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Abstract

The main archive of life sciences literature currently contains more than
18,000,000 references, and it is virtually impossible for any human to stay up-
to-date with this large number of papers, even in a specific sub-domain.

Not every fact that is reported in the literature is novel and distinct.
Scientists report repeat experiments, or refer to previous findings. Given the
large number of publications, it is not surprising that information on certain
topics is repeated over a number of publications. From consensus to
contradiction, there are all shades of agreement between the claimed facts in
the literature, and considering the volume of the corpus, conflicting findings
are not unlikely. Finding such claims is particularly interesting for scientists, as
they can present opportunities for knowledge consolidation and future
investigations.

In this thesis we present a method to extract and contextualise statements
about molecular events as expressed in the biomedical literature, and to find
those that potentially conflict each other. The approach uses a system that
detects event negations and speculation, and combines those with contextual
features (e.g. type of event, species, and anatomical location) to build a
representational model for establishing relations between different biological
events, including relations concerning conflicts. In the detection of negations
and speculations, rich lexical, syntactic, and semantic features have been
exploited, including the syntactic command relation.

Different parts of the proposed method have been evaluated in a context
of the BioNLP 09 challenge. The average F-measures for event negation and
speculation detection were 63% (with precision of 88%) and 48% (with
precision of 64%) respectively. An analysis of a set of 50 extracted event pairs
identified as potentially conflicting revealed that 32 of them showed some

degree of conflict (64%); 10 event pairs (20%) needed a more complex
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biological interpretation to decide whether there was a conflict.

We also provide an open source integrated text mining framework for
extracting events and their context on a large-scale basis using a pipeline of
tools that are available or have been developed as part of this research, along
with 72,314 potentially conflicting molecular event pairs that have been
generated by mining the entire body of accessible biomedical literature.

We conclude that, whilst automated conflict mining would need more
comprehensive context extraction, it is feasible to provide a support
environment for biologists to browse potential conflicting statements and

facilitate data and knowledge consolidation.
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Chapter 1

Introduction

Text is the most common form in which human knowledge is stored. It is the
primary means of communication among scientists, where knowledge is
mainly communicated via research papers published in scientific journals and
is widely available electronically.

Text is unstructured data. It relies on the readers’ prior knowledge of the
language and the specific subject to convey information by means of natural
language. Text mining methods are designed in order to extract concise and
structured information from natural language documents. Some text mining
systems also aim to infer information that is not explicitly stated in the text.

Biomedical scientists use a particularly large and growing body of textual
knowledge (Hunter et al. 2006). The main archive of life sciences literature
currently contains more than 18,000,000 references and approximately 2,000
are added to this archive every day.' It is virtually impossible for any human to
stay up-to-date with this large number of papers, even in a specific sub-domain.

With such a large and growing body of literature, and with the advances
of technologies to store and process this data, life scientists are increasingly
using automated technologies to access related work in their discipline. In
addition to advanced search engines to search for and retrieve relevant
documents, scientists have started to rely on text mining tools and methods to
extract information from this pool of textual data.

The task of extracting information from text is done both manually and
automatically, with wvarious speeds and accuracies. Professional curators
annotate biomedical papers and commit the reported facts into knowledge

repositories. But with the vast amount of biomedical research recorded in

1 MEDLINE Fact Sheet, retrieved 30 September 2011
http://www.nlm.nih.gov/pubs/factsheets/medline.html
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textual form, and with its rate of increase, automatic text mining tools and
methods have become increasingly interesting to researchers.

The goal of text mining is to retrieve and extract information from text,
and present it in a more concise and structured way to the user. Its domain
stretches from lexical and syntactic analysis (parsing, part-of-speech tagging,
named entity recognition, etc.) to semantic analysis (extracting roles and
relations). The extracted information is typically inserted into databases (e.g.
the STRING database (Szklarczyk et al. 2011)), or used as an input to other
tools, or as support for manual curation.

Besides the enormous volume of the literature, the challenges of text
mining particular to the biomedical domain include the language used by the
scientists. Biomedicine is a dynamic area of science, and the language used in
biomedical discourse evolves along with the development in methods and
changes in experiments. Qualitative and quantitative descriptions, observations,
and measurements are not always accurate in biomedical experiments, and
accordingly, appropriate language is developed to reflect this characteristic.
Claims are highly context-dependent, and therefore are described in long and
speculative sentences. Other issues involve the variation in the terminology
amongst individuals and across research groups, and the ambiguity of the
language used by them (Ananiadou et al. 2005).

It is a well-known fact that there is a bias in the research that is shared
with the scientific community through publication (Easterbrook et al. 1991);
(Butler 2009). There is a tendency on the side of the researchers, editors, and
pharmaceutical companies to handle the reporting of experimental results that
are positive (i.e. showing a significant finding) differently from results that are
negative (i.e. supporting the null hyphothesis) or inconclusive, leading to bias
in the overall published literature. It has been found that statistically significant
results are three times more likely to be published than papers affirming a null
result (Dickersin et al. 1987).

This effect, referred to as “publication bias”, subsequently leads to
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different linguistic styles to be used to report positive and negative results. It is
expected for negated information to predominantly be reported in comparison
or in contrast with similar affirmative information. In other words, when a
negated statement is reported, it is likely that its significance is in comparison
with other conflicting claims, or otherwise similar but slightly different positive
claims.

The sentence in Example 1.1 is a clear example of several affirmative
and negative reports of the production of three genes/proteins in different
populations. It also demonstrates the information-richness and the complicated
structure of some of these sentences, and the complexity of reasoning required

to infer all the meaning expressed in them.

Example 1.1. “Although 21 out of 503 (4%) CD4+ T cell clones
produced IL 4, but not IFN-gamma or IL 2, and 208 (41%) produced IL
2 and/or IFN-gamma, but not IL 4, a total number of 185 (37%) CD4+
clones showed the ability to produce IL 4 plus IL 2 and/or IFN-
gamma.”

(From PMID 2969818)

Of course, not every fact that is reported in the literature is novel and
distinct. Scientists report repeat experiments, or refer to previous findings.
Given the large number of publications, it is not surprising that information on
certain topics is repeated over a number of publications. However, not all the
mentions of a topic agree on every contextual detail.

From consensus to contradiction, there are all shades of agreement
between the claimed facts in the literature, and considering the volume of the
corpus, contrasting findings are highly expected to appear. Finding conflicting
claims is particularly interesting for scientists, as they can present opportunities
for future investigations and consolidation of knowledge. A conflict can be due

to different experimental conditions, may suggest a potential contradiction, or
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may indicate erroneous results. In any case, these are potential sources of
hypotheses and further findings or inconsistencies in the entire body of
biological knowledge.

To demonstrate how a person searches for and interprets relevant
information, consider this example: a scientists, interested in the interactions
between the HIV and host proteins, starts by using PubMed search engine’s
web interface to search for all the MEDLINE documents that have all of the
terms HIV-1, human, protein, and interactions. At the time of writing this
document, PubMed comes up with 3,049 articles after performing a document
retrieval task. If she further wants to know what exact proteins of the HIV-1
virus interact with what proteins of the host and what the types of those
interactions are, she would need to perform an information extraction task to
extract the desired information. For instance, one of the documents retrieved by
the above search is the document with the PubMed ID (PMID) 11336643. In

the abstract of this paper she reads:

“a disulphide-bridged peptide mimicking the clade B HIV-1 gp120
consensus V3 domain (V3Cs) binds specifically to CCR5 (the major co-

receptor of R5 HIV strains) on these cells.”

From the above sentence, she can infer the fact that the HIV protein
gp120 binds with the human protein CCR5. Furthermore, she can also conclude
that the specific receptor in action is receptor 5, with R5 mentioned in the
brackets and also as a part of the protein name.

She then finds alternative (and preferably commonly accepted) names for
the two proteins from one of the available databases, such as UniProt. The
standard name for the HIV-1 protein gp120 mentioned in the abstract found in
the UniProt database is “Envelope surface glycoprotein gp120”. Similarly, the
name for the human protein would be “chemokine (C-C motif) receptor 5.

After extracting this information, she then can summarise and represent this
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fact as Table 1.1.

Interaction Protein 1 (HIV protein) Protein 2 (human
type protein)
Binding Envelope surface Chemtokine (C-C
glycoprotein gp120 motif) receptor 5
(UniProt ID: P03375) (UniProt ID: P51681)

Table 1.1: The representation of an event.

Suppose now she wants to find whether any other publications also
support this interaction. However in the abstract of the article with PMID

22024519, she reads:

“N7K significantly increases the distance between V3 position 7 and
sulphotyrosine at CCRb5 position 14 (crucial for binding to gp120; from
4.22 A to 8.30 A), thus abrogating the interaction between these two

important residues.”

So, there are cases reported in which this known interaction does not
happen, perhaps after treatment or exposure to certain biological processes.
This could be a starting point for our biologist to look into this interaction in
more detail. Any systematic way of helping her would facilitate knowledge
acquisition and consolidation as well as hypothesis generation.

This scenario simplifies how a biologist would analyse the literature and
interpret the statements to understand their meanings. A number of activities
are assumed when a human performs natural language perception. The purpose
of information extraction is to “break” the task down into algorithmic steps so
that it can be done automatically.

In this research, we are interested in finding conflicts, contrasts and
potential contradictions in biomedical statements presented in literature. We

use chemical interactions between certain types of organic molecules as a basic
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unit of such biomedical facts. We refer to these interactions as “events”.

As intermediate steps in finding potential conflicts, we need to initially
extract these units of information from text. We also need to extract
information about whether these facts have been reported affirmatively or
negatively, and whether they have been reported speculatively or with
certainty.

We apply these methods on large-scale biomedical literature and explore

how to extract contrasts and potential contradictions from such data.

1.1 Hypothesis and research question

We hypothesise that automatic extraction of contextualised molecular event
information from textual data using state-of-the-art methods can be used to
identify conflicting statements. In particular, we hypothesise that the addition
of negation and speculation context to extracted event information on a large
scale can find conflicting statements including contrasts and potential
contradictions in textual research reports. This will be the main research

question which this thesis aims to address.

1.2 Aim and objectives

The aim of this thesis is to investigate the way text mining can extract non-
trivial and useful information from the biomedical literature by focusing on
detecting the conflicting statements and facts. These phenomena are
investigated at the event level.

Two event statements are contrasting when they state opposite but not
necessarily inconsistent claims. They are contradictory when they also state
inconsistent claims. We hypothesise that in at least one of the two contrasting
or contradictory statements there appears a form of negation. Therefore, as
intermediate steps, we aim to detect negations and speculations.

More specifically, the objectives of this research are the following.

1. Effectively identify biological events and relations among entities with
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their context;

2. Design and implement a system that will be able to automatically
recognise negated and speculated statements in text, specifically in the
domain of molecular interactions;

3. Develop a representation model for establishing relations between
different biological events, including relations concerning conflicts.
This involves semantically representing a biological event.

4. Design and implement a system that will detect conflicting statements
from a database of extracted claims;

5. Evaluate the proposed methodology through a case study on biomedical
events;

6. Apply the method on the entire publicly available biomedical literature;

7. Provide the tools and data to the biomedical and text mining research
communities, including the contextualised events and the conflicts

between them.

The main focus of this research will be on standardised molecular and
chemical events involving genes and proteins as examples of biological events.
However, the proposed methodology aims to be generic and applicable to any

biological fact.

1.3 Contributions

In this thesis, we designed and evaluated rule-based and machine learning
techniques to extract events and their context from the literature using publicly
available annotated data. We structure this extracted data using a semantic
representation form for the event and its context which is an extension of a
commonly used representational model. Finally, we propose techniques to find
conflicting and contrasting facts in the data extracted from a large scale corpus
of publicly available biomedical knowledge.

The research presented in this thesis has made the following contributions.
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A representational model for bio-molecular events and their context,
appropriate for the detection of conflicting facts.

A hybrid machine learning and rule-based method for molecular event
extraction using dependency parse trees.

A novel method to detect negations and speculations, using machine
learning and computationally calculated X-command features along
with other lexical, semantic, and syntactic features.

A method to identify conflicting statements on molecular events from
literature.

An open source integrated text mining framework for large-scale
identification of conflicting biomedical information.

The large-scale data resulting from this analysis freely available for

further biological explorations.

Intermediate results from this research have been presented and

published in the following conferences and journals.

Farzaneh Sarafraz, James FEales, Reza Mohammadi, Jonathan
Dickerson, David Robertson and Goran Nenadic. “Biomedical Event
Detection using Rules, Conditional Random Fields and Parse Tree
Distances”. Paper presented at the Proceedings of the BioNLP 2009
Workshop Companion Volume for the Shared Task in Event
Extraction, 2009.

Farzaneh Sarafraz and Goran Nenadic. “Using SVMs with the
Command Relation Features to Identify Negated Events in Biomedical
Literature”. The Workshop on Negation and Speculation in Natural
Language Processing, 2010.

Farzaneh Sarafraz and Goran Nenadi¢. “Identification of Negated
Regulation Events in the Literature: Exploring the Feature Space”.

Fourth International Symposium on Semantic Mining in Biomedicine
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(SMBM), 2010.

* Farzaneh Sarafraz, Martin Gerner, Casey Bergman, Goran Nenadic.
“BioContext: integrated text mining for large-scale information
extraction in biology” (submitted.)

e Daniel Jamieson, Martin Gerner, Farzaneh Sarafraz, Goran Nenadic,
David Robertson. “Towards semi-automated curation: using text
mining to recreate the HIV-1-human protein interaction database”

(accepted.)

BioContext was a joint project with Martin Gerner (Faculty of Life
Sciences, University of Manchester).

All tools and references are available at http://gnodel.mib.man.ac.uk/.

1.4 Thesis structure

The rest of this thesis is organised in six chapters.

Chapter 2 presents the background and previous research on the topics
related to our research. It introduces definitions of the concepts explored in this
thesis. It critically evaluates tools, methodologies, and resources that were
available at the time of this research.

Chapter 3 describes the research method used for the extraction and
contextualisation of molecular events. It starts by the definitions of concepts
that are used in the research. Section 3.3 describes the method developed for
the automatic extraction of biomedical events from the literature. Sections 3.4
and 3.5 describe the methods developed to extract information about negation
and speculation of these events.

Chapter 4 starts with the introduction of the evaluation approach and
presents the results from molecular event extraction and contextualisation
described in Chapter 3, along with evaluation and discussion.

Chapter 5 is mainly concerned with methods and the framework

developed for aggregate analysis of contextualised biomedical events on a
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large corpus. Section 5.1 describes the technical details of the text mining
framework and the event extraction pipeline. Section 5.4 introduces a method
for mining conflicting statements from the aggregate data.

Chapter 6 presents the results and the data of the large-scale text mining
and aggregate analysis presented in Chapter 5 . It also evaluates the results and
discusses the achievements and limitations of the research, exploring ways in
which it can be improved and expanded in future.

Chapter 7 is the summary and conclusion of the thesis.
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Chapter 2

Background

The aims and objectives of this research, introduced in Section 1.2, suggest that
a wider background needs to be introduced and explored in order to put these
objectives into context. In this chapter we introduce the context in which the
objectives of this thesis are to be addressed.

Challenges that are of particular relevance to this research will be
introduced in Sections 2.4 and 2.5, namely the recognition and extraction of
negations, contradictions, and contrasts in general, and in biomedical text
mining in particular.

Before that, we shall provide a brief summary of the main challenges in
the field of biomedical text mining, and evaluate some of the existing
approaches. In Section 2.1 we introduce information extraction as a general
problem, with an emphasis on relation detection. Section 2.2 presents an
overview of the biomedical literature, the domain which is used as a case study
for finding conflicting statements. Section 2.3 explores the challenges in
biomedical text mining that are considered to be prerequisites for mining
conflicting statements in the biomedical literature. In this section we introduce
pre-processing steps such as tokenisation and parsing, and critically discuss
previous approaches to the problems of named entity recognition and relation
extraction in the biomedical literature.

In recent years increasingly more gold standard corpora have become
available to researchers. A selection of these resources are introduced in
Section 2.6. They have been used in previous approaches, and will be used in
this thesis as well.

Finally, in Section 2.7, we define a number of common evaluation

measures and methods that are used in biomedical text mining.
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2.1 Information extraction

Natural language, including written text, is unstructured. Although generating
and understanding it is intuitive for humans, it is a complicated and non-trivial
task to perform computationally. It contains an immense amount of ambiguity
ranging from word sense ambiguity where a single word can have several
unrelated meanings, to phrase structure and grammatical ambiguity where a
word or phrase can have different grammatical roles or sometimes the whole
sentence can have different syntactic parses, resulting in the sentence
conveying two or more different meanings. On the other hand, a single concept
can be expressed with different synonymous words or expressions, or using
different grammatical structures. This is the opposite of ambiguity, and is
referred to as variability.

Information extraction (IE) refers to the task of extracting facts from text
written in a natural language about one or more predefined fact types, and
representing those facts in a predefined form (Ananiadou et al. 2005). This
“predefined form” is usually a template which is to be filled in with data
extracted from text. These templates have the benefit of being more structured,
and despite losing some of the context and thoroughness of the knowledge
represented in unstructured text, can be used for aggregate processing once in a
database. The results of IE are usually stored in a database for subsequent data
mining, integrated into knowledge bases for reasoning, or presented to users.

For example, a template for weather reports can have slots for weather
temperature, humidity, wind direction and speed, pressure, and weather felt
temperature. Similarly, a template for interacting proteins could have the
participating molecules, their roles, the type of the interaction, the anatomical
location, and other properties of interest.

The manual information extraction task demonstrated in Table 1.1 is an
example of how such a template is filled with data extracted from text to form
the representation of a fact.

In the following sections we discuss how different parts of this task can
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be done computationally.

2.2 Biomedical literature

The United States National Library of Medicine’ (NLM) maintains a database
of biomedical and life sciences scientific literature. The database is known as
Medical Literature Analysis and Retrieval System Online (MEDLINE) and
currently provides more than 18 million references from more than 5,500
journals in medicine, nursing, pharmacy, dentistry, veterinary medicine, health
care and other areas of life sciences and biomedicine. The articles are indexed
with NLM’s controlled vocabulary, the Medical Subject Headings (MeSH)?
which contains terms for a wide range of biomedical concepts, from molecular
biology to organisms, health care, technologies, people, and more.

The MEDLINE archives go back to the 1940s and cover more journals
every year. Although it is not the only archive of life sciences literature (see
below) it is considered to be the main one and 2,000 new titles are added to it
every day.

The amount of biomedical research information stored in MEDLINE is
astonishing compared to most other areas of human knowledge. Figure 2.1
shows the number of new articles added to the database in each year since
1965. More than 600,000 new articles were added to the MEDLINE database
in the year 2009 and more are added every year. Figure 2.2 shows the growth
in the total number of archived abstracts in MEDLINE since 1980 until May
2010.

2 http://www.nlm.nih.gov/

3 http://www.nlm.nih.gov/mesh/
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Figure 2.1: Number of additions to MEDLINE

This figure shows the number of additions to MEDLINE since 1980 (in thousands).
The slight decrease in the rate of increase at the end of the graphs is due to the
release dates being May every year and therefore only containing a subset of the
final year’s publications.

Note that these figures show the number of references that are in English
and contain a title and an abstract. If one includes articles in other languages as
well as those that are only referenced without an abstract and sometimes even a

title, we will have even a larger corpus.
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Figure 2.2: Cumulative nhumber of abstracts in MEDLINE

Numbers are in millions.

There are many tools and services running on the MEDLINE database to
provide easier and more efficient ways to access a database of this size.
PubMed is the search engine to access the database, and is a part of the Entrez
information retrieval system; both are provided by the NLM at the National
Institutes of Health (NIH)*. Entrez Programming Utilities provide
programmatic access to the data outside the web query interface of PubMed.

PubMed also provides various tools and services from term counters and
entity mappers to alternative formats such as XML. It also makes scripting and
pipelining platforms available for further development. MEDLINE is open
access and freely available to everyone.

A number of other literature repositories are maintained that provide
different ways and levels of access to the literature. PubMed Central (PMC)® is
another biomedical and life sciences literature repository developed and

maintained by the US National Center for Biotechnology Information (NCBI)®

4 http://www.nih.gov/
5 http://www.ncbi.nim.nih.gov/pmc/

6 http://www.ncbi.nlm.nih.gov/
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in the National Library of Medicine. PubMed Central provides free and open
access to full text articles as opposed to MEDLINE that only provides access to
abstracts and references. However, the number of articles that are provided

through PubMed Central is more limited compared to that of MEDLINE.
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Figure 2.3: Full-text articles in open access PMC

The number of full-text articles in the open access part of the PMC by publication
year.

PubMed Central currently hosts 2.2 million full text articles. Most (but
not all) of these articles have their abstracts provided by MEDLINE. Although
these articles are free to access and read by the researchers, they are not open
for automated text mining, data mining or aggregate analysis. Only about 10%
of the PMC documents (234,000 articles as in May 2011) are fully available
and accessible for text mining research under a creative commons or similar
license. Figure 2.3 shows the number of articles in the open access part of

PMC, based on the publication year.

2.3 Biomedical text mining

As opposed to data mining which extracts patterns in large structured
databases, text mining looks to extract new information and patterns from the

data presented as texts written in a natural language.
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Among the definitions proposed for the term Text Mining, the one by
Marti Hearst (Hearst 2003) is commonly cited (Zweigenbaum et al. 2007) as a

strict and conservative definition:

“Text Mining is the discovery by computer of new, previously
unknown information, by automatically extracting information from
different written resources. A key element is the linking together of the
extracted information [. . .] to form new facts or new hypotheses to be

explored further by more conventional means of experimentation.”

Although broadly used, this definition requires text mining systems to
return knowledge that is not stated (or at least not explicitly stated) in text.

This excludes some valuable efforts such as information extraction or
abbreviation handling from the domain of text mining. There are later
definitions proposed that allow a broader interpretation of text mining than that
of Hearst, allowing the systems to merely extract and link information from the
text, or perform functions that are contributory to extracting information from
the text. It is becoming increasingly common to use text mining as a facilitating
tool to aid manual curation and increase its speed and accuracy (e.g. (Penagos
et al. 2007) and (Jaeger et al. 2008)).

Text mining has a huge overlap with the more general domain of natural
language processing (NLP), and is closely related to tasks like information
retrieval and information extraction.

The one goal of text mining in biology that we discuss in this thesis is to
extract facts from text. There are other activities in biological text mining that
are not directly relevant to our subject of discussion here, such as text
summarizing, question answering, etc.

Information extraction methods are initially aiming to extract explicitly
stated facts from the text, and as they get more sophisticated, they are able to

assist in what is known as literature-based discovery, as literature can be a
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potential source of new hypotheses.
In this section, we introduce the key problems in this area, and discuss

the previous efforts and achievements.

2.3.1 General overview of text mining work-flow

Most information extraction systems roughly follow the general work-flow
depicted in Figure 2.4 wholly or partially. The relevant documents are selected
from a large pool of documents in an initial document retrieval stage.
Subsequently, pre-processing is performed on text, which can include anything
from extracting the raw text from other formats like PDF to sentence splitting
and tokenisation. Depending on the application, further processing is
performed, potentially using a combination of tools and resources, to extract
the required information in a structured way and store them in databases,

provide them to the users, or feed them as the input of other systems.
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Figure 2.4: General TM work-flow

A schematic view of the general text mining work-flow.

In the next sections we will introduce different stages of this work-flow,
and discuss the ones that are most closely related to this research in more

depth.
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Information retrieval

Information retrieval (IR) is the task of retrieving the documents that satisfy
certain criteria from a big pool of documents. Search engines are examples of
IR tools, and it is difficult to imagine research without the use of search
engines. Besides general-purpose search engines such as Google and Yahoo!,
there are specific search engines designed to perform information retrieval on
the biomedical data.

One example of such search engines is PubMed which primarily accesses
the MEDLINE database of citations and abstracts of biomedical research
articles. PubMed is an example of a freely available information retrieval tool,
specifically designed to retrieve biomedical documents from a large database.
It provides features for specialised queries using MeSH Terms or publication
type and year amongst others.

Another information retrieval engine is Entrez, which provides a search
interface to many databases and resources including MEDLINE, PMC, and
biological databases containing information about genes, proteins, pathways
and interacting molecules.

Information retrieval systems play a key role in the text mining
architecture. A text mining task typically starts with retrieving documents
which are of interest to the task and then applying other processes such as
classification and information extraction. It is a very vibrant area of research
and specialised search engines are becoming more powerful and intelligent
every day. However, although PubMed and other information retrieval systems
are useful for retrieving documents of interest and narrowing the search, they
do not at this point provide services for identifying and analysing relationships
among biological entities.

Despite the recent advances in biomedical information retrieval, it is not
yet considered a “complete” task as more development is still being done in
this area. In 2010, one of the tasks in the BioCreative III challenge was to

retrieve documents ranked in order of relevance to the query of a given gene.
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The best performing team achieved the F-score of 61.42% in the ranking task
((Krallinger et al. 2010) (for a detailed definition of F-score and other

evaluation measures see section 2.7.1.)

Sentence splitting

One of the first steps before analysing text is to identify the units of analysis,
also known as segmentation. These units of analysis or segments can be
sentences, phrases, words, etc. It is common in information extraction tasks to
treat sentences as units of analysis, as they are the smallest syntactically and
semantically self-contained unit of language.

Splitting the text into sentences, however, can introduce challenges.
Rule-based methods that split the text based on more sophisticated versions of
rules such as “period, followed by space, followed by capital letter” are widely
used, but there are always exceptional cases for which such rules are not

inclusive or exclusive enough.

Tokenisation

Tokenisation is the process of breaking text into linguistic or semantic units
(called tokens) that constitute a useful piece of data for processing (Manning et
al. 2008). The tokens can be words, symbols, or collocations. Tokenisation is a
usual preprocessing step in many Natural Language Processing tasks.

Tokenisation is a computationally non-trivial task. Breaking the string on
spaces does not always result in the desired output, as many semantic entities
such as “New York” contain a space. Symbols can play several different roles
in the English text, and can cause extra complications. An expression as simple
as “aren’t” can be tokenised in a number of different ways, and it is not clear
which one is the desired one (Manning et al. 2008). Hyphens are used with or
without white spaces on either side and can indicate orthographical variation
(e.g. “co-operation”), have a grammatical function (“security-checked
baggage™), or many other functions.

In the biological language these ambiguities and variabilities become
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more pronounced. Many common biological entity names are composed of
several words separated by a combination of white spaces, hyphens, and other
symbols. Examples include “NF-kappa B” and “TCR-alpha/beta”. Slash is
sometimes used to indicate “or”. It can be used to indicate a chemical bond
between two entities as in “TCR/CD3 ligation”. It can also be a part of an
entity name as is the case in “ERK1/2”.

To address some of these complexities, tokenisation based on the
semantic entities—rather than simply splitting on white spaces—have been
considered by researchers for some applications. For example, Rinaldi et al.
(2002) perform term extraction before tokenisation, and consider each term as
a single token, regardless of the number of words contained in the term. Each
such “semantic token” is then assigned the syntactic properties of the head of
the term. Subsequently, the sentences are automatically parsed, processing
multi-word terms as individual tokens. The authors show that this tokenisation
improves the parsing process by 50% by removing the ambiguities and the

complexities caused by the production of numerous possible parses.

Lemmatisation

Lemmatisation is the process of mapping different inflectional forms to their
common base form. For example, expression, express, expresses, and
expressed could all be mapped to the same base form express. The word that is
being lemmatised may not have any morphological similarity with its
lemmatised form, for example be is regarded as the lemma of am, is, and are.
Stemming is an approximate computational method to achieve the same goal
as lemmatisation, by truncating the end of the word using some rules.

Examples of such algorithms are (Lovins 1968) and (Porter 1980).

Part-of-speech tagging

Part-of-speech (POS) tagging refers to the process of marking tokens in text
with their lexical categories. The main lexical categories or “parts of speech”

are shown in the following list, but most tasks require more refined categories
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to also be tagged.
* Noun (N): any abstract or concrete entity
* Pronoun (P): any substitute for a noun or noun phrase
* Adjective (J): any qualifier of a noun
* Verb (V): any action or state of being
* Adverb (RB): any qualifier of an adjective, verb, or other adverb
* Preposition (IN): any establisher of relation and syntactic context
* Conjunction (C): any syntactic connector

* Interjection (UH): any emotional greeting (or "exclamation")

The Penn Treebank Project’ uses a list of 36 categories (including the
above) to mark up the sentences.

In the English language it is very common for words to have more than
one possible lexical category. A word like “fiction” can only be a noun, but
“secret” could be an adjective, a noun, or a verb, depending on the context.
There are also ambiguous sentences which cannot be POS tagged in a unique
way, and which can mean different things depending on the POS tagging.

Due to these complexities, automatic POS taggers take into account the

dictionary definition of words, as well as the context in which they appear.

2.3.2 Named entity recognition and identification

One of the essential tasks in IE is to recognise the borders of what defines a
named entity in text. This is called “Named Entity Recognition” (NER)
(Béchet 2011). For example, NER involves recognising the boundaries of the
two protein name mentions, “HIV-1 gp120” (or “gp120”) and “CCR5” in the
scenario on page 26. As was observed earlier, this is not always a trivial task
and needs complicated knowledge of the language as well as the specific
domain.

Another more specific and advanced task is “Named Entity

7 http://lwww.cis.upenn.edu/~treebank/
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Identification” (also know as “Normalisation”) in which not only the
boundaries of named entities are recognised, but the entity is “identified” by
being mapped into a unique entry in a database of biological entities. This has
immediate practical benefits and has received much attention lately (Morgan et
al. 2007); (Hakenberg et al. 2008); (Huang et al. 2011).

In other words, the aim of NER is to identify the boundaries of a sub-
string in text and the aim of normalisation is to map the sub-string to a
predefined category which in biomedical text mining is usually a biological
concept.

NER is a challenging task in general, and biomedical NER is in
particular challenging due to the properties of the biomedical literature
(Ananiadou et al. 2006). Despite the efforts to gather and maintain the world’s
scientific knowledge in databases, no complete database is yet available for
most types of biological entities. Different research groups have different
disciplines in the way they share their findings, funders do not always require
the insertion of findings into databases, and institutes value textual publications
in peer-reviewed journals more than submission of the data. Numerous
initiatives such as NCBI have tried to create comprehensive databases, using
centralised or collective efforts, and releasing of data is becoming increasingly
important. However, complete databases of biomedical knowledge on which
specialists have consensus are not yet available.

Even with the existence of complete databases and dictionaries, a
different challenge will be word sense ambiguity, i.e. where the same word or
phrase refers to different entities. For example, “cat” can be the name of a
species of mammals (with the NCBI Taxonomy ID 9685), a human gene (with
the NCBI gene ID 847), a protein (with the NCBI protein accession ID
NP_001743), and a tomography method (Computerised Axial Tomography).
On the other hand, most biological entities have several names among different
communities, and even within the same community. The biological entities can

have multi-word names, or names containing a combination of upper and lower
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case letters and non-alphabetical characters such as numbers, hyphens and
brackets. This adds to the complexity of word boundary recognition, overlap of
the terms, and disjoint terms where the different parts of a term are separated

by another word. For more discussion see (Chen et al. 2005).

Term recognition

Term recognition refers to recognising lexical units from text that correspond
to domain concepts (Ananiadou et al. 2006). Single or multiple adjacent words
that commonly appear together and convey a certain concept, e.g. “health
care”, can be regarded as terms.

Identification of semantic concepts are important in information
extraction tasks, as they often have a very specific meaning with colloquial
usage. They can be constructed from multiple adjacent words where the
meaning of the term is not directly correlated with the meaning of its parts. In
some cases, they may not appear in common word lists, and specialised
dictionaries need to be used to recognise them.

Automatic Term Recognition (ATR) systems utilise a number of
approaches to extract and identify terms. Dictionary-based, rule-based, and
machine learning approaches have commonly been used in ATR software. A
specific example of term recognition is named entity recognition, discussed in

section 2.3.2.

Gene name recognition and normalisation

Many biomedical text mining systems include a module to recognise mentions
of biological entities, concepts, and terms in text (Ananiadou et al. 2005).
Examples of the categories include genes, gene products, proteins, disease
names, drugs, species, and so on. Depending on the particular task, these
entities may then be identified by being linked to an ontology or knowledge
base. Specifically, due to the varied and complex ways of writing about genes,
and with the great number of genes researched and written about, gene name

recognition and identification has been of great interest to biomedical text
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mining.
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Several methods have been developed to tackle the task of NER. Earlier

attempts were rule-based, but as more annotated corpora became available

various machine learning methods were applied to the task of NER. Lexicon-

based approaches have been used for the subtasks where more complete

ontologies and terminologies are available. Combinations of the above methods

in hybrid systems are also common.

Tool Task Availability Performance
Binary | Source (license)
ABNER Gene NER v v (CPL) F=0.72
BANNER Gene NER v v/ (CPL) F=0.85
LingPipe Gene NER v v/ (own) F=0.56
GeniaTagger | Gene NER v v (own) F=0.73
BioAnnotator | Gene NER X X P=094 R=0.87
Whatizit General purpose X X Depends on the underlying
NEI service that is called.
Moara Gene NEI X F =0.77 / 0.89 (Normalisation)
GeneTUKit |Gene NEI v X TAP-5=0.48
GNAT Gene NEI v v (BSD) P =0.54 R =0.47 (cross
species)
P =0.82 R=0.82 (known
species)
Prominer Gene NEI X X F=0.80
TaxonGrab | Species NER v v (BSD) P=0.96R=0.94
LINNEAUS | Species NEI v/ v (BSD) P=097 R=0.94

Table 2.1: Existing entity NER tools

Summary of the existing NER tools relevant to this research. The performance

numbers are reported on different corpora, using different methods of evaluation.

Gene

name recognition,

gene normalization,

and

species name

identification were among the most researched tasks in the first, second, and
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third BioCreative challenges in 2004, 2006, and 2010 (Cohen et al. 2005);
(Morgan et al. 2008); (Lu et al. 2010). The challenges were successful to elicit
high performing systems from research groups around the world to the point
that the state of the art in the gene name recognition is now determined by the
output of some of the participating systems.

Although the applications developed for BioCreative and similar
challenges are useful to determine the state of the art, almost all of them were
developed for the specific task and not many of them were later available to the
public. Table 2.1 summarises the existing NER and NEI systems relevant to
this research, mainly gene/protein and species recognisers. Overall, F-score
levels in the regions of up to 85% can be expected from most gene NER tools.
Expectedly, gene normalisation is a more challenging task. For an evaluation

of the existing systems and a summary of achievements see (Lu et al. 2010).

2.3.3 Parsing and syntactic analysis

Parsing is the process of breaking down a sentence into its constructing
components (e.g. words, phrases, clauses, etc.) and determining the relations
between these components to analyse its grammatical structure (Manning et al.
1999). Parsing is a form of syntactic analysis which helps determine how
words or other parts of a sentence (e.g. phrases) relate to each other (Chapman
1988).

Different forms of syntactic representational models have been around
for many centuries. Ancient grammarians that are known today include Panini
who wrote the formal grammar of Sanskrit around the 4" century BCE, the
Greek grammarian Dionysius Thrax (2" century BCE), and the Latin
grammarian Priscian (5" century AD). The first formal theories of Arabic
grammar (around the 10" century AD) were based on concepts similar to
today’s dependency grammar which will be discussed later in this section.

Sentences in natural languages often have syntactic and semantic

ambiguities. For example, there are at least two possible ways to interpret the
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sentence in Example 2.1.

Example 2.1. “The chicken is ready to eat.”

It can be very difficult or sometimes impossible to produce a unique and
correct parse tree for a given sentence (Aho et al. 1972). However, in order to
get closer to understanding natural language sentences, much effort has been
done to parse sentences automatically. Several tools have been developed to
parse natural language sentences independently or as a part of challenges and
shared tasks. We will introduce some of these efforts in this section, and

discuss only the tools we have used in the present research.

Shallow parsing

Shallow parsing is perhaps the simplest form of phrase structure analysis. It
identifies the boundaries of major syntactic constituents such as noun phrases
and verb phrases, but does not specify their internal structure, or the
relationships between these phrases in the main sentence.

GENIATagger (Tsuruoka et al. 2005) is a part-of-speech tagger and
shallow parser specifically developed for the biomedical domain. The results of
testing various trained models show an accuracy in the regions of 90% on the

biomedical domain.

Noun Phrase Verb Prepositional | Noun Prepositional | Noun Phrase
Phrase Phrase Phrase |Phrase

Several DNA-binding were on RAREs |in undifferentiated

complexes detected cells

Table 2.2: Example of shallow parsing

The shallow parse of the sentence “Several DNA-binding complexes were detected
on RAREs in undifferentiated cells” produced by GENIATagger.

Table 2.2 shows an example sentence together with its shallow parse
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which is produced by GeniaTagger.

Dependency parsing

Dependency grammars were formally mathematically described by (Duchier
1999). Dependency grammars assume that syntactic structures consist of a
lexicon and a set of rules called dependencies that relate these lexicals (Nivre
2009); (Duchier 2000).

Dependency parsing refers to parsing in the framework of dependency
grammars. It determines the grammatical type of the different elements (e.g.
words) and the structural relationship between them. Dependency grammar is
concerned about how words relate to each other, specifically how pairs of
words depend on one another. Examples of such relationships include subject,
object, compliment, pre-adjunct, and post-adjunct.

For example, in the sentence “John loves Mary”, “John” depends on
“love” and the type of dependency is SUBJECT. Also, “Mary” depends on
“love” and the type of dependency is OBJECT. This makes “love” the head of
the sentence, and the root of the dependency parse tree as can be seen in Figure

2.5.

SUE) 0B)
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John lowes Mary

Figure 2.5: Simple example of dependency parsing

The dependency parse tree of the sentence “John loves Mary.”

Types of dependency relations that are of interest in dependency parsing
include relations such as subject (nominal or clausal subject), object (direct,
indirect, or object of preposition), complement, prepositional modifier, noun
phrase modifier, punctuation, etc.

The graph representing the dependency parse of a given sentence is in the

form of a tree, as the dependency relations do not form a cycle. The
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dependency distance between two words (or tokens) is defined as the tree
distance between the nodes of the tree.

Figure 2.6 shows the dependency parses of a sentence from the article
with PMID 8877104 from the GENIA corpus.

GDep is a dependency parser specifically developed for biomedical text.
It combines previously researched probabilistic models with machine learning.
It is trained on the GENIA corpus and reports an accuracy of 89% (Sagae et al.

2007b).
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Several  DMa-binding  complexes  were  detected on RARES in undifferentiated cells

Figure 2.6: Example of a dependency parse tree

The dependency parse of the sentence “Several DNA-binding complexes were
detected on RAREs in undifferentiated cells.” produced by GDep.

