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The evolving complexity of electric power systems with higher levels of uncertainties is a
new challenge faced by system operators. Therefore, new methods for power system
prediction, monitoring and state estimation are relevant for the efficient exploitation of
renewable energy sources and the secure operation of network assets.

In order to estimate all possible operating conditions of power systems, this Thesis proposes
the use of Gaussian mixture models to represent non-Gaussian correlated input variables, such
as wind power output or aggregated load demands in the probabilistic load flow problem. The
formulation, based on multiple Weighted Least Square runs, is also extended to monitor
distribution radial networks where the uncertainty of these networks is aggravated by the lack
of sufficient real-time measurements.

This research also explores reduction techniques to limit the computational demands of the
probabilistic load flow and it assesses the impact of the reductions on the resulting probability
density functions of power flows and bus voltages.

The development of synchronised measurement technology to support monitoring of electric
power systems in real-time is also studied in this work. The Thesis presents and compares
different formulations for incorporating conventional and synchronised measurements in the
state estimation problem. As a result of the study, a new hybrid constrained state estimator is
proposed. This constrained formulation makes it possible to take advantage of the information
from synchronised phasor measurements of branch currents and bus voltages in polar form.

Additionally, the study is extended to assess the advantages of PMU measurements in multi-
area state estimators and it explores a new algorithm that minimises the data exchange between
local area state estimators.

Finally, this research work also presents the advantages of dynamic state estimators
supported by Synchronised Measurement Technology. The dynamic state estimator is
compared with the static approach in terms of accuracy and performance during sudden
changes of states and the presence of bad data. All formulations presented in this Thesis were
validated in different IEEE test systems.
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Chapter 1 - Introduction

Chapter 1 Introduction

The systematic interconnection of power systems that took place in the second half of the
twentieth century, as an attempt to strengthen the networks and to facilitate the transmission of
electricity, brought new operation challenges that could not be faced by power engineers unless

the state of the network was properly monitored in real-time [1].

The blackout of 1965 in the northeast region of the US encouraged power engineers to develop
sophisticated tools to collect, transmit and process measurements from all over the network for
the supervision and control of the system. This was a step before today’s Energy Management
Systems (EMS) of modern power networks. These EMS are in charge of the data acquisition,
state estimation, load flow analysis, economic dispatch, voltage-frequency control and security

assessment of the system, among other sophisticated features.

For many years, these tools were very effective to monitor and control power networks made
of conventional generation and uncongested transmission corridors. Today, the panorama has

changed:

e There is a need to reduce CO, emissions of existing power plants which must be
gradually replaced by renewable generation, e.g. wind farms or solar panels.

e This renewable generation is variable, difficult to predict and no longer centralised but
distributed.

e The networks follow a deregulated structure to incentivise investment and efficiency in
electricity utilisation. Based on this,

e The networks operate closer to their stability limits and transmission corridors are

stressed due to the restrictions on the building of new transmission lines.
In order to cope with the challenges faced by intermittent generation, congested transmission

corridors and massive exchange of power between areas, it is necessary to improve the current

practice to monitor the power networks in real-time and to explore new tools that can be used
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to analyse the network operation over a range of possible conditions imposed by the

uncertainty of intermittent generation and demand.

1.1 Research Background

The following subsections present an introduction of previous work related to the topics
covered in this PhD Thesis. Further literature review is presented at the beginning of each

Chapter.

1.1.1 Probabilistic Load Flows

The Probabilistic Load Flow (PLF) studies are typically run for network planning purposes and
they analyse the performance of the power network over most of its working operation
conditions. The studies determine the likelihood of overstressed transmission corridors and
unacceptable bus voltage magnitudes and they can assess the impact of intermittent generation

in power networks [2].

The PLF takes into account the random nature of generation and demand, represented by
probability density functions, to determine the probability density of output variables such as
bus voltages and power flows. It was firstly proposed in [3] by Borkowska in 1974, and it can
be solved either numerically (e.g. Monte Carlo simulations) or analytically by mathematical
developments as an alternative to reduce the computational demands of the Monte Carlo

simulations [4].
Among the first analytical methods, Allan et al. solved the probabilistic load flow by linear
approximations of the power flow equations [5]. Here, the probability densities of the power

flows were approximated by convolution techniques.

In 1990, da Silva and Arienti combined the Monte Carlo Simulations and a multi-linearised

load flow equations in [6]. In addition, the Weighted Least Square (WLS) method was used in
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[7] to solve the PLF problem where all of the input variables were treated as Gaussian random

variables.

Recently in 2005, the Point Estimate method was implemented in probabilistic power flows
[8]. The method calculates a set of deterministic points to capture the first moments of the
input random variables. These points are later evaluated in the power flow problem to obtain

the mean and standard deviation of any power system variable.

An extension of the capabilities of the Point Estimate method was later presented in [9].
Normal and Binomial distributions were used to model the input variables. The authors
compared four Hong’s Point Estimate methods whose differences are the required number of
deterministic points. They found that for a large number of input random variables m, the
creation of 2m+1 points provides the best performance i.e. closer to the Monte Carlo

simulation results.

During the last few decades, the PLF studies were used to study the variability of aggregated
loads modelled by Gaussian distributions. With the increased penetration of intermittent
generation, the probabilistic studies have gained more attention due to the need for modelling
the intermittent power output as random variables that are typically non-Gaussian

distributed [10, 11].

Because of the proliferation of these renewable sources, the representation of these non-
Gaussian PDFs is an open field of research. Different approximations have been developed to
model non-Gaussian input random variables in power systems. For instance, in order to model
the variability of wind power output, an indirect algorithm based on the Beta distribution was

proposed in [12] and later considered in [10].

The probability distribution of the wind speed is typically non-Gaussian and it has been
modelled by the Gamma, Weibull or the Rayleigh distributions [4]. The Weibull distribution
has demonstrated better results because of its two flexible parameters k and c¢ [13].

Nonetheless, since the wind speed PDF cannot be always approximated as a Weibull
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distribution, a mixed Gamma-Weibull distribution and a mixed truncated Normal distribution

were introduced in [13].

The PDFs of power demands of aggregated loads can be also non-Gaussian distributed. For
example, the Normal, log-normal and Beta distributions were used to evaluate their
effectiveness to model the load uncertainty [14]. Because of its flexibility to adapt to the
skewness of the distribution, the Beta distribution was found to be the most appropriate. This

distribution was also used in [15] to model the variability of load demand.

Recently, a more accurate approximation of the marginal distribution of any power demand
was introduced in [16]. As the PDF of load demands cannot be represented by a specific
distribution, the authors proposed the use of the Gaussian mixture distribution. Although the
work in [16] concentrates on the probability distribution of power demands, Gaussian mixtures
can be used to represent the variability of any other non-Gaussian variable in electric power

systems, e.g. renewable energy sources.

The present research work starts from the latter affirmation: it assumes that the marginal
distribution of any wind farm power output, wind speed or power demands can be represented

by Gaussian mixtures and this will be the input of the PLF analysis.

1.1.2 State Estimation

State Estimation is the process of assigning a value to an unknown system state variable based
on measurements collected from the network [17]. The state variables are the bus voltage

magnitudes and their phase angles and they are typically estimated by the WLS formulation.

The process involves redundant imperfect measurements that are processed to obtain the best
estimate of the system state. The state estimator acts as a filter block between the raw
measurements received from all over the network and the EMS applications that require very

accurate and reliable information about the actual state of the network [18].
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The typical sources of errors that affect the performance of modern state estimators are:
topology errors (undetected by the operator); gross errors in measurements and transducers;
parameter errors in the data base and the unsynchronised nature of conventional measurements.
However, the development of synchronised measurements units has opened new opportunities
to better monitor the power networks. The development of new strategies for incorporating
these synchronised measurements in current state estimators is one of the main objectives of

this Thesis.

1.1.3 Synchronised Measurements

A Phasor Measurement Unit (PMU) is a piece of equipment able to measure phasors of voltage
and currents, usually called synchrophasors. They were firstly introduced in the early 1980s

and they originally served as disturbance recorders [19].

The PMUs are the base line of wide-area monitoring systems that collect and process
synchronised measurements across the network to monitor power oscillations during large
disturbances and to monitor power flows and bus voltages during normal steady state

conditions [20].

In 2005, the IEEE published the Standard C.37.118-2005 to establish the data exchange
requirements in order to facilitate the compatibility of equipment between different
vendors [21]. Standard C.37.118-2005 also defines a list of steady state performance
requirements including range of signal frequency, phase angle, and harmonic distortion, among
others [22]. The performance of PMUs with dynamic measurements was not included in

C.37.118-2005 but it will be included in an updated version of C.37.118.

Since the PMUs can measure phasors of bus voltages, the state can be measured directly. This
is an advantage that could not be achieved by conventional unsynchronised measurements of
power flows. Additionally, as phasors of current can be measured, it is possible to extend the

voltage measurements to buses where no PMUs are installed.
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To date, the process of introducing PMUs in power systems is costly and it requires more time
to see the full benefits of wide area monitoring systems. In the meanwhile, the studies must
concentrate on making the most of the information provided by few installed PMUs until the

gradual insertion of PMUSs will make the system fully observable.

1.1.4 Hybrid State Estimators

The use of synchrophasors improves the capability to monitor the condition of the system in
real-time. The inclusion of PMU measurements in existing state estimators increases the
redundancy levels for better bad data detection, helps to determine the actual topology of the
network and improves the accuracy of the estimation as synchronised measurements are

substantially more accurate than conventional measurements [23-26].

If a system becomes fully observable with only PMU measurements, a linear (non-iterative)
WLS can be used as direct measurements of voltage and current phasors are available.
However, the high cost of installing hundreds of PMUs in large interconnected power systems
makes this option unfeasible in the short term. As a consequence, a mixture of existing
conventional measurements and synchronised measurements is the most practical and feasible

option to gradually incorporate these synchronised measurements in existing estimators.

An example of this transition is the state estimator proposed in [26]. This state estimator
consists of a two-step state estimator: a conventional state estimator corrected by a linear state
estimator that uses synchronised measurements only. The main advantage of this estimator is

that there is no need to replace the existing conventional state estimator.

An alternative hybrid state estimator was later proposed in [27]. Unlike the two-step hybrid
estimator, the authors combined both the conventional and synchronised measurements in a

non-linear state estimator.

Recent studies also proposed new formulations for including synchrophasors in Multi-Area

State Estimators (MASE). It was found that synchrophasors can be used to improve bad data
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processing around boundary buses [28], and to measure the phase shift between the slack buses

of different areas [29, 30].

This Thesis, as extension of the work presented above, explores new methods for combining
conventional and synchronised measurements in modern state estimators, and assesses the
impact of the dispersed PMU measurements in single-area and multi-area state estimation. It

also explores the use of synchrophasors in dynamic state estimation.

1.2 Objectives

e To provide a step forward on probabilistic studies to estimate the operating conditions
of electric power systems in the presence of uncertain input variables such as power

demand and intermittent generation.

e To improve state estimation practice, enabling it to cope with the uncertainty of the
system to achieve a better network monitoring by making use of available technology

based on synchronised measurements.

e To propose and explore different formulations for including synchronised phasor

measurements in state estimation, including static and dynamic state estimators.

1.3 Thesis Structure

Chapter 1 - Introduction

This is the introduction of the Thesis. This chapter presents a brief explanation of the
importance and relevance of this research work. In addition, the Chapter presents the objectives

and the contribution of this PhD Thesis.

19



Chapter 1 - Introduction

Chapter 2 - Classical State Estimation in Power Systems

The Chapter presents an overview of power system state estimation theory including the details
of the WLS formulation, observability analysis, redundancy analysis and bad data processing.
It also introduces the equations of power flows and power injections that are used in the WLS
formulation. The theory presented in this Chapter is later implemented in the following

Chapters of the Thesis.

Chapter 3 — Estimation of Probabilistic Load Flows: Theory and Modelling

This Chapter extends the Gaussian Component Combination Method (GCCM), originally
introduced in [31] as an alternative to Monte Carlo simulations, to estimate probability density
functions of power flows and bus voltages in the presence of non-Gaussian correlated random
input variables (papers 4 and 5 in Appendix H). Additionally, the use of Gaussian mixture
reduction techniques to limit the computational demand of the GCCM is proposed (Paper 9 in

Appendix H).

Chapter 4 — Estimation of Probabilistic Load Flows: Simulations

The probabilistic load flow study introduced in Chapter 3 is implemented in three
representative test systems. The study includes the impact of the correlation between input
variables in power flow studies of transmission networks and state estimation of distribution

networks (Papers 4 and 5 in Appendix H).

Chapter 5 — Synchronised Measurements in State Estimation

This Chapter explores different methods to include synchronised measurements in state
estimation based on the WLS formulation. The study focuses on how the PMU measurements

of currents can be used to improve the accuracy of hybrid state estimators.
Based on the inability to include current measurements in polar form, this study proposes the

use of a Hybrid Constrained State Estimator (HCSE) that avoids the propagation of

measurement uncertainties because it does not use any transformation of measurements. A
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comparison with other hybrid state estimators is included in the analysis (Paper 2 in

Appendix H).

Chapter 6 — Multi-Area State Estimation

This Chapter deals with the problem of state estimation in multi-area power systems. The study
proposes a Multi-Area State Estimator (MASE) based on wide area synchronised
measurements to estimate the angle difference between reference buses and to improve the

estimation accuracy in boundary buses.

The main objective of the proposed MASE is to reduce the data exchange between local area
and the coordination state estimators, and consequently to reduce the number of estimated
states of the coordination level. The impact of the proposed simplified MASE is also assessed

in terms of accuracy in a 300 bus test system (paper 6 in Appendix H).

Chapter 7 — Dynamic State Estimation

Due to the possibility to process scans of measurements with higher sampling rates, this
Chapter explores the use of power system dynamic state estimators supported by synchronised
measurements. In addition, this study explores the use of the Unscented Kalman Filter (UKF)
as an alternative to the Extended Kalman Filter (EKF) to cope with the non-linearities of the

measurement equations used in dynamic state estimators.

Finally, this Chapter compares the performance of dynamic and static estimators under normal
conditions, the presence of bad data and sudden changes of states. This study was implemented

in two test systems (paper 1 in Appendix H).

Chapter 8 — Conclusions and Future Work

This Chapter summarises the conclusions drawn from the tests executed in Chapters 3
through 7. Furthermore, it discusses the limitations of the presented work and presents new

ideas for future work as consequence of this research.
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Figure 1.1 presents a diagram with the structure of the PhD Thesis to summarise the

organisation of the research work.
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Figure 1.1: PhD Thesis Structure

1.4 Contribution of this Research

In order of appearance, the main contributions of this Thesis are:

® Proposal of a probabilistic load flow to estimate power flows and bus voltages in the
presence of non-Gaussian correlated input variables (demand and intermittent
generation). The proposed method uses the actual probability density functions as input

variables — represented as Gaussian mixtures.
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¢ Development of a methodology to run Monte Carlo simulations with Gaussian mixture
models as input variables.

e Simplification of Gaussian mixture models (with fewer components) to reduce the
computational demands of the proposed probabilistic load flow (and state estimator).

e Evaluation of the impact of including (or neglecting) the correlation between input
variables on the estimated probability densities of voltages and power flows of
transmission and distribution networks.

® Proposal of a state estimator for distribution networks that uses few real real-time
measurements and pseudo-measurements of power injections expressed by probability
densities. This state estimator not only provides the estimated mean values of any
variable but also calculates the corresponding density function of voltages, power flows
and power injections of poorly monitored areas.

e Assessment of the impact of the reduced models in the calculation of the probability
densities in both the probabilistic load flow and the state estimator.

e Proposal of a hybrid constrained state estimator that uses synchronised measurements
in polar form. This method avoids the propagation of measurement uncertainties as no
transformation of measurements is required.

e Application of the Unscented Transformation to calculate the propagation of
measurement uncertainties when synchronised measurements are transformed (from
polar to rectangular form or as pseudo-measurements of voltages).

® Proposal of a multi-area state estimator, supported by synchronised measurements,
which requires minimum data exchange between the local and coordination estimators.

e Assessment of the impact of not including power injection measurements of boundary
buses in two-level multi-area state estimators.

e Implementation of the Unscented Kalman filter in power system dynamic state
estimation supported by synchronised measurements.

e Comparison of dynamic versus static state estimators in the presence of bad data and

after sudden changes of states.

A list of the publications achieved as a result of the research carried out during this PhD project

has been included in Appendix H.
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Chapter 2 Classical State Estimation in Power
Systems

Power system State Estimation (SE) is one of the most critical on-line applications necessary
for efficient Energy Management System (EMS) applications. The solution of a state estimator
is used as input for optimal power flow studies and contingency analysis and it is also used for
real-time security assessment to determine, and subsequently correct, unacceptable voltage and
power flow levels, to determine network losses, to alert network topology changes and to

monitor transferred power flows between areas.

The state estimator provides the best estimate of the system states (voltage angles and
magnitudes) commonly using the non-linear Weighted Least Square (WLS) technique based on

available measurements in the network.
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Figure 2.1: 14-bus system with conventional set of measurements
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Figure 2.1 presents an example of a small power system with dispersed conventional
measurements across the system which are commonly collected and transmitted through a
Supervisory Control and Data Acquisition (SCADA) system. These conventional
measurements and the set of virtual measurements (extended in Section 2.1.2.) are processed to
obtain the best estimate of voltages, power injections and power flows of directly and non-
directly monitored buses and transmission lines. The inclusion of more sophisticated, reliable

and synchronised measurements is presented in Chapters 5 to 7.

Figure 2.2 presents the functions of a SE [1]. In the pre-filtering step, the operator corrects and
eliminates measurements that are clearly wrong. The topology processor is implemented to
estimate the physical layout of substations and the connectivity between buses based on

information of Circuit Breaker (CB) status and available measurements.

The observability analysis is carried out to determine if the system state can be obtained from
the available set of measurements. In case the system is not fully observable, the SE determines

the unobservable zones/branches and the required set of measurements to make the system

fully observable.
Dynamic Data Network
Parameters
L [ on/off switch indicators i
Measurements and measurements +
Prefiltering Topology
Processing
v v v
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P — Analysis
. Error
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Estimated States Errors¢ Non-observable
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Figure 2.2: Building block of a state estimator
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The estimated states are obtained from the WLS method and it performs quite well under
quasi-steady state conditions. However, the good performance of the state estimator depends
on measurement accuracy and redundancy levels. Therefore, bad data detection and

elimination constitutes an important part of the state estimator.

The following sections present an overview of classical power system state estimation analysis
including the WLS formulation, observability analysis, redundancy analysis and bad data
processing. All the theory presented in this Chapter is later implemented in the following

Chapters of this Thesis.

2.1 WLS Formulation

The classical approach of state estimation in power systems consists of the application of the
Weighted Least Square (WLS) methodology, in which a set of measurements z can be

represented as [18]:

z=hXx)+e 2.1

where h(x) is the set of equations relating the error free measurements with the state variables x
and e is the vector of uncorrelated measurement errors with mean value E[e] = 0. The nx1
state vector X 1s defined as the set of bus voltage magnitudes and angles. For instance, for an N-

bus system with reference at bus 1:

X:[92’93"'"HN"/I’VZ""’VN]T (22)

Now let r =z — h(x) be a vector of residuals. The best estimate of x is the vector X that

minimises the weighted sum of the squares of the measurement residuals r:

J®) = [z —h®)]"R![z - h(x)] (2.3)

where R = E[e-e”] = diag{c?,dZ, ..,0%} is the error covariance matrix and o7 is the i-th
variance for the i =1, 2,..., m measurements. The solution of (2.3) is obtained when the first

derivative of J (x), evaluated at the optimum state vector X, gives a zero value.
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IR _

24
7 = ° 2.4)

As the problem is non-linear, an iterative procedure is necessary to find the optimal vector X.

See Appendix A.l for further details. At iteration k, the following holds:

G(xM)Ax* = HT (x*) R7'[z — h(x")] (2.5)

where H(x*) = dh(x*)/0x is the mxn Jacobian matrix and G(x¥) = HT (x*) R™*H(x¥) is the
nxn Gain matrix. The iteration procedure finishes when Ax* = xF*1—x¥ is smaller than a pre-

defined value. The result is the state estimate X.

Since the set of measurements in electric networks are obtained from bus voltages, power
flows and injected powers, the set of equations h(x) must relate the error free measurements
with the state variables. In the case of voltage measurements, there is a linear relation between
the state variable (voltage magnitude) and the measurement itself. In the case of injected and

transferred powers, the non-linear equations are:

P=V, > V/(G,cos,+B,sin6,) (2.6)

J

Il
_

Q,=V,> V.(G,sin§,— B, cos6,) (2.7)

J

.MZ

Il
_

J

And the transferred power relationships are given as:

v v, .
P =—(g,+8;)~ p (g;cos6,+b,;sin6)) (2.8)
i i
% W
Q,=——5(b,+b;)— (g;sin8; —b, cosd,) (2.9)
a; a;
2 V/Vi .
P, =V (g;+8)~ d (g, €086, +b;sinb) (2.10)
i
vy,

(g;sin@; —b,cosb,) (2.11)

y

_ 2
Q; =-V; (b, +b;)- a

Here G;+jB;; is the ij-term of the power network admittance matrix and g+jb,; corresponds to

the admittance of the shunt branch connected to bus i, as presented in Figure 2.3.

27



Chapter 2 — Classical State Estimation in Power Systems

aij:l gl'j—l_jbij
D C |
O C L |
(gsi+jbsi) (gsj+jbsj)

Figure 2.3: Pi-model of network branch including tap modelling

Also, ajj is the off-nominal tap position of transformer connected to buses i and j. In case that

branch ij is a transmission line, a;; = 1.

2.1.1 Jacobian Elements

The elements of the Jacobian matrix H(x) correspond to the partial derivatives of equations
(2.6) — (2.11) with respect to the state variables X, as presented in Tables 2.1 and 2.2. In
addition, the partial derivatives of the bus voltage magnitude with respect to the state variables
are presented in Table 2.3. Other types of measurements including synchronised and current
magnitude measurements will be presented in Chapter 5. The way how these measurements are

included and expressed in the SE is a key part of this work.

Table 2.1: Elements of H corresponding to power injections

oP, = . P & .

8_01 = _Vl_Zl:Vj(Gij sin 6, — B, cos,)—V/’B, ﬁ = Z;Vj(G,.j cos@, + B;sin6,)+V,G,
i J= i J=

oP, oP,

—=VV.(G,sin@, — B, cosb,) ——=V.(G, cosb,. + B, sinb,)

89]' J b 7 7 7 aV] b 7 7 7

9 _ys o, in @ 2 9 _5 in @ (&

ﬁ—viz;vj(Gijcos ), + B, sin6,)-V G, W_Z:‘VJ(G”SIH ), — B, cos8,)-V.B,
i Jj= i Jj=

E——VV (G, cos@.+B.sinb.) E—V(G siné@, — B..cosd.)

aej injNT ij ij ij aV/ i ij ij ij
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Table 2.2: Elements of H corresponding to line power flows

JF, viv; . JF, Vi 4 .
B_Q:_ " (-g;sin6; +b;cosb,) a—Viz 7(8s,~+g,;,-)—a—ij(g,jcos@/+bl.j sin6;)
oB, VYV, op, :
I (gl Sin@iv—bivCOSHiv) o :_L(gijcoseij-'_bij Sineij)
89] aij / ! / / avj aij
oP. \/A% oP, V.
—L=——L"(g,sin,—b,cosb,) =5 =——(g;c088,; +b;sinb;)
26, a; o % i S
ﬂ=_va" (—g,;sin@, +b,.cosb.) oF, =2V.(g, +g,)—£(g,~ cos@, +b.sinb,)
agj aij ij J ij J an JNOsj ij aij y J J J
20, VV. ' 00, V V. .
_39;- =— 1:// (g, cosg; +b;sin6)) a_‘/{=_2a_5(bsi+bij)_a_;(glf/ sin ; —b; cos 6 )
0, VV, 00.. v
—+L=—>(g, cos6, +b,sinb, —+=——"(g, sin@. —b.cosb,
89], al.j (gu ij ij ,]) an S (gy ij ij u)
20, Vv, | 20, Vv,
—aaj :—;ij (g;c086, +b;sin6,) B_VZZ_a_;(gU sin6), —b,; cos ;)
90, VYV, ' 20, % .
8_6’::_ C"lij (g;c0s8, +b,sind,) a_\/;:_zv"(b“b’f’)_a_,;,(g” sin@, —b, cos @)

Table 2.3: Elements of H for bus voltages

26 v,
W, W,
26, v,

2.1.2 Equality Constrained WLS

Even when the classical WLS method for state estimation provides reasonable results of power
injections at all buses, it may not provide a zero value for null power injections (no load or
generation connected). In order to improve the accuracy of the estimations, particularly around
the null power injection buses, a set of virtual measurements with mean value equal to zero and
small variance can be included in the formulation. However, the presence of very small

variances (large weights) in some measurements may lead to ill-conditioned Gain Matrix [18].
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Alternatively, a set of constraints can be included in the formulation to guarantee zero power
injections in those buses but also to avoid large weights in R, which is one source of ill-

conditioning the Gain Matrix [18].

The minimization problem stated in equation (2.3) is now extended to meet a set of constraints
¢(x) = 0. The Lagrange multipliers are used to account for the equality constraints as follows
[32, 33]:

L(x,A.) = [z—hX)]"R™ Y[z — h(x)] — Alc(x) (2.12)

where A. is the vector of Lagrange multipliers. Thus, partial derivatives of L(x, A.) with respect
to x and A, are obtained to minimise this function, see Appendix A.2 for details. Solving for
Ax and A, it is possible to establish the iterative procedure to find the vector X that minimises

L(X, b):

H' (x) R™'H -cT(xk)H : 1] [HT(xk)R [z ~h(x")]
A +

—c(xH) c(x¥) (2.13)

where C(x¥) = dc(x*)/0x.

As seen from equation (2.13), the state vector is extended with a set of Lagrange multipliers.
Also, the Jacobian matrix is partitioned into a block corresponding to constraints and another

block related to all measurements in the system [33].

2.2 Observability Analysis

A power system is observable if the number of linearly independent measurements is equal or
larger than the number of states [1] . It means that for each state variable there must be at least
one measurement “observing” it. Reference [34] indicates in a simple way that a system is

observable if there are sufficient measurements to run a state estimator.
If one or more states are unobserved, the Gain Matrix G defined in (2.5) would become

singular, i.e. non invertible, and equation (2.5) could not be solved. Because of this, the system

is said to be unobservable due to insufficient number of measurements in the system.
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Two different concepts of observability are found in the literature [35]: Topological
Observability and Numerical Observability. The first one is based on Graph Theory, and the
second one is based on linear algebra formulation [36]. This research work focuses and applies

Numerical Observability as it also implies Topological Observability.

2.2.1 Numerical Observability

A system is said to be numerically observable if the Jacobian matrix is of full rank i.e. the
Gain Matrix is non-singular which is the condition for the state estimator to have a unique

solution.

A decoupled Jacobian matrix can be used to simplify the problem. The decoupling is based on
the fact that under normal operating conditions, changes of active powers are weakly related to
variations of magnitudes of bus voltages. In a similar way, changes of reactive powers are

weakly related to changes of bus angles [34].

The Jacobian matrix is approximated as:

H {H”” 0} (2.14)
0 H,, '

_ 9h,(V.0)

where H,, H

_ ahp;;,’—e) and . The subscripts P and Q refer to active and

ov

reactive power equations, respectively. And the Gain Matrix will be:

G—Ga 0 2.15
10 G, (2.15)

where G,=H},R,'H,,and G, =H,, R;H,, . In other words, the observability of the system

can be obtained separately.

A power system with N buses is said to be P-6 numerically observable if the rank of Gy, the
maximum number of linearly independent equations, is “N-1". Also, the system is said to be Q-

V numerically observable if the rank of Gy is “N” [37] . If the system is found to be P-0
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numerically observable, it will be assumed to be Q-V numerically observable considering that
power measurements are obtained in pairs (active and reactive) and the existing of at least one

voltage magnitude measurement [38].

A linear model of the power measurements simplifies even more the problem to obtain the
factorization of the Gain Matrix Gy. Since the numerical observability is independent of the
branch parameters and the operating state of the system, the voltage magnitudes at all buses
and the reactances at all branches are assumed to be / p.u.. Based on the previous assumptions,

the active power flow from bus i to j can be modelled as [39]:

B,=6-6, (2.16)

And the linear Jacobian matrix becomes:

PIO1 - -1 0 (2.17)

Here, the reference angle is also included in the set of states. Then, the Gain Matrix Gy can be
easily decomposed using triangular factorization to obtain the new matrix (_}9. In case a zero

pivot is found during the factorization, it will be necessary to make permutation of rows in Gy

and then continue with the decomposition.

If the system is not fully observable, more than one element will be zero in the diagonal of (_}9 .

Otherwise, under full network observability, the last diagonal element of (_}H will be zero and

the rank of Gy will be N-I. Note that, if one determines that the system is numerically
observable with the simplified linear model, one also ensures that the system is topologically

observable.
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2.2.2 ldentification of Observable Islands

Based on a linear P-6 measurement model with unitary covariance matrix, the solution of the

estimated states, starting from (2.5), is:

G,0=H,z, (2.18)

where zp is the set of active power measurements. Consider the case where all the

measurements are all set to zero:

G,0=0 (2.19)

Under full network observability conditions, the estimated active powers obtained from (2.16)
should be also equal to zero. Any other value different from zero would imply that such branch

is not being observed with the available measurements.

From the decomposed matrix Ge, it is possible to determine which branches are unobserved

and need measurement allocation. The algorithm is as follows [40]:

1. Initialize the measurement set with available measurements

2. Create the new gain matrix Gy
3. Perform triangular factorization of Gy (called (_}9). A 0 pseudo measurement is

introduced whenever a zero pivot is encountered. If only one zero pivot occurs
(necessary at the end), stop. Otherwise:

4. Solve the DC estimator from equation (2.18), considering all the measured values equal
to zero, except for the 6 pseudo-measurements, that assume the values 6, =0, 1,2 ...

5. Evaluate the branch flows from equation (2.16).

6. Update the power network by removing all branches with P; #0. These are

unobservable branches.
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7. Update the measurements set of interest by removing power injection measurements
from buses adjacent to at least one of the branches removed in Step 6. These are
irrelevant measurements.

8. Return to Step 2.

The iteration is required because the sub networks identified can only be theoretically
classified as candidate for observable islands [34]. Once all the unobserved branches are
removed, it is possible to identify all observable islands in the system. Allocation of new
measurements will be necessary to unify the observable islands and make the system fully

observable.

On the other hand, reference [41] uses a non-iterative numerical method to remove the non-
observable branches. From the decomposition of matrix Gy, it is obtained the factors L (non-
singular unitary lower triangular matrix), and U (upper triangular matrix) such that Gy = LU.
The decomposition is based on Gaussian elimination by using the Peters and Wilkinson

method explained in [42], see Appendix B.1.

Later, a singular diagonal matrix D is built up from D = L'GyL™ containing zero diagonal
elements in those rows corresponding to the zero pivots found during the factorization of G.
By taking the inverse of L, and keeping the rows of L/ corresponding to the zero diagonals of

D, it is obtained a Test Matrix W.

Finally, compute C matrix from the branch-bus incidence matrix A and matrix W:

C=AW’ (2.20)

where the entry A;; is 1 (-1) if the sending (receiving) end of branch i connects to bus j, or zero
otherwise. If at least one element in a row of C is non-zero, then the corresponding branch is

unobservable. The observable islands are found once these branches are removed.
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2.3 Redundancy Analysis

In power system state estimation, a measurement can be classified as either critical or
redundant [39]. Redundant measurements can be removed from the system without causing
loss of observability. However, the removal of a critical measurement makes the system
unobservable. This is equivalent to say that the removal of a critical measurement decreases
(by one) the rank of the Jacobian Matrix H. The row of the Jacobian matrix corresponding to a

critical measurement is linearly independent of the other rows (other measurements) of H [43].

The residual r; =z;-hi(X) of any critical measurements i, is always zero (irrespective of good or
bad data) which means that any error in a critical measurement can not be detected, affecting

the performance of the state estimator [18].

A critical pair is a set of two measurements that when removed make the system unobservable,
a critical trio is a set of three measurements that when removed makes the system unobservable
and so on. An optimal placement of measurements can eliminate any critical measurement and

improve local redundancy levels (can eliminate critical pairs or trios).

Similar to Observability Analysis, the decoupled Jacobian matrix, based on a linear model of

the power measurements, is enough to identify critical measurements and redundancy levels.

The first step consists on the decomposition of the Jacobian matrix by using LU decomposition.
The set of measurements in the Jacobian matrix will include only the linear model of all
available real power measurements. The set of states are the bus phase angles but excluding the

reference bus.

After decomposition of H,, (and possible needed exchange of rows), the equivalent matrix

becomes [39]:
H = {IW“} (2.21)
mx(N-1) K .

where,
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I(n.;) is the identity matrix of dimension (N-1) and K., is the equivalent sub-matrix with all the

redundant measurements.

The columns of Hrepresent the bus angles and the rows of H correspond to the available
measurements. Matrix Ijy.;) represents the basic set of measurements which makes the system
fully observable whereas the measurements grouped in K,.; are the redundant measurements
[38]. In case that all elements in a column of K,.; are all zero, the corresponding measurement

in Iy is identified as a critical measurement.

The non-zero elements that appear in each column of H, identify the measurements that
contain information about the state corresponding to that column. From here, one can identify
critical pairs or critical trios formed by only one basic measurement. Of course, there can be
critical sets with more than one basic measurement. These critical sets can be identified based

on the method proposed in [38] .

Elimination of critical measurements or critical sets can be carried out by including new
measurements into the Jacobian matrix and then check if the column of interest has a new non-
zero element in the row corresponding to the new measurement. Once critical measurements
are eliminated, and local redundancy is improved, it is possible to rely on bad data processing

techniques.

2.4 Bad Data Processing

Measurement readings are exposed to errors due to failure of communications, wrong wiring,
inaccuracy of measurement transformers, transducers, etc. There are other causes of bad data
which are related to topology and line parameter errors [44] but they are not considered in this

work.

The first task in Bad Data Processing (BDP) consists of detecting the presence of wrong

measurements which can be carried out using statistical procedures. Once the system operator

36



Chapter 2 — Classical State Estimation in Power Systems

knows that bad data are present in the set of measurements, it is necessary to eliminate it or

correct the bad data from other available information.

2.4.1 Chi square Distribution Test

Consider a set of independent random variables grouped in a vector v. If each element v;
follows a normal standard distribution N(0,1), the chi square distribution ;(,,21 , with m degrees

of freedom, is the distribution of the random variable y defined as [18], [45]:

y=>v (2.22)

The degrees of freedom m represent the number of independent variables in the sum of squares.

This value will decrease if any of the variables v; form a linearly dependent subset.

Figure 2.4 presents the Probability Density Function (PDF) for a chi square distribution with
20 degrees of freedom. As the number of degrees of freedom m increases, the PDF of y* will

tend to a normal distribution [45].
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Figure 2.4: Chi Square PDF for 20 degrees of freedom

The larger area under the PDF of Figure 2.4 represents the probability of finding a value of y
smaller than a threshold y'. Figure 2.4 shows that the probability of finding y smaller than 31.4
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is 95%. This probability calculation can be used to detect presence of bad data in the set of

measurements.

If there is no bad data in the set of power system measurements and the m measurement errors
e; (i=1, 2, ..., m) have normal distribution N(O, (71.2 ), the performance index J(X), defined in
equation (2.3), will follow a chi-square distribution sz_n. Here, m is the number of
measurements, n is the number of states and vectorX refers to the estimated states [46]. The
degrees of freedom must be constrained to m-n because it is considered that there are at the

most m-n linearly independent equations.

