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Abstract

Synthetic biology is an emergent field incorporating aspects of computer science
molecular biology-based methodologies in a systems biology context, taking naturally
occurring cellular systems, pathways, and molecules, and selectively engineering them
for the generation of novel or beneficial synthetic behaviour. This study described the
construction of a novel synthetic gene circuit, which utilises the inducible downstream
transcriptional activation properties of the pheromone-response pathway in the budding
yeastSaccharomyces cerevisiaeas the basis for initiation. The circuit was composed
of three novel yeast expression plasmids; (1) a reporter plasmid in which the luciferase
reporter gene was fused to the iron response element (IRE), and expressed under the
control of the pheromone-inducibleFUS1 promoter, (2) a repressor plasmid which
constitutively expressed the mammalian iron response protein (IRP), which can bind to
the IRE in the luciferase mRNA transcript, blocking translation, and (3) a de-repressor
plasmid which also utilised the pheromone-inducibleFUS1 promoter to express the
bacterial LexA protein that represses transcription of theIRP gene, and thereby de-
represses luciferase translation.

Yeast cultures were propagated in media that selected for cells containing all three
plasmid components of the gene circuit. In these cells, during vegetative growth
conditions, reporter gene translation is constitutively repressed by IRP until addition
of pheromone. Upon pheromone-induction, the pheromone response pathway up-
regulated the expression of the LexA protein which represses transcription of IRP,
enabling the translation of luciferase, which is itself up-regulated by the pheromone
response pathway. The combination of the repressors functioned to increase the ratio
of induction of the reporter gene between pheromone-induced and un-induced states.
Proteins and mRNA species expressed by each plasmid were semi-quantified using
SDS-PAGE, Western blot, and RT-qPCR. Luciferase expression was measured using an
in vitro whole cell luminescence assay, and the data used to define thecircuit “output”.

Metabolic control analysis was used prior to building the circuit in silico, and identified
the transcription of IRP, as well as the IRP protein half-life as significant control
points for increasing the expression of luciferasein vivo. Modelling resulted in
the development of multiple variations of the circuit, incorporating strong and weak
constitutive promoters for the IRP. For the degradation rate, the IRP was fused with a
degradation tag from the PEST rich C-terminal residue of theCln2 protein, forming
IRPPEST, with approximately a 10-fold reduced half-life compared to wild type. By
varying the promoter strength and half-life of the IRP, the circuit could be tuned in terms
of the amplitude and period of luciferase expression duringpheromone induction.

Simulated annealing and Hooke-Jeeves algorithms were usedto estimate model pa-
rameter values from the experimental luminescence data, refining the modelling such
that it produced accurate time course simulation of the circuit output. While further
characterisation of the individual components would be advantageous, the construction
of the system represents a completed cycle of extensive modelling, experimentation,
and further model refinement.
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Preface

This work details investigations into synthetic gene circuitry by the parallel employment

of both in vivo laboratory experiments andin silico computational modelling. The

two approaches were employed in a simultaneous fashion, andindeed each approach

frequently used information gained from the other to validate hypotheses, and aid

rational experimental design. While it is hoped that this work thus demonstrates the

power of such interdisciplinary methods, for illustrativeclarity the author has largely

segregated the descriptions of the two aspects of this work.As such, the computational

modelling collected together in chapter five actually describes simulations developed

over the course of this entire work, and can be cross-referenced with the laboratory

experiments depicted in chapter four. The author has made efforts to indicate such

cross-referencing in the text, wherever appropriate.



CHAPTER

ONE

INTRODUCTION

1.1 Aims and Objectives

The objective of this project was to build a novel gene circuit in the yeastSaccha-

romyces cerevisiaethat could enable cells to respond to environmental stimuliwith the

expression of a quantifiable reporter gene. Published research has shown that reporter

genes can be coupled to promoters that control the expression of genes involved in the

yeast pheromone response pathway (or “mating pathway”) enabling cells to express a

gene of interest in response to the presence of an extracellular stimulus. [1–3]. In this

way, the project investigated the construction of a synthetic system that could be used

to study features such as amplification, sensitivity, and noise.

Previous research in the McCarthy lab characterized the human iron response protein

(IRP) and its interaction with genes containing the iron response element (IRE) as

an effective repressor of translation in yeast [4]. Also research by Brent and Ptashne

had shown that the LexA repressor fromEscherichia colifunctioned as a repressor of

transcription in yeast [5].

1
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In this project, a gene circuit was designed that utilized both of the IRP and LexA

repressors, that resulted in repression at both transcription and translation levels, with

a pheromone response pathway-inducible reporter gene. This circuit design is unique

from previously published work linking reporter genes to the mating response, in that

the circuit was designed to suppress the basal expression ofthe reporter gene in an OFF-

state, and then simultaneously de-repress and trigger expression in an ON-state. The

design of the circuit therefore reduces the level of background noise from the reporter

gene through inhibition of basal expression, enabling a higher relative-fold increase

in expression, compared with a pheromone response pathway-inducible reporter gene

alone [1, 6, 7]. Also, at the time of writing this approach to boosting the output of

a reporter gene, and combining transcriptional and translational inhibition in a gene

circuit, had not been attempted.

To achieve these objectives, the project utilized a synthetic biology approach to

building a system of interacting plasmids that function in combination as a module.

The simultaneous interactions of multiple components produce complex, dynamic

behaviours that are impossible to conceptualize without the aid of mathematical

modelling and computer simulation [8, 9]. Synthetic biology incorporates aspects of

computer science from systems biology to augment molecularbiology with computer

aided-design and enable the modelling of gene circuits as anengineer would design

electronic devices [10–13]. Synthetic biology projects result in rounds of iterative

design and development as models are constructed and used toguide experimental

design. Parameter values are obtained experimentally and the model evolves alongside

the engineered system [11, 14–16].

1.2 The YeastSaccharomyces cerevisiae

TheSaccharomyces cerevisiaegenome was one of the first to be completely sequenced,

and is a widely recognized model organism for studying the genetic systems of

eukaryotes, providing rapid growth, dispersed cells, simple replica plating and mutant

isolation, together with a well-defined genome [17–20].S. cerevisiaeis non-pathogenic,
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FIGURE 1.1: Diagrammatic representation of the yeast mating process. 1. Yeast cells
produce mating pheromone that binds to receptors on cells ofthe opposite mating type.
2. Cells exhibit chemotaxis, and grow towards the opposite mating type. 3. The haploid
cells fuse to form a diploid cell. Reproduced with permission from A. Fijalkowski [21].

can be handled with few precautions, and can be propagated easily and cheaply in large

quantities giving rise to an ideal organism for biochemicalstudies [18].

1.2.1 Yeast Mating

Yeast cells exist in two distinct haploid forms, a andα with genotypes MATaand MATα

respectively, which can mate to form a diploid a/α cell (figure 1.1). The mating between

Mata and Matα enables genetic transfer within the yeast population and enables the

colony to evolve through genetic recombination [20]. The diploid cells can continue to

bud in vegetative growth until they encounter starvation conditions, at which point the

cells undergo meiosis and sporulation, re-establishing the haploid phase [22–29].

Each cell type produces a 13 amino acid peptide pheromone protein that binds to

specific receptors on the surface of the opposite mating type; MATα cells produceα-

factor (WHWLQLKPGQPMY) and binds toMATa cells [26]. MATa cells produce
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a-factor (YIIKGVFWDPAC) that bindsMATα cells [22, 25]. Binding of one of these

pheromone proteins to a cell of the opposite mating type halts the cell cycle, induces

changes in cell morphology, and prepare the cell for cytoplasmic and nuclear fusion

[29–34]. This signalling system in yeast has become one of the most well characterized

signal transduction and developmental systems, and nearlyall of the pathway has

now been extensively documented through molecular genetics, cell biology, and

biochemistry studies [35–42].

Yeast are non-motile organisms and therefore require some mechanism to orient

themselves into close proximity with cells of the opposite mating type [18]. In order

to achieve this, yeast exhibit a chemotropic response to pheromone secreted by the

opposite mating type through asymmetric cellular organization, directing their growth

towards the mating partner [29, 32, 34, 43]. Yeast demonstrate the ability to polarize

their actin cytoskeleton in the direction of the site of highest pheromone concentration

[34]. The cells elongate towards the mating partner, forming a structure termed

a “mating projection”, containing proteins involved in signalling, polarization, cell

adhesion, and fusion, causing the cells to take on a “pear-like” morphology known

as a “Shmoo” (figure 1.1) [34, 38, 43].

The yeast mating response involves a complex cascade of events that enable yeast to

translate changes in environmental conditions into an appropriate genetic and metabolic

response [31, 44]. The mating response is an intracellular signal transduction pathway

comprising a trans-membrane spanning heterotrimeric G-Protein-coupled receptor, and

a mitogen activated protein kinase (MAPK) cascade which activates transcription

factors for genes that enable the appropriate genetic response in the nucleus to a

particular input stimulus at the cell surface receptor [33,45–47]. Understanding the

interactions and dynamic behaviour of the cascade is important when building gene

circuits that use the mating response pathway as a generic “signal processing module”

[1, 2, 46].
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FIGURE 1.2: Diagram of the yeast Ste2 G-protein receptor demonstrating the 7-
transmembrane domains (H1-H7,), 4 extracellular domains (E1-E4) and 4 intra-cellular
domains (C1-C4), an intracellular loop for G-protein coupling, and a cytoplasmic
carboxy-terminal domain.

1.2.2 Pheromone Receptor-G-protein Coupling

S. cerevisiae MATa cells express the Ste2α-factor binding receptor, andMATα cells

express Ste3 a-factor binding receptor [22, 25, 26, 32]. Thepheromone receptors have

a structural topology of seven trans-membrane domains, a third intracellular loop that

is involved in G-protein coupling, and a cytoplasmic carboxy-terminal domain that

mediates ligand-induced endocytosis and desensitization(figure 1.2) [38]. Hundreds

of G-protein coupled receptors have been identified in eukaryotic cells, responding to a

variety of stimuli such as hormones, neurochemicals, light, odours, and tastes [48, 49].

G-proteins constitute a large proportion of known drug targets, as the released G-

proteins elicit biochemical responses, and changes in cellular physiology by stimulating

a variety of target (effector) enzymes [50–52]. G-protein receptors share a common

design consisting of 7 membrane spanning regions linked to the G-protein [33]. In yeast,

the G-proteins are formed from three subunits - Gα (Gpa1), Gβ (Ste4), and Gγ (Ste18)

[53, 54]. Gβ and Gγ act as a heterodimer Gβγ [48], and Gα subunit interacts Gβγ to form

the inactive Gαβγ trimer (figure 1.3 1.) [33, 55]. A superfamily of G-protein subunits

has been identified in eukaryotes comprising 17 distinct Gα, 5 Gβ, and 6 Gγ isoforms,

allowing for many combinatorial possibilities for cell receptors [49]. G-proteins are

activated when a ligand molecule binds to the linked surfacereceptor, in this case the

mating pheromone from the opposite cell type, causing a conformational change in

the receptor that is transmitted to the G-protein causing the Gα subunit to exchange
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FIGURE 1.3: Diagrammatic representation of the process of G-protein activation. 1
and 2. Pheromone binds to the extracellular Ste2 receptor and is internalized by the
receptor. 3 and 4. GDP is exchanged for GTP and theα subunit disassociates from the
Gβγ units, resulting in activation of the pheromone response pathway. 5 and 6. During
the process of switching off the pheromone response pathway, the Gα subunit binds
GDP in place of GTP and re-associates with the Gβγ subunits.