Constituency parsing

Constituency parsing is another form of syntactic analysis of natural language
sentences which represents the phrasal structure of the sentence. In a
constituency parse tree, like other forms of phrase structure parse trees, only
terminal nodes (leaves) are words, and the internal nodes of the parse tree are
phrasal nodes. Internal nodes indicate phrases such as verb phrases (VP) and

noun phrases (NP).
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The constituency relation, like the dependency relation, is not cyclic. The
graph denoting the constituency parse of a given sentence is a tree, and
constituency parse tree distance is defined similarly to the dependency
distance.

Constituency trees indicate word order relations along with dominance
relations (i.e. which part dominates which), whereas the nodes in a dependency
tree can be unordered. Unlike a constituency parse tree, all the nodes in a
dependency parse tree are words, some of which are terminal nodes.

Figure 2.7 shows the constituency parse tree of the same sentence as in
the previous figure (Figure 2.6).

The types of constituents that are of interest include sentence (S), noun
phrase (NP), verb phrase (VP), adjectival phrase (JJ), prepositional phrase
(PP), determiner phrase (DT), conjunctive phrase (CONJP), etc.

McClosky-Charniak parser (McClosky et al. 2010) is a statistical parser
that recognises the constituency phrase structure of English sentences and
performs with an F-score of 67% on the GENIA biomedical corpus.

Bikel (Bikel 2004) is another statistical constituency parser that is based
on the Collins’ parsing model (Collins 1999) which assigns a probability to
each possible parse tree based on some properties of the phrase heads.

Enju is a probabilistic syntactic parser that produces constituency parse
trees from English sentences. It has been trained and tested on the GENIA

biomedical corpus and reports an accuracy of 87% (Hara et al. 2005).
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Figure 2.7: Example of a constituency parse tree

The constituency parse tree of the same sentence as in the previous figure (Figure
2.6) produced by McClosky parser: “Several DNA-binding complexes were detected
on RAREs in undifferentiated cells.”

For a thorough evaluation and comparison of state-of-the-art parsers, see

(Miyao et al. 2008).

The command relation

Not every phenomenon within a sentence can be reduced to simple dependency
or constituency relations, as the former only concerns simple binary relations
between two tokens, and the latter discusses the structure of the building blocks
of the sentence. Phenomena such as negation and anaphora often affect
different and sometimes disjoint parts of the sentence, and run beyond sentence
boundaries. Therefore, more in-depth sentence analysis is required in order to
understand such phenomena.

The question of which parts of a syntactic structure affect the other parts
has been extensively investigated. Langacker introduced the concept of
command relation to determine the scope within a sentence affected by an
element (Langacker 1969). Langacker originally defined the command relation
as follows.

In a tree, and more specifically in the constituency parse tree of a

sentence, we say that node a ‘commands’ another node b if
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1. neither a not b dominates (i.e. is an ancestor of) the other; and

2. the S-node that most immediately dominates a also dominates b. In
other words, the lowest ancestor of a with label S is also an ancestor of
b.

Here, S refers to the sentence node, and also to any internal node
indicating an independent clause. Note that the command relation is not
symmetrical. Langacker observed that when a S-commands b, then a affects
the scope containing b.

We will refer to this notion of the command relation as “S-command’,
and define a more general “X-command” relation similarly for any parse tree
tag X. For simplicity, we say “command” when we mean S-command. Some
later uses of the command relation such as (McCawley 1993) have chosen to
allow the nodes to dominate each other, and therefore ignore the condition 1
above. According to (Barker et al. 1990), none of these authors gave definite
motivation or strong support for this exclusion. Langacker has also observed
that, in the case of anaphoric relations, condition 1 automatically holds, and is
therefore redundant.

Figure 2.8 shows the command relation in a given parse tree. In this tree,
node a S-commands node b, since the lowest ancestor of a with label S is also
an ancestor of b. However, b does not S-command a, as it is placed in a sub-

tree with a head labelled S which does not contain a.
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Figure 2.8: The command relation on a sample parse tree.
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Node a S-commands node b whereas node b does not S-command node a.

Figure 2.9 shows the (partial) parse tree of Example 2.2.

Example 2.2. “We now show that a mutant motif that exchanges the
terminal 3' C for a G fails to bind the p50 homodimer |[...]”
(From PMID 9442380)

This sentence contains the word fails that indicates the existence of a
negation. However, the sentence expresses several concepts, not all of which
are affected by the negation cue. The concepts expressed by verbs show and

exchanges are expressed affirmatively, whereas bind is negated.
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/N

We now VP
show that
a mutant motif that exchanges  fails to bind the p50
the terminal 3' C for a G homodimer.

Figure 2.9: The command relation on a sentence.

The schematic parse tree of the example sentence “We now show that a mutant motif
that exchanges the terminal 3' C for a G fails to bind the p50 homodimer [...]" The
word “fails” VP-commands the interaction trigger “bind” but not the other parts of the

sentence.

Figure 2.9 shows that the word fails VP-commands the sub-tree that
contains bind, but not the other parts of the sentence.

Variations of the command relation have been proposed to explain and
categorise various linguistic phenomena. For example, (Lasnik 1976) explores
the connection between the command relation and anaphora by proposing a
“kommand” relation which was rephrased by Barker et al. as the intersection of
S-command and NP-command, and suggested that it could be relevant for the
description of the constraints on anaphora.

Klima argued that assuming that negation only affects the constituent
where the cue appears would not explain the function of negation which is
more complex (Klima 1964). He then introduced a relation between two nodes
in a constituency parse tree which he refers to as “in construction with”, and
which others refer to as the command relation. Klima shows that the command
relation explains the structure of numerous expressions of negation.
Specifically, he speculates that the part of the sentence which is affected by the

negation cue is that which is commanded by it.
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These definitions and discussions have so far only been proposed

theoretically, with no statistical evaluation reported to our knowledge.

2.3.4 Relation Extraction

As introduced in Section 2.1, in information extraction, we are interested in
extracting facts from text. These facts are usually relations among entities, and
are extracted in the form of templates that need to be filled (as in Table 1.1).
The entities are either already known or are recognised in the previous NER
stages (see Section 2.3.2). This is an area which has attracted recent research
(Cohen et al. 2005).

Many biomedical facts and functions can be formulated as relations
between entities. Interactions between proteins (also known as biomedical
“events”) can be represented as tuples containing the interacting proteins and
the interaction type. Medical treatments can be represented as drug-disease
pairs, probably with more context added regarding dosage, side effects,
duration of treatment, mode of application, etc.

Relations as basic units of scientific facts are widely accepted. Extracting
them by means of automatic mining have been increasingly important and
several community challenges have been organised to address this problem.

In recent biomedical relation extraction studies, most emphasis has been
on the relations between genes and proteins (Cohen et al. 2005). It is believed
that detecting common function in a set of genes is useful in identifying
functionally interesting ones (Raychaudhuri et al. 2002). Therefore a lot of text
mining research has been around grouping genes with similar functions
according to the textual clues in the sentences they appear. There has also been
research around specific relationships between genes and proteins.

In the following section we discuss one such challenge that is closely
related to this research. Subsequently, we study the methodologies used across

the literature for the task of relation extraction.
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Extraction of molecular events—a community challenge

In 2009, the Genia group® together with the Biolnfer group’ and the U-
Compare initiative’® organised a shared task whose main aim was the
extraction of bio-events from the literature, focusing particularly on bio-
molecular events involving proteins and genes. The BioNLP’09 Shared Task
(Kim et al. 2009) was designed to address a semantically rich information
extraction problem as a whole, divided into three subtasks." Task 1 required
biomedical events and their participants to be detected in text, task 2 involved
recognition of location entities and assigning these entities to the events, and
task 3 involved further characterising the events as being negated or
speculated.

The tasks assumed that named entity recognition was already performed
on the text and for the purposes of the challenge, manual gold annotations for
gene and gene product entities were provided.

The challenge defined an event as a structured collection with the
following properties:

1. Every event has a type which is the biological type of the process e.g.
regulation or gene expression. A total of nine event types were
considered.

2. Every event has a textual trigger which is the part of the sentence that
indicates the expression of an event.

3. Events have one or more participants:

(a) Every event has at least one theme, which is usually the protein

8 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/

9 http://mars.cs.utu.fi/Biolnfer/

10 http://u-compare.org/

11 More than 40 teams from research groups around the world expressed initial
interest in participating in the Challenge. Final submissions were received from 24
teams who completed task 1, and six teams completed each of tasks 2 and 3. The
results and methodologies were presented in the BioNLP workshop as part of the
North American Chapter of the Association for Computational Linguistics - Human

Language Technologies (NAACL HLT) 2009 conference.
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entity that is affected by the process.

(b) Some events may have a cause, which is usually the protein entity
that causes the process.

(c) Themes and/or causes can sometimes be other events, forming

nested events.

The following nine event types were considered: gene expression,
transcription, protein catabolism, localisation, phosphorylation, binding,
regulation, positive regulation, and negative regulation. Depending on the
event type, the task included the identification of either one (for the first five
event types mentioned above) or more (for binding) themes. Information
requested for regulatory events was more complex: in addition to one theme
(an entity or another event), these events could also have a cause (another
entity or event.)

Tables 2.3 and 2.4 show two example sentences from the BioNLP
corpus. The example in Table 2.3 is a simple event (class I) of type “gene

expression” which has one entity theme (IL-2).

Event Trigger Type Theme Cause

Event 1 “induction” Gene expression |IL-2 -

Table 2.3: Representation of an event from the BioNLP’09 corpus

An example sentence from the BioNLP’09 training data with a gene expression event
annotated: “The effect of this synergism was perceptible at the level of induction of the
IL-2 gene.”

Amongst the four events annotated in the example in Table 2.4, two have
participants that are biomedical entities (events 1 and 2) and the other two have
participants that are events (events 3 and 4). Note that a sentence can express
more than one molecular event, and a string can be the trigger of more than one
event. There is no limit on the length of the trigger, and events can span across

sentences.
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Event Trigger Type Theme Cause

Event 1 “transcription” Transcription FasL -

Event 2 “Overexpression” | Gene expression | ALG-4 -

Event 3 “Overexpression” | Positive Event 2 -
regulation

Event 4 “induced” Positive Event 1 Event 3
regulation

Table 2.4: Representation of four event in a sentence from the BioNLP’09 data.

An example sentence from the BioNLP'09 training data with four events annotated,
some referencing others:“Overexpression of full-length ALG-4 induced transcription of

FasL and, consequently, apoptosis.”

The composition of the data sets is presented in Tables 2.14 and 2.15 in
Section 2.6.

We can further categorise different event types into three event classes.
Simple or class I events are those that have exactly one theme, and this theme
is a named entity (protein). Events of types gene expression, transcription,
protein catabolism, localisation, and phosphorylation belong to this class. Class
IT events are events that have one or more theme. The only type in this class is
binding. Finally, class III events are complex events with a theme and an
optional cause, which can be an entity or another event. This class includes
regulatory events: regulation, positive regulation, and negative regulation.

Studying the BioNLP’09 training data showed that 95% of annotated
events are fully contained within one sentence (Bjorne et al. 2009). Moreover,
92% of the event triggers are a single token, and the other 8% are adjacent
tokens (Bjorne et al. 2009). A token or a group of adjacent tokens in a sentence
can act as the trigger for several events, possibly even of different types. The
words that act as triggers cannot be recognised by a simple dictionary look-up
as there is a high level of word sense ambiguity. The same word or group of
words can be the trigger of an event in some cases and not a trigger in others.

They can also indicate events of different types across the corpus, so the type
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of the event does not directly correlate with the trigger lexicon.

For example (Bjorne et al. 2009) observed that only 28% of instances of
the word “activates” in the corpus are triggers for an event, and the instances
of the word “overexpression” are evenly distributed between gene expression,
positive regulation, and no trigger.

BioNLP’09 task 2, which concerns assigning location entities to
localisation events, is not directly relevant to the subject of this thesis and will
not be discussed here. Task 3 requires further classification of the extracted
events in task 1, by determining whether an event is affirmative or negative,
and whether it has been stated certainly or speculatively. We will introduce
these concepts in more detail in Section 2.4.

To demonstrate the requirements of task 3, consider the sentence from
an abstract shown in Example 2.3.

Example 2.3. “In this study we hypothesized that the phosphorylation
of TRAF?2 inhibits binding to the CD40 cytoplasmic domain.”

The proteins TRAF2 and CD40 are already manually annotated in text
with their indices (57, 62) and (88, 92). Task 1 required event annotation, in

which the following events will be extracted:

Event Trigger Type Theme(s) Cause

Event 1 “phosphorylation” | Phosphorylation | TRAF2 -

Event 2 “binding” Binding TRAF2 / CD40 -

Event 3 “inhibit” Negative Event 2 Event 1
regulation

Table 2.5: Events from an example sentence, before negation/speculation

Annotations for the events extracted from the sentence “In this study we hypothesized
that the phosphorylation of TRAF2 inhibits binding to the CD40 cytoplasmic domain.”
Negation and speculation detection task has not yet been performed.

Task 3 required the marking of Event 3 (see Table 2.5) as speculated

since it has been expressed as a hypothesis by the authors, and is not a certain
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fact. The output of performing this task on the example sentence is shown in
Table 2.6.

Event | Trigger Type Theme(s) Cause |Negation | Speculation
Event |“phosphorylation” | Phosphorylation | TRAF2 - 0 0

1

Event | “binding” Binding TRAF2 / - 0 0

2 CD40

Event | “inhibit” Negative Event 2 Event1|0 1

3 regulation

Table 2.6: Events from an example sentence, after negation/speculation

Annotations for the events extracted from the sentence “In this study we hypothesized
that the phosphorylation of TRAF2 inhibits binding to the CD40 cytoplasmic domain.”
Negation and speculation detection task has not yet been performed. Event 3 has

been annotated as speculative.

Co-occurrence and statistical methods

The simplest way to detect relations between biomedical entities is to collect
documents or sentences in which they co-occur. Co-occurrence statistics can
provide high recall but typically have poor precision (Kilicoglu et al. 2009),
and are now used more as a simple baseline method against which other
methods are compared (Cohen et al. 2008).

Statistical methods aim at detecting relations by looking for structures,
terms, and patterns that co-occur more frequently in the desired expressions
than would be predicted by pure chance. Lindsay et al. describe an example of
a predominantly statistical approach in (Lindsay et al. 1999).

Albert et al. focused on a semi-automatic method of retrieving protein-
protein interactions (Albert et al. 2003). Their method was to retrieve the co-
occurrence of two protein names and one interaction term in one sentence and

then manually checking the abstracts containing one such “tri-occurrence”.
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Rule-based methods

To increase the precision, several rule-based approaches such as the one
described by Yu et al were generated by the domain experts which most
commonly use regular expressions (Yu et al. 2002).

Other methods such as that of Friedman et al. rely on the thorough
analysis and parsing of the text in order to extract the information from each
sentence according to the linguistic semantics of the text (Friedman et al.
2001). These methods generally result in better accuracy especially on smaller
corpora, but are costly in terms of the time taken for hand-crafting rules and
still can miss out exceptional cases expressed in less common ways.

Spasic et al created a rule-based system which uses morphological,
lexical, syntactic, and semantic features to extract information about the
medication used by a patient from a medical report (Spasic et al. 2010). The
desired information contained name, dosage, route, frequency, duration, and
reason of the drug administered. They manually created patterns in which this
information appears, and combined them with heuristic context-sensitive rules.

A number of attempts have been made to extract other relations between
genes, proteins, and other biological entities using rules. Rinaldi et al.
constructed an event extraction system, OntoGene, that uses manually created
patterns based on the syntactic parse of sentences (Rinaldi et al. 2006). They
initially detect these syntactic patterns. Subsequently, they combine various
patterns into a single semantic rule that represents different syntactic
phenomena (e.g. passive voice, nominalisation, etc.) Finally they combine
these rules with terms and ontologies to extract events."

An example of such a rule is “A triggers the H of B” where H is a
nominalised verb, such as activation, and A and B are reported as participants.
Their systems was evaluated on the GENIA corpus using post hoc validation of
the output and reported a precision of around 90% on selected events. Like

other post-hoc evaluations, precise recall measures were not reported, but was

12 The system can be accessed at http://www.ontogene.org/
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estimated in the range of 38%-50%.

Kilicoglu et al. used a rule-based methodology for the BioNLP’09
Shared Task on event extraction (Kilicoglu et al. 2009). They construct
patterns from the known trigger words, and defined a selection threshold to
handle ambiguity and term variability.

To associate participants to the triggers to form events, they statistically
analysed the dependency paths between the event triggers and their
participants. They observed that the distribution of these paths obeyed Zipf’s
law, with 70% of the paths occurring only once. They constructed a total of 27
hand-crafted rules involving the dependency paths for the most common
trigger terms. For example, one such rule was the existence of the direct object
(dobj) dependency between verbal event triggers and themes.

Not all the rules involved dependency paths. For instance, NPs with
hyphenated adjectival modifiers, such as “LPS-mediated TF expression” were
reported as a regulatory event with the NP as the cause.

Overall, they achieved P/R/F-score of 61%/33%/43% in the event

extraction task.

Machine learning

With the provision of annotated training data, machine learning has become an
effective method in all areas of text mining, including biomedical information
extraction.

Support Vector Machine is a statistical learning method that has been
widely used for relation extraction in biomedical text mining (Burges 1998).

SVMs have been used by many researchers to extract protein
interactions. Mitsumori et al. used bag of words features around protein names
(Mitsumori et al. 2006). Yakushiji et al. defined patterns on predicate argument
structures on the syntactic dependency parse tree of the sentence and used them
as SVM features to extract relations between interacting proteins (Yakushiji et

al. 2006). Many researchers, including (Sanchez 2007), (Culotta et al. 2004),
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(Kilicoglu et al. 2009) and (Swaminathan et al. 2010) have used the properties
of the dependency paths between protein names and other indicators of
molecular interactions to extract information about them.

Sanchez (2007) trained a maximum entropy model to classify pairs of
protein names as to whether they interact or not. They used features including
the protein name word forms, the stems of the words between the two protein
names and surrounding them in a window of size 5, whether or not the trigger
falls between the two proteins, and if so, one or more.

(Culotta et al. 2004) used SVM to detect and classify relations between
entities in text. They define a kernel function that returns a similarity score
between two trees. They only consider the smallest sub-tree in the dependency
tree that includes both of the entities in question, and use their defined kernel to
train a classifier to detect relations such as roles, parts, location, etc. from news
articles, and show that dependency tree kernel improves the F-score by 20%
compared to the usual features such as POS and entity types.

(Kilicoglu et al. 2009) extracted molecular events in the form of the
BioNLP’09 Shared Task, using SVMs with features including the vertex walks
on the dependency paths between the event trigger and the participants. They
included dependency types and word forms, but blinding the trigger term and
protein names. They reported P/R/F-score of 33%/52%/41% on the BioNLP’09
test data set.

An important characteristic of the approaches using SVM is their choice
of features. Word form, stem, part-of-speech tag, dependency path tags and
distances, character and token n-grams, token position and length, and
membership in lexical and semantic dictionaries are only some of the features
commonly used in relation extraction tasks.

Naive Bayes methods have been used by (Donaldson et al. 2003) for
extracting protein-protein interactions. A maximum entropy method was used
by (Xiao et al. 2005) as a supervised learning approach to extracting protein-

protein interactions.
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Conditional Random Fields (Lafferty et al. 2001) are probabilistic
models for predicting a collection of class labels (usually a sequence)
simultaneously. Unlike Hidden Markov Models (HMM) and Maximum
Entropy Markov Models (MEMM), CRFs do not require the instances in a
sequence to be independent. HMMs and MEMMs try to assign a label
sequence Y=(y,,y,,...) to an observation sequence X =(x,,x,,...) by
maximising the conditional probability P (y;|x;) as i ranges over the data
sequence. These methods require the assumption that the instances in the
sequence are independent, and could be observed in any order. This is not
usually a correct assumption in the problem of token labelling, as tokens in text
are inherently sequential and dependent. CRF addresses this issue by
maximising the conditional probability P (Y|X) for the sequence. It does
that by modelling state transitions when predicting the sequence of labels as
well as the overall probability of states.

CRFs have been shown to be particularly suitable for sequential data
such as natural language, since they take into account features and tags of
neighbouring tokens when evaluating the probability of a tag for a given token.
They have been used in identifying molecular events by (MacKinlay et al.
2009), among other researchers. (Yang et al. 2008) used CRFs to, given a
sentence discussing transcription factors (a protein that is involved in the
molecular event transcription), identify transcription factors that will affect
other proteins. They used features involving the phrase types, a dictionary of
known transcription context lexicon, protein and gene names, interaction
words, and other biological terms.

The best results in the BioNLP’09 event extraction task were from the
University of Turku (Bjorne et al. 2009) who achieved an overall P/R/F-score
of 58.5%/46.7%/51.9%. These results were also the highest for each of the
three classes of events, namely simple events (single theme), binding events
(multiple themes), and regulation events (recursive, possibly having a cause as

well as a theme.) The highest recall/precision/F-score for class I were
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64.2/77.4/70.2, for class II they were 40.1/49.8/44.4, and for class III they were
35.6/45.9/40.1.

Towards the conclusion of our research in 2010, the University of Turku
researchers made an improved implementation of their system publicly
available as an open source code.

The Turku Event Extraction System (TEES) method of detecting triggers
is effectively a token labelling problem, similar to named entity recognition.
Each token is assigned to one of the nine types, or a negative class for tokens
that are not triggers of any event. TEES uses multi-class SVMs to detect
triggers. They used token features (e.g. punctuation, capitalisation, stem,
character bigrams and trigrams) for tokens in a window of radius 1 and
frequency features (e.g. the number of named entities in the sentence and near
the token). They also included dependency features including the dependency
types and the sequence of dependency types up to a depth of three from the
token in question.

Once the triggers are extracted, TEES uses a graph-based method to
assign participants to triggers. They use another multi-class SVM to classify
any possibly edge between a named entity and a trigger or between two
triggers in the case of nested events as either theme, cause, or neither. The
edges are labelled independently, and then later pruned using rules based on
the task constraints.

EventMiner (Miwa et al. 2010) is another system that was developed to
extract events in the BioNLP’09 representation. It uses machine learning and
dependency tree features to profile events, following a similar work-flow as
TEES. EventMiner differentiates between the triggers that affect proteins and
those that affect other triggers, and use two separate multi-class SVM
classifiers to classify words as triggers. For features, they use lexical features
such as capitalisation, numeric characters and punctuations, and character n-
grams. They also use dependency features such as n-grams of dependency

paths, n-grams of POS and base forms, and lengths of paths.



68 Chapter 2 Background

Similarly to the TEES system, to assign triggers to participants,
EventMiner also prunes the trigger-participant edges using two SVM
classifiers: one to assign triggers to other triggers in nested events, and another
to assign triggers to named entities. In addition to the TEES features, they also
use the confidence of participant prediction. In nested events, they also add
shortest dependency path features between the participant trigger and the
respective entity participants.

They use separate classifiers for each of event classes I, II, and III,
participation types (theme and cause), and participant types (protein or event).
They report F-scores of 70%/65%/47% for the extraction of events of classes
I/II/IIT using the approximate recursive matching. For more details of these
evaluation measures see Section 2.7.1.

As this thesis was being written, The Stanford Natural Language
Processing Group released their software that extracts molecular events from
biomedical text, redefining the problem to be comparable with the problem of
constructing dependency parse trees from the sentence (McClosky et al. 2011).
Similar to the previous approaches, they use a multi-class classifier (logistic
regression) to detect the event triggers, using features including word form,
lemma, membership in a set of known interaction words, surface context of
window size 1 on either side, dependency paths down to depth 2, and entity
count. Secondly, the participants are being assigned using a method similar to
forming the parse tree of a sentence, based on the conversion of the event
representation to a tree representation with nodes representing the event trigger
and its participants, and with edges labelled with participation type (theme or
cause).

They report P/R/F-score of 59%/49%/53% on the BioNLP’09
development data, and 57%/43%/49% on the test data.

Other approaches

In addition to the above examples that predominantly use one method or
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another, many applications use a combination of more than one technique to
achieve the best performance.

Chiang and Yu’s MeKE system (Chiang et al. 2003) is an ontology-based
system that uses semi-automatically constructed patterns to extract the
functions of gene products. Their rule-based method is combined with sentence

classification (Naive Bayes) to determine the type of the function.

2.4 Recognition and extraction of negation and speculation

When we extract information from text, an important piece of
information is whether the information is expressed in text as negated or
affirmative. It is also important whether the information is stated certainly or
speculatively. Negation and speculation in information extraction can affect the
quality and accuracy of the extracted information, and has been the focus of
much research in recent years. For example the Workshop on Negation and
Speculation in Natural Language Processing (NeSp-NLP 2010) brought
together researchers working in this field, many of whom with particular
interest in biomedical information extraction (Morante et al. 2010b). Many
ontologies are currently expanded to include information about negated
relations as well as affirmative or ‘realistic’ relations (e.g. (Ceusters et al.
2007) and (Fleischhacker 2011)).

Negated and speculated statements in text are not trivial to extract and
analyse. Negations and speculations are expressed in many forms, including
highly complicated and ambiguous forms. Even words like not that may seem
to always indicate negation can appear in phrases that express no semantic
negations. For example, in the phrase “not only A, but also B” both concepts A
and B are mentioned as present, and therefore no negation or absence is
expressed despite the appearance of the word not which we will later see that is
a strong negation cue (See Figure 3.16).

Multiple negations in a sentence can also introduce more layers of

ambiguity. It is not unusual even for humans to have difficulty parsing and
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understanding the meaning of a sentence due to the use of negated patterns in

it.B’ 14

2.4.1 Negation and speculation terminology, concepts, and

definitions

There have been numerous contemplations on the concepts of negation and
speculation. Here we adopt a definition of negation as given by the Cambridge
Encyclopedia of Language Sciences: “Negation is a comparison between a
‘real’ situation lacking some element and an ‘imaginal’ situation that does not
lack it” (Lawler 2010). The imaginal situation is affirmative compared with the
negative real situation. The element whose polarity differs between the two
situations is the negation target.

Negations in natural language can be expressed by the use of negating
words such as no, not, or never, or by specific expressions (e.g. absence of,
failure, etc.) The word or phrase that makes the sentence wholly or partially
negative is typically referred to as the negation cue and the part of the sentence
that is affected by the negation cue and has become negative is the negation

scope.

Example 2.4. “Tandem copies of this 67-bp MnlI-Alul fragment, when
fused to the chloramphenicol acetyltransferase gene driven by the
conalbumin promoter, stimulated transcription in B cells but not in

Jurkat T cells or HeLa cells.”

(From PMID 1986254 annotated by BioScope corpus annotators.)

In Example 2.4, the word “not” indicates a negation, and therefore is the

13 Liberman, M., Why are negations so easy to fail to miss?, Language Log, February
24, 2004.

14 Consider, for example, the sentence “There has never been a time when there has
been no person in Cornwall without a knowledge of the Cornish language.” from

Henry Jenner, Handbook of the Cornish Language (1904).
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negation cue. The part of the sentence that is underlined is the scope of

negation.

Example 2.5. “In vitro translated hGR was capable of selective DNA

binding even in the absence of glucocorticoid.”

(From PMID 1944294 annotated by BioScope corpus annotators.)

In Example 2.5, the word “absence” is the negation cue, and the human
annotators have considered it as a part of the negation scope as well.

Speculative statements, on the other hand, are not necessarily explicitly
asserted in the text (Light et al. 2004). They are to some extent true (or false)
but there is not a definitive confirmation about their status, which makes them
more or less uncertain. Many authors also consider statements that show
insufficient knowledge, or express speculative questions or hypotheses as
speculation (Medlock et al. 2007); (Szarvas et al. 2008). Like negation,
speculation is often indicated by a cue, which could similarly affect all or part

of a sentence, i.e. the speculation scope.

Example 2.6. “This zinc-finger region, which is thought to bind DNA

in_a sequence-specific manner, is similar (greater than 80% on the
amino acid level) to two previously described transcription factors pAT
225/EGR1 and pAT 591/EGR2.”

(From PMID 1946405 annotated by BioScope corpus annotators.)

In Example 2.6, the word “thought” is a speculation cue, and the part of
the sentence that is underlined is the scope which is affected.
The term hedging, also referring to speculative expressions, was

originally introduced by (Lakoff 1973).
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2.4.2 Tasks and views on negation and hedging

Identification of negations and speculations in the literature has been
widely explored by information extraction researchers (Hakenberg et al. 2009);
(Morante et al. 2009); (Kilicoglu et al. 2009). We categorise different
approaches based on their syntactic and semantic properties. The identification
of negations and speculations can include either detecting the cue phrase and
its scope or detecting the specific target (i.e. word, phrase, term, concept, or
relation) under negation/speculation. Furthermore, some approaches aim at
assigning polarity/modality (negation/speculation) at the sentence level. We
also differentiate between approaches aiming at detecting affected concepts and
those addressing the detection of affected events. A table summarising different

tasks and prominent research can be seen on page 82 (Table 2.8).

Sentence polarity detection. Perhaps the simplest approach to negation and
speculation detection is to detect the polarity and modality of a whole sentence,
based, for example, on whether or not the sentence contains a speculative or
negated fragment. Although the results of these sentence-level approaches are
valuable in the coarse filtering of the relevant sentences, they seldom provide
information on the individual events reported in the sentence, especially if
several events and other facts are reported within a single sentence.

Medlock et al. (2007), for example, used a machine learning method to
classify a sentence into speculative or non-speculative categories using lexical
features automatically extracted from the training data. They applied this
method on a set of full text biomedical documents and reported an F-score of
76% (equal precision and recall).

Shatkay et al. (2008) introduced a system performing multi-dimensional
classification on a corpus of randomly selected sentences from full text articles,
labelling every sentence for negation and speculation as well as three other
qualitative contexts (focus, evidence, and trend). The classification was at the

sentence-level and achieved an F-score of 71% on detecting speculation and an
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F-score of 97% on detection negations. The authors have calculated the F-score
values based on multi-class classification, with all correctly predicted
affirmative instances (true negative predictions of the negation detection task)
also contributing towards the F-score.

The Computational Natural Language Learning (CoNLL) shared task in
2010 (Farkas et al. 2010) involved the recognition of sentence level
uncertainty. CoNLL best performing system for sentence classification on
biological text (Tang et al. 2010) achieved P/R/F1 of 85%, 88%, 86% using a
sequence labelling approach. The best performing system on Wikipedia articles
involving uncertainty used a bag-of-word sentence classification and achieved

P/R/F1 of 72%, 52%, 60% (Georgescul 2010).

Detecting scopes and targets. A number of approaches have been suggested
for the detection of negated targets and scopes ( (Chapman et al. 2001b);
(Chapman et al. 2001a); (Szarvas et al. 2008); (Ballesteros et al. 2011)). The
following manually annotated examples show some examples of what these

methods aim to achieve.

Example 2.7. “Cotransfection studies with this cDNA indicate that it

can repress basal promoter activity.”

(From PMID 1946405 annotated by BioScope corpus annotators.)

Example 2.7 shows two speculation cues with their scopes. The double
under line shows where the two scopes overlap. The sentence of Example 2.8
contains both a negation and a speculation cue. The double under line shows

where the scopes of the two cues overlap.

Example 2.8. “Similarities between the effects of dexamethasone and

RU486 suggest that the antiglucocorticoid properties of RU486 do not

occur at the level of specific DNA binding.”
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(From PMID 1944294 annotated by BioScope corpus annotators.)

Many of these approaches rely on task-specific, manually constructed
rules of various complexities. (e.g. (Chapman et al. 2001a)) to patterns that rely
on shallow parsing (e.g. (Leroy et al. 2003)). They differ in the size and
composition of the list of negation cues, and in how these lists are utilised.
Rule-based methods range from simple co-occurrence based approaches to
more complex rules.

The approach which identifies proximate co-occurrences of negation
cues and terms in the same sentence, is probably the simplest method for
finding negations and provides a useful baseline method for comparison.
NegEx (Chapman et al. 2001a), for example, uses two generic regular
expressions that are triggered by phrases containing negation cue and target
term such as:

<negation cue> * <target term>
<target term> * <negation cue>

where the asterisk (*) represents a string of up to five tokens. Target
terms represent domain concepts (e.g. terms from the Unified Medical
Language System (UMLS)). Given that NegEx was primarily developed for
the clinical domain, the cue set comprises 272 clinically-specific negation cues,
including those such as “denial of” or “absence of”. Although simple, the
proposed approach showed good results on clinical data (78% sensitivity
(recall), 84% precision, and 94% specificity). Tolentino et al. (2006) show that
using rules on just a very small set of only five negation cues (no, neither/nor,
ruled out, denies, without) can still be reasonably successful in detecting
negations in medical reports (F-score 91%).

Similarly, Negfinder (Mutalik et al. 2001) use hand-crafted rules and a
list of 60 negation cues in order to detect negated UMLS terms. Their list of
cues includes single-word cues such as no, without, negative and phrases such

as “no evidence of”, “could not be currently identified”. They use simple
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conjunctive and disjunctive phrases (e.g. “and” and “or”) to identify lists of
concepts that are negated by a single cue. Therefore, the task is broken down
into finding the scope of negation, and determining whether the terms in
question are located in that scope. In order to achieve the scope of negation,
Mutalik et al. use a method similar to parsing, but without parsing the complete
structure of the sentence (Mutalik et al. 2001). They select “negation
terminators” from the list of prepositions, conjunctions, personal pronouns, and
relative pronouns, based on some rules. Finally, UMLS concepts, negation
cues, negation terminators, and sentence terminators are located and negated
concepts are identified by determining whether these concepts fall within the
scope terminated by a negation terminator.

Negfinder is tested on a corpus of medical narratives (radiology reports)
and report specificity/sensitivity of 92%/96%.

In addition to concepts that are explicitly negated by negation phrases,
Patrick et al. (Patrick et al. 2007) further consider so-called pre-coordinated
negative terms (i.e. concept that semantically indicate a negative situation, e.g.
“headache”). These concepts have been collected from the SNOMED CT
medical terminology.

Some of the methods rely on shallow parsing (e.g. (Leroy et al. 2003)) or
various types of parse trees (e.g. (Sanchez 2007)). For example, (Huang et al.
2007) introduced a negation grammar that used regular expressions and
dependency parse trees to identify negation cues and their scope in the
sentence. They applied the rules to a set of radiology reports and reported a
precision of 99% and a recall of 92%. Techniques developed for speculation
identification follow similar approaches as for negation detection (Velldal
2011); (Morante et al. 2010a).

Not many efforts have been reported on using machine learning to detect
patterns in sentences that contain negative expressions. Still, Morante et al.
(2009),for example, used various classifiers (Memory-based Learners, Support

Vector Machines, and Conditional Random Fields) to detect negation cues and
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their scope. An extensive list of features included the token’s stem and part-of-
speech, as well as those of the neighbouring tokens. Separate classifiers were
used for detecting negation cues and negation scopes. The method was applied
to clinical text, biomedical abstracts, and biomedical papers with F-scores of
80%, 77%, and 68% respectively.

An extended version of this system (Morante et al. 2010a) was applied to
the speculation detection task on the cue and scope level which was the second
shared task of the Computational Natural Language Learning (CoNLL) in 2010
and achieved P/R/F1 of 60%, 55% and 57.3% on the biological data as the best
performing system. The best performing system on the Wikipedia sentences
(Tang et al. 2010) achieved 63%, 26%, 36%.

Ozgiir and Radev used machine learning (SVM) to detect speculation
cues, using common features such as stem and part-of-speech tag, and some
other features that we will briefly introduce here (Ozgiir et al. 2009). The
authors used certain dependency relations such as clausal complement and
auxiliary as binary features. They also used features indicating which position
in the article the sentence has appeared in (e.g. title, abstract, etc.). Finally, they
used features regarding word co-occurrence and the existence of negation cue
in the sentence, as they hypothesised that it can play a role with certain
speculation cues.

Agarwal et at. used a biological and medical annotated corpus to train
several CRF models to detect negations and their scope in biomedical text
(Agarwal et al. 2010). They detect cues and their scopes independently, and
replace words with their part-of-speech. Their system, BioNOT, was applied on
a large scale corpus of biomedical abstracts and full text articles and was tested
on the biological and medical corpus BioScope with F-Score of 92%.

For more discussion on the detection of negation and speculation cues

and scopes see (Morante et al. 2011).

Detecting negated and speculated events. While many of the systems
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mentioned above focused on identification of negated terms, several
approaches have recently been suggested for the extraction of negated events,
particularly in the biomedical domain. For example, (Van Landeghem et al.
2008) used a rule-based approach based on token distances in sentence and
lexical information in event triggers to detect negated molecular events.
Kilicoglu et al. (2009), Hakenberg et al. (2009), and Sanchez (2007) used a
number of heuristic rules concerning the type of the negation cue and the type
of the dependency relation to detect negated molecular events described in text.
For example, a rule can state that if the negation cue is lack or absence, then
the trigger has to be in the prepositional phrase of the cue; on the other hand, if
the cue is unable or fail, then the trigger has to be in the clausal complement of
the cue (Kilicoglu et al. 2009). As expected, such approaches typically suffer
from lower recall (32%).

(MacKinlay et al. 2009), on the other hand, used ML, assigning a vector
of complex deep parse features (including syntactic predicates to capture
negation scopes, conjunctions and semantically negated verbs) to every event
trigger.

We have estimated that their system achieved an F-score of 36% on the
same dataset as used in this paper (Sarafraz et al. 2010).

Task 3 of the BioNLP’09 challenge involved the identification of
negations and speculations in biomedical abstracts. The evaluation is done on
the performance of the whole pipeline, including event extraction stage and
negation/speculation detection stage. The best performing team achieved
recall/precision/F-score of 15.0/50.7/23.1 when applied their negation detection
system to the automatically extracted events. Unfortunately we do not have
access to the performance of the second stage alone, as the performance of the
negation and speculation detection stage will inevitably be affected by less-
than-perfect performance of the first stage (i.e. event identification). However,
by knowing the performance of the whole pipeline and the performance of the

event detection (first stage), we can estimate the performance of the
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negation/speculation detection (second stage.)

With overall event detection sensitivity of 33% (Kilicoglu et al. 2009) on
the test dataset and pipeline recall of 15%, we can estimate that had all events
been correctly identified, the recall of their negation detection approach could
have been three times higher, and reached 45%. With pipeline precision of
around 50%, their projected F-score, again assuming perfect event
identification, could have been in the region of 50%.

