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ABSTRACT 

Simulating Avian Wingbeats and Wakes 

Ben Parslew  ·  The University of Manchester  ·  Doctor of Philosophy  ·  05/01/2012 

Analytical models of avian flight have previously been used to predict mechanical and 

metabolic power consumption during cruise. These models are limited, in that they neglect 

details of wing kinematics, and model power by assuming a fixed or rotary wing (actuator 

disk) weight support mechanism. Theoretical methods that incorporate wing kinematics 

potentially offer more accurate predictions of power consumption by calculating 

instantaneous aerodynamic loads on the wing. However, the success of these models 

inherently depends on the availability and accuracy of experimental kinematic data. The 

predictive simulation approach offers an alternative strategy, whereby kinematics are 

neither neglected nor measured experimentally, but calculated as part of the solution 

procedure. 

This thesis describes the development of a predictive tool for simulating avian wingbeat 

kinematics and wakes. The tool is designed in a modular format, in order to be extensible 

for future research in the biomechanics community. The primary simulation module is an 

inverse dynamic avian wing model that predicts aerodynamic forces and mechanical power 

consumption for given wing kinematics. The model is constructed from previous 

experimental studies of avian wing biomechanics. Wing motion is defined through joint 

kinematic time histories, and aerodynamic forces are predicted using blade element 

momentum theory. Mechanical power consumption at the shoulder joint is derived from 

both aerodynamic and inertial torque components associated with the shoulder joint 

rotation rate.  

An optimisation module is developed to determine wing kinematics that generate 

aerodynamic loads for propulsion and weight support in given flight conditions, while 

minimising mechanical power consumption.  For minimum power cruise, optimisation 

reveals numerous local minima solutions that exhibit large variations in wing kinematics. 

Validation of the model against wind tunnel data shows that optimised solutions capture 

qualitative trends in wing kinematics with varying cruise speed. Sensitivity analyses show 

that the model outputs are most affected by the defined maximum lift coefficient and wing 

length, whereby perturbations in these parameters lead to significant changes in the 

predicted amount of upstroke wing retraction.  

Optimised solutions for allometrically scaled bird models show only small differences in 

predicted advance ratio, which is consistent with field study observations. Accelerating and 

climbing flight solutions also show similar qualitative trends in wing kinematics to 

experimental measurements, including a reduction in stroke plane inclination for 

increasing acceleration or climb angle. The model predicts that both climb angle and climb 

speed should be greater for birds with more available instantaneous mechanical power.  

Simulations of the wake using a discrete vortex model capture fundamental features of the 

wake geometry that have been observed experimentally. Reconstruction of the velocity 

field shows that this method overpredicts induced velocity in retracting-wing wakes, and 

should therefore only be applied to extended-wing phases of an avian wingbeat. 
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NOMENCLATURE 

a Acceleration 

AR
 

Advance ratio 

c Wing chord length 

cl 2D section lift coefficient 

45lc  2D section lift coefficient at 45° angle of attack 

dc  2D section drag coefficient 

0dc  2D section drag coefficient at 0° angle of attack 

90dc  2D section drag coefficient at 90° angle of attack 

DC  Drag coefficient 

bDC  Body drag coefficient 

xFC  Axial force coefficient 

yFC  Lateral force coefficient 

zFC  Normal force coefficient 

LC  Lift coefficient 

PC  Mechanical power coefficient 

TC  Torque coefficient 

d 2D section drag per unit span 

D Drag 

e
 

Wing extension parameter 

E
 

Wing extension amplitude 

 f
 

Wingbeat frequency 

 fw

 
Vortex point release rate 

F Force 

g Acceleration due to gravity 

h Hand to wing length ratio 

Ixx
 

Wing moment of inertia 

J
 

Number of control points on wing 

Ja Number of control points on arm 

K Number of wake control points on wing 

l 2D section lift per unit span; wing length 

L Lift 

L' Lift per unit span 

m Body mass 
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mw Wing mass 

nw Number of wake control points per wing 

Nj Number of spanwise elements 

Nt Number of timepoints 

P
 

Power 

PL
 

Power loading 

p Control point position vector 

P General position vector 

q
 

General variable 

r Distance from wing root 

rc Viscous vortex core radius 

R Rotation matrix 

Rg Wing radius of gyration 

s Blade element reference area 

S Wing reference area 

Sb Body reference area 

t Time 

T Wingbeat time period; torque 

Td
 

Downstroke fraction 

Tw

 
Vortex point release time period 

V Velocity 

Vf Root-flapping wing velocity 

Vw Root-flapping wing local wind velocity 

Vref Reference velocity 

V∞ Freestream velocity 

w Distance from the shoulder to wrist 

W
 

Velocity downstream of actuator disk 

WL
 

Wing loading 

x0 Vortex point position vector 

  Angle of attack 

0  Zero-lift angle of attack 

  Descent angle 

  Stroke-plane angle 

  Bound circulation 

  Extension parameter phase lag 

  Shoulder pronation angle 

  Shoulder pronation amplitude 
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0  Shoulder pronation angle offset 

  Pronation angle phase lag 

  Local air density 

  Hand circumduction angle 

  Shoulder elevation angle 

  Shoulder elevation amplitude 

0  Shoulder elevation angle offset 

  Upper bound shoulder elevation amplitude 

  Angle between freestream velocity vector and actuator disk normal 

  Wingbeat frequency in radians; vorticity 

k  Wing angular velocity about the kth axis 

  

Subscripts  

 a Aerodynamic force/torque 

 B Blade element 

 cp Control point 

 E Earth axes 

 i Induced velocity 

  j Blade element index 

 k Point vortex index 

 m Shoulder rotation; muscle 

 mc Minimum cost of transport 

 mp Minimum power 

 n Timestep index 

 r Wing retraction 

 R Retracted wing property 

 x x-direction 

 y y-direction 

 z z-direction 

 0 Freestream wind axes 

 1 Stoke-plane axes 

 2 Elevation-depression axes 

 3 Wing axes 

 4 Blade element axes 

 5 Local wind axes 

 ∞ Freestream 
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Superscripts  

* Fully-extended wing property; optimal value 

' Upper bound; per unit span 
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CHAPTER 1. INTRODUCTION 

Flapping wings have evolved as the only propulsion mechanism for powered flight in nature. 

Developing an understanding of the physics of organic flapping wings assists in forming 

hypotheses on flight evolution (e.g. [1],[2]) and various ecological phenomena, such as migration 

(Figure 1) [3]. In addition, animal flight research provides insight for the design of flapping wing 

air vehicles [4],[5] and for graphical reconstruction of insects, birds, bats and pterosaurs in 

computer animation [6],[7]. The present work will contribute to these fields through the 

development of theoretical models of bird flight, which are transferable to studies on other flapping 

wing animals. 

 

Figure 1. Barnacle geese (Brantaleucopsis) taking off for migration. The wing posture is observable at various stages 

throughout the wingbeat cycle, including the fully extended mid-downstroke and retracted upstroke. 

Original theories on the aerodynamics of avian flight were formed from simple observations of 

birds in their natural environments [8],[9]. This form of empirical study was refined by using 

controlled laboratory conditions to analyse the kinematics of birds flying between perches (e.g. 

[10],[11]). The degrees of freedom in flight experiments were further restricted by employing wind 

tunnels as a test environment (e.g. [12],[13]). This approach effectively synthesized rectilinear 

flight conditions, for which mathematical models were developed for predicting aerodynamic 

forces and mechanical power consumption.  

Early mathematical models of bird flight applied theories for fixed or rotary wing aerodynamics 

taken from aerospace literature (reviewed by Rayner [9]). The success of these models was based 

on formulating simple analytical expressions that described flight performance for different scale 

birds at different cruise speeds. More advanced models aimed to increase the accuracy of 

predictions of aerodynamic force and power by modelling the dynamics of flapping wings (e.g. 
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[13],[14]). These methods require inputs of wing kinematic data, and are therefore limited by the 

availability of experimental data. This highlights scope for developing a theoretical model that can 

be used to predict avian wing kinematics. The inspiration for this proposal comes from the use of 

predictive simulation in studies of terrestrial locomotion, whereby kinematics are predicted through 

mathematical optimisation of dynamic models.  

An additional experimental method commonly employed in animal flight research is the 

visualisation and analysis of flowfields during flight in wind tunnels
1
; aerodynamic forces are 

inferred through quantitative analysis of the wake velocity and vorticity fields [15]. By 

incorporating established methods of simulating fluid motion the predictive simulation approach 

can also be used to predict wake geometries to assist in the design of such experiments. Thus, the 

contribution of the present work will be to complement existing theoretical and experimental 

techniques for avian flight research by simulating kinematics, energetics and wake geometries. 

1.1. SCOPE 

In accordance with the majority of previous experimental and theoretical research on avian flight, 

the present work will be limited to modelling rectilinear flight conditions. This will include 

hovering, horizontal or climbing flight at constant speed, and horizontal accelerating flight. The 

work will not include an analysis of stability and control aspects of flapping flight [18]. 

1.2. AIM 

Develop a scalable theoretical tool that extends the capabilities of animal flight research methods. 

1.3. OBJECTIVES 

 Introduce fundamental topics in the field of flapping-wing flight and overview the 

proposed strategy for constructing a predictive simulation tool (chapter 2); 

 Critically assess previous predictive simulation methods for flapping-wing flight and 

identify a strategy for constructing a theoretical model (chapter 3); 

 Formulate extensible mathematical tools for simulating avian wing kinematics and wakes  

(chapter 4); 

                                                      
1 An overview of flow visualisation methods of aerodynamic analysis is given by Spedding & Hedenström [15], and 

Bomphrey [16] reviews the findings from such experiments. Taylor et al. [17] present a collection of recent applications 

of these techniques for animal flight research. 
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 Confirm the approach is robust by demonstrating the numerical accuracy, stability and 

convergence (chapter 4); 

 Validate simulated kinematics against experimental data from biomechanics literature 

(chapter 5); 

 Discuss the implications of the research findings to the fields of avian flight performance 

and flight evolution (chapter 6); 

 Provide logical routes for extending the model capabilities to test other existing hypotheses 

on flight performance and evolution  (chapter 7).  

 

 

 

 

  



25 

 

CHAPTER 2. BACKGROUND THEORY 

This chapter will describe some common physical concepts related to studies of flapping flight, 

starting with a simple discussion of how the flapping motion of wings can be used to generate a net 

aerodynamic force for powered flight. A collection of fundamental topics and terminology will be 

introduced to clarify the discussions made in the remaining chapters. 

2.1. FLAPPING WING PROPULSION & WEIGHT SUPPORT 

Figure 2a shows a pitching-plunging wing in a uniform flow. The wing flapping velocity (Figure 

2b) arises due to the plunging motion of the wing relative to the surrounding fluid. The local wind 

velocity is equal to the vector sum of the freestream and wing flapping velocities
2

. The 

aerodynamic force on the wing can be decomposed into components of drag and lift, which are 

defined as forces acting parallel and perpendicular to the local wind velocity vector, respectively. 

The angle of attack is defined as the angle between the local wind velocity vector and the wing 

zero-lift line; the angle of attack is zero when the wing generates no lift. 

                                                      
2 The velocity induced by the wing on the surrounding fluid will be smaller than the other components in forward flight, 

and so is neglected for this part of the discussion, however it will be included in the dynamic model (section 4.2).  
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Figure 2. (a) Example 2D kinematics of a pitching-plunging wing in a freestream flow. (b) Local wind velocity diagram 

showing the orientation of local lift and drag forces and the angle of attack. (c) Aerodynamic forces acting on a plunging 

wing during both downstroke and upstroke, illustrating the Knoller-Betz mode of thrust generation. (d) Aerodynamic 

forces acting on a plunging wing with a constant pitch angle, generating both thrust and weight support. 

A wing can generate a net aerodynamic force in a direction opposite to the freestream velocity 

vector (termed "thrust" in the present work for horizontal flight
3
) by reciprocating in a direction 

perpendicular to the freestream velocity vector. This phenomenon is known as the Knoller-Betz 

effect, and in its simplest form can be observed for a wing plunging at a constant speed with no 

pitching motion (Figure 2c). The thrust provides propulsion for horizontal flight. By using a 

                                                      

3
 The definition of thrust used here differs from that used in rotary wing aerodynamics, where it is defined as 

acting normal to the rotor disk [19], and also from that used in fixed wing aerodynamics, where it is defined 

as acting in the opposite direction to the freestream velocity vector (section 4.2.2) [20]. 
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constant wing pitch angle a mean aerodynamic force can be generated that is not aligned with the 

freestream velocity, which can provide both thrust and weight support in horizontal flight (Figure 

2d). Other wing kinematics can be used to vary the magnitude and orientation of the mean 

aerodynamic force, which also affects the amount of mechanical power consumed by the wing 

actuation system. The prediction of aerodynamic force and mechanical power consumption is 

fundamental to the present work for simulating wing kinematics, and will be discussed in detail 

throughout the remaining chapters. 

2.2. AERODYNAMIC FORCE COEFFICIENTS 

Lift and drag coefficients are dimensionless quantities commonly used in aerodynamic analysis. 

These coefficients can be used to compare the aerodynamic properties of wings of different scale. 

For a body moving in a fluid lift and drag coefficients are commonly expressed in the following 

form: 

,
2

2
1 S

L
CL

V
  [1] 

,
2

2
1 S

D
CD

V
  

[2] 

where L and D are the lift and drag, respectively,   is the local air density, V is the local wind 

velocity magnitude and S is a reference area. Similarly, for a 2D model of a flow over a wing such 

as those shown in Figure 2 the 2D section lift and drag per unit span are given as  

,
2

2
1 c

l
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V
  [3] 

,
2

2
1 c

d
cd

V
  

[4] 

where c is the wing chord length, and l and d are the 2D section lift and drag per unit span, 

respectively. For a given geometry under steady flow conditions the lift and drag coefficients 

depend only on the flow Reynolds number
4
 and Mach number

5
, and the angle of attack.  

                                                      
4 The Reynolds number is the dimensionless ratio of inertia to viscous forces in a flow [20] 
5The  Mach number is the ratio of the flow velocity to the local speed of sound [20]; for animal flight the Mach number is 

low enough that the effects of flow compressibility can be disregarded, and force coefficients for a given geometry are 

dependent on angle of attack and Reynolds number only [21] 
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2.3. FLIGHT PERFORMANCE 

In the context of flying organisms the term flight performance generally relates to the amount of 

energy consumed in powered flight [13]
6
. This may be based purely on the consumption of 

mechanical energy to overcome aerodynamic and/or inertial loads, or it may go further to consider 

flight metabolism.  

A central focus of flight performance studies has been the analysis of the power curve [23], which 

gives the relationship between power consumption and flight speed. Power curves provide a rapid 

means of identifying characteristic flight speeds: Figure 3 depicts a synthesised power curve, and 

highlights the minimum power speed, Vmp (also known as the maximum endurance speed), and the 

minimum cost of transport speed, Vmc (also known as the maximum range speed). This provides 

insight into the self-selected flight speeds used by birds, which can be applied to studies on bird 

migration, for example. 

Cruise speed

P
o

w
e

r

Vmp Vmc

 
Figure 3. Illustration of the variation of power consumption with cruise speed for typical powered flight. The minimum 

power cruise speed, Vmp, and minimum cost of transport cruise speed, Vmc are highlighted as characteristic speeds. 

Power curves have been predicted for avian flight using various theoretical models [9]. The net 

aerodynamic power is usually derived from separate models that calculate the wing profile power, 

the body parasite power, and the induced power, which are each illustrated on the power curve (e.g. 

[23]). The present work will not separate the mechanical power into these components, and will 

also include inertial effects. Therefore, the power curves predicted will illustrate total mechanical 

power consumption (chapter 5). 

                                                      
6 Other uses of the term include the a description of an animal's ability to utilise different flight conditions, such as hover 

(e.g. [22]), but for the present work this is regarded more as a flight capability 
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2.4. GAIT 

A hypothesis that emerged from studies on flight mechanics and performance is that the kinematics 

of flying organisms may be described using gaits. This section will overview the use of this term in 

other works, and explain why the topic of gaits is not included in the remaining chapters.  

In terrestrial locomotion a gait is generally used to describe a style or pattern of locomotion that is 

characteristic over a range of speeds [24]. This term was adopted in studies of flight to distinguish 

between different wing kinematics [25]. However, it has been used predominantly to describe the 

geometry of the wake shed by flying organisms, following the observation that different wake 

geometries reflect different wing dynamics (e.g [25],[26]). Central to these discussions is the idea 

that in some flight conditions negligible aerodynamic lift is generated on the upstroke, in which 

case the upstroke can be regarded as being aerodynamically inactive, or passive [27]. 

Initially it was believed that birds may exhibit two distinct wake geometries (or gaits), one in which 

the upstroke is passive (the "vortex ring gait"), and one in which the upstroke is active (the 

"continuous vortex gait") [25],[26],[28]. More recent experimental studies have concluded that 

alternative wake geometries also exist and therefore this gait classification system may not be 

accurate [29],[30]. This is perhaps why gaits have been less commonly referred to in recent 

experimental studies of bird flight (e.g. [31],[32]). It is plausible that future studies may devise an 

alternative gait classification for avian flight, but this will not be addressed in the present work. To 

avoid confusion with the hypothesis presented above the term gaits will be avoided here, and                                                

instead the term kinematic modes will be used to distinguish between cases with significant 

differences in kinematics. The contribution of the present work will be to provide the capability to 

predict, rather than categorise these modes. 

2.5. MATHEMATICAL OPTIMISATION OF DYNAMIC MODELS 

Optimisation is commonly used in an engineering context to make improvements to existing 

designs by adjusting parameters such as geometry or material properties. Optimisation can be 

applied to a dynamic system, whereby the motion is optimised to yield a favourable outcome, or 

meet some form of optimisation criteria. This approach is used by the biomechanics community in 

studies of terrestrial locomotion (reviewed by Xiang et. al [33]). For example, the kinematics of a 

theoretical model of a human may be optimised to reduce metabolic energy consumption in 

walking. The philosophy behind this approach is that given a suitable theoretical model and 

optimisation criteria the optimised kinematics should represent those used by real animals. The 

present work will apply this philosophy to the aerial locomotion of birds. 
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Mathematically, the optimisation problem is formulated in two parts: the dynamic model, and the 

optimiser. The dynamic model includes a mathematical description of the physics that govern the 

system being studied. The optimisation variables are independent variables within the dynamic 

model. In the present work this will include parameters that define the kinematics of the model; it 

may also include geometric parameters, as will be discussed in section 3.5. Optimisation 

constraints are used to define certain criteria that the dynamic model must adhere to. These may be 

limits on the optimisation variables that constrain the kinematics to within a certain range. Or they 

may be limits on other variables, such as forces and torques in the dynamic model. The cost 

function is an output from the dynamic model that is used to quantify the success or failure of a 

given set of values of the optimisation variables. For animal locomotion a number of different cost 

functions have been used [24],[33], including the amount of mechanical or metabolic energy 

consumed, and the peak torques applied at the joints. 

The second part of the model, the optimiser, is used to drive the dynamic model by inputting values 

for the optimisation variables, and then adjusting them according to the cost function. This process 

aims to minimise the cost function, which can lead to the identification of local minima in the 

optimisation space, or the global minimum (Figure 4); both local and global minima are regarded 

as solutions to the optimisation procedure. While the dynamic model and optimiser are required to 

exchange information, chapter 3 will describe how these processes can be formulated as being 

separate and distinct to create a more robust simulation environment. 
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Figure 4. Illustration of how an optimisation cost function might vary with a single optimisation variable. This particular 

example has two local minima and a global minimum. 

It is important to note that mathematical optimisation applies equally to both forward and inverse 

dynamics models. At the simplest level, forward dynamics models calculate the kinematics of a 

body due to the applied forces and torques; the optimisation variables for forward dynamics models 

describe the time histories of forces and torques applied to the model. Inverse dynamics models 

calculate the forces and torques for defined kinematics, and the optimisation variables describe the 

kinematic time histories.  
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Both forward and inverse dynamics models have been used in studies of terrestrial locomotion (e.g. 

forward dynamics: [34]; inverse dynamics: [35]). However, an advantage of the inverse model for 

aerial locomotion is that it can be tested without invoking an optimiser, using existing experimental 

data for input kinematics, which greatly simplifies the model development process. While some 

experimental data is available for forces applied by avian muscles [36], it is far less abundant, and 

has only be obtained for some specific flight muscles. It would therefore be difficult to define force 

time histories explicitly to test a forward dynamics model without an optimiser. For these reasons 

an inverse dynamics model is considered a more practical option for the present work. 
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CHAPTER 3. LITERATURE REVIEW 

This chapter will critically review previous applications of predictive simulation to flapping flight. 

Predictive methods are defined here as those where the main outputs are kinematic variables
7
. The 

review will consider a subset of literature in order to focus on works that are relevant to the 

proposed research strategies of the present work. Aerodynamic models employed in these works 

will be introduced in this chapter, and a more detailed discussion of aerodynamic methods for 

analysing fixed, rotary and flapping wings will be given in section 4.2.5. 

A previous article upon which the present work is based will not be reviewed, but will be referred 

to throughout the remaining chapters [37]. Studies that use predictive methods to optimise flapping 

wing geometries will be excluded (e.g. [38]), although these serve as a useful reference due to 

similarities in the numerical methods employed. Reviews of models for aerodynamics of flapping 

wings, and for avian flight performance can be found elsewhere, and so are not repeated here 

[9],[39]. As the current work aims to complement existing experimental data, the reader is also 

referred to previous reviews of experimental techniques used in research on animal flight 

aerodynamics [15]-[17]. 

3.1. SCALING LAWS FOR KINEMATICS 

Scaling laws are used to predict variations in avian wing and body geometric properties with 

overall body mass. These laws tend to be derived empirically, using least squares analysis of 

experimental data. Based on simple physical arguments some scaling relationships can be derived 

theoretically, including those that predict the variation in certain kinematics variables with scale. A 

detailed summary of these was given by Norberg [40], and examples include the variation of 

minimum power cruise speed and wingbeat frequency with bird body mass. 

The strength of these models is that they can be used to provide rapid estimates of certain 

kinematic parameters. The obvious limitation is that experimental data are required to determine 

the constants of proportionality, without which the equations are unusable. Despite this, scaling 

laws can still be regarded as a form of predictive tool as they can be used to extrapolate kinematic 

data to a much broader range of scales than have been measured experimentally. The main caveat 

with these models is that they capture general trends in kinematic parameters with scale, but offer 

                                                      

7
 These methods may implicitly derive other physical variables such as power consumption, however the 

kinematic outputs are the main points of discussion. 
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little insight into variations in kinematic parameters for different species of the same scale. 

Furthermore, it is unlikely that such a rudimentary approach could be extended to predict more 

detailed aspects of wing kinematics. 

3.2. 2D BLADE-ELEMENT MODEL OF HOVER 

Hovering flight is conceptually the simplest flight condition for analysing flapping and rotary wing 

systems because the freestream velocity is zero. A model posed by Wang [41] analyses this flight 

condition for flapping flight by comparing the efficiency of different wing kinematics. The aim of 

the study is to identify wing kinematics that yield minimal power consumption in generating 

aerodynamic loads. The model is described as using simple wing kinematics whereby the motion is 

defined by four parameters. The motivation for this was to be able to visualise the parameters space 

using a series of isosurfaces of calculated efficiency. However, is it believed that this aim should be 

secondary to constructing a model that offers sufficient flexibility to capture accurately the 

underlying physics. 

In Wang's model the wing is represented as a pitching-plunging aerofoil. Therefore, the model does 

not capture the variation in flapping velocity along the wing length that is seen in flying organisms. 

In keeping with the low order approach a simplified aerodynamic model is used to calculate lift and 

drag coefficients as trigonometric functions of angles of attack. Aerodynamic efficiency is defined 

as the reciprocal of the average power consumed in overcoming aerodynamic loads. However, the 

induced velocity is not included in the model and so the local wind velocity and power 

consumption will be underpredicted. Furthermore, due to the lack of induced velocity the model 

will not reflect the increase in aerodynamic efficiency that can be achieved by using large 

amplitude wingbeats to reduce effective disk loading [19].  

The variations in efficiency with kinematic variables follow the same qualitative trends for 

Reynolds numbers ranging from 10
2
 to 10

6
. Unsurprisingly, the most efficient solutions found are 

those that represent a steady translating wing at constant angle of attack that yields the best lift to 

drag ratio. Other "near-optimal" motions are found that are asymmetric, whereby the downstroke 

and upstroke have different angles of attack and different inclinations with respect to gravity. By 

identifying a range of high efficiency solutions this approach highlights that different kinematic 

modes are physically plausible in hovering flight. 
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3.3. CFD-BASED MODEL OF 2D AEROFOIL IN AXIAL FLIGHT 

The use of flapping wings as a propulsion system for micro air vehicles has renewed the interest in 

researching unsteady flows over aerofoils. A number of theoretical and experimental studies have 

demonstrated that plunging aerofoils can achieve maximum propulsive efficiency at certain 

Strouhal numbers (e.g. [42],[43]), where the efficiency is defined as the ratio of mean thrust 

generated to mean aerodynamic power. The propulsive efficiency is also influenced by the pitching 

motion of the aerofoil, and hence Strouhal number alone is insufficient for predicting efficiency of 

aerofoils that pitch and plunge [43]. This conclusion is particularly important for analysing the 

flight of birds, which tend to pronate and supinate their wings in typical cruising flight conditions 

[44]. 

A series of numerical studies performed by Tuncer and Kaya has contributed significantly to this 

field by showing how the combination of pitching and plunging motion affects propulsive 

efficiency and peak thrust (Figure 5) [45],[46]. A multi-objective gradient-based method is used to 

predict wing motions that have maximum thrust, maximum propulsive efficiency, or combined 

high thrust and efficiency. A computational fluid dynamics (CFD) numerical method is used to 

calculate aerodynamic loads. These methods will be discussed further in section 4.2.5, but for now 

it is sufficient to highlight that they are regarded as high order, computationally expensive methods. 

Because of this the optimisation routine takes up to 100 h of wall clock time (10-16 Pentium 4, 2.4 

GHz processors running in parallel), which is presumably what limits the scope of the study: only a 

single flight condition is considered, using a fixed value for the reduced flapping frequency. Also, 

the sensitivity of the solutions is not considered with respect to the choice of numerical solution 

parameters, such as the numerical grid density.  

 
Figure 5. The flowfield downstream of a pitching-plunging aerofoil [46]. Laminar flow simulations achieved using time 

dependent numerical solutions of the Navier-Stokes equations. 