GTP for GDP and disassociate from Gβγ exposing the effector binding regions of Gβγ

[38, 42, 56, 57] (figure 1.3). The released Gβγ is then able to participate in a 3 level

(MAP) kinase cascade that quickly transmits the pheromone binding signal through the

cell to the nucleus [48, 51, 54, 58, 59] (figure 1.3 5, and figure1.4 right.). The Gα

subunit is released from the inner membrane into the cytoplasm [38]. The Gβ subunit

has been shown to be most significant in activation of the signal response, while Gγ has

been found to contain a conserved cysteine-aliphatic-aliphatic-X motif at the carboxy

terminus that is thought to localize the Gβγ subunits to the membrane [33].

1.2.3 Pheromone-Induced G-protein Activation

The free Ste4 Gβγ subunit interacts with three effectors: Ste5/Ste11 complex, Ste20

protein kinase, and Far1/Cdc24 complex via a binding site that was previously buried
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FIGURE 1.4: Diagrammatic representation of the main components ofthe yeast
pheromone response pathway. Left is the inactive pathway prior to pheromone
activation. Right is the pheromone stimulated, active pathway. The activated G-
protein results in the phosphorylation of Ste20, subsequently resulting in the sequential
phosphorylation of Ste11, Ste7, and Fus3, forming the MAPK cascade. The MAPK
cascade communicates the pheromone receptor binding eventthrough the cytosol to
the nucleus where the appropriate mating response genes areup-regulated via the de-
repression of the Ste12 transcription factor by the phosphorylated Fus3. (Image from
yeastpheromonemodel.org [61])

within the Gα associated molecule [49, 55]. The Ste18-Gβγ complex anchors the

βγ G-protein subunits to the inner cell surface by covalently attached lipid farnesyl

and palmitoyl groups [54, 60]. The association of the Gβγ subunit with the inner

cell membrane surface localizes the position of the mating response, and assists in

orientating the cell towards the pheromone gradient, and the mating partner [25, 34,

54, 60]. Localization of the Gβγ subunit results in Ste20 moving in close proximity

to Ste11 and Ste5, forming the initiating step in the signal cascade 1.4 [38]. Ste20

exists in an inactive form in the cytoplasm and is activated by a small 21kD, Rho-

like G-protein Cdc42 [38]. Cdc42 in yeast has a similar aminoacid sequence to

members of theRassuper family and is known to be involved in the control of several

morphogenetic events during the cell cycle, including the generation of cell polarity,

development of normal cell shape, localization of secretion, and deposition of cell-

surface material [62]. Cdc42 binds to the CRIB domain of the large N-terminal region

of Ste20 that ordinarily sterically occludes and auto-inhibits the active kinase C-terminal
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FIGURE 1.5: Schematic overview of yeast MAP kinase modules that share Ste11,
adapted from Drogen F. [51]. Yeast signalling pathways are capable of sharing
components but maintaining signal specificity through the use of pathway specific
scaffold proteins. Ste11 and Ste7 are shared pheromone, high osmolarity, and low
nitrogen response pathways but differentiated through theuse of the Ste5 and Pbs2
scaffolds that ensure signal specificity and prevent cross-talk between physiological
responses [51].

region, thereby activating Ste20 by permitting auto-phosphorylation of the exposed

activation loop [63]. Cdc42 is also permanently tacked to the inner leaflet of the plasma

membrane, assisting in localizing Ste20 to the membrane [63].

Ste5 is a large, multi-functional scaffold protein that, whilst having no catalytic activity,

serves as a scaffold and binding platform for components of the MAP kinase cascade

[63–67]. In yeast, the pheromone pathway scaffold Ste5 binds Ste11, Ste7, and Fus3,

whilst the high osmolarity glycerol pathway scaffold Pbs2pinteracts with Ste11 and

Hog1 (see figure 1.5) [51]. There are common components in each pathway (figure

1.5) and the scaffold serves to insulate the signal, preventing cross-activation between

signalling pathways [51, 68–71]. Choi, 1994 demonstrated by yeast two-hybrid analysis

and co-immunoprecipitation that Ste11, Ste7, and Fus3 associate with different domains

of Ste5 implying, that Ste5 simultaneously binds the components of the MAP kinase

reaction. Ste5 initially forms an adapter between Gβγ and Ste11, bringing Ste11 into

proximity with Cdc42-bound Ste20 at the plasma membrane, resulting in immediate

phosphorylation of Ste11 by Ste20 [64–66].

The third effector to bind Gβγ is Far1, complexed with Cdc24 [55]. Far1 moves from

the nucleus to the cytoplasm when cells are stimulated by pheromone, and interacts
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with Gβγ at the cell membrane transiently via the MAP kinase cascade [34]. The N-

terminal domain of Far1 contains a RING H2 domain that interacts with Gβγ, while the

C-terminal end binds Cdc24, a guanine nucleotide exchange factor (GEF) that promotes

exchange of GTP for Cdc42 [72]. GTP-bound Cdc42 is then able to bind to Ste20

and several other regulators of cell polarity and the actin cytoskeleton [43]. Far1 is a

multi-functional regulator of the mating process. One function is to bind to Cdc24 and

facilitate growth towards the mating partner, another function is to mediate pheromone-

induced cell cycle arrest [32]. Chang demonstrated that Far1 (“factor arrest”) is a

non-essential gene, induced 4 to 5 fold by pheromone-induced Ste12 which, in turn,

interacts with Cdc28 cyclin-dependent kinase, the master regulator of the cycle growth

phase [32]. This interaction provides the link between the signal transduction pathway

and cell cycle arrest under pheromone stimulation [73]. Theexact mechanism of how

Far1 inhibits the cell cycle is unclear. However Pi and Gartner determined that Fus3-

mediated phosphorylation of Far1 is required for cell cyclearrest [28, 72].

1.2.4 The MAP Kinase Cascade

The MAP kinase cascade is the most prominent signalling mechanism in yeast,

facilitating a rapid response to extracellular stimuli [34, 40, 43]. MAP kinase

cascades are found ubiquitously in eukaryotic organisms functioning in cell growth,

differentiation, tumorigenesis, and stress responses [40, 46, 74]. MAP kinase pathways

usually consist of three protein kinases that act in series:a MAP kinase kinase kinase

(MAPKKK), a MAP kinase kinase (MAPKK), and a MAP kinase (MAPK) (figure 1.4)

[39, 43, 75, 76]. When the cascade is activated, the MAPKKK phosphorylates the

MAPKK, which in turn phosphorylates the MAPK [77]. In yeast,the MAPKKK is

Ste11 and the MAPKK is Ste7, and there are two MAPKs: Kss1 and Fus3 [47, 74, 78]

(figure 1.4 and figure 1.5 left). The MAPK usually serve to regulate transcription factors

by MAPK-mediated phosphorylation, and many intracellularand extracellular signals

modulate transcription of specific genes through activation or inhibition of MAPK

cascades [28, 35, 79].
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1.2.4.1 Ste11, Ste7 and Fus3

The MAPK cascade function is facilitated by Ste5 and Ste20 (figure 1.4) [39, 67]. Ste11

bound to Ste5 is activated by Ste20 and subsequently activates Ste7 by phosphorylating

a threonine residue in the Ste7 activation loop [47]. Ste7 does not bind strongly to

the Ste5 scaffold, but binds with high affinity to Fus3 and Kss1 [64]. Ste7 contains a

highly-conserved catalytic domain and a less conserved N-terminal domain, in which

the first 20 amino acid residues form the MAPK-binding/docking site (D-site) [27]. Ste7

activates Fus3 and Kss1 by phosphorylating threonine and tyrosine residues in their

activation loops [64, 65]. The MAPK’s Fus3 and Kss1 are proline-directed kinases and

phosphorylate their targets on serine or threonine residues that are immediately followed

by a proline and primarily target the Ste12/Dig1/Dig2 transcription factor complex as

well as Far1, and both can activate Ste12, demonstrating functional redundancy [74].

Fus3, however can also activate Ste7 and Ste5, and can phosphorylate Far1, whereas

Kss1 cannot [65]. Bardwell hypothesizes that this redundancy provides overlapping

reinforcing contributions to the activation of the MAPKs sothat a loss of the mating

response is only observed when multiple links are severed simultaneously ([55]. A

recent publication by Malleshaiahet al. revealed that a phosphatase Ptc5 competes

with Fus3 for phosphorylation sites on Ste5, facilitating aswitch-like response in the

mating pathway and ultra-sensitivity to pheromone [80].

1.2.4.2 Ste12 and The Pheromone Response Element

Ste12 is a protein consisting of 688 amino acids with an N-terminal DNA-binding

region providing its function as a transcriptional activator, enabling it to form a protein-

DNA complex specifically with the genes it regulates [28, 81,82]. Genes up-regulated

following pheromone induction all contain a common pheromone response element

(PRE) with sequence 5
′
-ATGAAACA (or sometimes reported as 5

′
TGAAACA) [81].

The PRE sequence is found in over 200 genes associated with cell mating [83, 84], of

which over 100 are induced two-fold by the pheromone response pathway [28, 73, 82,

85, 86].
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Yuan and Fields partially characterized the DNA binding domain of Ste12, localizing

the minimum region to 164 amino acids near the N-terminus between amino acids 41

and 204 [86]. They also found an N-terminal domain can bind cooperatively to two

copies of the PRE in a manner independent of the orientation,binding head-to-tail or

tail-to-tail with variable spacing between the two elements. [86]. Kirkman-Correiaet al

located the transcriptional activation domain at the C-terminus (residues 384-688), and

it has been shown that deletion mutants lack the ability to activate basal and induced

transcription of PRE genes, however, only region 255-354 isrequired for pheromone-

induced transcription [87].

Ste12-dependent, pheromone-induced genes include positively-acting components of

the mating pathway (Ste2, Fus3, and Far1), together with negative feedback regulators

of the pathway (Sst2, Msg5, Ptc1, and Gpa1), as well as genes involved in the

process of cell fusion (Fus1, Fus2, Fig1, Fig2, Aga1) [28, 80, 88]. Ste12 has been

shown to up-regulate its own transcription during pheromone response and can also

work in conjunction with other transcription factors, in particular Tec1p, forming a

heteromultimer with Ste12 regulated by Kss1 [68, 89], and this complex guides Ste12

to specific genes in the filamentous growth pathway [85, 90].

1.3 Switching Off The Pheromone Response

A natural property of G-protein signalling systems is the ability to attenuate the

response following prolonged stimulation [91]. Haploid cells that do not mate and

form diploids must return to the vegetative growth state [92, 93]. It has been observed

in many signalling systems, and particularly with G-protein-coupled receptors, that

prolonged signal exposure results in desensitization of the response [91, 94–96]. This

attenuation of signal response involves a number of complexmechanisms that are

activated within minutes of receptor activation, and thesemechanisms are thought to

be responsible for attenuation in response to light, colours, odours, chemical stimulants

and narcotics [91]. Unlike the detailed information that has been accumulated about

the activation and response of the mating pathway, there is much less understanding



Chapter 1.Introduction 12

of the mechanisms involved in switching it off [43, 90, 92, 97]. The yeastα-factor

desensitization mechanism is similar to hormone desensitization in animal cells and

receptor desensitization has been extensively studied in the vertebrateβ-adrenergic and

rhodopsin receptors [91]. In yeast, there are a number of negative feedback mechanisms

that facilitate control of the mating response.

