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Abstract

This thesis summarizes the MPhil dissertation on the title of energy-balancing-based

control design for power systems, School of Electrical and Electronic Engineering, the

University of Manchester.

This MPhil thesis reviews two years researches of Hamiltonian system and its applica-

tions and both adaptive and energy-balancing control designs for Hamiltonian system.

The studies on Hamiltonian systems focused on the development of the Hamiltonian

theory and building Hamiltonian model, especially power system. To obtain better con-

trol result of Hamiltonian system, adaptive control and energy-balancing-based control

are considered. Combined those two methods with Hamiltonian control system, by us-

ing simulation, the better preforming result can be achieved.
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Chapter 1

Introduction

Hamiltonian systems are mechanical nonlinear control systems obtained

from Euler-Lagrange equations in 1833 by Irish mathematician William

Rowan Hamilton. Over a span of nearly two centuries, a large number of

research works on the Hamiltonian systems have been done, and com-

bined with other theories, more and newer attempts have been made to

develop the system. For example, among other studies in [38] adaptive

stabilization was used in a generalized Hamiltonian system with dissipa-

tion, [24] proposed the adaptiveH∞ excitation control of multimachine

power systems via the Hamiltonian function method, in [13] the decen-

tralized PD control was associated with the Hamiltonian hybrid system,

and so on.

In [23] – [28] and [33] – [34], Hamiltonian systems were applied

in power systems, several nonlinear control strategies, such as energy-

basedL2-disturbance attenuation control, adaptiveH∞ excitation con-
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trol, and nonlinear decentralized saturated controller design and so on,

were used in port-controlled Hamiltonian models for power systems.

In this present MPhil thesis, a power system is modelled by a port-

controlled Hamiltonian system with dissipation (PCHD), as it applied in

[23] – [28] and [33] – [34]. To determine its other properties, adaptive

stabilization and energy-balancing-based control (EB-based control) are

applied to control this Hamiltonian systems.

Adaptive control design is based on parameter estimation, and it is

a control method that adapts itself to varying parameters. The designed

adaptive control laws require an asymptotic trajectory tracking, which is

bounded for all internal signals. Such adaptive control laws can be clas-

sified on the basis of control objective and the signal that drives param-

eter update law. Control objective divides the structure of controller, pa-

rameters of which are to be updated on-line. The parameter update law

is driven by signals that calculate the error between estimated and true

parameters or the error between desired and actual output. In present

report, the adaptive control law is achieved by an error between tracking

error and prediction error.[39]

An energy-balancing system is a kind of Euler-Lagrange system, in

which the total closed-loop energy is the difference between open-loop
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energy and supplied energy. In the energy-balancing-based control sys-

tem, the energy-balancing control is designed for generalized canonical

transformations of time-varying port controlled Hamiltonian systems,

and the designed controller is based on the storage equation, which is

a function of only the tracking error. At the same time, in Hamiltonian

system, Hamiltonian function denotes the total energy of system, and

satisfies the request of energy-balancing-based design.[40]

In current thesis, a method called interconnection and damping as-

signment passivity-based control (IDA-PBC) is mentioned, and it is used

to solve the tracking problem for port-controlled Hamiltonian systems,

is referred to [37], [40], [41], [44].



Chapter 2

Power System Modelling and Control

Methods

To model and design power systems, the first step is to study the power

systems. According to the mechanical and electrical characters of power

systems, the state space equations can be obtained. Different control

methods which are applied to control the state space equations are dis-

cussed.

This chapter can be divided into three parts. The first part analyzes

the structure of power systems, the second builds the state space equa-

tions for power systems, and the third considers the appropriate control

methods which are used to design power systems.
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2.1 Power system analysis

A power system is defined as a network of sets of elements designed to

convert nonelectrical energy to electrical energy effectively and contin-

uously.

Frequently, a power system can be divided into the following five

subsystems: [4], [10]

Generation

Transmission

Subtransmission

Distribution (include Primary and Secondary Distribution)

Use

The generation part of the power system takes charge of converting

other types of energy into electrical energy. An energy source produces

mechanical torque or a rotating shaft which is transferred to the tur-

bine. The turbine drives the generator. At the same time, the mechanical

torque or rotating shaft can be turned into electrical energy. [4], [10]

Transmission is used to transfer the produced electrical power from

the generation system to subtransmission. The electrical power pro-

duced in the generator has lower voltage, and is transformed into a
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higher voltage by the transformer. This higher transmission voltage

power is then moved to the subtransmission system by transmission

lines. [4], [10]

Older, lower voltage networks can be replaced by new, high-capacity

transmission networks, and the older transmission can be turned into

subtransmission lines. [4], [10]

Electrical power is delivered from subtransmission lines to the sub-

station where it can be decreased in the voltage. From the substation,

individual circuits extend to the customer’s location. These circuits con-

stitute the primary distribution system. The distribution system has two

basic designs: radial, where power flows in only one direction in a given

circuit from source to load, or loop, where the primary distribution sys-

tem is a network, and the customer can receive power from more than

one direction. Illustrations of these two designs are given in Figure2.1

and Figure2.2. [4], [10]

The use indicates the end-user, and, the end-user is usually called the

load. [4], [10], [15]

There are two kinds of energy sources that can be used to produce

electrical energy, and these thermal and non-thermal sources. Thermal
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Figure 2.1:Simple radial distribution system[15]

source includes coal, oil, natural gas, nuclear fission of uranium, solar

and so on, while non-thermal sources include energies like hydro, wind,

waves, and so on. [15]

All power systems have five subsystems, all of which influence the

analysis of power system. For example, the consumed energy on the

transmission lines, and the different energy transfers between different

distributions of transmission lines, substations and loads.

The current MPhil thesis studies a simplified single machine with

infinite bus power system which is shown in Figure2.3. Complicated

conditions such as generator-network interactions will be considered in

future research. [15]
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Figure 2.2:Simple loop distribution system[15]

Figure 2.3:Single machine with infinite bus power system[45]

2.2 State space model of power systems

Consider a single machine infinite bus power system consisting ofn syn-

chronous machines which is shown in Figure2.3. According to some

standard assumptions, the classical model with flux decay dynamics is

used to describe interconnected generators. In this classical model with

flux decay dynamics, the voltage behind the direct axis transient reac-
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Figure 2.4:Generator cross[46]

tance is used to build model of the generator. The angle of the voltage

synchronizes with the mechanical angle, and both the angle of the volt-

age and the mechanical angle are relative to the synchronously rotating

reference frame, which is given in Figure2.4. The mechanical equations

of the power system can be obtained as follows: [4] – [15]

δ̇ = ω − ω0 (2.1)

ω̇ = −D

H
(ω − ω0)− ω0

H
(Pe − Pm)− w1 (2.2)

where

w1—-is disturbance of the system,

δ—-is the power angle of the generator, in radians,
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Figure 2.5:Open circuit of each phase[47]

ω—-is the relative speed of the generator, in rad/s,

Pm—-is the mechanical input power, in p.u., which is assumed to be

constant,

Pe—-is the active electrical power delivered by the generator, in p.u.,

ω0—-is the synchronous machine speed, in rad/s,

D—-is the per unit damping constant,

H—-is the per unit inertia constant, in seconds.