Wing Particle traces 
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One of the key conclusions drawn from these studies is that maximum propulsive efficiency can be 

achieved using sinusoidal variations in aerofoil plunge displacement and pitch angle, with a pitch 

angle phase lag of 90°. However, no discussion is made of whether such a high order aerodynamic 

model is needed to reach this conclusion. 

3.4. EXPERIMENTAL & NUMERICAL MODELS OF 3D WING 

KINEMATICS IN HOVER 

A logical extension to the analysis of flapping aerofoils is to incorporate 3D wing kinematics. A 

wing that rotates around a joint at the wing root is a closer physical representation of flapping-wing 

organisms. Hovering flight can still be regarded as the simplest flight condition for analysis of root-

flapping wings. However, unlike in Wang's hovering model [41], the instantaneous local wind 

velocity now varies along the wing. 

 A number of experimental studies have examined how kinematics of wing models can be adjusted 

to increase mean aerodynamic forces in hover. An early example of this approach is presented by 

Sane and Dickinson [47], who measure instantaneous aerodynamic loads on a flapping model of a 

hoverfly wing. The model is actuated so that the wing kinematics are representative of those used 

by real hoverflies. Instantaneous forces were measured using force transducers located at the wing 

root, and inertial effects were subtracted to yield the instantaneous aerodynamic forces on the wing. 

The results are presented as maps of force coefficients for ranges of wing kinematics. While the 

model does not directly predict kinematics the main findings are based on kinematics, and hence 

this study is applicable to this review. 

In deriving aerodynamic force coefficients Sane and Dickinson base the reference velocity on the 

wing flapping velocity alone, without including the effects of induced velocity; this discrepancy 

will lead to an overprediction of the mean force coefficients, but this will be cancelled out in the 

data presented for mean lift to drag ratio. A potentially useful metric that is presented is the ratio of 

mean aerodynamic forces to mean power consumption. This ratio is the reciprocal of the power 

loading, used for analysing performance of rotary wing vehicles [19] (section 4.2.8). Sane and 

Dickinson calculate the aerodynamic power as the product of the instantaneous load on the wing 

and the "instantaneous wing velocity", however it is not clear which velocity this term refers to and 

is therefore difficult to assess the validity of these results. 

Khan and Agrawal [48] also measure the aerodynamic loads on flapping wings, but with proposed 

application to micro air vehicles. In addition to the experimental measurements a theoretical model 

of the wing and thorax dynamics is also included. A blade element model is used to predict 
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instantaneous aerodynamic load distribution along the wing. Aerodynamic forces that arise from 

flapping the wings are assumed to be directed normal to the wing surface, however no theoretical 

or experimental evidence is provided to justify this. Coefficients required to close the system of 

equations that described the aerodynamic forces are derived by calibrating the wing kinematics 

predicted from the theoretical model against those measured experimentally. This approach makes 

it difficult to determine the accuracy of the theoretical models, and whether or not the equations for 

added mass and rotational lift are significant. 

Arguably the main contribution by Khan and Agrawal's theoretical model is the use of numerical 

optimisation to predict wing kinematics that maximise the mean lift and mean lift-to-drag ratio. 

Unfortunately, the optimised solutions are only presented for a single case study for which 

fundamental physical parameters, such as the thorax spring stiffness values, are given defined 

values without any reasoning.  

The hovering flight studies by Khan and Agrawal [48] and by Sane and Dickinson [47] both 

illustrate the general trends in mean force coefficients and lift to drag ratios with different wing 

kinematics. However, neither of these studies considers the constraint that the mean aerodynamic 

load must support the overall system weight.  Therefore, neither identify the wing kinematics that 

are plausible for hovering flight of a specific flying organism or micro air vehicle. The converse 

can be said of an advanced theoretical model derived by Berman and Wang [49], which predicts 

wing kinematics for three types of insects in hover. The model is described as being 

phenomenological, in that it aims to capture certain kinematic phenomena that have been observed 

experimentally, such as the figure-of-eight path of a wingtip.  

Berman and Wang formulate an inverse dynamic model of an insect wing that predicts 

aerodynamic forces and torque, and mechanical power consumption for given input wing 

kinematics. A blade-element model is used to calculate aerodynamic loads and numerical 

optimisation is used to determine wing kinematics that incur the minimum average mechanical 

power while providing a mean aerodynamic force to support the insect weight.  

The optimised kinematics show strong qualitative similarities to those measured experimentally for 

three different insects. However, the model always tends to overpredict wingbeat amplitude, and 

constraints are imposed to avoid solutions with unrealistically large amplitudes. It is likely that in 

the model these large amplitude, low frequency kinematics are optimal as they reduce power 

consumption by reducing inertial loads when compared to low amplitude, high frequency 

kinematics. Added mass and rotational lift effects are also included in the aerodynamic model, 

though as with the model from Khan and Agrawal [48] their relative contributions to the total 
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aerodynamic force are not discussed. As with Wang's 2D model [41] no induced velocity is 

included and so disk loading effects are not captured. 

The aerodynamic model used by Berman and Wang can be regarded as a low order model, which 

allows optimisation to be performed with less computation time than Kaya and Tuncer's CFD-

based models (e.g. [45],[46]), even though the wing kinematics are described using more 

parameters. The choice of aerodynamic model and the method of parameterising wing kinematics 

both strongly influence the computation time needed for optimisation. 

Berman and Wang parameterise the insect wing geometry so that it can be readily adapted to 

represent different species. The scalability of the model is demonstrated as some wing kinematic 

parameters can be constrained in order to isolate specific physical phenomena of interest. These 

two features provide scope for applying the model in future studies for different species, and using 

more detailed kinematics. Extending the capability to model flight conditions other than hover 

would also be beneficial to the others researching insect flight. 

3.5. FLAPPING-WING VEHICLE MODEL FOR CRUISE AT VARYING 

SPEEDS 

de Margerie et al. [50] and Doncieux & Hamdaoui [51] apply predictive simulation to flapping-

wing air vehicles (Figure 6). A hybrid forward-inverse dynamics model is used in which wing 

kinematics are defined, while the motion of the vehicle is solved as a model output. The model uses 

an evolutionary algorithm to adjust the amplitudes and phases of sinusoidal wing joint trajectories. 

Optimal solutions are defined as those that propel the vehicle along a horizontal flight path at a 

given speed using minimum mechanical power. 

de Margerie et al. aim to use the philosophy of biomimicry to develop a design that exhibits some 

of the capabilities of flying organisms. The dynamic model is assigned with baseline values of 

wing geometric parameters and mass that are based loosely on those of a real bird. In addition to 

the wing and tail kinematics, the wing area and aspect ratio are also included as free variables to be 

optimised. Some other parameters, such as the body mass, are fixed with no justification for the 

choice of values used.  
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Figure 6. Flapping-wing air vehicle design based on the geometry of a bird [51]. The shoulder joint can elevate and 

depress the wing and also rotate the wing about its major axis. The wrist joint rotate the out wing panel about its major 

axis and also sweep the outer panel to reduced the exposed surface area, and also pronate-supinate.  

de Margerie et al. use a form of blade element theory to calculate aerodynamic loads on the wings 

and tail. Lift and drag coefficient variation with angle of attack is defined using data collected from 

wind tunnel testing of a specific aerofoil which is claimed to be representative of avian wing 

aerofoils. In the post-stall region, where experimental data was not available, the lift coefficient is 

assumed to fall at an increasing rate with increasing angle of attack, though this is uncharacteristic 

of avian wing aerofoils [52]. No discussion is made on the aerodynamic properties of the tail, 

which would be expected to differ from those of the wing due to the low aspect ratio and swept 

geometry. 

The optimisation objective function combines two separate objectives of maximising the distance 

travelled in a given flight time, and minimising the mean power consumed. The evolutionary 

algorithm identifies numerous 'optimal' solution that are compromises between these two 

objectives. An insightful feature of the work is that all of these solutions, rather than just a single 

optimum, are presented as part of the results. This leads to a key finding, which is that different 

solutions have large variations in wing kinematics, showing that there is some flexibility in the 

choice of kinematic mode used by the vehicle. If one kinematic mode incurs a penalty that is not 

included in the model, such as excessive joint torques, the results provide scope for identifying 

alternative modes. 

The results presented by de Margerie et al. and Doncieux & Hamdaoui are given for a range of 

cruise speeds.  The predicted mechanical power follows the typical U-shaped curve, with minimum 

power occurring at a cruise speed of 12 ms
-1

. The trends in wing kinematic variables with cruise 

speed are qualitatively similar to the those predicted in previous simulations of avian flight [37]. 

Unfortunately, de Margerie et al. and Doncieux & Hamdaoui make no comparison between the 

predicted kinematics and those from other theoretical models, or from experimental measurements. 
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Several of the solutions presented by de Margerie et al. use a wing aspect ratio that is equal to the 

defined upper bound value. This is because the aerodynamic model captures the reduction in 

induced drag that would be expected with higher aspect ratio wings, which in turn reduces 

mechanical power. However, the model does not take into account the greater structural mass that 

would be needed to support greater bending moments that would be applied to higher aspect ratio 

wings. Similarly, the wing mass remains fixed, even though the wing area is a free variable. 

Therefore, the model does not accurately capture changes in inertial loads and mechanical power 

that would occur for changes in wing geometry. For these reasons the incorporation of geometric 

parameters as free optimisation variables is believed to detract slightly from the main findings of 

the work. 

3.6. AVIAN FLIGHT MODEL FOR CURVILINEAR TRAJECTORIES  

Predictive simulation has been used extensively by the computer graphics community in order to 

recreate realistic character motion using physics-based animations. In this field, special attention is 

given to both character geometry and kinematics. This is apparent not only in simulations of human 

terrestrial locomotion, but also those of swimming and flying animals. As a goal in computer 

graphics is to increase believability in animations, it is unsurprising than physics-based animations 

of bird flight have focussed heavily on detailed reconstruction of avian anatomy. This is most 

evident in the work of Wu and Popović [6] who simulate birds using a highly detailed 

representation of avian geometry and kinematics (Figure 7).  
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Figure 7. (a) Model of the avian wings, body and tail, including individual primary and secondary feathers [6]; joint 

degrees of freedom are based on those of real birds. (b) Predicted kinematics of a raven taking off, showing a retracting 

wing up stroke, and the bending of feathers on the downstroke. 

Wu and Popović use numerical optimisation to predict wing and tail kinematics that will propel a 

bird along a user-defined flight trajectory. Other objectives are defined, including the use of 
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minimal torque at the wing joints and the avoidance of high rotation rates of the body. Optimised 

solutions are obtained according to the weighted sum of these different objectives. It is therefore 

difficult to isolate the importance of any one objective, especially as no physically reasoning is 

given for the choice of objective weighting. 

The model used by Wu and Popović  captures some of the key features of avian wing kinematics, 

such as the synchronous retraction of wing skeletal segments that will be discussed in detail in 

section 4.2.3. However, despite aiming to avoid unnecessary complexity the model also includes 

the dynamics of individual feathers. While this may add to the aesthetics of the animation, it is 

unlikely that these effects would increase the accuracy of the predicted kinematics.  

The blade element method of simulating aerodynamic forces is clearly central to the formulation of 

Wu and Popović's physics-based model. Rather than deriving force coefficients on blade elements, 

they are calculated for each individual feather. This method overcomplicates the solution procedure 

and offers no obvious advantage in terms of accuracy or numerical stability. More important is the 

choice of model of lift and drag coefficient variation with angle of attack, which is stated as being 

based partly on experimental data taken from wind tunnel tests of birds wings. However, for high 

angles of attack the lift coefficient is assumed to plateau, and even has a significant value at 90° 

angle of attack where it would be expected to be negligible. This discrepancy will lead to 

overprediction of lift for given wing kinematics. 

Wu and Popović demonstrate that their model can be used to simulate wing kinematics of different 

scale birds and for different trajectories. However, in each case a specific set of parameters is used 

in obtaining optimised kinematics. These parameters include joint torque coefficients and values 

for peak lift and drag coefficients, none of which are readily available data for birds. This strongly 

limits the scalability of this approach if a wide range of species were to be simulated. As the 

objective function weighting values also vary for each case it seems likely that some tuning of 

these parameters is required in order to generate plausible kinematics. Therefore, the model cannot 

be regarded as being robust because a high level of user intervention is required in its operation. 

3.7. LITERATURE REVIEW SUMMARY  

The findings from the literature review are summarised as follows: 

 Scaling laws are limited by the need for experimental data to calibrate the models of 

kinematic variables; 
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 For predictive simulation the aerodynamic model and method of kinematic 

parameterisation should be selected strategically, balancing accuracy, computational cost 

and extensibility of the model;  

 Scalable models can be used to simulate different species, providing more scope for 

validation with existing experimental data; 

 A robust model should simulate different species and flight conditions without requiring 

adjustments to the numerical scheme, which  extends its applicability as a research tool; 

 Mathematical optimisation can be used to identify not only the optimal solution, but also a 

range of near-optimal solutions to explore alternative kinematic modes that may be used by 

real animals. 
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CHAPTER 4. METHOD 

This chapter overviews the conceptual and technical approaches used in developing a predictive 

simulation framework for avian flight.  Three simulation modules and their mutual interaction will 

be described as part of the modelling philosophy (section 4.1). Following this, details of the 

individual modules will be provided with justifications for the modelling decisions.  

Section 4.2 will describe the construction of the inverse dynamics model that serves as the basis for 

the simulation framework. This will include an overview of biomechanics literature on avian 

wings, as well as mathematical descriptions of the dynamic model developed for the present study. 

Fundamental aspects of the model, such as the method of predicting aerodynamic loads, will be 

given special attention and examples of the model output will be provided. 

Section 4.3 will describe the optimisation module, which can be used to control the inputs to the 

inverse dynamic model in order to function as a predictive simulation tool. Constraints to the 

optimisation process will be defined from physical arguments, and will also be used to maintain 

numerical stability.  

Finally, a method of simulating the wake shed from a flapping wing will be presented, based on 

techniques developed for the simulation of wakes from rotary wings (section 4.4). This module 

accepts inputs of user defined wing kinematics, and can also be with predicted kinematics from the 

other two simulation modules. 

4.1. MODELLING PHILOSOPHY 

Based on the success of previous flight simulation tools, a modular approach to simulation offers 

some distinct advantages in achieving the aim of the present work. One example of modular 

simulation is a previously developed flight energetics program that has been used to predict the 

performance of different species of birds under various flight conditions [3]. The underlying 

modules for this program have been refined to accommodate new scientific evidence, providing  

extensibility to the overall program. Another collection of theoretical tools includes methods for 

simulating aerodynamic, structural and control aspects of flapping wing flight for unmanned air 

vehicle (UAV) design [53]. These tools can be used independently or collectively, and provide the 

capability to test new theoretical models at varying stages of development.  
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The process of optimisation of a dynamic model also lends itself to modular design as the method 

of optimisation and the dynamic model are largely separable in terms of their functionality
8
.  In the 

present work the optimiser and dynamic models are considered as two distinct modules that can 

exchange information (Figure 8). The dynamic model is optimised to make predictive simulations 

of kinematics. The dynamic model can also be used independently with user-defined wing 

kinematics to predict force, torque and power time histories, for example. Defining these two 

modules as distinct and separable not only increases the functionality of the simulation framework 

as a whole, but also streamlines the development process as changes to the dynamic model can be 

tested without implementing the optimisation module. 

Results from the dynamic model can also be passed to a third module that simulates the unsteady 

wake shed from a bird's wing (Figure 8). Visualisation of the wake geometry will provide data to 

compliment experimental data on avian flowfields [15]-[17]. The wake simulation module is again 

designed to be independent, in that it may also be implemented without the other modules. For 

example, a wake could be simulated using experimental data for aerodynamic loads on the wing 

(e.g. [54]).  

 

 

                                                      
8 The exact method of optimisation used does reflect the characteristics of the system dynamics, which will be discussed 

further in section 4.3. 
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Figure 8. Modular simulation tools. The simulation modules are designed to function independently, or collectively. *The 

joint trajectories can be inputted directly (e.g. from experiment), or a method of parameterising the trajectories can be 

used to  predict the wing kinematics using the optimisation module.  

As well as having a modular design the simulation framework will also incorporate a balanced 

level of complexity in each of the modules. Chapter 3 discussed how some predictive simulation 

approaches are impeded by the complexity of the dynamic model; high order aerodynamic methods 

require lengthy solution times for optimisation, while complex representations of wing geometry 

can lead to non-robust models. Furthermore, it is difficult to determine the root cause of 

inaccuracies in these models, due to their inherent complexity. Other methods that use a 

consistently low order approach have had success in predicting flapping wing kinematics of insects 

and birds [37],[49].  

The philosophy of balanced modular design will be maintained throughout this chapter. The 

resulting simulation framework will be shown to be both scalable and robust, in being capable of 

simulating a range of different scale birds in various flight conditions (sections 5.2-5.5). 

Extensibility of the simulation framework will be demonstrated by altering the dynamic model to 

incorporate alternative wing aerodynamic properties and by testing an alternative set of wing 

kinematic parameters (section 5.2.7).  
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4.2. INVERSE DYNAMIC MODEL 

This section will describe the development of an inverse dynamic bird model, extending the detail 

presented in a previous study using a similar approach [37]. The model will be demonstrated by 

predicting mechanical loads, torque and power consumption for a wing with pre-defined 

kinematics.  

4.2.1. Avian Flight Apparatus 

This study aims to develop a tool for simulating symmetric rectilinear flight, rather than 

manoeuvring flight of birds. The generation of a net aerodynamic load for propulsion and weight 

support can be regarded as the main role of the flight apparatus in this flight condition. Birds 

generate these aerodynamic loads primarily using their wings, though some other aspects of their 

physiology may contribute. As a relatively bluff body the main influence of the body on the 

aerodynamics is to generate drag, which has a significant impact when modelling mechanical 

power consumption (e.g. [13],[55]).  

Several recent studies have considered the role of birds' tails in generating lift (e.g. [56],[57]) and 

reducing drag [58]. As a highly swept, low aspect ratio surface the tail would be expected to have a 

significantly lower lift curve slope than the wings. Also, the surface area of tails is much smaller 

than that of wings, and the local wind velocity at the wings will be much greater for typical 

kinematics in powered flight. This suggests that the wings generate significantly more aerodynamic 

load that the tail. It seems more likely that the main role of the tail is for stability and control 

[18],[59], though it may assist in increasing drag for rapid deceleration in perched landings. It is 

also recognised that the tail may reduce mechanical power consumption in low speed flight [38]. 

To construct a tractable model that captures the most fundamental aspect of avian flight dynamics 

necessary for simulating rectilinear flight, the present work includes a model of the wing dynamics, 

and also a model of the drag acting on the body
9
. The dynamic model will be used to predict 

aerodynamic forces needed for propulsion and weight support, and the power consumed in doing 

so. In this sense, the dynamic model has some similarities with previous models of flight 

performance [13],[55] although it will also incorporate the effects of wing inertia on mechanical 

power consumption.  

                                                      
9 Even though the dynamics of the tail will not be included in the inverse dynamic model, the overall simulation 

framework is not restricted to this assumption, and future revisions could incorporate this.  
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Following previous predictive simulation studies the present work will use a jointed, seven-

segment bird model [37]. Due to strong similarities in avian wing geometry between different 

species this approach is representative of most flying birds [40]. The segment model is shown in 

Figure 9 in comparison to the skeleton of the Rock Pigeon, Columbia livia. The present work draws 

largely on the wealth of experimental data for the pigeon, and will use a model of the pigeon as a 

case study for presenting the results of the inverse dynamic model. 

One of the segments is used to represent the body, and three are used for each wing. As the model 

will be applied in rectilinear flight conditions only it will be assumed that the kinematics of the 

wings are symmetrical. Therefore, the wing kinematic and dynamic models formulated in sections 

4.2.3 and 4.2.4 for a single wing will be assumed applicable to both wings. 

The proximal arm segment represents the humerus of the real avian skeleton. This segment is 

connected to the body by the shoulder joint and to the forearm segment by the elbow joint. The 

wrist joint connects the forearm and hand, and will be discussed further in section 4.2.3. The hand 

is modelled as a single segment, though it is appreciated that the real avian hand also has moveable 

digits. Even though their movement is severely restricted, it is likely that small extensions and 

retractions of the digits affect aerodynamic loads near the wing tip [60]. This functionality will be 

implicitly modelled with the aggregate wing retraction motion that will be described in section 

4.2.3. 

 
Figure 9. Multi-segment avian model shown in comparison to parts of a Rock Pigeon skeleton [61]. Each arm is modelled 

as three segments, and the body is represented as a single segment.  
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4.2.2. Bird Dynamics  

Before constructing a dynamic model it is first necessary to define the reference systems that will 

be used throughout this work. These systems are defined so as to model symmetric rectilinear flight 

of a bird in any direction with respect to the Earth. The axis systems used to define the motion of 

the bird are shown in Figure 10a.  

If modelled as a point mass, the velocity of the bird relative to the Earth is given by the freestream 

velocity vector, V∞.  

g
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Figure 10. (a) Earth and freestream wind axis systems shown assuming freestream velocity vector is parallel to xE-zE 

plane. (b) Gravitational and averaged aerodynamic loads acting on the bird in Earth axes. Forces acting on the bird in the 

Earth reference frame for three rectilinear flight conditions that will be considered in the present study: (c) horizontal 

cruise, (d) horizontal acceleration and (e) climbing flight. Bird shown for reference in arbitrary orientation.  

The Earth axes are oriented such that the axis zE 
opposes the gravity vector, g. The Earth xE axis 

points in any arbitrary direction perpendicular to the zE 
axis, and the yE axis is oriented 

perpendicular to the xE and zE axes to form a right-handed set. The Earth axes remain fixed with 

respect to the Earth at any arbitrary location.  
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A freestream wind axis system ( 000 ,, zyx ) is defined that translates with the movement of the 

bird with respect to the Earth. This system is used primarily for describing net aerodynamic loads 

on the bird. The origin of the freestream wind axes lies at any arbitrary location with respect to the 

bird.  A positive rotation of the Earth axes about yE by the descent angle,  , yields axes that are 

aligned with the freestream wind axes. Therefore, positive descent angles are defined when the bird 

translates with a velocity relative to the Earth that has a positive component in the Ez  direction.  

Throughout this work, forces and velocities described as acting "horizontally", "laterally" and 

"vertically" will be defined as acting parallel to, and in the same direction as the positive EE yx ,

and Ez directions, respectively. While "thrust" is defined here as the horizontal component of 

aerodynamic force generated by the wings, "weight support" is the vertical component. "Axial" and 

"normal" forces and velocities are defined as acting parallel to, and in the same direction as the 

positive x0 and z0 directions.  The average axial and normal aerodynamic loads generated by the 

wings, and the drag on the body are shown in Figure 10 as 
0xF ,

0zF and 0D , respectively. 

The equations of motion that describe the general case of rectilinear flight in any direction are 

given as follows:  

;sin
00 0 xx maDβmgF   [5] 

and  

,0cos
0

 mgFz
 [6] 

where 
0xa is the acceleration of the bird in the x0 direction. The three specific cases of rectilinear 

flight that will be referred to in chapter 5 are horizontal cruise ( 0;0
0
 xa ), horizontal 

acceleration ( 0;0
0
 xa ) and climbing ( 0;0

0
 xa ), and are illustrated in Figure 10c-e. 

Using small angle approximations climbing and descending at shallow angles is equivalent to 

accelerating and decelerating: if  is small, equations [5] and [6] can be written as 

 ;
00 0 gβamDF xx   [7] 

and 

,
0

mgFz   [8] 

respectively. These equations would be the same for horizontal flight with an acceleration of 

 gβax 
0

.  
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The equations of motion are fundamental to the present model, just as the generation of thrust and 

weight support are central to previous flight performance models [13],[23]. If the model were to be 

used in flight dynamics analysis of avian stability, an equation for the pitching motion of the bird 

would also be necessary. Preliminary analyses found that including pitching motion in the present 

model yielded no significant changes in the predictions of wing kinematics or power consumption 

that is the major contribution of this work. However, modelling pitching motion did introduce some 

uncertainty in terms of requiring estimates for the inertial properties of the bird body. For these 

reasons the pitching motion will not be included here. 

The body drag is approximated using the standard aerodynamic model: 

,
2

2

1
0 bDbCSD  V  

[9] 

where 
 
is the local air density, Sb is the body reference area and

bDC is the body drag coefficient. 

The body drag coefficient will vary according to the body orientation with respect to the freestream 

wind. However, no experimental data could be found to quantify this, therefore the body drag 

coefficient will be assumed to be constant. This assumption may not be appropriate for models 

aiming to capture the dynamics of braking manoeuvres where the angle of attack and thus the drag 

coefficient would be greater than in cruise.  

Wind tunnel testing of real and modelled avian bodies have measured drag coefficients up to 

around 0.4, though Pennycuick's flight performance models suggest a default value of 0.1 is 

appropriate for most birds [62]. Previous simulations found that the choice of body drag coefficient 

had little influence on the prediction of wing kinematics, and so an average value of 0.25 will be 

used here [37]. The body reference area, Sb, will be taken as the body frontal area. For models of 

the pigeon the body frontal area, outstretched wing reference area, S
*
, and unretracted wing length, 

l
*
, will be obtained using previous experimental data [12],[13]. For allometrically scaled models 

(section 5.3) these variables will be derived from allometric scaling laws [63]; scaling laws will 

also be used to define the wing mass, mw, and outstretched wing radius of gyration 
*
gR [64].  

Having formulated a general dynamic model of the bird, the following sections will explain how 

the inverse dynamic model of the wing will be constructed. This will be used to predict the mean 

aerodynamic loads in equations [5] and [6], and also the mechanical power consumption. 

4.2.3. Wing Kinematics 

The predictive simulation technique in the present work is similar in principle to previous methods 

used for simulating insects in hovering flight [49]. However, unlike insects birds wings are 



50 

 

comprised of a number of skeletal segments, allowing them to fold and retract. This fundamental 

difference in wing biomechanics requires additional degrees of freedom to be included in a 

mathematical model of the wing kinematics. Previous predictive simulations using the present 

approach overviewed the degrees of freedom of real avian wings [37]. A convenient way to 

summarise these is to consider first the aggregate motion of the wing caused by rotation about the 

shoulder joint, and then to include the process of wing retraction. 

