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Abstract

Visual speech synthesis deals with synthesising facial animation from an audio rep-

resentation of speech. In the last decade or so, data-driven approaches have gained

prominence with the development of Machine Learning techniques that can learn an

audio-visual mapping. Many of these Machine Learning approaches learn a genera-

tive model of speech production using the framework of probabilistic graphical models,

through which efficient inference algorithms can be developed for synthesis.

In this work, the audio and visual parameters are assumed to be generated from an

underlying latent space that captures the shared information between the two modal-

ities. These latent points evolve through time according to a dynamical mapping and

there are mappings from the latent points to the audio and visual spaces respectively.

The mappings are modelled using Gaussian processes, which are non-parametric models

that can represent a distribution over non-linear functions. The result is a non-linear

state-space model. It turns out that the state-space model is not a very accurate genera-

tive model of speech production because it assumes a single dynamical model, whereas

it is well known that speech involves multiple dynamics (for e.g. different syllables)

that are generally non-linear. In order to cater for this, the state-space model can

be augmented with switching states to represent the multiple dynamics, thus giving

a switching state-space model. A key problem is how to infer the switching states so

as to model the multiple non-linear dynamics of speech, which we address by learning

a variable-order Markov model on a discrete representation of audio speech. Various

synthesis methods for predicting visual from audio speech are proposed for both the

state-space and switching state-space models.

Quantitative evaluation, involving the use of error and correlation metrics between

ground truth and synthetic features, is used to evaluate our proposed method in com-

parison to other probabilistic models previously applied to the problem. Furthermore,

qualitative evaluation with human participants has been conducted to evaluate the re-

alism, perceptual characteristics and intelligibility of the synthesised animations. The

results are encouraging and demonstrate that by having a joint probabilistic model

of audio and visual speech that caters for the non-linearities in audio-visual mapping,

realistic visual speech can be synthesised from audio speech.
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Carry On

It’s easy to fight when everything’s right,
And you’re mad with the thrill and the glory;
It’s easy to cheer when victory’s near,
And wallow in fields that are gory.
It’s a different song when everything’s wrong,
When you’re feeling infernally mortal;
When it’s ten against one, and hope there is none,
Buck up, little soldier, and chortle:

Carry on! Carry on!
There isn’t much punch in your blow.
You’re glaring and staring and hitting out blind;
You’re muddy and bloody, but never you mind.

Carry on! Carry on!
You haven’t the ghost of a show.
It’s looking like death, but while you’ve a breath,

Carry on, my son! Carry on!
And so in the strife of the battle of life
It’s easy to fight when you’re winning;
It’s easy to slave, and starve and be brave,
When the dawn of success is beginning.
But the man who can meet despair and defeat
With a cheer, there’s the man of God’s choosing;
The man who can fight to Heaven’s own height
Is the man who can fight when he’s losing.

Carry on! Carry on!
Things never were looming so black.
But show that you haven’t a cowardly streak,
And though you’re unlucky you never are weak.

Carry on! Carry on!
Brace up for another attack.
It’s looking like hell, but – you never can tell:

Carry on, old man! Carry on!
There are some who drift out in the deserts of doubt,
And some who in brutishness wallow;
There are others, I know, who in piety go
Because of a Heaven to follow.
But to labour with zest, and to give of your best,
For the sweetness and joy of the giving;
To help folks along with a hand and a song;
Why, there’s the real sunshine of living.

Carry on! Carry on!
Fight the good fight and true;
Believe in your mission, greet life with a cheer;
There’s big work to do, and that’s why you are here.

Carry on! Carry on!
Let the world be the better for you;
And at last when you die, let this be your cry:

Carry on, my soul! Carry on!

(Robert William Service)
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Chapter 1

Introduction

A journey of a thousand miles begins

with a single step.

Lao Tzu

1.1 Overview

Visual speech synthesis involves generating synthetic talking heads uttering human

speech such that the facial movements and expressions synchronise with the speech. It

has been widely studied over several decades both in academia and industry and draws

the interest of computer scientists, linguists, animators and even psychologists. Some of

its applications include cinema, computer games, Human-Computer Interaction (HCI),

education and even medicine.

Historically, the area emerged in the 1970’s with geometrical 3D models of the face

that could be morphed using control points to achieve the desired facial configuration

[231]. Animation was then achieved through keyframing, i.e. the desired animation

timeline was segmented into prototypes representing the basic units of facial move-

ments. These keyframes were represented by control points of the facial model and

animation was achieved by interpolating between the keyframes. An animator would

analyse the audio containing the desired utterance, and would produce the segmenta-

tion accordingly. This was a very labour-intensive process and subject to errors and

mismatches. The 1990’s saw the emergence of rule-based techniques that were based on

the premise that the rules that govern facial movements could be manually handcrafted

such that these could be used to infer the facial configurations given a representation

of speech [54, 17, 239]. The last decade or so has seen the advent of the data-driven ap-

proach to facial animation, where the rules governing facial movements from speech are

learnt automatically from data using Machine Learning techniques [32, 105, 42, 102].
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Data-driven approaches are mostly generative, i.e. they try to model the process that

generated the speech and once the parameters of this model have been estimated during

training, the same model can then be used in synthesis mode on novel input speech.

In this thesis, our aim is to adopt a data-driven approach, modelling the generative

process of speech using Machine Learning techniques and using the learnt model to

synthesise visual speech from audio.

Data-driven approaches can be further categorised by the ways that the face is

modelled and by how the mapping from audio to visual speech is achieved. We now

present a brief overview of these two categorisations.

1.1.1 Models of the Face

When choosing the model of the face to use for visual speech synthesis, the ap-

plication domain needs to be considered. If flexibility and manual control of facial

configurations is needed, a 3D model of the face can be used [42, 321, 92]. However

the main limitation of 3D models of the face is that it is difficult to attain a high

level of realism and expensive equipment is required to capture the geometry of the

face. On the other hand, 2D image-based methods have had success in achieving high

levels of realism [34, 32, 105, 279]. Appearance-based methods [160, 60] are a subset

of image-based methods that perform analysis on images to recover structure such as

facial landmarks but can also synthesise novel images from a compact set of parameters.

Figure 1.1 shows an illustration of the categorisation of facial modelling approaches.

Figure 1.1: Overview of facial modelling approaches used in visual speech synthesis.
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1.1.2 Models of Audio-visual Mapping

Deng and Neumann [77] distinguish between two types of data-driven techniques

to audio-visual mapping: sample-based approaches and learning-based approaches.

Sample-based approaches were dealt with in the PhD theses of Cosatto [61], Ypsi-

los [319] and Deng [76] and the focus is on using a large corpus of facial animations

to find concatenative units that can then be reordered to match a target utterance.

Learning-based approaches, on the other hand aim at using Machine Learning tech-

niques to learn a mapping from audio data to visual data and use the mapping to

predict visual data from audio data. They have been used in the PhD theses of Beskow

[17], Ezzat [104], Theobald [278], Cosker [63], Lehn-Schiøler [185], Englebienne [101]

and Hofer [142]. The data-driven approach is illustrated in Figure 1.2. Sample-based

methods require storage of the whole image corpus but can yield very realistic facial

animation [191, 302]. Learning-based approaches, on the other hand, provide a com-

pact statistical representation of facial behaviour and offer more flexibility in terms of

adapting the statistical models to new identities as well as modelling other modalities

of speech such as head and eye movements and expressions.

Figure 1.2: Overview of data-driven techniques for audio-visual mapping [77].

1.2 Realistic Speech-driven Facial Animation

One of the goals of facial animation is to achieve a high level of realism so that it

can be used in demanding applications such as computer games and cinema. There are

two ways to define and measure realism:
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Photorealism is a measure of the static realism of facial images and a photorealistic

facial animation implies that the synthesised facial images look like photographs.

Videorealism is a measure of the dynamic realism of facial animation and a video-

realistic facial animation implies that the facial motions (lips, teeth, tongue, eyes, etc.)

seem realistic and look like it is an actual person speaking. The motions need not only

be smooth but they have to be physically plausible.

1.2.1 Challenges

Realistic facial animation driven by speech is challenging for the following reasons:

• The mapping from sounds to facial configurations is many-to-many, i.e. multiple

sounds might map to a given facial configuration and multiple facial configurations

might correspond to a given sound.

• The mapping from audio to visual speech is highly dependent on context, i.e.

the facial configurations corresponding to a given sound depend on the sounds

that come before and afterwards. The phenomenon is called coarticulation and

is dealt with in greater depth in Chapter 2.

• The animation has to be smooth and respect the dynamics of the face. Humans

are highly sensitive to the way faces look and behave and slight imperfections

in facial appearance and movements are highly noticeable and might lead to

repulsion in humans.

1.2.2 Research Problems

The following highlights some of the areas that currently draw research interest in

visual speech synthesis:

• Realism: Realism remains a major challenge in visual speech synthesis. The

choice of methods used for facial modelling and audio-visual mapping greatly

influences the level of realism achieved. 2D image-based and appearance-based

techniques of facial modelling have achieved the highest levels of realism [104,

279, 191, 302]. The reason is because 3D graphics-based techniques look artificial

and cartoon-like unless very dense facial meshes are used. Dense facial meshes

however, require a very fine level of control to mimick reality, which is possible

only if a large corpus is recorded using expensive motion capture techniques.

2D appearance-based approaches on the other hand only require high quality

video recording and facial behaviour can be controlled using statistical parameters

representing the modes of facial variation [59, 160].

• Transferability: In practical applications such as human-computer interaction

(HCI), games or cinema, it is not expected to have high quality data for all

identities for which speech animation is to be carried out. It is thus highly
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desirable to be able to adapt both the facial models and the models of audio-

visual mapping to novel identities using a limited amount of data for the new

person. Transferable speech animation was demonstrated by Chang and Ezzat

[47] and remains a challenging area of research, due to the multiple types of

facial models that can be used and also because of the difficulty in being able

to transfer the speaking style and idiosyncracies of a particular person using a

limited amount of data.

• Expressiveness: Research in psychology has shown that human communication

is primarily non-verbal [311]. Thus, speech animation that looks inexpressive

would be repulsive to humans and might even illicit responses characteristic of the

Uncanny Valley [215] (refer to Chapter 2 Section 2.3 for more details). Expressive

visual speech synthesis thus needs to be able to incorporate both non-verbal

gestures such as eye blinks, pauses and breaths, as well as facial expressions

that convey emotions such as happiness, anger, sadness, surprise, despair, etc.

However, expressive cues depend both on the language content and the emotional

tone of the audio speech [81], which makes expressive visual speech synthesis

a very challenging problem. Moreover, the expressive and articulatory aspects

of speech are interdependent [18], which requires the joint modelling of these

different modalities of speech. Expressive speech animation remains an open

problem and draws attention from both industry and academia.

1.3 Research Aims

In this thesis, we focus on the realism aspect of visual speech synthesis using a 2D

appearance-based approach to facial modelling and a learning-based approach to audio-

visual mapping. We use a 2D appearance-based facial modelling approach because of

the higher level of realism that is achievable as compared to 3D facial models and

also because appearance models can allow the extension of our work to expressive

and transferable speech animation by adapting the facial model. We choose a learning-

based approach because it also can allow extension to expressive and transferable speech

animation by exploiting the statistical nature of the audio-visual mapping. Specifically,

learning-based approaches can allow the integration of additional speech modalities such

as expressions and non-verbal gestures.

Our aim is to improve the state-of-the-art in the area of learning-based speech-

driven facial animation. We focus on the audio-visual mapping problem, aiming to

automatically capture and model the non-linear relationship between audio and visual

dynamics during speech by jointly modelling audio and visual speech using a shared

latent space. The shared latent space provides a non-linear embedding of the shared
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information between audio and visual speech, which are physiologically coupled modal-

ities and thus highly correlated. In so doing, we aim to achieve more articulate and

realistic facial animation compared to previous methods. We focus less on performance

and real-time issues and thus the application domains that this work best fits into are

those that do not require real-time performance. Potential applications include: cin-

ema, speech therapy, surgical planning as well as virtual actors, tutors and anchors.

More applications of visual speech synthesis are given in Chapter 2.

1.4 Thesis Contributions

The following gives an overview of the main contributions of this thesis.

• Explicitly model the non-linearities in audio-visual mapping: Audio-

visual mapping is highly non-linear because of ambiguities in both the audio and

visual domains [207]. Previous methods have used either linear approximations

[185] or piecewise linear methods to model the non-linearities [32, 312, 102, 326,

304]. In this thesis, we explicitly model the non-linearities in audio-visual map-

ping using non-linear Gaussian processes (GPs) [251]. We show that this approach

results in speech animation that better matches ground truth as compared to the

linear or piecewise linear methods.

• Use both discrete and continuous audio to predict facial behaviour:

Visual speech synthesis methods can be either driven by a discrete speech repre-

sentation [32, 104, 102] or using continuous speech parameters [185, 312, 326, 304].

The first allows a principled approach to modelling coarticulation by exploiting

the structure of language but discards prosodic information in the speech signal.

The converse is true for the latter approach. In this thesis, we aim to combine the

advantages of both discrete and continuous audio representations by using them

to predict visual speech. In particular, we learn a language model on discrete

phonemes in order to automatically identify the commonly occuring segments of

speech. We model the audio and visual data corresponding to each of those seg-

ments jointly and devise synthesis algorithms to predict visual data from audio

data whilst explicitly taking forward and backward context of speech into account.

We perform experiments to compare the effectiveness of different audio speech

parameterisation techniques in predicting visual speech and also investigate the

effect of explicitly modelling phonetic context in our method by comparing the

synthesis results against a closely related method that does not model phonetic

context [102].

• Realistic and articulate speech animation: In this thesis, we use non-

parametric models called Gaussian processes (GPs) [251] to address the prob-

lem of under-articulation obtained previously using parametric models [32, 185,
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312, 102]. We perform quantitative evaluation to compare our proposed method

against previously proposed parametric models. We also perform subjective tests

to assess the level of realism of synthetic as compared to ground truth animations.

Experiments are also performed to test whether or not our animations fall into

the Uncanny Valley [215] as well as the effect of upper face movements such as

eye blinks on the perception of visual speech. We also aim to achieve a high level

of intelligibility that is comparable to ground truth videos, which we test using a

human lip-reading test.

1.5 Thesis Structure

Chapter 2 reviews human speech production, perception and structure, examines

the phenomenon of coarticulation in detail and looks at existing techniques for visual

speech synthesis. Moreover, applications of visual speech synthesis are also considered.

Chapter 3 reviews facial modelling and speech processing techniques. The data

corpora used in this work are then described, followed by the techniques we use to

parameterise the audio and visual streams. Different speech parameterisation methods

and audio-visual synchronisation methods are considered.

Chapter 4 presents various state-space methods that have been used in visual

speech synthesis and introduces the shared Gaussian process dynamical model (SG-

PDM) [98] to jointly model audio and visual parameters. Both training and inference

for the SGPDM as well as synthesis techniques for the SGPDM are described. Exper-

iments to perform model selection and to choose the best audio parameterisation and

audio-visual synchronisation techniques are also dealt with.

Chapter 5 deals with different switching state-space methods that have been used

for visual speech synthesis and describes a novel extension of the SGPDM, called the

switching SGPDM (SSGPDM) [48]. Both training and inference techniques for the

SSGPDM are discussed. An in-depth description of the variable length Markov model

(VLMM) [130], used to infer variable-order switching states, is presented, as well as its

training and inference algorithms. Two synthesis algorithms proposed for the SSGPDM

and applied to audio-visual mapping are also described.

Chapter 6 presents both objective and subjective evaluation results.

Chapter 7 concludes the thesis with a summary of its contributions, limitations

and directions for future work.

In this thesis, “they” will be used to refer to either he or she.

Figure 1.3 illustrates an overview of the proposed method for visual speech synthesis.
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Figure 1.3: Overview of the proposed method.

1.6 Publications

The publications that have resulted from this thesis are:

• Salil Deena and Aphrodite Galata. Speech-driven facial animation using a shared

Gaussian process latent variable model. In ISVC’09: Proc. of the International

Symposium on Visual Computing. Springer, 2009

• Salil Deena, Shaobo Hou, and Aphrodite Galata. Visual speech synthesis by

modelling coarticulation dynamics using a non-parametric switching state-space

model. In ICMI-MLMI’10: Proc. of the International Conference on Multimodal

Interfaces and Workshop on Machine Learning for Multimodal Interaction. ACM,

2010



Chapter 2

Background

Man cannot discover new oceans

unless he has the courage to lose

sight of the shore.

André Gide

This chapter presents some background on human speech and on its multimodal

nature, namely its audio and visual realisations. Audio speech is produced by the

speech production system and the facial gestures that accompany it can be viewed

as forming part of the speech production process. However, on the perceptual side,

these two aspects of speech are decoupled. Humans need to interpret both channels to

disambiguate speech. Both the speech production process and the speech perception

process are covered in this chapter. The phonological aspect of speech is then presented,

followed by a description of the phenomenon of coarticulation. A review of techniques

that have been used to generate synthetic visual speech from audio speech is also given.

We also discuss the Uncanny Valley, which is an important finding in the perception of

near-realistic facial animation. Finally, we present some applications of visual speech

synthesis.

2.1 Human Speech

Human speech is produced by the speech production system and is perceived by the

speech perception system. The following presents some details on the speech production

and perception systems as well as on the audio and visual components of speech and

how they relate to each other. The dynamical nature of speech (coarticulation) is then

dealt with in terms of various theories of speech production as devised by linguists.

33
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2.1.1 Human Speech Production

Human speech production is a complex process produced by the speech production

system, which comprises of: the lungs, trachea, larynx (vocal cords) and pharyngeal,

oral and nasal cavities. This is illustrated in Figure 2.1. The vocal tract is composed of

the pharyngeal and oral cavities whilst the nasal tract constitutes the nasal cavity. The

following gives a description of the role of the different parts of the speech production

system according to Huang et al. [151].

• Lungs and trachea: Air is exhaled by the lungs and passes through the trachea

or windpipe.

• Vocal cords: Responsible for producing either voiced sounds, when the vocal folds

are held close together and vibrate against one another; or unvoiced sounds, when

the vocal folds are too slack to vibrate periodically. The resonance of the vocal

tract is also known as formants.

• Soft Palate (Velum): Acts as a valve, which when open allows passage of air

through the nasal cavity.

• Hard Palate: A rigid structure, which when the tongue presses against it during

speech, consonants are produced.

• Tongue: A flexible structure that presses against the palate to produce conso-

nants.

• Teeth: Rigid structures that also help in certain consonant production in con-

junction with the tongue.

• Lips: Involved in both vowel and consonant production. Lip rounding can spread

and affect vowel quality whilst lip closing is involved in producing certain conso-

nants.

The following information is conveyed by speech [291].

• Acoustic phonetic signals - The elementary speech units from which larger speech

units are formed.

• Prosody - The rhythms of speech which help to create intonation, indicate bound-

aries in segments of speech, link sub-phrases and clarify intention.

• Gender information - This is conveyed by the pitch.

• Age - Conveyed by the condition of the vocal tract as well as the pitch.

• Accent - Conveyed by a combination of changes in pronunciation as well as sys-

tematic changes in formants, pitch, intonation, duration, emphasis and stress.

• Speaker’s identity and health - Conveyed by the physical characteristics of the

person’s vocal tract.

• Emotion - Conveyed by pitch, stress and intonation.
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Figure 2.1: The speech production system [291].

2.1.2 Human Speech Perception

The human speech perception system comprises of the auditory system, the visual

system and the brain. The ear transforms acoustic pressure into a mechanical vibration

pattern, represented by a series of pulses, which is then transmitted by the auditory

nerve. The intensity of the sound accounts for the perception of loudness whilst its

fundamental frequency is perceived as pitch [151]. Tones of the same intensity but dif-

ferent pitch have different perceived loudness. In addition, the fundamental frequency

also gives the perception of voice quality or timbre, which varies across genders and age

groups. The human perception of pitch varies approximately linearly with respect to

the actual pitch up till the pitch is about 500 Hz, above which it varies logarithmically

[295]. A similar relationship exists between perceived loudness and the intensity of

speech [151]. The visual perception of speech alone is less informative than audio, as

evidenced by the fairly low accuracy scores of human lip reading tests [137]. However,

McGurk and MacDonald [207] showed that ambiguities result in speech perception if

a video of an utterance is dubbed with a different sound. A more detailed discussion

of the McGurk effect is given in Section 2.1.4. More recently, Chandrasekaran and

Ghazanfar [46] showed that because light travels faster than sound, what we read from

the lips makes us anticipate the sound that will be produced and that mismatches be-

tween the sound and the lips result in different brain activations which negatively affect

speech perception. These findings strongly support the importance of synchronisation

between sounds and lip movements in visual speech synthesis.
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2.1.3 Speech Primitives

Speech consists of the audio and visual components that both complement each

other in creating perceptible speech. The audio part of speech has been traditionally

studied by linguists and phonologists. Since the advent of audio-visual communication,

a lot of research interest has gone into studying the visual aspects of speech by analysing

how different articulators such as the tongue, lips and facial muscles move during speech

production. The basic unit of audio speech is called the phoneme and the corresponding

unit of visual speech is called the viseme.

Phoneme

In most languages, the basic unit of distinct sounds possible is called a phoneme.

Different languages have different phonetic units and there are even variations within

a particular language, depending on the accents. In speech recognition, pronunciation

dictionaries are used to map words to their corresponding phonemes. For example, the

pronunciation dictionary used for British English is called the British English Pronun-

ciation Dictionary (BEEP) [116], which comprises of 44 phonemes. The pronunciation

dictionary used for American English is the CMU Pronunciation Dictionary [308], which

is based on a subset of the ARPABET table [169], and it defines 39 phonemes. The

same word may map to different phonemes, depending on the pronunciation dictio-

nary being used. For example, the word “on” in British English would result in the

phonemes /OH/ /N/, whereas for American English, that would be /AH/ /N/, due to

variations in the pronunciation.

The ARPABET table comprises of 48 phonemes, which can be categorised as: vow-

els, diphthongs, semivowels, nasal consonants, africatives, unvoiced fricatives and voiced

fricatives [247, 175]. A description of each of these, as well as examples of corresponding

phonemes from the ARPABET table are now given:

• Vowels are produced by an open larynx with no constriction of air pressure above

the glottis. The vowel phonemes consist of: /AA/, /AE/, AH/, /AO/, /EH/,

/IY/, /IH/, /UH/ and /UW/. Formant frequencies encode all the information

required for humans to distinguish between vowels.

• Diphthongs consist of a gliding monosyllabic speech sound that starts at or near

the articulatory position for one vowel and moves to or towards the position for

another. There are five diphthongs in American English, namely: /AY/, /AW/,

/EY/, /ER/, /OY/, /OW/.

• Semivowels are characterised by a gliding transition in the vocal tract area func-

tion between adjacent phonemes. They have a vowel-like nature, but are tran-

sitional towards other phonemes. The acoustic realisations of those sounds are
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strongly influenced by context. /W/, /L/, /R/ and /Y/ are examples of semivow-

els.

• Nasal consonants are sounds produced when the vocal tract is totally constricted

and instead, the sound emerges out of the nasal tract. The nasals comprise: /M/,

/N/ and /NG/.

• Unvoiced fricatives are produced when the vocal tract is excited by a steady air

flow, which becomes turbulent in the region of a constriction in the vocal tract.

Examples are: /HH/, /F/, /S/ and /SH/.

• Voiced fricatives are the counterparts of the unvoiced fricatives with the difference

that two excitation sources are involved in their production rather than one. /V/,

/TH/, /DH/, /Z/ and /ZH/ are examples of voiced fricatives.

• Affricatives occur when a fricative occurs immediately after a constriction of air.

/JH/ and /CH/ are affricatives.

• Voiced and unvoiced stops are produced by a building up of pressure behind a

total constriction in the oral tract and then suddenly releasing the pressure. They

comprise of: /B/, /D/, /G/, /P/, /T/ and /K/.

Syllable

Phonemes, when grouped together form syllables. Groups of syllables form words

and a sequence of words forms a sentence. In phonology, the next unit after the

phoneme is called a morpheme, which by definition, is a group of phonemes which has

semantic meaning. Syllables, on the other hand, are groups of phonemes which do not

necessarily have a semantic meaning.

Viseme

The viseme is the visual counterpart of the phoneme. Visemes are the facial con-

figurations that result when pronouncing the different phonemes [110]. Because of

occlusions that occur in the mouth when we perceive phonemes, there are much fewer

viseme classes. Until recently, there was no standardised set of visemes as is the case

for phonemes [49], but most researchers have agreed on 13-14 visemes [183, 312]. The

MPEG-4 standard [216] has introduced various standards related to facial animation.

This includes the definition of 14 visemes as well as the specification of standards for

the animation of 3D face models by defining face definition parameters (FDP) and

facial animation parameters (FAP).

Visyllable

In the same way as for phonemes, groups of visemes form visyllables. A visyllable

is thus the visual realisation of a syllable.
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MPEG-4 Viseme BEEP Phoneme CMU Phoneme
1 /p/, /b/, /m/ /P/, /B/, /M/
2 /f/, /v/ /F/, /V/
3 /dh/, /th/ /DH/, /TH/
4 /d/, /t/ /D/, /T/
5 /g/, /hh/, /k/, /w/ /G/, /HH/, /K/, /W/
6 /ch/, /jh/, /sh/, /zh/ /CH/, /JH/, /SH/, /ZH/
7 /s/, /z/ /S/, /Z/
8 /l/, /n/, /ng/, /L/, /N/, /NG
9 /r/, /y/ /R/, /Y/
10 /aa/, /ae/, /ah/, /ao/, /ay/ /AA/, /AE/, /AH/, /AO/, /AY/
11 /ax/, /ea/, /eh/, /er/, /ey/ /EH/, /ER/, /EY/
12 /ia/, /ih/, /iy/ /IH/, /IY/
13 /oh/, /ow/, /oy/ /OW/, /OY/
14 /aw/, /ua/, /uh/, /uw/ /AW/, /UH/, /UW/

Table 2.1: Phoneme to viseme mapping for both BEEP and CMU phonemes.

2.1.4 Audio-visual Mapping

There is no simple one-to-one mapping from phonemes to visemes due to occlusions

and ambiguities in visual perception that result from distance between the speaker

and the listener. The mapping from phoneme classes to viseme classes is many-to-one,

or, according to some classifications, many-to-many [183], because phonemes belong

to multiple viseme classes and vice-versa. Different researchers give different phoneme

to viseme groupings [273, 49, 183, 321, 312, 208] and the main reason is the lack of

standardisation for visemes, and also because different languages have different phonetic

alphabets. Table 2.1 shows the mapping from phonemes in the BEEP [116] and CMU

phone sets [308] to MPEG-4 visemes [216], based on the categorisation given in [273].

The mapping between the audio realisation of a phoneme and the visual rendering of

a viseme is also many-to-many, due to variations in the ways of pronuncing a phoneme

and also in the visual appearance of a viseme. In addition, these are further complicated

by coarticulation (refer to Section 2.1.5).

McGurk Effect

The McGurk effect [207] is a very important finding in the field of speech perception,

which shows that when viewers are shown a video dubbed with a different audio to

that being utterred, a third utterance is perceived. For example, when shown a video

uttering /ga/, dubbed with a sound of /ba/, /da/ is perceived. It was also found that

when the subjects are asked to close their eyes, the correct perception of the sound

is restored. This experiment has been replicated on various occasions [73, 86, 197]

with different audio and visual combinations revealing the multimodality of audio-

visual mapping. Thus, on a perceptual level, many visual representations map to a

given sound and similarly, many audio configurations of speech map to a given visual

representation, depending on the clarity of the visual and audio channels.
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2.1.5 Coarticulation

Coarticulation is a physical phenomenon that arises in speech production, where

the sounds as well as lips configurations that occur during the utterance of a phoneme

are conditioned on the phonemes that occurred before (backward coarticulation) as

well as the phonemes that are coming next (forward coarticulation). It arises because

the speech articulators need to transition from the current positions to the next con-

figuration and thus there is a blurring at the boundaries of the phonetic units. As an

example, consider the utterance of the phoneme /ih/ in “milk” and “sit”. In the for-

mer case, the nasal /m/ phoneme preceeding the /ih/ would cause some lip-rounding

during the utterance of /ih/, which in turn has to transition towards the semi-vowel

/l/ before reaching the stop /k/. The shape of the mouth during the utterance of /ih/

is more elongated vertically. In the case of “sit”, the /ih/ phoneme is encapsulated be-

tween a fricative and a stop, making the occurence of /ih/ of shorter duration and more

elongated horizontally. The visual appearance would differ in the two cases, because of

the preceeding and next phonemes that occur, thus making speech production a highly

context-bound process. The phenomenon of coarticulation was first brought forward

in phonetics by Menzerath and de LacerdaIn [209], as a theory superseding the previ-

ous theory of positional sounds, which hypothesised that each phoneme had a “target”

place of articulation, which is modified to accomodate the next position, given by the

next phoneme. Menzerath and de LacerdaIn [209] used kymographs1 to study air flow

measurements that occur during the production of German labial consonants and vowel

sequences. Their findings rejected the view that there were stable articulatory positions

that were to be reached, but rather proposed two major principles explaning coarticula-

tion: “Koarticulation” and “Steuerung”. According to “Koarticulation”, it was found

that articulators already prepare for the following sounds during the production of a

preceding segment and that this preparation becomes as early as possible. According to

the “Steuerung” (steering in English), it was found that vowel articulations were heav-

ily influenced by the following consonants in certain types of syllables. Their conclusion

was that each utterance is a complex overlap of simulaneous movements and instead of

having fixed articulations with transitions representing coarticulation, all articulation

is coarticulation.

Hardcastle and Hewlett [133] argue that coarticulation, in addition to being a re-

quirement of the articulatory mechanism, might also arise as a response to facilitate

the perception of speech. This observation was based on the fact that coarticulation

accounts for the information about a particular segment of speech to extend beyond its

boundaries, which gives rise to parallel processing of speech movements, resulting in a

1An instrument for recording variations in pressure, as of the blood, or in tension, as of a muscle,
by means of a pen or stylus that marks a rotating drum.
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faster processing of speech. Due to the phenomenon of coarticulation, the perceiver is

able to anticipate what segment of speech is coming next and similarly use coarticu-

latory effects extending from previous segments to disambiguate what is being said at

present.

Anticipatory and Preservatory Coarticulation

The prevailing view about the way speech is produced is based on two principles,

namely: economy and plasticity [190]. The first principle of economy states that the

speaker adapts their articulation effort to match the perceiver’s ability according to the

least cost involved and the second principle of plasticity states that speech movements

are purpose-driven, i.e. articulators can be either hypo- or hyper-articulated depending

on the needs of the situation, but both aim at conveying the required meaning to the

listener. Accordingly, both anticipatory or backward coarticulation and preservatory or

carryover or forward coarticulation serve these two principles with the aim conveying

the appropriate meaning using the least cost. Fowler and Saltzman [114] explain the

mechanism of anticipatory and carryover coarticulation in terms of gesture coproduc-

tion, with the activation of a gesture increasing and decreasing smoothly in time, thus

having a bearing on the vocal tract shape and the acoustic signal. This is illustrated

in Figure 2.2, which shows the production of three gestures associated with speech

production, each delimited by vertical lines. In this case, gesture 2 is predominant but

the weaker influence of the following gesture 3 gives rise to anticipatory coarticulation

and the weaker influence of the gesture 1 gives rise to carryover coarticulation. The

influence of each gesture changes as we move from predominant gesture 2 to gesture

3, with gesture 2 now accounting for carryover coarticulation and the next gesture 4

accounting for anticipatory coarticulation.

Figure 2.2: Representation of anticipatory and carryover coarticulation as overlapping gestures
[114].
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Inter-language Differences

Different languages exhibit different properties with respect to coarticulation. For

example, English tends to be more anticipatory in nature with articulators positioning

themselves in anticipation of future phonemes whilst French and Italian tend to be

more preservatory with articulator positions being more dominated by sounds already

produced [175]. Other differences have been found by Öhman [224], who studied coar-

ticulation in Vowel-Consonant-Vowel (VCV) segments. It was found that for V1CV2

utterances in English and Swedish, articulators begin moving towards V2 near the end

of V1, before the consonant boundary is reached. However, this effect was not found in

Russian, which was attributed to weak Vowel-to-Vowel coarticulation in that language.

It was also found by André-Pierre Benguerel [5] that languages such as French have

coarticulatory effects extending to up to seven preceeding phonetic segments in certain

sequences and these dynamical effects vary across languages. Hardcastle and Hewlett

[133] raised the issue of whether differences in coarticulation between languages are

a result of independent properties of the language itself or rather due to derivatives

of other properties of the language, which are more generalisable. Lubker and Gay

[194] proposed that inter-language differences are explained by language-specific artic-

ulatory or phonetic requirements. This conclusion was based on the observation that

lip-rounding between a pair of vowels in Swedish is longer and more precise than in

American English. This is explained by the fact that languages such as Swedish have

a very crowded vowel space, which might result in perceptual confusion among vowels

and thus more emphasis is needed to convey the required meaning to the perceiver.

Coarticulation Models

Models of coarticulation are used by speech production theorists to have a represen-

tation of speech production that explains the physical and acoustic aspects of speech

[133]. These models of coarticulation need to explain both the temporal and spatial

aspects of coarticulation. The former deal with the extent to which coarticulatory

effects extend backwards and forwards in time when the articulators are not subject

to competing demands from adjacent segments. The latter deal with what happens

when articulatory structures are subject to competing articulatory and coarticulatory

demands. The different mainstream models of coarticulation are now outlined:

The look-ahead model, proposed by Kozhevnikov and Chistovich [172] and Daniloff

and Hammarberg [68] tries to explain anticipatory coarticulation in Consonant-Vowel

(CV) syllables based on the principle that commands to produce the vowel are issued

simultaneously with all the consonants preceding the vowel, thus predicting a high

level of coarticulation in CV syllables with little or no coarticulation in other syllables

such as Vowel-Consonant (VC). This was in contradication with studies showing high
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coarticulatory effects in VC syllables [214].

The coarticulation resistance model [24] suggests that coarticulatory effects in Vowel-

to-Consonant (VC) syllables experience resistance and tend to decrease gradually and

also vary according to the boundary phonemes. These variations in coarticulatory ef-

fects can be explained by a rule that assigns coarticulatory resistance depending on the

boundary phonemes. They also proposed that the resistance coefficients vary across

languages.

The window model was proposed by Keating [165] and accounts for spatial and

temporal aspects of coarticulation, as well as for differences observed between segments

in a given language and across languages. The model specifies a particular range of

legal values, called a window for each phonetic parameter (articulatory or acoustic),

in a given coarticulatory segment. The exact width of a window is derived for each

language from information on the maximum amount of contextual variability observed

in the speech for that language.

The coproduction model, first formulated by Fowler et al. [113] attempts to bridge

the gap between the cognitive and physical aspects of language. In particular, this

model aims at accounting for the dynamics and kinematics of articulators in speech

movements using a task-dynamical model. According to the coproduction theory,

context-independent gestures translate into both the spatial and temporal aspects of

vocal tract constrictions for each phoneme. The gestures can be represented by a score,

which determines the movement of the articulators in the vocal tract. The time-locked

model [15] is a variant of the coproduction model and hypothesises that the start of

movement of a given articulator is independent of the preceding phone string length

but begins at a fixed time before the start of the segment with which it is associated.

Thus, the model is able to predict the starting time towards a given articulatory gesture

prior to the start of the segment in which it is found, depending on the speaking rate.

The gestural model was suggested by Löfqvist [193] and the concept of overlapping

dominance functions was used to explain anticipatory and preservatory coarticulation.

According to that model, a speech segment has dominance over vocal articulators with

a pattern of increase and decrease that overlaps with dominance functions of adjacent

segments. Thus, a form of blending is required at the overlaps. This model goes even

further to say that each articulator has a separate dominance function for a given

segment. This model extends the coproduction model by having explicit dominance

functions to model the overlapping gestures. The gestural model of coarticulation is

able to better explain coarticulatory effects in Vowel-Consonant-Vowel (VCV) segments

because independent overlapping commands are issued for the VC segment and the CV

segment with greater effects of Vowels on Consonants and both gestures overlapping

to produce the VCV segment [107]. Thus, it provides a better approximation to VCV
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coarticulation than the look-ahead model and the coarticulation resistance model. The

gestural model [193] of coarticulation was used by Cohen and Massaro [54] for visual

speech synthesis.

The hybrid model was proposed by Perkell and Cohen [240] as a trade-off between

the look-ahead model and the time-locked model following observations by Bladon and

Al-Bamerni [23] that English speakers used both a one-stage opening gesture and a

two-stage gesture in coarticulation of the velum. Perkell and Cohen [240] reported

similar observations in lip-rounding movements. They thus proposed the hybrid model

to account for these two phases.

The modelling of coarticulation in synthetic visual speech will be discussed in Sec-

tion 2.2.4.

2.2 Animating Faces

This section presents a review of techniques used for facial animation. These meth-

ods can be categorised as keyframe-based, heuristic-based, data-driven and other vari-

ants. A more detailed taxonomy of speech-synchronised facial animation techniques is

given in [230].

2.2.1 Manual and Heuristic Facial Animation

Parke [231] was the first to achieve facial animation using keyframes of a 3D geomet-

ric model. The face was constructed of polygonal surfaces and was manipulated through

the use of parameters which controlled interpolation, translation, rotation and scaling

of the various facial features. Animation was achieved by first creating keyframes that

represented the different facial configurations or visemes. These facial configurations

were created by the manipulation of fewer than 10 parameters. Finally, interpolation

between the keyframes resulted in trajectories of parameters that could be mapped to

the facial model to create speech-synchronised facial animation.

Instead of using geometrical models of the face for keyframe animation, anatomical

models that simulate the bones and muscles of the face have also been used [242, 275,

307, 184, 161, 264, 199]. These models include mass-spring systems to model muscle

deformation [242, 161]. Alternatively, a vector approach of facial mesh deformation

can be used, where motion fields are used to represent muscle activation [307]. Yet

another approach is the layered spring meshes [275, 184], that extend the mass-spring

structure to connected mesh layers, thus resulting in a more accurate modelling of facial

behaviour. More recently, a physics-based muscle model of the face has been used in

conjunction with motion capture data to automatically learn the muscle activation

parameters [264]. For these physics-based models of the face, keyframing was used to
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interpolate muscle activation parameters to generate facial animation.

Keyframe animation has also been explored with the more recent 3D morphable

models (3DMM) [25], which are powerful statistical appearance-based facial models

that can generate photorealistic animation [26]. However, they fail to achieve video-

realism because they do not explicitly model the inner structures of the mouth and

eyes.

Heuristic methods either define a set of rules to model coarticulation [17, 239] or

using dominance functions [54, 93]. Edge and Maddock [94] and Lazalde et al. [181]

proposed a constraint-based visual speech synthesis method that by using a physically-

constrained model of the face and optimising an objective function to generate speech-

synchronised facial animation driven by visemes. These methods require a considerable

amount of domain knowledge as well as trial and error to get the rules, dominance

functions and constraints right. However many and precise the heuristics that are

hand-crafted, they at best only approximate the mechanism of speech generation and

fail to achieve very realistic results.

2.2.2 Data-driven Facial Animation

Data-driven approaches rely on the idea that the rules governing facial animation

can be learnt automatically given several examples of a talking face. Facial and audio

data are represented as parameters and Machine Learning techniques can be used to

learn a mapping between the audio and visual parameters. This mapping can then be

used to predict visual parameters given the audio parameters.

Data-driven approaches can be further categorised in terms of the input used to

generate facial animation as well as on the technique used to achieve audio-visual

mapping. The input can be either text or speech parameters.

Text-driven facial animation is driven by a text input in a given language and syn-

thesis involves text-to-speech (TTS) synthesis, followed by a mapping of the underlying

phonemes to visual speech [95, 191, 301, 244, 208, 192, 205, 158].

Speech-driven facial animation involves mapping continuous speech parameters or

the discrete phonemes onto the face. Audio data can be represented using phonemes

which are obtained by phonetically aligning audio data to phonemes [317, 150]. Speech-

driven facial animation here refers both to phoneme-driven and continuous speech-

driven facial animation.