As part of the effort to add context to extracted events in (Sanchez 2007),
negation and speculation information was extracted from sentences containing
protein-protein interactions. Sanchez identifies a number of categories of
negation and speculation patterns, and constructs heuristic rules mainly based
on dependency parse of the sentence to determine whether a given interaction
is negated or speculated. Examples of such rules can be seen in Table 2.7. A
total of 7 cases for negation and 3 cases for speculation were categorised, and

each case was addressed by up to a dozen rules.
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Type of negation | speculation Rule to detect negation

pattern

Adverbial negation Trigger is a verb and is connected by a verb chain
“not” dependency to auxiliary verb

Negation cue and subject depend on auxiliary verb
Object depends on the trigger

Inability to interact If trigger is postmodifier of “able”
“cannot”, “unable to”, “inability” And “able” is complement of “to be” in negative
form

- Subject of “to be” and object of trigger verb are

possibly negated

“No” and “lack of” Trigger is a noun, And
“no” is a dependent determiner
Or trigger appears in the prepositional

complement of “lack of”

Not “have” evidence Trigger is a verb
Trigger is the object of “have”
Dependency distance between “not have” and

trigger is no more than 4

Table 2.7: Examples of rules used by Sanchez to detect negations and

speculations

The first three examples show heuristic rules used by Sanchez to detect negated
events and the last example is used to detect speculative events. Similar rules have

been derived for other types of negation and speculation patterns including “fail to”,

Tt T

“does not exist”, “no effect on”, “not detect”, etc.

To demonstrate one of the above rules, consider Example 2.9.

Example 2.9. “The p46 isoform of JNL was not phosphorylated by
ORF36.”

The diagram in Figure 2.10 shows the partial dependency parse of this
sentence, and demonstrates how the second rule in Table 2.7 applies, i.e.

trigger is a verb and negation cue and subject depend on the auxiliary verb.
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isoform he not phosphordated QORF36&

Figure 2.10: Dependency parse satisfying rules for negation

Partial dependency parse of the sentence “The p46 isoform of JNL was not
phosphorylated by ORF36.” The rule for the negation type with “not” requiring that

negation cue and subject depend on auxiliary verb applies.

To evaluate these heuristics, Sanchez et al. selected 185 sentences from
Journal of Biological Chemistry articles that contained negation words and
protein names. Amongst these sentences, 90 contained one or more negated
events and the other 95 sentences contained no negated events. The notion of
“event” here is comparable to that of BioNLP’09 corpus, as it refers to
molecular events between two proteins. However, the two cannot directly be
mapped as the types and structures differ. They report precision/recall/F-score
of 89%/67%/76% on data with gold annotated proteins, and 64%/61%/62%
after automatically extracting proteins from the text using ABNER-UniProt.

These results cannot directly be compared with other research, as the
choice of the evaluation data set makes it rather contrived. On the one hand, by
deliberately selecting sentences that contain protein names and negation cues,
the task of finding negated events becomes a more difficult task, as there are
plenty of false clues in the negative instances. On the other hand, as the
sentences have been picked to either do or do not have negated events, the task
can be reduced to a sentence classification problem, which as we previously
noted, is relatively less complicated. Moreover, there is no discussion on what
proportion of the sentences without a negated event do contain an event. This,

together with the performance of the automatic event extraction could affect
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the results dramatically.
Tables 2.8 and 2.9 summarise the tasks, views, methods and approaches
described here, in addition to a few other which we did not cover thoroughly.
This summary shows that the task of detecting negated and speculated
events from complex text is considerably more difficult than detecting cue
scopes, and therefore more advanced information extraction techniques are
required in order to be able to detect negations and speculation more accurately

and reliably.
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Tool | Tasks View Approach Corpus Performance
research Machine Rule-
learning based
Medlock et | Speculation | Sentence Weakly No Biomedical |F=76%
al polarity supervised
learning
Shatkay et | Negation, Sentence SVM No Biomedical |F=71%
al speculation | polarity
Tang etal |Speculation | Sentence Yes No Biomedical |F =86%
polarity
NegEx Negation Scopes and | No Yes Medical F =96%
targets
Negfinder | Negation Scopes and | No Yes Medical F =96%
targets
Morante et | Negation, Scopes and | Memory- No Biomedical |F =57%
al speculation |targets based
Learners,
SVM, CRF
BioNOT Negation Scopes and | CRF No Medical, F=92%
targets biomedical
Kilicoglu et Events No Yes Biomedical |F=43%
al
Sanchez et | Negation Events No Yes Biomedical |F=77%
al
MacKinlay | Negation, Events Yes No Biomedical |F =35%
et al speculation F =30%
NegHunter | Negation Targets No Yes Medical P 59%
(Gindl et al. (practice R 67%
2008) guidelines)

Table 2.8: Summary of past efforts on negation and speculation detection

We conclude this section by briefly mentioning an effort in the detection
of negations and speculations in a language other than English. Hagege
(Hagege 2011) introduced a rule based method for finding negation in French
clinical discharge summaries. They used a set of “negative seeds” which are

phrases that indicate the absence of something. They focus on the detection of



2.4 Recognition and extraction of negation and speculation

seven classes of targets whose absence they are interested in, including viral
disease, diagnosis, etc. They also use more than 100 nouns and verbs that
indicate affirmation or negation, e.g. existence or absence. They hand craft

rules using “negative seeds” and negation indicators to determine whether any

of the mentions of the targets are negated.

Method

Properties

Details

Machine learning

Features

Dictionary

Orthographical information about the token

Lemma or stem of the token

Part-of-speech (POS) tags

Syntactic chunk information

Dependency/constituency parsing

Position in document or sentence

Handling multiple cues together or
independently

Definition of the ML

problem

Sequence labelling (e.g. CRF)

Bag-of-word feature representation

Classifying every token in the sentence to

detect cue phrase

Finding scopes: labelling tokens as
inside/outside or begin/end

The ML engine used

SVM

CRF

K-nearest neighbours

Entropy Guided Transformation Learning

Average perceptron

Rule-based systems

hand-crafted rules,

Regular expressions

Surface distances

POS tags

Dependencies distances

Table 2.9: Summary of methodologies used in negation and speculation

detection

Summary of the methodologies with the most common properties and features.
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2.5 Extracting contrasts and contradictions from literature

As a mathematical logical concept, contradiction is abstract. Contradiction
happens when two logically opposite statements are true simultaneously. In
classical logic, the law of non-contradiction (NLC) is number two in Aristotle’s
three classic laws of thought.

Philosophers and logicians tend to agree that although it is possible to
define contradiction as an abstract concept, no real contradiction can exist in
the natural world. It is also generally believed that imagining contradiction,
perhaps similar to imagining the 4" dimension, is impossibly difficult for the
human brain, despite the fact that it is used as a basic tool in mathematics.

Contrast, on the other hand, is an expression used to describe two
different concepts. Oxford English Dictionary defines contrast as:

“Comparison of objects of like kind whereby the difference of their
qualities or characteristics is strikingly brought out; manifest exhibition of
opposing qualities; an instance of this.”

In this section we review interpretations of the concepts of contrast and

contradiction within the domain of biomedical text mining.

2.5.1 BioContrasts

BioContrasts (Kim et al. 2006), is a database containing pairs of proteins that
have appeared in contrasting phrases. It focuses on expressions such as
“proteinl but not protein2” that have been extracted from the MEDLINE
abstracts and contains about 800,000 non-normalised (~40,000 normalised)
contrasting protein pairs. Both of the contrasting proteins appear in the same
sentence. The contrast is explicitly expressed using phrases such as but not and

in a context such as their interaction with a third protein.
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Figure 2.11: Work-fow of the BioContrasts system.
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Figure 2.11 shows the work-flow of the BioContrasts information

extraction system. It extracts contrasting protein pairs using a rule-based

algorithm based on the keyword not and the grammatical parse of the sentence.

Examples of the rules that are used in the identification of contrasting patterns

can be seen in Table 2.10.

The rules that identify contrastive expressions are based on the

identification of noun phrases and other grammatical entities such as verbs and

prepositions. A POS tagger and a noun phrase identifier have specifically been

developed for the task. The rules for contrasting expressions were also

manually designed, presumably based on manual analysis of a training corpus

of 166 abstracts.

Pattern type

Grammatical pattern

A but not B

NP but not NP
V NP but not V NP
V PREP but not PREP NP

not A but B

not NP but NP
not V PREP but V PREP NP
not V NP but V NP

A, not B

NP, not NP
PREP NP, not PREP NP

Table 2.10: Examples of patterns used by BioContrasts

Example patterns to extract contrasting protein pairs used by BioContrasts
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The two proteins reported as contrasting, contrast in a “presupposed
property” which is assumed to be the verb of the sentence in question. This
identifies the event type in which the two proteins differ, but only if this event
is expressed via the verb of the sentence.

For an example that demonstrates this approach, consider the sentence

from an abstract shown in Example 2.10.

Example 2.10. “In contrast, IFN-gamma priming did not affect the
expression of pl05 transcripts but enhanced the expression of p65
mRNA (2-fold).”

(From PMID 8641346)

The sentence is selected at the first stage because it contains the word
not. After POS tagging and identification of noun phrases, we see that part of it
matches the pattern “not V NP but V NP” from Table 2.10:

not + dffect (V) + the expression of p105 transcripts (NP) + but +
enhanced (V) + the expression of p65 mRNA (2-fold) (NP)

Once the protein names have been identified, the system compares the
verbs in order to determine the similarity between them and therefore
determine whether the two phrases are contrastive. The authors use WordNet
(Fellbaum 1998) and a hand-crafted list of similar biomedical verbs for this
purpose. One of the limitations of this method is that it does not recognise
interaction words that are not verbs as presupposed property. For example, the
word “expression” in a phrase like “the expression of A but not B”.

Finally, they insert the two protein names that satisfy the aforementioned
criteria in the database. In the case of Example 2.10, p105 and p65 will be
added as contrasting proteins.

They applied their system to a corpus of 2.5 million MEDLINE abstracts

each containing the word “not”. They extracted contrasting protein pairs with
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normalised protein names using the above method, and selected 100 pairs for
post-hoc evaluation. They reported a precision of 97%. As other post-hoc
evaluations, the recall value was not reported, but it is expected to be lower
than their previous, less strict system with 61% recall (Kim et al. 2006).
Another limitation of this approach is that no context is given beyond the
fact that the two proteins are reported to differ in a given interaction. The
interaction type is not normalised and no more information about the event
itself is reported. In addition, with very strict hand-crafted rules, the recall is
expected to be relatively low, as contrasting proteins and interacting proteins in
general can appear in many more patterns than investigated in this study.
Finally, the contrast is defined only between the pair of entities. To move
towards contrasts between smallest pieces of self-contained information such
as events, the methods would need to expand to properties of biomedical

events other that participating proteins.

2.5.2 An approach to contradicting events

(Sanchez 2007) has introduced the concept of contradiction in protein-protein
interactions and has categorised them into explicit and implicit contradictions.
According to her definitions, explicit contradiction refers to the situation when
an author reports results and mentions that they contradict or are different from
previous findings. An implicit contradiction, on the other hand, are two
statements possibly in different documents, one reporting a protein-protein
interaction event affirmatively, and the other reporting it either negatively or
speculatively.

Sentences that contain both “contradiction” phrases and “finding”
phrases are identified and used for training and evaluation purposes. According
to their definitions, finding phrases concern the phrases that report some
finding in the literature. Contradiction phrases are those that express conflict,
presumably with previous views. This is based on the hypothesis that these

sentences are associated with explicit contrasts.
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Example 2.11. “An dffinity of RRM3 for poly(U) appears to contradict
previous reports of poly(A) binding by RRM3.”

In Example 2.11, the word “contradict” is a contradiction phrase, and
the word “reports” is a finding phrase. See an extensive list of these phrases in

Table 2.11.

Contradiction words Finding words

contradict, contradiction, observation, report, notion,

contradictory, conflict, negate, evidence, finding, research,

negation, disagree, disagreement, hypothesis, knowledge,

refute, refutation, differ, dissent, interpretation, conclusion, model,

discrepancy, inconsistency, data, fact, study, inform, document,

inconsistent, contrast, controversy work, proposal, result, view,
assertion, assay

Table 2.11: List of contradiction and finding phrases used by Sanchez.

Note that in the original thesis, the heading of the left-hand column reads
“CONTRAST WORDS", although everywhere else it is referred to as contradiction

words or phrases.

To detect explicit contradictions, Sanchez looked at the dependency
parse of the sentences containing both finding and contradiction phrases, and
hypothesised that there may be an explicit contrasting event in the sentence if
there is a dependency path between the two phrases that does not pass through
the root and is at most of length 3, and a dependency path of maximum length
10 between the contradiction word and the interaction trigger.

The sentence in Example 2.12 from the author will demonstrate this

hypothesis.

Example 2.12. “Although the activation of AMPK by insulin would

contradict previous observations (28,29), AMPK activation is known to
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accelerate glucose uptake and utilization in the heart.”

A simplified dependency tree for Example 2.12 is shown in Figure 2.12.

All the criteria for an explicit contradiction as defined by Sanchez are satisfied:

subj w-ch ohj

[ Y W ]

activation of AMPL by insulin would contradict previous  observations

Figure 2.12: Simplified partial example dependency tree

Part of the dependency tree of the example sentence, specifically the part that
represents the application of the criteria: “activation of AMPL by insulin would
contradict previous observations” In this tree, ‘v-ch’ represents a verb chain

dependency.)

1. There is an event expressed in the sentence, with the trigger
“activation”, possibly involving entities “AMPK™ and “insulin”.

2. The dependency path between the finding word “observation” and the
contradiction word “contradict” is 1 (less than 3).

3. The dependency path between the contradiction word “contradict” and

the interaction trigger “activation” is 2 (less than 10).

Sanchez evaluated her method on 122 sentences containing contradiction
phrases derived from 500 Journal of Biological Chemistry articles, manually
annotated for explicit contradictions. Amongst these sentences, 61 contained
explicit contradictions. Their method of detecting explicit contradiction from
sentences containing contradiction phrases achieved recall/precision/F-score of
36%/92%/52%.

Implicit contradictions. To find implicit contradictions, Sanchez

introduced a semantic representation of events in order to introduce rules that
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make two different events contradictory. The semantic representation of an
event involves the following attributes:
event type, trigger, participating proteins, polarity, direction, certainty,
manner, organism and anatomical location.

Once the events are extracted, attributes of the semantic representation
need to be determined. Two of these attributes, namely polarity (negation) and
certainty (speculation) have already been discussed in the previous chapters.

To determine the direction of an event, Sanchez categorises all possible
interaction words (around 50 of them, not including inflected forms) into 13
categories. She then uses a look-up table assigning positive, negative, or
neutral directionality to each class. For example, triggers belonging to the
“attach” class (such as “bind” and “complex”) have a positive direction,
whereas those belonging to the “inactivate” class (such as “block”, “down
regulate”, and “suppress™) will have a negative direction. Trigger words such
as “translocate” or “affect” have neutral direction.

The manner attribute is the adjective or adverb that affects the trigger. In
addition to speculation extracted previously, manner words are also used to
infer speculation (e.g. “there is a potential interaction”™).

To demonstrate these attributes see Table 2.12 for an original example

and its semantic representation.
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Semantic class | inactivate
trigger inhibit
Protein 1 ATP
Protein 2 AMPK
Auxiliary -
molecule

Polarity Positive
Direction Negative
Certainty -
Manner Neutral
Organism -
Location -
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Table 2.12: Semantic representation of an event according to Sanchez’s
definition

Representation of the event expressed by sentence “ATP inhibition of adenosine

monophosphate-activated protein kinase.”

They combined the attributes direction, manner, and polarity to assign a
single number to every event. The numbers are merely labels assigned to
different combinations of these three attributes and do not represent their
numerical value. For example, “weak positive direction” is assigned state 2,
and “negative polarity and strong or neutral negative direction” is assigned
state 9. They introduced around 15 different states to assign to different
combinations of attributes of an event.

Subsequently, they manually constructed a decision table with pairs of states
that constitute a contradiction and pairs of states that do not. From the table, we
learn that there is a contradiction between states 3 and 7, i.e. “weak neutral
direction” and “strong neutral direction”, but there is no contradiction between
states 4 and 7, i.e. “neutral direction” and “strong neutral direction”.

Another example of a contradicting pair is states 3 and 11 , i.e. “weak
neutral direction” and “negative polarity and weak neutral direction”. There are
34 pairs of states that define contradictory or non-contradictory states, and the

rest are defined as undecidable.
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To demonstrate how this method works, we discuss their original

example here:

Example 2.13.

Document A “Cells treated with hyperosmolar stress, UV-C, IR, or a
cell-permeable form of ceramide, C2 ceramide, rapidly down-regulated
PI(3)K activity to 10%-30% of the activity found in serum-stimulated
control cells”

Document B “And fourth, C2-ceramide did not affect the amount of PI

3-kinase activity in anti-IRS-1 precipitates.”

We show the semantic representations of these two events in Table 2.13.
As we can see, the states of the two events in the sentences, in Example 2.13 as
determined by their direction, manner (manner degree), and polarity, are 9 and
5 respectively, which are “negative polarity and strong (or neutral) negative
direction” and “negative polarity and neutral direction”. The pair (9,5) do not
appear in the look-up table used to define contradiction pairs, meaning that we
cannot say anything about whether the two events are contradictory or not.

In none of the publications describing this work, the authors have
included any other example that demonstrates how this method detects

contradicting or non-contradicting events.
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Attribute Document A | Document B
Event type Inactivate Cause
Protein 1 C2-ceramide |C2-ceramide
Protein 2 PI-3K PI-3K
Trigger down-regulate | affect
Polarity positive negative
Direction negative neutral
Manner rapidly -

Manner polarity | neutral neutral
Manner degree | neutral neutral

state 9 5

Table 2.13: Semantic representation of two events in the example sentences

The ‘states’ of the events are determined based on a decision table as well as the
values of direction, manner (manner degree), and polarity. Original example and

semantic representation by Sanchez.

They applied their method on automatically extracted events as well as
gold annotated events. They report recall/precision of 19%/60% on the
automatically extracted events and recall/precision of 62%/50% and 80%/53%
on gold annotated events against two different gold standard annotations.

They also evaluated their system using inter-annotator agreement
measure kappa. The agreement between biologists and their system was 0.39
and the agreement between non-biologists and the system was 0.21. See
Section 2.7.1 for the definition of this measure.

This was one of the earliest computational approaches to contradictions,
and despite the limited availability of annotated data, provided an
understanding of the phenomenon. However, there are a number of limitations
in this work that we shall point out here.

* No generic definition of contradiction was given. The definition was by
instance, and was not exhaustive.

* The decision table to assign a state to an event does not match the list of
the state descriptions introduced earlier, and seems limited, ad-hoc, and

anecdotal.
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The numerical values assigned to different events have no numerical
significance and are only used for coding different combinations of the
four attributes contributing to the wvalue. The decision table is
incomplete and does not contain every possible combination, including
those of some of the examples discussed in the thesis.

The table does not cover all possible combinations of these attributes.
Some of the states are defined in a way that their instances can overlap,
for example “neutral direction” (state 4) is a subset of “neutral direction
or degree” (state 0).

No discussion on multi-event sentences are included. It would appear
that despite the extensive sub-sentence rules and analysis, the problem
is only approached on the sentence level.

They have evaluated their method on the data specifically selected to
pass the bag-of-words test, some of which would have resulted in a
false positive in a bag-of-words approach. Although this might result in
a tougher evaluation set-up, the evaluation is still not on “natural” data,
and is difficult to expand to a given set of documents.

The method is composed of a number of very specifically tailored rules
and extensive look-up tables. Although it is possible to trace every case
and how it is classified following the rules, it is not expandable,
generic, or applicable to similar problems.

Despite having access to organism and anatomical location information
from the event extraction stage, they have not used these attributes in
the characterisation of contradictions.

They have not differentiated between the contrast expressed about a
biological concepts, or one expressed in relation to a finding. For
example, the sentence of Example 2.14, taken from the corpus used in
the study, contains the former type of contrast.

Example 2.14. “Moreover, in contrast with PMA, the effect of

thrombin on the tyrosine phosphorylation of SH-PTP1 was hardly
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dffected by GF109203X, a specific protein kinase C (PKC) inhibitor. ”
In addition, it is worth noting that protein name normalisation was done
manually, and no large-scale application or evaluation of the method was

performed beyond the 500 JBC articles.

2.6 Resources

In this section we introduce the resources available for the biomedical text
mining particularly related to this research. We introduce the publicly available
annotated corpora which is a requirement for many information extraction
tasks, and specifically for machine learning approaches.

In recent years, resources that provide manually annotated data are
increasing in availability. GENIA corpus (Ohta et al. 2002) was perhaps the
first, and the most widely used annotated corpora of biomedical abstracts. It
contains 2000 MEDLINE abstracts selected from the search results for the
terms “human”, “blood cells”, and “transcription factors”.

The abstracts are annotated for a range of linguistic and biological
information. The annotations include POS tags, shallow parses, and co-
reference annotations. They also include term annotations for entities from 31
different semantic classes including proteins, DNAs, RNAs, etc. (Kim et al.
2004).

Several types of molecular events are annotated in the GENIA corpus
with their types, themes, and causes (Kim et al. 2008). Other annotations
include disease-gene association, cellular localisation, and pathways.

The GENIA corpus annotators have assigned “assertion” and
“uncertainty” attributes to every event. Assertion indicates whether the event is
negated or affirmative and the possible values for this binary attribute are
“exist” and “non-exist”. Uncertainty indicates the level of speculation in the
reported event. However, unlike assertion, uncertainty is not a binary attribute,
with the three possible values of “certain”, “probable”, and “doubtful”.

Challenges such as BioCreative and BioNLP also make valuable high
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quality manual annotations publicly available. As a result, research groups
publish their results on these data sets and sometimes even release their tools,
making it possible to compare approaches and results within the same
framework.

A manually annotated corpus was released for the training and testing of
the BioNLP’09 Shared Task. The entity annotations were limited to genes and
gene products (proteins), manually selected from the following entity tags in
the GENIA corpus: protein molecule, protein complex, DNA domain or region,
and RNA molecule. Since these groups contain entities such as protein
complexes (e.g. NF kappa B), genomic regions that are not genes (e.g. third
intron or gene), or other biological entities, the organisers have removed them
in the construction of the BioNLP’09 corpus.

The events were selected from the subset of the GENIA corpus (Ohta et
al. 2002) that can be considered as bio-events and involve gene and protein
molecules. The following event types from the GENIA corpus were included in
the BioNLP’09 corpus: Positive regulation, Negative regulation, Regulation,
Gene expression, Binding, Transcription, Localization, Protein catabolism,
Protein amino acid phosphorylation, and Protein amino acid
dephosphorylation. The last two event types, Protein amino acid
phosphorylation, and Protein amino acid dephosphorylation, were merged into
a single class, Phosphorylation.” Events whose participants were not genes or
proteins were excluded. In addition, a number of new events were also added
manually by the curators of the BioNLP’09 corpus. A summary of the number

of events in each category can be seen in Table 2.14.

15 For a biological definition of these event types please see Appendix A
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Event type

Number of
events in

training data

Number of
events in
development
data

Gene expression | 1738 356
Localization 265 53
Transcription 576 82
Protein catabolism | 110 21
Phosphorylation | 169 47
Binding 887 249
Regulation 961 173
Positive regulation | 2847 618
Negative 1062 196
regulation

Total 8615 1795
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Table 2.14: The distribution of the different event types in the BioNLP'09 corpus.

The data came in three data sets. The training and development data sets

were available to the public together with gold annotations for entities and

events. The test dataset was used to evaluate the challenge participants and was

only publicly available with gold annotations for entities. Table 2.15 shows the

composition of the first two data sets.

Training data

Development data

Abstracts 800 150
Sentences 7449 1450
Words 176146 33937
Entities 9300 2080
Events 8597 1809
Negated events 615 107
Speculated events 455 95

Table 2.15: The composition of the events in the BioNLP’09 data.

The number of words, events, and other statistics in the training and development

data sets.
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In 2011, the BioNLP’11 shared task was organised with tasks and data
along the same lines with BioNLP’09, in that it provided a representation of
bio-molecular events and called for extracting relations from them. As this
thesis was being written, new research groups are releasing tools that address
the challenges posed by this commonly available data.

Bio Information Extraction Resource (Biolnfer) is another manually
annotated corpus available for training and development of biomedical
information extraction efforts. The corpus contains 1,100 sentences taken from
biomedical abstracts, and are manually annotated for named entities,
relationships between the named entities (e.g. equality, membership, anaphora,
causal, etc.), and syntactic dependencies (Pyysalo et al. 2007).

A manually annotated corpus that provides annotations for negations and
speculations of biomedical and clinical text is BioScope (Szarvas et al. 2008).
It contains all the abstracts in the GENIA corpus, five full text articles from
FlyBase (Tweedie et al. 2009), and a corpus of radiology reports used in other
challenges. The texts were annotated for negation and speculation cues and
their linguistic scope, i.e. the part of sentence that is affected by those scopes
and has become negated or speculated.

The BioScope corpus has been used in a number of attempts to
automatically detect negations and speculations. (Morante et al. 2009) used the
BioScope corpus in a scope detector system which uses supervised sequence

labelling.
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Resource Type Size Annotations
GENIA Biomedical abstracts 1000 substances and the biological locations
corpus documents | involved in reactions of proteins, based

on the GENIA ontology

BioNLP’'09 Biomedical abstracts 950 Named entities, molecular events,

documents | localisation, negation, speculation.

Biolnfer Biomedical abstracts 1100 Relationships, named entities, syntactic

sentences | dependencies

BioScope Medical free texts / 20,000 negations and speculations and their
biological full papers / |sentences |linguistic scopes

biological abstracts

CoNLL'10 Biomedical full-text 15 Speculation cues and their linguistic

documents | scopes (to be added to the BioScope

corpus)

Table 2.16: Summary of corpora related to this research

The Computational Natural Language Learning shared task in 2010
(CoNLL 2010) focused on the identification of sentences in biological abstracts
containing uncertain information (Farkas et al. 2010). It aimed at detecting
speculative sentences in two tasks. One task was defined as a binary
classification problem on the sentence level, distinguishing factual from
uncertain sentences. A second task was defined as detection of speculation
cues and their scope within the sentences. The CoNLL 2010 challenge also
used the BioScope corpus as one of the two corpora included in the challenge

(the other corpus was about Wikipedia weasels.)

2.7 Evaluation in text mining

2.7.1 Evaluation methods

Many areas of computer science suffer to various degrees from the lack of
standard, commonly accepted, thorough and reliable bench marks and test
datasets that correspond with the up to date real world problems and IE and IR

are no exceptions. However, there have been several “shared assessments” or
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“challenges” in biological text mining that have been among the most
influential assessments in the field (Cohen et al. 2005) a selection of which
were introduced in the previous sections. These are among the leading
references to determine the state of the art in various biomedical IE tasks and to
provide resources to be used as gold standard data in those areas.

Evaluation of IE and IR systems is important in order to compare the
performance of the existent systems, measuring the progress of the field over
time, and creating a shared infrastructure to support research. Previous
examples have shown that once objective common evaluations become
available, there is real eagerness from the research communities to participate
in new challenges and improve the solutions to existing problems (Cohen et al.
2005).

In this section after introducing the baseline measure as the minimum
requirement for any system to be worthwhile of studying, we describe
precision, recall, and F-score measures that are commonly used with or without
other specifically developed measures by the above groups. Finally we will

briefly introduce other types of measures for IE and IR.

Baseline measure

The baseline measure is the performance of a simple but not necessarily trivial
method against which other innovative methods are evaluated. Random
assignment is often used as a baseline measure for comparing with more
sophisticated information extraction methods.

An information extraction task can be simplified as finding items with
certain properties in a pool of items. Assume, for example, that we have a
document with a certain number of tokens, some of which are names of species
and the rest are other types of words. The task of finding those species names
amongst all the tokens is an NER task.

Reporting every token as a positive result, i.e. assigning them to the class

of species names will result in 100% recall, as we are obviously finding every
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species name correctly. However, the precision would just be equal to the
percentage of the species names (positive instances) in the pool.

Categorical assignment of all instances to one class is the simplest
baseline measure and is specially useful when the sizes of positive and negative
classes are very disproportionate and we are interested in the number of correct
classifications in all classes.

An unsophisticated classifier with little discriminative functionality could
randomly assign tokens to positive and negative classes. The precision, recall,
and F-score can then be computed, given that we have enough information
about the composition of the data, specifically, about the percentage of positive
and negative instances in the dataset.

In the case when we can safely assume more specific characteristics
about the dataset, we can improve the baseline measure to reflect the
information we already have about the distribution of the different types of the
instances. In the example above, an unsophisticated baseline classification is to
randomly label half the tokens as species names. But given the extra
information that most tokens in text are articles, adjectives, and other types of
linguistic “fillers”, and that terms or named entities are relatively rare, it would
be logical to improve the precision of the baseline method to somehow assign a
smaller proportion to the category of species names. Any system of species
name recognition will therefore have to perform better than this baseline

random classifier.

Common evaluation measures

Precision, recall, and F-score evaluate the performance of a system by
comparing its output with a gold-standard. Recall measures how much the
system has covered the desired output, i.e. how much of the relevant
information it has retrieved.

Recall is defined as the number of correct answers given (e.g. relevant

documents retrieved by the system, species names correctly recognised)
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divided by the total number of correct answers in the dataset or relevant

documents in the pool:

P

Recall= ————
TP+FN

where TP and FN stand for the number of true positive and false negative
answers given by the system respectively. On the other hand, precision is
defined as the number of correct answers divided by all the instances retrieved

by the system:

P

Precision= ————
TP+FP

where FP stands for the number of false positive answers given by the
system.

For any system, there is usually a trade-off between the two above
measures. The more specific search criteria are and the more narrowly we
search for the results to increase the precision, the more likely it is to miss
some of the off-centre positive results, and therefore decreasing the recall. To
be able to reflect both precision and recall in a single measure, the harmonic
mean of the two measures is widely used as an evaluation measure and is

referred to as the F-score:

v Precision X Recall

F =2 .
Precision+Recall

1

If, depending on application, we intend to assign B times as much
importance to recall as precision,we would use the general formula:

PrecisionX Recall
BzPrecition + Recall

F,=(1+p")X

Evaluation measures sensitivity and specificity can be used to measure
the performance of a binary classification task. Unlike precision/recall where
we are only interested in the retrieved information from a pool of data, and
only evaluate the quality of the information extracted from that pool, here we

are interested in the quality of the discrimination between the two groups
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without necessarily preferring one to the other. Sensitivity is defined similarly

to recall, whereas specificity is defined as

_IN
TN+FP

Specificity=

Specificity measures the proportion of negative instances which are
correctly identified.

Cohen’s kappa coefficient is a statistical measure of inter-annotator

agreement. It tests whether the agreement between several annotators exceeds

that expected by chance. Kappa is defined as

__ Pr(a)—Pr(e)
~ 1-—Pr(e)

where Pr(a) is the relative observed agreement amongst annotators (i.e.
the proportion of time that the annotators actually agree) and Pr(e) is the
hypothetical probability of chance agreement (i.e. the proportion of time they

would have agreed if they were guessing based on chance alone.)

2.7.2 Inter-annotator agreement

Inter-annotator agreement studies have shown that it is not uncommon for
human annotators to disagree on whether an event is negated or speculative.
(Vincze et al. 2011) have shown that after trying to map the negation and
speculation annotations between two manually annotated corpora, GENIA
Event corpus and BioScope corpus, the agreement rate between is no more
than 48%.

The results of the mapping between the two corpora as reported by

(Vincze et al. 2011) are shown in Table 2.17.

Agreement |BioScope +/ GENIA - BioScope - | GENIA +
Negation 1554 1484 569
Speculation 1295 3761 180

Table 2.17: Inter-annotator agreement between GENIA and BioScope corpora

Inter-annotator agreement after mapping the negation and speculation annotations

between GENIA event and BioScope corpora.
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Sanchez also compared the annotations by several biologist and non-
biologist annotators. They measured the agreement in finding what they define
as “implicit contradictions”, introduced in the previous section.

The agreement amongst biologists was quite low (kappa = 0.38), which
makes their system conceivably pass as an expert by agreeing with biologists
more often than the biologists do with each other (kappa = 0.39).

But the agreement among non-biologists was predictably lower than that
of biologists (kappa = 0.22), and the agreement between their system and non-

biologists was even lower (kappa = 0.21).

2.8 Conclusion

In this chapter we briefly introduced the general area of text mining in the
biological and biomedical domain and discussed some of the main challenges
in this area. In particular, since the detection of conflicting statements relies on
the recognition of contextualised event information including polarity
detection, we critically reviewed the background research in relation extraction,
contextualisation of event information including the extraction of negations
and speculations, and the previous approaches to detecting various forms of
contradictions from the literature.

We showed that the sentence polarity approach to negations and
speculations is too rough, as several pieces of information is usually conveyed
within a single sentence, and not all are negated and speculated simultaneously.

We also discussed the scope-based approaches to negation and
speculation detection and showed that although these approaches have
relatively high performance, they do not directly help enrich the extracted
information since even when a negation or speculation scope is correctly
identified, we still cannot directly infer whether or not an event statement
which partly falls within this scope is affected. Consider, for example, phrases
in which participants are negated such as “SLP-76” in the sentence “In

contrast, Grb2 can be coimmunoprecipitated with Sos1 and Sos2 but not with
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SLP-76.”

We noted that the methods discussed in this chapter mainly focus on
finding negated triggers in order to detect negated events.

We observed that molecular events between genes and proteins are
meaningful pieces of information that are commonly described in text, and they
can be expressed in a structured form. However, the performance of the current
negation and speculation detection systems on the event level are not nearly as
good as other approaches to negation detection (sentence polarity and
cue/scope detection).

Although event data as used by event extraction systems contain rich
semantic information regarding event types and participant types, this
information has not been exploited to improve the results of event negation and
speculation detection.

Syntactic properties have always been amongst the important features
used in various information extraction tasks. However, although command
relations were introduced by linguists decades ago and used commonly in
theoretical linguistics, to the best of our knowledge they have not previously
been exploited computationally for identification of negation and speculation.

No large-scale analysis of the negation and speculation extraction has
been reported, and none of the best performing approaches have made their
system publicly available.'

All the negation and speculation detection systems we are aware of have
reported their performance as part of a text mining pipeline, and therefore an
evaluation of the stand-alone system is not always reported.

A number of researchers have explored contradictions and contrasts in
the biomedical domain. However, no general and comprehensive method has
so far been proposed to detect explicit and implicit conflicting facts from the

literature which could potentially lead to knowledge discovery and data

16 Only recently, as this thesis was in its final stages, a few recent attempts were
made at large-scale extraction of biomedical events from all the available literature,

some of which contain negation and speculation information.
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consolidation.

steps:

1.

In this thesis we aim to address these issues by taking the following

Effectively identify biological events and relations among entities with
their context;

Design and implement a system that will be able to automatically
recognise negated and speculated facts in text, specifically in the sub-
corpora of the GENIA event corpus interactions;

Develop a representation model for establishing relations between
different biological events, including relations concerning conflicts.
This involves semantically representing a biological event.

Design and implement a system that will detect conflicting facts from a
database of extracted facts;

Evaluate the proposed methodology through a case study on biomedical
events;

Apply the method on the entire publicly available biomedical literature;
Provide the tools and data to the biomedical and text mining research
communities, including the contextualised events and the conflicts

between them.
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Molecular event extraction and contextualisation

In this chapter we introduce methodologies to extract and contextualise
molecular events from large textual corpora of biomedical literature. The work-
flow in Figure 3.1 shows an overview of the tasks required to achieve the aims
of this research. The boxes highlighted in darker blue represent tasks for which
we use previously existing tools with some modifications, or implement

existing methodologies. These tools and methods have been introduced in

Chapter 2.
Biomedical
documents
; g ; negation] g ()
hamed entity semantic syntactic event - anatomical cats
D_) recognition_>tokenisation_) parsing — extraction ) Sg:::é?igan association aggregatio
Section 3.2 Section 3.3 Se;ggn;sad Chapter 5

Figure 3.1: An overview of the event extraction pipeline.

The shadowed boxes are tasks for which existing methods have been utilised. The
lighter boxes are tasks for which we developed a method which will be described in

more detail in the corresponding sections.

The novel tools and methodologies that were created to address some of
the challenges of this research will be discussed in this chapter. We start by
defining the terms and concepts used in this thesis in section 3.1. In Section 3.2
we introduce semantic tokenisation, a method to reduce parser errors. Section
3.3 describes a hybrid machine learning and rule-based method developed to
extract molecular events. In Section 3.4 we describe our methods to detect
negated events. Section 3.5 expands the negated detection method to the task of

speculation detection of events.
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3.1 Definition of terms and concepts

3.1.1 Events and their context

In this thesis we focus on bio-molecular events as described in BioNLP’09.
Nine event types are considered, namely, Gene expression, Transcription,
Localization, Protein catabolism, Phosphorylation, Binding, Positive
regulation, Negative regulation, and Regulation. The first five of these event
types have only one participant (theme) and we refer to them as class I events.
Binding events can have one or more themes (class II events). Regulation
events have a cause as well as a theme, and can be nested with other events
acting as a participant, and are referred to as class II events.

An event is minimally represented with four features: event type, the
cause of the event, the target (theme) of the event, and the lexical expression
(trigger) that is used to describe the event in text. However, placing the event in
a wider context is important from a biological perspective.

An expert biomedical scientist, reading the sentence “p53 is expressed in
lung” in an article, would understand more from it than it appears to convey.
She would use her expert background knowledge of the field as well as other
facts stated in other parts of the document and maybe other documents, to put
that statement into context and achieve what we think of as an understanding of
its meaning.

In an ideal automated information extraction task, we would hope to
achieve similar levels of understanding to a human expert by combining vast
amounts of background knowledge and mining as rich of a context as possible.
This is an ambitious goal that more recent systems such as IBM's Watson
(Ferrucci et al. 2010) and various Google services are aiming to achieve.

We distinguish between implicit and explicit statements. We aim to
extract only information that is explicitly stated in the natural language text.
The Informatics for Integrating Biology and the Bedside (i2b2) challenge in

2008 (Uzuner 2008) divided the information extraction task into two sub-tasks:
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extracting information that is explicitly stated in text and that which can be
inferred from the context. The distinction has also been recognised by the
GENIA corpus, where the annotation guidelines require the annotators to only
annotate information that is explicitly stated, and not use their own knowledge
to infer from the text information that is only implied (Ohta et al. 2007).

As discussed in more detail in Chapter 2, (Sanchez 2007) also
distinguishes between two concepts that she refers to as implicit and explicit
contradictions. However, by these she means contradictions that are explicitly
talked about in text and those that are found in different documents (see
examples on page 92). Therefore, even her implicit contradictions are still what
we consider explicit as they do not take into consideration anything that is not
explicitly stated in text.

In biomedical text mining and information extraction, it remains an open
problem to extract all of what the authors intend to communicate from the text
itself. This is because these texts are typically very rich in information, often
with many shades and nuances in meaning. Experiments vary in a great deal of
detail; species, anatomical locations, experimental conditions such as
temperature, and duration of experiments are only a few examples. Findings
are reported with various levels of certainty, and are discussed thoroughly in
comparison with the previous findings. It is very common that the meaning of
whole sentences and paragraphs depend on the not-so-immediate context.