Shoulder rotation  

Avian biomechanics literature suggests that as the shoulder of most modern birds is a hemi-sellar 

(half saddle) joint it is capable of three degrees of freedom and can be modelled a ball and socket 

joint [65]. These degrees of freedom are represented as three rotations in Euclidean space, and 

define the commonly used terms of stroke-plane angle (  ; Figure 11a), wing elevation- depression 

(  and  , respectively; Figure 11b), and wing pronation-supination  (  and  , 

respectively; Figure 11c). Examples of wing kinematics for rotation about the shoulder joint during 

a single wingbeat are shown in Figure 11d-f. The wingbeat phase is defined as the ratio of the time 

at any point during the wingbeat  to the wingbeat time period (
T
t ). The time and phase are zero 

at the beginning of the downstroke, when the elevation angle is at its maximum value. 
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Figure 11. (a) Wing depicted elevating-depressing with the stroke plane inclined by an angle -γ with respect to the 

freestream wind axes when placed at the shoulder joint. (b) Wing rotated by the elevation angle, ϕ, with zero stroke plane 

and pronation-supination angles. (c) Wing supination (-θ) shown with zero stroke plane and elevation. (d)-(f) Example 

wing kinematic time histories over a single wingbeat.  

Stroke plane axes ( 111 ,, zyx ), wing elevation axes ( 222 ,, zyx ) and wing axes ( 333 ,, zyx ) are all 

right handed systems with origins positioned at the shoulder joint. The 1y , 2y
 
and 3y axes are 

defined as being normal to, and pointing away from, the assumed plane of symmetry of the bird 

when the elevation-depression angle is zero
10

. The 1x , 2x and 3x axes are defined as being aligned 

                                                      
10 The y3 axis is sometimes referred to as the "wing axis" [64] 
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with the 0x axis during horizontal flight when the stroke-plane, elevation-depression and pronation-

supination angles are zero. If the wing is assumed to be a plane the stroke plane 1x and 1y axes 

remain coplanar with the wing when the shoulder is rotated by the stroke plane angle, and the 

elevation-depression and pronation-supination angles are zero; the elevation 2x and 2y axes remain 

coplanar with the wing when the shoulder is rotated by the stroke-plane and elevation-depression 

angles, and the pronation-supination angle is zero; the wing 3x and 3y axes remain coplanar with 

the wing when the shoulder is rotated by all three angles. 

To perform a coordinate transformation of the freestream velocity vector in the freestream axes, 

V , to the freestream velocity vector in wing axes, 
3

V , the following alias rotation matrices can 

be used:  

  VRRRV 3

 

[10] 

where R , R  and R are the alias rotation matrices corresponding to the three degrees of freedom 

of the shoulder: 

;
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[13] 

These rotation matrices can also be used to define the position of any point on the wing in the 

freestream axes following rotation of the shoulder
11

. A point on the wing is defined in the 

freestream axes by the position vector, P, when the stroke plane, elevation-depression, and 

pronation supination angles are zero. The position of this point when the shoulder rotation angles 

are non-zero is given as  

;0 PRRP R 

 

[14] 

this approach will be used in section 4.2.6 to determine the position and velocity of the 

aerodynamic control points on the wing.  

                                                      
11 This process is equivalent to using alibi rotation matrices to rotate the position vector of any point on the wing 
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Wing retraction and extension 

A well known feature of avian wings is that the movement of each skeletal segment is not 

completely independent. Due to skeletal and muscular mechanisms rotation about the elbow and 

wrist is coupled, and the wing appears to possess a form of mechanical automation when retracting 

and extending [66]. This process has been described in detail from a biomechanical perspective 

through surgical examination and observation in flight [66],[67], and is illustrated in Figure  12.  
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Figure  12.  (a) Illustration of a bird with partially retracted wings. (b) Hand circumduction angle, σ, measured between 

the x3 and x4 axes. (c) The stages of retraction of the wing from being unretracted (fully extended, e=1), to partially 

retracted (0<e<1), to fully retracted (e=0). (d) Example wing kinematic time history over a single wingbeat with full 

retraction at the mid-upstroke. 
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As the wing retracts the skeletal segments of the upperarm and forearm rotate about the shoulder 

and elbow, respectively; the axes of rotation remain aligned with the z3 axis, which is perpendicular 

to the arm wing if it is assumed to be planar. The rotation of the hand about the wrist is more 

complex, and has been the subject of much discussion in literature [66]-[68]. While quantitative 

data for avian wrist kinematics are not available, it is recognised that the axis of rotation of the 

wrist does not remain aligned with the z3 axis. Rather, the wrist undergoes combined processes of 

retraction and circumduction
12

 (Figure  12b) [67]. Circumduction of the hand wing will influence 

the aerodynamic loads on the wing, which will be discussed further in section 4.2.6. 

Wing retraction reduces the wing length, which in turn reduces the flapping velocity distribution 

along the wing for given kinematics. Wing retraction also reduces wing wetted area. These two 

factors reduce the aerodynamic load on the wing for given kinematics. As such, both were included 

in a previous study based on the model presented here, which found that wing retraction was 

beneficial for reducing aerodynamic power consumption [37]. To capture these phenomena wing 

retraction is modelled as an aggregate process that reduces wing length and area. This is expressed 

mathematically by a wing extension parameter, e, that defines the length of the retracted wing, l, as 

a fraction of the unretracted wing length, l
*
:  

,
*

ell 

 

[15] 

where l and l
*
 are both measured from the shoulder joint to the wing tip in the y3 direction. This 

approach will be used in section 4.2.6 to define the position of aerodynamic control points as the 

wing retracts. A similar model is used to define the area of the retracted wing, S, as a fraction of the 

area of the unretracted wing, 
*S :  

.*eSS 

 

[16] 

An additional factor that will be included in the present work is the effect of wing retraction on the 

wing moment of inertia. Experimental investigations have been performed that measured the wing 

mass and moment of inertia for several species [64],[69]. These studies provide data for the 

moment of inertia of an unretracted wing about an axis around which the wing elevates and 

depresses. It is reasonable to assume that the centre of mass of the wing lies close to the y2 axis, as 

this is where the majority of the skeletal and muscle structures are located [70]. For simplicity, the 

wing can then be modelled using a point mass located on the y2 axis. Literature data for wing 

moments of inertia are used to define the principal components of the moment of inertia tensor that 

                                                      
12 Circumduction of the hand wing is equivalent to a rotation of the hand about the x3 axis in the present work, although a 

technical definition such as this is not usually given in biomechanics literature. 
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are associated with wing rotation about the x2 and z2 axes, Ixx and Izz, respectively; Iyy is equal to 

zero. These components are given as 

,2
gwzzxx RmII 

 

[17] 

  

where Rg is the wing radius of gyration about the x2 or z2 axis. Retraction of the wings causes a 

reduction in the moment of inertia and radius of gyration. This is modelled in the present work by 

assuming the following linear relationship: 

,*
gg eRR 

 

[18] 

where ,*
gR  is the radius of gyration of the unretracted wing about the x2 axis. 

It is recognised that for real birds the radius of gyration may not be directly proportional to wing 

length, and also that the moment of inertia tensor consists of other components. However this 

approach is believed to be a suitable first order approximation to demonstrate the underlying effects 

of wing retraction on wing inertial properties.  

4.2.4. Wing Dynamics 

The main flight muscles of birds (M. pectoralis and M. supracoracoideus) serve predominantly to 

actuate rotation of the wing around the shoulder joint for elevation and depression [71]. This would 

indicate that the torque at the shoulder joint is significantly larger than at the other wing joints. 

Because of this, previous predictive simulations were able to reduce the equations of motion 

describing the wing dynamics to an equation for the shoulder torque, although this only included 

aerodynamic loads and not inertial loads [37]. Several other works have mentioned that inertial 

loads may also be significant (e.g. [64]). The present work will include both inertial and 

aerodynamic effects in the dynamic model (Figure 13), and their relative contribution will be 

discussed in section 4.2.9.  
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Figure 13. Modular inverse dynamic model. Joint kinematics are input directly, or are obtained from the optimiser, in 

which case the mean aerodynamic force and mechanical power are passed from this model to the optimiser.  

The Euler equations describing the wing motion in the (rotating) elevation-depression axes (x2y2z2) 

are  

 
 

 

 
 

 

 
 

 

,
22222 zyzzxxxxaxm IITT   

 

[19] 

,0
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[20] 

.
22222 yxxxzzzzazm IITT   

 

[21] 

where
2kmT  and 

2kaT (k=x,y,z) are the torque applied by the flight muscle and the aerodynamic 

torque, respectively, and
2k is the angular velocity of the wing about the k2 axis. In the present 

work the parameterised wing kinematics that will be described in section 4.3.2 will utilise a fixed 

stroke plane, and thus 
2z and 

2z are zero. In typical wing kinematics in cruising flight conditions 

the angular velocity term, 
2y , is small as only limited pronation-supination is used; for this reason 

the inertial term, 
22 yxxxI  , in equation [21] is negligibly small in comparison to the aerodynamic 

torque, and will be omitted here. The torque due to gravity, and torque due to acceleration of the 

bird are 1-2 orders of magnitude smaller than the peak aerodynamic torques, and are therefore 

neglected from the present work. 

The model does not include any form of restoring torque on the wing. This means that torque from 

the muscles is required to accelerate and decelerate the wing with no kinetic energy recovery. 

While there is some experimental evidence of a spring-type structure within birds' skeletons, this 

has not been proven to function as a mechanism for storing mechanical energy [72]. The elasticity 

of muscle tissue may also offer some method of storing and recovering energy, though limited 

quantitative data of mechanical properties on this is available for birds [36],[71]. It is therefore 
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believed that including a restoring torque would introduce unnecessary uncertainty into the model. 

For similar reasons, the resistance to motion due to internal friction in the wings is also omitted. 

As the present work assumes a fixed stroke plane, 0
2
z , and as the angular velocity term, 

2y , is 

small in cruise the mechanical power at the shoulder joint due to rotation about the elevation-

depression axes is modelled in the present work as  

   .
22222 xaxxxaxxxxxm TITIP   

 

[22] 

It should be noted that the mechanical power  can be both positive and negative. As no method of 

energy recovery is included in the present model, both positive and negative power values 

contribute to the instantaneous power consumption, and the total power consumption due to 

rotation of the wing about the shoulder joint is given as  

.
2xmm PP 

 

[23] 

This highlights that the model cannot be used to represent flapping wing systems that extract 

kinetic energy from the freestream wind.  

Mechanical power would also be required to overcome aerodynamic and inertial torques at the 

other wing joints. The fact that the majority of the wing mass is distributed along the upper arm 

means that inertial torque at other joints will be minimal and can be ignored. Aerodynamic torques 

around the wrist tend to be much smaller than those at the shoulder due to the shorter moment arm 

between the wrist joint and the loads applied to the hand wing.  However, the power consumed due 

to rotation of the wrist joint will still be accounted for, by modelling the power associated with 

wing retraction.  

Based on the wing retraction model presented in the previous section, a simplified model of the 

dynamics of wing retraction is formulated by representing the wing as a point mass. Using this 

approach an equation of retraction motion in the y2 direction is given as  

,22
ymFF wyam


 

[24] 

where Fm is the force applied to the wing by the muscles and
2ya F is the aerodynamic load, which 

will be derived in section 4.2.6. For similar reasons to those given for the shoulder torque model, 

no restoring force or internal resistance will be included. The instantaneous mechanical power 

consumption at the shoulder due to wing retraction is then given as 

  .222 yFymyFP awmr
 

 

[25] 
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Thus, the total instantaneous mechanical power consumption is given as the sum of the power 

consumed due to wing rotation and retraction: 

.PPP rm 

 

[26] 

In order to close the system of equations describing the wing dynamics, the aerodynamic forces and 

torque on the wing must be derived. The aerodynamic model will be described in the following 

section as a separate, and distinct process, which is largely independent of the modelling decisions 

used up until now in constructing the inverse dynamic model. 

4.2.5. Aerodynamic Modelling 

This section will begin by overviewing a range of commonly used methods of predicting 

aerodynamic forces and torques to identify one that is best suited to the present modelling 

approach. Following this, details will be given of the how this method can be implemented in the 

inverse dynamic model. 

Choice of aerodynamic model 

One of the major concerns when formulating a predictive simulation method is balancing the 

accuracy of the dynamic model with the computational cost incurred in obtaining a solution. In 

predictive simulations of aerial locomotion this is particularly apparent when selecting a model to 

predict aerodynamic loads. A vast spectrum of aerodynamic models exists, and these have been 

applied to fixed, rotary and flapping wings. Some of these models require a high level of user-

intervention which makes them impractical when using mathematical optimisation. 

The first methods to be considered are those that resolve the flow around a body by obtaining 

numerical solutions to the equations that govern fluid motion
13

. This class of methods can be 

subdivided into two groups based on the specification of the flow field. Eulerian methods, such as 

those that solve the Navier-Stokes or Euler equations, calculate the flow properties at discrete 

positions and times in the flow field using a computational grid or mesh.  Lagrangian methods, 

such as smoothed-particle hydrodynamics or vortex methods, are grid-free methods that track the 

flow properties on a set of particles.  

Both Eulerian and Lagrangian methods are generally regarded as being computationally expensive 

in comparison to other aerodynamic methods. In the context of modelling flapping wing 

                                                      
13 The term "Computational Fluid Dynamics" (CFD) is sometimes used to reference these methods, however this is 

believed to be misleading because other CFD methods exist that predict aerodynamic loads without resolving the flow 

around the body [73]. 
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aerodynamics, a grid-based method would have to adapt the grid throughout the solution to account 

for changes in wing orientation, which would incur additional computational cost. Iterative 

numerical schemes are commonly employed in grid-based solvers, and these generally require 

some level of user-intervention to maintain numerical stability and achieve a converged solution. 

The solutions from both Eulerian and Lagrangian approaches tend to be sensitive to the surface 

geometry, and therefore require detailed information to reconstruct the geometries of real wings 

which limits the extent to which a generic, scalable model can be formulated. For these reasons, 

aerodynamic methods that resolve the flow field are not believed to be practicable in the current 

simulation framework. 

An alternative class of numerical method for modelling aerodynamics are known as panel methods. 

These are derived from the potential flow equations, which describe inviscid, irrotational flow of 

fluid. The crucial factor in these methods is that rather than resolving the flow properties across a 

domain, they can predict aerodynamic loads from analysis of fluidic singularities modelled on the 

body surface only; this approach is therefore accepted to a computationally economical method of 

aerodynamic analysis [73].  

As well as being used extensively for fixed and rotary wing analysis, panel methods have also been 

applied to the analysis of flapping wings [39],[74]. One of the problems recognised when using 

panel methods is that an estimate of the wake shape must be made, which for flapping wings may 

change throughout the wingbeat. Wake geometry can either be prescribed based on experimental 

evidence, or solved explicitly, which incurs significant computational cost [19].  

Another important issue with panel methods is that they are generally applicable to attached flows 

only [73]. This means that under certain flow conditions a panel method would not capture the 

effects of stall that would be seen on a real wing under the same conditions, and would therefore 

tend to overpredict lift and underpredict drag. Therefore, the possible benefits of panel methods 

over flow domain solutions in terms of reduced computational cost are perhaps outweighed by their 

limited applicability to attached flows only. 

Lifting-line theories developed for analysis of fixed wing aircraft have been adapted to predict 

aerodynamic loads and power consumption on flapping wings. Lifting-line methods calculate 

circulation distribution along the wing, and determine lift from the two dimensional Kutta-

Joukowski theorem [73]. A previous review demonstrated that the approximation of low amplitude 

wing kinematics limits the applicability of these methods for modelling flapping flight of 

organisms [39].  
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Blade-element theory (BET) is often regarded as one of the most rudimentary methods of 

aerodynamic analysis. This method is commonly used as a tool for preliminary design of rotary 

wing vehicles, offering robust predictions of aerodynamic forces and torques with low 

computational cost [19]. A blade-element aerodynamic model has been used in predictive 

simulation of insects in hovering flight, and the resulting kinematics correlate strongly to 

experimental data [49]. 

Unlike lifting line models, BET alone does not include a representation of the induced velocity. To 

account for this, blade-element theory is often coupled with a momentum theory model that 

predicts the induced velocity for given net aerodynamic loads [19]. The combined blade-element-

momentum theory (BEMT) has already been used for predictive simulation of birds in forward 

flight [37]. This approach was found to be sufficiently accurate to capture experimental trends in 

kinematics of real birds. The same method could be applied over a range of flight conditions with 

modest computational resources due to the rapid solution times. Moreover, no adjustments would 

be required to the model between simulating different flight conditions. BEMT therefore stands as 

a robust tool that is sufficiently accurate for predictive simulation of bird flight. 

Blade element momentum theory 

BET models a wing as a series of quasi-2D aerofoils [19]. The aerodynamic loads and moments are 

calculated at an aerodynamic control point on each individual aerofoil, or element, based on the 

aerofoil aerodynamic properties and its orientation to the local wind velocity vector. The properties 

required to calculate aerodynamic loads in this approach are the 2D lift and drag coefficients of the 

aerofoils. These are generally defined empirically from experimental measurements, or using a 

theoretical model such as thin aerofoil theory [19].  
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Figure 14. (a) Illustration and blade element representation of the wing in freestream axes, depicted with the blade 

element zero lift lines parallel to the x0 axis. Skeletal segments are shown for reference. (b) Local wind velocity for a 

blade element, comprised of components of freestream velocity, induced velocity and wing flapping velocity. Derivation 

of local blade angle of attack neglects the effective induced camber that arises due angular velocity of pronation-

supination. 

An example of a blade element representation of an avian wing is shown in Figure 14a. The wing 

planform geometry was constructed from that of a pigeon wing used in previous predictive 

simulations [37],[70]
14

. Local blade element axes are defined with the origins at the aerodynamic 

control points and the axes of the jth blade element are given the notation 
)(

4
,

)(

4
,

)(

4

jjj
zyx . The 

)(

4

j
x

axes are aligned with the blade zero-lift lines, the 
)(

4

j
y axes are parallel to the y3 axis when the wing 

is unretracted, and the 
)(

4

j
z axes are oriented to form right handed sets. Figure 14b illustrates the 

local axes for the jth blade element. 

The orientation of the blade element lift and drag vectors is shown in Figure 14b. The local wind 

velocity is comprised of three components: the freestream velocity, the wing flapping velocity and 

the induced velocity. The exact method of determining the induced velocity from momentum 

theory will be detailed in section 4.2.6. 

                                                      
14 The model allows for any wing planform geometry to be used, however the specific values chosen for the wing length 

and wing reference area were found to have a more significant affect than the wing planform on the predicted 

aerodynamic forces and power consumption .  
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Central to the formulation of the blade element method is the choice of functions to represent the 

element lift and drag coefficient variation with angle of attack. Experimental data for aerodynamic 

properties of avian wings offer some useful guidelines for this aspect of the model. Results from 

wind tunnel tests have shown that avian wings tend not to exhibit strong stall characteristics at flow 

Reynolds numbers similar to those of real birds in typical flight conditions (~10
3
-10

5
) [52]. More 

recently, results from experimental studies using revolving birds wings supported this conclusion, 

and went further to show a smooth variation in aerodynamic force coefficients for an angle of 

attack range from -20° to 120°  [75],[76].  

Smooth trends in force coefficients were also seen in studies on rotating insect wing models 

[76],[77]. These data were later used as the basis for trigonometric models for lift and drag 

coefficients in predictive simulations of insects [49]. Trigonometric models were also used in 

previous versions of the current model for simulating avian flight [37]; at the time this was 

intended to be a simple extrapolation of a standard post-stall aerofoil model to the pre-stall region 

[19], however the experimental evidence suggests that this is an accurate representation of the 

actual pre-stall aerodynamic properties. A similar approach will be used in the present work, 

whereby the lift and drag coefficients are given as  

 ,2sin 0  Acl  [27] 

 ,2cos 0  CBcd  [28] 

where A, B and C are parameters defining the maximum and minimum force coefficients and α0 is 

the angle of attack at which zero lift is generated. Throughout the present work only uncambered 

wings will be considered and therefore α0 is zero. The maximum section lift coefficient in this 

model occurs when the angle of attack is 45°, and so is also referred to as
45lc ; the section drag 

coefficient at 0° angle of attack is referred to as
0dc   CB  , and at 90° is referred to as

90dc  

 CB  ; these represent the minimum and maximum section drag coefficients, respectively. 

Previous predictive simulations found that the maximum section lift coefficient was the dominant 

parameter in predicting aerodynamic loads [37]. The choice of maximum lift coefficient has also 

been the source of some debate in previous theoretical models of bird flight (e.g. [40]), and 

therefore warrants careful consideration here. Previously, this value was based on measurements of 

revolving pigeon wing experiments at Reynolds numbers similar to those encountered by real 

pigeons [75]. Similar maximum steady lift coefficients of around 1.6 were measured for revolving 

quail wings and model insect wings [76],[77]. Therefore, a value of 1.6 will be used in the present 

work, which is recognised as being representative of a wide range of species, and is therefore 

appropriate for the current scalable modelling approach. Experimental studies have also shown that 
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there is little variation in this value with changes in Reynolds number [75], so the section lift 

coefficient is modelled here as a function of the angle of attack only (equation [27]). 

It should be noted that force coefficients from revolving wing experiments tend not to include the 

induced velocity as part of the reference speed. As the induced flow effects are likely to be 

significant when compared to the wing rotational speed, the force coefficients will be over 

predicted. However the predicted values for 
45lc are still plausible as similar values have been 

obtained using wind tunnel tests of avian wing models with high-lift devices at similar Reynolds 

numbers [78]. Therefore, the same value will be used in the present model, but the effect of using 

different values for 
45lc will also be examined in terms of the dynamic model sensitivity (section 

4.2.10), and the predictive simulation accuracy (section 4.3.5).  

Revolving wing experiments estimate maximum drag coefficients of less than 3, though substantial 

variation exists between different wing models [76]. A conservative approach used in previous 

simulations [37] will be adopted here, that assumes values of B=1.135 and C=-1.05 that are deemed 

appropriate for an arbitrary aerofoil [19]; this yields a value for 
90dc of around 2.2. The effects of 

using different values will be examined in section 4.2.10. 

The instantaneous blade element lift and drag acting on the jth (j=1,2,3...Nj) control point are given 

as 

,
2

1 )()(
2

)(
4

)( j
l

jjj csl V  [29] 

,
2

1 )()(
2

)(
4

)( j
d

jjj csd V  [30] 

where 
 
is the local air density, )(

4
j

V is the control point local wind velocity (see section 4.2.6 for 

derivation),
)( js is reference area of the jth blade element, and )( j

lc and )( j
dc are the lift and drag 

coefficients of the jth blade element, respectively.  

If the local angle of attack is calculated at the 3/4-chord  point the model implicitly accounts for 

effective camber [19] or rotational lift [49]. However, preliminary tests found that under typical 

cruising flight conditions the aerodynamic force and mechanical power consumption are insensitive 

to the chordwise location at which the angle is derived for an element, suggesting that rotational lift 

effects are negligible. For simplicity, the present work will calculate the angle of attack at the 

location of the aerodynamic control point, and in doing so will neglect rotational lift. 

The equations for blade element lift and drag can also be used to formulate the local blade torque 

around the y2 axis, but this requires knowledge of the moment arm between each blade element 
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control point and centre of rotation. While experimental measurements of the centre of pressure 

variation with angle of attack have been made for insects [79], such data for bird wings are not 

available. For this reason the aerodynamic torque around the y2 axis will be derived assuming the 

aerodynamic control points are fixed on the 1/4-chord line, which is the theoretical location of the 

centre of pressure of thin, symmetric aerofoils [20]. For any chordwise location of the centre of 

pressure the torque around the y2 axis is found to be significantly smaller than aerodynamic and 

inertial torque components about the x2 axis for all flight conditions. 

The blade element theory can also accommodate models of unsteady aerodynamics. An example is 

the added mass model that captures the loads that arise due to of acceleration of the fluid 

surrounding the wing. Equations for the added mass aerodynamic loads are generally defined in the 

local aerofoil axis system (e.g. [49]). The section lift and drag on a blade element in equations [29] 

and [30] are defined in the blade local wind axes (
)(

5
,

)(

5
,

)(

5

jjj
zyx ), and therefore added mass forces 

cannot be summed directly with these forces.  

The blade element aerodynamic force vector on the jth control point is given as 
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A coordinate transformation is used to obtain the blade element forces in the blade local axes  
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B FRF   [32] 

where )( j
R is a rotation matrix:  
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The added mass effects are now included following the method used in by Berman & Wang [49], 

giving the total aerodynamic load in the in the blade local x4 and z4 axes as  
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where c
(j)

 is the chord length of the jth blade element. Equations [34] and [35] are based on the 

assumption that the wing thickness to chord ratio is small. Without making this assumption and 

assuming a typical thickness to chord ratio for an avian wing of 10% [80], no significant change in 

aerodynamic loads occurs. 

It is possible to incorporate additional unsteady aerodynamic models such as dynamic stall 

behaviour into the current blade element approach. However, the possible benefits that these 

models offer in terms of accuracy are believed to be outweighed by the level of experimental 

validation required in their implementation. Other unsteady models that incorporate the influence 

of the unsteady wake on aerodynamic loads tend to be limited to low amplitude flapping flight 

only, and are therefore not applicable in the present context [19]. 

4.2.6. Finding Local Blade Wind Velocity Vector  

The previous section presented the method of determining the aerodynamic loads on a blade 

element for known local wind velocity. This section will overview the exact procedure for 

calculating the local wind velocity for each blade element under any flight condition.  A description 

will then be given of how these results are used to predict net aerodynamic loads and shoulder 

torque, which are required for closure of the rectilinear flight model (equations [5] and [6]) and the 

mechanical power model (equations [22]-).  

Figure 15 depicts the location of a set of J aerodynamic control points on the wing, where there are 

Ja control points on the arm wing and the remainder on the hand wing. For a fully-extended wing 

with no shoulder rotation the position of a control point in the freestream axes is given as  
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[36] 

When the wings retract all aerodynamic control points are assumed to translate in the -y3 direction 

(equal to the -y0 direction when the shoulder rotation angles are zero; Figure 15). Following 

equation [15] that defined the retracted wing length, the displacement of a control point in the y3 

direction is expressed as a fraction of its displacement when the wing is fully extended. Control 

points on the hand wing also rotate about the wrist joint, as shown in Figure 15b. 
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a. Unretracted wing (top view along -z0)        b. Partially retracted wing (top view along -z0) 
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Figure 15. (a) Blade element representation of the wing in freestream axes, depicted with the blade element zero lift lines 

parallel to the x0 axis. (b) Blade element transformation when the wing is partially retracted; blade element width 

(spanwise) reduces when the wings retract, and elements on the hand wing rotate by the hand circumduction angle, σ. 