The mainstream approaches to speech-driven facial animation are: sample-based,

learning-based and hybrid approaches [77].
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Sample-based Methods

Sample-based approaches are mostly phoneme-driven and aim at finding commonly

occuring fragments of speech, followed by a search algorithm that finds fragments best

matching the target utterance. Sample-based approaches need to solve the problem

of finding units of visual speech that are to be reordered, a problem known as unit

selection. In Bregler et al. [34], the fragments were chosen as triphones, which are

groups of three phonemes. Image frames were first labelled using eigenpoint tracking

[66]. This was followed by warping each image to a standard reference frame. New

animation was achieved by reordering frames from the training corpus to match the

target audio. The criterion for reordering the frames was based on a similarity measure

between the triphones in novel and training data. Finally, the images were warped from

the reference frame to the target shape, aligned to the shape of the synthesis frame and

morphed together. Cao et al. [42] used a greedy graph search algorithm to synthesise

novel speech animation from motion graphs by matching test audio features with those

of motion graphs and using phonetic information to minimise jumps, thus accounting

for coarticulation. In Kshirsagar and Magnenat-Thalmann [174], the fragments were

syllables which were extracted automatically from a phonetic stream using a syllab-

ification algorithm. Cosatto et al. [62] introduced variable length audio-visual units

to visual speech synthesis. The units were found by running Viterbi search through

a graph that connects phonetic units with transition links encoding a concatenation

cost and each node having a target cost that measures the similarity of each unit with

the unit to be synthesised. Ma et al. [196] used a similar approach where variable

length units are computed for a given test utterance using Viterbi search through a

trellis that represents the allowed transitions between phonemes as well as between

utterances that are not part of the same sentence. A transition is allowed between two

different utterances only if the connecting ends belong to the same viseme category.

Edge et al. [95] also used variable-length unit selection at the level of phones, syllables,

words and sentences using an algorithm that tries to maximise the length of fragments

whilst balancing the similarity of phonetic timing and the similarity of contexts with

the target utterance. Deng et al. [79, 81] learnt diphone and triphone coarticulation

models, which were incorporated into a motion synthesis algorithm that selects the

optimal units for generating a new utterance. Tao et al. [270] adopted a hybrid ap-

proach where a HMM-based unit selection method was used for visual speech synthesis

and Gaussian mixture models (GMMs) were used for synthesis of facial expressions for

expressive speech animation. Edge and Hilton [91] and Edge et al. [92] adopted a novel

metric for measuring concatenative cost, based on wavelet decomposition, for 3D visual

speech synthesis. Melenchón et al. [208] combined visual unit selection with geodesic

interpolation to generate smooth facial animation that explicitly models emphasis. Liu
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and Ostermann [192] proposed Pareto optimisation [327] for unit selection in concate-

native visual speech synthesis. Mattheyses et al. [205] computed both audio and visual

target costs and together with concatenation costs between frames, a search was made

in the training database to find the best audio and visual segments matching a target

phonetic sequence. The advantage of sample-based approaches is that the fidelity of the

animations is higher due to the use of original images as compared to images generated

from appearance models that can get blurred. However, sample-based methods require

storage of the whole visual corpus to synthesise facial animation and are not amenable

to adaptation of facial models and speech models for transferable speech animation

[47].

Learning-based Methods

Learning-based approaches learn statistical models to model the relationship be-

tween visual parameters and either audio parameters or phonemes or both. Gaussian

mixture models (GMMs) have been used to synthesise speech animation in [148, 249, 49,

105, 141, 326]. Yamamoto et al. [314] introduced hidden Markov models (HMMs) to vi-

sual speech synthesis. The method involved training context-independent audio HMMs

with phonemes as states, which were then used to decode test audio using the Viterbi

algorithm [293]. This was followed by a table look-up process to convert the HMM

states to corresponding lip parameters with a look-ahead mechanism to model forward

coarticulation. HMMs have also been used in the works of Brand [32], Choi et al.

[50], Lee and Yook [183], Cosker et al. [64], Fu et al. [117], Li and Shum [188], Wang

et al. [298], Govokhina et al. [125], Xie and Liu [312], Tao et al. [270], Bailly et al.

[10], Wang et al. [303] and Wang et al. [304]. A linear dynamical system (LDS) was

used in the works of Saisan et al. [258] and Lehn-Schiøler et al. [186] to jointly model

audio and visual parameters. Englebienne et al. [102] used a variant of the switching

linear dynamical system (SLDS) [122], called deterministic process dynamical system

(DPDS) to model visual data while audio data was modelled using a HMM. Both mod-

els were coupled by the phonemes, which represented the states of the HMM as well as

the switching states of the SLDS. During synthesis, the discrete phonetic labels need to

be inferred from the speech signal followed by the generation of the most likely visual

parameters for the phoneme sequence.

We adopt a learning-based approach in this work mainly because it allows for a

compact representation of facial data as well as the adaptation of both facial and speech

models to different identities [47, 280]. More details on specific learning-based methods

applied to visual speech synthesis and related to this thesis are given in Chapters 4 and

5.
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Hybrid Methods

More recently, some researchers have tried to combine sample-based and learning-

based approaches. Edge et al. [92] first used a sample-based unit selection method to

determine the closest unit to each segment in the test sequence. The selected units

were then used to train a state-based model for each transition of phonemes in the test

sequence. The Viterbi algorithm [293] was used to determine an optimal path through

the trained model, which was used to generate a smooth trajectory through the visual

features. Wang et al. [303] adopted a different approach where the first step consisted

of first using a learning-based approach to train a HMM of lip movements and using

the trained model to generate a trajectory of lip movements from speech parameters

in the maximum-likelihood (ML) sense. The generated trajectory was used as a guide

to select an optimal sequence of mouth images from the training database, which was

then integrated with the whole face. This has the advantage that the blurring resulting

from having appearance models of the face is not present in the synthesised video,

which takes images from the original corpus.

Audio Representation

Several techniques for speech-driven animation first use audio data to infer discrete

states and then drive the animation using these discrete state labels [34, 32, 105, 102].

Such approaches, however, discard prosodic information in the speech signal such as

speech rate, emphasis and intonation. There are other techniques that use only con-

tinuous speech features to predict visual features of a talking head [186, 326, 303, 304]

by having a joint probabilistic model of audio and video. These approaches, however,

ignore the structure of language that is encoded in a discrete representation of speech.

Combining both approaches results in using the full information of audio speech to syn-

thesise visual speech and has been used by Cao et al. [42] and Edge et al. [92] through

the use of sample-based visual speech synthesis. Our aim in this work is to do the same

using learning-based approaches.

2.2.3 Other Forms of Facial Animation

There are also other variants of facial animation, such as: performance-driven facial

animation, facial animation transferring and facial gesture generation [77]. Performance-

driven facial animation concerns capturing the facial movements of a human actor and

remapping it to a virtual avatar [51, 2, 3, 149, 309]. Facial animation transferring

deals with transferring speech movements or facial expressions between facial models

[198, 294]. Facial gesture generation aims at synthesising facial expressions on a talking

head to reflect different emotive states such as happiness, sadness, anger, surprise, etc.
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[52, 43, 81, 297].

2.2.4 Modelling Coarticulation

There are three broad approaches to the modelling of coarticulation in visual speech

synthesis: heuristic methods, search methods and generative methods. These are

closely related to the techniques for speech-driven facial animation but are presented

here to highlight how they model coarticulation.

Heuristic methods include rule-based approaches [17, 239] that define a set of rules

to model coarticulation, as well as fitting dominance functions to facial data in order to

model the dynamics of segments of speech [54, 93]. The model of Cohen and Massaro

[54] was inspired from the gestural model [193] of coarticulation discussed in Section

2.1.5.

Search methods aim at reordering frames from the training data to match the test

phonetic stream. Search approaches need to identify concatenative units from the

training data to match the test sequence. The units can be of fixed length, such as

diphones and triphones [34, 79, 81] or they can be of variable length [62, 174, 196].

Generative methods aim at learning a model of the process which generates the data.

They are mostly based on GMM [148, 249, 49, 105, 141, 326], HMM [314, 32, 50, 183, 64,

117, 188, 125, 298, 312, 270, 303, 304], LDS [258, 186] and SLDS [102]. However, some

of them have an implicit model of coarticulation in the trajectory synthesis algorithm

[32, 105, 64, 326]. Lehn-Schiøler et al. [186] and Englebienne et al. [102] have an explicit

model of only backward coarticulation because the state vector for the current frame

is predicted from that of the previous frame in the synthesis. Govokhina et al. [125]

proposed a trajectory formation method to represent the task-dynamical model [113] of

coarticulation. The gestural score influencing the movement of facial articulators was

computed using both context-dependent and context-independent phoneme HMMs.

Then, a trajectory formation model was used to execute this gestural score by moving

the articulatory parameters shaping the vocal tract. The strength of this method is

that it is data-driven, as compared to the heuristic method of Cohen and Massaro [54],

which requires manual tuning.

In this work, we adopt a generative approach to modelling coarticulation by ex-

plicitly modelling speech dynamics, taking into account both the audio and visual

modalities and exploiting structure embedded in natural language.

2.3 The Uncanny Valley

The Uncanny Valley [215] is an important finding that needs to be taken into

account when trying to achieve realistic facial animation. It postulates that the response
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elicitated in humans increases as the level of realism of the robot or virtual character

increases, only up to a point where the artificial nature of the latter is still clearly

evident. After that point, there is a “Valley” which is characterised by strong repulsion

as the level of realism increases. The repulsion is due to a certain level of “eeriness”

that arises when the viewer subconsciously associates the virtual character or robot to

a corpse or “zombie”. After the Valley, there is a rapid increase in acceptance as the

realism gets to the point where the virtual character or robot is indistinguishable from

reality. This is illustrated in Figure 2.3. The Uncanny Valley plays a very important

role in robotics, particularly socially interactive robots because the aim is to build robots

that can interact in a life-like manner with humans in order to support the latter in day-

to-day tasks [111]. Thus, commercial robot makers need to make sure that their robots

do not fall within the Valley, in order for the robots to have a favourable response from

users. More recently, Hodgins et al. [138] did several experiments to investigate the

factors that contribute to a virtual character eliciting an Uncanny Valley response by

investigating the emotional response of participants in the presence of facial anomalies.

They found that very slight facial anomalies cause an unfavourable emotional response,

thus hinting that they fall into the Uncanny Valley. Tinwell et al. [283] found that lack of

facial expressions in the upper parts of the face during speech accentuates the Uncanny

Valley effect due to a face that looks emotionless. However, it must be pointed out

that although there is strong scientific plausibility for the Uncanny Valley, there is yet

much more to be done to understand the effect experimentally [230].

Several researchers have attempted to build socially acceptable robots or facial an-

imation that cross the Valley. Experiments done by Hanson et al. [132] demonstrate

very favourable response for a humanoid robot that is able to simulate human-like facial

expressions and is equipped with very sophisticated machine perception technologies

and Natural Language Processing. Recently, the Emily Project has attempted to de-

velop a performance-driven facial animation method that claims to push the animation

quality beyond the Uncanny Valley [3]. The facial model was acquired from an actress

by using a high-resolution digital scanner, where several stereo photographs of the face

under different lighting conditions were used to capture the face’s geometry and re-

flectance. In addition, a plaster cast was used to model the teeth of the actress, which

was incorporated into the model. This created a very detailed model of the face that

was able to model various subtleties in facial expressions.

The effect of the Uncanny Valley on speech-driven facial animation has not been

investigated. The main reason is the lack of expressiveness in image or appearance-

based speech animation. In this thesis, we aim to investigate the Uncanny Valley effect

in speech animation synthesised using our method. More details of these experiments

are given in Chapter 6.
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Figure 2.3: The Uncanny Valley [215].

2.4 Applications of Visual Speech Synthesis

Visual speech synthesis has many applications in the fields of: cinema, gaming,

Human-Computer Interaction (HCI), speech therapy, medicine as well as internet and

communication. These areas will now be covered briefly.

2.4.1 Cinema

Facial animation has been an important feature of computer-generated imagery

(CGI) films over the past two decades. The first full-feature CGI movie, Toy Story had

facial animation generated by modelling each muscle of the human face [276] without

trying to achieve high levels of realism. Later movies such as Matrix Reloaded used

photogrammetry [212] to acquire a dense shape model of the face in order to attain a

high level of realism [28]. The deformation of the face was achieved by using optical

flow [35]. Other CGI movies such as Final Fantasy: The Spirits Within (2001), Final

Fantasy VII Advent Children (2005) and The Polar Express (2004) tried to achieve

a very high level of realism by using motion capture technology and a very detailed

modelling of the face and hair. More recently, in the 2010 movie Avatar, animation

was achieved by using motion capture techniques through the placement of markers on

the face and mapping the animation to a synthetic character using performance-driven

facial animation [187]. As speech-driven facial animation techniques mature, character

animation in cinema could be more speech-driven, thus reducing the need for motion

capture of each utterance in the movie. Applications that could result from this include

automatic movie dubbing as well as animating characters that are no longer alive, such
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as in the movie Forest Gump [213].

Recently, the Manchester-based company, ImageMetrics2 has been working on the

Emily Project [2, 3], which uses performance-driven facial animation to create facial

animation which looks highly realistic. The facial models were acquired using stereo

cameras. ImageMetrics has provided facial animation solutions for various movies such

as Harry Potter.

2.4.2 Gaming

Facial animation is widely used in the games industry to create lifelike avatars that

either engage in conversations as part of the game or generate visual speech dynamically

based on the gameplay. A possible application of the latter is in sports games that

generate live commentary such as FIFA or Need for Speed by EA Games. Games that

generate live audio commentaries typically use concatenative speech synthesis, where

segments of speech from a corpus are extracted, concatenated and blended to generate

the desired utterance. The same approach could be adopted for visual speech synthesis,

where videos of pre-recorded utterances are recorded and then blended to generate a

seamless animation based on the audio commentary that is being generated.

Various approaches for facial animation can be applied to gaming, such as: perfor-

mance animation, keyframing, physics-based animation as well as other methods such

as scripting and procedural animation [167]. Recently, ImageMetrics has been pro-

viding performance-driven facial animation solutions to various games such as Grand

Theft Auto [252]. In addition, the Edinburg-based company Speech Graphics3 has been

offering speech-driven facial animation solutions for the games industry.

2.4.3 Human-Computer Interaction

One of the aims of HCI is to provide an intuitive and natural way of interacting

with a computer. Humans are trained from birth to interact with the human face

and having an equivalent on the computer can help novices learn computing much

more easily. Moreover, facial animation is deemed to become an important component

of virtual environments and immersive 3D virtual worlds. In this respect, various

researchers have investigated the use of speech animation methods to virtual worlds

with the key requirement being real-time synthesis [159, 269]. A further requirement of

speech animation for HCI is expressiveness. The animation needs to convey emotions

through facial expressions in order to provide a natural interface. Figures 2.4 and 2.5

illustrates expressive facial animation achieved by various researchers.

2http://www.image-metrics.com/
3http://www.speech-graphics.com/

http://www.image-metrics.com/
http://www.speech-graphics.com/
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Figure 2.4: Expressive facial animation [269].

Figure 2.5: Expressive facial animation [43].

Researchers at Curtin University have developed the Virtual Human Markup Lan-

guage (VHML) as a markup language for artificial talking heads [203]. This language

has been applied to the creation of avatars by Carretero et al. [44] and has been verified

and validated by Gustavsson et al. [128].

A promising application of facial animation is to create novel HCI based on char-

acters or agents [230]. Such agents can assist in simple computer tasks such as helping

to navigate the internet and, ultimately, should be able to speak to the user, behave

in real time and become social user interfaces that would supplement graphical user

interfaces (GUI). In 2011, IBM unveiled its intelligent computer called Watson [109]

that has natural language processing abilities and could take questions from humans

and respond in a human-like manner. It also won the Jeopardy competition, beating

human participants4. Augmenting such an agent with facial animation could greatly

enhance intelligent natural language interfaces.

2.4.4 Speech Therapy

Facial animation technologies and in particular speech animation can be applied to

speech therapy for helping speech-impaired people to learn how to pronounce words

properly and speak. The Speak As You See (SAYS)5 is a software product that uses

3D computer graphics to create realistic animation in order to help people with speech

4http://www.ibmwatson.com
5http://www.learningtechnologiesinternational.com/product.html

http://www.ibmwatson.com
http://www.learningtechnologiesinternational.com/product.html
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disabilities. It allows the user to focus on the level of communication that is to be em-

phasised to the patient. For instance, the user can be shown only specific articulators,

such as the tongue or both the mouth and tongue, moving in a particular utterance.

Such levels of customisation have been found to be very beneficial in speech therapy

[121].

2.4.5 Medicine

Applications of facial animation in medicine have been made in the field of cran-

iofacial surgery [123, 305]. In particular, by using facial models, assistance can be

provided to craniofacial surgical planning and facial tissue surgical simulation ahead

of the surgery. Such applications require a muscle and tissue model of the face, which

the surgeons can work on to plan their surgery. Following that, the face model can

be animated to see if the articulations are correct for the new face structure. Speech

animation can help to automate the tests by providing an audio corpus in order for

validation to be done by comparing it against what the animation should look like.

Such models have already been used to validate the facial appearance of the resulting

face against expected results in view of surgical planning [166].

2.4.6 Internet and Communication

The prevalence of multimedia content on the internet has seen an unprecedented

growth in recent years. Increasingly, the web is becoming a platform for authoring new

multimedia content and for seamlessly integrating television, music and video together

with user-generated content such as comments and messages on wikis and social net-

working websites such as Facebook and Twitter. In such a dynamic environment, it is

very easy for users to be overwhelmed by information and the need for users to find

their way through massive amounts of information becomes paramount. In this respect,

an interface that integrates facial animation with text-to-speech generation could be of

great help. One example of the integration of facial animation with the web browsing

experience has been achieved with the TNT facial animation system [191]. This system

provides a plug-in with the web browser that converts all the text to speech and maps

the speech to a talking face that leads the user through the web page in an intuitive

way. The system is also provided in a standalone program that works both with input

text and speech, as illustrated in Figure 2.6.

Speech animation can be used in online telephony systems such as Skype, where

the incoming audio is mapped to facial animation for low-bandwidth communication.

The software CrazyTalk6 allows a user to take a single photo of themselves and from

automatically detected landmark points builds a facial model. It then allows them

6http://www.reallusion.com/crazytalk/

http://www.reallusion.com/crazytalk/
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Figure 2.6: The TNT facial animation system [191].

to either enter a text or a recorded voice sentence as input and maps the speech to

the facial model to generate synthetic visual speech. A plugin of the software for

Skype already exists that allows the animation of a single photograph of the person

talking from incoming speech audio. A system of this kind would be particularly

useful in translingual communication, where the speaker at the incoming end speaks

in a language that is translated and communicated in a different language on the

receiving end. Faruquie et al. [108] proposed a framework for achieving translingual

facial animation using a speech recognition unit to extract phonetic information from

the translated speech and mapping it to facial expressions.

2.5 Chapter Summary

We have presented an in-depth description of the different aspects of human speech.

The phenomenon of coarticulation has also been dealt with as well as mainstream

models of coarticulation in speech production theories. A review of techniques to

synthesise visual speech from audio speech was then presented followed by techniques

to model coarticulation in visual speech synthesis. Finally, we discussed the Uncanny

Valley effect and covered some applications of visual speech synthesis.



Chapter 3

Data Acquisition and Processing

Measure what is measurable, and

make measurable what is not so.

Galileo Galilei

A data-driven approach to visual speech synthesis requires a database of audio-

visual recordings of a talking face that captures the different phonetic combinations

in the language being used. The data needs to be processed both in the audio and

visual domains in order to obtain a representation that is suitable for use with Machine

Learning algorithms. We begin by reviewing techniques for facial parameterisation

and speech feature extraction. The data corpora used in this work are then presented,

followed by details of visual and audio processing. There is usually a mismatch between

the audio and visual frame rates due to the requirement of an auditory window in

which the speech signal is stationary. This results in a higher frequency of audio as

compared to visual parameterisation. We investigate different methods to synchronise

audio and visual speech parameters. Moreover, both the audio and visual features

should be normalised to retain only speech-related content. Specifically the following

should be normalised in our data: lighting and pose variations in the visual domain,

variations in the audio data capture such as the distance between the speaker and the

microphone and expressive cues in both the audio and visual domains. This requirement

arises particularly in our case where audio and visual parameters are jointly modelled,

because non-speech related content will affect the predictive ability of the joint models

that couple audio and video. We thus deal with various techniques for audio and visual

normalisation.

55
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3.1 Modelling Faces

In order to synthesise visual speech, a way of representing faces as a compact set

of parameters is needed. This can be done by using appearance models which can

be used both for analysis and synthesis of faces. In this work, we restrict ourselves

to 2D appearance models, which have been shown to generate more realistic results

[104, 278, 63, 47, 101] than 3D appearance models, which require high quality 3D

data from laser scans [25, 320, 316] or photogrammetry [2, 3]. These methods need to

separately model the inner details of the mouth [26] or alternatively use texture maps,

which require accurate dense correspondences between the 3D face shape and texture

across frames, in order to avoid blurring and distortion when the texture is mapped

to the face mesh [321]. Others using 3D appearance models discard the modelling of

inner mouth details [218] with detrimental effects on the levels of realism of the final

animation. A description of the main appearance models and their variants is now

presented.

3.1.1 Flexible Models in Computer Vision

Appearance models need to be trained on example images and they parameterise

the face by projecting the shape and texture of the images to a lower-dimensional

subspace, defined by principal component analysis (PCA). They should allow accurate

description of different facial configurations (analysis), as well as allow synthesis of

novel faces by extrapolating on examples given in the training set. Active appearance

models (AAMs) [59, 60] are statistical models of both shape and texture, thus providing

a powerful representation for the analysis and synthesis of faces. Before AAMs, shape

and texture models were developed separately. Kass et al. [164] introduced the idea of

flexible models in Computer Vision called active contour models (ACMs) or “snakes”

that could be used to snap onto nearby edges through an energy-minimising spline

function. The seminal work on statistical models of shape was by Cootes et al. [57],

where PCA was applied to inter-point distances between annotations and provided a

compact parametric description of shape variability. This was extended to the point

distribution model (PDM) [271], where the variability in shape was represented by a

mean shape and modes of variation given by the standard deviations in each PCA

dimension of the shape parameters. Active shape models (ASMs) [58], also known

as “smart snakes” were then introduced, mirroring the idea of ACMs for tracking

landmarks on novel images of the same object category, with the difference that the

PDM was used as a constraint to restrict the shape range.

Similar statistical models of texture were also independently developed. Sirovich

and Kirby [265] and Kirby and Sirovich [168] were among the first to apply PCA to find
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a lower-dimensional representation of face images. Craw and Cameron [67] extended

this idea by warping faces to a reference shape before applying PCA, thus giving a

shape-free texture representation. This led to Turk and Pentland [288] developing the

Eigenface model, an extension of the model of Kirby and Sirovich [168], which was

applied to facial classificiation.

Cootes et al. [59] combined the modelling of both shape and texture using PCA,

leading to the active appearance model (AAM). We first present an overview of PCA,

which is used in most of the appearance models discussed in this chapter.

3.1.2 Principal Component Analysis

PCA [236] is a widely used technique in statistics, science and engineering to find

a lower dimensional representation of high dimensional data. The way PCA works is

by decorrelating a set of N correlated variables. This is done by rotating the axes

of the data in order to provide better alignment with the modes of variation of the

data. In addition, the axes are reordered by decreasing significance so that the first

axis represents the direction of highest variance and each next axis is orthonormal to

the previous and corresponds to smaller variance than the previous axis but larger than

the next axis.

Given some data X = {xn}Nn=1, PCA finds a linear basis P ∈ RD×d that can be

used to project a given data point xi to PCA parameters bi according to Eqn.3.1,

where x̄ is the mean vector given by x̄ =
∑N
i=1 xi
N . Thus, the D-dimensional data X

is projected onto a lower-dimensional subspace B = {bn}Nn=1 of dimension d, where

d < D. Reconstruction of the original data from PCA coefficients is done according to

Eqn.3.2.

bi = PT (xi − x̄) (3.1)

xi = x̄ + Pbi (3.2)

The basis P is obtained by first computing the covariance matrix C according to

Eqns.3.3 and 3.4, where Z = X− E[X].

C =
1

N

N∑
i=1

(xi − x̄)T (xi − x̄) (3.3)

=
1

N
ZZT (3.4)

As C is square and symmetric, it can be decomposed using Singular Value Decom-

position (SVD) to obtain its eigenvalues Λ = [λ1, . . . , λD]T and corresponding eigen-

vectors P = [p1, . . . ,pD]T according to Eqn.3.5, thus solving the eigenvector equation

3.6.



CHAPTER 3. DATA ACQUISITION AND PROCESSING 58

C = PΛPT (3.5)

ZZTpi = λipi (3.6)

The eigenvectors are ordered according to decreasing order of eigenvalues, λ1 ≥
λ2 ≥ . . . ≥ λD such that the first principal component corresponds to the highest

variation in the data and the last principal component the least variation. Out of

the D axes of variation of the data, only a small number d would capture most of the

variance in the data and the others would be axes of lower variation that can sometimes

be attributed to noise. If we want to retain a certain percentage p of the variance of

the data, d components can be retained such that:
∑d

i=1 λi ≥
p

100

∑D
i=1 λi, thus giving

the retained eigenvectors as P = [p1, . . . ,pd]
T . These eigenvectors, also known as the

principal component coefficients or loadings, can be used to obtain a lower dimensional

representation of the data according to Eqn.3.1.

PCA for Images

Images are high dimensional with a 100 × 100 RGB colour image having D =

100 × 100 × 3 = 30, 000 dimensions. Computing a covariance matrix on such high

dimensional data is usually intractable. This problem arises both in the Eigenfaces

[288] model and AAMs [60] where N < D training images are used to find the principal

components of texture variation. An elegant solution to this problem comes from the

observation that the rank of the covariance matrix is limited by the number of training

examples N . This entails that eigenvector decomposition can be computed on a N ×N
matrix S given by Eqn.3.7.

S =
1

N

N∑
i=1

(xi − x̄)(xi − x̄)T (3.7)

=
1

N
ZTZ (3.8)

The eigenvector equation then becomes:
1

N
ZTZpi = λipi (3.9)

Pre-multiplying both sides by Z gives the following, where vi = Zpi.
1

N
ZZTvi = λivi (3.10)

In order to determine the eigenvectors, both sides of Eqn.3.10 need to be further

pre-multiplied by ZT to give:

(
1

N
ZTZ)(ZTvi) = λi(Z

Tvi) (3.11)

This implies that ZTvi is an eigenvector of S and the corresponding eigenvalue is

λi. These eigenvectors, however need to be normalised in order to become orthonormal
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according to:

pi =
1

(Nλi)1/2
ZTvi (3.12)

Thus, the approach mentioned above first needs to perform an eigendecomposition

of N−1ZZT , before computing the eigenvectors in the original data space according to

Eqn.3.12.

3.1.3 Active Appearance Model

The Active Appearance Model [59, 96, 60] provides an integrated framework for

modelling both the shape and texture using PCA, as well as an algorithm for tracking

facial landmarks on novel faces, after a training phase, where a linear mapping is learnt

between shape displacements and texture differences. The term Active Appearance

Model is mostly used in reference to the tracking algorithm, although it may also be

used for the combined shape and texture model. The AAM allows any face to be

represented using a compact set of parameters, which can be used to regenerate the

original face.

AAM Training

In order to build an AAM, a set of images is required, which are manually annotated

with landmark points, as shown in Figure 3.1a. The landmarks for each image need

to be aligned to the mean shape using Generalised Procrusted Analysis (GPA) [126]

and concatenated into a single vector s. The texture for each image, gim, which is

either gray-scale pixel intensities or RGB colour values, needs to be warped to the

mean shape to give a shape-free image. The warping is done by performing a piecewise

affine warp, where the shape is decomposed into triangles using Delaunay triangulation

[74], as shown in Figure 3.1b. Each triangle in the original shape is then warped to

the corresponding triangle in the mean shape. The texture needs to be normalised in

order to minimise the effect of global lighting variation. This is done by mean-centering

around zero and setting the Euclidean norm to one according to Eqn.3.13, where µim

is the mean of the vector gim and 1 is a vector of ones.

g =
gim − µim1

‖ gim − µim1 ‖
(3.13)

The shape and texture are then idependently projected to PCA parameters accord-

ing to:

bs = PT
s (s− s̄) (3.14)

bg = PT
g (g − ḡ) (3.15)

where bs are the shape parameters, bg are the texture parameters, s̄ is the mean
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(a) (b)

Figure 3.1: (a) Markup points of facial landmarks. (b) Delaunay triangulation of landmarks.

shape, ḡ is the mean texture, Ps are the shape eigenvectors and Pg are the texture

eigenvectors.

The shape parameters bs and texture parameters bg are concatenated to form a

single vector b according to Eqn.3.16, where Ws is a diagonal matrix of weights for

each shape parameter, and is used to account for the difference in units between the

shape parameters, bs and the texture parameters, bg.

b =

[
Wsbs

bg

]
=

[
WsP

T
s (s− s̄)

PT
g (g − ḡ)

]
(3.16)

Finally, PCA is applied to the combined parameters to give the AAM parameters

c according to:

c = PT
c b (3.17)

AAM Synthesis

In order to generate a face image, the shape s and texture g are reconstructed from

the AAM parameters c as follows:

s = s̄ + PsW
−1
s Pc,sc, g = ḡ + PgPc,gc, Pc =

[
Pc,s

Pc,g

]
(3.18)

The texture is then “unnormalised” by making its mean and Euclidean norm equal

to the average of these two values for all the images before normalisation. Finally, the

texture is warped from the mean shape to the reconstructed shape and rendered on an

image.

AAM Search

The Active Appearance Model algorithm [59] is able to fit the AAM to novel facial

images after performing linear regression between the displacement in AAM parameters,
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δc, and the corresponding displacement in texture, δg, in order to obtain a linear

regression matrix R, which maps texture differences to differences in AAM parameters:

δc = Rδg (3.19)

In addition to perturbations in the AAM parameters, small displacements in 2D

position, scale and orientation are also modelled and included in the regression [59].

However, in order to keep the notation simple, they are regarded as extra elements of

the vector δc.

The search algorithm works by refining the AAM parameters until the texture

reconstructed from the AAM parameters is statistically similar to the original texture

of the image. At each iteration, a step is made towards the optimal AAM parameters,

by exploiting the direction of convergence given by the linear matrix R. The tracking

algorithm is given in Algorithm 1. Once the optimal AAM parameters, copt, are found,

the tracked shape can be obtained according to Eqn.3.18.

Algorithm 1 Active appearance model search

Input: Image I
Output: Optimal AAM parameters copt
Initialise copt by scanning through I using a rectangular window
Set E0 ←∞
Set E1 ←∞
Set ε to an infinitesimal value
while |E1 − E0| > ε do

Obtain the normalised texture, gs at the current estimate copt
Evaluate the error vector δg0 = gs − gm

Evaluate the current error E0 = |δg0|2
Compute the predicted displacement, δc = Rδg0

Set k ← 1
Set c1 ← c0 − kδc
Sample the normalised texture at this new prediction and calculate the new error
vector, δg1

Evaluate the new error E1 = |δg1|2
if E1 < E0 then

Accept the new estimate c1 and Set copt ← c1
else

Try at k = 1.5, k = 0.5, k = 0.25
end if

end while

The original AAM formulation [59] for learning the regression matrix is not very

computationally efficient. In Cootes et al. [60], a more efficient approach is derived by

taking a first-order Taylor expansion of the difference texture vector, δg(c) at AAM

parameter c.
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g(c∗ + δc) = g(c∗) +
∂g(c∗)

∂c
∂c (3.20)

Computation of the Jacobian matrix ∂g(c∗)
δc is less computationally expensive than

performing linear regression. The matrix R is then computed from the Jacobian matrix

as follows:

R =

(
∂gT

∂c

∂g

∂c

)−1∂gT

∂c
(3.21)

Further efficiency gains in both training and fitting have been achieved using the

inverse-compositional image alignment (ICIA) algorithm [11, 204] and the composi-

tional gradient descent (CODE) algorithm [4]. However, because efficiency was not the

primary focus of the AAM parameterisation in our work, the AAM model used in this

thesis made use of the first-order approximation through the Jacobian matrix.

3.1.4 Multidimensional Morphable Model

The multidimensional morphable model (MMM) was proposed by Jones and Poggio

[160] and used in visual speech synthesis in [105]. Instead of using a vector space

representation of texture as in the AAM, the MMM uses a morph space, where pixel

flow and pixel appearance are used to represent shape and texture. In his PhD thesis,

Ezzat [104] argues that a morph space representation achieves a higher level of realism

than a vector space representation because the modelling of pixel flow ensures smooth

and realistic mouth transitions between mouth configurations.

As opposed to the AAM that requires manual annotations of facial landmarks, the

MMM uses optical flow to compute a dense correspondence between an input image

and a reference image, which is used to compute perspective warp parameters that are

then used to register the input image to the reference. This is based on the assumption

that head movements are kept minimal between frames. After normalisation, a set of

prototype images are chosen by clustering PCA parameters of all the images from the

corpus. This is followed by computing the optical flow vectors that morph the reference

image to each prototype image. The shape component for an input image is given by

a linear combination of those computed optical flow vectors that best approximate the

correspondence map between the reference image and the input image. For the texture

component, the optical flow vectors that transform each prototype image into the input

image are computed. This is followed by warping each prototype image to the input

image, based on these computed optical flow vectors. The texture parameters for the

input image are then given by the linear combination of the warped images that best

generate the input image. In practice, obtaining the shape and texture parameters

for a given input image is an optimisation problem that can be solved using gradient

descent. However, Ezzat et al. [105] proposed a solution where the shape parameters
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are solved in closed-form. This approach uses flow concatenation, where the shortest

path in a connected graph of training images is computed from the reference image

to each prototype image, using Dijkstra’s algorithm [85], followed by a concatenation

of optical flow vectors along this shortest path. This procedure leads to an analytic

solution for the computation of the shape parameters for an input image. Finding the

texture parameters is then reduced to a constrained optimisation problem that can be

solved using quadratic programming [29].

The main disadvantages of the MMM are that: 1) it cannot handle large pose

variations and 2) warping using the correspondence maps leads to holes in the target

image. The latter problem can be solved by using a “hole filling” procedure that is

based on linear interpolation between neighbouring pixels [105].

3.1.5 3D Morphable Model

The 3D morphable model (3DMM), proposed by Blanz and Vetter [25] is a 3D

statistical model of the face. The requirement for building such a model is to have

high quality 3D laser scans of faces. Blanz and Vetter [25] use CyberwareTM scans

which provide both geometric (shape) and texture data. This data is mapped to a

lower dimensional manifold using PCA to give {α, β, ρ}Nk=1 for N laser scans, where α

are the shape parameters, β are the texture parameters and ρ represents the camera

position. In Blanz and Vetter [25], 200 heads of young adults, consisting of 100 men

and 100 women were used to build the 3DMM. One requirement on this database of

scans is that dense correspondence exists between them, i.e. the shape vectors need to

be aligned. This alignment is achieved using 3D optical flow.

The 3DMM can be used to match both new 2D facial images as well as new 3D

scans of people not seen in the database. For matching 2D images, an analysis-by-

synthesis approach is used, whereby the parameters of the model are varied iteratively

and rendered into a 2D image, until the error between the generated image and the

input image is minimised. This is, however, an ill-posed problem because multiple

possible matches might exist for one facial image due to occlusions. A probabilistic

formulation was instead adopted for fitting the 3D morphable model to an image,

based on stochastic gradient descent, that helps to avoid local minima [25].

The Basel Face Model [235] is a database of faces that have been fitted using the

3DMM, which can be used for face recognition. Figure 3.2 shows a face reconstructed

from a sample of the Basel Face Model 3DMM parameters and rendered into an image.

3.1.6 Discussion

Three approaches to modelling faces have been presented. The AAM [60] is a 2D

statistical model of shape and texture that uses a vector-space representation obtained



CHAPTER 3. DATA ACQUISITION AND PROCESSING 64

Figure 3.2: Face reconstructed from the Basel Face Model [235].

using PCA. The AAM requires hand-annotated images for training the model and can

handle variations in pose. The MMM [160] provides a morph-space representation of

faces in 2D using optical flow. No hand-annotated images are required but the MMM

cannot handle large pose variations. Moreover, synthesis of novel images can lead

to holes that need to be filled [105]. The 3DMM is a statistical model of 3D shape

and texture that requires a database of 3D laser-scan data for training. It provides

a combined vector and morph-space representation [25] of faces. However, it requires

dense correspondence between the training facial data which is achieved using optical

flow. Moreover, the 3DMM is not ideal for videorealism because the inner structures

of the mouth have to be separately modelled, which compromises the level of realism

achieved during facial animation [26]. In this work, we have used the AAM for facial

parameterisation because our data has pose variations and also because our goal is to

achieve both photorealism and videorealism.

3.2 Speech Processing

In this work, we jointly model audio and visual features. Speech thus needs to be

represented as a set of continuous parameters that are aligned to the visual frames.

Four speech parameterisation techniques have been considered in this work, namely:

linear predictive coding (LPC), line spectral frequencies (LSF), Mel-frequency cepstral

coefficients (MFCC) and relative spectral-perceptual linear prediction (RASTA-PLP).

In this section, we describe the Fourier transform, which is used in many of the speech

processing techniques, as well as each of the four speech parameterisations.

There are two main models of speech production that are used for parameterising

speech. The source-filter model [151] of speech production attempts to accurately model

how the speech signal is produced by the speech production system. Such models,

which include LPC and LSF, aim at being able to reconstruct the original speech

accurately and are thus well suited for speech coding. They model speech as being

produced by a source or excitation, which is modulated by a filter to yield audible
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speech. The perceptually-motivated methods, which include MFCC and RASTA-PLP,

aim to accurately model how speech is perceived by the speech perception system and

are thus better suited for discrimation between phonemes. The excitation component

is usually discarded in the latter category of methods and thus the parameterisation is

more compact. However, the excitation component or fundamental frequency can be

retained and used together with perceptually-motivated speech parameters in text-to-

speech synthesis systems [324, 272].

Speech is digitised at a given sampling rate, fs, which consists of measuring the con-

tinuous signal at every 1/fs seconds. The Nyquist-Shannon sampling theorem [220, 261]

states that in order for a bandlimited signal1 to be reconstructed accurately from the

sampled version, the sampling rate should be more than twice the maximum frequency.

For speech parameterisation, a sliding window is used to represent the part of the

signal that is taken into account for analysis at each time point. However, using a

rectangular window of time tw, also known as a Dirichlet window [246], will introduce

spurious high-frequency components at the window edges. This can be overcome by

having a soft window boundary, such as the Hamming window [131], which is based on

the cosine function and thus attenuates the discontinuities at the edges. In addition, the

window used is typically overlapping so as to capture dynamical properties of speech.

The window size refers to the size of the auditory window used at any time point whilst

the hop size refers to the length of the overlap when moving from one time point to the

next. Speech coding and feature extraction methods typically require a window size of

10− 25 ms, where the speech signal is stationary. In this short time period, the speech

signal can be regarded as a stationary process, i.e. the joint distribution of a sequence

of measurements x1+l, x2+l, . . . , xk+l is the same for all k, independent of the lag l. In

order to statisfy this requirement, speech is typically parameterised with a window of

25 ms with overlaps of 10 ms between the windows, resulting in a frequency of 100 Hz.

In speech coding and feature extraction methods, a normalisation step called pre-

emphasis [151] is usually necessary in order to obtain an equal distribution of the signal

energy across the frequency spectrum. The pre-emphasis step results in raising the

intensity of the signal proportional to its frequency, thus emphasising higher frequency

components, which tend to have lower intensities as compared to their low frequency

counterparts. This is done because the spectrum for voiced segments has more energy

at lower frequencies than higher frequencies. Boosting of high-frequency energy gives

more information to the acoustic model and thus improves phoneme discrimination

ability.

The pre-emphasis is done by applying a first-order difference filter as given by

Eqn.3.22.

1A signal which has a maximum frequency
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x′t = xt − kxt−1 (3.22)

where xt is the speech sample at time index t, x′t is the first-order derivative and k

is a value between 0.9 and 1, which controls the strength of the pre-emphasis.

3.2.1 The Fourier transform

The Fourier transform [112] is used in the perceptually-motivated methods of speech

parameterisation and is thus described here.

The Fourier transform transforms a given signal from the time domain to the fre-

quency domain. The Fourier transform of an integrable function f : R→ C is given by

Eqn.3.23, where z represents the frequency components.

F (z) =

∫ ∞
−∞

f(m)e−2πimzdm (3.23)

The inverse Fourier transform [243] is given by:

f(m) =

∫ ∞
−∞

F (z)e2πimzdz (3.24)

The discrete Fourier transform (DFT) [243] is a variant of the Fourier transform that

finds the frequency domain representation of a finite segment of the input function that

has been discretised through sampling from a continuous function. Taking the complex

numbers y0, . . . , yN−1 to be discrete samples from the function f , the DFT results in

another sequence of N complex numbers Y0, . . . , YN−1, which is computed according to

the formula:

Y (k) =
N−1∑
n=0

yne
− 2πi

N
kn k = 0, . . . , N − 1 (3.25)

The fast Fourier transform (FFT) [36] is an efficient algorithm to compute the DFT

and its inverse.