The electrical energy produced by the generator needs to be trans-

ferred to the rest of the power system. Each of phases of the open circuit

diagram is predigested as in Figure2.5.
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From Figure2.5, the equations of electrical power in the system can

be expressed as follows [4] – [15]:

Va = Ea − rIa − jXsIa (2.3)

Ia =
Va

X ′
ds

sin θe (2.4)

Transforming Equation (2.3) into other expression [15], and equation

for the open circuit voltage can be derived [4] – [15]:

Ea = Va + rIa + jXsIa (2.5)

where

Va—-is the voltage of the rest of power system,

Ea—-is the open circuit voltage,

r—-is the resistance of the open circuit,

Ia—-is the current of the open circuit,

jXs—-is the inductance of the open circuit,

x′ds—-is the mutual reactance between the excitation coin and the stator

coil of the generator,

θe—-is the rotor angular position of the generator with respect to a sta-

tionary axis.
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When the power system is in a synchronous, positive-sequence, and

steady-state operation, assumingv0 = i0 = 0, the quadrature axis of the

generator electrical dynamics can be devised as [15]:

Ėq
′
= − 1

Td0
Eq

′ +
1

Td0
Ef + w2 (2.6)

The electrical equations are [15]:

Eq =
xds

x′ds

E ′
q −

xd − x′d
x′dx

Vs cos δ = xadIf , (2.7)

Ef = kcuf , (2.8)

Pe =
Vs

x′ds

E ′
q sin δ, (2.9)

Iq =
Vs

x′ds

sin δ, (2.10)

Qe =
Vs

x′ds

E ′
q cos δ − V 2

s

x′ds

(2.11)

(2.12)

where

w2—-is disturbance of the system,

Qe—-is the reactive power, in p.u.,

E ′
q—-is the transient electromagnetic force in the quadrature axis of the
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generator, in p.u.,

Eq—-is the electromagnetic force in the quadrature axis of the genera-

tor, in p.u.,

Ef—-is the equivalent electromagnetic force in the excitation coil, in

p.u.,

T ′
d0—-is the direct axis transient short circuit time constant, in seconds,

If—-is the excitation current,

Iq—-is the quadrature axis current,

kc—-is the gain of the excitation amplifier,

uf—-is the input of the SCR amplifier of the generator,

xad—-is the mutual reactance between the excitation coil and the stator

coil of the generator,

Vs—-is the infinite bus voltage.

And

xds = xT + xd + 0.5xL (2.13)

x′ds = xT + x′d + 0.5xL (2.14)

xs = xT + 0.5xL (2.15)

where,xL is the transmission line reactance,xT is the transformer reac-

tance,xd is the direct axis reactance of the generator, andx′d is the direct
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axis transient reactance of the generator. [15]

Considering above equations, the state space equations of the power

system can be expressed as [16] – [28]:

θ̇ = ω − ω0

ω̇ =
ω0

M
Pm − D

M
(ω − ω0)− ω0

M

Vs

xds
′Eq

′sin θ

Ėq
′
= − 1

Td0
Eq

′ +
1

Td0

xd − xd
′

xds
Vs cos θ +

1

Td0
Vf

(2.16)

The above state space equations of power system are the fundament of

control design in this thesis. Using the state space equations, obtain

Hamiltonian expression of this power system. Discussing different con-

trol designs, apply to this Hamiltonian power system.

2.3 Control methods

2.3.1 Hamiltonian systems

William Rowan Hamilton first provided a reformulation of the Lagrangian

dynamics in 1834. Hamiltonian dynamics provides a compact notation

in which the concept of integrability is most naturally expressed and in

which the perturbation theory can be efficiently carried out. The Hamil-

tonian formulation is also pivotal for the foundation of both statistical

and quantum mechanics. [33], [34]
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The Hamiltonian equation is obtained through the Euler-Lagrange

equation, which represents the motion equation for a mechanical system:

d

dt
(
∂L

∂q̇
(q, q̇))− ∂L

∂q
(q, q̇) = τ (2.17)

whereq = (q1, ..., qn)
2 are generalized configuration coordinates for the

system. The Lagrangian variableL equals the difference between ki-

netic energyK and potential energyP , Meanwhile,τ is the vector of

generalized forces acting on the system. [1] – [3]

According to the kinetic energy equation, in a mechanical system,

the kinetic energyK can be represented as:

K(q, q̇) =
1

2
q̇TM(q)q̇ (2.18)

where then×n matrixM(q) is the mass matrix, and this matrix is sym-

metric and positive definite for allq. [1] – [3]

The generalized momentap is defined as:

p = M(q)q̇ (2.19)
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Transforming equation (2.17) into a2n first-order equation, the follow-

ing is obtained:

q̇ =
∂H

∂p
(q, p) (2.20)

ṗ = −∂H

∂q
(q, p) + τ (2.21)

where

H(q, p) =
1

2
pTM−1(q)p + P (q) =

1

2
q̇TM(q)q̇ + P (q) (2.22)

is the total energy of the system. Equations (2.20) and (2.21) are called

the Hamiltonian equations of motion, equation (2.22) is called the Hamil-

tonian function. [1] – [3]

The partial derivative of this Hamiltonian function (2.23) d
dtH gives

expression to the conservation of system energy, in that the increase in

system energy is equal to the supplied work. [1] – [3]
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d

dt
H =

∂TH

∂q
(q, p)q̇ +

∂TH

∂p
(q, p)ṗ (2.23)

=
∂TH

∂p
(q, p)τ (2.24)

= q̇T τ (2.25)

Considering Hamiltonian equations (2.20) and (2.21) to be fully ac-

tuated Euler-Lagrange equations ink configuration coordinatesq =

(q1, q2, ..., qk), the following equations can be obtained [1] – [3]:

q̇ =
∂H

∂p
(q, p) (2.26)

ṗ = −∂H

∂q
(q, p) + u (2.27)

y =
∂H

∂p
(q, p)(= q̇) (2.28)

wherep = (p1, p2, ..., pk), u = (u1, u2, ..., uk), andy = (y1, y2, ..., yk).