The position vector for the jth control point on the retracted wings is then given as  
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where 
0yw  is the distance from the shoulder to the wrist joint of the outstretched wing in the y0 

direction. Note that for reasons given above the position of the control points in the x0 axis is fixed 

at the 1/4-chord location, and is unaffected by wing retraction. 

The control point locations of the retracted wing are then rotated by the shoulder rotation angles 

using the method described in section 4.2.3. The jth control point position vector in the freestream 

axes is given as  
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By evaluating equation [38] at times t and t+Δt (where Δt is a small time increment) the velocity of 

the control point can be evaluated numerically using a finite difference approximation. In the 

present work the time derivate of a variable, q, is approximated using a first order central 

differencing scheme: 
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[39] 

However when applying this method over a time period, T, for the cases of t=0 and t=T forward 

and backward differencing methods must also be used: 
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Applying equations [39]-[41] to elements of the jth control point position vector, )(
0

j
p , yields the 

flapping velocity vector of the jth control point in freestream axes,
 

)(
0

j
cpV . The flapping velocity 

vector is then summed with the freestream wind velocity to yield the combined wind velocity at the 

control point in the freestream axes:  
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This velocity vector does not include the effects of induced velocity. Following convention the 

induced velocity, 1Vi , will be derived in the stroke-plane axes (section 4.2.7), and thus the velocity 

in the stroke plane axes is given as 
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noting that the induced velocity is assumed to be equal for all control points. 

The local wind velocity at the jth control point in the blade element axes is then given as 
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where  
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The angle of attack at the jth control point is given as 
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The local blade lift and drag coefficients can then be calculated from equations [27] and [28]. 

These can be inserted into equations [29] and [30] along with the local wind velocity from equation 

[44] to find the local blade lift and drag in local wind axes. Equations [31]-[35] are then used to 

give the aerodynamic loads in the blade local axes,
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F , which includes added mass effects. The 

loads in the elevation-depression axes are given as  
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Thus, the instantaneous aerodynamic torque on the wing is given in elevation depression axes as  
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which is used in equations [22]- to find the mechanical power consumption. The instantaneous 

aerodynamic load on the wing in the freestream axes is given as 
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The time-averaged aerodynamic load in the freestream axis, 0F , and mechanical power 

consumption, P, are obtained using numerical integration. In the present work the time-average of a 

variable, q, is approximated using a trapezoidal integration scheme. If instantaneous values of q are 

obtained at Nt evenly spaced timepoints, the time-averaged value is given as 
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The mean force components, 
0xF and

0zF , computed using equation [50] can be used in equations 

[5] and [6] that describe the overall bird dynamics. 
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4.2.7. Modified Momentum Theory 

The momentum theory models a helicopter rotor or flapping wing as an actuator disk of 

infinitesimal thickness, over which a pressure difference exists. The aerodynamic force exerted by 

the actuator disk on the surrounding fluid is equal to the force generated by the rotor or wings, and 

increases the kinetic energy of the slipstream (Figure 16) [19]. 

a. Rotary and flapping wing flows b. Momentum theory flow model 
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Figure 16. (a) Flow models for rotary and flapping wing systems. (b) Momentum theory model, where the actuator disk is 

located at the rotor disk plane when modelling a rotary wing, or the stroke plane for a flapping wing system.  

The mass flow rate through the disk is given as 

,UAm d  [51] 

where Ad is the actuator disk reference area and U is the net velocity through the disk. The disk 

reference area for a flapping wing system is defined as the area swept by the wings during a 

wingbeat. The net velocity through the disk is given by 

    ,sincos
22

11 zixi VVU    VV  [52] 

where  is the angle between the freestream wind vector and the normal to the disk, and
1xiV and

1ziV are the induced velocity components perpendicular and parrallel to the disk, respectively 

(Figure 16).  

Conservation of momentum perpendicular to the disk gives the disk normal force as 

  ,coscos
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where
1xW is the perpendicular velocity immediately downstream of the disk. 

Considering conservation of energy perpendicular to the disk, the aerodynamic power consumption 

in this direction is given as 
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Substituting equation [53] into equation [54] and simplifying gives  

.
2

1
11 xxi WV 

 
[55] 

Substituting equations [51], [52] and [55] into equation [53] gives the perpendicular induced 

velocity as  
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It is important to note that in equation [56] the perpendicular induced velocity term appears on both 

sides of the equation, and therefore must be obtained iteratively. Equation [56] is equivalent to the 

induced velocity used in the analysis of the forward flight of helicopters, with the addition of the 

parallel induced velocity term [19]. To derive this parallel term, a similar approach to the above can 

be repeated, considering components parallel to the actuator disk. Applying conservation of 

momentum parallel to the disk gives the disk parallel force as 
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where
1z

W is the parallel velocity immediately downstream of the disk. 

Considering conservation of energy parallel to the disk, the aerodynamic power consumption in 

this direction is given as 
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Substituting equation [57] into equation [58] and simplifying gives 
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Finally, substituting [51], [52] and [59] into equation [57] gives the parallel induced velocity as 
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which is similar to equation [56], and must also be solved iteratively. This method of predicting 

both parallel and perpendicular components distinguishes the model from the actuator disk theory 

for rotary wings, which only consider flow normal to the disk. 

An important point to note from the equations for the induced velocity is that these components can 

be solved iteratively, providing that the parallel and perpendicular disk loads are known. However, 

these loads are themselves dependent upon on the induced velocity. Therefore, it is necessary to 

perform two iterative procedures, one to predict the induced velocity components in equations [56] 

and [60] using momentum theory, and another that derives the net parallel and perpendicular loads 

using blade element theory. This is illustrated in Figure 17. 

a.  b. 
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Figure 17. (a) Inner and outer loop iterations for blade element momentum theory. The mean aerodynamic force is 

calculated using the blade element theory for a given initial guess value for the induced velocity. The momentum theory is 

then used t update the induced velocity based on the mean force. (b) Example results for the net induced velocity taken 

from the outer iteration loop of a model of hovering flight of the pigeon.  

Example results for the outer iteration loop are shown in Figure 17b, which shows 20 iterations of 

the vertical induced velocity for a hovering model of the pigeon. The iteration of induced velocity 

is found to be a robust numerical procedure that converges rapidly and is independent of the choice 

of the initial guess value. 

4.2.8. Dimensional Analysis & Performance Metrics 

 Force, torque and power coefficients can be defined to compare predictions from the dynamic 

model for different scales and flight conditions. The approach used here is inspired largely by the 
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standard methods employed in the analysis of rotary wing vehicles [19]. The axial, lateral and 

normal force coefficients are defined as 
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where refV is the maximum wing tip speed during a wingbeat.  

Unlike the aerodynamic force, the torque vector tends to be dominated by a single component for 

typical flight conditions. Therefore, a single shoulder torque coefficient is defined as  
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The mechanical power coefficient is defined as  
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The advance ratio is a scaling parameter used to characterise the operating conditions of rotary 

wing vehicles [81]. A similar approach can be used for flapping wing systems, by defining the 

advance ratio as the ratio of freestream velocity magnitude to the maximum wingtip speed: 
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The significance of the advance ratio will be made evident in section 5.3, when comparing the 

cruising kinematics of birds of varying scale. 

Two performance metrics will be used to compare simulated birds of varying scale in section 5.3.3: 

the wing loading, WL, and power loading, PL. The wing loading is used to analyse performance of 

fixed wing aircraft and is the ratio of weight to wing area: 

 ;
2S

mg
WL   [67] 

The power loading is the ratio of force generated to power consumed, and is mainly used for rotary 

wing aircraft: 
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4.2.9. Example Force Time Histories 

Having formulated a closed set of equations for the inverse dynamic model it is now useful to 

demonstrate the model output for typical wing kinematics. Hovering flight will be used as a test 

case as it represents the simplest flight conditions from an aerodynamic perspective as the 

freestream velocity is zero. Using wing kinematics that will be predicted in section 5.2 for a model 

of the pigeon, examples of the shoulder torque coefficient and mechanical power coefficient are 

shown in Figure 18. The results from the dynamic wing model are shown in comparison to those 

predicted by models that include aerodynamic effects only, and inertial effects only. 

The shoulder torque coefficient reaches a large negative peak at the beginning of the downstroke 

(phase=0), and a large positive peak at the beginning of the upstroke (phase=0.5; Figure 18d). At 

the beginning of each half-stroke significant torque is required to overcome inertial effects as this is 

where the wing angular acceleration is greatest. At the mid-downstroke (phase=0.25) and mid-

upstroke (phase=0.75) the instantaneous torque due to inertial effects is zero as the wing is not 

accelerating. However, around this time the flapping velocity peaks, which yields significant 

aerodynamic torque. The shoulder torque coefficient variation in not symmetric about 0.5 phase 

due to added mass effects. 

The mechanical power coefficient shows two distinct peaks during each half-stroke (Figure 18e), 

which have been observed in other flapping wing simulations that include both aerodynamic and 

inertial loads [49]. For the complete dynamic model at the first peak in power (phase≈0.13) both 

inertial and aerodynamic torques are negative. At the second peak in power (phase≈0.38) the 

inertial torque is positive as the wing is now decelerating, while the aerodynamic torque is still 

negative. As these two torque components are summed in deriving the mechanical power 

(equations [22]-), the power consumed near the beginning of the downstroke is greater than that 

consumed near the end, which explains the differences in size of the two peaks; the same process 

occurs on the upstroke. It is important to note that the mechanical power predicted using the total 

(aerodynamic + inertial) torque is not equal to the sum of the powers predicted using only 

aerodynamic, and only inertial torques, as implied by other works [64]. 

In hovering flight the inertial torques are of similar magnitude to the aerodynamic torque. In 

forward flight the aerodynamic torque becomes the more significant component, and so the first 

peak in power on each half-stroke becomes more pronounced.  
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a. Hovering kinematics (side view along y0)

 
b. Hovering kinematics (top view along -z0) 

 

0 0.5 1

Phase
 

 
Figure 18. (a),(b) Example kinematics for hovering flight of a model of the pigeon. Time histories joint angles (c),   

shoulder torque coefficient (d) and mechanical power coefficient (e) for the complete dynamic model, a model with 

aerodynamic forces only, and a model with inertial forces only. 

Another key output to be demonstrated is the predicted instantaneous aerodynamic force. Force 

coefficients predicted using the blade-element model presented in section 4.2.5 are shown in Figure 

19. Blade-element models that omit the added mass effects and the induced velocity effects are also 

shown for comparison. 

Axial and normal aerodynamic forces and force coefficients reach their peak values at the mid-

downstroke (phase≈0.25) and mid-upstroke (phase≈0.75), when the wing flapping velocity is 

greatest (Figure 19a,c). The negative axial force generated on the downstroke is cancelled out by 

the positive force on the upstroke,  leading to zero net axial force over the wingbeat, as required for 

hovering flight conditions (Figure 19a). The net lateral force coefficient is non-zero, but the lateral 

load would be cancelled out by an equal and opposite load from the other wing (Figure 19b). The 

net normal force coefficient is required as the normal force provides weight support in hovering 

flight (Figure 19c). 

c. e. d. Downstroke Upstroke 
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Figure 19. Time histories of axial (a), lateral (b) and normal (c) aerodynamic force coefficients, and shoulder torque 

coefficient (c) and mechanical power coefficient (d) for hovering flight of a model of the pigeon. Models without added 

mass effects and induced velocity effects are shown for reference. 

Previous predictive simulations of insects hovering included added mass effects, but no induced 

velocity [49]. In the present work the added mass model only contributes significantly to the lateral 

force coefficient  (Figure 19b). However, the induced velocity is seen to play a much bigger role, as 

it influences the prediction of normal force coefficient in hovering flight (Figure 19c). For fixed 

kinematics without induced velocity the mean normal force coefficient is greater. It can also be 

shown that using alternative kinematics with no induced velocity the same weight support can be 

achieved but using less mechanical power. The same observation was made with typical cruising 

flight kinematics (predicted in section 5.1). The added mass effects contribute more than the 

induced velocity effects to the peak shoulder torque coefficient (Figure 19d). However, neither of 

these make a significant difference to the mechanical power coefficient (Figure 19d).  

Further insight into the model functionality can be gained by considering the variation in 

aerodynamic properties at different locations on the wing. The local section lift coefficient, cl, is 

shown in Figure 20 for a hovering flight simulation with control points positioned at varying 

spanwise locations. Control points located from half way along the wing to the wing tip reach the 

maximum local lift coefficient of 1.6, and retain high lift coefficients for the majority of the 

downstroke and upstroke. As the local wind velocity increases towards to wingtips due to the 

increase in wing flapping velocity, the majority of the aerodynamic load is generated in this region.  

a. b. c. 

d. e. 

Downstroke Upstroke 
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Figure 20. Time history of section lift coefficients for hovering flight of a model of the pigeon for blade elements 

positioned at three locations on the wing: the wingtip (i), 1/2 of the wing length from the root (ii) and 1/4 of the wing 

length from the root (iii). 

If the induced velocity model were removed all blade elements would generate the same local lift 

coefficients in hover (Figure 20). However in the present model control points closer to the 

shoulder joint have lower local lift coefficients. This is mainly due to the induced velocity, which 

significantly reduces the local angle of attack for elements with low flapping velocities. The result 

of this is that not all blade elements can achieve the same angle of attack, and therefore cannot 

achieve the same local lift and drag coefficients.  

A constant angle of attack can be achieved on a flapping wing using a distributed twist along the 

wing. For idealised conditions of axial flight, which represents hovering and high advance ratio 

forward flight, this twist distribution can be approximated analytically (see Appendix). Whether 

real birds are capable of actively achieving this kind of distributed twist is unknown. It is plausible 

that passive dynamic effects, such as feather bending under aerodynamic loads, may assist in doing 

so. However these properties are regarded as being highly species specific, and not applicable at 

this stage of the construction of a generic simulation model. It is more useful to recognise that the 

proposed model may unpredicted the aerodynamic loads on the wing in the region close to the 

shoulder joint for given wing kinematics. This will be discussed further in section 5.2.6. 

4.2.10. Convergence & Sensitivity Screening Analysis 

The predicted mean aerodynamic loads and mechanical power consumption depend on the spatial 

distribution of control points along the wing and the temporal resolution of the dynamic model. To 

assess the convergence properties of the model the net aerodynamic load and mechanical power 

can be calculated under given flight conditions for increasing numbers of spanwise elements and 

solution timepoints. Figure 21 shows these data using optimised kinematics for a model of the 

pigeon in minimum power cruising flight that will be simulated in section 5.1.  

Downstroke Upstroke 
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Figure 21. Numerical convergence of the axial force (a), normal force (b) and mechanical power (c) with varying 

numbers of spanwise blade elements and numbers of solution timesteps; results are shown as percentage changes from 

the baseline values that were obtained using a model from a previous predictive simulation [37] i.e. using 2 spanwise 

elements and 100 timesteps.  

When increasing the number of spanwise elements from 2, as used in a previous predictive 

simulation model [37], to 4, a significant drop of around 40% is seen in axial force (Figure 21a); 

normal force and mechanical power reduce by around 5%. The numerical method converges 

towards a solution for aerodynamic load and power for both increasing numbers of timesteps and 

increasing numbers of spanwise elements. As with many numerical methods the exact convergence 

criteria must be selected somewhat arbitrarily, as the exact solution is unknown. Here, the 

numerical convergence is defined when a further doubling of number of elements or timepoints 

yields less than a 1% change in the solution. Therefore, based on the results in Figure 21, 32 

spanwise elements and 400 timesteps will be used throughout this work. 

Having defined the numerical parameters for the inverse dynamic model, a sensitivity analysis can 

now be performed on the model input physical parameters. This will provide insight into which 

input parameters are most influential for predicting aerodynamic force and mechanical power. 

Using the inverse dynamics model with defined wing kinematics rather than with the optimisation 

module allows an initial sensitivity screening analysis to be performed [82]. This allows the 

solution sensitivity to be disassociated from numerical uncertainties associated with optimisation, 

such as optimisation tolerances. The sensitivity analysis is purely aimed at assessing the influence 

of uncertainty in theoretical model parameters. Therefore, it does not take into consideration the 

coupling between physical parameters, such as the implicit change in wing mass that is likely to 

occur with changes in wing length. 

A standard one-at-a-time (OAT) sensitivity analysis was performed for a model based on the 

pigeon, by incrementing input parameters from their baseline values (Table 1) [82]. Net 

aerodynamic force and mechanical power consumption were calculated for each set of input 

parameters, again using kinematics for minimum power cruising flight of the pigeon (Figure 22).  

a. b. c. 



79 

 

Wing Length 

 
l  (m) 

Wing Mass 

 

wm (10-3 kg) 

Wing radius 

of gyration 

gR  (10-3 m) 

Hand:wing length 

ratio 

h  

Max. wrist 

Circumduction 

 (°) 

0.32 25.8 96.9 0.74 90 

     

Control point  

chord-fraction 

x
cp  

Section max. 

lift coefficient 

45lc  

Section zero-lift 

drag coefficient 

0dc  

Section max. 

drag coefficient 

90dc  

 

0.25 1.6 0.085 2.19  

Table 1. Input physical parameters of the baseline pigeon model taken from previous experimental studies where available 

[12],[13] and remainder obtained from allometric scaling laws [64]. 

 

 
Figure 22. Sensitivity screening analysis, showing the variation in net aerodynamic force on the wings and mechanical 

power consumption with changes in nine input parameters. Force and power are shown as percentages of the baseline 

values from Table 1. 

The parameters that have the greatest influence on both the aerodynamic force and the power 

consumption are the wing length (Figure 22a) and maximum lift coefficient (Figure 22g). These 

will be termed the screened sensitivity parameters. The radius of gyration only influences the 

mechanical power consumption, and not the aerodynamic force. The reason that the aerodynamic 

force is sensitive to changes in the wing length is because increasing the wing length increases the 

wing flapping velocity and local wind velocity at the control points. As the blade element loads are 

a. b. c. 

d. e. f. 

g. h. i. 
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proportional to the square of the local wind flapping velocity (equations [29] and [30]), this causes 

a significant increase in axial and normal loads, which in turn increase torque and mechanical 

power consumption.  

The results in Figure 22 allow quantification of the solution accuracy for given potential errors in 

the individual model input parameters. By varying more than one impact parameter at the same 

time, it can be shown that the solution accuracy is affected even more so for combined changes of 

input parameters. Using a two-at-a-time sensitivity analysis on the same model it is found that 

combined changes in wing length and maximum lift coefficient have the greatest influence on 

predicted aerodynamic loads and power consumption.  

4.3. OPTIMISATION 

This section will describe the optimisation module depicted in Figure 8 that is used with the inverse 

dynamics module to make predictive simulations of avian kinematics. As mentioned previously, 

the optimisation module will be largely independent of the input parameters to the  inverse 

dynamics module. This allows optimised kinematics to be predicted using different input 

parameters, such as different bird geometries or flight conditions, without changing the 

optimisation module. However, the mathematical properties of the inverse dynamics model are 

taken into account when selecting a method of optimisation. 

4.3.1. Cost Function 

As described in chapter 2 mathematical optimisation generally involves the definition of the 

optimisation variables, constraints and a cost function. In the present simulation framework the cost 

function is used to assess the penalty associated with using given kinematics to achieve powered 

flight under given conditions.  

Some of the fundamental models of terrestrial locomotion (e.g. [83]) defined optimum walking 

techniques as those that required the lowest mechanical energy consumption. More recently 

predictive simulation of multi-segment models have shown that minimising mechanical energy can 

lead to accurate predictions of body segment kinematics that closely resemble those measured 

experimentally ([35] and references therein). A similar approach was applied in two previous 

predictive simulations of flapping flight, which also captured experimental trends in kinematics for 

different species [49] and flight conditions [37].  

It is recognised that cost functions based on metabolic power consumption have also been widely 

used in terrestrial locomotion simulations (e.g. [84]). Measurements of metabolic power 
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consumption in avian flight could potentially be used to validate a predictive model using this as an 

optimisation cost function [23]. However, muscle models that predict metabolic power typically 

require input parameters of muscle physical properties, as well as some representation of the 

muscle dynamics. These additional uncertainties limit the applicability of metabolic power models 

to the present simulation framework, and therefore mechanical power is regarded as being a more 

robust and generic cost function. For this reason the optimisation module will be used to minimise 

the time averaged mechanical power consumption at the shoulder joint, as detailed in section 4.2.4.  

4.3.2. Optimisation Variables & Wingbeat Parameterisation 

The optimisation variables are a set of parameters that define the bird kinematics. In the general 

case this includes variables defining the kinematics of the wing with respect to the body and 

variables defining the descent angle, cruise speed and axial acceleration. It is also possible to 

predefine any of these kinematic variables prior to optimisation, in which case they are no longer 

included as optimisation variables. Throughout this work the descent angle and axial acceleration 

will be predefined. Cases where the cruise speed is also predefined will be stated clearly. 

In the present work the kinematics of the wing are assumed to be periodic over the wingbeat time 

period, T. One caveat of previous simulations using the present model was that the wingbeat 

frequency, f ( T
1 ), had to be predefined. The present work will overcome this shortcoming by 

including wingbeat frequency as an optimisation variable. Over the wingbeat time period the wing 

kinematics are governed by time histories (or trajectories) of the shoulder joint angles and the wing 

extension parameter defined in section 4.2.3. It is necessary to parameterise the time histories to 

yield a finite set of kinematic variables for optimisation. This should be done strategically as the 

number of optimisation variables greatly influences the computational cost of the optimisation 

problem. 

Drawing on the success of previous models  this work aims to find a compromise between two 

different approaches to wing kinematic parameterisation [37],[48]. The first approach is based on 

parsimony, which aims to capture the underlying physics of flapping flight using the simplest 

model possible [41]. The second approach is phenomenology, in which the model complexity 

reflects the desire to capture experimentally observed phenomena [49]. An intermediate approach 

was used in a previous application of the present model, whereby avian flight was simulated using 

only four wing kinematic variables [37]; the results captured trends observed experimentally for 

variations in kinematics with cruise speed. This method defined sinusoidal trajectories for wing 

elevation angle,  , wing pronation angle,
 
 , and wing extension parameter, e, giving a wing that 

has an implicitly cyclic motion, or that is stationary. By applying appropriate constraints to the 
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amplitudes sinusoidal motions prevent prediction of excessive force, torque and power in the 

dynamic model
15

. A similar approach will be applied in the present work, with the following 

mathematical definitions for elevation and pronation amplitude:  

  ,cos 0 t

 

[69] 

  ,cos 0  t

 

[70] 

where and  are the amplitudes of elevation and pronation angle, 0 and 0 are the elevation and 

pronation angle offsets, respectively,
 
 is the pronation phase lag, and  ( f2 ) is the wingbeat 

frequency in radians. A pronation phase lag of 25.0 ensures that the maximum pronation angle 

is concurrent with the maximum wing flapping velocity at the mid-downstroke, allowing maximum 

aerodynamic force to be generated [37]. By setting angle offsets to zero the wings elevate and 

depress by equal amounts, and pronate and supinate by equal amounts. This simplification reduces 

the subspace of possible solutions to the optimisation problem, but still allows predictions to be 

made for hovering and forward flight conditions. Such a range of flight conditions can only be 

achieved by varying the stroke-plane angle,
 
 , which for simplicity is assumed to remain constant 

throughout the wingbeat. 

A similar rationale used to define elevation and pronation angle trajectories is applied to the wing 

extension parameter: 

     ,1cos1
2
1

2
1 EtEe  

 

[71] 

where E is the extension amplitude, defined as the ratio of wing length on the mid-upstroke, to the 

maximum wing length, and  is the extension ratio phase lag. An extension ratio phase lag of 

25.0 ensures that at the mid-downstroke the wing is always fully extended, again allowing 

maximum aerodynamic force to be generated, while maximum wing retraction occurs at the mid-

upstroke. 

For the present work the parameterisation described above will be used as a baseline model for 

predictive simulations of varying scale birds in varying flight conditions; an example of typical 

joint trajectories for minimum power cruising flight of the pigeon model are shown in Figure 23a.  

                                                      
15 An alternative approach used in some predictive simulations is to define explicitly the maximum joint torques based on 

biomechanical limitations, however these data are not readily available for birds. 
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d. Cruising kinematics, Td = 0.3; rapid downstroke (side view along y0)

  

e. Cruising kinematics, Td = 0.5; sinusoidal (side view along y0)

 
f. Cruising kinematics, Td = 0.7; rapid upstroke (side view along y0) 

 

0 0.5 1

Phase  
Figure 23. (a) Example time histories for joint angles and wing extension parameter for typical cruising flight conditions. 

(b) Phase transformation to generate non-sinusoidal trajectories. (c) Example elevation time histories for varying phase 

transformations. (d)-(f) Example kinematics for cruising flight of a model of the pigeon for varying values of Td; Td=0.5 

represents sinusoidal joint trajectories. 

One special case will be considered in section 4.2.7, where non-sinusoidal elevation angle,  

pronation angle and extension parameter trajectories will be used. This will be done using a simple 

phase transformation function described by Wu & Popovic [6]. This transforms the phase using the 

downstroke ratio, Td, that defines the ratio of the downstroke time period to the total wingbeat time 

period. The resulting joint angle trajectories are still given by equations [69]-[71] but using the 

transformed phase (Figure 23b). This model is valid in the range 7030 .T. d   and if 5.0dT  the 

time histories revert to being sinusoidal. Examples of elevation angle time histories are shown in 

Figure 23c and example cruising flight kinematics are shown in Figure 23d-f for various values of 

Td. 
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4.3.3. Optimisation Constraints 

The main constraint necessary for simulating rectilinear flight is that the mean aerodynamic loads 

on the wing are equal to the sum of the inertial load, body drag, and gravitational load, as given by 

equations [5] and [6]. As mentioned in the previous section, the cruise speed will also be 

constrained in some cases. In addition, the wing kinematic variables given in section 4.3.2 can also 

be constrained to fixed values, or fixed ranges of values. 

In most predictive simulation methods optimisation variables are constrained by upper and lower 

bounds. These bounds prevent physically unrealistic solutions being obtained. In the present work 

the optimisation bounds will be defined for each flight condition in chapter 5. Bounds on the wing 

kinematics could potentially be based on the ranges of motion of real bird wings. However,  

experimental data on avian joint ranges of motion is not readily available in biomechanics 

literature. Chapter 5 will demonstrate that in most cases the optimised kinematic variables do not 

reach the upper or lower bounds proposed in Table 2. However, one exception for cruising flight is 

the wing elevation amplitude, which at some cruise speeds does reach its upper bound. In the 

present work a baseline value of 75° is used for maximum elevation amplitude as this is the 

maximum value recorded experimentally [13], including surveys of field study observations. 

