and the reduced Gaussian mixture gY(y). In 

order to evaluate this difference, the Integral Square Difference (ISD) between the original and 

the reduced mixture is introduced [54]:  

( )
2

( ) ( )s Y YJ f y g y dy= −∫ . (3.12)

 

The ISD is calculated for all combinations of pairs of components of gY(y). The minimum Js 

identifies the components i and j to be merged. This procedure is repeated until gY(y) is reduced 

to the desire number of components. The ISD defined in (3.12) can be extended as: 

2 2( ) 2 ( ) ( ) ( )s Y Y Y YJ f y dy f y g y dy g y dy= − ⋅ +∫ ∫ ∫ , (3.13)

or in more compact form, 

2
s sff sfg sgg

J J J J= − ⋅ + , (3.14)

with, 

2( )sff YJ f y dy= ∫ ; ( ) ( )sfg Y YJ f y g y dy= ⋅∫ ; 
2( )sgg YJ g y dy= ∫ . (3.15)

 

By using (3.1) and (3.7) in (3.15) one obtains: 

2 2( , ) ( , )
1 1

( ) ( )
i i j j

L L

sff i j N N
i j

J f y f y dy
µ σ µ σ

ω ω
= =

= ⋅∑∑ ∫ , (3.16)

2 2( , ) ( , )
1 1

( ) ( )
i i j j

L M

sfg i j N N
i j

J f y f y dy
µ σ µ σ

ω ω
= =

= ⋅∑∑ ∫ � �
� , (3.17)

2 2( , ) ( , )
1 1

( ) ( )
i i j j

M M

sgg i j N N
i j

J f y f y dy
µ σ µ σ

ω ω
= =

= ⋅∑∑ ∫ � � � �
� � . (3.18)
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The problem is now reduced to evaluate the integrals of the products of two Gaussian densities. 

As presented in [54], the product of two Gaussian densities 2
1 1( , )

( )
N

f y
µ σ

 and 2
2 2( , )

( )
N

f y
µ σ

 is a 

Gaussian density 2
3 3( , )

( )
N

f y
µ σ

multiplied by a scale factor α: 

2 2 2
1 1 2 2 3 3( , ) ( , ) ( , )

( ) ( ) ( )
N N N

f y f y f y
µ σ µ σ µ σ

α⋅ = ⋅  (3.19)

where, 

2 2
2 1 2

1( , )
( )

N
f

µ σ σ
α µ

+
= , (3.20)

2 2 2 1

3 1 2(1 1 )σ σ σ −= + , (3.21)
2 2 2

3 3 1 1 2 2( )µ σ µ σ µ σ= + , (3.22)

 

Applying (3.19) in each of the integrals in (3.16)-(3.18), and knowing that the integral of the 

resulting Gaussian density is unity, the ISD terms become: 

2 2( , )
1 1

( )
j i j

L L

sff i j iN
i j

J f
µ σ σ

ω ω µ
+

= =

=∑∑ , (3.23)

2 2( , )
1 1

( )
j i j

L M

sfg i j iN
i j

J f
µ σ σ

ω ω µ
+

= =

=∑∑ � �
� , (3.24)

2 2( , )
1 1

( )
j i j

M M

sgg i j iN
i j

J f
µ σ σ

ω ω µ
+

= =

=∑∑ � � �
� � � . (3.25)

 

The ISD selection method takes into account the entire Gaussian mixture to decide which 

components to merge. However, it is more time consuming than the Salmond method, as more 

calculations are required.  

 

An alternative measure of similarity between two probability densities f1(y) and f2(y) is the 

Kullback-Leibler (KL) divergence D(f1 || f2) [55] : 

6�7�87�� = 9 7��:� log 7��:�
7��:� �: (3.26)

 

Contrary to the ISD measure, there is no closed form expression for the KL divergence 

measure when f1(y) and f2(y) are Gaussian mixtures. Because of this limitation, an upper bound 

on the discrepancy of the reduced mixture from the mixture before the merge was proposed 

in [55]. The upper bound measure of discrepancy is: 
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ω
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ω ω

ω ω σ
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σ σ σ
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 (3.27)

where 

i

i ij

i j

ω
ω

ω ω
=

+

�
�

� �
;   

j

j ij

i j

ω
ω

ω ω
=

+

�
�

� �
. (3.28)

 

This KL based selection method identifies the merged components i and j that produce the 

minimum upper bound discrepancy between the mixture after the merge and the mixture before 

the merge. Equation (3.27) takes into account the means, weights, and variances of the 

Gaussian components. In addition, it requires fewer computations than the ISD based method.  

 

In order to demonstrate the performance of the reduction methods presented above, the seven-

component Gaussian mixture in Figure 3.1 is approximated by five, four, and three component 

mixtures, as presented in Figures 3.5, 3.6, and 3.7, respectively. The merged components were 

selected from the SD, the ISD, and the KL upper bound measures.  

 

 
Figure 3.5: GMM reduction using five components  
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Figure 3.6: GMM reduction using four components  

 

 
Figure 3.7: GMM reduction using three components  

 

As it is presented in Figure 3.5, the reduced Gaussian mixture obtained from the ISD measure 

is the same as the resulting Gaussian mixture obtained from the KL upper bound measure. If 

the original Gaussian mixture is approximated by four Gaussian components, as presented in 

Figure 3.6, the SD and the KL upper bound selection methods obtained the same reduced 

distribution. 
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As it is presented in Figure 3.7, the reduced mixture obtained from the ISD and the KL upper 

bound discrimination methods are the same. Although it is possible to visualise the resulting 

Gaussian mixtures from Figures 3.5 to 3.7, the methods have not been quantitatively compared 

against each other. The ISD is now used to compare the accuracy of the approximations. For 

comparison purposes, it is convenient to normalise Js into 0 ≤ Js
N ≤ 1, as follows [57]:  

( )
2

2 2

( ) ( )

( ) ( )

Y YN

s

Y Y

f y g y dy
J

f y dy g y dy

−
=

+

∫
∫ ∫

. (3.29)

 

Equations (3.23) to (3.25) are used to evaluate Js
N. A value of Js

N = 0 means that the reduced 

Gaussian mixture density perfectly matches the original density whereas Js
N = 1 indicates zero 

overlapping of the densities.  

 

Table 3.2 presents the comparison of the Js
N for reduced components with M components 

obtained by merging pairs of components based on the SD, ISD, and KL upper bound 

measures. When fewer components are used to model the original density fY(y), the 

approximation becomes less accurate and Js
N becomes closer to 1.  

 

Table 3.2: Js
N
 for resulting gY(y) and the original mixture fY(y) 

Method M = 6 M = 5 M = 4 M = 3 M = 2 M = 1 

SD 6.93E-04 0.0094 0.0106 0.0201 0.0231 0.0589 

ISD 6.93E-04 0.0027 0.0039 0.0118 0.0231 0.0589 

KL 6.93E-04 0.0027 0.0106 0.0118 0.0231 0.0589 

 

As it is presented in Table 3.2, the minimum Js
N is always obtained when the ISD 

discrimination measured is used. It is important to mention that the KL upper bound measure 

selected the same pair of components to merge as the ISD measure did, but excepted when 

M = 4. 

 

Table 3.3 presents the computation times required by the three algorithms. For all the 

reductions, the KL upper bound discrimination method required less time to find the pair of 

components to merge, which is the opposite of the ISD method.  
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The higher processing times of the ISD measure can be a constraint if the number of 

components is large e.g. 100 components reduced into 25 components. In this case, the KL 

upper bound algorithm will be much more efficient. 

 

Table 3.3: Comparison of computer time requirements 

Method M = 6 M = 5 M = 4 M = 3 M = 2 M = 1 

SD 1.72E-02 0.021953 0.021861 0.020796 0.020154 0.021869 

ISD 4.63E-02 0.070542 0.079429 0.085214 0.087209 0.090478 

KL 1.14E-02 0.014359 0.014363 0.014214 0.013905 0.013639 

 

Although pair-merging algorithms are very easy to execute and they always maintain the mean 

and variance of the original mixture, the structure of the resulting mixture may be different 

with respect to the original density. Furthermore, the resulting component parameters are not 

necessarily the optimum parameters that best fit the original mixture.  

3.2.1 Fine Tuning of GMM Reductions 

 

The resulting parameters obtained from pair-merging methods can be fine tuned to better 

approximate the original Gaussian mixture [58]. The objective is to correct the set of 

parameters η of gY(y) such that it minimises the ISD cost function, defined in (3.12), as a 

function of η: 

( )
2

( , ) ( ) ( , )s Y YJ y f y g y dyη η= −∫  (3.30)

where, 

2

2

( , )
1

( , ) ( )
j j

M

Y j N
j

g y f y
µ σ

η ω
=

=∑ � �
�  (3.31)

1 2

T
T T T

Mη η η η =  �  (3.32)

1,...,
T

j j j j
j Mη ω µ σ = ∀ = � � �  (3.33)

 

The squared term 2

j
ω�  in (3.31) is used to guarantee positive proportion components [59] . This 

is, 20 1jω< ≤� . By perturbing η η η= + ∆  around the initial point η  and considering only the 

linear term of the Taylor’s series [58]: 

2

( , )
( , ) ( ) ( , ) ( )

T

Y
s Y Y

g y
J y f y g y dy

η
η η η η

η

  ∂
=  − − −   ∂  
∫ , (3.34)
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it is possible to find the optimal set of parameters η when the first derivative of (3.34) with 

respect to η is equal to zero: 

( )

( ) ( )

( , ) ( , ) ( , )
( ) ( , ) ( )

T

Y Y Y
Y Y

g y g y g y
f y g y dy dy

η
η η

η η η
η η η

η η η
∆

 ∂ ∂ ∂
− = ⋅ − 

∂ ∂ ∂ 
∫ ∫

h P

���
��������������� �������������

 

(3.35)

Or in more compact form: 

( ) ( )η η η= ∆h P . (3.36)

The gradient vector h(·) contains M sub-vectors. Each 3x1 sub-vector hj(·) corresponds to one 

ηj, as follows: 

( )
( , )

( ) ( ) ( , ) Y
j Y Y

j

g y
f y g y dy

η
η η

η

∂
= −

∂∫h . (3.37)

After the partial derivative calculation, the sub-vector hj(·) can be expressed by [59]: 

( ) 2

2 2

3

2

( ) ( ) ( , ) ( , ) ,

( )

j

j

j Y Y j j

j

j j

j

y
f y g y g y dy

y

ω

µ
η η η

σ

µ σ

σ

 
 
 
 −

= − ⋅  
 
 − −
 
  

∫h

�

�

�

� �

�

 

(3.38)

with 2

2

( , )
( , ) ( ).

j j
j j j N

g y f y
µ σ

η ω= ⋅
� �

� The closed form solution of (3.38) is presented in Appendix C.1. 

Returning to the linear equation in (3.36), matrix P(·) is: 

(1,1) (1, )

( ,1) ( , )

( )

M

M M M

η
 
 =
 
 

P P

P

P P

�
� � �

�

 (3.39)

Each sub-matrix P(i,j) in (3.39) is defined by: 

2 2

( , ) ( , ) ( , )

1,1 1,2 1,3

( , ) ( , ) ( , ) ( , )

2,1 2,2 2,3( , )
( , ) ( , ) ( , )

3,1 3,2 3,3

( ) ,
j i j

i j i j i j

i j i j i j i j

i j iN
i j i j i j

f
µ σ σ

ω ω µ
+

 
 

=  
  

P P P

P P P P

P P P
� � �

� � �  (3.40)

and each of the elements in (3.40) is presented in the Appendix C.2. 

 

The set of linear equations in (3.36) is solved by LU decomposition of P and ∆η is solved 

using forward and backward substitution. At the k-th iteration, the new set of parameters is 

obtained by: 

1k kη η η+ = + ∆  (3.41)

 

The iterations stop when ∆η is lower than a pre-defined threshold. The weights of the resulting 
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optimised gY(y) are corrected to ensure the characteristics presented in (3.2): 

2 2 2

1

M

j j j

j

ω ω ω′

=

= ∑� � �  (3.42)

 

If the initial set of parameters η0 is not close to the optimal solution, the iterative procedure 

may converge to a local minimum or may not converge at all. A good initial guess is the 

solution obtained from the pair merging algorithms presented above in Section 3.2.  

 

The optimisation method always improves the approximations obtained from the pair merging 

methods but it is not possible to guarantee that the solution corresponds to the global 

minimum. 

 

Figure 3.8 presents the optimal based reduction method compared to the original GMM. The 

ISD reduction method was used to calculate the initial set of parameters η0. The new reduction 

is more accurate and therefore closer to the original GMM.  

 

 

Figure 3.8: Original GMM reduced to four components using the optimal based method 
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Table 3.4: Js
N
 for the resulting improved gY(y) and the original mixture fY(y) 

Method M = 6 M = 5 M = 4 M = 3 M = 2 M = 1 

ISD 6.93E-04 0.0027 0.0039 0.0118 0.0231 0.0589 

Improved 8.59E-07 0.0011 0.0011 0.0085 0.0187 0.0321 

 

For all reductions, the approximation was improved. In the case where M = 5, the optimisation 

method reduced M to four components. Such elimination is performed when the ratio 2 2

j j
ω σ� �  

of component j tends to zero [59]. This is the reason why Js
N for M = 5 and M = 4 are the same. 

 

3.3 Probabilistic Load Flows  

 

The inputs of probabilistic load flows studies are the PDFs of: 

1. Active and reactive power injections in PQ buses, 

2. Active power injection and voltage magnitude in PV buses, and  

3. Voltage magnitude in the slack bus.  

 

A typical Probabilistic Load Flow (PLF) problem is represented in Figure 3.9. Given the PDFs 

of power injections and voltage magnitudes, the operating points of all bus voltages and power 

flows in all transmission lines are determined by means of statistical studies. As explained 

before, the GMM density function can be used to approximate any non-Gaussian PDF. 

 

This Section presents two methodologies to run probabilistic studies. The first is based on 

Monte Carlo Simulations (MCS), which is considered a benchmark method for probabilistic 

studies. The second is an alternative formulation able to reduce the computational demands of 

the MCS. 
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Figure 3.9: PLF problem with non-Gaussian PDFs 

 

3.3.1 PLF using Monte Carlo Simulations 

 

In order to run Monte Carlo simulations, it is necessary to generate samples of each random 

variable for each Monte Carlo trial.  

 

Well distributed samples of Uniform random variables can be obtained from quasi-random 

sequence generators, such as the Niederreiter, the Halton, and the Sobol generators [60], [61]. 

Better distributed samples of random variables make it possible to reduce the number of trials 

of the Monte Carlo simulations.  

 

3.3.1.1 Generation of Samples from Correlated Variables 

 

The correlation coefficient between pairs of input variables must be known a priori from the 

original set of observations. For each pair of variables Y1 and Y2, the correlation coefficient is 

obtained from [51]: 
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1 2

1 2

1 21 2
, 1 2

1 2 1 2

( )( )cov( , )
corr( , )

Y Y

Y Y

Y Y Y Y

E Y YY Y
Y Y

µ µ
ρ

σ σ σ σ

 − − = = = , (3.43)

where µYi and σYi  are the mean and standard deviation of variable Yi and E is the expectation 

operator. 

 

Since the quasi-random sequence generator creates Ns samples of non-correlated Uniform 

random variables, it is necessary to transform them into a set of variables with correlation 

coefficients determined using (3.43). This transformation is carried out in the Gaussian 

domain.  

 

The Ns samples for each of the d Uniform variables are grouped into the set of vectors 

u = [u1, … , ui, … ,ud] and they are converted into Gaussian random samples by using the 

inverse of the CDF of the Gaussian distribution [2], [62]:  

1( ), 1,...,
i v i

F i d
−= =v u , (3.44)

where Fv stands for the CDF of the Standard Normal distribution. This results in Ns samples for 

each of the d Gaussian variables v = [v1, … , vi, … ,vd], which are still not correlated.  

 

The desired correlation matrix Σ must be corrected to account for the transformation from 

Gaussian to Uniform distributions. Each non-diagonal element of the d×d correlation matrix Σ 

is corrected by [62]: 

2sin( )
6

N

ij ij

π
ρ ρ= , (3.45)

where 
ij

ρ  is the desired correlation coefficient between variables i and j and N

ijρ  is the adjusted 

coefficient to account for the transformation. This creates a new d×d correlation matrix ΣN. The 

correlated Gaussian variables are then obtained through the Cholesky decomposition of ΣN [2]: 

v
corr

 = v chol(ΣN) (3.46)

where chol(ΣN) is the upper triangular matrix obtained from the decomposition of ΣN. The 

samples of the correlated Gaussian variables are transformed back into Uniform samples by 

using the CDF of the Gaussian distribution: 

( ), 1,..., .corr corr

i v i
F i d= =u v  (3.47)
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Finally, the samples of correlated variables with any marginal distribution are obtained from 

the inverse CDF of the corresponding distribution: 

1( ), 1,..., .corr corr

i Y i
F i d

−= =y u  (3.48)

where FY is the CDF of the GMM, as stated in (3.6). Some deviations from the desired 

correlation matrix are caused by the non-linear transformation of samples to different 

distributions.  

 

Consider the case where it is necessary to create Ns=5000 samples from d = 4 GMMs that 

represent the active power consumptions at four different buses. Their parameters are presented 

in Table 3.5. 

 

Table 3.5: GMM parameters of variables to be correlated 

GMM1 GMM2 

 ωi µi σi
2
  ωi µi σi

2
 

i=1 0.7 0.5 0.05 i=1 0.5 0.9 0.03 

i=2 0.3 1 0.07 i=2 0.5 1.2 0.01 

GMM3 GMM4 

 ωi µi σi
2
  ωi µi σi

2
 

i=1 0.4 0.8 0.02 i=1 0.3 0.9 0.03 

i=2 0.3 1.1 0.01 i=2 0.3 1.2 0.01 

i=3 0.3 1.3 0.01 i=3 0.4 1.5 0.02 

 

The correlation matrix of the active power injections at those buses is: 
 

1.0 0.7 0.4 0.6

0.7 1.0 0.8 0.5

0.4 0.8 1.0 0.1

0.6 0.5 0.1 1.0

 
 

Σ =  
 
 

. 

 

The first step is to create the Ns samples of four Uniform random variables. These samples are 

transformed into samples of Gaussian variables through the inverse CDF. At this point, the 

samples are uncorrelated and the correlation matrix of the new Gaussian variables is the 

Identity matrix.  

 

Due to the transformation of samples, the desired correlation matrix Σ is updated by the 

correction factor given in (3.45): 
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1.0000 0.7331 0.4320 0.6360

0.7331 1.0000 0.8263 0.5355

0.4320 0.8263 1.0000 0.1096

0.6360 0.5355 0.1096 1.0000

N

 
 

Σ =  
 
 

. 

 

The samples of Gaussian variables are obtained using (3.46). The resulting correlation matrix 

for these new variables is: 

1.0000 0.7330 0.4318 0.6364

0.7330 1.0000 0.8263 0.5365

0.4318 0.8263 1.0000 0.1109

0.6364 0.5365 0.1109 1.0000

N

obtained

 
 

Σ =  
 
 

. 

 

Subsequently, these samples are transformed back to Uniform distributions using (3.47). The 

correlation matrix of the Uniform variables is: 

1.0000 0.7170 0.4157 0.6176

0.7170 1.0000 0.8132 0.5180

0.4157 0.8132 1.0000 0.1048

0.6176 0.5180 0.1048 1.0000

U

 
 

Σ =  
 
 

 

 

Finally, the samples of the GMMs are obtained using (3.48). The resulting correlation matrix 

of the GMM variables is: 

1.0000 0.7074 0.4225 0.6248

0.7074 1.0000 0.8171 0.5282

0.4225 0.8171 1.0000 0.1085

0.6248 0.5282 0.1085 1.0000

GMM

 
 

Σ =  
 
 

 

 

Some corrections, valid for certain conditions, can be executed to reduce the errors in the 

resulting correlation matrix [2], [63].  

 
Figure 3.10 presents the scatter plots of the variables for Ns= 5000 samples. The generated 

samples are such that the correlation matrix is 
GMM

Σ . 
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Figure 3.10: Scatter plot of resulting samples  

 

Figure 3.11: Histogram of resulting samples  

Figure 3.11 presents the histogram for the correlated variables with 5000 samples. The 

histograms of GMM 2, 3, and 4 are significantly irregular compared to the GMM 1 that is not 

affected by the transformation of samples. However, these irregularities are reduced by 

increasing the number of samples for each GMM. 
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histograms of GMM 2, 3, and 4 are significantly irregular compared to the GMM 1 that is not 

affected by the transformation of samples. However, these irregularities are reduced by 
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For comparison purposes, Table 3.6 presents the estimated GMM parameters from the 

generated samples (using the EM algorithm). From these results, it is concluded that the 

generated correlated samples follow the distribution of the desired GMM presented in 

Table 3.5. 

 

Table 3.6: Estimated GMM parameters of correlated variables 

GMM1 GMM2 

 ωi µi σi
2
  ωi µi σi

2
 

i=1 0.68 0.49 0.049 i=1 0.5 0.9 0.03 

i=2 0.32 0.98 0.073 i=2 0.5 1.2 0.01 

GMM3 GMM4 

 ωi µi σi
2
  ωi µi σi

2
 

i=1 0.38 0.79 0.019 i=1 0.31 0.91 0.031 

i=2 0.35 1.10 0.012 i=2 0.30 1.20 0.010 

i=3 0.27 1.31 0.010 i=3 0.39 1.50 0.020 

 

The above methodology is extended to consider all the random input variables of PQ and PV 

buses in the network. The correlation and marginal distributions of these variables should be 

determined based on previous statistical studies. 

 

Once the samples of active/reactive power and bus voltage magnitudes are generated, a power 

flow run is executed for each set of samples, as presented in Figure 3.12. The number of power 

flows trials is equal to the number of samples (Ns) of the input variables.  

 

 
Figure 3.12: Diagram of probabilistic load flows using MCS  

 

The resulting PDFs of bus voltages, power flows, and power injections can be used to 

determine means, variances, and other higher statistical moments. 
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3.3.2 PLF using Gaussian Component Combinations 

 

Taking into consideration that any PDF can be approximated by GMMs, the probabilistic load 

flow problem can be solved by executing multiple WLS runs. Each WLS run takes a 

combination of Gaussian components of the GMMs used to model the PDFs of the random 

input variables. The total number of WLS runs is:  

1

PDFN

r i

i

N L
=

= ∏ . (3.49)

where NPDF stands for the number of PDFs and Li is the number of Gaussian components of the 

i-th GMM. If the PDFs were all modelled by Gaussian distributions, i.e. Li = 1 for 

i = 1, ..., NPDF, only one WLS run would be necessary to solve the problem, as originally 

proposed in [7]. 

 

Figure 3.13 presents an example of the first possible combination of Gaussian components 

when the load demands and generator outputs are modelled by GMMs in the 14-bus test 

system shown in Figure 3.9. 
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Figure 3.13: Example of a combination of Gaussian components in the GCCM 

 

Let us consider a single combination of Gaussian components extracted from all the GMMs 

(one Gaussian component for each input variable). The WLS problem is solved iteratively 

using (2.5). Similarly, as defined in Section 2.1, x is the state vector composed by the set of bus 
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voltage magnitudes and angles, z is the set of input variables, h(x) is the set of nonlinear 

equations relating the power system measurements to the state variables, and R is the error 

covariance matrix of the input variables z.  

 

The elements of the input set z and the diagonal elements of matrix R correspond to the mean 

values and variances of the Gaussian components used in this combination. The correlation 

between the input variables is included in the off-diagonal elements of R.  

 

In this formulation, it is assumed that the correlation between Gaussian components that 

belong to two particular Gaussian mixtures is the same as the correlation between those 

Gaussian mixtures. Therefore, the off-diagonal element R (i, j) becomes: 

( , )
ij i j

i j ρ σ σ=R . (3.50)

where ρijσiσj is the covariance between the i-th and j-th input variables. In addition, −1 ≤ ρ ≤ 1 

and σ stand for correlation coefficient and standard deviation, respectively. This correlation 

coefficient approximation remains constant for all the WLS runs. 

 

The resulting state vector solution of the WLS run allows the calculation of the voltage, power 

flow, or power injection of any bus within the system. The inverse of the Gain Matrix is the 

covariance matrix Cs of the state vector:  

1
1 1( ) ( ) ( )T

s

−−  = =  
-C G x H x R H x , (3.51)

and the covariance matrix of the power flows or power injections can be approximated as: 

( ) ( )T

pq pq s pq=C H x C H x , (3.52)

where Hpq contains the partial derivatives of transferred powers and power injections with 

respect to the state vector x. The diagonal elements of the covariance matrices are stored to 

reconstruct the desired PDFs.  

 

The WLS procedure is repeated for the Nr combinations of Gaussian components. The solution 

of the i-th WLS run becomes the i-th mean value ˆ
i

µ  of the bus voltages, power flows and 

power injections. The i-th variance 2ˆ
iσ  is obtained from the diagonal elements of (3.51) and 

(3.52). Finally, the weight of the i-th Gaussian component is the product of all the weights of 

the Gaussian components involved in the i-th combination: 
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1

ˆ
PDFN

i j

j

ω ω
=

= ∏ . (3.53)

Therefore, the PDF of any voltage magnitude, voltage angle or power flow is build up by: 

2ˆ ˆ( , )
1

ˆ ( )
r

i i

N

desired i N
i

PDF f y
µ σ

ω
=

=∑ , (3.54)

with 
1

ˆ 1
rN

i

i

ω
=

=∑ . 

 

The proposed GCCM is summarised as follows: 

1. Take one combination of Gaussian mixtures (one Gaussian component for each input 

variable). The mean value of each Gaussian component corresponds to one element in z 

and the variance of each Gaussian component corresponds to one diagonal element in 

R. If the input variables are correlated, adjust R as defined in (3.50).  

2. Run the WLS and obtain bus voltages, power flows, and power injections values. Save 

the diagonal elements of the covariance matrices resulting from (3.51) and (3.52).  

3. Calculate the weight of the combination using (3.53). 

4. Repeat steps 1 to 3 for all the possible combinations of Gaussian components belonging 

to different input variables. Finally, build up any PDFs using the Nr Gaussian 

components, as presented in (3.54). 

 

If the number of combinations Nr is too large, one of the reduction methods presented in 

Section 3.2 is used to reduce the number of Gaussian components of one or some input 

variables. This consequently reduces the number of combinations.  

 

3.4 Summary  

 

The variability of renewable generation sources is well-known to be time dependent. Hence, 

probabilistic load flows are the most suitable studies to take into account the intermittency of 

renewable generation and the uncertainty of power system demands. 
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This Chapter presented how the Gaussian Mixture Models (GMM) can be used to represent 

non-Gaussian input variables with certain degree of correlation between variables. The Chapter 

also presented two methodologies to run probabilistic load flows: One is based on Monte Carlo 

simulations and the other is based on multiple WLS runs (GCCM). Both formulations start 

from the non-Gaussian PDFs of correlated input variables and they obtain the PDFs of any 

voltage, power flow, or power injection in any bus of the system.   

 

The main advantage of the GCCM with respect to previous methodologies, such as Point 

Estimate based methods, is that it uses the actual PDFs of the input variables rather than only 

the first statistical moments. Another feature of this methodology is the inclusion of correlated 

variables.  

 

The proposed methodology is less computationally demanding than Monte Carlo simulations 

and it has the advantage that the number of WLS runs can be reduced if fewer components are 

used to approximate the non-Gaussian PDFs.  

 

Chapter 4 presents simulation tests to validate the accuracy of the proposed method with 

respect to the Monte Carlo simulations and it also discusses the advantages and limitations of 

the proposed method for meshed and radial networks. 
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Chapter 4 Estimation of Probabilistic Load Flows: 
Simulations  

 
 

This Chapter compares the Gaussian Component Combination Method (GCCM) with the 

Monte Carlo Simulations (MCS) to run load flows in the presence of uncertain inputs modelled 

as non-Gaussian correlated variables represented by Gaussian Mixture Models (GMMs), as 

introduced in Chapter 3. The comparison of the methods is carried out using two meshed 

networks (14-buses and 57-buses) and one radial network with 69 buses. 

 

This Chapter is organised as follows: Section 4.1 presents the simulation results for two 

meshed networks. In this Section, different covariance matrices and Gaussian mixtures are 

used. The first test system considers non-Gaussian Probability Density Functions (PDFs) of 

loads whereas in the second test system, it is assumed that all the loads are modelled as 

Gaussian distributions but the non-Gaussian distributions of the wind farm power outputs are 

modelled as GMMs. Section 4.2 presents the application of the proposed probabilistic load 

flow in radial networks. Later, the methodology is extended to solve the state estimation 

problem in radial distribution networks where only few real-time measurements are available 

to determine the actual condition of radial networks. Finally, a discussion of results and the 

Chapter summary are presented in Sections 4.3 and 4.4, respectively. 

 

4.1 Meshed Networks   

4.1.1 14-bus IEEE Test System  

 

The 14-bus IEEE test system was used to test the performance of the proposed method. The 

network configuration, line parameters, and base case solution were taken from [64] and they 

are listed in Appendix G.1.  

 

Table 4.1 presents the GMM parameters used to model the non-Gaussian PDFs of active power 

injections (P). Note that only two or three components were used to model the PDFs. 
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Table 4.1: GMM parameters of the non-Gaussian PDFs of active power injections (P) in p.u. 

 µ1 µ2 µ3 σ1 σ2 σ3 ω1 ω2 ω3 CV 

P2 0.163 0.190 0.210 0.015 0.021 0.025 0.5 0.3 0.2 15% 

P3 −0.942 −0.800 − 0.065 0.049 − 0.7 0.3 − 10% 

P6 −0.095 −0.110 − 0.003 0.003 − 0.6 0.4 − 8% 

P9 −0.250 −0.280 − 0.020 0.030 − 0.5 0.5 − 11% 

P13 −0.140 −0.160 −0.130 0.010 0.010 0.007 0.4 0.3 0.3 11% 

P14 −0.150 −0.170 − 0.010 0.020 − 0.6 0.4 − 11% 

 

The term CV in Table 4.1 stands for the Coefficient of Variation in percentage, defined as the 

ratio between the standard deviation and the mean value of the random variable [65]. A 

constant power factor is assumed for Buses 5, 9 up to 14; these values were calculated from 

[64]. Furthermore, the generation and demand of the remaining buses (not presented in 

Table 4.1) are assumed to be Gaussian random variables with mean values listed  in [64] and 

CV = 10 %.  

 

When applying the Monte Carlo simulations, the number of trials was Ns = 5000. This number 

was found to be sufficient to produce minimum variation of results. In the case of the GCCM, 

the number of Weighted Least Square (WLS) runs was Nr = 144. In this test system, the 

Gaussian mixture reductions described in Section 3.2 are not considered because the number of 

components of each GMM is small. 

 

4.1.1.1 Case 1 in 14-bus system 
 

The correlation coefficient between pairs of input variables must be obtained a priori using 

(3.43) with the original set of observations. In this work, the correlation coefficient between 

variables is assumed to be known as follows: 

 

Due to the assumption of a constant power factor for Buses 5, 9 up to 14, the reactive powers 

Q5, Q9-Q14 are completely correlated (ρ = 1.0) with the active power consumption (P) at the 

same bus. The correlation coefficient between the active power demands P10, P11 and P12 is 

ρ = 0.8 (Group 1). In addition, the correlation between P5 and P6 is ρ = 0.9 (Group 2) and the 



Chapter 4 – Estimation of Probabilistic Load Flows: Simulations 

71 

correlation coefficient between Group 1 and Group 2 is ρ = 0.4. All other input variables are 

assumed to be uncorrelated. 

 

The correlated random variables are generated using the Cholesky decomposition of ΣN for the 

Monte Carlo Simulations (MCS), see (3.46)-(3.48). In the proposed GCCM, the correlation 

between input variables at different buses is taken into account in the covariance matrix R as 

presented in (3.50). 

 

The correlation coefficient between P and Q at the same bus is also considered in R and it is 

kept constant for all the combinations of Gaussian components. In addition, when the load 

power factor is assumed to be constant, the mean and standard deviation of the Gaussian 

component, representing the reactive power demand, are respectively:  

tan( )
Q P

µ µ φ=  (4.1)

tan( )
Q P

σ σ φ=  (4.2)

 

where 
P

µ  is the mean value and 
P

σ  is the standard deviation of the Gaussian component of 

active power and φ  is the power factor angle.  

 

Figures 4.1-4.2 present the PDFs of active and reactive power flows from Bus 2 to Bus 3. The 

resulting PDFs are clearly non-Gaussian and they cannot be represented by any other typical 

marginal distribution.  

 

From the resulting PDFs for all buses and power flows, it is concluded that the GCCM 

approximates very well the results of 5000 Monte Carlo trials but with only 144 WLS runs. 

The assumption of using the same correlation coefficient for all the Gaussian component 

combinations is valid in this case.  
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Figure 4.1: PDF of active power flow from Bus 2 to Bus 3 (case 1). 

 

 
Figure 4.2: PDF of reactive power flow from Bus 2 to Bus 3 (case 1). 

 
 
Figures 4.3 and 4.4 present the PDFs of the active and reactive power flows from Bus 9 to 

Bus 14. Similar as before, the PDFs obtained from the GCCM approximate very well the PDFs 

obtained from the Monte Carlo simulations.  
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Figure 4.3: PDF of active power flow from Bus 9 to Bus 14 (case 1). 