The four main mechanisms employed to attenuate the pheromone signal are: pheromone

degradation, pheromone de-sensitization, phosphorylation of the Gβ subunit, and

dephosphorylation of the Fus3 MAPK by a phosphatase encodedby Msg5 [92]. Chan

and Otte screened for genes involved in the desensitizationand recovery from the

mating response [98, 99]; by screening for haploid cells that were hyper-sensitive to

pheromone-induced cell-cycle arrest, they discovered twoclasses of super-sensitive

mutants designatedSst1∆ andSst2∆ [98]. Sst1∆ mutants are allelic for the gene Bar1

which encodes a 587 amino acid endoprotease and cleavesα-factor, inactivating the

pheromone and forming a negative feedback loop in the pheromone response pathway

[1, 99]. SST1∆ mutants demonstrate hyper-sensitivity to pheromone and are slow to

recover from G1 growth arrest [100].

SST2∆ mutants are unable to degradeα-factor pheromone and cannot recover from cell

cycle arrest [99]. The SST2∆ mutants defined a novel gene that was the first discovery of

the RGS (“regulator of G-protein signalling”) factor family. RGS factors are negative

regulators of G-proteins, so called because they stimulatethe hydrolysis of the GTP

bound active form of the Gα subunit, back into inactive GDP bound Gα [49, 101]. Sst2

stability is increased by phosphorylation by Fus3 and has been shown to increase the

rate of hydrolysis of active Gα by at least 20-fold [55]. The activity of Sst2 serves

to complete the G-protein cycle by sequestering free Gβγ subunits thereby forming a

second negative feedback loop, terminating signal response, and restoring the pool of

inactive Gαβγ [52].

Chen reported in the absence of ligand, the Ste3 receptor is subject to rapid degradative

endocytosis [56]. However, when bound to a-factor pheromone, the receptor transcrip-

tion is up-regulated and subjected to a process of recycling, whereby the ligand is

degraded prompting ligand disassociation and re-utilization at the membrane surface
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[56]. This ensures that a suitable quantity of receptors areavailable throughout the

mating response and, more importantly, receptor expression is focused at the point of

pheromone contact, facilitating the chemotropic responseup the pheromone gradient

[56]. This response is not as prominent in theα-factor stimulated Ste2 receptor,

where pheromone stimulation increases Ste2 vacuole-directed transport and degradation

[96, 102]. Dohlmanet alreports Ste2 desensitization occurs through binding of theRGS

protein Sst2, such that it is positioned in close proximity to Gpa1 [31].

Research suggests that the Gα subunit of the heterotrimeric G-protein has a positive

signalling role and is responsible for pheromone desensitization and recovery back

to the vegetative haploid growth stage [49, 92, 103, 104]. GTPase-deficient Gpa1

mutants demonstrate constitutive expression of pheromoneresponse elements and

morphological changes in the absence of pheromone [104, 105]. Kurjan, 1991

introduced mutations in the SCG1 gene, encoding the Gα subunit and observed defects

in mating response, growth and cell morphology [105]. Dohlman and Thorner later

found that inactivating mutations in the Gα gene Gpa1 do not block pheromone

response, but result in constitutive signalling and it has been concluded that this is

due to uncontrolled pathway activation by free Gβγ [49]. It was also found that over-

expression of Gα leads to diminished signal transduction due to over-sequestration of

Gβγ [33, 101, 106]. Coleet al also demonstrated how over expression of Gα subunit

leads to suppression of the mating response, and represses the response even when

over expressing the Gβ and Gγ subunits [33]. Deletions in either of the Gβ or Gγ

genes results in pheromone insensitive sterile cells, whilst over-expression leads to

constitutive activation of the mating pathway [33, 49, 106]. It has also been shown

by Coleet al that over expression of Ste4 (Gβ) with expression of Ste18 (Gγ) promotes

constitutive activation of the pheromone signalling pathway [33, 101].

Blackwell et al reported that Msg5 works in concert with Gα to down-regulate the

mating signal by inhibiting the pheromone-induced increase of Fus3 in the nucleus

[107]. Doi et al earlier reported that Gα may induce a post translational modification

of Msg5 resulting in enhanced protein phosphatase activityor that Gα may induce

transcription of Msg5. The MSG5 nucleotide sequence suggests that it functions as

a PTPase; an enzyme group that specifically dephosphorylates phosphotyrosyl residues
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in selected proteins [108]. Both Fus3 and Kss1 require tyrosine phosphorylation for

activation, making them potential targets for Msg5, and a GST-Msg5 fusion protein has

been shown to dephosphorylate and deactivatein vitro phosphorylated Fus3 [108]. Doi

et al went on to show that epistatic interactions imply that Msg5 functions between

Ste11 and Ste12, disruption of the Msg5 gene enhances Fus3-dependent kinase activity,

and over expression of Msg5 suppresses pheromone-induced modification of Fus3

[108].

In addition, studies by Stratonet al demonstrated the Gα subunit functions as a slow

negative feedback function on activation of the signal pathway by Gβγ and interacts

with an effector molecule, stimulating an adaptive signal that decreases sensitivity to

pheromone over time and eventually shuts off the mating response downstream of

the receptor [92]. This signal is delayed relative to the mating signal and through

observations using two-hybrid analysis, does not involve sequestration of Gβγ [92].

Zhou et al demonstrated how, under low pheromone conditions Gα interacts with

the GTPase activating protein Sst2, stimulating Gβγ sequestration [109]; through

pheromone concentrations sufficient to halt the cell cycle,Gα functions as an adaptive

mechanisms to recover the cell from the mating response [109]. Metodiev et al

using GST-tagged Gα protein with glutathione-agarose pull-down experiments,2D-gel

electrophoresis, and mass spectrometry, found Gα associated with the phosphorylated

form of Fus3 [110]. Histidine-tagged Fus3 applied to a nickel column also demonstrated

binding to Gα [110]. A number of hypotheses were presented by Metodievet al to

explain the association of Gα with Fus3. Firstly, it is thought that Gα might anchor

Fus3 to the membrane and restrict it from transmitting the mating signal to the nucleus,

and secondly, the active form of Gα is targeted for degradation and interaction with

Fus3 might include the kinase in this degradation process [110]. Finally, Metodiev

et al. postulated that in cells exposed to a physiological gradient of pheromone, Gα

recruits Fus3 to the mating projection site where the kinasephosphorylates Gβγ, which

promotes assembly or stabilization of the Gβγ-Far1 complex required for chemotropic

growth [110]. The function of Gα presents a paradox, in that Gα acts as both an effector

and inhibitor of Fus3 activity in the mating pathway [106, 110, 111].
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In conclusion, published research has revealed the mating pathway as not a simple

linear chain of events from pheromone stimulation of the membrane receptor through

the MAP kinase cascade to the transcription factors. Instead there is a subtle interplay

of secondary messengers and auxiliary effectors fine tuningthe interaction of the major

components, ensuring an appropriate level of response and timely recovery from the

mating process. [80, 90, 97, 106, 109, 110].

1.4 Modelling The Mating Pathway

Systems biology is an emerging scientific field that undertakes a holistic approach to

understanding biological processes through the interactions of the component parts [14].

Systems biology seeks to gain an understanding of the functions of biological systems,

using methods that cannot be described by studying the component macromolecules in

isolation, and consequently requires interaction betweendiverse experimental fields and

datasets to arrive at this understanding [9, 14, 112–114]. The physiological response

of cells to internal and external stimuli is governed by a complex set of interacting

genes and proteins with non-linear reaction kinetics and pathway fluxes [113, 115].

Recent advances in theoretical biology have shown that biological reaction networks

can be accurately modelled using mathematics [116–118], and these models can provide

understanding of the principles of biological control systems as well as predictions that

can be varied experimentally in the laboratory [14, 115, 119]. Figure 1.6 illustrates

the cycle of systems biology research, employing an iterative process of computational

and experimental science to explore complex biological problems through modelling

and systems analysis. The model provides hypotheses for experimental research, which

produces data that feeds back into the model, driving new understanding and further

hypothesis generation.

This iterative modelling and experimentation approach hasbeen applied to the yeast

mating pathway by a number of researchers [46, 75, 76, 120]. As mentioned earlier,

the yeast mating pathway is a well-characterized system that is easily modified and

has a number of discrete and accessible quantifiable behaviours making it a favourable
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FIGURE 1.6: Hypothesis driven research in systems biology, adapted from Kitano
et al [14]. Hypotheses can be explored using “dry science” techniques of modelling
and systems analysis. Models can be parameterised through experimentation and
data analysis which leads to further knowledge and understanding, leading to further
hypothesis. [14]

target for mathematical modellers [77, 121–125]. In the following sections the key

publications in modelling budding yeast pathways will be discussed.

1.4.1 Chenet al (2000): Kinetic Analysis of Budding Yeast Cell

Cycle Model

Chenet al have developed a kinetic model of the cyclins Cln1-3 and Clb1-6 which

have been shown to coordinate the events of the cell cycle: DNA synthesis, bud

emergence, spindle formation, nuclear division, and cell separation in yeast [56]. Chen

converted the established mechanisms of cyclin synthesis and degradation into a set

of differential equations, describing the time courses of three major classes of cyclin-

dependant kinase activities [56]. The model was then used toexamine the molecular

events controlling the initiation of chromosome replication, bud formation, and mitosis

(the “start” of cell division) and also the transition through metaphase to anaphase

(the “finish” steps of cell division) in both wild-type and a selection of mutants [56].

After refining the model based on laboratory experimental data, the model included 10

non-linear ordinary differential equations for the cyclins, and their associated proteins,
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three algebraic functions for transcription factors, three “integrators” to trigger DNA

synthesis, budding, and spindle formation, and a simple rule for separating mother and

daughter cells at division [56]. The model includes approximately 50 parameters that

are fitted to the phenotypic behaviour of yeast and require further optimization, but are

sufficient to account for the properties of cell cycle control in yeast [56].

1.4.2 Yi et al G-Protein Model

Yi et al quantitatively characterized the G-protein cycle in yeast, based on directin

vivomeasurements using fluorescence resonance energy transfer(FRET) [126]. A cyan

fluorescent tagged protein (CFP)-Gα, and yellow fluorescent protein (YFP) tagged Gβγ

were used to observe a reduction in FRET when the receptor wasstimulated with

pheromone, causing the G-protein to disassociate [126]. Time course experiments

were performed and data was obtained on how Sst2 and the C-terminal tail of theα-

factor receptor, modulates the kinetics of G-protein signalling. The data used to build a

quantitative model to estimate thein vivo rates of G-protein activation and deactivation

in yeast [126].

The model validated existing observations that the majority of the control of the mating

pathway resides at the G-protein cycle [126]. The work published by Yiet alalso found

that G-protein activation, transcriptional induction, and cell-cycle arrest responded with

the same K0.5 value for pheromone dose response, and aligns with observations in

mammalian G-proteins, where Kd for receptor-antagonist binding and IC50 values for

inhibiting the corresponding physiologic downstream processes overlap. The work by

Yi et al provides quantitative evidence that the overall G-proteincycle determines the

dose response of G-protein systems, not just the receptor ligand dynamics.

1.4.3 Haoet al RGS Protein Pheromone Desensitization Model

Hao et al published a model of the activation, desensitization, and re-sensitization

steps of the mating pathway, following pheromone induction[127]. The study used



Chapter 1.Introduction 18

a combination of experimental and mathematical techniques. Hao et al investigated

how external signals produce responses inside the cell, specifically G-protein activation

and desensitization by the pheromone receptor and the RGS proteins (Sst2 and Gα).