The discrete Cosine transform (DCT) [1] is the equivalent of the DFT for real

numbers. It transforms a finite number of real numbers into a sum of cosine functions

oscillating at different frequencies.

3.2.2 Linear Predictive Coding

Linear predictive coding (LPC) [200, 202] is based on the principle that the speech

signal consists of a source signal or excitation produced by the glottal chords, that gets

transformed as it passes through a series of tubes that represent the articulators of the

vocal tract or mouth. The series of tubes are also called poles, hence LPC is said to be

based on an all-pole model of speech production. The LPC coefficients represent the

formants or resonances of each tube and can be estimated by first estimating x(m) as

a linear combination of the previous P speech frames (an autoregressive process) using
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linear prediction (LP) parameters, ak, plus an additive term e(m) that represents the

excitation or source component.

x(m) =
P∑
k=1

akx(m− k) + e(m) (3.26)

The term
∑P

k=1 akx(m− k) represents the filter or effect of the vocal tract and

speech articulators on the speech. The LPC coefficients are computed by sliding a

window and computing the LP parameters for each window.

The LPC parameters are estimated by solving for the autoregressive coefficients.

Methods that have been successfully applied include: the covariance method [7], the

autocorrelation method [200, 201] and the lattice formulation [38, 155].

In the frequency domain, Eqn.3.26 becomes:

X(z) =
E(z)

1−
∑P

k=1 akz
−k

=
E(z)

A(z)
(3.27)

E(z) represents the source part of the signal and 1
A(z) represents the filter part.

LPC can be used to resynthesise the original speech and is thus suited for low

bandwidth communication such as Voice-over-IP.

More details on LPC can be found in [151].

3.2.3 Line Spectral Frequencies

Line spectral frequencies (LSF) [154] are a variant of LPC, particularly suited for

transmission over a channel, such as a communication network. This is because for

transmission vector quantisation needs to be performed and LPC is not very robust to

quantisation noise. Instead, LSF is used, which involves decomposing the LP polyno-

mial A(z) into P (z) and Q(z) and finding their roots:

P (z) = A(z) + z−(p+1)A(z−1) (3.28)

Q(z) = A(z)− z−(p+1)A(z−1) (3.29)

where P (z) corresponds to the vocal tract with the glottis closed and Q(z) with the

glottis open. The LSF are the roots of P (Z) and Q(Z) and occur in two symmetrical

pairs ±v. LSF parameters are preferred over LPC for speech coding for two reasons.

First, LPC coefficients do not quantise well, i.e. small quantisation error may lead to

large spectral distortion. Secondly, LPC coefficients do not interpolate well, i.e. it is

hard to predict the coefficients in between those computed at two different times. LSF

are robust to quantisation because they provide a frequency domain representation

and quantisation can incorporate spectral features that are known to be important in

speech perception. Moreover, frame-by-frame interpolation of LSF results in smooth

spectral changes because of its close relationship to formant frequencies.

Refer to [151] for more details on how LSF are computed.
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3.2.4 Mel-frequency Cepstral Coefficients

Mel-frequency cepstral coefficients (MFCCs) are computed by first computing the

short-time power spectrum of a window of the speech signal, x(m). This is done using

the discrete Fourier transform (DFT):

X(k) = DFT{x(m)} (3.30)

The frequency components are then warped to a filter-bank of M triangular filters

based on the logarithmic Mel scale [296], which closely mirrors the human auditory

perception system. The filter-bank of triangular filters corresponding to the Mel scale

is shown in Figure 3.3. The filters are overlapping and are equally spaced along the

Mel scale.

Cepstral coefficients are obtained from a Discrete Fourier Transform (DFT) of the

logarithm of short-term power spectrum, represented by the M filter outputs. Since

the spectrum of the speech signal is real and symmetric, a Discrete Cosine Transform

(DCT) is used instead:

C(n) = DCT{ln[|X(k)|]} (3.31)

where C(n) are the cepstral coefficients.

The cepstrum is a good discriminant between vowels and consonants. Lower index

cepstral coefficients represent the filter part of speech whilst the higher indexed coef-

ficients represent the excitation (source) component. In speech recognition, typically

only the first 13 cepstral coefficients are used, which correspond to the filter part of

speech whilst discarding the source.

Figure 3.3: Triangular filter-banks based on the Mel scale.

MFCC feature extraction tries to accurately model how humans perceive speech and

thus provides good discrimination between phonemes. They are used as the front-end

of choice for speech recognition [247].
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More details on MFCC are given in [151].

3.2.5 RASTA-PLP

The perceptual linear prediction (PLP) approach proposed by Hermansky [135]

unifies LP models with cepstral analysis. A discrete Fourier transform (DFT) is first

applied on a window of speech to compute the short-term power spectrum.

X(k) = DFT{x(m)} (3.32)

The spectrum is then transformed to the Bark scale [329], which has similarities

with the Mel scale [296], but uses M critical-band filters [329] rather than triangular

filters. The filter-bank of critical-band filters corresponding to the Bark scale is shown

in Figure 3.4. This is followed by an equal loudness pre-emphasis that approximates

the sensitivity of human hearing at different frequencies. For cases where the Nyquist

frequency [220], f , is above 5KHz, the following equation gives equal loudness weight,

E, from the angular frequency, w = 2πf :

E =
(w2 + 56.8× 106)w4

(w2 + 6.3× 106)2(w2 + 0.38× 109)2(w6 + 9.58× 1026)2
(3.33)

Each filter output in the filter-bank is weighted according to the equal loudness

weight:

Xe(k) = EkX(k) 1 ≤ k ≤M (3.34)

The output is then compressed according to the equal-loudness power curve [151]

to approximate the non-linear relationship between the intensity of a sound and its

perceived loudness.

Xc(k) = (Xe(k))0.33 1 ≤ k ≤M (3.35)

The auditory spectrum is smoothed using linear prediction (LP) and the inverse

discrete Fourier transform (IDFT) is applied. Finally, cepstral analysis is performed

to obtain the PLP coefficients. The method has similarities with MFCC but with

additional steps to better model the perceptual characteristics of speech.

RASTA-PLP, proposed by Hermansky et al. [136], is more robust to linear spectral

distortions than PLP, because each frequency channel of PLP is band-pass filtered [131].

This attenuates effects that are due to additive2 and convolutional3 noise. It has also

been shown that the RASTA-PLP features favour speaker-independence [134].

A more in-depth discussion of RASTA-PLP is given in [136].

2Additive noise is produced by the environment and is uncorrelated with the original speech signal.
3Convolutional noise is produced when the speech signal passes through a linear distortion channel

such as the telephone line.
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Figure 3.4: Critical-band filter-banks based on the Bark scale.

3.2.6 Discussion

We have presented different approaches to representing speech that are commonly

used both in speech coding and speech feature extraction. Specifically, source-filter

methods, which include LPC and LSF, and perceptually-motivated methods, namely

MFCC and RASTA-PLP, have been dealt with. Source-filter methods are better suited

for text-to-speech (TTS) synthesis whilst perceptually-motivated methods are more

appropriate for speech recognition [144]. In Chapter 4, we present experiments to

compare the effectiveness of these four different parameterisations for visual speech

synthesis. We next describe the data corpora used in this work as well as details of

audio and visual parameterisations on the data corpora.

3.3 Data Corpora

Two data corpora are used in this work: we call the first LIPS [281] and the second

DEMNOW [101]. Two data corpora are used in this work because we want to test our

proposed method both on a dataset that is phonetically-balanced (LIPS) as well as to

a dataset that is closer to natural speech (DEMNOW).

The LIPS corpus (originally named LIPS08 corpus) [281] consists of 278 high quality

sequences featuring a female British subject speaking sentences from the Messiah corpus

[278], each sentence being of approximately of 3 − 6 seconds. This corpus was made

available for the LIPS 2008 Visual Speech Synthesis Challenge held at the Interspeech

conference in Australia in 2008. The corpus consists of image frames of size 576× 720

sampled at a rate of 50 frames-per-second (fps) according to the PAL standard [156].

A frame from the LIPS corpus is shown in Figure 3.5a. The corpus was downloaded

from the website: http://www.lips2008.org/.

http://www.lips2008.org/
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The DEMNOW corpus (originally named DemocracyNow! corpus) [101] consists

of 803 sequences featuring a female American anchor giving news presentations, which

was downloaded from http://gwenn.dk/demnow/. The sequences were extracted from

newscasts of about an hour, featuring news presentations as well as panel discussions

and interactive sessions. However, Englebienne [101] manually segmented the original

videos into short sequences of about 3 − 10 seconds, where the presenter is speaking

whilst fully facing the camera and each sequence being delimited by leading and trail-

ing silences or breaths. The original corpus consists of frames extracted at 29.97 fps

according to the American NTSC standard [219], cropped around the face region and

converted to grayscale. Because we want to retain colour information in this work, we

had to take some additional steps to obtain the frames in colour. First, using the start

and end frames for each sequence, obtained from Avidemux 4 project files in the original

corpus, we re-extracted each video sequence from the original newscast videos. Frames

were then extracted from the videos at 29.97 fps using the open-source tool ffmpeg5.

The original frame size is 576 × 432, but is cropped to 288 × 302, which is the region

where the face is located. A frame from the DEMNOW corpus is shown in Figure 3.6a.

Audio data in the form of WAV files at a bit rate of 44.1 KHz has also been made

available for each corpora, as well as the phonetic annotation for each frame. The

audio for each sequence of each corpus has been aligned to the corresponding video.

The LIPS corpus was phonetically aligned with the HTK speech recognition software

[318] using the BEEP phonetic dictionary [14], because it features a British speaker.

The phonetic labels are given in terms of the timings as they occur in the video and this

is processed to align the phonemes with each frame of the sequence, based on the visual

frame rate of 50 fps. The DEMNOW corpus phonetic alignment was done using HTK

[318] with the CMU pronunciation dictionary [308], because Amy Goodman, the news

presenter, is American. The speech features used for phonetic alignment with HTK

were MFCCs computed at 100Hz. Thus, the phonetic labels were obtained at 100Hz.

In order to obtain phoneme labels synchronised with the visual frames, a voting scheme

was used where a window of length equal to the ratio between the auditory frequency

and the visual frequency was scanned through the data and the mode phoneme that

labelled each visual frame in the window was chosen [101]. Thus, each visual frame in

the DEMNOW corpus is labelled with a corresponding phoneme.

3.4 Visual Processing on Data Corpora

We use the active appearance model (AAM) [60] for visual processing, because of

its ability to handle large pose variations that arise in the DEMNOW corpus and also

4Avidemux is an open-source video editing software: http://avidemux.org/
5Ffmpeg is a tool to record, convert and stream audio and video: http://www.ffmpeg.org/

http://gwenn.dk/demnow/
http://avidemux.org/
http://www.ffmpeg.org/
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because there is no need to deal with holes that arise in the synthesis stage of the

multidimensional morphable model (MMM) [105].

For visual processing of the LIPS corpus, we downsampled the data to 25 fps by

skipping every other frame in order to obtain a manageable corpus size. In order

to train the AAM, we selected 184 prototype images by randomly choosing 4 frames

from each of the 44 phonemes of the BEEP phonetic alphabet [14] plus silence and

breath. This has been done automatically using a Matlab script. 56 markup points

were then placed around the face, lips and nose in each of the prototype images (Figure

3.5b). The number of points was chosen after some manual experimentation in AAM

model building and various trials in facial landmarking until decent reconstructions

were obtained from AAM parameters. An AAM was built on the shapes and images by

first aligning the shapes using generalised Procrustes analysis [126] and then computing

a mean shape. As part of the AAM building process, the texture sampled from the

convex hull of the shape for each prototype is warped to the mean shape using a

piecewise affine warp algorithm. Figure 3.5c shows the Delaunay triangulation [74] of

the shape vertices that needs to be performed for the piecewise affine warp. PCA is

applied to the shape and texture separately and then again to the concatenated shape

and texture PCA parameters. By retaining 99% of the variance of both the shape,

texture and combined PCA, a 33-dimensional vector of AAM parameters is obtained.

(a) (b) (c) (d)

Figure 3.5: (a) A frame from the LIPS corpus. (b) AAM markup points. (c) Delaunay
triangulation. (d) AAM reconstruction.

Visual processing of the DEMNOW dataset using AAM is similar to the approach

used for the LIPS corpus. We randomly selected 4 frames from each of the 39 phonemes

of the CMU phonetic alphabet [308] plus silence and breath, giving a total of 164 frames

for training the AAM. Because the DEMNOW corpus was processed after the LIPS

corpus and having acquired experience in building AAMs for the LIPS corpus, more

landmark points were chosen in order to have a smoother facial boundary. 69 landmark

points were thus placed around the face, mouth, nose and eyes as shown in Figure 3.6b.

The AAM was then built using the same procedure as outlined for the LIPS corpus.
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The Delaunay triangulation [74] for a DEMNOW shape is shown in Figure 3.6c. By

retaining 99% of the variance of both the shape, texture and combined PCA, a 24-

dimensional vector of AAM parameters is obtained.

(a) (b) (c) (d)

Figure 3.6: (a) A frame from the DEMNOW corpus. (b) AAM markup points. (c) Delaunay
triangulation. (d) AAM reconstruction.

For obtaining the AAM parameters for each frame, the AAM search algorithm (refer

to Section 3.1.3) was applied to every sequence from the LIPS and DEMNOW corpora.

The AAM tracking algorithm works as follows: For the first frame in the sequence,

the image is scanned in rectangular grids from left to right, top to bottom, in order to

locate the face region. The width and height of the rectangular grid is set to the width

and height of the mean shape plus an offset. In each region, the texture is extracted

from the mean shape within the grid and the difference image ∆I between the extracted

texture and the mean image is computed. ∆I will be smaller when scanning near the

face region. The region that gives the lowest ∆I is chosen. The initial shape is set as

the mean shape and the AAM search algorithm is used to refine the AAM parameters

until it matches the face. For subsequent frames in the sequence, the shape is initialised

with the shape of the previous frame. When ∆I becomes too large for a given frame,

which can happen as a result of drift, re-initialisation by the procedure mentioned for

initialising the first frame is carried out.

After tracking, the shape, texture and combined parameters are projected to the

corresponding retained eigenvectors, in order to obtain the AAM parameters for each

frame. Reconstruction of an image is done by first reconstructing the combined shape

and texture PCA coefficients from its AAM parameters. This is followed by projecting

the shape and texture PCA parameters to the data space. Finally, the texture is warped

from the mean shape to the reconstructed shape. A frame reconstructed from AAM

parameters for the LIPS and DEMNOW corpora are shown in Figures 3.5d and 3.6d

respectively.

Appendix B shows one and two standard deviations around the mean for each mode

of variation of AAM parameters both for the LIPS and DEMNOW corpora.
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3.4.1 Visual Normalisation

In this section, the techniques to retain only speech-related content in the visual

domain are described. Different methods have been used for LIPS and DEMNOW due

to the nature of the datasets and the chronology of the visual processing done for each

dataset.

Mean-centering AAM Parameters

The pose variations in the LIPS corpus arise as a result of discrepancies in the

orientation of the speaker with respect to the camera. Thus, there is a fixed pose per

sequence with little or no head movements within that particular sequence. Such pose

variations can be removed by first computing the mean of the parameters for each mode

of variation for a given sequence and then subtracting that mean from the corresponding

parameters, as illustrated in Eqn.3.36, where i is a given mode of variation and c̄i is

the mean of the ith mode of variation across all frames in the sequence.

ci = ci − c̄i (3.36)

Figure 3.7 illustrates the mean AAM trajectories for a given sequence from the

LIPS corpus, before and after normalisation. The parameters in the normalised data

are varying around the zero baseline as opposed to the unnormalised data, where the

baseline is an offset below zero.

Figure 3.7: Mean AAM trajectories for a given LIPS sequence before and after normalisation.
The baseline before and after normalisation is also shown.
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Independent Component Analysis

The DEMNOW dataset contains much more variability than the LIPS corpus.

There are sequences where the face is partially occluded with hair, and within a par-

ticular sequence, there are variations in pose and expression. Thus, the normalisation

technique mentioned for the LIPS corpus does not apply here. This is because the

LIPS corpus contains a lot of variability across sequences but not within a particu-

lar sequence. Such variability can be easily dealt with by subtracting the offset from

the AAM modes of variation. For the DEMNOW corpus, we resorted to a different

normalisation technique using independent component analysis (ICA) [56]. We drew

inspiration from the use of ICA by Cao et al. [41] to separate content from style for

facial motion capture data. In practice, it is possible to use ICA to perform visual

normalisation for the LIPS dataset. However, the experiments for LIPS were carried

out before those of DEMNOW and the mean substraction method was found to work

well for the LIPS dataset.

ICA finds a basis that produces components that are independent, while PCA

produces components that are uncorrelated. Eqn.3.37 shows the decomposition found

by PCA whilst Eqn.3.38 shows the decomposition found by ICA. b̄ is the mean of the

data, Pb are the principal components and c are the PCA parameters. In the case

of ICA, the PCA parameters are further decomposed into ICA parameters u, using a

linear basis A. The ICA basis is computed so as to maximise the independence and

non-Gaussianity of the independent components u.

b = b̄ + Pbc (3.37)

b = b̄ + PbAu (3.38)

We have used the FastICA algorithm [152] to find the independent components from

AAM parameters. After the ICA basis A is found, the ICA parameters u are computed

from the AAM parameters as u = A−1c. By visualising the modes of variation for each

independent component, we identify components pertaining to style and set them to

zero. The AAM PCA parameters are then reconstructed from the ICA parameters,

according to c = Au, giving normalised AAM parameters with uniform pose and

expressive cues removed. Details on the FASTICA algorithm are given in Appendix A.

Figure 3.8 illustrates the mean AAM trajectories for a given sequence from the

DEMNOW corpus before and after normalisation, which illustrates that unlike the

LIPS corpus, there is no fixed offset that can be substracted for normalisation, given

that there are a lot of pose and expression variations within a particular sequence.

However, the normalised AAM parameters still vary around a baseline of zero, just as

for the LIPS dataset.

Appendix C shows one and two standard deviations around the mean for each mode
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Figure 3.8: Mean AAM trajectories for a given DEMNOW sequence before and after normal-
isation.

of variation of ICA parameters for the DEMNOW corpus.

3.5 Audio Processing on Data Corpora

In this work, we aim to investigate the reliability of different speech codecs and

feature extraction methods in visual speech synthesis. In particular, we use the source-

filter codecs LPC and LSF as well as the MFCC and RASTA-PLP features, which are

perceptually-motivated. In order to satisfy the requirement of having a window where

the speech signal is stationary, a window size of 25ms and a hop size of 10ms is typically

used (refer to Section 3.2), resulting in an audio processing frequency of 100Hz. This

results in a mismatch with the visual processing rate of 25 fps or 29.97 fps used for the

LIPS and DEMNOW corpora respectively. As a result, the speech parameters need to

be downsampled to match the visual frame rate.

Theobald and Wilkinson [279] conducted experiments to investigate the effect of

increasing the window size in speech parameterisation to 40 ms in order to match the

visual frame rate of 25 fps. It was found that the larger window size resulted in smoother

speech features that have higher linear correlation with AAM features, as compared to

the correlation between upsampled visual features to match the speech parameterised

at 100 Hz, and the speech parameters. This is because speech parameters at 100 Hz

have more rapidly changing properties compared to the movement of articulators in

the visual domain.
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We have used 20 parameters to represent the LPC, LSF, MFCC and RASTA-PLP

features. This was done in order to have the audio vector dimensionality as being

comparable to the visual vector dimensionality. This was found to be important when

learning our proposed joint probabilistic model of audio and video (refer to Chapter 4

Section 4.3.4).

3.5.1 Synchronisation of Audio and Visual Parameters

In this work, we investigate three approaches to matching the audio features to

visual features. The first approach consists of using an auditory window of 50 ms and

a hop window of 40 ms in order to obtain speech features at 25 Hz for the LIPS corpus.

For the DEMNOW corpus, an auditory window of 50 ms and a hop window of 33 ms

is used in order to obtain the speech features at 29.97 Hz.

The second and third approaches consist of parameterising the speech at 100 Hz

using an auditory window of 25 ms and a hop window of 10 ms and downsampling

to match the visual features using polyphase quadrature filtering [256] and median

filtering [6], respectively. In polyphase quadrature filtering, the input signal is mapped

to the frequency domain into an equidistant number of sub-bands. These sub-bands are

downsampled by a factor equal to the ratio between the visual and audio frequencies by

maintaining the number of samples per second the same, i.e. using critical sampling.

Finally, the signal is mapped back to the time domain. In median filtering, the signal

is divided into windows of length equal to the ratio between the audio and visual

frequencies and the median value in each window is chosen.

3.5.2 Comparing Speech Parameterisation Methods

In this section, we visualise the mean trajectories of the different speech parame-

terisation techniques. For each speech parameterisation, we plot the speech features

processed at the same frequency as the visual frame rate, as well as the features down-

sampled from 100Hz using median filtering and polyphase quadrature filtering. As a

preprocessing step to each of the speech parameterisation techniques, a preemphasis

filter with k = 0.97 (refer to Section 3.2) is applied, as suggested by Young et al. [318].

LPC

The order of the autoregressive process (refer to Section 3.2.2) for LPC was chosen

to be 20, giving a 20-dimensional vector of LPC parameters.

Figures 3.9 and 3.10 show the mean trajectories of the LPC parameters for a se-

quence of the LIPS and DEMNOW corpora respectively, together with the mean tra-

jectories of the downsampled parameters. It can be seen that the LPC parameters
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processed at the visual frame rate are smoother than the downsampled parameters.

This is because using a larger non-stationary window requires a more general autore-

gressive process, thus leading to smoothing of the parameters.

Figure 3.9: Mean LPC trajectories for a given LIPS sequence.

Figure 3.10: Mean LPC trajectories for a given DEMNOW sequence.
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LSF

The 20 LPC parameters are mapped to LSF coefficients using the method described

in Section 3.2.3, giving another 20-dimensional vector of LSF parameters.

Figures 3.11 and 3.12 show the mean trajectories of the LSF parameters for a

sequence of the LIPS and DEMNOW corpora respectively, together with the mean

trajectories of the downsampled parameters. From the visualisations, there is not a

big difference between the trajectories of the speech parameters computed at the visual

frame rate and those of the downsampled parameters. This is because the differences in

LPC coefficients between the different representations are attenuated when converting

to a frequency domain representation for LSF.

Figure 3.11: Mean LSF trajectories for a given LIPS sequence.

MFCC

MFCC features are extracted from the speech data as described in Section 3.2.4.

30 triangular filter-banks, warped according to the Mel scale, are used and 21 cepstral

features are computed. The first ceptral feature, which corresponds to the the 0th-order

coefficient is ignored, because it can be regarded as a collection of average energies of

all frequency bands and contains speaker-specific information [241]. This results in a

20-dimensional vector of MFCC features.

Figures 3.13 and 3.14 show the mean trajectories of the MFCC parameters for a

sequence of the LIPS and DEMNOW corpora respectively, together with the mean

trajectories of the downsampled parameters. Due to the non-stationary window used
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Figure 3.12: Mean LSF trajectories for a given DEMNOW sequence.

for MFCC parameters processed at the visual frame rate, their trajectories are smoother

than downsampled MFCC parameters.

Figure 3.13: Mean MFCC trajectories for a given LIPS sequence.
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Figure 3.14: Mean MFCC trajectories for a given DEMNOW sequence.

RASTA-PLP

We compute RASTA-PLP features, as described in Section 3.2.5, using 30 critical-

band filters warped according to the Bark scale. Just as for the other speech parame-

terisation techniques, 20 RASTA-PLP features are computed.

Figures 3.15 and 3.16 show the mean trajectories of the RASTA-PLP parameters

for a sequence of the LIPS and DEMNOW corpora respectively, together with the mean

trajectories of the downsampled parameters. The RASTA-PLP parameters processed

at the visual frame rate are smoother than those downsampled due to the non-stationary

window used for the former category.

3.5.3 Discussion

From the plots of the speech parameter trajectories, it is shown that the difference

between the downsampled and lower-frequency LPC and LSF parameters is not signifi-

cant except that downsampling results in a more “wavy” pattern, which indicates more

detail preservation at the temporal scale. However, for MFCC and RASTA-PLP, the

parameters obtained using a larger window are much more smoothed out as compared

to the downsampled parameters. This is because a larger auditory window results in

a representation that averages out the non-stationary properties of the signal in that

window. In the next chapter, a probabilistic method for coupling audio and visual pa-

rameters is presented. Specific experiments are conducted to investigate which speech
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Figure 3.15: Mean RASTA-PLP trajectories for a given LIPS sequence.

Figure 3.16: Mean RASTA-PLP trajectories for a given DEMNOW sequence.
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parameterisation method and which audio-visual synchronisation method is most effec-

tive at predicting visual parameters of a talking face. It is known that facial articulators

move at a slower rate than the vocal cords [151]. Thus, in the next chapter, we aim

to investigate whether smooth audio speech features obtained using a non-stationary

window are better predictors of visual speech as compared to audio speech processed

using a stationary window and downsampled to match the visual rate.

3.6 Chapter Summary

This chapter presented a review of different facial modelling and speech processing

methods. It then dealt with a description of the data corpora used in this work as well

as techniques for extracting audio and visual parameters in order that they are both

synchronised with each other. The active appearance model (AAM) has been used for

extracting visual features. These parameters need to be normalised in order to retain

only speech-related content whilst excluding style-related content such as pose varia-

tions and expressions. We proposed two techniques for visual normalisation, namely

mean-centering of AAM parameters and style-content separation using Independent

Component Analysis (ICA). The applicability of these two methods depend whether

the variations in visual data occur within or between sequences in the two data corpora.

For audio parameterisation, we compute LPC, LSF, MFCC and RASTA-PLP param-

eters. The parameters are computed at 100 Hz and then downsampled to match the

visual frame rate using polyphase quadrature filtering and median filtering. We also

compute speech features to match the visual frame rate for each corpora by varying the

window size and hop size. It is found from plots of the speech parameter trajectories,

that features computed from the latter method are smoother but might potentially

discard some salient features.



Chapter 4

State-Space Model for

Audio-visual Mapping

In the field of observation, chance

favours only the prepared mind.

Louis Pasteur

In this chapter, we present a non-linear state-space model that can be used to jointly

model the audio and visual data of a talking face. Using the probabilistic graphical

model framework, various latent variable models are presented, highlighting their pre-

vious application to visual speech synthesis. This is followed by a treatment of some

shared latent variable models that can couple two data streams through a shared la-

tent space. We then present our shared latent variable model using Gaussian processes,

giving rise to the shared Gaussian process dynamical model (SGPDM). We show how

the SGPDM can be used for audio-visual mapping and present several experiments to

optimise the free parameters of the model. Finally, experiments are done to investigate

which audio parameterisation method and which audio-visual synchronisation method

best predict visual from audio parameters using the SGPDM.

A preliminary version of some of the work in this chapter appeared in [70].

4.1 Probabilistic Graphical Models

Probabilistic graphical models use a graph-based representation as the basis for

compactly encoding a complex distribution over a high-dimensional space [171]. In this

work, they are used to represent the generative model of speech.

In a graphical model, a vertex or node represents the variables and the arcs or edges

represent probabilistic dependencies between the variables. There are two main types

of graphical models: directed graphical models, also known as Bayesian networks, and

84
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undirected graphical models, also known as Markov random fields. Bayesian networks

are useful for representing causal relationships between random variables and thus

can be used to model generative processes. Markov random fields are applicable to

the representation of soft constraints between variables [22]. Since we deal with the

former case, we limit ourselves to the use of directed graphs. In Bayesian networks, the

presence of a link from variable X to Y signifies a conditional dependency between Y

and X. The lack of links is more useful because it translates to conditional independence

properties.

The notation used is as follows: circles represent continuous variables and squares

represent discrete variables. Observed variables are shaded and hidden variables are

unshaded. This is illustrated in Figure 4.1.

Figure 4.1: Notation used for graphical model: circles - continuous variables, squares - discrete
variables, shaded - observed variables, unshaded - hidden variables.

The likelihood of the model shown in Figure 4.1 is given by:

p(Y,X,γ,π) = p(Y|X,π)p(γ|X,π)p(X|π)p(π) (4.1)

If there were no link from X to Y, the likelihood would become:

p(Y,X,γ,π) = p(Y|π)p(γ|X,π)p(X|π)p(π) (4.2)

Thus the absence of links conveys information about the conditional independence

properties in the model.

The formulation of the likelihood allows us to train the model by maximising the

likelihood with respect to the model parameters.

Graphical models allow us to do inference about the hidden variables given some

observations using the sum and product rules of probability. Inference usually involves

marginalising over some variables we are not interested in, which involves summations

in the discrete case and integrations in the continuous case. By rearranging the equa-

tions involved in marginalisation and taking into account the ways the distribution

factorises, we can make the computations much more efficient than relying on a naive
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variable-elimination method. By exploiting the graphical model structure, these effi-

cient inference algorithms can be formulated as message passing between nodes [22].

The generalised method for performing inference in graphical models is called the sum-

product algorithm [173], which relies on converting the graphical model to a factor

graph. Belief propagation is a more general algorithm for any type of graphical model

including those with loops [315]. These methods provide a framework to specify any

graphical model and have a generalised way of performing inference. However, the

inference steps for specific graphical models can also be derived independently using

the sum-product algorithm.

4.2 Latent Variable Models

The probabilistic methods adopted in this work can be broadly categorised as latent

variable models because they involve the discovery of the underlying structure of the

data, which can in some cases be represented as the evolution of a state-space. The

states are continuous in our case but can also be discrete. In order to motivate the

state-space models proposed in this thesis, we present other latent variable models that

have been previously applied to visual speech synthesis.

4.2.1 Linear Subspace Models

Although linear subspace models have not been directly applied to visual speech

synthesis, they have been used to initialise the latent space in our proposed joint prob-

abilistic models of audio and video. They thus deserve a treatment of their own.

In linear subspace models, the latent space X = {xn}Nn=1 ∈ Rd×N is related to mean-

centered observed data Y = {yn}Nn=1 ∈ RD×N through a linear mapping W ∈ Rd×D

that is corruped by noise:

Y = WX + µ+ ε (4.3)

where µ allows having non-zero means in the model and ε is a noise term.

The model given by Eqn.4.3 represents a reformulation of principal component

analysis (PCA) as a latent variable model and has been called probabilistic principal

component analysis (PPCA) [285] in the case where the noise follows an isotropic

Gaussian distribution. The graphical model for PPCA is shown in Figure 4.2.

The likelihood of PPCA is given by:

p(Y,X|W,µ, σ2) = p(Y|X,W,µ, σ2)p(X) (4.4)

where p(Y|X,W,µ, σ2) ∼ N (WX +µ, σ2I) and p(X) is a prior distribution on X.

By placing a Gaussian prior over the latent points X and marginalising the latent

points, the mapping W as well as µ and σ2 can be solved for in closed-form using
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maximum-likelihood as shown by Tipping and Bishop [285].

In this work, PPCA is one of the methods used to initialise latent spaces for our

proposed non-linear shared latent variable models (refer to Section 4.5.1).

Figure 4.2: Graphical model for probabilistic principal component analysis and Gaussian
process latent variable model.

4.2.2 Gaussian Mixture Model

In a Gaussian mixture model (GMM), the latent states π ∈ {1, . . .K} are discrete

and the observed variable Y is a mixture of Gaussian distributions:

p(Y,π|m,µ,Σ) =
N∏
n=1

K∑
k=1

mkN (yn|µk,Σk) (4.5)

where mk is the mixing coefficient for state k and µk,Σk are the means and covari-

ances of the Gaussians for state k. GMMs can be used to segment data into clusters

of Gaussian distributions. The graphical model of the GMM is shown in Figure 4.3.

Figure 4.3: Graphical model for Gaussian mixture model.

Training

The aim of GMM training is to estimate the parameters of the Gaussian clusters

that constitute the GMM as well as the mixing coefficients. The parameters of the

GMM are estimated by maximum-likelihood (ML) using the expectation-maximisation

(EM) algorithm [75]. In the E-step, the probability of data point yn belonging to state

k is computed as γnk, which is also known as the occupancy matrix.
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γnk =
mkN (yn|µk,Σk)∑K
j=1mkN (yn|µj ,Σj)

(4.6)

In the M-step, the GMM parameters, µk, Σk and mk are re-estimated based on

the occupancy matrix calculated. The E and M steps are repeated until the likelihood,

given by Eqn.4.5 converges.

Inference

For inference, each point needs to be assigned to a state, corresponding to the

cluster index. This is done by maximising γn, which is the probability of data point

yn given the states, with respect to k.

πn = arg max
k

(γn) (4.7)

where γn = p(yn|π).

Application to Visual Speech Synthesis

GMMs have been used for speech animation in the work of Ezzat et al. [105] and

Ezzat [104]. The clusters corresponded to phonemes obtained by performing forced

phonetic alignment on audio data. As a result, EM [75] was not necessary for training

but instead, the means and covariances of each phonetic state were estimated from

the visual data, represented by multidimensional morphable model (MMM) [160] pa-

rameters. Because the GMM does not model dynamics between successive frames, an

interpolation algorithm was proposed to generate smooth animation parameters from

a stream of phonetic labels corresponding to a test sequence. The algorithm was based

on the minimisation of an objective function consisting of a target term and a regular-

isation term to ensure smoothness. The objective function is given by:

E = (Y − µ)TDΣ−1D(Y − µ) + λYTWTWY (4.8)

where λ is the coefficient of the regularising term, D is duration-weighting matrix for

emphasising shorter phonemes and de-emphasising longer ones, W is a band-diagonal

matrix to ensure smoothness, µ is a concatenated vector of the means of all phonemes

and Σ is a block-diagonal matrix of the covariance for all the phonemes and Y consists

of the shape or appearance parameters of the MMM, which were treated separately.

The proposed method has been shown to generate very realistic-looking animations

and attracted a lot of media attention. However, one of its limitations is that some

aspects of the model have to be adjusted to lead to acceptable results. For example,

if the means and covariances of visual parameters for each phoneme are computed

automatically, the resulting animations are under-articulated. Instead, these have to

be adjusted using gradient descent learning [21]. Moreover, the regularisation term λ
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and the order of the smoothness term W (number of times it is multiplied to itself)

need to be optimised through cross-validation.

More recently, another application of GMMs to visual speech synthesis was proposed

by Zhuang et al. [326]. An audio-visual joint GMM was trained on a concatenation

of audio and visual data. A minimum converted trajectory error (MCTE) approach

was then proposed to address the issue of under-articulation. The MCTE method

uses a generalised probabilistic descent algorithm to minimise the conversion error of

the visual parameters according to the input speech. This model, however, has no

explicit dynamical constraints but instead uses dynamical speech features to address

coarticulation. Hidden Markov models are one way to include dynamical information

in the generative model.

4.2.3 Hidden Markov Model

In terms of its graphical representation, the hidden Markov model (HMM) is sim-

ilar to the GMM with the exception that there is a dynamical mapping from the

previous state to the next. This dynamical mapping is given in the form of transition

probabilities, p(πt|πt−1,A). The transition probability matrix A stores the transition

probabilities from each state to each other state. The likelihood of the model is given

by:

p(Y,π|s,m,µ,Σ,A) = p(π1|s)

[ T∏
t=2

p(πt|πt−1,A)

] T∏
t=1

K∑
k=1

mkN (yt|µk,Σk) (4.9)

where sk is the starting probability for state k. The graphical model for a HMM is

shown in Figure 4.4.

Figure 4.4: Graphical model for a hidden Markov model.

Training

The parameters of the HMM are also estimated using the EM algorithm [75]. The

E-step involves the computation of γtk and ξj,tk. ξj,tk is the probability of data point

yt−1 being in state j and data point yt being in state k. γtk and ξj,tk are computed

using the forward-backward algorithm [248], which is derived from the sum-product
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algorithm [173]. In the M-step, the parameters of the HMM are re-estimated based on

the calculated values for γtk and ξj,tk. The E and M steps are repeated until convergence

of the likelihood given by Eqn.4.9.

Inference

For inferring the states π∗ = {π∗t }Tt=1 given a sequence of observation Ŷ = {ŷt}Tt=1,

a dynamic programming algorithm called the Viterbi algorithm [293] is used, which

optimises the states from the joint likelihood between the observations and the states:

π∗ = arg max
π̂

p(Ŷ, π̂) (4.10)

The Viterbi algorithm can be derived by replacing the sum in the sum-product

algorithm with a maximisation, leading to the max-sum algorithm [22]. This can be

solved efficiently using dynamic programming comprising two stages. The first consists

of a forward pass through the sequence where for each observation ŷt and every possible

state π̂t, the probability of the state sequence that ends in π̂t and maximises the joint

probability of the state and observation sequences up to time t, is computed. The

state at time t− 1 that maximises the probability to each state at time t is stored. In

the second stage, a backtracking step is done when the last time frame T is reached.

Starting with the end state π∗T that gives the highest probability, the states along the

path to the first state π∗1 are traced back, giving the optimal path through the states.

The steps of the Viterbi algorithm are summarised in Algorithm 2.

Algorithm 2 The Viterbi algorithm for the HMM

Input: Test sequence Ŷ = {ŷt}Tt=1

Output: Inferred states π∗ = {π∗t }Tt=1

Initialisation:
Q1(π̂1)← p(π̂1)p(ŷ1|π̂1), π̂1 ∈ {1 . . .K}
S1(π̂1)← 0
Iteration:
Qt(π̂t)← p(ŷt|π̂t) maxπ̂t−1

(
Qt−1(π̂t−1)p(π̂t|π̂t−1)

)
, π̂t ∈ {1 . . .K}, 2 < t ≤ T

St−1(π̂t−1)← arg maxπ̂t−1

(
Qt−1(π̂t−1)p(π̂t|π̂t−1)

)
, π̂t ∈ {1 . . .K}, 2 < t ≤ T

Termination
π∗T ← arg maxST ST (π̂T )
Backtracking
π∗t ← Qt+1(π̂t+1), t = T − 1, . . . , 1

Application to Visual Speech Synthesis

Brand [32] applied HMMs to speech animation. Facial features were represented by

facial landmarks tracked on the face of the speaker. Audio data was represented as a

combination of LPC and RASTA-PLP features. An entropic HMM [33], which includes
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a prior for model sparsity was trained using maximum-a-posteriori (MAP) estimation

on training data comprising of facial features and their first-order derivatives. The

Gaussian clusters underlying the HMM were then remapped to the audio data by

using the occupancy matrix γ computed from the visual data, to reestimate the means

and covariances of each cluster. Taking Y = {yt}Tt=1 to be the audio features and

Z = {zt}Tt=1 to be the visual features. The means and variances of the audio clusters,

µy,kandΣy,k, respectively, are estimated as follows:

µy,k =

∑T
t=1 γtkyt∑T
t=1 γtk

(4.11)

Σy,k =

∑T
t=1 γtk(yt − µk)(yt − µk)T∑T

t=1 γtk
(4.12)

The re-mapping is based on the assumption that the HMM model reflects the under-

lying structure of speech, which is catered for by using the entropic priors that maximise

the model’s compactness. The remapped audio HMM can be used to infer the states for

novel audio data using the Viterbi algorithm. Because the observations in each state of

a HMM are conditionally independent from each other, there is no model of local dy-

namics, and thus a trajectory algorithm is necessary for synthesis. The state indices are

used in conjunction with the visual HMM to generate a smooth trajectory in the space

of visual parameters using an “inverse Viterbi” algorithm. The algorithm is derived in

the ML sense by differentiating the log likelihood with respect to the visual features

(and first-order derivatives), zt, and setting it to zero. This results in a block-banded

system of linear equations which can be solved in closed-form using LU-decomposition

[124]. The approach described above has two main limitations. The first one is that

the remapping of the visual HMM to the audio space assumes that both the visual and

audio parameters have the same underlying structure. Using entropic HMMs [33] helps

to enforce this constraint because sparsity of the models are ensured. However, from

our experiments, it was found that the re-mapping does not always work as expected

with a lot of the underlying clusters overlapping with each other when remapped to the

audio space. The second limitation is that the trajectory synthesis for mapping cluster

indices to continuous visual trajectories tends to oversmooth the animation, leading to

under-articulation.

Another limitation of HMMs is that they exhibit state conditional independence,

i.e. the observations at time t are conditionally independent from previous observations

and previous states given the current state. This property makes HMMs suitable for

performing recognition from data that exhibits continuous time-series evolution, for

e.g. speech recognition. However, they are not ideal for synthesis. A trajectory HMM

[325], which explicitly encodes the relationship between static and dynamic parameters



CHAPTER 4. STATE-SPACE MODEL 92

has been proposed when synthesis is required. The trajectory HMM is the state-

of-the-art method in text-to-speech synthesis (TTS) [324]. Recently, there has been

increased interest in adopting a similar approach to visual speech synthesis [125, 140,

142, 10]. The main disadvantage of HMM-based speech synthesis is that the audio or

visual parameters generated are over-smoothed, resulting in under-articulation [262].