One can determine that J(X) follows a chi square distribution, i.e. free of bad data, if J(X) is
smaller than a threshold y' at a certain level of confidence a. This level of confidence  is
usually specified at 95% but may change depending on the system or application. Using the
example of Figure 2.4, if the estimated J(X ) for a given system with 20 degrees of freedom is

smaller than 31.4, bad data will not be suspected with a confidence level of 95%.

2.4.2 Measurement Residuals

This section introduces the identification of bad data based on the measurement residuals

approach [18]. Consider the linearized measurement equation around the estimated point Xy:

Az = HAx +e (2.23)

where Az = z-h(Xx) is the mismatch between the measurement vector and its calculated value at

an estimate Xy. Also AXx =x-Xy, H=0h(x,)/dx and e is the set of uncorrelated measurement

errors with Gaussian distribution and covariance matrix R. Similar to (2.5), the WLS

estimation solution of the linearized state vector will be:

A= (H'RH)"'H'R 'Az (2.24)
A% =G 'H'R Az (2.25)
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And the estimated value of Az will be:

Az = HAX = KAz (2.26)

where K=HG'H'R™".

For a set of m measurements, the m x 1 vector of measurement residual will be denoted as:

r=Az—AZ (2.27)
r=(I-K)Az (2.28)

where I is the Identity Matrix. By substitution of equation (2.23) into (2.28) it is obtained:
r=(I-K)(HAx+e) 2.29)

Based on the property that (I-K)H = 0, equation (2.29) can be expressed as [18], [44] :

r=I-Ke (2.30)
r=Se (2.31)

Matrix S is called the Residual Sensitivity Matrix. Based on the relation above, it is possible to

calculate the probability distribution of the measurement residuals as follows:

E(r)=E(Se)=SE(e)=0 (2.32)
Q =cov(r)=E[rr'] (2.33)
Q =SE[ee" IS” (2.34)

Q =SRS’ =SR (2.35)

The off diagonal elements of the m x m matrix Q identify strong versus weakly interacting
measurements. The higher the element €, the stronger the interaction between measurements i

and j.

The covariance matrix € is also used to calculate the normalized residuals to identify and

reject any bad data in the set of measurements.

39



Chapter 2 — Classical State Estimation in Power Systems

2.4.3 Normalized Residual Test

Once the state estimation is obtained using WLS, the residual vector is calculated as the

difference between each measurement and the corresponding function h(X):

r=z-h(x) (2.36)

The normalized residuals are obtained by dividing its absolute value by the corresponding

diagonal entry in the residual covariance matrix € [45], [46]:

N _ |n|
r= o (2.37)

u

Once the normalized residuals are obtained for all the measurements, the largest normalized
residual is compared with a pre-defined threshold. If this value is larger than the threshold, the
corresponding data will be removed and a new estimation is performed. This procedure is
repeated until the largest normalized residual is lower than the threshold previously

established.

If the value of the threshold is too small, the program would filter data that may not be wrong,
reducing redundancy, and it may lead to unobservable conditions. However, if the threshold is
large, it is possible that wrong data is still present. Generally, a threshold value of 3.0 is enough

to reject gross errors in the set of measurements.

There is a different approach where the bad data is not rejected at all but it is corrected instead.
This is achieved by subtracting the estimated error from the identified bad measurement.
However, this method may not be accurate enough for large errors [45]. The measurement

residual of the identified bad measurement is:

i =2 R) = Se, (2.38)

By solving for e;:

bad

1
e =—r
st (2.39)
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And subtracting this estimated error from the identified bad measurements yields:

=5 —h (2.40)

The normalized residual approach is generally very effective but its main limitations are listed
below:
e [t can not identify errors in critical measurements because the corresponding column in
S is zero. So, an error in that measurement could not be detected since it will have no
effect on the measurement residual [47] . Here the importance of having high redundant
systems.
e It may fail to identify erroneous measurements when two interacting measurements

have errors that are in agreement (multiple interacting and conforming bad data) [18].

2.5 Summary

This chapter introduced the classical techniques applied to state estimation, redundancy
analysis, observability analysis and bad data detection and elimination. The chapter also
presented the equations of power flow and power injection as function of the state variables
that are used in the WLS formulation. The following chapters will make reference to the

equations and formulations presented in Chapter 2.
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Chapter 3 Estimation of Probabilistic Load Flows:
Theory and Modelling

The insertion of intermittent wind power generation at the transmission level has increased the
level of uncertainty of the power networks. Distributed generation and emerging technologies
such as storage devices will also increase the uncertainty of the aggregated loads. This leads to
running stochastic/probabilistic studies where the input variables can no longer be treated as

deterministic values, but as stochastic ones [48].

Probabilistic load flow studies take into account the random nature of generation and demand
for a certain period. The information obtained from the probabilistic load flows can be used for
planning purposes when power engineers need to make decisions in terms of investment or for
operation purposes when it is needed to determine all the possible operating conditions of the
power system for a short period [49]. These studies provide valuable information about the
likelihood that certain bus voltage or power flow/injection will remain within some acceptable

limits.

Most of the work mentioned in Section 1.1.1 was concentrated on the uncertainty of power
injections, which were usually assumed to be Gaussian distributed with 5% to 10% of
variability. Recent studies have shown that the marginal distribution of wind power production

has larger variability and it is non-Gaussian distributed [4, 10].

Reference [31] uses a weighted sum of Gaussian distributions to model any non-Gaussian
distribution. The method uses multiple WLS runs to deal with the Gaussian components for

each non-correlated input variable.

To date, little attention has been paid to non-Gaussian correlated input variables. This is,
however, the most general and realistic scenario to be considered in probabilistic load flows
studies. Examples of non-Gaussian correlated variables are power demands of aggregated loads

with similar consumption patterns or wind/solar generation in the same geographic area.
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References [2, 50] introduced non-Gaussian correlated variables to represent the stochastic
power output of wind farms in probabilistic power flows studies. The statistical moments were
estimated using the Point Estimate method and the Probability Density Functions (PDFs) were

approximated with the Cornish—Fisher expansion series.

In this work, the non-Gaussian PDFs are approximated by the Gaussian Mixture Model
(GMM), which is able to model any marginal distribution (standard or not) with a finite

number of components.

The contribution of this work is to extend the Gaussian Component Combination Method
(GCCM) introduced in [31] to estimate the PDF of power flows in presence of non-Gaussian

correlated random input variables.

The advantage of this approach is that it does not need any expansion series to approximate the
resulting PDF of the system variables. The resulting PDF of any electrical variable is made of
Gaussian components extracted from multiple WLS runs. As the number of WLS runs depends
only on the number of Gaussian components of the input variables, a Gaussian mixture

reduction technique is also proposed to limit the number of WLS runs.

The first part of this chapter introduces the Gaussian mixture distribution and the Gaussian
Mixture Model (GMM) to represent non-Gaussian random variables. Section 3.2 explains a
methodology to reduce the number of Gaussian components to simplify the GMMs.
Subsequently, Section 3.3 presents the Monte Carlo simulations and the Gaussian Component
Combination Method (GCCM) for probabilistic load flow studies in the presence of non-

Gaussian correlated variables, whereas Section 3.4 presents the summary of the Chapter.

3.1 Gaussian Mixture Distribution

A Gaussian mixture distribution is the mixture of L Gaussian distribution components. For a

one-dimensional random variable Y, the probability density function fy(y) is defined as [31]:
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L
KM= 0 fy o) 3.1)
i=1

where ;, u; and O'I.2 are the proportion, mean, and variance of the i-th component of the

Gaussian mixture, respectively. In order to maintain the characteristics of a probability

distribution, the proportions parameters are constrained to be:

L
0<@ <1 and > =1 (3.2)
i=1
In addition, the distribution of the i-th Gaussian component is [51]:
S 207 (3.3)
fzv(/ti,qz)(y)_ 27[0'1.2 ¢ : ’

The mean and variance of the random variable are respectively [52]:

L
Hy =D OU, (34)
i=1

L
o, =Y @ (07 +(t,—14,)) (3.5)

i=1
The probability density of the Gaussian Mixture is obtained by evaluating fi(y) for =00 < y < o0.
For example, consider a Gaussian mixture distribution (L =7) with the parameters given in

Table 3.1:

Table 3.1: Parameters of a Gaussian mixture distribution with seven components

Component i=1 =2 i=3 i=4 i=5 i=6 i=7
w 0.20 0.20 0.20 0.20 0.10 0.05 0.05
Ui 43.0 50.0 52.0 58.0 62.0 72.0 80.0
of 9.0 16.0 9.0 64.0 4.0 4.0 25.0

Figure 3.1 presents the probability density of the variable ¥ modelled by the Gaussian mixture
parameters of Table 3.1. The sum of the individual weighted Gaussian components creates the
Gaussian mixture distribution. This variable Y represents any random variable such as power
demands, generation power outputs, or bus voltage magnitudes for a certain period. From
Figure 3.1, it can be concluded that the PDF of the variable Y is non-Gaussian and that it does

not fit any other typical marginal distribution.
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Figure 3.1: Gaussian mixture distribution with 7 Gaussian components

The Cumulative Distribution Function (CDF) of the random variable is the probability that Y

assumes a value in the range —o < Y <y [51]:

Fy () = Prob(Y < y) = [ f, (w)du (3.6)

Figure 3.2 presents the CDF of the seven components Gaussian mixture with the parameters
listed in Table 3.1. The values of Fy(y) represent probabilities and they lie in the range O to 1.
This is particularly important when creating Gaussian mixture random variables for Monte

Carlo simulations.

The main advantage of the Gaussian Mixture distribution is that it can approximate any PDF
with a finite number of components. This is of particular interest when the distribution of the
random variable does not fit the typical distributions (e.g. Gaussian, Uniform, Gamma, etc).
The higher the number of components of the Gaussian Mixture Model (GMM), the more

accurate the approximation becomes.

The most effective methodology to determine the GMM that best approximates the distribution

of the samples of Y is the Expectation Maximisation (EM) algorithm. For example, reference
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[16] uses the EM algorithm to determine the parameters of the GMM to model PDFs of power

demands.

0.9+

0.8+

0.7

0.5+

0.4

Cumulative Density

0.3+

0.2+

0.1r

o | | | |
30 40 50 60 70 80 90 100
variable Y

Figure 3.2: CDF for Gaussian mixture with seven components

The input of the EM algorithm is the set of samples y = [y1, ¥2,..., ¥s] of the random variable ¥
and the desired number of Gaussian components of the GMM. Given y and the initial (or
updated) Gaussian mixture parameters #, the algorithm computes the expectation of the log-
likelihood of the complete data with respect to the unknown samples. Later, # is updated to
maximise the log-likelihood expectation found before. This procedure is iteratively executed
until convergence is achieved. The Statistics Toolbox of MATLAB offers the function
gmdistribution.fit to estimate # using the EM algorithm given the samples y and the desired

number of Gaussian components [53].

Figure 3.3 presents the GMM of a Uniform random variable approximated by 10 components
using the EM algorithm. In fact, the Uniform distribution is one of the most difficult
distributions to approximate with a GMM. The approximation can be improved with a higher

number of Gaussian components.
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Figure 3.3: Uniform distributed random variable modelled by GMM

Figure 3.4 presents the GMM approximation of a Gamma distributed random variable with 10

components. In this case, the mismatch between the GMM and the random variable density is

negligible.
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Figure 3.4: Gamma distributed random variable modelled by GMM
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The number of components needed to approximate any probability density function depends on
the degree of required accuracy. Although adding an extra component to the GMM will always
improve the approximation, the number of components is sufficient when adding an extra
component produces a negligible improvement in the approximation. The Chi-Square goodness
of fit test can be used to quantify the degree of fitness of the set of samples and the GMM [16].
By using a pre-defined threshold, it is possible to determine the number of components of the

GMM.

3.2 Reduction of Gaussian Mixtures

The number of components may be a limitation when dealing with simulations that involve a
large number of GMM at the same time. Based on this, it is very useful to decrease the number
of components of the mixtures in order to reduce the computation demands while keeping a

good level of accuracy of the original GMMs.

If one starts from the simplest GMM to represent a non-Gaussian variable and then increases
the number of components, it would be necessary to run the Expectation Maximisation (EM)
(fitting) technique each time it is desired to improve the accuracy of the GMM. This is both
time consuming and impractical. The proposed reduction method no longer requires the use of
the raw data (observations). Instead, it starts from the actual accurate model parameters of the

GMM and then reduces one component at a time.

The idea of the Gaussian mixture components reduction is to approximate the original GMM in

(3.1) as a new GMM with fewer components:

M
gY(y):Zd)ij(ﬂf’O*-?)(y) (37)

j1 o
where M < L and &;, fi;and &; are the proportion, mean, and variance of the j-th component,

respectively.

Different reduction algorithms have been presented in recent years. The main requirements of a

good reduction algorithm can be summarised as [52]:
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e The algorithm should be efficient and easy to execute.
e The algorithm should maintain the mean and variance of the original mixture. If not,
the deviation should be negligible.
e The resulting GMM should maintain, within some acceptable limits, the structure of
the original mixture.
These requirements may not all be achieved with one single algorithm but it is possible to
choose one algorithm or a mixture of algorithms that can achieve most of the requirements

listed above.

The approach based on merging pairs of components is the simplest method to reduce
Gaussian mixture components. The algorithm starts with gW(y) = fi(y). The merging is applied

to the pair of components of gy(y) that when merged produce the minimum discrepancy

between fy(y) and gy(y) [54], [55].

Once the pair of components i and j are identified, they are merged together to obtain a new
resulting component #j with the following component parameters [55]:

@; =0+ @, 3.8)

The mean and variance of the new Gaussian component is:

- 1 o
= [YTIEONTS
A= DR D) (3.9)
~2 1 PN ) d)i~,/ ~ ~ N2
6, =——| B6 +@,6, +——— (L, —[1)) (3.10)
@D, + 0, D, + 0,

The new component ij replaces the i-th and j-th components previously identified.
Consequently, gy(y) loses one component but keeps the mean and variance of the original

mixture. This procedure is repeated until the desired number of components is reached.

The identification of the i-th and j-th components of gy(y) depends on the selection criteria. The
Salmond method identifies the pair of components i and j that produce the minimum increase
of the first summand in (3.5) [56]. The increase of the first summand in (3.5) is related to the

Square Distance (SD) measure:
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b0, (1)
d;_d)ﬂfb A Gf‘f 3.11)
i J Y

The smallest squared distance identifies the merged components i and j that produce the
minimum value of the cost function. The main disadvantage of this methodology is that it
merges the pair of components with the closest means even if their variances are very

different [55].

The Williams method identifies the pair of components to be merged that produce the
minimum difference between the original fi(y) and the reduced Gaussian mixture gy(y). In
order to evaluate this difference, the Integral Square Difference (ISD) between the original and

the reduced mixture is introduced [54]:

1, =[(f,()-8,() dy. (3.12)

The ISD is calculated for all combinations of pairs of components of gy(y). The minimum J;
identifies the components i and j to be merged. This procedure is repeated until gy(y) is reduced
to the desire number of components. The ISD defined in (3.12) can be extended as:
J, =[5, dy=2] £,(3) -8, (dy+[ g, (37 dy. (3.13)
or in more compact form,
Jo=Jy=2-J, +J (3.14)
with,

Ty = [ HOVdys Ty =[ £, 8,(0dys T, =[ 8, () dy. (3.15)

By using (3.1) and (3.7) in (3.15) one obtains:

iy = 2200, [y o () frgy 2 (D). (3.16)
L= 2208, o o ) fy o () (3.17)
e = 2 2000, [ ey O Frn 9D (3.18)

Il
—_
~.

I
—
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The problem is now reduced to evaluate the integrals of the products of two Gaussian densities.

As presented in [54], the product of two Gaussian densities f w 52>( y) and f, » 62>(y) is a
Gaussian density fN(ﬂ 62)( y)multiplied by a scale factor a:
fszl,ab(y)'fzv(ﬂ:,a%)(y) - a'fszs,a%)(y) (3.19)
where,
A= Sy o 100y H) (3.20)
ol =(/c? +1/c2)", (3.21)
My = O-sz(lul/o-lz +,u2/0'22) ’ (3.22)

Applying (3.19) in each of the integrals in (3.16)-(3.18), and knowing that the integral of the

resulting Gaussian density is unity, the ISD terms become:

L L

Ty =22 00,f,, - ). (3.23)
lzl j};l

J =2 200,f, . o (). (3.24)
1;[1 ];[1

e =22 00,f, 1 oo (L) (3.25)

The ISD selection method takes into account the entire Gaussian mixture to decide which
components to merge. However, it is more time consuming than the Salmond method, as more

calculations are required.

An alternative measure of similarity between two probability densities f;(y) and f>(y) is the
Kullback-Leibler (KL) divergence D(f; Il f2) [55] :

D)
)

DN = [ Fi)log o dy (326)
Contrary to the ISD measure, there is no closed form expression for the KL divergence
measure when f;(y) and f>(y) are Gaussian mixtures. Because of this limitation, an upper bound
on the discrepancy of the reduced mixture from the mixture before the merge was proposed

in [55]. The upper bound measure of discrepancy is:
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where

-~ ~2 \?ilij
D+ 0, . | 6
0,
~2 (bz‘z] (~ ~ 2
(-
J ! J
T, [j[ ~2} Ta,; 0, 20y, 2055
i o; j
Cl)i‘ij S W =
.+ O, @+,

(3.27)

(3.28)

This KL based selection method identifies the merged components i and j that produce the

minimum upper bound discrepancy between the mixture after the merge and the mixture before

the merge. Equation (3.27) takes into account the means, weights, and variances of the

Gaussian components. In addition, it requires fewer computations than the ISD based method.

In order to demonstrate the performance of the reduction methods presented above, the seven-

component Gaussian mixture in Figure 3.1 is approximated by five, four, and three component

mixtures, as presented in Figures 3.5, 3.6, and 3.7, respectively. The merged components were

selected from the SD, the ISD, and the KL upper bound measures.
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Figure 3.7: GMM reduction using three components

As it is presented in Figure 3.5, the reduced Gaussian mixture obtained from the ISD measure
is the same as the resulting Gaussian mixture obtained from the KL upper bound measure. If
the original Gaussian mixture is approximated by four Gaussian components, as presented in
Figure 3.6, the SD and the KL upper bound selection methods obtained the same reduced

distribution.
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As it is presented in Figure 3.7, the reduced mixture obtained from the ISD and the KL upper
bound discrimination methods are the same. Although it is possible to visualise the resulting
Gaussian mixtures from Figures 3.5 to 3.7, the methods have not been quantitatively compared
against each other. The ISD is now used to compare the accuracy of the approximations. For

comparison purposes, it is convenient to normalise J; into 0 < JSN <1, as follows [57]:

v =g ) dy
JY = :
[ £y dy+ [ g, (3 dy

(3.29)

Equations (3.23) to (3.25) are used to evaluate JN. A value of J," = 0 means that the reduced
Gaussian mixture density perfectly matches the original density whereas J;" = 1 indicates zero

overlapping of the densities.

Table 3.2 presents the comparison of the J;" for reduced components with M components
obtained by merging pairs of components based on the SD, ISD, and KL upper bound
measures. When fewer components are used to model the original density fy(y), the

. . N
approximation becomes less accurate and J;' becomes closer to 1.

Table 3.2: J," for resulting gy(y) and the original mixture fy(y)
Method M=6 M=5 M=4 M=3 M=2 M=1

SD 6.93E-04  0.0094 0.0106 0.0201 0.0231 0.0589
ISD 6.93E-04  0.0027 0.0039 0.0118 0.0231 0.0589
KL 6.93E-04  0.0027 0.0106 0.0118 0.0231 0.0589

As it is presented in Table 3.2, the minimum JN s always obtained when the ISD
discrimination measured is used. It is important to mention that the KL upper bound measure
selected the same pair of components to merge as the ISD measure did, but excepted when

M=4.

Table 3.3 presents the computation times required by the three algorithms. For all the
reductions, the KL upper bound discrimination method required less time to find the pair of

components to merge, which is the opposite of the ISD method.
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The higher processing times of the ISD measure can be a constraint if the number of
components is large e.g. 100 components reduced into 25 components. In this case, the KL

upper bound algorithm will be much more efficient.

Table 3.3: Comparison of computer time requirements

Method M=6 M=5 M=4 M=3 M=2 M=1
SD 1.72E-02 0.021953 0.021861 0.020796 0.020154 0.021869
ISD 4.63E-02 0.070542 0.079429 0.085214 0.087209 0.090478
KL 1.14E-02  0.014359 0.014363 0.014214 0.013905 0.013639

Although pair-merging algorithms are very easy to execute and they always maintain the mean
and variance of the original mixture, the structure of the resulting mixture may be different
with respect to the original density. Furthermore, the resulting component parameters are not

necessarily the optimum parameters that best fit the original mixture.

3.2.1 Fine Tuning of GMM Reductions

The resulting parameters obtained from pair-merging methods can be fine tuned to better
approximate the original Gaussian mixture [58]. The objective is to correct the set of
parameters 7 of gy(y) such that it minimises the ISD cost function, defined in (3.12), as a

function of #:

J‘\.(y,ﬂ)=J(fy(y)—gy(y,77))2dy (3.30)
where,
gy (31 Z i o) (3.31)
n=\m m - HM] (3.32)
n=[a & 6] (3.33)

The squared term @: in (3.31) is used to guarantee positive proportion components [59] . This
is, 0<@’ <1. By perturbing 7=17 +An around the initial point # and considering only the

linear term of the Taylor’s series [58]:

T 2
Js(y,ﬂ)=I{fy(y)—gy(y,ﬁ)—[ag%;’mj (77—77)} dy, (3.34)
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it is possible to find the optimal set of parameters # when the first derivative of (3.34) with

respect to 7 is equal to zero:

00D g, (D (08, DY
J(h =g )T oy = [0 ( 5 de - (3.35)
G P(7)
Or in more compact form:
h(77) =P(7)A7 . (3.36)

The gradient vector h(-) contains M sub-vectors. Each 3x1 sub-vector h;(-) corresponds to one

n;, as follows:

_ —1 98, (3,77)
h,-m)=j(fy<y>—gy<y,m)%;”dy. (3.37)
i
After the partial derivative calculation, the sub-vector h;(-) can be expressed by [59]:
_ B .
@,
hj(ﬁ)=J.(fy(y)—gy(yﬁ))‘g,(y,ﬁ,) y;" dy, (3.38)
(y-i,)’ -6,
5

with g.(y,77,) = cbf . fN(ﬂjﬁ%)( y). The closed form solution of (3.38) is presented in Appendix C.1.

Returning to the linear equation in (3.36), matrix P(-) is:

Py ... pUM)
P(7)= ' : (3.39)
PMD ... pMM)
Each sub-matrix P in (3.39) is defined by:
P PUL) LY
P =00, oo )| Py B3 B (3.40)

(. J) @) Pp.j)
P3,1 P3,2 P3,3

and each of the elements in (3.40) is presented in the Appendix C.2.

The set of linear equations in (3.36) is solved by LU decomposition of P and Az is solved
using forward and backward substitution. At the k-th iteration, the new set of parameters is

obtained by:
N =n"+An (3.41)

The iterations stop when Az is lower than a pre-defined threshold. The weights of the resulting
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optimised gy(y) are corrected to ensure the characteristics presented in (3.2):

M
@) =, / 2@ (3.42)
j=1

If the initial set of parameters 770 is not close to the optimal solution, the iterative procedure
may converge to a local minimum or may not converge at all. A good initial guess is the

solution obtained from the pair merging algorithms presented above in Section 3.2.

The optimisation method always improves the approximations obtained from the pair merging
methods but it is not possible to guarantee that the solution corresponds to the global

minimum.

Figure 3.8 presents the optimal based reduction method compared to the original GMM. The
ISD reduction method was used to calculate the initial set of parameters 7°. The new reduction

is more accurate and therefore closer to the original GMM.
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Figure 3.8: Original GMM reduced to four components using the optimal based method

Table 3.4 presents the J," before and after the fine tuning of the Gaussian mixture reduction.

57



Chapter 3 — Estimation of Probabilistic Load Flows: Theory and Modelling

Table 3.4: J," for the resulting improved gy(y) and the original mixture fy(y)
Method M=6 M=5 M=4 M=3 M=2 M=1
ISD 6.93E-04  0.0027 0.0039 0.0118 0.0231 0.0589
Improved  8.59E-07  0.0011 0.0011 0.0085 0.0187 0.0321

For all reductions, the approximation was improved. In the case where M = 5, the optimisation

2

method reduced M to four components. Such elimination is performed when the ratio & / G;

of component j tends to zero [59]. This is the reason why J;" for M = 5 and M = 4 are the same.

3.3 Probabilistic Load Flows

The inputs of probabilistic load flows studies are the PDFs of:
1. Active and reactive power injections in PQ buses,
2. Active power injection and voltage magnitude in PV buses, and

3. Voltage magnitude in the slack bus.

A typical Probabilistic Load Flow (PLF) problem is represented in Figure 3.9. Given the PDFs
of power injections and voltage magnitudes, the operating points of all bus voltages and power
flows in all transmission lines are determined by means of statistical studies. As explained

before, the GMM density function can be used to approximate any non-Gaussian PDF.

This Section presents two methodologies to run probabilistic studies. The first is based on
Monte Carlo Simulations (MCS), which is considered a benchmark method for probabilistic
studies. The second is an alternative formulation able to reduce the computational demands of

the MCS.
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Figure 3.9: PLF problem with non-Gaussian PDFs

3.3.1 PLF using Monte Carlo Simulations

In order to run Monte Carlo simulations, it is necessary to generate samples of each random

variable for each Monte Carlo trial.

Well distributed samples of Uniform random variables can be obtained from quasi-random
sequence generators, such as the Niederreiter, the Halton, and the Sobol generators [60], [61].
Better distributed samples of random variables make it possible to reduce the number of trials

of the Monte Carlo simulations.

3.3.1.1 Generation of Samples from Correlated Variables

The correlation coefficient between pairs of input variables must be known a priori from the
original set of observations. For each pair of variables Y, and Y,, the correlation coefficient is

obtained from [51]:
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E| X - Y -
Py, = corr(¥, vy = ST [ -0 “Yz)], (3.43)

YIGYZ GYIGYZ
where uy; and oy; are the mean and standard deviation of variable Y; and E is the expectation

operator.

Since the quasi-random sequence generator creates N, samples of non-correlated Uniform
random variables, it is necessary to transform them into a set of variables with correlation
coefficients determined using (3.43). This transformation is carried out in the Gaussian

domain.

The N; samples for each of the d Uniform variables are grouped into the set of vectors
u=[uy,..., u,...,uy] and they are converted into Gaussian random samples by using the
inverse of the CDF of the Gaussian distribution [2], [62]:

v.=F'(w,), i=1l...d, (3.44)
where F), stands for the CDF of the Standard Normal distribution. This results in Ny samples for

each of the d Gaussian variables v = [vy, ..., v;, ... ,v4], which are still not correlated.

The desired correlation matrix X must be corrected to account for the transformation from
Gaussian to Uniform distributions. Each non-diagonal element of the dxd correlation matrix X

is corrected by [62]:

p) = 2sin(% )+ (3.45)
where p, is the desired correlation coefficient between variables i and j and p;' is the adjusted

coefficient to account for the transformation. This creates a new dxd correlation matrix . The
correlated Gaussian variables are then obtained through the Cholesky decomposition of " [2]:

v = v chol(Z") (3.46)
where chol(Z") is the upper triangular matrix obtained from the decomposition of £". The

samples of the correlated Gaussian variables are transformed back into Uniform samples by

using the CDF of the Gaussian distribution:
u" =F ("), i=1...4d. (3.47)
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Finally, the samples of correlated variables with any marginal distribution are obtained from

the inverse CDF of the corresponding distribution:

Yy =F "), i=1,...d. (3.48)

1

where Fy is the CDF of the GMM, as stated in (3.6). Some deviations from the desired
correlation matrix are caused by the non-linear transformation of samples to different

distributions.

Consider the case where it is necessary to create Ny=5000 samples from d =4 GMMs that
represent the active power consumptions at four different buses. Their parameters are presented

in Table 3.5.

Table 3.5: GMM parameters of variables to be correlated
GMM!1 GMM2

W Mi 012 W Mi 012

=1 0.7 0.5 0.05 =1 0.5 0.9 0.03

=2 0.3 1 0.07 =2 0.5 1.2 0.01
GMMS3 GMM4

Wi Mi 012 W Mi 012

=1 0.4 0.8 0.02 =1 0.3 0.9 0.03

=2 0.3 1.1 0.01 =2 0.3 1.2 0.01

=3 0.3 1.3 0.01 =3 0.4 1.5  0.02

The correlation matrix of the active power injections at those buses is:

1.0 0.7 0.4 0.6
0.7 1.0 0.8 0.5
04 0.8 1.0 0.1
0.6 0.5 0.11.0

Y=

The first step is to create the N, samples of four Uniform random variables. These samples are
transformed into samples of Gaussian variables through the inverse CDF. At this point, the
samples are uncorrelated and the correlation matrix of the new Gaussian variables is the

Identity matrix.

Due to the transformation of samples, the desired correlation matrix X is updated by the

correction factor given in (3.45):
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1.0000 0.7331 0.4320 0.6360
$N 0.7331 1.0000 0.8263 0.5355

0.4320 0.8263 1.0000 0.1096 |

0.6360 0.5355 0.1096 1.0000

The samples of Gaussian variables are obtained using (3.46). The resulting correlation matrix

for these new variables is:

1.0000 0.7330 0.4318 0.6364
N _10.7330 1.0000 0.8263 0.5365
obained 1 ().4318 0.8263 1.0000 0.1109 |’

0.6364 0.5365 0.1109 1.0000

Subsequently, these samples are transformed back to Uniform distributions using (3.47). The

correlation matrix of the Uniform variables is:

1.0000 0.7170 0.4157 0.6176
_10.7170 1.0000 0.8132 0.5180
1 0.4157 0.8132 1.0000 0.1048

0.6176 0.5180 0.1048 1.0000

Z"U

Finally, the samples of the GMMs are obtained using (3.48). The resulting correlation matrix
of the GMM variables is:

1.0000 0.7074 0.4225 0.6248

v 0.7074 1.0000 0.8171 0.5282
oMM 1 (0.4225 0.8171 1.0000 0.1085
0.6248 0.5282 0.1085 1.0000

Some corrections, valid for certain conditions, can be executed to reduce the errors in the

resulting correlation matrix [2], [63].

Figure 3.10 presents the scatter plots of the variables for Ny= 5000 samples. The generated

samples are such that the correlation matrix is X,,,, -
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Figure 3.10: Scatter plot of resulting samples
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Figure 3.11: Histogram of resulting samples

Figure 3.11 presents the histogram for the correlated variables with 5000 samples. The

histograms of GMM 2, 3, and 4 are significantly irregular compared to the GMM 1 that is not

affected by the transformation of samples. However, these irregularities are reduced by

increasing the number of samples for each GMM.
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For comparison purposes, Table 3.6 presents the estimated GMM parameters from the
generated samples (using the EM algorithm). From these results, it is concluded that the
generated correlated samples follow the distribution of the desired GMM presented in

Table 3.5.

Table 3.6: Estimated GMM parameters of correlated variables

GMM1 GMM2
Wi Mi 01‘2 W Mi 012
=1 0.68 0.49 0.049 =1 0.5 0.9 0.03
=2 0.32 0.98 0.073 =2 0.5 1.2 0.01
GMM3 GMM4
wij Hi Uiz w;j Hi Uiz
i=1 0.38 0.79 0.019| /=1 0.31  0.91 0.031
i=2 0.35 1.10 0.012| =2 0.30 1.20 0.010
=3 0.27 1.31 0.010 | /=83 0.39 1.50 0.020

The above methodology is extended to consider all the random input variables of PQ and PV
buses in the network. The correlation and marginal distributions of these variables should be

determined based on previous statistical studies.

Once the samples of active/reactive power and bus voltage magnitudes are generated, a power
flow run is executed for each set of samples, as presented in Figure 3.12. The number of power

flows trials is equal to the number of samples (/N;) of the input variables.

st ']St LF sol.
1~ sample |
> —
Genergte Ns samples of non- > Run N, —_— Obtain PDF of
Gaussian correlatedrandom | | deterministic Load | —p | any bus voltage or
variables of P, Q and V > Flows —_— power flow
" sampl " ip e
s ple Ns" LF sol

Figure 3.12: Diagram of probabilistic load flows using MCS

The resulting PDFs of bus voltages, power flows, and power injections can be used to

determine means, variances, and other higher statistical moments.
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3.3.2 PLF using Gaussian Component Combinations

Taking into consideration that any PDF can be approximated by GMMs, the probabilistic load
flow problem can be solved by executing multiple WLS runs. Each WLS run takes a
combination of Gaussian components of the GMMs used to model the PDFs of the random
input variables. The total number of WLS runs is:

N PDF

N =T]L. (3.49)
where Nppr stands for the number of PDFs all_lld L; is the number of Gaussian components of the
i-th GMM. If the PDFs were all modelled by Gaussian distributions, i.e. L;=1 for
i=1, .., Nppr, only one WLS run would be necessary to solve the problem, as originally

proposed in [7].

Figure 3.13 presents an example of the first possible combination of Gaussian components
when the load demands and generator outputs are modelled by GMMs in the 14-bus test

system shown in Figure 3.9.

L=1
S number of

components

number of f
components Bus2
\ ‘m -
L=2

L=3
Figure 3.13: Example of a combination of Gaussian components in the GCCM

Let us consider a single combination of Gaussian components extracted from all the GMMs
(one Gaussian component for each input variable). The WLS problem is solved iteratively

using (2.5). Similarly, as defined in Section 2.1, x is the state vector composed by the set of bus
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voltage magnitudes and angles, z is the set of input variables, h(x) is the set of nonlinear
equations relating the power system measurements to the state variables, and R is the error

covariance matrix of the input variables z.

The elements of the input set z and the diagonal elements of matrix R correspond to the mean
values and variances of the Gaussian components used in this combination. The correlation

between the input variables is included in the off-diagonal elements of R.

In this formulation, it is assumed that the correlation between Gaussian components that
belong to two particular Gaussian mixtures is the same as the correlation between those
Gaussian mixtures. Therefore, the off-diagonal element R (i, j) becomes:

R(@, j)=p,00;. (3.50)
where pjjo0; is the covariance between the i-th and j-th input variables. In addition, -1 <p <1
and o stand for correlation coefficient and standard deviation, respectively. This correlation

coefficient approximation remains constant for all the WLS runs.

The resulting state vector solution of the WLS run allows the calculation of the voltage, power
flow, or power injection of any bus within the system. The inverse of the Gain Matrix is the
covariance matrix C, of the state vector:
-1
C =G(x)'= [HT(x)R'lH(x)] , (3.51)
and the covariance matrix of the power flows or power injections can be approximated as:
— T

C,=H,&xCH, (x), (3.52)

where H,,, contains the partial derivatives of transferred powers and power injections with

respect to the state vector x. The diagonal elements of the covariance matrices are stored to

reconstruct the desired PDFs.