 

 
Figure 4.4: PDF of reactive power flow from Bus 9 to Bus 14 (case 1). 
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Figure 4.5: PDF of voltage magnitude and angle at Bus 13 (case 1). 

 

Table 4.2 presents the average of percentage errors for Case 1. Here, the sub-indices i and t 

stand for injected and transmitted powers, respectively. These errors are calculated as 

percentages of the values obtained from the MCS. The average values of the mean (µ) and 

standard deviation (σ) errors of power flows and power injections are no larger than 0.68%. 

This confirms the good accuracy of the proposed method for this scenario. 

 
Table 4.2: Average value of percentage errors Case 1. 

  θ V Pi Qi Pt Qt 

µ 0.01 0.00 0.01 0.12 0.01 0.21 

σ 1.04 0.27 0.08 0.22 0.85 0.68 
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of ρ = 0.4. Similar to Case 1, the reactive power injections (Q) at Buses 5, 9 up to 14 are 

completely correlated to their respective active power injections (P).  
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The particular difference of Case 2 with respect to Case 1 is that more non-Gaussian variables 

are assumed to be correlated with the other variables at different buses (not only with the 

reactive power variable at the same bus with constant power factor). For example, P6, P9, P13 

and P14 are non-Gaussian variables that are correlated with active power injections at other 

buses. The same applies for Q6, Q9, Q13 and Q14. 

 

Figures 4.6 and 4.7 present the PDFs of active and reactive power flow from Bus 9 to Bus 14. 

In the case of the active power flow, the difference between PDFs is negligible. On the other 

hand, the PDF of reactive power flow obtained from the GCCM has some difference with 

respect to the Monte Carlo simulation. In fact, Figure 4.7 corresponds to the largest difference 

between PDFs obtained from the two methods. 

 

 
Figure 4.6: PDF of active power flow from Bus 9 to Bus 14 (case 2). 
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Figure 4.7: PDF of reactive power flow from Bus 9 to Bus 14 (case 2). 

 
Similarly, Figures 4.8 and 4.9 present the PDFs of active and reactive power flow from Bus 13 

to Bus 14. Here, the PDF of active power flow obtained from the GCCM is less accurate than 

the PDF of the reactive power flow at the same transmission line. These errors are caused by 

assuming a fixed correlation coefficient between variables for all the WLS runs.  

 
Figure 4.8: PDF of active power flow from Bus 13 to Bus 14 (case 2). 

 

0.034 0.036 0.038 0.04 0.042 0.044 0.046 0.048 0.05 0.052
0

50

100

150

200

250

P
ro

b
a

b
il
it
y
 D

e
n

s
it
y

Reactive Power Flow Q9-14, p.u.

 

 

MCS

GCCM

0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

10

20

30

40

50

60

70

P
ro

b
a

b
il
it
y
 D

e
n

s
it
y

Active Power Flow P13-14, p.u.

 

 

MCS

GCCM



Chapter 4 – Estimation of Probabilistic Load Flows: Simulations 

77 

 
Figure 4.9: PDF of reactive power flow from Bus 13 to Bus 14 (case 2). 

 

Figure 4.10 presents the PDF of bus voltage at Bus 13. Here, the difference between PDFs is 

slightly larger than in Case 1, see Figure 4.5.  

 
Figure 4.10: PDF of voltage magnitude and angle at Bus 13 (case 2). 
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Table 4.3 summarises the percentage errors for Case 2. The average percentage errors of the 

mean values are still small, as in Case 1. However, the average percentage error of the standard 

deviations has increased to 9%.  

 
Table 4.3: Average value of percentage errors Case 2. 

  θ V Pi Qi Pt Qt 

µ 0.02 0.00 0.01 0.21 0.03 0.38 

σ 9.32 6.17 0.41 2.41 8.64 9.26 

 

The increase in approximation errors is explained in Section 4.3.  

4.1.2 57-bus IEEE Test System Simulation 

 

The network configuration and line parameters of the 57-bus test system were obtained from 

[64] and they are presented in Appendix G.2. All the loads are assumed to have a constant 

power factor and the power injections at all buses are assumed to be Gaussian random 

variables with mean values presented in Appendix G.2. and CV = 10%.  

 

Three wind farms are installed in the network at Buses 4, 22 and 36. Without loss of generality, 

the wind farms are modelled as PQ buses [66] and it is assumed that each wind farm is 

controlled such that the power factor is kept constant at 0.95 p.u. This power factor could be 

changed depending on the needs of the network [67].  

 

The problem here consists of determining the stochastic flows close to the wind farms. 

Table 4.4 presents the GMM parameters of the non-Gaussian PDFs used to model the wind 

farm active power (P) outputs; all data is given in p.u. unless specified. Note that each of the 

GMMs has five components. 

 

Table 4.4: GMM parameters of active power injections (P), in p.u. for 57-bus test system 

  µ1 µ2 µ3 µ4 µ5 σ1 σ2 σ3 σ4 σ5 ω1 ω2 ω3 ω4 ω5  CV 

P4 0.25 0.35 0.45 0.70 0.95 0.08 0.13 0.12 0.10 0.05 0.3 0.2 0.2 0.2 0.1 53% 

P22 0.10 0.13 0.18 0.30 0.46 0.02 0.05 0.05 0.06 0.03 0.2 0.2 0.2 0.2 0.2   60% 

P36 0.05 0.08 0.14 0.26 0.34 0.01 0.03 0.05 0.06 0.02 0.2 0.2 0.2 0.2 0.2   67% 
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An approximation of typical PDFs of wind farms outputs (active powers) has been used in this 

work. These PDFs can be obtained from previous statistical studies, which take into account 

wind speed histograms at the wind farm location and the power curve of such wind turbines. 

However, such study is out of the scope of this work. 

 

The large variability of wind power outputs is taken into account in the example and it is 

reflected in the large CV presented in Table 4.4. Smaller CV could be used instead, but it would 

depend on the level of variability of the wind farm power output at the period of interest 

(minutes, hours, etc).  

 

One half of the power loads in the network has a correlation factor of ρ = 0.8 (Group 1). The 

other half has a correlation factor of ρ = 0.8 (Group 2) and the correlation coefficient between 

Group 1 and Group 2 is ρ = 0.4. The correlation factor between wind farms power outputs is 

ρ = 0.8, but they are assumed to be completely uncorrelated to the power demand. 

 

In order to reduce the number of WLS runs, each of the three GMMs, presented in Table 4.4, 

were reduced from five to four and three components by using the Williams method (described 

in Section 3.2). The number of Monte Carlo trials is Ns = 10000 (which produced minimum 

variation of MCS results) and the number of WLS runs in the GCCM is Nr = 125, 64 or 27, 

depending on the number of combinations after the Gaussian mixture reductions. 

 

Figures 4.11 and 4.12 present the estimated PDFs of power flows P3-4 and Q3-4. The PDFs 

obtained from the GCCM provide a good approximation of the PDF obtained from the Monte 

Carlo simulation. As it is seen in the plots, the reduction of Gaussian components had little 

impact on the final approximation of the power flows in this transmission corridor. 
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Figure 4.11: PDF of P3-4 with reduced Gaussian components. 

 

 
Figure 4.12: PDF of Q3-4 with reduced Gaussian components. 

 

The assumption of a fixed correlation coefficient for all the WLS runs had higher impact on the 

approximation of some power flows at the proximities of Bus 4, as presented in Figures 4.13 
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Figure 4.13: PDF of P2-3 with reduced Gaussian components. 

 

 
Figure 4.14: PDF of Q2-3 with reduced Gaussian components. 

 

Figures 4.15 and 4.16 present the PDFs of active and reactive power flows from Bus 22 to 

Bus 38. The approximation of the PDFs with 125 and 64 WLS runs is very similar to the PDF 

from the Monte Carlo simulation. When the number of WLS is reduced to Nr = 27, some 

accuracy is lost but the shape of the distribution remains similar.  
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Figure 4.15: PDF of P22-38 with reduced Gaussian components. 

 
 

 
Figure 4.16: PDF of Q22-38 with reduced Gaussian components. 

 
Figures 4.17 and 4.18 present the PDFs of the power flows with the largest difference between 
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Figure 4.17: PDF of P21-20 with reduced Gaussian components. 

 

 
Figure 4.18: PDF of Q21-20 with reduced Gaussian components. 
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Figure 4.19: PDF of P36-37 with reduced Gaussian components. 

 

 
Figure 4.20: PDF of Q36-37 with reduced Gaussian components. 

 

The less accurate PDFs of power flows, close to Bus 36, are presented in Figures 4.21 and 
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Figure 4.21: PDF of P38-49 with reduced Gaussian components. 

 

 
Figure 4.22: PDF of Q38-49 with reduced Gaussian components. 
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Figure 4.23: PDF of voltage magnitude and angle at Bus 22 with reduced Gaussian components. 

 

 
Figure 4.24: PDF of voltage magnitude and angle at Bus 36 with reduced Gaussian components. 

 

Table 4.5 presents the average value of the percentage errors of mean (µ) and standard 
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stand for injected and transmitted powers, respectively. 
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The percentage errors of means (µ) are low for all the analysed cases (the maximum value is 

approximately 1.85% for Qi with Nr = 27). The large percentage error of standard deviations in 

bus angles is due to the comparison of two small numbers. In addition, the overall standard 

deviation percentage errors are reduced for less WLS runs (Nr). It is concluded that fewer WLS 

runs reduces the propagation of errors due to the assumption of a fixed correlation coefficient 

for each Gaussian combination (WLS run). 

 

Table 4.5: Average value of percentage errors 

Nr Par. θ V Pi Qi Pt Qt 

125 
µ 0.3065 0.0028 0.0093 1.6976 0.1737 1.4068 

σ 14.2751 0.8274 0.2819 0.6137 9.2176 8.1245 

64 
µ 0.8077 0.0030 0.0095 1.7234 0.1861 1.4765 

σ 13.7651 0.3164 0.2735 0.602 8.9065 7.8807 

27 
µ 0.3429 0.0036 0.0097 1.8455 0.2123 1.6408 

σ 11.6262 0.7303 0.2385 0.5565 7.5932 6.8521 

 

In terms of computational demands, the proposed GCCM requires approximately 3% (with 

Nr = 144) and 1.25% (with Nr = 125) of the time required by MCS for the 14-bus and 57-bus 

test systems, respectively. 

 

The test demonstrated that better approximation of the input variables (requiring more 

Gaussian combinations) leads to propagation of errors in the surrounding of these variables. A 

large number of Gaussian components will inevitably end up with a large Nr, but further 

reduction of the Gaussian components will destroy the original distribution of the input 

variables; a balance is therefore required. 

 

4.2 Radial Networks   

 

Probabilistic load flow studies are required in radial distribution networks due to the low 

availability of real-time measurements. The lack of sufficient real-time measurements reduces 

the capacity to monitor the actual operating conditions of the network but, more importantly, to 

detect the possibility of reversed flows, over flows, and voltage levels that are outside limits, 

due to the installation of distributed generation. 
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In this Section, the GCCM is tested and compared with MCS for probabilistic load flow studies 

in radial distribution networks. Similar to the previous Sections, some of the input variables are 

assumed to be correlated variables modelled by GMMs.  

 

4.2.1 69-bus IEEE Test System Simulations 

 

The network parameters and topology of the system were taken from [68] and they are 

presented in Appendix G.3. All the loads are assumed to have a constant power factor 

calculated from the active (P) and reactive (Q) power demands in Appendix G.3.  

 

The study starts from the assumption that the network operator has run statistical studies to 

determine the probability distribution of the power injections at the period of interest. For those 

power demands (or generation output) whose marginal distributions are non-Gaussian, the EM 

algorithm should be used to determine the respective GMMs. 

 

The power demands at all buses, except for three of them, are assumed to be Gaussian random 

variables with mean values listed in Appendix G.3 and Coefficient of Variation (CV) equal to 

20%. The active power demands in Buses 11, 21, and 68 are modelled by non-Gaussian PDFs 

represented by GMMs. In addition, non-monitored wind generation is installed at Buses 49 and 

52 and they have been modelled as PQ buses with constant leading power factor of 0.95.  

 

Table 4.6 presents the parameters of the GMMs used to model the wind active power output 

and the three non-Gaussian active power demands. All data is given in p.u. (1 MVA base). 

 

Table 4.6: Original parameters of GMM in radial network 

  µ1 µ2 µ3 µ4 σ1 σ2 σ3 σ4 ω1 ω2 ω3 ω4 

P11 -0.142 -0.120 − − 0.006 0.010 − − 0.5 0.5 − − 

P21 -0.065 -0.077 -0.093 -0.108 0.005 0.006 0.003 0.009 0.22 0.50 0.13 0.15 

P49 0.070 0.110 0.180 − 0.020 0.030 0.040 − 0.30 0.40 0.30 − 

P52 0.036 0.060 0.108 0.168 0.006 0.016 0.040 0.012 0.20 0.20 0.40 0.20 

P68 -0.016 -0.047 -0.028 − 0.005 0.018 0.009 − 0.45 0.11 0.44 − 

 

 

Due to the assumption of a constant power factor, the reactive powers at all buses are 
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completely correlated with the active power injection at the same bus. The correlation 

coefficient between P and Q is included in (3.50) and it is kept constant for all the 

combinations of Gaussian components. In addition, as the power factor at all buses is assumed 

to be constant, the mean µQ and standard deviation σQ of the Gaussian component of reactive 

power demand are obtained from (4.1) and  (4.2). 

 

Similar to the meshed networks, the correlation coefficient between a pair of input variables 

should be taken from previous statistical studies. The correlations between input variables are 

defined as follows: 

• Loads connected between Bus 6 and Bus 27 have a correlation coefficient of ρ = 0.9 

(Group 1).  

• Loads connected between Bus 28 and Bus 41 have a correlation coefficient of ρ = 0.8 

(Group 2)  

• Loads connected between Bus 42 and Bus 69 have a correlation coefficient of ρ = 0.8 

(Group 3).  

• The active power generation at Buses 49 and 52 have a correlation coefficient of ρ = 0.9 

but they are assumed not correlated to the active power demands.  

• The correlation coefficient between Groups 1, 2 and 3 is ρ = 0.4. 

 

4.2.1.1 Case 1: Probabilistic Load Flows 

 

This study focuses on the effect of including correlation between variables (demand or 

generation) in radial distribution networks. The network topology used in the load flow study 

should be the one that best represent the typical network configuration of the season. During 

and after network reconfigurations, the network topology must be updated.  

 

The impact of different network configurations was not addressed in this study. However, it is 

also possible to consider the probability of different network configurations, see the Discussion 

in Section 4.3. 

 

The number of WLS runs needed to obtain the PLF solutions is calculated from (3.49), from 

which Nr is found to be 288 runs. The PDFs obtained from the proposed method are compared 
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to 10 000 Monte Carlo power flows calculations using the Backward/Forward sweep method 

proposed in [69] and explained in Appendix D. Each power flow calculation uses a set of 

samples of power demand (or generation output) from the marginal distributions defined 

above. The correlation between input variables was included in the MCS using the 

methodology explained in Chapter 3. 

 

In order to reduce the number of WLS runs in the Gaussian combination method, the GMMs 

representing the power injections P68, P49, and P21 have been reduced by one component. 

This results in only 96 WLS runs. The selection of the reduced Gaussian mixtures and the 

performance of the optimised reduction method are extended in sub-Section 4.2.1.3. 

 

Figure 4.25 presents the PDFs of active and reactive powers flowing through branch 51-52. 

The PDFs show that for high amounts of generated power in Bus 52, the active power flow 51-

52 may change direction.  

 

The PDFs obtained from the GCCM are very similar to the MCS solution. In addition, the 

reduction of WLS runs had minimum impact on the estimated powers, as shown in 

Figure 4.25.  

 

The PDFs of the voltage magnitude and voltage angle of Bus 52 are presented in Figure 4.26. 

The large variability of the voltage magnitude is caused by the large variations of generated 

power in Bus 52. Similar to the power flow calculations, the approximation of the WLS runs is 

very similar to the MCS.  

 

Figure 4.27 presents the power flows through branch 20-21. In this case, there is a larger 

difference between the PDFs obtained before and after the GMM reductions. The difference is 

easier to appreciate because the GMM representing the power demand P21 was reduced and 

the probability density of the power flows is directly related to the power injection at Bus 21. 
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Figure 4.25: Comparison of estimated PDFs of active and reactive power flows from Bus 51 to Bus 52. 

 

 
 

 
Figure 4.26:  Comparison of estimated PDF of voltage (magnitude and angle) at Bus 52. 
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Figure 4.27: Comparison of estimated PDF of active and reactive power flows from Bus 20 to Bus 21. 
 

 

 
Figure 4.28: Comparison of estimated PDF of voltage (magnitude and angle) at Bus 21. 
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those obtained from the MCS. The few errors of approximation are introduced by the 

assumption that the correlation between Gaussian components that belong to two particular 

Gaussian mixtures is the same as the correlation between those Gaussian mixtures.  

 

An alternative to the assumption above is not to include the correlation in the formulation i.e. 

the covariance matrix R becomes diagonal for all the WLS runs. Figure 4.29 shows the effect 

in voltage magnitude of (a) Bus 27 and (b) Bus 56 when correlation between variables is 

neglected. As it is shown in the plot, the resulting PDFs obtained from the formulation without 

(w/o) considering correlation have smaller deviation with respect to their mean value. 

Consequently, neglecting the correlation between input variables may lead to wrong estimated 

PDFs with different limits of voltages. 

 

In terms of time demands, the GCCM with Nr = 288 WLS runs took only 4.7% of the total time 

required by the MCS. In addition, the elimination of three components from the original 

GMMs resulted in a 66% reduction of the time demand of the PLF. 

 

Figure 4.29:  Influence of correlation in estimated voltages on (a) Bus 27 and (b) Bus 56. 
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real-time measurements available in the distribution network, it is necessary to include pseudo-

measurements to make the system observable. The PDFs of power demand and power 

generation output of non-monitored buses become the pseudo-measurements that can be 

represented by random variables modelled by GMMs. Therefore, the same methodology is 

used as in the probabilistic load flows but including the real-time and virtual measurements. 

 

The inclusion of the real-time measurements does not increase the number of the WLS runs as 

they are assumed to be Gaussian distributed. Unlike the probabilistic load flow problem 

presented before, each WLS run is an over-determined problem due to the presence of real-

time measurements and probabilistic distributions of power injections. 

 
The inclusion of real-time (rt) measurements is now studied in this Section. Nine rt 

measurements are included in the SE: two power flow measurements in branches 0-1 and 9-42, 

four current measurements in branches  9-10, 2-28, 4-36 and 8-40, and three voltage magnitude 

measurements in Buses 0, 4 and 9. In order to avoid convergence problems, the current 

measurements are replaced by their squared value [70]. 

 

The PDFs of power demand and power generation are used as pseudo-measurements to make 

the system observable and to provide detailed information of the likely power 

demand/generation at each bus. The same correlation coefficients used in the PLF are used in 

the SE. In addition, the rt noisy measurements were taken from a deterministic load flow, 

presented in Appendix G.3, using inputs of power injections within the maximum and 

minimum limits of the pseudo-measurements. 

 

Figure 4.30 presents the estimation of the active power flows through branches 20-21 and 51-

52 with and without (w/o) correlation included. The three curves were obtained using Nr = 98 

WLS runs. 

 

The solid line corresponds to the solution of the PLF and it was included for comparison 

purposes only. The inclusion of the rt measurements makes it possible to obtain a better 

estimation of the most likely active power flowing through line 20-21. In the case of branch 
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51-52, the larger uncertainty is caused by the large variability of the generated power in 

Bus 52. 

 
Figure 4.30: Estimated active power flows in (a) branch 20-21 and (b) branch 51-52. 

 

Similarly, Figure 4.31 presents the estimated active powers flowing through (a) branch 10-11 

(close to rt measurement) and (b) branch 67-68 (far from rt measurements).  

 

Figure 4.31: Estimated active power flows in (a) branch 10-11 and (b) branch 67-68. 
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The power flow through line 10-11 is much easier to identify with respect to the PLF study. On 

the contrary, the estimated power flow through line 67-68 has little impact when the rt 

measurements at the sending end of the feeders are included. 

 
Figure 4.32: Estimated Voltage Magnitude at (a) Bus 21 and (b) Bus 52. 

 

 

Figure 4.33: Estimated Voltage Magnitude at (a) Bus 11 and (b) Bus 68. 
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Figures 4.32 and 4.33 present the estimated voltage magnitude at Buses 21 and 52, 11, and 68, 

respectively. The impact of the inclusion of rt measurements is evident in the estimated 

voltages, particularly for those buses close to the sending end of the feeders.  

 

From these results, it is found that when a GMM is used to model power injections located at 

the sending end of a feeder, the GMM will have less effect on the estimated flows and voltages 

around it, particularly if this power injection is relatively small compared to the sum of the 

power injections along the feeder. On the other hand, the GMM of power injection at the very 

far end of a feeder will have a higher effect as presented in Figure 4.31(b). 

 

The final value used to estimate the most likely value of voltages, power flows, and power 

injections is the mean value µ obtained from (3.4), as presented in Figures 4.30 to 4.33. For 

example, in Figure 4.30(a), the mean value of P20-21 is µ  = 0.1326 p.u. and the actual value is 

0.1349 p.u. with only a 1.70% estimation error. In Figure 4.30(b) the mean value of P51-52 is 

µ = 0.0874 but the actual value is 0.0604 with a 44.7% estimation error. This error is caused by 

the high uncertainty of the generated power in Bus 52. Likewise, the mean value of P10-11 is 

µ = 0.5760 p.u. (error is 0.42%) whereas the mean value of P67-68 is µ = 0.0525 p.u. (error is 

12.93%). 

 

Table 4.7 presents the average of the estimation errors of the SE for bus voltages (V and θ), 

power injections (Pi and Qj), and transferred power flows (Pt and Qt). 

 
Table 4.7: Average of estimation errors for radial network 

variable V  θ  Pi  Qi  Pt Qt 

ε % 0.04 2.79 10.00 10.79 7.10 7.28 

 

Although the test only considered balanced conditions, the methodology can be extended to 

three phase unbalanced conditions given the PDFs of bus power injection for each phase and 

their correlation coefficient. 

 

4.2.1.3 Selection of GMM for Reduction 

 

As it was explained in sub-Section 4.2.1.1, the reduction of the number of WLS runs Nr was 
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achieved by reducing one component of the Gaussian mixtures that model P68, P49, and P21.  

 

The selection of the GMM to be reduced depends on the importance and desired accuracy of 

each GMM. However, if there is no particular priority of importance among the mixtures, it is 

critical to select the GMM that, when reduced to M components, better approximates the 

corresponding Gaussian mixture with M+1 components. This approximation is quantified by 

the normalised ISD defined in (3.29).  

 

Figure 4.34 presents the Js
N after one component is reduced for each of the GMMs. For all the 

GMMs, the optimised approach finds a set of reduced parameters that better approximates the 

original mixture compared to the pair-merging method; see Figures 4.34 (a) and 4.34 (b). 

 

In the first reduction attempt, the GMM representing P68 is less affected after the elimination 

of one component; see Figure 4.34(b). In the second reduction attempt, when P68 is already 

reduced, the GMM representing P49 is selected and P21 is finally selected in the third 

reduction attempt. The proposed selection ensures that the PLF and SE with fewer WLS runs 

have similar results when compared to the formulation with the original combination of 

Gaussian components.  

 

Figure 4.34:  Js
N
 for reduced Gaussian mixtures using (a) the pair merging method and (b) the optimised 

approach. 
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Figure 4.35 presents the reduction of the GMM representing the active power demand at 

Bus 68. The resulting GMM with two components is very similar to the original (solid line) 

mixture. The solution obtained from the pair-merging method was used as the initial guess of 

the optimised approach.   

 

Figure 4.35: Reduced Gaussian mixture to represent the power injection at Bus 68. 
 

4.3 Discussion  
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the presence of non-Gaussian correlated input variables. The methodology assumes that the 

correlation coefficient between Gaussian components that belong to two particular Gaussian 
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truly valid for the input variables P and Q at buses with constant power factor, in which ρ = 1, 

as it was demonstrated in Case 1 for the 14-bus test system. 

 
In any other case, the assumption is just an approximation and it introduces some errors in the 
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These errors become more notable when the correlated non-Gaussian input variables have large 

CV and when they are modelled by many Gaussian components. For this reason, the estimated 

power flows in the proximities of these input variables are more accurate when using fewer 

Gaussian components to model the correlated input variables, as shown in Figures 4.13-4.14 

and 4.17-4.18.  

 

It was found that the methodology can be implemented in both meshed and radial networks. 

The approximation provides more realistic results when compared to not including any 

correlation between variables.  

 

In the case of radial distribution systems, the problem becomes an over-determined state 

estimation calculation when real-time measurements are included in the WLS formulation.  

 

From the simulated cases, it is concluded that power injections, modelled as GMMs, have 

greater effect on the estimated flows and voltages around it when they are far from the real-

time measurements or when these power injections are relatively large compared to the sum of 

the power injections along the feeder.  

 

The methodology can also be extended to consider the uncertainty of the network topology.  

The line parameters of the branch whose connection status is uncertain should be included in 

the state vector. These parameters should be modelled as discrete variables with two possible 

values: the actual parameters (branch connected) or zero (branch disconnected). 

 

Finally, as the method is based on multiple WLS runs, it only considers the equivalent 

(aggregated) power injections (active and reactive) for each bus, this being a limitation to 

consider more than one wind farm at the same bus. Under these circumstances, an aggregated 

wind farm has to be used instead. 

4.4 Summary  

 

The uncertainty of power demand and generation is studied by means of probabilistic load 

flows. These studies take into account the variability of the input variables to determine the 



Chapter 4 – Estimation of Probabilistic Load Flows: Simulations 

101 

most likely power flows and voltages given the marginal distribution and correlation 

coefficient between input variables for a certain period. This Chapter explored the use of 

multiple WLS runs to process non-Gaussian correlated input variables in probabilistic studies 

of meshed and radial networks. 

 

In the proposed Gaussian Component Combination Method (GCCM), the assumption used to 

incorporate correlated variables introduces some errors in the resulting PDFs of power flows in 

the surroundings of the non-Gaussian correlated variables. It was found that the approximation 

errors increase for non-Gaussian input variables with large variability (above 10%-15%). 

However, it is concluded that the approximation is still acceptable as the resulting PDFs 

maintained the marginal distribution of the PDFs obtained from the Monte Carlo simulations. 

 

The next Chapters of this Thesis are focused on the estimation of the system condition 

(voltages and power flows) using real-time measurements only. Unlike the studies in 

Chapters 3 and 4, the errors of the input variables (measurements) are Gaussian distributed 

with low level of variability (0.1%-2%).  
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Chapter 5 Synchronised Measurements in State 
Estimation 

 
 
Occurrence of large disturbance events in power systems has encouraged the idea of using 

Wide Area Monitoring (WAM) system based on Phasor Measurement Units (PMU) to identify 

the sequence of events leading to blackout but also to prevent them by having a better 

knowledge of the system in real-time.  

 

A PMU is able to measure phasors of voltage and currents, commonly called synchrophasors, 

which are estimated at a known instant (time tag). In order to obtain simultaneous phasor 

measurements across the system, these phasors have to be synchronised at the same time tag. 

This is achieved by using a sampling clock input, controlled by a Global Positioning System 

(GPS), in each PMU [19]. 

 

The building blocks of a WAM system consist of the PMUs, the communication links, the 

Phasor Data Concentrators (PDC) and the data server. Figure 5.1 presents a typical architecture 

of WAM systems. The communication links are represented by a Wide Area Network (WAN) 

cloud. 

 

The PDC collects and stores the information gathered by groups of PMUs. The PDCs are 

connected to either a higher level PDC, also called Super PDC, or to the data servers which 

manage and prepare all the information to be used in the control centre. 

 

Among the first applications of synchrophasors are enhanced visualisation of the power 

system, post disturbance analysis and model validations [20]. For example, post disturbance 

analysis based on synchrophasors have been reported in [71, 72]. Additionally, power angle 

monitoring, power oscillation monitoring, and other on-line application for angular, frequency 

and voltage stability applications will be deployed in the next years. 
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Figure 5.1: Typical Architecture of a Wide Area Monitoring system 

 

This chapter is focused on the study of alternatives for including PMU measurements in 

existing state estimators. Section 5.1 present the concept of hybrid state estimation and it 

presents three different formulations for hybrid state estimators. Section 5.2 introduces the 

problem of uncertainty propagation in some hybrid state estimators and it presents two 

approaches for calculating these propagations. Finally, Section 5.3 and 5.4 present the study 

cases and the summary of the Chapter, respectively. 

5.1 Hybrid State Estimators  

 

There are two possibilities for including PMU measurements in existing state estimators as 

presented in Figure 5.2.  
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Figure 5.2: Two alternatives for including synchronised measurements  in SE 

 

The first option consists of a two-step hybrid state estimator in which the conventional 

measurements are firstly processed in the classical non-linear WLS method. The only condition 

is that the conventional measurements must be enough to make the system observable. The 

estimated state vector and the synchronised measurements are later used to correct the non-

linear state estimation result in a single iteration, as presented in Figure 5.2. This is the hybrid 

estimator proposed in [26]. The main benefit is that there is no need to change the algorithm of 

existing estimator. However, a transformation of states from polar to rectangular coordinates is 

needed before using the linear estimator. 

 

The other approach is to combine both sets of measurements and include them in a single step 

as presented in Figure 5.2. One of the major challenges in hybrid estimators is how to integrate 

PMU measurements of currents in the estimation problem.  

 

Reference [73] proposed the use of polar form of currents in the state estimation. The relation 

between the currents and the system states is represented by: 

2 2

ij ijR ijII I I= +  (5.1)

( )1tanij ijI ijRI Iθ −=  (5.2)

 

with IijR and IijI expressed by: 
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( cos cos ) ( sin sin ) sin cosijR ij i i j j ij i i j j si i i si i iI g V V b V V b V g Vθ θ θ θ θ θ= − − − − +  (5.3)

( sin sin ) ( cos cos ) cos sinijI ij i i j j ij i i j j si i i si i iI g V V b V V b V g Vθ θ θ θ θ θ= − + − + +  (5.4)

 

The main benefit of this formulation is that the synchrophasors of currents are used directly in 

the estimator, i.e. they are not transformed. As drawback, the authors reported convergence 

problems in this formulation.  

 

It is possible to take a simple 2-bus system and demonstrate that, using the polar form of 

currents as presented in (5.1)-(5.2), the corresponding Jacobian elements of these 

measurements become undefined for lightly loaded lines and bsi = 0 [18]. Moreover, even 

without those conditions, the corresponding Jacobian elements can abruptly change in sign and 

magnitude for consecutive iterations.  

 

Let us consider a transmission line modelled by the following parameters: R=0.01; X=0.1; 

B=0.20, all in per unit. The variations of the Jacobian elements corresponding to the current 

angle derivatives are plotted in Figures 5.3 and 5.4: 
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Figure 5.3: Variation of Jacobian element ∂ θij/ ∂ θi  with respect to small changes of θi and Vi 
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Figure 5.4: Variation of Jacobian element ∂ θij/ ∂ Vi  with respect to small changes of θi and Vi 
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Figure 5.5: Variation of Jacobian element ∂ Iij/ ∂ θi  with respect to small changes of θi and Vi 
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Figure 5.6: Variation of Jacobian element ∂ Iij/ ∂ Vi  with respect to small changes of θi and Vi 

 
Similar results are obtained for derivatives of current magnitudes as presented in Figures 5.5 

and 5.6. However, these variations of derivatives are less pronounced.  

 

For a fixed voltage level in bus k, i.e. Vk = 1 and θk = 0, the Jacobian elements, corresponding to 

polar form currents, can abruptly change for small variations of Vi and θi: These significant 

variations of the Jacobian elements cause an oscillatory behaviour in the estimation process 

because the PMU measurements are heavily weighted as compared to conventional 

measurements.  

 

On the contrary, smooth variations (planes) are found when plotting partial derivatives of 

rectangular form of branch currents as presented in Figures 5.7 - 5.10.  
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Figure 5.7: Variation of Jacobian element ∂ IijR/ ∂ θi  with respect to small changes of θi and Vi 
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Figure 5.8: Variation of Jacobian element ∂ IijR/ ∂ Vi  with respect to small changes of θi and Vi 
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Figure 5.9: Variation of Jacobian element ∂ IijI/ ∂ θi  with respect to small changes of θi and Vi 
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Figure 5.10: Variation of Jacobian element ∂ IijI/ ∂ Vi  with respect to small changes of θi and Vi 
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Generally, no convergence problems are encountered when the currents are expressed in terms 

of rectangular components. This formulation is explained in Section 5.1.1. 

 

5.1.1 Rectangular Currents Formulation 

 

Reference [27] uses the transformation of polar to rectangular form of currents to take 

advantage of their better convergence properties, as follows: 

 

ij ij ijR ijI
I I jIθ∠ = +  (5.5)

 

However, it is necessary to estimate the propagation of the measurement uncertainties during 

the transformation [27, 74, 75]. Thus, the assignment of variances (square of the standard 

deviations) of the new measurements must be obtained from uncertainty propagation methods, 

as extended in Section 5.2. 