Wang et al. [304] addressed this problem by proposing a Minimum Generation Error

(MGE) HMM-based visual speech synthesis approach. Context-dependent HMMs were

trained by first using decision tree clustering on fixed phonetic contexts, in order to

cater for sparsity problem when having contexts of fixed length. The MGE approach

addresses the under-articulation problem in HMM-based speech synthesis by adapting

its parameters such that speech trajectories generated by the HMM match ground truth

trajectories more closely. This approach was used in conjunction with sample-based

visual speech synthesis by guiding unit selection using the generated trajectory [302]

and won the LIPS visual speech synthesis challenge [281]. In this thesis, we propose an

alternative way to deal with the under-articulation problem by using non-parametric

models of Machine Learning which explicitly model speech dynamics. However, we limit

ourselves to learning-based approaches and attempt to solve research problems related

to audio-visual mapping at the expense of having lower fidelity animations than can be

obtained using sample-based approaches.

4.2.4 Linear Dynamical System

The linear dynamical system (LDS) is more appropriate for synthesis because the

states are continuous and there is a dynamical mapping from the previous state to the

next. This gives rise to state-space equations that generate the observed data from

the states. The LDS has a similar graphical model to the HMM (Figure 4.5) with

the difference that the latent states are continuous rather than discrete. The LDS is

suitable in applications where a hidden process generates a state sequence, of which a

transformed representation is observable. For example, in the case of a moving robot,

the hidden process is the locomotion of the robot actuators and the observations consist

of a stream of images. The LDS can be used to track the robot coordinates by inferring

the hidden state sequence from the set of images.

The LDS is a generative model in which the observations {yt}Tt=1 are generated

from the states {xt}Tt=1 through the following state-space equations:

x1 = µ+ u (4.13)

xt = Axt−1 + ν + vt (4.14)

yt = Bxt + wt (4.15)

where A is the prediction matrix that maps previous states to future states, B is
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Figure 4.5: Graphical model for linear dynamical system and Gaussian process dynamical
model.

the observation matrix that transforms latent states to observations, µ and ν are fixed

offsets for the initial and subsequent states respectively. u, vt and wt are the noise

parameters following Gaussian distributions as given below:

u ∼ N (0,Λ) (4.16)

vt ∼ N (0,Σ) (4.17)

wt ∼ N (0,Γ) (4.18)

The LDS parameters are θ = {A,B,Σ,Γ,Λ,µ,ν}. The likelihood of the LDS is

given by:

p(Y,X|θ) = p(x1|µ,Λ)
T∏
t=2

p(xt|xt−1,A,Σ,ν)p(yt|xt,B,Γ) (4.19)

Training

The aim of LDS training is to estimate the model parameters, θ. These parame-

ters can be estimated using ML through the EM-algorithm [75]. In the E-step, local

posterior marginals for the latent variables need to be determined, which can be done

using the sum-product algorithm [173]. In the M-step, the parameters are re-estimated

using the computed marginals. The E and M steps are repeated until convergence of

the likelihood as given by Eqn.4.19.

Inference

The Kalman filter algorithm [163] is used for inference. The Kalman filter consists

of two steps: predict and update. In the predict step, the current estimated state, x̂t

is used to predict the next state, x̂t+1 using the prediction matrix A. This is followed

by using the observation matrix B to obtain ŷt+1. In the update step, the actual

observation yt+1 is used to correct the estimated state x̂t+1.
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Application to Visual Speech Synthesis

The LDS has been applied to visual speech synthesis in [258], where the trajectories

of visual parameters were represented as a linear transformation of a state-space con-

sist of the concatenation of a deterministic and a stochastic audio speech component.

The deterministic speech component can be viewed as the speaker-independent part

of the audio speech whilst the stochastic speech component was used to cater for the

subtleties associated with a given speaker. Both the deterministic process for speech

parameters and the stochastic process for non-speech related parameters was learnt

automatically from the training data. The parameters of the deterministic component

were estimated using a subspace identification procedure, whereas the parameters of

the stochastic component were estimated using a dynamical independent component

analysis (ICA) algorithm. For synthesis, the audio speech parameters were used as

input to the state-space equations and the system was evolved forward in time before

being mapped to the visual space to obtain the corresponding synthetic facial motion

trajectories. This evolution of the state-space involved feeding the speech parameters

to the deterministic component and drawing random samples from the stochastic com-

ponent. This method assumes that the speaker-independent part of speech is linear

and the non-linearities associated with speaker-specific characteristics were modelled

using ICA with a non-Gaussian distribution. However, it also assumes that the visual

parameters are related to the speech parameters through a linear transformation, which

can be highly approximate and thus reduce the quality of the synthesised visual speech.

A better approach at modelling both the audio and visual components is to treat both

components as being generated from a shared latent space. This is the approach we

adopt and will be discussed in Section 4.3.

4.2.5 Gaussian Process Dynamical Model

The latent variable models discussed so far are parametric models, which means that

the model can be described using a compact set of parameters and the training data can

be discarded when making predictions on test data. Another family of latent variable

models make use of the training data when extrapolating on test data and are referred to

as non-parametric models. Although such models are more expensive in time and space

complexity both for training and prediction, they can offer a richer representation of

the graphical model and yield more accurate predictions. The Gaussian process latent

variable model (GPLVM) [177] is obtained by taking a dual approach to probabilistic

PCA [285], where the prior is placed over the mapping from the latent space to the

data space, followed by marginalising the mapping and optimising the latent points.

By using a Gaussian process (GP) [251] prior over the mapping, non-linear mappings

can be incorporated. The Gaussian process dynamical model (GPDM) [299] extends
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the GPLVM by having a non-linear dynamics mapping from one latent point to the

next and thus has similarities with the linear dynamical system (LDS), except that the

mappings are non-linear GPs. The GPDM extended to two observation spaces results

in the shared Gaussian process dynamical model (SGPDM) [263] and is the approach

we adopt to jointly model audio and visual parameters. Gaussian processes (GPs),

which form the basis of the models in question, are first explored before delving into

the GPLVM and then the GPDM.

Gaussian Processes

A Gaussian process (GP) is a generalisation of a Gaussian distribution on finite

random variables to random functions represented by infinite index sets. By definition,

a GP is a collection of random variables, any finite number of which have a joint

Gaussian distribution [251]. A GP is completely specified by its mean function and

covariance function:

f(x) ∼ GP(m(x), k(x,x′)) (4.20)

where the mean function and covariance function are defined as:

m(x) = E[f(x)] (4.21)

k(x,x′) = E[f(x−m(x))f(x′ −m(x′))] (4.22)

The covariance function characterises how the GP varies about its mean function

and represents how the outputs vary as a function of the inputs. The class of valid

covariance functions is the same as the class of Mercer kernels [210] and thus, the

covariance function is usually referred to as the kernel. The squared exponential or

radial basis function (RBF) kernel is widely used in the GP literature [251, 266, 250].

The covariance function for the RBF kernel is given by:

k(xi,xj) = α exp
(
− γ

2
(xi − xj)

T (xi − xj)
)

(4.23)

where α is the variance of the kernel and γ is its scale or inverse width.

In practical applications, we do not have any prior knowledge about the mean

function m(x), so it is conveniently set to zero.

GPs provide an elegant framework for regression that does not need to have any

parametric assumptions about the function that is to be fitted to the data. Given a

set of univariate output points, y = {yn}Nn=1 and a set of multivariate input points,

X = {xn}Nn=1, we want to fit a function f to the data so that:

yn = f(xn) + ε ε ∼ N (0, β−1) (4.24)

where β is the precision or inverse variance.

A GP prior is placed on f with zero mean function and covariance function given
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by the RBF kernel. By incorporating the noise term in Eqn.4.24 in the RBF kernel,

the following kernel is obtained:

k(xi,xj) = α exp
(
− γ

2
(xi − xj)

T (xi − xj)
)

+ β−1δi,j (4.25)

where δi,j is the Kronecker delta between i and j.

A marginal likelihood is formulated by integrating over f :

p(y|X,Φ) =

∫
p(y|f)p(f |X,Φ)df (4.26)

where Φ are the parameters of the GP, which in the case of the RBF kernel include

the hyperparameters of the kernel and the variance of the noise term: Φ = [α, γ, β]. The

GP parameters are obtained using maximum likelihood, typically using gradient-based

optimisation methods such as conjugate gradient optimisation [124].

Φ = arg max
Φ

p(y|X,Φ) (4.27)

Once the regression model has been learnt, it can be used to predict function values

y∗ at previous unseen input points x∗. The predictive distribution of y∗ is a Gaussian

distribution:

p(y∗|x∗,X,y) ∼ N (µ∗, σ
2
∗) (4.28)

The parameters of the Gaussian distribution can be obtained from the joint distri-

bution between y and y∗.[
y

y∗

]
∼

(
0,

[
k(X,X) + β−1I k(X,x∗)

k(x∗,X) k(x∗,x∗) + β−1

])
(4.29)

Taking K = k(X,X) and k = k(X,x∗) = k(x∗,X)T , the mean and variance of the

predictive distribution can be derived from Eqn.4.29 by conditioning the joint distri-

bution on the training data. The following are the resulting mean and variance of the

predictive distribution on test input points.

µ∗ = kT (K + β−1I)−1y (4.30)

σ∗ = k(x∗,x∗)− kT (K + β−1)−1k (4.31)

In practical applications, however, the output variables would be multivariate, i.e.

comprising of vector-valued data, Y = {yn}Nn=1. The above GP framework can be mod-

ified slightly to accommodate multivariate outputs. Instead of having an independent

GP for each output, which is computationally very expensive, the output channels can

be assumed to be identically distributed, such that the likelihood function is modelled

as a product of independent GPs with a shared covariance function (shared hyperpa-

rameters Φ):

p(Y|X,Φ) =

D∏
d=1

p(y:,d|X,Φ) (4.32)
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The predictive distribution, follows a normal distribution given by:

p(y∗|x∗,X,Y) ∼ N (µ∗, σ
2
∗I) (4.33)

where µ∗ = kT (K + β−1I)−1Y.

Gaussian Process Latent Variable Model

The Gaussian process latent variable model (GPLVM) is a non-linear dimensionality

reduction technique proposed by Lawrence [177, 178], and it has the same graphical

model as probabilistic PCA (Figure 4.2). Given some observed mean-centered data,

Y = {yn}Nn=1 ∈ RN×D, the goal is to obtain the latent points, X = {xn}Nn=1 ∈ RN×d,
where d < D. The relationship between the data points and the latent points is the

same as for GP regression as given by Eqn.4.24. Just like for GP regression, a GP prior

is placed over the mapping f , which leads to the likelihood function of Eqn.4.32. By

taking the log of the likelihood equation, we obtain the following log-likelihood, which

is the sum of D log likelihoods:

ln p(Y|X,Φ) = −DN
2

ln (2π)− D

2
ln |K| − 1

2
tr(K−1YYT ) (4.34)

By fixing d and choosing an appropriate initialisation for the latent points X and

the hyperparameters Φ, training the GPLVM involves maximising the log likelihood of

Eqn.4.34:

{X,Φ} = arg max
X,Φ

ln p(Y|X,Φ) (4.35)

The optimisation is performed using scaled conjugate gradient (SCG) [124] descent

and each iteration involves an inversion of the kernel matrix K, which makes the com-

putational complexity O(N3) in the number of data points N . This makes the GPLVM

intractable for large datasets. Various sparsification methods have been proposed to

deal with this limitation in the GP regression framework, with a unified view presented

by Quiñonero-Candela and Rasmussen [245]. These have been incorporated in Neil

Lawrence’s GP toolbox1. In Section 4.5.1, we compare the effectiveness of the different

sparse approximation methods in the application of shared Gaussian process dynamical

models (SGPDMs) to visual speech synthesis. The three main sparse approximation

techniques that have been incorporated in the GPLVM are now described.

Sparse Approximations

The sparse approximations [179] involve augmenting the function values at the

training points, F ∈ RN×D, and the function values at the test points, F∗ ∈ R∞×D,

with a set of k � N inducing variables, also known as active points, U∗ ∈ Rk×D. Given

1http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/gpsoftware.html

http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/gpsoftware.html
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that the likelihood of GPs factorises across columns, the training, test and inducing

variables can be treated separately for each data dimension, such that: f ∈ RN×1,
f∗ ∈ R∞×1 and u∗ ∈ Rk×1. The joint distribution between the training and test

function values becomes:

p(f , f∗) =

∫
p(f , f∗|u)p(u) (4.36)

where a GP prior is placed over the inducing variables:

p(u) ∼ GP(0,Ku,u) (4.37)

The unification framework of Quiñonero-Candela and Rasmussen [245] assumes

a conditional independence between the training and test function values, given the

inducing variables:

p(f , f∗,u) = p(f |u)p(f∗|u)p(u) (4.38)

where the training conditional is given by:

p(f |u) ∼ GP(Kf ,uK−1
u,uu,Kf ,f −K−1

u,uKu,f ) (4.39)

The various sparse approximation methods use different approximations to the

training conditional in order to make training and inference tractable.

The deterministic training conditional (DTC) uses a deterministic approximation

to the training conditional where the GP is given by only a mean function with variance

set to zero.

The fully independent training conditional (FITC) uses a conditional independence

assumption for the training conditional with a diagonal covariance.

The partially independent training conditional (PITC) uses a conditional indepen-

dence assumption for the training conditional with a block diagonal covariance.

The number of inducing variables, k, is set manually and is commonly set to 100

[179].

Scaled GPLVM

Grochow et al. [127] proposed a scaled GPLVM, where a scaling parameter wd is

applied to each dimension d of the observed data, so as to balance the contribution of

each output dimension in the likelihood function. This is particularly useful if some

dimensions have large variances, as compared to others. When dealing with human

motion capture data as in [127], some dimensions represent the position of the avatar

whilst others represent the joint angles. To balance the weight of each representation in

the likelihood function, scaling is applied to the output dimensions. The log-likelihood

function then becomes:
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ln p(Y|X,Φ) = −DN
2

ln (2π)− D

2
ln |K| − 1

2

D∑
d=1

w2
d(Y

T
d K−1Yd) (4.40)

Initialisation

The optimisation of Eqn.4.35 is ill-posed because infinitely many solutions exist if

there are no constraints on X and Φ. In practice, the training algorithm has to proceed

with a suitable initialisation of both the latent points and the kernel hyperparameters.

Initialisation of the kernel hyperparameters is a matter of guesswork in the original

GPLVM and some researchers have dealt with this by placing non-informative priors on

both the kernel hyperparameters and the latent points [290]. In the original formulation

of the GPLVM, PPCA was used to initialise the latent space but for some datasets that

have highly non-linear structure, PPCA initialisation leads to the GPLVM training

algorithm becoming stuck in local minima that does not recover the true embedded

space [178]. In such cases, spectral dimensionality reduction techniques such as Isomap

[274] can be used for initialisation.

Back-constraints

The GPLVM adopts a generative approach to dimensionality reduction because the

mapping f is from the latent space to the data space. This approach ensures that

locality in the latent space is preserved in the data space. Spectral dimensionality re-

duction techniques such as multi-dimensional scaling (MDS) [27], Isomap [274], locally

linear embedding (LLE) [257] etc., compute a mapping from the data space to the

latent space, which ensures that locality in the data space is preserved in the latent

space. Such locality is important if the latent space needs to be clustered or for clas-

sification, requiring different classes be separable on the latent space. Lawrence and

Quiñonero-Candela [180] introduced the back-constrained GPLVM that enforces the

distance preservation constraint of spectral methods by having a parametric mapping

b from the data space to the latent space:

yn = b(xn,θ) (4.41)

where θ are the parameters of the parametric mapping, which can be the weights of

a multi-layer perceptron (MLP) [21], the hyperparameters of a kernel-based regression

(KBR) [22] model, or any alternative mapping.

Dynamics

The GPLVM can be temporally constrained by introducing a dynamical mapping

on the latent space through an autoregressive function mapping h:

xt = h(xt−1) + εdyn (4.42)
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The mapping h can be a GP and the resulting model is called a Gaussian process

dynamical model (GPDM), introduced by Wang et al. [299].

The log-likelihood function for the autoregressive dynamics is given by:

ln p(X|Φdyn) = ln (p(x1))−
(N − 1)d

2
ln (2π)− d

2
|KX | −

1

2
tr(K−1X XoutX

T
out) (4.43)

where d denotes the dimensionality of the latent space, X. Xin = {xn}N−1n=1 , Xout =

{xn}Nn=2, KX is an RBF kernel matrix constructed from Xin, and p(x1) is an isotropic

Gaussian prior.

A “RBF+linear” kernel [299] is used for the dynamics GP, so as to cater for subse-

quences of behaviour that are approximately linear.

kX(xi,xj) = α1 exp
(
− γ

2
(xi − xj)

T (xi − xj)
)

+ α2x
T
i xj + β−1δi,j (4.44)

The log-likelihood of the GPDM is a sum of the log-likelihood of the GPLVM and

that of the dynamics GP:

ln p(Y,X|Φ,Φdyn) = ln p(Y|X,Φ) + ln p(X|Φdyn) (4.45)

Urtasun et al. [290] introduced an exponent to the likelihood of the dynamics GP in

order to balance the weight of the GPLVM and dynamics likelihoods. In log space, this

exponent becomes a constant that is multiplied to the log-likelihood of the dynamics

GP.

ln p(Y,X|Φ,Φdyn) = ln p(Y|X,Φ) + λdyn ln p(X|Φdyn) (4.46)

where λdyn = D
d . This balances the log-likelihood of the dynamics GP with that of

the GPLVM by compensating for the difference in the dimensionality between Y and

X, thus giving equal importance to each term in the log-likelihood. Urtasun et al. [290]

has shown that this gives smoother latent spaces for human motion capture data.

The dynamical model can be modified slightly to account for multiple sequences

{Yn}Nn=1 with associated latent sequences {Xn}Nn=1, as demonstrated by Urtasun et al.

[290] and Wang et al. [300]. This is done by concatenating together all the frames for

each sequence within the GP likelihood (Eqn.4.34) for the observation GP mapping f .

For the dynamical mapping h, the first frame of each sequence from Xout is omitted and

the last frame for each sequence is omitted from the kernel matrix KX in Eqn.4.43. A

sequence delimiter vector is used to store the indices of the last frame of each sequence,

to be used by the GPDM training algorithm to identify the sequence boundaries from

the training data.

Training

Training the GPLVM is done by optimising the log-likelihood function in Eqn.4.34

with respect to the latent points and the hyperparameters of the GP. The data needs

to be mean-centered first, such that Yd = {yn,d − µd}Nn=1, where µd =
∑N
n=1 yn,d
N .
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In case a back-constraint is used, the optimisation is done for the parameters of the

parametric mapping that maps data points to latent points, without needing to optimise

the latent points directly, because the latent points are a function of the data points. If

a dynamical model is used, the likelihood function in Eqn.4.45 is optimised with respect

to the hyperparameters of the GPLVM and dynamics GPs, and the latent points.

If the latent space is 2D or 3D, a visualisation can be obtained for the latent points

as well as the likelihood space around the latent points [177]. Brighter regions mean

that the GP predictions at those regions are very certain, having low variance, and the

opposite is true for darker regions.

Inference

Given a sequence of data points, Ŷ = {ŷ}Tt=1, a learnt GPDM model can be used to

infer the latent points, X̂ = {x̂}Tt=1. This is done by optimising the joint log-likelihood

for a sequence of data points and their latent points under the dynamical model, with

the hyperparameters of the GPLVM and dynamics GP as well as the training data and

latent points given:

X∗ = arg max
X̂

ln p(Ŷ, X̂|Y,X,Φ,Φdyn) (4.47)

where X∗ are the optimised latent points. The optimisation is done using SCG,

similar as for training.

Experiments on Audio and Visual Data

We trained 2D GPLVM models on AAM and MFCC data for a sequence of the

DEMNOW corpus. Figures 4.6a and 4.6b show the latent spaces for MFCC and AAM

data respectively. The left plots show the audio latent spaces with different colours

and symbols used for different phoneme labels. The right plots, on the other hand,

show visual latent spaces with viseme labels, obtained from phoneme labels according

to Table 2.1. The phonemes and visemes tend to cluster on the latent space, as can

be seen in the figures. Figures 4.6c and 4.6d show the latent spaces when an MLP

back-constraint has been used. Using back-constraints tends to move similar phonemes

and visemes closer on the latent space, leading to further clustering. Figures 4.6e and

4.6f show the latent spaces when using a GPDM model with autoregressive dynamics.

In the plots, lines are used to join points that are adjacent to each other temporally.

Figures 4.6g and 4.6h show the latent spaces when using a GPDM model together with

MLP back-constraints.

From these plots, it can be seen that training a dynamical model on audio data

leads to a lot of jumps in the space, mostly because of the highly non-linear structure

of speech. Thus, the dynamical model cannot constrain spatially dissimilar points to



CHAPTER 4. STATE-SPACE MODEL 102

be close on the latent space, even though they are temporally close. For the visual

space, however, AAM parameters tend to have a smoother variation through time, due

to locally linear substructures, and thus, the dynamical model results in a space that

better preserves temporal relationships. Using back-constraints tends to enforce spatial

locality by moving similar phonemes and visemes closer on the latent space. For the

audio space, points that are temporally close may not be spatially close and vice-versa.

This can result in further jumps in the latent space from one point to the next. For

the visual space, spatial and temporal locality seem to match, resulting in a smoother

path through the latent points when back-constraints and dynamics are both used.

4.3 Shared Latent Variable Models

The latent variable models considered in the previous section are for a single multi-

variate variable. In our case, we have two representations of human speech, namely the

audio and visual parameters. We are thus interested in learning shared latent variable

models, whereby the audio and visual parameters are generated from a shared latent

space. In this section, we describe two parametric latent variable models, namely prob-

abilistic canonical correlation analysis (PCCA) and the shared space LDS, which is

an extension of the LDS described in the previous section. We then describe a shared

latent space extension of the GPDM model, called the shared GPDM (SGPDM), which

is the non-parametric state-space model that we propose to jointly model audio and

visual data.

4.3.1 Canonical Correlation Analysis

Canonical correlation analysis (CCA) [145] can be used to find directions of maximal

correlation between two variables Y and Z.

Given two sets of mean-centered variables, Y = {yn}Nn=1 ∈ RdY ×N and Z =

{zn}Nn=1 ∈ RdZ×N , canonical correlation analysis (CCA) is a technique proposed by

Hotelling [145] to learn two sets of basis vectors W = {wi ∈ RdY ×1}di=1 and V = {vi ∈
RdZ×1}di=1, where d ≤ min(dY , dZ), such that the projections Ŷ = {ŷ:,i = YTwi}di=1

and Ẑ = {ẑ:,i = ZTvi}di=1 are maximally correlated. The correlation coefficients are

given by:

ρi =
< ŷ:,i, ẑ:,i >

‖ ŷ:,i ‖‖ ẑ:,i ‖
(4.48)

where ρ1 > ρ2 . . . > ρd, and (wi,vi) are the canonical vectors.

This is formulated as a constraint optimisation problem:

arg maxwi,vi w
T
i YTZvi

subject to wT
i YTZwi = vTi YTZvi = 1 (4.49)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.6: Latent spaces on MFCC or AAM data: Left - MFCC with phoneme labels, Right
- AAM with viseme labels: (a) MFCC GPLVM, (b) AAM GPLVM, (c) MFCC GPLVM with
MLP back-constraints, (d) AAM GPLVM with MLP back-constraints, (e) MFCC GPDM, (f)
AAM GPDM, (g) MFCC GPDM with MLP back-constraints, (h) AAM GPDM with MLP
back-constraints.
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The maximisation of Eqn.4.49 leads to the following eigenvector equations:

(YTY)−1YTZ(ZTZ)−1YTZwi = λ2iwi (4.50)

(ZTZ)−1ZTY(YTY)−1ZTYvi = λ2ivi (4.51)

Bach and Jordan [8] have given a shared latent representation of CCA called prob-

abilistic CCA (PCCA) by adopting a probabilistic formulation, with the probabilistic

graphical model shown in Figure 4.7. The mappings Wz and Wy are now from the

latent space to the data spaces. The likelihood is given by:

p(Y,Z,X|Wy,Wz,µz,µz,Σz,Σy) = p(Y|X,Wy,µy,Σy)p(Z|X,Wz,µz,Σz)p(X)

(4.52)

where:

p(X) ∼ N (0, Id) (4.53)

p(Z|X,Wz,µz,Σz) ∼ N (WzX + µz,Σz) (4.54)

p(Y|X,Wy,µy,Σy) ∼ N (WyX + µy,Σy) (4.55)

The ML estimates of the canonical coefficients can be found in closed-form with

more details in [8].

In this work, PCCA has been used as one of the initialisation methods to initialise

the latent space when training our proposed joint probabilistic models of audio and

video (refer to Section 4.5.1).

Figure 4.7: Graphical model for probabilistic canonical correlation analysis and shared Gaus-
sian process latent variable model.

Application to Visual Speech Synthesis

Theobald and Wilkinson [279] used a combination of linear regression and CCA to

model the audio and visual parameters of a talking face with the aim of synthesising

facial animation. The limitation of CCA when applied to visual speech synthesis is

that it does not incorporate dynamics and thus fails to model coarticulation. In order

to cater for this, Theobald and Wilkinson [279] appended four frames to the left and

right of each audio and visual frame prior to modelling with CCA.



CHAPTER 4. STATE-SPACE MODEL 105

4.3.2 Coupled Hidden Markov Model

The coupled hidden Markov model (CHMM) was introduced by Brand et al. [30]

for modelling interacting processes where two representations of an underlying process,

Y = {yt}Tt=1 and Z = {zt}Tt=1, are assumed to share a set of coupled states πy×πz ac-

cording to the graphical model shown in Figure 4.8. The coupled states can be factorised

into states for each interacting process, πy = {πyt }Tt=1 and πz = {πzt }Tt=1 respectively.

Thus, a coupled HMM can be regarded as a collection to two separate HMM chains

coupled through cross-time and cross-chain conditional probabilities. A CHMM defines

four transition probability matrices: p(πyt |π
y
t−1,A), p(πzt |πzt−1,B), p(πyt |πzt−1,C) and

p(πzt |π
y
t−1,D). The likelihood of the CHMM is given in Eqn.4.56.

p(Y,Z,πy,πz|Θ) = p(πy1 |s
y)p(πz1 |sz)

×
[ T∏
t=2

p(πyt |π
y
t−1,A)p(πzt |πzt−1,B)p(πyt |πzt−1,C)p(πzt |π

y
t−1,D)

]

×
[ T∏
t=1

Ky∑
k=1

my
kN (yt|µyk,Σ

y
k)

Kz∑
k=1

mz
kN (zt|µzk,Σz

k)

]
(4.56)

where Θ = [sy, sz,my,mz,µy,Σy,µz,Σz,A,B,C,D]

Figure 4.8: Graphical model for coupled hidden Markov model.

Training

The CHMM can be trained using the EM algorithm [75] to maximise the likelihood

of Eqn.4.56. The E-step involves running the forward-backward [248] algorithm on both

chains to obtain marginal distributions over the states and transitions. The M-step then

re-estimates all the parameters of the CHMM.
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Inference

Just like for the HMM, the Viterbi algorithm [293] can be used to perform inference

either on the chains separately, by treating each chain as a separate HMM or using the

coupled states. Moreover, both streams can be used to infer the coupled states using a

modified Viterbi algorithm described in [31].

Application to Visual Speech Synthesis

A coupled HMM was used by Xie and Liu [312] to model the audio and visual

streams separately with coupled states having a mapping on both data streams. A

Baum-Welch audio-visual inversion algorithm was presented to predict visual from au-

dio parameters, inspired from the HMM inversion method of Choi et al. [50]. This

approach bypasses the need for an interpolation from sub-optimal Viterbi states by in-

stead using the full occupancy of the states in synthesis. However, there is no dynamics

model in the CHMM and the synthesis technique does not explicitly model coarticula-

tion. In Xie and Liu [312] coarticulation was modelled by using speech features con-

catenated with their velocities and accelarations. Since the Baum-Welch audio-visual

inversion method uses the full audio information for prediction, only backward context

was taken into account.

4.3.3 Shared Linear Dynamical System

The linear dynamical system (LDS) presented in Section 4.2.4 has been extended by

Lehn-Schiøler et al. [186] to cater for two data spaces generated from a shared latent

space. Lehn-Schiøler et al. [186] applied this framework to model audio and visual

modalities of a talking face. Taking Y = {yt}Tt=1 to be the audio data and Z = {zt}Tt=1

to be visual data, such that the audio and visual data are synchronised, the graphical

model of the shared LDS is shown in Figure 4.9 and the state-space equations are:

x1 = µ+ u (4.57)

xt = Axt−1 + ν + vt (4.58)

yt = Bxt + wy
t (4.59)

zt = Cxt + wz
t (4.60)

with the noise parameters following Gaussian distributions as follows:

u ∼ N (0,Λ) (4.61)

vt ∼ N (0,Σ) (4.62)

wy
t ∼ N (0,Γy) (4.63)

wz
t ∼ N (0,Γz) (4.64)
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Figure 4.9: Graphical model for shared linear dynamical system and shared Gaussian process
dynamical model.

Training

The shared LDS parameters, θ = {A,B,C,Σ,Γy,Γz,Λ,µ,ν}, can be estimated

using the EM algorithm [75], just like for the LDS.

Inference

Given a stream of test data, {ŷt}Tt=1 or {ẑt}Tt=1, Kalman filtering [163] can be used

to infer the latent states, {x̂t}Tt=1.

Application to Visual Speech Synthesis

In Lehn-Schiøler [185] and Lehn-Schiøler et al. [186], Y was taken to be the audio

parameters and Z was taken to be the visual parameters. After training, the shared

latent points X were inferred from the model using Kalman filtering on the audio LDS

factored from the shared LDS. The factored LDS corresponds to Eqn.4.57, Eqn.4.58 and

Eqn.4.59. From the latent states, the visual data can be reconstructed as: ẑt = Cx̂t.

The advantage of the shared LDS is that synthesis can be performed if the states are

known by making use of the state-space equations without needing a trajectory syn-

thesis algorithm as in the case of the HMM [32]. Compared to the CHMM [312], the

shared LDS has an explicit model of backward coarticulation due to the autoregressive

dynamics. However, both the dynamics and the mapping from the states to the obser-

vations are linear, thus not catering for the non-linear dynamics of speech [12] as well

as the non-linear mapping from audio to visual speech. The shared Gaussian process

dynamical model (SGPDM) addresses these limitations.

4.3.4 Shared Gaussian Process Dynamical Model

The shared Gaussian process dynamical model (SGPDM) [98] is a non-parametric

and non-linear dynamical system with two observation spaces instead of one as is the

case for the GPDM [299]. Instead of having linear mappings as in the case of the



CHAPTER 4. STATE-SPACE MODEL 108

shared LDS, the SGPDM models the prediction and observation mappings as non-

linear Gaussian processes. Given two data spaces, Y = {yt}Tt=1 and Z = {zt}Tt=1 and

assuming they are generated from a shared latent space, X = {xt}Tt=1, the state-space

equations of the SGPDM are:

x1 ∼ N (0, β−1dynI) (4.65)

xt = h(xt−1) + εdyn εdyn ∼ N (0, β−1dynI) (4.66)

yt = f(xt) + εy εy ∼ N (0, β−1Y I) (4.67)

zt = g(xt) + εz εz ∼ N (0, β−1Z I) (4.68)

where f and g are GP mappings from the latent space X to the observation spaces

Y and Z, respectively, and h is the GP mapping for the autoregressive dynamics. εy, εz

and εdyn are the noise terms for the observation and dynamical GPs, which are drawn

from a zero-mean Gaussian with isotropic covariance matrix. The variance of the noise

terms are given as the inverse of precision.

The graphical model of the SGPDM is the same as for the shared LDS and is shown

in Figure 4.9.

The joint log-likelihood of the resulting model is given by:

ln p(Y,Z,X|Φ) = ln p(Y|X,ΦY ) + ln p(Z|X,ΦZ) + ln p(X|Φdyn) (4.69)

where Φ = [ΦY ,ΦZ ,Φdyn] is a concatenation of the hyperparameters of the GPs

for Y, Z and the dynamics.

Shared Gaussian Process Latent Variable Model

The shared Gaussian process latent variable model, originally proposed by Shon

et al. [263], is an extension of the GPLVM to two variables instead of one but without the

dynamical model of the SGPDM. The original SGPLVM of Shon et al. [263] dealt with

learning correspondences between images of two different objects, with the orientation

being similar for any paired images. Moreover, it was also applied to robotic imitation,

which involves learning a correspondence between 3D poses of human motion capture

and that of robot actuators. Ek et al. [98, 99] applied the framework for inferring 3D

pose from 2D silhouettes and introduced dynamical models to cater for sequences of

pose and silhouettes that are temporally aligned.

Just as for the GPLVM, scaling can be applied to the output dimensions of each

data space, so as to give equal weight to each dimension in the likelihood function

(refer to Section 4.2.5). In this work, we use scaling of outputs when jointly modelling

audio and visual data, because the different audio and visual parameter dimensions

have different variances.
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Initialisation of Latent Points

In the original formulation of the SGPLVM, Shon et al. [263] initialised the latent

space, X, as the average of the first d principal components of Y and Z, where d is the

latent dimensionality being used for the SGPLVM. In Ek et al. [99], an extension of

Kernel CCA [176] called non-consolidating component analysis (NCCA) was introduced

that learns a shared latent space, as well as private latent spaces for both Y and Z, so as

to retain the variance corresponding to each data space. The variance corresponding to

the data space of the test data can be used during inference, thus resolving ambiguities

that arise due to one-to-many mappings from the test data space to the inferred data

space. These ambiguites arise when mapping from silhouettes to 3D pose. For example

in silhouettes, cases when the left foot is forward and the right foot backward are

indistinguishable from those where the right foot is forward and the left foot backward.

In this work, we use averaged PPCA subspaces between audio and visual data, as

well as the PCCA subspace obtained from both spaces, as the latent space initialisation

method for training the SGPDM. We perform experiments to compare both approaches

in Section 4.5.1.

Likelihood Bias

We propose a likelihood bias to account for Y and Z having different dimensional-

ities, which results in different scales in the likelihoods P (Y|X,ΦY ) and P (Z|X,ΦZ).

This can result in the SGPDM model being biased towards the variable with the higher

dimensionality because the contribution of that variable in the log-likelihood (Eqn.4.69)

is higher than the other variable. In order to account for this, we adopt an approach

similar to the dynamics balancing of Urtasun et al. [290], where an exponent was

placed on the dynamics likelihood of the GPDM in order to balance the weight of the

dynamics likelihood with the GPLVM likelihood. We introduce a likelihood bias to

give equal weight to each data space according to the following rules, where λY = DZ
DY

and λZ = DY
DZ

.

if DY > DZ then

ln p(Y,Z,X|Φ) = ln p(Y|X,ΦY ) + λZ ln p(Z|X,ΦZ) + ln p(X|Φdyn)

end if

if DZ > DY then

ln p(Y,Z,X|Φ) = λY ln p(Y|X,ΦY ) + ln p(Z|X,ΦZ) + ln p(X|Φdyn)

end if
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Back-constraints

Just like for the GPLVM, back-constraints can be used for the SGPLVM by having

a parametric mapping from either Y or Z to X. Having mappings from both Y and Z

would lead to two different back-projections for X, which is undesirable.

In Ek et al. [98], where a SGPLVM was used to model 3D pose and 2D silhouettes,

a back-constraint with respect to pose data was used in order to enforce a one-to-one

mapping from the latent space to the pose space, and thus a one-to-many mapping from

silhouette space to 3D pose space. This helped to resolve ambiguities in the inference

of 3D pose from silhouettes.

Training

The model is trained by placing GP priors over f , g and h and optimising the

log-likelihood in Eqn.4.69 with respect to the latent points and the hyperparameters:

{X,Φ} = arg max
X,Φ

ln p(Y,Z,X|Φ) (4.70)

Just as for the GPDM, each data space is first mean-centered before training the

model. Extension for multiple sequences is the same as for the GPDM (refer to Section

4.2.5).

Inference

One approach to the inference problem for the SGPDM is Bayesian inference, mak-

ing use of Bayes’ theorem, which can be stated as follows:

Posterior =
Likelihood× Prior

Evidence
(4.71)

Taking Ŷ to be a vector of test data, Ẑ to be the vector of data to be inferred

and X̂ to be the shared latent space, we are interested in the predictive distribution

p(Ẑ|Ŷ). First, the predictive distribution of the latent points given the test data is

inferred using Bayes theorem:

p(X̂|Ŷ) =
p(Ŷ|X̂)p(X̂)∫
p(Ŷ|X̂)p(X̂)dX̂

(4.72)

where p(Ŷ|X̂) is given by the GP mapping from the latent space to the first obser-

vation space and p(X̂) is the prior on the latent space.

The conditional distribution p(Ẑ|Ŷ) is then obtained by integrating over the latent

points whilst multiplying the conditional distribution of Ẑ given the latent points and

the predictive distribution of the latent points given Ŷ:

p(Ẑ|Ŷ) =

∫
p(Ẑ|X̂)p(X̂|Ŷ) (4.73)

where p(Ẑ|X̂) is given by the GP mapping from the latent space to Ẑ.
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In principle, the inference involved in Eqn.4.72 could be done by deriving forward

and backward recursions using the sum-product algorithm for graphical models [173].

However, this is intractable both for the SGPDM and approximate inference algorithms

have recently been proposed for Gaussian process dynamical systems [170, 72, 289].

Instead of a Bayesian approach, Ek et al. [98, 99] adopted a maximum likelihood

(ML) approach, where a point estimate of X̂ was found by using gradient descent with

an initial estimate of X∗ obtained using an appropriate initialisation method.

X∗ = arg max
X̂

p(Ŷ|X̂) (4.74)

Z∗ can then be obtained by taking the expectation of the distribution p(Ẑ|X̂), where

X̂ = X∗:

Z∗ = E[p(Ẑ|X̂ = X∗)] (4.75)

This is the approach we adopt in this work. More details on inference for the

SGPDM are given in Section 4.4.

Experiments on Audio and Visual Data

Figures 4.10a and 4.10b show 2D SGPLVM spaces, trained on AAM and MFCC

data, for a sequence of the LIPS corpus. The left plot has colours for phoneme labels

and the right plot has colours for viseme labels. Figures 4.10c and 4.10d show the latent

space when a KBR back-constraint is placed with respect to audio data. Figures 4.10e

and 4.10f show the SGPDM latent space when an autoregressive dynamics is used.

Figures 4.10g and 4.10h show the SGPDM latent space when a KBR back-constraint

and an autoregressive dynamics are both used.

Compared to GPDM latent spaces, SGPDM latent spaces obtained from audio and

visual data reveal a more definite path unfolding through time, because both audio

and visual information of a talking face are consolidated with each other, to give a

latent representation of the dynamics of a talking face. Thus when audio and visual

data are consolidated with each other to produce a shared latent space, there are less

bifurcations in the latent space as compared to when having only a latent space of

audio, due to the constraints from the visual space.

4.4 Synthesis using the SGPDM

For the SGPDM, we have a single dynamical model as well as two GP mappings

from the latent space to each observation space (Y and Z). If we want to infer Ẑ from

Ŷ, first an estimate X∗ of the latent points X̂ needs to be performed with respect to

both the observation GP for Y and the dynamical GP. The second observation space

Ẑ can then be obtained using the mean prediction of the corresponding GP:
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.10: Shared latent spaces on AAM and MFCC data: Left - Phoneme Labels, Right -
Viseme Labels: (a) and (b) SGPLVM, (c) and (d) SGPLVM with KBR back-constraints with
respect to MFCC, (e) and (f) SGPDM, (g) and (h) SGPDM with KBR back-constraints with
respect to MFCC.
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Z∗ = kZ(X∗,X)TK−1Z Z (4.76)

where Z∗ is an estimate of Ẑ, kZ is the kernel function for the visual GP, KZ is the

kernel matrix of the observation GP for Z, computed using its corresponding training

data, X are the latent points for the training data and Z are the training data points

for the second observation space.

Next, we consider the inference of X∗ from Ŷ. The inference requires that we have

an initialisation for the latent points because of the highly multimodal nature of the

likelihood function with multiple local optima. Different initialisation techniques are

considered in Section 4.4.3.

4.4.1 Point Optimisation

If we have a SGPLVM instead of a SGPDM, i.e. there is no dynamical model on

the latent space, then each latent point is conditionally independent from each other

and X∗ can be inferred using a point optimisation, i.e. treating each point as being

independent.

x∗ = arg max
x̂

p(ŷ|x̂,Y,X,ΦY ) (4.77)

where ΦY are the hyperparameters of the first observation GP.