The WLS procedure is repeated for the N, combinations of Gaussian components. The solution

of the i-th WLS run becomes the i-th mean value g, of the bus voltages, power flows and
power injections. The i-th variance &7 is obtained from the diagonal elements of (3.51) and

(3.52). Finally, the weight of the i-th Gaussian component is the product of all the weights of

the Gaussian components involved in the i-th combination:
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Nppr
o =]]o- (3.53)

Jj=1

Therefore, the PDF of any voltage magnitude, voltage angle or power flow is build up by:

NV
PDFdesired = Z(bifN(ﬁ,,af)(y) ’ (354)
i=1

Nr
with D d@) =1.
i=1

The proposed GCCM is summarised as follows:

1. Take one combination of Gaussian mixtures (one Gaussian component for each input
variable). The mean value of each Gaussian component corresponds to one element in z
and the variance of each Gaussian component corresponds to one diagonal element in
R. If the input variables are correlated, adjust R as defined in (3.50).

2. Run the WLS and obtain bus voltages, power flows, and power injections values. Save
the diagonal elements of the covariance matrices resulting from (3.51) and (3.52).

3. Calculate the weight of the combination using (3.53).

4. Repeat steps 1 to 3 for all the possible combinations of Gaussian components belonging
to different input variables. Finally, build up any PDFs using the N, Gaussian

components, as presented in (3.54).

If the number of combinations N, is too large, one of the reduction methods presented in
Section 3.2 is used to reduce the number of Gaussian components of one or some input

variables. This consequently reduces the number of combinations.

3.4 Summary

The variability of renewable generation sources is well-known to be time dependent. Hence,
probabilistic load flows are the most suitable studies to take into account the intermittency of

renewable generation and the uncertainty of power system demands.
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This Chapter presented how the Gaussian Mixture Models (GMM) can be used to represent
non-Gaussian input variables with certain degree of correlation between variables. The Chapter
also presented two methodologies to run probabilistic load flows: One is based on Monte Carlo
simulations and the other is based on multiple WLS runs (GCCM). Both formulations start
from the non-Gaussian PDFs of correlated input variables and they obtain the PDFs of any

voltage, power flow, or power injection in any bus of the system.

The main advantage of the GCCM with respect to previous methodologies, such as Point
Estimate based methods, is that it uses the actual PDFs of the input variables rather than only
the first statistical moments. Another feature of this methodology is the inclusion of correlated

variables.

The proposed methodology is less computationally demanding than Monte Carlo simulations
and it has the advantage that the number of WLS runs can be reduced if fewer components are

used to approximate the non-Gaussian PDFs.

Chapter 4 presents simulation tests to validate the accuracy of the proposed method with
respect to the Monte Carlo simulations and it also discusses the advantages and limitations of

the proposed method for meshed and radial networks.
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Chapter 4 Estimation of Probabilistic Load Flows:
Simulations

This Chapter compares the Gaussian Component Combination Method (GCCM) with the
Monte Carlo Simulations (MCS) to run load flows in the presence of uncertain inputs modelled
as non-Gaussian correlated variables represented by Gaussian Mixture Models (GMMs), as
introduced in Chapter 3. The comparison of the methods is carried out using two meshed

networks (14-buses and 57-buses) and one radial network with 69 buses.

This Chapter is organised as follows: Section 4.1 presents the simulation results for two
meshed networks. In this Section, different covariance matrices and Gaussian mixtures are
used. The first test system considers non-Gaussian Probability Density Functions (PDFs) of
loads whereas in the second test system, it is assumed that all the loads are modelled as
Gaussian distributions but the non-Gaussian distributions of the wind farm power outputs are
modelled as GMMs. Section 4.2 presents the application of the proposed probabilistic load
flow in radial networks. Later, the methodology is extended to solve the state estimation
problem in radial distribution networks where only few real-time measurements are available
to determine the actual condition of radial networks. Finally, a discussion of results and the

Chapter summary are presented in Sections 4.3 and 4.4, respectively.

4.1 Meshed Networks
4.1.1 14-bus IEEE Test System

The 14-bus IEEE test system was used to test the performance of the proposed method. The
network configuration, line parameters, and base case solution were taken from [64] and they

are listed in Appendix G.1.

Table 4.1 presents the GMM parameters used to model the non-Gaussian PDFs of active power

injections (P). Note that only two or three components were used to model the PDFs.
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Table 4.1: GMM parameters of the non-Gaussian PDFs of active power injections (P) in p.u.

122 H2 M3 [ 02 ] [ w; w3 CV
P2 0.163 0.190 0.210 0.015 0.021 0.025 0.5 03 02 15%
P3 -0.942 —0.800 - 0.065 0.049 - 07 03 - 10%
P6 -0.095 -0.110 - 0.003  0.003 - 06 04 - 8%
P9 -0.250 —0.280 - 0.020  0.030 - 05 05 - 11%
P13 -0.140 -0.160 -0.130 0.010 0.010 0.007 0.4 03 03 11%
P14 -0.150 -0.170 - 0.010  0.020 — 06 04 - 11%

The term CV in Table 4.1 stands for the Coefficient of Variation in percentage, defined as the
ratio between the standard deviation and the mean value of the random variable [65]. A
constant power factor is assumed for Buses 5, 9 up to /4; these values were calculated from
[64]. Furthermore, the generation and demand of the remaining buses (not presented in
Table 4.1) are assumed to be Gaussian random variables with mean values listed in [64] and

CV=10 %.

When applying the Monte Carlo simulations, the number of trials was N, = 5000. This number
was found to be sufficient to produce minimum variation of results. In the case of the GCCM,
the number of Weighted Least Square (WLS) runs was N, = 144. In this test system, the
Gaussian mixture reductions described in Section 3.2 are not considered because the number of

components of each GMM is small.

4.1.1.1 Case I in 14-bus system

The correlation coefficient between pairs of input variables must be obtained a priori using
(3.43) with the original set of observations. In this work, the correlation coefficient between

variables is assumed to be known as follows:

Due to the assumption of a constant power factor for Buses 5, 9 up to 14, the reactive powers
05, 09-Q14 are completely correlated (p = 1.0) with the active power consumption (P) at the
same bus. The correlation coefficient between the active power demands P10, P11 and P12 is

p = 0.8 (Group 1). In addition, the correlation between P5 and P6 is p = 0.9 (Group 2) and the
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correlation coefficient between Group 1 and Group 2 is p = 0.4. All other input variables are

assumed to be uncorrelated.

The correlated random variables are generated using the Cholesky decomposition of E" for the
Monte Carlo Simulations (MCS), see (3.46)-(3.48). In the proposed GCCM, the correlation
between input variables at different buses is taken into account in the covariance matrix R as

presented in (3.50).

The correlation coefficient between P and Q at the same bus is also considered in R and it is
kept constant for all the combinations of Gaussian components. In addition, when the load
power factor is assumed to be constant, the mean and standard deviation of the Gaussian
component, representing the reactive power demand, are respectively:

Uy = Up tan(¢) “4.1)
0, =0, tan(¢) 4.2)

where 1, is the mean value and o, is the standard deviation of the Gaussian component of

active power and ¢ is the power factor angle.

Figures 4.1-4.2 present the PDFs of active and reactive power flows from Bus 2 to Bus 3. The
resulting PDFs are clearly non-Gaussian and they cannot be represented by any other typical

marginal distribution.

From the resulting PDFs for all buses and power flows, it is concluded that the GCCM
approximates very well the results of 5000 Monte Carlo trials but with only 144 WLS runs.
The assumption of using the same correlation coefficient for all the Gaussian component

combinations is valid in this case.
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Figure 4.1: PDF of active power flow from Bus 2 to Bus 3 (case 1).
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Figure 4.2: PDF of reactive power flow from Bus 2 to Bus 3 (case 1).

Figures 4.3 and 4.4 present the PDFs of the active and reactive power flows from Bus 9 to

Bus 14. Similar as before, the PDFs obtained from the GCCM approximate very well the PDFs

obtained from the Monte Carlo simulations.
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Figure 4.3: PDF of active power flow from Bus 9 to Bus 14 (case 1).
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Figure 4.4: PDF of reactive power flow from Bus 9 to Bus 14 (case 1).

It is also interesting to verify the estimated PDFs of bus voltages. For example, the bus voltage at

Bus 13 is presented in Figure 4.5. Here, the difference between PDFs from the GCCM and the MCS is
negligible.
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Figure 4.5: PDF of voltage magnitude and angle at Bus 13 (case 1).
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Table 4.2 presents the average of percentage errors for Case 1. Here, the sub-indices i and ¢
stand for injected and transmitted powers, respectively. These errors are calculated as
percentages of the values obtained from the MCS. The average values of the mean (u) and
standard deviation (o) errors of power flows and power injections are no larger than 0.68%.

This confirms the good accuracy of the proposed method for this scenario.

Table 4.2: Average value of percentage errors Case 1.

2] % P Q P; Q
u 0.01 0.00 0.01 0.12 0.01 0.21
o 1.04 0.27 0.08 0.22 0.85 0.68

4.1.1.2 Case 2 in 14-bus system

In this test scenario, more variables are assumed to be correlated. The correlation coefficient
between the active power demands P10, P11, P12, P13 and P14 is p =0.8 (Group 1). The
correlation between P9 and PI0 is p = 0.9 (Group 2), the correlation between P5 and P6 is
p =0.9. (Group 3), and the power demands from different groups have a correlation coefficient
of p=0.4. Similar to Case I, the reactive power injections (Q) at Buses 5, 9 up to 14 are

completely correlated to their respective active power injections (P).
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The particular difference of Case 2 with respect to Case [ is that more non-Gaussian variables
are assumed to be correlated with the other variables at different buses (not only with the
reactive power variable at the same bus with constant power factor). For example, P6, P9, P13
and P/4 are non-Gaussian variables that are correlated with active power injections at other

buses. The same applies for 06, 09, Q13 and Q14.

Figures 4.6 and 4.7 present the PDFs of active and reactive power flow from Bus 9 to Bus 14.
In the case of the active power flow, the difference between PDFs is negligible. On the other
hand, the PDF of reactive power flow obtained from the GCCM has some difference with
respect to the Monte Carlo simulation. In fact, Figure 4.7 corresponds to the largest difference

between PDFs obtained from the two methods.

45
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Active Power Flow P9-14, p.u.

Figure 4.6: PDF of active power flow from Bus 9 to Bus 14 (case 2).
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Figure 4.7: PDF of reactive power flow from Bus 9 to Bus 14 (case 2).

Similarly, Figures 4.8 and 4.9 present the PDFs of active and reactive power flow from Bus 13
to Bus 14. Here, the PDF of active power flow obtained from the GCCM is less accurate than
the PDF of the reactive power flow at the same transmission line. These errors are caused by

assuming a fixed correlation coefficient between variables for all the WLS runs.
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Figure 4.8: PDF of active power flow from Bus 13 to Bus 14 (case 2).
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Figure 4.10 presents the PDF of bus voltage at Bus /3. Here, the difference between PDFs is

slightly larger than in Case

1, see Figure 4.5.
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Table 4.3 summarises the percentage errors for Case 2. The average percentage errors of the
mean values are still small, as in Case 1. However, the average percentage error of the standard

deviations has increased to 9%.

Table 4.3: Average value of percentage errors Case 2.

6 v P Q P Q
u 0.02 0.00 0.01 0.21 0.03 0.38
o 9.32 6.17 0.41 2.41 8.64 9.26

The increase in approximation errors is explained in Section 4.3.

4.1.2 57-bus IEEE Test System Simulation

The network configuration and line parameters of the 57-bus test system were obtained from
[64] and they are presented in Appendix G.2. All the loads are assumed to have a constant
power factor and the power injections at all buses are assumed to be Gaussian random

variables with mean values presented in Appendix G.2. and CV = 10%.

Three wind farms are installed in the network at Buses 4, 22 and 36. Without loss of generality,
the wind farms are modelled as PQ buses [66] and it is assumed that each wind farm is
controlled such that the power factor is kept constant at 0.95 p.u. This power factor could be

changed depending on the needs of the network [67].

The problem here consists of determining the stochastic flows close to the wind farms.
Table 4.4 presents the GMM parameters of the non-Gaussian PDFs used to model the wind
farm active power (P) outputs; all data is given in p.u. unless specified. Note that each of the

GMMs has five components.

Table 4.4: GMM parameters of active power injections (P), in p.u. for 57-bus test system

Hi H2 H3 Ha Hs o 02 03 04 0s ;] W, W3 Wy ws CV
P4 025 035 045 0.70 095 0.08 0.13 0.12 0.10 0.05 0.3 0.2 0.2 0.2 0.1 53%
P22 0.10 0.13 0.18 0.30 046 0.02 0.05 0.05 0.06 0.03 02 02 0.2 0.2 0.2 60%
P36 0.05 0.08 0.14 0.26 0.34 0.01 0.03 0.05 0.06 0.02 02 02 02 02 0.2 67%
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An approximation of typical PDFs of wind farms outputs (active powers) has been used in this
work. These PDFs can be obtained from previous statistical studies, which take into account
wind speed histograms at the wind farm location and the power curve of such wind turbines.

However, such study is out of the scope of this work.

The large variability of wind power outputs is taken into account in the example and it is
reflected in the large CV presented in Table 4.4. Smaller CV could be used instead, but it would
depend on the level of variability of the wind farm power output at the period of interest

(minutes, hours, etc).

One half of the power loads in the network has a correlation factor of p = 0.8 (Group 1). The
other half has a correlation factor of p = 0.8 (Group 2) and the correlation coefficient between
Group 1 and Group 2 is p = 0.4. The correlation factor between wind farms power outputs is

p = 0.8, but they are assumed to be completely uncorrelated to the power demand.

In order to reduce the number of WLS runs, each of the three GMMs, presented in Table 4.4,
were reduced from five to four and three components by using the Williams method (described
in Section 3.2). The number of Monte Carlo trials is Ny = 10000 (which produced minimum
variation of MCS results) and the number of WLS runs in the GCCM is N, = 125, 64 or 27,

depending on the number of combinations after the Gaussian mixture reductions.

Figures 4.11 and 4.12 present the estimated PDFs of power flows P3-4 and 03-4. The PDFs
obtained from the GCCM provide a good approximation of the PDF obtained from the Monte
Carlo simulation. As it is seen in the plots, the reduction of Gaussian components had little

impact on the final approximation of the power flows in this transmission corridor.
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Figure 4.11: PDF of P3-4 with reduced Gaussian components.
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Figure 4.12: PDF of Q3-4 with reduced Gaussian components.

The assumption of a fixed correlation coefficient for all the WLS runs had higher impact on the
approximation of some power flows at the proximities of Bus 4, as presented in Figures 4.13

and 4.14.
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Figure 4.13: PDF of P2-3 with reduced Gaussian components.
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Figure 4.14: PDF of Q2-3 with reduced Gaussian components.

Figures 4.15 and 4.16 present the PDFs of active and reactive power flows from Bus 22 to
Bus 38. The approximation of the PDFs with 125 and 64 WLS runs is very similar to the PDF
from the Monte Carlo simulation. When the number of WLS is reduced to N, =27, some

accuracy is lost but the shape of the distribution remains similar.
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Probability Density

Figures 4.17 and 4.18 present the PDFs of the power flows with the largest difference between
the Monte Carlo simulations and the Gaussian component combination method, at the

surroundings of Bus 22. For fewer WLS runs, the resulting PDF better approximates the Monte
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Figure 4.15: PDF of P22-38 with reduced Gaussian components.
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Figure 4.16: PDF of Q22-38 with reduced Gaussian components.

Carlo PDF. Similar was found in Figures 4.13 and 4.14.
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Figure 4.17: PDF of P21-20 with reduced Gaussian components.
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Figure 4.18: PDF of Q21-20 with reduced Gaussian components.

Although some accuracy is lost when using fewer Gaussian components (see Figures 4.15 and
4.16), the errors introduced by assuming a fixed correlation coefficient for all the WLS runs
have less effect on flows in or out of Buses 4 and 22. Similarly, Figures 4.19 and 4.20 present
the PDFs of power flows from Bus 36 to Bus 37. The flow direction may change depending on
the wind generation at Bus 36. The reduction of components of the original GMM has higher

impact on the accuracy of the PDFs.
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Figure 4.19: PDF of P36-37 with reduced Gaussian components.
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Figure 4.20: PDF of Q36-37 with reduced Gaussian components.

The less accurate PDFs of power flows, close to Bus 36, are presented in Figures 4.21 and
4.22. In this case, only the mean value is very similar to the mean value obtained from the

Monte Carlo simulation.
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Figure 4.21: PDF of P38-49 with reduced Gaussian components.
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Figure 4.22: PDF of Q38-49 with reduced Gaussian components.

Figures 4.23 and 4.24 present the PDFs of voltages at Buses 22 and 36. It is interesting to note
that the PDFs of voltage magnitudes are almost Gaussian distributed and the resulting PDFs
are very similar to the MCS. However, the resulting PDFs of bus angles are affected by the

assumptions made for each WLS run.
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Figure 4.23: PDF of voltage magnitude and angle at Bus 22 with reduced Gaussian components.
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Figure 4.24: PDF of voltage magnitude and angle at Bus 36 with reduced Gaussian components.

Table 4.5 presents the average value of the percentage errors of mean (ux) and standard
deviations (o) obtained from the GCCM with respect to the MCS. Here, the sub-indices i and ¢

stand for injected and transmitted powers, respectively.
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The percentage errors of means («) are low for all the analysed cases (the maximum value is
approximately 1.85% for Q; with N, = 27). The large percentage error of standard deviations in
bus angles is due to the comparison of two small numbers. In addition, the overall standard
deviation percentage errors are reduced for less WLS runs (N,). It is concluded that fewer WLS
runs reduces the propagation of errors due to the assumption of a fixed correlation coefficient

for each Gaussian combination (WLS run).

Table 4.5: Average value of percentage errors

N, Par. 6 \ P; Qi P, Q

125 I 0.3065 0.0028 0.0093 1.6976 0.1737  1.4068
c 14.2751 0.8274 0.2819 0.6137 9.2176  8.1245
64 v 0.8077  0.0030 0.0095 1.7234 0.1861 1.4765
c 13.7651 0.3164  0.2735 0.602  8.9065  7.8807
27 u 0.3429 0.0036 0.0097 1.8455 0.2123  1.6408
c 11.6262 0.7303  0.2385 0.5565 7.5932  6.8521

In terms of computational demands, the proposed GCCM requires approximately 3% (with
N,=144) and 1.25% (with N, = 125) of the time required by MCS for the 14-bus and 57-bus

test systems, respectively.

The test demonstrated that better approximation of the input variables (requiring more
Gaussian combinations) leads to propagation of errors in the surrounding of these variables. A
large number of Gaussian components will inevitably end up with a large N,, but further
reduction of the Gaussian components will destroy the original distribution of the input

variables; a balance is therefore required.

4.2 Radial Networks

Probabilistic load flow studies are required in radial distribution networks due to the low
availability of real-time measurements. The lack of sufficient real-time measurements reduces
the capacity to monitor the actual operating conditions of the network but, more importantly, to
detect the possibility of reversed flows, over flows, and voltage levels that are outside limits,

due to the installation of distributed generation.
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In this Section, the GCCM is tested and compared with MCS for probabilistic load flow studies
in radial distribution networks. Similar to the previous Sections, some of the input variables are

assumed to be correlated variables modelled by GMMs.

4.2.1 69-bus IEEE Test System Simulations

The network parameters and topology of the system were taken from [68] and they are
presented in Appendix G.3. All the loads are assumed to have a constant power factor

calculated from the active (P) and reactive (Q) power demands in Appendix G.3.

The study starts from the assumption that the network operator has run statistical studies to
determine the probability distribution of the power injections at the period of interest. For those
power demands (or generation output) whose marginal distributions are non-Gaussian, the EM

algorithm should be used to determine the respective GMMs.

The power demands at all buses, except for three of them, are assumed to be Gaussian random
variables with mean values listed in Appendix G.3 and Coefficient of Variation (CV) equal to
20%. The active power demands in Buses 11, 21, and 68 are modelled by non-Gaussian PDFs
represented by GMMs. In addition, non-monitored wind generation is installed at Buses 49 and

52 and they have been modelled as PQ buses with constant leading power factor of 0.95.

Table 4.6 presents the parameters of the GMMs used to model the wind active power output

and the three non-Gaussian active power demands. All data is given in p.u. (1 MVA base).

Table 4.6: Original parameters of GMM in radial network

M1 M2 M3 Mg Oy Oz O3 04 Wy Wz W3 Wy
P11 -0.142 -0.120 - - 0.006 0010 - - 0.5 0.5 - -
P21 -0.065 -0.077 -0.093 -0.108 0.005 0.006 0.003 0.009 022 0.50 0.13 0.15
P49 0.070 0.110 0.180 - 0.020 0.030 0.040 - 0.30 040 0.30 -
P52 0.036 0.060 0.108 0.168 0.006 0.016 0.040 0.012 020 020 040 0.20
P68 -0.016 -0.047 -0.028 - 0.005 0.018 0.009 - 045 0.11 044 -

Due to the assumption of a constant power factor, the reactive powers at all buses are
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completely correlated with the active power injection at the same bus. The correlation
coefficient between P and Q is included in (3.50) and it is kept constant for all the
combinations of Gaussian components. In addition, as the power factor at all buses is assumed
to be constant, the mean xp and standard deviation oy of the Gaussian component of reactive

power demand are obtained from (4.1) and (4.2).

Similar to the meshed networks, the correlation coefficient between a pair of input variables
should be taken from previous statistical studies. The correlations between input variables are
defined as follows:
e Joads connected between Bus 6 and Bus 27 have a correlation coefficient of p = 0.9
(Group 1).
e [oads connected between Bus 28 and Bus 41 have a correlation coefficient of p = 0.8
(Group 2)
e [oads connected between Bus 42 and Bus 69 have a correlation coefficient of p = 0.8
(Group 3).
e The active power generation at Buses 49 and 52 have a correlation coefficient of p = 0.9
but they are assumed not correlated to the active power demands.

e The correlation coefficient between Groups 1,2 and 3 is p = 0.4.

4.2.1.1 Case 1: Probabilistic Load Flows

This study focuses on the effect of including correlation between variables (demand or
generation) in radial distribution networks. The network topology used in the load flow study
should be the one that best represent the typical network configuration of the season. During

and after network reconfigurations, the network topology must be updated.

The impact of different network configurations was not addressed in this study. However, it is
also possible to consider the probability of different network configurations, see the Discussion

in Section 4.3.

The number of WLS runs needed to obtain the PLF solutions is calculated from (3.49), from

which N, is found to be 288 runs. The PDFs obtained from the proposed method are compared
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to 10 000 Monte Carlo power flows calculations using the Backward/Forward sweep method
proposed in [69] and explained in Appendix D. Each power flow calculation uses a set of
samples of power demand (or generation output) from the marginal distributions defined
above. The correlation between input variables was included in the MCS using the

methodology explained in Chapter 3.

In order to reduce the number of WLS runs in the Gaussian combination method, the GMMs
representing the power injections P68, P49, and P21 have been reduced by one component.
This results in only 96 WLS runs. The selection of the reduced Gaussian mixtures and the

performance of the optimised reduction method are extended in sub-Section 4.2.1.3.

Figure 4.25 presents the PDFs of active and reactive powers flowing through branch 57-52.
The PDFs show that for high amounts of generated power in Bus 52, the active power flow 517-

52 may change direction.

The PDFs obtained from the GCCM are very similar to the MCS solution. In addition, the
reduction of WLS runs had minimum impact on the estimated powers, as shown in

Figure 4.25.

The PDFs of the voltage magnitude and voltage angle of Bus 52 are presented in Figure 4.26.
The large variability of the voltage magnitude is caused by the large variations of generated
power in Bus 52. Similar to the power flow calculations, the approximation of the WLS runs is

very similar to the MCS.

Figure 4.27 presents the power flows through branch 20-21. In this case, there is a larger
difference between the PDFs obtained before and after the GMM reductions. The difference is
easier to appreciate because the GMM representing the power demand P2/ was reduced and

the probability density of the power flows is directly related to the power injection at Bus 2/.
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Figure 4.26: Comparison of estimated PDF of voltage (magnitude and angle) at Bus 52.
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The PDFs of voltage magnitude and voltage angle of Bus 21 is presented in Figure 4.28.
Similar to the power flows, the approximations of the PDFs are acceptable and the upper and

lower limits of voltages and power flows obtained from the WLS runs are in agreement with
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those obtained from the MCS. The few errors of approximation are introduced by the
assumption that the correlation between Gaussian components that belong to two particular

Gaussian mixtures is the same as the correlation between those Gaussian mixtures.

An alternative to the assumption above is not to include the correlation in the formulation i.e.
the covariance matrix R becomes diagonal for all the WLS runs. Figure 4.29 shows the effect
in voltage magnitude of (a) Bus 27 and (b) Bus 56 when correlation between variables is
neglected. As it is shown in the plot, the resulting PDFs obtained from the formulation without
(w/o) considering correlation have smaller deviation with respect to their mean value.
Consequently, neglecting the correlation between input variables may lead to wrong estimated

PDFs with different limits of voltages.

In terms of time demands, the GCCM with N,= 288 WLS runs took only 4.7% of the total time
required by the MCS. In addition, the elimination of three components from the original

GMMs resulted in a 66% reduction of the time demand of the PLF.

(a)
2 250 : .
2]
é‘% 200 Y —MCS i
> 150 - v e approx. with corr. |
5 100 o e approx. w/o corr. |
S 50t : 1
De_ 0 Lemeaee®® L L ."v- 4 I
095 0955 096 095 0.97 0975 0.98 098 0.99
Bus Voltage Magnitude, p.u.
(b)
2 300 :
% — MCS
QO 200F ----- approx. with corr. 1
> s
= e approx. w/o corr. &
S 1001 ; .
I
-Q -
DQ_ 0 et | L
0.965 0.97 0.975 0.98 0.985 0.99

Bus Voltage Magnitude, p.u.

Figure 4.29: Influence of correlation in estimated voltages on (a) Bus 27 and (b) Bus 56.
4.2.1.2 Case 2: State Estimation

The above methodology is extended to the problem of State Estimation (SE). As there are few
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real-time measurements available in the distribution network, it is necessary to include pseudo-
measurements to make the system observable. The PDFs of power demand and power
generation output of non-monitored buses become the pseudo-measurements that can be
represented by random variables modelled by GMMs. Therefore, the same methodology is

used as in the probabilistic load flows but including the real-time and virtual measurements.

The inclusion of the real-time measurements does not increase the number of the WLS runs as
they are assumed to be Gaussian distributed. Unlike the probabilistic load flow problem
presented before, each WLS run is an over-determined problem due to the presence of real-

time measurements and probabilistic distributions of power injections.

The inclusion of real-time (7f) measurements is now studied in this Section. Nine r?
measurements are included in the SE: two power flow measurements in branches 0-1 and 9-42,
four current measurements in branches 9-10, 2-28, 4-36 and 8-40, and three voltage magnitude
measurements in Buses 0, 4 and 9. In order to avoid convergence problems, the current

measurements are replaced by their squared value [70].

The PDFs of power demand and power generation are used as pseudo-measurements to make
the system observable and to provide detailed information of the likely power
demand/generation at each bus. The same correlation coefficients used in the PLF are used in
the SE. In addition, the rf noisy measurements were taken from a deterministic load flow,
presented in Appendix G.3, using inputs of power injections within the maximum and

minimum limits of the pseudo-measurements.

Figure 4.30 presents the estimation of the active power flows through branches 20-21 and 51-
52 with and without (w/0) correlation included. The three curves were obtained using N, = 98

WLS runs.

The solid line corresponds to the solution of the PLF and it was included for comparison
purposes only. The inclusion of the r# measurements makes it possible to obtain a better

estimation of the most likely active power flowing through line 20-21. In the case of branch

94



Chapter 4 — Estimation of Probabilistic Load Flows: Simulations

51-52, the larger uncertainty is caused by the large variability of the generated power in

Bus 52.
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Figure 4.30: Estimated active power flows in (a) branch 20-21 and (b) branch 51-52.

Similarly, Figure 4.31 presents the estimated active powers flowing through (a) branch 10-11

(close to rt measurement) and (b) branch 67-68 (far from rt measurements).
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Figure 4.31: Estimated active power flows in (a) branch 10-11 and (b) branch 67-68.
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The power flow through line /0-11 is much easier to identify with respect to the PLF study. On
the contrary, the estimated power flow through line 67-68 has little impact when the r¢

measurements at the sending end of the feeders are included.
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Figure 4.32: Estimated Voltage Magnitude at (a) Bus 21 and (b) Bus 52.
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Figures 4.32 and 4.33 present the estimated voltage magnitude at Buses 21 and 52, 11, and 68,
respectively. The impact of the inclusion of r# measurements is evident in the estimated

voltages, particularly for those buses close to the sending end of the feeders.

From these results, it is found that when a GMM is used to model power injections located at
the sending end of a feeder, the GMM will have less effect on the estimated flows and voltages
around it, particularly if this power injection is relatively small compared to the sum of the
power injections along the feeder. On the other hand, the GMM of power injection at the very

far end of a feeder will have a higher effect as presented in Figure 4.31(b).

The final value used to estimate the most likely value of voltages, power flows, and power
injections is the mean value u obtained from (3.4), as presented in Figures 4.30 to 4.33. For
example, in Figure 4.30(a), the mean value of P20-21 is ¢ = 0.1326 p.u. and the actual value is
0.1349 p.u. with only a 1.70% estimation error. In Figure 4.30(b) the mean value of P57-52 is
1 =0.0874 but the actual value is 0.0604 with a 44.7% estimation error. This error is caused by
the high uncertainty of the generated power in Bus 52. Likewise, the mean value of P10-11 is
1 =0.5760 p.u. (error is 0.42%) whereas the mean value of P67-68 is u = 0.0525 p.u. (error is
12.93%).

Table 4.7 presents the average of the estimation errors of the SE for bus voltages (V and 6),

power injections (P;and Q;), and transferred power flows (P, and Q,).

Table 4.7: Average of estimation errors for radial network

variable Vv 6 P; Qi Py Q

€% 0.04 2.79 10.00 10.79 7.10 7.28

Although the test only considered balanced conditions, the methodology can be extended to
three phase unbalanced conditions given the PDFs of bus power injection for each phase and

their correlation coefficient.

4.2.1.3 Selection of GMM for Reduction

As it was explained in sub-Section 4.2.1.1, the reduction of the number of WLS runs N, was
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achieved by reducing one component of the Gaussian mixtures that model P68, P49, and P21.

The selection of the GMM to be reduced depends on the importance and desired accuracy of
each GMM. However, if there is no particular priority of importance among the mixtures, it is
critical to select the GMM that, when reduced to M components, better approximates the
corresponding Gaussian mixture with M+/ components. This approximation is quantified by

the normalised ISD defined in (3.29).

Figure 4.34 presents the J;" after one component is reduced for each of the GMMs. For all the
GMMs, the optimised approach finds a set of reduced parameters that better approximates the

original mixture compared to the pair-merging method; see Figures 4.34 (a) and 4.34 (b).

In the first reduction attempt, the GMM representing P68 is less affected after the elimination
of one component; see Figure 4.34(b). In the second reduction attempt, when P68 is already
reduced, the GMM representing P49 is selected and P2/ is finally selected in the third
reduction attempt. The proposed selection ensures that the PLF and SE with fewer WLS runs
have similar results when compared to the formulation with the original combination of

Gaussian components.
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Figure 4.34: J," for reduced Gaussian mixtures using (a) the pair merging method and (b) the optimised
approach.
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Figure 4.35 presents the reduction of the GMM representing the active power demand at
Bus 68. The resulting GMM with two components is very similar to the original (solid line)
mixture. The solution obtained from the pair-merging method was used as the initial guess of

the optimised approach.
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Figure 4.35: Reduced Gaussian mixture to represent the power injection at Bus 68.

4.3 Discussion

The GCCM is an efficient approximation of MCS to estimate power flows and bus voltages in
the presence of non-Gaussian correlated input variables. The methodology assumes that the
correlation coefficient between Gaussian components that belong to two particular Gaussian
mixtures is the same as the correlation between those Gaussian mixtures. The assumption is
truly valid for the input variables P and Q at buses with constant power factor, in which p =1,

as it was demonstrated in Case [ for the 14-bus test system.

In any other case, the assumption is just an approximation and it introduces some errors in the
calculated PDFs of bus voltages and power flows at the proximities of the non-Gaussian

distributed power injections.
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These errors become more notable when the correlated non-Gaussian input variables have large
CV and when they are modelled by many Gaussian components. For this reason, the estimated
power flows in the proximities of these input variables are more accurate when using fewer
Gaussian components to model the correlated input variables, as shown in Figures 4.13-4.14

and 4.17-4.18.

It was found that the methodology can be implemented in both meshed and radial networks.
The approximation provides more realistic results when compared to not including any

correlation between variables.

In the case of radial distribution systems, the problem becomes an over-determined state

estimation calculation when real-time measurements are included in the WLS formulation.

From the simulated cases, it is concluded that power injections, modelled as GMMs, have
greater effect on the estimated flows and voltages around it when they are far from the real-
time measurements or when these power injections are relatively large compared to the sum of

the power injections along the feeder.

The methodology can also be extended to consider the uncertainty of the network topology.
The line parameters of the branch whose connection status is uncertain should be included in
the state vector. These parameters should be modelled as discrete variables with two possible

values: the actual parameters (branch connected) or zero (branch disconnected).

Finally, as the method is based on multiple WLS runs, it only considers the equivalent
(aggregated) power injections (active and reactive) for each bus, this being a limitation to
consider more than one wind farm at the same bus. Under these circumstances, an aggregated

wind farm has to be used instead.

4.4 Summary

The uncertainty of power demand and generation is studied by means of probabilistic load

flows. These studies take into account the variability of the input variables to determine the
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most likely power flows and voltages given the marginal distribution and correlation
coefficient between input variables for a certain period. This Chapter explored the use of
multiple WLS runs to process non-Gaussian correlated input variables in probabilistic studies

of meshed and radial networks.

In the proposed Gaussian Component Combination Method (GCCM), the assumption used to
incorporate correlated variables introduces some errors in the resulting PDFs of power flows in
the surroundings of the non-Gaussian correlated variables. It was found that the approximation
errors increase for non-Gaussian input variables with large variability (above 10%-15%).
However, it is concluded that the approximation is still acceptable as the resulting PDFs

maintained the marginal distribution of the PDFs obtained from the Monte Carlo simulations.

The next Chapters of this Thesis are focused on the estimation of the system condition
(voltages and power flows) using real-time measurements only. Unlike the studies in
Chapters 3 and 4, the errors of the input variables (measurements) are Gaussian distributed

with low level of variability (0.1%-2%).
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Chapter 5 Synchronised Measurements in State
Estimation

Occurrence of large disturbance events in power systems has encouraged the idea of using
Wide Area Monitoring (WAM) system based on Phasor Measurement Units (PMU) to identify
the sequence of events leading to blackout but also to prevent them by having a better

knowledge of the system in real-time.

A PMU is able to measure phasors of voltage and currents, commonly called synchrophasors,
which are estimated at a known instant (time tag). In order to obtain simultaneous phasor
measurements across the system, these phasors have to be synchronised at the same time tag.
This is achieved by using a sampling clock input, controlled by a Global Positioning System

(GPS), in each PMU [19].

The building blocks of a WAM system consist of the PMUs, the communication links, the
Phasor Data Concentrators (PDC) and the data server. Figure 5.1 presents a typical architecture
of WAM systems. The communication links are represented by a Wide Area Network (WAN)

cloud.

The PDC collects and stores the information gathered by groups of PMUs. The PDCs are
connected to either a higher level PDC, also called Super PDC, or to the data servers which

manage and prepare all the information to be used in the control centre.