 

Table 5.1 presents the new Jacobian elements to be included in the H matrix of the WLS 

formulation. These elements correspond to the rectangular form of currents measurements 

obtained from the partial derivatives of (5.3) and (5.4) with respect to the voltage magnitude 

and angle of the sending bus i and the receiving bus j.  

 

Table 5.1: Elements of H corresponding to rectangular current measurements 

( )( )sin ( )cos
ijR

i ij si i ij si i

i

I
V g g b bθ θ

θ

∂
= − + + +

∂
  ( )( ) cos ( )sin

ijI

i ij si i ij si i

i

I
V g g b bθ θ

θ

∂
= + − +

∂
 

( )sin cos
ijR

j ij j ij j

j

I
V g bθ θ

θ

∂
= +

∂
 ( )cos sin

ijI

j ij j ij j

j

I
V g bθ θ

θ

∂
= − +

∂
 

( ) cos ( )sin
ijR

ij si i ij si i

i

I
g g b b

V
θ θ

∂
= + − +

∂
 cos sin

ijR

ij j ij j

j

I
g b

V
θ θ

∂
= − +

∂
 

( )sin ( ) cos
ijI

ij si i ij si i

i

I
g g b b

V
θ θ

∂
= + + +

∂
 sin cos

ijI
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g b
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θ θ

∂
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∂
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5.1.2 Pseudo- Voltage Measurement Formulation 

 

This method combines the measured bus voltage and currents flowing out of the PMU bus to 

approximate the voltage phasors in adjacent buses, as suggested in [76]-[77]. These calculated 

voltages replace the use of current measurements (polar or rectangular) in the state estimator. 

Due to the transformation of measurements, this formulation also requires an approximation of 

uncertainty propagation, as it will be presented in Section 5.2. 

 

5.1.2.1 Non-PMU Bus Voltage Calculation 

 

With reference to the pi-model presented in Figure 2.3, the voltage phasor at any bus k adjacent 

to a PMU bus i, can be expressed as: 

( )i si si ik ik ik
k

ik ik

V g jb g jb I
V

g jb

+ + + −
=

+
 (5.6)

 

Here i i iV V θ= ∠  is the measured voltage phasor at bus i and k k kV V θ= ∠  is the unknown voltage 

phasors at bus k and 
ik ik ikI I θ= ∠  is the current phasor measured by the PMU at bus i. The term 

(gsi+jbsi) is the shunt admittance connected at bus i and (gik+jbik) is the series admittance of the 

transmission line connecting bus i and k. If the parameters a, b and c are defined as: 

 

( ) ( )
ik si ik ik si ik

a g g g b b b= + + +  (5.7)

( ) ( )
ik si ik ik si ik

b g b b b g g= + − +  (5.8)
2 2

ik ik
c g b= +  (5.9)

 

the bus voltage at bus k can be calculated in rectangular form as: 
 

k kR kI
V V jV= +  (5.10)

 

Where VkR and VkI  are: 

 

( cos sin cos sin ) /
kR i i i i ik ik ik ik ik ik

V aV bV g I b I cθ θ θ θ= − − −  (5.11)

( cos sin cos sin ) /
kI i i i i ik ik ik ik ik ik

V bV aV b I g I cθ θ θ θ= + + −  (5.12)

 
And the magnitude and angle of the bus voltage at bus k is, 
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2 2

k kR kIV V V= +  (5.13)

( )1tank kI kRV Vθ −=  (5.14)

 

The voltages obtained from (5.13)-(5.14) are used as pseudo-measurements in the vector of 

measurements z. These new pseudo-measurements are linearly related with the set of states x, 

as follows:  

 

( , )

( )

conv

pmu

pmu

pse

pse

   
   
   
   = → =
   
   
     

z h θ V

θ θ

Vz h x V

θ θ

V V

 (5.15)

 

Here, zconv is the set of conventional measurements; θpmu and Vpmu are the sets of bus voltage 

angles and magnitudes originally measured by the PMUs; θpse and Vpse are the calculated 

pseudo-measurement sets of bus voltage angles and magnitudes respectively and θ and V 

define the state vector x.  

 

It is easy to extract from (5.15) that this estimator can be also decomposed into: a non-linear 

state estimator with only conventional measurements and a post-processor linear estimator, 

similar to the two step estimator presented in [26].  

5.1.3 Constrained Formulation  

 

This sub-Section presents an alternative formulation to include PMU measurements in state 

estimation. The aim of the proposed methodology is to avoid the transformation of 

measurements and consequently to avoid the propagation of uncertainty. In order to relate the 

current phasor measurements with bus voltages, a set of constraints is included, ensuring the 

observability of non-PMU buses adjacent to PMU buses.  
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This formulation starts with the introduction of a new set of states. The new vector is 

composed of all the bus voltages, as defined in Chapter 2, and an auxiliary state vector 

composed of the polar form of the branch currents measured by the PMUs:  

 

�>?@ = A�� ,  �BCD�  E�
 (5.16)

 

In the above equation, 
 

[ , ] , ,aux T i

ik ik PMU ADJ
I i N k Nθ= ∀ ∈ ∈x  (5.17)

 

where NPMU is the subset of PMU buses and i

ADJN  is the subset of adjacent buses to the i-th 

PMU bus. This auxiliary state vector is introduced in order to apply direct measurements of 

currents in polar form. Also, these auxiliary states can be used to relate bus voltages from PMU 

buses and their adjacent buses, as it will be explained later. 

 

The set of measurements z is made of injected and transferred active and reactive powers, bus 

voltage magnitudes and voltage and current phasors in polar form (angle and magnitude), 

measured by the PMUs:  

 

( , )

( )

conv

pmu

new

pmu

pmu

I I

pmu

   
   
   
   = → =
   
   
     

z h θ V

θ θ

Vz h x V

θ θ

I I

 (5.18)

 

Here, pmu

Iθ and Ipmu are the set of branch current angles and magnitudes respectively, measured 

by the PMUs. Since θI and I are the introduced auxiliary state variables defined in (5.17), there 

is a linear relation between the states and the PMU measurements.  

 

As the PMU currents are included as state variables, the voltage at any bus k adjacent to a 

PMU bus can be expressed in terms of state variables and line parameters. The voltage angle 

and magnitude for a bus k adjacent to a PMU at bus i, can now be expressed as: 
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( , , , )i

k V i i ik ik
V f V Iθ θ=  (5.19)

( , , , )i

k i i ik ik
f V Iθθ θ θ=  (5.20)

 

As depicted in Figure 5.11, a bus k can be seen from more than one PMU, at buses j and i, but 

it depends on the network topology and location of the PMUs. 

 

n k

j

l

i

 

Figure 5.11: Location of PMUs in a section of a power network. 

 

The following constraints are used to relate the PMU buses and their respective adjacent buses: 

 

0i

k k
V V− =  (5.21)

0i

k k
θ θ− =  (5.22)

 

where Vk and θk are the state variables corresponding to bus k. These equations are grouped in a 

new vector c, and the minimisation problem in (2.12) is subject to the following equality 

constraint:  

 

( )newc x = 0  (5.23)

 

Table 5.2 presents the partial derivatives of (5.19)-(5.20) with respect to the new set of state 

variables. These partial derivatives are included in C matrix that corresponds to the partial 

derivatives of the equality constraints. 
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Table 5.2: Elements of C corresponding to equality constraints of voltages 

 

2 2

[ ( sin cos )

( sin cos )] /
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∂
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− − +
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V V V
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kI ik ik kR kI

b g
V

I c c

g b
V V V
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∂
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∂
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Under the proposed formulation, Kirchoff’s current Law is perfectly maintained while currents 

are free to vary as states in order to find the optimal estimation. Additionally, all measurements 

are used directly without any transformation in the estimation process.  

 

The initial state vector guess is set to flat start for voltages (or the solution from the previous 

estimation) and the initial state of currents may be initialized with the actual measurement of 

the respective currents. 

 

5.2 Uncertainty Propagation  

 

The calculation of uncertainty propagation is an important task that has to be addressed when 

measurements are transformed or combined to create new set of measurements. Depending on 

the algorithm used, the inclusion of synchrophasors in the estimation problem may require 

transformation of power measurements into current measurements [78], conversion from polar 

to rectangular form [27] or combination with other measurements to create pseudo-
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measurements [77]. For all these cases, the calculation of the propagation of uncertainties is 

necessary in order to assign weights to the new measurements.  

 

Let the initial set of measurement be defined as: 

 

� = �F�, F�, … , F��� (5.24)

 

where z is an m × 1 vector of original measurements with mean vector �G = ���� and covariance 
matrix HI: 

HI = ���� − �G��� − �G��� (5.25)

 

The problem of uncertainty propagation is to find the my × 1 mean vector y  and the my × my 

covariance matrix Py. of y given:  

J = K��� (5.26)

 

where y is the my × 1 vector of transformed measurements resulting from the non-linear 

function g(z).  

5.2.1 Classical Uncertainty Propagation Method 

 

The classical method approximates the calculation of the mean vector y  by neglecting the 

higher order terms of g(z) [79]: 

[ ( )] ( )E= ≈y g z g z  (5.27)

 

And the uncertainty of y, represented by the covariance matrix Py, is also obtained from a 

linear approximation of g(z): 

 

T

y z z z
=P G P G  (5.28)

 

where, 

( )
z

∂
=

∂

g z
G

z
 (5.29)
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Under these approximations, the mean vector and its covariance matrix Py can result in errors if 

g(z) is highly non-linear and the uncertainty of z is large.  

 

5.2.2 Unscented Transformation Method 

 

This section presents a more accurate methodology to estimate the mean and covariance of 

transformed measurements, based on the Unscented Transformation (UT) approach. The idea 

of UT is to obtain a number of so called sigma points, deterministically chosen, which exactly 

capture the mean and covariance of the original distribution of z. The sigma points are grouped 

in vectors and they approximate the distribution of z [79]. The sigma points are then 

propagated, one by one, in g(z) to estimate the mean vector y  and covariance matrix Py.  

 

The main benefit of using UT over the classical method is that, for similar computational 

requirements, it provides higher accuracy as higher order terms of the non-linear function g(z) 

are considered. The Unscented Transformation approach can be described through the 

following three steps:  

 

Step 1: Obtain a set of 2m vectors of sigma points that capture the mean and covariance of the 

original m × 1 vector of original measurements z:  

 

( )i z im= +Ζ z P , i=1,…, m (5.30)

( )m i z i
m+ = −Ζ z P , i=1,…,m (5.31)

 

where ( )z imP  is the i-th column of  matrix zmP . 

Step 2: Propagate the sigma points through the non-linear functions g: 

 

( )
i i

=γ g Ζ  , i=1,…, 2m (5.32)

 
Step 3: Calculate the mean and covariance for y: 

 
2

1

1

2

m

i

im =

= ∑y γ  (5.33)
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2
T

y

1

1
( )( )

2

m

i i

im =

 = − − ∑P γ y γ y  (5.34)

 
The UT does not need to calculate a Jacobian matrix to cope with the non-linearity of g(z). 

Only 2m vectors of sigma points are needed to capture the distribution of z (for example, 

Gaussian) with subsequent evaluations in g(z) to calculate the new measurement uncertainties. 

As the sigma points are calculated deterministically, the UT requires less computational 

demands compared to Monte Carlo methods where thousands of evaluations are needed to 

capture the distribution of both z and y [80].  

 

For example, let us consider a measurement set z in polar form, whose mean vector and 

covariance matrix are defined as follows: 

2 2

z 2 2

1 0 0.050 0
,

/ 4 0 0 0.035

r
r

θ

σ

θ π σ

      
= = = =      
      

z P  

It is desired to convert the measured data into rectangular form. The polar-to-rectangular non-

linear transformation is, 

[ ]( ) cos sin
T

r rθ θ=g z  

Based on the UT approach, it is necessary to build the set of 2m sigma points, with m = 2: 

1.0707 1.0000 0.9293 1.0000

0.7854 0.8349 0.7854 0.7359

 
=  
 

Z  

In order to obtain the propagated sigma points, each sigma point set Zi, (i-th column of Z) is 

evaluated in g, as presented in (5.32): 

0.7571 0.6713 0.6571 0.7412

0.7571 0.7412 0.6571 0.6713

 
=  
 

γ  

Finally, the mean and covariance of the new sigma points are calculated using (5.33) and  

(5.34): 

3
0.7067 1.8622    0.6382

, 10
0.7067 0.6382    1.8622

y x−   
= =   
   

y P  

The UT approach approximates the true mean and covariance of y up to the third order [79]. In 

addition, the calculated covariance contains correct sign terms to the fourth and higher powers.   
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The mean and covariance of y obtained from the classical method based on linearization of 

g(z) is: 

3
0.7071 1.8625    0.6375

, 10
0.7071 0.6375    1.8625

y x−   
= =   
   

y P  

The classical method does not provide any extra information about higher order terms [79], 

consequently the UT mean vector and its covariance matrix should generally be more accurate 

than those obtained by the classical approach. 

5.3 Study Cases  

 
This section presents test results using the IEEE 14, 57 and 118 bus test systems. The network 

parameters and loading conditions are presented in [64]. The methodologies presented in sub-

Sections 5.1.2 and 5.1.3 were compared to the rectangular PMU currents formulation presented 

in Section 5.1.1.  

 

Table 5.3 lists the types of measurements used for the three test systems and the corresponding 

measurement uncertainties. The uncertainties in Table 5.3 are expressed in percentage of the 

actual measurement value and they are used to create the random noise in the measurements 

needed during the Monte Carlo simulations. 

 
Table 5.3: Standard deviation of measurements 

Conventional measurements PMU measurements 

Voltage Injected power Power flows Voltage Current Phase angle 

0.2% 2% 2% 0.02% 0.03% 0.01˚ 

 

5.3.1 SE Performance Index 

 
The first performance index used in this work for comparison purposes is the variance of the 

estimated states: 

2
2 2

1

ˆ( )
N

t

i i

i

x xσ∑
=

= −∑  (5.35)

where, x̂  and xt are the estimated and true state values respectively and N is the number of 

buses in the system. The second performance index relies on measurement errors and it is 
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given by, 

( ) ( )
2 2

1 1

ˆ ˆ( )
m m

t t

i i i i

i i

x z z z zξ
= =

= − −∑ ∑  (5.36)

 

where ẑ , zt and z are the estimated, true, and available measurements, respectively. The result 

of the objective function is not used as a performance index since it does not quantify the 

accuracy of estimators. Nevertheless, it may be useful for detecting bad data by using a chi-

square distribution test, if necessary.  

 

In order to obtain a more reliable comparison from the estimator testing, 100 Monte Carlo 

simulations have been carried out. For each Monte Carlo simulation, the sample of a 

measurement is randomly taken from the distribution of the measurement around the mean 

(measured) value. 

5.3.2 Placement of PMUs and Conventional Measurements 

 
The conventional measurements were deterministically located in the system to create the set 

of existing measurements in the system:  

• The 14-bus test system has flow measurements in 50% of its lines and power injection 

measurements at 57% of its buses.  

• The 57-bus test system is assumed to have power flow measurements in 56% of its 

lines and power injection measurements at 35% of its buses. 

• The 118-bus system has power flow measurements in 40% of its lines and power 

injection measurements at 42% of its buses.  

 

Subsections 5.3.2.1 and 5.3.2.2 present the algorithms used in this work to locate the PMUs in 

the three test systems. Note that these subsections are included to justify the location of the 

PMUs only and these algorithms are not a contribution of this Thesis. 

 

5.3.2.1 Measurement Redundancy Improvement 

 

A valid criterion for including PMUs in the system is the improvement of local/global 

redundancy levels and elimination of critical measurements (redundancy level equal to zero). 
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The adequate performance of Bad Data Detectors (BDD), such as the normalized residual 

approach, depends on the availability of redundant measurements. It is important to eliminate 

critical measurements as they could never be detected as erroneous data, thus adversely 

affecting the performance of state estimators.  

 

An optimal placement of PMUs in the system can eliminate critical measurements and can 

improve redundancy levels of basic measurements (set of measurements which are sufficient to 

make the system fully observable).  

 

After observability analysis for the 14-bus IEEE test system, it was concluded that the number 

and location of the existing conventional measurements is enough to make the system fully 

observable.  

 

Redundancy analysis indicated that there are measurements with redundancy levels equal to 

one and possible loss of a single measurement would result in various critical measurements, 

affecting Bad Data Detection (BDD) [38]. The optimal location of PMUs to improve local 

redundancy was determined using the method proposed in [39]. The objective function is: 

 

Minimise 
p

i i

i=1

q α∑  

Subject to + ⋅ ≥w F α b  

(5.37)

 
where: 

p  number of candidate PMUs. 

q  vector of costs for installing candidate PMUs.  

α  binary vector corresponding to candidates PMUs.  

 

If a PMU is placed, αi will be 1, otherwise 0. Additionally, w is a vector indicating the existing 

redundancy of the basic measurements and. F is a matrix relating candidate PMUs and critical 

measurements (or any other basic measurement with low redundancy level). Moreover, vector 

b indicates the level of redundancy desired for each basic measurement. For b=1, it ensures 
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that no critical measurements are present. Higher levels of local redundancy are obtained by 

increasing elements of b.  

 

The same methodology was used for the 118 bus IEEE test system since local redundancy was 

also desired to be improved for BDD.  

 

5.3.2.2 Enhancement of Network Observability 

 

Power systems under low measurement availability and/or loss of communication links may 

lead to the loss of system observability, making the estimation problem unsolvable. In such 

cases, pseudo-measurements have to be included to recover observability, resulting in reduced 

estimation accuracy. An alternative procedure is to include a minimum number of PMUs to 

recover system observability if observable islands are identified. 

 
Once observable islands are known, it is possible to formulate the optimisation problem which 

finds the minimum number of PMUs to recover system observability:  

Minimise 
p

i i

i=1

q α∑  

Subject to 
2 2⋅ ≥F α b  

(5.38)

 

The incidence matrix F2 relates candidate PMUs with the observable islands: F2(k,i) is one if 

the i-th PMU is located inside or at boundary of island k, or zero otherwise. 

 
In order to recover system observability, it is necessary that all islands are observed by at least 

one PMU. Based on this fact, vector b2 must be a unitary vector. Each element of b2 will 

correspond to each observable island previously identified. If PMU reliability is a concern, one 

could increase the values of b2 to guarantee system observability even under the outage of 

some PMUs.  

 

In the 57 bus system, it was found that the system frequently splits into five observable islands 

due to failures of communication links. In order to avoid islanding, PMUs were optimally 

located over the system by using b2 = 2 in (5.38). This not only recovers system observability 

but ensures that the loss of any single PMU will not lead to unobservable conditions.  
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An equality constraint was included in (5.37) and (5.38) for all test cases to ensure that one 

PMU is located at the slack bus. This permits that all synchronised measurements can be 

referred to a common angle reference equal to zero, in the slack bus.  The PMU placement sets 

for the three test systems are given in Table 5.4.  

 

Table 5.4: Optimal location of PMUs 

Test System Buses with PMU 

14 buses 1 and 4 

57 buses 1, 9, 18, 19, 30, 31 and 55 
118 buses 24, 40, 59, 69, 75, 80, 100, 103, 113 and 114 

 
Figures 5.12-5.14 present the location of the conventional and synchronised measurements for 

the three test systems. Due to space limitations, Figure 5.14 does not include the synchronous 

condensers, see Appendix G.4 for details about these elements. Null power injection 

measurements were included as equality constraints. 

 

 
Figure 5.12: Measurement allocation in 14-bus test system 
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Figure 5.13: Measurement allocation in 57-bus test system 

 

 
Figure 5.14: Measurement allocation in 118-bus test system 
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5.3.3 Assessment of Estimators 

 
Three different methods for each test system have been used to assess the performance of the 

proposed estimator:  

 

Method 1: Currents measured in polar form were transformed into rectangular form as 

proposed in [27] and presented in sub-Section 5.1.1. The transformation of measurements and 

uncertainties was carried out using the UT. In addition, constrained estimation was used for 

null power injections only.  

 

Method 2: The state estimator was based on the Pseudo-Voltage Measurement Approach, as 

explained in sub-Section 5.1.2. Both, conventional and synchrophasor measurements were 

used to estimate the system state. Bus voltage measurements of adjacent buses to PMU buses  

are created according to (5.13)-(5.14). Therefore, if the IEEE 14 bus test system is taken as an 

example, besides voltage measurements at Buses 1 and 4, one obtains voltage measurements of 

Buses 2, 3, 5, 7 and 9. The uncertainties of these new measurements are obtained using the UT 

approach. Again, constrained estimation was used for null power injections only. 

 

Method 3: The estimator is based on the constrained formulation presented in Section 5.1.3. 

The state vector was extended to include the polar form of PMU currents. For the IEEE 14 bus 

test system, there are 16 constraints that have to be met: 2 for null power equations at Bus 7, 

and 14 constraints for adjacent buses to PMU buses (Buses 2 and 5 are observed twice by 

PMUs).  

 

Figures 5.15 and 5.16 present the estimation errors obtained from the three methods using the 

14-bus test system. The convergence criterion used in all estimation procedures was 10-6 p.u. 

The results were collected from 100 Monte Carlo simulations.  

 

From Figures 5.15 and 5.16, it can be concluded that there is a clear advantage when using 

Method 3 in comparison to Method 2. This is because PMU currents are used to relate states of 

both adjacent and PMU buses in the constrained formulation. On the other hand, Method 2 

loses some information, about the states of PMU buses provided by PMU currents, because the 
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pseudo-measurements of voltage are modelled in terms of voltages of adjacent buses only. The 

constraints for Method 3 are all fulfilled with a maximum error of 10-12 p.u. Figures 5.15 and 

5.16 also demonstrate that the constrained formulation is comparable in accuracy to Method 1 

but there is no need to transform the PMU measurements.  

 

 
Figure 5.15: Voltage angle estimation errors for the IEEE 14 bus test system. 

 
 

 

 
Figure 5.16: Voltage magnitude estimation errors for the IEEE 14 bus test system. 

 

 
Table 5.5 presents a comparison of estimation accuracy based on performance indices for the 

14, 57 and 118 bus test systems. The term S/C is the ratio of synchronised to conventional 

measurements in the system.  

 

The estimations were significantly more accurate once synchronised measurements were 

included, as presented in Table 5.5. This validates that the presence of few PMU measurements 

substantially improves the accuracy of the estimations. For the 57 bus system, a classical state 

estimation cannot be solved because the system is not fully observable with only conventional 
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measurements. In fact, this was the reason why PMUs were optimally installed in the network.  

 

As expected for the 14 bus test system, the state variance and the measurement error index ξ  

are smaller in Methods 1 and 3 than in Method 2. However, the objective function J is smaller 

in Method 2, which confirms that this index is not a measure of the accuracy of estimators, but 

it is still very useful for bad data detection based on statistical procedures.  

 

In the case of the 57 bus test system, the number of constraints for Method 3 is 72; from which, 

30 constraints correspond to null power injections and the remaining 42 are constraints for 

adjacent buses to PMU buses.  

 

In the case of the 118 bus test system, the number of constraints is 114. Here, 16 constraints 

correspond to null power injections and the other 98 constraints are used for adjacent buses to 

PMUs.  It is again concluded that constrained and rectangular current formulations deliver 

more accurate estimations than the pseudo-voltage formulation. 

 

Table 5.5: Estimation results for 100 Monte Carlo simulations 

System 2σ∑  ξ  J 

14 buses 
S/C = 18/43 

Method 1 5.8122x10-7 0.0200 14.0015 

Method 2 7.4374x10
-7

 0.0320 13.3023 

Method 3 5.8123x10-7 0.0200 14.0186 

S/C=0/43 Classical 1.3400x10
-5

 0.3587 6.2681 

57 buses 

S/C=56/146 

Method 1 3.9829 x10-6 0.2287 49.5373 

Method 2 4.5251 x10
-6

 0.2601 46.3422 

Method 3 3.9825 x10-6 0.2288 49.6799 

S/C=0/146 Classical -- -- -- 

118 buses 

S/C=118/265 

Method 1 5.2060 x10-5 0.4274 75.9057 

Method 2 5.5653 x10-5
 0.4493 66.1592 

Method 3 5.2064x10-5 0.4273 74.7258 

S/C=0/265 Classical 6.1124 x10
-4

 0.7334 15.0869 

 

 

Table 5.6 presents a comparison of computational speed and required iterations for all three 

hybrid estimators. The simulations were carried out using an Intel Core (TM) 2 6400 @ 2.13-
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GHz CPU with 2.97 GB of RAM 

 

Table 5.6:  Time demands of  hybrid estimators 

Average Method 1 Method 2 Method 3 

Time [s] 0.7965 0.652 0.9666 

Iterations 4.98 4.5 4.65 
 

It is found that, on average, the constrained formulation (Method 3) requires slightly larger 

computing times than the other two methods. However, on average, the constrained 

formulation requires less iterations than the rectangular formulation approach. Table 5.6 does 

not consider the time required to transform PMU measurements and calculate the covariance 

matrix needed in Methods 1 and 2. 

 

5.3.4 Estimation of Measurement Uncertainty 

 
Let us consider the 14 bus test system. In Method 2, the currents measured from the PMU at 

Bus 4 were transformed into pseudo-voltage measurements using the UT approach.  

 

The calculated mean and covariance of the new pseudo-measurements were compared to the 

classical method using (5.27)-(5.28). Table 5.7 presents the estimated mean vector of the new 

pseudo-voltage measurements. Both methods deliver practically the same result since the 

variance of the original measurements is very small; this leads to insignificant errors caused by 

neglecting higher order terms of the true mean vector.  

 

Table 5.7: Comparison of mean vector estimation 

---- 
UT Method  Classical Method 

V  [p.u.] 
θ  [rad] V  [p.u.] θ  [rad] 

Bus 2 1.0451318 -0.08690058 1.0451318 -0.08690058 

Bus 3 1.00994583 -0.2220894 1.00994583 -0.2220894 

Bus 5 1.01963618 -0.15303897 1.01963617 -0.15303897 

 Bus 7 1.06144752 -0.2331688 1.06144752 -0.2331688 

Bus 9 1.05588427 -0.26074462 1.05588427 -0.26074462 
 

In the same way, almost identical results were obtained when comparing the calculation of the 

new covariance matrix. For easier comparison, Table 5.8 presents the diagonal elements of the 
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square root of the Py matrix. The off-diagonal elements of Py were found to be up to 50 times 

smaller than its diagonal elements. Their inclusion in the error covariance matrix R had a 

minimum effect over the estimation process. 

 

Table 5.8: Comparison of standard deviation estimation 

---- UT Method  Classical Method 

Uncertainty 
in p.u. θσ x 104 

V
σ x 104 θσ x 104 

V
σ x 104 

Bus 2 0.99232560 1.17570625 0.99232559 1.17570626 

Bus 3 1.01721504 1.17441442 1.01721504 1.17441443 

Bus 5 1.00702896 1.17533309 1.00702896 1.17533310 

 Bus 7 0.99255827 1.20305353 0.99255827 1.20305355 

Bus 9 1.01286742 1.21486334 1.01286742 1.21486335 

 

The expected errors due to neglecting the higher order terms of the non-linear function g(z) are 

negligible because the uncertainty of the original PMU measurement is very small. The higher 

the uncertainty of the original measurements the more inaccurate the calculated mean and 

covariance matrix of the new measurements will be when the linearised approach is used. 

 

5.4 Summary  

 
This Chapter studies three alternatives for including PMU measurements in power system state 

estimation, i.e. hybrid state estimation. As the direct use of PMU currents in polar form leads 

to convergence problems, this work presents different formulations for including (or replacing) 

these measurements. The first two formulations transform the PMU measurements into 

rectangular form or pseudo-voltage measurements and the third makes use of a constrained 

WLS formulation with no transformation of PMU measurements. 

 

The proposed HCSE gives the possibility to implement the PMU currents in polar form. This 

avoids the transformation of measurements and the propagation of errors during the 

transformation. This is important because the errors are random variables, and the presence of 

large errors may affect the new transformed measurements. In addition, as the resulting 
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(transformed) measurements are the combination of PMU voltages and currents, these 

measurements will be correlated.  

 
The proposed methodology avoids this problem. To do so, it introduces a new set of constraints 

to estimate the bus voltages adjacent to PMU buses, and gives the possibility to correct and 

filter out small errors in PMU measurements. In other words, the resulting estimated line 

currents may be slightly different from the PMU current measurements.  

 

The Unscented Transformation (UT) was also introduced to approximate the propagation of 

uncertainties in the hybrid state estimation formulations that required the transformation of 

PMU measurements.  

 

The UT delivered almost identical results as the classical propagation method. It was found 

that the uncertainties of PMU measurements were so small that the errors caused by 

linearisation approximations in the classical method were negligible.  

 
Chapter 6 is focused on the problem of estimating the state of large interconnected power 

networks. In order to cope with such a high dimensional problem, the PMU based state 

estimator is distributed into smaller independent local state estimators whose solutions must be 

in agreement with each other. 
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Chapter 6 Multi-Area State Estimation 
 
Integrated state estimators are the most accurate option when estimating the state of a power 

system. They make use of all available measurements in the entire power network to estimate 

the system operating point. However, the size and complexity of large power networks 

suggests that a strategy of decentralising the estimation problem by distributing the 

computation into local area estimators may be beneficial [81]. This strategy is the main idea of 

Multi Area State Estimators (MASE). They provide reliable estimates for large-scale power 

systems with significantly reduced computational requirements when compared to the 

aforementioned integrated solutions.  

 

Large scale incidents experienced in the last years has pointed out the need of more accurate 

real-time visibility of the system state beyond the area covered by the estimator of a country or 

region [82]. Additionally, it is important to obtain accurate estimates of the actual power 

transfers between areas as power transaction operations will rely on the information given by 

the state estimator.  

 

MASE are classified according to their computing architecture [82]. One is based on a 

hierarchical scheme composed by a master processor (coordinator) that corrects the solution of 

the slave processors (local estimators) and the other architecture is based on a decentralised 

approach. In the decentralised option, the local estimators directly exchange information with 

those estimators in charge of neighbouring areas.  

 

A good MASE (hierarchical or decentralised architecture) must fulfil the following basic 

requirements: a) high computational efficiency, b) accuracy should be similar to the integrated 

solution, c) highly robust to deal with topology changes, d) bad data processing for buses 

located close to boundary buses, and e) low data exchange between areas [82].  

 

Some efforts have been made to obtain the same, or very similar, accuracy as the integrated 

solution. Reference [83] introduces an optimisation based method that reaches a wide-area sub-

optimal solution by solving local area optimisation problems. This decentralised methodology 
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was later extended in [84]. It is based on a Langrangian Relaxation technique that exchanges 

information between regions without using a central coordinator. Each area runs its own state 

estimator and waits for the most updated state estimation of the external boundary buses. The 

solution was found to be the same as the integrated one. The paper also proposed a bad data 

detection procedure within and between areas. In the case of measurement errors close to 

boundary buses, the algorithm requires to include measurements in boundary buses from other 

areas. 

 

The Diakoptic based distributed estimator proposed in [30] is able to obtain the same accuracy 

as the integrated solution. In addition, the method proposed in [85] includes a set of virtual 

measurements to obtain consistent solutions in boundaries of different areas. However, the 

disadvantage of these methods is the data dependency among areas during the estimation 

process. 

 

Reference [86] proposes a generalised state estimator including distribution and transmission 

networks made of three main levels of hierarchy. The lowest level is composed by local 

estimators at the substation level. Then an intermediate level is made of independent state 

estimators for each Transmission System Operator (TSO), and finally, the highest level that 

corresponds to a regional state estimator to fine-tune the solution provided by the TSOs 

affiliated with the interconnected system.  

 

A hierarchical scheme is also presented in [75]. Here, a constraint formulation is used to deal 

with boundary measurements. The approach is found to have the same redundancy level and 

accuracy of a single centralised estimator.  

 

At present, two-level estimators are the most common approach developed for MASE due to 

their simplicity and limited data exchange between areas [82]. In two-level MASE, the power 

system is separated into small observable subsystems, each one assigned with a slack 

(reference) bus to run a lower (local) level state estimation.  
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The state estimation solution of each subsystem is then collected by the central coordinator that 

unifies and coordinates the lower level solutions in order to obtain an overall estimate of the 

entire power system.  

 

One challenge in two-level estimators, particularly during the coordination level, is how to deal 

with power injection measurements in boundary buses. If they are included, each area will have 

to provide some information about their internal topology to the coordination level [28]. This 

option might not be always feasible as utilities usually prefer to restrict their topology 

configuration information for privacy and/or security reasons. Additionally, considering power 

injection measurements in the coordination level makes it necessary to include the states of 

internal buses adjacent to boundary buses, which increase the size of the problem.  

 

Another option would be not including the power injection measurements of boundary buses. 

However, this would result in a loss of information and lower redundancy at the coordination 

level.  

 

The methodology proposed in this work avoids the use of power injection measurements of 

boundary buses in the coordination level. This reduces the data exchange between local and 

coordination estimators. Instead, a new set of transferred powers pseudo-measurements are 

included to maintain the redundancy level and accuracy of the coordination level. Moreover, 

wide area measurements obtained from PMUs are used in boundary buses and slack buses, 

improving the efficiency of both the lower (local) and the higher (coordination) estimation 

levels. The proposed PMU based MASE minimises the data exchange between local and 

coordination estimators.  