This optimisation can be carried out using scaled conjugate gradient (SCG) opti-

misation [124] similar to that used for GPLVM training.

4.4.2 Sequence Optimisation

For the SGPDM, the independence assumption on the latent points is removed and

instead the inferred latent points should be constrained to respect the dynamics, as

given by the dynamical GP. This can be done by formulating a joint likelihood between

the sequence of observations and their latent points using the dynamical model. The

optimisation then becomes:

X∗ = arg max
X̂

p(Ŷ, X̂|Y,X,ΦY ,Φdyn) (4.78)

where Φdyn are the hyperparameters of the dynamical GP.

This optimisation is again carried out using scaled conjugate gradient (SCG) opti-

misation [124].

4.4.3 Initialisation of Latent Points

The following three methods can be used for the initialisation of latent points Xinit

from test data Ŷ prior to point or sequence optimisation.
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Nearest-neighbour Initialisation

Because the SGPDM is a non-parametric method that makes predictions using

training data, we can find the index m of the training data point that is closest to each

test data point ŷ, in terms of Euclidean distance.

m = arg min
n∈1...N

dist(ŷ,yn) (4.79)

where dist(ŷ,yn) is the Euclidean distance between ŷ and yn.

The corresponding training latent point xm is then chosen as the initialisation for

ŷ.

The advantage of this method is that it performs an initialisation that minimises the

distance between the test and training audio data. However, it does not take dynamics

into account.

Back-constraint Initialisation

If a back-constraint b is used with respect to the test observation space, the latent

space initialisation can be obtained using the back-constraint mapping:

Xinit = b(Ŷ,W) (4.80)

where W are the parameters of the back-constraint mapping.

The back-constraint initialisation is very fast because it relies on a parametric map-

ping. However, its effectiveness depends on how well the parametric mapping maps

audio data to latent points, which is contingent on the parametric assumptions used.

Moreover, it also does not take dynamics into account.

Hidden Markov Model Initialisation

The HMM initialisation was proposed by Ek et al. [100]. The training latent points

X = {x}Nn=1 of the SGPDM are taken to be the states of a HMM and each state is

associated with the test data Ŷ = {ŷ}Nn=1. The transition log likelihood is computed

as the GP point likelihood between each latent point and every other latent point:

Ldyni,j = p(xi|xj) (4.81)

The observation log likelihood is obtained by computing the GP point likelihood

between each test data point and each of the training latent points, which are the states

of the HMM:

Lobsi = p(ŷ|xi) (4.82)

This results in a trellis shown in Figure 4.11. The optimal sequence of latent points

Xinit is obtained from the Viterbi algorithm in log space. This can be thought of as

choosing a set of latent points from the training set that best match both the test data
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and the dynamical model. To speed computation when the number of training data

points for the SGPDM is high, a subset of the points can be randomly chosen instead.

Figure 4.11: Hidden Markov model initialisation of latent points.

The HMM initialisation takes dynamics into account, thus leading to a smoother

initialisation. However, the computation of the observation and dynamical likelihoods

is computationally expensive. As a result, it is necessary to use a subset of training

data, which can compromise the results.

Experiments that compare the different latent space initialisation methods in syn-

thesis are presented in Section 4.5.1.

4.5 Audio-visual Mapping using SGPDM

The SGPDM can be used to couple audio and visual data through a shared latent

space that represents the evolution of an underlying state-space. This approach makes

sense because the audio and visual aspects of speech are highly correlated and thus

can be modelled using a shared state-space. In addition, the advantage of using the

SGPDM as opposed to the HMM is that the state-space is continuous and thus provides

a richer representation, bypassing the need to interpolate between states to generate

visual data. As compared to the shared LDS, the SGPDM offers the advantage that the

observation and dynamical mappings are non-linear GPs as opposed to linear matrices.

The dynamics of speech are highly non-linear [12] and thus a shared LDS only offers a

linear approximation to the dynamics. Furthermore, the SGPDM can be used to cater

for the many-to-one mapping between phonemes and visemes. Ek et al. [98] handled

the one-to-many mapping between silhouettes and pose by placing a back-constraint

with respect to the pose. This constrained the pose and latent space to have a one-to-

one mapping, thus allowing a one-to-many mapping from silhouettes to pose. It also

allowed the handling of ambiguity when a given silhouette corresponds to one or more
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possible poses. For audio-visual mapping, the correspondence is many-to-one in the

simplified case and many-to-many if noise is introduced, allowing for variations in the

audio realisation of a phoneme and the visual realisation of a viseme. Thus, a back-

constraint is placed with respect to audio. In Section 4.5.1, we perform experiments

that compare quantitative results of visual features generated using the SGPDM with

and without back-constraints. In addition, we compare two back-constraint methods,

namely KBR [22] and MLP [21] and investigate the effect of varying their parameters.

The SGPDM model, however, has a large number of free parameters that can

be adjusted. In the next section, we present model selection experiments to obtain

the optimal parameters. In Section 4.5.2, we present experiments to determine which

audio parameterisation method yields the best prediction of visual parameters using the

SGPDM. In Section 4.5.3, we fix the audio parameterisation and present experiments

to choose the best audio-visual synchronisation method.

A recently developed Bayesian GPLVM [286] removes the need for model selec-

tion by placing non-informative priors over the GP hyperparameters and computing

posteriors over these. Moreover, it removes the need for initialisation of the latent

space in training by treating the latent space as nuisance parameters that need to

be marginalised. Furthermore, by using an automatic relevance determination (ARD)

[22] kernel, the inherent dimensionality of the latent space can be determined in the

Bayesian formulation. However, at the time that the work in this thesis was being

carried out, the Bayesian GPLVM was not yet available and thus we used the max-

imum likelihood formulation [177, 100]. As a result, we performed model selection

experiments to determine the optimal latent dimensionality, latent space initialisation

methods and other free parameters in the model.

4.5.1 Model Selection

The model selection experiments described below involve a training set of 50 se-

quences and a validation set of 20 sequences, such that the training and validation

sets are non-overlapping. The SGPDMs are first trained on the training set followed

by performing inference using only audio from the validation set with the sequence

optimisation method described in Section 4.4.2. The synthesised AAM features are

statistically compared against the ground truth features. We use the average corre-

lation coefficient or ACC (refer to Chapter 6 Section 6.2.1) to compare ground truth

against synthesised AAM features because we found it to correspond to the visual

plausibility of the facial animations. The ACC plots shown for each of the experiments

include a 95% confidence interval as error bars.

The experiments proceed in a sequential manner whereby in the initial ones no

dynamics and back-constraints are involved. We then introduce dynamics followed by
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the introduction of back-constraints.

All experiments involve using a likelihood and a dynamics bias (in case a dynamical

model is used), except in experiment 5 where we investigate the effect of using biases

vs. not using the biases. In experiments 1 to 7, the latent space for synthesis was

initialised using nearest-neighbour comparison of test audio features against training

audio features (refer to Section 4.4.3). Experiment 8 compares the different initialisa-

tion methods in synthesis, in order to determine which one gives the best results. The

reason why the latent space initialisation for synthesis is the last experiment is that it

involves using the back-constraint initialisation (refer to Section 4.4.3), thus requiring

that back-constraints are introduced.

We use normalised AAM features for visual representation and MFCC parameters

downsampled using median filtering for the audio representation in the experiments.

Once we obtain the optimal model parameters, we then fix these parameters and per-

form experiments to determine the best audio representation and audio-visual synchro-

nisation method in Sections 4.5.2 and 4.5.3 respectively. The order of the experiments

was chosen because the optimal audio representation and audio-visual mapping exper-

iments would not be reliable if the models being used to perform these experiments do

not have optimal parameters.

Experiment 1 - Sparse Approximations

In the first experiment, we train SGPDMs without back-constraints and dynamics

and fix the latent space dimension to 6, which we found to give decent reconstructions

of both the audio and visual spaces from the latent space (Experiment 3 will vary the

latent space dimensionality). We vary the sparse approximations: FITC, PITC and

DTC using k = 100 active points, as suggested by Lawrence [179].

The results are shown in Figure 4.12a for LIPS and Figure 4.12b for DEMNOW.

The results show that FITC and PITC are comparable whilst DTC gives far worse

results. FITC gives slightly better results than PITC for LIPS whilst for DEMNOW

PITC gives slightly better results than FITC. The better performance of FITC and

PITC as compared to DTC can be explained by the fact that DTC uses a variance

of zero for the training conditional whereas FITC and PITC use a diagonal and block

diagonal approximation to the training conditional, respectively, thus providing a richer

form of approximation [179]. FITC and PITC have similar performances with slight

differences between the two datasets. As a result, we fix the sparse approximations to

FITC for LIPS and PITC for DEMNOW in the next experiments.
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(a) (b)

Figure 4.12: Varying sparse approximations: (a) LIPS (b) DEMNOW.

Experiment 2 - Latent Space Initialisation in Training

In this experiment, we again do not use back-constraints and dynamics and investi-

gate two initialisations methods to initialise the latent points prior to training, namely:

PPCA and PCCA. The latent space is again set to 6 for the same reason stated in the

previous experiment.

The results are shown in Figure 4.13a for LIPS and Figure 4.13b for DEMNOW.

For both LIPS and DEMNOW, PCCA initialisation gives better results than PPCA.

This can be explained by the fact that PCCA finds a latent space that maximises the

correlation between the two datasets and thus better mappings are learnt from the

latent space to each data space using GPs in the SGPDM, as compared to using PPCA

that finds separate latent spaces for each data space, which need to be averaged. In

the next experiments, we fix the initialisation method to PCCA.

Experiment 3 - Latent Space Dimensionality

This experiment involves varying the latent space dimensionality. The latent space

is varied from 1 to 10 because higher latent spaces would affect the training time

adversely when introducing dynamics and back-constraints in future experiments.

Figures 4.14a and 4.14b show the results for LIPS and DEMNOW, respectively. The

optimal latent space is found to be 5 for LIPS and 4 for DEMNOW. The experiment

reveals the intrinsic dimensionality of data to be 5 and 4 respectively for LIPS and

DEMNOW and when higher dimensions are used worse results are obtained due to

overfitting. In subsequent experiments, we fix the latent spaces accordingly.
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(a) (b)

Figure 4.13: Varying latent space initialisation methods: (a) LIPS (b) DEMNOW.

(a) (b)

Figure 4.14: Varying latent space dimensionality: (a) LIPS (b) DEMNOW.
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(a) (b)

Figure 4.15: Varying dynamical GP RBF kernel inverse width: (a) LIPS (b) DEMNOW.

Experiment 4 - Dynamical GP Hyperparameters

In this experiment, we introduce dynamics and vary the inverse width parameter γ

of the dynamics kernel in Eqn.4.44. The first model in the experiment does not include

dynamics and is included for comparison.

Figure 4.15a shows the results for LIPS, with an optimal γ = 1000. Figure 4.15b

shows the results for DEMNOW, with an optimal γ = 1000. For both LIPS and

DEMNOW, using dynamics with the optimal inverse width parameter gives better

results than when not using dynamics.

Experiment 5 - Likelihood and Dynamics Bias

This experiment involves investigating the effects of using likelihood and dynamics

biases. We use four categories of models: No likelihood and dynamics bias, likelihood

bias and no dynamics bias, no likelihood bias and dynamics bias, likelihood bias and

dynamics bias.

Figures 4.16a and 4.16b show the results for LIPS and DEMNOW respectively.

Using a likelihood bias yields better results than when not using it. The use of dynamics

bias also results in better results than both not using any bias and using likelihood bias

alone. Using both likelihood and dynamics biases yields the best results, which is

consistent with our hypothesis that balancing the likelihoods of each data space and

dynamics in the training gives rise to a better model. We thus use both a likelihood

and dynamics bias for future experiments.
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(a) (b)

Figure 4.16: Varying likelihood and dynamics bias: (a) LIPS (b) DEMNOW.

Experiment 6 - KBR Back-constraint Hyperparameters

In this experiment, we introduce KBR back-constraints with respect to audio, using

an RBF kernel and we vary the inverse width of the kernel. The first model in the

experiment does not involve back-constraints and is included in order to investigate

whether using KBR back-constraints brings any benefit to the results.

The results show that for both LIPS and DEMNOW, using a KBR back-constraint

yields better results than not using it, which supports the claim that having a proper

back-constraint allows us to model the many-to-one from phonemes to visemes. The

optimal inverse width for LIPS is found to be 1000 whilst for DEMNOW, it is 0.001.

The difference for the two datasets can be explained by different kernel responses of the

KBR back-constraint to each dataset, which can arise due to different dynamic ranges

of the data.

Experiment 7 - MLP Back-constraint Parameters

This experiment involves the introduction of an MLP back-constraint with respect

to audio data and varying the number of hidden layers of the MLP [22]. The first

model in the experiment does not use any back-constraints and is included to determine

whether the MLP back-constraint brings any benefit to audio-visual mapping using the

SGPDM.

The results in Figure 4.18a show that for LIPS, the MLP back-constraints lead to

worse results than not using back-constraints at all, with the results getting better as the

number of hidden layers is increased. The reasons for this are not very clear but could

be due to competition between the back-constraints and the dynamics. The dynamics

try to constrain temporally close points to be close on the latent space and the MLP
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(a) (b)

Figure 4.17: Varying KBR back-constraints RBF kernel inverse width: (a) LIPS (b) DEM-
NOW.

back-constraint trying to move spatially distant points far apart on the latent space,

even though they are temporally close. A balance between the dynamics and back-

constraints is necessary and this seems better enforced using the KBR back-constraints

in the LIPS data. For DEMNOW, on the other hand, using MLP back-constraints

yields better results than not using it with the optimal number of hidden layers being

150, but the optimal results obtained using KBR back-constraints are still better. We

thus use KBR back-constraints in future experiments with the SGPDM.

Experiment 8 - Latent Space Initialisation in Synthesis

In this experiment, a KBR back-constraint and an autoregressive dynamics are both

used with parameters set according to the optimal parameters found in the previous

experiments. We vary the latent space initialisation methods used in synthesis, as

described in Section 4.4.3.

Figure 4.19a shows the results for LIPS and Figure 4.19b show the corresponding

results for DEMNOW. The nearest-neighbour initialisation method is found to give

the best results, followed by the back-constraint initialisation. The HMM initialisation

gives the worst results which can be explained by the fact that only a subset of the

training points are used to build the HMM, thus leading to a sub-optimal initialisation

on test data. The initialisation using the back-constraint mapping is limited by how

well the back-constraint is able to map audio parameters to the latent space using its

optimised parameters. The nearest-neighbour initialisation chooses the training latent

points that correspond to the training audio parameters best matching the test audio

parameters in terms of Euclidean distance, and thus gives the best performance. We

thus use the nearest-neighbour initialisation method for synthesis in the SGPDM.
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(a) (b)

Figure 4.18: Varying MLP back-constraints number of hidden layers: (a) LIPS (b) DEM-
NOW.

(a) (b)

Figure 4.19: Comparing different latent space initialisation methods during SGPDM synthe-
sis: (a) LIPS (b) DEMNOW.



CHAPTER 4. STATE-SPACE MODEL 124

(a) (b)

Figure 4.20: Comparing SGPDM synthesis results for different speech parameterisations: (a)
LIPS (b) DEMNOW.

4.5.2 Choice of Speech Parameterisation

This experiment is aimed at finding which speech parameterisation technique is best

for visual speech synthesis using the SGPDM. The model selection experiments made

use of MFCC downsampled using median filtering. In this experiment, we use LPC,

LSF, MFCC and RASTA-PLP parameters processed at 25Hz for LIPS and 29.97Hz

for DEMNOW (refer to Chapter 3 Section 3.5). We use the optimal model parameters

found in the previous section and a KBR back-constraint with respect to audio as well as

an autoregressive dynamical model on the latent space. We use the same 50 sequences

for training and 20 sequences for validation, as in the model selection experiments, and

compute the ACC of the synthesised AAM features with respect to ground truth.

Figures 4.20a and 4.20b show the results for LIPS and DEMNOW respectively.

From the plots, it can be seen that RASTA-PLP gives the best results for LIPS whilst

MFCC gives the best results for DEMNOW. The reasons for this do not seem obvious,

but upon inspection of the plots of RASTA-PLP parameters in Chapter 3 Section 3.5.2,

it can be observed that they produce a smoother trajectory than MFCC parameters.

The LIPS corpus involves a British speaker reading sentences from the Messiah corpus

[278] under controlled conditions, and tends to be hypo-articulated. On the other

hand, the DEMNOW corpus involves an American speaker giving news presentations

with a faster speaking rate and is thus hyper-articulated. As a result, the slower-

varying RASTA-PLP parameters are more highly correlated with the smoother visual

parameters of the LIPS corpus and thus are better able to predict the visual parameters.

The opposite is true for DEMNOW with the MFCC parameters being more highly

correlated with the less smooth AAM parameters.

It is clear from the above experiments that perceptually-motivated methods like
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MFCC and RASTA-PLP outperform source-filter methods like LPC and LSF in speech

animation. The same phenomenon is observed in speech recognition with perceptually-

motivated features capturing more information that helps to discriminate between

phonemes [69]. Researchers have also compared the performance of source-filter and

perceptually-motivated methods in speech animation [162, 279] and showed the su-

periority in performance of the latter category of methods. In our experiments, the

speech was not subject to much additive and convolutional noise (refer to Chapter 3

Section 3.2.5). RASTA-PLP is the speech feature of choice in noisy environments [134]

and outperforms MFCC features in noisy speech recognition due to the latter’s lack

of robustness to noise [9, 217]. RASTA-PLP is also useful in applications that favour

speaker-independence [217].

4.5.3 Choice of Audio-visual Synchronisation Method

This experiment is similar to the previous one but instead of varying the speech

parameterisation method, we vary the audio-visual synchronisation method (refer to

Chapter 3 Section 3.5.1). We use RASTA-PLP for LIPS and MFCC for DEMNOW

and experiment with the three synchronisation methods namely: audio parameters

processed at the same rate as visual parameters, audio parameters downsampled from

100Hz using median filtering [6] and polyphase quadrature filtering [256].

Figures 4.21a and 4.21b show the results for LIPS and DEMNOW respectively. It

can be deduced from the plots that RASTA-PLP processed 25Hz gives the best results

for LIPS, whilst for DEMNOW, MFCC parameters downsampled from 100Hz using

polyphase quadrature filtering gives the best results. The reason again seems to have

to do with the smoothness of the audio features. Theobald and Wilkinson [279] showed

that using a larger auditory window tends to smooth out the audio parameters and

thus downsampling from 100Hz retains more of the coarseness of the original speech

parameters. For LIPS, the smoother RASTA-PLP at 25Hz correlates better with the

slower-varying AAM parameters whilst for DEMNOW, the downsampled MFCC pa-

rameters retain more information on the temporal scale than MFCC parameters pro-

cessed at 29.97Hz, and thus correlate better with the faster-varying AAM parameters,

hence explaining their better predictive abilities using the SGPDM.

4.5.4 Limitations of SGPDM

The SGPDM model is effective at modelling the generative model of two represen-

tations of the same process, which in our case are the audio and visual components

of speech. However, since the SGPDM is a non-parametric model, the size of the

model grows with the data. Although sparse approximation techniques reduce the
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(a) (b)

Figure 4.21: Comparing SGPDM synthesis results for different audio-visual synchronisation
methods: (a) LIPS (b) DEMNOW.

time and space complexity of training and inference, training the model becomes in-

tractable on modern computers if the amount of training data exceeds a few thousand

frames. Moreover, the phenomenon of coarticulation results in a wide range of highly

non-linear dynamics, which when modelled using a single dynamical model yields an

over-generalised predictive model.

In the work of Lehn-Schiøler [185], a shared linear dynamical system (shared LDS)

was used as a generative model of speech. The shared LDS has the same graphical

representation as the SGPDM except for being a parametric model with linear obser-

vation and dynamical mappings. Englebienne [101] proposed a more powerful model

by augmenting the linear dynamical system (LDS) with switching states, where each

state corresponds to the visual speech dynamics of individual phonemes. The resulting

model is the switching linear dynamical system (SLDS). However, Englebienne [101]

showed that the parametric assumptions in the SLDS are not suitable for visual speech

synthesis and simplified the model to obtain a model called the deterministic process

dynamical system (DPDS). In the next chapter, we present a non-parametric switch-

ing state-space model, which is obtained by augmenting the SGPDM with switching

states, thus accounting for the multiple dynamics in speech. As compared to the SLDS

and DPDS which are models of only visual speech, the proposed switching SGPDM

(SSGPDM) is a model of both audio and visual speech. Moreover, the SSGPDM is a

non-parametric model that does not suffer from parametric assumptions in models like

the SLDS, which has been shown to perform poorly on visual speech synthesis [101].
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4.5.5 Discussion

The SGPDM is a powerful non-parametric method that can be used to couple

audio and video streams of a talking face using non-linear dynamical and observation

functions modelled using GPs. Its advantages over HMMs are that: 1) the state-

space is continuous and therefore bypasses the need to interpolate from a discrete state

sequence to synthesise visual data and 2) a shared latent space is used to represent the

generative process of speech and maps to both the audio and visual modalities, which is

more principled than training a HMM on visual data and remapping it to audio data as

done by Brand [32]. Its advantage over the shared LDS of Lehn-Schiøler et al. [186] is

that non-linear GPs are used to model the observation and dynamical functions, which

better models the non-linear relationship between audio and visual speech.

However, these advantages come at the cost of increased space and time complexity.

For a training set of N frames, the SGPDM has O(N3) space complexity. The time

complexity for each iteration of the training and inference algorithm is O(N3) without

sparse approximations and O(k2N) when using sparse approximations with k active

points. On the other hand, for a HMM with K states and dimensionality of the visual

data being DZ , the space complexity for training is O(K2 + D2
Z), whilst the time

complexity for each iteration is O(N2K). For inference using the HMM, the time

complexity of the Viterbi algorithm is O(N̂2K), where N̂ is the number of frames in

the test sequence whilst the time complexity of the trajectory synthesis algorithm of

Brand [32] is O(N̂D3
Z). For training a shared linear dynamical system on audio data

of dimensionality DY and visual data of dimensionality DZ on N frames of data, the

space complexity is O(D2), where D = max(DY , DZ). The time complexity is O(dN2)

for each iteration, where d is the dimensionality of the latent space. The inference

time complexity of the LDS is O(dN̂2) where N̂ is the number of frames in the test

sequence. Thus, the SGPDM comes with a much higher computational complexity than

parametric state-space models. In addition, in the absence of a Bayesian formulation,

model selection has to be carried out to optimise the free parameters in the model.

4.6 Chapter Summary

This chapter introduced various probabilistic models used in visual speech synthesis,

using the framework of graphical models. Gaussian processes which are a powerful

non-parametric way of representing distributions over functions, were introduced. We

then described the Gaussian process dynamical model (GPDM), which is a state-space

model using Gaussian process dynamical and observation models. We also presented a

review of shared latent variable models in order to motivate the shared Gaussian process

dynamical model (SGPDM), which allows the coupling of two observation spaces using
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non-linear mappings. We then presented synthesis techniques for the SGPDM. Model

selection experiments as well as experiments to determine the optimal speech processing

techniques were finally dealt with.



Chapter 5

Switching State-Space Model for

Audio-visual Mapping

No army can stop an idea whose time

has come.

Victor Hugo

This chapter presents a more powerful generative model for audio-visual mapping

by addressing the limitations of the SGPDM. The resulting model is a switching state-

space model that is obtained by augmenting the SGPDM with switching states, result-

ing in the switching SGPDM (SSGPDM). We first present other switching state-space

models that have been previously applied to visual speech synthesis, followed by a de-

scription of the SSGPDM. We then deal with a technique for inferring switching states

from streams of phonemes by using a variable length Markov model (VLMM) to find

phonetic contexts. Using phonetic contexts as switching states allow the modelling

of coarticulation. Experiments are presented for determining the maximum memory

length to use with the VLMM as well as whether to train the VLMM on phonemes

with or without repetitions. We also compare states of SSGPDMs trained with pho-

netic contexts and phonemes as switching states using volume rendering visualisation.

Finally, we present synthesis techniques that we have developed to predict visual from

audio data with the SSGPDM.

A preliminary version of this chapter appeared in [71].

5.1 Switching State-space Models

Switching state-space models allow switches or jumps in the state-space evolution,

which may be due to transitions to a different regime with different dynamics. They are

thus appropriate to model multiple dynamics in speech. The first switching state-space

129
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model used for modelling speech for the purpose of speech recognition was the stochastic

segment model (SSM) [84], where a separate LDS was trained for each phoneme. The

SSM however assumes that each switching state is conditionally independent from each

other. A generalisation of this model with conditional dependencies between switching

states is the SLDS. Englebienne et al. [102] and Englebienne [101] applied the SLDS

and a modified version called the deterministic process dynamical system (DPDS) to

visual speech synthesis. We first describe the SLDS and the DPDS before presenting

our proposed switching state-space model, obtained by augmenting the SGPDM with

switching states. The resulting model is called the switching SGPDM (SSGPDM) and

is described in Section 5.1.3.

5.1.1 Switching Linear Dynamical System

The SLDS was first introduced in the Machine Learning community by Ghahramani

and Hinton [122]. Taking Y = {yt}Tt=1 to be observed data, X = {xt}Tt=1 to be

hidden continuous states and π = {πt}Tt=1 to be discrete hidden states, the state-space

equations of the SLDS are:

x1 = µπ1 + uπ1 (5.1)

xt = Aπtxt−1 + νπt + vπt (5.2)

yt = Bπtxt + wπt (5.3)

where the switching state at time t takes one of K distinct values, πt ∈ {1 . . .K}
and each switching state consists of a different initial offset µπt , a process offset νπt ,

transition matrix Aπt , observation matrix Bπt and noise terms:

uπt ∼ N (0,Λπt) (5.4)

vπt ∼ N (0,Σπt) (5.5)

wπt ∼ N (0,Γπt) (5.6)

The graphical model of the SLDS is shown in Figure 5.1. The SLDS is suitable for

modelling data that have different switching regimes, each having linear dynamics. For

example, Ghahramani and Hinton [122] applied the SLDS to model sleep apnea data,

which is characterised by at least two regimes: no breathing and gasping breathing.

The SLDS has also been applied to: speech recognition [255, 254, 211], the modelling

the dancing behaviour of honey bees [222, 115] as well as human body tracking [232].

Training

The parameters of the model, θ = {Aπ,Bπ,Σπ,Γπ,Λπ µπ,νπ}, can be learnt us-

ing maximum likelihood through the EM algorithm [75]. However, Ghahramani and

Hinton [122] showed that the E-step, which involves computing posterior distributions
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over the hidden states, is intractable because the posterior distribution over X is a

Gaussian mixture with ST terms. Thus, a variational inference [22] approximation to

the E-step was proposed by Ghahramani and Hinton [122], where the posterior distribu-

tion over X is approximated using potential functions, thus making inference tractable.

Other researchers have proposed different deterministic approximations such as: ex-

pectation propagation (EP) [328] and expectation correction (EC) [13], which are both

variants of assumed density filtering (ADF) [206] and involve collapsing the intractable

posterior to either a Gaussian or a mixture of Gaussians with a smaller number of

components. Both EP and EC involve a forward pass (filtering) and a backward pass

(smoothing) through the graphical model using the sum-product algorithm [173]. The

key difference between EP and EC is that in EP, the backward messages correspond

to conditional likelihoods, whilst in EC, they correspond to posterior distributions

that result from a conditional independence assumption in the inference equations,

making EC more numerically stable [13]. Sampling-based approaches for approximate

inference, such as Rao-Blackwellised Gibbs sampling [254], data-driven Markov Chain

Monte Carlo (MCMC) [223], iterative MCMC [87] and sequential MCMC based on par-

ticle filtering [88], have also been explored. Earlier approaches included an approximate

Viterbi algorithm [234, 233] for computing a posterior over the hidden states.

Inference

The problem of inference is closely related to the E-step of the EM training algo-

rithm, where the goal is to infer both π̂ = {π̂t}Tt=1 and X̂ = {x̂t}Tt=1 given a sequence of

observations, Ŷ = {ŷt}Tt=1. Inference involves either filtering or smoothing or both and

can leverage on deterministic approximations, sampling-based methods or approximate

Viterbi.

Figure 5.1: Graphical model for switching linear dynamical system and deterministic process
dynamical system.
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Application to Visual Speech Synthesis

The switching linear dynamical system (SLDS) was applied to visual speech syn-

thesis by Englebienne et al. [102] and Englebienne [101], where phonemes were used

as the switching states and visual data were the observations. Given a test sequence

of phonetic labels π̂ = {π̂t}Tt=1, the most likely sequence of AAM parameters can be

obtained by setting x̂1 = µπ̂1 and iterating for t > 1:

x̂t = Aπ̂t x̂t−1 + ν π̂t (5.7)

ŷt = Bπ̂t x̂t (5.8)

However, it was found that the SLDS in its original form is over-parameterised, i.e.

it has too many degrees of freedom. As a result, it is prone to overfitting due to its

flexibility. Englebienne et al. [102] found that the SLDS explains the data very well but

does a poor job at synthesis. In particular, it was found that having a stochastic latent

process with a Gaussian noise term might lead to a poor estimation of the process that

generated the data, if the noise in the data is skewed. This leads to an accumulation

of errors in the continuous states during synthesis, resulting in poor animation.

5.1.2 Deterministic Process Dynamical System

Englebienne et al. [102] introduced several simplifications in the SLDS in order

to have a more constrained switching state-space model for visual speech synthesis.

Specifically, the noise term in the latent process was eliminated, resulting in a deter-

ministic process. The linear prediction matrices, Aπt , were made diagonal, due to the

AAM parameters being uncorrelated as a result of PCA. Moreover, the noise term wt

was shared across all switching states with its covariance Γ constrained to be diagonal.

Finally, the linear mapping Bπt from the continuous states to the observations was

removed. This leads to the following state-space equations:

x1 = µπ1 (5.9)

xt = Aπtxt−1 + νπt (5.10)

yt = xt + wt (5.11)

where wt ∼ N (0,Γ).

The graphical model is same as for the SLDS and is shown in Figure 5.1.

Training

Training the DPDS involves finding the parameters θ = {Aπ,µπ,νπ,Γ}. When the

switching state labels are unknown, the standard EM algorithm [75] cannot be used for

training the model because the E-step requires the enumeration of an exponential num-

ber of states, just like for the SLDS. However, in Englebienne [101] the discrete states
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represented the phonetic labels which are known thus leading to no hidden variables

in the likelihood function. As a result, the EM algorithm was not required. Instead, a

combination of gradient-based optimisation and closed-form solution was proposed to

infer the parameters θ of the DPDS. For estimating Aπt , a gradient-based optimisation

was carried out and at each iteration, the other parameters µπt ,νπt and Γ were esti-

mated in closed-form by solving a system of linear equations using the current estimate

of Aπt . The iterations were continued until convergence of the log-likelihood. This

combination of gradient-based optimisation and solving of a linear system of equations

has been shown to markedly improve the rate of convergence, as opposed to when all

the parameters are estimated using gradient-based optimisation [102, 101].

Inference

Exact inference of the continuous latent states in the DPDS is intractable when

the discrete states are unknown, just as for the SLDS, because the enumeration of ST

state assignments is required for a sequence of length T . Because the latent process

is deterministic, the continuous states are exactly determined by the discrete states,

which would lead to singularities in expectation propagation (EP) [328] or expectation

correction (EC) [13] equations. Instead, Englebienne [101] proposed an approximate

Viterbi algorithm to solve for the discrete states, π̂ = {π̂t}Tt=1, given a sequence of

observations, Ŷ = {ŷt}Tt=1. The proposed algorithm is analogous to computing the

distribution of the latent variable as a Gaussian mixture with zero covariance and

keeping the most likely mixture element at each time step, followed by backtracking to

obtain the optimal states for the whole sequence.

Application to Visual Speech Synthesis

In Englebienne et al. [102] and Englebienne [101], the DPDS was applied to model

the dynamics of facial data, represented by AAM parameters. The audio data was

processed separately by using a HMM to obtain a phonetic transcription from MFCC

parameters. The audio data was processed at 100Hz whilst the visual data was pro-

cessed at 29.97Hz. After phonetic alignment, the phoneme labels were shrunk to match

the visual parameters by choosing the most frequent phoneme in a given window, corre-

sponding to one frame of AAM parameters. The DPDS was then trained on the AAM

parameters with phonemes as the switching states. For synthesis, a phoneme stream

obtained from phonetically aligning the test audio was used to obtain the most likely

sequence of AAM parameters using the DPDS. Given a sequence of phonetic labels

π̂ = {π̂t}Tt=1, the most likely sequence of AAM parameters can be obtained by setting

ŷ1 = µπ̂1 and iterating for t > 1:

ŷt = Aπ̂t ŷt−1 + ν π̂t (5.12)
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The DPDS has been shown to generate perceptually more realistic facial anima-

tions than the SLDS and the Voice Puppetry of Brand [32] in [102, 101]. However, it

has some limitations. First, only backward or preservatory coarticulation is modelled

using the DPDS. Indeed, synthesis does not take into account future phonemes, which

can be an advantage from an application perspective, but the animations do exhibit

sudden bursts of mouth movements because of the non-modelling of anticipatory coar-

ticulation. This still results in acceptable animations for languages such as English that

are more preservatory than anticipatory (refer to Chapter 2 Section 2.1.5). Secondly,

the animation is completely driven by discrete phonemes at the expense of discarding

prosodic information in the speech signal. Thus, if the speaker is trying to put some

emphasis in their speech, retaining prosodic information from the speech signal would

allow the facial expressions to reflect that. These limitations can be addressed by:

1) using higher-order Markov models to model phonetic context, thus accounting for

forward and backward coarticulation and 2) learning a joint model of audio and video.

The next switching state-space model that we propose tries to address these issues.

5.1.3 Switching Shared Gaussian Process Dynamical Model

Switching state-space models like the SLDS [122] have parametric assumptions that

might lead to overfitting as discussed in the previous sections. An alternative is to

use a non-parametric model, where the training data is used in inference, leading to

synthesis results that more closely match ground truth. Non-parametric models also

retain the full variance of the training data instead of having a compact parametric

representation. Parametric models often under-estimate the predictive variance, as will

be shown in Chapter 6. The underestimation of predictive variance with parametric

models has also been reported in text-to-speech (TTS) synthesis [262]. The switching

shared Gaussian process dynamical model (SSGPDM) is a non-parametric switching

state-space model proposed by Chen et al. [48] and is obtained by augmenting the

SGPDM (refer to Chapter 4 Section 4.3.4) with switching states, in order to cater for

multiple dynamics in the data. In Chen et al. [48], the SSGPDM was applied to jointly

modelling silhouettes and 3D pose data of complex behaviours such as salsa dancing,

which involve dynamics with different switching regimes.

The SSGPDM is an extension of the SGPDM where multiple SGPDMs are indexed

by switching states π = {πn}Nn=1. The state-space equations are:
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if t = 1 or πt 6= πt−1

xt ∼ N (0, β−1dynπt
I) (5.13)

else if πt = πt−1

xt = hπt(xt−1) + εdynπt εdynπt ∼ N (0, β−1dynπt
I) (5.14)

end if

yt = fπt(xt) + εyπt εyπt ∼ N (0, β−1Yπt
I) (5.15)

zt = gπt(xt) + εzπt εzπt ∼ N (0, β−1Zπt
I) (5.16)

where fπt and gπt are the observation mappings for state πt and hπt is the corre-

sponding dynamical mapping. The noise is heteroscedastic, i.e. each switching state πt

has a different observation and dynamical noise variance, which are given as the inverse

of precision. In the SSGPDM, the dynamics are dictated by the switching states. When

the next switching state is the same as the previous, the dynamical mapping hπt maps

the previous latent point xt−1 to the next point xt. If a new state is encountered, i.e.

πt 6= πt−1, then the new latent point is sampled from a Gaussian distribution corre-

sponding to the dynamical noise term of switching state πt, with mean 0 and variance

β−1dynπt
I.

The state-space equations of the SSGPDM are more similar to the stochastic seg-

ment model [84] than the SLDS [122] because continuous states are not propagated

across the discrete switching states. Instead, whenever a new switching state is en-

countered in the state-space equations, the continuous states need to be sampled from

the noise term indexed by the new switching state. If the switching states are known,

SSGPDM training reduces to training a separate SGPDM for each switching state. The

graphical model for the SSGPDM is shown in Figure 5.2.

Figure 5.2: Graphical model for switching shared Gaussian process dynamical model.
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Training

Training a SSGPDM is an ill-posed problem because the number of ways of seg-

menting the data into switching states increases with the number of states. An EM

algorithm [75] can be devised, whereby in the E-step, the current parameters of the

model are used to estimate an optimal segmentation, followed by the M-step where

the segmentation is used to estimate the optimal parameters of each model. This ap-

proach was proposed for the stochastic segment model (SSM) [226] and by Chen et al.

[48] for the SSGPDM, although no experiments were conducted to evaluate the quality

of the segmentation by Chen et al. [48]. For the purpose of this thesis, we assume

that the phonetic labels of speech are available and we can use either the phonemes

or phonetic-contexts as switching states. An efficient algorithm for finding commonly

occuring phonetic contexts is presented in Section 5.2.

Given two aligned data streams, Y = {yt}Tt=1 and Z = {zt}Tt=1, together with a

corresponding aligned set of discrete labels, π = {πt}Tt=1, the SSGPDM can be trained

by grouping frames belonging to each switching state together and modelling them

using a SGPDM. In section 5.3.1, we present a training algorithm for the SSGPDM

on audio and visual data, where the switching states correspond to phonetic contexts.

Section 5.3.2 presents a training algorithm for the SSGPDM where the switching states

correspond to phonemes.

Inference

Chen et al. [48] proposed a particle filtering approach to jointly infer the switching

states and the continuous latent space in view of predicting 3D pose from 2D silhouettes.

Particle filtering is not ideally suited for visual speech synthesis because it would result

in jitter in the results, thus affecting realism. If the switching states are known, we can

locally optimise the continuous latent states for each switching state. Given a sequence

of observations, Ŷ = {ŷt}Tt=1, and corresponding labels, π̂ = {π̂t}Tt=1, the goal is to

infer the continuous latent states, X̂ = {x̂t}Tt=1. Inference can be done in a sequential

manner, whereby the frames are traversed from t = 1 to t = T − 1. If a given state

occupies only one frame, the dynamical GP is not taken into account in inference and

a point optimisation is carried out (refer to Chapter 4 Section 4.4.1). Otherwise, the

frames are concatenated until the state πt+1 6= πt. The frames in the subsequence are

then used in the sequence optimisation method described in Chapter 4 Section 4.4.2,

using the observation GP for fπt and the dynamical GP for hπt .

The same procedure applies when the sequence of observations given is Ẑ = {ẑt}Tt=1,

except that the observation GP for gπt is used in the optimisation.

From the inferred states, X̂ = {x̂}Tt=1, we can obtain either Ŷ = {E[fπt(x̂t)]}Tt=1 or

Ẑ = {E[gπt(x̂t)]}Tt=1.



CHAPTER 5. SWITCHING STATE-SPACE MODEL 137

More details on our proposed inference algorithms for the SSGPDM applied to

visual speech synthesis are given in Section 5.4.

Suitability of SSGPDM to Visual Speech Synthesis

The SSM [84], SLDS [122] and DPDS [102] are all parametric switching state-space

models, because following training, the model is represented as a set of parameters that

best describe the training data and the training data can be discarded when making

predictions. On the other hand, the SSGPDM is a non-parametric switching state-

space model because the training data needs to be used to make predictions. This

leads to increased time and space complexity both for training and synthesis. However,

as will be shown in Chapter 6, more accurate predictions are obtained using a non-

parametric model. Another advantage offered by the SSGPDM is that the observation

and dynamical mappings are non-linear Gaussian processes, allowing the modelling of

coarticulation dynamics exhibiting non-linear structure. Rosti and Gales [255] showed

that the SLDS with phonemes as switching states performs poorly at speech recognition

as compared to HMMs. The reason suggested was that the linear state-space evolution

is not suitable to model the non-linear dynamics of speech [12]. The SSGPDM addresses

this by having multiple non-linear dynamics to represent the non-linearities in speech

and the non-linear mapping from audio to visual speech.

5.2 Modelling Phonetic Context

A key question with the SSGPDM is how to segment the data into switching states.

Since we know the phonetic labels for each frame of aligned audio and visual data,

one possibility is to treat the phonemes as switching states. However, this approach

presents the same limitation as that of Englebienne [101] in that forward coarticulation

is not taken into account.