Among the first applications of synchrophasors are enhanced visualisation of the power
system, post disturbance analysis and model validations [20]. For example, post disturbance
analysis based on synchrophasors have been reported in [71, 72]. Additionally, power angle
monitoring, power oscillation monitoring, and other on-line application for angular, frequency

and voltage stability applications will be deployed in the next years.
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Figure 5.1: Typical Architecture of a Wide Area Monitoring system

existing state estimators. Section 5.1 present the concept of hybrid state estimation and it

presents three different formulations for hybrid state estimators. Section 5.2 introduces the

problem of uncertainty propagation in some hybrid state estimators and it presents two

approaches for calculating these propagations. Finally, Section 5.3 and 5.4 present the study

cases and the summary of the Chapter, respectively.

5.1

Hybrid State Estimators

There are two possibilities for including PMU measurements in existing state estimators as

presented in Figure 5.2.
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Figure 5.2: Two alternatives for including synchronised measurements in SE

The first option consists of a two-step hybrid state estimator in which the conventional
measurements are firstly processed in the classical non-linear WLS method. The only condition
is that the conventional measurements must be enough to make the system observable. The
estimated state vector and the synchronised measurements are later used to correct the non-
linear state estimation result in a single iteration, as presented in Figure 5.2. This is the hybrid
estimator proposed in [26]. The main benefit is that there is no need to change the algorithm of
existing estimator. However, a transformation of states from polar to rectangular coordinates is

needed before using the linear estimator.

The other approach is to combine both sets of measurements and include them in a single step
as presented in Figure 5.2. One of the major challenges in hybrid estimators is how to integrate

PMU measurements of currents in the estimation problem.

Reference [73] proposed the use of polar form of currents in the state estimation. The relation

between the currents and the system states is represented by:

1=\ +1} (5.1)

6, =tan"'(1,, /1) (5.2)

y

with /;r and I;; expressed by:
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L, =8,;(V,cosg -V, cos6,)—b;(V,;sing, -V, sin0,)-b,V,sing, + gV, cos 6, (5.3)
Iij, =8 (V,sin 6, —Vj sin Bj) + bij (V.cos 8. —Vj cos Bj) +b,V.cos8 + g .V.sing, (5.4)

The main benefit of this formulation is that the synchrophasors of currents are used directly in
the estimator, i.e. they are not transformed. As drawback, the authors reported convergence

problems in this formulation.

It is possible to take a simple 2-bus system and demonstrate that, using the polar form of
currents as presented in (5.1)-(5.2), the corresponding Jacobian elements of these
measurements become undefined for lightly loaded lines and bg; =0 [18]. Moreover, even
without those conditions, the corresponding Jacobian elements can abruptly change in sign and

magnitude for consecutive iterations.
Let us consider a transmission line modelled by the following parameters: R=0.01; X=0.1;

B=0.20, all in per unit. The variations of the Jacobian elements corresponding to the current

angle derivatives are plotted in Figures 5.3 and 5.4:

100
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Figure 5.3: Variation of Jacobian element 0 0,/ d 0; with respect to small changes of §; and V;
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Figure 5.4: Variation of Jacobian element 0 0,/ 0 V; with respect to small changes of 6; and V;
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Figure 5.5: Variation of Jacobian element 0 I/ 0 0; with respect to small changes of ¢; and V;
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-0.05 0.95

Figure 5.6: Variation of Jacobian element 0 L/ 0 V; with respect to small changes of ¢; and V;

Similar results are obtained for derivatives of current magnitudes as presented in Figures 5.5

and 5.6. However, these variations of derivatives are less pronounced.

For a fixed voltage level in bus k, i.e. Vy= 1 and 0; = 0, the Jacobian elements, corresponding to
polar form currents, can abruptly change for small variations of V; and 0;: These significant
variations of the Jacobian elements cause an oscillatory behaviour in the estimation process
because the PMU measurements are heavily weighted as compared to conventional

measurements.

On the contrary, smooth variations (planes) are found when plotting partial derivatives of

rectangular form of branch currents as presented in Figures 5.7 - 5.10.
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-0.05 0.95

Figure 5.7: Variation of Jacobian element 0 Ljg/ d 6; with respect to small changes of §; and V;
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Figure 5.8: Variation of Jacobian element 0 Ljg/ dV; with respect to small changes of 6; and V;
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-0.05 0.95

Figure 5.9: Variation of Jacobian element 0 L/ 0 6; with respect to small changes of §; and V;
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Figure 5.10: Variation of Jacobian element 0 L/ dV; with respect to small changes of §; and V;
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Generally, no convergence problems are encountered when the currents are expressed in terms

of rectangular components. This formulation is explained in Section 5.1.1.

5.1.1 Rectangular Currents Formulation

Reference [27] uses the transformation of polar to rectangular form of currents to take

advantage of their better convergence properties, as follows:

1,26, =Ly + jl (5.5)

However, it is necessary to estimate the propagation of the measurement uncertainties during
the transformation [27, 74, 75]. Thus, the assignment of variances (square of the standard
deviations) of the new measurements must be obtained from uncertainty propagation methods,

as extended in Section 5.2.

Table 5.1 presents the new Jacobian elements to be included in the H matrix of the WLS
formulation. These elements correspond to the rectangular form of currents measurements
obtained from the partial derivatives of (5.3) and (5.4) with respect to the voltage magnitude

and angle of the sending bus i and the receiving bus j.

Table 5.1: Elements of H corresponding to rectangular current measurements

ol . ol .
= =-V ((gl.j +g,)sin 6, + (b, +b‘\_l.)cost9l.) —=V, ((gl.j +g,)cos 8, — (b, +b‘\_i)sm9l.)

26, a6,
ol. ol
ijR . ijl .
:V~(8i~5m0 +bi~0059‘) —=V<(—gl.‘ cos@ +b, smé’.)
39]. i\di J ij J aé’j J ij i Y j
ol . ali‘ .
—a‘l'//R = (gij +g,,)cos 6, _(bij +b,;)sin 6, a_‘f: —8j COSQJ’ +b"f Sin gf
i j
aIU, . aIijI .
W: (gij +gsi)Sln0i +(bij +bﬂ.)C089i V. :_gij Slnej _bij COSH]
i J
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5.1.2 Pseudo- Voltage Measurement Formulation

This method combines the measured bus voltage and currents flowing out of the PMU bus to
approximate the voltage phasors in adjacent buses, as suggested in [76]-[77]. These calculated
voltages replace the use of current measurements (polar or rectangular) in the state estimator.
Due to the transformation of measurements, this formulation also requires an approximation of

uncertainty propagation, as it will be presented in Section 5.2.

5.1.2.1 Non-PMU Bus Voltage Calculation

With reference to the pi-model presented in Figure 2.3, the voltage phasor at any bus k adjacent

to a PMU bus i, can be expressed as:

:‘Z(gsi+jbsi+gik+jbik)_7ik (5.6)
i+ Jby .

>~

Here V, =V, £, is the measured voltage phasor at bus i and V, =V, £, is the unknown voltage
phasors at bus k and I, =1,/86, is the current phasor measured by the PMU at bus i. The term

(gs+jby) 1s the shunt admittance connected at bus i and (gu+jbi) is the series admittance of the

transmission line connecting bus i and k. If the parameters a, b and c are defined as:

a=g,(8,+8;)+b,(b,+b;) (5.7)
b=g,(b,+b,)—b, (g, +8&) (5.8)
c=g, +b; (5.9)

the bus voltage at bus k can be calculated in rectangular form as:

V.=V, +jV, (5.10)

Where Vigand Vy; are:
Vi =(aV.cos@ —-bV.sinb —g, 1, cos8, —b,I,sinb,)/c (5.11)
V,=®bV.cos@ +aV,sin6 +b,1, cos, —g, 1, sinb,)/c (5.12)

And the magnitude and angle of the bus voltage at bus k is,
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V, = V2 +V2 (5.13)

6, =tan”" (V,, /Vz) (5.14)

The voltages obtained from (5.13)-(5.14) are used as pseudo-measurements in the vector of
measurements z. These new pseudo-measurements are linearly related with the set of states X,

as follows:

z,. [h(0,V) |
0, 0
z=|V,.,|>hx=l V (5.15)
0, 0
\Y \Y%

Here, z.,,, 1s the set of conventional measurements; 0,,,, and V,,, are the sets of bus voltage
angles and magnitudes originally measured by the PMUs; 0,, and V,, are the calculated
pseudo-measurement sets of bus voltage angles and magnitudes respectively and 0 and V

define the state vector x.

It is easy to extract from (5.15) that this estimator can be also decomposed into: a non-linear
state estimator with only conventional measurements and a post-processor linear estimator,

similar to the two step estimator presented in [26].

5.1.3 Constrained Formulation

This sub-Section presents an alternative formulation to include PMU measurements in state
estimation. The aim of the proposed methodology is to avoid the transformation of
measurements and consequently to avoid the propagation of uncertainty. In order to relate the
current phasor measurements with bus voltages, a set of constraints is included, ensuring the

observability of non-PMU buses adjacent to PMU buses.
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This formulation starts with the introduction of a new set of states. The new vector is
composed of all the bus voltages, as defined in Chapter 2, and an auxiliary state vector

composed of the polar form of the branch currents measured by the PMUs:

xnew — [XT, xauxT ]T (5.16)
In the above equation,

x“=10,,1,1', V ieN

PMU »

keN! (5.17)

where Npyy is the subset of PMU buses and N, ,, is the subset of adjacent buses to the i-th
PMU bus. This auxiliary state vector is introduced in order to apply direct measurements of
currents in polar form. Also, these auxiliary states can be used to relate bus voltages from PMU

buses and their adjacent buses, as it will be explained later.

The set of measurements z is made of injected and transferred active and reactive powers, bus
voltage magnitudes and voltage and current phasors in polar form (angle and magnitude),

measured by the PMUs:

z, [h(e,V)]
0. 0
z=|V,, |[>hx)=| V (5.18)
0 0,
L IP’"“ _ L I _

Here, 0™ and I, are the set of branch current angles and magnitudes respectively, measured

by the PMUs. Since 0; and I are the introduced auxiliary state variables defined in (5.17), there

is a linear relation between the states and the PMU measurements.
As the PMU currents are included as state variables, the voltage at any bus k adjacent to a

PMU bus can be expressed in terms of state variables and line parameters. The voltage angle

and magnitude for a bus k adjacent to a PMU at bus i, can now be expressed as:

113



Chapter 5 — Synchronised Measurements in State Estimation

Vki=fv(‘/i’9i’lik’9ik) (5.19)
eki=fa(vi’6i’lik’9ik) (5:20)

As depicted in Figure 5.11, a bus k can be seen from more than one PMU, at buses j and i, but

it depends on the network topology and location of the PMUs.

=smm Bus
— Line
....... Line Section
(V)]
n ——-

Figure 5.11: Location of PMUs in a section of a power network.

The following constraints are used to relate the PMU buses and their respective adjacent buses:

V. -Vi=0 (5.21)
6,-6, =0 (5.22)

where Vi and 6, are the state variables corresponding to bus k. These equations are grouped in a
new vector ¢, and the minimisation problem in (2.12) is subject to the following equality

constraint:

c(x"")=0 (5.23)

Table 5.2 presents the partial derivatives of (5.19)-(5.20) with respect to the new set of state
variables. These partial derivatives are included in C matrix that corresponds to the partial

derivatives of the equality constraints.
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Table 5.2: Elements of C corresponding to equality constraints of voltages
av, b_ . a 00 b_ . a
—~ =[V,(—=V,sinf +—V,cos6,)+ —£ =[V,(—=V sinf +—V, cosb,)—
20 c c 20 c c

VkR(—EVi sin 6, —BVI. cos @)1/ \Vir +V, V., (—EVi sin @, —éVi cos@)]/(V,je +ka)
c c c c

I I I I
oV, =[Vy (——b, sing, ——* g, cos b, )+ % =[Vig(——b, sin g, —— g, cos 6, )—
20, c c 26, c c
I I I I
Vi (?k 8y Sin g, _?kbik cos 6, )]/\]kae +V13 Vi (?k 8y Sin g _?kbik cos 6, )]/(Vk?e +V13)
aV, b a . 26 b a .
—~£ =[V,(—cos8, +—sinb,)+ —~ =[V(—cos 8 +—sinb,) —
a‘/l [ kI(C i c 1) a‘/l [ kR(C i c l)
V., (%cos 6 —%sin@)]/«/V,je +V v, (%cosa,. —%sin@)]/(V,; +V2)
ai:[Vk,(bi‘cosé’ik—&siné?ik)+ ai:[V,d,a(bl‘cosé’ik—&sinéﬂ,{)—
al, c c al, c c
VkR(—%cos 0, —%"sin O/ Vi +V, v, (—%cos 0, —%"sin 81/ (Vi +Vie)

Under the proposed formulation, Kirchoff’s current Law is perfectly maintained while currents
are free to vary as states in order to find the optimal estimation. Additionally, all measurements

are used directly without any transformation in the estimation process.

The initial state vector guess is set to flat start for voltages (or the solution from the previous
estimation) and the initial state of currents may be initialized with the actual measurement of

the respective currents.

5.2 Uncertainty Propagation

The calculation of uncertainty propagation is an important task that has to be addressed when
measurements are transformed or combined to create new set of measurements. Depending on
the algorithm used, the inclusion of synchrophasors in the estimation problem may require
transformation of power measurements into current measurements [78], conversion from polar

to rectangular form [27] or combination with other measurements to create pseudo-
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measurements [77]. For all these cases, the calculation of the propagation of uncertainties is

necessary in order to assign weights to the new measurements.

Let the initial set of measurement be defined as:

Z= (21,23, o, Zm]" (5.24)

where z is an mx 1 vector of original measurements with mean vector Z = E|[z] and covariance
matrix P,:

P,=E[(z—Z)(z—2)7] (5.25)
The problem of uncertainty propagation is to find the m,x 1 mean vector y and the m,xm,

covariance matrix P, of y given:

y = g(z) (5.26)

where y is the myx1 vector of transformed measurements resulting from the non-linear

function g(z).

5.2.1 Classical Uncertainty Propagation Method

The classical method approximates the calculation of the mean vectory by neglecting the

higher order terms of g(z) [79]:
y =Elg(z)] = g(z) (5.27)

And the uncertainty of y, represented by the covariance matrix Py, is also obtained from a

linear approximation of g(z):

P =G PG! (5.28)
where,
G -%8@ (5.29)
oz
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Under these approximations, the mean vector and its covariance matrix Py can result in errors if

g(z) 1s highly non-linear and the uncertainty of z is large.

5.2.2 Unscented Transformation Method

This section presents a more accurate methodology to estimate the mean and covariance of
transformed measurements, based on the Unscented Transformation (UT) approach. The idea
of UT is to obtain a number of so called sigma points, deterministically chosen, which exactly
capture the mean and covariance of the original distribution of z. The sigma points are grouped
in vectors and they approximate the distribution of z [79]. The sigma points are then

propagated, one by one, in g(z) to estimate the mean vector y and covariance matrix P,.

The main benefit of using UT over the classical method 1s that, for similar computational
requirements, it provides higher accuracy as higher order terms of the non-linear function g(z)
are considered. The Unscented Transformation approach can be described through the

following three steps:

Step 1: Obtain a set of 2m vectors of sigma points that capture the mean and covariance of the

original mx 1 vector of original measurements z:

Z,=7+(mP_ ), i=1.....m (5.30)
z,.,=7-(JmP),. i=1,...m (5.31)

where (,/mPZ ) ; is the i-th column of matrix \/mP, .

Step 2: Propagate the sigma points through the non-linear functions g:

v, =8Z,) ,i=1,....,2m (5.32)

Step 3: Calculate the mean and covariance for y:

Yi (5.33)
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2m

I I
P, —%;[(vi -9 ] (5.34)

The UT does not need to calculate a Jacobian matrix to cope with the non-linearity of g(z).
Only 2m vectors of sigma points are needed to capture the distribution of z (for example,
Gaussian) with subsequent evaluations in g(z) to calculate the new measurement uncertainties.
As the sigma points are calculated deterministically, the UT requires less computational
demands compared to Monte Carlo methods where thousands of evaluations are needed to

capture the distribution of both z and y [80].

For example, let us consider a measurement set z in polar form, whose mean vector and

covariance matrix are defined as follows:

[T P_afo_o.oso2 0
6| |x/4]" * |0 o 0  0.035

It is desired to convert the measured data into rectangular form. The polar-to-rectangular non-
linear transformation is,

g(z)=[rcos@ rsin Q]T
Based on the UT approach, it is necessary to build the set of 2m sigma points, with m = 2:

| 1.0707 1.0000 0.9293 1.0000
107854 0.8349 0.7854 0.7359

In order to obtain the propagated sigma points, each sigma point set Z;, (i-th column of Z) is
evaluated in g, as presented in (5.32):

_10.7571 0.6713 0.6571 0.7412
L 0.7571 0.7412 0.6571 0.6713

Finally, the mean and covariance of the new sigma points are calculated using (5.33) and

(5.34):

_ 10.7067 , | 1.8622 0.6382
y= , P =10"x
0.7067 y 0.6382 1.8622

The UT approach approximates the true mean and covariance of y up to the third order [79]. In

addition, the calculated covariance contains correct sign terms to the fourth and higher powers.
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The mean and covariance of y obtained from the classical method based on linearization of

g(z) is:

_ 107071 , |1.8625 0.6375
y= , P, =10"x

0.7071 0.6375 1.8625
The classical method does not provide any extra information about higher order terms [79],
consequently the UT mean vector and its covariance matrix should generally be more accurate

than those obtained by the classical approach.

5.3 Study Cases

This section presents test results using the IEEE 14, 57 and 118 bus test systems. The network
parameters and loading conditions are presented in [64]. The methodologies presented in sub-
Sections 5.1.2 and 5.1.3 were compared to the rectangular PMU currents formulation presented

in Section 5.1.1.

Table 5.3 lists the types of measurements used for the three test systems and the corresponding
measurement uncertainties. The uncertainties in Table 5.3 are expressed in percentage of the
actual measurement value and they are used to create the random noise in the measurements

needed during the Monte Carlo simulations.

Table 5.3: Standard deviation of measurements

Conventional measurements PMU measurements

Voltage | Injected power | Power flows | Voltage | Current | Phase angle

0.2% 2% 2% 0.02% | 0.03% 0.01°

5.3.1 SE Performance Index

The first performance index used in this work for comparison purposes is the variance of the

estimated states:

2N
oy =) (X -x) (5.35)
i=1
where, % and x' are the estimated and true state values respectively and N is the number of

buses in the system. The second performance index relies on measurement errors and it is
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given by,

0= (e-2) /Y (e-2) (5.36)

where 2, 7z’ and 7 are the estimated, true, and available measurements, respectively. The result
of the objective function is not used as a performance index since it does not quantify the
accuracy of estimators. Nevertheless, it may be useful for detecting bad data by using a chi-

square distribution test, if necessary.

In order to obtain a more reliable comparison from the estimator testing, 100 Monte Carlo
simulations have been carried out. For each Monte Carlo simulation, the sample of a
measurement is randomly taken from the distribution of the measurement around the mean

(measured) value.

5.3.2 Placement of PMUs and Conventional Measurements

The conventional measurements were deterministically located in the system to create the set
of existing measurements in the system:
e The 14-bus test system has flow measurements in 50% of its lines and power injection
measurements at 57% of its buses.
e The 57-bus test system is assumed to have power flow measurements in 56% of its
lines and power injection measurements at 35% of its buses.
e The 118-bus system has power flow measurements in 40% of its lines and power

injection measurements at 42% of its buses.

Subsections 5.3.2.1 and 5.3.2.2 present the algorithms used in this work to locate the PMUs in
the three test systems. Note that these subsections are included to justify the location of the

PMUs only and these algorithms are not a contribution of this Thesis.

5.3.2.1 Measurement Redundancy Improvement

A wvalid criterion for including PMUs in the system is the improvement of local/global

redundancy levels and elimination of critical measurements (redundancy level equal to zero).
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The adequate performance of Bad Data Detectors (BDD), such as the normalized residual
approach, depends on the availability of redundant measurements. It is important to eliminate
critical measurements as they could never be detected as erroneous data, thus adversely

affecting the performance of state estimators.

An optimal placement of PMUs in the system can eliminate critical measurements and can
improve redundancy levels of basic measurements (set of measurements which are sufficient to

make the system fully observable).

After observability analysis for the 14-bus IEEE test system, it was concluded that the number
and location of the existing conventional measurements is enough to make the system fully

observable.

Redundancy analysis indicated that there are measurements with redundancy levels equal to
one and possible loss of a single measurement would result in various critical measurements,
affecting Bad Data Detection (BDD) [38]. The optimal location of PMUs to improve local

redundancy was determined using the method proposed in [39]. The objective function is:

P
Minimise Z‘qi()ti
i=1

Subjectto w+F-a=>b

(5.37)

where:

p number of candidate PMUs.

q vector of costs for installing candidate PMUs.

o binary vector corresponding to candidates PMU .

If a PMU is placed, a; will be 1, otherwise 0. Additionally, w is a vector indicating the existing
redundancy of the basic measurements and F is a matrix relating candidate PMUs and critical
measurements (or any other basic measurement with low redundancy level). Moreover, vector

b indicates the level of redundancy desired for each basic measurement. For b=1, it ensures
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that no critical measurements are present. Higher levels of local redundancy are obtained by

increasing elements of b.

The same methodology was used for the 118 bus IEEE test system since local redundancy was

also desired to be improved for BDD.

5.3.2.2  Enhancement of Network Observability

Power systems under low measurement availability and/or loss of communication links may
lead to the loss of system observability, making the estimation problem unsolvable. In such
cases, pseudo-measurements have to be included to recover observability, resulting in reduced
estimation accuracy. An alternative procedure is to include a minimum number of PMUs to

recover system observability if observable islands are identified.

Once observable islands are known, it is possible to formulate the optimisation problem which
finds the minimum number of PMUSs to recover system observability:

P
Minimise .
;ql ' (5.38)

Subjectto F,-a=b,

The incidence matrix F, relates candidate PMUs with the observable islands: F;(k,i) is one if

the i-th PMU is located inside or at boundary of island k, or zero otherwise.

In order to recover system observability, it is necessary that all islands are observed by at least
one PMU. Based on this fact, vector b, must be a unitary vector. Each element of b, will
correspond to each observable island previously identified. If PMU reliability is a concern, one
could increase the values of b, to guarantee system observability even under the outage of

some PMUs.

In the 57 bus system, it was found that the system frequently splits into five observable islands
due to failures of communication links. In order to avoid islanding, PMUs were optimally
located over the system by using b, = 2 in (5.38). This not only recovers system observability

but ensures that the loss of any single PMU will not lead to unobservable conditions.
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An equality constraint was included in (5.37) and (5.38) for all test cases to ensure that one

PMU is located at the slack bus. This permits that all synchronised measurements can be

referred to a common angle reference equal to zero, in the slack bus. The PMU placement sets

for the three test systems are given in Table 5.4.

Table 5.4: Optimal location of PMUs

Test System Buses with PMU
14 buses land 4
57 buses 1,9, 18, 19, 30, 31 and 55
118 buses 24, 40, 59, 69, 75, 80, 100, 103, 113 and 114

Figures 5.12-5.14 present the location of the conventional and synchronised measurements for

the three test systems. Due to space limitations, Figure 5.14 does not include the synchronous

condensers, see Appendix G.4 for details about these elements. Null power injection

measurements were included as equality constraints.

Bus 1

% Injected Power W Voltage Magnitude

® Transferred Power b PMU

Figure 5.12: Measurement allocation in 14-bus test system
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* Injected Power W Voltage Magnitude
@ Transferred Power b PMU

Figure 5.14: Measurement allocation in 118-bus test system
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5.3.3 Assessment of Estimators

Three different methods for each test system have been used to assess the performance of the

proposed estimator:

Method 1: Currents measured in polar form were transformed into rectangular form as
proposed in [27] and presented in sub-Section 5.1.1. The transformation of measurements and
uncertainties was carried out using the UT. In addition, constrained estimation was used for

null power injections only.

Method 2: The state estimator was based on the Pseudo-Voltage Measurement Approach, as
explained in sub-Section 5.1.2. Both, conventional and synchrophasor measurements were
used to estimate the system state. Bus voltage measurements of adjacent buses to PMU buses
are created according to (5.13)-(5.14). Therefore, if the IEEE 14 bus test system is taken as an
example, besides voltage measurements at Buses I and 4, one obtains voltage measurements of
Buses 2, 3, 5, 7 and 9. The uncertainties of these new measurements are obtained using the UT

approach. Again, constrained estimation was used for null power injections only.

Method 3: The estimator is based on the constrained formulation presented in Section 5.1.3.
The state vector was extended to include the polar form of PMU currents. For the IEEE 14 bus
test system, there are 16 constraints that have to be met: 2 for null power equations at Bus 7,
and 14 constraints for adjacent buses to PMU buses (Buses 2 and 5 are observed twice by

PMUs).

Figures 5.15 and 5.16 present the estimation errors obtained from the three methods using the
14-bus test system. The convergence criterion used in all estimation procedures was 10 p.u.

The results were collected from 100 Monte Carlo simulations.

From Figures 5.15 and 5.16, it can be concluded that there is a clear advantage when using
Method 3 in comparison to Method 2. This is because PMU currents are used to relate states of
both adjacent and PMU buses in the constrained formulation. On the other hand, Method 2

loses some information, about the states of PMU buses provided by PMU currents, because the
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pseudo-measurements of voltage are modelled in terms of voltages of adjacent buses only. The
constraints for Method 3 are all fulfilled with a maximum error of 10" p-u. Figures 5.15 and
5.16 also demonstrate that the constrained formulation is comparable in accuracy to Method 1

but there is no need to transform the PMU measurements.
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Figure 5.15: Voltage angle estimation errors for the IEEE 14 bus test system.
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Figure 5.16: Voltage magnitude estimation errors for the IEEE 14 bus test system.

Table 5.5 presents a comparison of estimation accuracy based on performance indices for the

14, 57 and 118 bus test systems. The term S/C is the ratio of synchronised to conventional

measurements in the system.

The estimations were significantly more accurate once synchronised measurements were
included, as presented in Table 5.5. This validates that the presence of few PMU measurements
substantially improves the accuracy of the estimations. For the 57 bus system, a classical state

estimation cannot be solved because the system is not fully observable with only conventional
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measurements. In fact, this was the reason why PMUs were optimally installed in the network.

As expected for the 14 bus test system, the state variance and the measurement error index ¢

are smaller in Methods I and 3 than in Method 2. However, the objective function J is smaller
in Method 2, which confirms that this index is not a measure of the accuracy of estimators, but

it is still very useful for bad data detection based on statistical procedures.

In the case of the 57 bus test system, the number of constraints for Method 3 is 72; from which,
30 constraints correspond to null power injections and the remaining 42 are constraints for

adjacent buses to PMU buses.

In the case of the 118 bus test system, the number of constraints is 114. Here, 16 constraints
correspond to null power injections and the other 98 constraints are used for adjacent buses to
PMUs. It is again concluded that constrained and rectangular current formulations deliver

more accurate estimations than the pseudo-voltage formulation.

Table 5.5: Estimation results for 100 Monte Carlo simulations

System oy 4 J

Method 1 5.8122x107  0.0200  14.0015
14 buses 7

S/C o 1ay3 Method2 7.4374x107  0.0320  13.3023
Method 3 5.8123x107  0.0200  14.0186
S/IC=0/43  Classical 1.3400x10°  0.3587  6.2681
Method 1 3.9829 x10° 02287  49.5373
ng_‘;‘gj‘f% Method 2 4.5251x10°  0.2601  46.3422
Method 3 3.9825x10°  0.2288  49.6799

S/C=0/146 Classical -- - -
Method 1 5.2060 x10° 04274 75.9057
S/lclflbl‘éjgzs Method 2 5.5653x10°  0.4493  66.1592
Method 3 5.2064x10° 04273  74.7258
S/C=0/265 Classical 6.1124x10* 0.7334  15.0869

Table 5.6 presents a comparison of computational speed and required iterations for all three

hybrid estimators. The simulations were carried out using an Intel Core (TM) 2 6400 @ 2.13-
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GHz CPU with 2.97 GB of RAM

Table 5.6: Time demands of hybrid estimators

Average | Method 1 | Method 2 | Method 3
Time [s] 0.7965 0.652 0.9666
Iterations 4.98 4.5 4.65

It is found that, on average, the constrained formulation (Method 3) requires slightly larger
computing times than the other two methods. However, on average, the constrained
formulation requires less iterations than the rectangular formulation approach. Table 5.6 does
not consider the time required to transform PMU measurements and calculate the covariance

matrix needed in Methods I and 2.

5.3.4 Estimation of Measurement Uncertainty

Let us consider the 14 bus test system. In Method 2, the currents measured from the PMU at

Bus 4 were transformed into pseudo-voltage measurements using the UT approach.

The calculated mean and covariance of the new pseudo-measurements were compared to the
classical method using (5.27)-(5.28). Table 5.7 presents the estimated mean vector of the new
pseudo-voltage measurements. Both methods deliver practically the same result since the
variance of the original measurements is very small; this leads to insignificant errors caused by

neglecting higher order terms of the true mean vector.

Table 5.7: Comparison of mean vector estimation

UT Method Classical Method
o V| [p.u.] 6 [rad] V| [p.u.] 6 [rad]
Bus?2 | 1.0451318 |-0.08690058 | 1.0451318 |[-0.08690058
Bus 3 | 1.00994583 | -0.2220894 | 1.00994583 | -0.2220894
Bus 5 | 1.01963618 |-0.15303897 | 1.01963617 |-0.15303897
Bus 7 | 1.06144752 | -0.2331688 | 1.06144752 | -0.2331688
Bus 9 | 1.05588427 |-0.26074462 | 1.05588427 [-0.26074462

In the same way, almost identical results were obtained when comparing the calculation of the

new covariance matrix. For easier comparison, Table 5.8 presents the diagonal elements of the
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square root of the P, matrix. The off-diagonal elements of P, were found to be up to 50 times

smaller than its diagonal elements. Their inclusion in the error covariance matrix R had a

minimum effect over the estimation process.

Table 5.8: Comparison of standard deviation estimation

- UT Method Classical Method
Unpertainty o0, X 10° o, X 10° o, X 10 o, X 10
in p.u.
Bus 2 0.99232560 | 1.17570625|0.99232559 [ 1.17570626
Bus 3 1.01721504 | 1.17441442(1.01721504 | 1.17441443
Bus 5 1.00702896 | 1.17533309 | 1.00702896 | 1.17533310
Bus 7 0.99255827 | 1.20305353 [ 0.99255827 | 1.20305355
Bus 9 1.01286742 | 1.21486334 [ 1.01286742 [ 1.21486335

The expected errors due to neglecting the higher order terms of the non-linear function g(z) are
negligible because the uncertainty of the original PMU measurement is very small. The higher
the uncertainty of the original measurements the more inaccurate the calculated mean and

covariance matrix of the new measurements will be when the linearised approach is used.

5.4 Summary

This Chapter studies three alternatives for including PMU measurements in power system state
estimation, i.e. hybrid state estimation. As the direct use of PMU currents in polar form leads
to convergence problems, this work presents different formulations for including (or replacing)
these measurements. The first two formulations transform the PMU measurements into
rectangular form or pseudo-voltage measurements and the third makes use of a constrained

WLS formulation with no transformation of PMU measurements.

The proposed HCSE gives the possibility to implement the PMU currents in polar form. This
avoids the transformation of measurements and the propagation of errors during the
transformation. This is important because the errors are random variables, and the presence of

large errors may affect the new transformed measurements. In addition, as the resulting
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(transformed) measurements are the combination of PMU voltages and currents, these

measurements will be correlated.

The proposed methodology avoids this problem. To do so, it introduces a new set of constraints
to estimate the bus voltages adjacent to PMU buses, and gives the possibility to correct and
filter out small errors in PMU measurements. In other words, the resulting estimated line

currents may be slightly different from the PMU current measurements.

The Unscented Transformation (UT) was also introduced to approximate the propagation of
uncertainties in the hybrid state estimation formulations that required the transformation of

PMU measurements.

The UT delivered almost identical results as the classical propagation method. It was found
that the uncertainties of PMU measurements were so small that the errors caused by

linearisation approximations in the classical method were negligible.

Chapter 6 is focused on the problem of estimating the state of large interconnected power
networks. In order to cope with such a high dimensional problem, the PMU based state
estimator is distributed into smaller independent local state estimators whose solutions must be

in agreement with each other.
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Chapter 6 Multi-Area State Estimation

Integrated state estimators are the most accurate option when estimating the state of a power
system. They make use of all available measurements in the entire power network to estimate
the system operating point. However, the size and complexity of large power networks
suggests that a strategy of decentralising the estimation problem by distributing the
computation into local area estimators may be beneficial [81]. This strategy is the main idea of
Multi Area State Estimators (MASE). They provide reliable estimates for large-scale power
systems with significantly reduced computational requirements when compared to the

aforementioned integrated solutions.

Large scale incidents experienced in the last years has pointed out the need of more accurate
real-time visibility of the system state beyond the area covered by the estimator of a country or
region [82]. Additionally, it is important to obtain accurate estimates of the actual power
transfers between areas as power transaction operations will rely on the information given by

the state estimator.

MASE are classified according to their computing architecture [82]. One is based on a
hierarchical scheme composed by a master processor (coordinator) that corrects the solution of
the slave processors (local estimators) and the other architecture is based on a decentralised
approach. In the decentralised option, the local estimators directly exchange information with

those estimators in charge of neighbouring areas.

A good MASE (hierarchical or decentralised architecture) must fulfil the following basic
requirements: a) high computational efficiency, b) accuracy should be similar to the integrated
solution, c¢) highly robust to deal with topology changes, d) bad data processing for buses

located close to boundary buses, and e) low data exchange between areas [82].
Some efforts have been made to obtain the same, or very similar, accuracy as the integrated

solution. Reference [83] introduces an optimisation based method that reaches a wide-area sub-

optimal solution by solving local area optimisation problems. This decentralised methodology
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was later extended in [84]. It is based on a Langrangian Relaxation technique that exchanges
information between regions without using a central coordinator. Each area runs its own state
estimator and waits for the most updated state estimation of the external boundary buses. The
solution was found to be the same as the integrated one. The paper also proposed a bad data
detection procedure within and between areas. In the case of measurement errors close to
boundary buses, the algorithm requires to include measurements in boundary buses from other

arcas.

The Diakoptic based distributed estimator proposed in [30] is able to obtain the same accuracy
as the integrated solution. In addition, the method proposed in [85] includes a set of virtual
measurements to obtain consistent solutions in boundaries of different areas. However, the
disadvantage of these methods is the data dependency among areas during the estimation

process.

Reference [86] proposes a generalised state estimator including distribution and transmission
networks made of three main levels of hierarchy. The lowest level is composed by local
estimators at the substation level. Then an intermediate level is made of independent state
estimators for each Transmission System Operator (TSO), and finally, the highest level that
corresponds to a regional state estimator to fine-tune the solution provided by the TSOs

affiliated with the interconnected system.

A hierarchical scheme is also presented in [75]. Here, a constraint formulation is used to deal
with boundary measurements. The approach is found to have the same redundancy level and

accuracy of a single centralised estimator.

At present, two-level estimators are the most common approach developed for MASE due to
their simplicity and limited data exchange between areas [82]. In two-level MASE, the power
system is separated into small observable subsystems, each one assigned with a slack

(reference) bus to run a lower (local) level state estimation.
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The state estimation solution of each subsystem is then collected by the central coordinator that
unifies and coordinates the lower level solutions in order to obtain an overall estimate of the

entire power system.