 

The following sections explain in detail the set of measurements and vector of states for each 

local estimator and the information that is transmitted to the coordination level. 
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6.1 Local State Estimators  

 
 
Each local area state estimator provides an estimate of the sub-system state based on the 

available measurements in each area. For any area i, the following three bus types are 

identified:  

• Internal bus: any bus that is not adjacent (connected) to any external bus. 

• Boundary bus: any bus adjacent to at least one external bus. The interconnection 

between a boundary bus and an external bus is referred to as a tie-line. 

• External bus: any bus belonging to a different area that is connected to at least one 

boundary bus of area i, by a tie-line. 

 
Let the set of measurements zi in area i be defined as:  

i i i
z = h(x ) + e  (6.1)

 
where h(xi) is the set of non-linear equations relating the measurements with the state 

variables, xi and ei is the set of uncorrelated measurement errors with Gaussian distribution.  

 

The state vector is defined as follows: 

int b ext[ , , ]T

i i i i
=x x x x  (6.2)

where: 
 

int

ix  is the set of bus voltages corresponding to the internal buses of area i.  

b

ix is the set of bus voltages corresponding to the boundary buses of area i. 

ext

ix  is the set of bus voltages corresponding to the external buses of area i. 

 
The best estimation of the system states in area i is obtained through the constrained WLS 

formulation introduced in Chapter 2. 

 

Each local estimator must have enough measurements to make the system fully observable 

with redundant measurements to detect and eliminate bad data. Each area has its own 

reference; hence, there are S different slack buses in the interconnected power network, one for 

each area.  
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Based on the principle that each local estimator is independent of any other estimator (and vice 

versa), all synchrophasor measurements in area i will be referred to its local reference in the 

lower level estimation.  

 

Figure 6.1 shows how the PMU measurements are referred to its own slack bus during the 

lower level estimation. Without loss of generality, it can be assumed that a PMU is located at 

the local slack bus. In fact, installing a PMU in each slack bus will improve the coordination 

level estimation, as will be explained later. 

 
 

Figure 6.1: Multi-Area power system with PMU measurements for state estimation (local level and 

coordination level) 

 
 

6.2  Coordination Level  

 
The higher (coordination) level estimator uses the estimated states corresponding to boundary 

buses, obtained from local estimators, and those measurements at the boundaries of each area 

to create the set of measurements zc: 

c c c
z = h(x ) + e  (6.3)
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The WLS method is also used to estimate the new set of states xc at the coordination level. This 

vector is defined as:  

[ ,θ ] 1,2,...,b sk T

c i i
i S= ∀ =x x  (6.4)

where:  

b

i
x is the set of boundary bus voltages in area i. In the coordination level all bus voltage angles 

are referred to the global slack bus. 

θ
sk

i
is the slack bus angle for area i referred to the global slack bus.  

 

The set of measurements zc in (6.3) is defined in sub-sections 6.2.1-6.2.3:  

 

6.2.1 Synchronised Measurements 

 

By including PMU measurements in MASE, the accuracy of the overall estimation (lower level 

and coordination level) is improved. Firstly, the PMUs improve measurement redundancy 

levels and the estimation accuracy of local estimators. Secondly, if PMUs are located at the 

boundaries of the subsystems, they will also improve the accuracy of the coordination level 

[28]. In addition, when PMUs are located at the slack bus of each subsystem, the angle 

difference between slack buses will be determined directly.  

 

The synchronised measurements used in the Coordination Level can be separated in the 

following measurement vector:  

, , , , 1, 2,..., .
T

sync b b ij ij sk

c i i i R i I i
i S = ∀ = z θ V I I θ  (6.5)

where:  

b

iθ  is the set of boundary bus voltage angle measurements in area i referred to the local 

reference in area i.  

b

iV  is the set of boundary bus voltage magnitudes in area i. 

ij

i RI  and ij

i II  are the real and imaginary part of measured currents from area i to area j. These 

phasor measurements are also referred to the local reference in area i. 

sk

iθ is the slack bus’s angle measurement in area i referred to the global reference.  
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The PMU measurements in boundary buses use the same reference (local slack bus), whilst the 

angle measurements of slack buses will be referred to the global reference (global slack bus), 

as presented in Figure 6.1.  

 

Based on this, the voltage angle measurement θi
k in the boundary bus k of area i is represented 

in h(xc) as follows: 

( )k k sk

i c i
hθ θ θ→ = −x  (6.6)

 

The real and imaginary components of the current measurement from bus i (in area i) to bus j 

(in area j) is represented as: 

i

( ) cos( ) ( ) sin( )

( sin( ) cos( ))

ij i i sk i i sk

iR ij si i ij si i

j j sk j sk

ij ij i

I g g V b b V

V b g

θ θ θ θ

θ θ θ θ

= + − − + −

+ − − −
 (6.7)

( ) sin( ) ( ) cos( )

( sin( ) cos( ))

ij i i sk i i sk

iI ij si i ij si i

j j sk j sk

ij i ij i

I g g V b b V

V g b

θ θ θ θ

θ θ θ θ

= + − + + −

− − + −
 (6.8)

where (gsi+jbsi) is the shunt admittance connected at bus i, and (gij+jbij) is the series admittance 

of the tie-line connecting area i and j.  

 

It is important to note that the slack bus angle of the area where the PMU is located must be 

included in the model because the PMU measurements are still referred to their local reference. 

However, the slack bus angle of area i is already referred to the global reference and therefore 

does not need any correction of reference. 

 

6.2.2 Conventional Measurements 

 
All transferred power measurements in tie-lines will be used by the coordination level. 

However, power injection measurements in boundary buses will not be used as it would be 

necessary to share information about internal topology of the areas. In addition, the size and 

complexity of the coordination level would increase. 

 

Each area will provide minimum information about its internal topology configuration. Thus, 

whenever an injected power measurement is found (at a boundary bus), it will be replaced by 

the estimated transferred power, in the relevant tie-line, obtained by the local estimator.  
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As the injected power measurements of boundary buses are used in the lower level estimation, 

it is reasonable to believe that the estimated states related to these measurements are 

sufficiently accurate, see the simulated study case in Section 6.3. Thus, the estimated tie-line 

flows can be used as an effective way to maintain redundancy in the coordination level.  

 

6.2.3 Pseudo-Measurements 

 

The estimated bus voltages of all boundary buses ˆ b
x  will be used as pseudo-measurements in 

zc. The inverse of the Gain Matrix (covariance matrix of the estimated states) of the local 

estimators will be used to weight the pseudo-measurements at the coordination level: 

1 1( )T

s i
diag

− −=P H R H  (6.9)

In addition, the covariance matrix of the new pseudo-measurements (corresponding to 

estimated transferred powers) can be approximated as:  

T

sm sm s sm
=P H P H  (6.10)

where Hsm contains the partial derivatives of the transferred powers in tie-lines with respect to 

the states corresponding to boundary buses. Thus, the vector of measurements zc in the 

coordination level consists of: 

ˆ[ , , ] 1, 2,...,b p b T

c i i i
i S= ∀ =z z z x  (6.11)

where:  

b

iz  is the set of conventional and synchronised measurements in the boundary buses for area i  

p

iz  is the set of estimated transferred powers whenever a boundary power injection 

measurement is found in area i. 

ˆ b

ix  is the set of estimated bus voltages in the boundary buses of area i. 

 

Figure 6.2 shows the lower and higher level schemes for a power system with S areas. Each 

independent local estimator calculates the set of bus voltages xi (internal, boundary, and 

external buses connecting area i).  

 

The coordination level does not use any information regarding the internal topology of the 

areas.  



Chapter 6 – Multi-Area State Estimation 

139 

Topology 1

Estimator

Area 11x̂

1z

b

1x̂
p

1z
b

1z

Topology 2

Estimator

Area 22x̂

2z

b

2x̂
p

2z
b

2z

Topology S

Estimator

Area Ssx̂

sz

b

sx̂
p

sz
b

sz

Coordination Level

 

Figure 6.2: Data collection from local area estimators to the Coordination Level 

 

With this information the coordinator estimates the states at the boundary buses, the power 

flows between subsystems (tie-line power flows) and the phase shift between the slack buses.  

The coordinator will deliver this information to the local estimators, which must then update 

their solution and correct any wrong local estimation if any bad data was identified at the 

coordination level.  

 

6.3 Study Case  

 
The proposed multi area state estimator with minimum data exchange has been tested by using 

the IEEE 300 bus system. The 300 bus system was arbitrarily split into seven (S = 7) different 

areas, as described in Table 6.1.  

 

Table 6.1: 300 bus system divided into seven areas 

Area Buses Branches Boundaries To Areas 

1 101 129 16 2, 3, 4, 5, 7 

2 45 56 10 1, 5 

3 42 57 5 1, 4 

4 45 62 4 1, 3 

5 40 53 8 1, 2, 6 

6 35 41 3 5 

7 36 38 1 1 

 

A power flow solution of the 300 bus system was used to obtain the real solution of the system 
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condition. Tables 10.9 and 10.10 (in Appendix G.5) provide details of branch connections and 

power flow solution of the 300-bus test system. Figure 6.3 presents the connection of each area 

and the set of measurements located at boundary buses and tie-lines.  
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Figure 6.3: Boundary buses of Multi-Area System 
 

6.3.1 Lower Level  

 

The constrained WLS methodology was used to estimate the states of each area and the 

equality constraints were included to deal with any null power injection. The set of noisy 

measurements, obtained from the power flow solution, consists of conventional and 

synchronised measurements with the corresponding standard deviation shown in Table 6.2. 

 

Table 6.2: Standard deviation of measurement in 300 bus test system 

Conventional  Synchronised 

Voltage 

Mag. 

Injected 

Power 

Power 

Flows 

Voltage 

Mag. 

Current 

Mag. 

Phase 

Angle 

0.2% 2% 2% 0.02% 0.03% 0.01˚ 
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The set of measurements for each area is enough to make the system fully observable and there 

are no critical measurements so that bad data detection and identification is possible. In order 

to assess the effect of including PMU measurements in the MASE, the study separates the 

estimation results with and without including PMU measurements.  

 

Table 6.3 and Table 6.4 present the solution of the WLS minimisation for each local estimator. 

A Chi-Square Distribution test was used to detect the presence of bad data in the set of 

measurements.   

 

The last columns of Tables 6.3 and 6.4 indicate the threshold of the Chi-Square Distribution 

test for m-n degrees of freedom and confidence level of 95%. Here, m is the number of real and 

virtual measurements and n the number of states. 

 
Table 6.3: Chi-Square test for BDD without PMUs 

Area m-n  J( x̂ )  y
t
 

1 404 449.1295 451.8646 

2 169 154.4236 200.3339 

3 183 197.9825 215.5633 

4 230 232.9748 266.3781 

5 155 158.9062 185.0523 

6 141 127.0613 169.7113 

7 136 121.4063 164.2162 

 

Table 6.4: Chi-Square test for BDD including PMUs 

Area m-n  J( x̂ )  y
t
 

1 421 462.8011 469.8388 

2 200 183.3602 233.9943 

3 222 236.3207   257.7585 

4 277 276.5873 316.8185 

5 194 193.8542 227.4964 

6 152 135.3046 181.7702 

7 163 151.1606 193.7914 

 

Based on the tables, it is concluded that each estimator is free of gross bad data. Otherwise, it 

would be necessary to identify and eliminate the gross error in the set of measurements. 

 

Table 6.5 presents the estimation error of power flows in tie-lines that were obtained from the 
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local estimators. The estimation errors lower than 1% in active (Pt) and reactive (Qt) power 

flows were not presented.  

 

Table 6.5: Percentage error of estimated active and reactive power flows 

Buses No PMU PMU 

From To error Pt [%]  error Qt [%]     error Pt [%]  error Qt [%] 

37 274 0.54 193.55 0.06 143.79 

3 19 3.82 3.96 3.82 3.96 

3 150 22.49 1.07 22.00 1.10 

7 131 3.75 0.11 3.75 0.09 

12 21 1.65 2.25 1.66 2.25 

13 20 2.93 1.67 2.91 1.66 

48 107 2.39 1.89 2.40 1.90 

62 144 1.15 0.49 1.12 0.48 

81 195 0.55 1.84 0.26 1.84 

90 92 1.75 0.40 0.01 0.04 

91 94 4.76 5.78 4.88 5.75 

201 204 16.56 9.67 16.68 6.59 

20 13 29.43 7.85 19.37 8.29 

113 47 3.13 0.80 0.05 0.05 

107 48 71.13 0.06 60.59 0.10 

92 90 1.69 8.26 1.36 7.78 

94 91 4.81 0.13 2.55 0.02 

207 206 2.70 6.00 2.70 6.15 

135 136 2.44 6.37 0.02 0.06 

150 3 0.76 1.47 0.73 1.77 

131 7 0.78 2.07 0.80 1.86 

136 135 0.12 5.35 0.05 4.34 

211 69 9.63 2.70 8.39 4.39 

211 80 2.09 2.03 2.09 2.03 

194 81 1.62 0.42 1.63 0.48 

195 81 0.89 4.46 0.89 4.42 

219 194 1.95 2.28 2.11 4.71 

215 212 3.24 0.89 0.05 0.08 

274 37 0.19 2.46 0.02 0.48 

 

The largest estimation errors are highlighted in Table 6.5. These errors may produce estimation 

errors when the estimated power flows are used as pseudo-measurements in the coordination 

level. In the case of the reactive power transferred from Bus 37 to Bus 274, the estimation error 

(in percentage) is very large because the actual value of Q37-274 is close to zero.  

 

From Table 6.5, it can be observed that the PMU measurements had little impact on the 
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estimated power flow errors. This is because the corresponding branches are far from local 

PMU buses. Note that PMUs located at external boundary buses were not taken into 

consideration in the local area estimators because they are not local measurements.  

 

The estimated power flows that were highly influenced by the PMUs were not listed in 

Table 6.5 because the estimated errors were below 1%. However, most of the estimated power 

flows presented in Table 6.5 had lower errors compared to the case where only conventional 

measurements were available.  

 

6.3.2 Higher (Coordination) Level  

 

The solution of local area estimators and measurements in boundary buses are used as input 

data in the coordination level. The following methods have been tested for comparison 

purposes: 

 

Method 1: The coordination level includes internal buses adjacent to boundary buses so that 

the power injection measurements in the boundary buses can be used. The set of states are the 

bus voltage of the slack buses, boundary buses, and internal buses adjacent to them. Therefore, 

it is necessary to know the internal connections of boundary buses of each subsystem. In 

addition, equality constraints have been included for those boundary buses with null power 

injections. 

 

Method 2: This is the coordination level proposed in this work. The set of states are the bus 

voltages of slack buses and boundary buses only. The power injections’ measurements or null 

power injection measurements in boundary buses are not used in the coordination level. These 

measurements are replaced by the estimated transferred powers flowing in or out boundary 

buses.  

 

Table 6.6 gives a good overview of the size of the coordination level estimation according to 

the methods cited above. The set of measurements includes conventional and synchronised 

measurements. It is clear that including power injection measurements in the coordination level 
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will significantly increase the size and complexity of the problem as internal buses adjacent to 

boundary buses have to be considered. 

 

Table 6.6: Size of coordination level 

 Method 1 Method 2 

Buses 115 48 

Branches 113 25 

m-n 185 201 

 

Now it is necessary to check the accuracy of the simplified coordination level proposed in 

Method 2. The overall estimation performance is presented in Table 6.7 based on the 

performance index calculated by: 

2 2

1

ˆ( )i i

c c

i

x xσ∑
=

= −∑  (6.12)

where ˆi

cx  is the estimated state and i

cx  is the true state obtained from the power flow 

calculation. Since the number of states in Method 1 is larger than Method 2, the state variables 

considered in (6.12) are those corresponding to boundary buses only.  

 

Table 6.7: Assessment of coordination level 

 Method 1 Method 2 

--- 
2σ∑  2σ∑  

No  

PMUs 
5.38x10-5 6.24x10-5 

With 
PMUs 

1.80x10-6 3.70x10-6 

 

The results from Table 6.7 confirm that including PMUs in only a few boundary buses and all 

the slack buses improves the accuracy of the coordination level. Moreover, the performance 

index shows that excluding the power injection measurements in zc has only a small impact on 

the accuracy of the coordination level.  

 

The same effect was found when PMU measurements were not considered. Therefore, the 

price paid for excluding internal buses adjacent to boundary buses is relatively low when 

considering the benefits of simplicity, higher speed, and reduced problem size in the 

coordination level.  



Chapter 6 – Multi-Area State Estimation 

145 

The following results present a detailed study of the estimation errors for each bus in the 

coordination level. Figures 6.4 and 6.5 show the absolute estimation errors of the coordination 

level for all boundary buses without including PMU measurements. 

 

The figures show that the inclusion of the pseudo-measurements of transferred powers gives a 

good approximation of the power injection measurements. It is important to remember that 

Method 2 does not require information about the internal connection of boundary buses and the 

final estimation is still similar to that of Method 1. 

 
Figure 6.4: Absolute angle error for boundary buses without PMU measurements 

 

 
Figure 6.5: Absolute voltage magnitude error for boundary buses without PMU measurements 
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Figure 6.6: Absolute angle error for boundary buses including PMU measurements 

 
 

 
Figure 6.7: Absolute voltage magnitude error for boundary buses including PMU measurements 

 

Figures 6.6 and 6.7 present the estimation error of voltages at boundary buses when the PMU 

measurements are included. The inclusion of these measurements reduced the estimation errors 

at all buses as compared to Figures 6.4 and 6.5.  

 

When including the PMU measurements, it is noticed that the angle estimation error at Buses 

48 and 107 and the voltage magnitude estimation error at Buses 7 and 131 are slightly larger 

when using Method 2. By looking at the pseudo-measurements of power flows listed in 

Table 6.5, it is found that the large estimation error of P107-48 was propagated to the 

Coordination level and the real-time measurement in branch 48-107 made it no possible to 

fully correct this error, see Figure 6.3. Still, the error was not enough to be detected by the 
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higher level estimator and the other errors included by the pseudo-measurements were filtered 

out in the Coordination level. 

 

In the case of the voltage magnitude error in Buses 7 and 131, both null power injection buses, 

the difference of results is expected because the pseudo-measurements of power flows can 

never be as accurate as the fictitious null power injection measurement of Buses 7 and 131. 

Still, the advantage of Method 2 is the reduced data exchange from local area estimators to the 

coordination estimator. 

 

6.4 Summary  

 
This chapter presented how the state estimator of large interconnected power systems can be 

decentralised into smaller local area state estimators to reduce the computational burden and 

complexity of processing large sets of measurements.  

 

A valid assumption for using multi-area state estimation is the fact that errors in measurements 

from one area have little effect on the estimated bus voltages far from that location. Similarly, 

bad data is detected and corrected using available measurements close to the erroneous ones. It 

implies that splitting the state estimation into smaller sub-problems produces the minimum 

effect on internal buses but a correction of estimated states in boundary buses is necessary.  

 

The efforts and contribution of this work were concentrated on reducing the size of the 

coordination level by not including power injection measurements of boundary buses so that no 

single internal bus is included in the formulation.  

 

As PMU in boundary buses have independent channels to measure the phasor of currents in tie-

lines, their presence does not make any change to the proposed coordination level but it does 

make a difference in terms of accuracy of estimated voltages in boundary buses and slack 

buses. 
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The results demonstrated that not including power injection measurements in the coordination 

level reduced the size of the problem. This reduction had little effect on the estimated boundary 

bus voltages as long as the redundancy level is maintained with pseudo-measurements of 

power flows and other available real measurements in boundary buses.  

 

In addition, the best results were obtained when the estimated power flows from local area 

estimators were accurate. To achieve this, it is necessary to have reliable and accurate 

measurements in or close to boundary buses and maintain a good level of redundancy to detect 

and reject bad data. 
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Chapter 7 Dynamic State Estimation 
 
 
Power system state estimators have been classically performed by a static approach, based on 

the Weighted Least Square (WLS) method, in which a single set of measurements is used to 

estimate the state of the system. Due to its simplicity and fast convergence properties, the WLS 

method has been widely used in control centres around the world. However, even when the 

accuracy of the static estimation is within acceptable limits under fully observable conditions, 

it cannot predict the future operating point of the system [87].  

 

This limitation of the static estimator can be circumvented by Dynamic State Estimators 

(DSE). They provide not only an estimate of the current state from given measurements at time 

k, but also a prediction of the state vector at k+1, when the new set of measurements have not 

been processed. According to [87], no other estimator can produce better state estimations if 

the actual power system and the dynamic model incorporated into the dynamic estimator are in 

agreement. 

 

Although the DSE was firstly explored at similar times as the static one, the DSE did not 

develop as the static ones. This is explained by the limited computing facilities in control 

centres to deal with the high dimensionality of the problem and the need to develop a dynamic 

model able to represent the system behaviour (transition of states) in an effective and simple 

way [88]. 

 

Nowadays, advances in Information and Communication Technologies are drivers for the 

development of new dynamic estimators. The availability of more accurate measurements with 

higher sampling frequencies (such as synchrophasors) can provide fast and accurate 

estimations for each time sample and can help to better model the transition of states. These 

estimators extract information from multiple scans and make use of dynamic models [89].  

 

Among the benefits of the deployment of DSE are the prediction capacities for normal or 

emergency conditions, convergence even in presence of some observable islands and the 
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ability to identify topology errors and gross bad data [87].  

 

For example, reference [90] presents a voltage security monitoring scheme based on a dynamic 

state estimator that uses one-step-ahead forecast (from the prediction step of the DSE) to detect 

proximity of a voltage collapse in order to take corrective actions before the system becomes 

unstable. 

 

The detection of sudden changes is also an advantage of DSE. This detection is based on the 

difference between the predicted and the update steps. Additionally, the work recently 

presented in [89, 91] take advantage of the prediction step in DSE to estimate the system state 

and any uncertain line parameters by means of synchronised measurements. 

 

The development of a new and efficient hybrid dynamic estimator is explored to improve the 

filtering capacities of state estimators in power systems. For this purpose, a new state estimator 

based on the Unscented Kalman Filtering (UKF) technique is proposed and tested in this 

Chapter. 

 

The first part of this Chapter consists of a brief introduction to the dynamic estimation 

problem. Later, a detailed explanation of Kalman filters is presented in Sections 7.2 and 7.3. A 

comparison study between the UKF and the Extended Kalman Filter (EKF), demonstrated on 

two representative test power systems is presented in Section 7.4. Finally, Sections 7.5 and 7.6 

present the discussion and summary of the Chapter. 

 

7.1 Dynamic State Estimators  

 
In the early 1970s, a new state estimator able to track the system operating conditions, using 

consecutive and uncorrelated sets of measurements varying in time, was introduced [92]. It was 

based on the assumption that the network behaves in a quasi steady state manner determined by 

slow dynamic changes of the load. The modelling of the system dynamics and understanding 

of its mechanisms were critical for further development of DSE methods.  
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Figure 7.1 presents the structure of the DSE. It consists of two main blocks. The first one is the 

dynamic model, which represents a transition of the states x, given the state estimation at k-1 

and the input vector u at k-1. This transition of states is also known as the prediction step 

because it predicts the set of states x  before the new set of measurements z are processed. 

 

k
x-1

ˆ
k

x

ˆ
kx

k
z

1k −u

 

Figure 7.1: Structure of DSE  

 

The second block consists of the filtering step that filters out bad data and updates the 

(predicted) set of states with the new set of measurements. Sub-sections 7.1.1 and 7.1.2 

explains both the dynamic representation and the filtering problem in DSE of power systems. 

 

7.1.1 Dynamic Model of the Power System 

 
Different models for representing the slow system dynamics have been reported in the past [93-

96]. Some of these models start from the assumption that the quasi steady state behaviour of 

the system, monitored in time steps of a few minutes, can be represented by a linear discrete-

time transition (prediction) of states:  

1k k k k k+ = + +x F x g q  (7.1)

Here, xk is the state vector consisting of magnitudes and angles of nodal voltages. Matrix Fk 

and vector gk describe the transition process of the states and qk is the white Gaussian noise 

vector of the prediction model at time k. The values of F and g can be obtained by online or 

offline methods. 

 

A common and widely accepted approach for calculating F and g is the online parameter 

identification technique (the Holt’s Method) introduced in [94]. Reference [96] proposed a 



Chapter 7 – Dynamic State Estimation 

152 

method to calculate F and g based on a realistic state transition using the network equations. 

The transition for each state takes into account the effect of neighbour state variations.  

 

Other techniques introduce load prediction to represent the transition of states more 

realistically [88, 97, 98]. The reason for doing this is that loads and generators are key factors 

determining the system dynamics. Moreover, changes of loads are more independent of one 

another and the pattern they follow is easier to predict. Once loads are predicted at all buses, a 

load flow calculation can provide the predicted state at time k+1. For all the methods cited 

above, a linear dynamic model for the state transition was considered to be sufficient for quasi 

stationary system behaviour [97]. 

 

7.1.2 Filtering Problem 

 
The filtering process consists of comparing the set of real-time measurements z with the model 

equations h(x), as follows:  

1 1 1( )
k k k+ + += +z h x e  (7.2)

where zk+1 is the measurement vector, h(xk+1) is the nonlinear equations modelling the 

corresponding zk+1 as a function of state variables and network parameters and ek+1 is the 

Gaussian white noise of measurements at k+1.  

 

The predicted state vector is corrected for each time instant k and any bad data in the set of 

measurements is filtered out. The state prediction (dynamic model) and the state correction 

(filtering) are processed using extensions of the Kalman Filter.  

 

7.2 Kalman Filters  
 

The Kalman Filter is a linear dynamic state estimator that propagates the mean and covariance 

of the state through time [79]. The mean of the state is the Kalman filter estimate of the state 

and the covariance of the state is the covariance of the Kalman Filter state estimate. Each time 

a set of measurement is received, the mean and covariance of the state is updated.  
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Suppose the linear system: 

1 1 1k k k k− − −= + +x Fx Bu q   (7.3) 

k k k
= +z Hx e   (7.4) 

where qk-1 and ek are the system and measurement errors, with covariance matrix Qk-1 and Rzk, 

respectively. Matrix F and B relate the previous state and the system input uk-1 with the actual 

state vector xk whereas H relate the set of measurements zk with the set of states. The problem 

consists of estimating the state vector given the state prediction (7.3) and the state update (7.4) 

at time k. This problem is reduced to having two types of measurements: 

• The well known set of real-time measurements zk, defined in (7.4), with error 

covariance matrix Rzk 

• The pseudo-measurements consisting of the predicted states 
k

x , obtained from (7.3), 

with error covariance matrix HLG&. 

 

Based on this, the new set of measurements z�  at time k is built up by: 

 

1 1
ˆ

k k

k

k k k− −

   
= =   +   

z z
z

x Fx Bu
� .  (7.5) 

 

In order to estimate the value of x at time k, it is necessary to minimise the augmented 

objective function: 

[ ] [ ] [ ] [ ]1 11 1
( )

2 2

T T

k k k k zk k k k k k xk k kJ
− −= − − + − −x z H x R z H x x x P x x .  (7.6) 

 

Note that this objective function has the same structure as a linear WLS problem. Hence, the 

WLS solution of (7.6) is: 

1 1 1ˆ [ ]T T

k k zk k k zk k

− − −=x H R H H R z� �
� � � � ,  (7.7) 

where 
k

H�  is the Jacobian matrix of the augmented set of measurements 
kz�  and zkR �  is the 

augmented covariance matrix. Equation (7.7) can be expressed as, see Appendix E: 

( )ˆ
k k k k k k= + −x x K z H x   (7.8) 

where matrix Kk is the Gain matrix defined by: 

( )
1

T T

k xk k zk k xk k

−

= +K P H R H P H .  (7.9) 

Finally, the covariance matrix of the updated state estimate is  
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ˆ ( )
xk k k xk

= −P I K H P   (7.10) 

The advantage of the Kalman filter is that it is a recursive method and it can be used for online 

applications. It only uses the incoming set of measurements at instant k but keeps the 

information of the previous measurements by using the previous state estimate (at k-1). 

Unfortunately, most of the power system processes are non-linear and the Classical Kalman 

filter could be used in few real problems. In order to cope with more complex non-linear 

systems, such as the power systems, extensions of the Kalman filter have been developed and 

they are presented in the following Sections. 

 

7.2.1 The Extended Kalman filter 

 

Consider the case where the state prediction and state update are defined by non-linear 

equations: 

1 1 1( , , )
k k k k− − −=x f x u q  (7.11)

( , )
k k k

=z h x e  (7.12)

Functions f and h are non-linear equations representing the system and measurements models 

in terms of the state variables x and the input variables 1k −u . In addition, kz  is the 

measurement vector whereas 1k −q  and 
ke  are the system and measurement Gaussian noises 

with zero mean and uncorrelated covariance matrices Qk-1 and Rk, respectively.  

 

As the equations are non-linear, the Extended Kalman Filter (EKF) performs a linearisation of 

(7.11) and (7.12) around the previous and predicted state vectors, respectively. This is achieved 

by calculating the partial derivatives of f and h with respect to x, as follows: 

1 1
ˆ( , , )

k k
k

− −∂
=

∂

f x u 0
F

x
, (7.13)

( , )k
k

∂
=

∂

h x 0
H

x
. (7.14)

Once the equations are linearised, the EKF is executed similarly to the linear Kalman Filter. 

The predicted mean and covariance are approximated by: 

1 1
ˆ( , , )

k k k− −=x f x u 0 , (7.15)

ˆ 1 1

T

xk k xk k k− −= +P F P F Q . (7.16)
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and the Gain matrix is approximated by: 

( )
1

T T

k xk k k xk k k

−

= +K P H H P H R . (7.17)

Based on this, the predicted state vector is updated with the new set of measurements at time k: 

( )ˆ ( )k k k k k= + −x x K z h x , (7.18)

ˆ ( )
xk k k xk

= −P I K H P . (7.19)

 

The linear approximations of (7.11) and (7.12) lead to reduced accuracy of results because non-

linear terms are neglected. To overcome this drawback, iterative Kalman filter methods have 

been proposed [98, 99]. However, the iteration procedure may become time consuming with 

significantly higher CPU requirements. This could be a particular obstacle in DSE, if the data 

refreshing rate is larger than in the classical steady state estimation.  

 

A novel technique called the Unscented Kalman filter, based on the Unscented Transformation 

(UT) theory introduced in Chapter 5, presented an opportunity to cope with nonlinearities in 

dynamic state estimation. In this approach, the non-linear equations are not linearised as with 

the EKF. Instead, a statistical distribution of the state is propagated through the non-linear 

equations, providing better estimates of the actual state and the posterior covariance matrix.  

 

7.2.2 The Unscented Kalman Filter 

 

The Unscented Kalman Filter (UKF) is an efficient discrete-time recursive filter able to solve 

estimation problems in the following form:  

1 1 1( , )
k k k k− − −= +x f x u q  (7.20)

( )
k k k

= +z h x e . (7.21)

Similar to the EKF formulation, f and h are both non-linear equations: x is the state vector, 

1k −u  is the set of input variables and kz  is the measurement vector. Vectors 1k −q  and ke  are the 

system and measurement Gaussian noises with zero mean and uncorrelated covariance 

matrices Qk-1 and Rk, respectively.  

 

The main advantage of the UKF over the EKF is the fact that equations (7.20) and (7.21) are 

not linearised. This avoids the loss of higher order information and consequently improves the 
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properties of the estimator [79]. Furthermore, as no Jacobian or Hessian matrices are needed, 

this offers computational advantages over the EKF. Instead, as described in Chapter 5, only 

multiple evaluations of a limited number of the sigma points in (7.20) and (7.21) are needed. In 

other words, for similar computational requirements, the UKF provides higher accuracy than 

the EKF as higher order terms of the non-linear model equations are considered. 

The UKF consists of the following three major steps:  

- Step 1: Sigma Points Calculation 

- Step 2: Kalman filter State Prediction  

- Step 3: Kalman filter State Correction  

All three above mentioned steps are described below.  

 

7.2.2.1 Sigma Points Calculation 

 

For an initial n×1 state vector 
-1

ˆ
kx , and the corresponding n×n covariance matrix ˆ -1xk

P , a set of 

2n+1 vectors is obtained, called sigma points. These sigma points are chosen deterministically 

and they capture the mean and covariance of the original distribution of 
-1

ˆ
kx  exactly:  

 
0

-1 -1
ˆ ˆ

k k
=X x

,
 (7.22)

( )ˆ-1 1 -1
ˆ ˆ ( ) , 1,..., .i

k k xk i
n i nλ−= + + =X x P  (7.23)

( )ˆ-1 -1 -1
ˆ ˆ ( ) , 1,..., .n i

k k xk in i nλ+ = − + =X x P  (7.24)

where ( )ˆ -1( )
xk i

n λ+ P  is the i-th column of the matrix ˆ -1( ) xkn λ+ P  (using the positive definite 

(PD) square root of a matrix), and parameter λ is defined as λ = α2(n+κ) - n. The parameter κ 

can be used to reduce the higher order errors of the mean and the covariance approximations. 

This parameter can be κ = 3 - n or zero [79].  

 

The scaling parameter α can be chosen between 0.001 and 1.0 p.u. Note that the PD square root 

matrix of ˆ -1xkP  can be obtained from the calculation ˆ -1xkP = AA
T, where A is the lower triangular 

matrix obtained from the Cholesky factorisation of ˆ -1xkP .  
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For the purpose of the estimation initialisation (i.e. when k = 0), the initial state vector and the 

initial covariance matrix have to be defined in advance according to a priori knowledge of the 

system.  