Radio-ligand binding measurements were used to measure receptor expression, while

quantitative immunoblotting on whole cell extracts was used to quantify Sst2 and

Gα. Expression levels were measured for wild-type and also in mutants engineered

to over-express Ste2, Gα, Gβγ, Sst2, and Ste18, and changes in protein level were

measured with immunoblotting. [127]. The functional changes brought about by

altered expression were investigated using a reporter transcription assay comprised

of a pheromone-responsive promoter (FUS1) fused toLacZ (β-galactosidase) [127].

Experimental data was used to build a mathematical model of the pathway using

differential equations (equation 1.1 and figure 1.7)

An overview of the model is presented in figure 1.7. Haoet al’s model simulates the

pathway activation and inactivation with two coupled ordinary differential equations,

and assumes that free Gβγ activates the expression of pheromone response genes and

RGS protein switches the pathway off by attenuating the amount of free Gβγ through

recombination with Gα. The model provided predictions that could be compared with

the experimental results and both correlated a sharp rise inGβγ during pheromone

stimulation and a slower increase in Sst2. A mathematical expression for the response

of the signalling pathway was derived from the model using responseRof the signalling

pathway as a function of pheromone concentration [L], whereRmin is the response in

the absence of pheromone andRmax is the maximum response and C in terms of [L],

steady state RGS concentration [127]. (equation 1.1).

R=
RminC+Rmax[L]

C+[L]
(1.1)

The model did not predict a reduction in the mating response when over-expressing

Sst2 however, which prompted a second round of experimentation with a GFP-tagged

LacZ reporter and individual cells assessed by flow cytometry to assess wild-type

and mutant cells with over-expressed Sst2. Following 90 minutes exposure toα-

factor, the wild-type displayed a small intensity peak in fluorescence, which diminished
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FIGURE 1.7: Pathway regulation by RGS and Gβγ proteins. Upon binding of the
ligand (L) α-factor (αF) to its receptor (R, Ste2), the G-proteinα subunit (Gpa1)
releases GDP, binds to GTP, and liberates the G-proteinβγ subunits (Ste4/Ste18).
Sustained signalling requires activation of multiple effectors (not shown) by the
dissociated Gβγ components. These effectors activate a pathway (dotted line) leading
to transcription of several genes including the RGS proteinSst2. GTP hydrolysis is
accelerated by the RGS protein, and this leads to subunit re-association and pathway
inactivation. The model assumes that GTP hydrolysis is the rate-limiting step of
subunit reassembly. A potential positive feedback loop leading to Sst2 degradation
is indicated by a darker line. Adapted from Haoet al.

and was replaced by a second peak of higher intensity, however the lower intensity

peak continued in the Sst2 mutant cells [127]. The authors hypothesize that when

Sst2 is over-expressed, the graded response toα-factor is replaced with a binary

response through positive feedback regulation where a second feedback loop promotes

degradation of Sst2 [127]. Implementing the experimental observations into the model,

the author was able to explain the slow initial induction of Sst2, as seen in Sst2 over-

expression mutants. The model was used to show that alterations in the expression

of Sst2 occur slower than alterations in the active state of the G-protein such that the

activation state of the G-protein adjusts rapidly to the slow change in Sst2 expression

and is therefore in equilibrium, allowing the state of the system to be determined by

Sst2 expression levels [127]. Degradation of Sst2 occurs ata constitutive rate when

pheromone is absent and is proportional to expression (a “constitutive steady-state”).

Following pheromone induction, the rate of Sst2 productionexceeds the constitutive

degradation rate and as Sst2 levels increase, expression becomes inhibited by increasing

levels of inactive G-protein and the production rate reduces back to the constitutive

rate, forming a positive feedback loop. In over-expressionmutants the level of Sst2

degradation falls much more rapidly than the production rate and the rate of production
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rises until it reaches a new steady state, correlating with the experimental observations

[127]. In addition, the model was modified with a stochastic term to account for

random fluctuations in protein concentration. 10,000 simulations were run using the

new random model, averaged for a mean time course and the results demonstrated the

binary behaviour observed in the experimental work for the Sst2 over-expression mutant

[127]. To confirm that pheromone stimulation promotes Sst2 degradation, cells were

grown for an hour in presence ofα-factor, treated with cyclohexamide to block further

protein synthesis, and the remaining Sst2 protein was monitored with immunoblotting.

Results demonstrated a faster reduction in Sst2 when pretreated with pheromone, as

predicted by the model [127].

The work published by Haoet al demonstrates the iterative process of mathematical

modelling combined with wet lab experimentation describedby Kitano et al. The

modelling component of the work provided unique insights into the biological inter-

actions and hypothesis generation that could not be derivedthrough experimentation

alone, such as the positive feedback loop that facilitates re-activation of the pathway

that had not been observed prior to the study. The model also developed from a simple

mathematical derivation of the activation and de-activation of the signalling pathway,

to anin vivo representative simulation of the mating response, eventually including the

feedback loops that provide the timing and coordination forcontrolling the pathway

response.

1.4.4 The Kofahl and Klipp Yeast Pheromone Pathway Model.

Kofahl and Klipp published a mathematical model of the dynamics of the pheromone

pathway in haploid yeast cells of mating type MATa after stimulation with α-factor

[128]. Yi et aland Haoet almodelled specific aspects of the yeast pheromone pathway

to augment the specific areas of their research [126, 127]. Prior to Kofahl and Klipp

there was no single model that attempted to simulate the complete pheromone pathway

and concatenate the research conducted in this field. The Kofahl and Klipp model

consists of a set of coupled differential equations that describe the transmission of the

mating signal from the surface receptor, through the G-protein, to the MAP kinase
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cascade, and activation of the Ste12 transcription factor [128] (see figure 1.8). The

model includes:

• activation of the membrane-bound pheromone receptor.

• activation of the G-protein.

• formation and activation of the scaffold-bound MAP kinasecascade.

• activation of transcription factor Ste12.

• downstream effects on gene expression alteration and preparation for mating.

• down regulation of the signal process through Sst2 and Bar1.

The Kofahl and Klipp model was not part of a combined wet and dry experimental

project as with the work by Yiet al and Haoet al, but the authors used parameter

values obtained from published literature to fit the model behaviour to experimental

observations of the changes in the relative levels of the mating response pathway

components over time [126–128]. The model attempts to provide the most complete

representation of the yeast mating pathway, in terms of including all of the interactions

between the known components and the available kinetic data(figure 1.9). [128].

The model groups the reactions that comprise the yeast mating response into a series

of complexes which represent the temporal order of events ofthe pathway including

receptor activation, the G-protein cycle, Ste5 complex formation, and down stream

effects of phosphorylated Fus3 and Far1 (figure 1.9). Using the model to investigate

mutant phenotypes, Kofahl and Klipp were able to demonstrate the pheromone

desensitization response of yeast cells to prolonged pheromone exposure. Coleet

al showed that over expressing Gα resulted in five times the normal level ofα-

factor required to induce a mating response and can compensate for super sensitivity

to pheromone observed in Sst2 and Ste2 mutant strains, resulting in pheromone

desensitization [33]. Cole hypothesized that this was due to increased Gα mopping up

available Gβγ and preventing progression of the mating signal through to the MAPK

cascade [33]. This observation was also observed in the Kofahl and Klipp model

where an increase in Gα creates a decrease in free Gβγ, resulting in shortened complex
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FIGURE 1.8: Spatial diagram of the pheromone pathway in yeast. Adapted from
Kofahl et al[128]. Theα-factor pheromone binds to the Ste2 receptor in the membrane,
which is close to the heterotrimeric G-protein (middle). The Gα subunit disassociates
from the Gβ and Gγ sub-units. The Gβ andγ subunits are bound by Ste20 and to Ste5
which functions as a scaffold for the sequential phosphorylation of the MAPK cascade
components Ste11, Ste7, and Fus3, as well as Cdc24 and Bem1 (right). Elements
of the MAPK cascade shuttle to and from the nucleus (Fus3 and Bar1). Fus3pp
phosphorylates Dig1 and Dig2 resulting in de-repression ofthe transcription factor
Ste12 which initiates transcription of the mating responsegenes resulting in the up-
regulation of over 200 genes (bottom).

formation, reduced Fus3 phosphorylation and Far1PP-Gβγ, and eventually reduced

pheromone sensitivity [128]. The published role of the G-protein components Sst2,

Ste12, Ste11, Ste20, Msg5, and Far1 were replicated in the model and used to validate

its response to observed phenotypic changes [128].

The Kofahl and Klipp model also produces the same quantitative results as the Yi model

for the G-protein cycle, however it does not include the feedback loops developed by

Yi et al., but replicates the observed behaviour [126, 128]. The model incorporates
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FIGURE 1.9: Diagram of the reactions modelled in the Kofahl and Klipp model. The
model includes reactions for G-protein cycling, assembly of the MAPK scaffold, and
sequential phosphorylation of the Ste11, Ste7, and Fus3 kinases. The model results in
the activation of the transcription factor Ste12, as well asthe Sst2 and Bar1 negative
feedback components [128].
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regulatory control with several feedback loops. Phosphorylated Fus3 activates Sst2

which stimulates hydrolysis of GαGTP, closing the G-protein cycle [128]. Also, the

transcription and activation of Bar1 results in the degradation of α-factor resulting in

down regulation of the pathway and negative feedback under prolonged pheromone

stimulation [128].

Although many models of MAP kinase cascades have been published, they are

not parameterised with data from yeast, and do not include yeast mating pathway-

specific features such as the Ste5 scaffold and the Dig1/Dig2-Ste12 activation complex.

Parameters are often obtained from studies of MAP kinase cascades in Xenopus species

[120, 122, 124] and focus on the phosphorylation of the threekinases in isolation. The

models also do not incorporate more recently identified components of the pathway such

as Ptc1, observed by Malleshaiahet al [80]. It was hypothesized that the non-linear

behaviour of the yeast mating pathway may influence the experimentally observed

behaviour of the gene circuit. The inclusion of an ultra-sensitive cascade relevant to

the yeast cells in which the circuit is embedded may be more useful for predicting

experimental observations than a simplified version of the Kofahl and Klipp model that

does not incorporate any of the dynamic behaviours of the cascade.

The Kofahl and Klipp model disregards a number of important key features of the yeast

mating response, particularly the central MAPK cascade that transfers the extra-cellular

signal through the cytoplasm to the nucleus (figure 1.8). There has been a great deal of

research conducted into MAPK cascades over the past 30 years, both experimentally

and mathematically. A number of researchers have investigated why eukaryotic

signalling systems are comprised of three sequentially activated kinases with multiple

rounds of non-processive phosphorylation [77, 129]. Extensive modelling work by

Goldbeter in the early 1970s, Kholodenko, Huang and Ferrell, and Markevich in the

1990s and early 2000’s, Xaio Wang, and Fernando Ortega in 2006, and O’Shaughnessey

et al in 2011 have shown that the signalling cascades produce an ultra-sensitive response

to input, converting a graded input signal to a binary outputresponse through the

action of nested feedback loops within the cascade and amplification through repeated

phosphorylation of the kinases [76, 120, 122–124, 130–132]. The model by Kofahl

and Klipp did not replicate any of the behaviours observed byother models of MAP
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kinase cascades, and did not build on any of the previous research in this field. While

the author has included all of the known components of the pathway, the relationship

between them and the dynamic behaviour of the cascade was notreplicated. The

Kofahl and Klipp model did not produce a sigmoidal increase in the steady-state level

of Fus3pp in response increasing initial concentrations ofpheromone, characteristic

of ultra-sensitivity [133]. The model also did not replicate the chronological order of

events observed experimentally (as reported by Yuet alduring time course simulations,

in terms of the activation of the G-protein, followed by sequential phosphorylation of

the kinases, and Ste12 [121].