One challenge in two-level estimators, particularly during the coordination level, is how to deal
with power injection measurements in boundary buses. If they are included, each area will have
to provide some information about their internal topology to the coordination level [28]. This
option might not be always feasible as utilities usually prefer to restrict their topology
configuration information for privacy and/or security reasons. Additionally, considering power
injection measurements in the coordination level makes it necessary to include the states of

internal buses adjacent to boundary buses, which increase the size of the problem.

Another option would be not including the power injection measurements of boundary buses.
However, this would result in a loss of information and lower redundancy at the coordination

level.

The methodology proposed in this work avoids the use of power injection measurements of
boundary buses in the coordination level. This reduces the data exchange between local and
coordination estimators. Instead, a new set of transferred powers pseudo-measurements are
included to maintain the redundancy level and accuracy of the coordination level. Moreover,
wide area measurements obtained from PMUs are used in boundary buses and slack buses,
improving the efficiency of both the lower (local) and the higher (coordination) estimation
levels. The proposed PMU based MASE minimises the data exchange between local and

coordination estimators.

The following sections explain in detail the set of measurements and vector of states for each

local estimator and the information that is transmitted to the coordination level.
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6.1 Local State Estimators

Each local area state estimator provides an estimate of the sub-system state based on the
available measurements in each area. For any area i, the following three bus types are
identified:
¢ Internal bus: any bus that is not adjacent (connected) to any external bus.
e Boundary bus: any bus adjacent to at least one external bus. The interconnection
between a boundary bus and an external bus is referred to as a tie-line.
e External bus: any bus belonging to a different area that is connected to at least one

boundary bus of area i, by a tie-line.

Let the set of measurements z; in area i be defined as:
z, =h(x,) +e, (6.1)
where h(x;) is the set of non-linear equations relating the measurements with the state

variables, X; and e; is the set of uncorrelated measurement errors with Gaussian distribution.

The state vector is defined as follows:

x =[x",x", x™] (6.2)
where:

int

x;" is the set of bus voltages corresponding to the internal buses of area i.

x! is the set of bus voltages corresponding to the boundary buses of area i.

x* is the set of bus voltages corresponding to the external buses of area i.
The best estimation of the system states in area i is obtained through the constrained WLS

formulation introduced in Chapter 2.

Each local estimator must have enough measurements to make the system fully observable
with redundant measurements to detect and eliminate bad data. Each area has its own
reference; hence, there are S different slack buses in the interconnected power network, one for

each area.
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Based on the principle that each local estimator is independent of any other estimator (and vice
versa), all synchrophasor measurements in area i will be referred to its local reference in the

lower level estimation.

Figure 6.1 shows how the PMU measurements are referred to its own slack bus during the
lower level estimation. Without loss of generality, it can be assumed that a PMU is located at
the local slack bus. In fact, installing a PMU in each slack bus will improve the coordination

level estimation, as will be explained later.
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Figure 6.1: Multi-Area power system with PMU measurements for state estimation (local level and
coordination level)

6.2 Coordination Level

The higher (coordination) level estimator uses the estimated states corresponding to boundary
buses, obtained from local estimators, and those measurements at the boundaries of each area
to create the set of measurements z:

z, =h(x,)+e, (6.3)
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The WLS method is also used to estimate the new set of states X, at the coordination level. This

vector is defined as:

x, =[x’,01"Vi=12,.,S (6.4)
where:

x’ is the set of boundary bus voltages in area i. In the coordination level all bus voltage angles
are referred to the global slack bus.

0 1is the slack bus angle for area i referred to the global slack bus.

The set of measurements z. in (6.3) is defined in sub-sections 6.2.1-6.2.3:

6.2.1 Synchronised Measurements

By including PMU measurements in MASE, the accuracy of the overall estimation (lower level
and coordination level) is improved. Firstly, the PMUs improve measurement redundancy
levels and the estimation accuracy of local estimators. Secondly, if PMUs are located at the
boundaries of the subsystems, they will also improve the accuracy of the coordination level
[28]. In addition, when PMUs are located at the slack bus of each subsystem, the angle

difference between slack buses will be determined directly.

The synchronised measurements used in the Coordination Level can be separated in the

following measurement vector:

2 =[ 07, V! 1,100 | Vi=12,..5. (6.5)
where:

0’ is the set of boundary bus voltage angle measurements in area i referred to the local
reference in area i.

V! is the set of boundary bus voltage magnitudes in area i.

I/, and I’ are the real and imaginary part of measured currents from area i to area j. These

phasor measurements are also referred to the local reference in area i.

0" is the slack bus’s angle measurement in area i referred to the global reference.
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The PMU measurements in boundary buses use the same reference (local slack bus), whilst the
angle measurements of slack buses will be referred to the global reference (global slack bus),

as presented in Figure 6.1.

Based on this, the voltage angle measurement 6 in the boundary bus k of area i is represented

in h(x,) as follows:

6" >h(x)=0"-0" (6.6)

The real and imaginary components of the current measurement from bus i (in area i) to bus j
(in area j) is represented as:
1}, =(g,;+8,)V' cos(8' =6 )= (b, +b,)V'sin(d —6™)
+V7 (b, sin(@’ —6") — g, cos(8” —6™))
I} =(g;+g,)V'sin(0 =) +(b, +b,)V' cos(6' —6)
V' (g, sin(6’ —6™)+b, cos(6’ —6™))
where (g,+jbyi) 1s the shunt admittance connected at bus 7, and (g;+jb;) is the series admittance

(6.7)

(6.8)

of the tie-line connecting area i and j.

It is important to note that the slack bus angle of the area where the PMU is located must be
included in the model because the PMU measurements are still referred to their local reference.
However, the slack bus angle of area i is already referred to the global reference and therefore

does not need any correction of reference.

6.2.2 Conventional Measurements

All transferred power measurements in tie-lines will be used by the coordination level.
However, power injection measurements in boundary buses will not be used as it would be
necessary to share information about internal topology of the areas. In addition, the size and

complexity of the coordination level would increase.

Each area will provide minimum information about its internal topology configuration. Thus,
whenever an injected power measurement is found (at a boundary bus), it will be replaced by

the estimated transferred power, in the relevant tie-line, obtained by the local estimator.
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As the injected power measurements of boundary buses are used in the lower level estimation,
it is reasonable to believe that the estimated states related to these measurements are
sufficiently accurate, see the simulated study case in Section 6.3. Thus, the estimated tie-line

flows can be used as an effective way to maintain redundancy in the coordination level.

6.2.3 Pseudo-Measurements

The estimated bus voltages of all boundary buses X" will be used as pseudo-measurements in
z.. The inverse of the Gain Matrix (covariance matrix of the estimated states) of the local
estimators will be used to weight the pseudo-measurements at the coordination level:

P, =diag(H'R;'H)™ (6.9)
In addition, the covariance matrix of the new pseudo-measurements (corresponding to

estimated transferred powers) can be approximated as:

P =H PH' (6.10)

sm= s

where Hy,, contains the partial derivatives of the transferred powers in tie-lines with respect to
the states corresponding to boundary buses. Thus, the vector of measurements z. in the
coordination level consists of:

z, =[z),z’ X' Vi=12,.,S (6.11)
where:

z, is the set of conventional and synchronised measurements in the boundary buses for area i

z is the set of estimated transferred powers whenever a boundary power injection

measurement is found in area i.

%’ is the set of estimated bus voltages in the boundary buses of area i.

Figure 6.2 shows the lower and higher level schemes for a power system with S areas. Each
independent local estimator calculates the set of bus voltages x; (internal, boundary, and

external buses connecting area i).

The coordination level does not use any information regarding the internal topology of the

arcas.
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Figure 6.2: Data collection from local area estimators to the Coordination Level

With this information the coordinator estimates the states at the boundary buses, the power
flows between subsystems (tie-line power flows) and the phase shift between the slack buses.

The coordinator will deliver this information to the local estimators, which must then update
their solution and correct any wrong local estimation if any bad data was identified at the

coordination level.

6.3 Study Case

The proposed multi area state estimator with minimum data exchange has been tested by using
the IEEE 300 bus system. The 300 bus system was arbitrarily split into seven (S = 7) different

areas, as described in Table 6.1.

Table 6.1: 300 bus system divided into seven areas

Area Buses Branches Boundaries To Areas
1 101 129 16 2,3,4,5,7
2 45 56 10 1,5
3 42 57 5 1,4
4 45 62 4 1,3
5 40 53 8 1,2,6
6 35 41 3 5
7 36 38 1 1

A power flow solution of the 300 bus system was used to obtain the real solution of the system
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condition. Tables 10.9 and 10.10 (in Appendix G.5) provide details of branch connections and

power flow solution of the 300-bus test system. Figure 6.3 presents the connection of each area

and the set of measurements located at boundary buses and tie-lines.

Area 7

X Injected Power W Voltage Magnitude
| @ Transferred Power b PMU

Figure 6.3: Boundary buses of Multi-Area System

6.3.1 Lower Level

The constrained WLS methodology was used to estimate the states of each area and the
equality constraints were included to deal with any null power injection. The set of noisy
measurements, obtained from the power flow solution, consists of conventional and

synchronised measurements with the corresponding standard deviation shown in Table 6.2.

Table 6.2: Standard deviation of measurement in 300 bus test system

Conventional Synchronised

Voltage Injected Power Voltage Current Phase
Mag. Power Flows Mag. Mag. Angle

0.2% 2% 2% 0.02% 0.03% 0.01°
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The set of measurements for each area is enough to make the system fully observable and there
are no critical measurements so that bad data detection and identification is possible. In order
to assess the effect of including PMU measurements in the MASE, the study separates the

estimation results with and without including PMU measurements.

Table 6.3 and Table 6.4 present the solution of the WLS minimisation for each local estimator.
A Chi-Square Distribution test was used to detect the presence of bad data in the set of

measurements.

The last columns of Tables 6.3 and 6.4 indicate the threshold of the Chi-Square Distribution
test for m-n degrees of freedom and confidence level of 95%. Here, m is the number of real and

virtual measurements and n the number of states.

Table 6.3: Chi-Square test for BDD without PMUs

Area m-n J(X) y'
1 404 449.1295 451.8646
2 169 154.4236 200.3339
3 183 197.9825 215.5633
4 230 232.9748 266.3781
5 155 158.9062 185.0523
6 141 127.0613 169.7113
7 136 121.4063 164.2162

Table 6.4: Chi-Square test for BDD including PMUs

Area m-n J(X) y'
1 421 462.8011 469.8388
2 200 183.3602 233.9943
3 222 236.3207 257.7585
4 277 276.5873 316.8185
5 194 193.8542 227.4964
6 152 135.3046 181.7702
7 163 151.1606 193.7914

Based on the tables, it is concluded that each estimator is free of gross bad data. Otherwise, it

would be necessary to identify and eliminate the gross error in the set of measurements.

Table 6.5 presents the estimation error of power flows in tie-lines that were obtained from the

141



Chapter 6 — Multi-Area State Estimation

local estimators. The estimation errors lower than 1% in active (P;) and reactive (Q;) power

flows were not presented.

Table 6.5: Percentage error of estimated active and reactive power flows

Buses | No PMU i PMU
From To error P,[%] error Q;[%]: error P, [%] error Q,[%]
37 274 | 054 19355 | 0.06 143.79
3 19 382 396 | 3.82 3.96
3 150 | 22.49 .07 | 22.00 1.10
7 131 375 011 {375 0.09
12 21 | 165 225 1 1.66 2.25
13 20 293 1.67 i 291 1.66
48 107 |+ 239 1.89 | 240 1.90
62 144 1 115 049 112 0.48
81 195 055 1.84 1 026 1.84
90 92 175 040 :  0.01 0.04
91 94 | 476 578 | 4.88 5.75
201 204 | 16.56 9.67 | 16.68 6.59
20 13 | 29.43 7.85 | 19.37 8.29
113 47 ¢+ 313 080 | 0.05 0.05
107 48 | 7113 006 | 60.59 0.10
92 90 | 1.69 826 1 1.36 7.78
94 91 | 481 013 | 255 0.02
207 206 | 270 6.00 270 6.15
135 136 | 244 637 | 0.02 0.06
150 3 076 147 1 073 1.77
131 7 078 207 | 0.80 1.86
136 135 0.2 535 1 005 4.34
211 69 | 9.63 270 1 839 4.39
211 80 | 2.09 203 0 209 2.03
194 81 162 042 | 1.63 0.48
195 81 | 0.89 446 089 4.42
219 194 195 228 1 211 4.71
215 212 1 324 089 | 0.05 0.08
274 37 019 246 1 0.2 0.48

The largest estimation errors are highlighted in Table 6.5. These errors may produce estimation
errors when the estimated power flows are used as pseudo-measurements in the coordination
level. In the case of the reactive power transferred from Bus 37 to Bus 274, the estimation error

(in percentage) is very large because the actual value of Q37-274 is close to zero.

From Table 6.5, it can be observed that the PMU measurements had little impact on the
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estimated power flow errors. This is because the corresponding branches are far from local
PMU buses. Note that PMUs located at external boundary buses were not taken into

consideration in the local area estimators because they are not local measurements.

The estimated power flows that were highly influenced by the PMUs were not listed in
Table 6.5 because the estimated errors were below 1%. However, most of the estimated power
flows presented in Table 6.5 had lower errors compared to the case where only conventional

measurements were available.

6.3.2 Higher (Coordination) Level

The solution of local area estimators and measurements in boundary buses are used as input
data in the coordination level. The following methods have been tested for comparison

purposes:

Method 1: The coordination level includes internal buses adjacent to boundary buses so that
the power injection measurements in the boundary buses can be used. The set of states are the
bus voltage of the slack buses, boundary buses, and internal buses adjacent to them. Therefore,
it is necessary to know the internal connections of boundary buses of each subsystem. In
addition, equality constraints have been included for those boundary buses with null power

injections.

Method 2: This is the coordination level proposed in this work. The set of states are the bus
voltages of slack buses and boundary buses only. The power injections’ measurements or null
power injection measurements in boundary buses are not used in the coordination level. These
measurements are replaced by the estimated transferred powers flowing in or out boundary

buses.

Table 6.6 gives a good overview of the size of the coordination level estimation according to
the methods cited above. The set of measurements includes conventional and synchronised

measurements. It is clear that including power injection measurements in the coordination level

143



Chapter 6 — Multi-Area State Estimation

will significantly increase the size and complexity of the problem as internal buses adjacent to

boundary buses have to be considered.

Table 6.6: Size of coordination level

Method 1 Method 2
Buses 115 48
Branches 113 25
m-n 185 201

Now it is necessary to check the accuracy of the simplified coordination level proposed in
Method 2. The overall estimation performance is presented in Table 6.7 based on the

performance index calculated by:

oy =) (R —xl)’ (6.12)
i=1
where £ is the estimated state and x' is the true state obtained from the power flow

calculation. Since the number of states in Method 1 is larger than Method 2, the state variables

considered in (6.12) are those corresponding to boundary buses only.

Table 6.7: Assessment of coordination level

Method 1 Method 2
o o
No 5 5
PMUs 5.38x10 6.24x10
With 6 6
PMUs 1.80x10 3.70x10

The results from Table 6.7 confirm that including PMUs in only a few boundary buses and all
the slack buses improves the accuracy of the coordination level. Moreover, the performance
index shows that excluding the power injection measurements in z. has only a small impact on

the accuracy of the coordination level.

The same effect was found when PMU measurements were not considered. Therefore, the
price paid for excluding internal buses adjacent to boundary buses is relatively low when
considering the benefits of simplicity, higher speed, and reduced problem size in the

coordination level.
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The following results present a detailed study of the estimation errors for each bus in the

coordination level. Figures 6.4 and 6.5 show the absolute estimation errors of the coordination

level for all boundary buses without including PMU measurements.

The figures show that the inclusion of the pseudo-measurements of transferred powers gives a

good approximation of the power injection measurements. It is important to remember that

Method 2 does not require information about the internal connection of boundary buses and the

final estimation is still similar to that of Method 1.
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Figure 6.4: Absolute angle error for boundary buses without PMU measurements
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Figure 6.5: Absolute voltage magnitude error for boundary buses without PMU measurements
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Figure 6.6: Absolute angle error for boundary buses including PMU measurements
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Figure 6.7: Absolute voltage magnitude error for boundary buses including PMU measurements

Figures 6.6 and 6.7 present the estimation error of voltages at boundary buses when the PMU
measurements are included. The inclusion of these measurements reduced the estimation errors

at all buses as compared to Figures 6.4 and 6.5.

When including the PMU measurements, it is noticed that the angle estimation error at Buses
48 and 107 and the voltage magnitude estimation error at Buses 7 and /31 are slightly larger
when using Method 2. By looking at the pseudo-measurements of power flows listed in
Table 6.5, it is found that the large estimation error of P107-48 was propagated to the
Coordination level and the real-time measurement in branch 48-/07 made it no possible to

fully correct this error, see Figure 6.3. Still, the error was not enough to be detected by the
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higher level estimator and the other errors included by the pseudo-measurements were filtered

out in the Coordination level.

In the case of the voltage magnitude error in Buses 7 and /31, both null power injection buses,
the difference of results is expected because the pseudo-measurements of power flows can
never be as accurate as the fictitious null power injection measurement of Buses 7 and /31.
Still, the advantage of Method 2 is the reduced data exchange from local area estimators to the

coordination estimator.

6.4 Summary

This chapter presented how the state estimator of large interconnected power systems can be
decentralised into smaller local area state estimators to reduce the computational burden and

complexity of processing large sets of measurements.

A valid assumption for using multi-area state estimation is the fact that errors in measurements
from one area have little effect on the estimated bus voltages far from that location. Similarly,
bad data is detected and corrected using available measurements close to the erroneous ones. It
implies that splitting the state estimation into smaller sub-problems produces the minimum

effect on internal buses but a correction of estimated states in boundary buses is necessary.

The efforts and contribution of this work were concentrated on reducing the size of the
coordination level by not including power injection measurements of boundary buses so that no

single internal bus is included in the formulation.

As PMU in boundary buses have independent channels to measure the phasor of currents in tie-
lines, their presence does not make any change to the proposed coordination level but it does
make a difference in terms of accuracy of estimated voltages in boundary buses and slack

buses.
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The results demonstrated that not including power injection measurements in the coordination
level reduced the size of the problem. This reduction had little effect on the estimated boundary
bus voltages as long as the redundancy level is maintained with pseudo-measurements of

power flows and other available real measurements in boundary buses.

In addition, the best results were obtained when the estimated power flows from local area
estimators were accurate. To achieve this, it is necessary to have reliable and accurate
measurements in or close to boundary buses and maintain a good level of redundancy to detect

and reject bad data.
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Chapter 7 Dynamic State Estimation

Power system state estimators have been classically performed by a static approach, based on
the Weighted Least Square (WLS) method, in which a single set of measurements is used to
estimate the state of the system. Due to its simplicity and fast convergence properties, the WLS
method has been widely used in control centres around the world. However, even when the
accuracy of the static estimation is within acceptable limits under fully observable conditions,

it cannot predict the future operating point of the system [87].

This limitation of the static estimator can be circumvented by Dynamic State Estimators
(DSE). They provide not only an estimate of the current state from given measurements at time
k, but also a prediction of the state vector at k+1, when the new set of measurements have not
been processed. According to [87], no other estimator can produce better state estimations if
the actual power system and the dynamic model incorporated into the dynamic estimator are in

agreement.

Although the DSE was firstly explored at similar times as the static one, the DSE did not
develop as the static ones. This is explained by the limited computing facilities in control
centres to deal with the high dimensionality of the problem and the need to develop a dynamic
model able to represent the system behaviour (transition of states) in an effective and simple

way [88].

Nowadays, advances in Information and Communication Technologies are drivers for the
development of new dynamic estimators. The availability of more accurate measurements with
higher sampling frequencies (such as synchrophasors) can provide fast and accurate
estimations for each time sample and can help to better model the transition of states. These

estimators extract information from multiple scans and make use of dynamic models [89].

Among the benefits of the deployment of DSE are the prediction capacities for normal or

emergency conditions, convergence even in presence of some observable islands and the
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ability to identify topology errors and gross bad data [87].

For example, reference [90] presents a voltage security monitoring scheme based on a dynamic
state estimator that uses one-step-ahead forecast (from the prediction step of the DSE) to detect
proximity of a voltage collapse in order to take corrective actions before the system becomes

unstable.

The detection of sudden changes is also an advantage of DSE. This detection is based on the
difference between the predicted and the update steps. Additionally, the work recently
presented in [89, 91] take advantage of the prediction step in DSE to estimate the system state

and any uncertain line parameters by means of synchronised measurements.

The development of a new and efficient hybrid dynamic estimator is explored to improve the
filtering capacities of state estimators in power systems. For this purpose, a new state estimator
based on the Unscented Kalman Filtering (UKF) technique is proposed and tested in this
Chapter.

The first part of this Chapter consists of a brief introduction to the dynamic estimation
problem. Later, a detailed explanation of Kalman filters is presented in Sections 7.2 and 7.3. A
comparison study between the UKF and the Extended Kalman Filter (EKF), demonstrated on
two representative test power systems is presented in Section 7.4. Finally, Sections 7.5 and 7.6

present the discussion and summary of the Chapter.

7.1 Dynamic State Estimators

In the early 1970s, a new state estimator able to track the system operating conditions, using
consecutive and uncorrelated sets of measurements varying in time, was introduced [92]. It was
based on the assumption that the network behaves in a quasi steady state manner determined by
slow dynamic changes of the load. The modelling of the system dynamics and understanding

of its mechanisms were critical for further development of DSE methods.
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Figure 7.1 presents the structure of the DSE. It consists of two main blocks. The first one is the
dynamic model, which represents a transition of the states X, given the state estimation at k-/
and the input vector u at k-/. This transition of states is also known as the prediction step

because it predicts the set of states x before the new set of measurements z are processed.

u,, > Dynamic
Model

gl
?I\TA
|

' Filtering g

Figure 7.1: Structure of DSE

The second block consists of the filtering step that filters out bad data and updates the
(predicted) set of states with the new set of measurements. Sub-sections 7.1.1 and 7.1.2

explains both the dynamic representation and the filtering problem in DSE of power systems.

7.1.1 Dynamic Model of the Power System

Different models for representing the slow system dynamics have been reported in the past [93-
96]. Some of these models start from the assumption that the quasi steady state behaviour of
the system, monitored in time steps of a few minutes, can be represented by a linear discrete-
time transition (prediction) of states:

X, =Ex, +g +q, (7.1)
Here, x; is the state vector consisting of magnitudes and angles of nodal voltages. Matrix Fy
and vector g; describe the transition process of the states and qy is the white Gaussian noise
vector of the prediction model at time k. The values of F and g can be obtained by online or

offline methods.

A common and widely accepted approach for calculating F and g is the online parameter

identification technique (the Holt’s Method) introduced in [94]. Reference [96] proposed a
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method to calculate F and g based on a realistic state transition using the network equations.

The transition for each state takes into account the effect of neighbour state variations.

Other techniques introduce load prediction to represent the transition of states more
realistically [88, 97, 98]. The reason for doing this is that loads and generators are key factors
determining the system dynamics. Moreover, changes of loads are more independent of one
another and the pattern they follow is easier to predict. Once loads are predicted at all buses, a
load flow calculation can provide the predicted state at time k+1. For all the methods cited
above, a linear dynamic model for the state transition was considered to be sufficient for quasi

stationary system behaviour [97].

7.1.2 Filtering Problem

The filtering process consists of comparing the set of real-time measurements z with the model

equations h(x), as follows:

z,,=h(x;,)+e,, (7.2)
where z,; i1s the measurement vector, h(X.;) is the nonlinear equations modelling the

corresponding zi,; as a function of state variables and network parameters and ey.; is the

Gaussian white noise of measurements at k+/.

The predicted state vector is corrected for each time instant £ and any bad data in the set of
measurements is filtered out. The state prediction (dynamic model) and the state correction

(filtering) are processed using extensions of the Kalman Filter.

7.2 Kalman Filters

The Kalman Filter is a linear dynamic state estimator that propagates the mean and covariance
of the state through time [79]. The mean of the state is the Kalman filter estimate of the state
and the covariance of the state is the covariance of the Kalman Filter state estimate. Each time

a set of measurement is received, the mean and covariance of the state is updated.
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Suppose the linear system:

x, =Fx, ,+Bu,_, +q,, (7.3)
z, =Hx, +e (7.4)
where qi.; and e, are the system and measurement errors, with covariance matrix Qy.; and Ry,

respectively. Matrix F and B relate the previous state and the system input u,.; with the actual
state vector x; whereas H relate the set of measurements z; with the set of states. The problem
consists of estimating the state vector given the state prediction (7.3) and the state update (7.4)
at time k. This problem is reduced to having two types of measurements:
e The well known set of real-time measurements z;, defined in (7.4), with error
covariance matrix Ry

® The pseudo-measurements consisting of the predicted states X,, obtained from (7.3),

with error covariance matrix Px.

Based on this, the new set of measurements z at time k is built up by:

Z g ¢ 5
7 = — . ;.
k Xk FXA k-1 Bllkil ( )

In order to estimate the value of x at time k, it is necessary to minimise the augmented

objective function:

1 _ 1,_ r—
J(Xk) ZE[Zk _Hkxk ]T Rk1 [zk _Hkxk]+§[xk — X, ]T P}kl [Xk _Xk] : (7-6)

Note that this objective function has the same structure as a linear WLS problem. Hence, the

WLS solution of (7.6) is:

%, =[H/RH,1"HR.%,. (7.7)
where H, is the Jacobian matrix of the augmented set of measurements z, and R, is the
augmented covariance matrix. Equation (7.7) can be expressed as, see Appendix E:

X, =%, +K, (zk _Hkik) (7.8)
where matrix Ky is the Gain matrix defined by:
K, =P,H (R, +H,P,H!) . (7.9)

Finally, the covariance matrix of the updated state estimate is
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P, =I-K.H)P, (7.10)
The advantage of the Kalman filter is that it is a recursive method and it can be used for online
applications. It only uses the incoming set of measurements at instant k but keeps the
information of the previous measurements by using the previous state estimate (at k-1).
Unfortunately, most of the power system processes are non-linear and the Classical Kalman
filter could be used in few real problems. In order to cope with more complex non-linear
systems, such as the power systems, extensions of the Kalman filter have been developed and

they are presented in the following Sections.

7.2.1 The Extended Kalman filter

Consider the case where the state prediction and state update are defined by non-linear
equations:
x, =f(x,_,u,.q, ) (7.11)

z, =h(x,.e) (7.12)
Functions f and h are non-linear equations representing the system and measurements models

in terms of the state variables X and the input variables wu, ,. In addition, z, is the
measurement vector whereas q, , and e, are the system and measurement Gaussian noises

with zero mean and uncorrelated covariance matrices Qy.; and Ry, respectively.

As the equations are non-linear, the Extended Kalman Filter (EKF) performs a linearisation of
(7.11) and (7.12) around the previous and predicted state vectors, respectively. This is achieved
by calculating the partial derivatives of f and h with respect to x, as follows:

_ of (X, ,u, ,0)

F, . , (7.13)
X
H, =—ah(§§’0) : (7.14)

Once the equations are linearised, the EKF is executed similarly to the linear Kalman Filter.

The predicted mean and covariance are approximated by:

X =X _.u..0), (7.15)
P, =FkPﬁk—ng +Q,- (7.16)
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and the Gain matrix is approximated by:

K, =P,H (HP,H +R,) . (7.17)

Based on this, the predicted state vector is updated with the new set of measurements at time k:
X, =X, +K, (zk_h(ik))’ (7.18)

P, =I-K,H),)P,_ . (7.19)

The linear approximations of (7.11) and (7.12) lead to reduced accuracy of results because non-
linear terms are neglected. To overcome this drawback, iterative Kalman filter methods have
been proposed [98, 99]. However, the iteration procedure may become time consuming with
significantly higher CPU requirements. This could be a particular obstacle in DSE, if the data

refreshing rate is larger than in the classical steady state estimation.

A novel technique called the Unscented Kalman filter, based on the Unscented Transformation
(UT) theory introduced in Chapter 5, presented an opportunity to cope with nonlinearities in
dynamic state estimation. In this approach, the non-linear equations are not linearised as with
the EKF. Instead, a statistical distribution of the state is propagated through the non-linear

equations, providing better estimates of the actual state and the posterior covariance matrix.

7.2.2 The Unscented Kalman Filter

The Unscented Kalman Filter (UKF) is an efficient discrete-time recursive filter able to solve

estimation problems in the following form:

x, =f(x,_,w_)+q,, (7.20)
z, =h(x,)+e,. (7.21)
Similar to the EKF formulation, f and h are both non-linear equations: x is the state vector,

u,_, is the set of input variables and z, is the measurement vector. Vectors ,_, and e, are the

system and measurement Gaussian noises with zero mean and uncorrelated covariance

matrices Qx.; and Ry, respectively.

The main advantage of the UKF over the EKF is the fact that equations (7.20) and (7.21) are

not linearised. This avoids the loss of higher order information and consequently improves the

155



Chapter 7 — Dynamic State Estimation

properties of the estimator [79]. Furthermore, as no Jacobian or Hessian matrices are needed,
this offers computational advantages over the EKF. Instead, as described in Chapter 5, only
multiple evaluations of a limited number of the sigma points in (7.20) and (7.21) are needed. In
other words, for similar computational requirements, the UKF provides higher accuracy than
the EKF as higher order terms of the non-linear model equations are considered.
The UKF consists of the following three major steps:

- Step 1: Sigma Points Calculation

- Step 2: Kalman filter State Prediction

- Step 3: Kalman filter State Correction

All three above mentioned steps are described below.

7.2.2.1 Sigma Points Calculation

For an initial nx1 state vector %, ,, and the corresponding nxn covariance matrix P, ,, a set of

10
2n+1 vectors is obtained, called sigma points. These sigma points are chosen deterministically

and they capture the mean and covariance of the original distribution of %, , exactly:

X), =%, (7.22)

Xi, =%, +(J+ AP, ),. i=l..n. (7.23)

X =%, -(Jo+ DP,, ), i=l..n. (7.24)

where («/(n + P, ) ; 1s the i-th column of the matrix /(n+A4)P;, (using the positive definite

(PD) square root of a matrix), and parameter A is defined as 4 = 0(2(1’1+K) - n. The parameter x
can be used to reduce the higher order errors of the mean and the covariance approximations.

This parameter can be x = 3 - n or zero [79].

The scaling parameter a can be chosen between 0.001 and 1.0 p.u. Note that the PD square root

matrix of P, can be obtained from the calculation P, = AA”", where A is the lower triangular

matrix obtained from the Cholesky factorisation of P, .
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For the purpose of the estimation initialisation (i.e. when k = 0), the initial state vector and the
initial covariance matrix have to be defined in advance according to a priori knowledge of the
system.

Equations (7.22)-(7.24) can be expressed in the equivalent compact form,

A

X, =[&., - &, ]+vn+A[0 (P, —P,. ], (7.25)

where X, is a nx (2n+1) matrix containing the sigma points calculated from %, and P,

7.2.2.2 Kalman Filter State Prediction

The sets of sigma points calculated in Step I are evaluated, one by one, through the prediction

function defined in (7.20):
X =f(X!u,_), (7.26)

where X! | is the i-th column of matrix X, , and the resulting X, is a nx(2n+1) matrix
containing the propagated sigma points. Next, compute the predicted state mean vector x, and

the predicted covariance matrix P as follows [79]:

X, = iwi"')_(;, (7.27)
Py
P, = 2ZW (X} -x)(X, -X,)" [+ Q... (7.28)
The weights in (7.27)-(7.28) (l::;n be calculated using the following equations [100]:

Wy = ﬁ Wy = (nf o7 (1-a’+ ), (7.29)

1
;= i) (7.30)

1
We = T (7.31)

The variable S takes a value of two, typical for Gaussian distribution.
7.2.2.3 Kalman Filter State Correction

The predicted state mean vector and the covariance matrix calculated in Step 2 are used to

update the sigma points. In compact form, the sigma points are obtained as,

X;=[X, - XJ+cl0 [P, —JP.]. (7.32)

These new points are evaluated, one by one; in the non-linear update function h defined in

(7.21), as follows,
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Z; =h(X}). (7.33)
As above, Z, correspond to the i-th column of matrix Z; . The mean of the propagated points

is calculated as follows,

2n )
— m =
n=>W'Z,. (7.34)
i=0
The measurement covariance matrix and the cross-covariance of the state and measurement are

subsequently obtained as,

2n

S, =2 Wi | (2, —m)(Z, -w)" |+R, (7.35)
0 2n . )
Co=2 W [(XZ' —X)(Z, -, )T} (7.36)
The filter gain Ky the state x,, a:r_l(ll the covariance matrix P, are computed by,
K, =C,S;' (7.37)
X, =X, +K [z, —p,] (7.38)
P, =P, -K,S K, (7.39)

In general terms, for nonlinear systems, the UKF is easier to implement than the EKF because
there is no need to calculate any derivative or Jacobian matrix. Additionally, the UKF results in
approximations that are accurate to the third order for the Gaussian distribution, for any
nonlinearity, and at least to the second order for non-Gaussian distributions, providing more

accurate estimation compared to the EKF which linearises the system equations [101, 102].

To date, the UKF has been explored in few power system applications. The work presented in
[103-105] provide good examples of the estimation capacity of the UKF in the non-linear
problem of synchronous machine parameter estimation. In addition, the work presented in
[106, 107] demonstrate how the UKF can be also used to filter noisy measurements to estimate

frequency and amplitude of power system signals.
Unlike the applications mentioned above, the problem of power system state estimation is

much larger. Based on this, it is desired to explore the benefits of the UKF in this very different

but not less challenging problem.
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7.3 Power System State Estimation using the UKF

The UKF is very useful for estimating the unknown state variables, or parameters, of non-
linear systems. This gives us the opportunity to apply more realistic and complex power system

models without having difficulties caused by the linearisation process.

In this work, the non-linear equations correspond to the mathematical models of transferred
and injected active and reactive powers, which are functions of nodal voltages and line
parameters. However, a linear model is used to represent the smooth dynamics of the system

determined by the slow load variations.

The DSE presented in this work only considers the aforementioned slow load variations. The
other faster system dynamics, created by large disturbances in interconnected networks, has not
been addressed in this Thesis. Nevertheless, the application of the UKF to estimate power
system states and parameters of synchronous machines during transient conditions can be

found in [104, 108] as part of the results achieved during this PhD project.

7.3.1 Dynamic Model of the System

Given a state vector x composed of the set of voltage magnitudes and angles, the dynamics of
the system (prediction for X¢,;) can be modelled as a discrete time formulation, as detailed in
(7.1) and (7.2):

X =Fx, +g, +q, (7.40)

z,,, =h(x, )+e. (7.41)
where matrix F and vector g are updated online using the Holt’s Linear Exponential Smoothing

k+1

technique [94]:

F =a(1+p,)1 (7.42)

8 = (1+:Bk (1= )X, _:Bkak—l +(1_:Bk b, (7.43)
where I is the identity matrix, and both a; and S are parameters lying in the range from O to 1,

X, 1s the predicted state vector at time k, and vectors a and b at time k, are obtained as:

a, =oX, +(1-a)X, (7.44)
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b, :ﬁk(ak _ak-1)+(1_ﬁk)bk.1 (7.45)
Note that ax and S must not be confused with parameters o and 3 used in the UKF approach.

The application of this method provides good predictions even when each state variable is

assumed to be independent (uncorrelated) of all others.

Vector zi,; in (7.41) consists of power system measurements, including injected and
transferred active and reactive powers, voltage magnitudes, or wide area synchrophasors

obtained from Phasor Measurement Units (PMU).

The synchrophasors of bus voltages are linearly related to the state variables whereas the
synchrophasors of branch currents, in rectangular or polar form, are represented as non-linear

functions in terms of the state variables, as discussed in Chapter 5.