Equations (7.22)-(7.24) can be expressed in the equivalent compact form, 

ˆ ˆ-1 -1 -1 -1-1
ˆ ˆ ˆ[ ] [ ],k k xk xkk

n λ= + + −X x x 0 P P�  (7.25)

where 
-1

ˆ
k

X  is a n× (2n+1) matrix containing the sigma points calculated from 
-1

ˆ
k

x  and ˆ -1xk
P . 

 

7.2.2.2 Kalman Filter State Prediction 

 

The sets of sigma points calculated in Step 1 are evaluated, one by one, through the prediction 

function defined in (7.20):  

-1 1
ˆ( , ),i i

k k k −=X f X u  (7.26)

where 
1

ˆ i

k −X  is the i-th column of matrix 
1

ˆ
k −X  and the resulting 

k
X  is a n×(2n+1) matrix 

containing the propagated sigma points. Next, compute the predicted state mean vector 
kx  and 

the predicted covariance matrix
xk

P as follows [79]:  

2

0

W ,
n

m i

k i k

i=

=∑x X  (7.27)

2

1

0

W ( )( ) .
n

c i i T

xk i k k k k k

i

−
=

 = − − + ∑P X x X x Q  (7.28)

The weights in (7.27)-(7.28) can be calculated using the following equations [100]: 

2

0 0, (1 ),
( )

m c
W W

n n

λ λ
α β

λ λ
= = + − +

+ +
 (7.29)

1
,

2( )

m

iW
n λ

=
+

 (7.30)

1
.

2( )

c

iW
n λ

=
+

 (7.31)

The variable β takes a value of two, typical for Gaussian distribution. 
 
7.2.2.3 Kalman Filter State Correction 

 

The predicted state mean vector and the covariance matrix calculated in Step 2 are used to 

update the sigma points. In compact form, the sigma points are obtained as, 

[ ] [ ].k k k xk xkc
− = + −X x x 0 P P�  (7.32)

These new points are evaluated, one by one; in the non-linear update function h defined in 

(7.21), as follows, 
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( ).i i

k k

− −=Z h X  (7.33)

As above, 
i

k

−
Z  correspond to the i-th column of matrix k

−Z . The mean of the propagated points 

is calculated as follows, 

2

0

W .
i

n
m

k i k

i

−

=

=∑µ Z  (7.34)

The measurement covariance matrix and the cross-covariance of the state and measurement are 

subsequently obtained as, 

2

0

W ( )( )
i i

n
c T

k i k k k k k

i

− −

=

 = − − +
 ∑S Z µ Z µ R  (7.35)

2

i 0

W ( )( )
i i

n
c T

k i k k k k

− − −

=

 = − −
 ∑C X x Z µ  (7.36)

The filter gain Kk, the state ˆ
kx , and the covariance matrix 

x̂kP  are computed by, 
1

k k k

−=K C S  (7.37)

ˆ [ ]
k k k k k

= + −x x K z µ  (7.38)

ˆ

T

xk xk k k k
= −P P K S K  (7.39)

 

In general terms, for nonlinear systems, the UKF is easier to implement than the EKF because 

there is no need to calculate any derivative or Jacobian matrix. Additionally, the UKF results in 

approximations that are accurate to the third order for the Gaussian distribution, for any 

nonlinearity, and at least to the second order for non-Gaussian distributions, providing more 

accurate estimation compared to the EKF which linearises the system equations [101, 102].  

 

To date, the UKF has been explored in few power system applications. The work presented in 

[103-105] provide good examples of the estimation capacity of the UKF in the non-linear 

problem of synchronous machine parameter estimation. In addition, the work presented in 

[106, 107] demonstrate how the UKF can be also used to filter noisy measurements to estimate 

frequency and amplitude of power system signals.  

 

Unlike the applications mentioned above, the problem of power system state estimation is 

much larger. Based on this, it is desired to explore the benefits of the UKF in this very different 

but not less challenging problem. 
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7.3 Power System State Estimation using the UKF  

 

The UKF is very useful for estimating the unknown state variables, or parameters, of non-

linear systems. This gives us the opportunity to apply more realistic and complex power system 

models without having difficulties caused by the linearisation process.  

 

In this work, the non-linear equations correspond to the mathematical models of transferred 

and injected active and reactive powers, which are functions of nodal voltages and line 

parameters. However, a linear model is used to represent the smooth dynamics of the system 

determined by the slow load variations.  

 

The DSE presented in this work only considers the aforementioned slow load variations. The 

other faster system dynamics, created by large disturbances in interconnected networks, has not 

been addressed in this Thesis. Nevertheless, the application of the UKF to estimate power 

system states and parameters of synchronous machines during transient conditions can be 

found in [104, 108] as part of the results achieved during this PhD project. 

 

7.3.1 Dynamic Model of the System 

 

Given a state vector x composed of the set of voltage magnitudes and angles, the dynamics of 

the system (prediction for xk+1) can be modelled as a discrete time formulation, as detailed in 

(7.1) and (7.2):  

1k k k k k+ = + +x F x g q  (7.40)

1 1 1( )
k k k+ + += +z h x e  (7.41)

where matrix F and vector g are updated online using the Holt’s Linear Exponential Smoothing 

technique [94]: 

(1 )
k k k

α β= + ⋅F I  (7.42)

1 1(1 )(1 ) (1 )
k k k k k k k k

β α β β− −= + − − + −g x a b  (7.43)

where I is the identity matrix, and both αk and βk are parameters lying in the range from 0 to 1, 

k
x  is the predicted state vector at time k, and vectors a and b at time k, are obtained as:  

ˆ (1 )
k k k k k

α α= + −a x x  (7.44)



Chapter 7 – Dynamic State Estimation 

160 

-1 -1( ) (1 )
k k k k k k

β β= − + −b a a b  (7.45)

Note that αk and βk must not be confused with parameters α and β used in the UKF approach. 

The application of this method provides good predictions even when each state variable is 

assumed to be independent (uncorrelated) of all others. 

 

Vector zk+1 in (7.41) consists of power system measurements, including injected and 

transferred active and reactive powers, voltage magnitudes, or wide area synchrophasors 

obtained from Phasor Measurement Units (PMU).  

 

The synchrophasors of bus voltages are linearly related to the state variables whereas the 

synchrophasors of branch currents, in rectangular or polar form, are represented as non-linear 

functions in terms of the state variables, as discussed in Chapter 5.  

 

The conventional and synchronised measurements can be simultaneously used in the proposed 

formulation i.e. a hybrid dynamic estimator. In fact, the inclusion of synchrophasors does not 

make any change in the formulation.  

7.3.2 State Prediction and Correction 

 

The UKF algorithm used to estimate the state of a power system with N buses starts with an 

assumption of the initial state vector 
0x̂  and the corresponding covariance matrix ˆ0x

P . Since the 

reference bus angle is known and it is invariant in time, the state vector has a dimension 

n = 2N-1 equal to the number of the unknown state variables.  

 

According to (7.25), the set of 2n+1 sigma points are calculated, obtaining 
0X̂ . These sets of 

sigma points (each column of 
0X̂ ) are evaluated, one by one, in the prediction equation (7.26), 

creating by this a matrix containing the propagated sigma points at k = 1:  

1 0 0 0
ˆi i= +X F X g  (7.46)

where 1

i
X  and 

0
ˆ iX  are the i-th columns of matrices 1X  and 

0X̂  respectively. F0 and g0 are 

initialised from (7.42) and (7.43).  
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Then, the predicted state vector and the predicted covariance matrix at time k = 1 are obtained 

using (7.27) and (7.28). A new set of sigma points is built, according to (7.32), which capture 

the distribution of the predicted state vector. These sigma points are grouped in matrix 
1

−X  and 

they are propagated through the measurement update equations (7.33):  

1 1( )
i i− −=Z h X  (7.47)

As above, 
1

i−
Z  and 

1

i−
X  correspond to the i-th column of 1

−Z  and 1

−X , respectively.  

 

The mean and measurement covariance matrices are obtained using (7.34)-(7.36), whilst the 

filter gain, the states, and the covariance matrix are calculated using (7.37)-(7.39). The 

procedure above is repeated for every time instant k.  

 

From the above mathematical description of the Unscented Kalman Filter, it is obvious that it 

does not require the computation of the Jacobian matrix, making the method easier to 

implement with similar computational requirements.  

 

7.3.3 Detection of Anomalies 

 

The presence of gross bad data in measurements and sudden changes of states caused by 

topology errors or sudden disconnection of generators/loads are considered as anomalies. 

These anomalies degrade the accuracy of the DSE if they are not detected during the estimation 

process, independently of the filtering technique applied. 

 

The advantage of having a predicted state vector for time k is that it helps to identify the 

presence of these anomalies through the normalised innovation vector τk. For the i-th 

measurement, the normalised innovation process in the UKF is: 

, , ,/
k i k i k i

vτ ρ= , i=1,2,…,m (7.48)

where, 

, , ,k i k i k i
v z µ= −  (7.49)

2
2 2 2

, , , ,

0

( )
j

n
c

k i j k i k i k i

j

W rρ µ−

=

= − +∑ Z  (7.50)
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in which ,

j

k i

−
Z  is the (i,j) element of k

−Z and 2

,k ir  is the i-th diagonal element of Rk. Additionally, 

a random variable Λk whose samples are the normalised innovation process will exhibit a 

normal distribution with zero mean and unit variance [93, 99] . 

 

Normally, in the presence of gross bad data the corresponding normalised innovation element 

τk,i will exhibit a large magnitude compared to other elements of vector τk. Additionally, the 

distribution of Λk will be distorted, with respect to the symmetrical distribution seen during 

normal conditions. This facilitates the identification of bad data that can be rejected from the 

set of measurements [97].  

 

In the case of a sudden state change, the set of measurements located close to the disturbance 

will exhibit a large magnitude in the corresponding τk,i. Here, Λk still presents a symmetrical 

distribution with different mean and variance.  

 

An option to reduce the effect of sudden state change is to minimise the impact of the 

prediction step by increasing the value of Qk. This is equivalent to concentrating the estimation 

on the filtering step that is going to update the vector of states to the new state condition. In the 

case of topology errors, the corrections are made by running a topology estimation or line 

parameter estimation [93]. 

 

Discrimination between bad data and sudden state change anomalies is necessary to determine 

the action that minimises the effect of the anomaly, once detected. The method adopted in this 

work is based on the skewness ψk of the distribution of Λk, which is a measure of the level of 

asymmetry in the distribution.  

 

As stated before, in the presence of bad data the distribution of Λk loses the symmetry of the 

normal distribution, but for any other anomaly the distribution remains symmetrical. Based on 

this, the occurrence of bad data can be identified by the skewness test [93]:  

k max

k max

Bad data

Any other anomaly

if

if

ψ ψ

ψ ψ

 ≥


<
 (7.51)

The value of 
k

ψ is calculated as follows: 
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3

3, /
k k k

Mψ σ=  (7.52)

where 
3M  is the third central moment and σ  the standard deviation of the distribution, as 

follows: 

{ } { }3 2 3

3, 3 2k k k k kM E Eυ υ= Λ − Λ +  (7.53)

{ }2 2 2

k k kEσ υ= Λ −  (7.54)

{ }k kEυ = Λ  (7.55)

The threshold value ψmax depends on the system and can be identified using offline simulations. 

7.4 Study Cases  

 

The methodology presented in Section 7.3 is validated in the IEEE 14-bus and 57-bus test 

systems [64], see Appendices G.1 and G.2 for details. In both test systems, the UKF was 

compared with the EKF and the static state estimator to show the benefits of the dynamic 

estimators.  

 

In order to simulate the slow dynamics of the test systems, the smooth load changes were 

obtained by running 50 load flow calculations under different loading conditions. The loads 

were varied following a linear trend of 10%, 20%, or 30% over the entire time interval with a 

random fluctuation of 3%.  

 

In the simulated scenarios, the time interval between two scans of measurements is one to two 

minutes. This time can be reduced but it will depend on the frequency at which the readings 

from the remote units arrive at the control centre. In addition, given the advances in 

communication and information technology, in the near term these measurements will be 

available at shorter periods of time, which justifies the use of linear trends to model the 

transition of the states, as presented in this work. 

 

In the simulations, the generator outputs were changed according to the assignment of the 

participation factors. This methodology avoids the overload of the swing bus and provides 

more realistic system operation.  
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In order to test the proposed power system dynamic state estimator, three different scenarios 

were considered:  

 

1. Normal operation condition in 14-bus test system: All loads change according to the 

above specified linear trend. Noisy measurements were included but none of them 

corresponded to large bad data.  

2. Sudden load step change in 14-bus test system: A portion of the load in Bus 2 was 

suddenly disconnected at time instant k = 30.  

3. Presence of bad data in 57-bus test system: The active and reactive transferred power 

measurements in branch 1-2 were corrupted by Gaussian random errors whose standard 

deviations were 15 times larger than those presented in Table 5.3. The errors were 

included at k = 25 and disappeared thereafter.  

7.4.1 Performance Indices 

 

The assessment of the UKF performance and its comparison with the EKF and the static 

estimator was carried out using the following performance indices [109, 110]:  

1. The estimation error is assessed using: 

1

1 n
i i t

k k k

in
ξ

=

= −∑ x x  (7.56)

where x and xt are respectively the filtered and the true (actual) state vectors. 

2. The Overall Performance Index (OPI) is obtained as: 

 

 

ˆ i i t

k k

k i i t

k k

z z
OPI

z z

−
=

−

∑
∑

 (7.57)

In which ˆi

kz  is the estimated measurement vector, i

kz  is the noisy (real) measurement vector, 

and  i t

kz  is the true vector of measurements. 

 

7.4.2 Simulation Results 

 

The results are now presented to demonstrate the benefits of using dynamic state estimators. 

The 14-bus test system is used to demonstrate the performance of the estimators in normal 
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conditions and sudden changes whereas the 57-bus test system is used to assess the capabilities 

of the dynamic estimators to detect and identify bad data. 

 

The measurement allocation of conventional and synchronised measurements is presented in 

Figures 5.12 and 5.13. Additionally, the set of measurements were corrupted with random 

additive Gaussian noise with zero mean and standard deviation presented in Table 5.3. 

 

To initialise Holt’s technique, the first two samples (at times k = 0 and k = 1) of voltage 

magnitudes and angles were taken from the last two state estimation solutions, see 

Appendix F.1. This means that the estimation process runs from time instant k = 2 up to k = 50 

and uses αk = 0.8 and βk = 0.5 in (7.42)-(7.43) during the entire time interval, as proposed 

in [94]. Additionally, as the states at k = 0 and k = 1 were assumed to be known and accurate, 

the diagonal elements of matrix P0 were set to 10-6. Furthermore, the elements of the diagonal 

matrix Qk-1 were kept constant at 10-6 during the simulation [109].  

 

7.4.2.1 Normal Operation Case in 14-bus Test System 

 

Table 7.1 presents the performance indices of the static state estimator, the EKF, and the UKF 

for normal operating conditions with and without synchronised measurements. The inclusion 

of the prediction stage in dynamic estimators allows better filtering of measurement noise that 

results in more accurate estimations. This can be seen in the reduction of the performance 

indices when compared to the static estimator.  

 

Table 7.1: Performance indices during normal conditions for 14-bus test system 

Case Index Static   EKF UKF 

No PMU 
ξ x104 [p.u] 9.5316 5.7015 5.698 

OPI [p.u] 0.6349 0.4959 0.4691 

PMU 
ξ x104 [p.u] 4.0865 2.7394 2.658 

OPI  [p.u] 0.2464 0.2188 0.1948 
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Figure 7.2 presents the plots of the OPI for the 14-bus test system when only conventional 

measurements are used. Under normal operating conditions, the UKF has lower OPI than that 

of the EKF or the static estimator.  

 

Figure 7.3 presents the OPI when conventional and synchronised measurements are used. The 

presence of more accurate measurements (synchrophasors) makes it possible to reduce the OPI 

for all three state estimators if compared to Figure 7.2. 

 

Similarly as in Figure 7.2, the UKF obtains the most accurate estimations. This proves that the 

UKF has higher filtering capacities during slow dynamic changes than the corresponding EKF 

estimator as higher non-linear terms of the measurement equations are considered during the 

estimation process. 

 

Figure 7.2: OPI for normal conditions in the 14-bus system with conventional measurements 
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Figure 7.3: OPI for normal conditions in the 14-bus system with PMU measurements 
 

 

7.4.2.2 Sudden Load Changes in 14-bus Test System 

 

The second scenario considered in this test system was the outage of a certain percentage of the 

load in Bus 2 at k = 30.  

 

Figure 7.4 presents the OPI for the entire observation time interval. Here both the UKF and the 

EKF have low estimation performance when the sudden load change occurs. This is because 

the dynamic estimators take into consideration the previous state estimation (before the sudden 

change), which is very different to the actual state condition. Since the static WLS does not 

consider previous estimations, the actual estimation is not affected from the sudden load 

change.  
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Figure 7.4: OPI calculation for sudden load change in 14-bus system with PMU measurements 
 

From Figure 7.4, it is clear that the UKF is more sensitive than the EKF to abrupt changes of 

states. However, as soon as the estimator is able to track the new operating point, the UKF 
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Figure 7.5 presents the skewness of the distribution of Λk for all k instants. Even during the 
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Figure 7.5: Skewness calculation for sudden load change in 14-bus system with PMU measurements 
 

 

Figure 7.6: Normalised Innovation vector for sudden load change in 14-bus system with PMU 

measurements 
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surrounding of Bus 2 is different with respect to the predicted operating condition. As a 

consequence, a sudden change of the state is detected around Bus 2. 

 

There are different actions that can be taken once a sudden change of states is detected. The 

first option is to increase the covariance matrix ˆ -1xk
P so that the estimator neglects the predicted 

state vector. The second option, and probably the most accurate alternative, would be to use the 

static estimator once the sudden change is detected. The dynamic estimator would be used 

again when the system model is able to track the new operating point. In cases where the 

prediction step is based on load prediction approaches, an approximation of the load/generation 

change should be incorporated. 

 

7.4.2.3 Presence of Large Bad Data in 57-bus Test System 

 

The 57-bus test system is now used to assess the performance of the dynamic estimators in 

presence of gross bad data. In this test system, the set of measurements is composed by the 

conventional and synchronised measurements. 

 

 

Figure 7.7: OPI during bad data at k = 25, in the 57-bus system with PMU measurements 
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Figure 7.7 presents the OPI for all k instants. From the plot, it is confirmed that the estimation 

results are affected when gross errors are undetected in the set of measurements. This suggests 

that the inclusion of a bad data processor would be very beneficial.  

 

Figure 7.8 shows the skewness of the distribution of Λk calculated using both the UKF and the 

EKF. It can be seen that very similar results are obtained. At the time of the bad data 

occurrence (k = 25), the skewness reaches values beyond the maximum value 
maxψ = 3 p.u., 

which is an indication of the presence of bad data.  

 

Figure 7.8: Bad data detection using the Skewness calculation in the 57-bus system with PMU 

measurements 
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Figure 7.9: Bad data detection using the Chi-Square test in the 57-bus system with PMU measurements 
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Figure 7.10 presents the normalised innovation vector at k = 25. Here, the normalised vector 

indicates that the power transfer measurements P12 and Q12 have large errors and must be 

rejected.  

 

Figure 7.10: Bad data identification at k = 25 in 57-bus system with PMU measurements 
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The better performance of the normalised innovation vector is related to the higher 

measurement redundancy level of dynamic estimators that make use of the prediction step and 

it helps to better identify the erroneous measurements.  

 

Figure 7.11: Bad data identification using normalised residual analysis at k = 25 in 57-bus system with 

PMU measurements 
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linear equations. However, changes of the recommended parameter values had low impact on 

the final accuracy of the UKF estimation. For instance, using κ = 3- n or κ = 0 did not affect the 

estimation result for any scenario or power system. 

  

It was also found that the UKF has similar computational requirements to the EKF. In fact, the 

major challenge of these dynamic estimators is how to simplify the calculation of covariance 

matrices for large scale power systems. For example, in order to improve the computational 

efficiency, the covariance matrix can be kept constant during few consecutive time instants for 

normal operating conditions. Additionally, since the Sk matrix is very sparse, one could 

calculate the gain matrix Kk using sparsity techniques. Alternatively, one can reduce the 

dimension of the problem using hierarchical estimators [87, 111]. 

 

The disadvantage of the proposed UKF based dynamic estimator is the inability to deal with 

equality constraints to represent null power injection measurements. More work is to be done 

on this matter to overcome this limitation. 

 

7.6 Summary  

 

The ability to process faster and more accurate measurements (such as synchrophasors) makes 

us re-think the feasibility of using Dynamic State Estimators (DSE) in modern power system 

control rooms. 

 

The main advantage of DSE with respect to static estimators is the prediction step. The DSE 

not only estimates the actual system state but it predicts the future system state before the new 

set of measurements arrives at the control centre.  

 

The work presented in this Chapter proposes the implementation of the UKF in power system 

state estimation.  
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It was found that the proposed UKF based DSE performs better than the EKF with very similar 

computational demands. In order to determine the effectiveness of the proposed DSE, two test 

systems were simulated under different operating conditions. 

 

From the simulation tests, it was found that the DSE obtains better estimation results than the 

static one if the system model is accurate and represents the actual transition of the states. By 

using the prediction step, the DSE can detect the unexpected change of states, see the 14-bus 

test system, and it can detect and eliminate bad data, as presented for the 57-bus test system.  

 

In terms of detection and elimination of bad data, the Skewness test and the normalised 

innovation vector were compared with the Chi-Square distribution test and the normalised 

residual method (in static estimators). Due to the availability of a prediction step in DSE (used 

as pseudo-measurements), the measurement redundancy of the system was higher than the 

static estimator that helped to detect and eliminate the truly erroneous measurements. 

 

More work is to be done to take advantage of the UKF to deal with non-linear systems. That is, 

a more accurate model of the transition of states should be applied and compared with respect 

to the linear transition model used in this work. Additionally, the proposed method can be 

extended to consider larger networks in which hierarchical schemes may be required. 
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Chapter 8 Conclusions and Future Work 
 
 

This PhD Thesis presented new algorithms to analyse the impact of uncertainty in power 

system operation and to enhance the state estimation practice of power systems supported by 

Phasor Measurement Units. 

 

The following Sections summarise the main conclusions drawn from the results presented in 

this PhD Thesis and present some suggestions for future work that were not addressed in this 

piece of research due to time limitations. 

8.1 Conclusions 

 

This Thesis introduced and tested a new Probabilistic Load Flow (PLF) methodology based on 

multiple Weighted Least Square (WLS) runs. The main advantage of this approach is that it 

uses the actual Probability Density Functions (PDFs) of the input variables rather than only the 

first statistical moments.  

 

A comparison of different methods to simplify Gaussian Mixture Models (GMMs) used to 

represent non-Gaussian power system variables was presented. The reduction methods helped 

to decrease the number of WLS runs of the proposed PLF while maintaining a good 

approximation of the original distributions. 

 

It was found that the Integral Squared Difference (ISD) discrimination method always 

identified the pair of components that when merged produced the minimum difference between 

the original and the reduced Gaussian mixture. However, this method was found to be time 

consuming compared to the Kullback-Leibler (KL) upper bound or the Squared Distance (SD) 

algorithms. 

 

The KL upper bound algorithm was found to be very efficient in terms of computational 

demands and accuracy. This can be the best choice if the number of Gaussian components to 

merge is high. 
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The fine tuning method obtains better reductions than any pair-merging method. However, the 

pair merging methods can be used as an initial guess to ensure the convergence of the optimal 

based method. 

 

From the validation of the proposed PLF study in Chapter 4, it was found that few errors of 

approximation are introduced by the assumption that the correlation between Gaussian 

components that belong to two particular Gaussian mixtures is the same as the correlation 

between those Gaussian mixtures.  

 

This assumption introduces some errors in the calculated PDFs of bus voltages and power 

flows at the proximities of the non-Gaussian distributed power injections. These errors become 

more evident when the correlated Gaussian mixtures have large Coefficient of Variation (CV) 

and when they are modelled by many Gaussian components. For this reason, the calculated 

PDFs of voltage and power flows are closer to the Monte Carlo Simulation (MCS) plots when 

fewer Gaussian components are used to model the correlated input variables. 

 

It was found that the proposed PLF can be implemented in both meshed and radial networks. 

The approximation provides more realistic results when compared to not including any 

correlation between variables.  

 

In the case of radial distribution systems, the problem becomes an over-determined state 

estimation calculation when real-time measurements are included in the WLS formulation. 

From the simulated cases, it is concluded that power injections, modelled as GMMs, have 

greater effect on the estimated flows and voltages around it when they are far from the real-

time measurements or when these power injections are relatively large compared to the sum of 

the power injections along the feeder.  

 

A study of different alternatives for including synchronised measurements in power system 

state estimation was presented in the Thesis. It was found that the WLS formulation has 

convergence problems when the current measurements are expressed in polar form. This is 

caused by abrupt changes in sign and magnitude of the corresponding Jacobian elements for 
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consecutive iterations. The study shows that a constraint formulation can be used to include 

synchronised measurements in polar form. The level of accuracy is similar to that of 

rectangular form but the constraint formulation avoids the propagation of measurement 

uncertainty. On the contrary, it was found that the pseudo-voltage formulation reduces the 

accuracy of the hybrid state estimator. 

 

The research work demonstrated how the state estimation problem of large interconnected 

power systems can be decentralised into smaller local area state estimators. This 

decentralisation is carried out to reduce the computational burden and complexity of processing 

large sets of measurements. The mismatch between boundary buses was corrected by using the 

coordination level’s state estimation. 

 

Multi-area state estimators are based on the assumption that errors in measurements from one 

area have little effect on the estimated bus voltages in other areas. The results demonstrated 

that not including power injection measurements in the coordination level reduced the size of 

the problem. This reduction had little effect on the estimated boundary bus voltages as long as 

the redundancy level is maintained with pseudo-measurements of power flows and other 

available real measurements in boundary buses.  

 

The most accurate estimation results were obtained when the estimated power flows from local 

area estimators were accurate. To achieve this, it is necessary to have reliable and accurate 

measurements in or close to boundary buses and maintain a good level of redundancy to detect 

and reject bad data. 

 

The study of including synchronised measurements in modern state estimators was also 

extended to the problem of Dynamic State Estimators (DSE). The main benefit of dynamic 

estimators is that they can process faster and more accurate measurements (such as PMU 

measurements) and it is possible to take advantage of the predictive nature of the DSE. By 

using the prediction step, the DSE can detect the unexpected change of states and the presence 

of bad data. 
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It was found that the Unscented Kalman Filter (UKF) performs better than the Extended 

Kalman Filter (EKF) with very similar computational demands. Although both filters are 

affected by sudden changes of states, the UKF was found to be more sensitive than the EKF. 

 

The study also compared the dynamic and static state estimators in terms of detection and 

elimination of bad data. Due to the availability of a prediction step in DSE, the measurement 

redundancy was higher than in the static estimator and this helped to better detect and eliminate 

the truly erroneous measurements. 

 

8.2 Future Work 

 

This Thesis presented a new PLF for including non-Gaussian correlated input variables. The 

test results showed that assuming a constant correlation coefficient for all the WLS runs creates 

some approximation errors in the PDFs of power flows close to the non-Gaussian correlated 

input variables. These errors were more evident when the input variables were modelled by 

many Gaussian components and when the CV was large (> 50%). There is an opportunity to 

explore a different assumption to include correlation between the input variables in each WLS 

run. 

 

The distribution system state estimator, as an extension of the PLF methodology, can be 

improved to consider stochastic topology changes. The line parameters of the branch whose 

connection status is uncertain should be included in the state vector. These parameters should 

be modelled as discrete variables with two possible values: the actual parameters (branch 

connected) or zero (branch disconnected). However, as the discrete probabilities are 

approximated as Gaussian delta functions (modelled as GMMs), this would result in more 

WLS runs. 

 

A comparison of three hybrid state estimators was presented in Chapter 5. The comparison was 

based on accuracy for normal operating conditions. This comparison can be extended to 

account for the impact of parameter errors on hybrid state estimators. It is likely that some 
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methods will be more affected and some others may be more adequate to detect these 

parameter errors. 

 

Although optimal location of PMU was not addressed in this PhD Thesis (due to the large 

amount of available literature related to this topic), it is important to point out the need for the 

optimal placement of PMUs for Multi-Area State Estimation. The optimal location of PMUs 

should be assessed in terms of estimation accuracy, ability to improve redundancy levels, and 

observability of boundary and adjacent-to-boundary buses.  

 

As it was presented in Chapter 7, the dynamic state estimator based on the UKF is largely 

affected during sudden changes of states. This is caused by the difference between the 

prediction step and the new set of measurements. Since the sudden change of states can be 

detected from the innovation vector, future work should be focused on algorithms to re-adjust 

the prediction step to make sure that the prediction step is in agreement with the new set of 

measurements. 

 

More work is to be done to take advantage of the UKF to deal with non-linear systems. That is, 

a more accurate model of the transition of states should be applied and compared with respect 

to the linear transition model used in this work. Additionally, the proposed DSE can be 

extended to consider larger networks in which hierarchical schemes may be required. 

 

8.3 Final Thesis Summary 

 

The aim of this Thesis was to provide a step forward to estimate the operating conditions of 

electric power systems in the presence of uncertain input variables, and to improve the state 

estimation practice by exploring different formulations for including synchronised phasor 

measurements in static and dynamic state estimators. 

 

Through the successful completion of the research carried out for this Thesis, it has been 

shown that accurate PLF studies can be carried out by the Gaussian Component Combination 

Method (GCCM) as an alternative to Monte Carlo simulations. The GCCM uses the exact 
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PDFs of the input variables and their correlation coefficient. This is an improvement on the 

current knowledge because most of the previous PLF methods only use the first statistical 

moments (e.g., Point Estimate method) and some others have neglected the effect of correlation 

between input variables.  

 

The presented work also demonstrated that it is possible to use polar form of currents (from 

PMUs) in hybrid state estimation without any transformation of variables or measurements. In 

addition, the Thesis introduced a new algorithm for reducing the data exchange in multi-area 

state estimators. The advantage of this approach, with respect to previous formulations, is that 

it only used the boundary and the references buses in the coordination level. The reduction of 

the problem was found to be very effective because the accuracy of the estimation results were 

similar to the results without the proposed simplification.  

 

Finally, this Thesis showed that the DSE can be as effectively as the Static State Estimator 

(SSE) that is currently used in control systems. This work is a good contribution to the current 

knowledge because it demonstrated that the proposed UKF based DSE performs better than the 

classical EKF based DSE, and it has the potential to be used in more complex non-linear 

models of the power system. The proposed DSE will encourage future researchers to explore 

the advantages of the UKF in state estimation and model validation of power systems during 

transient conditions. 
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 Appendices 
 

10.1 Appendix A 

 

10.1.1 A.1: Solution of WLS Formulation 

 
Given the set of measurements z modelled as: 

 

� = ���� + �  (10.1)

 
where h(x) is the set of non-linear functions relating the set of measurements with the state 

variables x, and e  is the set of measurement errors with mean value ���� = 2 and covariance 

matrix � = ��� ∙ ��� = ��������, ���, … , ���  , the WLS estimate of the state vector x is 

defined as the value �� that minimizes the weighted sum of the squares of the measurement 

residual 	 = � − ����. Hence, the objective is to minimize: 

 


��� = �� − ����������� − �����  (10.2)

 

At the minimum, the first order optimality condition must be satisfied. This is, 

 

M��#� = "
��#�
"� = −(���#� ����� − ���#�� = 0  (10.3)

 

where (��#� = "���#� "�⁄ .  

 

By expanding M��#� into its Taylor series around the initial guess x
k, and neglecting the second 

and higher order terms: 

 

M��#� = ���&� + %��&���# − �&� + ⋯ = 0  (10.4)

 

One obtains an iterative solution known as the Gauss-Newton method: 

 

�&4� = �& − �%��&���OM��&�,  (10.5)
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where �� has been replaced by �*+1
 which is the solution at the (k+1)-th iteration. Additionally, 

 

%��&� = "M��&�
"� = (���&� ���(��&�  (10.6)

 

M��&� = −(���&� ����� − ���&��  (10.7)

 

with %��&� called the Gain matrix. Therefore, the solution for �*+1 is: 

 

�&4� = �& + �%��&���O(���&� ����� − ���&��  (10.8)

 
However, the Gain matrix is typically not inverted, but decomposed into its triangular factors, 

and the following linear set of equations are solved using forward/backward substitutions at 

each iteration k: 

%��&�∆�& = (���&� ����� − ���&��  (10.9)

 

with  ∆�*
 = �k+1−�& . 

  

10.1.2 A.2: Solution of constraint WLS Formulation 

 
Lagrange theory is now used to include the set of equality constraints c(x) in the WLS 

formulation. The new minimization problem becomes: 

 

,��, -.� = �� − ����������� − ����� − -/�/���, (10.10) 

  

where λc is the vector of Lagrange multipliers. In order to find the minimum of L, the first 

order optimality conditions are derived:  

 

",��#, -.�
"� = 0 (10.11) 

  
",��#, -.�

"-.
= 0 (10.12) 

 
From which, it is obtained: 
 

PQ��#,-R�
P� = −(���#� ���	��#� − 1���#�/��#� = 2  (10.13) 
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",��#, -.�
"-.