We primarily look at statements at the sentence level. Apart from a few
exceptions in the anatomical NER module that will be discussed later, all the
information extraction tasks are performed on the sentence level. This means
that information stated elsewhere in the text is not taken into consideration
when extracting facts and relations from a given sentence, and only what is
explicitly stated in an isolated sentence will be considered.

According to this convention, if a sentence states that “p53 is expressed
in lung” but it is evident from the rest of the document that it is in vivo lung of

newborn rats subject to a certain medical procedure, we are in a situation where
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we need to define precisely what we aim to extract. We do not aim to extract
the intra-sentence context, namely “in vivo”, “new born”, “rat”, and the
procedure. We limit our goal to extracting only the sentence-level information

and therefore the only context we are concerned with is “lung”.

3.1.2 Event negations and speculations

Negated events. A negated event refers to an event that is reported in text as
not happening. We treat negations as an attribute of the event.

According to this definition, several events can be expressed within a
sentence, and not all are necessarily negated (or affirmative) simultaneously.
The scopes of negation and speculation cues may vary or overlap. Moreover,
the parts of the sentence stating a single fact are not always connected and
independent. Therefore, sentence-based or scope-based definitions introduced
in Section 2.4.2 are not suitable for understanding which facts are actually
reported negatively or speculatively. This will also allow us to treat events as
abstract concepts whose expression in text is not necessarily with a self-

contained phrase or sub-string.

Example 3.1. “However, while HUVECs contained endothelial NOS
protein, no inducible NOS was detected in either tolerant or
nontolerant cells.”

(PMID 9915779, annotated by the BioNLP’09 corpus curators.)

In Example 3.1, the authors write that “no inducible NOS was detected”,
effectively describing the lack of NOS expression in certain cells. In the same
sentence, the word “contained” is referring to the expression of NOS in a
different location. Therefore, the same sentence describes two NOS expression
events, one affirmative (i.e. expression of NOS in HUVEC) and the other

negated (induction of NOS in tolerant or nontolerant cells).
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Speculated events. Speculations (hedges) are defined similarly as extra
context on molecular events described in text. Sometimes the authors do not
express with absolute certainty whether an event has happened or not. Rather,
they speculate the existence of the event. This speculation may be in the form
of expressing a hypothesis that they are later testing, or merely lack of enough
evidence. Hedges classify events into “speculated” (or “un-asserted”) and
“asserted” categories (see Section 2.4), depending on how they have been
described by the authors.

Example 3.2 shows a sentence which speculates the positive regulation
(trigger: “participate”) of the regulation (trigger: “transcriptional regulation™)

of “IL1-beta”.

Example 3.2. “These observations suggest that a so-far-unrecognized
SP-1 site in the human IL-1beta promoter may participate in the
transcriptional regulation of this gene in keratinocytes.”

(PMID 8977297, annotated by the BioNLP’09 corpus curators.)

We also consider sentences like Example 3.3 as speculation.

Example 3.3. “Tumor necrosis factor alpha (TNF-alpha) mRNA
production was analyzed by polymerase chain reaction amplification in
monocytic U937 cells and in a chronically HIV infected U937 cell line
(U9-11IB).”

(PMID 2204723, annotated by the BioNLP’09 corpus curators.)

In Example 3.3, the authors talk about the “production” of “Tumor
necrosis factor alpha (TNF-alpha)”. However, they are not asserting whether
the production did or did not happen. Rather, it was “analyzed”, which
suggests we can not infer the outcome of this analysis only from this sentence.

In Example 3.4, the authors are declaring that a certain molecular
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processes “have not been studied”, and therefore, although the interaction is

described in detail, neither its existence nor its absence can be inferred.

Example 3.4. “However, monocyte interactions with activated

endothelium in shear flow following gene transfer of the NF-kappaB

inhibitor IkappaB-alpha have not been studied.”
(PMID 10339475, annotated by the BioNLP’09 corpus curators.)

3.1.3 Event representation

In this research we extend the template-based approach shared by BioNLP’09

and BioNLP’11 to defining biomedical molecular events. This model formally

represents a molecular event with its attributes as a set of key-value pairs.

There are restrictions on the valid values for each key. For example,

participants of a relation can only be entities or other events. The restrictions

on the values of some keys may vary depending on the values of other keys.

The representational model is described in detail in Section 5.2.2.

We introduce two levels of event representation. On the semantic level,

we identify every event that is biologically distinct by the following features:

1.

its molecular type (any of gene expression, transcription, localization,
protein catabolism, phosphorylation, binding, regulation, positive
regulation, or negative regulation);

the unique (database) identifiers of its cause and theme;

the unique identifier of the anatomical entity associated with the event
(including the species that anatomical entity belongs to);

its polarity (negated or affirmative);

its certainty (speculated or asserted).

The representational model is depicted in Figure 3.2.
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Figure 3.2: The event representational model.
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Not every event has all the above properties. For example, only
regulatory events could have a cause, and not all entities can be normalised by
linking to database entities. In such cases, we use the best approximation
possible. We treat the ‘cause’ field optional in the unique identification of an
event. We would consider the word form of the named entities (gene, protein,
or anatomical entity mentions) if they cannot be normalised into their database
entries.

For example, in Example 3.5, the activation (i.e. positive regulation) of

StatG by G-CSF in myeloid cells have been described.
Example 3.5. “We previously demonstrated that G-CSF activated a
distinct Stat3-like protein in immature and mature normal myeloid
cells, StatG.”

(From PMID 9823774 annotated by BioNLP’09 corpus annotators)

We further represent this interaction as in Figure 3.3.

Interaction Type Cause Theme Anatomical location  Megated Speculated

Positive regulation G-C5F Stats myeloid cells no no

Figure 3.3: The example of semantic representation of an event.

In this case, neither of the two protein names, G-CSF and StatG, can be
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normalised to a database identifier and therefore are represented with their
textual mentions.

An event can be triggered by a number of different triggers. For example,
a positive regulation event can be triggered by “activate”, “effect”,
“regulate”, “depend”, “involve”, “role”, or many other words. Despite this
lexical variation, we expect two positive regulation event that describe the
same mothelecular process, using different terms to be treated as equal.
Similarly, named entities are referred to by various lexical terms. We would
like this lexical variation not to affect the presentation of an event. In other
words, a “regulation” event by any other name would refer to the same
underlying molecular process.

In the case that any of the other features are not applicable (e.g. cause for
any event type other than regulation) or do not exist (e.g. not mentioned in
text), we assign a null value to that field. If an entity exists, but cannot be
normalised to a database identifier, the exact string of the term is recorded
instead.

The feature “participant” encodes the the gene/protein as well as species
(or organism) in the cases that the participant is a gene or protein and it is
normalised. For example, the term “p53” appearing in an article that discusses
human patients, will be resolved into a unique identifier referring to human p53
(NCBI Entrez Gene ID 7157), which will be different from that of, say, mouse
p53 (NCBI Entrez Gene ID 22059). For this reason, wherever we mention a
normalised gene or protein, the species will be implicitly included. However, in
this research we do not include species as a separate column in the event
representation at this stage, as the gene or protein is not always normalised.

This representation only selects a subset of the contextual attributes that
could be associated with an event. It can be expanded to include a wide range
of contexts related to the reported molecular event and the experimental
settings, from population (including species) to features like in vivo/in vitro,

and the like. On the other hand, the minimum set of features that gives an
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identity to an event consists of the event type (feature 1) and the theme
(included in feature 2). These features are not optional and must exist in every
event. “Event type” can be anything from an event ontology entry to a
predefined set of types. In our research we consider the nine BioNLP’09 event
types as acceptable values for this field.

This representation differs from the mention level representation of an
event which concerns the syntactic attributes of the textual expression of the
event such as the document and sentence it has appeared in, the exact terms
used to describe the event and its participants, the terms used to assert or affirm
the event, and the offset where these terms appear. An extensive list of the
attributes that we have used in the mention level definition of an event is
shown in Table 5.2 on page 207.

Although we include the trigger term as an attribute in the mention-level
representation, to prevent the representation of biologically distinct events from
being affected by the lexical variability of trigger terms and entity names, we

do not include such “surface” features in the this representational definition.

3.1.4 Conflicting statements

As discussed in Chapter 2, there is no consensus in the research community on
the definition of the concepts of contrasts and contradictions, so here we

introduce our definition with relation to the aim of the conflict extraction task.

Contradictions. In this thesis, we are interested in contradictory statements
expressed in possibly different documents, possibly by different authors. We
distinguish between the following types and degrees of contradiction.
1. Logical contradiction in biology
This type of contradiction would mean that a statement p and its
opposite are true simultaneously. For example, if the preposition “p53
is expressed” is always true, then if a particular instance of p53 protein

is not expressed we will have a contradiction of this type. We expect
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this situation to never happen in nature in the same context.
Contradiction in the literature

This type of contradiction happens between two statements from the
literature reporting facts about the same subject. In other words, when
sentence A states that p is true (e.g. an event happening) and sentence B
states that —p is true (e.g. an event not happening) we will have a
contradiction of this type. For example, when author A states that “p53
is expressed in mouse lung tissue” and author B states that “p53 is
never expressed in mouse lung tissue”.

Contradiction in extracted data

This type of contradiction happens between statements that are
generally conflicting, but that appear to be contradictory due to
underspecification or incomplete context. For example “p53 is
expressed in mouse lung tissue at 36° C” and “p53 is not expressed in
mouse lung tissue”. Here, one sentence states that an event happens in a
certain temperature, and the other states that the same event does not
happen in a different temperature. Failing to extract the context of the
event that is related to the temperature, one might argue that the two
events are contradictory. However, adding the relevant context to the
extracted events would reveal that the two events are only contrasting

as they differ in a contextual feature.

This brings us to our definition of contradictory events. Amongst an

aggregate number of events extracted from a large body of literature, we say

two events are contradictory if they share features 1 (type), 2 (participants),

and 3 (anatomical location) introduced in section 3.1.3, and are both assertive

(feature 5), but differ in polarity (feature 4).

Example 3.6.
(a) “Positive regulation of CXCR4 expression and signaling by
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interleukin-7 in CD4+ mature thymocytes correlates with their capacity
to favor human immunodeficiency X4 virus replication.”
(From PMID 12719571, extracted by BioContext.)

(b) “In contrast, in intermediate CD4(+) CD8(-) CD3(-) thymocytes,
the other subpopulation known to allow virus replication, TEC or IL-7
has little or no effect on CXCR4 expression and signaling.”

(From PMID 12719571, extracted by BioContext.)

The semantic representation of the two events in Example 3.6 are shown in

Figure 3.4.
(@
Theme
Interaction Type Cause Interaction Type Theme Anatomical location  Megated Speculated
| Regulation || G-CSF ‘ ‘ Gene expression ‘ ‘ CXCR4 ‘ | thymocytes ‘ | no ‘ ‘ no ‘
(b)
Theme
Interaction Tygoe Cause Interaction Type Theme Anatomical location  MNegated Speculated
| Regulation || G-CSF ‘ ‘ Gene expression ‘ ‘ CXCR4 ‘ | thymocytes ‘ | yes ‘ ‘ no ‘

Figure 3.4: Semantic representation of the conflicting events in Example 3.6.

Note that the theme is an event, and is shown in the form of a recursive event. The

complete recursive theme columns are not shown for simplification.

It can be seen in the figure that the two events have everything in
common, except for their negation status. And as far as can be inferred from

the sentences, they state contradictory claims.

Contrasts. We say two events are contrasting if they share all of the
identifying features 1-5, except for either feature 2 (cause or theme) or feature

3 (anatomical location). Similar to contradictory events, they also need to differ
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different polarities, but match in all but perhaps one contextual feature.

Example 3.7.

a) “In addition, cloning efficiencies were acceptable (over 30%) when
(@) , g effi D ( )

IL 2 produced spontaneously from the leukaemic cell Jurkat (M-N) was

used.”

(From PMID 6278580, extracted by BioContext)

(b) “However, IL-2 is not normally synthesized by solid tumor cells.”

(From PMID 2190213, extracted by BioContext)

The two sentences in Example 3.7 refer to the expression of IL-2.
Sentence (a) states that IL-2 is expressed in certain leukaemic cells, whereas
sentence (b) says that it is not expressed in tumor cells. They differ in the

anatomical entity (feature 3), but are the same in every other aspect. The

semantic representations are shown in Figure 3.5.

€Y
Interaction Type Theme  Anatomical location Megated Speculated
Cene expression IL-2 Jurkeat nao nao

(b)
Interaction Type Theme  Anatomical location  Megated Speculated
Cene expression IL-2 tumar cells WEs no

Figure 3.5: Semantic representation of the conflicting events in Example 3.7.

The two events match in all attributes except in their anatomical location (Jurcat vs.

tumor cells).
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It is difficult to determine whether this contrast is a contradiction or not.
We need expert domain knowledge to know whether leukaemic cells are
actually a type of tumor cells or not. Tumor cells concern cancer, and
leukaemia is a type of cancer, but inferring anything further than than is not
easy for non-experts.

Contradictory and contrasting events are special cases of a broader
concept of conflicting statements: events that share some characteristics that
would justify comparing them, but are not necessarily in agreement with each
other.

We also introduce the notions of strict and relaxed conflicts. In strict
conflict, we require every field of an event representation to be filled (known)
before they can be compared. For example, if the cause of two regulatory
events or their anatomical locations are not mentioned in the sentence and are
therefore missing from the event representation, we cannot compare them in a
strict way. On the other hand, in relaxed conflict, the missing or null fields are
ignored when comparing two events. Obviously, two events that are strictly
conflicting are more likely to represent an actual contradiction in the natural
sense, due to the more complete context that is associated with it. On the other
hand, relaxed conflicting events are less likely to be contradicting or
contrasting.

In the following sections we introduce our methods for extracting

molecular events and detecting their negation and speculation.

3.2 Semantic tokenisation

Sentences that represent molecular events are typically long and complex. For
example, the sentences in the BioNLP’09 corpus are on average 26 words long,
and there are outlier sentences that are more than 130 words long. These
sentences contain many biomedical named entities, many of which consist of
multiple words (e.g. tumor necrosis factor-alpha or Homo Sapiens). Some of

these entities can even be parts of what would typically be considered as
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tokens. For example, a phrase like “NFkappa B/Rel” refers to two entities:
NFkappa B and Rel. A good tokeniser should recognise those entities as
individual tokens, and not, for example, pick B/Rel as a token.

This is a challenging task, however, due to the biologically and
linguistically complex nature of the named entities. In turn, this may confuse
the parser and cause it to produce a sub-optimal parse tree. In the first stage of
our work (the event extraction task) this was one of the major problems that
arose when trying to align the extracted event components with the parse trees.
The parse-tree-based rules mostly concerned individual nodes in the tree,
whereas an entity could have been broken up across several nodes, and
depending on which node was treated as the head, could result in different
features. On the other hand, two entities could be grouped together in the same
parse node, and end up having identical parse tree features, despite their
different roles.

To address this issue, we delay tokenisation and parsing until after the
named entities are extracted. Tokenisation then takes into account named
entities as single tokens of the nominal type and automatic parsing is
performed on the sentences with semantically separated tokens. We refer to
this process as semantic tokenisation. We hypothesise that semantic
tokenisation would increase the quality of the parses, and therefore the feature
extraction process.

To demonstrate the process of semantic tokenisation, consider Example

3.8.

Example 3.8. “Tumor necrosis factor (TNF)-alpha-induced HIV-1
replication in OM10.1 or Ach2 cells was significantly inhibited by non-
cytotoxic doses of AuTG |[...]”

(PMID 10069412 from the BioNLP’09 corpus)

Figure 3.6 shows part of this sentence before and after semantic
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tokenisation. Figure 3.6(a) shows the tokenisation as performed by GENIA and
McClosky parsers and provided as part of the BioNLP’09 corpus. Figure 3.6(b)
shows the same part of the sentence, but tokenised after the entity “Tumor
necrosis factor (TNF)-alpha” was recognised by the gene name recognisers'’
and was treated as a single noun. At this stage, the recognised named entities

are replaced by a generic noun to make sure that the parses treat them as nouns.

cells

(@
Tumaor| [necrosis| [factor —alpha-incuced HIv-1 replication E OM10.1 E| Ach

()]

Tumaor necrosis factor (THF)-alpha |Z| induced HIV-1 replication |E| OM10.1 E| Ach2

Figure 3.6: Example of semantic tokenisation.

]

Part of the example sentence tokenised (a) in the default tokenisation of the

BioNLP’09 corpus and (b) using semantic tokenisation.

Figure 3.7 shows the partial parse tree of the same sentence, as the
named entity is treated as a single-token proper noun. As this figure
demonstrates, the word “alpha” is part of the named entity “Tumor necrosis
factor (TNF)-alpha” and should not be separated from the rest of the
compound named entity. However, as can be seen in Figure 3.7(a), the parser
has recognised “Tumor necrosis factor (TNF)” as a noun phrase, and has
grouped “alpha” with another separated noun phrase. Consequently, if
“Tumor necrosis factor (TNF)-alpha” is marked as a named entity, and
“alpha” is treated as the head of this named entity (although it is not
technically the head of the phrase), the features extracted for this token will be
generally applied to the entire named entity. As this example shows, those
features could be very different from the features of any of the other tokens of
the named entity. This issue is addressed in Figure 3.7(b) in which parsing has
been performed after the semantic tokenisation, and therefore the features

extracted from the named entity will more likely be correct.

17 See section 5.1.3 for more details.
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Note that in this example, the parser has tagged “induced” as a past

participle form of a verb in Figure 3.7(b), whereas the correct grammatical

structure of this phrase should recognise this word in the phrase “Tumor

necrosis factor (TNF)-alpha-induced” as an adjective.
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Figure 3.7: Semantic tokenisation on the parse tree of a sentence.

cells

Syntactic parse tree of the example sentence, partially shown to demonstrate

semantic tokenisation (a) without semantic tokenisation and (b) with semantic

tokenization. The named entity “Tumor necrosis factor (TNF)-alpha” is treated as a

single-token proper noun in (b).

Replacing multi-token entities with place-holder nouns could potentially
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affect the performance of the other tools. For instance, sentence splitting is
performed after named entity recognition, and capitalisation is one of the
features that sentence splitters look for to determine the beginning of a
sentence. To prevent sentence splitters from missing the split where the next
sentence starts with a multi-token named entity, we make sure that we maintain
the capitalisation when we replace the named entity with the place-holder
noun.

Another issue is the overlapping entities. Named entities recognisers
often recognise entities that have overlapping spans. This can sometimes be an
error, for example in “Human Immunodeficiency Virus” at least three named
entities can be recognised, namely “Human”, “Virus”, and “Human
Immunodeficiency Virus”. Failing to recognise the longest string, the entity
mention could be resolved into an incorrect type, e.g. “Human”. However, it
does not always cause an error: often in the literature entities are actually
overlapping, as one named entity could have a sub-component which is also a
named entity of a similar type, with the longer entity merely being more
specified. For instance, in “fruit fly” or “Persian cat”, recognising entities
“fly” or “cat” would not resolve into incorrect entities, but into underspecified
entities.

In such cases, considering the union of the overlapping named entities
would solve both underspecification and incorrect problems. Therefore we take
the union of the overlapping named entities as one named entity and assign the
normalised properties of the longest named entity of the group to the resulting

string.

3.3 Extracting molecular events

At the time of this study, no suitable molecular event detection software was
publicly available, so we developed an event detection system called Evemole
that uses a combination of machine learning and rule-based methods and

makes use of dependency parse-tree-based features. It takes an input a sentence
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with the gene and protein named entities already recognised.
The system consists of two main modules: (1) event trigger and type
detection, and (2) event participant detection. Each module has a post-

processing stage. Figure 3.8 shows an overview of the system.

Trigger & Type Detection
dictionary of
Other triggertre\;ms test data gene/protein dependency
SOUMCeS p- names parse trees
‘-hh D_> CRF .

E classification 3
training data -~ l
-
feature N CRF triggers &
extraction training types
F

Figure 3.8: Overview of the event extraction system, Evemole.

Participant association

rules &
heuristics

The following sections explain the two main phases of the event

extracting system, i.e. trigger and type detection, and participant association.

3.3.1 Event trigger and type detection

Our view of the event trigger and type detection modules was that each token
in a sentence needed to be tagged either as a trigger for one of the nine event
types, or as a non-trigger/event token. We therefore decided to identify event
types and triggers in a single step by training a conditional random field (CRF)
classifier that assigned one of ten (nine types plus non-trigger) tags to each
token. CRFs have been shown to be particularly suitable for tagging sequential
data such as natural language text, because they take into account features and
tags of neighbouring tokens when evaluating the probability of a tag for a
given token (see Section 2.3.4).

Tokens and their part-of-speech (POS) tags were recognised using the
GENIA Tagger (Tsuruoka et al. 2005). Each stemmed token was represented
using a feature vector consisting of the following features:

* A binary feature indicating whether the token is a protein (as identified

by gene NER);
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A binary feature indicating whether the token is a known protein-
protein interaction word—we used a pre-complied dictionary of such
words collected from the training data and the previous studies (Fu et
al. 2009); (Yang et al. 2008) (see Appendix B for the full list);

¢ The token's POS tag;

¢ The log-frequencies of the token being a trigger for each event type in
the training data (nine features);

e The number of proteins in the given sentence.

Other features (e.g. separating the known interaction words according to
the nine event types) were explored, but were not included in the final feature
list since they increased the sparseness of the data and did not improve the
overall results. Also, the high level of ambiguity among trigger words and
event types meant that they could not be effectively used as features. For a full
list of all trigger terms and the frequency with which they represent events of
different type, see Appendix B.

In the following examples, a numeric type has been assigned by the CRF
module to every token in the sentence. Type 0 indicates that the token is not a
trigger word. Types with tags other than 0 are event triggers, and the numeric
value indicates the type of the event. Table 3.1 shows tagging of the tokens in
the phrase “I kappa B/MAD3 masks the nuclear localization” in which the
word “masks” has been tagged as class 9, indicating that it is the trigger of an

event of type Negative regulation.

tokens I kappa B/MAD3 | masks the nuclear localization
tags 0 |0 0 9 0 0 0

Table 3.1: Example tagging of a phrase by CRF

Tag 0 means that the token is not an event trigger. Tag 9 means that the token is the

trigger of an event of type Negative regulation.
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The performance of this phase was studied on the BioNLP’09
development dataset: we noted a number of false-positive and false-negative
results that were mostly due to the incorrect identification of a set of recurring
triggers. We therefore decided to perform a post-processing step to improve the
identification of event triggers and event types.

For this purpose, the output of the CRF module was overridden in cases
where the triggers appeared in a list of negatively discriminated trigger words
which was collected after the manual analysis of the false positive results on
the training and development data. Similarly, in cases where the CRF missed a
highly indicative trigger from a manually collected set for a given event type,
the trigger was added during the post-processing step (see Appendix B for a
complete list).

Finally, since triggers could consist of more than one consecutive token,
a set of simple rules were applied to remove typical false-negative constituents
identified by the CRF as part of triggers, namely removing ‘whereas’, ‘and’,
‘or’, and ‘but’ if recognised as part of a multi-token trigger.

In this task we used Monte (Memisevic 2007) which is a Python
framework for building gradient based learning machines like neural networks
and conditional random fields. It provides a range of kernel functions and

trainers including linear and sigmoid functions.

3.3.2 Locating event participants

After detecting potential triggers and associated event types, the next task was
to locate possible participants (i.e. ‘themes’ and ‘causes’) for each event.

We hypothesised that the linguistic structure of the sentence corresponds
to biological semantics that are conveyed by it. It was obvious that participants
did not have to be the nearest to the trigger on the surface level, so our
approach was based on distances within the parse trees associated with the
sentences containing candidate events. Parse tree distances have been studied

previously in clustering and automatic translation tasks (Emms 2008), as well
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as relation extraction tasks as discussed in Section 2.3.4. Therefore, we
hypothesised that we could use their properties to identify the most likely
participants.

The BioNLP’09 training data was analysed for the proximities between
the triggers and the (correct) event participants in the dependency parse tree of
the sentence. This analysis demonstrated that it was more likely for a theme to
appear in the sub-tree of the corresponding trigger, with 70.5% of all single
theme events (class I) having a theme which appeared in the sub-tree of the
trigger. Figure 3.9 shows the proportions of event participants that are in the

sub-tree vs non-sub-tree of the event trigger, for different classes of events.

in subtree

M Participantin

s subtree
Class II: binding -

0 1000 2000 3000 4000 5000 6000 7000
Figure 3.9: Sub-tree vs. non-sub-tree distribution of event participants

The proportions of event participants that are in the sub-tree vs non-sub-tree of the

event trigger, for different classes of events.

Figures 3.10, 3.11, and 3.12 present detailed density functions of the
dependency tree distances when the participants are or are not in the trigger’s
sub-tree, together with the cumulative distributions of these functions.
(ignoring non-protein nodes). The analysis showed that the theme was usually
amongst the nearest proteins to the trigger in terms of dependency parse tree
distances: for example, in 60% of all class I events (i.e. single theme events e.g.
gene expression, localization, etc.) the correct protein participant was the

trigger’s nearest or second nearest protein in the parse tree.
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Figure 3.10: PDF and CD for participants in sub-tree of trigger

(a) Probability density function (PDF) and (b) cumulative distribution (CD) of the
dependency distances between the trigger and the participant in the parse tree, when

the patrticipant is in the trigger’s sub-tree.
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Figure 3.11: PDF and CD for participants not in the sub-tree of the trigger
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(a) Probability density function (PDF) and (b) cumulative distribution (CD) of the

dependency distances between the trigger and the participant in the parse tree, when

the participant is not in the trigger’s sub-tree.
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Figure 3.12: PDF and CD of the participant distances from trigger

Overall (a) probability density function (PDF) and (b) cumulative distribution (CD) of

the dependency distance between the trigger and the participants in the parse tree.
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The same pattern was observed in other event classes as well. Specific
analyses of the parse trees associated with the class II (i.e. binding events
which may have more than one theme) suggested a linear relationship between
the parse tree distance and binding event participant number (the first
participant is the nearest, the second participant is the second nearest, etc.). In
Figures 3.10, 3.11, and 3.12 the third theme of binding events stands out as it
most commonly appears in the third relative place.

We used this distributional analysis (derived from the BioNLP’9 training
data) to design a rule-based method for the identification of participating
themes. The rules were manually derived for each of the nine event classes, by
defining:

¢ a threshold for the maximum distance to the trigger in the sub-tree for
the given event type;

e a threshold for the difference between the maximum distance in the
whole tree and the given sub-tree for the given event type;

¢ the number of nearest proteins to be reported for each trigger.

The thresholds were chosen experimentally to maximise performance,
and are comparable to those used in previous studies.

Table 3.2 contains an algorithm demonstrating the rules that were used to
assign participants to events of different types. All entities that satisfied a
distance-based rule for a given trigger were selected as the corresponding
theme(s) and/or cause. For example, if the event type was binding, then up to
the second closest protein in the sub-tree, and the first closest protein in the rest

of the tree are reported as themes.
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0. The trigger is already found with CRF
1. Make a list of all the proteins in the sentence in which the
trigger is found, sorted by the parse tree distance between
the protein and the trigger
2. Depending on the type of the trigger apply one of these
algorithms
2.1. If the trigger is of types Transcription, Localization,
Phosphorylation, or Protein catabolism
» lterate over the sorted list until the distance between
the protein and the trigger minus the distance
between the nearest protein to the trigger and the
trigger is more than a threshold. Return all such
proteins.
2.2. If the trigger is of type Gene Expression
» lterate over the sorted list until some threshold on
the distance, returning only the proteins in the sub-
tree.
2.3. If the trigger is of type Binding return the proteins which
are
* In the sub-tree of the trigger and have a distance
less than a looser threshold; or
* Have a distance less than a tighter threshold
2.4. If the trigger is any of the Regulation types
» Ifthere is an event already detected in the same
sentence, return the event
*  Otherwise return the nearest protein
3. Report all proteins/events found in step 3 as the participants

of the event

Table 3.2: Algorithm to to associate entities with triggers

The algorithm used to construct events by associating entities as participants to

triggers with already assigned types.

Engineering such rules for non-regulatory events was relatively

straightforward. However, regulatory events could have different kinds of
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participants (a protein or an event). Therefore, this would require a number of
recursions in the application of the rules to represent nested regulatory
processes. Still, the regulation events were specially complicated to detect, and
particularly because the type of participant (theme/cause) had to be
distinguished, so we aimed for a high recall and reported all the combinations
of the entities in the sentence.

In the case of the participant being an event, we locate the nearest trigger
for the event (being regulated) in the parse tree. For example, in Figure 3.13,
the nearest option to the regulation trigger (“secretion™) was the trigger of the
two localization events, and both events should be reported as the themes of
two regulation events.

To further demonstrate the method we study the sentence shown in

Example 3.9.

Example 3.9. “Monocyte tethering by P-selectin regulates monocyte

chemotactic protein-1 and tumor necrosis factor-alpha secretion.”

Figure 3.13 shows the parse tree of Example 3.9 which contains multiple

events.
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requlates
/ \
tethering secretion
. \
Monocyte by factor-alpha {T3)
SN~
P-selectin(T1) protein-1{T2) and tumaor{T3) necrosis (T3)
/N
manocyte (T2) chemaotactic{T2)

Figure 3.13: The parse tree of Example 3.9

The detected triggers are shown in boxes. Entities are numbered and are shown by
italic T.

The words “regulates” and “secretion” are correctly identified as
triggers for a regulation and a localization event in the first phase. Using the
rules for localization, we would then correctly identify the themes for two
localization events from the sentence parse tree as proteins T2 and T3
(“monocyte chemotactic protein-1” and “tumor necrosis factor-alpha”.) It
correctly ignores T1 (“P-selectin”) since it did not appear in the trigger’s sub-
tree.

The nearest option to the regulation trigger is “secretion”, which is the
trigger of the other events. Therefore both events would correctly be reported
as the themes of the two regulation events. Figure 3.14 shows the

representation of these four events.
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Figure 3.14: Representation of the events with participants

The events are extracted using parse-tree rules.

135

It can be seen that a number of recursions in the application of the rules

would be required to represent higher-order regulatory events. For the purposes

of this study, only regulations up to the second “order” were detected, allowing

other events to act as themes and causes as well as proteins.

Similar to the previous stage, here we also performed post-processing

based on studying the output of the system on the BioNLP’09 development

data. In this phase, we forced highly indicative regulation triggers (if not

previously identified) to be associated with an event by assigning proteins

appearing in the sentence to them, even when no protein in the sentence

satisfied the theme or cause criteria. This was aimed at improving the

extremely low recall for regulatory events.

3.4 Extracting negation

Negation and speculation are defining features in extracting conflicting events.
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We introduce a method, called Negmole, that uses machine learning to classify
molecular events as negated or speculated. We further build a pipeline to
integrate several text mining tools, including Negmole, to extract and
contextualise molecular events from the available body of scientific literature.
We use the event data that is extracted by this system to find conflicting events
across the literature, and classify them as candidates for contrasts and
contradictions.

We primarily focus on (and design our method for) negation detection,
but also adjust the method for speculation detection with some minor
modifications. At this stage, we assume that entity mentions, event triggers,
types, and participants have already been extracted, so this data can be used as
the input.

Initially, we implemented the NegEx algorithm (see Section 2.4.2) as a
baseline and applied it on the union of training and development data, by
considering the event triggers as the terms required by the algorithm. The
P/R/F-score achieved by this method was 36%/37%/36%. Analysing NegEx’s
FP and FN predictions (after leaving the development data unseen) we
identified the following patterns contributing to the errors.

It is a common characteristic of the biomedical literature abstracts
describing protein interactions that more than one event or interaction is
expressed in a sentence. Amongst those sentences that do express an event, an
average of 2.6 event triggers appear, and the number of events actually
described can be higher, as the event trigger does not repeat when the
participants of different events are joined by a conjunction. Example 3.10

shows a sentence describing a number of events.

Example 3.10. “In this study, we demonstrate that Tax-stimulated
nuclear expression of NF-kappa B in both HTLV-I-infected and Tax-
transfected human T cells is associated with the phosphorylation and

rapid proteolytic degradation of I kappa B alpha.”
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(From PMID 7935451)

The NegEx algorithm implicitly assumes the occurrence of one idea per
sentence. In the case where several events are expressed in the sentence—
whether they are separated by conjunctions or not—NegEx fails to detect the

correct scope. See Example 3.11, for instance.

Example 3.11. “We also demonstrate that the IKK complex, but not
p90 (rsk), is responsible for the in vivo phosphorylation of I-kappa-B-
alpha mediated by the co-activation of PKC and calcineurin.”

(From PMID 10438457)

More specifically, when there is a contrast expressed in the sentence as in
Example 3.11, NegEx fails to determine which one of the contrasting
statements are negated and which one is affirmed. This could happen in cases

where no conjunction appears, as in Example 3.12.

Example 3.12. “In contrast, NF-kappa B activity was not detected in
the nucleus following long-term expression of Tax in Jurkat T
lymphocytes.”

(From PMID 1964088)

As there are more than two interaction words per sentence for sentences
that describe an interaction, for any method to be able to effectively detect
negations, it should be able to link the negation cue to the specific token/event
trigger/entity name in question.

Figure 3.15 shows an overview of the negation detection system,
Negmole, that uses detected entities and events as input. We construe the
negation detection problem as a classification task where the aim is to classify

the previously detected events as affirmative or negative. The same applies to



138 Chapter 3 Molecular event extraction and contextualisation

the speculation detection task (see Section 3.5). To extract negated and
speculated events, we use machine learning with lexical, syntactic, and
semantic features. Lexical features include negation cues, part-of-speech tags,
and surface distances between key elements of an event. Syntactic features
include the relationship between those elements within the constituency parse
tree of the sentence. Semantic features involve the biological characteristics of
the events, such as the types of the events or their participants. These will be

explained in the following sections.
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Figure 3.15: An overview of Negmole

The requirements of Negmole are specified.

About 95% of the annotated events in the BioNLP’09 corpus are
encompassed in a single sentence (Bjorne et al. 2009), so we limit our attention
to events that have their components (trigger and participants) within
sentences. Negmole then classifies each event using the features engineered
from an event-representing sentence. The following sections describe the

details of the system.

3.4.1 Detecting negation and speculation cues

Detecting negation cues (see Section 2.4) can be generally construed as a
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named entity recognition problem. Compared to other entities discussed so far,
words and phrases indicating negation and speculation are relatively less
ambiguous and have less term variability. Previous approaches that have used
dictionary look-up methods report a reasonable performance (see Section 2.4),
and thus here we also use a similar dictionary-based approach.

We built the cue dictionaries semi-automatically by analysing the
BioNLP’09 training data. For both negation and speculation, we first
considered exact matches between tokens and cues in the dictionaries. In later

experiments, we used stemming to also detect inflected forms of the cues.

Negation cues

We used two different cue sets, a smaller, stricter set, and a larger set that
included the first set. The small cue set was largely composed of general
linguistic cues, whereas the larger one also contained domain-specific cues that
would not necessarily have been considered a negation cue in a different
domain. Words such as “inhibit”, “unchanged”, and “block” do not indicate a
negation in natural language sentences per se. However, they commonly
indicate the absence of the biomedical event that is being discussed. The two
sets of negation cues as well as the negation cues with stemming are listed in
Table 3.3.

The distribution of the most frequent of these cues in the BioNLP’09
training data is shown in Figure 3.16. This figure only shows the occurrence of
these cue words in the corpus and not whether these words indicate any
negated event. As the negation cues are not annotated in this corpus, it is not
possible to infer with certainty what has been the exact clue for the annotators
to mark a given event as negated. In fact, many of these occurrences, e.g. the
occurrences of “inhibit” may indicate affirmative down regulation events.
Others may refer to other negated concepts not related to molecular events. On
the other hand, some negated events may have been marked as negated due to a

cue that is not included in this list.
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Small negation cue | no, not, none, negative, without, absence, fail, fails,
set without failed, failure, cannot, lack, lacking, lacked

stemming

Large negation cue |no, not, none, negative, without, absence, fall, fails,

set without failed, failure, cannot, lack, lacking, lacked, inactive,
stemming neither, nor, inhibit, unable, blocks, blocking, preventing,
prevents, absent, never, unaffected, unchanged,

impaired, little, independent, except, exception

Final negation cue absenc, absent, block, cannot, except, fail, failur, impair,

set (stemmed) inact, independ, inhibit, lack, littl, neg, neither, never, no,

none, nor, not, prevent, unabl, unaffect, unchang, without

Table 3.3: The negation cue sets used in different experiments.
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Figure 3.16: Distribution of negation cues in the BioNLP’09 training data

Showing the most frequent negation cue word occurrences, but not necessarily
indicating a negated event.

The experiments using the different cue sets differed slightly in precision
and recall, but overall the F-score was not affected. More detailed results and

analysis will be presented in Chapter 4.
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Speculation cues

Similarly to the negation cues, we used a set of stemmed speculation cues as
the reference dictionary to detect speculation cues. After some experiments
with the stems selected from the training data, we discovered that three of the
stems, namely “thought”, “confirm”, and “delin” (stem for delineate) are
having an adverse effect on the performance of the speculation detection task
when tested on the development data. The initial and final speculation cue sets

with stemming are listed in Table 3.4.

Initial set of speculation | mai, can, could, might, mayb, thought, suggest, hypothes,
cues, composed from | investig, ask, found, find, possibl, confirm, seem, appear,
the training data examin, like, unclear, evid, must, probabl, undefin, clear,

(stemmed) implic, observ, postul, determin, analys, analyz, partial,

propos, assume, whether , delin

Final set of speculation | mai, can, could, might, mayb, suggest, hypothes, investig,

cues, after removing ask, found, find, possibl, seem, appear, examin, like,

some cues unclear, evid, must, probabl, undefin, clear, implic, observ,
experimentally postul, determin, analys, analyz, partial, propos, assume,
(stemmed) whether

Table 3.4: The set of speculation cues used in different experiments.

Note that both sets contain stemmed cues.

The distribution of the most frequent of these speculation cues in the
BioNLP’09 training data is shown in Figure 3.17. The same considerations as
the negation cue distribution apply here as well, as this figure can only be an
approximation of the speculation cues that have in fact caused the event to be
speculated. Note the difference in scale between Figure 3.16 and Figure 3.17.
The top negation cue appeared more than 3500 times, whereas the most

frequent speculation cue appeared only under 400 times.
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Figure 3.17: Distribution of speculation cues in the BioNLP’09 training data

Showing the most frequent speculation cue word occurrences, but not necessarily
indicating a speculative event.

Handling multiple cues

It is common in general and specifically in the BioNLP’09 corpora for
sentences to contain more than one negation or speculation cue. Analysing the
training and development data sets shows that amongst the sentences that do
contain a negation or speculation cue, on average they contain 1.44 cues. It was
interesting that the distribution of the two cue types as well as the averages
were quite similar, with the average number of negation cues per sentences
with negation cues being 1.22 and the same statistic for speculation cues being
1.27.