An alternative is to use phonetic contexts as switching states. However, this leads

to the problem of how to partition the phonetic contexts. We could use a triphone

model, as done by Bregler et al. [34], by taking the current phoneme plus a phoneme

to the left and one to the right. Kshirsagar and Magnenat-Thalmann [174] adopted

a segmentation of phonemes into syllables using a syllabification algorithm and then

used a concatenative approach for reordering segments for visual speech synthesis.

Pei and Zha [237, 238] model the dynamics of visual parameters within each syllable

using a GPDM, resulting in a dynamical model for visyllables. Ostendorf et al. [227]

identified phonetic contexts using k-means clustering of segments of audio data in order

to group audio segments with similar context together, so as to model the clustered

segments using the stochastic segment model. This approach is less accurate than
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identifying phonetic contexts using phonetic labels because audio data can be noisy

and the effectiveness depends on number of clusters chosen.

Yet another alternative is to use fixed-order higher order Markov models on phonetic

labels, but this results in an exponential number of states, many of which are sparsely

observed in the data thus requiring a large amount of data to robustly estimate their

parameters. The way this is dealt with in speech recognition and text-to-speech syn-

thesis is to cluster fixed-length contexts using decision trees [221, 323, 322] and model

these clusters together by tying parameters of context-dependent HMMs. Increasing

the context length would lead to a sharp increase in the number of states that have no

representation from the data. The decision tree clustering would then need to group

a lot of states together that might not necessarily have the same dynamics. Modelling

each cluster using a SGPDM would lead to an over generalised model that fails to take

into account the specificities of each context.

In this work, we use a variable length Markov model (VLMM) [130] to model

phonetic context. The VLMM is an alternative higher-order Markov model where the

order is variable, i.e. only states that have enough support from the data are retained.

Thus, the VLMM would find commonly occuring phonetic contexts in the data and each

context can then be modelled with a SGPDM, resulting in a SSGPDM. This avoids

the problem of having an over-generalised model when clustering phonetic contexts of

fixed-length. The next section gives a description of the VLMM and its applications to

language modelling as well as to behaviour modelling in Computer Vision.

5.2.1 Variable Length Markov Model

Variable length Markov models (VLMMs) [130, 253] are a powerful extension of

Nth-order Markov models which allow the memory length or order to vary locally.

A VLMM of order N generally contains fewer states than an equivalent Nth-order

Markov model as higher-order states not supported by the training data are automati-

cally pruned from the model during training, and is therefore more efficient space-wise.

It presents an advantage over fixed-order Markov models in its ability to locally optimise

the length of memory required for prediction. The result is a more flexible and effi-

cient representation, having the ability to capture higher-order temporal dependencies

in parts of the data and lower-order dependencies elsewhere.

A VLMM can be formulated as a probabilistic finite state automaton (PFSA),

specified by M = (Q,Σ, τ, γ, s), where Σ is a set of tokens representing the finite

alphabet of the VLMM and Q is a finite set of model states. Each VLMM state

corresponds to a string of tokens of at most length N + 1, representing the memory

in the conditional transition distribution of the VLMM. The transition function τ , the

next symbol probability function γ and the probability distribution over the initial
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states s, are given as follows:

τ : Q× Σ→ Q (5.17)

γ : Q× Σ→ [0, 1] (5.18)

s : Q→ [0, 1] (5.19)

Thus, a VLMM of order N can be trained on a stream of discrete sequences of

symbols from Σ, resulting in a predictive model that can predict a symbol σ using a

previous string of symbols or context w of maximum length N . The VLMM can predict

the transition from a state σ to suffix(σw), where suffix(σw) is a suffix of state σw,

according to the transition function τ . The observation function γ specifies how likely

it is for a state in Q to emit a symbol in Σ. The training procedure for the VLMM is

described next.

Training

Training an Nth-order Markov model involves simply computing the frequencies of

all strings of length N + 1 from the training sequence. On the other hand, in order

to train a VLMM of maximum order N , we consider w to be a prefix of length N − 1

that can be used to predict the next character σ′ according to an estimate p̂(σ′|w) of

p(σ′|w). If p̂(σ′|σw) is significantly different from p̂(σ′|w), then adding the character σ

to w helps better predict σ′. The decision criterion used by Guyon and Pereira [130]

and Ron et al. [253] is the Kullback-Leibler divergence between the next-character

distributions for the different prefixes weighted by the prior distribution of σw.

∆H(σw,w) = p̂(σw)
∑
σ′

p̂(σ′|σw) log
p̂(σ′|σw)

p̂(σ′|w)
(5.20)

If ∆H(σw,w) exceeds a given threshold εs, then the longer memory σw is retained,

otherwise σw is pruned and the suffix w is used instead.

The VLMM training algorithm involves computing estimates of p(σn|σ1σ2 . . . σn−1)
and p(σ1σ2 . . . σn) for values in the range of 1 ≤ n ≤ N + 1. The estimates used are

given by:

p̂(σn|σ1σ2 . . . σn−1) =
ν(σ1σ2 . . . σn)

ν(σ1σ2 . . . σn−1)
(5.21)

p̂(σ1σ2 . . . σn) =
ν(σ1σ2 . . . σn)

ν0
(5.22)

where ν(σ1σ2 . . . σn) is the number of occurences of string σ1σ2 . . . σn in the training

data and ν0 is the total length of the training sequence.

In order to count strings of length n = (1, 2, . . . , N + 1), a prefix tree of depth

N + 1 is grown by sliding a window of fixed length N + 1 along training sequences and

adding strings σ1σ2 . . . , σN+1 appearing in the window to the tree, from root to the

leaves. The branches of the tree represent the characters whilst the nodes represent the
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number of counts encountered for a string represented by the traversal from the root

to that node. Every time a given branch is attained by entering a string σ1σ2 . . . σn,

the counter ν(σ1σ2 . . . σn) associated with that branch is incremented. An example of

a prefix tree as given by Ron et al. [253] is shown in Figure 5.3a. After the prefix tree is

built, it is pruned by removing least visited nodes. A branch i is pruned if the following

condition is satisfied:
νi
ν0
≤ εp (5.23)

where νi is the counter of branch i, ν0 is the root counter and εp is a threshold

value.

The next step of the VLMM training involves building a prediction suffix tree

(PST). In a PST, the strings are entered in reverse order, as opposed to a prefix

tree. The branches of the tree represent characters whilst the nodes have no specific

representation. The node reached by accepting string σn−1σn−2 . . . σ1 is associated with

the prefix tree probability p̂(σn|σ1σ2 . . . σn−1). Using a PST, it is possible to obtain the

longest suffix of σ−∞ . . . σ0σ1σ2 . . . σn−1 that provides the best probability estimate for

the next character σn. Algorithm 3 gives the steps for building a PST, given a set of

strings W , which are initialised as: W = {σ|σ ∈ Σ and p̂(σ) > εs}

Algorithm 3 Training algorithm for prediction suffix tree (PST).

Input: A set of strings W , a set of tokens Σ, the maximum depth of the PST ds,
thresholds εp and εs
Output: The trained PST
Initialise the PST as a single root node.
while W 6= ∅ do

Pick any w ∈W and remove it from W
if ∆H(w, suffix(w)) ≥ εs then

Add w to the PST by growing all necessary nodes
if |w| < ds then

For every σ ∈ Σ, add σw to W if p̂(σw) > εp
end if

end if
end while

In order to determine ∆H(w, suffix(w)) ≥ εp (Eqn.5.20) according to the counts

in Eqn.5.21 and Eqn.5.22, the pruned prefix tree is used by starting from the root node

and entering the characters in w. The node reached gives the number of occurences of w

whilst the ancestor of the node gives the counts for suffix(w). A string w not meeting

the criterion ∆H(w, suffix(w)) ≥ εs is not ruled out because its future descendants

might meet the selection criterion. Thus, the descendants σw of w are added to W .

The PST corresponding to the prefix tree in Figure 5.3a is shown in Figure 5.3b.

The final stage of training involves converting the suffix tree to a PFSA representing
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the trained VLMM. Each node in the VLMM corresponds to a node in the PST.

However, the label of each VLMM state is obtained by a string read backwards from

the corresponding PST node to the root. A state w in the VLMM has an outgoing arc

to state suffix(wσ′) with probability τ(σ′, w) = p̂(σ′|w), where suffix(wσ′) is the

longest suffix of wσ′, obtained from the PST. The outgoing arcs are added repeatedly

for each node of the PST until all nodes have been visited. In addition, the conversion

from PST to PFSA involves the estimation of the initial probability function over the

states, s, and the next symbol probability function, γ. More details on the conversion

are given in [253]. Figure 5.3c shows a PFSA obtained from the PST in Figure ??.

(a) (b)

(c)

Figure 5.3: VLMM training procedure according to Guyon and Pereira [130]: (a) Build prefix
tree. (b) Build PST from prefix tree. (c) Convert PST to PFSA.

Inference

Given a sequence of characters from the alphabet Σ, the aim is to infer the VLMM

states for the sequence. The PFSA of the VLMM is traversed beginning with the

start state and moving to the next VLMM state by applying the transition function

in Eqn.5.17 to the current state and the incoming character. This is repeated until all

the characters in the test sequence have been processed. Occasionally when traversing
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the PFSA, a VLMM state can be reached that does not have a transition function for

the incoming character, in which case, the algorithm moves back to the start state and

forgets all previous memory. This assigns a VLMM state to each frame. However,

because each VLMM state encodes a context of maximum length N , the assignment of

VLMM states to the previous frames representing the context leads to multiple states

being assigned to each frame, thus resulting in overlapping. For the purpose of synthesis

with the SSGPDM, it is desirable that the assignment of VLMM states to frames is

non-overlapping.

In order to assign each frame to non-overlapping VLMM states, we propose a back-

tracking method as given in Algorithm 4. This is particularly useful in synthesis using

the SSGPDM with VLMM switching states, because of the sequential nature of the

inference algorithms, requiring that each frame be assigned to one discrete state. The

backtracking algorithm starts from the last VLMM state reached and marks all previ-

ous frames up to the length of that VLMM state with the index of the last state. Then,

it moves to the frame before the last (in reverse order) of the newly marked frames,

takes the VLMM state of that frame and marks all previous frames up to the length of

that VLMM state with the index of that state. This is repeated until the first frame is

reached.

Algorithm 4 Backtracking to infer non-overlapping VLMM states

Input: Overlapping VLMM states {πt}Tt=1, set of strings corresponding to VLMM
states Q = {qn}Kn=1

Output: Non-overlapping VLMM states {π̂t}Tt=1

Let πT be the VLMM state index of the last frame (T ) of the sequence, and πt be
the VLMM state index of the tth frame.
t← T
while t ≥ 1 do
Mπt ← Length(qπt)
π̂t−Mπt+1:t ← πt
t← t−Mπt

end while

5.2.2 Language Modelling using VLMM

Language has a lot of structure that can be modelled effectively using VLMMs.

Ron et al. [253] were the first to introduce the VLMM and applied it to the correction

of corrupted text taken from the Bible. A dynamic programming algorithm that gives

the optimal sequence of characters given a corrupted sequence was presented for that

purpose. Guyon and Pereira [130] designed a linguistic postprocessor using VLMMs

and introduced the prefix tree for counting the number of string occurences in the text.

The model was trained on various corpora and the compression effectiveness of the
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model was measured using the cross-entropy (entropy for short) as well as a lower-

bound on the entropy called the intrinsic entropy. In speech recognition, a related

measure called the perplexity [147] has been widely used. Given a language source L
that produces character strings w according to a probability distribution PL(w), and

a model M of L, having a probability distribution PM(w), the cross-entropy of model

M with respect to the actual distribution PL(w), is a measure of the predictive ability

of the model and is given by:

HLM = −
∑
w

PL(w) logPM(w) (5.24)

The perplexity can be estimated from the cross-entropy according to:

BLM = 2H
L
M (5.25)

To measure the cross-entropy for a corpus of N characters {σn}Nn=1 modelled with

a VLMM and having states s, the following estimate is used:

ĤLM(per character) = − 1

N

N∑
n=1

logPM(σn|sn−1) (5.26)

Hu et al. [147] compare various variable-order Markov models including the VLMM

by training them on different text corpora. An additional measure called the best-path

entropy was introduced, which measures the degree of non-determinism in the models.

The best-path entropy corresponds to the entropy computed along the optimal state

sequence and is given by:

ĤLM(R) = − 1

N

N∑
n=1

logPM(R|O) (5.27)

where R is a given test string and O is the optimal state sequence.

The experiments of Hu et al. [147] showed that the VLMM achieves a far superior

compression compared to other higher-order Markov models, as measured by the cross-

entropy. However, the VLMM was also found to exhibit higher ambiguity and inferior

performance on smaller text corpora.

5.2.3 VLMMs of Behaviour

VLMMs have also been applied to learning models of human behaviour from image

sequences in Computer Vision, because behaviours such as exercise, ballet dancing,

hand movements and facial behaviour exhibit both short-term and long-term temporal

structure. Using a VLMM provides an efficient representation of behaviour at different

temporal scales as compared to a first-order Markov model which captures only short-

term dependencies and higher-order Markov models which result in a lot of states that

are only sparsely observed, if at all.
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Galata et al. [118] introduced VLMMs to the Computer Vision community, where

features were first extracted from an exercise sequence and vector-quantised, so as to

represent the behaviour as a time-series sequence of discrete states. Two techniques

were proposed to learn a behaviour model using VLMMs. In the first, the VLMM was

trained on the discrete states and subsequently used for synthesis of new behaviour,

as well as prediction of future behaviour from a history. A Hermite interpolation [37]

method was proposed to interpolate between the discrete states in the feature space for

synthesis. In the second method, a hierarchical memory mechanism was proposed that

involved learning a VLMM at a higher level of abstraction, thus capturing higher-order

dependencies. In Galata et al. [119], an interaction model between cars in a traffic

sequence was learnt using VLMMs, using a representation of interaction behaviour as

a discrete alphabet. New sequences of interaction behaviour could be generated by

sampling from the behaviour model.

Liang et al. [189] applied VLMMs to learn a model of exercise behaviour on sil-

houette data with shape context [16] features extracted. The VLMM was used for

recognition, where the movement primitives were recognised from a set of silhouette

images by associating a discrete label to the shape context features of the test data

and then using a Viterbi algorithm to estimate the optimal state sequence as predicted

by the VLMM, given the observed discrete label sequence. This has similarities to the

correction of corrupted text proposed by Ron et al. [253].

Caillette et al. [39, 40] applied VLMMs to tracking of ballet sequences in 3D through

the use of particle filtering. Training data consisted of 3D motion capture of ballet

dancing, represented as joint angles and augmented with first-order derivatives. The

training data was clustered into primitive motion units and each frame was assigned to

the closest cluster. A VLMM was then learnt on the state indices without removing rep-

etitions of the same state. For tracking a test sequence, image frames were segmented

and a volumetric reconstruction of the detected person was performed, followed by

the fitting of Gaussian blobs to the articulated human figure. The particle filtering

framework consisted of first propagating global dynamics to predict the next VLMM

state and propagating local dynamics for the next joint angle configuration in case the

next VLMM state is the same as the previous. The local dynamics were propagated

using the first-order derivatives of the joint angles in the current cluster. Particles were

weighted against the image evidence by fitting blobs to the particle configurations and

using KL-divergence to measure the distance between the particle blobs and the blobs

fitted to the image evidence, from which the weights of each particle were derived. Hou

et al. [146] improved on that method by using a back-constrained GPLVM (refer to

Chapter 4 Section 4.2.5) to perform dimensionality reduction of the feature space and
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using a clustering algorithm that takes into account the uncertainty in the reduced-

dimensional feature space. Stefanov et al. [267, 268] applied a similar framework to

hand-tracking with the difference that there was no local dynamics model and the par-

ticle evaluation was performed using feature points detected using a Hough transform

rather than blobs. To propagate the particles in case the next VLMM state is the

same as the previous, Gaussian noise was added to the previous configuration and the

particles were weighted in terms of the distance between the particles’ feature points

mapped to the image plane and the feature points from the image evidence.

Bettinger et al. [19, 20] used VLMMs represented as a PST rather than as a PFSA

to learn a model of facial behaviour that could be applied to synthesise novel facial

behaviour. The data consisted of video frames of a person shaking their head. The facial

images were represented as AAM parameters. The feature space was then segmented

into sub-trajectories with similar sub-trajectories grouped together using PCA. In order

to do this, it was necessary that all sub-trajectories be encoded with the same number

of points. This was done by interpolating all the sub-trajectories using cubic splines

and homegeneously re-sampling them to a given number of points. A VLMM was then

learnt on the sub-trajectory groupings, represented as discrete states. To generate new

sequences given a history of generated sub-trajectory groups, first the longest possible

memory encoded in the VLMM tree was found. The probability of generating a new

sub-trajectory group could be read directly from the tree, if it was encoded in the

tree. After having fetched the probabilities of generation for each sub-trajectory group,

samples were drawn from this set of probabilities in order to generate the next sub-

trajectory group. All the sub-trajectories generated were then concatenated, giving

a sequence of AAM parameters for a synthetic facial behaviour. This method thus

can generate novel facial behaviour by taking into account both short-term and long-

term dependencies but is not appropriate for synthesising speech-synchronised facial

animation because the audio component was not modelled.

5.2.4 Phonetic Context Modelling using VLMM

In this work, we train a VLMM on the stream of phonemes corresponding to the

utterances in the training data in order to identify the switching states of our proposed

switching state-space model. Figure 5.4 shows a hypothetical VLMM of maximum

order two on a sequence of phonemes from the BEEP corpus.

We train a separate VLMM on the stream of phonemes from the LIPS and DEM-

NOW corpora respectively. For LIPS, we use 250 sequences for training and 28 se-

quences for testing. For DEMNOW, we use 550 sequences for training and 100 se-

quences for testing. The training and test sequences are non-overlapping.

VLMMs can either be trained on a stream of phonemes with repetitions or without
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Figure 5.4: A hypothetical PFSA for a second-order VLMM on a sequence of phonemes.

repetitions. For example, Liang et al. [189] trained a VLMM on a non-repeating se-

quence of behaviour prototypes whilst Caillette et al. [39], Hou et al. [146] and Stefanov

et al. [268] trained VLMMs on a sequence of behaviour prototypes with repetitions re-

tained. The advantage offered by not using repetitions is that longer-order temporal

dependencies can be captured. However, it can result in a lot of states that are only

sparsely observed in the data.

In our case, training a VLMM on repeating phonemes means that we can model all

subsequences corresponding to a given VLMM state using an autogressive dynamical

model, where the next latent state is predicted from the previous. If the VLMM is

trained on non-repeating phonemes, then each subsequence will be of different length

and the dynamical model to be used needs to take a time index as input to predict the

latent state at that time.

In order to use the VLMM to find switching states for the SSGPDM, the segmenta-

tion has to be such that each state has enough data to train a SGPDM. We now present

experiments to determine the optimal order of the VLMM . We also perform exper-

iments to determine whether to use a VLMM trained on repeating or non-repeating

phonemes. In particular, we aim to determine whether a VLMM trained on non-

repeating phonemes leads to high occupancy across the states as compared to training

a VLMM on repeating phonemes. The occupancy across the states would give a good

indication of the predictive power of the corresponding SGPDM.

Perplexity Tests

The aim of the perplexity tests is to investigate the VLMM order to use on phonemes.

This is done by observing how the perplexity (refer to Section 5.2.2) varies with the
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(a) (b)

Figure 5.5: LIPS - Perplexity tests on VLMM trained on: (a) repeating phonemes (b) non-
repeating phonemes.

model order. When there is no further drop in perplexity as the model order increases,

this means that further increasing the order does not allow the VLMM to capture longer

contexts because these do not occur frequently enough in the data. In the perplexity

tests, we train VLMMs on the training set and compute the perplexity on the test set.

This is repeated whilst increasing the maximum model order from 2 to an upper limit

L. Perplexity plots are then generated by plotting perplexity against the maximum

model order.

In our case, we vary the maximum model order from 1 to 10. The perplexity test

for VLMMs trained on LIPS repeating phonemes is shown in Figure 5.5a and that for

non-repeating LIPS phonemes is shown in Figure 5.5b. The corresponding plots for

DEMNOW are shown in Figures 5.6a and 5.6b respectively. The plots show that for a

VLMM trained on LIPS with repeating phonemes, the optimal maximum model order

is 6, where the perplexity reaches the minimal value and then stays constant afterwards.

This means that contexts of higher order do not occur frequently enough in the data.

For a VLMM trained on LIPS with non-repeating phonemes, the optimal maximum

model order is 4. For a VLMM trained on DEMNOW repeating phonemes, the optimal

maximum model order is also 6 whilst on DEMNOW non-repeating phonemes, the

optimal maximum model order is 5. These experiments give us the optimal memory

length to use when training the phonetic VLMMs for the LIPS and DEMNOW corpora.

VLMM States Occupancy

The aim of this experiment is to find the occupancy of VLMM states for VLMMs

trained on repeating and non-repeating phonemes. High occupancy per state is de-

sirable, because it would lead to greater predictive power of our proposed switching
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(a) (b)

Figure 5.6: DEMNOW - Perplexity tests on VLMM trained on: (a) repeating phonemes (b)
non-repeating phonemes.

state-space model. The experiment involves training a separate VLMM for repeating

and non-repeating phonetic streams for LIPS and DEMNOW and comparing the occu-

pancy of the VLMM states. The maximum memory order of the VLMM is set to the

optimal value found in the perplexity tests for each category.

A VLMM trained on repeating phonemes from the LIPS corpus yields 2136 states

with 935 states having occupancy ≤ 5.

A VLMM trained on non-repeating phonemes from the LIPS corpus yields 3717

states with 3055 states having occupancy ≤ 5.

A VLMM trained on repeating phonemes from the DEMNOW corpus yields 822

states with only one state having occupancy ≤ 5.

A VLMM trained on non-repeating phonemes from the DEMNOW corpus yields

2187 states with 633 states having occupancy ≤ 5.

Figure 5.7a shows the occupancy of VLMM states for a VLMM trained on repeating

LIPS phonemes, with the x-axis showing the VLMM state index and the y-axis showing

the VLMM occupancy. Figure 5.7b shows the corresponding plot for a VLMM trained

on non-repeating LIPS phonemes. The corresponding plots for DEMNOW are shown

in Figures 5.8a and 5.8b respectively.

This experiment shows that training a VLMM on repeating phonemes results in high

occupancy across a large number of VLMM states whilst a VLMM on non-repeating

phonemes results in a larger number of states with the occupancy per state much lower

and a larger number of states with very low occupancy. In our case, we want each

state to have a high occupancy because that would lead to the SGPDM model for that

state to have higher predictive power. As a result, we decide to use VLMMs trained

on repeating phonemes.
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(a) (b)

Figure 5.7: LIPS - Occupancy of VLMM states for VLMM trained on: (a) repeating phonemes
(b) non-repeating phonemes.

The plots also reveal that the VLMM trained on DEMNOW repeating phonemes

produces fewer states with higher occupancy as compared to LIPS. This is to be ex-

pected because the LIPS corpus [281] consists of utterances of sentences from a con-

trolled list, aimed to maximise the coverage of different possible phonetic contexts

whereas the DEMNOW corpus [102] consists of sentences from a newscast, which is

closer to natural language. Thus, we expect to find less contexts with higher frequency

of occurence per context in the DEMNOW corpus.

5.3 Learning SSGPDMs of Audio and Video

Given the switching states, the SSGPDM models can be trained on audio and

visual data by training a separate SGPDM model for each switching state. The free

parameters for each SGPDM are set to the optimal parameters obtained from the model

selection experiments presented in Chapter 4 Section 4.5.1.

The visual data consists of normalised AAM parameters for both the LIPS and

DEMNOW datasets. The audio data consists of RASTA-PLP features processed at

25Hz for LIPS data and MFCC features downsampled from 100Hz to 29.97Hz using

polyphase quadrature filtering for DEMNOW data. These speech features have been

found to give the best predictions of visual features for LIPS and DEMNOW, respec-

tively, from experiments done in Sections 4.5.2 and 4.5.3 in Chapter 4.

In the SGPDM model of audio and visual data presented in Chapter 4, a back-

constraint was used to model the many-to-one mapping from phonemes to visemes. By

having a back-constraint, a one-to-one mapping was constrained between the audio data

and the latent points, thus catering for the fact that multiple audio can map to similar
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(a) (b)

Figure 5.8: DEMNOW - Occupancy of VLMM states for VLMM trained on: (a) repeating
phonemes (b) non-repeating phonemes.

visual data. In the SSGPDM, we have separate SGPDMs to model phonetic contexts.

Because fewer phonemes are involved in each SGPDM comprising the SSGPDM, there

are less ambiguities arising from the many-to-one relationship between phonemes and

visemes. We thus do not use back-constraints in the SSGPDM. This also has the

advantage in reducing the time and storage requirements of the model training.

In our experiments, we found that if the number of frames in a SGPDM exceeds a

certain amount, the reconstructions of the visual and audio data from the latent space

deviate substantially from ground truth. This is because the limited number of active

points in the sparse approximations [179] fail to capture the whole distribution of the

data. Moreover, the higher the number of frames in a given model, the more time it

takes for the model to train and the larger storage required to store the model. As

has been observed by some researchers [290, 300], the GPDM has a good generalisation

ability with a limited amount of training data as opposed to parametric models such

as the linear dynamical system (LDS). We found that a model having 1000 frames

results in good reconstructions in the audio and visual spaces without compromising

the predictive ability on new data. As a result, as we scan through the sequences in the

training set to extract subsequences or data points pertaining to each switching state,

we stop adding further data if the number of frames already added exceeds 1000.

5.3.1 SSGPDM with Phonetic Contexts as Switching States

Once the phonetic contexts have been found using the VLMM, an SSGPDM can

be trained by grouping together audio and visual data corresponding to each VLMM

state and modelling these together using a SGPDM. Given a set of VLMM states

consisting of strings, Q = {qn}Nn=1 such that both the phonemes, σt, and the tokens,
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qn, come from a finite alphabet Σ. The state-space consists of overlapping segments,

where in each segment, the string defined by the sequence of phonemes {σt} within

that segment corresponds to a string qn. In that case, for each token qn of length L,

a window of length L is scanned across the phonemes to find string matches of that

token. In case a match occurs, the corresponding frames from Y and Z are grouped

together as subsequences, using a sequence delimiter vector to identify the subsequence

boundaries (refer to Chapter 4 Section 4.2.5). If qn is of length 1, a SGPLVM model

without dynamics is trained on the grouped data whilst on the other hand, a SGPDM

model is trained on the multiple sequences.

If instead of a single sequence, multiple data sequences {Yn}Sn=1 and {Zn}Sn=1 are

available, the grouping of frames for each state is done over all the sequences available.

The pseudocode for the SSGPDM training algorithm for overlapping switching

states is given in Algorithm 5.

Generative Coarticulation Models

The SSGPDM with phoneme VLMM switching states yields generative models of

coarticulation because each SGPDM captures the dynamics of phonetic contexts. Fig-

ures 5.9a, 5.9b and 5.9c show the visualisation of SGPDMs from the SSGPDM with

phoneme VLMM switching states trained on LIPS data and Figures 5.10a, 5.10b and

5.10c show the visualisations for DEMNOW. Only the first three dimensions are shown

together with the likelihood space using Jon Conti’s Matlab volume rendering codes1.

The visualisations show the trajectories of the joint latent space of audio and visual

data for the same phonetic context. The variations correspond to stylistic differences in

the audio and visual realisations of the phonetic contexts. Regions close to the training

data are darker, due to the higher likelihood associated with the likelihood decreasing

in regions where there is no training data. It is to be noted that the dynamics also

leads to smooth paths with no jumps which might be due to the sparsity of the models

and the limited variability (due to context) being modelled by a single SGPDM.

5.3.2 SSGPDM with Phonemes as Switching States

The SSGPDM with phonetic contexts as switching states explicitly models both

forward and backward coarticulation (refer to Section 5.4.5). We want to investigate

what effect the use of phonetic contexts as switching states has as compared to using

phonemes as switching states, which was the approach adopted in the DPDS of En-

glebienne et al. [102]. In Chapter 6, we evaluate SSGPDMs with both phonetic contexts

and phonemes as switching states.

1http://www.mathworks.com/matlabcentral/fileexchange/4927-vol3d-m-vol3dtool-m

http://www.mathworks.com/matlabcentral/fileexchange/4927-vol3d-m-vol3dtool-m
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Algorithm 5 SSGPDM training algorithm for overlapping switching states

Input: {Yn}Sn=1, {Zn}Sn=1, phonetic stream {σn}Sn=1, set of strings Q = {qn}Kn=1

and set of VLMM alphabets, Σ
Output: Trained SGPDM models, SGPDM{n}Kn=1

for i := 1 : K do
y train{i} ← {}
z train{i} ← {}
seq delimiter{i} ← {}
L← length(qi)
for j := 1 : S do

Y ← Yj

T ← length(Y)
for k := 1 : T − L+ 1 do
test str ← Σ{σt}k+L−1

t=k

if test str = qi then
Add {Yt}k+L−1t=k to y train{i}
Add {Zt}k+L−1t=k to z train{i}
len sequence← len sequence+ L
if L > 1 then

Add len sequence to seq delimiter{i}
end if

end if
end for

end for
if seq delimiter{i} = {} then

Train SGPLVM (without dynamics) model for state i using y train{i} and
z train{i}

else
Train SGPDM model for state i using y train{i} and z train{i} and
seq delimiter{i}

end if
SGPDM{i} ← model

end for

(a) (b) (c)

Figure 5.9: SGPDM for VLMM states of the LIPS corpus: (a) VLMM state b oy oy oy oy oy
oy. (b) VLMM state l ey ey ey ey ey. (c) VLMM state y y uw uw uw.
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(a) (b) (c)

Figure 5.10: SGPDM for VLMM states of the DEMNOW corpus: (a) VLMM state P AY AY
AY AY AY AY. (b) VLMM state P EY EY EY EY. (c) VLMM state R AY AY AY AY AY
AY.

The following describes how to train a SSGPDM with phonemes as switching states.

In our audio-visual data corpora, each frame is labelled with a phoneme. We can thus

group audio and visual data corresponding to each phoneme together and model them

using a SGPDM. This gives rise to a phoneme SSGPDM with the switching states non-

overlapping. The pseudocode for the SSGPDM training algorithm for non-overlapping

switching states is given in Algorithm 6.

Generative Phonetic Models

Figures 5.11a, 5.11b and 5.11c show the visualisations of SGPDMs from the phoneme

SSGPDM trained on LIPS data. Figures 5.12a, 5.12b and 5.12c show the visualisa-

tions of SGPDMs from the phoneme SSGPDM trained on DEMNOW data. Only the

first three dimensions are visualised together with the likelihood space using the vol-

ume rendering codes. The visualisations clearly depict that the lengths of phonetic

subsequences are shorter as compared to those found using the VLMM in Figures 5.9

and 5.10. Moreover, there are more variations between different latent trajectories

of phoneme subsequences as compared to those of phoneme VLMM subsequences in

Figures 5.9 and 5.10. This effect can be explained by coarticulation. In the case of

phonemes, the different subsequences have different audio and visual realisations, de-

pending on the context. On the other hand, phoneme VLMM subsequences already

encapsulate the context of phonemes and thus there are fewer variations, which might

be attributed to style. The phoneme SSGPDM visualisations also reveal more jumps

in the latent trajectories, which are due to the larger variability being modelled by a

single SGPDM as compared to when phonetic contexts are used as switching states.
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Algorithm 6 SSGPDM training algorithm for non-overlapping switching states

Input: {Yn}Sn=1, {Zn}Sn=1 and {πn}Sn=1 where π ∈ {1 . . .K}
Output: Trained SGPDM models, SGPDM{n}Kn=1

for i := 1 : K do
for j := 1 : S do
y train{i} ← {}
z train{i} ← {}
seq delimiter{i} ← {}
T ← length(Yj)
for t := 1 : T do

if πt = i then
len sequence← 0
if πt = πt+1 then

Add Yj [t] to y train{i}
Add Zj [t] to z train{i}
len sequence← len sequence+ 1

else
Add len sequence to seq delimiter{i}

end if
end if

end for
end for
Train SGPDM model for state i using y train{i}, z train{i} and seq delimiter{i}

SGPDM{i} ← model
end for

(a) (b) (c)

Figure 5.11: SGPDM for phonetic states of the LIPS corpus: (a) Phoneme state ah. (b)
Phoneme state k. (c) Phoneme state eh.
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(a) (b) (c)

Figure 5.12: SGPDM for Phoneme states of the DEMNOW corpus: (a) Phoneme state AW.
(b) Phoneme state G. (c) Phoneme state OW.

5.4 Synthesis using the Switching SGPDM

The synthesis methods we propose for the SSGPDM are sequential, i.e. inference

proceeds from beginning to end of the test audio data. It is assumed that the phonetic

labels for the test sequence are known and we can then use the method described in

Section 5.2.1 to infer the VLMM states from the phoneme sequence. We can then

assign each frame to a non-overlapping VLMM state using Algorithm 4. Two scenarios

are considered for the synthesis of visual from audio data. The first one assumes that

the whole audio is available at the beginning and adopts a batch method. We call it

sequential optimisation and more details are given in Section 5.4.1. The second one

assumes that the audio data is arriving in an online fashion. We call this method

sequential prediction with more details given in Section 5.4.2.

For both methods, an initial estimate of the latent points Xinit is found using

a nearest-neighbour comparison of the test audio features against the training audio

features in the current SGPDM model. The nearest-neighbour initialisation method

was found to give the best results in model selection experiments in Chapter 4 Section

4.5.1. In both algorithms, Yπt and Xπt are the training audio data and latent points,

respectively, of the SGPDM model corresponding to the state πt.

Once the latent points are obtained, the visual features, Z∗ = {z∗t }Tt=1 can be

obtained from the mean prediction of the visual observation GP corresponding to the

VLMM state at frame t, according to Eqn.5.28.

z∗t = kZπt(x
∗
t ,Xπt)

TKZ
−1
πt Zπt (5.28)

where kZπt is the kernel function for the visual GP of state πt and KZπt is the

kernel matrix for the visual GP of state πt, computed using the corresponding training

visual data, and Zπt is the training visual data of the SGPDM model for state πt.
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5.4.1 Sequential Optimisation

Algorithm 7 describes a sequential optimisation algorithm which assumes the entire

test sequence is available from the start, so that synthesis can be performed in an offline

manner. Here, the latent point for each frame is locally optimised based on the current

SGPDM model, which depends on the current state. If the current state is occupied by

only the current frame, a point optimisation (refer to Chapter 4 Section 4.4.1) is carried

out, otherwise a sequence optimisation (refer to Chapter 4 Section 4.4.2) is carried out.

Algorithm 7 Sequential optimisation of latent points.

Input: Non-overlapping VLMM states {π̂t}Tt=1 and audio {ŷt}Tt=1 for test sequence
Output: Inferred latent points {x∗t }Tt=1

t← 1
while t ≤ T do

if π̂t+1 6= π̂t then
Point Optimisation - Eqn(1):
x∗t ← arg maxx̂ p(ŷt|x̂,Yπ̂t ,Xπ̂t ,ΦY π̂t

)
else
ti ← t
π̂s ← π̂t
while π̂t+1 = π̂t do
t← t+ 1

end while
tj ← t
Sequence Optimisation - Eqn(2):
X∗ti:tj ← arg maxX̂ p(Ŷti:tj , X̂ti:tj |Yπ̂s ,Xπ̂s ,ΦYπ̂s

,Φdynπ̂s
)

end if
end while

5.4.2 Sequential Prediction

If the assumption is that the data is coming in a sequential manner, then Algorithm

8 allows the prediction of the next frame from the previous frame. This is done by using

a point optimisation (refer to Chapter 4 Section 4.4.1) on the first frame of a given state

that might span several frames. The dynamical GP is then used to predict the next

frames for that state. This is repeated for all audio frames. The sequential prediction

algorithm is best suited for real-time applications although the point optimisation might

result in some latency, depending on the number of iterations used.

5.4.3 Smoothness Constraint

The algorithms above consider the switching states to be independent. In order to

ensure the proper modelling of backward coarticulation, continuity has to be enforced
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Algorithm 8 Sequential prediction of latent points.

Input: Non-overlapping VLMM states {π̂t}Tt=1 and audio {ŷt}Tt=1 for test sequence
Output: Inferred latent points {x∗t }Tt=1

t← 1
x∗t ← arg maxx̂ p(ŷt|x̂,Yπ̂t ,Xπ̂t ,ΦYπ̂t

)
while t ≤ T − 1 do

if π̂t+1 6= π̂t then
Point Optimisation - Eqn(3):
x∗t+1 ← arg maxx̂ p(ŷt+1|x̂t+1,Yπ̂t+1 ,Xπ̂t+1 ,ΦYπ̂t+1

)
else

x∗t+1 ← hπ̂t(x
∗
t )

end if
t← t+ 1

end while

in the visual features even when switching from the SGPDM of the current VLMM state

to the SGPDM of the next state. Each SGPDM has a local dynamical model that caters

for the coarticulatory dynamic of the current speech segment. An additional smoothness

constraint needs to be enforced when switching from one SGPDM to the next. To deal

with this, we introduce an additional term in the likelihood that is to be optimised to

find latent points. This is done by formulating a joint likelihood between the test audio

features of the current frame and the visual features of the previous frame. Given the

latent point of the previous frame, x∗t−1, the term p(ẑt−1|x∗t−1,Zπ̂t−1 ,Xπ̂t−1 ,ΦZπ̂t−1
) is

multiplied to the likelihood function of Eqn(1) and Eqn(2) in Algorithm 7 as well as

Eqn(3) in Algorithm 8. For Eqn(1), the likelihood function to be optimised becomes:

p(ŷt, ẑt−1|x̂t,x∗t−1,Yπ̂t ,Xπ̂t ,Zπ̂t−1 ,Xπ̂t−1 ,ΦY π̂t ,ΦZπ̂t−1
)

=p(ŷt|x̂t,Yπ̂t ,Xπ̂t ,ΦY π̂t)p(ẑt−1|x
∗
t−1,Zπ̂t−1 ,Xπ̂t−1 ,ΦZπ̂t−1

) (5.29)

Optimising this joint likelihood constrains the visual features of the first frame

synthesised from a given SGPDM model of VLMM state π̂t to be similar to the last

visual features belonging to the SGPDM model of the previous VLMM state, π̂t−1,

thus ensuring continuity across states.

It is to be noted that switching state-space models like the SLDS and DPDS do

not need a smoothness constraint in synthesis because the state-space is continuous

with the propagation of the continuous states at the discrete state boundaries. On the

other hand, the SSGPDM is a segmented model with each new discrete state requiring

sampling of the continuous states from the corresponding SGPDM. As a result, the

smoothness constraint is necessary to ensure continuous visual trajectories in synthesis.
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5.4.4 Leading and Trailing Pauses

The synthesis techniques described cater only for speech-related facial gestures,

without consideration for non-verbal cues such as pauses before and after the sentence.

In order to generate videorealistic output, we need to cater for the leading and trailing

pauses.

The video sequences in the corpora have either silences or breaths before and after

the utterance. The methods described so far have only considered the utterance in

between, excluding the silence and breath frames. In order to generate a realistic

animation, we need to synthesise visual features for these frames as well. We do this

by learning separate SGPDMs between the audio and visual features for the leading

and trailing silences and breaths. Then in the synthesis, we try to find intermediate

latent points that maximise the joint likelihood of the audio data and latent points

given the parameters of the corresponding trained SGPDM. From the latent points,

the visual features can be synthesised, as described previously. Eqn.5.30 illustrates the

optimisation of latent points for silence frames.

X∗sil = arg max
X̂

p(Ŷsil, X̂sil|Ysil,Xsil,ΦYsil ,Φdynsil) (5.30)

where Ysil are the training audio data and Xsil the training latent points, ΦYsil

are the hyperparameters of the audio GP and Φdynsil are the hyperparameters of the

dynamical GP for the silence SGPDM.

This approach works because generally the frames that are labelled as silence are

not really silence but contain lower amplitude sounds preceeding or following the ut-

terance being made. The SGPDM is thus able to capture the correlations between the

corresponding audio and visual features. For breath, the audio will consist of a hissing

sound and the visual data will correspond to the opening of the mouth for inspiration.

A low-pass filter [131] is applied to the final synthesised visual features in order to

smooth the animation and minimise jumps, thus creating a seamless animation that

blends well at the boundaries. The Matlab function interp is used for that purpose.