The trajectory of the above Hamiltonian equations is [1] – [3]:

H(q(t1), p(t1)) = H(q(t0), p(t0)) +

∫ t1

t0

uT (t)y(t)dt (2.29)

Equation (2.29) denotes the system energy, which means the increased

energy of systemH equals the work supplied to the system.
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Rewriting Hamiltonian equations (2.26), (2.27) and (2.28) into ma-

trix form, the following are derived:

ẋ = J(x)
∂H

∂x
(x) + g(x)u, (2.30)

y = gT (x)
∂H

∂x
(x) (2.31)

whereJ(x) = −JT (x) is called structure matrix which is ann × n

skew-symmetric matrix, andx = (x1, x1, ..., xn) are local coordinates

for state space manifold. And equations (2.30) and (2.31) are called

port-controlled Hamiltonian system. The Hamiltonian functionH also

satisfies the conservation of energy as equation (2.32), which shows that

the internal energy equals the externally supplied power. [1] – [3]

dH

dt
(x(t)) = uT (t)y(t) (2.32)

This port-controlled Hamiltonian (PCH) system has energy-dissipation,

when some of the ports in the system are terminated by state resistive

elements. The port structureg(x) and the control inputu can be repre-

sented as [1] – [3]:

[
g(x) gR(x)

]



u

uR


 = g(x)u + gR(x)uR (2.33)
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Correspondingly, the output equation (2.31) is extended as follows [1] –

[3]:




y

yR


 =




gT (x)
∂H

∂x
(x)

gT
R(x)

∂H

∂x
(x)


 (2.34)

Considering that the resistive elements which terminate the ports of the

port-controlled Hamiltonian system are linear resistive elements.

uR = −S(yR) (2.35)

whereS = ST ≥ 0 is a positive semi-definite symmetric matrix. [1] –

[3]

Substituting equation (2.35) into equation (2.33):

ẋ = [J(x)−R(x)]
∂H

∂x
(x) + g(x)u (2.36)

y = gT (x)
∂H

∂x
(x) (2.37)

whereR(x) = gR(x)SgT
R(x) is a positive semi-definite symmetric ma-

trix. Equations (2.36) and (2.37) are called port-controlled Hamiltonian

system with dissipation (PCHD), and[J(x)−R(x)] is a structure matrix



2.3.1 Hamiltonian systems 28

of the system, whereJ(x) is the internal interconnection structure, and

R(x) is the additional resistive structure. [1] – [3]

The increase of system energy equals the difference between the

work supplied to system and the dissipated energy of system: [1] – [3]

dH

dt
(x(t)) = uT (t)y(t)− ∂TH

∂x
(x(t))R(x(t))

∂H

∂x
(x(t))

6 0

(2.38)

In recent years, Hamiltonian systems have undergone tremendous de-

velopment. Daizhan Chen and his group have focused on Hamiltonian

system research for several years, particularly its applications in power

systems.

In the later stages of Hamiltonian system development, many differ-

ent nonlinear control strategies associated with port controlled Hamil-

tonian systems with dissipation were discussed, such as adaptive sta-

bilization of generalized Hamiltonian systems [38], energy-basedL2-

disturbance attenuation control [23], and adaptiveH∞ excitation control

[24].

Others’ research works, such as those discussing control by inter-

connection of mixed port Hamiltonian systems were introduced in [2].
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The regulation problem for mixed finite and infinite dimensional port

controlled Hamiltonian systems has also been discussed. This kind of

system is used on systems with distributed parameters [2].

2.3.2 Adaptive stabilization for Hamiltonian systems

As stated in previous section, Hamiltonian systems are devised from

Euler-Lagrange (EL) systems. In this section, adaptive stabilization of

generalized Hamiltonian system with dissipation is considered.

In actual use, generalized Hamiltonian system with dissipation is

zero-state detectable, and it has a linearly parameterized Hamiltonian

function with known and unknown constants. Divided Hamiltonian func-

tion into two parts with known and unknown constants. This Hamilto-

nian system can be expressed in the following form:

ẋ = (J −R)(
∂L0

∂x
+

m∑
i=1

θi
∂Li

∂x
) + g(x)u (2.39)

Its energy function can be expressed as:

H(x) = L0(x) +
m∑

i=1

θiLi(x) (2.40)

whereu is the control law,θ = (θ1, θ2, ...θm)T is the unknown constant

vector, andL0(x) andLi(x) are the known differentiable functions. [38],
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[39]

Taking

V (x, θ̂) = L0(x) +
m∑

i=1

θiLi(x) +
1

2
θ̃TΓ−1θ̃ (2.41)

as a Lyapunov function, wherẽθ = θ̂ − θ, we can obtain:

V̇ = −(
∂L0

∂x
+

m∑
i=1

θi
∂Li

∂x
)TR(

∂L0

∂x
+

m∑
i=1

θi
∂Li

∂x
)

− (
∂L0

∂x
+

m∑
i=1

θ̂i
∂Li

∂x
)TgPgT (

∂L0

∂x
+

m∑
i=1

θ̂i
∂Li

∂x
)

6 0

(2.42)

This means that the closed-loop Hamiltonian system is bounded, and

Γ andP are two appropriate dimension positive definite matrices. The

system is asymptotically stable when

A = {(x, θ̂) : R(
∂L0

∂x
+

m∑
i=1

θi
∂Li

∂x
) = 0,

gT (
∂L0

∂x
+

m∑
i=1

θ̂i
∂Li

∂x
) = 0}

(2.43)

Then the adaptive control law can be designed as: [38], [39]
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



dθ̂

dt
= −Γ

∂L̄

∂x
gPgT [

∂L0

∂x
+ (

∂L̄

∂x
)T θ̂]

u = −PgT (
∂L0

∂x
+

m∑
i=1

θ̂i
∂Li

∂x
)

(2.44)

This method uses an adaptive controller to design a class of gener-

alized Hamiltonian systems with dissipation. These Hamiltonian sys-

tems usually have linearly parameterized Hamiltonian equations with

both known and unknown constants.

2.3.3 EB-based control for Hamiltonian systems

Energy-balancing control requires determination of a certain function,

that is rendered by the difference between control object and designed

controller.[37]

An energy-balancing system is satisfied by a kind of Euler-Lagrange

system, which the total closed-loop energy is the difference between the

open-loop energy and the supplied energy. The Hamiltonian function

denotes the total energy of the system, and satisfies the energy balanc-

ing equation. This method is based on the matching condition that is

suitable for shaping potential energy only.[40]
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The passivity-based control (PBC) is a kind of energy-balancing con-

trol, it is a well-established technique that is very effective designing

controller for systems that are also described by Euler-Lagrange equa-

tions of motion. To solve the regulation problem of mechanical systems,

using passivity-based control design, only potential energy must be sta-

bilized by ”shaping”. Passivity-based control also keeps system in the

Euler-Lagrange form, to obtain a closed-loop energy function. This en-

ergy function equals the difference between the energy in the system and

the energy supplied by the controller. Hence, stabilization of the system

can be explained in terms of energy-balancing, which means that in a

passivity-based controlled system, when the system runs toward equi-

librium point, dissipation of the system becomes zero.[43], [37]

However, in some cases, shaping of total energy is required, and

modification of the kinetic energy is necessary. Closed-loop system no

longer satisfies the Euler-Lagrange structure, and energy function no

longer represents the total energy. Interconnection and damping assign-

ment passivity-based control (IDA-PBC) is concerned. IDA-PBC is sat-

isfied by energy-balancing, and it may be used to solve the problem of

stabilization of under-actuated mechanical systems.