The conventional and synchronised measurements can be simultaneously used in the proposed
formulation i.e. a hybrid dynamic estimator. In fact, the inclusion of synchrophasors does not

make any change in the formulation.

7.3.2 State Prediction and Correction

The UKF algorithm used to estimate the state of a power system with N buses starts with an

assumption of the initial state vector %, and the corresponding covariance matrix P,,. Since the

reference bus angle is known and it is invariant in time, the state vector has a dimension

n = 2N-1 equal to the number of the unknown state variables.

According to (7.25), the set of 2n+1 sigma points are calculated, obtaining X, . These sets of
sigma points (each column of X, ) are evaluated, one by one, in the prediction equation (7.26),
creating by this a matrix containing the propagated sigma points at k = 1:

X =FX|+g, (7.46)
where )_(i and f(;) are the i-th columns of matrices )_(1 and XO respectively. Fy and g, are

initialised from (7.42) and (7.43).
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Then, the predicted state vector and the predicted covariance matrix at time k = 1 are obtained
using (7.27) and (7.28). A new set of sigma points is built, according to (7.32), which capture

the distribution of the predicted state vector. These sigma points are grouped in matrix X; and

they are propagated through the measurement update equations (7.33):

Z =h(X;) (7.47)

As above, Z; and X, correspond to the i-th column of Z; and X, respectively.

The mean and measurement covariance matrices are obtained using (7.34)-(7.36), whilst the
filter gain, the states, and the covariance matrix are calculated using (7.37)-(7.39). The

procedure above is repeated for every time instant k.

From the above mathematical description of the Unscented Kalman Filter, it is obvious that it
does not require the computation of the Jacobian matrix, making the method easier to

implement with similar computational requirements.

7.3.3 Detection of Anomalies

The presence of gross bad data in measurements and sudden changes of states caused by
topology errors or sudden disconnection of generators/loads are considered as anomalies.
These anomalies degrade the accuracy of the DSE if they are not detected during the estimation

process, independently of the filtering technique applied.

The advantage of having a predicted state vector for time k is that it helps to identify the
presence of these anomalies through the normalised innovation vector T;. For the i-th

measurement, the normalised innovation process in the UKF is:

T =Viil Pri»1=1.2,.m (7.48)
where,
Vii = L — My (7.49)
2n .
P =2 WL =~ )+, (7.50)
=0
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in which Z;, is the (i,j) element of Z;and r, is the i-th diagonal element of Ry. Additionally,

a random variable A; whose samples are the normalised innovation process will exhibit a

normal distribution with zero mean and unit variance [93, 99] .

Normally, in the presence of gross bad data the corresponding normalised innovation element
1r; Will exhibit a large magnitude compared to other elements of vector 1. Additionally, the
distribution of A; will be distorted, with respect to the symmetrical distribution seen during
normal conditions. This facilitates the identification of bad data that can be rejected from the

set of measurements [97].

In the case of a sudden state change, the set of measurements located close to the disturbance
will exhibit a large magnitude in the corresponding t;; Here, A, still presents a symmetrical

distribution with different mean and variance.

An option to reduce the effect of sudden state change is to minimise the impact of the
prediction step by increasing the value of Q. This is equivalent to concentrating the estimation
on the filtering step that is going to update the vector of states to the new state condition. In the
case of topology errors, the corrections are made by running a topology estimation or line

parameter estimation [93].

Discrimination between bad data and sudden state change anomalies is necessary to determine
the action that minimises the effect of the anomaly, once detected. The method adopted in this
work is based on the skewness y; of the distribution of A, which is a measure of the level of

asymmetry in the distribution.

As stated before, in the presence of bad data the distribution of A, loses the symmetry of the
normal distribution, but for any other anomaly the distribution remains symmetrical. Based on

this, the occurrence of bad data can be identified by the skewness test [93]:

Bad data L 2V,
f |l//k| '//mdx (751)
Any other anomaly if |l//k| <V,

The value of y, is calculated as follows:
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v, =M,,/o; (7.52)
where M, is the third central moment and o the standard deviation of the distribution, as
follows:

M,, =E{A}-30,E{A}} +20] (7.53)

o, =E{A}}-0] (7.54)

v =E{A] (7.55)

The threshold value v, depends on the system and can be identified using offline simulations.

7.4 Study Cases

The methodology presented in Section 7.3 is validated in the IEEE 14-bus and 57-bus test
systems [64], see Appendices G.1 and G.2 for details. In both test systems, the UKF was
compared with the EKF and the static state estimator to show the benefits of the dynamic

estimators.

In order to simulate the slow dynamics of the test systems, the smooth load changes were
obtained by running 50 load flow calculations under different loading conditions. The loads
were varied following a linear trend of 10%, 20%, or 30% over the entire time interval with a

random fluctuation of 3%.

In the simulated scenarios, the time interval between two scans of measurements is one to two
minutes. This time can be reduced but it will depend on the frequency at which the readings
from the remote units arrive at the control centre. In addition, given the advances in
communication and information technology, in the near term these measurements will be
available at shorter periods of time, which justifies the use of linear trends to model the

transition of the states, as presented in this work.
In the simulations, the generator outputs were changed according to the assignment of the

participation factors. This methodology avoids the overload of the swing bus and provides

more realistic system operation.
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In order to test the proposed power system dynamic state estimator, three different scenarios

were considered:

1. Normal operation condition in 14-bus test system: All loads change according to the
above specified linear trend. Noisy measurements were included but none of them
corresponded to large bad data.

2. Sudden load step change in 14-bus test system: A portion of the load in Bus 2 was
suddenly disconnected at time instant k£ = 30.

3. Presence of bad data in 57-bus test system: The active and reactive transferred power
measurements in branch 1-2 were corrupted by Gaussian random errors whose standard
deviations were 15 times larger than those presented in Table 5.3. The errors were

included at k = 25 and disappeared thereafter.

7.4.1 Performance Indices

The assessment of the UKF performance and its comparison with the EKF and the static
estimator was carried out using the following performance indices [109, 110]:

1. The estimation error is assessed using:

1 - i it
& ZZZ|XI( _Xk| (7.56)
i=1
where x and X’ are respectively the filtered and the true (actual) state vectors.

2. The Overall Performance Index (OPI) is obtained as:

(7.57)

In which 2, is the estimated measurement vector, z; is the noisy (real) measurement vector,

and z;' is the true vector of measurements.

7.4.2 Simulation Results

The results are now presented to demonstrate the benefits of using dynamic state estimators.

The 14-bus test system is used to demonstrate the performance of the estimators in normal
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conditions and sudden changes whereas the 57-bus test system is used to assess the capabilities

of the dynamic estimators to detect and identify bad data.

The measurement allocation of conventional and synchronised measurements is presented in
Figures 5.12 and 5.13. Additionally, the set of measurements were corrupted with random

additive Gaussian noise with zero mean and standard deviation presented in Table 5.3.

To initialise Holt’s technique, the first two samples (at times k=0 and k= 1) of voltage
magnitudes and angles were taken from the last two state estimation solutions, see
Appendix F.1. This means that the estimation process runs from time instant k =2 up to k = 50
and uses ox=0.8 and fr=0.5 in (7.42)-(7.43) during the entire time interval, as proposed
in [94]. Additionally, as the states at k=0 and k = 1 were assumed to be known and accurate,
the diagonal elements of matrix Py were set to 10°°. Furthermore, the elements of the diagonal

matrix Qy.; were kept constant at 10°° during the simulation [109].

7.4.2.1 Normal Operation Case in 14-bus Test System

Table 7.1 presents the performance indices of the static state estimator, the EKF, and the UKF
for normal operating conditions with and without synchronised measurements. The inclusion
of the prediction stage in dynamic estimators allows better filtering of measurement noise that
results in more accurate estimations. This can be seen in the reduction of the performance

indices when compared to the static estimator.

Table 7.1: Performance indices during normal conditions for 14-bus test system
Case Index Static EKF UKF
NopMu $X10°IPul 95316 57015 5.698
OPI [p.u] 0.6349 0.4959 0.4691
£x10%[pul  4.0865 2.7394 2.658
OPI [p.u] 0.2464 0.2188 0.1948

PMU
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Figure 7.2 presents the plots of the OPI for the 14-bus test system when only conventional
measurements are used. Under normal operating conditions, the UKF has lower OPI than that

of the EKF or the static estimator.

Figure 7.3 presents the OPI when conventional and synchronised measurements are used. The
presence of more accurate measurements (synchrophasors) makes it possible to reduce the OPI

for all three state estimators if compared to Figure 7.2.

Similarly as in Figure 7.2, the UKF obtains the most accurate estimations. This proves that the
UKEF has higher filtering capacities during slow dynamic changes than the corresponding EKF
estimator as higher non-linear terms of the measurement equations are considered during the

estimation process.

0.75

0.7} ———————— WLS ........... EKF — UKF |

0.65 R TP Wy /3 . AN S

0.45¢

0.4

0135 | | | | | | | | |
5 10 15 20 25 30 35 40 45 50

time, k

Figure 7.2: OPI for normal conditions in the 14-bus system with conventional measurements
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5 10 15 20 25 30 35 40 45 50
time, k

Figure 7.3: OPI for normal conditions in the 14-bus system with PMU measurements

7.4.2.2 Sudden Load Changes in 14-bus Test System

The second scenario considered in this test system was the outage of a certain percentage of the

load in Bus 2 at k = 30.

Figure 7.4 presents the OPI for the entire observation time interval. Here both the UKF and the
EKF have low estimation performance when the sudden load change occurs. This is because
the dynamic estimators take into consideration the previous state estimation (before the sudden
change), which is very different to the actual state condition. Since the static WLS does not
consider previous estimations, the actual estimation is not affected from the sudden load

change.
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Figure 7.4: OPI calculation for sudden load change in 14-bus system with PMU measurements

From Figure 7.4, it is clear that the UKF is more sensitive than the EKF to abrupt changes of
states. However, as soon as the estimator is able to track the new operating point, the UKF

estimation is again better than the EKF estimation results.

Figure 7.5 presents the skewness of the distribution of Ay for all k instants. Even during the
sudden state change at k = 30, the skewness is below a pre-defined threshold of 3.0 p.u. This is
an indication that there is no presence of bad data and the dynamic estimators cannot detect any

anomaly, unless the normalised innovation vector is assessed.
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Figure 7.5: Skewness calculation for sudden load change in 14-bus system with PMU measurements
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Figure 7.6: Normalised Innovation vector for sudden load change in 14-bus system with PMU
measurements

Figure 7.6 shows the normalised innovation vector during the sudden load change (at k = 30).
This study finds that there are at least four measurements whose normalised innovation
processes are considerably larger than that of the other measurements. As these four

measurements are all related to Bus 2, there is an indication that the operating condition in the
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surrounding of Bus 2 is different with respect to the predicted operating condition. As a

consequence, a sudden change of the state is detected around Bus 2.

There are different actions that can be taken once a sudden change of states is detected. The
first option is to increase the covariance matrix P,  so that the estimator neglects the predicted
state vector. The second option, and probably the most accurate alternative, would be to use the
static estimator once the sudden change is detected. The dynamic estimator would be used
again when the system model is able to track the new operating point. In cases where the
prediction step is based on load prediction approaches, an approximation of the load/generation

change should be incorporated.

7.4.2.3 Presence of Large Bad Data in 57-bus Test System

The 57-bus test system is now used to assess the performance of the dynamic estimators in
presence of gross bad data. In this test system, the set of measurements is composed by the

conventional and synchronised measurements.

0.8

time, k

Figure 7.7: OPI during bad data at k = 25, in the 57-bus system with PMU measurements

170



Chapter 7 — Dynamic State Estimation

Figure 7.7 presents the OPI for all k instants. From the plot, it is confirmed that the estimation
results are affected when gross errors are undetected in the set of measurements. This suggests

that the inclusion of a bad data processor would be very beneficial.

Figure 7.8 shows the skewness of the distribution of Ay calculated using both the UKF and the
EKF. It can be seen that very similar results are obtained. At the time of the bad data

occurrence (k =25), the skewness reaches values beyond the maximum value y, =3 p.u,

which is an indication of the presence of bad data.

7

6L b e EKF |
— UKF

5, _

4 |

Skewness, p.u.

time, k

Figure 7.8: Bad data detection using the Skewness calculation in the 57-bus system with PMU
measurements

The detection method presented in Figure 7.8 is the equivalent to the Chi-Square distribution
test introduced in Chapter 2 for static state estimators. Figure 7.9 presents the Chi-Square

distribution test for all the k instants. Similar to Figure 7.8, gross bad data is detected when

k=125.
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Figure 7.9: Bad data detection using the Chi-Square test in the 57-bus system with PMU measurements

Unlike the dynamic estimators, the static estimator wrongly detects the presence of bad data at
k=15. The availability of pseudo-measurements (predicted states) in dynamic estimators

makes it possible to better determine the presence of bad data in the set of measurements.

The next step in any bad data processor is the identification of wrong measurements. After a
number of multiple simulations, it was concluded that measurements whose normalised
innovation process T; are larger than 1.5 p.u. must be rejected from the set of measurements.
This threshold must be selected with caution. A low threshold may identify measurements
which are correct as erroneous data whereas a high threshold may consider wrong

measurements as gOOd ones.

The threshold used in this work was able to identify all the bad data simulated in the test
systems for different measurements and levels of redundancy. On the other hand, it was found
that in few cases, the threshold of 1.5 p.u. erroneously identified good measurements as bad
data, but they were not eliminated from the set of measurements because the Skewness test did
not detect any anomaly in the set of measurements. Based on this, it is preferable to use a low

threshold and check the Skewness test before considering the rejection of measurements.
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Figure 7.10 presents the normalised innovation vector at k = 25. Here, the normalised vector
indicates that the power transfer measurements P/2 and Q72 have large errors and must be

rejected.
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Figure 7.10: Bad data identification at k = 25 in 57-bus system with PMU measurements

Once P12 is eliminated, a second calculation of the normalised innovation vector indicates that
the reactive power Q12 from Bus I to Bus 2 is also a wrong measurement and must be rejected.
When these erroneous measurements are rejected, the UKF and EKF again deliver similar

results as for normal operating conditions.

It is important to mention that measurement redundancy is necessary to ensure the filtering
capacities of the dynamic estimator. Low redundancy levels may lead to insufficient
information to identify bad data that could easily result in erroneous state estimations if the

prediction step is inaccurate.

It is also interesting to compare the normalised innovation vector with the normalised residual
vector at k = 25, see Chapter 2. Figure 7.11 shows that the normalised residual vector identifies
the same pair of transferred power measurements but it also identifies two PMU measurements

as erroneous, when they are actually correct.
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The better performance of the normalised innovation vector is related to the higher
measurement redundancy level of dynamic estimators that make use of the prediction step and

it helps to better identify the erroneous measurements.
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Figure 7.11: Bad data identification using normalised residual analysis at k = 25 in 57-bus system with
PMU measurements

7.5 Discussion

The proposed DSE was based on a linear transition of states. However, given the properties of
the UKF to deal with non-linear models, the above DSE can be used with a generalised non-
linear transition of states. Further studies must concentrate on using more accurate models to

represent the transition of the states, able to consider and correct for sudden changes of states.

With respect to this work, it was found that the Holt’s parameters’ values a; and f; can affect
the accuracy of the prediction step if not selected adequately. The values adopted in this work
delivered very good prediction results. Nevertheless, more appropriate values could be selected

from off-line studies.

Different parameter values could be used in the UKF when creating the sigma points. The

parameters o, £ and x in (7.23) and (7.24) affect the higher order approximation of the non-
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linear equations. However, changes of the recommended parameter values had low impact on
the final accuracy of the UKF estimation. For instance, using x = 3- n or x = 0 did not affect the

estimation result for any scenario or power system.

It was also found that the UKF has similar computational requirements to the EKF. In fact, the
major challenge of these dynamic estimators is how to simplify the calculation of covariance
matrices for large scale power systems. For example, in order to improve the computational
efficiency, the covariance matrix can be kept constant during few consecutive time instants for
normal operating conditions. Additionally, since the S; matrix is very sparse, one could
calculate the gain matrix K; using sparsity techniques. Alternatively, one can reduce the

dimension of the problem using hierarchical estimators [87, 111].

The disadvantage of the proposed UKF based dynamic estimator is the inability to deal with
equality constraints to represent null power injection measurements. More work is to be done

on this matter to overcome this limitation.

7.6 Summary

The ability to process faster and more accurate measurements (such as synchrophasors) makes
us re-think the feasibility of using Dynamic State Estimators (DSE) in modern power system

control rooms.
The main advantage of DSE with respect to static estimators is the prediction step. The DSE
not only estimates the actual system state but it predicts the future system state before the new

set of measurements arrives at the control centre.

The work presented in this Chapter proposes the implementation of the UKF in power system

state estimation.
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It was found that the proposed UKF based DSE performs better than the EKF with very similar
computational demands. In order to determine the effectiveness of the proposed DSE, two test

systems were simulated under different operating conditions.

From the simulation tests, it was found that the DSE obtains better estimation results than the
static one if the system model is accurate and represents the actual transition of the states. By
using the prediction step, the DSE can detect the unexpected change of states, see the 14-bus

test system, and it can detect and eliminate bad data, as presented for the 57-bus test system.

In terms of detection and elimination of bad data, the Skewness test and the normalised
innovation vector were compared with the Chi-Square distribution test and the normalised
residual method (in static estimators). Due to the availability of a prediction step in DSE (used
as pseudo-measurements), the measurement redundancy of the system was higher than the

static estimator that helped to detect and eliminate the truly erroneous measurements.

More work is to be done to take advantage of the UKF to deal with non-linear systems. That is,
a more accurate model of the transition of states should be applied and compared with respect
to the linear transition model used in this work. Additionally, the proposed method can be

extended to consider larger networks in which hierarchical schemes may be required.
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Chapter 8 Conclusions and Future Work

This PhD Thesis presented new algorithms to analyse the impact of uncertainty in power
system operation and to enhance the state estimation practice of power systems supported by

Phasor Measurement Units.

The following Sections summarise the main conclusions drawn from the results presented in
this PhD Thesis and present some suggestions for future work that were not addressed in this

piece of research due to time limitations.

8.1 Conclusions

This Thesis introduced and tested a new Probabilistic Load Flow (PLF) methodology based on
multiple Weighted Least Square (WLS) runs. The main advantage of this approach is that it
uses the actual Probability Density Functions (PDFs) of the input variables rather than only the

first statistical moments.

A comparison of different methods to simplify Gaussian Mixture Models (GMMs) used to
represent non-Gaussian power system variables was presented. The reduction methods helped
to decrease the number of WLS runs of the proposed PLF while maintaining a good

approximation of the original distributions.

It was found that the Integral Squared Difference (ISD) discrimination method always
identified the pair of components that when merged produced the minimum difference between
the original and the reduced Gaussian mixture. However, this method was found to be time
consuming compared to the Kullback-Leibler (KL) upper bound or the Squared Distance (SD)

algorithms.

The KL upper bound algorithm was found to be very efficient in terms of computational
demands and accuracy. This can be the best choice if the number of Gaussian components to

merge is high.
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The fine tuning method obtains better reductions than any pair-merging method. However, the
pair merging methods can be used as an initial guess to ensure the convergence of the optimal

based method.

From the validation of the proposed PLF study in Chapter 4, it was found that few errors of
approximation are introduced by the assumption that the correlation between Gaussian
components that belong to two particular Gaussian mixtures is the same as the correlation

between those Gaussian mixtures.

This assumption introduces some errors in the calculated PDFs of bus voltages and power
flows at the proximities of the non-Gaussian distributed power injections. These errors become
more evident when the correlated Gaussian mixtures have large Coefficient of Variation (CV)
and when they are modelled by many Gaussian components. For this reason, the calculated
PDFs of voltage and power flows are closer to the Monte Carlo Simulation (MCS) plots when

fewer Gaussian components are used to model the correlated input variables.

It was found that the proposed PLF can be implemented in both meshed and radial networks.
The approximation provides more realistic results when compared to not including any

correlation between variables.

In the case of radial distribution systems, the problem becomes an over-determined state
estimation calculation when real-time measurements are included in the WLS formulation.
From the simulated cases, it is concluded that power injections, modelled as GMMs, have
greater effect on the estimated flows and voltages around it when they are far from the real-
time measurements or when these power injections are relatively large compared to the sum of

the power injections along the feeder.

A study of different alternatives for including synchronised measurements in power system
state estimation was presented in the Thesis. It was found that the WLS formulation has
convergence problems when the current measurements are expressed in polar form. This is

caused by abrupt changes in sign and magnitude of the corresponding Jacobian elements for
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consecutive iterations. The study shows that a constraint formulation can be used to include
synchronised measurements in polar form. The level of accuracy is similar to that of
rectangular form but the constraint formulation avoids the propagation of measurement
uncertainty. On the contrary, it was found that the pseudo-voltage formulation reduces the

accuracy of the hybrid state estimator.

The research work demonstrated how the state estimation problem of large interconnected
power systems can be decentralised into smaller local area state estimators. This
decentralisation is carried out to reduce the computational burden and complexity of processing
large sets of measurements. The mismatch between boundary buses was corrected by using the

coordination level’s state estimation.

Multi-area state estimators are based on the assumption that errors in measurements from one
area have little effect on the estimated bus voltages in other areas. The results demonstrated
that not including power injection measurements in the coordination level reduced the size of
the problem. This reduction had little effect on the estimated boundary bus voltages as long as
the redundancy level is maintained with pseudo-measurements of power flows and other

available real measurements in boundary buses.

The most accurate estimation results were obtained when the estimated power flows from local
area estimators were accurate. To achieve this, it is necessary to have reliable and accurate
measurements in or close to boundary buses and maintain a good level of redundancy to detect

and reject bad data.

The study of including synchronised measurements in modern state estimators was also
extended to the problem of Dynamic State Estimators (DSE). The main benefit of dynamic
estimators is that they can process faster and more accurate measurements (such as PMU
measurements) and it is possible to take advantage of the predictive nature of the DSE. By
using the prediction step, the DSE can detect the unexpected change of states and the presence

of bad data.
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It was found that the Unscented Kalman Filter (UKF) performs better than the Extended
Kalman Filter (EKF) with very similar computational demands. Although both filters are

affected by sudden changes of states, the UKF was found to be more sensitive than the EKF.

The study also compared the dynamic and static state estimators in terms of detection and
elimination of bad data. Due to the availability of a prediction step in DSE, the measurement
redundancy was higher than in the static estimator and this helped to better detect and eliminate

the truly erroneous measurements.

8.2 Future Work

This Thesis presented a new PLF for including non-Gaussian correlated input variables. The
test results showed that assuming a constant correlation coefficient for all the WLS runs creates
some approximation errors in the PDFs of power flows close to the non-Gaussian correlated
input variables. These errors were more evident when the input variables were modelled by
many Gaussian components and when the CV was large (> 50%). There is an opportunity to
explore a different assumption to include correlation between the input variables in each WLS

run.

The distribution system state estimator, as an extension of the PLF methodology, can be
improved to consider stochastic topology changes. The line parameters of the branch whose
connection status is uncertain should be included in the state vector. These parameters should
be modelled as discrete variables with two possible values: the actual parameters (branch
connected) or zero (branch disconnected). However, as the discrete probabilities are
approximated as Gaussian delta functions (modelled as GMMs), this would result in more

WLS runs.
A comparison of three hybrid state estimators was presented in Chapter 5. The comparison was

based on accuracy for normal operating conditions. This comparison can be extended to

account for the impact of parameter errors on hybrid state estimators. It is likely that some

180



Chapter 8 — Conclusions and Future Work

methods will be more affected and some others may be more adequate to detect these

parameter errors.

Although optimal location of PMU was not addressed in this PhD Thesis (due to the large
amount of available literature related to this topic), it is important to point out the need for the
optimal placement of PMUs for Multi-Area State Estimation. The optimal location of PMUs
should be assessed in terms of estimation accuracy, ability to improve redundancy levels, and

observability of boundary and adjacent-to-boundary buses.

As it was presented in Chapter 7, the dynamic state estimator based on the UKF is largely
affected during sudden changes of states. This is caused by the difference between the
prediction step and the new set of measurements. Since the sudden change of states can be
detected from the innovation vector, future work should be focused on algorithms to re-adjust
the prediction step to make sure that the prediction step is in agreement with the new set of

measurements.

More work is to be done to take advantage of the UKF to deal with non-linear systems. That is,
a more accurate model of the transition of states should be applied and compared with respect
to the linear transition model used in this work. Additionally, the proposed DSE can be

extended to consider larger networks in which hierarchical schemes may be required.

8.3 Final Thesis Summary

The aim of this Thesis was to provide a step forward to estimate the operating conditions of
electric power systems in the presence of uncertain input variables, and to improve the state
estimation practice by exploring different formulations for including synchronised phasor

measurements in static and dynamic state estimators.

Through the successful completion of the research carried out for this Thesis, it has been
shown that accurate PLF studies can be carried out by the Gaussian Component Combination

Method (GCCM) as an alternative to Monte Carlo simulations. The GCCM uses the exact
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PDFs of the input variables and their correlation coefficient. This is an improvement on the
current knowledge because most of the previous PLF methods only use the first statistical
moments (e.g., Point Estimate method) and some others have neglected the effect of correlation

between input variables.

The presented work also demonstrated that it is possible to use polar form of currents (from
PMUs) in hybrid state estimation without any transformation of variables or measurements. In
addition, the Thesis introduced a new algorithm for reducing the data exchange in multi-area
state estimators. The advantage of this approach, with respect to previous formulations, is that
it only used the boundary and the references buses in the coordination level. The reduction of
the problem was found to be very effective because the accuracy of the estimation results were

similar to the results without the proposed simplification.

Finally, this Thesis showed that the DSE can be as effectively as the Static State Estimator
(SSE) that is currently used in control systems. This work is a good contribution to the current
knowledge because it demonstrated that the proposed UKF based DSE performs better than the
classical EKF based DSE, and it has the potential to be used in more complex non-linear
models of the power system. The proposed DSE will encourage future researchers to explore
the advantages of the UKF in state estimation and model validation of power systems during

transient conditions.
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Appendices

10.1 Appendix A

10.1.1 A.1: Solution of WLS Formulation
Given the set of measurements z modelled as:

z=h(x) +e (10.1)

where h(x) is the set of non-linear functions relating the set of measurements with the state
variables x, and e is the set of measurement errors with mean value E[e] = 0 and covariance
matrix R = E[e-e”] = diag{c?,d%,...,02}, the WLS estimate of the state vector X is
defined as the value X that minimizes the weighted sum of the squares of the measurement

residual r = z — h(x). Hence, the objective is to minimize:

J®) = [z —h®)]"R™![z - h(x)] (10.2)

At the minimum, the first order optimality condition must be satisfied. This is,

X
X

g® =-HT® R z-h®)]=0 (10.3)
where H(X) = dh(X)/0x.

By expanding g (%) into its Taylor series around the initial guess x*, and neglecting the second

and higher order terms:

gR®) = g&x)+GEHR-x)+--=0 (10.4)

One obtains an iterative solution known as the Gauss-Newton method:
xF1 = xkF — [G(xF)]"1g(x"), (10.5)
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where X has been replaced by x**1 which is the solution at the (k+1)-th iteration. Additionally,

G(xk) = %}’:R) = HT(x*) R"IH(x") (10.6)
gx*) = —H"(x*) R™[z — h(x")] (10.7)

with G(x*) called the Gain matrix. Therefore, the solution for x*1 is:

X1 = x* + [G(x®)]7IHT (x*) R™'[z — h(x*)] (10.8)

However, the Gain matrix is typically not inverted, but decomposed into its triangular factors,
and the following linear set of equations are solved using forward/backward substitutions at
each iteration k:

G(x*)Ax* = HT (x*) R™'[z — h(x")] (10.9)

with AxF = x**/—xk |

10.1.2 A.2: Solution of constraint WLS Formulation
Lagrange theory is now used to include the set of equality constraints ¢(x) in the WLS
formulation. The new minimization problem becomes:

L(x,A.) = [z—hX)]"R™ Yz — h(x)] — Alc(x), (10.10)

where A. is the vector of Lagrange multipliers. In order to find the minimum of L, the first

order optimality conditions are derived:

OLRXA) _ (10.11)
ox
AL(%, Ao
ek Ay 10.12
PR ( )
From which, it is obtained:
% = —H'(®) R r(®) - C"®)c(®) = 0 (10.13)
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OL(% A.)
N (R = 10.14
o c® =0 ( )

where r(X) = z — h(X) is the measurement residual vector and C(X) = dc(X)/0x.

The Gauss Newton method is used again to solve the set of non-linear equations iteratively.

The truncated Taylor series expansion of r(X) and c(%) around the initial guess x* is:

r(®) = r(x*) — H(x*)Ax* (10.15)
c(®) = c(x¥) — c(x¥)Axk (10.16)

From these linear approximations, (10.13) and (10.14) are rewritten as the iterative expression:

H' (x) R™'H -cT(xk)H : 1] [HT(xk)R [z~ h(x")]
A +

e ) (10.17)

where Ax" = x*’—x* and ® has been replaced by x**1
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10.2 Appendix B

10.2.1 B.1: LU Decomposition

A mxn matrix A whose rank is n can be decomposed into A =LU where L is a lower-

triangular and U is upper triangular. The decomposition starts with the original A matrix:

a, 4, a3 - 4

n

>
Il

(10.18)

nn

aml amZ m3 o amn

Here, n steps are needed to complete the decomposition. Before the s = 3rd step, the matrix
A _, is obtained:

Uy Uy Uz 0 Uy,
Ly Uy Uy
Ly L, ay;
A=l o ]
s=2 (10.19)
lnl 1112 anS e ann
lml lm2 amS amn

At the s-th step,
a) If agis zero, find the first non-zero element a,, (p > s) in the s-th column and exchange
the s-th and p-th rows.
b) Compute /;; = a;/as, with i > s and store it in position A (i,9).
c) For each element j in row s (for j =s+1,..., n), obtain a new a; given by a;-lia,; and
overwrite it on the old a;;. Make u;; = a;.

d) Advance, s = s+1. If s = n stop. Else, go back to a).

After the n steps, obtain the U and L factors from A :

195



Appendices

I 0 O 0
_”11 Uy, U uy, | Ly 1 0
0 uy uy Uy, L L, 1 0
U=|0 0 uy u, |, L=|: . 1 T (10.20)
: : L, L, L, - 1
0 0 O U, | : : c :
_lml lmZ lm3 b
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10.3 Appendix C
10.3.1 C.1: Solution of sub-vector hj(-)

The closed form solution of sub-vector hy(-) is as follows:

E, (y)=E; (")

J
_ —H; 1
hi= — = 0| E,O0-Eq () (10.21)
i E, (y))—Eg (y)
ﬂj_o-j _Zﬂll J J
~3 ~3 ~3
o j i

E is the expectation operator for Fj=fy{(y)-gi(y,.7,) and G=g«(y,77,)-g/(y,7,). The vector in

(10.21) contains the zero-th, first and second non-central moments of F; and G;. Function Fj is

expressed in terms of a sum of scaled Gaussian distributions.
L
Fj :&).lz'zwioéjfzv(y,j,a,f)(y) (10.22)
i=1
with,
o, = fN(g,,,a,?mf)(ﬂi) (10.23)
o, =(/o} +1/62)" (10.24)
Hy =05 (07 + 1,/ 67) (10.25)
Therefore, the non-central moments of F; are simply:
L
E, (1')=a3 og, (10:26)
i=1
~2 L
E, (y)=@; ) wau, (10.27)
i=1
L
E, ()= ) oo, (u; +07) (10.28)
i=1
In terms of Gj, it is also expressed as scaled sum of Gaussian distributions
~2 M ~ ~
G, =, a)fa[‘./.fN(ﬂ’jﬁ;)(y) (10.29)

i=1

with,
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R WV B R o)
G, (4,67 + 1,/ 67)
Therefore, the non-central moments of G; are:

10.3.2 C.2: Solution of matrix F(+)

Each of the elements in the 3x3 matrix P in (3.40) is as follows:

P1(,i7j>:4’
P =24 i —H
12 Jjox2 =20
o; +
J
~ \2 ~2 | =2
P(i’j) 2~ ~2 (ﬂl_ﬂj) _(O-l +Gj)
13 J 52 + 52)? ’
(67 +67)
Pih =g M T H:
2,1 i ~2 ~0
(o +O'j
~2 | =2
PY) = @ (O-i +GJ) (/ul /uj)
20 = G0, ~2 242
(a +0 )

@ +o,.)

) ~ (ﬂi_ﬂj)z_(d-iz"'&,z')

P =200, ~2 | =242 ’
’ (6, +67)

(ﬂi—ﬁp-((ﬂi—ﬁ,»>2—3<6f+6§>)
(o*l.2 +6'f)3

Qz

Pl = 0,

’

J 1~ f1,)* +3(67 +62)((62 +61) 21, ~ i,
P;,’él)zd)i&)jéi&j (&, :uj) (6; ,)(( ; j) (& /uj))

~2 ~2\4
(67 +67)
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10.4 Appendix D

10.4.1 D.1: Power Flow Calculation in Radial Networks

Te power flow problem is solved when the current injection vector I and the voltage vector V

satisfy:

*

S =V.-I', i=1,..,N, (10.39)
I=Y V, (10.40)
where Y, is the nodal admittance matrix and N is the number of buses. The iterative

bus

algorithm is as follows:

1. Factorize the nodal admittance matrix into its lower L and Upper U matrix components:

Y,, =LU. (10.41)
2. Set initial estimates of voltages and compute the initial currents from (10.40).

3. Advance the iteration counter, k.

4. Compute the voltage dependent injected powers:

Sisched — Bsched + J-Qischc’d ) (10.42)

with
Pisched — Pio(aZVikPZ + aIVikH + a/PVikPP ), (10.43)
Qhed = (0 (,BzVikQZ +131Vikgl +IBPVikQP)- (10.44)

The elements P’and Q”are the nominal load powers (i.e. the loading conditions at nominal
voltage). The exponents can be defined accordingly to characteristic values kpz = koz =2,
kpr=kor=1 and kpp=kgp=0. The coefficients o and Sindicate the proportion of the
respective load type (Z-constant impedance, I-constant current or P-constant power) with
respect to the total power consumption at bus i.

5. Compute the injected complex power for iteration (k)

SO =V (TED) ) i=1,.N (10.45)
6. Compute the complex power mismatches using :

AS =8 =85t i=1,..N (10.46)

1

7. Check if solution is converged within tolerances:

AR®|<e,, [a0®|<g, (10.47)

8. If convergence is achieved stop here, otherwise:
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9. Compute the complex incremental current injection vector:

200

_ AS®
(k) _ i .
Al = =g i=1..N (10.48)

10. Compute the total current vector to be used in the next iteration:

TR Z T*D L AT® (10.49)
11. Solve for the complex incremental voltage vector (forward/backward substitution):

AV® =U'L'AT™ (10.50)
12. Update the complex voltage vector:

VO =vED L AVE (10.51)

13. Go to step 3.
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10.5 Appendix E

10.5.1 E.1: The Kalman Filter

Suppose the linear system:

Xy = ka—l + Buk_l + qr-1 (10.52)
Z, = ka + e, (1053)

where X is the vector of states, u,_; is the set of input variables and z, is the set of
measurements. Matrix F and B relate the previous state and system inputs with the new state
X, and matrix H relates the measurements with the state variables. The first equation is the
transition of states model (prediction) whereas the second is the measurement model

(correction).