Section 5.2.1 will demonstrate the effects of varying this upper bound on optimised kinematics in 

cruising flight. In addition, section 5.5 will show a special case of descending flight with a relaxed 

constraint of the lower bound on the stroke plane angle. 

 Optimisation variables   Constraints  

        

Flight kinematics              Forces   

 Cruise Speed V    Axial force 0sin
00

DmgmaF xx     

     Normal force     
cos

0
mgFz   

 

        

Wing kinematics              Kinematic bounds   

 Frequency f     500  f Hz  

 Elevation amplitude        750   

 Pronation amplitude        900   

 Stroke plane angle        090    

 Extension amplitude  E    10  E   

 
Downstroke ratio  Td

 
   7.05.0 

d

T
 

 

Table 2. Baseline optimisation variables and constraints. The specific sets of variables and constraints used for each flight 

condition are given in chapter 5. 
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Applying fixed value constraints to optimisation variables can also serve as a useful method of 

investigating the properties of the dynamic model. It is possible to constrain some of the kinematics 

variables to fixed values, and observe the effects of varying the remaining variables. As an 

example, a rudimentary hovering simulation was performed on a hummingbird dynamic model 

using data from literature to define mass and geometric parameters and also constrain all wing 

kinematics variables apart from the pronation amplitude [85]. Figure 24 shows the variation in 

mean vertical aerodynamic force with pronation amplitude. Two different values of pronation 

amplitude yield a mean vertical force that is equal to the weight of the modelled bird. The greater 

of these two values, Θ≈70°, requires less mechanical power, and can therefore be regarded as the 

global minimum to the optimisation problem.  

 
Figure 24. Mean vertical aerodynamic force generated by a modelled pair of hummingbird wings, for varying pronation 

amplitude. The grey line indicates the vertical force that is equal to the weight of the hummingbird from which the 

kinematic and wing geometric data were taken [85] 

Perhaps the most important point to draw from this preliminary analysis is that even with a heavily 

constrained system, more than one solution to the optimisation problem is identified. With more 

kinematic variables it follows that more solutions are likely to exist, and therefore the optimiser 

must be capable of resolving these various local minima to identify the global solution. 

4.3.4. Optimisation Method 

The choice of numerical method for optimisation is influenced by the properties of the dynamic 

model. If the dynamic model yields a solution space with basins of attraction, gradient-based 

methods of optimisation may not identify the global minimum. Conversely, it is likely to be 

computationally inefficient to apply a global optimisation method to a problem with only a single 

basin of attraction.  

Previous predictive simulations found that the various local minimum could be resolved by using 

gradient based methods with numerous starting points for the optimisation variables [35],[37]. A 

similar approach is adopted here, whereby a mesh of initial starting points is defined using evenly 

spaced values of each optimisation variable between their upper and lower bound values. For all 
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simulation results that will be presented in chapter 5 it was found that using four evenly spaced 

starting points for each optimisation variable local minima were adequately resolved. Increasing 

the number of starting points, or using additional random starting points did not identify any unique 

solutions. While this approach is appropriate with the current number of optimisation variables, it is 

recognised that global optimisation methods may be more computationally efficient if more 

optimisation variables are included.   

4.3.5. Sensitivity Analysis of Optimised Kinematics  

The sensitivity screening analysis of the inverse dynamic model in section 4.2.10 showed that 

predicted aerodynamic force and mechanical power consumption were most sensitive to the 

defined wing length and the defined 
45lc . It is reasonable to assume that when the optimisation 

module is used the optimised kinematics will also be most sensitive to these screened input 

parameters. A second sensitivity analysis is conducted here to quantify the changes in optimised 

kinematics for changes in screened model input parameters.  

It is important to note that this analysis does not indicate which parameters will be predicted with 

the greatest accuracy in the present work, as this depends on the specific values chosen for the 

model input parameters. It does, however, give some indication of how accurately an input 

parameter needs to be defined in order to achieve a desired level of accuracy in the model output. 

Therefore, if the model input parameters are defined from experimental data with known errors, 

this analysis give the corresponding error magnitudes of predicted kinematic parameters. 

Minimum power cruising flight was chosen as a characteristic flight condition under which to 

perform the analysis. For 0.5-1% increments in screened model parameters it was found that 

resulting changes in predicted kinematics of the pigeon model were of a similar magnitude to the 

changes that would be associated with reducing optimisation tolerances. To minimise the influence 

of optimisation tolerances the model parameters were incremented over a larger range than used in 

the preliminary sensitivity screening (Figure 25). All predicted kinematics are taken from the 

globally optimum solution for minimum power cruising flight that will be discussed further in 

section 5.1.  
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Figure 25. Variation in optimised kinematics and power consumption with changes model input wing length (a) and 
45lc  

(b); solutions obtained for minimum cruising flight of the pigeon model. 

An increase in wing length creates wings with larger aerodynamic surface area that can utilise 

lower flapping velocities and therefore less power to achieve a given aerodynamic load (Figure 

25a). For the same reason increasing 
45lc  also reduces the mechanical power consumption; for the 

trigonometric aerodynamic model used increasing 
45lc  increases the magnitude of lift to drag ratio 

for all angles of attack (Figure 25b).  

Of the predicted kinematic parameters, wing extension amplitude tends to be the most sensitive to 

changes in model input parameters. This indicates that accurate prediction of wing extension 

amplitude for a given species would require the most accurate measurements of wing geometry and 

aerodynamic properties. Conversely, prediction of wingbeat frequency is likely to be more robust, 

in that is not as strongly affected by changes in input parameters.  

Overall the results are consistent with the sensitivity screening analysis done prior to optimisation. 

However, this analysis goes further to show that predicted kinematic parameters tend to show 

greater sensitivity to reductions, rather than increases of the screened sensitivity parameters. 

Therefore, if there is some uncertainty in a model input parameter, overprediction, rather than 

underprediction of the parameter is a more conservative approach. 

4.4. WAKE SIMULATION  

The final module to be described is used to simulate and visualise the wake shed from the wings of 

a bird. The main aim is to generate accurate representations of wakes and flow fields using 

different forms of visualisation in order to complement existing experimental data. This module 

will be designed to function using aerodynamic data from optimised wing kinematics, or using data 

from the inverse dynamic model with user-defined wing kinematics. The method used will be 

based on well established theoretical models, and will be capable of simulating and visualising the 

wakes from fixed, flapping or rotary wings. 

a. b. 
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4.4.1. Discrete Vortex Method 

The present wake simulation model is inspired largely by methods developed for simulating the 

wake of helicopter rotors [86]. These so-called free-wake methods are used to predict the evolution 

of the wake geometry over time
16

. Free wake models have been extended to analyse phenomena 

such as flight in ground effect [87], which is also important in modelling the flight performance of 

some birds. 

The particular free wake model to be used is known as the vortex point or vortex blob method. This 

belongs to the class of methods known as vortex methods, which were mentioned in section 4.2.5. 

These methods have been described in detail in previous works [86]-[88], and so only a brief 

summary of the vortex point implementation will be given here. 

The essence of most vortex models of fluid flow is that vorticity is assumed to be concentrated on 

discrete line vortices. This assumption is justifiable for many practical situations, whereby viscous 

flow effects tend to be confined to much smaller regions than those that can be described using 

potential (inviscid, irrotational) flow methods. A Lagrangian approach can be used to describe the 

motion of the line vortices. Assuming that the flow is inviscid and irrotational the line vortices 

move as material lines, and the motion of any point on a line vortex (defined as a vortex point or 

vortex blob) is given by the following equation [87]: 

,0
0 V

x


dt

d

 

[72] 

where x0 is the position vector of the point, and V0 is the local fluid velocity at that position. The 

main challenge in solving equation [72] is in calculating the fluid velocity vector, which is 

comprised of the freestream wind velocity and also the mutually induced velocity from the vortex 

wake.  

The solution process is initialised by defining a series of K wake control points along the wing 

(Figure 26). These points define the spanwise locations at which vortex points will be released. At 

each wake control point the local wing lift per unit span, 'L , is derived using a finite difference 

approximation of the lift distribution obtained from the blade element method (section 4.2.5). By 

applying the Kutta-Joukowski theorem the circulation around the wing at the kth control point is 

given as: 

                                                      
16 Free-wake methods used in the analysis of helicopter aerodynamics are distinct from other methods of the same name 

that have been used to simulate bird wakes, which require apriori knowledge of the wake geometry [23]. 
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The wake region is modelled as a series of trailing vortex filaments (Figure 26). The strength of a 

vortex point on the filament is defined in the same manner as in the standard vortex lattice method, 

by subtracting the strength the two neighbouring vortex filaments at the instant the vortex point is 

released from the wing. Vortex points released from the most inboard or outboard wing control 

points are assigned strengths based on the circulation of the most inboard or outboard filaments, 

respectively. This differs slightly from similar models used for modelling the wakes from fixed 

wing aircraft, where the lift and circulation are generally assumed to be non-zero in the region 

between the two wings. However, for flapping-wing flight this makes little difference to the 

simulated wakes, the geometry of which is dominated by higher vortex point strengths in the 

outboard wake regions.  

Wake control point

Bound vortex

 

Trailing vortex filament
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Γ3-Γ2

Γ4-Γ3

Γ5-Γ4

Γ6-Γ5

Γ6

Γ1

Γ2
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Vortex point
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Figure 26. Model of trailing vortex lines shed from the wing, The strengths assigned to vortex points released from the 

wing are calculated from the instantaneous strengths of neighbouring vortex lines.  

Each vortex point induces a velocity on every other point based on its assigned strength, and also 

its location. The second stage of the solution is to derive these induced velocity values by applying 

the Biot-Savart law repeatedly between each pair of vortex points. The induced velocity at a point, 

x0, from the kth vortex point is given as  
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[74] 
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where 
)(k and

 

)(
0
k

x are the strength and location of the kth vortex point, respectively, 
)(

0
ˆ k
d is the unit 

direction vector of the vortex filament at the kth vortex point location, h is the perpendicular 

distance from 0x  to 
)(

0
ˆ k
d , and cr  

is the radius of the viscous vortex core. The function,  crhf ,  

which is multiplied by the right hand side of equation [74] is a model of the vortex core, which is 

required to prevent numerical singularities occurring when two vortex points occupy the same 

location. The core model essentially captures the effects of viscosity by enforcing that the induced 

tangential velocity reduces to zero at the centre of the vortex. A variety of different vortex core 

models exist, but for simplicity a standard model used in previous rotor wake simulations is applied 

here [86],[87]. This models the function from equation [74] as  

  .,
44

2

hr

h
rhf

c

c




 

[75] 

The influence of the core model  is dependent upon the value chosen for the core rc, which defines 

the distance from the centre of a vortex point to the radial location with maximum tangential 

velocity. Typical values for rc used for rotary wing analyses are around half of the mean wing 

chord [87]. Section 4.4.2 will show that the predicted wake geometries are insensitive to the choice 

of value for rc. Preliminary tests using a Lamb-Oseen core model applied in other rotor wake 

simulations [87] also found little change to the overall wake geometry for varying core radius. 

The total induced velocity at a point in the flowfield is given as the sum of the induced velocity 

contributions from all vortex points. Thus the velocity of each vortex point can be derived by 

summing the total induced velocity and the freestream velocity. This is the first step of a time 

marching process, and the positions of all vortex points can then be updated by numerically 

integrating the velocity over a small time step, Δt. Using a simple Euler integration scheme the 

updated position vector of any vortex point is given as 

      .000 ttttt  Vxx

 

[76] 

Providing that a suitably small simulation time step was used, this integration scheme was found to 

be numerically stable. Equations [74]-[76] are applied repeatedly for the first set of vortex points 

released from the wake control points.  

Vortex points are released from each of the wake control points at a rate of fw Hz. After a time 

period of wT  (
wf
1 ) new vortex points are released. The same procedure of defining vortex point 

strengths and calculating induced velocities is still applied, however equation [74] is now valid for 

a total of 2K vortex points. This process is repeated over the total desired simulation time period, 

with new sets of vortex points released from the wake control points after every period, Tw. 
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4.4.2. Numerical Stability & Convergence  

The wake simulation method presented in the previous section includes four numerical parameters 

that influence the predicted wake geometry: the number of wake control points along the wing, nw, 

the rate at which Lagrangian markers are released from these points, fw, the size of the time step, 

Δt, and the radius of the viscous vortex core, rc. To assess the convergence properties of the 

numerical method wakes were simulated for variations in each of these parameters across a range 

of values. The time dependant marker release locations and wing aerodynamic loads were derived 

from wing motions optimised for minimum power cruising flight of the pigeon, that will be 

presented in section 5.1.  

To quantify the predicted wake geometry the root mean square of all of the marker locations from a 

single wingbeat was calculated, similar to the approach used for rotor wake analysis [86]; the 

results are shown for all variations in numerical parameters in Figure 27. It was found that after 

simulating for three wingbeat time periods the RMS wake geometry converged to within 1% of that 

calculated from the previous time period. Therefore, RMS wake geometry data was assumed to be 

converged when captured over three wingbeat time periods. 

 
Figure 27. Numerical convergence of the RMS wake geometry simulated from the predicted wing kinematics for 

minimum power cruise of the model of a pigeon. Wake geometries simulated for varying numbers of timesteps per 

wingbeat, vortex point release rates, numbers of control points per wing, and viscous vortex core radii. 

g. h. i. 

d. e. f. 

a. b. c. 
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Using 8 wake control points on each wing yielded a detailed representation of the wake that 

captured flow features observed experimentally (Figure 27g-i); these results will be shown in 

section 5.6.1. With 8 control points the RMS geometry converges for increasing numbers of wake 

simulation timesteps and increasing marker release rate. Wakes will be simulated using 400 

simulation timesteps per wingbeat and a release rate of 20 markers per wingbeat; further increase in 

either of these parameters yielded less than a 1% change in the RMS wake geometry. 

A significant conclusion from these data is that the radius of vortex core does not strongly affect 

the RMS wake geometry. With no viscous core model some (but not all) simulations developed 

numerical instabilities (Figure 27d). This was due to as an overprediction of induced velocity 

between a single pair of markers as they came into close proximity. For this and other flight 

conditions tested the simulations were found to be numerically stable providing that the viscous 

vortex core radius was at least a quarter of the mean wing chord. 

4.4.3. Visualisation 

A rudimentary form of wake visualisation is simply to plot the Lagrangian markers used in the 

vortex point simulation (Figure 28a). If only the tip vortices are simulated this approach has proven 

sufficient in illustrating the wake geometry, particularly when the vortex filaments are plotted by 

connecting points vortices released from the same wing control point [86]. When more than one 

vortex filament is modelled the value of this approach as a visualisation tool depends largely on the 

complexity of the wake. A more intuitive method of visualisation uses additional information of 

connectivity between markers released at the adjacent wing control points to plot a wake surface 

rather than a series of filaments. By interpolating between control points a smooth surface can be 

plotted that portrays the complex 3D wake geometries in a more intelligible format than simple 

plotting of the filaments (Figure 28b). Alternatively the markers released from a single control 

point can be interpolated to generate wake streamlines (Figure 28c).  
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a. Lagrangian markers b. Wake surface 

  

c. Wake streamlines 

 

Figure 28. Simulated wake of a pigeon in gliding flight. (a) Lagrangian markers used in the vortex point method, with 

point vortices released from the same spanwise location connected by straight line segments. (b) Wake surface and (c) 

streamline visualisations obtained from cubic interpolation of lagrangian markers. 

Using a vortex point simulation is also possible to reconstruct the velocity and vorticity field data. 

One approach to doing this would be to release Lagrangian markers throughout the flowfield 

during the simulation. The motion of the markers could then be found by deriving their induced 

velocity as done for the vortex points. A more flexible approach is to derive the induced velocities 

at an array of control points, that are fixed with respect to the freestream axes. This can be done 

after the wake simulation has completed, and can be limited to specific regions of interest in the 

flowfield, and at specific times over the solution period. In the present work the latter approach will 

be used to determine velocity components,
0yV and 

0zV , in planes parallel to the y0-z0 plane. The 

vorticity in these planes is then given as  
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[77] 

The vorticity will be calculated using a first order central differencing approximation for the spatial 

derivate of induced velocity, just as done for the temporal variable derivate in equation [39]. 

Examples of the velocity and vorticity fields, along with other wake visualisation techniques 

described above, will be given in section 5.6. 
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CHAPTER 5. RESULTS 

The inverse dynamic model and optimisation routine described in chapter 4 can be used to simulate 

wing kinematics of a bird in various flight conditions. This chapter will present and discuss the 

predicted kinematics, along with details of aerodynamic force, torques and mechanical power 

consumption. Kinematic data will be validated through comparison with experimental 

measurements taken from biomechanics literature. 

The first case presented is the characteristic flight condition of minimum power cruise, using the 

dynamic model of a pigeon. The optimised solutions are compared between local minima and the 

global solution. Other flight conditions will also be analysed using the pigeon model, including 

horizontal cruise at varying speeds, horizontal acceleration, and constant speed climbing and 

descending flight. In addition, results will be presented for different dynamic models to simulate 

the flight of birds of varying scale. The chapter will conclude by demonstrating some applications 

of the wake visualisation model in different flight conditions.  

5.1. MINIMUM POWER CRUISING FLIGHT 

Minimum power cruising flight serves as a useful reference point for assessing avian flight 

performance, as it represents a self-selected flight condition at which real birds could be expected 

to operate. To analyse the numerical accuracy and stability of the theoretical model, optimisation of 

an inverse dynamic model of a pigeon will be used to simulate wing kinematics in minimum power 

cruise according to the parameters defined in Table 3; as the cruise speed is unknown prior to 

optimisation, it will also be used as a free optimisation variable. Similar results to those shown in 

this section are also found using different scale dynamic models and alternative flight conditions, 

such as flight at the minimum cost of transport speed.  

Flight condition Cost function Optimisation variables Constraints 

Minimum power 

horizontal cruise 
Mechanical power, P Frequency, f 500  f Hz 

  Elevation amplitude, Φ  750  

  Pronation amplitude, Θ  900  

  Stroke plane angle, γ  090   

  Extension amplitude, E 10  E  

  Cruise speed, V∞ 
0

DF
x
  

mgF
z
  

Table 3. Optimisation parameters used for simulating minimum power cruising flight. All constraints are subject to 

optimisation tolerance of ± 10-5
.  
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5.1.1. Kinematics of Local Minima 

Optimisation revealed numerous local minima for minimum power cruising flight. Each local 

minimum corresponds to a set of wing kinematics and a cruise speed that satisfy the optimisation 

constraints. The local minima tend to be clustered in small groups (Figure 29), also referred to as 

solution families in other predictive simulation studies [35]. Each family lies within a basin of 

attraction in the solution space, and captures a certain flight style or mode of flight. Differences 

between solutions in one family are due to the numerical tolerances of the optimisation function 

and constraints.  

Optimisation 

solution

Solution

family

 

Optimisation variable

C
o

s
t 
fu

n
c
ti
o

n

 
  

Basin of attraction

 

 

 
Figure 29. Illustration of basins of attraction, optimisation solutions and solution families. Families of solutions are 

clustered within basins of attraction and arise due to numerical tolerances in the optimisation algorithm. 

Insight into the functionality of the theoretical model and the underlying physical principles can be 

gained by analysing the kinematics predicted for various predicted modes of flight, rather than 

focussing purely on the global minimum solution. Kinematic data for three flight modes are shown 

in Table 4 and are illustrated in Figure 30. These solutions represent three distinct modes of flight, 

each with significant differences in optimised kinematic variables. The stiff-wing mode and the 

retract-twist mode are examples of local minima that use 35% and 13% more mechanical power 

than the minimum power mode, respectively. Other local minimum solutions were identified that 

used more than four times the minimum mechanical power, however these will not be considered 

further. 
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Mech. Power, 

P (W) 

Cruise Speed, 

V∞ (ms-1) 

Frequency, f 

(Hz.) 

Elevation Amp., 

 Φ (deg.) 

Pronation Amp.,  

Θ (deg.) 

Stroke Plane 

Angle, γ (deg.) 

Extension 

Amp., E 

 

Minimum power mode 

20.7 12.1 9.15 55.0 17.2 -15.5 0.37 

 

Stiff-wing mode 

27.9 13.4 13.6 32.7 11.7 -12.9 0.93 

 

Retract-twist mode 

23.4 11.8 11.1 46.4 28.1 -25.2 0.1 

 

Table 4. Solutions from optimisation of the model of the pigeon for minimum power cruising flight, showing the 

minimum power mode (global solution) and the stiff-wing and retract-twist modes (examples of local minima). 

The minimum power mode (Figure 30a,d) uses a cruise speed and stroke plane inclination close to 

the mean values of all the local minima identified. This solution also uses intermediate pronation 

amplitude and extension amplitude, along with a lower frequency and greater elevation amplitude 

than most other local minima. The stiff-wing mode (Figure 30b,e) uses an almost fully-extended 

wing upstroke and is similar to the flight mechanism used by hummingbirds in fast forward flight 

[85].  

The use of a retracted upstroke reduces power consumption. Some solutions even use a fully 

retracted upstroke, whereby the wing length is modelled as reducing to zero at the mid-upstroke. 

The retract-twist mode (Figure 30c,f) is an example of a retracted upstroke mode in which wing 

retraction is concurrent with significant supination. This mode is similar to the commonly named 

"tip-reversal" stroke that has been observed in low speed flight and take-off of several species [89]-

[90].  

Overall, a wide range of kinematics satisfy the optimisation constraints, showing that several 

alternative flight modes can provide the fundamental functions of weight support and thrust. It is 

likely that an even wider range of kinematics could be expected to satisfy the constraints if non-

sinusoidal joint trajectories were considered. An implication of this in a biological context is that 

there may have been some flexibility in the evolution of kinematics needed for flapping flight. For 

example, even though birds with non-retracting wings consume excess mechanical power, they 

could still generate sufficient weight support and thrust for cruising flight. This emphasizes the 

limitations of determining flight capability of extinct birds through comparison of their likely 

kinematics with those of modern birds. It is plausible that extinct birds were capable of using very 

different kinematics, which may have consumed more mechanical power, but still achieved 

powered flight.  
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a. Minimum power mode (side view along y0)

 
 
b. Stiff-wing mode (side view along y0)

 
 
c. Retract-twist mode (side view along y0)

 
 
d. Minimum power mode (top view along -z0)

 
 
e. Stiff-wing mode (top view along -z0)

 
 
f. Retract-twist mode (top view along -z0) 

 
 

0 0.5 1

Phase  
Figure 30. Optimised wingbeat kinematics for minimum power cruising flight of the pigeon model. (a),(d) Minimum 

power mode (global solution). (b),(e) Stiff-wing and (c),(f) retract-twist modes (examples of local minima).  
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5.1.2. Upstroke Function in Minimum Power Cruise 

Both experimental and theoretical studies have attempted to resolve instantaneous aerodynamic 

forces on the wing throughout the wingbeat (e.g. [13],[91]). One of the main motivations for doing 

this is to understand better the function of the upstroke, and how the role of the upstroke in flapping 

wing flight may change according to flight conditions. In addition, it is also useful for determining 

factors such as the peak loads and torques that the wing structure has evolved to withstand, as well 

as the rate of energy expenditure. In the present work these data are derived implicitly within the 

dynamic model. 

Force, torque and mechanical power time histories for the three flight modes discussed in the 

previous section are shown in Figure 31. When considering the variation of force coefficients over 

a wingbeat (Figure 31a-c) it is unsurprising that the normal force coefficient, 
zFC , has the largest 

mean and peak values, as this component provides weight support, which is greater than the axial 

component needed to overcome body drag at typical minimum power cruise speeds. The axial 

force coefficient is greatest for all three modes just after the mid-downstroke (phase ≈ 0.3); this is 

when the majority of the thrust is generated to overcome body drag. The stiff-wing mode also 

generates a positive axial force coefficient at the mid-upstroke (phase = 0.75), but this is 

counteracted by the generation of negative axial force coefficients near the start (phase ≈ 0.05) and 

end (phase ≈ 0.95) of the stroke. 

The lateral force coefficient reaches a peak value of approximately three times that of the axial 

force coefficient for all kinematic modes shown. Lateral force serves no obvious aerodynamic 

function in cruising flight conditions as it would be cancelled by the opposing force from the other 

wing. Therefore, the contribution to mechanical power from lateral loads can be regarded as non-

useful power. 
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Figure 31. Time histories of axial (a), lateral (b) and normal (c) aerodynamic force coefficients, shoulder torque 

coefficient (d) and mechanical power coefficient (e). Optimised solutions shown for three predicted kinematics modes of 

cruising flight of a model of the pigeon. 

The stiff-wing mode is unique in generating negative normal force during the wing upstroke, which 

is detrimental to the goal of providing weight support (Figure 31c). To counteract this, additional 

normal force is generated on the downstroke. 

As discussed in section 4.2.9, at the beginning and end of each half-stroke the wing acceleration, 

and thus the inertial torque, reaches its peak value. This is most noticeable in the case of the stiff-

wing mode as the moment of inertia is higher than in the other two modes. Retracted-wing modes 

inherently reduce aerodynamic and inertial loading by reducing the wing surface area and moment 

of inertia. This leads to the minimum power mode and retract-twist mode having lower torque 

coefficient magnitudes than the stiff-wing mode throughout most of the wingbeat (Figure 31d).  

For all three modes the peak mechanical power coefficient arises near the mid-downstroke (phase ≈ 

0.25) as the aerodynamic torque at the shoulder and elevation angular rate both reach their 

maximum values (Figure 31e); the inertial torque is zero at the mid-downstroke. The mechanical 

power coefficient of the stiff-wing mode is significantly larger than the other two modes during the 

upstroke due to the greater torque, but similar elevation angular rates. The force, torque and power 

coefficients of the minimum power and retract-twist modes are significantly smaller during the 

upstroke than during the downstroke. These modes can therefore be regarded as using the passive 

upstroke referred to in section 2.4. 

5.2. VARYING CRUISE SPEED 

Section 2.4 discussed how previous studies have examined how avian wing kinematics change 

according to flight conditions. Specifically, wind tunnel studies have recorded the changes in wing 

a. b. c. 

d. e. 