In general, IDA-PBC is used to design Hamiltonian system, which

aims to find a state-feedback controlu = β(x), so that the closed-loop
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dynamics system becomes port-controlled Hamiltonian system with dis-

sipation, such as in the following formula: [43], [41]

ẋ = [Jd(x)−Rd(x)]
∂Hd

∂x
(x) (2.45)

where the new energy equationHd(x) has a strict local minimum at the

desired equilibriumx∗, Jd(x) = −JT
d (x) is the desired interconnection

matrix andRd(x) = RT
d (x) ≥ 0 is the desired damping matrix. [41]

Applying IDA-PBC to a port-controlled Hamiltonian system, and en-

ables this Hamiltonian system to satisfy the following energy-balancing

equation:

H[x(t)]−H[x(0)] =

∫ t

0
uT (s)y(s)ds− d(t) (2.46)

whereH[x(t)]−H[x(0)] is the stored energy,x ∈ Rn is the state vector,
∫ t

0 uT (s)y(s)ds is the energy supplied by the system input, andd is the

non-negative dissipation energy. [43], [44]

Choosing a functionβ(x) satisfies:

−
∫ t

0
βT [x(s)]y(s)ds = Ha[x(t)]− κ (2.47)
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whereHa is the closed-loop energy, which is equal to the difference be-

tween stored energy and supplied energy,κ is constant of system. [43],

[44]

The control lawu = β(x) + v ensures that the system is passive by

a new total energy equation as follows:

Hd(x) = H(x) + Ha(x) (2.48)

This new energy function still satisfies:

Hd[x(t)]−Hd[x(0)] =

∫ t

0
vT (s)y(s)ds− dd(t) (2.49)

For Hamiltonian systems:

ẋ = f(x) + g(x)u (2.50)

y = gT (x)
∂H

∂x
(2.51)

a functionβ(x) can be found, a new designed Hamiltonian system can

be obtained:
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ẋ = fd(x) + g(x)v (2.52)

z = gT (x)
∂Hd

∂x
(2.53)

wherefd(x) = f(x) + g(x)β(x), andHd(x) = H(x) + Ha(x) is the

new energy function of the closed-loop system, andz is the output of

the new system. From equations (2.50) to (2.53),

∂HT
a (x)

∂x
g(x) = (z − y)T (2.54)

Combining equations (2.54) and (2.49), gives:

∂HT
a (x)

∂x
fd(x) = −βTy (2.55)

Multiplying equation (2.54) with inputv:

∂HT
a (x)

∂x
g(x)v = (z − y)Tv (2.56)

Combining equations (2.54) and (2.56),

∂HT
a (x)

∂x
[fd(x) + g(x)v] = −βTy + vT (z − y) (2.57)
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Integrating both sides of equation (2.57), the following is obtained:

−
∫ t

0
βt[x(s)]y(s)ds +

∫ t

0
vT (z − y)ds = Ha[x(t)]− κ (2.58)

Equation (2.58) shows that the difference between stored and supplied

energies is no longer the closed-loop energy. The system is passive with

the Hamiltonian functionHd(x). Thus, the control law can be derived

as:

u = β(x) + v (2.59)

This theory is based on generalized canonical transformations of time-

varying port controlled Hamiltonian systems, and the designed con-

troller is based on only the storage equation which is a function of the

tracking error. [43], [44]

In this chapter, firstly, analyze power systems, then, according to the

structure and character of power systems, build state space equations.

The state space equations are the foundations of control design in this

thesis. These first two parts are reviews of control object, the last part

of this chapter introduces control methods for power system, which are
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Hamiltonian system, adaptive and energy-balancing-based control de-

signs based on Hamiltonian system.



Chapter 3

Adaptive Control for Hamiltonian

Systems

As introduced in previous chapter, adaptive control is used to adapt the

unknown parameters in energy function. In this chapter, adaptive control

design for Hamiltonian systems is discussed.

3.1 Adaptive control design for Hamiltonian systems

Taking a basic Hamiltonian system as an example, which is given by:

ẋ = J(x)
∂H

∂x
(x) + g(x)u (3.1)

y = gT (x)
∂H

∂x
(x) (3.2)

According to adaptive control method, Hamiltonian function of above

system can be divided into two differentiable terms in the following
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form:

H(x) = L0(x) +
m∑

i=1

θiLi(x) (3.3)

whereθ = (θ1, θ2, ...θm)T is the unknown constant vector, andL0(x)

andLi(x) are the known differentiable functions. [35]

The original Hamiltonian control system with dissipation can now

be expressed as the following form:

ẋ = J(x)(
∂L0

∂x
+

m∑
i=1

θi
∂Li

∂x
) + g(x)u (3.4)

In this case, Hamiltonian system as equations (3.1) and (3.2) can be

rewritten as:

ẋ = J(x)(
∂L0

∂x
(x) +

m∑
i=1

θi
∂Li

∂x
(x)) + g(x)u (3.5)

y = gT (x)(
∂L0

∂x
(x) +

m∑
i=1

θi
∂Li

∂x
(x)) (3.6)

and the control law is expressed as: [35], [38], [39]
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



dθ̂

dt
= −Γ

∂L̄

∂x
(x)gPgT [

∂L0

∂x
(x) + (

∂L̄

∂x
(x))T θ̂]

u = −PgT (
∂L0

∂x
(x) +

m∑
i=1

θ̂i
∂Li

∂x
(x))

(3.7)

TakingV (x, θ̂) as Lyapunov function, like equations (2.41) and (2.42),

the stability of above adaptive controlled system can be proved.

3.2 Simulation result for an adaptive control design

The LC circuit shown in Figure3.1 consists of two inductors and a ca-

pacitor was chosen for the Hamiltonian system. In this circuit,V is the

voltage source,ψ1 andψ2 are the magnetic flux linkages of inductors,

H1(ψ1) andH2(ψ2) are the magnetic energies of two inductors,Q is the

charge of capacitor, andH3(Q) is the electric energy of the capacitor.