= −/��#� = 2 (10.14) 

 
where 	��#� = � − ���#� is the measurement residual vector and 1��#� = ∂/��#� ∂�⁄ .   

 

The Gauss Newton method is used again to solve the set of non-linear equations iteratively. 

The truncated Taylor series expansion of 	��#� and  /��#� around the initial guess �& is:  

 

	��#� ≈ 	��&� − (��&�∆�& (10.15) 

/��#� ≈ /��&� − 1��&�∆�& (10.16) 

 

From these linear approximations, (10.13) and (10.14) are rewritten as the iterative expression: 

 

0(���&� ���( −1���&�
−1��&� 2 3 0 ∆�&

-.&4�3 = 0(���&� ����� − ���&��
/��&� 3 (10.17) 

 

where ∆�*
 = �k+1−�&, and �� has been replaced by �*+1

. 
 



Appendices 

195 

10.2 Appendix B 

 

10.2.1 B.1: LU Decomposition 

 

A m×n matrix A�  whose rank is n can be decomposed into =A LU�  where L is a lower-

triangular and U is upper triangular. The decomposition starts with the original A�  matrix: 

11 12 13 1

21 22 23

31 32 33

1 2 3

1 2 3

n

n n n nn

m m m mn

a a a a

a a a

a a a

a a a a

a a a a

 
 
 
 
 

=  
 
 
 
 
 

A

�

� �

� �
� � � � � �

�

� � � � �

�

. 
(10.18)

 
Here, n steps are needed to complete the decomposition. Before the s = 3rd step, the matrix 

2s=A�  is obtained: 

11 12 13 1

21 22 23

31 32 33

2

1 2 3

1 2 3

n

s

n n n nn

m m m mn

u u u u

l u u

l l a

l l a a

l l a a

=

 
 
 
 
 

=  
 
 
 
 
 

A

�

� �

� �
� � � � � �

�

� � � � �

�

. 
(10.19)

 

At the s-th step, 

a) If ass is zero, find the first non-zero element aps (p > s) in the s-th column and exchange 

the s-th and p-th rows.  

b) Compute lis = ais/ass with i > s and store it in position A� (i,s). 

c) For each element j in row s (for j = s+1,…, n), obtain a new aij given by aij-lisasj and 

overwrite it on the old aij. Make uij = aij. 

d) Advance, s = s+1. If s = n stop. Else, go back to a).  

 

After the n steps, obtain the U and L factors from A� : 
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11 12 13 1 21

22 23 2 31 32

33 3

1 2 3

1 2 3

1 0 0 0

1 0

0 1 0

0 0 ,

1

0 0 0

n

n
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u u u u l

u u u l l

U u u L
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l l l l
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   
 = =  
   
   
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 
 
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� � �

� �
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�

. 
(10.20)

 



Appendices 

197 

10.3  Appendix C 

 

10.3.1 C.1: Solution of sub-vector hj(·) 

 
The closed form solution of sub-vector hj(·) is as follows: 
 

0 0

2 2

2 2
2 2

3 3 3

2
0 0

( ) ( )
1

( ) 0 ( ) ( )

( ) ( )
2 1

Fj j

j j

j j

j
G

j

j F G

j j

F G
j j j

j j j

E y E y

E y E y

E y E y

ω

µ
η

σ σ

µ σ µ

σ σ σ

 
 
   −   −
 = − 
   

−    − − 
 
 

h

�

�

� �

� � �
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(10.21) 

 

E is the expectation operator for Fj=fY(y)·gj(y,
j

η ) and Gj=gY(y,
j

η )·gj(y,
j

η ). The vector in 

(10.21) contains the zero-th, first and second non-central moments of Fj and Gj. Function Fj is 

expressed in terms of a sum of scaled Gaussian distributions. 

2

2

( , )
1

( )
ij ij

L

j j i ij N
i

F f y
µ σ

ω ω α
=

= ∑�  (10.22) 

with, 

2 2( , )
( )

j i j
ij iN

f
µ σ σ

α µ
+

=
� �

 (10.23) 

2 2 2 1(1 1 )
ij i j

σ σ σ −= + �  (10.24) 
2 2 2( )ij ij i i j jµ σ µ σ µ σ= + � �  (10.25) 

Therefore, the non-central moments of Fj are simply: 

( )0 2

1
j

L

F j i ij

i

E y ω ω α
=

= ∑�  (10.26) 

( ) 2

1
j

L

F j i ij ij

i

E y ω ω α µ
=

= ∑�  (10.27) 

( )2 2 2 2

1

( )
j

L

F j i ij ij ij

i

E y ω ωα µ σ
=

= +∑�  (10.28) 

 

In terms of Gj, it is also expressed as scaled sum of Gaussian distributions: 

2

2 2

( , )
1

( )
ij ij

M

j j i ij N
i

G f y
µ σ

ω ω α
=

= ∑ � �
� � �  (10.29) 

with, 
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2 2( , )
( )

j i j
ij iN

f
µ σ σ

α µ
+

=
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� �  (10.30) 

2 2 2 1(1 1 )
ij i j

σ σ σ −= +� � �  (10.31) 
2 2 2( )ij ij i i j jµ σ µ σ µ σ= +� � � � � �  (10.32) 

Therefore, the non-central moments of Gj are: 

( )0 2 2

1
j

M

G j i ij

i

E y ω ω α
=

= ∑� � �  (10.33) 

( ) 2 2

1
j

M

G j i ij ij

i

E y ω ω α µ
=

= ∑� � � �  (10.34) 

( )2 2 2 2 2

1

( )
j

M

G j i ij ij ij

i

E y ω ω α µ σ
=

= +∑� � � � �  (10.35) 

 

10.3.2 C.2: Solution of matrix P(·) 
 

Each of the elements in the 3×3 matrix P(i,j) in (3.40) is as follows: 

 
( , )

1,1 4,i j =P  

( , )

1,2 2 2
2 ,
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+
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j

i j

µ µ σ σ
ω σ

σ σ

− − +
=

+
P

� � � �
� �

� �
 

 
(10.36) 
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10.4 Appendix D 

 

10.4.1 D.1: Power Flow Calculation in Radial Networks 

 

Te power flow problem is solved when the current injection vector I and the voltage vector V 

satisfy: 

*, 1,...,
i i i

S V I i N= ⋅ = , (10.39) 

bus
=I Y V , (10.40) 

where Ybus is the nodal admittance matrix and N is the number of buses. The iterative 

algorithm is as follows: 

1. Factorize the nodal admittance matrix into its lower L and Upper U matrix components: 

bus
=Y LU . (10.41) 

2. Set initial estimates of voltages and compute the initial currents from (10.40). 

3. Advance the iteration counter, k.  

4. Compute the voltage dependent injected powers: 

sched sched sched
i i iS P jQ= + , (10.42) 

with 

0 ( )PZ PI PPk k ksched
i i Z i I i P iP P V V Vα α α= + + , (10.43) 

0 ( )QZ QI QPk k ksched
i i Z i I i P iQ Q V V Vβ β β= + + . (10.44) 

The elements 0
iP and 0

iQ are the nominal load powers (i.e. the loading conditions at nominal 

voltage). The exponents can be defined accordingly to characteristic values kPZ = kQZ = 2, 

kPI = kQI = 1 and kPP = kQP = 0. The coefficients α  and β indicate the proportion of the 

respective load type (Z-constant impedance, I-constant current or P-constant power) with 

respect to the total power consumption at bus i. 

5.  Compute the injected complex power for iteration (k) 

( )
*

( ) ( 1) ( 1) , 1,...k k k

i i i
S V I i N

− −= ⋅ =  (10.45) 

6. Compute the complex power mismatches using : 

( ) ( ) , 1,...k k sched

i i i
S S S i N∆ = − =  (10.46) 

7. Check if solution is converged within tolerances: 

( ) ( ),k k
i P i QP Qε ε∆ ≤ ∆ ≤  (10.47) 

8. If convergence is achieved stop here, otherwise: 
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9. Compute the complex incremental current injection vector: 

( )
( )

( 1)
, 1,...

k
k i

i k
i

S
I i N

V
−

∆
∆ = =  (10.48) 

10. Compute the total current vector to be used in the next iteration: 

( ) ( 1) ( )k k k−= + ∆I I I  (10.49) 

11. Solve for the complex incremental voltage vector (forward/backward substitution): 

( ) 1 1 ( )k k− −∆ = ∆V U L I  (10.50) 

12. Update the complex voltage vector: 

( ) ( 1) ( )k k k−= + ∆V V V  (10.51) 

13. Go to step 3. 
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10.5 Appendix E 

 

10.5.1 E.1: The Kalman Filter 

 
Suppose the linear system: 

�& = T�&�� + UV&�� + W&�� (10.52) 

�& = (�& + �&  (10.53) 

 

where � is the vector of states, V&�� is the set of input variables and �& is the set of 

measurements. Matrix F and B relate the previous state and system inputs with the new state 

�& and matrix H relates the measurements with the state variables. The first equation is the 

transition of states model (prediction) whereas the second is the measurement model 

(correction). 

 

Vectors �& and W&�� represent the measurement and system error, respectively. These errors 

are assumed to have zero mean and they are uncorrelated. The covariance matrix of W&�� is 

defined by: 

X&�� = ��W&��W&��� �. (10.54) 

 

The problem consists of estimating the state vector x, given the prediction (10.52) and the 

correction (10.53) at instant k. The set of measurements is built up by the real-time 

measurements and the state predictions: 

 

a

�Y& = Z�&�G&[ = Z �&T�#&�� + UV&��[ (10.55) 

 

Where �G& denotes the predicted state at time k according to the transition of states presented in 

(10.52). The error of the augmented measurement vector �Y& is defined as: 

 

�Y& = Z�&\&[ = 0�& − (�&�G& − �& 3. (10.56) 

 

while the prediction error has the following covariance matrix: 
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HD]& = THD#&��T� + X&��. (10.57) 

 

Thus, the covariance matrix of the augmented measurement vector is: 

�IY& = 0�I& 0
0 HD]&3 (10.58) 

 

where ^I& is the error covariance matrix of the real-time measurements, i.e. ^I& = ���&�&��. In 

addition, the augmented Jacobian matrix is defined as: 

k

k

 
=  
 

H
H

I
� . (10.59) 

 

Now, in order to estimate the value of x at time k, it is necessary to minimise the augmented 

objective function: 

[ ] [ ] [ ] [ ]1 11 1
( )

2 2

T T

k k k k zk k k k k k xk k kJ
− −= − − + − −x z H x R z H x x x P x x . (10.60) 

 

Note that this objective function has the same structure as a linear WLS problem. Hence, the 

WLS solution of (10.60) is: 

1 1 1ˆ [ ]T T

k k zk k k zk k

− − −=x H R H H R z� �
� � � � , (10.61) 

 

In view of (10.55)-(10.59), this equation can be rewritten as: 

 

1
1 1

1 1

0 0
ˆ ( ) ( )

0 0

kkT Tzk zk

k k k

kxk xk

−
− −

− −

      
=       
        

zHR R
x H I H I

xIP P
. (10.62) 

 

From (10.62), the state vector is also expressed by: 

( ) ( )
1

1 1 1 1ˆ T T

k xk k zk k k zk k xk k

−− − − −= + +x P H R H H R z P x . (10.63) 

 

This expression can be simplified even more. From the matrix inversion lemma, it is possible 

to demonstrate that [45]: 

( ) ( )
1 1

1 1T T T

xk k zk k xk xk k zk k xk k k xk

− −
− −+ = − +P H R H P P H R H P H H P , (10.64) 
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Hence, equation (10.63) is equivalent to: 

( )

( )

1
1 1 1

1

ˆ ( )T T T T

k k xk k zk xk k zk k xk k k xk k zk k

T T

xk k zk k xk k k k

−− − −

−

= + − +

− +

x x P H R P H R H P H H P H R z

P H R H P H H x

 (10.65) 

 

The coefficient of 
k

z  in the expression above can be rewritten as follows [45]: 

( ) ( )
1 1

1 1 1( )T T T T T T

xk k zk xk k zk k xk k k xk k zk xk k zk k xk k

− −
− − −− + = +P H R P H R H P H H P H R P H R H P H  (10.66) 

 

This resulting matrix is known as the filter's Gain matrix _&: 

_& = HD]&(&���I& + (&HD]&(&���O (10.67) 

By including (10.67) in (10.65), one obtains: 

�#& = �G& + _&��& − (&�G&� (10.68) 

This is the updated state estimate at k, note that it is made of the predicted state and the 

correction from set of measurements �&.  

 

Based on the classical WLS formulation, the covariance matrix of the updated state estimate is 

the inverse of the Gain matrix for the augmented system: 

 

HD#& = %&�O = `(a&��IY&�O(a&b�O = `HD]&�O + (&��I&�O(&b�O
 (10.69) 

 

which is equivalent to (matrix inversion lemma) [45]: 

HD#& = �c − _&(&�HD]& (10.70) 
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10.6 Appendix F 

 

10.6.1 F.1: Holt’s Initialization 

 

The initialization of the Holt’s technique (introduced in Chapter 7) was carried out by using the 

first two samples (at k = 0 and k = 1) of voltage magnitudes and angles taken from the previous 

estimations. Based on this, x0 and x1 are known.  

 

In order to initialize the Holts method, equations (7.44) and (7.45) are used: 

ˆ (1 )
k k k k k

α α= + −a x x  (10.71)

-1 -1( ) (1 )
k k k k k k

β β= − + −b a a b  (10.72)

 

As it is desired to estimate the state vector x at k = 2, it is necessary to calculate ak and bk for 

k = 0 and k = 1. First, set a0 = x0 and b0 = 0 and assume that the prediction at k = 1 was very 

accurate, i.e. 
1 1

ˆ=x x . Now calculate a1 and b1: 

1 1 1
ˆ (1 )α α= + −a x x  (10.73)

1 1 0 0( ) (1 )β β= − + −b a a b  (10.74)

Then calculate F1 and g1: 

1 (1 )α β= +F I  (10.75)

1 1 0 0(1 )(1 ) (1 )β α β β= + − − + −g x a b  (10.76)

From the UKF or EKF, obtain the prediction at k = 2: 

2 1 1 1= +x F x g  (10.77)

After some steps in the UKF (or EKF), obtain the updated state vector 
2x̂ .  

 

When the new set of measurements is received at k = 3, one has to calculate ak and bk for k = 2: 

2 2 2
ˆ (1 )α α= + −a x x  (10.78)

2 2 1 1( ) (1 )β β= − + −b a a b  (10.79)

Note that for k = 2, 3, …, kmax, the prediction vector 
k

x  is calculated from the UKF (or EKF).  
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10.7 Appendix G 

 

10.7.1 G.1: 14-bus IEEE Test System Data 

 

Bus 1

Bus 2

Bus 3

Bus 4

Bus 5

Bus 6

Bus 7

Bus 8

Bus 9

Bus 10

Bus 11

Bus 12

Bus 13

Bus 14

 

Figure 10.1: One Line Diagram 14-bus System 

 

Table 10.1: 14-bus System: Buses Data 

Bus Voltage Generation Demand Shunt Elements 

# Mag(pu) Ang(deg) P (MW) Q (MVAr) P (MW) Q (MVAr) Gs (MW) Bs (MVAr.) 

1 1.060 0.000 232.39 -16.55 - - - - 

2 1.045 -4.983 40.00 43.56 21.70 12.70 - - 

3 1.010 -12.725 0.00 25.08 94.20 19.00 - - 

4 1.018 -10.313 - - 47.80 -3.90 - - 

5 1.020 -8.774 - - 7.60 1.60 - - 

6 1.070 -14.221 0.00 12.73 11.20 7.50 - - 

7 1.062 -13.360 - - - - - - 

8 1.090 -13.360 0.00 17.62 - - - - 

9 1.056 -14.939 - - 29.50 16.60 - - 

10 1.051 -15.097 - - 9.00 5.80 - - 

11 1.057 -14.791 - - 3.50 1.80 - - 

12 1.055 -15.076 - - 6.10 1.60 - - 

13 1.050 -15.156 - - 13.50 5.80 - - 

14 1.036 -16.034 - - 14.90 5.00 - - 
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Table 10.2: 14-bus System: Branch Data 

From To R  X B Tap  

Bus Bus p.u. p.u. p.u. p.u. 

1 2 0.01938 0.05917 0.05280 1.0000 

1 5 0.05403 0.22304 0.04920 1.0000 

2 3 0.04699 0.19797 0.04380 1.0000 

2 4 0.05811 0.17632 0.03400 1.0000 

2 5 0.05695 0.17388 0.03460 1.0000 

3 4 0.06701 0.17103 0.01280 1.0000 

4 5 0.01335 0.04211 0.00000 1.0000 

4 7 0.00000 0.20912 0.00000 0.9780 

4 9 0.00000 0.55618 0.00000 0.9690 

5 6 0.00000 0.25202 0.00000 0.9320 

6 11 0.09498 0.19890 0.00000 1.0000 

6 12 0.12291 0.25581 0.00000 1.0000 

6 13 0.06615 0.13027 0.00000 1.0000 

7 8 0.00000 0.17615 0.00000 1.0000 

7 9 0.00000 0.11001 0.00000 1.0000 

9 10 0.03181 0.08450 0.00000 1.0000 

9 14 0.12711 0.27038 0.00000 1.0000 

10 11 0.08205 0.19207 0.00000 1.0000 

12 13 0.22092 0.19988 0.00000 1.0000 

13 14 0.17093 0.34802 0.00000 1.0000 
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10.7.2 G.2: 57-bus IEEE Test System Data 

 

 
Figure 10.2: One Line Diagram 57-bus System 

 

Table 10.3: 57-bus System: Buses Data 

Bus Voltage Generation Demand Shunt Elements 

# Mag(pu) Ang(deg) P (MW) Q (MVAr) P (MW) Q (MVAr) Gs (MW) Bs (MVAr) 

1 1.040 0.000 478.66 128.85 55.00 17.00 - - 

2 1.010 -1.188 0.00 -0.75 3.00 88.00 - - 

3 0.985 -5.988 40.00 -0.90 41.00 21.00 - - 

4 0.981 -7.337 - - - - - - 

5 0.976 -8.546 - - 13.00 4.00 - - 

6 0.980 -8.674 0.00 0.87 75.00 2.00 - - 

7 0.984 -7.601 - - - - - - 

8 1.005 -4.478 450.00 62.10 150.00 22.00 - - 

9 0.980 -9.585 0.00 2.29 121.00 26.00 - - 

10 0.986 -11.450 - - 5.00 2.00 - - 

11 0.974 -10.193 - - - - - - 

12 1.015 -10.471 310.00 128.63 377.00 24.00 - - 

13 0.979 -9.804 - - 18.00 2.30 - - 

14 0.970 -9.350 - - 10.50 5.30 - - 

15 0.988 -7.190 - - 22.00 5.00 - - 

16 1.013 -8.859 - - 43.00 3.00 - - 

17 1.017 -5.396 - - 42.00 8.00 - - 

18 1.001 -11.730 - - 27.20 9.80 - 10.00 

19 0.970 -13.227 - - 3.30 0.60 - - 
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20 0.964 -13.444 - - 2.30 1.00 - - 

21 1.008 -12.929 - - - - - - 

22 1.010 -12.874 - - - - - - 

23 1.008 -12.940 - - 6.30 2.10 - - 

24 0.999 -13.292 - - - - - - 

25 0.983 -18.173 - - 6.30 3.20 - 5.90 

26 0.959 -12.981 - - - - - - 

27 0.982 -11.514 - - 9.30 0.50 - - 

28 0.997 -10.482 - - 4.60 2.30 - - 

29 1.010 -9.772 - - 17.00 2.60 - - 

30 0.963 -18.720 - - 3.60 1.80 - - 

31 0.936 -19.384 - - 5.80 2.90 - - 

32 0.950 -18.512 - - 1.60 0.80 - - 

33 0.948 -18.552 - - 3.80 1.90 - - 

34 0.959 -14.149 - - - - - - 

35 0.966 -13.906 - - 6.00 3.00 - - 

36 0.976 -13.635 - - - - - - 

37 0.985 -13.446 - - - - - - 

38 1.013 -12.735 - - 14.00 7.00 - - 

39 0.983 -13.491 - - - - - - 

40 0.973 -13.658 - - - - - - 

41 0.996 -14.077 - - 6.30 3.00 - - 

42 0.967 -15.533 - - 7.10 4.40 - - 

43 1.010 -11.354 - - 2.00 1.00 - - 

44 1.017 -11.856 - - 12.00 1.80 - - 

45 1.036 -9.270 - - - - - - 

46 1.060 -11.116 - - - - - - 

47 1.033 -12.512 - - 29.70 11.60 - - 

48 1.027 -12.611 - - - - - - 

49 1.036 -12.936 - - 18.00 8.50 - - 

50 1.023 -13.413 - - 21.00 10.50 - - 

51 1.052 -12.533 - - 18.00 5.30 - - 

52 0.980 -11.498 - - 4.90 2.20 - - 

53 0.971 -12.253 - - 20.00 10.00 - 6.30 

54 0.996 -11.710 - - 4.10 1.40 - - 

55 1.031 -10.801 - - 6.80 3.40 - - 

56 0.968 -16.065 - - 7.60 2.20 - - 

57 0.965 -16.584 - - 6.70 2.00 - - 
 

 

Table 10.4: 57-bus System: Branch Data 

From To R  X B Tap  

Bus Bus p.u. p.u. p.u. p.u. 

1 2 0.00830 0.02800 0.12900 1.0000 

2 3 0.02980 0.08500 0.08180 1.0000 

3 4 0.01120 0.03660 0.03800 1.0000 

4 5 0.06250 0.13200 0.02580 1.0000 

4 6 0.04300 0.14800 0.03480 1.0000 

6 7 0.02000 0.10200 0.02760 1.0000 
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6 8 0.03390 0.17300 0.04700 1.0000 

8 9 0.00990 0.05050 0.05480 1.0000 

9 10 0.03690 0.16790 0.04400 1.0000 

9 11 0.02580 0.08480 0.02180 1.0000 

9 12 0.06480 0.29500 0.07720 1.0000 

9 13 0.04810 0.15800 0.04060 1.0000 

13 14 0.01320 0.04340 0.01100 1.0000 

13 15 0.02690 0.08690 0.02300 1.0000 

1 15 0.01780 0.09100 0.09880 1.0000 

1 16 0.04540 0.20600 0.05460 1.0000 

1 17 0.02380 0.10800 0.02860 1.0000 

3 15 0.01620 0.05300 0.05440 1.0000 

4 18 0.00000 0.55500 0.00000 0.9700 

4 18 0.00000 0.43000 0.00000 0.9780 

5 6 0.03020 0.06410 0.01240 1.0000 

7 8 0.01390 0.07120 0.01940 1.0000 

10 12 0.02770 0.12620 0.03280 1.0000 

11 13 0.02230 0.07320 0.01880 1.0000 

12 13 0.01780 0.05800 0.06040 1.0000 

12 16 0.01800 0.08130 0.02160 1.0000 

12 17 0.03970 0.17900 0.04760 1.0000 

14 15 0.01710 0.05470 0.01480 1.0000 

18 19 0.46100 0.68500 0.00000 1.0000 

19 20 0.28300 0.43400 0.00000 1.0000 

21 20 0.00000 0.77670 0.00000 1.0430 

21 22 0.07360 0.11700 0.00000 1.0000 

22 23 0.00990 0.01520 0.00000 1.0000 

23 24 0.16600 0.25600 0.00840 1.0000 

24 25 0.00000 1.18200 0.00000 1.0000 

24 25 0.00000 1.23000 0.00000 1.0000 

24 26 0.00000 0.04730 0.00000 1.0430 

26 27 0.16500 0.25400 0.00000 1.0000 

27 28 0.06180 0.09540 0.00000 1.0000 

28 29 0.04180 0.05870 0.00000 1.0000 

7 29 0.00000 0.06480 0.00000 0.9670 

25 30 0.13500 0.20200 0.00000 1.0000 

30 31 0.32600 0.49700 0.00000 1.0000 

31 32 0.50700 0.75500 0.00000 1.0000 

32 33 0.03920 0.03600 0.00000 1.0000 

34 32 0.00000 0.95300 0.00000 0.9750 

34 35 0.05200 0.07800 0.00320 1.0000 

35 36 0.04300 0.05370 0.00160 1.0000 

36 37 0.02900 0.03660 0.00000 1.0000 

37 38 0.06510 0.10090 0.00200 1.0000 

37 39 0.02390 0.03790 0.00000 1.0000 

36 40 0.03000 0.04660 0.00000 1.0000 

22 38 0.01920 0.02950 0.00000 1.0000 

11 41 0.00000 0.74900 0.00000 0.9550 
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41 42 0.20700 0.35200 0.00000 1.0000 

41 43 0.00000 0.41200 0.00000 1.0000 

38 44 0.02890 0.05850 0.00200 1.0000 

15 45 0.00000 0.10420 0.00000 0.9550 

14 46 0.00000 0.07350 0.00000 0.9000 

46 47 0.02300 0.06800 0.00320 1.0000 

47 48 0.01820 0.02330 0.00000 1.0000 

48 49 0.08340 0.12900 0.00480 1.0000 

49 50 0.08010 0.12800 0.00000 1.0000 

50 51 0.13860 0.22000 0.00000 1.0000 

10 51 0.00000 0.07120 0.00000 0.9300 

13 49 0.00000 0.19100 0.00000 0.8950 

29 52 0.14420 0.18700 0.00000 1.0000 

52 53 0.07620 0.09840 0.00000 1.0000 

53 54 0.18780 0.23200 0.00000 1.0000 

54 55 0.17320 0.22650 0.00000 1.0000 

11 43 0.00000 0.15300 0.00000 0.9580 

44 45 0.06240 0.12420 0.00400 1.0000 

40 56 0.00000 1.19500 0.00000 0.9580 

56 41 0.55300 0.54900 0.00000 1.0000 

56 42 0.21250 0.35400 0.00000 1.0000 

39 57 0.00000 1.35500 0.00000 0.9800 

57 56 0.17400 0.26000 0.00000 1.0000 

38 49 0.11500 0.17700 0.00300 1.0000 

38 48 0.03120 0.04820 0.00000 1.0000 

9 55 0.00000 0.12050 0.00000 0.9400 
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10.7.3 G.3: 69-bus IEEE Test System Data 

 

 
Figure 10.3: One Line Diagram 69-bus System 

 

Table 10.5: 69-bus System: Buses Data 

Bus Voltage Generation Demand Shunt Elements 

# Mag(pu) Ang(deg) P (kW) Q (kVAr) P (kW) Q (kVAr) Gs (kW) Bs (kVAr) 

1 1.000 -0.001 - - - - - - 

2 1.000 -0.001 - - - - - - 

3 1.000 -0.002 - - - - - - 

4 1.000 -0.004 - - - - - - 

5 0.999 -0.009 - - - - - - 

6 0.993 0.083 - - 2.60 2.20 - - 

7 0.987 0.180 - - 40.40 30.00 - - 

8 0.986 0.204 - - 75.00 54.00 - - 

9 0.985 0.214 - - 30.00 22.00 - - 

10 0.981 0.278 - - 28.00 19.00 - - 

11 0.980 0.293 - - 145.00 104.00 - - 

12 0.978 0.333 - - 145.00 104.00 - - 

13 0.976 0.368 - - 8.00 5.50 - - 

14 0.973 0.402 - - 8.00 5.50 - - 

15 0.971 0.437 - - - - - - 

16 0.971 0.443 - - 45.50 30.00 - - 

17 0.970 0.454 - - 60.00 35.00 - - 

18 0.970 0.454 - - 60.00 35.00 - - 

19 0.970 0.460 - - - - - - 

20 0.969 0.465 - - 1.00 0.60 - - 

21 0.969 0.471 - - 114.00 81.00 - - 

22 0.969 0.471 - - 5.30 3.50 - - 

23 0.969 0.472 - - 0.00 0.00 - - 

24 0.969 0.474 - - 28.00 20.00 - - 

25 0.969 0.477 - - 0.00 0.00 - - 

26 0.969 0.478 - - 14.00 10.00 - - 
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27 0.969 0.478 - - 14.00 10.00 - - 

28 1.000 -0.002 - - 26.00 18.60 - - 

29 1.000 -0.004 - - 26.00 18.60 - - 

30 1.000 -0.002 - - - - - - 

31 1.000 -0.002 - - - - - - 

32 1.000 0.000 - - - - - - 

33 1.000 0.003 - - 14.00 10.00 - - 

34 0.999 0.008 - - 19.50 14.00 - - 

35 0.999 0.008 - - 6.00 4.00 - - 

36 1.000 -0.006 - - - - - - 

37 0.999 -0.040 - - 79.00 56.40 - - 

38 0.996 -0.147 - - 384.70 274.50 - - 

39 0.995 -0.162 - - 384.70 274.50 - - 

40 0.986 0.204 - - 40.50 28.30 - - 

41 0.986 0.204 - - 3.60 2.70 - - 

42 0.983 0.250 - - 4.30 3.50 - - 

43 0.981 0.293 - - 26.40 19.00 - - 

44 0.978 0.352 - - 24.00 17.20 - - 

45 0.976 0.410 - - - - - - 

46 0.962 0.847 - - - - - - 

47 0.956 1.067 - - - - - - 

48 0.953 1.154 - - 100.00 72.00 - - 

49 0.950 1.264 - - -256.00 84.14 - - 

50 0.945 1.340 - - 1244.00 888.00 - - 

51 0.945 1.348 - - 32.00 23.00 - - 

52 0.945 1.358 - - -208.00 68.00 - - 

53 0.943 1.371 - - 227.00 162.00 - - 

54 0.943 1.375 - - 59.00 42.00 - - 

55 0.980 0.294 - - 18.00 13.00 - - 

56 0.980 0.294 - - 18.00 13.00 - - 

57 0.977 0.337 - - 28.00 20.00 - - 

58 0.977 0.337 - - 28.00 20.00 - - 

59 1.000 -0.003 - - 26.00 18.50 - - 

60 1.000 -0.008 - - 26.00 19.00 - - 

61 1.000 -0.010 - - - - - - 

62 1.000 -0.010 - - 24.00 17.00 - - 

63 1.000 -0.010 - - 24.00 17.00 - - 

64 0.999 -0.019 - - 1.20 1.00 - - 

65 0.999 -0.022 - - 0.00 0.00 - - 

66 0.999 -0.023 - - 6.00 4.30 - - 

67 0.999 -0.023 - - - - - - 

68 0.999 -0.024 - - 39.20 26.30 - - 

69 0.999 -0.024 - - 39.20 26.30 - - 
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Table 10.6: 69-bus System: Branch Data 

From To R  X B Tap  

Bus Bus p.u. p.u. p.u. p.u. 