Figure 3.18 shows the number of sentences in the combined BioNLP’09
training and development data sets for a given number of cues on a logarithmic
scale. In this data set, there were two sentences with five speculation cues (as

given in Example 3.13).
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Example 3.13.

(a) “We therefore investigated whether the activation of the IL-1RI-

associated protein kinase could be a target for redox regulation and
whether an altered activity of the kinase could influence IL-1-mediated
NF-kappa B activation.”

(From PMID 9394832, speculation cues detected by Negmole.)

(b) “Because this region of Stat3alpha is involved in transcriptional

activation, our findings suggest the possibility that Stat3gamma may be

transcriptionally inactive and may compete with Stat3alpha for Stat3
binding sites in these terminally differentiated myeloid cells.”

(From PMID 9823774, speculation cues detected by Negmole.)

10000

1000
100 B Negation
B Speculation
| l
. N
0 1 2 3 4 5

Figure 3.18: Distribution of sentences containing any cues

o

The number of sentences in the BioNLP'09 training and development data sets with a
given number of negation or speculation cues, displayed on a logarithmic scale. Note
that there was one sentence with five negation cues, which cannot be shown here.

There are no sentences with six or more cues.

There was also one sentence in the corpus which contained five negation

cues. This sentence and another example with four negation cues are shown in
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Example 3.14.

Example 3.14.

(@) “However, plasma membrane-proximal elements in these
proinflammatory cytokine pathways are apparently not involved since
dominant negative mutants of the TRAF2 and TRAF6 adaptors, which
effectively block signaling through the cytoplasmic tails of the TNF-
alpha and IL-1 receptors, respectively, do not inhibit Tax induction of
NF-kappaB.”

(From PMID 9710600, negation cues detected by Negmole.)

(b) “This inhibition was not mediated through Nef phosphorylation on
Thr-15 or GTP-binding activity because mutations in critical sites did
not alter this inhibition™

(From PMID 7917514, negation cues detected by Negmole.)

Note that not all the cues in Example 3.14 indicate linguistic negation, as
some of them refer to negative biological concepts, or down-regulation.

As we can see from these examples, the number of cues in a sentence can
be an indication of how strongly the sentence expresses negation or
speculation. Therefore, we use the number of cues in the sentence as a feature.

We choose one of the cues in the sentence as the main cue. Since our
approach is event-oriented, we propose a way to identify the main cue for an
event and not for the whole sentence. We hypothesise that the main cue is the
cue which is responsible for the negation of an event, and we aim to extract
relevant features from it. The main cue is selected for each event
independently, rather than selecting a main cue for the whole sentence. For
every event, the cue that has the shortest constituency parse tree path to the
event trigger is selected as the main cue. Using this method, the main cue in a
sentence can be different for every event.

To demonstrate how cue distances are calculated, consider Example 3.15.



3.4 Extracting negation 145

Example 3.15.

“Structure and function analysis of the human myeloid cell nuclear
differentiation antigen promoter: evidence for the role of Sp1 and not
of c-Myb or PU.1 in myelomonocytic lineage-specific expression.
(From PMID 9136080 annotated by the BioNLP’09 corpus annotators)

This sentence contains two molecular events: a regulation event (with
trigger “role”) and a gene expression event (with trigger “expression”). The
regulation event is negated, whereas the gene expression event is affirmative.

Figure 3.19 shows the partial parse tree of the sentence. It can be

observed that the constituency parse tree distance between the negation cue

13 »

not” and the trigger of the regulation event “role” is equal to 4, and the
constituency parse tree distance between the negation cue and the trigger of the

gene expression event “expression” is equal to 5.
P
_— PP\
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the role of Spl and not of c-MyborPU.L1 in myelomonocytic  lineage-specific expression

PP

Figure 3.19: Partial constituency parse tree showing the trigger-cue distance

Partial constituency parse tree of the sentence in Example 3.15. The negation cue
“not” has a distance of 4 with trigger “role”, and a distance of 5 with trigger

“expression”.

There is only one negation cue in this sentence, therefore it will be
considered as the main cue for both of the events. However, the features of the

two events with regard to negation will be different, as their trigger-cue
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distances are not the same.
Note that since negation and speculation detection is performed
completely independently, it does not cause any complexities if a sentence

contains a mixture of negation cues and speculation cues.

3.4.2 Negations with command rules

The command relation was introduced in Section 2.3.3. In this research, we
only require condition 2 for command relation to hold, namely, node a
‘commands’ another node b if the S-node that most immediately dominates a
also dominates b.

We hypothesised that if a negation cue has some command relationship
with an event component, then the associated event could be negated. To test
this hypothesis, we developed a rule-based system and experimented with three
possible rules. An event is considered negated if either of the following
conditions hold.

¢ the negation cue commands any event participant in the parse tree; or
¢ the negation cue commands the event trigger in the tree; or

¢ the negation cue commands both.

To determine whether token a X-commands token b, given the parse tree
of a sentence, we use an algorithm introduced by (McCawley 1993), tracing up
the branches of the constituency parse tree from a until a node that is labelled
X is reached. If b is reachable by tracing down the branches of the tree from
that node, then a X-commands b; otherwise, it does not.

Figure 3.20 displays a parse tree of Example 3.16.

Example 3.16. “We now show that a mutant motif that exchanges the
terminal 3’ C for a G fails to bind the p50 homodimer |[...]”
(From PMID 9442380)
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I\,

We now
show that

O\

a mutant motif that exchanges  fails to bind the p50
the terminal 3' C for a G homodimer.

Figure 3.20: Command relation detecting a negated event

The simplified parse tree of the sentence “We now show that a mutant motif that
exchanges the terminal 3’ C for a G fails to bind the p50 homodimer.” The negation
cue “fails” VP-commands one of the event triggers, "bind” and therefore causes that
event to be negated. There was no such command relation between the other trigger,

“exchanges”, and therefore the respective event is not affected.

This figure shows how the command relation can signal the affected part
of the sentence. The negation cue, “fails”, VP-commands the event trigger
bind, and therefore indicates that the associated event is negated. However,
another event trigger in the sentence, “exchanges”, is not affected by this cue
and therefore is not negated. The main verb of the sentence, show, is also not
commanded by the cue and is therefore affirmative, as can be easily verified.

The results of this rule-based approach will be presented in Chapter 4.

3.4.3 Extracting negations—a machine learning approach

Here we explain another approach to negation detection, using machine
learning to increase the performance of the rule-based method.

Given a sentence that describes an event, we further construe the
negation detection problem as a classification task: the aim is to classify the

event as affirmative or negative. For this purpose, we use an SVM (support
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vector machine) classifier. In recent years, many machine learning algorithms
have been implemented into efficient and customisable tools and have been
made publicly available. These tools have been exploited for a wide range of
applications in the areas of text mining and data mining.

The machine learning tools that have been helpful to our research are

* SVM light: Support Vector Machine implementation in C (Joachims
1999)

* SVM perf: an optimisation of the SVM, specifically for binary
classification (Joachims 2006)

We explore two approaches: (1) using a single SVM classifier modelling
negation for all events together; and (2) using three separate SVM classifiers,
each one modelling negation for each of the event classes I, II, and III.

In the first experiment, the following features were engineered from an

event-representing sentence. These features are common across all classes.

Lexical features:
1. Whether the sentence contains a negation cue from the cue list;
2. The negation cue stem (if present);
3. The part-of-speech (POS) tag of the negation cue;
4. The POS tag of the event trigger;
5. The POS tag of the theme of the event; if the theme is another event,
the POS tag of the trigger of that event is used

Syntactic features:

6. The constituency parse node type of the lowest common ancestor of the
trigger and the cue (i.e. the type of the smallest phrase that contains
both the trigger and the cue, e.g. S, VP, PP, etc.);

7. Whether or not the negation cue commands any of the participants;
nested events (for Class III) are treated as above (i.e. as being

represented by their triggers);
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8. Whether or not the negation cue commands the trigger;
9. The constituency parse-tree distance between the event trigger and the

negation cue.

Semantic feature:

10. Event type (one of the nine types as defined in BioNLP’09);

Note that only one feature depends on the event type. We use a default
value (null) where none of the other values apply (e.g. when there is no cue in
feature 3 and 4). When there are more than one cue in the sentence, the main
cue as described above (i.e. the cue that has the shortest constituency distance
to the event trigger in the syntactic parse of the sentence) is considered.
Therefore, different events in the same sentence might be affected by different
negation cues.

In the first experiment, we train a single classifier on the whole training
set, adding features incrementally and observing the effect of every added
feature. Once the best set of features have been identified, we evaluate the
trained model on each class separately.

In the second experiment, we train different models on the same common
features for each class. Finally, we train three separate classifiers with class-

specific feature sets.

Negation in regulation events

The structure of the regulatory events allows different number and types of
participants (entities and events), as well as different participation type (theme
and cause). They are the most common events in the literature and any
improvement in the detection of negated and speculated regulatory events will
have a considerable impact on the overall performance of the system. For these
reasons, and to explore class-specific features in our approach, we decided to

further analyse the regulation events and explore the effects of different
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features on the detection of the negated events.

For this purpose, we designed the following experiments on the
regulation events (class III).

Our target events are regulatory processes and causal relations between
different biomedical entities and processes. Each regulatory event expressed in
text is identified by:

e regulation type—we consider three regulation sub-types: positive
regulation and negative regulation, in addition to regulation events
where there is no indication if it is positive or negative;

¢ regulation theme represents an entity or event that is regulated;

¢ regulation cause—a protein or event that causes regulation;

e event trigger—a token(s) that indicates presence of the event in the

associated sentence.

Lexical features are based on a list of negation cues and part-of-speech (POS)
tagging of the associated sentence. We also consider the surface distance
between the negation cue and trigger, theme and cause. More precisely, the
lexical features include:
1. Whether the sentence contains a negation cue from the cue list;
2. The negation cue itself (if present);
3. The POS tag of the negation cue;
4. The POS tag of the trigger;
5. The POS tag of the theme; if the theme is another event, the POS tag of
the trigger of that event is used;
6. The POS tag of the cause; if the cause is another event, the POS tag of
the trigger of that event is used;
7. Surface distance between the trigger and cue;
8. Surface distance between the theme and cue;

9. Surface distance between the cause and cue;
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Syntactic features are based on the results of constituency parsing of the

associated sentence and the command relation. We explored various types of

X-command, including S-command (for sentence or sub-clause), NP-command

(noun

phrase), VP-command (verb phrase), PP-command (prepositional

phrase), etc. We also consider the distances of the event components within the

tree. Specifically, the syntactic features include:

10.

11.

12.

13.

14.

15.

16.

The type of the lowest common ancestor of the trigger and the cue
(either S, VP, PP, NP, JJ or PP);

Whether or not the negation cue X-commands the trigger (X is S, VP,
NP, JJ, PP)

Whether or not the negation cue X-commands the theme (X is S, VP,
NP, JJ, PP)

Whether or not the negation cue X-commands the cause (X is S, VP,
NP, JJ, PP)

The constituency parse-tree distance between the event trigger and the
negation cue.

The constituency parse-tree distance between the theme and the
negation cue.

The constituency parse-tree distance between the cause and the

negation cue.

Semantic features introduce known characteristics of the regulation

participants and the sub-type of regulation (if known):

17.
18.

19.

Regulation sub-type (positive, negative, none);

Theme type, which can be either a protein or one of the nine event
types as defined in BioNLP’09: gene expression, transcription, protein
catabolism, localization, phosphorylation, binding, regulation, positive
regulation, and negative regulation;

Cause type is defined analogously to the theme type.
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The above features have been used to train a number of binary SVM
(support vector machine) classifiers that aim to identify negated regulation

events.

3.5 From negations to hedges

In the BioNLP’09 corpus, slightly more than 5% of the events are annotated as
speculated. Two instances are given in Example 3.17. Note that the second

sentence is both negated and speculated.

Example 3.17.

(a) “However, it was not possible to ascertain whether Bcl-2
upregulation was a specific consequence of LMP1 expression.”

(From PMID 7520093 annotated by the BioNLP’09 corpus annotators)
(b) “CD28-dependent elevation of c-jun mRNA does not appear to be
mediated at the level of mRNA stability.”

(From PMID 7989745 annotated by the BioNLP’09 corpus annotators)

The question of whether an event is reported speculatively in text has
several characteristics in common with that of negated events. They can both
be construed as classification problems; they both have a cue, and the cue
affects a part of the sentence (scope) within which the event may be expressed.
If some part of an event is described in the part of the sentence that falls in the
scope of the negation or speculation cue, the event would probably be negated
or speculated.

Negmole was mainly developed and tested for the detection of negations
of the molecular events expressed in text. However, we hypothesised that the
negation detection methods were not specific only to this task, and could be
expanded to detect similar semantic characteristics about these events, such as
speculation.

To test this hypothesis, similarly to negation, we construed the
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speculation detection problem as a classification problem that would classify
extracted molecular events into speculative and assertive categories. We noted
that an event can be independently speculated or negated, so the results of one
classifier need not affect the other.

We chose the experimental setting with the best negation detection
results and modified it for speculation detection. We used separate SVM
models with class-specific feature sets to train on speculation data, as this
setting resulted in the highest performance for negation detection (see Section
4.4.1).

We used the same syntactic and semantic features in the speculation
detection task as the negation detection task. The lexical features were
customised by adding a speculation cue list to replace the list of negation cues

(See Table 3.4).

3.6 Summary

In this chapter we presented methods for event extraction (Evemole), a
hybrid rule-based and machine learning approach for detecting molecular
events.

We also presented Negmole to detect negated molecular events. The
negation extraction system was expanded to detect information regarding

statements and findings that are reported speculatively.
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Chapter 4

Evaluation of event extraction and contextualisation

In this chapter we describe the evaluation approach used to evaluate the
methods for molecular event extraction and negation and speculation detection.
Subsequently, the results and evaluation of these methods are presented and

discussed.

4.1 Evaluation method

4.1.1 Evaluation metrics and approach

The standard metrics precision, recall and F1-measure (introduced in Section
2.7.1) were used to evaluate the results of the methods which were presented in
Chapter 3 . In the event extraction task, a true positive instance represents an
event that is correctly identified. For this purpose, we need to determine
whether the manually annotated event corresponds to the event extracted
automatically. Due to the complex nature of the events, event equality as
previously discussed in Section 3.1.3 is not trivially defined.

In the BioNLP’09 Shared Task, a number of definitions for event
equality was used by the organisers to provide different levels of flexibility in
the evaluation. In all cases it was required for the extracted event and the gold
event to share the same type, trigger, participants, and participation type (i.e.
theme/cause). If a participant is another event, those events should also match
recursively. In the strictest evaluation case, for the two triggers to be the same,
it was required that their textual boundaries exactly match. In a more relaxed
evaluation methods, approximate span matching, the extracted triggers need
only fall within an extension of the gold trigger span, by one word to either
side of the trigger.

As regulation events can take other events as arguments and therefore
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defining recursive equality can become very complicated, approximate
recursive matching was defined to let the arguments of a regulation event to
be only partially correct if they are event themselves. For partial matching,
only theme arguments (as well as trigger and type) were considered. Cause
arguments could be missing, incorrectly assigned, or redundantly extracted.
Here, we also use approximate span matching, allowing the gold and extracted
sub-strings to overlap. But we report exact boundary evaluation wherever
appropriate.
In the evaluation of Evemole (introduced in Chapter 3 ) we consider an

extracted event as a true positive instance if all of the following criteria hold:

1. The extracted trigger matches the gold trigger, approximately matching

boundaries;

2. The extracted event type is the same as the gold event type;

3. The participation types match (theme or cause); and

4. If any of the participants is an event, it must also be a true positive,

defined recursively.

Moreover, we require the matches to happen at the mention level. So, for
example, if a sentence contains more than one mention of a certain entity, and
the gold standard annotations consider one of these mentions as the participant
of an event, we require the exact same mention of the entity (with correct start

and end indices) to be assigned to the extracted event.

Example 4.1. “Nuclear run-on assays and mRNA stability studies

demonstrated that M-CSF regulates c-jun expression by both an

increase in transcription rate and a prolongation in the half-life of c-
jun transcripts.”

(From PMID 1712226 annotated by the BioNLP’09 corpus annotators)

In Example 4.1, the gene “c-jun” is mentioned twice. Also, two events
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involving c-jun are reported. One is the expression of c-jun, indicated by the
trigger “expression”, and the other is its transcription, indicated by the trigger
“transcription”. However, although these facts may be sufficient information
extraction for a biologist, in this NLP evaluation we require the correct
mention of c-jun to be associated with the extracted events. Specifically, for the
events to be considered true positive, the first mention of c-jun must be
detected as the participant of the gene expression event, and the second

mention as that of the transcription event.

4.1.2 Evaluation corpora

The corpus used for the evaluation of event extraction, negation, and
speculation is the BioNLP’09 gold annotated development corpus, described in
Section 2.6. The corpus is derived from the GENIA corpus, with some
modifications to restrict the data to molecular events between gene or protein
entities (see Section 2.6).

However, as part of the BioNLP’09 Shared Task, the organisers reported
the results of system evaluations on another “test” data set. The BioNLP’09
Shared Task test data set was a set of 260 abstracts from a subset of the GENIA
corpus without publicly available gold annotations for events. The test data set
was used to test the performance of the participants of the Shared Task.

The BioNLP’09 assessment was based on the output of the system when
applied to this test dataset of 260 previously unseen abstracts. This data set,
similarly to the training and development data sets, had manual annotations for
gene and protein entities.

We use this corpus, along with the other two BioNLP’09 corpora
(training and development data sets) in the evaluation of event extraction

methods described in Chapter 3.

4.2 Evaluation of event extraction

The overall F-score of Evemole on the unseen test data was 30.35% with

48.61% precision using approximate boundary matching for the triggers (see
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Table 4.1). The best performing event types were phosphorylation (the best F-
score and the best recall) and gene expression (the best precision with a

reasonably good F-measure).

Event Class #Gold R P F-score
Localisation 174 44.83 53.06 48.60
Binding 347 12.68 40.37 19.30
Gene expression 722 52.63 69.34 59.84
Transcription 137 15.33 67.74 25.00
Protein catabolism 14 42.86 50.00 46.15
Phosphorylation 135 78.52 53.81 63.86

Non-regulatory total 1529 41.53 60.82 49.36
Regulation 291 3.09 19.15 5.33
Positive regulation 983 1.12 8.87 1.99
Neg. regulation 379 12.4 20.52 15.46

Regulatory total 1653 4.05 16.75 6.53
All total 3182 22.06 48.61 30.35

Table 4.1: Evaluation of Evemole on the BioNLP’09 test data

The evaluation is reported on 260 abstracts, using approximate boundary matching

criteria. #Gold refers to the number of instances in the gold standard data set.

An analysis of the results was performed on the development data, which
had around 5% higher overall F-score than the test data (9% for non-regulation
events, see Table 4.2 for details).

The CRF parameters were adjusted for maximum performance on the
development corpus, including the choice of training algorithms (chain CRF
linear, conjugate gradients, back propagation and other neural network models,
etc.), the number of training steps, the size of the window within which the
tokens can affect any given token, and the number of training abstracts used in

each training step. It was interesting to observe that there were no significant
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improvements in the performance after training on 100, 400 or 800 abstracts
from the training set, suggesting that the model is already stable after training

on the first 100 examples (data not shown).

Event Class #Gold R P F-score
Localization 53 67.92 46.75 55.38
Binding 312 21.47 63.81 32.13
Gene expression 356 64.61 76.33 69.98
Transcription 82 53.66 89.80 67.18
Protein catabolism 21 90.48 67.86 77.55
Phosphorylation 47 91.49 53.09 67.19
Non-reg total 871 50.4 68.44 58.05
Regulation 172 5.23 33.33 9.05
Positive regulation 632 3.48 21.36 5.99
Neg. regulation 201 9.45 15.08 11.62
Regulatory total 1005 4.98 19.53 7.93
All total 1876 26.07 54.46 35.26

Table 4.2: Evaluation of Evemole the BioNLP’09 development data

The evaluation is reported on 150 abstracts using approximate boundary matching

criteria. #Gold refers to the number of instances in the gold standard data set.

4.3 Event extraction discussion

The overall F-score for Evemole was 30.35% with 48.61% precision on the
previously unseen test data (see Table 4.1 for details). The best performing
event types were phosphorylation (the best F-score and the best recall) and
gene expression (the best precision with a reasonably good F-measure).

While the results for non-regulatory events (classes I and II) were
encouraging, they were low for regulatory events (class III). Among the 24

teams submitting the test results, our results were ranked 12" for the overall F-
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score and 8" for the F-score of non-regulation events, suggesting that
improvement in the detection of class III events could result in the overall
improvement of the system. A summary of the results of all the participating

teams can be found in Table 4.3.

Team R P F

UTurku 46.73 58.48 51.95
JULIELab 45.82 47.52 46.66
ConcordU 34.98 61.59 44.62
UT+DBCLS 36.9 55.59 44.35
VIBGhent 3341 51.55 40.54
Utokyo 28.13 53.56 36.88
UNSW 28.22 45.78 34.92
Uzurich 27.75 46.6 34.78
ASU+HU+BU 21.62 62.21 32.09
Cam 21.12 56.9 30.8

Uantwerp 22.5 47.7 30.58
UNIMAN (Evemole) |22.06 48.61 30.35
SCAI 25.96 36.26 30.26
Uaveiro 20.93 49.3 29.38
Team 24 22.69 40.55 29.1

Uszeged 21.53 36.99 27.21
NICTA 17.44 39.99 24.29
CNBMadrid 28.63 20.88 24.15
CCP-BTMG 13.45 71.81 22.66
CIPS-ASU 22.78 19.03 20.74
Umich 30.42 14.11 19.28
PIKB 11.25 66.54 19.25
Team 09 11.69 31.42 17.04
KoreaU 9.4 61.65 16.31

Table 4.3: The results of all the teams in the BioNLP’09 Shared Task

An analysis of our results was performed on the development data, which
had around 5% higher overall F-score than the test data (9% for events of
classes I and II, see Table 4.2 for details).

To further explore the factors affecting the results, we define the lexical
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variability of each event type to be the number of different word stems used to
describe that event divided by the total number of mentions in the text that
trigger that event. This measure is akin to the well-know measure of lexical
variation of a document which refers to the number of word types divided by
the number of word tokens in a document.

For example, there are a total number of 47 phosphorylation events in the
development data, triggered by 40 different mentions. The reason for the
disparity is that sometimes, as in Example 4.2, one mention triggers several
events. The sentence in Example 4.2 is counted three times in the total number

of events, but only once in the total number of triggers.

Example 4.2. “Phosphorylation of the IkappaB cytoplasmic inhibitors,

IkappaBalpha, lkappaBbeta, and lkappaBepsilon, by these kinases

triggers proteolytic degradation and the release of NF-kappaB/Rel
proteins into the nucleus.”

(From PMID 9804806, annotated by the BioNLP’09 corpus annotators)

Phosphorylation events have been described in the development data
using the following forms: phosphorylation, phosphorylate, phosphorylates,
phosphorylation sites, underphosphorylated form, and the capitalised
Phosphorylation. There are 5 different terms—ignoring the capitalised
variation—triggering the event phosphorylation. If we bundle up all of those
mentions which have the same stem, we will end up with only the following 3
stems: phosphoryl, underphosphoryl form, and phosphoryl site.

To calculate the lexical variability of an event type, we divide the
number of different stems of the triggers by the total number of mentions for

that event type.

= number of different trigger stems
number of trigger mentions

Vtype
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The lower this number is, the less lexically variable the triggers for that

event type are. The lexical variability of different types are calculated and

presented in Table 4.4.
Type # Events | # Trigger mentions | # Distinct | # Distinct | Lexical Confusion
triggers | trigger variability
stems

Gene expression 356 282 49 37 0.13| 0.122833
Transcription 82 68 22 18 0.26| 0.259023
Protein 21 19 4 3 0.16| 0.020202
catabolism

Localisation 53 40 15 13 0.33] 0.112195
Phosphorylation a7 40 5 3 0.08 0
Binding 249 180 51 33 0.18| 0.01037
Regulation 173 138 63 43 0.31| 0.097902
Positive 618 462 164 111 0.24| 0.059021
regulation

Negative 196 153 86 62 0.41| 0.008011
regulation

Table 4.4: The lexical variability of the triggers with respect to interaction type

In order to measure how characterisable an event type is with regard to

the triggers that are used to express events of that type, we consider the

different types a specific trigger can refer to as different senses of the trigger,

and use a weighted sum of the word sense entropy of the trigger to define the

characterisability of the type.

Shannon’s entropy H of a discrete random variable X with possible

values { X...,X

following.

xI=3

X;)log,(

1
p(x)

} and probability mass function p is defined as the

We define the word sense entropy of a given trigger based on Shannon’s



162 Chapter 4 Evaluation of event extraction and contextualisation

entropy as the following.

. #(trigger ,type) #(trigger ,type)
Hit =— 1
[irigger a%es(#(trigger,*) ° 2(a*#(trigger,*) )

#(trigger , type)
#(trigger ,*)

In this equation, refers to the number of times that a

trigger is used to refer to an event of a certain type divided by the total number
of times it is used for all different event types. The asterisk represents all
different event types.

Moving on from the above definition of the entropy for every trigger, we

define the entropy of a type as a weighted sum over the triggers of that type.

. #(trigger , type)
H|type|= H|trigger].
trigg;type # (* ’ lype)

And finally, we introduce the following, with a similar idea as tf-idf, as a
measure of confusion, or how un-characterisable a class is with regard to

trigger term.

#(trigger , *—type) #(trigger , type)
Cltype]= (7 : )
triggerzerype #(trlgger, *) #(*1lype)

The confusion measures as described above for the 9 event types are
displayed in the last column of Table 4.4. As can be seen in Table 4.4,
phosphorylation triggers have the lowest lexical variability, and zero
confusion. This observation explains the high quality of trigger detection for
this type despite the relatively small number of training instances. Low lexical
variability means that there is a relatively low chance of a word with a
previously unseen stem act as the trigger of a phosphorylation event and

therefore be missed, resulting in a false negative instance. Low confusion
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means that there is a relatively low chance that a word that could potentially be
the trigger for a different event type (or a non-trigger), be mistakenly
recognised as a phosphorylation trigger, resulting in a false positive instance.

Gene expression is the most frequent event type. Despite the relative high
confusion measure of the gene expression trigger terms, the low lexical
variability together with the high frequency of instances could have been
responsible for the higher accuracy of the trigger identification by the CRF
module.

The type-specific performance could be inversely related to the lexical
variability and confusion of the trigger terms as well as the low frequency of
the type. Specifically, analysing our trigger recognition results suggests that
recall is negatively correlated with the lexical variability and precision is
negatively correlated with confusion. Figures 4.1 and 4.2 show such
correlations in our trigger evaluation results.

An analysis of the overall results of the other teams'™ showed some
correlation between the average recall and lexical variability (R* = 0.68) but no
such correlation between confusion and the average precision (R* = 0). The
coefficient of determination, R?, is the square of the correlation coefficient, and
is used as a measure of correlation (Mendenhall et al. 2009).

We do not have access to the trigger-only evaluation of the other
systems, and therefore cannot measure the exact correlation. Future work is
needed to generalise these finding, and find more accurate measures involving

other factors such as term frequencies.

18 A summary of the results of all the teams can be accessed at http://www-

tsujii.is.s.u-tokyo.ac.jp/GENIA/SharedTask/results/results-master.html
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Figure 4.1: Correlation between recall and lexical variability for event types

The linear regression equation and the correlation coefficient are shown as f(x) and
R.

These correlations can potentially be used to predict the results of an
information extraction task before accomplishing it, and set theoretical upper
and lower bounds on the results of a tested system on new data, without having
to apply the system to the data, and only by looking at the distribution and the

properties of the data.
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Figure 4.2: Correlation between precision and confusion for event types

The linear regression equation and the correlation coefficient are shown as f(x) and
R.

We will now show that the accuracy of the trigger detection is directly
related with the overall performance of the event extraction.

In order to assess the effects of different steps in our approach, we
evaluated the performance of the event trigger and event participant detection
steps separately. The results presented in Table 4.5 show the trigger-only
evaluation before the participants are associated to form the events. These
results indicated that the performance of the trigger detection (CRF) module
was not much better than the overall performance of the system (an F-score of
43% vs. 35%), suggesting that the CRF module for trigger detection was
mostly responsible for the errors, by both missing triggers and falsely reporting
them. This was particularly the case with class I and even class II events, but
less so for class III events.

Conversely, when considering only those events whose triggers were

correctly identified, their participants were also correctly recognised in most
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cases. Overall, the analysis suggested that the parse tree distance method

performed reasonably well, despite a reduction in recall of approximately 12%.

Event Class #Gold R P F-score
Localisation 40 77.50 47.69 59.05
Binding 180 33.33 54.55 41.38
Gene expression 282 76.60 58.54 66.36
Transcription 68 58.82 18.60 28.27
Protein catabolism 19 84.21 88.89 86.49
Phosphorylation 40 97.50 81.25 88.64
Non-reg total 629 63.91 48.73 55.30
Regulation 138 13.04 62.07 21.56
Positive regulation 462 13.85 54.24 22.07
Negative regulation 153 29.41 45.92 35.86
All total 1382 38.28 49.44 43.15

Table 4.5: Trigger-only evaluation on the BioNLP’09 development data

The performance of only trigger and type detection on the development data. #Gold

refers to the number of instances in the gold standard data set.

There are a number of possibilities for improvements. We believe
applying the CRF model for trigger detection in two stages would be a better
approach to detect events: first identify triggers (binary classification) and then
classify them into different types. In addition, the rules employed for
determining themes need to be more specific to reflect both event type and
grammatical structure.

In the case of class III events, however, significantly better results were
noticed in the trigger detection part when compared to the overall scores,
indicating that it was difficult to identify regulatory participants, as any of
those participants could be either a protein or another event, and our rules did

not clearly discriminate between the participation type (theme and cause)
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which resulted in incorrect output.

Overall, the results achieved by Evemole suggest that combining parse
tree results, rules and CRFs is a promising approach for the identification of
non-regulatory events in the literature, while more work would be needed for

regulatory events.

4.4 Evaluation of negation and speculation detection

Our method for negation and speculation detection was initially developed and
analysed for negation extraction only, and later was adopted to also detect
speculations by training a new model on speculation data and using a new
dictionary of speculation cues (see Section 3.4.1). In this section we present
detailed evaluation and analysis on the negation detection task, and also

provide a performance report on the speculation detection task.

4.4.1 Evaluation of negation detection

We use the BioNLP’09 training and development corpora for the evaluation of
Negmole. To be able to evaluate the negation detection system as a separate,
stand-alone system, we use the gold annotations for entity mentions (genes and
proteins) and gold annotated molecular events. Sentences that report molecular
events are annotated with the corresponding event type, textual trigger and
participants. Every event in both training and development data sets has been
tagged as either affirmative (reporting a specific interaction) or negative
(reporting that a specific interaction has not been observed). We use this
information to train and test our system.

Table 4.6 provides an overview of the two BioNLP’09 data sets with

regard to negated and speculated events.
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Event Training data Development data
class total negated speculated | total negated |speculated
Class | 2,858 131 106 559 26 15
Class Il 887 44 29 249 15 8
Class Il 4,870 440 320 987 66 71
Total 8,615 615 455 1,795 107 95

Table 4.6: Negated and speculated events in BioNLP’09 corpus

Overview of the composition of the negated and speculated events in the training and
development datasets of the BioNLP’09 corpus

Baseline methods

To compare Negmole, we considered two baseline methods and calculated the
precision, recall, F-score and specificity (see Section 2.7.1) for them. The
analysis was done using the gold-annotated events on the BioNLP’09
development data set.

As can be inferred from Table 4.6, only around 6% of the gold annotated
events are negated. Therefore, if no negation detection at all was performed, a
specificity of 94% would be achieved. We considered the case where any event
described in a sentence with a negation cue is marked as negated. In addition,
we implemented the NegEx algorithm (see Section 2.4.2) using event triggers
as the list of terms. The results of the two baseline methods are shown in Table

4.7.

Approach

F1

Specificity

Any negation cue present

20%

78%

32%

81%

NegEx

36%

37%

36%

93%

Table 4.7: Baseline measures

Two different baseline measures evaluated on the BioNLP’09 development data.

The first baseline method (bag-of-words) has a high recall, indicating
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that 78% of the negated events have a negation cue somewhere in the sentence.
However, as expected, the precision of such a method is low, as the presence of
a negation cue does not necessarily indicate that every event in that sentence is
negated. NegEx has a lower recall, which is due to missing the instances where
the trigger has a longer surface distance from the negation cue. The F-score of

both baseline methods are in the range of 30%.

Rule-based method

Here we present the results of our rule-based experiments with the command
relation. First we only considered the S-command relation as it was
Langacker’s original definition of the command relation. We marked as
negated any event where the negation cue in the sentence S-commanded any of
the participants. Then we marked as negated any event where the negation cue
S-commanded the event trigger. Finally, we required both conditions to hold in
order for an event to be marked as negated. The results are shown in Table 4.8.

The highest F-score was achieved in the third case, but the differences were

small.
Approach P R F1 Specificity
Negation cue commands any 23% 76% 35% 84%
participant
Negation cue commands the trigger 23% 68% 34% 85%
Negation cue commands both 23% 68% 35% 86%

Table 4.8: Evaluation of negation rules on the BioNLP’09 data

Performance is reported on the BioNLP'09 development data set when only the S-

command relation is used. The numbers are rounded.

These results show that using the command relation as a rule
dramatically increases the recall compared to NegEx, suggesting that the
command relation can successfully reach beyond the scope of NegEx.
However, the relatively lower precision means that the F-score is at a similar

level (or lower) compared to NegEx. The precision is lower than that of
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NegEx, and stays the same over the applications of different rules. This shows
that there are many cases in which a command relation between the negation
cue and components of the event exists, but other factors make the event not
affected by the cue.

These observations suggest that although the command relation is not
very affective as a stand-alone rule, it could work as a predictor of negated
events if combined with other features. Furthermore, they suggest that
participants of an event play as important a role as the trigger in the negation of
the event as a whole. This bring us to the following experiments where we used
these findings to design a series of machine learning experiments using the

command relation as a feature along with other features.

Machine learning experiments for negation detection

As explained in Section 3.4.3, initially we combined all the features that were
not class-specific and trained a single classifier on the whole training dataset.
Secondly, we used the common features, but trained different classifiers for the
three different classes of events and acquired three different models (one for
each class). Finally, we added class-specific features to the classifiers and
trained three different models with different number and types of features. We
report the results of these experiments, as well as the effects of each group of
features on the regulatory events (class IIT). All the evaluations are reported on
the BioNLP’09 development data set. For a summary of the experiments and

the features used in each one, see Table 4.9.
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Experiment

Classifier

Features

Experiment 1

Single classifier

1. Whether the sentence contains a negation cue from
the cue list;

2. The negation cue stem (if present);

3. The part-of-speech (POS) tag of the negation cue;

4. The POS tag of the event trigger;

5. The POS tag of the theme of the event; if the theme
is another event, the POS tag of the trigger of that event
is used

6. The parse node type of the lowest common ancestor
of the trigger and the cue (i.e. the type of the smallest
phrase that contains both the trigger and the cue, e.g.
S, VP, PP, etc.);

7. Whether or not the negation cue commands any of
the participants; nested events (for Class IlIl) are treated
as above (i.e. as being represented by their triggers);
8. Whether or not the negation cue commands the
trigger;

9. The parse-tree distance between the event trigger
and the negation cue;

10. Event type (one of the nine types as defined in
BioNLP’09).

Experiment 2

3 class-specific
classifiers on

common features

Same as Experiment 1

Experiment 3

Class-specific
classifiers on class-
specific features:
Classes | and Il use
features 1-8, 10-12,
14, 15.

Class Ill uses all
the features.

1. Whether the sentence contains a negation cue from
the cue list;

2. The negation cue itself (if present);

3. The POS tag of the negation cue;

4. The POS tag of the trigger;

5. The POS tag of the theme; if the theme is another
event, the POS tag of the trigger of that event is used;
6. The POS tag of the cause; if the cause is another
event, the POS tag of the trigger of that event is used;
7. Surface distance between the trigger and cue;

8. Surface distance between the theme and cue;

9. Surface distance between the cause and cue;

10. The type of the lowest common ancestor of the
trigger and the cue (either S, VP, PP, NP, JJ or PP);
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11. Whether or not the negation cue X-commands the
trigger (X is S, VP, NP, JJ, PP);

12. Whether or not the negation cue X-commands the
theme (X is S, VP, NP, JJ, PP);

13. Whether or not the negation cue X-commands the
cause (Xis S, VP, NP, JJ, PP);

14. The parse-tree distance between the event trigger
and the negation cue;

15. The parse-tree distance between the theme and the
negation cue;

16. The parse-tree distance between the cause and the
negation cue;

17. Regulation sub-type (positive, negative, none);

18. Theme type, which can be either a protein or one of
the nine event types;

19. Cause type is defined analogously to the theme

type.

Table 4.9: Summary of the experiments and the features used

A single classifier for all classes of the events (Experiment 1)

Table 4.10 shows the performance of a single classifier trained on the entire

data, with common features added incrementally.

Feature set P R F1 Specificity
Features 1-6 and 10 43% 8% 14% 99.2%
Features 1-7 and 10 73% 19% 30% 99.3%
Features 1-8 and 10 71% 38% 49% 99.2%
Features 1-10 76% 38% 51% 99.2%

Table 4.10: Evaluation of Experiment 1; the single SVM classifier method for
negation detection on BioNLP’09

In this table, features 1-7 are lexical and POS-tag-based features. Feature 7 models
whether the cue S-commands any of the participants. Feature 8 is related to the cue
S-commanding the trigger. Feature 9 is the parse-tree distance between the cue and

trigger. Feature 10 is the semantic feature related to the event type.
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Table 4.11 shows the results of this method applied on each class,

together with the micro-average across the entire development corpus.

Number of .
Event class . P R F1 Specificity
instances
Class | 26 82% | 54.00% 65% 97%
Class I 15| 100% 7% 13% 94%
Class Il 66 73% 41% 52% 95%
Micro Average 107 79% 39% 50% 96%

Table 4.11: Class-specific evaluation of a single classifier for negation detection
on BioNLP’09

The results of training a single classifier for negation detection on all classes using
common features, but evaluated on individual classes. The evaluation is reported on
the BioNLP’09 development data set.

Different models for each class, common features (Experiment 2)

Table 4.12 shows the results of training three classifiers with the same features
as above, but on different classes separately. We note an increase in both

precision (88%) and recall (49%) over the single-classifier approach.