Considering the linear relationship of the elements above:

H1(ψ1) =
1

2L1
ψ2

1,

H2(ψ2) =
1

2L2
ψ2

2,

H3(Q) =
1

2C
Q2

(3.8)

The total energy of this LC circuit isH(ψ1, ψ2, Q) = H1(ψ1) +

H2(ψ2) + H3(Q). The dynamic equation of the system can be obtained
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Figure 3.1:LC circuit

as:




ψ̇1

ψ̇2

Q̇




=




0 0 −1

0 0 1

1 −1 0







∂H
∂ψ1

∂H
∂ψ2

∂H
∂Q




+




1

0

0




u (3.9)

Rewriting this dynamic equation3.9 as a port-controlled Hamiltonian

system:
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


Q̇

ψ̇1

ψ̇2




=




0 1 −1

−1 0 0

1 0 0







∂H
∂Q

∂H
∂ψ1

∂H
∂ψ2




+




0

1

0




u (3.10)

y =
∂H

∂ψ1
(3.11)

In this case, adaptive control is used to design this Hamiltonian system

of LC circuit. Leta = 1
C , b = 1

L1
, c = 1

L2
.




ẋ1

ẋ2

ẋ3




=




0 1 −1

−1 0 0

1 0 0







ax1

bx2

cx3




+




0

1

0




u

=




0 1 −1

−1 0 0

1 0 0










ax1

0

0




+




0

bx2

0




+




0

0

cx3







+




0

1

0




u

(3.12)

Using adaptive control design, above Hamiltonian system can be repre-

sented in the following form:
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


ẋ1

ẋ2

ẋ3




=




0 1 −1

−1 0 0

1 0 0







â




x1

0

0




+ b̂




0

x2

0




+ĉ




0

0

x3







+




0

1

0




u

(3.13)

Let θ = [a, b, c] and θ̂ = [â, b̂, ĉ], the adaptive control law can be ob-

tained from the following equaiton:

∂θ̂

∂t
= −k




x1

x2

x3




[
âx1 + b̂x2 + ĉx3

]

= −k




x2
1 x1x2 x1x3

x1x2 x2
2 x2x3

x1x3 x2x3 x2
3







â

b̂

ĉ




(3.14)

u = −k[âx1 + b̂x2 + ĉx3] (3.15)

The values of this LC circuit are used for both the port-controlled

Hamiltonian system for LC circuit and the adaptive controlled Hamilto-

nian system. The simulation results are shown in Figure3.2and Figure
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Figure 3.2:Simulation result of Hamiltonian system for LC circuit
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Figure 3.3:Simulation result of adaptive control for Hamiltonian model of LC circuit
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3.3. Figure3.2 is the simulation result of Hamiltonian system for LC

circuit, and Figure3.3 is the performance of adaptive control design for

above basic Hamiltonian system.

In Figure3.2and3.3, Q is the capacitor,ψ1 andψ2 are the inductors,

respectively.̂a, b̂, andĉ in Figure3.3are the adaptive parameters of the

adaptive control system.

LC circuit is an oscillation circuit, in Figure3.2, without dissipation,

parameters keep persistent oscillation. Using adaptive control design for

this Hamiltonian expression of LC circuit, in Figure3.3, parameters can

be stable.

In this chapter, adaptive control is applied to port-controlled Hamil-

tonian system, as an example, LC circuit is expressed as Hamiltonian

system. Compared the simulation results of Hamiltonian system and

adaptive controlled Hamiltonian system, the stability in adaptive control

design is better than that in Hamiltonian system.



Chapter 4

EB-Based Control for Hamiltonian

Systems

As discussed in Chapter 2, IDA-PBC is a kind of energy-balancing-

based control that can be used to design the Euler-Lagrange system,

and from where the Hamiltonian equation is derived. In this section,

IDA-PBC is also applicable to port-controlled Hamiltonian systems.

4.1 EB-based design for the Hamiltonian systems

Take the port-controlled Hamiltonian system with dissipation as system
∑

, which is expressed as:

ẋ = [J(x)−R(x)]
∂H

∂x
(x) + g(x)u (4.1)

y = gT (x)
∂H

∂x
(x) (4.2)
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The EB-based control design is expressed infd(x) = f(x) + g(x)β(x),

and, the new system
∑

d can be obtained as: [40] – [44]

ẋ = [J(x)−R(x)]
∂Hd

∂x
(x) + g(x)β(x) + g(x)u (4.3)

y = gT (x)
∂Hd

∂x
(x) (4.4)

Taking this energy functionHd as Lyapunov function, the stability of

designed Hamiltonian system
∑

d can be proved.

4.2 Simulation result for an EB-based design

In this section, EB-based control design requires a port-controlled Hamil-

tonian system with dissipation (PCHD). Take the Hamiltonian system

for LC circuit from last chapter as an example. Considering dissipation,

a port-controlled Hamiltonian system with dissipation for LC circuit is

obtained as follows:
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


ẋ1

ẋ2

ẋ3




=


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0 1 0

−1 −1 0

0 0 −1



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bx2

cx3




+




0

0

1




u (4.5)

y =

[
0 0 1

]



ax1

bx2

cx3




(4.6)

where, Hamiltonian function isH(x) = 1
2ax2

1+
1
2bx

2
2+

1
2cx

2
3, substituting

it as Lyapunov function.

dH

dt
(x) = ax1ẋ1 + bx2ẋ2 + cx3ẋ3

= ax1bx2 + bx2(−ax1 − bx2) + cx3(−cx3 + u)

= −b2x2
2 − c2x2

3 + cx3u

6 yu

(4.7)

In this case, the Hamiltonian system is asymptotically stable. The new

system which is given by EB-based control design can be expressed as:
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
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+


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0

0

1




cx3

+




0

0

1




u

(4.8)

y =

[
0 0 1

]



ax1

bx2

2cx3




(4.9)

From the above Hamiltonian system, a new Hamiltonian function can

be obtained asHd(x) = 1
2ax2

1 + 1
2bx

2
2 + cx2

3, and substituting this new

function as the Lyapunov function:

dHd

dt
(x) = ax1ẋ1 + bx2ẋ2 + 2cx3ẋ3

= ax1bx2 + bx2(−ax1 − bx2) + 2cx3(−cx3 + u)

= −b2x2
2 − 2c2x2

3 + 2cx3u

6 yu

(4.10)

This new system is also asymptotically stable, and the control law is:

u = −2cx3 (4.11)
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Figure 4.1:Simulation result of port-controlled Hamiltonian system with dissipation

To compare the results, both the PCHD for LC circuit and the EB-

based controlled Hamiltonian system were simulated by using the same

parameters’ values.

Figure4.1 shows the performance of PCHD, and the simulation re-

sult of EB-based control design for above PCHD is shown in Figure4.2.