5.4.5 Modelling Coarticulation

Using VLMM states as switching states for the SSGPDM and in conjunction with

the sequential optimisation method presented earlier, we explicitly model both preser-

vatory and anticipatory coarticulation (refer to Chapter 2 Section 2.1.5 for more details

on coarticulation). The dynamics of phonetic contexts are captured by modelling each

VLMM state using a SGPDM model. When synthesising the visual parameters, previ-

ous phonetic context is taken into account by the smoothness constraint mentioned in

the previous section. This accounts for preservatory coarticulation. In addition, each
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VLMM state encapsulates the context of phonemes. The sequential optimisation algo-

rithm takes into account future phonemes that occur within a particular VLMM state,

thus accounting for anticipatory coarticulation. The sequential prediction method also

has a model of anticipatory coarticulation, because the dynamical GP should predict

the coarticulatory dynamics within a given VLMM state. However, the model of an-

ticipatory coarticulation is weaker than when using sequential optimisation because

information from the audio is not used to infer the state-space, which can lead to

higher ambiguity in the synthesis.

Our hypothesis is that explicitly modelling forward and backward coarticulation

would lead to better results in visual speech synthesis. In order to test this, we need to

compare our results against a model that does not model anticipatory coarticulation,

which is the case for the SSGPDM with phonemes as switching states. If phonemes

are used as the switching states for the SSGPDM, then there is no model of forward

coarticulation because the next phonetic states are unknown and therefore no consider-

ation is made for these using both sequential optimisation and prediction, which tends

to yield short-term bursts of mouth opening with no anticipation of future behaviour.

However, using the smoothness constraint, anticipatory coarticulation is still taken into

account, which can lead to acceptable animations for the English language, given that

English is predominantly anticipatory (refer to Chapter 2 Section 2.1.5). In Chapter

6, we present experiments to compare the two switching state representations for the

SSGPDM as well as the two synthesis algorithms proposed.

5.5 Discussion

The application of the SSGPDM to visual speech synthesis addresses the limitations

of the SGPDM. The first limitation of the SGPDM is the limit to the number of

frames that can be modelled using a single SGPDM. With the SSGPDM, we can

segment the data such that each switching state models a given substructure within

the data. The substructures can either be phonemes or phonetic contexts obtained

using a VLMM trained on phonemes. As a result, we can use a lot more training data

with the SSGPDM as compared to the SGPDM, because each switching state from

the SSGPDM would be modelled using a SGPDM, leading to a partitioning of the

training data across SGPDMs. The second limitation of the SGPDM is that a single

dynamical and observation model is used to account for the whole data, which is not a

valid assumption. With the SSGPDM, different observation and dynamical models are

used to represent the multiple dynamics involved in speech. The dynamics of phonetic

contexts can be highly non-linear and are thus suitable for modelling using non-linear

Gaussian processes (GPs).

By having a joint probabilistic model of audio and visual data, audio-visual speech
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synthesis can also be achieved from a sequence of phonemes. This requires that we use

source-filter speech features such as LPC or LSF. Given a stream of phonemes, we can

then use the SSGPDM in prediction mode to generate a sequence of latent points, from

which we can generate both the audio and visual features.

One limitation of the SSGPDM, however, is that training takes a long time and

the saved models occupy significant space. For the LIPS SSGPDM, 1.2Gb of storage

space is required whilst for the DEMNOW SSGPDM, the requirement is about 1.8Gb

of storage space, due to size of the kernel matrices of the GPs.

5.6 Chapter Summary

The main aim of this chapter was to address the limitations of the SGPDM by

augmenting it with switching states, yielding the switching SGPDM (SSGPDM). We

presented an introduction to the SSGPDM before delving into an efficient way of finding

switching states corresponding to commonly occuring phonetic contexts using the vari-

able length Markov model (VLMM). Training and inference algorithms for the VLMM

were also described. Experiments were presented to determine the optimal memory

length of the VLMM as well as whether the VLMM should be trained on repeating

or non-repeating phonemes. We then presented training algorithms for the SSGPDM

when phonetic contexts are used as switching states as well as when phonemes are used

as switching states. We also showed visualisations of latent spaces in 3D for various

states of SSGPDMs with both phoneme and phoneme VLMM switching states, using

volume rendering Matlab code. Synthesis algorithms for audio-visual mapping using

the SSGPDM were derived both for the batch and online processing scenarios. Finally,

post-processing steps to cater for leading and trailing poses were described.



Chapter 6

Evaluation

Extraordinary claims require

extraordinary evidence.

Carl Sagan

This chapter presents an evaluation of our visual speech synthesis methods. Only

objective evaluation is done for the SGPDM because it is not a full-fledged visual

speech synthesiser. It forms the basis for our more powerful synthesiser, namely the

SSGPDM. The results from the SSGPDM are therefore evaluated both objectively and

subjectively. We also compare the objective results of the SGPDM with those of other

state-space models and objective results of the SSGPDM with those of other state-

space and switching state-space models that have been previously applied to visual

speech synthesis. In this chapter, we shall refer to ground truth as the features or

videos corresponding to real visual speech sequences parameterised with the active

appearance model (AAM).

6.1 Evaluation Methods for Visual Speech Synthesis

The quality of visual speech synthesis can be measured using both objective and

subjective methods. Objective approaches involve measuring the error or correlation

between real and synthetic visual features [103, 278, 63, 81, 188, 101, 270] as well as

comparing the evolution of their trajectories over time. Error measures such as L1-norm

, L2-norm, L∞-norm and average mean squared error (AMSE), as well as correlation

measures such as average correlation coefficient (ACC), provide a measure of the static

comparison between frames of real and synthetic visual features. Comparison of real

and synthetic visual feature trajectories gives an indication of the dynamic correlation

between the two. Recently, Xie and Liu [313] and Englebienne [101] also proposed

automated lip-reading tests as a measure of the intelligibility of synthetic visual speech.

161
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Whilst both the error and correlation are good indicators of how the real and

synthetic features compare statistically, they do not provide a measure of the realism,

naturalness and intelligibility of the artificial talking head. Specifically, the synthetic

animation might have jitter or be asynchronous with the audio and this is hard to

measure statistically. As a result, subjective evaluation was found to be essential to

evaluate synthetic talking heads [53, 120, 278, 63, 129, 196, 312, 313, 282, 101, 208, 158].

Realism can be measured using Turing tests, where viewers are shown real and synthetic

videos either in pairs [120, 101] or one at a time [120, 313] and asked to choose which

sequences are real and synthetic. Naturalness can be measured by using scoring tests,

which involve asking viewers to rate the level of naturalness on an ordinal scale, e.g.

from 1 to 5 [278, 129, 196, 312, 313]. Intelligibility can be measured by asking viewers

to lip-read videos with sound turned off [137, 120].

Unfortunately, there are no benchmarks to compare the performances of different

visual speech synthesisers because different researchers use different datasets as well as

different objective and subjective evaluations. Recently, Theobald et al. [281] attempted

to induce interest in the research community to come up with standardised benchmarks

by having the LIPS corpus as well as a visual speech synthesis challenge. However,

researchers use different parameterisations for the face, which makes benchmarking for

objective evaluation difficult. Instead, subjective evaluation was used to compare the

results of participants in the visual speech synthesis challenge [281].

Theobald [278] also described a way of correlating objective and subjective results,

such that for future tests, objective evaluation alone can be used to predict the sub-

jective evaluation results. However, Englebienne [101] showed that objective results

do not necessarily correlate with subjective results because a synthesiser that gave less

favourable objective results was found to be perceptually better based on subjective

tests. We thus present objective and subjective results independently.

6.2 Objective Evaluation

Objective evaluation techniques for synthetic visual speech consist of: error mea-

sures, correlation measures, visual features trajectory comparison and visual or audio-

visual speech recognition using ground truth and synthetic visual features. As men-

tioned in Chapter 5 Section 5.4.4, we also perform synthesis for leading and trailing

pauses for the SSGPDM in order to generate a more natural visual output. However,

Theobald [278] pointed out that objective evaluation should only be done for the speech-

related visual frames, at the exclusion of leading and trailing pauses. This is because

the synthesiser’s prediction for leading and trailing pauses may not necessarily corre-

late well with ground truth due to the variations of facial gestures possible, although

the synthesised output is plausible. This would lead to significant errors which could
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mask errors or correlation associated with speech. As a result, we perform objective

evaluation for speech-related visual frames only.

The following presents a review of objective tests commonly carried out for visual

speech synthesis.

6.2.1 Error Measures

If we have two univariate vectors z = {zt}Tt=1 and ẑ = {ẑt}Tt=1, the difference

between them can be measured using the L1, L2 or L∞-norms.

The L1-norm, also known as the sum of absolute differences (SAD), is given by:

L1 =
1

T

T∑
t=1

|(zt − ẑt)| (6.1)

The L2-norm, also known as the root mean squared error (RMSE), is given by:

L2 =

√√√√ 1

T

T∑
t=1

(zt − ẑt)2 (6.2)

The mean squared error (MSE) is the square of the RMSE:

MSE =
1

T

T∑
t=1

(zt − ẑt)2 (6.3)

The L∞-norm, also known as the maximum absolute error (MAE), is given by:

L∞ = max
1≤t≤T

(zt − ẑt) (6.4)

If we have multivariate data, then the average mean squared error is more commonly

used. Let Z = {zt}Tt=1 and Ẑ = {ẑt}Tt=1 be two sequences of aligned D-dimensional

vectors. The average mean squared error (AMSE) can be computed according to:

AMSE =
1

TD

T∑
t=1

D∑
d=1

(zt,d − ẑt,d)2 (6.5)

The L1, L2 and L∞-norms for multivariate data are given by:

L1 =
1

TD

T∑
t=1

D∑
d=1

|(zt,d − ẑt,d)| (6.6)

L2 =

√√√√ 1

TD

T∑
t=1

D∑
d=1

(zt,d − ẑt,d)2 (6.7)

L∞ =
1

T

T∑
t=1

( max
1≤d≤D

(zt,d − ẑt,d)) (6.8)

Englebienne [101] presented quantitative results in terms of L1, L2 and L∞-norms.

The L2 norm gives a more average-case statistical comparison whilst the L1 and L∞

are better at spotting extreme deviations from ground truth. In our case, we use
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subjective tests to potentially idenfity extreme variations such as lack of smoothness

in visual speech synthesis. We therefore use the AMSE as the error measure between

ground truth and synthetic visual features as has been done by researchers such as

Gutierrez-Osuna et al. [129] and Xie and Liu [312].

6.2.2 Correlation Measures

Given two aligned D-dimensional vectors Z = {zt}Tt=1 and Ẑ = {ẑt}Tt=1, the average

correlation coefficient (ACC) is computed according to:

ACC =
1

TD

T∑
t=1

D∑
d=1

(zt,d − µd)(ẑt,d − µ̂d)
σdσ̂d

(6.9)

where µd is the mean of the dth dimension of y across the frames from 1 to T and

σd is the corresponding variance and µ̂d is the mean of the dth dimension of ẑ across

all frames and σ̂d is the corresponding variance.

The ACC was used by Xie and Liu [312], Gutierrez-Osuna et al. [129] and Tao

et al. [270] in evaluating their visual speech synthesis methods. We found from our

experiments, that high ACC is more closely related to high visual quality of synthesised

animations as compared to low AMSE. This is because under-articulated animations

might give low AMSE whilst not looking visually plausible. This is the reason why we

used the ACC in the model selection and optimal speech parameterisation experiments

in Chapter 4. We therefore also use ACC in our objective evaluation on test data.

6.2.3 Visual Feature Trajectories Comparison

Several researchers show the plots of individual modes of visual trajectories for

ground truth and the corresponding synthetic sequences, in order to show how they

compare through time frames [129, 117, 313, 192].

Other researchers have tried to average across all modes of variations [312] or al-

ternatively, across some of the modes of variation relevant to the evaluation between

carried out [158]. In our case, because we use normalised AAM parameters with modes

of variations corresponding to expressive cues and pose variations removed, we plot the

trajectories of visual parameters averaged across all dimensions. This is because the

average would correspond only to speech-related content, which is what we are willing

to evaluate. However, this approach reflects tends to depict the variation in AAM

modes of higher scale whilst masking the trend in those of lower scale. Quantitative

results in terms of error and correlation measures give a more accurate view of the

overall performance of the visual speech synthesiser.

Given two aligned D-dimensional vectors Z = {zt}Tt=1 and Ẑ = {ẑt}Tt=1, corre-

sponding to real and synthesised visual features, we can compute the mean across all
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dimensions for any given frame t as follows:

ut =
1

D

D∑
d=1

zt,d (6.10)

ût =
1

D

D∑
d=1

ẑt,d (6.11)

(6.12)

We can then plot the time-series evolution of ut and ût as trajectories on a single

plot to compare the evolution of the visual features, which can give an indication of

how well the dynamics of the synthesised features match those of ground truth features.

6.2.4 Automated Lip-reading

More recently, some researchers have proposed to use either automated lip-reading

tests using either visual features only or combined audio and visual features in audio-

visual speech recognition (AVSR) to evaluate the information content of synthetic visual

features as compared to ground truth. Englebienne [101] used a constrained lip-reading

method to evaluate synthetic visual speech. Single word utterances were synthesised

using the DPDS and the multiple phonetic transcriptions possible for that word were

unrolled using a phoneme HMM. The DPDS was then used to compute the likelihood

of the visual features given each transcription and the transcription with the highest

likelihood was chosen as the optimal, which was then compared against the ground

truth transcription. It was found that the DPDS gave the highest recognition perfor-

mance as compared to other methods [101]. Xie and Liu [313] applied audio-visual

speech recognition using a multistream HMM [195] with synthetic visual features and

audio features corrupted with noise at different signal-to-noise (SNR) ratios, in order

to evaluate the different variants of the proposed visual speech synthesis technique.

Hilder et al. [137] compared human vs. automated lip-reading by training word-

level HMMs with phonemes as states. The visual features used comprised of shape-only

as well as combined shape and texture AAM features. The recognition experiment was

to both recognise individual words being uttered as well as the phonemes and visemes

within these words. It was found that humans are better at spotting words as compared

to computers but the recognition at phoneme and viseme level was much higher using

computers.

The use of audio-visual speech recognition to evaluate the different visual speech

synthesis methods would provide some useful feedback about the merits and demerits of

the different techniques. However, due to time constraints, this was not carried out and

is a worthy line of research in future work. In this work, we have restricted ourselves

to human lip-reading as described in Section 6.3.3.
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6.2.5 Experiments

We perform quantitative evaluation for both SGPDM and SSGPDM by comparing

ground truth against synthetic visual data using AMSE and ACC. We also plot ground

truth and synthetic AAM trajectories to compare the dynamics of the synthetic AAM

features against ground truth.

SGPDM Results

A training set of 50 sequences have been used for training SGPDM models for both

LIPS and DEMNOW, using the optimal model parameters found in Chapter 4 and using

both a KBR back-constraint with respect to audio and an autoregressive dynamics on

the latent space. The speech features used for LIPS are RASTA-PLP processed at 25Hz,

whilst for DEMNOW, we use MFCC features processed at 100Hz and downsampled to

29.97Hz using polyphase quadrature filtering. These speech features were found to be

the best predictors of visual AAM features for LIPS and DEMNOW in experiments

presented in Chapter 4 Section 4.5. We used 20 sequences, different from the validation

set used in Chapter 4, for testing. We have also trained Brand’s model [32], the shared

LDS [186] and the coupled HMM [312] on the 50 training sequences and performed

synthesis on the 20 test sequences. The results are summarised in Table 6.1. The visual

trajectories of ground truth and synthetic AAM features for four test sequences of LIPS

and four test sequences of DEMNOW are shown in Figures 6.1 and 6.2, respectively.

The results show that the SGPDM performs better than the Voice Puppetry of

Brand [32], the coupled HMM of Xie and Liu [312] and the shared LDS of Lehn-

Schiøler et al. [186]. This supports our hypothesis that having a joint non-parametric

and non-linear state-space model of audio and video performs better than parametric

models that are linear [186] or locally linear [32, 312]. The shared LDS uses linear

dynamical and observation mappings as opposed to the non-linear mappings in the

SGPDM, which accounts for the better quantitative results of the SGPDM compared

to the shared LDS, thus supporting our claim that using a non-linear state-space model

is a better generative model of speech as compared to a linear state-space model. The

methods of Brand [32] and Xie and Liu [312] use piecewise linear models that cluster

speech behaviour into locally linear subspaces represented by Gaussian distributions.

This approach allows the non-linearities in audio-visual mapping to be better modelled

than the shared LDS [186], thus resulting in better quantitative results as compared to

the shared LDS.
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Figure 6.1: Comparing ground truth and synthethic trajectories for: Voice Puppetry [32],
shared LDS [186], Coupled HMM [312] and SGPDM for three test LIPS sequences.
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Figure 6.2: Comparing ground truth and synthethic trajectories for: Voice Puppetry [32],
shared LDS [186], Coupled HMM [312] and SGPDM for three test DEMNOW sequences.
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LIPS DEMNOW
Method Synthesis Method AMSE ACC AMSE ACC
SGPDM Sequence Optimisation 0.0535 ± 0.0090 0.4595 ± 0.0930 0.0210 ± 0.0087 0.5594 ± 0.1836
Shared LDS Kalman Filtering 0.0546 ± 0.0121 0.4394 ± 0.0872 0.0242 ± 0.0089 0.4699 ± 0.0878
Brand Geodesic Interpolation 0.0544 ± 0.0095 0.4557 ± 0.0659 0.0221 ± 0.0095 0.5548 ± 0.1235
Coupled HMM Baum-Welch Inversion 0.0537 ± 0.0094 0.4565 ± 0.0689 0.0219 ± 0.0092 0.5541 ± 0.1100

Table 6.1: SGPDM quantitative evaluation results for LIPS and DEMNOW datasets.

LIPS DEMNOW
Method Switching State Synthesis method AMSE ACC AMSE ACC
SSGPDM Phoneme VLMM Sequential Optimisation 0.0413 ± 0.0063 0.6681 ± 0.0603 0.0123 ± 0.0036 0.6739 ± 0.0786
SSGPDM Phoneme VLMM Sequential Prediction 0.0436 ± 0.0085 0.6431 ± 0.0740 0.0137 ± 0.0046 0.6533 ± 0.0649
SSGPDM Phoneme Sequential Optimisation 0.0560 ± 0.0105 0.5305 ± 0.0691 0.0174 ± 0.0050 0.5471 ± 0.1236
SSGPDM Phoneme Sequential Prediction 0.0599 ± 0.0110 0.4947 ± 0.0763 0.0206 ± 0.0051 0.5011 ± 0.1145
DPDS Phoneme ML Prediction 0.0470 ± 0.0115 0.6061 ± 0.0778 0.0160 ± 0.0043 0.5600 ± 0.1040
Brand N/A Geodesic Interpolation 0.0514 ± 0.0086 0.5341 ± 0.0945 0.0146 ± 0.0044 0.6195 ± 0.0917
Coupled HMM N/A Baum-Welch Inversion 0.0465 ± 0.0091 0.5967 ± 0.0722 0.0161 ± 0.0046 0.5559 ± 0.0872
Shared LDS N/A Kalman Filtering 0.0568 ± 0.0099 0.4641 ± 0.0890 0.0188 ± 0.0049 0.4365 ± 0.0919

Table 6.2: SSGPDM quantitative evaluation results for LIPS and DEMNOW datasets.

SSGPDM Results

For the SSGPDM experiments, we again use, for each SGPDM model comprising

the SSGPDM, the optimal parameters found using the model selection experiments in

Chapter 4. The visual features used are the normalised AAM parameters and the audio

features are the same as for the SGPDM, i.e. RASTA-PLP processed at 25Hz for LIPS

and MFCC downsampled from 100Hz to 29.97Hz using polyphase quadrature filtering

for DEMNOW.

For the LIPS dataset, we used 250 sequences for training and 28 sequences for

testing whilst for DEMNOW, we used 550 sequences for training and 100 sequences for

testing. The training and test sets are non-overlapping. We train SSGPDM models

with phoneme VLMM switching states as well as with phonemes as switching states. We

compare synthesis results obtained using both sequential optimisation and sequential

prediction. Our results are compared against the Voice Puppetry of Brand [32], the

DPDS of Englebienne et al. [102], the coupled HMM of Xie and Liu [312] and the shared

LDS of Lehn-Schiøler [185] using the same training sequences as for the SSGPDM. The

corresponding quantitative results are presented in Table 6.2.

The results show that the SSGPDM using phoneme VLMM as the switching states

and sequential optimisation as the synthesis method gives the best results for both LIPS

and DEMNOW. We attribute these results to three factors. First, both continuous

and discrete audio are used to make predictions of visual speech in our method, thus

integrating acoustic information with language structure. Second, we take into account

both forward and backward context in our synthesis framework, thus accounting for

preservatory and anticipatory coarticulation. Third, we use non-parametric GPs in our

switching state-space model, which generates results that best match ground truth as

compared to parametric models such as the HMM [32], coupled HMM [312], shared

LDS [185] and DPDS [102]. Our results are a big improvement over the DPDS because



CHAPTER 6. EVALUATION 170

we model both audio and video with non-linear dynamics and observation functions at

the level of phonetic contexts, as opposed to the DPDS which models only video using

linear observation and dynamical mappings at the level of phonemes.

We also compare the trajectories of AAM parameters for ground truth against

synthetic AAM parameters obtained using: the SSGPDM that gave best quantitative

results (SSGPDM with phoneme VLMM as switching states and sequential optimisation

as synthesis method), Voice Puppetry [32], DPDS [102] and the coupled HMM [312].

The plots for four test sequences of LIPS are shown in Figure 6.3 and four test sequences

of DEMNOW are shown in Figure 6.4. The plots for the shared LDS have been omitted

in order not to clutter the diagrams. The figures clearly show the high correlation

between AAM trajectories obtained from SSGPDM and ground truth as compared to

other methods, which supports the quantitative results.

6.2.6 Discussion

We have compared the results of the SGPDM against the state-space models of

Brand [32], Lehn-Schiøler et al. [186] and Xie and Liu [312]. The results of the SSGPDM

have also been compared against the methods of Brand [32] and Xie and Liu [312]

in addition to the closely-related switching state-space model of Englebienne et al.

[102]. It is to be noted that the works of Brand [32] and Englebienne et al. [102] do

not require normalisation of the AAM data in order to have frontal pose because the

synthesis is driven from a sequence of discrete labels that uses either interpolation [32]

or a dynamical mapping [186] to predict a smooth path through the AAM parameters.

This cannot be enforced to the same extent when we have a joint probabilistic model

of audio and video because the correlations between the pose and the audio would

be captured and this would result in spurious pose variations in synthesis. Thus, we

had to adopt the normalisation procedures mentioned in Chapter 3 Section 3.4.1. The

normalisation procedure also gives us a standardised frame of reference to measure the

errors and correlation between ground truth and synthesised AAM parameters.

In Englebienne [101] it was reported the quantitative results were not reliable be-

cause the DPDS gave worse quantitative results than the Voice Puppetry of Brand [32]

whilst subjective evaluation found that participants confused animations generated by

the DPDS with ground truth more than was the case for Voice Puppetry animations.

One possible reason could be that pose differences between ground truth and synthetic

visual features led to quantitative results that were not very meaningful. In our work,

the pose normalisation procedure makes the quantitative results more meaningful be-

cause they correspond to visual features related to speech movements in a normalised

coordinate space.

Our experiments demonstrate that the Voice Puppetry method [32], shared LDS
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Figure 6.3: Comparing ground truth and synthethic trajectories for the: Voice Puppetry [32],
DPDS [102], Coupled HMM [312] and SSGPDM for three test LIPS sequences.
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Figure 6.4: Comparing ground truth and synthethic trajectories for the: Voice Puppetry [32],
DPDS [102], Coupled HMM [312] and SSGPDM for three test DEMNOW sequences.
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Model Audio Representation Dynamics Coarticulation Model
HMM Discretised in synthesis Implicit in trajectory synthesis Forward & Backward
Coupled HMM Continuous Implicit in speech features Backward
Shared LDS Continuous Single linear Backward
SGPDM Continuous Single non-linear Forward & Backward
DPDS Discrete Multiple linear Backward
SSDPDM Discrete & Continuous Multiple non-linear Forward & Backward

Table 6.3: Summary of probabilistic models for visual speech synthesis.

[186], DPDS [102] and coupled HMM [312] result in synthetic animations that are

under-articulated, which is also depicted from the AAM trajectories in Figures 6.1, 6.2,

6.3 and 6.4. The SSGPDM method results in more articulated animations that are

closer to ground truth. The reasons for this are two-fold. First, parametric models like

the HMM, coupled HMM, shared LDS and even DPDS are described by a compact

set of parameters and thus tend to underestimate the predictive variance, as evidenced

by under-articulated facial movements. They tend to predict an average-case facial

behaviour, at the expense of extremities such as emphasis. On the other hand, the

SGPDM and SSGPDM are non-parametric models that use the training data to make

predictions and can thus better predict the variance in synthesis. This leads to facial

animation that looks more natural and is more in line with the audio speech. Moreover,

the SSGPDM uses both the phonetic and continuous audio representation of speech,

which are complementary and provide more information to the synthesis of visual speech

from audio speech. This is different to the Voice Puppetry, shared LDS and DPDS

methods, which use only one representation of speech.

Table 6.3 summarises the characteristics of the different probabilistic models ap-

plied to visual speech synthesis. The SSGPDM with phoneme VLMM switching states

represents audio using both continuous and discrete features. The SSGPDM also uses

multiple non-linear dynamical models to represent the different types of dynamics in-

volved in speech. Finally, the sequential optimisation method used with the SSGPDM

accounts for both forward and backward coarticulation. These characteristics account

for the better performance of the SSGPDM compared to other probabilistic models

applied to visual speech synthesis.

Previous researchers have demonstrated that text-driven (including phoneme-driven)

synthesisers perform better than continuous speech-driven synthesisers [277] in terms

of quantitative results. This is because continuous speech-driven synthesisers are more

susceptible to noise than text-driven synthesisers which present less ambiguity. How-

ever, we have shown in this work that an approach that combines continuous speech-

driven synthesis with the underlying phonetic information gives better results than

phoneme-driven synthesisers such as the DPDS of Englebienne et al. [102]. The im-

proved results also arise as a result of modelling phonetic context using non-linear
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dynamical systems as opposed to using linear dynamical systems to model phonemes.

Our work thus has similarities to the works of Cao et al. [42] and Edge et al. [92], where

both the discrete speech units or phonemes and the continuous audio parameters were

used to predict visual parameters. However, their works adopted a sample-based ap-

proach whereas we adopt a learning-based approach (refer to Chapter 2 Section 2.2.2).

6.3 Subjective Evaluation

Humans are very sensitive to slight imperfections in facial animation and, as a result,

objective evaluation is not sufficient to accurately measure the effectiveness of a visual

speech synthesiser. It is thus imperative to perform subjective tests with humans to

evaluate the naturalness, realism and intelligibility of the facial animations. From the

synthesised AAM parameters, we can generate image frames as described in Chapter

3 Section 3.1.3. The frames can then be encoded to video at the appropriate frame

rate before being mixed with the test audio file to generate a speech-synchronised facial

animation video.

We now present a review of the three categories of subjective tests commonly used

for visual speech synthesis in order to motivate the choice of our experiments.

6.3.1 Scoring Tests

Scoring tests consist of asking viewers to rate the quality of a given aspect of the

facial animation on a scale from poor to excellent. The International Telecommuni-

cation Union Telecommunication Standardization Sector (ITU-T) [157] recommends

the mean opinion score (MOS), which is a scale from 1 (lowest) to 5 (highest), to

rate the perceived quality of media being transmitted over a channel. Various re-

searchers have adopted the MOS for evaluating the perceptual aspects of facial ani-

mation [278, 196, 312, 313, 282, 208, 158]. The aspects commonly evaluated include

naturalness, acceptability and realism. According to Theobald [278], naturalness is a

general measure of performance that indicates the smoothness and realism of the dy-

namics of the facial features whilst acceptability is a measure of how suitable a system

is for a given application, for e.g. as a natural interface for a computer. Realism encap-

sulates both static realism (photorealism) and dynamic realism (videorealism), which

can be rated using a scoring test. For example, Devin [82] did an experiment where

participants were showed both real and synthetic videos of interactive facial behaviour

one at a time, and they were asked to pick on a scale of 1 to 7 the level of realism.

In our experiments, we measure: quality of mouth articulation, naturalness and

agreeableness. We define quality of mouth articulation as a measure of how well the

lips sync with the audio and naturalness as a measure of the plausibility of the overall
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face of the talking head. We define agreeableness as a measure of how comfortable the

user would be to interact with the avatar if it were used as a natural interface for the

computer. This allows us to measure the acceptability of the facial animations as a

natural interface for the computer as well as to determine if our animations fall within

the Uncanny Valley (refer to Chapter 1 Section 2.3). The term uncanny comes from

the German word unheimleich which means the opposite of familiar or agreeable [284].

Thus, rating the level of agreeableness of our facial animations also allows us to test

for the Uncanny Valley effect.

In addition, we investigate the effect of upper face expressions such as eye blinks

to the perception of naturalness and agreeableness. We thus generate four categories

of videos: ground truth with static eyes, synthetic with static eyes, ground truth with

original eyes and synthetic with original eyes, with the same number of videos in each

category. The techniques used to paste static eyes to the videos as well as to paste the

eyes from ground truth to synthetic videos are described in Section 6.3.5. The static

eyes image is taken from the facial image reconstructed from AAM parameters with all

modes of variation set to zero, i.e. the mean AAM parameters.

6.3.2 Realism Tests

In order to assess the realism of synthetic facial animations, scoring tests can be

used, as mentioned in the previous section. However, the disadvantage of scoring tests

is that they do not give a clear cut picture of which videos are perceived as real and

synthetic. An alternative is to use the Turing test [287] proposed by Alan Turing in

1950 as the ultimate test for Artificial Intelligence. The original test was applied to a

natural language conversation between a human participant on one end and either a

machine or a human on the other end. If the participant is able to distinguish between

the machine and human conversations, then the Turing test is deemed to have failed.

The same test can be applied to facial animation, by subjecting viewers to both real and

synthetic videos and testing whether they can distinguish between these two categories.

There are two variants of the Turing test that have been used by researchers in facial

animation. The first one involves the “single-view” approach, i.e. showing the videos

one at a time and asking viewers to decide whether each video is real or synthetic

[120, 313]. The second type involves “paired-view” approach, i.e. showing the videos

in pairs and asking the viewers to choose which one is real [120, 101].

The Turing test will almost always fail if a natural video of a person, with eye and

head gestures as well as expressive cues such as smiles, is compared against a synthetic

video. For that purpose, both real and synthetic videos need to be normalised to remove

these artefacts. In our case, videos reconstructed from normalised AAM parameters

are appropriate because they do not contain pose variations or expressive cues. In



CHAPTER 6. EVALUATION 176

our Turing test, we show only the part of the face below the eyes in order to remove

biases that might occur as a result of eye movements. Thus, the evaluation is pertinent

only to speech-related facial movements on the bottom half of the face. Furthermore,

we adopt the single-view test in order to limit the ability of participants to learn to

distinguish the subtle differences between real and synthetic videos, which might bias

their response to the other tests.

6.3.3 Human Lip-reading Tests

Human lip-reading can be a good measure of the intelligibility of a talking face.

However, intelligibility tests have not been very effective because of the low rate of

lip-reading. Geiger et al. [120] showed that the number of words identified correctly by

viewers, when whole sentences were shown, to be 14.5%, whilst for synthetic videos,

it was 7.5%. When single words were shown, the recognition rate was 14.7% for real

videos and 6.1% for synthetic videos. In a more recent study by Hilder et al. [137], it

was demonstrated that when single words were shown to participants, the percentage

of correctly identified words was 14.5% on real videos prior to training and 18.8% after

undergoing training in lip-reading. Another approach used by Hilder et al. [137] was

to ask viewers to write down the word being uttered and then a decomposition of

the word into phonemes and visemes was done, before comparing the percentage of

correctly identified phonemes and visemes. It was found that the viseme recognition

rate was higher than phoneme recognition rate, which was in turn higher than the

word recognition rate. It has also been shown that an intelligibility test that involves

showing utterances of individual words as opposed to whole sentences leads to higher

rates of human lip-reading [83].

Ouni et al. [228] did extensive experiments to investigate the visual contribution to

speech perception. In the experiments, 27 consonant-vowel (CV) syllables were used

and the test data was factored into: auditory-only, visual-only natural talker, visual-

only synthetic talker, bimodal natural talker and bimodal synthetic talker. In addition,

the audio was corrupted with noise at different signal-to-noise ratios (SNRs). The

participants were asked to recognise the syllable in terms of vowels and consonants. At

a SNR of −11 dB, the recognition rates for natural videos were: unimodal auditory at

50%, unimodal visual at 66% and bimodal at 87%. For synthetic videos the recognition

rates were: unimodal visual at 52% and bimodal at 74%. The audio-visual lip-reading

rate is higher than visual-only lip-reading tests. We believe that integrating audio in

a lip-reading test biases the results because poor lip-syncing can be compensated by

audio provided that it minimally synchronises with the lips movements, as is commonly

encountered in animated cartoons. Moreover, using both audio and visual channels

might lead to the McGurk effect [207], discussed in Chapter 2 Section 2.1.2. Cosker
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[63] proposed a McGurk test to test the intelligibility of synthetic visual speech. The

test was aimed at evaluating whether or not viewers are able to spot the McGurk effect

in real and synthetic videos. For example, an audio containing “Bat” and a video

containing “Vet” would produce a McGurk response of “Vat”. 60 videos (30 real and

30 synthetic) were presented in a random order to viewers and the participants were

asked to write down the response they perceived whilst listening to and viewing the

video simultaneously. The results showed that the McGurk effect was stronger in real

videos than in synthetic videos. Taking into account the McGurk effect in human lip-

reading tests with corrupted audio would require a more elaborate experimental setting

with potential loopholes, which we have tried to avoid.

Because hearing-impaired people are better trained at lip-reading, it might be worth

performing the intelligibility test on this category of people. However, studies have

shown that the overall performance of the hearing-impaired in viseme recognition is

not significantly different as compared to their healthy counterparts [229]. We thus

restrict our tests to non hearing-impaired individuals and, given the low lip-reading

rate observed thereof, we propose an alternative to unrestricted lip-reading by giving

multiple choices of the sentence being uttered, one of which is correct. We give four

choices, thus making the chance rate of picking the right answer to be 25%. The sen-

tences are chosen from the transcriptions in the data corpora. We group sentences of

about the same length by giving them the same label, so that for each video, we select

a random index from 1 to 4 to show the correct answer whilst for the remaining three

choices, we present a sentence with the same label as the correct one, thus ensuring that

the sentences are all of about the same length. We reached the choice of 4 sentences

after initial prototyping. It was found that 5 sentences was too much and significantly

increased the amount of time it took for participants to be able to lip-read the videos,

whilst 3 sentences was found to make the lip-reading too easy. One limitation of this

approach is that the sentences have different phonetic contents. Ideally, the false sen-

tences should be similar to the true sentence, which can be done by grouping sentences

of similar content together. However, due to time constraints, this was not achieved

and the only measure of similarity was the length of the sentences.

6.3.4 Statistical Hypothesis Testing

Statistical hypothesis testing can be used to answer yes or no questions about a pop-

ulation from a limited sample by using probability theory [55]. In our case, we want

to test the hypothesis of whether or not humans perceive real and synthetic videos as

comparable. So, the approach is to first assume that they are comparable, which is the

null hypothesis. Based on data gathered from a limited number of participants, statis-

tical inference is performed to compute the probability (or p-value) of the hypothesis
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being true. If the probability is less than a threshold, then we reject the null hypothe-

sis and conclude that the real and synthetic videos are not comparable. The threshold

commonly used is p = 0.05 [55]. If we reject the null hypothesis with p < 0.05, then

this means that we have less than 5% chance of being wrong. In that case, it would

be said that at the 5% level of significance, there is sufficient evidence to conclude that

the real videos are better than the synthetic videos.

In general, hypothesis testing is used to make inferences about a population given

a limited sample. Most evaluations are limited to a small sample and we are interested

in how these results can generalise to the whole population. There are various tests

that can be used depending on the parameters being compared. For example, to test

the hypothesis that the mean of a population is equal to a given value, the z-test [55]

can be used if we have a big enough sample. If the sample size is small, then the

Student’s t-test [55] is used. In other cases, we might need to perform a two-sample t-

test if we want to compare the means of two samples and determine whether they could

have been drawn from populations with equal means. The two-sample t-test assumes

that the two samples are independent. If the assumption is that the two samples are

dependent, then the paired-sample t-test can be used. If we want to compare two or

more populations in terms of their variance, the analysis-of-variance (ANOVA) test

can be used [89]. The above tests assume that the underlying data follows a Gaussian

distribution. For non-Gaussian data, such as ordinal and nominal data, a family of tests

called non-parametric tests have been developed [143]. The non-parametric equivalent

of the paired-sample t-test is the Wilcoxon signed-rank [143] test and that of the two-

sample t-test is the Wilcoxon rank-sum test [143]. The Krusal-Wallis test [143] is the

non-parametric equivalent of ANOVA when the data is non-Gaussian.

In this thesis, we use hypothesis tests on our qualitative results to compare real

vs. synthetic animations. In particular, we compare the MOS obtained from scoring

tests for real and synthetic videos. In our scoring tests, different videos are shown in

the ground truth and synthetic categories and as a result, samples of MOS scores are

independent. Because the data is on the ordinal scale, the Wilcoxon rank-sum test [143]

is the appropriate test to be used. In our human lip-reading tests, we also show different

videos drawn randomly from a pool of videos to each participant and, as a result, the

intelligibility scores computed for each participant are independent. Because we show

three videos in each category (LIPS real, LIPS synthetic, DEMNOW real, DEMNOW

synthetic) to every participant, the intelligibility scores would be either: 0, 0.33, 0.67

or 1, which is on an equal-interval scale but non-Gaussian because there are only four

possibilities. An ordinal scale is therefore the best representation for the intelligibility

scores, which makes the Wilcoxon rank-sum test [143] appropriate to compare the scores

between ground truth and synthetic categories.
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6.3.5 Eye Blinks

In our subjective experiments, we aim to investigate how our proposed method

predicts mouth articulation from test audio. Thus, the main objective of the evaluation

is to investigate the quality of lower face movements in synthetic videos compared to

ground truth videos. However, we also want to investigate the effect that upper face

gestures such as eye blinks have on the perception of visual speech and in particular

whether animations that lack upper face gestures fall into the Uncanny Valley (refer

to Chapter 2 Section 2.3). We thus need to have a way of reintroducing eye blinks

in the synthetic videos. Previous researchers like Cave et al. [45] have investigated

the correlation between the fundamental frequency of speech with eye movements.

Lee et al. [182] presented a statistical model for prediction of eye blinks, which takes

into account head rotation as well as whether the character is in listening or talking

mode. Deng et al. [78] adopted a non-parametric sampling method [97] to generate eye

gaze and eye blinks for synthetic facial animation. Weissenfeld et al. [310] used both

phonetic and prosodic information of speech to predict eye movements of a character

in either listening or talking modes. Dziemianko et al. [90] used the trajectory HMM

[325] to learn a mapping from a combination MFCC features and the fundamental

frequency to eye movements. Whilst the prediction of visual prosody such as eye and

head movements would be an interesting future line of research to pursue, we restrict

ourselves to copy the eye movements from ground truth into the synthetic videos. The

pasting of texture around the eye region to a target image needs to be done such that it

is unnoticeable for viewers. The approach that we adopt makes use of both the shape

and texture information of the AAM features and is described below.

Consider that we have both the shape and texture for a target image (Figure 6.5a)

that has no eye blinks and a source image (Figure 6.5b) that contains a blink and that

we want to paste the eye blinks from the source image to the target image. Since the

AAM works with a shape-free texture representation that consists of the face image

warped to the mean shape, we can copy a section of the texture from the top to below

the eyes from the source to the target shape-free image. However, when the image is

reconstructed from AAM parameters, the texture will be warped to the target shape

and thus we need to copy the shape of the eyes representing a blink to the target shape.

Because the shapes might have variations in scale, translation and rotation, we extract

the shape components corresponding to the eye and nose from the source shape and

align them to the corresponding shape components of the target shape using generalised

Procrustes analysis [126]. Figure 6.5c illustrates this shape alignment procedure. The

aligned shape components for the eyes and nose are then copied from the source shape

to the target shape. In our experiments, it was found that we need to copy both the

eyes and nose components because the proportions of the nose points with respect to
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the eye points need to be maintained, otherwise some undesirable artefacts appear in

the reconstructed image. Figure 6.5d shows the segmented face image without blinks

whilst Figure 6.5e shows the face image with blinks pasted. The illustration has been

shown for an actual annotated image for convenience but the same approach can be

adopted with the reconstructed shape and texture from AAM parameters. In this case,

we would have two sets of AAM parameters, one of which encodes a blink and the

other does not. From the AAM parameters, we can reconstruct both the shape and the

shape-free image representing the texture and then use the pasting procedure described

above.