Downstroke Upstroke 
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kinematics with cruise speed, and these data have been used as inputs for models of avian flight 

performance (e.g. [13]). This section will investigate whether the predictive simulation approach 

could provide complementary data to these models by simulating wing kinematics over a range of 

cruise speeds. The pigeon model will again be used as a test case. 

While the results in section 5.1 included cruise speed as a free optimisation variable, this section 

will use a range of fixed values of cruise speed. It is arguably simpler to optimise for fixed cruise 

speeds, as removing speed as an optimisation variable reduces the size of the solution space. The 

parameters used in optimisation for varying speed cruise are shown in Table 5. 

Flight condition Cost function Optimisation variables Constraints 

Horizontal cruise at 

varying speed 
Mechanical power, P Frequency, f 500  f Hz 

  Elevation amplitude, Φ  750  

  Pronation amplitude, Θ  900  

  Stroke plane angle, γ  090   

  Extension amplitude, E 10  E  

  Downstroke ratio, Td* 0.3<Td<0.7 

   
0

DxF   

mgFz   

Table 5. Optimisation parameters used for simulating cruising flight at varying speed. All constraints are subject to 

optimisation tolerance of ± 10-5. *The downstroke ratio will only be included as a free optimisation variable in section 

5.2.7. 

5.2.1. Wing Elevation Amplitude Upper Bound 

In predicting minimum power flight in section 5.1 none of the optimisation variables reached their 

defined upper or lower bounds. However, when optimising with a fixed cruise speed, at some 

speeds the wing elevation amplitude and wing extension amplitude did reach their upper bounds. 

The peak extension amplitude is well defined as being the maximum wing length of the 

outstretched wing, and so is this can be regarded as a legitimate result. However, the same cannot 

be said for the peak wing elevation amplitude. 

Section 4.3.3 explained how the upper bound on elevation amplitude has been estimated from the 

maximum values recorded experimentally. To analyse the implications of this assumption, 

optimisation over a range of fixed cruise speeds was repeated using smaller and larger upper 

bounds on elevation amplitude than that of the baseline case (Table 6). 
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In hovering and forward flight up to around 8 ms
-1

 the optimised global solution always uses the 

maximum allowed elevation amplitude. With a larger elevation amplitude the effective disk 

loading is reduced, and so less power is required to overcome the additional drag from induced 

velocity. To generate the correct net aerodynamic force for weight support with greater elevation 

amplitudes the wingbeat frequency is reduced to maintain the same wing flapping velocity. This 

also tends to reduce mechanical power consumption by reducing the inertial component of torque 

on the shoulder. At cruise speeds greater than around 20 ms
-1

 the predicted elevation amplitude also 

tends to reach the defined upper bound value. This is coupled with a high wingbeat frequencies, as 

large wing flapping velocities are required to generate increased aerodynamic force to balance the 

body drag.  

In the absence of any upper bounds the wing elevation amplitude tends to increase indefinitely in 

hover and low speed flight. This is accompanied by a decrease in wingbeat frequency, which tends 

to zero. The result is effectively a rotary wing mode, whereby the wing rotates around and around 

the shoulder joint, similar to a helicopter blade. This mode is obviously not plausible for birds as 

the shoulder joint has a limited range of motion, but it does offer some insight into the underlying 

physical processes: by maximising elevation amplitude the disk loading and induced power loading 

are minimised, while minimising frequency reduces inertial torque and associated mechanical 

power consumption. 

At cruise speeds of around 12 ms
-1

 the minimum power mode has an elevation amplitude less than 

the defined upper bound. The choice of upper bound value makes no significant difference to the 

predicted kinematics around this speed. Small differences between kinematic variables at 12ms
-1

 in 

Table 6 can be attributed to numerical artefacts within the optimisation algorithm, as varying the 

upper bound value requires the initial guess values to be adjusted accordingly.  
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Upper Bound 

Elevation Amp., 

Φ' (deg.) 

Mech. Power, 

P (W) 

Frequency, f 

(Hz.) 

Elevation Amp., Φ 

(deg.) 

Pronation Amp., 

Θ(deg.) 

Stroke Plane 

Angle, γ (deg.) 

Extension 

Amp., E 

 

0 ms-1 

65.0 33.8 10.3 65.0 53.3 -89.8 1.0 

75.0 30.5 9.0 75.0 55.3 -89.6 1.0 

85.0 27.9 8.0 85.0 56.2 -89.6 1.0 

 

12 ms-1 

65.0 20.7 9.2 55.0 17.6 -15.8 0.38 

75.0 20.7 9.0 56.8 18.8 -16.9 0.34 

85.0 20.7 9.2 54.7 17.0 -15.3 0.40 

 

24 ms-1 

65.0 41.5 10.0 65.0 11.3 -2.3 0 

75.0 40.8 8.9 74.0 13.1 -4.0 0 

85.0 40.7 8.2 80.7 13.1 -4.4 0 

       

Table 6. Predicted mechanical power consumption and wing kinematics for varying cruise speed, using different upper 

bounds for the wing elevation amplitude, Φ'. 

The reason why the elevation amplitude does not tend to the upper bound value at around 12 ms
-1

 

cruise relates to the orientation of the aerodynamic force vector on the wing, F0. By reducing the 

elevation amplitude a greater component of the aerodynamic force on the downstroke is vectored 

vertically to provide weight support. This is illustrated for axial flight in Figure 32 where two 

wingbeats are compared that have the same flapping velocity, but different elevation amplitudes 

and frequencies. The high amplitude, low frequency mode vectors more of the aerodynamic force 

laterally, so the 
0yF  component is greater than in the low amplitude, high frequency mode. As 

discussed in section 4.2.9 the power required for generating this lateral force is essentially non-

useful. The low amplitude, high frequency mode can generate more weight support during the 

downstroke by vectoring more of the aerodynamic force vertically, increasing 
0zF . Therefore, to 

generate the equivalent weight support with this mode the flapping velocity can be reduced, which 

decreases the mechanical power consumption. 
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a. High amplitude, low frequency 

(front view along -x0)

0F
0zF

0xF

0F

0yF

0zF

0xF

0zF
0F0zF

0F

0yF

b. High amplitude, low frequency 

(side view along y0)

c. Low amplitude, high frequency 

(front view along -x0)

d. Low amplitude, high frequency 

(side view along y0)

 

Figure 32. Aerodynamic force vectoring in axial flight for wingbeats with high amplitude and low frequency (a),(b), and 

low amplitude and high frequency (c),(d). For both cases the wing flapping velocity and angle of attack are assumed to be 

equal in the postures depicted, so that the magnitudes of the aerodynamic force, F0, are equal.   

The key point to note from this section is that at minimum power cruise speeds the predicted 

kinematics and power are largely independent of the bounds on the solution variables; the same 

result can be shown for the minimum cost of transport cruise speed. Therefore, in typical cruising 

conditions the model is not impeded by the lack of experimental data on avian joint ranges of 

motion. 

5.2.2. Envelopes of Local Minima 

Section 5.1 demonstrated the importance of considering not only the global minimum solution 

identified through optimisation, but also other local minima in the solution space. In some 

instances, local minima may prove to be numerical artefacts that are somewhat nonphysical, such 

as the rotary wing mode described in the previous section. Others actually give some insight into 

alternative, plausible modes of flapping wing flight. To identify such modes, a strategy of 

identifying an envelope of local minima is adopted (Figure 33). This includes all solutions whose 

mechanical power consumption exceeds that of the global minimum by a defined amount.  
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Figure 33. Illustration of how the envelopes of local minimum are used to encapsulate a range of solutions that lie within 

a defined range of cost function (mechanical power).  

Using the pigeon model for a solution envelope of 5% surplus power over the minimum power it 

was found that the largest variations in predicted kinematics occurred at cruise speeds of 10-14 ms
-1 

(Figure 34). If envelopes were increased further the local minima discussed in section 5.1 would 

also be included in the envelopes. With envelopes of 1, 3 and 5% mechanical power, around the 

minimum power speed of 12.1 ms
-1

 local minima are found that show variations in all kinematic 

variables. These results go further than those in section 5.1 by showing that various kinematic 

modes exists for a broad range of cruise speeds. This is consistent with the findings from similar 

studies that optimised kinematics of a jointed-wing air vehicle [50]. 

 
Figure 34. Predicted kinematics over a range of cruise speeds, highlighting the global minimum power solution for each 

speed. The range of local minima are also shown in the shaded power envelopes, defined by the percentage power over 

the minimum power solution for each speed.  

Of all kinematic variables the extension amplitude shows the greatest variation, ranging from 

around 0.05 to 0.75 within a 5% envelope of mechanical power. This suggests that changes in the 

extension amplitude have less effect than changes in other kinematic variables on the predicted 

a. b. 

c. d. e. 
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mechanical power. The physical implications of this result will be considered further in section 

5.2.8. 

Within the envelopes of local minima similar ranges of predicted frequency and elevation 

amplitude are seen (Figure 34a,b). For some local minima it is found that the frequency is higher 

than that used in global minimum solution, while the elevation amplitude is lower. For other 

minima, the opposite case is found. The reason for this is that the aerodynamic load is derived from 

the flapping velocity, which is proportional to both frequency and elevation amplitude. So a fixed 

aerodynamic load can be maintained using a fixed flapping velocity, regardless of the values of 

elevation amplitude and frequency. However, as explained previously the mechanical power does 

depend on the elevation amplitude and frequency. This explains why many local minima are 

identified with the same flapping velocity, but different amounts of power consumption. 

When examining the effects of varying cruise speed it is important to consider that birds are likely 

to have evolved optimal performance in specific flight conditions. For example, migratory birds 

may have evolved specifically to reduce their minimum cost of transport. If the biomechanical 

structure has evolved to function primarily at a given speed, it follows that an optimal set of wing 

kinematics would also be expected for the given structure and flight condition. This may even limit 

the range of kinematic modes that a particular bird can undertake. The reason why this argument is 

pertinent to the present study is that if the kinematics are limited by evolutionary constraints, 

Figure 34 shows that there is still potential to vary cruise speed by using non-optimal kinematics, 

without suffering a substantial increase in energy consumption. 

5.2.3. Experimental Validation of Wing Tip & Wrist Trajectories 

In the previous sections the optimised wing kinematics have been discussed in terms of the 

numerical solution procedure and the underlying physical process included in the theoretical 

model. To establish whether these kinematics are representative of real birds it is important to 

compare the predictions with experimental data. This section will use wingtip and wrist trajectory 

data collected during previous wind tunnel tests as a means of qualitatively validating the 

predictions from the present theoretical model. 

A number of wind tunnel tests have been performed using different species, however, there is great 

inconsistency in the choice of kinematic variables recorded. Furthermore, insufficient data is 

sometimes given to determine the exact wing kinematics. For example, some studies (e.g. [92]) 

only record the wingtip vertical excursion, without isolating the individual contributions from wing 

elevation and stroke plane inclination.  
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An exemplary case is that of the pigeon, which has been analyzed in wind tunnel tests from at least 

two independent studies [13],[89]. The kinematic data recorded in these studies is comparable to 

some of the founding works on avian flight analysis [10],[11], and sufficient detail is presented to 

allow direct comparison with the results from the present work. Furthermore, wingtip and wrist 

trajectories are documented, providing an in depth representation of the wing kinematics [89]. 

Several accounts have been made of real pigeons exhibiting a figure-of-eight wingtip paths in low 

speed flight (e.g. [11],[89]). Previous predictive simulations that the current work was derived from 

did not capture this effect, and the tips were seen to follow a shallow arc [37]. However in the 

revised model presented here, at 6 ms
-1 

cruise a figure-of-eight wingtip path is predicted (Figure 

35a). The reason for this is that a figure-of-eight path is generated for kinematic modes that 

incorporate significant wing retraction and wing pronation, which was not the case for the previous 

model. It should be noted that at lower cruise speeds, the present model also reverts back to an 

extended wing mode with a shallow arc tip path. Therefore, the fact that a figure-of-eight path is 

predicted at 6 ms
-1

 may be somewhat coincidental, and should not be regarded as conclusive 

evidence of similarity between experimental and simulated kinematics. 

Perhaps a more robust point of comparison is the orientation of the stroke plane, which follows the 

same trend with cruise speed for simulated and experimental data (Figure 35). As the cruise speed 

increases the stroke plane tilts so that a greater component of the aerodynamic force generated by 

the wings is vectored axially  in order to overcome body drag. In the following section this will be 

shown to be true across a broad range of cruise speeds, and has also been observed in other species 

(e.g. [89],[92]).  

When viewed laterally the tip paths at 12 and 18 ms
-1

 cruise are approximately elliptical (Figure 

35b,c). This is because when the wings retract with little pronation, rotation of the wrist joint 

causes the tips to translate in the -x0 direction (downstream); if viewed from above translation in 

the -y0 direction would also be seen for the left wing. The fact that the paths followed by the wrist 

and the tip are of opposite sense is due to geometry and the rates of retraction of the different 

skeletal segments. In the present model as the forearm is modelled as being longer than the upper 

arm, wing retraction causes the wrist to translate in the -x0 direction, opposite to the motion of the 

wing tip. 
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a. Simulation; cruise, 6 ms
-1

 b. Simulation; cruise, 12 ms
-1

 c. Simulation; cruise, 18 ms
-1

 

 

 
 

d. Experiment; cruise, 6 ms
-1

 e. Experiment; cruise, 12 ms
-1

 f. Experiment; cruise, 18 ms
-1

 

 

  
Figure 35. Comparison of simulated and experimental measurements of the wing tip (filled circles) and wrist (open 

circles) trajectories for cruising flight of the pigeon. The tip path is the path of 8th primary, the orientation of which was 

defined for the simulated model using illustrations of outstreched wing feather geometries [70]; the angle between the 

feather major axis and the x3 axis is assumed to be proportional to the wing extension parameter. Visualisations of 

simulated kinematics are constructued under the assumption that the body maintains a fixed orientation with respect to 

the stroke plane. 
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5.2.4. Predicted Mechanical Power Consumption  

The predicted mechanical power consumption follows the characteristic U-shaped curve described 

in chapter 2 (Figure 36). The minimum power cruise speed is 12.1 ms
-1

 and the minimum cost of 

transport cruise speed is around 16 ms
-1

. One of the early blade-element momentum theory models 

of pigeon flight performance  predicts a minimum mechanical power cruise speed of around 8 ms
-1

, 

and a minimum cost of transport cruise speed of 16 ms
-1 

[13]. A more recent application of the 

vortex wake models [14],[25],[93] that uses measured wing kinematics [89] predicts a minimum 

power cruise speed for the pigeon of around 12 ms
-1

, and a minimum cost of transport cruise speed 

of slightly higher than this [23]. While comparison with other theoretical models does not validate 

the predicted mechanical power, it does add some credibility to the predictive simulation approach.  

 
Figure 36. Predicted mechanical power consumption for a model of the pigeon at varying cruise speeds.  

Despite the similarities in trends in mechanical power between different theoretical models, the 

present work predicts significantly greater power consumption at all cruise speeds. For example, 

the minimum mechanical power is predicted to be around 20W (Figure 36a), compared to 

previously predicted values of less than 10W [13],[23]. The main reason for this relates to 

differences in the aerodynamic models used. For instance, a vortex model of flight performance 

used a value of 
0dc = 0.02, more than four times lower than the value used here [23]; a previous 

blade-element model defined 
0dc as a function of lift coefficient, with a minimum value of 0.01. 

However, as mentioned in section 4.2.9 the present model may underpredict aerodynamic loads for 

given wing kinematics as no twist distribution is included. Section 5.2.6 will discuss how this 

factor leads to an overprediction of flapping velocity, which will lead to an overprediction of power 

consumption. 

Another reason for the differences in power prediction is that the present work also includes inertial 

loads, which tends to increase net mechanical power. This model is somewhat conservative in 

assuming that no methods of energy storage exist, giving perhaps a pessimistic view of the 

capability  of the wing. These factors suggest that the results presented here may represent an 
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upper-bound to amount of mechanical power consumed. It is therefore unsurprising that the 

predicted power exceeds the metabolic power measured for pigeons in wind tunnel tests (plotted in 

[94], based on experimental studies in [95]). 

A final point to consider with regards to energetics is that in the present model power consumption 

is predicted for a series of distinct kinematic modes, but no indication is given of the energy 

required to change between these modes. For example, from 5 to 6 ms
-1

 cruise the minimum power 

frequency increases from around 8 to 9.5 Hz. This change in kinematics would consume 

mechanical energy due to the required acceleration of the wing. This phenomenon of consuming 

energy when transitioning between different kinematic modes is observed in terrestrial locomotion 

and is likely to occur in flight as well [96]. 

5.2.5. Changes in Kinematics with Varying Cruise Speed 

To make quantitative comparisons between simulated and experimental data the predicted wing 

kinematics are shown in Figure 37 alongside two independent sets of kinematic data for the pigeon 

recorded during wind tunnels tests [13],[89]. While the mechanical power varies smoothly with 

changes in cruise speed the predicted kinematics show some abrupt changes. Similar changes were 

also observed in previous results from the present model [37]. From a numerical perspective, these 

changes illustrate the presence of local minima in the solution space. A change in cruise speed 

alters optimisation constraints and also the shape of the basins of attraction in the solution space. 

This can lead to a flight mode that was previously identified as a local minimum, becoming the 

global optimum. Alternatively, it can identify a completely new optimum flight mode, that is, a set 

of kinematic variables that did not satisfy the optimisation constraints at other cruise speeds.  
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Figure 37. Predicted kinematics for a model of the pigeon over a range of cruise speeds shown in comparison to 

experimental data recorded during wind tunnel tests [13],[89]. Corrections made to experimental data to allow for 

orientation of the camera [13]. 

The experimental data presented in Figure 37 show kinematic variables changing in a continuous 

fashion from around 6-20 ms
-1

, and one additional recorded flight mode at 0 ms
-1

. No data is 

provided in the intermediate range of cruise speeds, so it cannot be concluded whether or not there 

is a sudden change in kinematics. Real birds may be capable of abruptly changing their wing 

kinematics with cruise speed, but doing so would require additional energy consumption and might 

incur some other penalty such as excessive joint torques.  

Of all the predicted kinematic variables, the stroke plane shows the closest agreement with the 

experimental data (Figure 37d). The fact that the two experimental data sets for this variable show 

some differences may be the result of experimental errors, or may be due to the fact that the 

pigeons used had slightly different masses and wing geometries.  

For all optimised models in the present work, predictions of the stroke plane tend to be the most 

robust, in that they are largely unaffected by changes in the numerical parameters in the dynamic 

model, or tolerances in the optimisation scheme. The opposite can be said of the extension 

amplitude, which has already been shown to be sensitive to the model physical parameters (section 

4.3.5) and varies widely between different local minima of similar power consumption (section 

5.2.2). This may explain the substantial differences between predicted and measured values of 

extension amplitude (Figure 37e).  

The wingbeat frequency and elevation amplitude are overpredicted for all cruise speeds (Figure 

37a,b). As mentioned previously, when examining local minima the frequency and elevation 

amplitude are in some ways interchangeable as both are used primarily as a means of controlling 

a. b. 

c. d. e. 
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the wing flapping velocity. Therefore, the overprediction of these two variables may be more 

accurately recognised as an overprediction of wing flapping velocity. This will be discussed further 

in the following sections. 

5.2.6. Overprediction of Flapping Velocity 

Over the range of cruise speeds tested almost all local minima predict a wingbeat frequency that is 

higher than that measured experimentally. If the frequency is constrained to be equal to that 

measured experimentally at a given cruise speed, no solutions can be found that satisfy the 

optimisation constraints. In previous work predictive simulations using a pigeon model the 

frequency was fixed at the highest frequency that has been recorded experimentally for the pigeon, 

and the elevation amplitude was again overpredicted; using lower frequencies and elevation 

amplitudes yielded no valid solutions [37].  

When the frequency and elevation amplitude are limited, or more specifically when the flapping 

velocity is limited to equivalent values measured experimentally, the model generates insufficient 

net vertical force for weight support. One of the reasons for this may be that the current wing 

model undepredicts lift for given kinematics. Another reason may be that additional sources of lift 

generation, such as the body and tail, make a significant contribution to the net lift of the bird. A 

third possibility is that the real birds may use non-sinusoidal joint trajectories to yield, for example, 

greater instantaneous flapping velocity during the downstroke for a given wingbeat frequency and 

elevation amplitude; this may allow more lift to be generated for a lower mean flapping velocity. 

Considering underprediction of lift on the wing first, if the average lift generated by the inverse 

dynamic model is lower than that generated by a real wing for the same kinematics, it follows that 

the wing lift coefficient is also underpredicted. From a blade-element level, this may imply that the 

modelled local element lift coefficient, cl, underpredicts the local lift coefficients for real avian 

aerofoils. However, as the lift coefficient variation with angle of attack was derived from several 

independent experimental studies this is not believed to be the case. It is more likely that the wing 

lift coefficient is underpredicted because each blade element has a different angle of attack at a 

given time and the angle of attack varies throughout the wingbeat (section 4.2.9).  

Lift generated by the wing may also be underpredicted by the exclusion of rotational lift or of some 

unsteady aerodynamic mechanisms in the dynamic model. While this study did not aim specifically 

to test these longstanding hypotheses, it is important to recognise that they do provide possible 

explanations for the overprediction of flapping velocity.  The modular design of the present model 

means that additional aerodynamic phenomena could readily be incorporated, and proposals 

regarding the importance of unsteady aerodynamics could be examined. For example, a dynamic 
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stall model could be included in the blade-element model to test whether it is pertinent to the 

generation of lift on flapping wings, as suggested elsewhere [77]. While this is somewhat outside 

the scope of the present work, the current simulation framework does accommodate such an 

approach. 

Having proposed that the overprediction of elevation amplitude and frequency may be due to an 

underprediction in blade-element lift, or due to the constraint on joint trajectories, these hypotheses 

will be tested in the following section.  

5.2.7. Testing Hypotheses on Overprediction of Flapping Velocity 

The sensitivity analysis determined that the choice of 
45lc  was one of the most influential 

parameters on the optimised kinematics. By increasing 
45lc  the lift coefficient magnitudes increase 

for all angles of attack, resulting in more lift being generated for a given flapping velocity. This 

simple modification to the blade-element model can be used to investigate whether increasing the 

lift reduces the flapping velocity. 

Optimised kinematics for wings with varying defined values of 
45lc follow similar trends, but wings 

with higher lift coefficients are found to use lower flapping velocities. This is seen as a reduction in 

optimised frequency and elevation amplitude across a range of cruise speeds (Figure 38a,b); in low 

speed cruise the optimised elevation amplitude again reverts to the upper bound value (section 

5.2.1), but the flapping velocity is still reduced by reducing the frequency alone. 

 
Figure 38. Predicted kinematics for a model of the pigeon at varying cruise speeds with varying values of defined 

maximum section lift coefficient.  

a. b. 

c. d. e. 
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An increase in 
45lc  also reduces the mechanical power consumption (Figure 39). The main reason 

for this is that the increase in 
45lc  causes an effective increase in the wing lift to drag ratio which 

reduces power consumption from aerodynamic loads. In addition, lower frequency wingbeats have 

reduced mechanical power consumption from inertial loads. 

 
Figure 39. Predicted mechanical power consumption for a model of the pigeon at varying cruise speeds with varying 

values of defined maximum section lift coefficient. 

It should be stressed that this discussion does not aim to resolve or add to the historical debate over 

the selection of a suitable lift coefficient for modelling avian flight performance. Rather, it serves 

as a parsimonious analysis of the effects of increased lift on the predicted flapping velocity in the 

present model. The results in Figure 38 provide evidence to support the hypothesis that the 

underprediction of frequency and elevation amplitude is due to the underprediction of lift.  

The second proposal to be tested is that using non-sinusoidal joint trajectories may reduce the 

predicted frequency and elevation amplitude by increasing instantaneous flapping velocity and lift 

generated on the downstroke. Section 4.3.2 detailed a simple method for varying the ratio of time 

spent on the downstroke to time spent on the upstroke during a wingbeat. By including the 

downstroke ratio, Td, as a free optimisation variable, the optimised kinematics can again be 

obtained for a range of cruise speed. However, the inclusion of this additional kinematic variable 

does not significantly influence the predicted mean flapping velocity. Moreover, the predicted 

power consumption is only reduced by approximately 2% around the minimum power cruise speed.  

Despite the limited influence that the downstroke ratio has on the predicted flapping velocity and 

power consumption, it is interesting to note that the predicted ratios capture the trends observed 

experimentally with changes in cruise speed (Figure 40). Around the minimum power cruise speed 

the optimised trajectories have a downstroke ratio greater than 0.5, indicating a rapid upstroke 

mode. At higher speeds a rapid downstroke mode is used, as the downstroke ratio reduces to less 

than 0.5, and continues to reduce with increasing cruise speed. 
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Figure 40. Predicted downstroke fraction for a model of the pigeon at varying cruise speeds shown in comparison to 

experimental data. 

5.2.8. Predicted Extension Amplitude 

In hover and low speed flight the optimal wing kinematics always use maximum elevation 

amplitude and no upstroke retraction (Figure 38f). This mode is representative of the flight of the 

hummingbird in both hovering and forward flight, though other birds use some degree of wing 

retraction on the upstroke at all cruise speeds [85]. At the highest cruise speeds tested the solution 

always tends to a fully-retracted upstroke mode.  

To measure the benefits of wing retraction in the present model optimised kinematics were 

obtained while constraining the extension amplitude to the two extreme cases of complete 

extension (E=1) and complete retraction (E=0) during the upstroke (Figure 41). In hover, an 

extended wing mode uses around 25% less power than a fully retracted mode. Conversely, in 

forward flight the fully extended mode uses around 13% more power at the minimum power cruise, 

and ever more at high cruise speeds. Around the minimum power cruise speed, optimised solutions 

with unconstrained wing retraction use a partially retracted mode (Figure 41), but this only offers a 

small reduction in power consumption of less than 2% compared to a fully retracted wing mode. 

 
Figure 41. Predicted mechanical power consumption for a model of the pigeon at varying cruise speeds with constrained 

wing upstroke extension amplitudes; unconstrained extension amplitude solution from Figure 36 is shown for reference.  
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The convergence of the three sets of data at intermediate cruise speeds provides evidence to 

support the results in section 5.2.2: around the minimum power cruise speed solutions with widely 

varying amounts of wing retraction consume similar amounts of power. These results also suggest 

that there is little advantage of having a wing that partially retracts, though for most birds partial 

retraction is the predominant mode at all cruise speeds [85].  