In Figure4.1and4.2, results essentially have no difference except in

parameterx3. In EB-based control design for PCHD,x3 is faster to get

into stable state.
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Figure 4.2:Simulation result of energy-balancing-based control for PCHD

In this section, EB-based control design is used to port-controlled

Hamiltonian system with dissipation. The PCHD is achieved from LC

circuit which is discussed in previous chapter. Compared the simulation

results of PCHD and EB-based controlled PCHD, EB-based control de-

sign is more effective on reducing damping.



Chapter 5

Adaptive and EB-Based Control for

Hamiltonian Systems

Adaptive control design can solve the problem of unknown constant

parameters, and EB-based control design enhances the stability of the

Hamiltonian system. To obtain a better running result of Hamiltonian

systems, adaptive control and the energy-balancing-based control are

combined.

5.1 Adaptive and EB-based control for Hamiltonian sys-

tems

From EB-based controlled system in the previous chapter, using the

PCHD as the foundation of control design, the system with EB-based

controller can be obtained as equation (5.1):
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ẋ1 = bx2

ẋ2 = −ax1 − bx2

ẋ3 = −2cx3 + u

(5.1)

Using adaptive control to design the Hamiltonian system which is ex-

pressed as equation (5.1), the new function with adaptive control param-

eters[â, b̂, andĉ] can be obtained as:
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(5.2)

Let θ̂ = [â, b̂, ĉ]:
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dθ̂

dt
= −Γ

∂L̄

∂x
gPgT

[
∂L0

∂x
+ (

∂L̄

∂x
)T θ̂

]

= −k
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âx2
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x1x2 x2
2 2x2x3
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â
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ĉ
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(5.3)

The adaptive control law can be obtained as:

u = −PgT

[
∂L0

∂x
+

m∑
i=1

θi
∂Li

∂x

]
= −k

[
âx1 + b̂x2 + 2ĉx3

]
(5.4)

Taking

V (x, θ̂) =
m∑

i=1

θiLi(x) +
1

2
θ̃TΓ−1θ̃ (5.5)

as a Lyapunov function, wherẽθ = θ̂ − θ, we can obtain:
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V̇ = −(
m∑

i=1

θi
∂Li

∂x
)TR

m∑
i=1

θi
∂Li

∂x

− (
m∑

i=1

θ̂i
∂Li

∂x
)TgPgT

m∑
i=1

θ̂i
∂Li

∂x

6 0

(5.6)

The stability of this adaptive and EB-based controlled Hamiltonian sys-

tem can be proved.

5.2 Simulation result of adaptive and EB-based control

design

Under the same operating conditions with last chapter, the simulation re-

sults of adaptive and energy-balancing-based control design for PCHD

system is given by Figure5.1.

In Figure5.1, x1, x2, x3 are control parameters in Hamiltonian sys-

tem, and̂a, b̂, ĉ are adaptive control parameters of system.

Compared Figure5.1with Figure4.1, Figure4.1is the simulation re-

sult of port-controlled Hamiltonian system with dissipation (PCHD), all

parameters in adaptive and energy-balancing-based control are quicker

to get into stable state.
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Figure 5.1: Simulation result of adaptive and energy-balancing-based control for

Hamiltonian system

In this chapter, adaptive and EB-based control designs are compounded

together. Use this combination to design PCHD which is mentioned in

previous chapter. This control method has the advantages of both adap-

tive and EB-based control designs.



Chapter 6

Control Designs for Power systems

In previous chapters, adaptive and EB-based control designs were dis-

cussed by applying to Hamiltonian systems for LC circuit. However, the

present thesis focuses on the improved performance of power systems.

In this chapter, all control methods which were discussed in Chapter 3

through Chapter 5 apply to same power system and the simulation re-

sults under the same running condition are compared.

6.1 The Hamiltonian system for power systems

The state space equation of power systems can be described via electri-

cal equation and mechanical equations in the following form [8], [23] –

[28]:



6.1 The Hamiltonian system for power systems 58

θ̇ = ω − ω0 (6.1)

ω̇ =
ω0

M
Pm − D

M
(ω − ω0)− ω0

M

Vs

xds
′Eq

′sin θ (6.2)

Ėq
′

= − 1

Td0
Eq

′ +
1

Td0

xd − xd
′

xds
Vs cos θ +

1

Td0
Vf (6.3)

where

θ—-is the rotor angle,

ω—-is the rotor speed,

Eq
′—-is the internal transient voltage,

Pm—-is the mechanical power,

M—-is the inertia coefficient of the generator,

D—-is the damping constant,

Pe—-is equal toEq
′Vs/xds

′ sin θ,is the active electrical power,

Td
′—-is the stator closed loop time constant,

Td0—-is the excitation circuit time constant,

xd—-is thed− axis synchronous reactance of a generator,

xd
′—-is thedaxis transient reactance,

Vf—-is the voltage of the field circuit of a generator.

Consideru = 1
Td0

Vf as the control law, setx1 = θ, x2 = ω − ω0,

x3 = Eq
′ as the state, and denotea = ω0

M , b = D
M , c = ω0Vs

M , e1 = M
Td0ω0

,

these are classified as known constants, because they represent the phys-
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ical parameters of the power system. Since some constants are con-

cerned with network, letf = xd−xd
′

x′ds
, d = 1

Td
′ , Pm ande2 = xd − xd

′,

these are unknown constants. [8], [23] – [28]

The state space equations of above power system can be rewritten as:




ẋ1

ẋ2

ẋ3




=
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

o
1

e2
0

− 1

e2
− b

e2
0

0 0 −e1







cfx3 sin x1 − ae2Pm

e2x2

d

e1
x3 − cf cos x1




+




0

0

1




u

(6.4)

By choosing energy function of the Hamiltonian system as:

H(x) =
1

2
e2x

2
2 − cfx3 cos x1 +

d

2e1
x2

3 − ae2Pmx1 (6.5)

the structure matrixM is obtained:

M =




o
1

e2
0

− 1

e2
− b

e2
0

0 0 −e1




(6.6)
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where−(M + MT ) is semi-positive, andM = J − R, J is a skew-

symmetric matrix which is the internal interconnection structure, andR

is a positive semi-definite symmetric matrix which is the additional re-

sistive structure. [8], [23] – [28]

Thus, this power system can be represented by PCHD in the follow-

ing form:

ẋ = [J(x)−R(x)]
∂H

∂x
+ g(x)u

y = gT (x)
∂H

∂x

(6.7)

where,

M =




o
1

e2
0

− 1

e2
− b

e2
0

0 0 −e1




(6.8)

J =
M −MT

2
, R =

M + MT

2
(6.9)