Number of .
Event class . P R F1 Specificity
instances
Class | 26| 94%| 65%| 77% 99.8%
Class Il 15| 100% | 33%| 50% 100%
Class IlI 66| 81%| 44%| 57% 99.2%
Micro Average 107| 88% | 49%| 63% 99.4%

Table 4.12: Evaluating separate classifiers trained on each class for negation
detection on BioNLP’09

Here, again, common features have been used.
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Class-specific features in different classifiers (Experiment 3)

Finally, we trained three classifiers with class-specific feature sets. Tables 4.13
and 4.14 show the results without and with semantic tokenisation. We note that

there was some drop in the performance, both in terms of precision and recall.

Number of .
Event class . P R F1 Specificity
instances
Class | 26| 80%| 62%| 71% 97%
Class Il 15| 75%| 43%| 57% 96%
Class IlI 66| 79%| 39%| 53% 95%
Micro Average 107| 79%, 45%| 58% 96%

Table 4.13: Evaluating separate classifiers without semantic tokenisation for

negation detection on BioNLP’09

The results of training different negation classifiers with class-specific features on each

class; without semantic tokenisation.

Number of .
Event class . P R F1 | Specificity
instances
Class | 26| 88% | 54%  67% 97%
Class Il 15| 57%| 29%| 38% 95%
Class Il 66| 67%| 46% | 55% 95%
Micro Average 107 | 70%| 46% | 55% 94%

Table 4.14:
BioNLP’09

Evaluating separate classifiers with semantic tokenisation on

The results of training different negation classifiers with class-specific features on

each class; with semantic tokenisation.

Amongst the three classes, the highest F-score was achieved on class I
which contains the simplest event structures. The data set of class II events,
with only 44 training instances and 15 test instances, was not large enough for

making any specific conclusions.
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Class III, however, was the largest and most complex of all three classes,
and showed relatively lower results. To further explore the feature space and
investigate the effect of each feature, we analysed several class-specific
features on the regulation events. We chose that class due to its complex nature

as well as frequency of mention and its biological prominence.

Evaluation on the regulation events

The training set contained a total of 4,870 regulation events, 440 of which are
reported as negated. The test set contained 987 regulation events, of which 66
are negated. The training data was used for modelling and all the results refer

to the methods applied on the development dataset using 10-cross validation.

Impact of lexical and other shallow features

The results of using lexical features only are presented in Table 4.15. Features
1-6 concern word forms and POS tags, whereas features 7-9 are surface
distance features. See Table 4.9 and Section 3.4.3 for an extensive list.

As expected, surface distances to the negation cue are not good
indicators, and do not improve the performance of standard lexical and POS
features—on the contrary, they reduce precision. Overall, precision is relatively

high but recall is low.

Lexical features Precision Recall F1
Features 1-6

) 75.00 22.73 34.88
(no surface distances)
All lexical features 71.43 22.73 34.48

Table 4.15: Evaluation of negation detection on regulatory events using lexical

features only

Impact of syntactic features

The results of using syntactic features only are presented in Table 4.16.
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Features 10-13 are command-related features, and features 14-16 are parse-tree
distance features. See Table 4.9 and Section 3.4.3 for an extensive list.

As opposed to surface distances, parse-tree distances are more suitable
features, improving the overall performance significantly (F1 improving from
11% to 36%). There were no significant differences in performance when
different types of X-command relations are used. Focusing only on S- and VP-
command provides the same levels of accuracy as using all the other X-

command features, with no statistically significant differences.

Syntactic features Precision Recall F1
Features 10-13

) 80.00 6.06 11.27
(no parse-tree distances)
All syntactic features 60.71 25.76 36.17

Table 4.16: Evaluation of negation detection on regulatory events using

syntactic features only

Impact of semantic features

The performance of the models based on the lexical and syntactic features were
approximately the same, with no significant differences between the best
performing feature subsets of each category. However, semantic features on
their own resulted in very low performances, virtually missing all negated
regulatory events (data not shown). This was comparable to the baseline model

in which no negation detection was performed.

Combining features

Table 4.17 shows the results when features of various types are combined.
Combining several feature types (lexical, syntactic and semantic) proved to be
beneficial. Surface distances still reduce the overall precision, but overall
improve recall. It is interesting that adding semantic features (which
characterise the participants involved in the regulation) significantly improves
precision (by 20% when compared to the lexical and syntactic feature sets). On

the other hand, command relations improve recall (by almost 20%).
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Features Precision | Recall | F1

Lexical + syntactic 66.67 39.39 | 49.52
Lexical + semantic 50.00 15.15 | 23.26
Syntactic + semantic 72.22 19.70 | 30.95
All with no surface distances 73.68 42.42 | 53.85
All with no X-command on theme and cause | 78.12 37.88 | 51.02
All features 78.79 39.39 | 52.53

Table 4.17: Evaluation of negation detection on regulatory events combining

different features

We note that some feature subsets (e.g. features 10-13, Table 4.16) do
not provide a balance between precision and recall; depending on the
application, the classification threshold could be adjusted to produce higher
recall or precision.

To conclude, training separate classifiers on different classes showed the
best results. Although exploring the feature space provides insight into the
effects of each type of feature, these experiments performed slightly worse than
the previous ones. This could be due to implementational differences, the

modest data size, or the use of semantic tokenisation.

4.4.2 Evaluating speculation detection

We adopted the method used for negation detection to classify speculated
events. As using class-specific features and separate classifiers for each event
class showed the best performance in negation detection, we applied this
method to extract speculations. The results are shown in Table 4.18, and with

semantic tokenisation in Table 4.19.
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Number of .
Event class . P R F1 Specificity
instances
Class | 15| 50% | 29%| 36% 97%
Class I 8| 14%| 14%| 14% 95%
Class Il 72| 73%| 43%| 54% 95%
Micro Average 95 64%| 38%| 48% 95%

Table 4.18: Evaluating separate speculation classifiers without semantic

tokenisation on BioNLP’09

The results of training different speculation classifiers with class-specific features on

each class; without semantic tokenisation

Number of
Event class . P R F1 | Specificity
instances
Class | 15| 70%| 50%| 58% 98%
Class I 8| 17%| 14%| 15% 95%
Class IlI 72| 64%| 41%| 50% 94%
Micro Average 95| 61%| 40%| 48% 95%

Table 4.19: Evaluating separate speculation classifiers with semantic

tokenisation on BioNLP’09

The results of training different speculation classifiers with class-specific features on

each class; with semantic tokenisation

4.5 Negation and speculation detection discussion

Negation and speculation detection are challenging problems. There are
numerous ways to express negation and speculation in language, both
grammatically and lexically. Typically a given sentence bears several concepts,
any number of which can be negated or speculated. Not all of these concepts

are of interest or relevant to a given IE task, and some only serve as a figure of
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speech, without claiming any negative or speculated claims. Still, failing to
detect negated and speculated facts in IE could affect the quality of the
extracted information.

We introduced a negation detection system, Negmole, for the biomedical
domain. The method performs at the event level, addressing the issues that
other approaches with higher granularity are faced with. The event-level
approach assigns negation as an attribute to the smallest unit of meaningful
information that can be extracted as a statement or a fact. It is a necessary step
for performing reasoning (e.g. conflict detection) on the extracted data.

Negmole made use of an underlying linguistic phenomenon, the
command relation, that had previously been suggested to be related to negation.
We experimented with variations of this relation used in a rule-based setting
and observed that, when regarded as a rule, the command relation performs at
least as well as previously existing methods. This observation suggested that
the command relation could serve as a highly indicative feature in a machine

learning setting.

4.5.1 Cue detection

The BioNLP’09 data does not include annotations for negation and speculation
cues. There are other data sets available that have such cues annotated, but they
include all negation words, independently of what they are negating. For
example, in Example 4.3, the word not indicates some negative concept (a
property not being restricted to a cell type) but not a negated molecular event.
It is correctly identified by Negmole as a negation cue that does not indicate a

negated event.

Example 4.3. “This shows that transcription of both IL4 forms is not
restricted to T cells and can be induced in other cell types as well.”

(From PMID 8603435, event and context extracted by BioContext)
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Figure 4.3 shows the parse tree of Example 4.3. As can be seen in this
figure, the word “not” is situated in the VP phrase “is not restricted to T cells”
and only VP-commands the tokens inside that phrase. Therefore, as long as the
relation VP-command is concerned, this word cannot affect any of the other
parts of the sentence, including the event trigger “transcription” and event

participant “IL-4".
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Figure 4.3: The parse tree of the example sentence

This parse tree shows that the negation cue word “not” is situated in the verb phrase
“is not restricted to T cells” and therefore does not VP-command any other part of the

sentence outside this verb phrase.

Tagging only negation words is a relatively easier task, as it can be
construed as an NER task with relatively low levels of ambiguity and variation,
and dictionary-based methods have previously shown reasonably high
performance.

In the current task, our approach involves detecting only the events that
are negated, rather than any negation within the sentence, and therefore not all

negation cues are of interest. Cues could affect any concept expressed in text, a
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small proportion of which are bio-molecular events.

Despite not being able to formally evaluate the performance of cue
detection, manual examination of some examples shows that the method used
to find the “main cue” amongst the group of cues in the sentence with more

than one cue (see Section 3.4.1) performs as desired.

Example 4.4.

(a) “However, neither induction of p53 in MCE-7 cells nor induction of

p21 in either cell line was detected, suggesting that tamoxifen-induced
RB dephosphorylation and apoptosis are independent of the p53/p21
pathway.”

(b) “However, neither induction of p53 in MCF-7 cells nor induction of
p21 in either cell line was detected [...]”

(From PMID 9751262, extracted automatically by BioContext)

The event in Example 4.4(a) is the positive regulation (trigger:
“induction”) of p53 in MCF-7 cell line, and the event in Example 4.4(b) is the
positive regulation (trigger: second mention of “induction”) of p21 in the same
cell line. They are both reported as negated and detected by Negmole as
negated. Note that the negation cues that have affected each of the two events
are not the same. The sentence has two negation cues: “neither” and “nor”.
The first one, i.e. “neither”, has the shortest parse tree distance to the trigger of
the first event (i.e. the first mention of “induction”), so is assigned as the main

»

cue in the feature vector of that event. Similarly, “nor” is assigned to the
second event.

Figure 4.4 shows the partial parse tree of Example 4.4, showing the
single noun phrase containing “neither induction of p53 in MCF-7 cells nor
induction of p21 in either cell line”. The parse tree distances of the two
negation cues “neither” and “nor” with the two event triggers “induction”

(two mentions) are shown in Table 4.20.
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nelthermductlon of p53 in MCF-7 cells  nor induction of p21 in either cell line

Figure 4.4: Parse tree of a phrase with two negated events.

The phrase sub-string appears in a single noun phrase: “ neither induction of p53 in
MCF-7 cells nor induction of p21 in either cell line”

“ 7

“neither” | “nor
First mention of “induction” 2 4
Second mention of “induction” |6 4

Table 4.20: An example of parse tree distances between multiple negation cues

and triggers.

The negation cue “neither” is associated with the first mention of the trigger “induction”
and therefore with the first event (the positive regulation of “p53”). Similarity, the
negation cue “nor” is associated with the second mention of the trigger “induction” and

therefore with the second event (the positive regulation of “p21”).

The detection of the negation and speculation cues were performed using
a dictionary of cue stems derived from the training data. However, the
distinction between a semantically negative event (e.g. negative regulation) and
a negated event (e.g. a negated regulation event or a negated positive regulation
event) is not always clear. Expert annotators have not been entirely consistent
in differentiating between the two, and words such as “block” have served
both as a trigger for a negative regulation event, and as an indication of a non-
existent or negated event.

Although we have included such domain-specific ambiguous terms as
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“block” and “inhibit” amongst the negation cues, comparing the negation cue
distributions (Figures 3.16 and 6.7) shows that there was little confusion
between the two senses of these words. Figure 3.16 shows that the word
“inhibit”, for instance, is the second most common negation cue in the
BioNLP’09 data. Figure 6.7 (which summarises negation cue distribution on
the entire MEDLINE and PMC corpora) shows that not very often this
presumably common word has been detected as the negation cue and caused an
event to be negated. On the other hand, the type-specific event extraction
results show that detecting negative regulation events are not particularly more
challenging than other event types in class III.

Although it is very common for a sentence to have more than one
negation or speculation cue, previous event-based approaches have not
explicitly addressed the issue of handling multiple cues in a sentence. Negmole
detects the specific cue mention responsible for the negation or speculation of
an event, based on the parse-tree distances. Although no gold annotated
evaluation data existed to evaluate this approach, Example 4.4 showed cases in
which the correct negation cue has been associated with the event. Another
such example where the negation cue is correctly identified amongst several

cues in the sentence is shown in Example 4.5.

Example 4.5. “In contrast, there was no significant difference in force
generation between old striae fibroblasts and normal fibroblasts with

cells expressing no alpha-smooth muscle actin.”

(From PMID 15883849, events and negation extracted by BioContext)
There are, of course, other cases in which an incorrect cue was assigned
to the event, but the negation was still detected correctly. One such example is

shown in Example 4.6.

Example 4.6. “CD4 and CD8, gamma/delta TCR bearing T cells and
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CD45R0 on CD4+ T cells as a marker for memory cells, on TL no
differences could be detected between patients with or without anti-
TPO. ”

(From PMID 8750571, events and negation extracted by BioContext)

In Example 4.6, the word “no” appearing before the gene extraction
event trigger “detected” is causing the event to be negated. But the word
“without” has been incorrectly marked as negation cue. This was an example
of an error that does not lead to a false results.

Some of the errors were due to incorrectly identified negation cues. In
Example 4.7, we see one such example that has contributed towards a false

result.

Example 4.7. “Taken together, it may be concluded that NO down-
regulates IFN-gamma production mainly by inhibiting T-cell
proliferation.”

(From PMID 8806814, events and negation extracted by BioContext)

Here the word “NO” which is an abbreviated form of the chemical
Nitrous Oxide has been incorrectly marked as negation cue due to its lexical
similarity with “no”, specially after normalisation and stemming. Errors of this
type could be addressed with the application of post processing rules, but as
any other word sense disambiguation task, the solution will not be perfect.

We observed examples of events correctly reported as affirmative,
despite the existence of a negation cue (in some cases several) in the same

sentence. See Example 4.8.

Example 4.8. “None of these changes were associated with any visible

redistribution of actin, intermediate filaments or microtubules, and no

nuclear involvement was detected.”
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(From PMID 6318692, events and negation extracted by BioContext)

Example 4.8 shows a sentence containing at least two negation cues:
“no” and “none”. Some consider the word “any” as a highly indicative
negation feature as well. However, although there are negated concepts
expressed, the main event in question (i.e. the transcription of actin in filaments
triggered by “redistribution”) is not reported negatively. This is an example
which other approaches would have failed to detect correctly. Depending on
the exact rules used, many bag-of-words, sentence-level, or surface distance

approaches could have reported this event as negated.

4.5.2 Error analysis

We analysed the false positive and false negative results reported by Negmole
on both negated and speculative events. The relatively small number of
instances in the evaluation sets makes both interpretation of the results and
error analysis difficult and limited. However, after analysing FP and FN
results, we were still able to identify the following categories of errors.

One of the major sources of FNs was the issue of identification of
contrasting patterns, usually causing an affirmative and a negative event to
appear in close proximity in the same sentence. This causes problems with
identifying the boundaries of the negation scope. Example 4.9 illustrates the

common issues.

Example 4.9.

(a) Negated, FN: “T cells lack active NF-kappa B but express Sp1 as
expected.”

(b) Negated, FN: “Unlike TNFR1, LMP1 can interact directly with
receptor-interacting protein (RIP) and stably associates with RIP in
EBV-transformed lymphoblastoid cell lines.”

(c) Negated, FN: “Nmi interacts with all STATs except Stat2.”
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In instance (b) of Example 4.9, a negated interaction is expressed, but
there is no sign of a negation cue or negative sentence structure. Still, we can
infer that TNFR1 cannot interact directly with RIP; it may also imply that
TNFR1 does not stably associate with RIP in certain cell lines. The negation
therefore can only be inferred by taking the following steps:

1. Recognising the presence of a contrasting pattern in the sentence;

2. Identifying the contrasting entities (in this example TNFR1 and LMP1);

3. Extracting the explicitly stated event (LMP1 interacts with RIP in this
case);

4. Identifying the scope of contrast; this can be ambiguous, as in Example
4.9 it is not clear whether the two entities also contrast in “stably

associates with RIP”, or only in “interact directly with RIP”.

Contrasting patterns are not uncommon. There are 125 phrases
expressing contrast in the training data (in 800 abstracts) and 32 in the
development data (150 abstracts) using only the patterns “unlike A, B”, “B,
unlike A”, and “A; in contrast B”. In these cases, the negation is usually not
linguistically explicit, and has to be inferred by analysing the contrasts. Future
work could explore a rule-based framework that would identify contrasting
patterns and entities, and treat such expressions separately from explicit
negations, for which a ML approach could still be useful.

At present, if a sentence contains more than one negation or speculation
cue, we only extract the features concerning the “main cue”, i.e. the one with
the smallest parse-tree distance to the trigger. This causes the production of
wrong results in some of the more complicated sentences containing double
negation in particular.

Furthermore, a number of these double negation cases contain one
linguistic negation and one biological negation. In Example 4.10, the word

“suppress” indicates a biological negation, but paired with the negation cue
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nor”, makes the overall sentence affirmative.

Example 4.10.
Negated, FN: “In contrast, neither the RA-stimulated, RARE-mediated

transcription nor the induced RAR-beta expression was suppressed by
VitD3.”

A more correct annotation would have been to interpret “suppress” as
negative regulation, which is negated by the cue “nor”; this negative regulation
event was instead annotated as a negation by the annotators. Confusion
between negated regulation and negative regulation—even by human
annotators—has also resulted in a number of errors.

A number of errors were due to negation/speculation cues that were
missing from the cue lists which were created semi-automatically from the
training data. For example, “potential”, “unknown”, and “possibility” did not
appear in the training data and were missing from the speculation cue lists.

Finally, a number of errors originate from potentially subjective,
inconsistent, or simply incorrect annotation by the human annotators. See

Example 4.11.

Example 4.11.

(a) Negated, FP: Negmole (correctly) found this event as a negated
localization event, whereas the annotators have reported it as an
affirmative localization event:

“[...] failure of p65 translocation [...]”

(b) Speculated, FP: The following event was (correctly) classified by
Negmole as speculation, whereas the annotators did not consider it
speculative:

“Proliferation, as measured by the percentage of cells in cycle

appeared normal, as did rearrangement and expression of the TCR
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beta-chain.”

(c) Speculation, FN: The following event was (correctly) not caught by
Negmole as speculation:

“Analysis of the regulation of the p40 gene promoter revealed that ASA
inhibited NF-kappaB activation and binding to the p40-kappaB”

Some examples suggest that classification may not always be a correct
construction of the negation and speculation detection problem. In Example
4.12, an affirmative and a negative event are stated, each observed in a
different population. If the population context is not extracted, the two events
would be recognised as a single event, and therefore assigning a single polarity

value to them would be incorrect.

Example 4.12. “Interleukin-2 production was diminished in the patient
but not in the healthy twin.”
(From PMID 6239872)

In this research we addressed the problems of negation detection and
speculation detection independently. It will be interesting to investigate
whether one could help as a feature in the detection of the other, or whether the
combination of the two could add richer context to the extracted information.
With less than 0.1% of the events in the evaluation corpus being both negated
and speculative, we did not have enough data at this stage to further investigate
these questions.

The same observation can be made about the inferred events. The
occurrence of the event components in a conjunctive structures can be used as
an additional feature in the detection of negations and speculations.

While in minority, the number of negated and speculative events in the
BioNLP’09 corpus is still significant (7% and 5%, respectively). Using these

results, we extrapolate that by applying Negmole to a large-scale corpus,
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around 1.56 million negated events and 1.24 million speculated events could be
identified. This data could provide a very useful resource both for academics
searching for previously reported results that are related to or conflict with their
own, for data miners aiming to detect interesting patterns, and for
bioinformaticians who wish to perform large-scale in silico experiments.
Although Negmole extensively uses semantic features related to the
molecular events, it does not rely on any characteristic exclusive to biomedical
events per se. We have demonstrated the extensibility of the method by
applying it with minimal modifications to the similar task of speculation
detection. Whilst not evaluated, the lexical, syntactic, and semantic features are
generic enough to be applied to other types of relations extracted from domains

other than the domain of the biomedical literature.

4.5.3 Further discussion

As expected, approaches that focus only on event triggers and their surface
distances from negation cues proved inadequate for biomedical scientific
articles. Low recall was mainly caused by many event triggers being too far
from the negation cue on the sentence level to be detected as within the scope.

Furthermore, compared to clinical notes for instance, sentences that
describe molecular events are significantly more complex. This is partly
demonstrated by the occurrence of on average 2.6 event triggers in the event-
describing sentences in the training data, and higher number of events per
sentence, sometimes with opposite polarities.

Consider for example the sentence shown in Example 4.13.

Example 4.13. “We also demonstrate that the IKK complex, but not

p90 (rsk), is responsible for the in vivo phosphorylation of I-kappa-B-

alpha mediated by the co-activation of PKC and calcineurin.”
(From PMID 10438457, BioNLP’09 corpus annotations expanded by

adding protein complexes.)
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Here, the trigger (phosphorylation) is linked with one affirmative and
one negative regulatory events with two different entities (as well as participate
as the theme of two regulatory events) hence triggering two events of opposite
negations.

These findings, together with previous work, suggested that for any
method to effectively detect negations, it should be able to link the negation
cue to the specific token, event trigger or entity name in question. Therefore,
more complex models are needed to capture the specific structure of the
sentence as well as the composition of the interaction and the arrangement of
its trigger and participants.

By combining several feature types (lexical, syntactic and semantic), the
machine learning approach proved to provide significantly better results. In the
incremental feature addition exploration process, adding the cue-commands-
participant feature had the greatest effect on the F-score, suggesting the
significance of treating event participants. We note, however, that many of the
previous attempts focus on event triggers only, despite the fact that participants
do play an important role in the detection of negations in biomedical events
and thus should be used as negation targets instead of or in addition to triggers.
It is interesting that adding the feature concerning the parse-tree distance
between the trigger and negation cue improves precision by 5% (see Table
4.10).

Differences in event classes (in the number and type of participants)
proved to be important. Significant improvement in performance was observed
when individual classifiers were trained for the three event classes, suggesting
that events with different numbers or types of participants are expressed
differently in text, at least when negations are considered. Class I events are the
simplest (one participant only), so it was expected that negated events in this
class would be the easiest to detect (F-score of 77%). Class II negated events

(which can have multiple participants), demonstrated the lowest recall (33%).
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It is surprising that negated regulation events (Class III) were not the most
difficult to identify, given their complexity.

We applied the negation detection on the type, trigger and participants of
pre-identified events in order to explore the complexity of negations,
unaffected by automatic named entity recognition, event trigger detection,
participant identification, etc. As these steps are typically performed before
further contextualisation of events, this assumption is not superficial and such
information can be used as input to the negation detection module.

The best F-score for negation and speculation detection in BioNLP’09
were in the region of 23-25%, with a reported recall of up to 15%, but with
overall event detection sensitivity of 33% (Kilicoglu et al. 2009) on the test
dataset (different from that used in our evaluation). These systems did not use
gold-standard event data, and this makes it difficult to directly compare their
results to our work.

Using their precision and recall values for event extraction, it is however
possible to provide some rough estimates of what their results would have been
if applied on gold-standard event data. Had all events been correctly
recognised, their negation detection approach could have reached 45% recall
(compared to 49% in our case). With precision of around 50%, their projected
F-score, again assuming perfect event identification, could have been in the
region of 50% (compared to 63% in our case).

The approaches that focus on sentence-level modality annotation (e.g.
(Shatkay et al. 2008)) have reported F-measures above 70%, but a meaningful
comparison of the results between such systems and the current study is not
possible. We also note that, for both negations and speculations, the major
issue is improving recall by highlighting the wvariability of the
negation/speculation expressions.

The experiments with rules that were based on the command relations
have proven to be generic, providing high recall (76%) but with poor precision

(23%). Although only the results with S-command relations have been reported
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here (see Table 4.8), we examined other types of command relation, namely
NP-, PP-, SBAR-, and VP-command. The only variation able to improve
prediction accuracy was whether the cue VP-commands any of the participants,
with an F-score of 42%, which is higher than the results achieved by the S-
command (F-score of 35%).

In the machine learning approach, applying the method on all the classes
shows that the best micro-averaged results for negated event detection (F-
measure of 63%) have been achieved when separate classifiers were trained
with the identical set of shared features. Sparsity of data is a likely reason for
the drop in performance when additional class-specific data was used for
training.

(MacKinlay et al. 2009) used gold annotations as input for negation
detection, and reported an (estimated) precision, recall, and F-score of 68%,
24%, and 36% respectively on the same dataset (compared to 88%, 49% and
63% in our case) by using an ML with features comprising complex deep parse
features.

As expected, negated events from class I (only one participant) were the
easiest to detect (F-measure 67% to 77%). On the other hand, class III negated
events, although the most complex between all event types, were easier to
detect than class II negated events (possibly multiple participants). However,
we note that the testing data had very few negated events of class II (only 15).
When the same model was applied to speculation detection, there was a
significant drop in the quality of results (F-measure of 48%). Still, it is
interesting that precision between 64-73% was achieved on class III speculated
events, which are the most complex and also most frequent in the training set.
With semantic tokenisation, the precision of class I speculated event detection
reached 70%. Class II events proved to be challenging, although any
conclusions are limited by the small number of testing examples (only 8).

Using semantic tokenisation was beneficial in avoiding common errors

while aligning multi-token and sub-token entities to the nodes of the parse tree
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of the sentence in order to extract syntactic features. However, the results of the
two pairs of experiments that only differ in the use of semantic tokenisation
(Tables 4.13 and 4.14, and also Tables 4.18 and 4.19), do not provide enough
evidence that it affected the results significantly. The effects of semantic
tokenisation on the quality of information extraction will need to be further

investigated.

4.6 Summary and conclusion

In this chapter we evaluated the methods proposed and developed for
molecular event extraction (Evemole) and negation and speculation detection
(Negmole).

At the time of developing Evemole, no other reliable event extraction
system was available. We showed that Evemole can detect events with simple
structures (events of classes I and II), but has room for improvement on
regulation events. Although Evemole was later outperformed by other state-of-
the-art purpose-built systems, its performance is comparable with these.

Negmole, on the other hand, detects the negated events with competitive
performance, and was successfully expanded to detect speculative events as
well. This suggests that it can serve as a key component in a larger text mining

pipeline to detect conflicting statements.
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Chapter 5

Large-scale consolidation of molecular event data

In this chapter we describe an approach to facilitate data consolidation in the
domain of molecular events by finding conflicting claims of facts in the
literature. For this purpose, it is useful to integrate all possible outputs from all
types of tools. In particular, since different tools report many non-overlapping
sets of entities, events, or other information, by integrating them we can aim
for higher recall or precision and use them for data mining.

We propose a way to aggregate, analyse, and consolidate the extracted
data to discover potential conflicts, contrasts, and contradictions. To achieve
this, we merge events from different gene and protein named entity recognisers
and normalisers. Moreover, we modify and merge the outputs of two state-of-
the-art event recognition tools, namely TEES and EventMiner which became
publicly available in the later stages of this research.

At this stage, we decided not to include the output from Evemole in the
final integrated results, given that other reliable and high-performing tools
were now available, and that event extraction was not the focus of this
research, but merely a means of meeting our goal of mining conflicts.
However, the modular nature of the integration pipeline means that it is
possible to merge the results of any other tool, or replace any of the existing
tools with new ones. We provide a wrapper for Evemole, which makes it
possible to integrate its output with the other tools.

The rest of this chapter is structured as follows. Technical details on the
implementation of the text mining framework will be presented in Section 5.1.
Section 5.2 introduces the strategy of representing event mentions in text as
well as representing biologically distinct events. As a way of valuating the
events, we assign confidence values to the extracted events. The method to

derive and assign these values are described in Section 5.3.
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The method of mining the extracted data to find conflicts is described in
Section 5.4. Finally, Section 5.5 explains how the data and code can be
accessed for download or to browse through a web interface.

The text mining framework and the large-scale experiments were parts of
a larger joint project with Martin Gerner (Faculty of Life Sciences, University

of Manchester).

5.1 Framework for TM result integration and consolidation

In order to construct a unified system for consolidation of text mining
results, it was necessary to integrate a number of different components that
perform event extraction and contextualisation. For this purpose, we designed
and implemented an integrated text mining system, called BioContext, that
extracts, expands and integrates mentions of molecular events from the
literature and facilitates data analysis and consolidation. The system relies on
TextPipe, a framework for text mining result integration and consolidation

(see also (Gerner 2011)).

5.1.1 TextPipe

In order to facilitate the integration of tools and merging of data, we
constructed a lightweight framework called TextPipe. While other text mining
frameworks like UIMA" and GATE (Cunningham et al. 2011) are available,
we designed a system which was more light-weight and, more importantly,
could be easily modified and optimized for any stability or performance
problems we might (and did) encounter.

TextPipe makes extensive use of modularisation, parallel processing,
database optimisation, error handling and recovery to address various practical
challenges when applying a diverse set of tools to large sets of documents, and
in our case, abstracts and full-text articles. It is written in Java, but allows tools
written in any language to be integrated as components.

Any tool can become a component in a system deploying TextPipe in

19 http://uima.apache.org/
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order to benefit from the functionalities that it provides. Tools are wrapped as
TextPipe components (treated as black boxes internally) by implementing two
simple methods: one to specify the output fields of the tool, and another to call
the main method of the tool. Data is communicated in the form of lists of key-
value pairs, similar to the model used in Google’s MapReduce (Dean et al.
2008).

TextPipe components are either applied directly to documents or run as
services. They do not need to provide a list of dependencies. Instead, during
run-time they connect directly to other components, providing the document
(or documents, if run in batch mode) that need to be processed, and fetching
the output of those components to use as their required input. Computed results
can be stored in databases for later re-use to avoid multiple processing of the
same documents.

To summarise, TextPipe offers the following features as a tool
integration framework.

* Capability to input and process a diverse range of textual formats;

* Ability to be deployed as a web service;

* Incorporation of any tool with a simple wrapper, and providing an
interface between tools;

e Provision of methods for large-scale processing of documents;

* Support for concurrency;

* Use of databases for storage and retrieval of computed data;

* Use of caching.

5.1.2 BioContext overview and components

Figure 5.1 shows an overview of the integrated system. Processing is
performed in four stages: named entity recognition and normalisation,
grammatical parsing, event extraction, and context extraction. Each stage is
composed of several components. In some cases, outputs from multiple

components are merged prior to use by other components. These processing
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stages and their components are described below.

The numbered circles in Figure 5.1 show the places where data
integration is performed. The output of gene NER modules are merged in the
circle numbered 1. The combined identified entities with the additional entities
related to the anatomical locations and species names are replaced by place-
holder nouns in circle numbered 2 and semantic tokenisation is performed as a
preprocessing step for parsers.

The event extraction tools use the output of these parsers as their input,
and produce independent sets of events, which is later merged in circle
numbered 3. The merged data is further processed by adding context, i.e.
information regarding negation, speculation, and anatomical location

associated with every event.

! MER | Parsing I Event extraction ! Contextualisation

GeneTUKIt

1 TEES

McClosky- Negmole
GNAT Charnial 3
A .
2 Enju »Eventminer Anato!’mlcal
association
LINNAEUS /
Gdep

Anatormy

Figure 5.1: An overview of BioContext

The diagram shows how the different components of the system are connected.
Circles represent merging and post-processing of data. Different stages are shown on
the bar above. The numbered circles show the places at which data integration or

merging happens.

The following sections will describe the components we used in the

construction of BioContext in more detail.



198 Chapter 5 Large-scale consolidation of molecular event data

5.1.3 NER

In the first stage we perform recognition and normalisation of any entities that
are needed in later stages of the system.

Named entity recognition for genes and proteins are performed by
GeneTUK:it (Huang et al. 2011) and GNAT (Hakenberg et al. 2011); (Solt et al.
2010). To the best of our knowledge, these tools are the only tools available
that are capable of normalisation and are applicable to large-scale datasets from
a practical point of view. GeneTUKIit normalises genes and proteins from any
species, while GNAT can only normalise genes and proteins from 30 of the
most frequently discussed organisms). GNAT uses species NER as input,
which was performed by LINNAEUS (Gerner et al. 2010b). Both tools were
configured to use BANNER (Leaman et al. 2008) for recognition to improve
coverage.

We used a modified version of GNAT that reports not only the mentions
that could be normalized to database identifiers, but also any mentions that
were recognized by BANNER but could not be normalized. GNAT relies on
species NER, which was performed by LINNAEUS (Gerner et al. 2010b). Data
extracted using these non-normalized entities will have limited context, and
will not be as reliably assigned to their correct distinct group. However, leaving
them out would have caused errors in the other components, specifically the
event extractors, as they rely on entities to be marked in the sentence. In the
absence of recognised entities, they will miss the event altogether, or report an
unrelated entity appearing elsewhere in the sentence as the participant. The first
case lowers the recall, and the second case affects the precision.

The output from both gene/protein NER systems are merged after
production. If the two tools have identified overlapping spans, then we create a
new span with the union of their coordinates. If the tools have assigned
different Entrez Gene identifiers in the original overlapped spans, then priority
is given to the GeneTUKIit normalisation.

NER of anatomical locations (e.g. “brain”, “T cells”) and cell-lines
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(acting as proxies for anatomical locations, e.g. “HeLa” for cervical cells)
were performed by the anatomical NER system from GETM (Gerner et al.
2010a) which relies on a comprehensive dictionary of anatomical locations

collected from 13 OBO ontologies.

5.1.4 Grammatical parsing

In the second stage, a number of deep and shallow grammatical parsers process
the texts. In order to increase the accuracy of the parsers when applied to
sentences with long and complex entity names, we performed semantic
tokenisation (see Section 3.2). Using this, we ensured that multi-word entities
were not tokenized into multiple tokens. This was performed by replacing any
entities recognized in the first stage with place-holders (generic terms tagged as
nouns) prior to parsing. After parsing, the place-holders were replaced with the
original strings again.

We used the McClosky-Charniak constituency parser (McClosky et al.
2006), the Gdep dependency parser (Sagae et al. 2007b), and the Enju parser
(Sagae et al. 2007a) to parse every sentence in the corpus.

In addition to the McClosky-Charniak parser, we also experimented with
the constituency parse trees automatically produced by the parser reported in
(Bikel 2004). No significant differences were observed in the results of
Negmole, one of the components requiring constituency parse trees. Therefore

all the results and processes are reported using the McCloslky-Charniak parser.

5.1.5 Event extraction and integration

For the extraction of events, we chose to use two systems: the Turku event
extraction system (TEES) (Bjorne et al. 2009), and EventMiner from the
University of Tokyo (provided by Makoto Miwa, currently unpublished).
TEES was the highest-scoring system in the BioNLP’09 event extraction
challenge (see Section 2.3.4), and evaluation results for EventMiner presented
as a keynote talk at BioCreative III showed it as having higher accuracy

(unpublished). To the best of our knowledge, these are the only systems that



200 Chapter 5 Large-scale consolidation of molecular event data

are both accessible and maintained. Both systems use gene/protein NER results
from the first stage. In addition, TEES also uses output from the McClosky-
Charniak parser and EventMiner uses results from Enju and Gdep.

In order to take advantage of these tools we have designed a method to
merge several event extraction outputs. The integrated results can be useful
when deciding the balance between precision and recall, depending on how the
data will be used (see Section 5.2).

The output from the two systems, which is merged after production,
consists of information about the event type, the event trigger and the event
participants. The results are reported in the BioNLP’09 format, with each event
referencing the entities or the other events by their IDs. So, each extracted
event is stored in the database with its components spread over several rows,
each referencing the others.

The events extracted from the two tools are compared to determine
whether they refer to the same mention of an event. Two events extracted from
a given sentence match if their type and participants match (we used
approximate boundary matching conditions, allowing overlap for the
participant mentions). If the event involves other events, the matching criteria
is examined recursively. Note that here we do not require the triggers to match,
as they do not convey any biological information.

After studying a sample of the merged output from the large-scale
MEDLINE event extraction, we noticed recurring patterns that contributed
towards many incorrectly extracted events.

To increase the precision, we designed post-processing methods that
negatively discriminated (i.e. removed probable false positives) against those
events that followed these patterns. The rules were based on the event trigger
and the event structure, as explained below. We also consider improving

coverage by inferring additional events (see Section 5.1.7).
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Negative discrimination based on the event trigger

Events whose triggers indicate that the events are wrong are removed. Very
short triggers (one or two characters, mostly consisting of punctuation, single

letters or abbreviations) were removed. We also compiled a white list of 11

» »

ShOI't WOFdS (“/”’ ‘K_JJ, “iS”, K‘by”’ KKaS s “On s “up’J, “at”, “be”’ ((doii, and

“if”) that could be triggers, and a blacklist of 15 longer words which were

» (13

common English stop words ( “the”, “and”, “in”, “of”, “cells”, “to”,

13

“when”, “patients”, “are”, “mice”, “from”, “both”, “that”, “mouse”, and
“what”) and were often recognised incorrectly as event triggers. Events that
had a trigger from the white list were not removed, and events that had a
trigger from the blacklist were removed.

In addition, events with capitalised triggers which were not situated at the
beginning of a sentence were removed, as many of these capitalised words
turned out to be proper nouns, and seldom functioned as an interaction trigger.
For example, an event with the trigger “Expression” from the sentence
“Expression of the argA gene carried by a defective lambda bacteriophage of
Escherichia coli.” (extracted from PMID 130376) would be retained since it
was in the beginning of the sentence, but an event with the (incorrect) trigger
“E.P.” from the sentence “[...] primary visual E.P. in Medial Laternal gyrus

[...]7 (PMID 142561) would be removed, since “E.P.” was not in the

beginning of the sentence.

Negative discrimination based on the event structure

The event extractor components identify nested regulatory events in which
either or both of the participants may be other events. However, they are likely
to report events that are circularly nested (e.g. E1 causes E2, which itself
causes E1) or in a very long chain (e.g. E1 causing E2 causing E3 and so on.)
In one instance TEES found a chain of 211,769 connected events. We noticed
that there are very few instances in the training data where events are nested

deeper than two levels, and there are no circularly nested events. In addition to
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making little biological sense, none of the cases of circular or long chain events
that were manually examined were correct. Therefore, we categorically

removed all the events that were nested any deeper than two levels.

5.1.6 Adding context

In the final stage, further context is extracted and is associated with the events
that were extracted in the previous stage. This information includes associated
anatomical locations and whether extracted processes have been reported as

speculative or negated.

Negation and speculation association

We use Negmole to determine whether the events are described negatively or
speculatively. The input of Negmole, in addition to the extracted events,
contains constituency parse trees from the McClosky-Charniak parser.