The Kofahl and Klipp model is capable of reproducing the change in the relative

amounts of the components in mutants of the mating pathway [128], but cannot be used

to study the systems-level behaviour of the signal cascade that underlines the pathway,

such as ultra-sensitivity to pheromone, or potentially more complex behaviour, such as

bi-stability and oscillation [77, 120, 131].

1.4.5 Modelling tools

Simulation and modelling is becoming a standard approach tounderstanding biological

systems, and this requires software tools that enable researchers to access diverse

mathematical modelling and simulation methods [134]. Fortunately there are a

range of applications available that enable researchers toaccess these tools without

a mathematics specialism, which will be discussed below [135].

1.4.5.1 Copasi

Copasi is a software application for the simulation and analysis of biological networks.

The software is free for non-commercial use and runs on all major operating systems

[134]. The Copasi project is an international collaboration between three groups at the

Virginia Bioinformatics Institute, the University of Heidelberg, and the University of

Manchester. Copasi has a number of unique features, including the criteria to switch

between stochastic, deterministic, and hybrid modelling methods; flexible parameter
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scans, optimization of arbitrary expressions and parameter estimation using time course

and steady-state data [134].

Copasi can be used to build models of systems of biochemical reactions with pre-

set rate laws, such as mass-action and Michaelis-Menten, aswell as the option

to program custom rate laws. Copasi includes a number of simulation functions,

including time course simulations, steady state, sensitivity, and metabolic control

analysis, and flux balance analysis. Copasi can also performmultiple parameter

scans, parameter estimation and fitting of experimental data, and includes a number of

optimization algorithms including: genetic algorithms, Levenberg-Marquardt, particle

swarm, simulated annealing, and steepest descent. The are also a number of ODE

solvers available including the LSODA deterministic method, a hybrid Runga-Kutta

method, a Gibson and Bruck stochastic simulator as well asτ-leaping methods. Copasi

also includes 2D graphing functions and can output csv format report files containing

simulation output data that can be imported into other plotting, modelling, or statistics

tools.

Copasi however cannot be used to simulate algebraic equations or differential equations

such as partial, difference or delay functions. Copasi alsocannot be used to investigate

bistable systems or search for multiple steady-states. Steady state analysis can be

performed, however Copasi cannot implement features such as Nullclines, or expand

around steady states in the graphical interface, such as canbe done with XPPAUT.

Copasi also lacks the capability to perform statistical analysis on stochastic simulations

or output 3D plots of multiple parameters. These functions require the user to process

the output data from Copasi with additional tools such as Matlab or AUTO.

1.4.5.2 XPPAUT

XPPAUT is a tool for solving differential, difference, delay, and functional equations

as well as solving boundary value problems and stochastic equations [136]. XPPAUT

provides an interface to the commonly used bifurcation toolAUTO and can be used

to analyse steady states and bifurcation points [136]. XPPAUT is freely available on

all major operating systems and uses a graphical user interface enabling easy access



Chapter 1.Introduction 27

for non-mathematicians. The systems biology format converter project, available

from http://sourceforge.net/projects/sbfc/ has developed software to convert SBML files

to other common modelling file-formats including XPPAUT. The XPPAUT interface

however is difficult to use and the AUTO component is prone to crashing. The

Python extensions XPPy enables scripting functions that can be handled by XPPAUT,

eliminating the need to use the interface [137], and XPPAUT remains the best tool

for bifurcations analysis and has been used in a variety of scientific fields from

engineering to biology (Ermentrout B. (2011), Personal communication. Department

of Mathematics University of Pittsburgh).

1.4.5.3 Cytoscape

Cytoscape is an open-source bioinformatics tool for visualizing molecular interactions.

Cytoscape can import SBML model files and represent them as directed graphs,

enabling further bioinformatics study such as network topology, as well as integration

with gene expression profiles [138]. Cytoscape provides a useful means of visualizing

complex models and contains a number of graph layout features that enable locating

functional modules and sub-networks in larger models. Additional features for

annotation and interaction with databases of protein-protein, protein-DNA interactions

can be augmented through a library of plugins developed by the community of users.

Cytoscape can be downloaded from http://www.cytoscape.org.

1.4.5.4 Mathematical Programming Languages

There are a number of commercially-available mathematicalprogramming tools that

can be used in engineering, scientific, and mathematical fields to solve sets of complex

equations. Two commonly-used tools are MatLab from MathWorks and Mathematica

from Wolfram Research. Matlab (meaning “matrix laboratory”) is a commercial,

industry standard numerical programming environment, enabling scientists to perform

matrix manipulation, plotting of functions and data, implementation of algorithms,

creation of user interfaces, and interfacing with programsin other languages [139].
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Wolfram Mathematica is a commercial mathematical programming software used in

scientific, engineering, and mathematical fields much like Matlab. Matlab focuses on

high speed algorithms for numerical computation [140], while Mathematica is designed

for symbolic algebra with features such as unlimited precision arithmetic [141].

1.4.5.5 Scripting Languages

Scripting languages are high-level programming languagesthat are interpreted rather

than compiled and use a simpler, more intuitive language than low-level “machine

languages” [142] such as C and Assembly language. Fortran, Java, Python, and

Perl, are scripting languages suited to processing large data sets and matrices and

are consequently used for a wide range of applications by computer scientists [143].

Specific builds of these languages have been developed for use in biosciences, such

as BioPerl, and BioPython, and include specialized routines for bioinformatics and

modelling. Scripting languages can be used to build programs to automate the

manipulation of large data sets and can be adapted to almost any application, however

they are slower than machine languages, as they must be run through an interpreter,

making them less suited to simulating large-scale computationally intensive models

[144]. There are also many interfacing libraries availablefor Python such as XPPy,

Matplotlib, and the Copasi language bindings that enable calling the functions of 3rd

party software packages such as XPPAUT, Matlab, and Copasi from within a Python

script, combining their features into custom modelling anddata handling tools.

1.4.5.6 SBML

The systems biology mark-up language (SBML) is an XML-basedcomputer language

designed for representing and exchanging models between different simulation and

analysis tools [145]. SBML is an effort to standardize a common file-format, providing

compatibility between systems biology researcher’s usingdifferent modelling tools.

SBML can store the details of systems of reactions such as rate laws, parameter values,

species numbers and concentrations, and compartment volumes and can be annotated
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with the author’s notes and publications [146]. Models created in SBML can also

be uploaded to public access databases such as biomodels.org. Models can then be

imported into the researchers choice of modelling softwarefor simulation or further

development, and data produced by a model are reproducible in any lab with software

that can read SBML. SBML is an open project and the file-formatis free to use from

http://www.sbml.org. There are also a number of interfacesavailable for programming

languages such as Python, Perl, Java, Mathematica and Matlab that enable the import

and export of SBML model files that can then be simulated or modified using their own

native tools [140, 141, 147].

1.4.6 Metabolic Control Analysis

Metabolic control analysis (MCA), or metabolic control theory is a sensitivity analysis

of metabolic systems [148]. MCA is a method of analysing how the control of

fluxes (J) or metabolite concentration (S) in a metabolic pathway is distributed among

the different enzymes that constitute the pathway [149]. MCA can be applied to

synthetic biology to determine the control coefficients of the parameters in a network

of interactions [150]. The control coefficients generated by metabolic control analysis

are related to sensitivity analysis used in engineering, and measure the relative steady

state change in a system variable in response to a relative change in a parameter. The

two main control coefficients are the flux (equation 1.2) and concentration control

coefficients (equation 1.3) [119].
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Where J is the flux through the pathway, S is the concentrationof an intermediate in the

pathway,i is the reaction step in the pathway,p is the parameter, andvi is the steady

state rate of the reaction that is perturbed. Any variable ina system can be analysed with

MCA. An important property of the steady state of a network isthat for a given flux the



Chapter 1.Introduction 30

sum of all of the flux control coefficients in a pathway is equalto unity [119, 149–

151]. For a small increasen in the rates of all reactions in a pathway, the relative rates

of production of the metabolites in the pathway increase by the same amountn, as

does the relative rates of consumption. Therefore the metabolite concentrations remain

unchanged and the flux of the system increases exactly byn [150]. Mathematically,

this means that the flux is a homogenous function of degree oneand the metabolite

concentration of degree zero. The summation theorem was developed by Gierch and

employs the Euler theorem for homogeneous functions for fluxcontrol coefficients

(equation 1.4) and concentration control efficient (equation 1.5) [152].

∑
i

CJ
vi = 1 (1.4)

∑
i

C
[Sj ]
vi = 0 (1.5)

The summation theorem can be applied over all the steps in a pathway, and connected

pathways therefore MCA and the summation theorem could, in principle be applied

over all of the metabolic steps in a cell [119, 152].

1.4.7 Parameter Estimation

Parameter estimation is the process of attempting to calculate model parameter values

based on a dataset [153, 154]. A number of mathematical algorithms can be used to

estimate a given set of parameter values based on experimental data. For this project, the

Hooke and Jeeves, and simulated annealing algorithms were used, as it is good practise

to apply multiple parameter estimation algorithms for parameter fitting to compare

results (Mendes P. (2009)). Personal communication. Manchester Centre for Integrative

Systems Biology).

The method of Hooke and Jeeves is a direct search algorithm that searches for the

minimum of a non-linear function without requiring derivatives of the function [155].

At each iteration, this method first defines a pattern of points by moving each parameter

one by one, so as to optimize the current loss function. The entire pattern of points is
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then shifted or moved to a new location; this new location is determined by extrapolating

the line from the old base point in the m dimensional parameter space to the new base

point. The step sizes in this process are constantly adjusted to “zero in” on the respective

optimum [155]. The Hooke and Jeeve’s algorithm is considered to be one of the oldest

and simplest of the parameter estimation algorithms, but provides a fast and simple

method of fitting experimental data [153].

The method of simulated annealing was developed by Kirkpatrick et alusing statistical

mechanics applied to the way in which perfect crystals are formed. Perfect crystals are

formed by first melting a substance, and then allowing it to cool very slowly over a

long period of time. At high temperature, the molecules in the crystal vibrate with a

wide amplitude, which decreases as the temperature lowers until the molecules settle

into the optimum configuration, forming a crystal [153, 156]. The simulated annealing

optimization algorithm uses a similar concept: the objective function is considered a

measure of the energy of the system and this is maintained constant for a certain number

of iterations, called a temperature cycle. During each iteration, the parameters of the

model are changed by a small amount and the new objective function is calculated. If

the value has decreased then the new state is accepted. If thevalue increased then the

state is accepted with a probability that follows a Boltzmann distribution, therefore, a

lower temperature means a higher probability of accepting the new state. After a fixed

number of iterations, the stopping criterion is checked; ifit is not time to stop, then the

system’s temperature is reduced and the algorithm continues [156].

Simulated annealing is one of the most robust global optimization algorithms, and

although it is also one of the slowest it is guaranteed to converge if run for an infinite

number of iterations. [134, 153].

1.4.8 Signal to Noise Ratio

The signal to noise ratio (SNR) is a method of differentiating between the level of a

desired signal and the level of a signal from the background noise of the system [157].

A high SNR results from a high signal detection and low signalfrom the background,
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and a low SNR results from a low signal detection and a high background signal. The

SNR is calculated as the reciprocal of the coefficient of variation, or the ratio of the

mean to the standard deviation of a signal (equation 1.6, whereµ is the mean of the data

set andσ is the standard deviation of the data set). [158–160].

SNR=
µ
σ

(1.6)

Noise in a biological system can originate from extrinsic noise, in which the cellular

capacity to produce proteins, and the regulatory mechanisms of the cell fluctuate over

time, or from intrinsic noise which is due to stochastic variation in the transcription and

translation events in the cell [157].