The benefits of partial retraction may become more apparent if the wing retraction dynamics are 

modelled more accurately; there may be additional costs or advantages to different amounts of 

wing retraction that have not been captured in the present model. However, the salient point from 

these results is that for birds that hover there is a clear advantage in having wings that have evolved 

to remain fully extended. Similarly, for forward flight retractable wings offer a clear advantage in 

terms of mechanical energy saving. 

5.2.9. Variation of Upstroke Function with Cruise Speed 

Section 5.1.2 showed that minimum power kinematics use a passive upstroke that generates only a 

small amount of load, torque and mechanical power compared to the downstroke. When optimising 

wing kinematics of the pigeon model at fixed cruise speeds this passive upstroke mode is only 

predicted above a certain threshold speed of around 5 ms
-1

 (Figure 42). At lower speeds the 

maximum and mean force, torque and power are significant on both the upstroke and downstroke. 

Previous predictive simulations demonstrated that the force coefficient time histories can be loosely 

grouped into two modes that can also be applied here [37]. In the first mode, which occurs in hover 

and low speed flight up to 5 ms
-1

, normal force needed for weight support is generated during both 

up and downstroke (Figure 42c). In this mode negative axial force is generated on the downstroke, 

and greater net positive force is generated on the upstroke, which yields a positive axial force to 

overcome the body drag. 
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Figure 42. Time histories of axial (a), lateral (b) and normal (c) aerodynamic force coefficients, shoulder torque 

coefficient (d) and mechanical power coefficient (e). Optimised solutions shown for optimised kinematics for a model of 

the pigeon at varying cruise speeds. 

In the second mode, which occurs at higher cruise speeds, the axial and normal forces are generated 

predominantly on the downstroke. Negligible load on the downstroke is mostly a consequence of 

wing retraction, which reduces both aerodynamic and inertial loads. 

The present work does not aim to resolve the debate over the function of the avian upstroke, but 

provides a platform on which the various hypotheses can be tested. However, by examining the 

force time histories a subtle contribution to this debate can be made. It has been observed that not 

only lift, but all three orthogonal aerodynamic force components become negligible during the 

upstroke under certain flight conditions. This suggests that former descriptions of the upstroke as 

being "passive" or "aerodynamically inactive" are somewhat misrepresentative, as they tend to be 

based purely on the absence of lift generation [27]. A distinction should therefore be made between 

whether a wing is aerodynamically inactive in generating insignificant aerodynamic load, or 

whether it is simply non-lifting.  

Previous use of upstroke lift generation as a gait metric is believed to be related to the readiness 

with which it could be inferred from wake visualisation techniques. However, 3D PIV data can be 

used to determine force components along all three axes [97]. Therefore, there is potential to 

construct a more representative means of describing wing aerodynamic function according to 

instantaneous force rather than instantaneous lift, using existing 3D PIV data from birds. 

5.3. VARYING SCALE 

Chapter 3 discussed how scaling laws have been used to predict the variation in avian kinematics 

with scale. This section will present an alternative approach for making such predictions, without a 

a. b. c. 

d. e. 

Downstroke Upstroke 
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priori knowledge of typical kinematics. The only inputs required are allometric scaling laws that 

were introduced in section 4.2.2, used to define the wing length, reference area, mass and radius of 

gyration, and also the body reference area. Scaling effects are not incorporated into the 

aerodynamic model, but will be discussed in section 5.3.2. The parameters used in optimisation for 

minimum power and minimum cost of transport cruise are summarised in Table 7. 

Flight condition Cost function Optimisation variables Constraints 

Minimum power  Mechanical power, P Frequency, f 500  f Hz 

or minimum cost of 

transport cruise 
or cost of transport, 

V

P
 Elevation amplitude, Φ  750  

  Pronation amplitude, Θ  900  

  Stroke plane angle, γ  090   

  Extension amplitude, E 10  E  

  Cruise speed, V∞* 
0

DF
x
  

mgFz   

Table 7. Optimisation parameters used for simulating minimum power and minimum cost of transport cruising flight of 

varying scale birds. All constraints are subject to optimisation tolerance of ± 10-5. *Cruise speed is included as a free 

optimisation variable in sections 5.3.1 and 5.3.2 only. 

5.3.1. Allometrically Scaled Models of Minimum Power Cruise 

Minimum power cruising flight is used as a test condition to conduct a preliminary investigation of 

the effects of scale on kinematics. Wing kinematics were simulated for allometrically scaled birds 

of 0.1, 0.4 and 1 kg mass (Table 4). As expected, the mechanical power consumption increases 

with bird mass. The predicted minimum power cruise speed and minimum cost of transport cruise 

speed also increase with mass, which correlates to predictions from previous theoretical models, as 

well as to field study data [55]. The variation in mechanical power with mass will be discussed 

further in section 5.3.3. With regards to the predicted wing kinematics, the only significant change 

with bird mass is the predicted wingbeat frequency, f, which reduces with increasing mass.  

Mass Min. Mech. 

Power 

P (W) 

Min. Power 

Cruise Speed 

V∞ (ms-1) 

Frequency 

f (Hz.) 

Elevation Amp. 

Φ (deg.) 

Pronation Amp. 

Θ (deg.) 

Stroke Plane 

Angle 

γ (deg.) 

Extension 

Amp. 

E 

  

0.1 3.7 8.8 11.6 49.0 18.0 -15.5 0.51 

  

0.4 16.8 10.3 7.7 49.3 18.1 -15.5 0.48 

  

1.0 46.0 11.5 5.7 51.3 18.1 -15.6 0.37 

Table 8. Predicted mechanical power consumption and kinematics for bird models of different scale. Bird models are 

allomterically scaled based on their respective masses of 0.1, 0.4 and 1 kg. 
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To illustrate the changes in kinematics with scale, both the wing and the body movement are 

visualised over one wingbeat for the three different scale birds in Figure 43. While the resemblance 

between the visualisations is in part due to the use of a generic wing model, it is also clear that 

there is some similarity between the kinematics of the three birds. True kinematic similarity cannot 

be predicted by the current approach, as the bird models are scaled allometrically, not 

geometrically. However there is still some value in determining whether any form of similarity 

exists between the predicted kinematics of allometrically scaled models, particularly as this relates 

to recent proposals made from field study observations [98],[99]. One approach to doing so would 

be to compare, for example, the wing tip paths of visualisations in Figure 43; kinematic similarity 

could be proven by showing geometric similarity between wingtip paths. A less cumbersome 

approach  is used in the following section where the numerical values for predicted kinematic 

variables are compared for different scales, and validated against experimental results from 

literature. 

 
Figure 43. Spatial variation in wing and body position of birds of different scale shown over a single wingbeat in 

minimum power cruising flight. Bird models are allomterically scaled based on their respective masses of 0.1, 0.4 and 1 

kg. 

5.3.2. Variation of Kinematics with Scale in Cruising Flight 

Previous studies that surveyed the kinematics of birds in cruising flight found that the ratio of wing 

flapping velocity to cruise speed is similar for different species [98],[99]. This ratio is the inverse 

of the advance ratio, which was introduced in section 4.2.8. As a non-dimensional quantity, the 
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advance ratio captures the similarity in kinematics between birds, independent of their scale. In 

addition to the advance ratio, this section will consider the three kinematic variables from which it 

is derived: cruise speed, frequency and elevation amplitude. 

Literature surveys of kinematic data for birds in cruising flight include mean values from wind 

tunnel tests, and also from field study observations [98],[99]. Wind tunnel tests have some 

limitations in that the cruise speed is imposed, rather than self selected. Field study observations 

are advantageous in this respect, however the motivation behind the self-selected speed may vary, 

whether it is to minimise power, minimise cost of transport, or meet another criterion. In addition, 

in field study observations the speed may be varying and as a result the wing kinematics may be 

transitioning between different modes. The present work will utilise both wind tunnel and field 

observation data for validation, while considering the limitations mentioned above. 

Figure 44 shows the predicted kinematic data for varying scales compared to wind tunnel data. The 

range of scales was defined so as to capture the range of bird masses that have been measured in 

wind tunnel tests and field study observations. Of all kinematic parameters measured in the wind 

tunnel tests, the wingbeat frequency shows the smallest amount of variation with cruise speed 

(Figure 44b). The predicted and measured wingbeat frequency both show a clear reduction with 

increasing bird mass. The elevation amplitude is also predicted to reduce with increasing mass, but 

at a much slower rate. 

Cruise speed is predicted to increase with bird mass (Figure 44a). Experimental measurements of 

cruise speed are also plotted for reference; while the range of speeds used in wind tunnel tests is 

largely defined by the experimenter, it does give some indication of the speeds that a bird is 

capable of  flying at. However, the spread in the experimental cruise speed data is the main 

contributor to the spread in advance ratio data in Figure 44d. Simulations predict little variation in 

advance ratio with changes in bird mass, but wind tunnel data are too scattered to validate this. The 

advance ratio is underpredicted for all bird masses due to the overprediction of flapping velocity 

discussed in section 5.2.6. If the present model was adapted to include additional methods of lift 

generation lower local wind velocities would be needed, and the predicted frequency, elevation 

amplitude and cruise speed would reduce. 

As mentioned previously, the value of 
45lc  is the dominant factor in the aerodynamic model. 

Section 4.2.5 discussed how this value shows little variation over a range of Reynolds numbers that 

are representative of flows for typical cruising conditions of birds. For the largest scales tested here 

the maximum lift coefficient would be expected to increase slightly with increasing Reynolds 

number [100]. Thus, based on Reynolds number effects, the frequency, elevation amplitude and 
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cruise speed would all be expected to be lower than the values predicted here for the largest scale 

birds.   

 
Figure 44. Simulated minimum power and minimum cost of transport kinematics for allometrically scaled bird models 

compared to kinematic data for different species measured in variable speed wind tunnels test 

[13],[28],[30],[89],[92],[101],[102]. All y-axis scales are shown over two orders of magnitude. Advance ratios are 

derived for experimental data using allometric scaling of the of the flapping velocity using the equation given in [99]. 

Note: elevation amplitude (c) was only recorded as an angle for wind tunnel tests of the pigeon. 

To focus more on self-selected kinematics, Figure 45 compares predicted kinematics to data 

obtained predominantly from field study observations [98],[99]. The predicted minimum power 

and minimum cost of transport cruise speeds capture the trends in experimental data, showing that 

heavier birds cruise at higher speeds (Figure 45a). As with Figure 44b, the experimental data for 

frequency again follow a decreasing trend with increasing mass, however the data are now much 

more scattered (Figure 45b). This illustrates that while frequency shows limited change with cruise 

speed for one particular species, the interspecies variations at the self-selected cruise speed are 

much more pronounced. The wingbeat frequency is overpredicted in the majority of cases shown in 

Figure 45b when using allometrically scaled models, similar  to the results seen for the pigeon 

model (Figure 36) that was based on species specific geometric and mass parameters.  

Elevation amplitude is predicted to decrease slightly with increasing mass (Figure 45c). However, 

this change is relatively subtle, showing less than a 30% reduction for a reduction of four orders of 

magnitude in body mass. Experimental measurements show a steeper reduction in elevation 

a. b. 

c. d. 
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amplitude, though measurement errors may have been made, such as those that were corrected for 

in section 5.2.5 (Figure 37). The overprediction of elevation amplitude and frequency can again be 

explained by the underprediction of lift for given kinematics. 

 
Figure 45. Simulated minimum power and minimum cost of transport kinematics for allometrically scaled bird models 

compared to kinematic data for different species measured in field study tests and also mean data collected during wind 

tunnel tests [98],[99]. 

The key point to draw from this analysis is that the predicted advance ratio shows little variation 

between birds of different scale. This confirms what has been concluded by other works, which 

based their analysis on the field data presented here [98],[99]. However, while previous works 

explained this phenomenon as a method of tuning the vortex shedding frequency, the present work 

demonstrates the independency of advance ratio with respect to scale without the consideration of 

such unsteady fluidic phenomena. Even if the added mass and induced velocity effects are removed 

from the current model, similar trends in advance ratio with scale are found. This means that the 

similarity in kinematics between birds of different scale can be predicted using a dynamic model 

that captures only quasi-steady aerodynamic loads and inertial loads. 

c. d. 

a. b. 
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5.3.3. Varying Cruise Speed for Different Scales 

In the previous section the concept of kinematic similarity was considered at certain cruise speeds 

that are deemed to be self-selected to minimise power or cost of transport. In some instances birds 

may be required to cruise at different speeds, or even hover. To extend the analysis of kinematic 

variations with scale, this section will examine combined effects of scaling and varying cruise 

speed; the cruise speed is no longer used as an optimisation variable but is defined explicitly. 

Wing kinematics of the three bird models from section 5.3.1 were optimised in hover and cruising 

flight over a range of speeds. The predicted wing kinematics are shown in Figure 46, compared to 

their corresponding advance ratios. From hover, an increase in cruise speed increases the advance 

ratio. The advance ratio increases up to a threshold of around 1 for all scale bird models, at which 

the wing tip speed at the mid-downstroke is approximately equal to the freestream velocity and the 

angle of attack is around 45°. This corresponds to the maximum section lift coefficient, 

highlighting that the wing is required to generate a large amount of aerodynamic load, which is 

needed to balance the significant body drag. 

 
Figure 46. Predicted wing kinematics at varying advance ratios for models of varying scale.  

At a given advance ratio, heavier birds use a lower wingbeat frequency, while the differences in 

other kinematics parameters is smaller (Figure 46a-e). This is the first evidence to suggest that 

there may be some similarity in kinematics for birds of different scales away from the minimum 

power or minimum cost of transport cruise speeds. 

The discontinuity in data between advance ratios of around 0.35 corresponds to the abrupt change 

in elevation amplitude that was seen in the pigeon model in Figure 37; simulating over a finer 

range of cruise speeds does not remove this discontinuity. 

a. b. 

c. d. e. 
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As expected, birds of greater mass were found to consume more mechanical power in cruising 

flight. However, as heavier birds have more available mechanical power [40], it is more insightful 

to compare power consumption relative to scale. As mentioned in section 4.2.8 the power loading, 

given by the ratio of net aerodynamic force generated to mechanical power consumed, can be used 

as a measure of efficiency for comparing birds of different scales (Figure 47). 

For the range of scales shown in Figure 47a the maximum power loading occurs at similar advance 

ratios. Over a wider range of scales it can be shown that the advance ratio for maximum power 

loading actually increases with bird mass, just as the advance ratios for minimum power and 

minimum cost do (Figure 44, Figure 45). The cruise speed for maximum power loading also 

increases with mass. This speed may serve as a useful metric for future avian flight performance 

studies, alongside the minimum power and minimum cost of transport speeds. 

 

 

Figure 47. (a) Predicted power loading for birds of different scale at varying advance ratios. (b) Predicted maximum power 

loading for birds of different scale shown for respective wing loading. 

The maximum power loading reduces as the bird mass increases. The reason for this is that with 

increasing scale, power consumption due to aerodynamic loads increases more quickly than mass 

(first noted in [103]). This is due to the fact that heavier birds have greater wing loading, so to 

maintain sufficient aerodynamic load for weight support and thrust they are subject to greater local 

wind velocities. This is achieved through travelling at a higher cruise speed with a higher wing 

flapping velocity, which increases the mechanical power consumption and causes the reduction in 

power loading seen in Figure 47b.  

5.4. ACCELERATING FLIGHT 

Until now, kinematics have only been predicted for cruising flight conditions, where the net 

aerodynamic and gravitational forces are in equilibrium. This approach is somewhat restricted, in 

that it only captures wing kinematics that might be observed during wind tunnel tests, or in some 

specific cases of non-accelerating free flight such as migration. To extend the model to non-

a. b. 
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cruising flight conditions a first step is to analyse the effects of acceleration and deceleration in 

horizontal flight. The optimisation parameters to be used in this section are shown in Table 9. 

Flight condition Cost function Optimisation variables Constraints 

Horizontal acceleration Mechanical power, P Frequency, f 500  f Hz 

  Elevation amplitude, Φ  750  

  Pronation amplitude, Θ  900  

  Stroke plane angle, γ  090   

  Extension amplitude, E 10  E  

   
xx

maDF 
0

 

mgF
z
  

Table 9. Optimisation parameters used for simulating minimum power accelerating flight. All constraints are subject to 

optimisation tolerance of ± 10-5.  

5.4.1. Simulating Wing Kinematics During Acceleration 

A typical range of acceleration values for birds at a given flight speed can be determined from 

previous experiments. For the pigeon, acceleration values ranging from around -0.5g to +0.5g have 

been observed at speeds of around 14 ms
-1

 [89].  

Simulated wing kinematics of the pigeon model show an increase in stroke plane angle with 

increasing acceleration at constant speed (Figure 48). Increasing the stroke plane generates greater 

axial force needed for acceleration by vectoring the aerodynamic force on the wings. This process 

also reduces weight support, and so it is used in conjunction with an increase in upstroke retraction 

to counteract this. 

Interestingly, with an acceleration of -0.5g (Figure 48a) the model predicts a non-flapping 

kinematic mode, which uses stroke plane inclination and a fixed elevation angle to generate a 

constant negative aerodynamic force. This could be regarded as a braking mode of flight when used 

at high speed. It is also representative of gliding flight, though is not at the optimum lift to drag 

ratio. It should be noted that in wind tunnel tests at similar flight conditions the pigeon did maintain 

a flapping wing mode along with an inclined stroke plane, similar to that predicted to occur at -

0.25g (Figure 48b). It is likely that for real birds a non-flapping flight mode would still consume 

mechanical energy through isometric contraction of muscles. Inclusion of this process within the 

present model may provide better insight into the most energy efficient methods of decelerating. As 

mentioned in section 4.2.1 the tail is also likely to be used for increasing aerodynamic load for 

braking. 
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a. Acceleration = -0.5g (side view along y0) 

 
 

b. Acceleration = -0.25g (side view along y0) 

 
c. Acceleration = 0 (side view along y0) 

 
d. Acceleration = 0.25g (side view along y0) 

 
e. Acceleration = 0.5g (side view along y0) 

 

0 0.5 1

Phase
 

Figure 48. Optimised wingbeat kinematics for minimum power flight of the pigeon model at 12 ms-1 with varying 

degrees of acceleration.  

Simulation of acceleration in low speed flight provides insight into the physics of takeoff and 

landing. Figure 49 shows the predicted kinematics for the same range of accelerations used in 

Figure 48, but at a lower speed of 4 ms
-1

. As with the high speed case an increase in acceleration at 

low speeds is also characterised by an increase in stroke plane angle. In contrast to the high speed 

results, wing retraction at low speed is favoured for deceleration, but not for acceleration. For 

deceleration a large negative stroke plane angle is used to increase drag on the downstroke and 

provide negative axial force. An extended wing upstroke would generate drag in the opposite 

direction, having the adverse effect of reducing the net axial force, and so a retracted wing upstroke 

is used for deceleration. 
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a. Acceleration = -0.5g (side view along y0) 

 
b. Acceleration = -0.25g (side view along y0) 

 
c. Acceleration = 0 (side view along y0) 

 
d. Acceleration = 0.25g (side view along y0) 

 
e. Acceleration = 0.5g (side view along y0) 

 

0 0.5 1

Phase
 

Figure 49. Optimised wingbeat kinematics for minimum power flight of the pigeon model at 4 ms-1 with varying 

degrees of acceleration. 

5.4.2. Accelerating Flight for a Range of Speeds 

The above analysis can be extended by simulating a range of plausible speeds and accelerations for 

the pigeon model. In accelerating flight the U-shaped power curve is seen to flatten, and above 

acceleration values of around 0.3g the lowest power solution is at a speed of 0 ms
-1

, i.e acceleration 

from rest (Figure 510). Unsurprisingly, at most speeds an increase in acceleration leads to an 

increase in mechanical power consumption. At speeds of less than around 1 ms
-1

, deceleration is 

predicted to require more power than acceleration. The reason for this is that at low speeds the 

stroke plane inclination reaches the defined lower bound of -90° (Figure 51d), but a lower power 

mode can be found if this bound is reduced further. The bound used here was defined to provide 

numerical stability and limit the solutions to those deemed physically plausible. It is conceivable 

that a stroke plane less than -90° may be an optimal solution, but it is more likely that the tail may 

be used to increase drag, and that the body drag coefficient would increase due to being at a high 
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angle of attack (section 4.2.2). Alternative wing kinematics may also be employed for heavy 

deceleration, that are not captured with the current wingbeat parameterisation. 

 
Figure 50. Predicted mechanical power consumption for a model of the pigeon at varying speeds with varying degrees of 

acceleration. 

At higher speeds acceleration of -0.5g is achieved using no mechanical power through non-flapping 

modes, where the frequency reduces to 0 (Figure 51a). With increasing speed the non-flapping 

mode reduces the wing elevation angle (equal to the elevation amplitude in  Figure 51b), and 

increases stroke plane angle. Due to the mathematical implementation of the pronation time 

history, the pronation angle is zero for any non-flapping modes. The wing extension is also fixed 

for a non flapping mode, and is given as the extension amplitude in Figure 51e. This variation in 

kinematics for non-flapping modes is used in order to provide the necessary axial and normal loads, 

but the minimisation of power no longer serves an optimisation goal as no mechanical power is 

consumed in these modes. No alternative non-flapping modes were identified that satisfied the 

optimisation constraints.   

 
Figure 51. Predicted kinematics at varying speeds for a model of the pigeon, with varying degrees of accceleration.  

a. b. 

c. d. e. 
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As the mechanical power consumption increases with acceleration, it is reasonable to expect a 

highly manoeuvrable bird to have greater instantaneous power availability than a less agile bird of 

equivalent scale. In addition, large acceleration tends to involve high wing flapping velocities for a 

given speed, so more manoeuvrable birds are likely to be able to fly at lower advance ratios. For 

real birds there will be limitations to both wingbeat frequency and mechanical power, largely 

governed by limitations on flight muscles [104]. 

A more general finding from the results in this section is that over a plausible range of acceleration, 

the pigeon model exhibits distinctive changes in kinematics that could potentially be observed 

without requiring measurement apparatus. This suggests that in field study observations wing 

kinematics may serve as useful visual cues for identifying whether a bird is accelerating,  

decelerating or cruising. 

5.5. CLIMBING & DESCENDING FLIGHT 

Climbing and descending can be used to achieve several different goals in flight, including 

avoiding obstacles, reaching a perch, and changing altitude during migration. This section predicts 

generic climbing and descending at a constant speed that captures the fundamental changes in 

kinematics associated with non-horizontal flight. Section 5.5.1 will simulate climb and descent 

over a wide range of angles that have been observed in recent experimental studies [105]. Section 

5.5.2 will consider the special case of climb and descent at small angles with varying speeds that 

was introduced in section 4.2.2. Where only climbing is considered in section 5.2.2, the term 

"climb angle" (  ) will be used for clarity. 

For comparison with previous sections of the current work and with recent experimental data, 

climbing and descending is considered here for the pigeon model only, but can be equally well 

tested with any scale bird model. The optimisation parameters used in simulating climbing and 

descending flight are shown in Table 10. 
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Flight condition Cost function Optimisation variables Constraints 

Climbing flight at 

constant speed 
Mechanical power, P Frequency, f 500  f Hz 

  Elevation amplitude, Φ  750  

  Pronation amplitude, Θ  900  

  Stroke plane angle, γ  0180   

  Extension amplitude, E 10  E  

   
sin

0
mgDF

x
  

cosmgFz   

Table 10. Optimisation parameters used for simulating minimum power climbing and descending flight. All constraints 

are subject to optimisation tolerance of ± 10-5. 

5.5.1. Varying Climb Angle 

The range of angles at which a bird can climb and descend is likely to depend on the availability of 

mechanical power, and the maximum aerodynamic load that a particular species can generate. 

Recent experiments recorded pigeons using flight paths inclined from -60° to 60° with respect to 

the horizontal [105]. In an attempt to model this behaviour, optimised solutions were obtained for 

constant speed flight over the same range of angles. It is recognised that in the experiments birds 

tended to change speed during flight, but to isolate the effects of descent angle from those of 

acceleration (modelled in section 5.4) a constant speed will be used for simulation. It should be 

noted, however, that the current model is capable of capturing combined effects of 

descending/climbing and accelerating/decelerating (equations [5] and [6]). 

For flight at 4 ms
-1

 the optimised wing kinematics predict little change in elevation and pronation 

amplitude with varying descent angle (Figure 52). Furthermore, for all climb angles the wing is 

fully outstretched. Similar kinematics are observed over a range of speeds from 0-6 ms
-1

, which 

will be considered in more detail in the following section. 
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Figure 52. Optimised wingbeat kinematics for minimum power flight of the pigeon model at 4 ms-1 with varying angles 

of descent.  
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An interesting point from Figure 52 is that the stroke plane orientation with respect to the Earth 

axes does not appear to change significantly with changes in descent angle. The same result was 

also seen for lower speeds. The reason for this is that when the speed is low the gravitational force 

is much greater than the body drag, so a large component of the aerodynamic force vector must be 

oriented vertically for weight support, regardless of the climb angle. As the main local wind 

velocity component is the wing flapping velocity, to vector the lift vertically the stroke plane 

remains orientated close to the horizontal plane. 

Experimental studies of birds in climbing and descending flight measured the stroke plane angle for 

various climb angles [105]. Both simulated and experimental data show that at steep angles of 

climb and descent the stroke plane becomes more inclined with respect to gravity (Figure 53a). For 

steep angles the body drag vector is aligned more closely with the gravity vector than in horizontal 

flight (Figure 53b). This means that the mean aerodynamic force from the wing, F0, must be 

inclined closer to the vertical in steep climb and descent, which is achieved through rotating the 

stroke plane closer to the horizontal plane. 

 

mg
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Figure 53. (a) Predicted stroke plane angle with respect to gravity for a model of the pigeon at 4 ms-1 speed with varying 

angles of descent. (b) Illustration of how the mean aerodynamic force vector on the wings, F0, has a greater vertical 

component when climbing or descending than in horizontal flight.  

5.5.2. Varying Speed & Climb Angle 

As mentioned in the previous section, experimental studies have revealed that birds change their 

speed while climbing in free-flight [105]. To better understand this behaviour, this section will 

consider the coupled effects of varying speed and climb angle. As mentioned in section 4.2.2 

climbing and descending at shallow angles is equivalent to accelerating and decelerating in 

horizontal flight. This is reflected by the similarity in the kinematics predicted for +/-15° descent 

(Figure 54) and those predicted for acceleration at -/+0.25g (Figure 51). For example, at a given 

speed both climb and acceleration are predicted to use greater wingbeat frequency and elevation 

a. b. 
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amplitude than in horizontal cruise. This is done in order to increase aerodynamic force by 

increasing the wing flapping velocity. 