H(x) =
1

2
e2x

2
2 − cfx3 cos x1 +

d

2e1
x2

3 − ae2Pmx1 (6.10)
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∂H(x)

∂x
=




cfx3 sin x1 − ae2Pm

e2x2

d

e1
x3 − cf cos x1




(6.11)

H(x) =
1

2
e2x

2
2 − cfx3 cos x1 +

d

2e1
x2

3 − ae2Pmx1

=
1

2
e2x

2
2 +

d

2e1
[x3 − ce1f

d
cos x1]

2

− ae2Pmx1 − c2e1f
2

2d
(cos x1)

2

(6.12)

whereH is the Hamiltonian function which is the total energy of sys-

tem. Whenx1 ∈ [−π, π], this Hamiltonian function has a minimum

value. [8], [23] – [28]

This Hamiltonian function can be substituted as the Lyapunov func-

tion,

dH(x)

dt
= 2

1

2
e2x2ẋ2 − ae2Pmẋ1 − cf cos x1ẋ3

+ cfx3 sin x1ẋ1 + 2
d

2e1
x3ẋ3

= −be2x
2
2 − e1[cf cos x1 − d

e1
x3]

2 + [
d

e1
x3 − cf cos x1]u

6 yu

(6.13)

Hamiltonian system is stable at its equilibrium point. The derivative of

this Hamiltonian function has a maximum value, and PCHD for power
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system is asymptotically stable.

The condition signifies that the increased energy of system is equal

to the difference between the work supplied to system and the dissipated

energy of system.

After ensuring the stability of the Hamiltonian systems, simulation

was done, based on other power system researches, using the following

parameters values:D = 5, M = 6, ω0 = 314, Vs = 1, xds
′ = 0.36,

Pm = 0.9, T ′
d = 5, Td0 = 7.4, xd = 1.875, xd

′ = 0.257, xL = 0.04. [8]

The original PCHD is given as:

θ̇ = ω − ω0 (6.14)

ω̇ =
ω0

M
Pm − D

M
(ω − ω0)− ω0

M

Vs

xds
′Eq

′sin θ (6.15)

Ėq
′

= − 1

Td0
Eq

′ +
1

Td0

xd − xd
′

xds
Vs cos θ +

1

Td0
Vf (6.16)

Substituting the parameters into above Hamiltonian system results in:
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Figure 6.1:Simulation result of Hamiltonian system for power system
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ẋ1

ẋ2
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u

(6.17)

Figure6.1shows the operating result of the original Hamiltonian system

at equilibrium point[x1 = 6.2, x2 = 0, x3 = 3].

As shown in Figure6.1, x1 is the power angle of the generator,x2 is
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the relative speed of the generator, andx3 acts as the transient electro-

magnetic force in the quadrature axis of the generator.

6.2 Adaptive control design for the Hamiltonian sys-

tem

Using the same parameter value of system and the coefficientk = 0.05,

the following result of the adaptive control for Hamiltonian system can

be derived:
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(6.18)




˙̂
f

˙̂
d


 = k




−c2cos x1
2 − c

e1
x3 cos x1

− c

e1
x3 cos x1 − 1

e1
2x3

2







f̂

d̂


 (6.19)

and the control law is expressed as:

u = k

(
cf̂ cos x1 − d̂

e1
x3

)
(6.20)
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V̇ = −(
∂L0

∂x
+ f

∂L1

∂x
+ d

∂L2

∂x
)TR(

∂L0

∂x
+ f

∂L1

∂x
+ d

∂L2
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)
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+ f̂
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+ d̂

∂L2

∂x
)TgPgT (
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∂x
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∂L2

∂x
)

6 0

(6.21)

TakingV (x, θ̂) as Lyapunov function, wherêθ = [f̂ , d̂] is the adaptive

control vector, system is asymptotically stable at equilibrium point.

Figure6.2shows the operation of the adaptive control for the Hamil-

tonian system at equilibrium point[x1 = 6.2, x2 = 0, x3 = 3, f̂ =

5.4, d̂ = 1].

As shown in Figure6.2, x1 is the power angle of the generator,x2 is

the relative speed of the generator,x3 acts as the transient electromag-

netic force in the quadrature axis of the generator, andf̂ , d̂ are adaptive

control parameters of the system.

Compared Figure6.2with Figure6.1, in adaptive control design for

Hamiltonian system,x1, andx3 could be stable faster. The adaptive con-

trol system achieves better performance than PCHD.



6.3 EB-based control design for the Hamiltonian system 66

0 5 10 15 20
−4

−2

0

2

4

6

8
x1
x2
x3
fh
dh

Figure 6.2:Simulation result of adaptive control for Hamiltonian system

6.3 EB-based control design for the Hamiltonian sys-

tem

Applying the same condition of the Hamiltonian system, in EB-based

control, the system can be expressed as:
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(6.22)

and the control law is expressed as:

u = cf cos x1 − 2d

e1
x3 (6.23)

New Hamiltonian function is:

Hd =
1

2
e2x2

2 − ae2Pmx1 − cfx2 cos x1 +
d

e1
x3

2 (6.24)

Taking above Hamiltonian function as Lyapunov function:
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dH(x)

dt
= e2x2ẋ2 − ae2Pmẋ1 + cfx3 sin x1x1 − cf cos x1ẋ3 +

2d

e1
x3ẋ3

= −be2x2
2 − e1(cf cos x1 − 2d

e1
x3)

2 + (
2d

e1
x3 − cf cos x1)

6 yu

(6.25)

the stability of EB-based controlled Hamiltonian system can be proved.

Figure6.3 shows the operation of the EB-based control design for

Hamiltonian system at equilibrium point[x1 = 12.5, x2 = 0, x3 = 1.5].

As shown in Figure6.3, x1, x2, x3 have the same physical meanings

with the parameters in Figure6.1, respectively. Compared with Figure

6.1, in EB-based control, there is almost no change in stability of param-

eters, however, in vibration frequency of parameters, there are decrease,

especially inx2.

6.4 Adaptive and EB-based control design for the Hamil-

tonian system

Considering both adaptive control and energy-balancing-based control,

under the same operating condition in the original Hamiltonian system,

the following result can be derived as:
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Figure 6.3:Simulation result of EB-based control for Hamiltonian system
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and the control law is expressed as:

u = −k

[
2d̂

e1
x3 − cf̂ cos x1

]
(6.28)

Taking V (x, θ̂) as Lyapunov function just like equation (6.21), where

θ̂ = [f̂ , d̂] is the adaptive control vector, system is asymptotically stable

at equilibrium point.

Figure6.4shows the operation of Hamiltonian system at equilibrium

point [x1 = 12.8, x2 = 0, x3 = 1.5, f̂ = 5.4, d̂ = 1].