The methodology and design principles of Negmole have been described
in detail in Sections 3.4 and 3.5. It takes as input text, named entities marked
with offsets, parse trees of the sentences and the extracted events (trigger, type,
and participants.) Negmole classifies each event as negated/affirmative and
speculated/asserted. The flowchart in Figure 3.15 on page 138 summarises the
operation and requirements of this system.

The input formats are those of the BioNLP’09 Shared Task. The Java
implementation comes with a wrapper to function as a module in the TextPipe
framework and uses the same unified input and output format as any other
TextPipe module: a map of string to string.

We used the features extracted from the BioNLP’09 training set to train
an SVM model which was used in the SVM classification algorithm to classify
each of the test instances. Negmole extracts features from the inputs and
creates feature files to be used as the input to the SVM machine learning

system. We used SVMperf as the choice of the SVM engine.
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Species and anatomical association

Anatomical locations are associated with events using an expanded version of
the method described in (Gerner et al. 2010a). It relies on Gdep dependency
trees to link events and associated anatomical entities. The tool was integrated
as a TextPipe component with a wrapper interfacing the framework.

We used LINNAEUS (Gerner et al. 2010b) to extract mentions of species
names (e.g. “human”, “dog”, “mus musculus”, etc.) and mentions of
anatomical locations (e.g. “blood”, “vein”, “epithelium”, or cellular locations
such as “lymphoid tissue” or “nucleus”™).

The anatomical entity IDs come from 13 different ontologies from The
Open Biological and Biomedical Ontologies (OBO) foundry®, some of which
are species-specific, and others refer to higher taxonomic orders such as genus,
class, etc. The mentions were normalised based on their string equality as well
as the LINNAEUS’s native dictionary matching method. Moreover, the
anatomical entities were associated with a certain species whenever possible.
The anatomical locations were assigned unique internal identifiers that

reflected the anatomical location as well as the species it exists in.

5.1.7 Inferring additional events from enumerated entity mentions

Mining conflicting events in the literature is a task that requires large-scale
extracted data. In order to increase the number of events that have been
extracted, we infer further events from enumerated entity mentions.

We noted that a relatively large number of gene/protein and anatomical
entities in MEDLINE are part of “enumerations”, i.e. lists of more than one
entity connected within a conjunctive phrase (for example, three anatomical
entities are enumerated in the phrase “amniserosa, dorsal ectoderm and dorsal
mesoderm™). We hypothesize that wherever event extractors or the anatomical
association method associate an event with a gene/protein or anatomical entity

which is part of such an enumerated group, we can infer additional events,

20 http://www.obofoundry.org/
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where the original entity is replaced with each of the other entities in the
enumeration.

For example, in Example 5.1 gene expression events should be extracted
for all three Dorsocross genes, and each of those events should be associated
with each of the anatomical locations mentioned. If any of these nine events are
not extracted, the event inference based on enumeration will be able to infer the

event(s) that were missed by the event extractors.

Example 5.1. “In the present study, we describe three novel genes,

Dorsocross1, Dorsocross?2 and Dorsocross3, which are expressed

downstream of Dpp in the presumptive and definitive amnioserosa,
dorsal ectoderm and dorsal mesoderm.”

(From PMID 12783790)

Since each event is initially only associated with a single anatomical
location, this method makes it possible to infer additional events for the
anatomical locations that were not associated to the original events.

In order to implement this method, we used regular expression patterns
(see Table 5.1) to detect groups of enumerated entities. The regular expressions
are applied recursively, causing any number of entities to match. For example,
in the phrase “T1, T2, and T3 the first two entities (T1 and T2) will be in the
same group by applying the first regular expression, and T2 and T3 will be in
the same group by applying the second rule. Finally, the groups are merged to
form a perfect partitioning of the entities, and therefore, T1, T2, and T3 would
belong to the same entity group. If T1 and T2 belong to the same entity group
and an event E1 is extracted with T1 as the participant, we construct a new
event E2 with the entity T2. Except for T1, all other properties of E1 will be
duplicated in E2.
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Patterns to match

Regular expression to match the
sub-string between T1 and T2

T1, T2 "N, /1 28"
T1/T2

T1,and T2 "~,? and $"
Tland T2

Table 5.1: Regular expressions used to enumerate named entities

The regular expressions are applied recursively, causing any number of entities to

match.

5.2 Event representation

5.2.1 Event mention representation

We are mainly concerned with the event-level information about biomedical

processes. Therefore we would like to extract, represent, modify, and analyse

the data on the level of events. For that purpose, we designed a model that is

represented as a denormalised table where every record is one instance of an

event mention in a document. We populated the table with the extensive

mention-level information about each extracted event. Cross references to the

other events in nested events were expanded and added as attributes to the

parent event record. The columns of the denormalised table and a brief

description of each column are listed in Table 5.2.

Attribute | Name Values Description

Type

G document ID PMID or PMC | The MEDLINE or PMC document in which the
unique event was mentioned
identifier

G sentence string The sentence that mentions the event

G sentence offset | integer The character offset of the sentence in the

document
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confidence real The confidence of event extraction
type enum (nine The biological type of the event; one of the nine
possible types used by the BioNLP’09 corpus
values)
E level integer Indicates whether the event is simple (i.e. has

entity participants) or nested (has other events

as participants)

E trigger term string The textual trigger of the event

E trigger start, integer The character offsets of the start and end of the
trigger end textual trigger
TEES boolean Whether the event was extracted by TEES
Tokyo boolean Whether the event was extracted by EventMiner
inferred gene | boolean Whether the event was inferred based on

enumerated gene/proteins

E inferred boolean Whether the event was inferred based on
anatomy enumerated anatomical entity

E negated boolean Whether the event is negated

E negation cue string The textual cue for negation

E negation cue integer The character offsets of the start and end of the
start, end negation cue

E speculated boolean Whether the event is speculated

E speculation cue | string The textual cue for speculation

E speculation cue |integer The character offsets of the start and end of the
start, end speculation cue

E anatomical string The anatomical entity which has been assigned
location as the location of the molecular event

E anatomical Internal ID Internal ID linked to OBO Foundry ontology
entity ID identifiers

E anatomical integer The character offsets of the start and end of the
entity start, end anatomical entity mention

R participants multiple The participants of the event. This spans over

columns several columns as each participant may be an

entity or another event. There are separate
columns for ‘theme’ participants and ‘cause’

participants.

R participant type | boolean Whether the participant is an event or a

gene/protein entity

R entity term string The actual text that refers to the entity that

participates in the event

R entity ID Entity ID in The normalised ID of the gene/protein entity in
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NCBI the NCBI Entrez Gene reference database. This
could be null if the entity cannot be normalised.

R entity start, end | integer The character offsets of the start and end of the

protein/gene mention

R GNAT + boolean Whether the entity was found by GNAT +
BANNER BANNER
GeneTUKit boolean Whether the entity was found by GeneTUKit
shallow match |boolean Set if both GeneTUKIit and GNAT overlap, but
map the entity to different IDs.#
R gene real The confidence of gene extraction
confidence

Table 5.2: The attributes of mention level event representation

Each row of this table shows a column of the denormalised table identifying each
event mention and its attributes. The attributes of type G are general attributes, type E
are event level attributes, and type R are recursive attributes and are repeated as
needed.

The left-most column in Table 5.2 shows the type of each of the columns
of the denormalised database table. The G columns are the general attributes
and every record has exactly one of each one of them. The E columns are
event-specific attributes. Since every record represents an event, each row will
have all the E records that refer to that event. However, some of the
participants of the event can be other events. Therefore, R (recursive) attributes
can be repeated or recursively repeated as required. For example, if a binding
event involves two genes, we will have two sets of all the R attributes, one for
every gene.

If a regulation event has a theme that is itself an event, we will repeat all
the E attributes in that record, once for the event itself, and a second time for its
theme that is also an event. The same principle applies to other types of nested
events or events with multiple participants.

An example of an event represented in this manner can be seen in Table

21 GeneTUKit is prioritised over GNAT, since it was the best performing tool in the

BioCreative lll challenge.
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5.5.

5.2.2 Distinct event representation

The denormalised table contains every mention of an event anywhere in the
corpus, and may contain many similar events that are reported or discussed in
the literature. In order to analyse the distinct events contained in the literature,
and specifically as a way of normalising event mentions into equivalence
classes, we use the concept of distinct events introduced in Section 3.1.3.

We chose the columns that are essential in defining an event and use
them to construct a hash function that assigns an integer (hash) to a
combination of attributes, ignoring extrinsic attributes such as all G attributes,
index and offset attributes, terms (e.g. trigger term, entity terms, and cues).
Instead, we include attributes that are intrinsic to the event such as event type,
participating entity IDs, and negation information.

Specifically, the attributes that are used to identify distinct events are
displayed in Table 5.3. Note that these are a subset of the attributes in Table
5.2.

Attribute Name
Type
type
E negated
E speculated
E Anatomical entity ID
R Participants
R Participant type
R Entity ID

Table 5.3: The attributes of every distinct event in the collapsed table.

The R columns are recursive, and are repeated for every participant, and therefore

are in fact multiple columns.

The hash is calculated from the string containing these attributes (in the
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most possible normalised form) and also added to every record in the
denormalised table. The importance of the hashes lies in their definition of the
“identity” of an event. The information incorporated in the hash is the essential
information about an event, and corresponds with the distinct representation of
an event introduced before.

We use the hash to collapse the denormalised table by grouping together
the events that are likely referring to the same biological process, regardless of
the document in which they have been mentioned, and of the words with which
they have been described. The columns of the collapsed table are shown in
Table 5.3. Similar to the denormalised table, the R columns are recursively
repeated, for every participant. They include a copy of the E columns for each

of the participants that is an event.

5.3 Ranking the events by text mining confidence

Not all the extracted events have the same quality. In a pipeline comprised of
many modules, the quality of the final output is affected by the precision of
every stage that affects the input. For example, the precision of the gene and
protein NER stage which is one of the earlier stages of the pipeline is
propagated through all the other stages that use the NER output as one of their
inputs.

We use a method of confidence assignment to calculate the confidence
level of every event as it is extracted by the system and stored in the database.
We identify the precision level of every stage that the extraction of an event
involves and use it as a factor to determine the confidence of the event.

For example, if two gene NER tools agree on an entity, the confidence of
the extraction of that entity will be higher than when only one of them has
detected the entity. The confidence will be proportionate to the precision of

each tool.



210 Chapter 5 Large-scale consolidation of molecular event data

NER BANNER + GNAT 0.8
GeneTUKit 0.72
Intersection 0.82
Event extraction EventMiner Binding 0.27
Gene expression 0.47
Localization 0.36

Negative regulation |0.32

Phosphorylation 0.61

Positive regulation 0.35

Protein catabolism 0.8

Regulation 0.22
Transcription 0.48
TEES Binding 0.34
Gene expression 0.58
Localization 0.67

Negative regulation |0.41

Phosphorylation 0.6

Positive regulation 0.44

Protein catabolism 0.62

Regulation 0.25
Transcription 0.51
Intersection Binding 0.49
Gene expression 0.7
Localization 0.76

Negative regulation |0.6

Phosphorylation 0.7

Positive regulation 0.61

Protein catabolism 0.92

Regulation 0.45

Transcription 0.73

Inference Gene enumeration 0.44
Anatomical entity 0.34

enumeration

Table 5.4: Coefficients that determine the confidence

The numbers in bold are the maximum in each category and are used to normalise the

coefficients in every stage.
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In every stage, we normalise the confidence coefficient by dividing all of
the coefficients belonging to that stage by the highest coefficient for that stage.
Table 5.4 shows the coefficients of every stage, and how they are normalised.
The numbers are derived from the precision evaluation results that will be
presented in Chapter 6 .

Table 5.5 shows an example from the extracted events. Note that the
confidence is not very high (0.00136), which is expected for an event of level
1. It is interesting to observe that, apart from the event-participant association
which is incorrect, the other attributes of the main event and the nested event,
including the negation of the main event, the negation of the nested event, and

the anatomical association by inference to the main event have been identified

correctly.

Attribute | Name Values

Type

G document ID PMC2727658

G sentence For example in the liver and skin, there was no activation of toll-like
receptors (which could play a role in pathogen recognition), no change
in known antimicrobial peptide genes (although not all AMPs were
represented on our chip because some sequences were shorter than our
60-mer probes), and no change in MHC class I or II genes, or genes
involved in antigen presentation (e.g., LMP7, TAP1 and 2,
cathepsines).

G sentence offset | 27983

E confidence 0.001360

E type Regulation

E level 1

E trigger term “change”

E trigger start, 28283, 28289

trigger end

E TEES FALSE

E Tokyo TRUE

E inferred gene FALSE

E inferred anatomy | TRUE

E negated TRUE
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E negation cue “no”
negation cue 28280, 28282
start, end
speculated -
speculation cue |-
speculation cue |-
start, end

E anatomical “liver”
location

E anatomical entity | anat:184
ID

E anatomical entity | 28002, 28007
start, end

RO participant type | Event

RO participation type | Theme

RO type Positive regulation

RO level 0

RO trigger term “activation”

RO trigger start, 28031, 28041
trigger end

RO TEES FALSE

RO Tokyo TRUE

RO inferred gene FALSE

RO inferred anatomy | FALSE

RO negated TRUE

RO negation cue “no”

RO negation cue 28028, 28030
start, end

RO speculated FALSE

RO speculation cue |FALSE

RO speculation cue |-
start, end

RO anatomical “skin”
location

RO anatomical entity |anat:115
ID

RO anatomical entity | 28012, 28016
start, end

R1 participant type | Entity

R1 entity term “toll-like”
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R1 entity ID 37272

R1 entity start, end | 28045

R1 GNAT + TRUE
BANNER

R1 GeneTUKit TRUE

R1 shallow match FALSE

R1 confidence 0.014760

Table 5.5: Example event representation

The main event represented here is a Regulation event whose only participant is a
positive regulation even with a theme role. It is extracted automatically using the event

extraction pipeline, BioContext.

5.4 Finding conflicting statements

We focus on strict contrasts, as allowing some of the fields to be empty results
in events that have less context extracted and therefore are likely to have less
implicit context in common. We select a subset of the events that satisfy the
following criteria:

1. The events have an associated anatomical location;

2. If they are binding events, two themes are present;

3. If they are regulatory events, they have causes;

4. The entity participants are normalised to standard entries;

5. The events are not speculative.

For every unique event satisfying the above criteria, we calculate the
hash for a hypothetical event that matches it in every aspect, but has the
opposite negation attribute. We then search the database for any event with this
given hash.

This method allows us to find pairs of events that are common in all
aspects (type, participants, and anatomical locations), and their only difference
is the fact that one is affirmative and the other is negated.

We assign a score to every pair to indicate how prominent that pair is. To
compute this score, we start by calculating the cumulative confidence of each

one of the two hashes in the pair. Cumulative confidence is equal to the
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number of different documents in which the distinct event corresponding to
that hash (which we refer to as the supporting event for the hash) appears,
regardless of the number of times it has appeared in a single document. The
aim is to remove the bias caused by the repeated appearance of the same event
in a document. In other words, the cumulative confidence of a hash is defined

das:

cum(h)= Y, max,(c;(h))

d € Documents

where c;(h) is the confidence of the jth occurrence of an event with
hash h in document i, and the max function runs on different values of j.
Assume that a number of mentions of a given event have been extracted from
document i. Not all of these events are of equal confidence, and it is possible
that some of them are false positive instances. However, regardless of those
lower quality mentions, we consider the maximum score, i.e. max j(C ij(h)) in
the above equation. Considering this event to denote the appearance of this
particular event in document i prevents the lower quality of the other (possibly
more complex) mentions from adversely affecting the notion of document-level
confidence. By adding these document-level confidences, we take into account
how commonly a distinct event is reported. We only use this cumulative
confidence score for ranking purposes, and therefore we do not consider
applying a logarithmic function on the sum.

Using this measure for how commonly and confidently a distinct event is
reported, we define the score of a pair of events as the minimum of the

cumulative confidences of the two corresponding hashes.
score (h, ,h,)=min(cum(h,),cum(h,))

This is a measure that favours pairs that have a combined high frequency

and confidence. Here we chose to use the minimum as the way to combine the
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scores of the two events in a pair. Other ways of combining two scores such as
various averages would have caused the more prominent event to dominate the
overall score for the pair. We expect the pairs that are not in fact conflicting to
have a very low score on one of the events of the pairs. For example, if it is a
well-known fact that p53 is expressed in lung, we expect the cases of p53 not
expressing in lung to be rare or with low confidence (likely to be false
positives) and therefore to have a low score. On the other hand, the event
“expression of p53 in lung” would have a very high score, and could dominate
the score of the pair, despite the fact that the pair is not very likely to represent
a conflict.

To address this issue, we would like the score of the pair to depend solely
on the score of the event with the lower score. This will guarantee that a pair
will be scored highly if both components have at least a minimum confidence
score. The score will be used in ranking and evaluation of conflicting pairs, and
in estimating the confidence of a pair. Using this ranking, we can present to a
user all conflicting statements that have a minimum confidence or satisfy a

certain filter.

5.5 Exploring the data

We applied BioContext, our integrated system, to extract events and their
context, to MEDLINE (2011 baseline files, containing 10.9 million abstracts)
and to the open-access subset of PMC (downloaded May 2011, containing
235,000 full-text articles). In this section we describe access to the data as well

as the source code of BioContext and its components.

5.5.1 Browsing the data

We provide a web interface for browsing the data, and for performing web
searches®. It is implemented in Python, and runs server calls to the database
containing the results.

The interface is simple, allowing the user to enter any of the two

22 The web interface can be accessed at http://www.boicontext.org/
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participants, and the anatomical location they are interested in, and select any
number of the nine event types. The input strings are processed by entity
recognisers and normalised. This will allow all the events involving the same
entity to be fetched, regardless of the term used to refer to the entity.

When the query is submitted, the events matching the criteria will be
returned in tabular form, with full context and citation information concisely
displayed. The results can also be downloaded in structured text files from this
page.

The following screen shots demonstrate the design and features of the
web interface. On the first page (Figure 5.2) the user can enter the theme,
cause, and the anatomical location they are interested in, or leave any of them
blank. If any of the fields are left empty, events with all possible values for
those attributes will be returned. We use the word “Target” for theme and
“Regulator” for cause, as these terms are more comprehensible and appear
more natural to biologists. The event types that are of interest can be selected

with check boxes. By default all the check boxes are selected.
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Target: ‘ IL-2 |

Regulator: ‘ |

Anatomy: ‘ |

Gene expression
Transcription
Protein catabolism
Localization
Phosphorylation
Binding

Regulation

Positive regulation
Negative regulation

| Submit 5

Figure 5.2: BioContext web interface: the first page

Event type:

AR AR AR RA R

The query returns events of any type with IL-2 as the target (theme).

The queries are parsed by entity recognisers and are normalised to the
relevant identifiers, possibly belonging to a certain species. For example, if one
enters “rat IL-2” into the target box, the results related to IL-2 in rats will be
returned.

After filling in the Target field with the query “IL-2”, we see a summary
of the affirmative and negated cases of each type of event involving this gene.
Clicking on any of these numbers will show the details of the extracted events

(Figure 5.3).
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Click here to choose a different target, regulator, or anatomical location for your search queries.

Positive Negative
cases cases

Gene expression 29542 1022

Process

Transcription 1928 95
Protein catabolism 142 1
Localization 5962 133
Phosphorylation 353 13
Binding 6594 204
Regulation 2846 347

Positive regulation 8982 436
Negative regulation 3648 T4

Figure 5.3: BioContext web interface: summary of the query results

The list of events involving the human version of the gene/protein after submitting the
query with IL-2 in the “Target” field. The count for affirmative and negated mentions
are displayed separately. Clicking on the link indicated with ‘here’ will show the list of

homologs of the entity in other species.

By default, if the species is not specified, human results are displayed.
However, we could also choose other homologs (same entities in other species)
by clicking on the appropriate link. A list of resolved entities for the IL-2 gene
in other species are displayed, and will display the specific events occurring in

those species (Figure 5.4).
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Gene search results for theme "il-2":

IL2:

IL2:
IL2:
IL2:
IL2:
IL2:

IL2:
IL2:
IL2:
IL2:

IL2:
IL2:

IL4:

interleukin 2 (Homo sapiens)

12 interleukin 2 (Mus musculus)
12 interleukin 2 (Rattus norvegicus)

interleukin 2 (Bos taurus)

interleukin 2 (Gallus gallus)
interleukin 2 (Canis lupus familiaris)
interleukin 2 (Oryctolagus cuniculus)
interleukin 2 (Meleagris gallopavo)

i12: interleukin 2 (Oncorhynchus mykiss)

interleukin 2 (Ovis aries)

interleukin 2 (Sus scrofa)

interleukin 2 (Pan troglodytes)
interleukin 2 (Equus caballus)
interleukin 4 {Oryctolagus cuniculus)
interleukin 2 (Felis catus)

interleukin 2 (Macaca mulatta)

Figure 5.4: BioContext web interface: list of homologs
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If the entity from the search query (IL-2 in our case) exists in species other than

human, a list of homologs can be accessed. The links will direct the user to the list of

events involving the specified entity.

On the same page, we also see a list of all the distinct events involving

the queried gene. Here, a distinct event can be selected for the viewing of the

individual mentions (Figure 5.5).
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Positive Negative

Process Target(s) Regulator Anatomy T
Gene IL2 (H. sapiens) 12179 419
expression

Gene IL2 (H. sapiens) T cells 7364 249
expression

s IL2 (H. sapiens) 3891 198
regulation

Gene .

e IL2 (H. sapiens) lymphocytes 2480 57
Localization IL2 (H. sapiens) 2412 67
Binding 1930 57
Negative IL2 (H. sapiens) 1862 43
regulation

Localization IL2 (H. sapiens) T cells 1592 30
FEEiTE IL2 (H. sapiens) T cells 1445 61
regulation

Gene IL2 (H. sapiens) mononuclear g7 99
expression cells

Regulation IL2 (H. sapiens) 1128 161
Transcription  IL2 (H. sapiens) 919 57
£ IL2 (H. sapiens) blood 816 17
expression

Figure 5.5: BioContext web interface: list of the distinct events

List of distinct events, regardless of the document or sentence they have appeared in,

which involve the queried entity in the specified role.

The affirmative or negated cases of a distinct event can be selected for
display. The empty columns indicate incomplete context. The citations are
extracted and formatted, and are linked to the original document. Figure 5.6
shows the list of affirmative mentions of this particular event. The sentences
from the same document are grouped together, and can be viewed individually
by selecting the plus sign next to the document citation information (compare,
for example, the third row with with rows 5 and 6 in Figure 5.6.) The open

access PMC articles are indicated by a lock sign next to the reference.
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next >
Document Regulator Target Anatomy Sentence
Kahle et al In addition, cloning efficiencies were acceptable
1981 i IL2 (over 30%) when IL 2 produced spontaneously from
( ) the leukaemic cell Jurkat (M-N) was used.
These considerations have led to the belief that
more sophisticated technologies aimed at introducing
Foa et al. (1992) IL2 gene the IL2 gene into the neoplastic cells may potentially
overcome some of the limitations coupled to the in
vivo infusion of high doses of IL2.
B Azogui et al. The allm of the presfent work was tcl' studyl the help.er
IL2 function by measuring the production of interleukin
(1983) (6)
2 (IL 2).
Our model system is recombinant parvovirus MVM
Cheong et al. L2 expressing human IL2, but the method should be
(2003) adaptable to other vectors expressing transgenes that
are secreted and for which antibodies are available.
B Duchateau et L2 No IL2 production was observed in the unstimulated
al. (1985) (2) cultures, even in the presence of thymopentin.
On the contrary, preincubation with different
L2 concentrations of thymopentin influenced
PHA-induced IL2 production.
Kaplan et al. IL-2 MLA-144 produces IL-2 constitutively; however, it did
{1988) not possess membrane-associated epitopes.
Only 1% of the cells produced IL-2, but each IL-2
0 Andersson and stained cell was very bright, indicating a low
Sander (1989) IL-2 capacity of anti-CD3 antibody to induce IL-2

(2)

production rather than an insensitivity of our
detection system.

Figure 5.6: BioContext web interface: list of affirmative cases of the given event

Individual affirmative mentions of the IL-2 expression, with highlighting on the original

sentence and link to the source document.

Similarly, negative cases can be viewed in a list with references to the
original documents in MEDLINE or PMC (Figure 5.7). The negation cues are
highlighted, as well as the speculation cues wherever they cue an affected

event. The cues that do not affect events are left without highlighting.
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(1987)
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Regulator Target

interleukin 2

next =

Anatomy Sentence

In marked contrast, when antigen-induced
lymphokine production was examined, most patients
with microfilaremia were unable to produce either
interleukin 2 (IL-2) or gamma-interferon (i.e., were
nonresponders), and the few who could
(hyporesponders, generally with quite low
microfilaremia levels) did so at levels significantly less
than those of patients with elephantiasis, all of whom
showed strong responses to parasite antigen.

Leu 11-enriched cells did not express high affinity IL-2

Toossi et al. IL-2 receptors nor did they deplete IL-2 activity from
(1989) .
culture media.
Maneer et al After treatment with 5-azacytidine, HUT 78 cells
g ’ IL-2 produced maximal levels of IL-2 in response to PMA
(1986) . - = . . .
alone without requiring [Ca++]i increasing stimuli.
Liu and PBMCs similarly transduced with a control vector did
Rosenberg IL-2 not produce IL-2 and failed to proliferate in the
{2001) absence of IL-2.
Packard (1990) IL-2 However, IL-2 is not normally synthesized by solid
tumor cells.
r;;:r;)e': al. L2 Noninduced cells did not express IL2 receptors.

Furthermore, anti-Tac can inhibit the mitogenic signal
given by endogenous IL 2, but not by in situ produced
IL2 IL 2, an observation of importance to further
investigations of the mechanisms by which IL 2
interacts with specific receptors to elicit proliferation.

Bettens et al.
(1984)

Figure 5.7: BioContext web interface: list of negated cases of the given event

Individual negated mentions of the IL-2 expression, with highlighting on the original
sentence and link to the source document similar to the affirmative cases. The

negation cue responsible for negating the even is highlighted in each case.

5.5.2 Availability of data and the code

In addition to the data that can be accessed for browsing and downloading
through the web interface, we also provide the data produced as the output of
this system, as well as all the intermediary data freely available. It is accessible
on the web, and also available through the supplementary materials of this
thesis®.

All the code written for the BioContext, the wrappers for several tools,

and the tools that we developed will be available at http://www.biocontext.org/.

23 Available at www.cs.man.ac.uk/~sarafraf/thesis-supplementary.html
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Appendix D provides a list of data and code from each stage. For more

details about the size of each data set, see Chapter 6 .



224

Chapter 6

Large-scale event extraction: data and evaluation

We applied BioContext, our integrated system, to extract events and their
context, to MEDLINE (2011 baseline files, containing 10.9 million abstracts)
and to the open-access subset of PMC (downloaded May 2011, containing
235,000 full-text articles). In this chapter we present, evaluate, and discuss the
data resulted from this experiment.

To evaluate the pipeline of text mining tools, we also evaluate the
performance of each of these components individually, in order to measure the
impact that each of the more complex components have on the data as it moves

through the pipeline.

6.1 Evaluation method

6.1.1 Evaluation metrics and approach

From an NLP perspective, it is important whether the textual elements
indicating the event are correctly identified. There are several ways to assess
the equality of these elements. The textual boundaries of the extracted event
triggers and participants could match those of the gold standard ones either
approximately or exactly. The nested events could be evaluated recursively, or
only based on the highest level event.

From a biological perspective, mention level evaluation might not be
very useful, as it is only interesting to know whether a particular event is
described in a document, regardless of the exact phrase used to describe it.
Textual triggers may be of little importance, and the terms used to refer to the
biological entities involved in an event are variable.

To compromise for these considerations, we use slightly different

methods for evaluating the event extraction task than for the aggregate



6.1 Evaluation method 225

analysis. In the event extraction task (Chapter 3), we count an extracted event
as a true positive if its type, trigger and all participants are correctly identified.
Similarly, in the negation and speculation extraction task, a true positive
represents a correctly identified negated (or speculated) event and a false
negative is a negated (or speculated) event reported incorrectly as affirmative
(or asserted). Here we present an aggregate analysis of results obtained as
described in Chapter 5. We focus on the biological significance of the data, and

allow the textual triggers of the event to vary.

6.1.2 Evaluation corpora

In the evaluation of BioContext using automatically extracted entities as
opposed to gold standard entities, we noticed that many false positive results
are created by entities missing in the BioNLP’09 corpus. The obvious thing to
do was to consider these entities as false positive instances from the NER
stage, but on closer examination we found that many of these entities are also
present in the original GENIA corpus (see Section 2.6 for the differences
between the two corpora).

The removal of those entities in the construction of the BioNLP’09
corpus was based on the argument that they do not strictly meet the “gene or
gene product” definition. Many of these entities are protein complexes (such as
NF kappa B) or other entities that behave (both biologically and linguistically)
similarly to ordinary genes and proteins. Furthermore, these entities are
typically detected by gene recognition systems, and participate in molecular
events which are described in the biomedical literature using similar linguistic
expressions, and are potentially interesting to biologists.

We therefore constructed a new corpus, referred to as the B+G corpus
hereafter, combining the BioNLP’09 gold annotations with the subset of the
GENIA corpus that most closely resembles the BioNLP’09 construction
criteria, but also accounts for the omitted protein complex entities. The B+G

corpus includes all the entities from the BioNLP’09 corpus plus the entities
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from the GENIA corpus with the protein molecule and protein complex tags
(see Section 2.6).

The events included in the B+G corpus are all the events in the
BioNLP’09 corpus, in addition to a subset of the GENIA events. To construct
this subset, we select any GENIA event whose participants are already
included in the B+G corpus (be it an entity or an event) and whose type is one
of the following GENIA event types: Positive regulation, Negative regulation,
Regulation, Gene expression, Binding, Transcription, Localization, Protein
catabolism, Protein amino acid phosphorylation, and Protein amino acid
dephosphorylation. The last two event types, Protein amino acid
phosphorylation, and Protein amino acid dephosphorylation, together
construct the event class Phosphorylation in the BioNLP’09 corpus.

There are a number of cases where mapping an event from the GENIA
corpus to its derived event in the BioNLP’09 corpus is not straightforward. For
example, in a number of cases, the original and the derived events differ in
their trigger mention and therefore could be two different events. So, strictly
speaking, both events should appear in the B+G corpus. However, upon further
manual investigation of all the respective sentences, we realised that the two
seemingly different events are in fact the same, and the BioNLP’09 corpus
creators have moved the trigger of a GENIA event to a different word. In such
cases, only one of the events are included in the B+G corpus, with priority
given to the BioNLP’09 corpus.

Every event in the GENIA corpus has “assertion” and “uncertainty”
attributes. Assertion is a binary attribute with possible values of “exist” and
“non-exist” which corresponds to our definition of negation, whereas
uncertainty is a tertiary attribute corresponding to speculation, with the three
possible values of “certain”, “probable”, and “doubtful”. In the BioNLP’09
corpus, an event can be “negated”, corresponding to the “non-exist” attribute in
the GENIA corpus. Independently, it can be “speculated”, corresponding to the

union of probable and doubtful events. We stay with the binary classification
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of the BioNLP’09 corpus, grouping the probable and doubtful events.

Table 6.1 shows the distribution of event types in the B+G corpus.
Compared to the statistics for the combined BioNLP’09 training and
development corpora, of the 14,781 events in the corpus, a total of 2,607
belong to the set of abstracts appearing in the development set of the

BioNLP’09 corpus.

Event type Number of events in the Number of events in

BioNLP’09 training + development | the B+G corpus

data sets
Gene expression 2,094 2,399
Localization 318 497
Transcription 658 683
Protein catabolism 131 146
Phosphorylation 216 252
Binding 1,136 1,711
Regulation 1,134 1,608
Positive regulation 3,465 5,457
Negative regulation 1,258 2,028
Total 10,410 14,781

Table 6.1: Summary of the events in the B+G corpus

To evaluate and compare the event extraction tools, we use the
BioNLP’09 corpus wherever the gold annotated entities are used as input. But
when the tools are using automatically extracted entities as part of a pipeline,
the B+G corpus is used for evaluation. In the following sections we report the
results of the different tasks on the above corpora.

As no gold annotated corpus exists for anatomical and species named
entities on a mention level, we randomly selected 100 events that are
associated with entity names by methods described in Section 5.1.6 for post-
hoc evaluation. Similarly, we selected 100 events that were inferred from the
extracted events (see Section 5.1.7) for post-hoc evaluation of event inference

methods.
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6.2 NER

Table 6.2 shows the number of gene/protein entities (both entity mentions and
distinct entities) extracted from the MEDLINE and PMC data sets. We also
consider entities recognised by both (intersection) or either (union) of the two
recognisers. The two corpora (MEDLINE and PMC) have an overlap,
consisting of the articles whose abstracts are listed in the MEDLINE corpus,
and whose full text is present in the PMC corpus. Throughout the results
reported in this chapter, wherever joint MEDLINE + PMC results are reported,
this overlap has been taken into account, and only reported once.

GNAT was additionally adapted to also return non-normalized entities
whenever those were detected by BANNER but could not be linked to
identifiers. In both the GeneTUKit and the intersecting data, all entries were
normalised (since GeneTUKit only reports normalised mentions). Of the
80,003,072 extracted gene mentions in the union set, 10,261,208 (12.8%) were
not normalised, all of which were produced by GNAT. Both the GeneTUK:it
data and the intersecting data contain only normalised entities, linking a
mention to its database identifier.

We also report the number of distinct gene/protein names that were
recognised. For this purpose, the gene mentions that could not be normalised

were grouped together based on surface string equality.
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Tool Gene entity mentions Distinct entities
MEDLINE |PMC MEDLINE |MEDLINE | PMC MEDLINE
+ PMC + PMC
GNAT 35,910,779 12,729,471 | 48,050,830 227,809 129,244 253,929
GeneTUKit | 47,989,353| 19,217,778 | 66,431,789| 258,765| 143,706 287,218
Intersection | 26,281,266| 8,638,823| 34,479,547 | 224,604| 125,763| 249,932
Union 57,618,866 | 23,308,426 | 80,003,072 261,412 146,552| 290,557

Table 6.2: Gene and gene product recognition counts in MEDLINE and PMC

The number of gene mentions and distinct genes recognized by GNAT and
GeneTUKit in MEDLINE and PMC. In the MEDLINE + PMC columns, the overlap is
only reflected once.

The evaluation results for the gene/protein named entity recognition
systems on the B+G corpus are shown in Table 6.3. Both precision and recall
are in the same range as what has previously been reported for common
recognition tools (BANNER: 85% P, 79% R; ABNER: 83% P, 74% R
(Leaman et al. 2008)). Studying the FP and FN errors suggested that some of
the more common categories of errors include incorrect dictionary matches due
to acronym ambiguity, incomplete dictionaries, and incomplete or incorrect
manual annotations of the gold-standard data.

We note that there is currently no gold-standard corpora available for

mention-level gene normalisation.

P R F1
GNAT 79.8% 83.7% 81.7%
GeneTUKit 72.2% 79.1% 75.5%
Intersection 82.8% 70.4% 76.1%
Union 71.4% 92.0% 80.4%

Table 6.3: Entity recognition performance on the B+G corpus

Gene/protein named entity evaluation results on exactly 3,000 instances in the B+G

corpus.

We used LINNAEUS to recognise anatomical location mentions and
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species name mentions from the articles. A summary of the number of entities
extracted from MEDLINE and PMC can be found in Table 6.4. These results
have not been evaluated. For the evaluation of LINNAEUS see (Gerner et al.

2010b).

Tool MEDLINE PMC MEDLINE

+ PMC
Anatomical location 47,002,254 9,656,994 56,659,248
Species names 33,187,566 3,771,333 36,958,899

Table 6.4: Species and anatomical entity recognition counts in MEDLINE and
PMC

The number of species and anatomical location mentions recognized by LINNAEUS in
MEDLINE and PMC.

6.3 Event extraction

In this section we summarise the results and evaluations of TEES and
EventMiner as well as the union and intersection of their outputs. The
evaluation on a corpus with gold-standard gene and protein entities are
reported in (Kim et al. 2009), where TEES achieved precision/recall/F-score of
58%/47%/52%, and these measures for EventMiner were 54%/28%/37%. Here,
we evaluate these systems in a real-world situation using automatically
extracted genes/proteins as input. For this purpose, we define a true positive as
before (as presented in Section 4.1.1), but with one additional condition:

5. The entity participants are true positives, and approximately match

boundaries with the gold participants.

6.3.1 TEES

We executed the Turku Event Extraction System (TEES) on the B+G corpus

(introduced in section 4.1.2), using genes that were extracted by the integrated
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gene NER system (union). The results of that evaluation can be seen in the

Table 6.5.

Number of true positives (TP) 655
Number of false positives (FP) 1142
Number of false negatives (FN) 1949
Precision 36.4%
Recall 25.1%
F-score 30.0%

Table 6.5: Evaluation of TEES as deployed locally on the B+G corpus

Table 6.6 shows the event-type specific evaluation of the TEES data

filtered by our automatically extracted gene and protein entities.

Type TP FP FN p (%) r (%) F (%)
Gene expression 340 188 78 64.3 81.3 71.8
Localization 58 23 23 71.6 71.6 71.6
Phosphorylation 49 14 11 7.7 81.6 79.6
Transcription 60 31 25 65.9 70.5 68.1
Protein catabolism 22 4 4 84.6 84.6 84.6
Class | total 529 260 141 67.0 78.9 72.5
Binding (Class II) 136 246 249 35.6 35.3 354
Regulation 98 129 149 43.1 39.6 41.3
Positive regulation 511 554 499 47.9 50.5 49.2
Negative regulation 135 196 184 40.7 42.3 41.5
Class lll total 744 879 832 45.8 47.2 46.5
All 1409 1385 1222 50.4 53.5 51.9

Table 6.6: Type-specific evaluation of the TEES data on B+G

This event extraction evaluation corresponds to the second column of Table 6.7,

showing the break-down of the TEES performance using automatically extracted gene

and protein entities as part of this research.

The Department of Information Technology in the University of Turku

have also provided a database of the events (Bjorne et al. 2009). extracted from
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the MEDLINE abstracts. From this database, we selected only the abstracts
that are included in the B+G corpus. We evaluated the data, once filtering those
events that reference any gene/protein entities that are not in our extracted
genes, and a second time just evaluating the data as presented. The results of
both evaluations can be found in Table 6.7.

Note that by filtering out the events referring to the entities that are
missing from our extractions, we are missing a small number of events.
Because of this, recall is reduced slightly. However, it does not have a

significant effect on the precision or the F-score.