6.3.6 Experiments

We conducted subjective tests with human participants to evaluate the quality of

our synthetic facial animation that gives the best quantitative results, i.e. SSGPDM

with phoneme VLMM as switching states and with sequential optimisation as the syn-

thesis method. The tests were carried out over a span of two months with volunteers

spending about 30 minutes in front of a computer to participate in the experiments.

A total of 50 participants, mostly research students and staff from the School of Com-

puter Science, The University of Manchester, were asked to take the tests independently.

The experiments were done after obtaining approval of an ethics committee within the

school1. The videos used in the experiments were from the AAM reconstructions and

involved only the face region with the background segmented. The videos for all the

subjective tests were shown at a resolution of 300× 300.

Three subjective tests were conducted: a Turing test, a perceptual test and an

intelligibility test. For each test, an equal number of real and synthetic videos were

shown. The order in which the videos were shown was randomised.

We conducted statistical hypothesis testing for the perceptual and intelligibility

tests in order to determine whether there is a significant difference between the ground

truth and synthetic videos. We used the Wilcoxon rank-sum test [143] for the percep-

tual mean opinion scores (MOS) and for the intelligibility scores obtained from the 50

participants. In our case, the null hypothesis is that ground truth and synthetic video

scores are comparable and we use a 5% level of significance.

The main screen for the tests is shown in Figure 6.6 with links to each test appearing

on the right. The three tests were done in a sequential manner with only the link to

one test enabled at a time and the links to all tests disabled after the three tests were

done. This was done in order to prevent participants from running the same test more

than once. The order in which the links to the tests appeared was randomised so as to

avoid any bias. The results of each test were stored in text files on the experimental

1https://ethics.cs.manchester.ac.uk/

https://ethics.cs.manchester.ac.uk/
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(a) (b)

(c)

(d) (e)

Figure 6.5: Process of pasting eye blinks: (a) Original image with no eye blinks. (b) Image
from which eye blinks are to be pasted from. (c) Shape alignment using generalised Procrustes
analysis. (d) Segmented image without eye blinks. (e) Segmented image with eye blinks pasted.
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computer.

Figure 6.6: Visual speech synthesis experiment - Main page.

Demographics of the Subjective Tests Participants

In order to obtain details of the participants, the pop-up window in Figure 6.7 was

shown when the link to the first test was clicked. This allowed the collection of details

of the participants in view of obtaining the demographics for the tests.

The distribution of the participants in terms of age and sex is shown in Table 6.4 and

the distribution in terms of hours of computer usage and native vs. non-native speaker

is shown in Table 6.5. None of the participants were colour blind and no one chose the

“prefer not to say” option in the popup questions. From Table 6.5, it can be seen that

86% of the participants were frequent computer users and 70% of the participants were

non-native speakers. The frequent computer usage is an important criterion because

it allows us to determine how viewers judge the quality of the facial animations as

a potential natural interface for the computer, given that frequent computer users

are accustomed to more conventional Human-Computer Interfaces (HCI). We expect

native speakers to be better lip-readers than non-native speakers. The fact that the

majority of the participants were non-native speakers means that we need to compare

the intelligibility scores between ground truth and synthetic videos for both native

and non-native speakers separately in order to check that they are consistent with the

overall results.
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Figure 6.7: Visual speech synthesis experiment - Popup page for user profile.

Age group Sex Percentage Percentage

20 or less
Male 2%

4%
Female 2%

21-30
Male 40%

56%
Female 16%

31-40
Male 25%

34%
Female 9%

41-50
Male 2%

2%
Female 0%

51-60
Male 2%

2%
Female 0%

Above 60
Male 2%

2%
Female 0%

Table 6.4: Distribution of the participants of the subjective tests in terms of age and sex.

Hours of computer usage Native/non-native speaker Percentage Percentage

Less than 1 hour
Native 0%

0%
Non-native 0%

1-5 hours
Native 6%

14%
Non-native 8%

6-10 hours
Native 12%

46%
Non-native 34%

11-15 hours
Native 10%

34%
Non-native 24%

More than 15 hours
Native 2%

6%
Non-native 4%

Table 6.5: Distribution of the participants of the subjective tests in terms of hours of computer
usage and native vs. non-native speaker.



CHAPTER 6. EVALUATION 184

Turing Test

The Turing test involved showing videos one at a time and asking participants to

choose whether they are real or synthetic. In order to limit the evaluation to lower

face movements, the Turing test involved showing only the lower half of the face. The

test involved showing 16 videos: 4 in each of the following categories: LIPS real, LIPS

synthetic, DEMNOW real, DEMNOW synthetic. The videos were chosen from a pool

of 60 sequences of both real and synthetic videos. The screenshot for the Turing test

is shown in Figure 6.8.

The Turing test results are illustrated in Figure 6.9 and show that 38% and 45% of

synthetic videos were confused as ground truth for LIPS and DEMNOW respectively

against 30% and 27% of ground truth videos being confused as synthetic for the same

categories. The less favourable results for LIPS can be explained by the fact that the

LIPS corpus is at a higher resolution with the inner details of the mouth visible, which

makes viewers much more sensitive to slight imperfections. The results obtained in the

Turing test are comparable or even improve over state-of-the-art results reported in

the literature. For example, in the work of Xie and Liu [313], a single-view Turing test

was carried out where 38% of synthetic videos were mistaken as real, which is similar

to the results we obtain for the LIPS dataset. However, for the DEMNOW dataset,

the percentage of synthetic videos confused as real is close to chance level, which is

very encouraging. Visual speech synthesis that can pass the Turing test still remains a

major challenge and additional factors such as expressiveness and prosody have to be

taken into account to make a synthetic avatar more realistic.

Perceptual Test

The perceptual test involved showing videos one at a time and asking participants

to give a score from 1 (poor) to 5 (excellent), on the quality of mouth articulation, the

naturalness and the agreeableness. The video sequences were selected randomly but

subsequently fixed for all participants in order to be able to compute mean opinion

scores (MOS) on the same sequences. The perceptual test involved showing 24 videos

with 6 in each of the following categories: LIPS real, LIPS synthetic, DEMNOW real,

DEMNOW synthetic. In addition, for each of the 6 videos in each category, we show 3

videos with eyes pasted from ground truth and 3 videos with static eyes image pasted

according to the technique described in Section 6.3.5. The aim of this is to inves-

tigate the effect of upper face movements such as eye blinks on the naturalness and

agreeableness of the talking head. Figure 6.10 shows the screenshot for the Perceptual

test.

A mean opinion score (MOS) is then computed for each video category per partic-

ipant. Figures 6.11, 6.12 and 6.13 show the results of the perceptual tests for: quality
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Figure 6.8: Visual speech synthesis experiment - Turing test.

Figure 6.9: Turing test results.
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Figure 6.10: Visual speech synthesis experiment - Perceptual test.

Mouth Articulation Naturalness Agreeableness
Category Ground Truth Synthetic Ground Truth Synthetic Ground Truth Synthetic
LIPS - eyes from ground truth 4.13± 0.63 3.70± 0.82 3.63± 0.84 3.10± 0.97 3.55± 0.90 3.10± 1.04
LIPS - static eyes 3.99± 0.77 3.78± 0.77 3.10± 0.96 3.19± 0.92 3.11± 0.90 3.12± 0.92
DEMNOW - eyes from ground truth 4.08± 0.76 3.73± 0.90 3.87± 0.85 3.56± 0.87 3.76± 0.91 3.50± 0.92
DEMNOW - static eyes 4.15± 0.64 3.92± 0.80 3.60± 0.88 3.50± 0.83 3.54± 0.91 3.44± 0.91

Table 6.6: MOS scores for perceptual test.

of mouth articulation, naturalness and agreeableness respectively, with standard devi-

ations computed over the MOS of the 50 participants. Table 6.6 also gives the exact

MOS scores and standard deviations computed for each category.

For the animations with static eyes, the difference between the MOS of quality

of mouth articulation for real and synthetic videos is non-significant for both LIPS

(p > 0.13) and DEMNOW (p > 0.19). For naturalness, the MOS difference between

real and synthetic videos is found to be non-statistically significant for both LIPS

(p > 0.7) and DEMNOW (p > 0.5). Similarly for agreeableness, the MOS difference

between real and synthetic animations is non-statistically significant both for LIPS

(p > 0.95) and DEMNOW (p > 0.59). For synthetic animations where eyes have

been pasted from ground truth, the difference between the MOS of quality of mouth

articulation for real and synthetic videos is significant for LIPS (p < 0.01) but not

DEMNOW (p > 0.05). For naturalness, the MOS difference between real and synthetic

videos is also found to be significant for LIPS (p < 0.01) but not DEMNOW (p > 0.1).

The same observation applies to agreeableness, where the MOS difference between real
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Figure 6.11: Perceptual results for quality of mouth articulation.

Figure 6.12: Perceptual results for naturalness.

Figure 6.13: Perceptual results for agreeableness.
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and synthetic animations is found to be statistically significant for LIPS (p < 0.01) but

not DEMNOW (p > 0.17). These results can be explained by the fact that pasting

the eyes from ground truth for the LIPS dataset results in slight imperfections in the

overall animation, which also surprisingly affects the perception of quality of mouth

articulation adversely. The effect of eyes pasting is less noticeable in the DEMNOW

dataset, mostly due to the lower fidelity of the videos. With static eyes, the difference

of the different qualitative factors are mostly insignificant between ground truth and

synthetic videos. In this case, the ground truth and synthetic videos are on a level

playing field with the only variable being the lip and lower face movements. It can thus

be concluded that pasting the eyes from ground truth to synthetic videos degrades the

quality of synthetic videos. It is interesting to note that this unnatural effect when

pasting eyes in the LIPS dataset also seems to make viewers rate down the quality of

mouth articulation with the difference between the real and synthetic MOS scores being

statistically significant. This leads us to conclude that the dynamics of the whole face

are important in the perception of speech and if the upper face do not have the right

movements, then the perception of the quality of mouth articulation is also affected.

The effect of eye movements on the perception of facial animation can also be

examined by comparing MOS scores of naturalness and agreeableness within the ground

truth and synthetic video categories. In ground truth videos, there is a sharp preference

for animations with original eyes. However, in synthetic videos, the same MOS scores

do not show this sharp preference. For LIPS, viewers actually slightly prefer animations

with static eyes, whilst for DEMNOW, there is a slight preference for videos with eyes

pasted from ground truth. This reinforces the conclusion that the unnatural effects

that arise from pasting eyes from ground truth are more prominent in the LIPS corpus

than in the DEMNOW corpus, because of the higher fidelity of the LIPS corpus.

The MOS scores of naturalness are very similar to those of agreebleness across the

different categories. Our aim for including agreeableness was to test for the Uncanny

Valley effect [215]. For LIPS videos, the sharp drop in agreeableness scores in ground

truth videos when static eyes are used and also the low scores of agreeableness in syn-

thetic videos, both when static eyes are used and when the eyes are pasted from ground

truth, can be an indication of these animations falling into the Uncanny Valley. Indeed,

these videos exhibit a certain level of “eeriness” that can lead to strong repulsion in

participant viewers. The DEMNOW videos do not exhibit this sharp drop in agree-

ableness when eyes are pasted from the ground truth videos, possibly due to the lower

fidelity of the DEMNOW videos with effects of eye pasting being less noticeable.
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Intelligibility Test

The intelligibility test involved showing videos one at a time, with the sound turned

off, and asking participants to pick from a set of four sentence choices, one of which is

correct. The intelligibility test involved showing 12 videos: 3 in each category (LIPS

real, LIPS synthetic, DEMNOW real, DEMNOW synthetic), chosen randomly from the

pool of videos. The video sequences were chosen from a pool of 60 videos of paired real

and synthetic videos, just like for the Turing test. The screenshot for the intelligibility

test is shown in Figure 6.14.

We then compute the intelligibility score of each video category, for each of the 50

participants, by taking the number of correctly chosen sentences divided by the total

number of sequences for the corresponding category. The mean intelligibility score for

each category is then computed over all participant scores. The scores are as follows:

LIPS real: 74%, LIPS synthetic: 62%, DEMNOW real: 68%, DEMNOW synthetic:

57%. The results reveal that the difference between the intelligibility scores for real

and synthetic videos is not statistically significant: p > 0.09 for LIPS and p > 0.12

for DEMNOW. The intelligibility scores for the different categories are illustrated in

Figure 6.15. It can thus be inferred that the intelligibility of real and synthetic videos

are comparable.

We also compared the intelligibility scores of native vs. non-native speakers with

the results shown in Table 6.7. We used the Wilcoxon rank-sum test [143] to com-

pare the intelligibility scores between ground truth and synthetic videos within native

and non-native speakers. For native speakers, the difference is non-significant for LIPS

(p > 0.5) and DEMNOW (p > 0.4). For non-native speakers, the difference is again

non-significant for both LIPS (p > 0.05) and DEMNOW (p > 0.1). However, the differ-

ence of the intelligibility scores between real and synthetic videos is more pronounced

amongst non-native speakers, which is what we expect.

It is to be noted that the proposed intelligibility test with multiple choices is more

reliable than unrestricted lip-reading as used by Geiger et al. [120] and Hilder et al.

[137], which showed the lip-reading rate to be less than 20% for real videos and less

than 10% for synthetic videos (refer to Section 6.3.3). To the best of our knowledge,

we are the first to conduct intelligibility tests with multiple choices and, based on the

results obtained, we find it to provide a robust measure of the intelligibility of synthetic

visual speech. However, it should be pointed that that the intelligibility scores that

we obtained cannot be interpreted in an absolute way. Rather, they provide a relative

measure of the intelligibility of ground truth and synthetic visual speech.
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Figure 6.14: Visual speech synthesis experiment - Intelligibility test.

Figure 6.15: Intelligibility scores.

Native Non-native
Video Category Ground Truth Synthetic Ground Truth Synthetic
LIPS 87.8% 82.8% 68.5% 54.9%
DEMNOW 75.6% 65.6% 64.1% 54.6%

Table 6.7: Comparison of intelligibility scores between native and non-native speakers.
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6.3.7 Discussion

In the subjective tests, the aim was to investigate the way humans perceive the syn-

thetic talking head generated using our method that gives the best quantitative results,

i.e. SSGPDM with phoneme VLMM switching states and with sequential optimisation

for synthesis. The tests carried out were: perceptual, Turing and intelligibility tests.

The results of the Turing test are comparable to the state-of-the-art. The perceptual

and intelligibility tests revealed that the synthetic talking heads are mostly comparable

to ground truth. Our perceptual tests also demonstrate that our talking head can be

used as a natural interface for the computer or mobile devices, provided the avatar

exhibits proper eye movements. Facial animations that exhibit poor eye movements,

or no eye movements at all, elicit strong repulsion by human participants, possibly

indicative of the Uncanny Valley effect [215].

One limitation of our experimental setup was that we did not log the number of

times the participants played the videos to arrive at an answer. We later realised

that this could give an additional categorisation of the results because some people

played the videos only once whilst others played the videos multiple times to make

their decisions. Because we did not impose any limits to the number of times that

participants replayed the videos, we expect participants who replayed more to be more

sensitive to slight imperfections for the Turing and perceptual test but also to be better

able to perform lip-reading for the intelligibility test.

One of the aims of this work was to achieve photorealism and videorealism in speech-

driven facial animation. The photorealism criterion is met as evidenced by image frames

from the resulting animations shown in Appendix D, which look like photographs. The

Turing test also revealed that a high percentage of viewers confuse the synthetic videos

for real videos, which is strong evidence for videorealism. However, full videorealism

can only be achieved if the synthetic animations are integrated into a real environment

with background and with the avatar exhibiting non-verbal and expressive cues. This

remains a very challenging problem in visual speech synthesis.

6.4 Chapter Summary

This chapter presented an evaluation of our visual speech synthesis methods. Ob-

jective results were presented for the SGPDM as well as both objective and subjective

results for the SSGPDM. Our objective results reveal that our joint models of audio and

visual perform better than comparable methods of visual speech synthesis. Moreover,

the subjective results show that the realism, perceptual characteristics and intelligi-

bility of our synthetic videos are mostly comparable to ground truth videos processed

using the AAM.
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Conclusion and Future Directions

The ability to perceive or think

differently is more important than

the knowledge gained.

David Bohm

This thesis presents two joint probabilistic models of audio and video as generative

models of speech, which can then be used to predict visual from audio parameters in

view of synthesising speech-driven facial animation. The first one is the shared Gaussian

process dynamical model (SGPDM), which learns a shared latent space between audio

and visual parameters. The second one augments the SGPDM with switching states,

to yield a switching state-space model called the switching shared Gaussian process

dynamical model (SSGPDM). We used two audio-visual corpora to train our models,

namely the LIPS corpus [281], featuring a female British speaker reading sentences from

the Messiah corpus [278], and the DEMNOW corpus [102], featuring a female American

speaker giving news presentations. Different synthesis techniques were presented and,

finally, we presented both objective and subjective evaluations of the proposed methods.

Our hypothesis set in Chapter 1 was that the use of both a discrete and continuous

audio representation to predict visual speech and explicitly modelling the non-linearities

in audio-visual mapping using non-parametric Gaussian processes [251] would help

address the under-articulation problem in parametric learning-based methods [32, 185,

312, 102] and match ground truth animations more closely. This has been confirmed

from the objective evaluation done in Chapter 6, where we have compared our method

with previous methods that use either a discrete or continuous audio representation and

either adopt a linear or piecewise linear appproach to audio-visual mapping. We have

also shown that a switching state-space model that explicitly models phonetic context

achieves better quantitative results than ones which do not, for example the DPDS of

Englebienne et al. [102].

192
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We aimed to achieve both photorealism and videorealism, which we believe has been

realised based on the subjective evaluation presented in the previous chapter. More-

over, our subjective experiments also show that the intelligibility achieved in synthetic

videos generated with our method is comparable to ground truth. We have shown that

the perceptual aspects of our synthesised facial animation compare favourably with

ground truth. However, it has been found that the lack of upper facial movements,

such as eye blinks, leads to strong repulsion in humans, which might be indicative

of the Uncanny Valley [215]. Moreover, the realism achieved is only relative to that

of ground truth videos parameterised with the active appearance model (AAM) [60].

AAM parameterisation leads to some blurring of the reconstructed facial images, which

compromises the quality of the synthetic visual speech.

It should be noted that the focus of this thesis has been the proposal of a novel

behaviour model for synthesising visual speech. We have limited ourselves to using

a 2D representation of the face because of the availability of public 2D audio-visual

datasets. Nonetheless, the proposed method should also be extensible to 3D models of

the face represented in a compact parametric form, for e.g. the 3D Morphable Model

[25].

The following outlines the summary of this thesis.

7.1 Thesis Summary

• Visual processing - The active appearance model (AAM) [60] was used to

extract visual parameters from images. We presented a method to train the

AAM by automatically selecting image frames belonging to each of the phonemes,

in order to cater for all possible speech-related facial expressions. In addition,

Chapter 3 proposed visual normalisation techniques to obtain frontal pose, which

is an important requirement for our visual speech synthesis method.

• Audio processing - Different speech parameterisations were used to process

audio, namely LPC, LSF, MFCC and RASTA-PLP [151], as well as different

audio-visual synchronisation methods, namely: 1) processing the speech at the

same frequency as the visual frame rate, and downsampling speech parameters

from 100Hz to the visual frame rate using 2) polyphase quadrature filtering [256]

and 3) median filtering [6]. These were discussed in Chapter 3.

• Non-linear state space model of audio and video - The SGPDM is a non-

parametric and non-linear state-space model that can be used to couple the audio

and visual streams of speech using a shared latent space. The model involves

having Gaussian process (GP) [251] mappings from the latent space to the audio

and visual spaces, as well as an autoregressive GP mapping on the latent space,

to map the previous latent point to the next. We presented model selection
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experiments to determine the optimal parameters of the SGPDM to be used for

audio-visual mapping. In addition, experiments were presented using the SGPDM

to determine the audio speech features and audio-visual synchronisation method

that best predict the visual speech features for both the LIPS and DEMNOW

corpora. The SGPDM was presented in Chapter 4.

• Augment the state-space model with switching states - The SGPDM was

found to have some major limitations as a generative model of speech. First,

it uses single observation and dynamical models for the whole data, which is

not a valid assumption given that speech involves multiple dynamics. Second,

being a non-parametric model, the SGPDM can only handle a limited amount

of data because the size of the model grows with the data, thus making training

intractable for data exceeding a few thousand frames. In order to address this

limitation, we augmented the SGPDM with switching states that represent the

multiple dynamics, yielding the switching SGPDM (SSGPDM). The switching

states were found automatically and explicitly model phonetic context. This

was achieved by training a variable length Markov model (VLMM) [130, 253] on

phonetic data to find commonly occuring fragments of speech. The audio and

visual data within these fragments were then extracted and modelled using a

SGPDM as multiple sequences. Chapter 5 presented the SSGPDM with VLMM

switching states.

• Use full audio information in training and synthesis - Techniques that

use only the phonetic representation discard prosodic aspects of speech whilst

techniques that use only continuous speech features do not take into account

the structure of language. A main contribution of this work is the use of both

phonetic information and continuous speech features for visual speech synthesis.

We achieve this by learning a variable-order Markov model on the stream of

phonemes to obtain a segmentation of commonly occuring phonetic contexts and

learning generative models of both continuous audio and visual speech for each

segment. For synthesis, the test phonetic information is first used to infer the

phonetic contexts, which are then used to predict visual from audio parameters

using the corresponding joint models of audio and video. The SSGPDM presented

in 5 uses both discrete and continuous speech data to predict visual data whilst

exploiting the structure of language through the VLMM.

• Synthesis techniques for both batch and online applications - Two tech-

niques were presented for synthesis. The first one is called sequential optimisation

and is suited for batch processing, assuming that the whole audio data is avail-

able at the beginning. Because it takes into account future audio information,

both forward and backward coarticulation are modelled. The second technique is
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called sequential prediction and assumes that the audio data is arriving in an on-

line fashion and is able to predict the next frame from the previous. This method

can be used for real-time applications, although a real-time inference algorithm

for VLMM states is needed. We discuss how this can be achieved in the Future

Directions Section 7.3. The synthesis algorithms for the SSGPDM were presented

in Chapter 5.

• Post-processing - We present a post-processing method to reintroduce eye-

blinks to synthetic videos by using ground truth AAM features to reconstruct the

shape and texture and then aligning the shape of the eyes of the ground truth with

that of the synthetic. Then, the aligned eyes shape are copied to the synthetic

shape. Moreover, the normalised texture corresponding to the upper part of

the face with the eyes is copied to the synthetic texture. The post-processing

technique was described in Chapter 6.

• Evaluation - Quantitative evaluation results of our proposed method were com-

pared against other related methods such as the Voice Puppetry of Brand [32],

the shared LDS of Lehn-Schiøler et al. [186], the coupled HMM of Xie and Liu

[312] and the DPDS of Englebienne et al. [102]. The SSGPDM with phoneme

VLMM as switching states and with sequential optimisation for synthesis was

found to give the best quantitative results. We also conducted three subjective

tests, namely: a Turing test, a perceptual scoring test and an intelligibility test.

Our contributions were: test real and synthetic videos with and without eye

blinks and test for the Uncanny Valley effect [215] by having participants score

the level of agreeableness of the animations. Moreover, we also presented four

sentence choices in the intelligibility test, one of which was the correct one, in

order to address the limitations of unrestricted intelligibility tests as described by

Geiger et al. [120] and Theobald et al. [282]. Chapter 6 dealt with objective and

subjective evaluation of our work.

7.2 Limitations of the Proposed Method

• Need for phonetic labels in synthesis - Our current method assumes that

we have phonetic labels for the test audio sequence, which can be obtained from

speech recognition tools such as HTK [317]. We thus treated recognition and

synthesis as two different problems. In principle, we could devise a Viterbi algo-

rithm [293] to infer phonetic states or phonetic contexts from continuous audio by

associating each VLMM state to a distribution over audio parameters. However,

we expect the recognition results to be lower than using HTK, which trains richer

models based on context-dependent HMMs. As observed by other researchers

such as Ostendorf and Bulyko [225], recognition and synthesis are two separate



CHAPTER 7. CONCLUSION AND FUTURE DIRECTIONS 196

problems with the former being discriminative and the second being generative.

Therefore, the models used for synthesis are not necessarily ideally suited for

recognition.

• Non real-time synthesis - The SSGPDM synthesis technique that gives the

best quantitative results, namely sequential optimisation, has no real-time perfor-

mance. The sequential prediction technique can be used for real-time applications

but a real-time inference algorithm for the VLMM states is needed, as mentioned

previously.

• Dependence on speech parameterisation - Our experiments have shown that

different speech parameterisation and audio-visual synchronisation techniques

give optimal results for the two data corpora used in this work, namely the LIPS

and DEMNOW corpora. These different results were found to arise as a result

of the setting in which the original data was recorded. The LIPS corpus was

recorded in a controlled setting with much slower speaking rate than the DEM-

NOW corpus, which involves an anchor in a fast-paced newscast environment. If

our method is to be used practically, a decision needs to be made by a human

operator on the audio parameters to use based on knowledge of the nature of

the data. A direction of future work could be to infer the speech parameters

automatically from the data, using classification methods in Machine Learning.

• Need for visual normalisation - As opposed to techniques that generate a

smooth trajectory of visual parameters from discrete state indices [32, 105, 102],

our method requires visual normalisation in order that the correlations between

pose and continuous audio parameters are not captured, which would otherwise

lead to spurious pose variations in the synthetic animation.

• Lower fidelity animations - By adopting a 2D appearance model for facial

representation and a learning-based method for audio-visual mapping, we ob-

tain lower fidelity animations as compared to sample-based methods that reorder

original images to achieve facial animation. In particular, the use of the active

appearance model (AAM) [60] results in some blurring particularly around the

mouth regions. Sample-based approaches have become the state-of-the-art in

recent years, winning the LIPS visual speech synthesis challenges in 2008 [191]

and 2009 [303]. However, the disadvantage of sample-based approaches is that

they cannot be adapted to novel facial identities in transferable speech animation.

Transferability of identity in AAMs has been demonstrated by Theobald et al.

[280] and could be a possible extension of our work.
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7.3 Future Directions

The following gives a list of ways in which the current work could be furthered in

the future as well as different paths that could have been explored if more time were

available.

• Real-time synthesis - The first step in achieving real-time synthesis would be to

infer VLMM states in real-time, which could make use of particle filtering methods

as demonstrated by Hou et al. [146], Stefanov et al. [268] and Caillette et al. [40].

However, real-time synthesis does not take future context into account, which

means anticipatory coarticulation was not modelled. Possible ways to address

this would be to have a short lag in order to be able to capture some future

context or, alternatively, using the backward context to try to anticipate what

is coming next. We believe that the VLMM or alternative higher order Markov

models can be applied to this problem in order to anticipate future visual speech

behaviour from past context.

• Learn language model from continuous audio - At present we learn a lan-

guage model using the VLMM on phonetic data. In theory, it should be possible

to infer the language model directly from continuous audio data. The variable

length hidden Markov model (VLHMM) [306] could be used for simultaneously

clustering the audio parameters and learning the variable length Markov model.

• Sequential filtering - The sequential prediction algorithm for synthesis does

not use the full audio information for the whole test sequence. Instead, only

the first frame belonging to a given VLMM state is used to optimise the latent

point and the subsequent latent points are predicted from the previous using the

dynamical GP. A more powerful method would be to use filtering to infer the

latent states from both the audio and the dynamics GP mappings. A sequential

filtering algorithm could be devised, making use of GP Bayes filters proposed by

Ko and Fox [170] and Deisenroth et al. [72].

• Combine sample-based and learning-based approaches - In this thesis,

we adopt a learning-based approach to visual speech synthesis, which results in

some blurring in the final animation due to parameterisation of the face with

appearance models. One way to improve the fidelity of the animation would be

to combine the learning-based approach with a sample-based approach, where

the final animation is generated from image frames belonging to the original

corpus, using a similarity measure between images reconstructed from the AAM

parameters and original images in the training set. This is similar to the approach

adopted by Wang et al. [302].

• Visual prosody - Synthesis of visual prosody such as eye blinks and head move-

ments is the next step in creating videorealistic speech animation that is as close
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to natural as possible. Synthesis of eye movements has been demonstrated by

Deng et al. [80] and Dziemianko et al. [90]. Head movements synthesis has also

been demonstrated by Hofer and Shimodaira [139] and Sargin et al. [260]. It has

been found that the fundamental frequency and pitch of speech are correlated

with eye and head movements [139, 260, 90]. A possible direction of future work

is to add additional modes to the joint probabilistic models in order to incorporate

prosodic information. Prosodic information in both audio and visual modalities

would be correlated with both the speech content and the underlying phonemes.

As a result, a decomposition of the latent spaces into shared and private spaces

as demonstrated by Ek et al. [99] and Salzmann et al. [259] can be adopted. The

BIWI corpus [106] illustrated in Figure 7.1, can be used for prosody-driven facial

animation.

• Transferable speech animation - Ideally, it would be desirable to have to learn

a model of speech production on only one subject and then adapt the models us-

ing the limited data of a new corpus. This involves two components. The first is

adaptation of the facial models and has been demonstrated by several researchers

[294, 65, 280]. The second problem is the adaptation of the speech production

models to correct the mismatch in audio recordings, transmission channel, envi-

ronment noise, speaker, speaking style, as well as application contexts, and has

been achieved using techniques such as maximum-a-posteriori (MAP), maximum

likelihood linear regression (MLLR) and clustering adaptation [47]. With trans-

ferable speech animation, it should be possible to learn a speech model on LIPS

data and then adapt it to DEMNOW data or vice-versa.

• Expressive speech animation - As humans, we are very sensitive to facial

expressions and any synthetic facial animation that lacks expressiveness would

quickly look unnatural to us. The ultimate aim of facial animation is to have

fully expressive animation with gestures such as smiles, frowns and other facial

cues to convey emotion. Expressive facial animation has been demonstrated by

various researchers [43, 52, 81, 297] and involves two stages: expression analysis

and expression synthesis. In expression analysis, the goal is to extract emotive

cues from the speech data. Expression synthesis then maps these expressive cues

to the face by having a model that factors style from content. Multilinear facial

models have been widely used in expression synthesis [292, 198, 294]. The BIWI

corpus [106] can be used for expressive facial animation because each utterance

in the corpus is provided in different affective states such as: negative, anger,

sadness, stress, contempt, fear, surprise, excitement, confidence, happiness and

positive [106].
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Figure 7.1: The BIWI 3D Audiovisual Corpus of Affective Communication [106].
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Appendix A

Fast ICA Algorithm

A description of the FastICA algorithm is given here. Much of the material has

been adapted from [153].

Given a vector x = {xn}Nn=1, the aim of ICA is to find a linear projection A that

projects a vector of independent components, s = {sn}Nn=1 to x.

x = As (A.1)

By independent components, it is meant that each component is statistically inde-

pendent from the other. Two variables y1 and y2 are statistically independent if their

joint probability distribution can be be factorised as follows:

p(y1, y2) = p(y1)p(y2) (A.2)

Statistical independence does not follow from uncorrelation. Statistically indepen-

dent variables are uncorrelated but the converse is not true. For two variables, y1 and

y2 to be uncorrelated, their covariance should be zero:

E[y1y2]− E[y1]E[y2] = 0 (A.3)

The independent components can be computed from x using the inverse matrix of

A, W = A−1 as follows:

s = Wx (A.4)

For the components to be independent, they have to be non-Gaussian. Thus, in-

dependent components can be estimated by maximising their non-Gaussianity. There

are several measures of non-Gaussianity, namely: kurtosis, which is the fourth-order

moment of the distribution; negentropy, which is based on the information-theoretic

measure of differential entropy; and mutual information, which is a measure of the

dependence of two random variables. The FastICA algorithm uses negentropy as the

measure of non-Gaussianity.

228
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A.1 Negentropy

Entropy is a measure of the randomness of a random variable. The more random

or unpredictable or unstructured a variable is, the larger is its entropy. The entropy of

a discrete random variable Y is given by Eqn A.5, where ai are the possible values of

Y .

H(Y ) = −
∑
i

P (Y = ai) logP (Y = ai) (A.5)

For continuous-valued random variables and vectors, the differential entropy is used,

which, for a random vector y is given by:

H(y) =

∫
f(y) log f(y)dy (A.6)

A Gaussian variable has the largest entropy among all random variables of equal

variance. Thus, entropy is a good measure of non-Gaussianity. However, to obtain

a measure that is zero for a Gaussian variable and is always non-negative, a modified

version of differential entropy, called negentropy is used. The negentropy J of a random

vector y is defined by:

J(y) = H(ygauss)−H(y) (A.7)

where ygauss is a Gaussian random variable that has the same covariance matrix as

y.

In practice, computing the negentropy of a random variable or vector can be quite

difficult, so approximations are used instead. A classicial method of approximating

negentropy is through the use of higher-order moments such as:

J(y) ≈ 1

12
E[y3]2 +

1

48
kurt(y)2 (A.8)

where kurt(y) is the kurtosis of y.

However, more robust measures of negentropy have been developed [153]. The

approximation used in the FastICA algorithm is:

J(y) ∝
(
E[G(y)]− E[G(v)]

)2
(A.9)

where v is a Gaussian variable of zero mean and unit variance and G is any non-

quadratic function. If G(y) = y4, then we obtain a kurtosis-based approximation, as in

Eqn A.8. The following choices for the function G have been proven useful:

G1(u) =
1

a1
cosh a1u, G2(u) = − exp (−u2/2) (A.10)

where 1 ≤ a1 ≤ 2 is some suitable constant.
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A.2 Pre-processing

Prior to applying any ICA algorithm, some pre-processing is usually carried out in

order to make the ICA estimation simpler and better conditioned.

A.2.1 Centering

The first step is mean-centering x:

x = x− E[x] (A.11)

This is mostly done to simplify the ICA algorithm.

A.2.2 Whitening

After mean-centering, the variable x is whitened. Whitening is a linear transforming

of x so that the new vector x̃ consists of uncorrelated components with variances equal

to one. In other words, the covariance of x̃ equals the identity matrix:

E[x̃x̃T ] = I (A.12)

Whitening is done by first performing the eigendecomposition of the covariance

matrix C = E[x̃x̃T ]

C = PΛPT (A.13)

where P is an orthogonal matrix of eigenvectors of C and Λ = diag(λ1, . . . λn) is

the diagonal matrix of its eigenvalues. The whitened matrix x̃ is then given by:

x̃ = PΛ−
1
2 PTx (A.14)

where Λ−
1
2 is computed as Λ−

1
2 = diag(λ

− 1
2

1 , . . . , λ
− 1

2
n ).

A useful procedure is to reduce the dimensionality of the data by discarding com-

ponents whose eigenvalues are too small, as done during PCA. This reduces the noise

in the data. In our method, we apply ICA to principal components, which can be

whitened by normalising the variance of each principal component to one.

A.3 FastICA for one unit

In this section, the FastICA algorithm for finding one independent component is

presented, followed by a generalisation of the algorithm to multiple components in the

next section.

The FastICA algorithm is based on a fixed-point iteration scheme for estimating

the weight vector w, such as to maximise the non-Gaussianity of wTx, as measured by

Eqn A.9. An approximative Newton iteration is used for the optimisation. Taking g



APPENDIX A. FAST ICA ALGORITHM 231

to be the derivative of the function G, the derivatives of the functions in Eqn A.10 are

given by:

g1(u) = tanh(a1u), g2(u) = u exp (−u2/2) (A.15)

The general form of the FastICA algorithm for one unit is given by the following

steps:

1. Choose an initial (e.g. random) weight vector w.

2. Set w+ = E[xG(wTx)]− E[g(wTx)]w.

3. Set w = w+/‖w+‖.

4. If not converged, go back to 2.

A.4 FastICA for several units

To run the FastICA algorithm for several independent components, the algorithm

for one component needs to be run for each component, followed by a decorrelation

of the outputs wT
1 x, . . .wT

nx using a decorrelation method similar to Gram-Schmidt

orthogonalisation method [124]. Thus, after p independent components, w1 . . .wp have

been estimated, the one-unit fixed-point algorithm for wp+1 is run and after each

iteration, wp+1 is substracted from the projections wT
p+1wjwj for j = 1 . . . p of the

previously estimated p vectors. This is followed by a renormalisation of wp+1. These

two steps are summarised as follows:

1. Set wp+1 = wp+1 −
∑p

j=1 wT
p+1wjwj

2. Set wp+1 = wp+1/
√

wT
p+1wp+1

An alternative to the above algorithm is sometimes used when no vectors are priv-

iledged over others. Taking W = (w1, . . . ,wn)T , which have been estimated using

the FastICA algorithm for one unit, the following two steps can be used to find the

independent components:

1. Set W = W/
√
‖WWT ‖

Repeat step 2 until convergence (i.e. change in negentropy measure less than

threshold):

2. Set W = 3
2W − 1

2WWTW
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AAM Modes of Variation

LIPS AAM Modes of Variation

-2 std -1 std mean +1 std +2 std

AAM mode 1

AAM mode 2

AAM mode 3

AAM mode 4

AAM mode 5

AAM mode 6
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LIPS AAM Modes of Variation

-2 std -1 std mean +1 std +2 std

AAM mode 7

AAM mode 8

AAM mode 9

AAM mode 10

AAM mode 11

AAM mode 12

AAM mode 13

AAM mode 14

AAM mode 15

AAM mode 16
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LIPS AAM Modes of Variation

-2 std -1 std mean +1 std +2 std

AAM mode 17

AAM mode 18

AAM mode 19

AAM mode 20

AAM mode 21

AAM mode 22

AAM mode 23

AAM mode 24

AAM mode 25

AAM mode 26
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LIPS AAM Modes of Variation

-2 std -1 std mean +1 std +2 std

AAM mode 27

AAM mode 28

AAM mode 29

AAM mode 30

AAM mode 31

AAM mode 32

AAM mode 33
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DEMNOW AAM Modes of Variation

-2 std -1 std mean +1 std +2 std

AAM mode 1

AAM mode 2

AAM mode 3

AAM mode 4

AAM mode 5

AAM mode 6

AAM mode 7

AAM mode 8

AAM mode 9

AAM mode 10
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DEMNOW AAM Modes of Variation

-2 std -1 std mean +1 std +2 std

AAM mode 11

AAM mode 12

AAM mode 13

AAM mode 14

AAM mode 15

AAM mode 16

AAM mode 17

AAM mode 18

AAM mode 19

AAM mode 20
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DEMNOW AAM Modes of Variation

-2 std -1 std mean +1 std +2 std

AAM mode 21

AAM mode 22

AAM mode 23

AAM mode 24
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ICA Modes of Variation

DEMNOW ICA Modes of Variation

-2 std -1 std mean +1 std +2 std

ICA mode 1

ICA mode 2

ICA mode 3

ICA mode 4

ICA mode 5

ICA mode 6
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DEMNOW ICA Modes of Variation

-2 std -1 std mean +1 std +2 std

ICA mode 7

ICA mode 8

ICA mode 9

ICA mode 10

ICA mode 11

ICA mode 12

ICA mode 13

ICA mode 14

ICA mode 15

ICA mode 16
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DEMNOW ICA Modes of Variation

-2 std -1 std mean +1 std +2 std

ICA mode 17

ICA mode 18

ICA mode 19

ICA mode 20

ICA mode 21

ICA mode 22

ICA mode 23

ICA mode 24
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Animation Frames

Synthesis frames using phoneme VLMM SSGPDM with sequential optimisation for

a test sequence of the LIPS corpus is given in Figure D.1.

Synthesis frames using phoneme VLMM SSGPDM with sequential optimisation for

a test sequence of the DEMNOW corpus is given in Figure D.2.

Examples of ground truth and synthetic videos can also be found on: http://aig.

cs.man.ac.uk/people/salil/visual_speech_synthesis_videos/.

242
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sil sil sil sil sil sil sil ae n n

aa aa aa aa ch ch ch ih n n

b aa aa aa aa aa b r r z

z g g aa aa aa aa aa d ax

ax n n w w ax z hh hh hh

aa aa aa t t sh sh sh ey ey

ey ey p p t t t t sil sil

sil sil sil sil sil sil sil sil sil sil

Figure D.1: Synthesis frames a sequence of the LIPS dataset with the utterance: “An arch
in Barbara’s garden was heart shaped” with BEEP phonetic labels underneath each frame.
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sil sil sil sil sil sil sil sil sil AA

AA AA N N N W EH EH N Z

Z D IY IY JH JH JH JH L L

L K K K K EH R R R R

L L Z S S S S IH IH S

S S S T T ER ER ER ER K

K K K K EY IY IY IY IY IY

IY IY breath breath breath breath breath breath breath breath

Figure D.2: Synthesis frames for a sequence of the DEMNOW dataset with the utterance:
“On Wednesday Jill Carroll’s sister Katie” with CMU phonetic labels underneath each frame.
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