As shown in Figure6.4, x1, x2, x3 and f̂ , d̂ have the same physical

significance with the parameters in Figure6.2, respectively. Compared

with Figure6.1, the performance of adaptive and EB-based control sys-

tem is better in terms of stability or vibration frequency and amplitude.

In this chapter, apply adaptive and EB-based control design to Hamil-

tonian equations of power system. The simulation results in this chapter

is more clearer than those results in the chapter 3, 4 and 5. Adaptive
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Figure 6.4:Simulation result of combined control for Hamiltonian system

control design is more effective on stability of parameters. EB-based

control design is better at reducing damping. Combining adaptive and

EB-based control, the performance of adaptive and EB-based controlled

Hamiltonian system has the excellences of those two control methods.



Chapter 7

Conclusion

The present MPhil thesis first made allusion to Hamiltonian systems,

built a Hamiltonian model for power system, and then discussed adap-

tive control and EB-based control which were applied to design con-

troller for this Hamiltonian system. Finally, under the same running

conditions, and using different control designs, the simulation results

are shown in the accompanying figures.

In Chapter 1 and Chapter 2, general background of power systems

and control strategies were introduced. In these chapters, the mechani-

cal and electrical structures of power systems were discussed, and state

space equations for power systems were obtained. For sequent chapters,

the properties of Hamiltonian systems, port-controlled Hamiltonian sys-

tems and port-controlled Hamiltonian systems with dissipation, as well

as both adaptive control and EB-based control designs for Hamiltonian

systems were discussed.
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In Chapter 3, port-controlled Hamiltonian system and adaptive con-

trol design for this Hamiltonian system were applied to LC circuit. The

simulation results of both Hamiltonian system and adaptive controlled

Hamiltonian system for LC circuit were shown in the accompanying fig-

ures.

In Chapter 4, a kind of EB-based control, specifically, IDA-PBC was

attributed to Hamiltonian system. Considering dissipation, this Hamil-

tonian system was derived from the LC circuit which is discussed in the

Chapter 3. Using the same data from LC circuit, the simulation result

was given.

In Chapter 5, adaptive control and EB-based control were combined

together, and simulated under the same series of data from LC circuit in

the Chapter 3, the simulation result of Hamiltonian system with the new

control design was obtained.

In Chapter 6, the focus of thesis back to power system, and PCHD

was used to modelling the power system discussed in chapter 2. To

obtain the improved performance of power system, control strategies

which were discussed in Chapter 3, Chapter 4 and Chapter 5 were ap-

plied to this PCHD for power system. Using the data from other’s work,
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simulation results under Hamiltonian system and different control de-

signs for this Hamiltonian system were derived by figures.
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Appendix A Variables

w1, w2—-are disturbances of the system.

δ—-is the power angle of the generator, in radian.

ω—-is the relative speed of the generator, in rad/s.

Pm—-is the mechanical input power, in p.u., which is assumed to be

constant.

Pe—-is the active electrical power delivered by the generator, in p.u..

ω0—-is the synchronous machine speed, in rad/s.

D—-is the per unit damping constant.

H—-is the per unit inertia constant, in second.

Va—-is the voltage of the rest of power system.

Ea—-is the open circuit voltage.

r—-is the resistance of open circuit.

Ia—-is the current of open circuit.

jXs—-is the inductance of open circuit.

x′ds—-is the mutual reactance between the excitation coin and the stator

coil of generator.

θe—-is the rotor angular position of generator with respect to a station-
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ary axis.

Qe—-is the reactive power, in p.u..

E ′
q—-is the transient electromagnetic force in the quadrature axis of the

generator, in p.u..

Eq—-is the electromagnetic force in the quadrature axis of generator, in

p.u..

Ef—-is the equivalent electromagnetic force in the excitation coil, in

p.u..

T ′
d0—-is the direct axis transient short circuit time constant, in second.

If—-is the excitation current.

Iq—-is the quadrature axis current.

kc—-is the gain of the excitation amplifier.

uf—-is the input of SCR amplifier of the generator.

xad—-is the mutual reactance between the excitation coil and the stator

coil of the generator.

Vs—-is the infinite bus voltage.

xL—-is the transmission line reactance.

xT —-is the transformer reactance.

xd—-is the direct axis reactance of the generator.

x′d—-is the direct axis transient reactance of the generator.



Appendix B Simulation

function xdot=Work(t,x)

%Test a response of a first order system, from a nonlinear exosystem

%original x: x1 x2 x3

x1=x(1); x2=x(2); x3=x(3);

%adaptive control

%x1=x(1); x2=x(2); x3=x(3); fh=x(4); dh=x(5);

%moniter the time

if(mod(t,1)>0.999) t end

%constant parameters used in the controller

a=314/6;Pm=0.9;b=5/6;c=314/6;e1=6/(7.4*314);

f=(1.867-0.257)/0.36;d=1/5;e2=(1.867-0.257);

k=0.01;omega=3;

%Nonlinear functions
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%control design

%Hamiltonian

u=-d*x3/e1+c*f*cos(x1);

%adaptive control

%u=k*(c*fh*cos(x1)-dh*x3/e1);

%energy balancing control

%u=-(omega+1)*d*x3/e1+c*f*cos(x1);

%EB adaptive control law

%u=k*(c*fh*cos(x1)-(omega+1)*dh*x3/e1);

%Dynamic systems

%orginal

f1=x2;

f2=a*Pm-c*f*x3*sin(x1)/e2-x2*b;

f3=c*f*cos(x1)*e1-d*x3+u;

%adaptive control fh,dh

&f1=x2;

%f2=a*Pm-c*fh*x3*sin(x1)/e2-x2*b;
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%f3=c*fh*cos(x1)*e1-dh*x3+u;

%f4=k*[-c*c*cos(x1)*cos(x1), c*x3*cos(x1)/e1;

c*x3*cos(x1)/e1,-x3*x3/e1/e1]*[fh;dh];

%energy balancing control

%f1=x2;

%f2=a*Pm-c*f*x3*sin(x1)/e2-x2*b;

%f3=c*f*cos(x1)*e1-(omega+1)*d*x3+u;

%EB adaptive control

%f1=x2;

%f2=a*Pm-c*fh*x3*sin(x1)/e2-x2*b;

%f3=c*fh*cos(x1)*e1-(omega+1)*dh*x3+u;

%f4=k*[-c*c*cos(x1)*cos(x1), (omega+1)*c*x3*cos(x1)/e1;

(omega+1)*c*x3*cos(x1)/e1,-(omega+1)*(omega+1)*x3*x3/e1/e1]*[fh;dh];

%Observer

%original EB

xdot=[f1;f2;f3];

%adaptive EB adaptive

%xdot=[f1;f2;f3;f4];