In relation to this project, the gene circuit is designed to repress the background signal

from the reporter gene, increasing the fold change in expression when expression of the

reporter gene is induced by the yeast pheromone response. Therefore, the expression

of the reporter gene in the gene circuit should have a higher SNR than cells expressing

only the reporter gene, as the background signal should be higher from the control than

the circuit.

1.5 Synthetic Biology

Synthetic biology is an emergent scientific field, developing from advances in molecular

biology and new collaborations between biological and computer sciences [161–164],

and utilizes a pragmatic approach of designing interactingcomponents previously

studied in isolation by classical fields such as molecular biology [165]. Synthetic

biology projects currently attempt to construct genetic circuits in the same way as an

engineer combines electrical components, building circuits in living organisms with

pre-determined, predictable, and robust behaviours [1, 8,15, 161, 166]. The term

“synthetic biology” first appeared in the Journal Gene and was used by the Polish

geneticist Waclaw Szybalski in 1974 [167], describingin vitro transcription, and was

later used by Hobumet al in 1980 describing bacteria that had been genetically

engineered using recombinant DNA technology, and the field has more recently been
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synonymous with “bioengineering” [162]. The term was used again at the 2000

Annual American Chemical Society in San Francisco to describe work in the field

of bio-mimetic chemistry where organic synthesis was used to produce artificial

molecules that reproduce biological components generating artificial, life-emulating

systems [162, 168]. Therefore, there are two different fields each claiming the term

“synthetic biology” - chemists mimicking biology and biologists engineering synthetic

phenotypes. The term “synthetic biology”, much like “systems biology” is not new,

and the work done by synthetic biologists has originated in classical fields of molecular

biology and genetic engineering, leading to scepticism of the term used in research

and in what it can deliver over existing established fields [169, 170]. Synthetic

biology differs from molecular biology, in that it focuses on building novel functions

and behaviours from molecular interactions, and apply themin biotechnology [169].

Also, synthetic biology enables the “reverse engineering”of biology by attempting

to construct biological systems from the bottom-up using component parts of gene

and protein interactions [161, 171]. Biological processessuch as oscillations and

switches that pervade biological processes such as the cellcycle are not fully understood

[172], and by engineering such systems through synthetic biology we gain a greater

understanding of how they function in native systems [171].

Synthetic biology integrates computer science by buildingmodels to predict and

optimize the behaviour of these interactions prior to construction in the laboratory

[10, 173]. The key to building biological systems is not in how the individual

components function (as studied in classical fields of molecular biology), but on how

they interact [169].

Currently, synthetic biologists share the holistic philosophy of systems biology in that

rather than studying individual genes or pathways, they assemble systems of genes and

gene products into interacting biological devices that canbe combined into modular

components, conferring new functions on the systems into which they are embedded

[8, 55, 170, 174, 175]. However, the synthetic biologist also attempts to rationalise the

emergent behaviour into a set of rules for the modular construction of these behaviours

[8, 11, 176].
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In using this approach, synthetic biologists digress from classical molecular biology

towards the field of engineering through the construction ofinterchangeable parts lists

of “biological circuitry” [8, 170, 177]. The engineering perspective presents biology

as a tool set of parts that can be used to achieve a specific task[11, 168], whilst

testing modularization concepts in biology, and exploringthe challenge of artificial

reconstruction [10, 168]. The evolution of synthetic biology through combination with

systems biology and engineering is facilitating the application of in silico design and

testing of cellular circuitry prior to fabrication, allowing for “design-based engineering”

of biological systems [168, 170, 173].

Synthetic biology modules cover a wide range of applications and tend to originate

from naturally occurring systems, modified by the syntheticbiologist towards a desired

function [8, 168]. However, it can be difficult to transplantwild-type genetic circuits

that have evolved and been optimized over millions of years in their host environment

into an artificial context, this requires rational redesignbased on modelling and directed

evolution to help them interface together and function alongside their host [8]. Thus-far

in the development of synthetic biology, synthetic transcriptional regulation networks

are the most widely implemented and characterized modules,and have been used to

build cascades, feed-forward, and feedback loops, formingswitching and oscillating

responses as well as rudimentary information processing tasks [46, 118, 178–184].

1.5.1 Transcription Cascades

Regulatory cascades are sequences of genes that activate each other in a step-wise

manner through the cascade, passing a signalling input fromthe top of the cascade

through to an output response at the bottom [8, 46, 168, 185].Regulatory cascades

are ubiquitous in biological systems and can be found in signal transduction and protein

kinase pathways, such as the MAP kinase cascade in budding yeast and flagellar motion

in E. coli [8, 185]. Regulatory cascades provide an “all or nothing” response to graded

input signals, where small changes in input concentration switch the output between

high and low levels. Hooshangiet al demonstrated that the longer the transcriptional

cascade, the higher the sensitivity and the faster it switches between steady-states, and
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also the higher the amplification of noise at each step, disrupting synchronisation within

cell populations [8, 185].

1.5.2 Synthetic Oscillators

Oscillations of protein levels are vital to coordinating cellular events such as the cell

cycle or circadian rhythms [168]. Elowitz and Leibler designed a cyclic negative-

feedback loop using three transcriptional repressor systems inEscherichia coli, forming

an oscillating network which they termed the “represillator” (see figure 1.10) [179].

The repressilator was constructed using a low-copy number plasmid containing thelacI

gene fromE. coli which inhibits transcription of the second repressor gene,tetRfrom

the tetracycline-resistance transposon Tn10, whose protein product in turn inhibits the

expression of a third gene,cI from λ phage, and thecI gene product inhibitslacI

expression, completing the cycle [179] (see figure 1.10). The repressilator activity

was observed using a high-copy number reporter plasmid containing a tet-repressible

promoter fused to an intermediate-stability GFP gene producing oscillating fluorescence

[179]. The represillator was simulated using a set of coupled differential equations

FIGURE 1.10: Diagrammatic representation of an oscillating gene circuit. Adapted
from Elowitz and Liebler [179].

with repressor-protein concentrationspi and the corresponding mRNA concentrations,

mi (where i is lacI, tetR,or cI) were treated as continuous dynamic variables. Each
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of the six molecular species participated in transcription, translation, and degradation

reactions. All three repressors were treated identically,except for their DNA-binding

specificities. The kinetics of the system were determined bytwo coupled first-order

differential equations (equations 1.7 and 1.8) where the number of protein copies

per cell produced from a given promoter type during continuous growth isα0 in the

presence of saturating amounts of repressor (owing to the “leakiness” of the promoter),

andα + α0 in its absence;β denotes the ratio of the protein decay rate to the mRNA

decay rate; andn is a Hill coefficient [179].

dmi

dt
=−mi

α
(1+Pn

i )
+α0 (1.7)

dpi

dt
=−β(pi −mi) (1.8)

The represillator demonstrated it was possible to design and construct an artificial

genetic network with new functional properties from generic components that naturally

occur in other contexts [179]. However, the represillator was noisy and subject to

variation in the amplitude of oscillation which the researchers attributed to possible

stochastic effects inherent in natural gene-expression systems, particularly when there

are a small number of reactants [186]. The variation was replicated in the Elowitz model

when these stochastic interactions were simulated [179].

Barkai et al, using the Monte Carlo algorithm also simulated stochasticreaction

events in an oscillating gene network and demonstrated variation in the amplitude of

oscillations when changing the rates of transcription and translation [186]. It has been

suggested that the presence of both positiveand negative feedback control elements

in natural oscillatory systems enables bistability and hysteresis, and therefore noise

resistance [178, 179, 186].

Later, in 2002 Hastyet al published a theoretical oscillator comprising positive and

negative feedback controls as a set of ordinary differential equations. Strickeret

al utilized the theoretical synthetic oscillator circuit proposed by Hastyet al, and

constructed the circuitry inE. coli [180]. Stricker built on previous published work

and assembled the circuitry using linked positive and negative feedback loops (figure
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FIGURE 1.11: Network diagram of the dual-feedback oscillator. A hybrid promoter
Plac/era−1 drives transcription ofaraCandlacI, forming positive and negative feedback
loops. Adapted from Strickeret al [178].

1.11) [178]. Stricker’s oscillator circuit was comprised of a hybrid Plac/ara−1 promoter

with the activation operator site from thearaBAD promoter placed upstream of

the transcription start site, and repression operator sites from the lacZYA promoter

placed both upstream and immediately downstream of the transcription start site

[178] (figure 1.11). The circuit is activated by the AraC protein in the presence

of arabinose and repressed by the LacI protein in the absenceof isopropyl β-D-1-

thio-galactopyranoside (IPTG) [178]. Stricker placedaraC, lacI andyemGFP(yeast-

enhanced green fluorescent protein) genes under the controlof three identical copies of

Plac/ara−1 to form three co-regulated transcription modules. Activation of the promoters

by the addition of arabinose and IPTG to the growth medium results in transcription of

each component of the circuit, and increased production of AraC in the presence of

arabinose results in a positive feedback loop that increases promoter activity [178]. The

concurrent increase in production oflacI results in a linked negative feedback loop

that decreases promoter activity, and the differential activity of the two feedback loops

drives the oscillatory behaviour [178].

The author was able to modulate the oscillator response by varying the level of arabinose

in the medium and “tune” the oscillatory period. At a fixed value of 2mM IPTG and at

37°C, the oscillatory period can be tuned from 13min to 58minby varying the arabinose

concentration [178]. Strickeret alhowever found that the original model by Hastyet.al

predicted a small parameter space for the inducer that wouldfacilitate oscillation, and
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did not predict the experimental observation [178]. The model required fine tuning

of the parameter values to achieve an oscillatory response whereas the circuitsin vivo

behaviour was robust through a range of parameter values [178]. Strickeret al further

developed the model to include both the positive and negative feedback loops and it was

found that directly modelling protein-DNA binding, multimerization, translation, DNA

looping, enzymatic degradation and protein folding greatly increased the accuracy of the

model [178]. The result was a computational model that was very robust to parameter

variations and correctly describes the dynamics of the oscillator for a large range of

IPTG and arabinose concentrations [178].

This observation was also investigated by Tsaiet al who researched the significance of

feed-forward and backward loops in regulatory circuits using a modelling approach

[187]. Tsai et al analysed a large number of established oscillatory models with

various loop back systems including negative, negative plus negative, and negative plus

forward feedback loops (figure 1.12). Tsaiet al constructed a set of three hypothetical

oscillator circuits, consisting of a three-variable triple negative feedback loop, one with

no additional feedback, another with added positive feedback, and a third with an added

negative feedback loop (figure 1.12) [187]. A random parameter set for each of the

models was generated, which were then observed for limit cycles. The parameter sets

were generated until 500 oscillating sets had been found foreach model. The study

found that the inclusion of a feed-forward with a feedback loop produces a wider

parameter space to vary the frequency of oscillation, whilst maintaining a constant

amplitude, compared with a feedback loop alone [187]. Feedback loops that include an

additional feed-forward loop are more robust than feedbackalone, maintaining constant

oscillatory period and amplitude over a wider parameter range, and provided insight into

the reasoning behind the natural design of cell signal regulation [187].