 
Figure 54. Predicted kinematics at varying speeds for a model of the pigeon with varying degrees of descent.  

Unsurprisingly, more mechanical power is required in climbing flight than in horizontal flight at 

the same speed, and less is required in descending flight (Figure 55). Interestingly, for descent 

angles less than -15° (i.e. climb angles greater than 15°) the power required to fly at any speed is 

greater than the power required to hover. This highlights that climb data could potentially be used 

to predict which birds have sufficient power to hover, based on observations of their maximum 

climb angles achieved during experiments. 

 
Figure 55. Predicted mechanical power consumption for a model of the pigeon at varying speeds with varying angles of 

descent. 

The minimum power speed reduces as the descent angle reduces. Therefore, to climb with the 

minumum power, birds would be expected to climb at speeds less than their the minimum power 

speed for horizontal flight. However, a more suitable metric for assessing climbing performance is 

the amount of energy used to climb to a given altitude, essentially the cost of vertical transport. By 

a. b. 

c. d. e. 
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simulating climbing flight over a broader range of climb angles, and with varying speed, the climb 

angle can be predicted that gives minimum cost of vertical transport.  

Figure 56a shows the power variation for different climb angles, compared to the vertical climb 

velocity. The minimum cost of vertical transport for a given climb angle is given as the shallowest 

tangent to the curve for that climb angle that passes through the origin. This minimum cost reduces 

with increasing climb angle. Therefore, to obtain the lowest possible cost of vertical transport, a 

climb angle of 90° (vertical climb) should be used, and a speed of approximately 13 ms
-1

. It may 

seem counterintuitive that vertical climbing should save energy for a required increase in altitude. 

As mentioned previously, vertical climb requires extra mechanical power as drag and weight 

vectors align, meaning that greater net aerodynamic force must be generated by the wing. This 

highlights one performance limitation, in that to climb vertically a stronger wing structure would be 

required to withstand these loads. However the main point to note is that even though this mode 

uses less energy for a given change of altitude, it also requires more mechanical power. Therefore, 

the ability to save energy by climbing vertically would also be limited by the maximum continuous 

mechanical power availability (which is limited by maximum rate of oxygen absorption [104]). 

As exact details of mechanical power availability for real birds are not available, a range of 

available mechanical power can be used to assess changes in climbing flight performance. Figure 

56b-d illustrates the optimum climb conditions based on minimising the cost of vertical transport 

subject to the defined limits on mechanical power. With an increase in mechanical power 

availability the minimum cost of vertical transport reduces, but this occurs at a diminishing rate 

(Figure 56b). The optimum climb angle increases with greater mechanical power availability 

(Figure 56c), while the optimum speeds reduces (Figure 56d).  
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Figure 56. (a) Predicted mechanical power consumption with varying vertical speed for varying angles of climb (-β). (b) 

Minimum cost of vertical transport, for varying amounts of available mechanical power. (c) Optimum climb angle and 

(d) optimum climb speed that yield lowest cost of vertical transport for varying amounts of available mechanical power. 

(b)-(d) obtained from linear interpolation of data presented in (a).  

The main implication of the results in this section is that climbing performance and optimal 

kinematics are strongly influenced by the availability of mechanical power. It is important to stress 

that the amount of mechanical power available for short bursts would be expected to be larger than 

the amount required for sustained periods. For this reason, for short bursts of climbing flight birds 

are more likely to fly vertically to reduce energy consumption than in longer commutes, such as 

climbing to high altitude for migration. It should also be considered that to achieve the defined 

optimal climbing flight conditions the availability of additional mechanical power and the 

generation of greater aerodynamic loads could be expected to incur some penalty, such as 

additional mass for structural support and flight muscle. 

5.6. WAKE VISUALISATION 

The wake simulation method was designed to serve as a standalone module that functions with any 

arbitrary set of wing dynamics, whether they are optimised for a particular flight condition or 

defined explicitly. This section of the work will visualise the wakes both from optimised solutions 

for horizontal cruise of the pigeon model, and also for the defined case of gliding flight. 

a. b. 

c. d. 
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5.6.1. Visualising Wake Geometries 

The wake simulated for the optimised minimum power cruising flight mode of the pigeon is shown 

in Figure 57. The Lagrangian markers used in the wake simulation track the overall undulating 

motion from the flapping wings. The wake downwash effect can also be seen, particularly by 

comparing markers released at the bottom of successive downstrokes, which increase in 

displacement in the -z0 direction as they advect downstream (Figure 57a). The regions where the 

vortex filaments converge laterally show where the wings retract during the upstroke (Figure 57b).  

a. Simulated wake (side view along y0) 

 
b. Simulated wake (top view along -z0) 

 
Figure 57. Lagrangian markers for simulated wake of the pigeon model over three wingbeats. Wingbeat kinematics and 

circulation distribution determined from optimised solutions for minimum power cruising flight (12 ms-1).  

The wake surface depicts more clearly the 3D structure of the wake (Figure 58a,c,e,g). Around the 

inboard section of the wing the wake surface remains relatively planar, while at the outboard 

section the surface edges rollup, particularly at the mid-downstroke. When viewed from in the +x0 

direction the left sheet rolls clockwise while the right sheet rolls anticlockwise (Figure 58g). This 

rolling motion is a result of the mutually induced velocity between vortex points, which is greatest 

in the outboard wing wake where the vortex strengths are highest.  

The streamlines for minimum power cruising flight of the pigeon model show not only the rolling 

of the wake near the wingtips, but also slight rotation of the opposite sense in the inboard section of 

the wake (Figure 58b,d,f,h). This arises as the lift decreases towards the wing root due to the 

reduction in wing flapping velocity. Subsequently, the strengths of vortex points released from the 

most inboard control points tend to have the opposite sign to those released from the outboard 

points on the same wing. This modelled process is representative of the underlying physics of 

wake, and there is some evidence to suggest that for real birds vorticity in the inboard region is of 

opposite sign to that in the outboard region [106],[31]. However, it should also be noted that in the 

Downwash 

Downstroke Upstroke 
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inboard region the wake geometry will be influenced by the body and tail, which is not captured in 

the present work. 

The wake simulated at 5 ms
-1

 cruising flight using the optimised kinematics is much more complex 

(Figure 59). Advection of vortex points is slow with respect to the flapping velocity. This causes 

some regions of the wake shed during the downstroke to intersect with regions shed during the 

upstroke. As a result there are many instances where vortex points come into close proximity, 

leading to an overprediction of induced velocity and subsequent numerical instability. Therefore, 

wake simulation in low advance ratio flight is less robust than in minimum power cruising flight, 

and is more sensitive to the choice of viscous vortex core model. For cruise at 16 ms
-1

 speeds 

(Figure 60) the wake geometry is similar to that predicted for minimum power cruise (Figure 58). 

More rapid spiralling of the streamlines is seen at 16 ms
-1

 than at 12 ms
-1

 as the strengths of the 

vortex points are greater, particularly for those shed from the wingtips.  
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a. Minimum power cruise wake surface  

 

b. Minimum power cruise wake streamlines  

 

c. Wake surface (side view along y0) 

 

d. Wake streamlines (side view along y0) 

 

e. Wake surface (top view along -z0) 

 

f. Wake streamlines (top view along -z0) 

 

g. Wake surface (back view along +x0) 

 

h. Wake streamlines (back view along +x0) 

 

Figure 58. Wake surfaces (a,c,e,g) and streamlines (b,d,f,h) for simulated pigeon model. Wingbeat kinematics and 

circulation distribution determined from optimised solutions for minimum power cruising flight (12 ms-1). 
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a. 5 ms
-1

 cruise wake surface 

 

b. 5 ms
-1

 cruise streamlines 

 

c. Wake surface (side view along y0) 

 

d. Wake streamlines (side view along y0) 

 

e. Wake surface (top view along -z0) 

 

f. Wake streamlines (top view along -z0) 

 

g. Wake surface (back view along +x0) 

 

h. Wake streamlines (back view along +x0) 

 

Figure 59. Wake surfaces (a,c,e,g) and streamlines (b,d,f,h) for simulated pigeon model. Wingbeat kinematics and 

circulation distribution determined from optimised solutions at 5 ms-1 cruise. 
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a. 16 ms
-1

 cruise wake surface 

 

b. 16 ms
-1

 cruise streamlines 

 

c. Wake surface (side view along y0) 

 

d. Wake streamlines (side view along y0) 

 

e. Wake surface (top view along -z0) 

 

f. Wake streamlines (top view along -z0) 

 

g. Wake surface (back view along +x0) 

 

h. Wake streamlines (back view along +x0) 

 

Figure 60. Wake surfaces (a,c,e,g) and streamlines (b,d,f,h) for simulated pigeon model. Wingbeat kinematics and 

circulation distribution determined from optimised solutions at 16 ms-1 cruise. 
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5.6.2. Velocity & Vorticity Field Data 

Whether plotted as Lagrangian markers, wake surfaces or streamlines the simulated vortex points 

capture and portray some of the fundamental aspects of the wake physics. However, commonly 

used experimental methods used in avian flight analysis resolve the velocity and vorticity fields 

throughout the wake region and for some distance upstream of the bird. It therefore follows that the 

current wake simulation method could better complement existing experimental techniques by 

reconstructing the wake velocity and vorticity fields.  

The simulated wake for a fixed (non-flapping) wing is the simplest test case that can be used to 

validate the reconstruction of the flowfield. This kinematic mode is representative of gliding flight 

and has been analysed extensively for birds using fixed wing theories of aerodynamics (e.g. [12]), 

as well as using experimental studies (e.g. [107],[108]). Two non-flapping cases are defined here, 

with the wing orientation fixed to yield the best lift to drag ratio (Figure 61a,b), and also the 

maximum lift coefficient (Figure 61c,d). In this mode the velocity field depicts two circulating 

regions of flow, each centred downstream of a wingtip (Figure 61a,c). The viscous vortex core 

model reduces the induced velocity towards the centre of these circulating regions. These regions 

correspond to the regions of high vorticity in Figure 61b,d. As expected, simulations at the 

maximum lift coefficient yield greater velocity and vorticity magnitudes than at the maximum lift 

to drag ratio, as the increased lift distribution leads to greater vortex point strengths 

With constant freestream wind velocity and wing orientation the lift predicted by the aerodynamic 

model tends to decrease from the inboard to outboard blade elements. This is because the chord 

length and element areas reduce towards the wing tips. For a single gliding wing based on the 

pigeon wing geometry the maximum blade element circulation actually occurs at the most inboard 

section. Most of the vorticity in the downstream wake of the inboard sections is cancelled by that of 

the opposite wing. However, vortex points shed from inboard elements still induce a large vertical 

component of velocity, which contributes to the downwash along the bird line of symmetry (Figure 

61a,c). It should be noted that for a real wing the lift distribution decreases towards the wingtips 

even if the chord length is constant due to tip loss effects, but this is not captured by the present 

model. However, this effect is only apparent in non-flapping wing modes, because in powered 

flight the induced velocity is much smaller than the wing flapping velocity. 
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 a. Velocity (m s
-1

), cl=0.6

 

b. Vorticity (s
-1

), cl=0.6 

 
 c. Velocity (m s

-1
), cl=1.6 

 

d. Vorticity (s
-1

), cl=1.6 

 
Figure 61. Velocity (a,c) and vorticity (b,d) field data for the pigeon model in the y0-z0 plane (perpendicular to the 

freestream wind direction), viewed from in front of the bird in the -x0 direction. Field data was reconstructed from wakes 

simulated using circulation distribution from non-flapping modes defined to yield cl=0.6 (a,b) and cl=1.6 (c,d). Note that 

the vorticity contours fluctuate slightly due to numerical interpolation of velocity field data.  

Experimental data taken from gliding studies of real birds also shows the rolling up of wingtip 

vortices [107],[108]. While quantitative data such as the induced velocity magnitudes is clearly 

species specific, all experimental studies capture similar qualitative results, including the influence 

of the body and tail on the wake downstream of the inboard wing region. The aerodynamics of a 

specific body and tail geometry could be accounted for using a panel method [39]. However, this 

goes beyond the scope of the present work that aims to capture the fundamental wake geometry, 

which is largely governed by the wake shed from the wings. 

To extend this analysis to flapping-wing modes a stiff-wing mode like that presented in section 

5.1.1 is a useful test case as it removes the uncertainty with modelling retracting wing wakes that 

will be discussed further in the following section. The wake simulated from the stiff-wing mode is 

found to be numerically stable for all cruise speeds, including the characteristic minimum power 
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cruise speed of 12 ms
-1

. At this speed the velocity field at the mid-downstroke shows some 

resemblance to that of the previous gliding flight mode, with two pronounced circulating flow 

regions near the wing tips (Figure 62a).  

At the mid-upstroke the stiff-wing wake still shows similar recirculating regions to those at the 

mid-downstroke, despite the fact that the instantaneous lift on the wing is negative. The reason for 

this is that the velocity field reconstruction calculates the induced velocity from all shed point 

vortices, and therefore captures some history of the wake. In this particular case the high strengths 

of vortex points released during the downstroke still dominate the induced velocity field at the mid-

upstroke. This can also be seen in the vorticity field contours which are greatest close to the 

wingtips, but also appear to be somewhat stretched along the wing path due to the influence of 

point vortices shed earlier in the wingbeat.  

a. Velocity (ms
-1

), mid-downstroke 

 

b. Vorticity (s
-1

), mid-downstroke

 
c. Velocity (ms

-1
), mid-upstroke 

 

 d. Vorticity (s
-1

), mid-upstroke 

 

Figure 62. Velocity (a,c) and vorticity (b,d) field data for the pigeon model in the y0-z0 plane (perpendicular to the 

freestream wind direction), viewed from in front of the bird in the -x0 direction. Field data reconstructed from wakes 

simulated using kinematics and circulation distribution from optimised solutions for the stiff-wing mode (section 5.1.1). 

Note that the vorticity contours fluctuate slightly due to numerical interpolation of velocity field data. 
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The velocity induced by vortex points was overpredicted when the wings retracted. This effect was 

not sufficient enough to influence the overall wake geometries portrayed in section 5.6.1, but did 

lead to some anomalies in the reconstructed wake field data during the upstroke (Figure 63c,d). As 

the wing retracts the release locations of the vortex points are forced into close proximity. Even 

with a viscous vortex core model, when all vortex points are released in a small region the 

cumulative effect is the overprediction of induced velocity.  

 a. Velocity (ms
-1

), mid-downstroke.  

 

 b. Vorticity (ms
-1

), mid-downstroke 

 
c. Velocity (ms

-1
), mid-upstroke 

 

 d. Vorticity (s
-1

), mid-upstroke 

 
Figure 63. Velocity (a,c) and vorticity (b,d) field data for the pigeon model in the y0-z0 plane (perpendicular to the 

freestream wind direction), viewed from in front of the bird in the -x0 direction. Field data was reconstructed from wakes 

simulated using kinematics and circulation distribution from optimised solutions for minmum power cruising flight. Note 

that the vorticity contours fluctuate slightly due to numerical interpolation of velocity field data. 

The strengths of the vortex points released during the mid-upstroke are much smaller than those 

released throughout the downstroke. This means that the overpredicted induced velocity at the mid-

upstroke does not to influence the results at other phases of the wingbeat; the predicted velocity and 

vorticity fields during the mid-downstroke are still plausible (Figure 63a-b), with similar 

magnitudes to those seen in the stiff-wing mode (Figure 62a-b). Therefore, the method can be 

regarded as being robust, whereby anomalous predictions of induced velocity tend not to propagate 
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to other phases. However, a more conservative approach would be to only apply this method in a 

piecewise fashion, whereby point vortices are only released when the wing is full extended. 
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CHAPTER 6. CONCLUSIONS 

This chapter summarises the major findings from the present work and discusses the main 

implications of the results. For clarity the conclusions are presented as a series of statements, each 

with a discussion to highlight the supporting evidence: 

Not all unsteady aerodynamic mechanisms are fundamental to the generation of aerodynamic 

loads in biological flapping wing flight.   

Chapter 4 demonstrated that the added mass contribution to aerodynamic loads was small in 

comparison to the quasi-steady aerodynamic loads. Therefore, the commonly cited  argument that 

unsteady aerodynamics are fundamental for modelling avian flight should be revised to include the 

specific mechanisms that generate significant aerodynamic force when compared to quasi-steady 

aerodynamic force.  

Input values of wing geometric data are more important than maximum aerodynamic force 

coefficients for making accurate predictions of aerodynamic force and mechanical power 

consumption in forward flight. 

In the present work aerodynamic loads are proportional to the square of the local wind velocity 

magnitude. For given joint kinematics longer wings have greater wing flapping velocity, which 

augments local wind velocity, aerodynamic force, and mechanical power in forward flight. 

However, aerodynamic loads only vary linearly with maximum aerodynamic force coefficients. As 

a result, the predicted aerodynamic loads were shown to be more sensitive to the input wing length 

than the maximum lift and drag coefficients.  

Historically, quasi-steady aerodynamic models have placed strong emphasis on defining values for 

peak aerodynamic force coefficients. However the implication of this work is that even though the 

wing length can be determined using low order techniques, the accuracy of measurements is more 

important than that of measurements of wing aerodynamic data. While some previous attempts 

have been made to lay out formal procedures for measuring wing geometry [3], experimental errors 

in such measurements are rarely published. Furthermore, statistical variation in wing length for a 

given species is not taken into consideration in theoretical models of avian flight. 
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Assessment of extant species' wing kinematics has limited use in predicting potential flight 

capabilities of extinct species, because a wide variety of alternative wing kinematics can be 

used in flight. 

Optimisation of the dynamic model identified numerous local minima, especially around the 

minimum power and minimum cost of transport cruise speeds. For example, while minimum power 

solutions tend to use partial upstroke wing retraction, other fully extended wing modes also exist. 

These modes consume more mechanical power, but satisfy the constraints of generating 

aerodynamic force that balances the required thrust and weight support. They therefore represent 

alternative wingbeat kinematics that can be used to achieve the same fundamental goals in cruising 

flight. 

Comparing the kinematics used by modern birds with the apparent kinematic function of fossilised 

wings only provides insight into whether these species had similar kinematics. However, it does not 

indicate whether extinct species could have achieved flight using alternative kinematics, such as the 

fully-extended wing modes identified in this work. 

Wing retraction serves as an energy saving mechanism in forward flight.  

It is commonly cited that wing retraction reduces exposed wing surface area, which in turn reduces 

aerodynamic loads for given local wind velocity. This process can be regarded as a means of 

creating disparity in force generation between the upstroke and downstroke in order to provide a 

net aerodynamic force for weight support [109]. However, some birds can maintain forward flight 

with virtually no wing retraction [85]. 

The simulations presented here showed that at low advance ratios an extended wing upstroke 

requires less mechanical power than a retracted wing upstroke; at high advance ratios the converse 

case is true. Therefore, wing retraction is more accurately recognised as a method of saving energy 

in high advance ratio flight than as a means of providing weight support. This is achieved by 

reducing both aerodynamic and inertial loads during the upstroke. 

It is likely that bird wing retraction mechanisms have evolved to suit their most common flight 

style. As a result, birds that usually cruise will always utilise a wing retraction mechanism, while 

those that usually hover will use an extended upstroke at all cruise speeds.  
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In forward flight intermediate values of wing elevation amplitude are used as a compromise 

between reducing inertial loads and disk loading, and vectoring aerodynamic force for weight 

support. 

In hover the wing elevation amplitude is maximised to reduce inertial loads and reduce disk 

loading. While this goal is also present in forward flight, reducing elevation amplitude can assist in 

providing weight support. This is achieved by using smaller elevation amplitudes to vector a 

greater a component of lift from the lateral to the vertical direction. Therefore, optimal solutions in 

forward flight use intermediate values of wing elevation to balance these two opposing constraints. 

Analyses of wing aerodynamic function should incorporate axial, normal, and lateral 

aerodynamic force components over each half-stroke.  

Previous experimental studies have described the upstroke as being "passive" or "aerodynamically 

inactive" due to the absence of lift. In the present work, time histories of aerodynamic force 

coefficients revealed that axial, normal and lateral force components on a single wing during the 

upstroke all became negligible under certain flight conditions. As lift and drag both contribute to 

these three force components, the analysis of lift alone is not representative of the aerodynamic 

force on the wing. A more accurate description of the upstroke aerodynamic function should be 

based on instantaneous aerodynamic force, rather than instantaneous lift.  

Birds of all scales cruise at similar advance ratios, which can be modelled by quasi-steady 

aerodynamic and inertial loads alone. 

In minimum power and minimum cost of transport cruise, optimisation results for allometrically 

scaled birds models showed similar ratios of cruise speed to maximum wing tip speed. As the 

models were not scaled geometrically, this result does not confirm exact kinematic similarity. 

However, it does support observations made from field study data on the constancy of wing tip 

speed to cruise speed ratio. While these observations had previously been explained by a desire to 

maintain a fixed Strouhal number, this work predicts this phenomenon without considering 

unsteady aerodynamic effects. 

Wing kinematics predicted using the current method serve as an accurate visual cue for 

determining whether birds are accelerating or cruising during field study observations. 

At a given cruise speed pronounced changes in wing kinematics were predicted for acceleration 

magnitudes equal to those observed experimentally. While changes were observed in all kinematic 

parameters, variations in wingbeat frequency and amplitude would arguably be the easiest to 

recognise by simple observation of real birds, without requiring any experimental apparatus. For 
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this reason, acceleration can be readily distinguished from cruising flight during field study 

observations. 

To reach a given altitude vertical climbing flight uses the least amount of mechanical energy, 

but the maximum climb angle is limited by the availability of mechanical power. 

The minimum cost of vertical transport reduces with increasing climb angle. Therefore, to reduce 

energy consumption in climb, birds would be expected to always climb as steeply as possible. 

However, flight at steeper climb angles also incurs greater mechanical power consumption. 

Therefore, the climb angle selected by a particular bird will reflect biomechanical limitations on the 

available mechanical power. 

If a bird is capable of generating greater mechanical power for short periods than for sustained 

flight, it is likely that it will use a steep climb angle for short commutes and a shallower angle when 

climbing to fly at high altitude.  

The vortex point method with a viscous vortex core model is a robust and versatile tool for 

visualising wake geometries for extended-wing flapping and gliding flight. 

For wake simulations in cruising flight the vortex point model was found to be numerically 

convergent when increasing the number of solution timesteps, number of vortex points per wing, 

and vortex point release rate. Induced velocities for vortex points in close proximity were 

overpredicted in some instances where no dissipative effects were modelled, and so a viscous 

vortex core model was found to be necessary for numerical stability. 

Predictions of wake geometries capture key features that have been observed experimentally for 

fixed and flapping wings, such as vortex rollup downstream of the wingtips. The model 

overpredicts induced velocity when vortex points are released from a retracted wing and should 

only be applied to extended wing phases of an avian wingbeat.   
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CHAPTER 7. FUTURE WORK 

The simulation framework presented was designed to be used alongside existing theoretical and 

experimental studies of avian flight performance. This chapter identifies three logical extensions to 

the framework that would broaden the model capabilities in-line with other current areas of 

research interest: 

Predict wingbeat kinematics of other flapping-wing animals. 

Wing kinematics were predicted for birds with different wing geometries. This provides scope for 

using wing geometric data from fossil records to simulate extinct species, such as Archaeopteryx, 

to complement studies on flight evolution (e.g. [1],[2]). Furthermore, the modelled wing geometry 

and degrees of freedom could be adapted using biomechanics literature to simulate other animals, 

including insects, bats and pterosaurs. 

Investigate flight stability and control using a fully dynamic bird model. 

In the present work the dynamic model defines the acceleration of the bird based on the mean 

aerodynamic forces generated during a wingbeat. A fully dynamic model could be formulated 

where the acceleration is calculated from instantaneous forces and torques. This would provide a 

tool for investigating avian flight stability and control. The key value of this would be to extend 

previous theoretical studies of animal flight dynamics in cruise [18],[59] to other conditions, such 

as take-off and landing, which have been the subject of recent experimental investigations [110]. 

Optimise model physical parameters. 

Variables used to describe the physical properties of the bird in the inverse dynamic model could 

also be included as free optimisation variables. This would provide a means of identifying optimal 

'designs' of birds for given flight conditions. For example, the optimal wing scale could be 

determined that minimises power consumption for a bird of predefined body mass. This would be 

similar to previous approaches used in optimising the design of flapping air vehicles [50],[51]. 

However, rather than serving as a design tool this approach would provide insight into why the 

process of evolution favours certain relationships between physical parameters in successive 

generations of birds.  
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APPENDIX 

Axial flight is defined as when the wing flapping velocity vector is perpendicular to the freestream 

velocity vector.  For a 3D wing model the wing flapping velocity magnitude varies along the wing 

length (Figure 64a). Neglecting the induced velocity, the local wind velocity is given as the vector 

sum of the freestream and wing flapping velocity (Figure 64b). 
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Figure 64. (a) Wing flapping velocity distribution on a wing rotating about an axis parallel to the freestream velocity 

vector. (b) Local wind velocity, Vw, on a 2D aerofoil section of the wing depicted in (a), comprised of the freestream 

velocity, V∞, and wing flapping velocity, Vf, which varies as a function of distance from the wing 

For a non-retracting wing, the wing flapping velocity at a distance, r, from the wing root is given as   
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where  is the angular velocity around the wing root. The instantaneous angle of attack is given as  
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where   is the twist angle, and the ratio 
V

r is the inverse of the advance ratio. To maintain a 

constant angle of attack,  , over a half-stroke, the twist angle at a distance r from the wing root is 

given as  

  'atan, 


 
V

r
tr



 

[80] 

By assuming a sinusoidal variation in rotation angle around the wing root the twist distribution 

along the wing from equation [80] that yields constant angle of attack over a half-stroke is given as  
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where  is the rotation angle amplitude. Figure 65 shows example twist angle trajectories that 

maintain constant angle of attack at three spanwise locations along the wing. Three different 

advance ratios are shown for reference, but typical bird cruising kinematics are at an advance ratio 

of around 0.5-1. As the advance ratio increases the twist angles tend towards varying sinusoidally 

with time. 

 

 
Figure 65. Time histories of wing twist angles that yield constant angle of attack at three locations on the wing: the wing 

tip (i), 2/3 of the wing length from the root (ii) and 1/3 of the wing length from the root (iii). (a)-(c) Fixed angle of attack 

of zero, and (d)-(f) for fixed angle of attack of 12°. Results shown for three advance ratios.  
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