0 1 0.000003 0.000007 0.0000 1.0000 

1 2 0.000003 0.000007 0.0000 1.0000 

2 3 0.000000 0.000006 0.0000 1.0000 

3 4 0.000009 0.000022 0.0000 1.0000 

4 5 0.000157 0.000183 0.0000 1.0000 

5 6 0.002284 0.001163 0.0000 1.0000 

6 7 0.002378 0.001211 0.0000 1.0000 

7 8 0.000575 0.000293 0.0000 1.0000 

8 9 0.000308 0.000175 0.0000 1.0000 

9 10 0.005110 0.001689 0.0000 1.0000 

10 11 0.001168 0.000386 0.0000 1.0000 

11 12 0.004439 0.001467 0.0000 1.0000 

12 13 0.006426 0.002121 0.0000 1.0000 

13 14 0.006514 0.002153 0.0000 1.0000 

14 15 0.006601 0.002181 0.0000 1.0000 

15 16 0.001227 0.000406 0.0000 1.0000 

16 17 0.002336 0.000772 0.0000 1.0000 

17 18 0.000029 0.000010 0.0000 1.0000 

18 19 0.002044 0.000676 0.0000 1.0000 

19 20 0.001314 0.000434 0.0000 1.0000 

20 21 0.002131 0.000704 0.0000 1.0000 

21 22 0.000087 0.000029 0.0000 1.0000 

22 23 0.000993 0.000328 0.0000 1.0000 

23 24 0.002161 0.000714 0.0000 1.0000 

24 25 0.004672 0.001544 0.0000 1.0000 

25 26 0.001927 0.000637 0.0000 1.0000 

26 27 0.001081 0.000357 0.0000 1.0000 

2 28 0.000027 0.000067 0.0000 1.0000 

28 29 0.000399 0.000976 0.0000 1.0000 

29 30 0.002482 0.000820 0.0000 1.0000 

30 31 0.000438 0.000145 0.0000 1.0000 

31 32 0.002190 0.000724 0.0000 1.0000 

32 33 0.005235 0.001757 0.0000 1.0000 

33 34 0.010657 0.003523 0.0000 1.0000 

34 35 0.009197 0.003040 0.0000 1.0000 

4 36 0.000021 0.000052 0.0000 1.0000 

36 37 0.000531 0.001300 0.0000 1.0000 

37 38 0.001808 0.004424 0.0000 1.0000 

38 39 0.000513 0.001255 0.0000 1.0000 

8 40 0.000579 0.000295 0.0000 1.0000 

40 41 0.002071 0.000695 0.0000 1.0000 

9 42 0.001086 0.000553 0.0000 1.0000 

42 43 0.001267 0.000645 0.0000 1.0000 

43 44 0.001773 0.000903 0.0000 1.0000 

44 45 0.001755 0.000894 0.0000 1.0000 
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45 46 0.009920 0.003330 0.0000 1.0000 

46 47 0.004890 0.001641 0.0000 1.0000 

47 48 0.001898 0.000628 0.0000 1.0000 

48 49 0.002409 0.000731 0.0000 1.0000 

49 50 0.003166 0.001613 0.0000 1.0000 

50 51 0.000608 0.000309 0.0000 1.0000 

51 52 0.000905 0.000460 0.0000 1.0000 

52 53 0.004433 0.002258 0.0000 1.0000 

53 54 0.006495 0.003308 0.0000 1.0000 

11 55 0.001255 0.000381 0.0000 1.0000 

55 56 0.000029 0.000009 0.0000 1.0000 

12 57 0.004613 0.001525 0.0000 1.0000 

57 58 0.000029 0.000010 0.0000 1.0000 

3 59 0.000027 0.000067 0.0000 1.0000 

59 60 0.000399 0.000976 0.0000 1.0000 

60 61 0.000657 0.000767 0.0000 1.0000 

61 62 0.000190 0.000221 0.0000 1.0000 

62 63 0.000011 0.000013 0.0000 1.0000 

63 64 0.004544 0.005309 0.0000 1.0000 

64 65 0.001934 0.002260 0.0000 1.0000 

65 66 0.000256 0.000298 0.0000 1.0000 

66 67 0.000057 0.000072 0.0000 1.0000 

67 68 0.000679 0.000857 0.0000 1.0000 

68 69 0.000006 0.000007 0.0000 1.0000 
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10.7.4 G.4: 118-bus IEEE Test System Data 

 

 
Figure 10.4: One Line Diagram 118-bus System 

 
Table 10.7: 118-bus System: Buses Data 

Bus Voltage Generation Demand Shunt Elements 

# Mag(pu) Ang(deg) P (MW) Q (MVAr) P (MW) Q (MVAr) Gs (MW) Bs (MVAr) 

1 0.955 10.973 0.00 -3.10 51.00 27.00 - - 

2 0.971 11.513 - - 20.00 9.00 - - 

3 0.968 11.856 - - 39.00 10.00 - - 

4 0.998 15.574 0.00 -15.01 39.00 12.00 - - 

5 1.002 16.019 - - - - - -40.00 

6 0.990 13.292 0.00 15.93 52.00 22.00 - - 

7 0.989 12.847 - - 19.00 2.00 - - 

8 1.015 21.041 0.00 63.14 28.00 0.00 - - 

9 1.043 28.295 - - - - - - 

10 1.050 35.876 450.00 -51.04 - - - - 

11 0.985 13.006 - - 70.00 23.00 - - 

12 0.990 12.489 85.00 91.29 47.00 10.00 - - 

13 0.968 11.630 - - 34.00 16.00 - - 

14 0.984 11.771 - - 14.00 1.00 - - 
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15 0.970 11.474 0.00 7.16 90.00 30.00 - - 

16 0.984 12.187 - - 25.00 10.00 - - 

17 0.995 13.995 - - 11.00 3.00 - - 

18 0.973 11.781 0.00 28.43 60.00 34.00 - - 

19 0.962 11.315 0.00 -14.27 45.00 25.00 - - 

20 0.957 12.191 - - 18.00 3.00 - - 

21 0.958 13.778 - - 14.00 8.00 - - 

22 0.969 16.332 - - 10.00 5.00 - - 

23 0.999 21.249 - - 7.00 3.00 - - 

24 0.992 21.114 0.00 -14.91 13.00 0.00 - - 

25 1.050 28.180 220.00 50.04 - - - - 

26 1.015 29.960 314.00 10.12 - - - - 

27 0.968 15.604 0.00 3.98 71.00 13.00 - - 

28 0.962 13.879 - - 17.00 7.00 - - 

29 0.963 12.885 - - 24.00 4.00 - - 

30 0.985 19.034 - - - - - - 

31 0.967 13.002 7.00 32.59 43.00 27.00 - - 

32 0.963 15.061 0.00 -16.28 59.00 23.00 - - 

33 0.971 10.854 - - 23.00 9.00 - - 

34 0.984 11.511 0.00 -20.83 59.00 26.00 - 14.00 

35 0.980 11.055 - - 33.00 9.00 - - 

36 0.980 11.056 0.00 7.73 31.00 17.00 - - 

37 0.991 11.967 - - - - - -25.00 

38 0.961 17.108 - - - - - - 

39 0.970 8.577 - - 27.00 11.00 - - 

40 0.970 7.496 0.00 28.45 66.00 23.00 - - 

41 0.967 7.052 - - 37.00 10.00 - - 

42 0.985 8.653 0.00 41.03 96.00 23.00 - - 

43 0.977 11.460 - - 18.00 7.00 - - 

44 0.984 13.943 - - 16.00 8.00 - 10.00 

45 0.986 15.773 - - 53.00 22.00 - 10.00 

46 1.005 18.576 19.00 -5.03 28.00 10.00 - 10.00 

47 1.017 20.799 - - 34.00 0.00 - - 

48 1.021 20.019 - - 20.00 11.00 - 15.00 

49 1.025 21.022 204.00 115.85 87.00 30.00 - - 

50 1.001 18.983 - - 17.00 4.00 - - 

51 0.967 16.364 - - 17.00 8.00 - - 

52 0.957 15.411 - - 18.00 5.00 - - 

53 0.946 14.436 - - 23.00 11.00 - - 

54 0.955 15.348 48.00 3.90 113.00 32.00 - - 

55 0.952 15.058 0.00 4.66 63.00 22.00 - - 

56 0.954 15.245 0.00 -2.29 84.00 18.00 - - 

57 0.971 16.449 - - 12.00 3.00 - - 

58 0.959 15.592 - - 12.00 3.00 - - 

59 0.985 19.448 155.00 76.83 277.00 113.00 - - 

60 0.993 23.230 - - 78.00 3.00 - - 

61 0.995 24.121 160.00 -40.39 - - - - 

62 0.998 23.505 0.00 1.26 77.00 14.00 - - 
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63 0.969 22.827 - - - - - - 

64 0.984 24.593 - - - - - - 

65 1.005 27.719 391.00 81.51 - - - - 

66 1.050 27.559 392.00 -1.96 39.00 18.00 - - 

67 1.020 24.919 - - 28.00 7.00 - - 

68 1.003 27.598 - - - - - - 

69 1.035 30.000 513.86 -82.42 - - - - 

70 0.984 22.618 0.00 9.67 66.00 20.00 - - 

71 0.987 22.207 - - - - - - 

72 0.980 21.109 0.00 -11.13 12.00 0.00 - - 

73 0.991 21.995 0.00 9.65 6.00 0.00 - - 

74 0.958 21.669 0.00 -5.63 68.00 27.00 - 12.00 

75 0.967 22.930 - - 47.00 11.00 - - 

76 0.943 21.799 0.00 5.27 68.00 36.00 - - 

77 1.006 26.751 0.00 12.17 61.00 28.00 - - 

78 1.003 26.447 - - 71.00 26.00 - - 

79 1.009 26.745 - - 39.00 32.00 - 20.00 

80 1.040 28.990 477.00 105.47 130.00 26.00 - - 

81 0.997 28.145 - - - - - - 

82 0.989 27.272 - - 54.00 27.00 - 20.00 

83 0.984 28.464 - - 20.00 10.00 - 10.00 

84 0.980 31.000 - - 11.00 7.00 - - 

85 0.985 32.556 0.00 -5.61 24.00 15.00 - - 

86 0.987 31.186 - - 21.00 10.00 - - 

87 1.015 31.445 4.00 11.02 - - - - 

88 0.987 35.690 - - 48.00 10.00 - - 

89 1.005 39.748 607.00 -5.90 - - - - 

90 0.985 33.338 0.00 59.31 163.00 42.00 - - 

91 0.980 33.351 0.00 -13.09 10.00 0.00 - - 

92 0.990 33.881 0.00 -13.96 65.00 10.00 - - 

93 0.985 30.849 - - 12.00 7.00 - - 

94 0.990 28.682 - - 30.00 16.00 - - 

95 0.980 27.710 - - 42.00 31.00 - - 

96 0.992 27.543 - - 38.00 15.00 - - 

97 1.011 27.916 - - 15.00 9.00 - - 

98 1.024 27.433 - - 34.00 8.00 - - 

99 1.010 27.067 0.00 -17.54 42.00 0.00 - - 

100 1.017 28.059 252.00 95.55 37.00 18.00 - - 

101 0.991 29.647 - - 22.00 15.00 - - 

102 0.989 32.365 - - 5.00 3.00 - - 

103 1.010 24.318 40.00 75.42 23.00 16.00 - - 

104 0.971 21.748 0.00 2.39 38.00 25.00 - - 

105 0.965 20.644 0.00 -18.33 31.00 26.00 - 20.00 

106 0.961 20.383 - - 43.00 16.00 - - 

107 0.952 17.583 0.00 6.56 50.00 12.00 - 6.00 

108 0.966 19.443 - - 2.00 1.00 - - 

109 0.967 18.991 - - 8.00 3.00 - - 

110 0.973 18.144 0.00 0.28 39.00 30.00 - 6.00 
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111 0.980 19.789 36.00 -1.84 - - - - 

112 0.975 15.045 0.00 41.51 68.00 13.00 - - 

113 0.993 13.993 0.00 6.75 6.00 0.00 - - 

114 0.960 14.726 - - 8.00 3.00 - - 

115 0.960 14.718 - - 22.00 7.00 - - 

116 1.005 27.163 0.00 51.32 184.00 0.00 - - 

117 0.974 10.948 - - 20.00 8.00 - - 

118 0.949 21.942 - - 33.00 15.00 - - 

 

 

Table 10.8: 118-bus System: Branch Data 

From To R  X B Tap  

Bus Bus p.u. p.u. p.u. p.u. 

1 2 0.03030 0.09990 0.02540 1.0000 

1 3 0.01290 0.04240 0.01082 1.0000 

4 5 0.00176 0.00798 0.00210 1.0000 

3 5 0.02410 0.10800 0.02840 1.0000 

5 6 0.01190 0.05400 0.01426 1.0000 

6 7 0.00459 0.02080 0.00550 1.0000 

8 9 0.00244 0.03050 1.16200 1.0000 

8 5 0.00000 0.02670 0.00000 0.9850 

9 10 0.00258 0.03220 1.23000 1.0000 

4 11 0.02090 0.06880 0.01748 1.0000 

5 11 0.02030 0.06820 0.01738 1.0000 

11 12 0.00595 0.01960 0.00502 1.0000 

2 12 0.01870 0.06160 0.01572 1.0000 

3 12 0.04840 0.16000 0.04060 1.0000 

7 12 0.00862 0.03400 0.00874 1.0000 

11 13 0.02225 0.07310 0.01876 1.0000 

12 14 0.02150 0.07070 0.01816 1.0000 

13 15 0.07440 0.24440 0.06268 1.0000 

14 15 0.05950 0.19500 0.05020 1.0000 

12 16 0.02120 0.08340 0.02140 1.0000 

15 17 0.01320 0.04370 0.04440 1.0000 

16 17 0.04540 0.18010 0.04660 1.0000 

17 18 0.01230 0.05050 0.01298 1.0000 

18 19 0.01119 0.04930 0.01142 1.0000 

19 20 0.02520 0.11700 0.02980 1.0000 

15 19 0.01200 0.03940 0.01010 1.0000 

20 21 0.01830 0.08490 0.02160 1.0000 

21 22 0.02090 0.09700 0.02460 1.0000 

22 23 0.03420 0.15900 0.04040 1.0000 

23 24 0.01350 0.04920 0.04980 1.0000 

23 25 0.01560 0.08000 0.08640 1.0000 

26 25 0.00000 0.03820 0.00000 0.9600 

25 27 0.03180 0.16300 0.17640 1.0000 

27 28 0.01913 0.08550 0.02160 1.0000 

28 29 0.02370 0.09430 0.02380 1.0000 
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30 17 0.00000 0.03880 0.00000 0.9600 

8 30 0.00431 0.05040 0.51400 1.0000 

26 30 0.00799 0.08600 0.90800 1.0000 

17 31 0.04740 0.15630 0.03990 1.0000 

29 31 0.01080 0.03310 0.00830 1.0000 

23 32 0.03170 0.11530 0.11730 1.0000 

31 32 0.02980 0.09850 0.02510 1.0000 

27 32 0.02290 0.07550 0.01926 1.0000 

15 33 0.03800 0.12440 0.03194 1.0000 

19 34 0.07520 0.24700 0.06320 1.0000 

35 36 0.00224 0.01020 0.00268 1.0000 

35 37 0.01100 0.04970 0.01318 1.0000 

33 37 0.04150 0.14200 0.03660 1.0000 

34 36 0.00871 0.02680 0.00568 1.0000 

34 37 0.00256 0.00940 0.00984 1.0000 

38 37 0.00000 0.03750 0.00000 0.9350 

37 39 0.03210 0.10600 0.02700 1.0000 

37 40 0.05930 0.16800 0.04200 1.0000 

30 38 0.00464 0.05400 0.42200 1.0000 

39 40 0.01840 0.06050 0.01552 1.0000 

40 41 0.01450 0.04870 0.01222 1.0000 

40 42 0.05550 0.18300 0.04660 1.0000 

41 42 0.04100 0.13500 0.03440 1.0000 

43 44 0.06080 0.24540 0.06068 1.0000 

34 43 0.04130 0.16810 0.04226 1.0000 

44 45 0.02240 0.09010 0.02240 1.0000 

45 46 0.04000 0.13560 0.03320 1.0000 

46 47 0.03800 0.12700 0.03160 1.0000 

46 48 0.06010 0.18900 0.04720 1.0000 

47 49 0.01910 0.06250 0.01604 1.0000 

42 49 0.07150 0.32300 0.08600 1.0000 

42 49 0.07150 0.32300 0.08600 1.0000 

45 49 0.06840 0.18600 0.04440 1.0000 

48 49 0.01790 0.05050 0.01258 1.0000 

49 50 0.02670 0.07520 0.01874 1.0000 

49 51 0.04860 0.13700 0.03420 1.0000 

51 52 0.02030 0.05880 0.01396 1.0000 

52 53 0.04050 0.16350 0.04058 1.0000 

53 54 0.02630 0.12200 0.03100 1.0000 

49 54 0.07300 0.28900 0.07380 1.0000 

49 54 0.08690 0.29100 0.07300 1.0000 

54 55 0.01690 0.07070 0.02020 1.0000 

54 56 0.00275 0.00955 0.00732 1.0000 

55 56 0.00488 0.01510 0.00374 1.0000 

56 57 0.03430 0.09660 0.02420 1.0000 

50 57 0.04740 0.13400 0.03320 1.0000 

56 58 0.03430 0.09660 0.02420 1.0000 

51 58 0.02550 0.07190 0.01788 1.0000 
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54 59 0.05030 0.22930 0.05980 1.0000 

56 59 0.08250 0.25100 0.05690 1.0000 

56 59 0.08030 0.23900 0.05360 1.0000 

55 59 0.04739 0.21580 0.05646 1.0000 

59 60 0.03170 0.14500 0.03760 1.0000 

59 61 0.03280 0.15000 0.03880 1.0000 

60 61 0.00264 0.01350 0.01456 1.0000 

60 62 0.01230 0.05610 0.01468 1.0000 

61 62 0.00824 0.03760 0.00980 1.0000 

63 59 0.00000 0.03860 0.00000 0.9600 

63 64 0.00172 0.02000 0.21600 1.0000 

64 61 0.00000 0.02680 0.00000 0.9850 

38 65 0.00901 0.09860 1.04600 1.0000 

64 65 0.00269 0.03020 0.38000 1.0000 

49 66 0.01800 0.09190 0.02480 1.0000 

49 66 0.01800 0.09190 0.02480 1.0000 

62 66 0.04820 0.21800 0.05780 1.0000 

62 67 0.02580 0.11700 0.03100 1.0000 

65 66 0.00000 0.03700 0.00000 0.9350 

66 67 0.02240 0.10150 0.02682 1.0000 

65 68 0.00138 0.01600 0.63800 1.0000 

47 69 0.08440 0.27780 0.07092 1.0000 

49 69 0.09850 0.32400 0.08280 1.0000 

68 69 0.00000 0.03700 0.00000 0.9350 

69 70 0.03000 0.12700 0.12200 1.0000 

24 70 0.00221 0.41150 0.10198 1.0000 

70 71 0.00882 0.03550 0.00878 1.0000 

24 72 0.04880 0.19600 0.04880 1.0000 

71 72 0.04460 0.18000 0.04444 1.0000 

71 73 0.00866 0.04540 0.01178 1.0000 

70 74 0.04010 0.13230 0.03368 1.0000 

70 75 0.04280 0.14100 0.03600 1.0000 

69 75 0.04050 0.12200 0.12400 1.0000 

74 75 0.01230 0.04060 0.01034 1.0000 

76 77 0.04440 0.14800 0.03680 1.0000 

69 77 0.03090 0.10100 0.10380 1.0000 

75 77 0.06010 0.19990 0.04978 1.0000 

77 78 0.00376 0.01240 0.01264 1.0000 

78 79 0.00546 0.02440 0.00648 1.0000 

77 80 0.01700 0.04850 0.04720 1.0000 

77 80 0.02940 0.10500 0.02280 1.0000 

79 80 0.01560 0.07040 0.01870 1.0000 

68 81 0.00175 0.02020 0.80800 1.0000 

81 80 0.00000 0.03700 0.00000 0.9350 

77 82 0.02980 0.08530 0.08174 1.0000 

82 83 0.01120 0.03665 0.03796 1.0000 

83 84 0.06250 0.13200 0.02580 1.0000 

83 85 0.04300 0.14800 0.03480 1.0000 
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84 85 0.03020 0.06410 0.01234 1.0000 

85 86 0.03500 0.12300 0.02760 1.0000 

86 87 0.02828 0.20740 0.04450 1.0000 

85 88 0.02000 0.10200 0.02760 1.0000 

85 89 0.02390 0.17300 0.04700 1.0000 

88 89 0.01390 0.07120 0.01934 1.0000 

89 90 0.05180 0.18800 0.05280 1.0000 

89 90 0.02380 0.09970 0.10600 1.0000 

90 91 0.02540 0.08360 0.02140 1.0000 

89 92 0.00990 0.05050 0.05480 1.0000 

89 92 0.03930 0.15810 0.04140 1.0000 

91 92 0.03870 0.12720 0.03268 1.0000 

92 93 0.02580 0.08480 0.02180 1.0000 

92 94 0.04810 0.15800 0.04060 1.0000 

93 94 0.02230 0.07320 0.01876 1.0000 

94 95 0.01320 0.04340 0.01110 1.0000 

80 96 0.03560 0.18200 0.04940 1.0000 

82 96 0.01620 0.05300 0.05440 1.0000 

94 96 0.02690 0.08690 0.02300 1.0000 

80 97 0.01830 0.09340 0.02540 1.0000 

80 98 0.02380 0.10800 0.02860 1.0000 

80 99 0.04540 0.20600 0.05460 1.0000 

92 100 0.06480 0.29500 0.04720 1.0000 

94 100 0.01780 0.05800 0.06040 1.0000 

95 96 0.01710 0.05470 0.01474 1.0000 

96 97 0.01730 0.08850 0.02400 1.0000 

98 100 0.03970 0.17900 0.04760 1.0000 

99 100 0.01800 0.08130 0.02160 1.0000 

100 101 0.02770 0.12620 0.03280 1.0000 

92 102 0.01230 0.05590 0.01464 1.0000 

101 102 0.02460 0.11200 0.02940 1.0000 

100 103 0.01600 0.05250 0.05360 1.0000 

100 104 0.04510 0.20400 0.05410 1.0000 

103 104 0.04660 0.15840 0.04070 1.0000 

103 105 0.05350 0.16250 0.04080 1.0000 

100 106 0.06050 0.22900 0.06200 1.0000 

104 105 0.00994 0.03780 0.00986 1.0000 

105 106 0.01400 0.05470 0.01434 1.0000 

105 107 0.05300 0.18300 0.04720 1.0000 

105 108 0.02610 0.07030 0.01844 1.0000 

106 107 0.05300 0.18300 0.04720 1.0000 

108 109 0.01050 0.02880 0.00760 1.0000 

103 110 0.03906 0.18130 0.04610 1.0000 

109 110 0.02780 0.07620 0.02020 1.0000 

110 111 0.02200 0.07550 0.02000 1.0000 

110 112 0.02470 0.06400 0.06200 1.0000 

17 113 0.00913 0.03010 0.00768 1.0000 

32 113 0.06150 0.20300 0.05180 1.0000 
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32 114 0.01350 0.06120 0.01628 1.0000 

27 115 0.01640 0.07410 0.01972 1.0000 

114 115 0.00230 0.01040 0.00276 1.0000 

68 116 0.00034 0.00405 0.16400 1.0000 

12 117 0.03290 0.14000 0.03580 1.0000 

75 118 0.01450 0.04810 0.01198 1.0000 

76 118 0.01640 0.05440 0.01356 1.0000 
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10.7.5 G.5: 300-bus IEEE Test System Data 
 

Table 10.9: 300-bus System: Buses Data 

Bus Voltage Generation Demand Shunt Elements Area 

# Mag(pu) Ang(deg) P (MW) Q (MVAr) P (MW) Q (MVAr) Gs (MW) Bs (MVAr) # 

1 1.028 5.967 - - 90.00 49.00 - - 1 

2 1.035 7.755 - - 56.00 15.00 - - 1 

3 0.997 6.657 - - 20.00 0.00 - - 1 

4 1.031 4.728 - - - - - - 1 

5 1.019 4.701 - - 353.00 130.00 - - 1 

6 1.031 7.006 - - 120.00 41.00 - - 1 

7 0.993 6.206 - - - - - - 1 

8 1.015 2.415 0.00 9.85 63.00 14.00 - - 1 

9 1.003 2.871 - - 96.00 43.00 - - 1 

10 1.021 1.363 0.00 20.01 153.00 33.00 - - 1 

11 1.006 2.481 - - 83.00 21.00 - - 1 

12 0.997 5.230 - - - - - - 1 

13 0.998 -0.537 - - 58.00 10.00 - - 1 

14 0.999 -4.796 - - 160.00 60.00 - - 1 

15 1.034 -8.567 - - 126.70 23.00 - - 1 

16 1.032 -2.622 - - - - - - 1 

17 1.065 -13.085 - - 561.00 220.00 - - 1 

19 0.982 1.089 - - - - - - 2 

20 1.001 -2.447 0.00 20.30 605.00 120.00 - - 2 

21 0.975 1.634 - - 77.00 1.00 - - 2 

22 0.996 -1.960 - - 81.00 23.00 - - 2 

23 1.050 3.951 - - 21.00 7.00 - - 2 

24 1.006 6.033 - - - - - - 2 

25 1.023 1.453 - - 45.00 12.00 - - 2 

26 0.999 -1.721 - - 28.00 9.00 - - 2 

27 0.975 -4.883 - - 69.00 13.00 - - 2 

33 1.025 -12.002 - - 55.00 6.00 - - 1 

34 1.041 -7.901 - - - - - - 1 

35 0.976 -25.682 - - - - - - 1 

36 1.001 -22.519 - - - - - - 1 

37 1.020 -11.214 - - 85.00 32.00 - - 1 

38 1.020 -12.539 - - 155.00 18.00 - - 1 

39 1.054 -5.773 - - - - - - 1 

40 1.022 -12.761 - - 46.00 -21.00 - - 1 

41 1.029 -10.425 - - 86.00 0.00 - - 1 

42 1.045 -7.407 - - - - - - 1 

43 1.001 -16.763 - - 39.00 9.00 - - 1 

44 1.009 -17.431 - - 195.00 29.00 - - 1 

45 1.022 -14.690 - - - - - - 1 

46 1.035 -11.697 - - - - - - 1 

47 0.978 -23.163 - - 58.00 11.80 - - 1 

48 1.002 -16.121 - - 41.00 19.00 - - 1 

49 1.047 -2.945 - - 92.00 26.00 - - 1 

51 1.025 -8.135 - - -5.00 5.00 - - 1 

52 0.998 -11.839 - - 61.00 28.00 - - 1 
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53 0.996 -17.579 - - 69.00 3.00 - - 1 

54 1.005 -16.222 - - 10.00 1.00 - - 1 

55 1.015 -12.187 - - 22.00 10.00 - - 1 

57 1.033 -7.966 - - 98.00 20.00 - - 1 

58 0.992 -5.959 - - 14.00 1.00 - - 1 

59 0.979 -5.252 - - 218.00 106.00 - - 1 

60 1.025 -9.515 - - - - - - 1 

61 0.991 -3.433 - - 227.00 110.00 - - 1 

62 1.016 -1.062 - - - - - - 1 

63 0.958 -17.589 0.00 24.97 70.00 30.00 - - 1 

64 0.948 -12.936 - - - - - - 1 

69 0.963 -26.472 - - - - - - 1 

70 0.951 -35.124 - - 56.00 20.00 - - 1 

71 0.979 -29.845 - - 116.00 38.00 - - 1 

72 0.970 -27.441 - - 57.00 19.00 - - 1 

73 0.978 -25.737 - - 224.00 71.00 - - 1 

74 0.996 -21.943 - - - - - - 1 

76 0.963 -26.503 0.00 34.26 208.00 107.00 - - 1 

77 0.984 -24.911 - - 74.00 28.00 - - 1 

78 0.990 -24.035 - - - - - - 1 

79 0.982 -25.011 - - 48.00 14.00 - - 1 

80 0.987 -24.817 - - 28.00 7.00 - - 1 

81 1.034 -18.757 - - - - - - 1 

84 1.025 -17.148 375.00 132.92 37.00 13.00 - - 1 

85 0.987 -17.765 - - - - - - 2 

86 0.991 -14.248 - - - - - - 2 

87 0.992 -7.793 - - - - - - 2 

88 1.015 -20.867 - - - - - - 1 

89 1.032 -11.143 - - 44.20 0.00 - - 1 

90 1.027 -11.235 - - 66.00 0.00 - - 1 

91 1.052 -9.437 155.00 44.03 17.40 0.00 - - 1 

92 1.052 -6.244 290.00 30.96 15.80 0.00 - - 2 

94 0.993 -9.449 - - 60.30 0.00 - - 2 

97 1.018 -13.287 - - 39.90 0.00 - - 2 

98 1.000 -14.665 68.00 -10.69 66.70 0.00 - - 2 

99 0.989 -20.375 - - 83.50 0.00 - - 2 

100 1.006 -14.503 - - - - - - 2 

102 1.001 -15.293 - - 77.80 0.00 - - 2 

103 1.029 -12.118 - - 32.00 0.00 - - 2 

104 0.996 -17.402 - - 8.60 0.00 - - 2 

105 1.022 -13.002 - - 49.60 0.00 - - 2 

107 1.009 -16.082 - - 4.60 0.00 - - 2 

108 0.990 -20.363 117.00 20.64 112.10 0.00 - - 2 

109 0.975 -26.292 - - 30.70 0.00 - - 2 

110 0.973 -24.932 - - 63.00 0.00 - - 2 

112 0.974 -29.274 - - 19.60 0.00 - - 2 

113 0.970 -25.447 - - 26.20 0.00 - - 2 

114 0.977 -29.209 - - 18.20 0.00 - - 2 

115 0.960 -13.548 - - - - - - 3 

116 1.025 -12.667 - - - - - - 3 

117 0.935 -4.699 - - - - - 325.00 3 

118 0.930 -4.102 - - 14.10 650.00 - - 3 
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119 1.044 5.187 1930.00 1050.70 - - - - 3 

120 0.958 -8.749 - - 777.00 215.00 - 55.00 3 

121 0.987 -12.615 - - 535.00 55.00 - - 3 

122 0.973 -14.343 - - 229.10 11.80 - - 3 

123 1.001 -17.613 - - 78.00 1.40 - - 3 

124 1.023 -13.464 240.00 119.95 276.40 59.30 - - 3 

125 1.010 -18.407 0.00 199.84 514.80 82.70 - - 3 

126 0.998 -12.843 - - 57.90 5.10 - - 3 

127 1.000 -10.502 - - 380.80 37.00 - - 3 

128 1.002 -4.756 - - - - - - 3 

129 1.003 -4.377 - - - - - - 3 

130 1.019 5.578 - - - - - - 3 

131 0.986 6.074 - - - - - - 3 

132 1.005 3.064 - - - - - - 3 

133 1.002 -5.439 - - - - - - 3 

134 1.022 -8.022 - - - - - - 3 

135 1.019 -6.734 - - 169.20 41.60 - - 3 

136 1.048 1.563 - - 55.20 18.20 - - 4 

137 1.047 -1.432 - - 273.60 99.80 - - 4 

138 1.055 -6.331 0.00 228.61 1019.20 135.20 - - 4 

139 1.012 -3.545 - - 595.00 83.30 - - 4 

140 1.043 -3.412 - - 387.70 114.70 - - 4 

141 1.051 0.074 281.00 65.10 145.00 58.00 - - 4 

142 1.016 -2.742 - - 56.50 24.50 - - 4 

143 1.044 4.062 696.00 123.78 89.50 35.50 - - 4 

144 1.016 -0.661 - - - - - - 4 

145 1.008 -0.130 - - 24.00 14.00 - - 4 

146 1.053 4.347 84.00 35.00 - - - - 4 

147 1.053 8.389 217.00 -49.96 - - - - 4 

148 1.058 0.306 - - 63.00 25.00 - - 4 

149 1.073 5.257 103.00 49.97 - - - - 4 

150 0.987 6.355 - - - - - - 3 

151 1.005 4.150 - - - - - - 3 

152 1.053 9.264 372.00 -49.93 17.00 9.00 - - 4 

153 1.044 10.484 216.00 -23.84 - - - - 4 

154 0.966 -1.776 - - 70.00 5.00 - 34.50 4 

155 1.018 6.774 - - 200.00 50.00 - - 4 

156 0.963 5.169 0.00 15.03 75.00 50.00 - - 4 

157 0.984 -11.905 - - 123.50 -24.30 - - 3 

158 0.999 -11.381 - - - - - - 3 

159 0.987 -9.798 - - 33.00 16.50 - - 3 

160 1.000 -12.530 - - - - - - 3 

161 1.036 8.867 - - 35.00 15.00 - - 4 

162 0.992 18.524 - - 85.00 24.00 - - 4 

163 1.041 2.929 - - 0.00 0.40 - - 4 

164 0.984 9.684 - - - - - -212.00 4 

165 1.000 26.332 - - - - - - 4 

166 0.997 30.244 - - - - - -103.00 4 

167 0.971 -6.885 - - 299.90 95.70 - - 3 

168 1.002 -4.779 - - - - - - 3 

169 0.988 -6.657 - - - - - - 3 

170 0.929 0.108 205.00 90.21 481.80 205.00 - - 3 
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171 0.983 -9.914 0.00 150.09 763.60 291.10 - - 3 

172 1.024 -6.200 - - 26.50 0.00 - - 4 

173 0.984 -12.729 - - 163.50 43.00 - 53.00 4 

174 1.062 -2.667 - - - - - - 4 

175 0.973 -7.180 - - 176.00 83.00 - - 4 

176 1.052 4.691 228.00 39.72 5.00 4.00 - - 4 

177 1.008 0.646 84.00 34.99 28.00 12.00 - - 4 

178 0.940 -6.537 - - 427.40 173.60 - - 4 

179 0.970 -9.338 - - 74.00 29.00 - 45.00 4 

180 0.979 -3.065 - - 69.50 49.30 - - 4 

181 1.052 -1.303 - - 73.40 0.00 - - 4 

182 1.045 -4.165 - - 240.70 89.00 - - 4 

183 0.972 7.145 - - 40.00 4.00 - - 4 

184 1.039 -6.824 - - 136.80 16.60 - - 3 

185 1.052 -4.310 200.00 33.26 - - - - 3 

186 1.065 2.194 252.00 237.27 59.80 24.30 - - 4 

187 1.065 1.419 252.00 278.32 59.80 24.30 - - 4 

188 1.053 -0.701 - - 182.60 43.60 - - 4 

189 1.003 -26.013 - - 7.00 2.00 - - 5 

190 1.055 -20.417 475.00 -66.91 - - - -150.00 6 

191 1.044 12.452 1973.00 692.07 489.00 53.00 - - 6 

192 0.937 -10.978 - - 800.00 72.00 - - 6 

193 0.998 -27.470 - - - - - - 5 

194 1.049 -19.045 - - - - - - 5 

195 1.036 -20.581 - - - - - - 5 

196 0.974 -24.229 - - 10.00 3.00 - - 5 

197 0.992 -23.062 - - 43.00 14.00 - - 5 

198 1.015 -20.094 424.00 93.42 64.00 21.00 - - 5 

199 0.954 -25.446 - - 35.00 12.00 - - 5 

200 0.956 -25.367 - - 27.00 12.00 - - 5 

201 0.974 -29.233 - - 41.00 14.00 - - 1 

202 0.991 -24.969 - - 38.00 13.00 - - 5 

203 1.003 -21.926 - - 42.00 14.00 - - 5 

204 0.967 -29.549 - - 72.00 24.00 - - 5 

205 0.986 -28.516 - - 0.00 -5.00 - - 5 

206 1.004 -28.473 - - 12.00 2.00 - - 5 

207 1.019 -28.295 - - -21.00 -14.20 - - 2 

208 0.999 -26.998 - - 7.00 2.00 - - 5 

209 1.005 -25.614 - - 38.00 13.00 - - 5 

210 0.980 -23.603 - - - - - - 5 

211 1.002 -22.971 - - 96.00 7.00 - - 5 

212 1.013 -22.203 - - - - - - 5 

213 1.010 -11.379 272.00 44.08 - - - - 5 

214 0.992 -17.238 - - 22.00 16.00 - - 5 

215 0.987 -19.951 - - 47.00 26.00 - - 6 

216 0.975 -22.271 - - 176.00 105.00 - - 6 

217 1.022 -21.987 - - 100.00 75.00 - - 6 

218 1.008 -22.422 - - 131.00 96.00 - - 6 

219 1.055 -20.947 - - - - - - 6 

220 1.008 -21.520 100.00 35.72 285.00 100.00 - - 6 

221 1.000 -22.285 450.00 160.31 171.00 70.00 - - 6 

222 1.050 -22.964 250.00 161.39 328.00 188.00 - - 6 
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223 0.997 -22.496 - - 428.00 232.00 - - 6 