The work published by Strickeret aldemonstrated the advantage of a synthetic biology

approach, adopting computer modelling with more classicalfields such a molecular

biology. Using wet lab molecular biology alone resulted in oscillatory circuits with

high variability and noise, and could not provide insight into developing a persistent and

robust oscillator [179]. Pure theoretical studies provided a hypothesis for the design of

an oscillatory circuit, however the response predicted by the model was not replicated
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FIGURE 1.12: Tsaiet alnegative-feedback models parameterised with random values
to find oscillatory behaviour. A. Negative feedback only. B.Positive-plus-negative
feedback. C. Negative-plus-negative feedback. Adapted from Tsaiet al [187].

in the laboratory, and modelling alone was not able to anticipate all the parameters

affecting thein vivo response [180]. The approach of combining modelling with

laboratory experimentation by Strickeret al and later Tsaiet al enabled the refinement

of both the modelling and thein vitro circuit, which would not have been possible from

the individual approaches [178, 187].

1.5.3 Synthetic Switches

Gardneret al designed a genetic “toggle switch”, and created a gene circuit enabling

a bistable state and “memory” in a biological system [188]. The toggle switch was

constructed inE. coli and consisted of a bistable gene-regulatory network, using

integrated theoretical modelling and laboratory experimentation[188]. The switch was

comprised of two repressors and two constitutive promoters, where each promoter is

inhibited by the repressor that is transcribed by the opposite promoter (see figure 1.13).

Gardner cites this design as the most efficient configurationfor a switch, as it requires

the fewest genes andcis-regulatory elements to achieve a robust behaviour, in terms
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FIGURE 1.13: Gardneret al toggle switch design. Repressor 1 inhibits transcription
from promoter 1 and is induced by inducer 1. Repressor 2 inhibits transcription from
promoter 2 and is induced by inducer 2. Adapted from Gardneret al [188].

of tolerance to fluctuations in gene expression [188]. The toggle switch was modelled

using a set of coupled differential equations (see equations 1.9 and 1.10), where U is the

concentration of repressor 1, V is the concentration of repressor 2,α1 is the effective

rate of synthesis of repressor 1,α2 is the effective rate of synthesis of repressor 2,β is

the cooperativity of repression of promoter 2 andγ is the cooperativity of repression of

promoter 1 [188].
dU
dt

=
α1

1+Vβ −U (1.9)

dV
dt

=
α2

1+U γ −V (1.10)

The bi-stability arises from the mutually-inhibitory arrangement of the repressors. In

the absence of inducers the switch either transcribes repressor 2 from promoter 1 or

transcribes repressor 1 from promoter 2. Introducing an inducer of the current active

repressor activates the switch through maximal transcription of the opposite repressor,

until it stably represses the original active promoter [188]. The Gardner toggle switch

was the first form of “synthetic biology” that was significantly different from genetic

engineering because it utilized network architecture for the switching mechanism,

rather than proteins and other regulatory elements to achieve the required behaviour

[188]. The toggle switch provided a simple self-contained programmable circuit,

requiring transient rather than sustained induction, and retained its new stable state

after induction. Later, in 2001 Becskei published an alternative method of producing a

genetic switch circuit using positive feedback through a tetracycline-dependant activator

that up-regulated its own expression (see figure 1.14) [189]. Becskeiet al constructed
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FIGURE 1.14: Diagrammatic representation of the Becskeiet al positive feedback
genetic switch circuit. Adapted from Becskeiet al [189]

.

the circuit from well-defined promoters and transcriptional activators, and the circuit

operated autonomously of the existing genetic machinery ofthe cell. The circuit is

comprised of a plasmid containing the tetracycline-responsive transactivator (rtTA):

rtTA produces a graded response in constitutive systems, making possible the analysis

of positive feedback by the model [189]. The circuit can convert a graded response to

the inducer (tetracycline) or gene copy number into a binaryresponse from the reporter

(GFP) [189]. The results of thein vitro work demonstrated that under conditions where

rtTA is expressed with positive feedback the cell population is divided into populations

of “on-cells” and “off-cells” (GFP expression or no expression), and the number of cells

in each state is proportional to inducer concentration [189]. Off-cells were also capable

of switching to the on-state in a stochastic manner, and the model suggested that on-

cells could also switch to the off-state, however this was not observed experimentally

[189]. The population of off-cells became a population of mixed on/off cells over time,

independent of the level of basal expression indicating that a high basal expression rate

was not required for activation of the circuit after induction [189]. Becskei suggests

the switch could be defined as a “noise-based” switch rather than a toggle switch (as

designed by Hastyet al, 2000) as the population continues to switch from the off to

the on-state over a range of inducer concentrations rather than the entire population

switching at once, as seen with the Gardneret alswitch [188].

Ajo-Franklin et al built on the work by Gardner and Becskei, by designing and

constructing a memory circuit in yeast [188–190]. The circuit was constructed from

an activator gene and a reporter gene (figure 1.15). The activator gene consists

of a DNA binding domain (DBD), two copies of the red fluorescence protein gene

(RFP) (mCherry), the viral activation domain VP64, and the SV40 nuclear localization
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FIGURE 1.15: Ajo-Franklin memory circuit diagram. The circuit consists of a sensor
gene and an auto-feedback gene. Upon addition of galactose the growth medium, the
sensor gene promotes the expression of RFP and up-regulatesthe expression of the
auto-feedback gene. The auto-feedback gene expresses YFP and up-regulates its own
expression, maintaining expression of YFP after removal ofgalactose from the growth
medium. Adapted from Ajo-Franklin [190].

sequence (NLS), under the control of the galactose-inducible promoter (pGAL1). The

reporter gene contained theCYC1promoter and two copies of the yellow fluorescence

protein (YFP). The DBD’s used were LexA, an engineered version of the murine zinc-

finger Zif268 (ZifH), and the human zinc finger Gli1. The components were arranged

into a positive auto-feedback loop that switches between two steady states following

activation (figure 1.15). During vegetative growth the cells express neither reporter

gene. Upon stimulation with galactose the cells express both RFP and YFP as the sensor

gene expresses the activator forpCYC1. TheCYC1promoter up-regulates expression

of its own activator, maintaining expression of YFP. Therefore, upon returning to

raffinose the cells continue to express YFP in the absence of galactose. The circuit

therefore moves to a second steady state and demonstrates a memory characteristic

[190]. The project incorporated construction of the memorycircuit as well as modelling

that enabled prediction of relationship between the activator concentration and the

production rate of either the reporter or auto-feedback activator. Using Michaelis-

Menten kinetics, the experimental data for the expression of the fluorescent reporter

genes was used to fit a hill coefficient in the model rate equations to build anin vivo

relevant model of the system that could predict the expression level of the reporter genes

and the switch point between the steady states of the system [190].
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FIGURE 1.16: Diagrammatic representation of the mechanism of translational
regulation by the Bayer and Smolke riboswitch. Adapted fromBayer and Smolke
[182].

1.5.4 Riboswitches

A third type of genetic switch circuit was published by Bayerand Smolke, utilizing an

anti-switch molecule that regulates gene expressionin vivo [182]. The authors designed

a set of non-coding smalltrans-acting RNA riboregulators, termed “antiswitches” that

regulate gene expression in a ligand dependant manner. The riboregulators consist of

two distinct domains. One end of the molecule contains an antisense domain that is

specific to the gene that is to have its expression controlled, and the other end has an

aptamer domain that recognizes a specific effector ligand [182]. When a ligand binds to

the aptamer domain it induces a conformational change in theriboregulator that exposes

the antisense domain that can bind with the mRNA transcript of the target gene and

block translation. In the absence of ligand, the antisense domain is sequestered in an

“antisense” stem and is not available for mRNA binding, and the antiswitch is in the

“off” state. [182]. In this state the antiswitch is unable tobind to the target transcript,

which has a green fluorescence protein coding region, and as aresult, GFP production

is on. In the presence of effector, the antiswitch binds to the switch molecule, forcing

the aptamer stem to form, switching its confirmation to the “on” state. In this state

the antisense domain of the antiswitch will bind it the target transcript and through

and antisense mechanism turn the production of GFP off (figure 1.16) [182]. The

work demonstrated that engineered ligand controlled, antisense RNAs can be used as
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allosteric regulators of gene expression [182]. In the absence of the ligand the free

energy of the anti-sense stem is lower than that of the aptamer stem and binding of the

ligand stabilizes the formation of the aptamer stem facilitating binding to the antisense

domain of the target mRNA transcript [55]. The anti-switch can be used to enable both

positive and negative regulation, with “on” switches designed such that the absence of

ligand destabilizes the aptamer stem binds to the anti-sense domain and disables the

molecule from binding to the transcript [55]. The riboregulators can also be tuned by

engineering the free energy of the antisense domain, altering the conformation of the

riboregulator with a predictable functional effect [55]. The study demonstrated that

this approach can be used to decrease the stability of the antisense stem, decreasing the

ligand concentration necessary to switch the riboregulator conformation and conversely,

increasing the stability of the antisense stem increases the amount of ligand required and

shifts the system’s dynamics to favour the “off” state at lowligand concentration [55].

The riboregulator “antiswitch” mechanism is also modular in that ligand response

and transcript targeting can be engineered by swapping domains within the aptamer

and anti-sense molecule and both domains operate independently. The customizable

generic nature of riboswitches provides a potential wide range of applications in both

prokaryotes and eukaryotes. Specific transcripts could be targeted in gene therapy or

cell specific targeting to complement existing therapies [55]. The technology could also

be applied in synthetic biology in the design of regulatory pathways and control loops

for synthetic circuit design by enabling the cell to sense and respond to intracellular

metabolite levels and environmental signals, potentiallyproviding “smart regulators”

capable of targeting any gene with any ligand [182].

1.5.5 Application of Synthetic Biology

The growing range of tools being developed in synthetic biology are enabling re-

searchers to construct increasingly complex synthetic behaviours through the modular

combination of genetic components [12, 190]. These synthetic circuits can be

implemented in practical applications to solve biotechnology problems. For example,

bacteria and yeast are already in widespread use in the biotechnology and fermentation
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industries. The application of multi-cellular fermentation systems comprising separate

“sender” and “receiver” cells presents the opportunity to eliminate the requirement

for expensive inducers, as cultures will maintain their owngene expression levels,

eliminating the need for monitoring batch cultures [191]. The production of expensive

small molecules can also be replaced by synthetic biology processes, as demonstrated

by Du Pont and Tate & Lyle to produce chemicals commonly used in textiles from corn

sugar [192]. Artemisinin, a naturally occurring anti-malarial drug produced through an

expensive and low efficiency plant extraction process can now be obtained from yeast,

which produce a precursor to the active drug with a high yield[193].

Coupling gene regulatory networks to external stimuli can be used to produce new

biosensor cells for the detection of a variety of compounds with industrial and

medical applications [1]. Programmed behavioural interactions between prokaryotes

and eukaryotes could provide new disease treatments, as demonstrated by Anderson

et al who engineeredE. coli cells to invade specific mammalian cells exhibiting a

tumourogenic phenotype under specific inducer conditions,providing potential new

cancer treatments [194].

This project builds on the concept of engineering modules ofgenetic interactions that

confer synthetic phenotypes on the host cell. The project utilized the yeast mating

response pathway as a generic input and signal processing module, exploiting the signal

amplification and noise attenuating features of the MAPK cascade [131, 195, 196]. The

circuit was constructed from three independent plasmids, which by themselves do not

produce an effect on the phenotype of the host cell; however,when in combination they

form a discrete network or system, and it is the emergent property of this system that

produces the synthetic behaviour in the host [197, 198]. This systems-level interaction

also presents a complexity in understanding and designing the circuit, which requires

new modelling and simulation tools from systems biology to understand and predict its

behaviour [112, 113].