Vectors e, and qj_; represent the measurement and system error, respectively. These errors
are assumed to have zero mean and they are uncorrelated. The covariance matrix of q_q is

defined by:
Qi1 = E[Qk-19)-1]. (10.54)

The problem consists of estimating the state vector x, given the prediction (10.52) and the
correction (10.53) at instant k. The set of measurements is built up by the real-time

measurements and the state predictions:

Ze= o] = [F2,_, +Bu,_] (10.55)

Where X;, denotes the predicted state at time k according to the transition of states presented in

(10.52). The error of the augmented measurement vector Z; is defined as:

~ (5% _ Zk—HXk
& =] = [)_(k e ] (10.56)

while the prediction error has the following covariance matrix:
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Py = FPgy  F' + Q. (10.57)

Thus, the covariance matrix of the augmented measurement vector is:

_[Rx O
Rz =1 o P,zk] (10.58)

where R is the error covariance matrix of the real-time measurements, i.e. R,; = E[eger]. In

addition, the augmented Jacobian matrix is defined as:

. [H,
i, { . } (10.59)

Now, in order to estimate the value of x at time k, it is necessary to minimise the augmented

objective function:

1 _ 1,_ ir—
J(x;) :E[zk -H,x, ]T Rzl: [zk _Hkxk]-‘ra[xk —X; ]T Pfkl [Xk _Xk] . (10.60)

Note that this objective function has the same structure as a linear WLS problem. Hence, the
WLS solution of (10.60) is:

%, =[H;RH, '"H{R,Z (10.61)

k™k>

In view of (10.55)-(10.59), this equation can be rewritten as:

R o] R
ol S ) e

From (10.62), the state vector is also expressed by:

% =(P;'+H/R;H,) (H'Rz +P;x,). (10.63)

This expression can be simplified even more. From the matrix inversion lemma, it is possible

to demonstrate that [45]:

(Px_kl + HiR_lek )_1 = ka - P;ka (Rzk + HkakH£ )_1 Hszk ’ (10.64)
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Hence, equation (10.63) is equivalent to:

f‘k = ik + (kaH:R_.kl - Pkai (Rzk + HkP;ka )_lHkkaHzR;kl )71 Z,

Z

_ (10.65)
T ' =
-P H; (Rzk +H,P, H, ) H, X,

The coefficient of z, in the expression above can be rewritten as follows [45]:

-1

-1
(P}kHZ;R; _kaHi R+ HkP}kHz)ilHkP}kHiR;) = szHi (Rzk + HkPXkHi ) (10.66)

This resulting matrix is known as the filter's Gain matrix Kj:

Ky = Py HE (R, + H Py, HO) ™! (10.67)
By including (10.67) in (10.65), one obtains:
)’ik = )_(k + Kk(zk - Hk)_(k) (1068)

This is the updated state estimate at k, note that it is made of the predicted state and the

correction from set of measurements z.

Based on the classical WLS formulation, the covariance matrix of the updated state estimate is

the inverse of the Gain matrix for the augmented system:

_ =~ 1=~ 1 _ _ -1
P = G;' = (AfR;iH,) ~ = (P5! + HER I H,) (10.69)

which is equivalent to (matrix inversion lemma) [45]:

P, = (I— K Hp)Pgy (10.70)
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10.6 Appendix F

10.6.1 F.1: Holt’s Initialization

The initialization of the Holt’s technique (introduced in Chapter 7) was carried out by using the
first two samples (at k = 0 and k = 1) of voltage magnitudes and angles taken from the previous

estimations. Based on this, Xg and x; are known.

In order to initialize the Holts method, equations (7.44) and (7.45) are used:
a =aX, +(-a)X, (10.71)
bk =ﬁk (ak _ak_1)+(1_ﬁk)bk.1 (1072)

As it is desired to estimate the state vector X at k = 2, it is necessary to calculate a; and by for
k=0 and k= 1. First, set ap=X( and by = 0 and assume that the prediction at k = 1 was very

accurate, 1.e. X, =X,. Now calculate a; and b:

a =oX +(1-0)X, (10.73)
b1 =ﬁ(a1_ao)+(1_ﬁ)bo (10.74)
Then calculate F; and g;:
F =al+p)I (10.75)
g, =(1+p)1-a)x, —Pa,+(1- )b, (10.76)

From the UKF or EKF, obtain the prediction at k = 2:

X, =Fx +g, (10.77)
After some steps in the UKF (or EKF), obtain the updated state vector X, .

When the new set of measurements is received at k = 3, one has to calculate a; and by for k = 2:
a,=o0x,+(1-o)X, (10.78)

b, =fB(a,—a)+(1-f)b, (10.79)
Note that for k = 2, 3, ..., kmax, the prediction vector X, is calculated from the UKF (or EKF).
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10.7 Appendix G

10.7.1 G.1: 14-bus IEEE Test System Data

A

Bus 13

Bus 14

Bus 12

Bus 6
Bus 1 Bus 9

Bus 5

Bus 7

Bus 8

%f

Bus 4

Bus 2

@

Bus 3 p—

v

Figure 10.1: One Line Diagram 14-bus System

Table 10.1: 14-bus System: Buses Data
Bus Voltage Generation Demand Shunt Elements

#  Mag(pu) Ang(deg) P (MW) Q(MVAr) P (MW) Q (MVAr) Gs (MW) Bs (MVAr.)
1 1.060  0.000 232.39 -16.55 - - - -
2 1.045  -4.983  40.00 4356 2170  12.70 - -
3 1.010 -12725 0.00  25.08 9420  19.00 - -
4 1.018  -10.313 - - 47.80  -3.90 - -
5 1.020  -8.774 - - 7.60 1.60 - -
6 1.070  -14.221  0.00 1273 11.20 7.50 - -
7 1.062  -13.360 - - - - - -
8 1.090 -13.360  0.00 17.62 - - - -
9 1.056  -14.939 - - 2950  16.60 - -
10 1.051  -15.097 - - 9.00 5.80 - -
11 1.057  -14.791 - - 3.50 1.80 - -
12 1.055  -15.076 - - 6.10 1.60 - -
13 1.050  -15.156 - - 13.50 5.80 - -
14 1.036  -16.034 - - 14.90 5.00 - -
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Table 10.2: 14-bus System: Branch Data

From To R X B Tap
Bus Bus p.u. p.u. p.u. p.u.
1 2 0.01938 0.05917 0.05280 1.0000
1 5 0.05403 0.22304 0.04920 1.0000
2 3 0.04699 0.19797 0.04380 1.0000
2 4 0.05811 0.17632 0.03400 1.0000
2 5 0.05695 0.17388 0.03460 1.0000
3 4 0.06701 0.17103 0.01280 1.0000
4 5 0.01335 0.04211 0.00000 1.0000
4 7 0.00000 0.20912 0.00000 0.9780
4 9 0.00000 0.55618 0.00000 0.9690
5 6 0.00000 0.25202 0.00000 0.9320
6 11 0.09498 0.19890 0.00000 1.0000
6 12 0.12291 0.25581 0.00000 1.0000
6 13 0.06615 0.13027 0.00000 1.0000
7 8 0.00000 0.17615 0.00000 1.0000
7 9 0.00000 0.11001 0.00000 1.0000
9 10 0.03181 0.08450 0.00000 1.0000
9 14 0.12711 0.27038 0.00000 1.0000
10 11 0.08205 0.19207 0.00000 1.0000
12 13 0.22092 0.19988 0.00000 1.0000
13 14 0.17093 0.34802 0.00000 1.0000
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10.7.2 G.2: 57-bus IEEE Test System Data
. 3 2 1
5 16
. | N RS Pt
— . 1
76 187 — 19 ‘i‘ 2011 4|5 14 45 T BT 12 .
O 2 21 e | - |
Ii 23 46 49 50
47 < |
24 “ 1 48 e : 39 57 l
i 38
7 25 —L 2 36 L 377 40 56 41 1 51
. t ot | T
30 33 35
31 32|J | !
I~ I~ | : 42 43
53 55 _ M 10
T -
8 sa LIl “ |

“to

Figure 10.2: One Line Diagram 57-bus System

Table 10.3: 57-bus System: Buses Data

Bus Voltage Generation Demand Shunt Elements
# Mag(pu) Ang(deg) P (MW) Q (MVAr) P (MW) Q (MVAr) Gs (MW) Bs (MVAr)
1 1.040 0.000 478.66  128.85 55.00 17.00 - -
2 1.010 -1.188 0.00 -0.75 3.00 88.00 - -
3 0.985 -5.988 40.00 -0.90 41.00 21.00 - -

4 0.981 -7.337 - - - - - -
5 0.976 -8.546 - - 13.00 4.00 - -
6 0.980 -8.674 0.00 0.87 75.00 2.00 - -
7 0.984 -7.601 - - - - - -
8 1.005 -4.478  450.00 62.10 150.00 22.00 - -
9 0.980 -9.585 0.00 2.29 121.00 26.00 - -

10 0.986 -11.450 - - 5.00 2.00 - -
11 0.974  -10.193 - - - - - -
12 1.015 -10.471 310.00 128.63 377.00 24.00 - -
13 0.979 -9.804 - - 18.00 2.30 - -
14 0.970 -9.350 - - 10.50 5.30 - -
15 0.988 -7.190 - - 22.00 5.00 - -
16 1.013 -8.859 - - 43.00 3.00 - -
17 1.017 -5.396 - - 42.00 8.00 - -
18 1.001 -11.730 - - 27.20 9.80 - 10.00
19 0.970 -13.227 - - 3.30 0.60 - -

207



Appendices

20 0.964  -13.444 - - 2.30 1.00 -
21 1.008 -12.929 - - - - -
22 1.010 -12.874 - - - - -
23 1.008 -12.940 - - 6.30 2.10 -
24 0.999 -13.292 - - - - -
25 0.983 -18.173 - - 6.30 3.20 5.90
26 0.959 -12.981 - - - - -
27 0.982 -11.514 - - 9.30 0.50 -
28 0.997  -10.482 - - 4.60 2.30 -
29 1.010 -9.772 - - 17.00 2.60 -
30 0.963 -18.720 - - 3.60 1.80 -
31 0.936 -19.384 - - 5.80 2.90 -
32 0.950 -18.512 - - 1.60 0.80 -
33 0.948 -18.552 - - 3.80 1.90 -
34 0.959 -14.149 - - - - -
35 0.966 -13.906 - - 6.00 3.00 -
36 0.976 -13.635 - - - - -
37 0.985 -13.446 - - - - -
38 1.013 -12.735 - - 14.00 7.00 -
39 0.983 -13.491 - - - - -
40 0.973 -13.658 - - - - -
41 0.996 -14.077 - - 6.30 3.00 -
42 0.967  -15.533 - - 710 4.40 -
43 1.010 -11.354 - - 2.00 1.00 -
44 1.017  -11.856 - - 12.00 1.80 -
45 1.036 -9.270 - - - - -
46 1.060 -11.116 - - - - -
47 1.033 -12.512 - - 29.70 11.60 -
48 1.027 -12.611 - - - - -
49 1.036 -12.936 - - 18.00 8.50 -
50 1.023 -13.413 - - 21.00 10.50 -
51 1.052 -12.533 - - 18.00 5.30 -
52 0.980 -11.498 - - 4.90 2.20 -
53 0.971 -12.253 - - 20.00 10.00 6.30
54 0.996 -11.710 - - 410 1.40 -
55 1.031 -10.801 - - 6.80 3.40 -
56 0.968 -16.065 - - 7.60 2.20 -
57 0.965 -16.584 - - 6.70 2.00 -
Table 10.4: 57-bus System: Branch Data
From To R X B Tap
Bus Bus p.u. p.u. p.u. p.u.

1 2 0.00830 0.02800 0.12900 1.0000

2 3 0.02980 0.08500 0.08180 1.0000

3 4 0.01120 0.03660 0.03800 1.0000

4 5 0.06250 0.13200 0.02580 1.0000

4 6 0.04300 0.14800 0.03480 1.0000

6 7 0.02000 0.10200 0.02760 1.0000
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10
11
12
13
14
15
15
16
17
15
18
18

12
13
13
16
17
15
19
20
20
22
23
24
25
25
26
27
28
29
29
30
31
32
33
32
35
36
37
38
39
40
38
41

0.03390
0.00990
0.03690
0.02580
0.06480
0.04810
0.01320
0.02690
0.01780
0.04540
0.02380
0.01620
0.00000
0.00000
0.03020
0.01390
0.02770
0.02230
0.01780
0.01800
0.03970
0.01710
0.46100
0.28300
0.00000
0.07360
0.00990
0.16600
0.00000
0.00000
0.00000
0.16500
0.06180
0.04180
0.00000
0.13500
0.32600
0.50700
0.03920
0.00000
0.05200
0.04300
0.02900
0.06510
0.02390
0.03000
0.01920
0.00000

0.17300
0.05050
0.16790
0.08480
0.29500
0.15800
0.04340
0.08690
0.09100
0.20600
0.10800
0.05300
0.55500
0.43000
0.06410
0.07120
0.12620
0.07320
0.05800
0.08130
0.17900
0.05470
0.68500
0.43400
0.77670
0.11700
0.01520
0.25600
1.18200
1.23000
0.04730
0.25400
0.09540
0.05870
0.06480
0.20200
0.49700
0.75500
0.03600
0.95300
0.07800
0.05370
0.03660
0.10090
0.03790
0.04660
0.02950
0.74900

0.04700
0.05480
0.04400
0.02180
0.07720
0.04060
0.01100
0.02300
0.09880
0.05460
0.02860
0.05440
0.00000
0.00000
0.01240
0.01940
0.03280
0.01880
0.06040
0.02160
0.04760
0.01480
0.00000
0.00000
0.00000
0.00000
0.00000
0.00840
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00320
0.00160
0.00000
0.00200
0.00000
0.00000
0.00000
0.00000

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.9700
0.9780
1.0000
1.0000
1.0000
1.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0430
.0000
.0000
.0000
.0000
.0000
.0430
.0000
1.0000
1.0000
0.9670
1.0000
1.0000
1.0000
1.0000
0.9750
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.9550
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41 42 0.20700 0.35200 0.00000 1.0000
41 43 0.00000 0.41200 0.00000 1.0000
38 44 0.02890 0.05850 0.00200 1.0000
15 45 0.00000 0.10420 0.00000 0.9550
14 46 0.00000 0.07350 0.00000 0.9000
46 47 0.02300 0.06800 0.00320 1.0000
47 48 0.01820 0.02330 0.00000 1.0000
48 49 0.08340 0.12900 0.00480 1.0000
49 50 0.08010 0.12800 0.00000 1.0000
50 51 0.13860 0.22000 0.00000 1.0000
10 51 0.00000 0.07120 0.00000 0.9300
13 49 0.00000 0.19100 0.00000 0.8950
29 52 0.14420 0.18700 0.00000 1.0000
52 53 0.07620 0.09840 0.00000 1.0000
53 54 0.18780 0.23200 0.00000 1.0000
54 55 0.17320 0.22650 0.00000 1.0000
11 43 0.00000 0.15300 0.00000 0.9580
44 45 0.06240 0.12420 0.00400 1.0000
40 56 0.00000 1.19500 0.00000 0.9580
56 41 0.55300 0.54900 0.00000 1.0000
56 42 0.21250 0.35400 0.00000 1.0000
39 57 0.00000 1.35500 0.00000 0.9800
57 56 0.17400 0.26000 0.00000 1.0000
38 49 0.11500 0.17700 0.00300 1.0000
38 48 0.03120 0.04820 0.00000 1.0000
9 55 0.00000 0.12050 0.00000 0.9400
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10.7.3 G.3: 69-bus IEEE Test System Data

44 45 46 47 48 49 50 51 52 53 54

F1rT 1T 1rrtrrr1rur1
43— —_
42 L
0 4 2 3 45 6 7 8 10 11 12 13 14 15 16 17 18 19 56
| | | -_— 57
Pl W 1 — g
28 (
20 59
29——
3() —_— 36 37 38 39 40 41 60
= = 27 26 25 24 23 22 21 —_— 61
31 32 33 34 35 i

69 68 67 66 65 64 63 62
Figure 10.3: One Line Diagram 69-bus System

Table 10.5: 69-bus System: Buses Data

Bus Voltage Generation Demand Shunt Elements
# Mag(pu) Ang(deg) P (kW) Q (kVAr) P (kW) Q (kVAr) Gs (kW) Bs (kVAr)
1 1.000 -0.001 - - - - - -
2 1.000 -0.001 - - - - - -
3 1.000 -0.002 - - - - - -
4 1.000 -0.004 - - - - - -
5 0.999 -0.009 - - - - - -
6 0.993 0.083 - - 2.60 2.20 - -
7 0.987 0.180 - - 40.40 30.00 - -
8 0.986 0.204 - - 75.00 54.00 - -
9 0.985 0.214 - - 30.00 22.00 - -
10 0.981 0.278 - - 28.00 19.00 - -
11 0.980 0.293 - - 145.00 104.00 - -
12 0.978 0.333 - - 145.00 104.00 - -
13 0.976 0.368 - - 8.00 5.50 - -
14 0.973 0.402 - - 8.00 5.50 - -
15 0.971 0.437 - - - - - -
16 0.971 0.443 - - 45.50 30.00 - -
17 0.970 0.454 - - 60.00 35.00 - -
18 0.970 0.454 - - 60.00 35.00 - -
19 0.970 0.460 - - - - - -
20 0.969 0.465 - - 1.00 0.60 - -
21 0.969 0.471 - - 114.00 81.00 - -
22 0.969 0.471 - - 5.30 3.50 - -
23 0.969 0.472 - - 0.00 0.00 - -
24 0.969 0.474 - - 28.00 20.00 - -
25 0.969 0.477 - - 0.00 0.00 - -
26 0.969 0.478 - - 14.00 10.00 - -
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27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

0.969
1.000
1.000
1.000
1.000
1.000
1.000
0.999
0.999
1.000
0.999
0.996
0.995
0.986
0.986
0.983
0.981
0.978
0.976
0.962
0.956
0.953
0.950
0.945
0.945
0.945
0.943
0.943
0.980
0.980
0.977
0.977
1.000
1.000
1.000
1.000
1.000
0.999
0.999
0.999
0.999
0.999
0.999

0.478
-0.002
-0.004
-0.002
-0.002
0.000
0.003
0.008
0.008
-0.006
-0.040
-0.147
-0.162
0.204
0.204
0.250
0.293
0.352
0.410
0.847
1.067
1.154
1.264
1.340
1.348
1.358
1.371

1.375
0.294
0.294
0.337
0.337
-0.003
-0.008
-0.010
-0.010
-0.010
-0.019
-0.022
-0.023
-0.023
-0.024
-0.024

14.00
26.00
26.00

14.00
19.50
6.00
79.00
384.70
384.70
40.50
3.60
4.30
26.40
24.00

100.00
-256.00
1244.00

32.00
-208.00
227.00

59.00
18.00
18.00

28.00

28.00

26.00

26.00

24.00

24.00

1.20
0.00
6.00

39.20

39.20

10.00
18.60
18.60

10.00
14.00
4.00
56.40
274.50
274.50
28.30
2.70
3.50
19.00
17.20

72.00
84.14
888.00
23.00
68.00
162.00
42.00
13.00
13.00
20.00
20.00
18.50
19.00
17.00
17.00
1.00
0.00
4.30
26.30
26.30
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Table 10.6: 69-bus System: Branch Data

From To R X B Tap
Bus Bus p.u. p.u. p.u. p.u.
0 1 0.000003 0.000007 0.0000 1.0000
1 2 0.000003 0.000007 0.0000 1.0000
2 3 0.000000 0.000006 0.0000 1.0000
3 4 0.000009 0.000022 0.0000 1.0000
4 5 0.000157 0.000183 0.0000 1.0000
5 6 0.002284 0.001163 0.0000 1.0000
6 7 0.002378 0.001211 0.0000 1.0000
7 8 0.000575 0.000293 0.0000 1.0000
8 9 0.000308 0.000175 0.0000 1.0000
9 10 0.005110 0.001689 0.0000 1.0000
10 11 0.001168 0.000386 0.0000 1.0000
11 12 0.004439 0.001467 0.0000 1.0000
12 13 0.006426 0.002121 0.0000 1.0000
13 14 0.006514 0.002153 0.0000 1.0000
14 15 0.006601 0.002181 0.0000 1.0000
15 16 0.001227 0.000406 0.0000 1.0000
16 17 0.002336 0.000772 0.0000 1.0000
17 18 0.000029 0.000010 0.0000 1.0000
18 19 0.002044 0.000676 0.0000 1.0000
19 20 0.001314 0.000434 0.0000 1.0000
20 21 0.002131 0.000704 0.0000 1.0000
21 22 0.000087 0.000029 0.0000 1.0000
22 23 0.000993 0.000328 0.0000 1.0000
23 24 0.002161 0.000714 0.0000 1.0000
24 25 0.004672 0.001544 0.0000 1.0000
25 26 0.001927 0.000637 0.0000 1.0000
26 27 0.001081 0.000357 0.0000 1.0000
2 28 0.000027 0.000067 0.0000 1.0000
28 29 0.000399 0.000976 0.0000 1.0000
29 30 0.002482 0.000820 0.0000 1.0000
30 31 0.000438 0.000145 0.0000 1.0000
31 32 0.002190 0.000724 0.0000 1.0000
32 33 0.005235 0.001757 0.0000 1.0000
33 34 0.010657 0.003523 0.0000 1.0000
34 35 0.009197 0.003040 0.0000 1.0000
4 36 0.000021 0.000052 0.0000 1.0000
36 37 0.000531 0.001300 0.0000 1.0000
37 38 0.001808 0.004424 0.0000 1.0000
38 39 0.000513 0.001255 0.0000 1.0000
8 40 0.000579 0.000295 0.0000 1.0000
40 41 0.002071 0.000695 0.0000 1.0000
9 42 0.001086 0.000553 0.0000 1.0000
42 43 0.001267 0.000645 0.0000 1.0000
43 44 0.001773 0.000903 0.0000 1.0000
44 45 0.001755 0.000894 0.0000 1.0000
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45
46
47
48
49
50
51
52
53
11
55
12
57
3
59
60
61
62
63
64
65
66
67
68

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

0.009920
0.004890
0.001898
0.002409
0.003166
0.000608
0.000905
0.004433
0.006495
0.001255
0.000029
0.004613
0.000029
0.000027
0.000399
0.000657
0.000190
0.000011
0.004544
0.001934
0.000256
0.000057
0.000679
0.000006

0.003330
0.001641
0.000628
0.000731
0.001613
0.000309
0.000460
0.002258
0.003308
0.000381
0.000009
0.001525
0.000010
0.000067
0.000976
0.000767
0.000221
0.000013
0.005309
0.002260
0.000298
0.000072
0.000857
0.000007

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
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10.7.4

G.4: 118-bus IEEE Test System Data

Appendices

102

Figure 10.4: One Line Diagram 118-bus System

Table 10.7: 118-bus System: Buses Data

Bus Voltage Generation Demand Shunt Elements
# Mag(pu) Ang(deg) P (MW) Q (MVAr) P (MW) Q (MVAr) Gs (MW) Bs (MVAr)
1 0.955 10.973 0.00 -3.10 51.00 27.00 - -
2 0.971 11.513 - - 20.00 9.00 - -
3 0.968 11.856 - - 39.00 10.00 - -

4 0.998 15.574 0.00 -15.01 39.00 12.00 - -
5 1.002 16.019 - - - - - -40.00
6 0.990 13.292 0.00 15.93 52.00 22.00 - -
7 0.989 12.847 - - 19.00 2.00 - -
8 1.015 21.041 0.00 63.14 28.00 0.00 - -
9 1.043 28.295 - - - - - -
10 1.050 35.876 450.00 -51.04 - - - -

11 0.985 13.006 - - 70.00 23.00 - -
12 0.990 12.489  85.00 91.29 47.00 10.00 - -
13 0.968 11.630 - - 34.00 16.00 - -
14 0.984 11.771 - - 14.00 1.00 - -
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216

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

0.970
0.984
0.995
0.973
0.962
0.957
0.958
0.969
0.999
0.992
1.050
1.015
0.968
0.962
0.963
0.985
0.967
0.963
0.971
0.984
0.980
0.980
0.991
0.961
0.970
0.970
0.967
0.985
0.977
0.984
0.986
1.005
1.017
1.021
1.025
1.001
0.967
0.957
0.946
0.955
0.952
0.954
0.971
0.959
0.985
0.993
0.995
0.998

11.474
12.187
13.995
11.781
11.315
12.191
13.778
16.332
21.249
21.114
28.180
29.960
15.604
13.879
12.885
19.034
13.002
15.061
10.854
11.511
11.055
11.056
11.967
17.108
8.577
7.496
7.052
8.653
11.460
13.943
15.773
18.576
20.799
20.019
21.022
18.983
16.364
15.411
14.436
15.348
15.058
15.245
16.449
15.592
19.448
23.230
24121
23.505

76.83

-40.39
1.26

90.00
25.00
11.00
60.00
45.00
18.00
14.00
10.00
7.00
13.00

71.00
17.00
24.00

43.00
59.00
23.00
59.00
33.00
31.00

27.00
66.00
37.00
96.00
18.00
16.00
53.00
28.00
34.00
20.00
87.00
17.00
17.00
18.00
23.00
113.00
63.00
84.00
12.00
12.00
277.00
78.00

77.00

30.00
10.00
3.00
34.00
25.00
3.00
8.00
5.00
3.00
0.00

13.00
7.00
4.00

27.00
23.00
9.00
26.00
9.00
17.00

11.00
23.00
10.00
23.00
7.00
8.00
22.00
10.00
0.00
11.00
30.00
4.00
8.00
5.00
11.00
32.00
22.00
18.00
3.00
3.00
113.00
3.00

14.00



63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

0.969
0.984
1.005
1.050
1.020
1.003
1.035
0.984
0.987
0.980
0.991
0.958
0.967
0.943
1.006
1.003
1.009
1.040
0.997
0.989
0.984
0.980
0.985
0.987
1.015
0.987
1.005
0.985
0.980
0.990
0.985
0.990
0.980
0.992
1.011
1.024
1.010
1.017
0.991
0.989
1.010
0.971
0.965
0.961
0.952
0.966
0.967
0.973

22.827
24.593
27.719
27.559
24.919
27.598
30.000
22.618
22.207
21.109
21.995
21.669
22.930
21.799
26.751
26.447
26.745
28.990
28.145
27.272
28.464
31.000
32.556
31.186
31.445
35.690
39.748
33.338
33.351
33.881
30.849
28.682
27.710
27.543
27.916
27.433
27.067
28.059
29.647
32.365
24.318
21.748
20.644
20.383
17.583
19.443
18.991
18.144

39.00
28.00

66.00

12.00
6.00
68.00
47.00
68.00
61.00
71.00
39.00
130.00

54.00
20.00
11.00
24.00
21.00

48.00

163.00
10.00
65.00
12.00
30.00
42.00
38.00
15.00
34.00
42.00
37.00
22.00

5.00
23.00
38.00
31.00
43.00
50.00

2.00

8.00
39.00

18.00
7.00

20.00

0.00
0.00
27.00
11.00
36.00
28.00
26.00
32.00
26.00

27.00
10.00
7.00
15.00
10.00

10.00

42.00
0.00
10.00
7.00
16.00
31.00
15.00
9.00
8.00
0.00
18.00
15.00
3.00
16.00
25.00
26.00
16.00
12.00
1.00
3.00
30.00
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111 0.980 19.789 36.00 -1.84 - -
112 0.975 15.045 0.00 41.51 68.00 13.00
113 0.993 13.993 0.00 6.75 6.00 0.00
114 0.960 14.726 - - 8.00 3.00
115 0.960 14.718 - - 22.00 7.00
116 1.005 27.163 0.00 51.32 184.00 0.00
117 0.974 10.948 - - 20.00 8.00
118 0.949 21.942 - - 33.00 15.00
Table 10.8: 118-bus System: Branch Data

From To R X B Tap
Bus Bus p.u. p.u. p.u. p.u.

1 2 0.03030 0.09990 0.02540 1.0000

1 3 0.01290 0.04240 0.01082 1.0000

4 5 0.00176 0.00798 0.00210 1.0000

3 5 0.02410 0.10800 0.02840 1.0000

5 6 0.01190 0.05400 0.01426 1.0000

6 7 0.00459 0.02080 0.00550 1.0000

8 9 0.00244 0.03050 1.16200 1.0000

8 5 0.00000 0.02670 0.00000 0.9850

9 10 0.00258 0.03220 1.23000 1.0000

4 11 0.02090 0.06880 0.01748 1.0000

5 11 0.02030 0.06820 0.01738 1.0000

11 12 0.00595 0.01960 0.00502 1.0000

2 12 0.01870 0.06160 0.01572 1.0000

3 12 0.04840 0.16000 0.04060 1.0000

7 12 0.00862 0.03400 0.00874 1.0000

11 13 0.02225 0.07310 0.01876 1.0000

12 14 0.02150 0.07070 0.01816 1.0000

13 15 0.07440 0.24440 0.06268 1.0000

14 15 0.05950 0.19500 0.05020 1.0000

12 16 0.02120 0.08340 0.02140 1.0000

15 17 0.01320 0.04370 0.04440 1.0000

16 17 0.04540 0.18010 0.04660 1.0000

17 18 0.01230 0.05050 0.01298 1.0000

18 19 0.01119 0.04930 0.01142 1.0000

19 20 0.02520 0.11700 0.02980 1.0000

15 19 0.01200 0.03940 0.01010 1.0000

20 21 0.01830 0.08490 0.02160 1.0000

21 22 0.02090 0.09700 0.02460 1.0000

22 23 0.03420 0.15900 0.04040 1.0000

23 24 0.01350 0.04920 0.04980 1.0000

23 25 0.01560 0.08000 0.08640 1.0000

26 25 0.00000 0.03820 0.00000 0.9600

25 27 0.03180 0.16300 0.17640 1.0000

27 28 0.01913 0.08550 0.02160 1.0000

28 29 0.02370 0.09430 0.02380 1.0000
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30

26
17
29
23
31
27
15
19
35
35
33
34
34
38
37
37
30
39
40
40
41
43
34
44
45
46
46
47
42
42
45
48
49
49
51
52
53
49
49
54
54
55
56
50
56
51

17
30
30
31
31
32
32
32
33
34
36
37
37
36
37
37
39
40
38
40
41
42
42
44
43
45
46
47
48
49
49
49
49
49
50
51
52
53
54
54
54
55
56
56
57
57
58
58

0.00000
0.00431
0.00799
0.04740
0.01080
0.03170
0.02980
0.02290
0.03800
0.07520
0.00224
0.01100
0.04150
0.00871
0.00256
0.00000
0.03210
0.05930
0.00464
0.01840
0.01450
0.05550
0.04100
0.06080
0.04130
0.02240
0.04000
0.03800
0.06010
0.01910
0.07150
0.07150
0.06840
0.01790
0.02670
0.04860
0.02030
0.04050
0.02630
0.07300
0.08690
0.01690
0.00275
0.00488
0.03430
0.04740
0.03430
0.02550

0.03880
0.05040
0.08600
0.15630
0.03310
0.11530
0.09850
0.07550
0.12440
0.24700
0.01020
0.04970
0.14200
0.02680
0.00940
0.03750
0.10600
0.16800
0.05400
0.06050
0.04870
0.18300
0.13500
0.24540
0.16810
0.09010
0.13560
0.12700
0.18900
0.06250
0.32300
0.32300
0.18600
0.05050
0.07520
0.13700
0.05880
0.16350
0.12200
0.28900
0.29100
0.07070
0.00955
0.01510
0.09660
0.13400
0.09660
0.07190

0.00000
0.51400
0.90800
0.03990
0.00830
0.11730
0.02510
0.01926
0.03194
0.06320
0.00268
0.01318
0.03660
0.00568
0.00984
0.00000
0.02700
0.04200
0.42200
0.01552
0.01222
0.04660
0.03440
0.06068
0.04226
0.02240
0.03320
0.03160
0.04720
0.01604
0.08600
0.08600
0.04440
0.01258
0.01874
0.03420
0.01396
0.04058
0.03100
0.07380
0.07300
0.02020
0.00732
0.00374
0.02420
0.03320
0.02420
0.01788

0.9600
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.9350
1.0000
1.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
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54 59 0.05030 0.22930 0.05980 1.0000
56 59 0.08250 0.25100 0.05690 1.0000
56 59 0.08030 0.23900 0.05360 1.0000
55 59 0.04739 0.21580 0.05646 1.0000
59 60 0.03170 0.14500 0.03760 1.0000
59 61 0.03280 0.15000 0.03880 1.0000
60 61 0.00264 0.01350 0.01456 1.0000
60 62 0.01230 0.05610 0.01468 1.0000
61 62 0.00824 0.03760 0.00980 1.0000
63 59 0.00000 0.03860 0.00000 0.9600
63 64 0.00172 0.02000 0.21600 1.0000
64 61 0.00000 0.02680 0.00000 0.9850
38 65 0.00901 0.09860 1.04600 1.0000
64 65 0.00269 0.03020 0.38000 1.0000
49 66 0.01800 0.09190 0.02480 1.0000
49 66 0.01800 0.09190 0.02480 1.0000
62 66 0.04820 0.21800 0.05780 1.0000
62 67 0.02580 0.11700 0.03100 1.0000
65 66 0.00000 0.03700 0.00000 0.9350
66 67 0.02240 0.10150 0.02682 1.0000
65 68 0.00138 0.01600 0.63800 1.0000
47 69 0.08440 0.27780 0.07092 1.0000
49 69 0.09850 0.32400 0.08280 1.0000
68 69 0.00000 0.03700 0.00000 0.9350
69 70 0.03000 0.12700 0.12200 1.0000
24 70 0.00221 0.41150 0.10198 1.0000
70 71 0.00882 0.03550 0.00878 1.0000
24 72 0.04880 0.19600 0.04880 1.0000
71 72 0.04460 0.18000 0.04444 1.0000
71 73 0.00866 0.04540 0.01178 1.0000
70 74 0.04010 0.13230 0.03368 1.0000
70 75 0.04280 0.14100 0.03600 1.0000
69 75 0.04050 0.12200 0.12400 1.0000
74 75 0.01230 0.04060 0.01034 1.0000
76 77 0.04440 0.14800 0.03680 1.0000
69 77 0.03090 0.10100 0.10380 1.0000
75 77 0.06010 0.19990 0.04978 1.0000
77 78 0.00376 0.01240 0.01264 1.0000
78 79 0.00546 0.02440 0.00648 1.0000
77 80 0.01700 0.04850 0.04720 1.0000
77 80 0.02940 0.10500 0.02280 1.0000
79 80 0.01560 0.07040 0.01870 1.0000
68 81 0.00175 0.02020 0.80800 1.0000
81 80 0.00000 0.03700 0.00000 0.9350
77 82 0.02980 0.08530 0.08174 1.0000
82 83 0.01120 0.03665 0.03796 1.0000
83 84 0.06250 0.13200 0.02580 1.0000
83 85 0.04300 0.14800 0.03480 1.0000
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84
85
86
85
85
88
89
89
90
89
89
91
92
92
93
94
80
82
94
80
80
80
92
94
95
96
98
99
100
92
101
100
100
103
103
100
104
105
105
105
106
108
103
109
110
110
17
32

85
86
87
88
89
89
90
90
91
92
92
92
93
94
94
95
96
96
96
97
98
99
100
100
96
97
100
100
101
102
102
103
104
104
105
106
105
106
107
108
107
109
110
110
111
112
113
113