224 1.000 -21.350 - - 173.00 99.00 - - 6 

225 0.945 -11.142 - - 410.00 40.00 - - 6 

226 1.018 -21.405 - - - - - - 6 

227 1.000 -27.016 303.00 262.96 538.00 369.00 - - 6 

228 1.042 -20.737 - - 223.00 148.00 - - 6 

229 1.050 -19.741 - - 96.00 46.00 - - 6 

230 1.040 -13.620 345.00 42.53 - - - - 6 

231 1.054 -21.020 - - 159.00 107.00 - -300.00 6 

232 1.041 -22.994 - - 448.00 143.00 - - 6 

233 1.000 -25.696 300.00 132.53 404.00 212.00 - - 6 

234 1.039 -20.691 - - 572.00 244.00 - - 6 

235 1.010 -20.823 - - 269.00 157.00 - - 6 

236 1.017 -15.195 600.00 300.23 - - - - 6 

237 1.056 -20.898 - - - - - - 6 

238 1.010 -20.735 250.00 164.08 255.00 149.00 - -150.00 6 

239 1.000 -15.657 550.00 68.38 - - - - 6 

240 1.024 -19.934 - - - - - -140.00 6 

241 1.050 -16.304 575.43 -35.44 - - - - 6 

242 0.993 -17.226 170.00 51.76 - - - - 5 

243 1.010 -18.949 84.00 52.20 8.00 3.00 - - 5 

244 0.992 -19.888 - - - - - - 5 

245 0.971 -20.577 - - 61.00 30.00 - - 5 

246 0.965 -21.416 - - 77.00 33.00 - - 5 

247 0.969 -21.330 - - 61.00 30.00 - - 5 

248 0.977 -24.810 - - 29.00 14.00 - 45.60 5 

249 0.976 -25.233 - - 29.00 14.00 - - 5 

250 1.021 -23.379 - - -23.00 -17.00 - - 5 

281 1.025 -19.861 - - -33.10 -29.40 - - 6 

319 1.015 1.488 - - 115.80 -24.00 - - 2 

320 1.015 -2.221 - - 2.40 -12.60 - - 2 

322 1.000 -17.690 - - 2.40 -3.90 - - 2 

323 0.981 -13.748 - - -14.90 26.50 - - 2 

324 0.975 -23.522 - - 24.70 -1.20 - - 2 

526 0.943 -34.277 - - 145.30 -34.90 - - 1 

528 0.972 -37.543 - - 28.10 -20.50 - - 1 

531 0.960 -29.064 - - 14.00 2.50 - - 1 

552 1.001 -23.330 - - -11.10 -1.40 - - 1 

562 0.978 -27.944 - - 50.50 17.40 - - 1 

609 0.958 -28.760 - - 29.60 0.60 - - 1 

664 1.031 -16.833 - - -113.70 76.70 - - 5 

251 1.013 3.925 - - 100.31 29.17 - - 3 

252 1.024 -7.503 - - -100.00 34.17 - - 3 

253 1.012 -15.156 - - - - - - 3 

254 0.969 -24.701 - - - - - - 5 

255 1.051 10.809 467.00 139.61 - - - - 1 

256 1.051 12.502 623.00 93.42 - - - - 1 

257 1.032 13.774 1210.00 420.02 - - - - 1 

258 1.015 5.009 234.00 51.81 - - - - 1 

259 1.051 11.589 372.00 200.25 - - - - 1 

260 1.051 -10.451 330.00 348.05 - - - - 1 

261 1.051 6.162 185.00 6.32 - - - - 2 
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262 1.029 12.608 410.00 106.67 - - - - 2 

263 1.050 2.146 500.00 153.35 - - - - 1 

264 1.015 -13.881 37.00 41.56 - - - - 1 

265 1.051 0.000 455.95 38.84 - - - - 1 

266 0.997 -7.476 45.00 25.01 - - - - 1 

267 1.021 -3.411 165.00 89.91 - - - - 1 

268 1.014 2.002 400.00 120.64 - - - - 1 

269 1.002 5.831 400.00 150.01 - - - - 1 

270 0.989 -25.315 116.00 86.93 - - - - 1 

271 1.051 19.044 1292.00 324.37 - - - - 3 

272 1.051 2.769 700.00 283.93 - - - - 4 

273 1.015 35.072 553.00 136.92 - - - - 4 

274 1.012 -11.235 - - - - - - 7 

275 0.994 -18.844 0.00 2.00 4.20 0.00 - - 7 

276 0.983 -19.673 - - 2.71 0.94 0.14 2.40 7 

277 0.977 -19.810 - - 0.86 0.28 - - 7 

278 1.012 -11.308 - - - - - - 7 

279 1.003 -17.412 - - - - - - 7 

280 0.991 -18.673 - - - - - - 7 

282 1.002 -17.253 - - - - - - 7 

283 0.989 -19.064 - - 4.75 1.56 - - 7 

284 0.965 -21.637 - - 1.53 0.53 0.08 - 7 

285 0.975 -19.374 - - - - - - 7 

286 0.971 -21.410 - - 1.35 0.47 0.07 - 7 

287 0.965 -20.435 - - 0.45 0.16 0.02 - 7 

288 0.966 -20.345 - - 0.45 0.16 0.02 - 7 

289 0.932 -25.016 - - 1.84 0.64 0.10 - 7 

290 0.944 -23.827 - - 1.39 0.48 0.07 - 7 

291 0.929 -25.331 - - 1.89 0.65 0.10 - 7 

292 0.997 -21.087 - - 1.55 0.54 0.08 1.72 7 

293 0.950 -23.172 - - 1.66 0.58 0.09 - 7 

294 0.960 -22.658 - - 3.03 1.00 - - 7 

295 0.957 -22.579 - - 1.86 0.64 0.10 - 7 

296 0.939 -24.411 - - 2.58 0.89 0.14 - 7 

297 0.964 -21.312 - - 1.01 0.35 0.05 - 7 

298 0.950 -22.476 - - 0.81 0.28 0.04 - 7 

299 0.965 -21.414 - - 1.60 0.52 - - 7 

300 0.979 -19.770 - - - - - - 7 

301 1.000 -19.381 0.00 12.20 35.81 0.00 - - 7 

302 0.979 -17.233 - - 30.00 23.00 - - 7 

303 1.000 -17.668 0.00 11.17 26.48 0.00 - - 7 

304 1.000 -6.812 50.00 22.00 - - - - 7 

305 1.000 -7.523 8.00 4.07 - - - - 7 

306 0.975 -20.459 - - 1.02 0.35 0.05 - 7 

307 0.980 -19.905 - - 1.02 0.35 0.05 - 7 

308 0.980 -19.277 - - 3.80 1.25 - - 7 

309 1.041 -18.182 - - 1.19 0.41 0.10 - 7 
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Table 10.10: 300-bus System: Branch Data 

From To R  X B Tap  

Bus Bus p.u. p.u. p.u. p.u. 

37 274 0.00006 0.00046 0.00000 1.0082 

274 278 0.00080 0.00348 0.00000 1.0000 

274 279 0.02439 0.43682 0.00000 0.9668 

274 282 0.03624 0.64898 0.00000 0.9796 

278 301 0.01578 0.37486 0.00000 1.0435 

278 302 0.01578 0.37486 0.00000 0.9391 

278 303 0.01602 0.38046 0.00000 1.0435 

278 304 0.00000 0.15200 0.00000 1.0435 

278 305 0.00000 0.80000 0.00000 1.0435 

279 280 0.05558 0.24666 0.00000 1.0000 

279 276 0.11118 0.49332 0.00000 1.0000 

279 276 0.11118 0.49332 0.00000 1.0000 

282 275 0.07622 0.43286 0.00000 1.0000 

282 275 0.07622 0.43286 0.00000 1.0000 

275 283 0.05370 0.07026 0.00000 1.0000 

283 285 1.10680 0.95278 0.00000 1.0000 

283 284 0.44364 2.81520 0.00000 1.0000 

275 286 0.50748 3.22020 0.00000 1.0000 

285 287 0.66688 3.94400 0.00000 1.0000 

285 288 0.61130 3.61520 0.00000 1.0000 

280 306 0.44120 2.96680 0.00000 1.0000 

280 307 0.30792 2.05700 0.00000 1.0000 

280 276 0.05580 0.24666 0.00000 1.0000 

276 289 0.73633 4.67240 0.00000 1.0000 

276 290 0.76978 4.88460 0.00000 1.0000 

276 291 0.75732 4.80560 0.00000 1.0000 

276 300 0.07378 0.06352 0.00000 1.0000 

300 277 0.03832 0.02894 0.00000 1.0000 

277 297 0.36614 2.45600 0.00000 1.0000 

277 298 1.05930 5.45360 0.00000 1.0000 

277 299 0.15670 1.69940 0.00000 1.0000 

276 292 0.13006 1.39120 0.00000 1.0000 

276 293 0.54484 3.45720 0.00000 1.0000 

276 294 0.15426 1.67290 0.00000 1.0000 

276 295 0.38490 2.57120 0.00000 1.0000 

276 296 0.44120 2.96680 0.00000 1.0000 

282 308 0.23552 0.92940 0.00000 1.0000 

303 309 0.00000 0.75000 0.00000 0.9583 

1 5 0.00100 0.00600 0.00000 1.0000 

2 6 0.00100 0.00900 0.00000 1.0000 

2 8 0.00600 0.02700 0.05400 1.0000 

3 7 0.00000 0.00300 0.00000 1.0000 

3 19 0.00800 0.06900 0.13900 1.0000 

3 150 0.00100 0.00700 0.00000 1.0000 

4 16 0.00200 0.01900 1.12700 1.0000 

5 9 0.00600 0.02900 0.01800 1.0000 

7 12 0.00100 0.00900 0.07000 1.0000 

7 131 0.00100 0.00700 0.01400 1.0000 

8 11 0.01300 0.05950 0.03300 1.0000 
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8 14 0.01300 0.04200 0.08100 1.0000 

9 11 0.00600 0.02700 0.01300 1.0000 

11 13 0.00800 0.03400 0.01800 1.0000 

12 21 0.00200 0.01500 0.11800 1.0000 

13 20 0.00600 0.03400 0.01600 1.0000 

14 15 0.01400 0.04200 0.09700 1.0000 

15 37 0.06500 0.24800 0.12100 1.0000 

15 89 0.09900 0.24800 0.03500 1.0000 

15 90 0.09600 0.36300 0.04800 1.0000 

16 42 0.00200 0.02200 1.28000 1.0000 

19 21 0.00200 0.01800 0.03600 1.0000 

19 87 0.01300 0.08000 0.15100 1.0000 

20 22 0.01600 0.03300 0.01500 1.0000 

20 27 0.06900 0.18600 0.09800 1.0000 

21 24 0.00400 0.03400 0.28000 1.0000 

22 23 0.05200 0.11100 0.05000 1.0000 

23 25 0.01900 0.03900 0.01800 1.0000 

24 319 0.00700 0.06800 0.13400 1.0000 

25 26 0.03600 0.07100 0.03400 1.0000 

26 27 0.04500 0.12000 0.06500 1.0000 

26 320 0.04300 0.13000 0.01400 1.0000 

33 34 0.00000 0.06300 0.00000 1.0000 

33 38 0.00250 0.01200 0.01300 1.0000 

33 40 0.00600 0.02900 0.02000 1.0000 

33 41 0.00700 0.04300 0.02600 1.0000 

34 42 0.00100 0.00800 0.04200 1.0000 

35 72 0.01200 0.06000 0.00800 1.0000 

35 76 0.00600 0.01400 0.00200 1.0000 

35 77 0.01000 0.02900 0.00300 1.0000 

36 88 0.00400 0.02700 0.04300 1.0000 

37 38 0.00800 0.04700 0.00800 1.0000 

37 40 0.02200 0.06400 0.00700 1.0000 

37 41 0.01000 0.03600 0.02000 1.0000 

37 49 0.01700 0.08100 0.04800 1.0000 

37 89 0.10200 0.25400 0.03300 1.0000 

37 90 0.04700 0.12700 0.01600 1.0000 

38 41 0.00800 0.03700 0.02000 1.0000 

38 43 0.03200 0.08700 0.04000 1.0000 

39 42 0.00060 0.00640 0.40400 1.0000 

40 48 0.02600 0.15400 0.02200 1.0000 

41 42 0.00000 0.02900 0.00000 1.0000 

41 49 0.06500 0.19100 0.02000 1.0000 

41 51 0.03100 0.08900 0.03600 1.0000 

42 46 0.00200 0.01400 0.80600 1.0000 

43 44 0.02600 0.07200 0.03500 1.0000 

43 48 0.09500 0.26200 0.03200 1.0000 

43 53 0.01300 0.03900 0.01600 1.0000 

44 47 0.02700 0.08400 0.03900 1.0000 

44 54 0.02800 0.08400 0.03700 1.0000 

45 60 0.00700 0.04100 0.31200 1.0000 

45 74 0.00900 0.05400 0.41100 1.0000 

46 81 0.00500 0.04200 0.69000 1.0000 
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47 73 0.05200 0.14500 0.07300 1.0000 

47 113 0.04300 0.11800 0.01300 1.0000 

48 107 0.02500 0.06200 0.00700 1.0000 

49 51 0.03100 0.09400 0.04300 1.0000 

51 52 0.03700 0.10900 0.04900 1.0000 

52 55 0.02700 0.08000 0.03600 1.0000 

53 54 0.02500 0.07300 0.03500 1.0000 

54 55 0.03500 0.10300 0.04700 1.0000 

55 57 0.06500 0.16900 0.08200 1.0000 

57 58 0.04600 0.08000 0.03600 1.0000 

57 63 0.15900 0.53700 0.07100 1.0000 

58 59 0.00900 0.02600 0.00500 1.0000 

59 61 0.00200 0.01300 0.01500 1.0000 

60 62 0.00900 0.06500 0.48500 1.0000 

62 64 0.01600 0.10500 0.20300 1.0000 

62 144 0.00100 0.00700 0.01300 1.0000 

63 526 0.02650 0.17200 0.02600 1.0000 

69 211 0.05100 0.23200 0.02800 1.0000 

69 79 0.05100 0.15700 0.02300 1.0000 

70 71 0.03200 0.10000 0.06200 1.0000 

70 528 0.02000 0.12340 0.02800 1.0000 

71 72 0.03600 0.13100 0.06800 1.0000 

71 73 0.03400 0.09900 0.04700 1.0000 

72 77 0.01800 0.08700 0.01100 1.0000 

72 531 0.02560 0.19300 0.00000 1.0000 

73 76 0.02100 0.05700 0.03000 1.0000 

73 79 0.01800 0.05200 0.01800 1.0000 

74 88 0.00400 0.02700 0.05000 1.0000 

74 562 0.02860 0.20130 0.37900 1.0000 

76 77 0.01600 0.04300 0.00400 1.0000 

77 78 0.00100 0.00600 0.00700 1.0000 

77 80 0.01400 0.07000 0.03800 1.0000 

77 552 0.08910 0.26760 0.02900 1.0000 

77 609 0.07820 0.21270 0.02200 1.0000 

78 79 0.00600 0.02200 0.01100 1.0000 

78 84 0.00000 0.03600 0.00000 1.0000 

79 211 0.09900 0.37500 0.05100 1.0000 

80 211 0.02200 0.10700 0.05800 1.0000 

81 194 0.00350 0.03300 0.53000 1.0000 

81 195 0.00350 0.03300 0.53000 1.0000 

85 86 0.00800 0.06400 0.12800 1.0000 

86 87 0.01200 0.09300 0.18300 1.0000 

86 323 0.00600 0.04800 0.09200 1.0000 

89 91 0.04700 0.11900 0.01400 1.0000 

90 92 0.03200 0.17400 0.02400 1.0000 

91 94 0.10000 0.25300 0.03100 1.0000 

91 97 0.02200 0.07700 0.03900 1.0000 

92 103 0.01900 0.14400 0.01700 1.0000 

92 105 0.01700 0.09200 0.01200 1.0000 

94 97 0.27800 0.42700 0.04300 1.0000 

97 100 0.02200 0.05300 0.00700 1.0000 

97 102 0.03800 0.09200 0.01200 1.0000 
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97 103 0.04800 0.12200 0.01500 1.0000 

98 100 0.02400 0.06400 0.00700 1.0000 

98 102 0.03400 0.12100 0.01500 1.0000 

99 107 0.05300 0.13500 0.01700 1.0000 

99 108 0.00200 0.00400 0.00200 1.0000 

99 109 0.04500 0.35400 0.04400 1.0000 

99 110 0.05000 0.17400 0.02200 1.0000 

100 102 0.01600 0.03800 0.00400 1.0000 

102 104 0.04300 0.06400 0.02700 1.0000 

103 105 0.01900 0.06200 0.00800 1.0000 

104 108 0.07600 0.13000 0.04400 1.0000 

104 322 0.04400 0.12400 0.01500 1.0000 

105 107 0.01200 0.08800 0.01100 1.0000 

105 110 0.15700 0.40000 0.04700 1.0000 

108 324 0.07400 0.20800 0.02600 1.0000 

109 110 0.07000 0.18400 0.02100 1.0000 

109 113 0.10000 0.27400 0.03100 1.0000 

109 114 0.10900 0.39300 0.03600 1.0000 

110 112 0.14200 0.40400 0.05000 1.0000 

112 114 0.01700 0.04200 0.00600 1.0000 

115 122 0.00360 0.01990 0.00400 1.0000 

116 120 0.00200 0.10490 0.00100 1.0000 

117 118 0.00010 0.00180 0.01700 1.0000 

118 119 0.00000 0.02710 0.00000 1.0000 

118 253 0.00000 0.61630 0.00000 1.0000 

253 120 0.00000 -0.36970 0.00000 1.0000 

118 121 0.00220 0.29150 0.00000 1.0000 

119 120 0.00000 0.03390 0.00000 1.0000 

119 121 0.00000 0.05820 0.00000 1.0000 

122 123 0.08080 0.23440 0.02900 1.0000 

122 125 0.09650 0.36690 0.05400 1.0000 

123 124 0.03600 0.10760 0.11700 1.0000 

123 125 0.04760 0.14140 0.14900 1.0000 

125 126 0.00060 0.01970 0.00000 1.0000 

126 127 0.00590 0.04050 0.25000 1.0000 

126 129 0.01150 0.11060 0.18500 1.0000 

126 132 0.01980 0.16880 0.32100 1.0000 

126 157 0.00500 0.05000 0.33000 1.0000 

126 158 0.00770 0.05380 0.33500 1.0000 

126 169 0.01650 0.11570 0.17100 1.0000 

127 128 0.00590 0.05770 0.09500 1.0000 

127 134 0.00490 0.03360 0.20800 1.0000 

127 168 0.00590 0.05770 0.09500 1.0000 

128 130 0.00780 0.07730 0.12600 1.0000 

128 133 0.00260 0.01930 0.03000 1.0000 

129 130 0.00760 0.07520 0.12200 1.0000 

129 133 0.00210 0.01860 0.03000 1.0000 

130 132 0.00160 0.01640 0.02600 1.0000 

130 151 0.00170 0.01650 0.02600 1.0000 

130 167 0.00790 0.07930 0.12700 1.0000 

130 168 0.00780 0.07840 0.12500 1.0000 

133 137 0.00170 0.01170 0.28900 1.0000 
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133 168 0.00260 0.01930 0.03000 1.0000 

133 169 0.00210 0.01860 0.03000 1.0000 

133 171 0.00020 0.01010 0.00000 1.0000 

134 135 0.00430 0.02930 0.18000 1.0000 

134 184 0.00390 0.03810 0.25800 1.0000 

135 136 0.00910 0.06230 0.38500 1.0000 

136 137 0.01250 0.08900 0.54000 1.0000 

136 152 0.00560 0.03900 0.95300 1.0000 

137 140 0.00150 0.01140 0.28400 1.0000 

137 181 0.00050 0.00340 0.02100 1.0000 

137 186 0.00070 0.01510 0.12600 1.0000 

137 188 0.00050 0.00340 0.02100 1.0000 

139 172 0.05620 0.22480 0.08100 1.0000 

140 141 0.01200 0.08360 0.12300 1.0000 

140 142 0.01520 0.11320 0.68400 1.0000 

140 145 0.04680 0.33690 0.51900 1.0000 

140 146 0.04300 0.30310 0.46300 1.0000 

140 147 0.04890 0.34920 0.53800 1.0000 

140 182 0.00130 0.00890 0.11900 1.0000 

141 146 0.02910 0.22670 0.34200 1.0000 

142 143 0.00600 0.05700 0.76700 1.0000 

143 145 0.00750 0.07730 0.11900 1.0000 

143 149 0.01270 0.09090 0.13500 1.0000 

145 146 0.00850 0.05880 0.08700 1.0000 

145 149 0.02180 0.15110 0.22300 1.0000 

146 147 0.00730 0.05040 0.07400 1.0000 

148 178 0.05230 0.15260 0.07400 1.0000 

148 179 0.13710 0.39190 0.07600 1.0000 

152 153 0.01370 0.09570 0.14100 1.0000 

153 161 0.00550 0.02880 0.19000 1.0000 

154 156 0.17460 0.31610 0.04000 1.0000 

154 183 0.08040 0.30540 0.04500 1.0000 

155 161 0.01100 0.05680 0.38800 1.0000 

157 159 0.00080 0.00980 0.06900 1.0000 

158 159 0.00290 0.02850 0.19000 1.0000 

158 160 0.00660 0.04480 0.27700 1.0000 

162 164 0.00240 0.03260 0.23600 1.0000 

162 165 0.00180 0.02450 1.66200 1.0000 

163 164 0.00440 0.05140 3.59700 1.0000 

165 166 0.00020 0.01230 0.00000 1.0000 

167 169 0.00180 0.01780 0.02900 1.0000 

172 173 0.06690 0.48430 0.06300 1.0000 

172 174 0.05580 0.22100 0.03100 1.0000 

173 174 0.08070 0.33310 0.04900 1.0000 

173 175 0.07390 0.30710 0.04300 1.0000 

173 176 0.17990 0.50170 0.06900 1.0000 

175 176 0.09040 0.36260 0.04800 1.0000 

175 179 0.07700 0.30920 0.05400 1.0000 

176 177 0.02510 0.08290 0.04700 1.0000 

177 178 0.02220 0.08470 0.05000 1.0000 

178 179 0.04980 0.18550 0.02900 1.0000 

178 180 0.00610 0.02900 0.08400 1.0000 
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181 138 0.00040 0.02020 0.00000 1.0000 

181 187 0.00040 0.00830 0.11500 1.0000 

184 185 0.00250 0.02450 0.16400 1.0000 

186 188 0.00070 0.00860 0.11500 1.0000 

187 188 0.00070 0.00860 0.11500 1.0000 

188 138 0.00040 0.02020 0.00000 1.0000 

189 208 0.03300 0.09500 0.00000 1.0000 

189 209 0.04600 0.06900 0.00000 1.0000 

190 231 0.00040 0.00220 6.20000 1.0000 

190 240 0.00000 0.02750 0.00000 1.0000 

191 192 0.00300 0.04800 0.00000 1.0000 

192 225 0.00200 0.00900 0.00000 1.0000 

193 205 0.04500 0.06300 0.00000 1.0000 

193 208 0.04800 0.12700 0.00000 1.0000 

194 219 0.00310 0.02860 0.50000 1.0000 

194 664 0.00240 0.03550 0.36000 1.0000 

195 219 0.00310 0.02860 0.50000 1.0000 

196 197 0.01400 0.04000 0.00400 1.0000 

196 210 0.03000 0.08100 0.01000 1.0000 

197 198 0.01000 0.06000 0.00900 1.0000 

197 211 0.01500 0.04000 0.00600 1.0000 

198 202 0.33200 0.68800 0.00000 1.0000 

198 203 0.00900 0.04600 0.02500 1.0000 

198 210 0.02000 0.07300 0.00800 1.0000 

198 211 0.03400 0.10900 0.03200 1.0000 

199 200 0.07600 0.13500 0.00900 1.0000 

199 210 0.04000 0.10200 0.00500 1.0000 

200 210 0.08100 0.12800 0.01400 1.0000 

201 204 0.12400 0.18300 0.00000 1.0000 

203 211 0.01000 0.05900 0.00800 1.0000 

204 205 0.04600 0.06800 0.00000 1.0000 

205 206 0.30200 0.44600 0.00000 1.0000 

206 207 0.07300 0.09300 0.00000 1.0000 

206 208 0.24000 0.42100 0.00000 1.0000 

212 215 0.01390 0.07780 0.08600 1.0000 

213 214 0.00250 0.03800 0.00000 1.0000 

214 215 0.00170 0.01850 0.02000 1.0000 

214 242 0.00150 0.01080 0.00200 1.0000 

215 216 0.00450 0.02490 0.02600 1.0000 

216 217 0.00400 0.04970 0.01800 1.0000 

217 218 0.00000 0.04560 0.00000 1.0000 

217 219 0.00050 0.01770 0.02000 1.0000 

217 220 0.00270 0.03950 0.83200 1.0000 

219 237 0.00030 0.00180 5.20000 1.0000 

220 218 0.00370 0.04840 0.43000 1.0000 

220 221 0.00100 0.02950 0.50300 1.0000 

220 238 0.00160 0.00460 0.40200 1.0000 

221 223 0.00030 0.00130 1.00000 1.0000 

222 237 0.00140 0.05140 0.33000 1.0000 

224 225 0.01000 0.06400 0.48000 1.0000 

224 226 0.00190 0.00810 0.86000 1.0000 

225 191 0.00100 0.06100 0.00000 1.0000 
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226 231 0.00050 0.02120 0.00000 1.0000 

227 231 0.00090 0.04720 0.18600 1.0000 

228 229 0.00190 0.00870 1.28000 1.0000 

228 231 0.00260 0.09170 0.00000 1.0000 

228 234 0.00130 0.02880 0.81000 1.0000 

229 190 0.00000 0.06260 0.00000 1.0000 

231 232 0.00020 0.00690 1.36400 1.0000 

231 237 0.00010 0.00060 3.57000 1.0000 

232 233 0.00170 0.04850 0.00000 1.0000 

234 235 0.00020 0.02590 0.14400 1.0000 

234 237 0.00060 0.02720 0.00000 1.0000 

235 238 0.00020 0.00060 0.80000 1.0000 

241 237 0.00050 0.01540 0.00000 1.0000 

240 281 0.00030 0.00430 0.00900 1.0000 

242 245 0.00820 0.08510 0.00000 1.0000 

242 247 0.01120 0.07230 0.00000 1.0000 

243 244 0.01270 0.03550 0.00000 1.0000 

243 245 0.03260 0.18040 0.00000 1.0000 

244 246 0.01950 0.05510 0.00000 1.0000 

245 246 0.01570 0.07320 0.00000 1.0000 

245 247 0.03600 0.21190 0.00000 1.0000 

246 247 0.02680 0.12850 0.00000 1.0000 

247 248 0.04280 0.12150 0.00000 1.0000 

248 249 0.03510 0.10040 0.00000 1.0000 

249 250 0.06160 0.18570 0.00000 1.0000 

3 1 0.00000 0.05200 0.00000 0.9470 

3 2 0.00000 0.05200 0.00000 0.9560 

3 4 0.00000 0.00500 0.00000 0.9710 

7 5 0.00000 0.03900 0.00000 0.9480 

7 6 0.00000 0.03900 0.00000 0.9590 

10 11 0.00000 0.08900 0.00000 1.0460 

12 10 0.00000 0.05300 0.00000 0.9850 

15 17 0.01940 0.03110 0.00000 0.9561 

16 15 0.00100 0.03800 0.00000 0.9710 

21 20 0.00000 0.01400 0.00000 0.9520 

24 23 0.00000 0.06400 0.00000 0.9430 

36 35 0.00000 0.04700 0.00000 1.0100 

45 44 0.00000 0.02000 0.00000 1.0080 

45 46 0.00000 0.02100 0.00000 1.0000 

62 61 0.00000 0.05900 0.00000 0.9750 

63 64 0.00000 0.03800 0.00000 1.0170 

73 74 0.00000 0.02440 0.00000 1.0000 

81 88 0.00000 0.02000 0.00000 1.0000 

85 99 0.00000 0.04800 0.00000 1.0000 

86 102 0.00000 0.04800 0.00000 1.0000 

87 94 0.00000 0.04600 0.00000 1.0150 

114 207 0.00000 0.14900 0.00000 0.9670 

116 124 0.00520 0.01740 0.00000 1.0100 

121 115 0.00000 0.02800 0.00000 1.0500 

122 157 0.00050 0.01950 0.00000 1.0000 

130 131 0.00000 0.01800 0.00000 1.0522 

130 150 0.00000 0.01400 0.00000 1.0522 
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132 170 0.00100 0.04020 0.00000 1.0500 

141 174 0.00240 0.06030 0.00000 0.9750 

142 175 0.00240 0.04980 -0.08700 1.0000 

143 144 0.00000 0.08330 0.00000 1.0350 

143 148 0.00130 0.03710 0.00000 0.9565 

145 180 0.00050 0.01820 0.00000 1.0000 

151 170 0.00100 0.03920 0.00000 1.0500 

153 183 0.00270 0.06390 0.00000 1.0730 

155 156 0.00080 0.02560 0.00000 1.0500 

159 117 0.00000 0.01600 0.00000 1.0506 

160 124 0.00120 0.03960 0.00000 0.9750 

163 137 0.00130 0.03840 -0.05700 0.9800 

164 155 0.00090 0.02310 -0.03300 0.9560 

182 139 0.00030 0.01310 0.00000 1.0500 

189 210 0.00000 0.25200 0.00000 1.0300 

193 196 0.00000 0.23700 0.00000 1.0300 

195 212 0.00080 0.03660 0.00000 0.9850 

200 248 0.00000 0.22000 0.00000 1.0000 

201 69 0.00000 0.09800 0.00000 1.0300 

202 211 0.00000 0.12800 0.00000 1.0100 

204 254 0.02000 0.20400 -0.01200 1.0500 

209 198 0.02600 0.21100 0.00000 1.0300 

211 212 0.00300 0.01220 0.00000 1.0000 

218 219 0.00100 0.03540 -0.01000 0.9700 

223 224 0.00120 0.01950 -0.36400 1.0000 

229 230 0.00100 0.03320 0.00000 1.0200 

234 236 0.00050 0.01600 0.00000 1.0700 

238 239 0.00050 0.01600 0.00000 1.0200 

196 254 0.00010 0.02000 0.00000 1.0000 

119 251 0.00100 0.02300 0.00000 1.0223 

120 252 0.00000 0.02300 0.00000 0.9284 

256 2 0.00100 0.01460 0.00000 1.0000 

257 3 0.00000 0.01054 0.00000 1.0000 

268 61 0.00000 0.02380 0.00000 1.0000 

269 62 0.00000 0.03214 0.00000 0.9500 

273 166 0.00000 0.01540 0.00000 1.0000 

262 24 0.00000 0.02890 0.00000 1.0000 

255 1 0.00000 0.01953 0.00000 1.0000 

271 130 0.00000 0.01930 0.00000 1.0000 

258 11 0.00000 0.01923 0.00000 1.0000 

261 23 0.00000 0.02300 0.00000 1.0000 

265 49 0.00000 0.01240 0.00000 1.0000 

272 139 0.00000 0.01670 0.00000 1.0000 

259 12 0.00000 0.03120 0.00000 1.0000 

260 17 0.00000 0.01654 0.00000 0.9420 

263 39 0.00000 0.03159 0.00000 0.9650 

267 57 0.00000 0.05347 0.00000 0.9500 

264 44 0.00000 0.18181 0.00000 0.9420 

266 55 0.00000 0.19607 0.00000 0.9420 

270 71 0.00000 0.06896 0.00000 0.96 
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Formulation for Hybrid State Estimation” IEEE Transactions on Power Systems, vol. 26, no.3, 
pp. 1102-1109, Aug. 2011. 
 
Paper 3. G. Valverde, E. Kyriakides, G. Heydt and V. Terzija, “Non-linear Estimation of 
Synchronous Machine Parameters using Operating Data”, IEEE Transactions on Energy 
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