TEES data on |Original TEES data

extracted

genes
Number of true positives (TP) 1409 1433
Number of false positives (FP) 1385 1427
Number of false negatives (FN) 1222 1192
Precision 50.4% 50.1%
Recall 53.6% 54.6%
F-score 51.9% 52.2%

Table 6.7: Evaluating the data released by TEES developers

The evaluation was performed on the B+G corpus. The second column shows the
evaluation statistics when the original data was filtered based on the automatically
extracted genes. The third column shows the evaluation of the TEES data as

presented in the original database.

6.3.2 Evaluation of EventMiner

The source code of EventMiner has been provided by the developers for the
purpose of the development of this project. Providing automatically extracted
gene and protein entities for the software and running it on the B+G corpus we

achieved the results summarised in Table 6.8. Table 6.9 shows the event-type
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specific evaluation of this data. Despite using automatically extracted entities,
the results of this improved version of the system are higher than those
reported as part of the BioNLP’09 Shared Task (overall F-score 46% vs.
34.6%). But it should be noted that the evaluation datasets are different: our
results are evaluated on the B+G corpus that are effectively the same abstracts
and BioNLP’09 development corpus which was also used for training and
tuning of the systems; the Shared Task evaluation was performed on the

BioNLP’09 test corpus, which is not publicly available.

Number of true positives (TP) 1201
Number of false positives (FP) 1428
Number of false negatives (FN) 1438
Precision 46%
Recall 45%
F-score 46%

Table 6.8: Evaluation of EventMiner on the B+G corpus

The evaluation is performed on the B+G corpus using automatically extracted genes.
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Type TP FP FN p (%) r (%) F (%)
Gene expression 326 240 89 57.5 78.5 66.4
Localization 62 30 21 67.3 74.6 70.8
Phosphorylation a7 31 13 60.2 78.3 68.1
Transcription 54 52 32 50.9 62.7 56.2
Protein catabolism 22 13 4 62.8 84.6 72.1
Class | total 511 366 159 58.2 76.2 66.0
Binding (Class Il) 140 269 258 34.2 35.1 34.6
Regulation 56 160 193 259 224 24
Positive regulation 390 485 619 44.5 38.6 41.4
Negative regulation 104 148 209 41.2 33.2 36.8
Class lll total 550 793 1021 40.9 35.0 37.7
All 1201 1428 1438 45.7 45.5 45.6

Table 6.9: Type-specific evaluation results for the EventMiner data on the B+G

corpus

This event extraction evaluation shows the break-down of the EventMiner
performance using automatically extracted gene and protein entities as part of this

research.

6.3.3 Merging the outputs

The evaluation scores achieved by the two event extractors (see Table 6.10)
show the best precision of 66% (for intersection) and the best recall of 62%
(for union).

TEES still provides the best balance between precision and recall (52%).
Still, these results differ from previously reported precision levels for TEES at
64% (Bjorne et al. 2010). However, the evaluation methods were different,
making comparisons difficult: in the evaluation of Bjoérne et al., 100 events
were selected randomly for post-hoc manual verification, rather than being
compared to a gold-standard corpus. Their definition of “entity” was also
slightly different, allowing “cells, cellular components, or molecules involved
in biochemical interactions” to be counted as true positive, but not necessarily

contributing to false negative, as recall is not considered in post-hoc
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evaluation. Indeed, many FP and FN errors by the event extractors were due to
incorrect entity recognition that propagated to event FPs or FNs, sentences that
were particularly complex linguistically or semantically, and incomplete

manual annotation of the corpora.

P R F1
TEES 50.4% 53.6% 51.9%
EventMiner 45.6% 45.5% 45.5%
Intersection 66.2% 36.6% 47.1%
Union 41.3% 62.0% 49.6%

Table 6.10: Overall event extraction evaluation

Evaluation on the B+G corpus with 2,607 instances.

Type TP FP FN p (%) r (%) F (%)

Gene expression 295 103 114 74.1 72.1 73.1
Localization 53 16 28 76.8 65.4 70.6
Phosphorylation 44 12 15 78.5 74.5 76.5
Transcription 48 22 37 68.5 56.4 61.9
Protein catabolism 20 1 6 95.2 76.9 85.1
Binding 81 96 302 45.7 21.1 28.9
Regulation 44 30 204 59.4 17.7 27.3
Positive regulation 294 149 697 66.3 29.6 41.0
Negative regulation 70 55 241 56 225 32.1
All 949 484 1644 66.2 36.6 47.1

Table 6.11: Evaluating the intersection of event extraction outputs

Type-specific event extraction evaluation results on the intersection data.
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Type TP FP FN p (%) r (%) F (%)
Gene expression 370 340 54 52.1 87.2 65.2
Localization 67 39 16 63.2 80.7 70.8
Phosphorylation 52 33 9 61.1 85.2 71.2
Transcription 66 61 20 51.9 76.7 61.9
Protein catabolism 24 15 2 61.5 92.3 73.8
Binding 195 419 205 31.7 48.7 38.4
Regulation 110 264 138 29.4 44.3 35.3
Positive regulation 606 895 422 40.3 58.9 47.9
Negative regulation 171 292 150 36.9 53.2 43.6
All 1661 2358 1016 41.3 62.0 49.6

Table 6.12: Evaluating the union of event extraction outputs

Type-specific event extraction evaluation results on the union data.

Table 6.13 presents the number of events extracted from the corpora. In

addition to the number of event mentions, we provide an estimate for the

number of distinct events. For this purpose we define two events to be the same

if:

The events are of the same type.

They involve the same normalised gene entities. If non-normalised
genes are involved, the gene mention strings must match. If more than
one entity is involved, all pairs must match.

Either no anatomical entity is associated with either of the two events,
or if one event is associated with an anatomical entity, the other event
should also be associated with an entity normalised to the same
anatomical location. In the case of non-normalised anatomical entities,
the entity mention strings must match.

They are both affirmative, or both negated.

They are both asserted, or both speculative.

If any of the participants of the events is another event, those nested
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events should also match recursively.

Tool Event mentions Distinct events
MEDLINE |PMC MEDLINE |MEDLINE [PMC MEDLINE
+ PMC + PMC
TEES 19,406,453 | 4,719,648 | 23,856,554 | 6,570,824 | 1,804,846 | 7,797,604
Eventminer | 18,988,271 | 4,010,945| 22,737,258 | 6,502,371| 1,588,178| 7,539,364
Intersection 9,243,903 | 1,331,456 | 10,455,678 | 3,080,900 | 2,676,257 | 3,424,372
Union 29,150,821 7,399,137 | 36,138,134 | 9,635,566| 573,903| 11,442,462

Table 6.13: Literature-scale event extraction counts

The number of event mentions and distinct events extracted by TEES and Eventminer
in MEDLINE and PMC . In the MEDLINE + PMC columns, the overlap is only reflected
once.

Each distinct event represents a number of event mentions in the
literature, referred to as supporting mentions for that distinct event (see also
Section 5.2). The sentence in which this event occurs is called the supporting
sentence. For example, for the distinct event of “negated positive regulation of
the expression of IFN-gamma caused by IL-2”, the sentences shown in

Example 6.1 will be a supporting sentence each.

Example 6.1.

(a) “Neither IL 1 nor IL 2 alone induced IFN-gamma production in

purified T lymphocyte cultures.”
(From PMID 3086435, events extracted by BioContext)

(b) “IL 2 had the ability to restore lytic activity to PMA-treated cells
but did not induce IFN gamma production.”

(From PMID 3930891, events extracted by BioContext)

Some events are commonly reported and will have a high number of
supporting mentions and supporting sentences, whereas others are only

reported a few times across the literature. Table 6.14 shows the maximum
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number of supporting mentions as well as the average for each event type.

Type Total event | Percentage | Distinct Maximum Average
mentions of total events count of the number of
events supporting supporting

mentions for a | mentions

single event per event
Gene expression 9,636,642 26.4% | 1,785,161 25,561 5.40
Localization 2,051,035 5.6% 488,738 18,721 4.20
Phosphorylation 747,083 2.0% 141,436 8,069 5.28
Protein catabolism 348,031 1.0% 105,945 2,011 3.29
Transcription 732,827 2.0% 247,994 2,322 2.96
Binding 5,392,795 14.8%| 1,900,223 6,868 2.84
Regulation 3,686,616 10.1% 749,889 8,658 4.92
Positive regulation 8,948,707 24.5% /| 1,293,502 18,011 6.92
Negative regulation| 5,006,222 13.7% 754,930 12,014 6.63
Total 36,549,958 100%| 7,467,819 - 4.89

Table 6.14: Supporting mention counts extracted by BioContext

Number of event mentions and distinct events, and the number of supporting

mentions for each distinct event in the extracted data (the union set).

We compared the composition of the automatically extracted data from

the entire available literature with that of the B+G corpus with regard to the

distribution of the event types. Figure 6.1 shows this comparison broken down

by type, and shows that the distribution of different types in the B+G corpus is

reflected in the large-scale event extraction results.
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Figure 6.1: Type-specific comparison between the B+G corpus and the
extracted events

6.3.4 Event inference

Of the 80 million gene/protein mentions in the MEDLINE and PMC union
sets, 11.3 million (14%) were part of enumerated groups as detected by our
patterns (see Table 5.1), i.e. joined with a conjunctive structure, and
presumably contributed towards inferring events associated with each of the
entities in the enumerated group.

Of the 36.1 million events in the MEDLINE and PMC union sets, 1.05
million (2.9%) were created through the event inference methods (see Section
5.1.7). While the percentage of events inferred is low, the absolute number of

events is still large enough to show the utility of the method.
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Post-hoc manual inspection of 100 randomly selected inferred events
showed a precision level of 44%. Most false positive results were due to the
original entities being wrong in the first place, or an incorrect event detection,
rather than an error in the enumeration detection. Example 6.2 shows one such
FP instance (incorrect entity “factor”) as well as a TP instance of event
inference based on enumeration. The underlined entities have been recognised

as belonging to the same enumerated group.

Example 6.2
TP: “Many cartilage matrix proteins or domains such as collagen_

types I, IX, and XI, GP39, AG1, VGI1, and LP are potential antigens

that might induce polyarthritis in susceptible animals.”

(From PMID 12951872)

FP: “Somatostatin was first identified as a hypothalamic factor which
inhibits the release of growth hormone from the anterior pituitary
(somatotropin release inhibitory factor, SRIF).”

(From PMID 11430867)

A total of of 57.1 million anatomical mentions were found in the union
set of MEDLINE and PMC. Out of this number, 4.0 million (7.0%) were
enumerated. Example 6.3 shows an instance of an inferred event (gene
expression of Neurturin) that was initially associated with “retina”, and

through the event inference method also reported in “photoreceptor”.

Example 6.3

TP: “Neurturin mRNA expression was modulated through normal
postnatal retinal development and was localized primarily to the inner
retina and photoreceptor outer segments..”

(From PMID 10067959)
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6.3.5 Confidence evaluation

To evaluate how well our confidence scoring (see Section 5.3) corresponds to
the actual quality of extraction, we measure the confidence of extraction on the
BioNLP’09 data, and compare it to the precision of extraction against gold
annotations.

Since we calculated the confidence scores based on the precision of
different components in the first place, we expect to see such a correspondence
anyway. However, since the formula to calculate confidence from different
precision measures was simple and heuristic, it is reasonable to evaluate how
well it reflects the quality of the extracted data.

We ran the event extraction pipeline on the 950 abstracts of the collective
BioNLP’09 data sets (training + development), and calculated the confidence
for every extracted event. The graph in Figure 6.2 shows the distribution of

different confidence scores.
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Figure 6.2: The number of events against the confidence scores

This is reported on the training and development gold annotated BioNLP’09 data

sets.

As we can see in this graph, there are very few events (although not zero)
having a confidence of above 0.8. We will subsequently see that this sparseness
of data within the high-end confidence area causes some irregularities in that
region.

We expect a steady increase in precision when we look at the precision

of the events in intervals with increasing confidence. We calculate the
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precision of the extracted event amongst events that fall in the same confidence
neighbourhood. The interval size in which we calculate the precision is 0.1
confidence points, and the intervals are 0.01 confidence points apart.

The graph of Figure 6.3 shows the precision of every interval. As we
noted earlier, the data with confidences above 0.8 is very sparse, and therefore
does not strictly follow the increasing pattern of the precision. But we are still
observing the correlation between the confidence levels and the precision,
suggesting that we can assume the extracted events of higher confidence values

to have better quality.
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Figure 6.3: Precision against confidence scores

The precision of the events of confidence falling within a window of 0.1 precision
points. The intervals are overlapping, with a midpoint every 0.01 interval point. This

is reported on the training and development gold annotated BioNLP’09 data sets.

We also calculate the cumulative precision, recall, and F-scores as we
start by only considering the extracted events of the highest confidences, and
gradually adding those with lower qualities. The cumulative graphs are shown
in Figure 6.4. As expected, the precision decreases as lower quality data is
added, whilst recall increases, as more FN results are detected by adding more

data.
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Figure 6.4: Quality of extracted data against cumulative confidence

Precision, recall, and F-scores of extracted data as we cumulatively add events of

decreasing confidence.

It is interesting to note that the F-score is constantly increasing, even
beyond the P/R balance point. This indicates that that the increase in recall is
large enough to compromise the decrease in precision, and therefore if a high
F-score is desirable, it is beneficial to include all the extracted results in the

system output, even those with lower confidences.

6.3.6 Discussion

As a part of this research, we have presented an integrated text mining
framework, BioContext, and the data produced by it after applying to 10.9
million abstracts in MEDLINE and 235,000 full-text articles in the open-access
subset of PMC. The data contains 36.1 million event mentions, which represnt
11.4 million distinct events discussing biomedical processes involving genes
and proteins. The event participants are linked to the Entrez Gene database
whenever such a normalisation was possible. The data contains contextual
information about the events including the associated anatomical locations and
whether they are reported as negated or speculative.

In addition to the gene/protein entities and the events, the process of
extracting events from MEDLINE and PMC also produced large volumes of

other intermediary data that should prove useful to the biomedical text-mining
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community. This data includes 70.9 million LINNAEUS species entity
mentions, 57.1 million anatomical entity mentions, and 133 million parsed
sentences from each of the Gdep, Enju and McClosky-Charniak parsers.

Compared to the previously released dataset of 19.2 million events
extracted from MEDLINE by TEES (Bjorne et al. 2010); (Van Landeghem et
al. 2011), the data set described here provides additional data in a number of
ways, including the addition of full-text PMC corpus, negation and speculation
detection, anatomical association, and normalisation of genes and proteins to
species-specific identifiers.

We observed that locally running and evaluating a publicly available tool
for event extraction (TEES) results in significantly lower results than
evaluating the data resulting from running the same tool provided by the
developers, as we were unable to reproduce the levels of precision and recall
that was originally reported. This could be due to the exceptional termination
of the tool in around 20% of the documents when run locally, caused by any
configuration disparity between our system and the developers’.

Evaluations performed using the B+G corpus are limited by the fact that
it was derived from the set of MEDLINE abstracts containing the MeSH terms
“humans”, “blood cells”, and “transcription factors” by the BioNLP’09
corpus curators. Because of this, evaluation results may not be completely
representative for MEDLINE as a whole. Despite this discrepancy, the
distribution of event types in the two corpora are similar. The inferred and
anatomically associated events used for evaluation of those stages were
selected completely randomly, and while the sample size was limited, they
should provide a representative sample.

Looking at the evaluation results as the data moves through the different
stages of the pipeline, the impact of the multi-tiered nature of the system
becomes evident. Many FPs and FNs that occur in the NER stage are
propagated to the event extraction stage, and additional FPs and FNs

introduced there are in turn propagated to the context association stage. In
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other words, errors (in particular those occurring early in the pipeline) can have
a large impact on the final results.

Some text-mining systems are evaluated as part of challenges that
eliminate these issues by providing gold-standard data for the earlier stages
(typically NER). This allows researchers to focus on a particular task (e.g.
event extraction) rather than having to divide their attention between both NER
and event extraction. However, it also means that any evaluation result coming
out of these challenges needs to be adjusted for more realistic constraints when
used for information extraction on a large scale where gold data is not
available. We note the drop in precision and recall when applying these tools in
a realistic environment.

A common theme in the evaluation of text mining tools is the balance
between precision and recall. Applications prioritise and value precision and
recall differently. Looking specifically at the evaluation results for gene/protein
NER and event extraction, the utility of merging data from multiple similar
tools becomes evident: by applying multiple different tools and creating
datasets from both the intersection and the union of the extracted data, we can
shift this balance between precision and recall in different directions,
depending on how the data is used.

In addition, the use of multiple tools for the more challenging aspects
(gene/protein NER and event extraction), allows users to handle data
differently depending on whether it was extracted by e.g. both event extractors
or whether only a single tool found it. The differences between the tools is
evident from the difference between the union and intersection data sets.

After performing the large-scale data extraction experiments, it is clear
that text-mining on this scale comes with a range of challenges, beyond the
technically relatively simple matter of having access to powerful enough
computational systems. Here, we mention a few of these challenges, and our
approach to addressing them.

Most text-mining software operates on plain-text files. Because of this, it
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can be tempting to store documents as text files, but it quickly became clear
that if this is done, the file system becomes too much of a bottleneck in the
computational process due to the huge number of files.

We stored the data in a databases running on a powerful server instead of
the file system which mitigated the problem, but was not perfect as it still
remained the bottleneck for some tools. Distributing the documents on multiple
database servers each having local storage should provide further mitigation for
the problem.

While the documents in MEDLINE and PMC are generally well-
structured, there are always exceptions. Although these outliers are very rare in
relation to the total number of documents, the very large number of documents
in MEDLINE and PMC still means that odd outliers become significant
problems. Examples we have found include documents over 300 pages long
(causing some tools to crash when running out of memory, and others never to
terminate due to inefficient algorithms), documents containing programming
source code (causing every single grammatical parser to crash), and seemingly
“innocent” documents that for some reason give rise to hundreds of thousands
false positive events, which in turn crashes downstream tools. Document issues
that are more common include PMC documents with embedded TeX code or
non-ASCII characters as the parsers typically cannot handle either.

We have implemented robust general error detection and recovery
methods within TextPipe to address problems with unusual processing time,
frequent crashes and other external problems, such as network connection
time-outs or machine failures.

We note that processing for the number of tools and documents described
in this research is computationally very heavy. For such a large-scale task,
processing time requirements depend on a range of factors such as the speed of
the computational hardware available, potential database or network
bottlenecks, etc., making such estimates difficult to make. We estimate that a

matter of months would be a fairly accurate approximation, using a cluster of
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100 processing cores. This assumes that everything works flawlessly and no re-
computation is necessary, which may not be the case in practice.

It is unfortunate that only roughly 2% of MEDLINE entries have full-text
articles that are available for text-mining. If the open-access subset of PMC is a
representative sample of all full-text articles, we would expect that about 400
million further events are mentioned in full-text articles, but unavailable for
automatic extraction due to copyright restrictions.

This work provides a foundation for future work: Protein complexes are
currently not linked to any protein complex knowledge bases. Additionally
filtering of results based on the journal or document subject area could improve

the performance.

6.4 Context association

6.4.1 Anatomical association evaluation

Of the 36.1 million events in the MEDLINE and PMC union sets, 13.5 million
events (37.5%) could be associated with an anatomical entity.

Post-hoc manual inspection of 100 randomly selected events associated
with anatomical entities showed a precision of 34%. Here, we consider an
event a true positive only if all the components were extracted correctly.
Therefore this precision refers to the cumulative precision of all the automated
components, and not only to the precision of the anatomical entity association
phase.

While not evaluated, this value is expected to be higher if the events are
constrained to the intersection set, similar to the precision levels in Tables 6.11
and 6.12 that were higher for the intersection set than for the union set.

Although not theoretically considered a comprehensive way to evaluate
the performance of a system, post-hoc manual examination of predictions have
been used by researchers in the absence of gold-standard annotations. In this
method, a (usually small) number of predictions are randomly selected and

analysed to calculate the percentage of the false positive results. With this



248 Chapter 6 Large-scale event extraction: data and evaluation

method only the precision and not recall can be approximated, as it does not
take into account any false negative instances. In addition, the error analysis in
this method can only include the false positive and not the false negative
instances.

Moreover, post-hoc examination of the predictions introduces bias
towards the automatically extracted information by considering instances that
may look reasonable and are considered as true positive whereas—had they
been annotated independently—they would not have been annotated as positive
instances. This effect will be stronger if several properties of the gold and the
predicted instances have to match in order to be considered true positive. In the
case of the events, these properties include trigger word boundaries, event type,
theme and cause mentions, and the association between them. Amongst the
related previous work, (Bjorne et al. 2010) have used this method to evaluate

the precision of their system by manual examination of the predictions.

6.4.2 Negation and speculation extraction as part of context

extraction

Evaluation of event extraction results after performing negation and
speculation detection by Negmole can be seen in Table 6.15. Here, events are
required to have both their negation and speculation status correctly identified

to be classified as a true positive.

P R F1
Intersection 62.6% 34.6% 44.6%
Union 38.8% 58.3% 46.6%

Table 6.15: Evaluation of event extraction after processing by Negmole
Evaluated on 2,607 instances, on the B+G corpus.

Relatively small differences in data quality are observed before and after
applying Negmole. This is expected, since only a small subset of events are

affected by negation and/or speculation. Table 6.16 shows the numbers and
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percentages of negated and speculated events for each event type. Interestingly,
regulation events show specially high ratios of negation and speculation.

Of the 36.1 million events in MEDLINE and PMC, 1.49 million (4.1%)
are negated, and 1.25 million (3.5%) are speculative. The negation and
speculation ratios are slightly lower than those of the combined BioNLP’09

training and development sets (6.8% and 5.3%, respectively).

Event type Number of % of negated Number of % of speculated

negated events speculated events

events events
Gene expression 335,774 3.47% 297,992 3.09%
Localization 31,175 1.51% 41,244 2.01%
Phosphorylation 11,406 1.52% 8,606 1.15%
Protein catabolism 5,898 1.69% 5,488 1.58%
Transcription 21,429 2.91% 25,222 3.44%
Binding 172,068 3.14% 132,316 2.45%
Regulation 478,383 12.86% 352,139 9.55%
Positive regulation 351,368 3.86% 298,939 3.34%
Negative regulation 80,001 1.59% 91,187 1.82%
Total 1,487,502 4.06% 1,253,133 3.43%

Table 6.16: The number and percentage of negated and speculated events in
MEDLINE and PMC

It has been observed previously (Cohen et al. 2010) that the incidence of
negation (measured by the distribution of the words “no”, “not”, and
“neither”) is significantly different between the full-text articles and abstracts.
They reported a higher incidence of these words (5.3 per thousands tokens of
text) in article bodies, compared to their incidence in abstracts (3.8 per
thousands tokens of text).

Table 6.17 shows the distribution of negated and speculated events in
MEDLINE and PMC. There are very few events that are both negated and

speculated. Therefore, these events hardly affect any aggregate analysis

presented in this chapter.
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Polarity & MEDLINE |% MEDLINE |PMC %PMC Total % Total
certainty of

events

Affirmative & | 26,406,361 92.16| 7418250 93.94| 33,824,611 92.54
certain

Negative & 1,203,376 4.20 268838 3.40| 1,472,214 4.03
certain

Affirmative & | 1,032,393 3.60 205452 2.60| 1,237,845 3.39
speculated

Negative & 10,946 0.04 4342 0.05 15,288 0
speculated

Total 28,653,076 100| 7896882 100| 36,549,958 100

Table 6.17: Distribution of negated and speculated events on MEDLINE and
PMC

Figure 6.5 shows the frequency distribution of negated and speculated
events for all event types. Due to the small numbers of events that are both
negated and speculated, we have grouped them together with the speculated
category. Others have previously considered the three-class categorisation of
events into ‘affirmed and certain’, ‘negated and certain’, and ‘speculated’

categories (Elkin et al. 2005).
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Figure 6.5: The frequency distribution of negated and speculated events on
MEDLINE + PMC

The speculated events contain both polarities. These numbers have been grouped
together because of the negligible size of the set of events that are both speculated
and negated.

Our analysis shows that 4.2% of the events reported in MEDLINE are
negated, as opposed to only 3.4% of the events in the the PMC corpus. The
difference is statistically significant (p<0.0001). This finding seems to
contradict the previous findings that there is more negation in the body of
journal articles compared to the abstract. However, Cohen et al. only analysed
the occurrence of negation cues, which we have seen that does not necessarily
indicate the reporting of negative results. This difference could be due to the
article body text using less direct and more elaborate prose style, including
more use of figurative negation, but not necessarily reporting more negative
results. On the other hand, of the total negative results reported in the literature,

a higher proportion of them are likely to be highlighted in the abstract of the
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articles.

The proportion of speculated events in MEDLINE (3.6%) is significantly
higher (p<0.0001) than that of PMC (2.6%). This shows that authors speculate
about their own or others’ findings in the abstract more often than they do in
the body of the articles, possibly because the article body presents speculated
findings in the context of established facts. These results confirm previous
findings that the composition and characteristics of full text scientific literature
differs from that of the abstracts, and as text mining on scientific literature
moves from abstracts towards more full text approaches, these discrepancies
will cause challenges and opportunities for further findings.

It is worth noting that with such large numbers of instances, almost any
trend that is observed would have statistical significance. On the one hand, this
is meaningful, since the observation is done on the entire available data, as
opposed to a sample. On the other hand, care should be taken when analysing
such statistically significant trends, and the effect of the large data size should
not be overlooked.

Figure 6.6 shows the percentages of negated and speculated events,
normalised for the size of each event type. Although the proportions differ
across all event types, regulation events (but not positive regulation or negative
regulation events) are dramatically more frequently detected as negated or
speculative. This could indicated that the authors tend to refer to an event
simply as negated when they speculate or report the lack of that event, whereas
if the event certainly exists, it would be explicitly reported as upregulation or

downregulation.
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Figure 6.6: Normalised distribution of negated and speculated events for each
type on MEDLINE and PMC

Figure 6.7 shows the distribution of the most common negation cues that

affected some extracted event in the data set. Figure 6.8 shows the same

statistics for the most common speculation cues. We observe that the trends are

quite dissimilar, with negation cues “not” and “no” dominating the set of cues,

whereas there are more variation amongst the speculation cues, showing a

more gradual decrease in the frequency of the most frequent speculation cues.
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This distribution is reported on the entire extracted data from MEDLINE and PMC.
Note that the cues with the same stem are grouped together, and a representative

member of every stem class is shown.

These trends corresponds to those of the BioNLP’09 data, displayed in
Figures 3.16 and 3.17. However, the ranks at which each cue appears differ
from the BioNLP’09 data. This is due to the fact that the distributions in the
BioNLP’09 data only refer to the incidence of the cues, regardless of whether
these cues have affected any event. As discussed in Section 3.4.1, this shows
that words with ambiguous function such as “inhibit” have not affected the
performance of negation detection. This word is the second most frequent cue
in Figure 3.16, but much further down the ranked list (not shown) in Figure
6.7.

The cues in Figures 6.7 have been stemmed. However, Figure 6.8 shows
speculation cues before and after stemming. Since most high-ranked
speculation cues are words with possible verb, noun, and other forms, the

effects of stemming on the cues can be noticeable. However, this does not
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change the order of the cues in the frequency-based ranking.
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Figure 6.8: The distribution of the most common speculation cues

This distribution is reported on the entire extracted data from MEDLINE and PMC. In
(a) the cues are not stemmed or otherwise normalised. In (b) the cues with the same
stem are grouped together, and a representative member of every stem class is

shown.
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6.5 Temporal analysis

With information extracted from the entire available life sciences literature, and
specially with storing the data in a denormalised format, we can perform
temporal analysis on the reported claims. Figure 6.9 shows the increase in the
number of the reported events as well as the number of negated and speculated

events since the beginning of the recorded literature on a logarithmic scale.

== All events == Negated events Speculated events
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Figure 6.9: Event numbers in the literature over time

The total number of events and the total number of negated and speculated events

extracted from the MEDLINE and PMC corpora over time, on the logarithmic scale.

It is interesting to compare Figure 6.9 with Figure 2.1 which shows the
total growth of the literature. Notice that the sudden increase in the number of
reported events around year 1975 corresponds to the rise in the number of
additions to MEDLINE around the same time (see Figure 2.1).

To test the hypothesis that papers are reporting more molecular events
over time, we calculate the ratio of the number of events reported per
publication over time (see Figure 6.10). As can be inferred from this figure,
with the growth in the volume of scientific publications, the number of

molecular events reported and discussed in the literature increases even more
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dramatically, suggesting that not only there are increasingly more papers
published in life sciences domain, but also these papers have become much
richer in content over time with regard to reporting molecular events. This can
be attributed to the growth in molecular biology research in the last few
decades.
== All events == Negated events Speculated
events
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Figure 6.10: The number of events reported per publication over time

Note that the ratio is displayed on a logarithmic scale.

It is interesting to see in Figure 6.10 how the reporting of negated and
speculated events has changed over time. An analysis, summarised in Figure
6.11, shows that while the ratio of the reporting of negated events are generally
higher than that of the speculated events, this ratio has been decreasing over
time. This suggests that scientists report their findings more speculatively than
they used to, and use less assertive tone, whether strongly negative or
affirmative. It also shows that scientists publish fewer negative events than
they used to.

The fluctuations prior to 1975 in Figures 6.10 and 6.11 are probably due

to small data sizes (see Figure 6.9).
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Figure 6.11: Ratio of negated and speculated events over time

The proportion of events that are negated or speculated, compared to the total

number of events mined from the literature over time.

6.6 Mining conflicting statements

6.6.1 Results

Using the methods described in Section 5.4, we found 72,314 potentially
conflicting pairs in the set of events extracted from the literature that had
sufficient associated data which qualified them for strict conflict extraction.
Table 6.18 summarises this data. It shows the number of event mentions that
were sufficiently rich in context to be included in the analysis, number of
distinct events included, and the number of conflicting pairs detected in the
data.

The majority of conflicting pairs are gene expression events (78%)

followed by localization (8%) and transcription (4%).
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Type Event Distinct Conflicting
mentions events pairs

Gene expression 3,450,494 1,089,937 56,367
Localization 773,844 285,420 5,584
Phosphorylation 172,482 74,558 1,238
Protein catabolism 102,520 48,168 720
Transcription 260,385 149,066 3,199
Binding 420,758 288,030 2,239
Regulation 148,737 129,150 817
Positive regulation 326,800 268,792 2,047
Negative regulation 82,961 72,860 103
Total 5,738,981 2,405,981 72,314

Table 6.18: Summary of the events extracted in the conflict analysis.

Only a subset of the entire extracted events were included in the conflict analysis. The

numbers of these events as well as the conflicting pairs extracted are shown.

Each extracted pair has a score associated with it which is a measure of
how common and how confident the supporting mentions of that pair are (see
section 5.3).

While these pairs should have their implicit potential in exploring
biological claims, we also looked at how accurate they are from a textual
perspective.

To evaluate the extracted conflicts, we manually examined a selection of
conflicting pairs from the highest ranks. We selected the 10 top rank gene
expression pairs, and 5 top rank pairs from each of the other 8 types for manual
investigation. The numbers were chosen due to the relatively larger size of the
gene expression type. Overall, a total of 50 event pairs were selected.

For each of these pairs, we selected a maximum of five supporting
sentences containing affirmative supporting mention, and five supporting
sentences containing a negative supporting mention. In total, a maximum of
500 supporting sentences would have been selected. However, since some of

the events had fewer than 5 supporting sentences, a total of 434 sentences
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where included in the analysis. The full list of the pairs and sentences that were
used for evaluation can be found in Appendix C.

We manually inspected every one of these 434 sentences to initially
determine whether the event extraction and contextualisation has been
performed correctly, and secondly to determine whether any two of the
supporting sentences are actually reporting conflicting events.

A summary of the results of this evaluation can be seen in Table 6.19. It
classifies the number of sentences with correct extraction, as well as the source
of error in the others.

On several occasions, the actual cause of these errors might have lied
within other text mining stages, from the sentence splitter to parsers, but we
have not included those errors in our analysis, as evaluating them would have
been difficult. We only concentrate on the first point at which our event

extraction pipeline is affected.

Number of Percentage
events
Correct information extraction 206 47%
Gene name recognition or 33 8%
normalisation error
Event extraction error 61 14%
Anatomical entity recognition or 94 22%
anatomical association error
Negation detection error 39 9%
Speculation detection error 1 <0%
Total number of events 434 100%

Table 6.19:The summary of the conflicting pairs evaluation

Table 6.19 shows that in almost half (47%) of the cases the information
extraction was performed without error. Most of the errors (41% of the errors)
were due to the anatomical location association. In the sample studied, this was
mostly due to the fact that the anatomical association method did not require

the anatomical entity to differ from the other components of the event (trigger
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and participants). Due to the high ambiguity between trigger terms, gene and
protein entity names, and anatomical location names, many of them could
overlap in a sentence. Since the anatomical location association method is
effectively a distance-based method, it commonly associates one of the
components (trigger or participant) as the anatomical location, resulting in an
error. Event extraction errors happen in only 14% of the pairs, but constitute
27% of all the errors in the sentences.

Amongst the 50 event pairs examined, 32 showed some degree of
conflict between the stated claims, 8 were definite errors, and 10 were
undecidable by the non-biologist annotator. Projecting these results over the
entire set of extracted conflicting pairs, more than 46,000 of the event pairs
would show some degree of contrast.

Of course, not all the 32 positive cases were real contradictions. Most of
them were conflicts due to underspecified context. Several contrasting
statements were in the presence/absence of drugs or auxiliary molecules, some
were due to some procedures or treatments, and others were in different
populations, affecting different types of the same entity, or happening in
different types of the same cell line. Alas, these contextual information has not
been captured in our current setting. Nevertheless, even if they had been
extracted, these sentences would still be indicating some form of conflict. A

handful, however, hinted at a true contradiction. Example 6.4 is one such pair.

Example 6.4. Regulation of leptin by insulin in plasma
Affirmative supporting sentences

1. 9568685: Whether insulin acutely regulates plasma leptin in humans is

controversial.

2. 9398728: In animal models, insulin and agents that increase
intracellular cAMP have been shown to similarly affect plasma leptin in
vivo.

Negative supporting sentences
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1. 8954052: These results suggest that insulin does not acutely regulate

plasma leptin concentrations in humans.

2. 11832440: Insulin and pentagastrin did mot modify plasma leptin,
whatever HSV status.

3. 10856891: Adrenaline, insulin and glucagon do net have acute effects

on plasma leptin levels in sheep: development and characterisation of

an ovine leptin ELISA.

All of these sentences hint at the fact that the event in question is
somehow controversial and that there seems to be no consensus about it. The
affirmative supporting sentence number 2 is in direct contradiction with the
negative supporting sentence number 3, as one states that in animal models
insulin affects plasma leptin, and the other states that it does not have such an
effect in sheep.

Obviously, the procedure that is required to infer that sheep is indeed an
animal would rely on some background knowledge (e.g. an ontology) and was
not implemented in our method, but this example demonstrates that even
without knowledge and inference integration, the results of the conflict
detection can be beneficial and a good starting point for the researchers.

In Example 6.5, event extraction and contextualisation in all but the last
one of the affirmative supporting sentences is correct. In the positive sentence
number 5, a negated event is missed, as the authors express that certain
conditions were not sufficient for the desired regulation to happen.

Similarly, the events and their context in all but the last one of the
negative instances also seem to be correctly identified. In the negative sentence

number 5, negation is incorrectly assigned to the regulatory event in question.

Example 6.5. Positive regulation of IgE caused by IL4 in B cells
Affirmative supporting sentences

1. 10887336: IL-4 is important for B-cell production of IgE, and the
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human IL-4 receptor alpha chain (hIL-4Ralpha) is crucial for the
binding and signal transduction of IL-4, so hIL-4Ralpha may be a
candidate gene related to atopy.

2. 7722171: In contrast, terminally differentiated, IgE-producing B cells
no longer express functional IL-4R because DAB389IL-4 only
modestly inhibited ongoing IgE synthesis by B cells from patients with
hyper-IgE states and only minimally affected IL-4-induced IgE
synthesis in normal B cells when the toxin was added at day 7.

3. 2172384: We demonstrate here that EBV and IL-4 induced the
synthesis of IgE by surface IgE-negative B cell precursors isolated by
cell sorting.

4. 2967330: Like IL-4-containing SUP, rIL-4 also showed the ability to

induce IgE production in B cells from both atopic and nonatopic

donors.
5. 2789139: However, a combination of IL4, IL5 and IL6 (with or without
IL1) at optimal concentrations could not induce IgE synthesis by

purified normal B cells, indicating that cytokine-mediated signals,

although essential, are not sufficient for the IL4-dependent induction of
IgE synthesis.
Negative supporting sentences

1. 2172384: IL-4 failed to induce IgE synthesis in established EBV B cell
lines and failed to induce 2.0-kb mature C epsilon transcripts but
induced 1.8-kb germ-line C epsilon transcripts.

2. 2789139: Recombinant I1.4 could induce IgE synthesis by peripheral
blood mononuclear cells and autologous T/B cell mixtures, but not by
highly purified B cells.

3. 1383379: In contrast to these observations with MNC, IL-4 failed to
induce IgE and IgG4 production by purified B cells.

4. 1382870: IgE production was not induced by IL-4 in purified B cells.

5. 1904400: Similarly, DSCG did not enhance IgG2, IgG3 or IgG4
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production from sIgG2-, slgG3- or slgG4- B cells, respectively,
Interleukin-4 (IL-4) or interleukin-6 (IL-6) also enhanced Ig production
except IgG4 from large activated B cells.

Overall, the first set of sentences in Example 6.5 seem to suggest that the
regulation in question happens under certain conditions, whereas the second set
seem to discuss some cases where it does not happen. Although some of the
sentences offer more context such as an auxiliary molecule, the others do not
explicitly mention such context and seem to be contrasting on the sentence
level. Further document-level analysis is required in future work to determine
whether these events are truly contradictory.

An interesting example (see Example 6.6) was when the event extractors
made an error in virtually every aspect of the event extraction and
contextualisation, but as the errors were identical in every supporting sentence,
the resulting sentences still presented contrasting information, however in a

completely different realm than molecular events:

Example 6.6. Transcription of Angiotensin-converting enzyme (ACE)
in heart
Affirmative supporting sentences

1. 8461246: Angiotensin-converting enzyme (ACE) inhibitors are now
widely prescribed for the treatment of hypertension and heart failure.

2. 9562936: Patterns of angiotensin-converting enzyme inhibitor
prescriptions, educational interventions, and outcomes among
hospitalized patients with heart failure.

3. 9562936: BACKGROUND: Among hospitalized patients with heart

failure, we describe characteristics associated with prescription of

angiotensin-converting enzyme (ACE) inhibitors in the doses
recommended by clinical practice guidelines.
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Negative supporting sentences

1. 10908091: Therefore, we recommend that physicians continue to
prescribe ACE inhibitors for patients with heart failure based on the
target doses used in the placebo-control