0.03020
0.03500
0.02828
0.02000
0.02390
0.01390
0.05180
0.02380
0.02540
0.00990
0.03930
0.03870
0.02580
0.04810
0.02230
0.01320
0.03560
0.01620
0.02690
0.01830
0.02380
0.04540
0.06480
0.01780
0.01710
0.01730
0.03970
0.01800
0.02770
0.01230
0.02460
0.01600
0.04510
0.04660
0.05350
0.06050
0.00994
0.01400
0.05300
0.02610
0.05300
0.01050
0.03906
0.02780
0.02200
0.02470
0.00913
0.06150

0.06410
0.12300
0.20740
0.10200
0.17300
0.07120
0.18800
0.09970
0.08360
0.05050
0.15810
0.12720
0.08480
0.15800
0.07320
0.04340
0.18200
0.05300
0.08690
0.09340
0.10800
0.20600
0.29500
0.05800
0.05470
0.08850
0.17900
0.08130
0.12620
0.05590
0.11200
0.05250
0.20400
0.15840
0.16250
0.22900
0.03780
0.05470
0.18300
0.07030
0.18300
0.02880
0.18130
0.07620
0.07550
0.06400
0.03010
0.20300

0.01234
0.02760
0.04450
0.02760
0.04700
0.01934
0.05280
0.10600
0.02140
0.05480
0.04140
0.03268
0.02180
0.04060
0.01876
0.01110
0.04940
0.05440
0.02300
0.02540
0.02860
0.05460
0.04720
0.06040
0.01474
0.02400
0.04760
0.02160
0.03280
0.01464
0.02940
0.05360
0.05410
0.04070
0.04080
0.06200
0.00986
0.01434
0.04720
0.01844
0.04720
0.00760
0.04610
0.02020
0.02000
0.06200
0.00768
0.05180

1

R GG Y U T G G G G G G G G T G AT G G T T G G T T G T G AT G AT GO T T G G T T T G G Y T G G T G G AT T QT WU T G

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
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32 114 0.01350 0.06120 0.01628 1.0000
27 115 0.01640 0.07410 0.01972 1.0000
114 115 0.00230 0.01040 0.00276 1.0000
68 116 0.00034 0.00405 0.16400 1.0000
12 117 0.03290 0.14000 0.03580 1.0000
75 118 0.01450 0.04810 0.01198 1.0000
76 118 0.01640 0.05440 0.01356  1.0000

222



Appendices

10.7.5 G.5: 300-bus IEEE Test System Data

Table 10.9: 300-bus System: Buses Data

Bus Voltage Generation Demand Shunt Elements  Area
# Mag(pu) Ang(deg) P (MW) Q (MVAr) P (MW) Q (MVAr) Gs (MW) Bs (MVAr) #
1 1.028 5.967 - - 90.00 49.00 - -
2 1.035 7.755 - - 56.00 15.00 - -
3 0.997 6.657 - - 20.00 0.00 - -
4 1.031 4.728 - - - - - -
5 1.019 4.701 - - 353.00 130.00 - -
6 1.031 7.006 - - 120.00 41.00 - -
7 0.993 6.206 - - - - - -
8 1.015 2.415 0.00 9.85 63.00 14.00 - -

9 1.003 2.871 - - 96.00 43.00 - -
10 1.021 1.363 0.00 20.01 153.00 33.00 - -

11 1.006 2.481 - - 83.00 21.00 - -
12 0.997 5.230 - - - - - -
13 0.998 -0.537 - - 58.00 10.00 - -
14 0.999 -4.796 - - 160.00 60.00 - -
15 1.034 -8.567 - - 126.70 23.00 - -
16 1.032 -2.622 - - - - - -
17 1.065 -13.085 - - 561.00 220.00 - -

19 0.982 1.089 - - - - - -
20 1.001 -2.447 0.00 20.30 605.00 120.00 - -

21 0.975 1.634 - - 77.00 1.00 - -
22 0.996 -1.960 - - 81.00 23.00 - -
23 1.050 3.951 - - 21.00 7.00 - -
24 1.006 6.033 - - - - - -
25 1.023 1.453 - - 45.00 12.00 - -
26 0.999 -1.721 - - 28.00 9.00 - -
27 0.975 -4.883 - - 69.00 13.00 - -
33 1.025 -12.002 - - 55.00 6.00 - -
34 1.041 -7.901 - - - - - -

35 0.976 -25.682 - - - - - -
36 1.001 -22.519 - - - - - -

37 1.020 -11.214 - - 85.00 32.00 - -
38 1.020 -12.539 - - 155.00 18.00 - -
39 1.054 -5.773 - - - - - -
40 1.022 -12.761 - - 46.00 -21.00 - -
41 1.029 -10.425 - - 86.00 0.00 - -
42 1.045 -7.407 - - - - - -
43 1.001 -16.763 - - 39.00 9.00 - -
44 1.009 -17.431 - - 195.00 29.00 - -

45 1.022 -14.690 - - - - - -
46 1.035 -11.697 - - - - - -

e e e e e e e e e e e e e e A R S TR 0 T 1 T G T A T A T 1 TR 1 N T R A S I

47 0.978 -23.163 - - 58.00 11.80 - -
48 1.002 -16.121 - - 41.00 19.00 - -
49 1.047 -2.945 - - 92.00 26.00 - -
51 1.025 -8.135 - - -5.00 5.00 - -
52 0.998 -11.839 - - 61.00 28.00 - -
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53
54
55
57
58
59
60
61
62
63
64
69
70
71
72
73
74
76
77
78
79
80
81
84
85
86
87
88
89
90
91
92
94
97
98
99
100
102
103
104
105
107
108
109
110
112
113
114
115
116
117
118

224

0.996
1.005
1.015
1.033
0.992
0.979
1.025
0.991
1.016
0.958
0.948
0.963
0.951
0.979
0.970
0.978
0.996
0.963
0.984
0.990
0.982
0.987
1.034
1.025
0.987
0.991
0.992
1.015
1.032
1.027
1.052
1.052
0.993
1.018
1.000
0.989
1.006
1.001
1.029
0.996
1.022
1.009
0.990
0.975
0.973
0.974
0.970
0.977
0.960
1.025
0.935
0.930

-17.579
-16.222
-12.187
-7.966
-5.959
-5.252
-9.515
-3.433
-1.062
-17.589
-12.936
-26.472
-35.124
-29.845
-27.441
-25.737
-21.943
-26.503
-24.911
-24.035
-25.011
-24.817
-18.757
-17.148
-17.765
-14.248
-7.793
-20.867
-11.143
-11.235
-9.437
-6.244
-9.449
-13.287
-14.665
-20.375
-14.503
-15.293
-12.118
-17.402
-13.002
-16.082
-20.363
-26.292
-24.932
-29.274
-25.447
-29.209
-13.548
-12.667
-4.699
-4.102

69.00
10.00
22.00
98.00
14.00
218.00

227.00

70.00

56.00
116.00
57.00
224.00

208.00
74.00
48.00
28.00

37.00

3.00
1.00
10.00
20.00
1.00
106.00

110.00

30.00

20.00
38.00
19.00
71.00

107.00
28.00

14.00
7.00

13.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

650.00
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119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

1.044
0.958
0.987
0.973
1.001
1.023
1.010
0.998
1.000
1.002
1.003
1.019
0.986
1.005
1.002
1.022
1.019
1.048
1.047
1.055
1.012
1.043
1.051
1.016
1.044
1.016
1.008
1.053
1.053
1.058
1.073
0.987
1.005
1.053
1.044
0.966
1.018
0.963
0.984
0.999
0.987
1.000
1.036
0.992
1.041
0.984
1.000
0.997
0.971
1.002
0.988
0.929

5.187
-8.749
-12.615
-14.343
-17.613
-13.464
-18.407
-12.843
-10.502
-4.756
-4.377
5.578
6.074
3.064
-5.439
-8.022
-6.734
1.563
-1.432
-6.331
-3.545
-3.412
0.074
-2.742
4.062
-0.661
-0.130
4.347
8.389
0.306
5.257
6.355
4.150
9.264
10.484
-1.776
6.774
5.169
-11.905
-11.381
-9.798
-12.530
8.867
18.524
2.929
9.684
26.332
30.244
-6.885
-4.779
-6.657
0.108

1930.00

240.00
0.00

205.00

1050.70 -

- 777.00
- 535.00
- 229.10
- 78.00

119.95 276.40

199.84 514.80
- 57.90
- 380.80

- 169.20
- 55.20
- 273.60
228.61 1019.20
- 595.00
- 387.70
65.10 145.00
- 56.50
123.78 89.50

- 24.00
35.00 -
-49.96 -

- 63.00
49.97 -
-49.93 17.00
-23.84 -

- 70.00

- 200.00
15.03 75.00

- 123.50

- 33.00

- 35.00

- 85.00

- 0.00

- 299.90

90.21 481.80

41.60
18.20
99.80
135.20
83.30
114.70
58.00
24.50
35.50
14.00
25.00

9.00

5.00
50.00
50.00
-24.30

16.50
15.00

24.00
0.40

95.70

205.00
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171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

226

0.983
1.024
0.984
1.062
0.973
1.052
1.008
0.940
0.970
0.979
1.052
1.045
0.972
1.039
1.052
1.065
1.065
1.053
1.003
1.055
1.044
0.937
0.998
1.049
1.036
0.974
0.992
1.015
0.954
0.956
0.974
0.991
1.003
0.967
0.986
1.004
1.019
0.999
1.005
0.980
1.002
1.013
1.010
0.992
0.987
0.975
1.022
1.008
1.055
1.008
1.000
1.050

-9.914
-6.200
-12.729
-2.667
-7.180
4.691
0.646
-6.537
-9.338
-3.065
-1.303
-4.165
7.145
-6.824
-4.310
2.194
1.419
-0.701
-26.013
-20.417
12.452
-10.978
-27.470
-19.045
-20.581
-24.229
-23.062
-20.094
-25.446
-25.367
-29.233
-24.969
-21.926
-29.549
-28.516
-28.473
-28.295
-26.998
-25.614
-23.603
-22.971
-22.203
-11.379
-17.238
-19.951
-22.271
-21.987
-22.422
-20.947
-21.520
-22.285
-22.964

0.00

200.00
252.00
252.00

475.00
1973.00

424.00

100.00
450.00
250.00

33.26
237.27
278.32

-66.91
692.07

93.42

763.60
26.50
163.50

176.00
5.00
28.00
427.40
74.00
69.50
73.40
240.70
40.00
136.80

59.80

59.80

182.60
7.00

489.00
800.00

10.00
43.00
64.00
35.00
27.00
41.00
38.00
42.00
72.00
0.00
12.00
-21.00
7.00
38.00

96.00

22.00
47.00
176.00
100.00
131.00
285.00
171.00
328.00

291.10
0.00
43.00

83.00
4.00
12.00
173.60
29.00
49.30
0.00
89.00
4.00
16.60

24.30

24.30

43.60
2.00

53.00
72.00

3.00
14.00
21.00
12.00
12.00
14.00
13.00
14.00
24.00
-5.00

2.00

-14.20

2.00

13.00

7.00

16.00
26.00
105.00
75.00
96.00

100.00
70.00
188.00
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223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
281
319
320
322
323
324
526
528
531
562
562
609
664
251
252
253
254
255
256
257
258
259
260
261

0.997
1.000
0.945
1.018
1.000
1.042
1.050
1.040
1.054
1.041
1.000
1.039
1.010
1.017
1.056
1.010
1.000
1.024
1.050
0.993
1.010
0.992
0.971
0.965
0.969
0.977
0.976
1.021
1.025
1.015
1.015
1.000
0.981
0.975
0.943
0.972
0.960
1.001
0.978
0.958
1.031
1.013
1.024
1.012
0.969
1.051
1.051
1.032
1.015
1.051
1.051
1.051

-22.496
-21.350
-11.142
-21.405
-27.016
-20.737
-19.741
-13.620
-21.020
-22.994
-25.696
-20.691
-20.823
-15.195
-20.898
-20.735
-15.657
-19.934
-16.304
-17.226
-18.949
-19.888
-20.577
-21.416
-21.330
-24.810
-25.233
-23.379
-19.861
1.488
-2.221
-17.690
-13.748
-23.522
-34.277
-37.543
-29.064
-23.330
-27.944
-28.760
-16.833
3.925
-7.503
-15.156
-24.701
10.809
12.502
13.774
5.009
11.589
-10.451
6.162

600.00

250.00
550.00

575.43
170.00
84.00

467.00
623.00
1210.00
234.00
372.00
330.00
185.00

300.23

164.08
68.38

-35.44
51.76
52.20

139.61
93.42
420.02
51.81
200.25
348.05
6.32
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262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

1.029
1.050
1.015
1.051
0.997
1.021
1.014
1.002
0.989
1.051
1.051
1.015
1.012
0.994
0.983
0.977
1.012
1.003
0.991
1.002
0.989
0.965
0.975
0.971
0.965
0.966
0.932
0.944
0.929
0.997
0.950
0.960
0.957
0.939
0.964
0.950
0.965
0.979
1.000
0.979
1.000
1.000
1.000
0.975
0.980
0.980
1.041

12.608
2.146
-13.881
0.000
-7.476
-3.411
2.002
5.831
-25.315
19.044
2.769
35.072
-11.235
-18.844
-19.673
-19.810
-11.308
-17.412
-18.673
-17.253
-19.064
-21.637
-19.374
-21.410
-20.435
-20.345
-25.016
-23.827
-25.331
-21.087
-23.172
-22.658
-22.579
-24.411
-21.312
-22.476
-21.414
-19.770
-19.381
-17.233
-17.668
-6.812
-7.523
-20.459
-19.905
-19.277
-18.182

410.00
500.00
37.00
455.95
45.00
165.00
400.00
400.00
116.00
1292.00
700.00
5563.00

0.00

0.00

0.00
50.00
8.00

106.67
153.35
41.56
38.84
25.01
89.91
120.64
150.01
86.93
324.37
283.93
136.92

2.00

12.20
11.17

22.00
4.07

4.75
1.53
1.35
0.45
0.45
1.84
1.39
1.89
1.55
1.66
3.03
1.86
2.58
1.01
0.81
1.60
35.81
30.00
26.48

1.02
1.02
3.80
1.19
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Table 10.10: 300-bus System: Branch Data

From To R X B Tap

Bus Bus p.u. p.u. p.u. p.u.
37 274 0.00006 0.00046 0.00000 1.0082
274 278 0.00080 0.00348 0.00000 1.0000
274 279 0.02439 0.43682 0.00000 0.9668
274 282 0.03624 0.64898 0.00000 0.9796
278 301 0.01578 0.37486 0.00000  1.0435
278 302 0.01578 0.37486 0.00000  0.9391
278 303 0.01602 0.38046 0.00000 1.0435
278 304 0.00000 0.15200 0.00000 1.0435
278 305 0.00000 0.80000 0.00000 1.0435
279 280 0.05558 0.24666 0.00000  1.0000
279 276 0.11118 0.49332 0.00000  1.0000
279 276 0.11118 0.49332 0.00000  1.0000
282 275 0.07622 0.43286 0.00000  1.0000
282 275 0.07622 0.43286 0.00000  1.0000
275 283 0.05370 0.07026  0.00000  1.0000
283 285 1.10680 0.95278 0.00000  1.0000
283 284 0.44364 2.81520 0.00000  1.0000
275 286 0.50748 3.22020 0.00000  1.0000
285 287 0.66688 3.94400 0.00000 1.0000
285 288 0.61130 3.61520 0.00000  1.0000
280 306 0.44120 2.96680 0.00000  1.0000
280 307 0.30792 2.05700 0.00000 1.0000
280 276 0.05580 0.24666 0.00000 1.0000
276 289 0.73633 4.67240 0.00000 1.0000
276 290 0.76978 4.88460 0.00000  1.0000
276 291 0.75732 4.80560 0.00000 1.0000
276 300 0.07378 0.06352 0.00000  1.0000
300 277 0.03832 0.02894 0.00000  1.0000
277 297 0.36614 2.45600 0.00000 1.0000
277 298 1.05930 5.45360 0.00000 1.0000
277 299 0.15670 1.69940 0.00000  1.0000
276 292 0.13006 1.39120 0.00000  1.0000
276 293 0.54484 3.45720 0.00000  1.0000
276 294 0.15426 1.67290 0.00000  1.0000
276 295 0.38490 2.57120 0.00000  1.0000
276 296 0.44120 2.96680 0.00000  1.0000
282 308 0.23552 0.92940 0.00000  1.0000
303 309 0.00000 0.75000 0.00000 0.9583
1 5 0.00100 0.00600 0.00000 1.0000
2 6 0.00100 0.00900 0.00000 1.0000
2 8 0.00600 0.02700 0.05400 1.0000
3 7 0.00000 0.00300 0.00000 1.0000
3 19 0.00800 0.06900 0.13900  1.0000
3 150 0.00100 0.00700 0.00000 1.0000
4 16 0.00200 0.01900 1.12700  1.0000
5 9 0.00600 0.02900 0.01800  1.0000
7 12 0.00100 0.00900 0.07000  1.0000
7 131 0.00100 0.00700 0.01400 1.0000
8 11 0.01300 0.05950 0.03300 1.0000
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8 14 0.01300 0.04200 0.08100  1.0000
9 11 0.00600 0.02700 0.01300  1.0000
11 13 0.00800 0.03400 0.01800  1.0000
12 21 0.00200 0.01500 0.11800  1.0000
13 20 0.00600 0.03400 0.01600  1.0000
14 15 0.01400 0.04200 0.09700  1.0000
15 37 0.06500 0.24800 0.12100  1.0000
15 89 0.09900 0.24800 0.03500  1.0000
15 90 0.09600 0.36300 0.04800 1.0000
16 42 0.00200 0.02200 1.28000  1.0000
19 21 0.00200 0.01800 0.03600  1.0000
19 87 0.01300 0.08000 0.15100  1.0000
20 22 0.01600 0.03300 0.01500  1.0000
20 27 0.06900 0.18600 0.09800  1.0000
21 24 0.00400 0.03400 0.28000  1.0000
22 23 0.05200 0.11100 0.05000  1.0000
23 25 0.01900 0.03900 0.01800  1.0000
24 319 0.00700 0.06800 0.13400  1.0000
25 26 0.03600 0.07100 0.03400  1.0000
26 27 0.04500 0.12000 0.06500  1.0000
26 320 0.04300 0.13000 0.01400 1.0000
33 34 0.00000 0.06300 0.00000 1.0000
33 38 0.00250 0.01200 0.01300  1.0000
33 40 0.00600 0.02900 0.02000  1.0000
33 41 0.00700 0.04300 0.02600  1.0000
34 42 0.00100 0.00800 0.04200  1.0000
35 72 0.01200 0.06000 0.00800  1.0000
35 76 0.00600 0.01400 0.00200  1.0000
35 77 0.01000 0.02900 0.00300  1.0000
36 88 0.00400 0.02700 0.04300 1.0000
37 38 0.00800 0.04700 0.00800  1.0000
37 40 0.02200 0.06400 0.00700  1.0000
37 41 0.01000 0.03600 0.02000  1.0000
37 49 0.01700 0.08100 0.04800 1.0000
37 89 0.10200 0.25400 0.03300  1.0000
37 90 0.04700 0.12700 0.01600  1.0000
38 41 0.00800 0.03700 0.02000  1.0000
38 43 0.03200 0.08700 0.04000  1.0000
39 42 0.00060 0.00640 0.40400 1.0000
40 48 0.02600 0.15400 0.02200  1.0000
41 42 0.00000 0.02900 0.00000  1.0000
41 49 0.06500 0.19100 0.02000  1.0000
41 51 0.03100 0.08900 0.03600  1.0000
42 46 0.00200 0.01400 0.80600  1.0000
43 44 0.02600 0.07200 0.03500  1.0000
43 48 0.09500 0.26200 0.03200  1.0000
43 53 0.01300 0.03900 0.01600  1.0000
44 47 0.02700 0.08400 0.03900  1.0000
44 54 0.02800 0.08400 0.03700  1.0000
45 60 0.00700 0.04100 0.31200  1.0000
45 74 0.00900 0.05400 0.41100  1.0000
46 81 0.00500 0.04200 0.69000  1.0000
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47
47
48
49
51
52
53
54
55
57
57
58
59
60
62
62
63
69
69
70
70
71
71
72
72
73
73
74
74
76
77
77
77
77
78
78
79
80
81
81
85
86
86
89
90
91
91
92
92
94
97
97

73
113
107
51
52
55
54
55
57
58
63
59
61
62
64
144
526
211
79
71
528
72
73
77
531
76
79
88
562
77
78
80
552
609
79
84
211
211
194
195
86
87
323
91
92
94
97
103
105
97
100
102

0.05200
0.04300
0.02500
0.03100
0.03700
0.02700
0.02500
0.03500
0.06500
0.04600
0.15900
0.00900
0.00200
0.00900
0.01600
0.00100
0.02650
0.05100
0.05100
0.03200
0.02000
0.03600
0.03400
0.01800
0.02560
0.02100
0.01800
0.00400
0.02860
0.01600
0.00100
0.01400
0.08910
0.07820
0.00600
0.00000
0.09900
0.02200
0.00350
0.00350
0.00800
0.01200
0.00600
0.04700
0.03200
0.10000
0.02200
0.01900
0.01700
0.27800
0.02200
0.03800

0.14500
0.11800
0.06200
0.09400
0.10900
0.08000
0.07300
0.10300
0.16900
0.08000
0.53700
0.02600
0.01300
0.06500
0.10500
0.00700
0.17200
0.23200
0.15700
0.10000
0.12340
0.13100
0.09900
0.08700
0.19300
0.05700
0.05200
0.02700
0.20130
0.04300
0.00600
0.07000
0.26760
0.21270
0.02200
0.03600
0.37500
0.10700
0.03300
0.03300
0.06400
0.09300
0.04800
0.11900
0.17400
0.25300
0.07700
0.14400
0.09200
0.42700
0.05300
0.09200

0.07300
0.01300
0.00700
0.04300
0.04900
0.03600
0.03500
0.04700
0.08200
0.03600
0.07100
0.00500
0.01500
0.48500
0.20300
0.01300
0.02600
0.02800
0.02300
0.06200
0.02800
0.06800
0.04700
0.01100
0.00000
0.03000
0.01800
0.05000
0.37900
0.00400
0.00700
0.03800
0.02900
0.02200
0.01100
0.00000
0.05100
0.05800
0.53000
0.53000
0.12800
0.18300
0.09200
0.01400
0.02400
0.03100
0.03900
0.01700
0.01200
0.04300
0.00700
0.01200

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
1.0000
1.0000
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97
98
98
99
99
99
99
100
102
103
104
104
105
105
108
109
109
109
110
112
115
116
117
118
118
253
118
119
119
122
122
123
123
125
126
126
126
126
126
126
127
127
127
128
128
129
129
130
130
130
130
133
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103
100
102
107
108
109
110
102
104
105
108
322
107
110
324
110
113
114
112
114
122
120
118
119
253
120
121
120
121
123
125
124
125
126
127
129
132
157
158
169
128
134
168
130
133
130
133
132
151
167
168
137

0.04800
0.02400
0.03400
0.05300
0.00200
0.04500
0.05000
0.01600
0.04300
0.01900
0.07600
0.04400
0.01200
0.15700
0.07400
0.07000
0.10000
0.10900
0.14200
0.01700
0.00360
0.00200
0.00010
0.00000
0.00000
0.00000
0.00220
0.00000
0.00000
0.08080
0.09650
0.03600
0.04760
0.00060
0.00590
0.01150
0.01980
0.00500
0.00770
0.01650
0.00590
0.00490
0.00590
0.00780
0.00260
0.00760
0.00210
0.00160
0.00170
0.00790
0.00780
0.00170

0.12200
0.06400
0.12100
0.13500
0.00400
0.35400
0.17400
0.03800
0.06400
0.06200
0.13000
0.12400
0.08800
0.40000
0.20800
0.18400
0.27400
0.39300
0.40400
0.04200
0.01990
0.10490
0.00180
0.02710
0.61630
-0.36970
0.29150
0.03390
0.05820
0.23440
0.36690
0.10760
0.14140
0.01970
0.04050
0.11060
0.16880
0.05000
0.05380
0.11570
0.05770
0.03360
0.05770
0.07730
0.01930
0.07520
0.01860
0.01640
0.01650
0.07930
0.07840
0.01170

0.01500
0.00700
0.01500
0.01700
0.00200
0.04400
0.02200
0.00400
0.02700
0.00800
0.04400
0.01500
0.01100
0.04700
0.02600
0.02100
0.03100
0.03600
0.05000
0.00600
0.00400
0.00100
0.01700
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.02900
0.05400
0.11700
0.14900
0.00000
0.25000
0.18500
0.32100
0.33000
0.33500
0.17100
0.09500
0.20800
0.09500
0.12600
0.03000
0.12200
0.03000
0.02600
0.02600
0.12700
0.12500
0.28900

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
1.0000
1.0000
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133
133
133
134
134
135
136
136
137
137
137
137
139
140
140
140
140
140
140
141
142
143
143
145
145
146
148
148
152
153
154
154
155
157
158
158
162
162
163
165
167
172
172
173
173
173
175
175
176
177
178
178

168
169
171
135
184
136
137
152
140
181
186
188
172
141
142
145
146
147
182
146
143
145
149
146
149
147
178
179
153
161
156
183
161
159
159
160
164
165
164
166
169
173
174
174
175
176
176
179
177
178
179
180

0.00260
0.00210
0.00020
0.00430
0.00390
0.00910
0.01250
0.00560
0.00150
0.00050
0.00070
0.00050
0.05620
0.01200
0.01520
0.04680
0.04300
0.04890
0.00130
0.02910
0.00600
0.00750
0.01270
0.00850
0.02180
0.00730
0.05230
0.13710
0.01370
0.00550
0.17460
0.08040
0.01100
0.00080
0.00290
0.00660
0.00240
0.00180
0.00440
0.00020
0.00180
0.06690
0.05580
0.08070
0.07390
0.17990
0.09040
0.07700
0.02510
0.02220
0.04980
0.00610

0.01930
0.01860
0.01010
0.02930
0.03810
0.06230
0.08900
0.03900
0.01140
0.00340
0.01510
0.00340
0.22480
0.08360
0.11320
0.33690
0.30310
0.34920
0.00890
0.22670
0.05700
0.07730
0.09090
0.05880
0.15110
0.05040
0.15260
0.39190
0.09570
0.02880
0.31610
0.30540
0.05680
0.00980
0.02850
0.04480
0.03260
0.02450
0.05140
0.01230
0.01780
0.48430
0.22100
0.33310
0.30710
0.50170
0.36260
0.30920
0.08290
0.08470
0.18550
0.02900

0.03000
0.03000
0.00000
0.18000
0.25800
0.38500
0.54000
0.95300
0.28400
0.02100
0.12600
0.02100
0.08100
0.12300
0.68400
0.51900
0.46300
0.53800
0.11900
0.34200
0.76700
0.11900
0.13500
0.08700
0.22300
0.07400
0.07400
0.07600
0.14100
0.19000
0.04000
0.04500
0.38800
0.06900
0.19000
0.27700
0.23600
1.66200
3.59700
0.00000
0.02900
0.06300
0.03100
0.04900
0.04300
0.06900
0.04800
0.05400
0.04700
0.05000
0.02900
0.08400

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
1.0000
1.0000
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181
181
184
186
187
188
189
189
190
190
191
192
193
193
194
194
195
196
196
197
197
198
198
198
198
199
199
200
201
203
204
205
206
206
212
213
214
214
215
216
217
217
217
219
220
220
220
221
222
224
224
225

234

138
187
185
188
188
138
208
209
231
240
192
225
205
208
219
664
219
197
210
198
211
202
203
210
211
200
210
210
204
211
205
206
207
208
215
214
215
242
216
217
218
219
220
237
218
221
238
223
237
225
226
191

0.00040
0.00040
0.00250
0.00070
0.00070
0.00040
0.03300
0.04600
0.00040
0.00000
0.00300
0.00200
0.04500
0.04800
0.00310
0.00240
0.00310
0.01400
0.03000
0.01000
0.01500
0.33200
0.00900
0.02000
0.03400
0.07600
0.04000
0.08100
0.12400
0.01000
0.04600
0.30200
0.07300
0.24000
0.01390
0.00250
0.00170
0.00150
0.00450
0.00400
0.00000
0.00050
0.00270
0.00030
0.00370
0.00100
0.00160
0.00030
0.00140
0.01000
0.00190
0.00100

0.02020
0.00830
0.02450
0.00860
0.00860
0.02020
0.09500
0.06900
0.00220
0.02750
0.04800
0.00900
0.06300
0.12700
0.02860
0.03550
0.02860
0.04000
0.08100
0.06000
0.04000
0.68800
0.04600
0.07300
0.10900
0.13500
0.10200
0.12800
0.18300
0.05900
0.06800
0.44600
0.09300
0.42100
0.07780
0.03800
0.01850
0.01080
0.02490
0.04970
0.04560
0.01770
0.03950
0.00180
0.04840
0.02950
0.00460
0.00130
0.05140
0.06400
0.00810
0.06100

0.00000
0.11500
0.16400
0.11500
0.11500
0.00000
0.00000
0.00000
6.20000
0.00000
0.00000
0.00000
0.00000
0.00000
0.50000
0.36000
0.50000
0.00400
0.01000
0.00900
0.00600
0.00000
0.02500
0.00800
0.03200
0.00900
0.00500
0.01400
0.00000
0.00800
0.00000
0.00000
0.00000
0.00000
0.08600
0.00000
0.02000
0.00200
0.02600
0.01800
0.00000
0.02000
0.83200
5.20000
0.43000
0.50300
0.40200
1.00000
0.33000
0.48000
0.86000
0.00000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
1.0000
1.0000
1.0000
1.0000
1.0000
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114
116
121
122
130
130

102

207
124
115
157
131
150

0.00050
0.00090
0.00190
0.00260
0.00130
0.00000
0.00020
0.00010
0.00170
0.00020
0.00060
0.00020
0.00050
0.00030
0.00820
0.01120
0.01270
0.03260
0.01950
0.01570
0.03600
0.02680
0.04280
0.03510
0.06160
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.01940
0.00100
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00520
0.00000
0.00050
0.00000
0.00000

0.02120
0.04720
0.00870
0.09170
0.02880
0.06260
0.00690
0.00060
0.04850
0.02590
0.02720
0.00060
0.01540
0.00430
0.08510
0.07230
0.03550
0.18040
0.05510
0.07320
0.21190
0.12850
0.12150
0.10040
0.18570
0.05200
0.05200
0.00500
0.03900
0.03900
0.08900
0.05300
0.03110
0.03800
0.01400
0.06400
0.04700
0.02000
0.02100
0.05900
0.03800
0.02440
0.02000
0.04800
0.04800
0.04600
0.14900
0.01740
0.02800
0.01950
0.01800
0.01400

0.00000
0.18600
1.28000
0.00000
0.81000
0.00000
1.36400
3.57000
0.00000
0.14400
0.00000
0.80000
0.00000
0.00900
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
1.0000
0.9470
0.9560
0.9710
0.9480
0.9590
1.0460
0.9850
0.9561
0.9710
0.9520
0.9430
1.0100
1.0080
1.0000
0.9750
1.0170
1.0000
1.0000
1.0000
1.0000
1.0150
0.9670
1.0100
1.0500
1.0000
1.0522
1.0522
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132
141
142
143
143
145
151
153
155
159
160
163
164
182
189
193
195
200
201
202
204
209
211
218
223
229
234
238
196
119
120
256
257
268
269
273
262
255
271
258
261
265
272
259
260
263
267
264
266
270

170
174
175
144
148
180
170
183
156
117
124
137
155
139
210
196
212
248
69
211
254
198
212
219
224
230
236
239
254
251
252

61
62
166
24

130
11
23
49

139
12
17
39
57
44
55
71

0.00100
0.00240
0.00240
0.00000
0.00130
0.00050
0.00100
0.00270
0.00080
0.00000
0.00120
0.00130
0.00090
0.00030
0.00000
0.00000
0.00080
0.00000
0.00000
0.00000
0.02000
0.02600
0.00300
0.00100
0.00120
0.00100
0.00050
0.00050
0.00010
0.00100
0.00000
0.00100
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

0.04020
0.06030
0.04980
0.08330
0.03710
0.01820
0.03920
0.06390
0.02560
0.01600
0.03960
0.03840
0.02310
0.01310
0.25200
0.23700
0.03660
0.22000
0.09800
0.12800
0.20400
0.21100
0.01220
0.03540
0.01950
0.03320
0.01600
0.01600
0.02000
0.02300
0.02300
0.01460
0.01054
0.02380
0.03214
0.01540
0.02890
0.01953
0.01930
0.01923
0.02300
0.01240
0.01670
0.03120
0.01654
0.03159
0.05347
0.18181
0.19607
0.06896

0.00000
0.00000
-0.08700
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
-0.05700
-0.03300
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
-0.01200
0.00000
0.00000
-0.01000
-0.36400
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

1.0500
0.9750
1.0000
1.0350
0.9565
1.0000
1.0500
1.0730
1.0500
1.0506
0.9750
0.9800
0.9560
1.0500
1.0300
1.0300
0.9850
1.0000
1.0300
1.0100
1.0500
1.0300
1.0000
0.9700
1.0000
1.0200
1.0700
1.0200
1.0000
1.0223
0.9284
1.0000
1.0000
1.0000
0.9500
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.9420
0.9650
0.9500
0.9420
0.9420
0.96
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10.8 Appendix H
10.8.1 H.1 Published Journal Papers

Paper 1. G. Valverde and V. Terzija; “Unscented kalman filter for power system dynamic state
estimation”, IET Generation, Transmission & Distribution, vol. 5, no.1, pp: 29-37, Jan. 2011.

Paper 2. G. Valverde, S. Chakrabarti, E. Kyriakides and V. Terzija; “A Constrained
Formulation for Hybrid State Estimation” IEEE Transactions on Power Systems, vol. 26, no.3,
pp. 1102-1109, Aug. 2011.

Paper 3. G. Valverde, E. Kyriakides, G. Heydt and V. Terzija, “Non-linear Estimation of
Synchronous Machine Parameters using Operating Data”, IEEE Transactions on Energy
Conversion, vol. 26, no.3, pp: 831-839. Sept. 2011.

Paper 4. G. Valverde, A. Saric and V. Terzija: “Probabilistic Load Flow with non-Gaussian
Correlated Random Variables using Gaussian Mixture Models”, accepted for publication in
IET Generation, Transmission & Distribution, Jan. 2012.

10.8.2 H.2 Submitted Journal Papers

Paper 5. G. Valverde, A. Saric and V. Terzija: “Stochastic Monitoring of Distribution
Networks with Correlated Input Variables” submitted to IEEE Transactions on Power Systems
(under 2" revision), Dec. 2011.

10.8.3 H.3 Published Conference Papers

Paper 6. G. Valverde and V. Terzija, “PMU-based multi-area state estimation with low data
exchange” IEEE Conference on Innovative Smart Grid Technologies Europe. Gothenburg,
Oct. 2010.

Paper 7. G. Valverde, A. Saric and V. Terzija “Iterative Load Re-allocation for Distribution
State Estimation,” IEEE PowerTech in Trondheim, Norway, Jun. 2011.

Paper 8. G. Valverde, E. Kyriakides and V. Terzija, “A Non-linear Approach for On-line
Parameter Estimation of Synchronous Machines,” 17" Power Systems Computation
Conference (PSCC 2011), Stockholm, Sweden, paper no. 189, pp. 1-7, Aug. 2011.

Paper 9. G. Valverde, J. Quiros Tortos and V. Terzija: “Comparison of Gaussian Mixture

Reductions for Probabilistic Studies in Power Systems” accepted for publication in IEEE PES
General Meeting, San Diego, 2012.
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