Founding research in synthetic biology has so far focused around building interacting

genetic “parts lists” inE. coli; through efforts such as the Biobricks Foundation and

iGem there are registries of parts that can be combined together to build synthetic
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behaviours [11, 199, 200]. This project is one of a limited number of studies that

have attempted to construct, and characterize such synthetic parts in more complex

eukaryotic yeast cells [1, 2, 190], allowing for the creation of more complex circuits

and provide a stepping stone towards building more complex synthetic systems and

even organisms [8, 12, 161, 201, 202].

1.5.6 Project Overview

Building on the concept of combining defined genetic components into circuits, the

project aims to utilize three components previously characterised by published research.

The iron response protein (IRP) by Kolotevaet al, the LexA repressor by Brent and

Ptashne, and the luciferase reporter gene, assayed with a publishedin vivo whole cell

assay [4, 203, 204]. The combination of these components enables repressors to be

combined that function separately at the transcription andtranslation levels [4, 203].

This enables the hierarchical and time-scale separation ofthe repressors, and also the

further characterisation of the two components in a synthetic biology application, using

a well characterized and sensitive reporter assay [204]. The IRP repressor is well-

defined in mammalian systems [205–207], and has been shown tofunction in yeast

where it can repress translation of genes containing the target IRE stem-loop structure

[4]. The circuit is designed to express the luciferase reporter gene, which has been well

characterized and used extensively in both prokaryotic andeukaryotic cells [208–210].

Expression of the luciferase gene is linked with the yeast pheromone response pathway

via PFUS1, the promoter for theFUS1gene which is known to be up-regulated by the

Ste12 transcription factor and involved in initiation filamentous growth and formation

of the Schmoo tip [211]. This system forms the sensor component of the circuit, using

the pheromone response pathway as a signal processing molecule and expression of the

luciferase reporter gene as the output.

The two repressors, IRP and LexA, are designed to tune the circuit’s luciferase output.

The IRP is designed to be expressed constitutively using known constitutive yeast

promoters that can be interchanged to express different levels of IRP concentration

within the cell [212]. The luciferase reporter gene includes the IRE sequence, encoding
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FIGURE 1.17: Schematic diagram of the gene circuit demonstrating the interaction
of the components. The yeast pheromone response pathway functions as a signal
processing module translating pheromone binding at the cell receptor to Ste12
transcription factor activation. Ste12 up-regulates expression of the reporter and de-
repressor plasmids, resulting in repression of IRP transcription and de-repression of
luciferase translation. Solid line denotes constitutive repression by the IRP. Dotted
lines denote pheromone response pathway induced reactions.

a stem-loop structure in the luciferase mRNA molecule to which the IRP can bind

and block translation by the ribosome [4]. Constitutive repression of luciferase mRNA

translation is designed to reduce basal expression of the reporter gene during vegetative

growth and reduce noise in the circuit output. The second repressor gene; LexA is

expressed from the same PFUS1 pheromone inducible promoter as luciferase, and LexA

operator sequences (DNA binding domains for the LexA protein) were placed upstream

of the IRP constitutive promoter. This design enables pheromone inducible repression

of IRP transcription, and simultaneous up-regulation of luciferase expression during

pheromone induction (figure 1.17).

The hypothesis for the circuit is that through repression ofbasal gene expression, the
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circuit achieves a higher fold change increase in luciferase expression compared with

cells that would contain a pheromone-induced luciferase reporter gene alone. The

circuit is unique in the application of both transcriptional and translational repression,

and enables the characterisation of these two systems in a synthetic biology circuit. The

project aims to characterize the expression of each of the components of the circuit

through quantification of mRNA and protein expression levels, as well as investigating

the interaction of the components as a circuit using luminescence.

There are a number of interactions within the circuit, at a number of hierarchical levels

within the cell, which leads to complex non-linear dynamicsin the behaviour of the

circuit. The project therefore uses mathematical modelling to build a predictive model

of the circuit that can be further refined through parameterisation with experimental

data. The combination of experimental and theoretical fields is a novel approach

that differentiates synthetic biology from molecular biology. Modelling enables faster

design and development cycles of gene circuits, through theapplication of systems

analysis to identify key control points in the pathways under construction. Metabolic

control and sensitivity analysis will be employed at the start of the project to understand

the role of each interaction in the circuit, and then furtherparameterisation with

experimental data will enable predictive time course simulations to be constructed.

The model will then become a tool for tuning the behaviour of the circuit and adding

additional features, driving hypothesis generation for the experimental work. The

interplay of each of the component fields therefore, forms a novel approach compared

to classical genetic engineering of yeast.
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MATERIALS AND METHODS

2.1 Plasmids

The plasmids used in this study are listed in table 2.1.

2.2 Primers

The primers used in this study are listed in table 2.2.

2.3 Yeast & Bacterial Strains

The yeast strains used in this study are listed in table 2.3. The bacterial strain used

in this study wasE. coli TOP10. The strain details are as follows:E. coli TOP

10F’ [F’lacqTn10 (Tetr )mcrA ∆ (mrr-hsdRMS-mcrBC)F80 lacZ∆ M15 Dlac74 deoR

recA1araD139∆ (ara-leu) 7697galU galK rpsL endA1 nupG.
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Plasmid Notes Source
pRS315 single copy yeast ARS-CEN plasmid (LEU2) Sikorski and Hieter. [213]
pRS313 single copy yeast ARS-CEN plasmid (HIS3) Sikorski and Hieter. [213]
pRS315-PFUS1-IRE-luciferase single copy yeast ARS-CEN plasmid (LEU2). pFUS1 cloned BamHI and NdeI, luciferase

cloned with NdeI and HindIII, and IRE cloned with NdeI.
Based on pRS315.

pRS313-PFUS1-LexA single copy yeast ARS-CEN plasmid (HIS3) with pFUS1 cloned with BamHI and NdeI
and LexA cloned with NdeI and HindIII.

Based on pRS313.

pRS315-pFUS1Pax3-luciferase single copy yeast ARS-CEN plasmid (LEU2) with pFUS1-Pax3 cloned with BamHI and
NdeI.

Based on pRS315-pFUS1-IRE-luciferase.

YCp33-Supex2 single copy yeast ARS-CEN plasmid (URA3). Oliveiraet al [214].
LexAop-PDCD1-IRP single copy yeast ARS-CEN plasmid (URA3). LexA operator cloned with HindIII, IRP

cloned with SalI and XhoI.
Based on pDCDex, Oliveiraet al [214].

LexAop-PTEF1-IRP single copy yeast ARS-CEN plasmid (URA3). LexA operator cloned with HindIII, IRP
cloned with SalI and XhoI.

Based on pTEFex, Oliveiraet al [214].

pJM4 single copy yeast ARS-CEN plasmid based on YCp22-FL with luciferase (URA3), Oliveiraet al [215].
pJM6 single copy yeast ARS-CEN plasmid based on YCp33-Supex2 with IRP (URA3)) Oliveiraet al [215].
pTRPEX single copy yeast ARS-CEN plasmid based on YCp33-Supex2 with TRP1 promoter

(URA3).
Oliveiraet al [215].

pDCDex single copy yeast ARS-CEN plasmid based on YCp33-Supex2 with DCD1 promoter
(URA3).

Oliveiraet al [215].

pTEFex single copy yeast ARS-CEN plasmid based on YCp33-Supex2 with TEF1 promoter
(URA3)

Oliveiraet al [215].

pSVa17 Cln2 PEST taggedyEGFPvector plasmid Gift from Simon Avery [216].
TOPO TA Cloning Vector Invitrogen TOPO cloning kit.

TABLE 2.1: List of plasmids used in this study.
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Name Nucleotide Sequence
PCR primers and Oligonucleotides
LexAOpCasLeft AGCTTCGAGTACTGTATGTACATACAGTACTCGAGTACTGTATGTACATACAGTACTTAATTAA
LexAOpCasRight AGCTTTAATTAAGTACTGTATGTACATACAGTACTCGAGTACTGTATGTACATACAGTACTCGA
Luciferase Fwd CTAGCTTAGTCGACGAAGACGCCAAAAACATAAAG
Luciferase Rev CTAGCTTACTCGAGTTACACAATTTGGACTTTCCG
LexA Fwd ATCGCTAGCATATGATGAAAGCGTTAACGGCCAGG
LexA Rev ATCGCTAGAAGCTTTTACAGCCAGTCGCCGTTGCG
IRE Left TACCAATTATCTACTTAAGCTTCAACAGTGCTTGAACTTAAGAACACAAAACTCGAGAAGA
IRE Right TATCTTCTCGAGTTTTGTGTTCTTAAGTTCAAGCACTGTTGAAGCTTAAGTAGATAATTGG
PEST Fwd ACAATCGATGGCCATCGCGAAAGCATCCAACTTGAACATTTCG
PEST Rev TAATTAGTTGGCCA TCGCGA CTATATTACTTGGGTATTGCC
IRP SalI CGTGTAACGTCGACATGAGCAACCCATTCGCA
IRP XhoI CGCGTCACCTCGAGGCTTGGTTCTCTCTTTCTGGC
Sequencing Primers
DCD1-SEQ-FWD GCGGTACGCAGTTATGAG
DCD1-SEQ-REV ATTCACACCTTTAATGTGCCAA
IRP1-SEQ-FWD CAACCCATTCGCACACCTTG
IRP2-SEQ-REV GAATGCCCAAGCCATCAATC
IRP3-SEQ-FWD GGGAGATTCGGTAACAACTG
IRP4-SEQ-REV GCGGATCATGTAGTTGAG
IRP5-SEQ-REV CGCTGAAGGGTAACATAG
IRP6-SEQ-FWD ATGACGCCAGATGGCAGTAG
PGG-Terminator CGCTGAAGGGTAACATAG
IRP-SEQ-REV GTAAGCGTGTGGAACGACT
TEF1-SEQ-REV CTTTCCTAGGCAGCTGAGCT
M13-Fwd (-20) GTAAAACGACGGCCAGT
M13-Rev (-27) CAGGAAACAGCTATGAC
qPCR Primers
qALG9-Fwd CACGGATAGTGGCTTTGGTGAACAATTAC
qALG9-Rev TATGATTATCTGGCAGCAGGAAAGAACTTGGG
qHEM2-Fwd TTCCGCTATTCATCTCCGATAATCCAG
qHEM2-Rev ACAGACATCGCAAATAATATACAGTTCAGG
qALG9-Fwd CACGGATAGTGGCTTTGGTGAACAATTAC
qALG9-Rev TATGATTATCTGGCAGCAGGAAAGAACTTGGG
qIRP-Fwd AACCCATTCGCACACCTTG
qIRP-Rev ATGGTAAGCGCCCATATCTTG
qLexA-Fwd CAGGAAGAGGAAGAAGGGTTG
qLexA-Rev TCGGCTTGAATAAGGAAGGA
qLucif-Fwd TACTGGGACGAAGACGAACA
qLucif-Rev TTCCGTGCTCCAAAACAAC

TABLE 2.2: List of primers used in this study.
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Strain Genotype Source
pTC5 (BY5741) Mata;his3∆ leu2∆0 met15∆0 ura3∆0 Euroscarf, Brachmanet al[217]
sst2∆ (BY4741) Mata; his3 ∆1; leu2∆0; met15∆0; ura3∆0;

YLR452c::kanMX4
Euroscarf

TABLE 2.3: List of yeast strains used in this study.

2.4 Yeast Growth Conditions

Yeast cells were grown in liquid broth media consisting of yeast peptone dextrose

(YPD) (ForMediumtm) (1% yeast extract, 2% peptone, 2% glucose) or on agar plates

containing 2% agar. Yeast transformed with plasmids containing auxotrophic markers

LEU2, URA3, or HIS3were grown in liquid yeast nitrogen base (YNB) without amino

acids, and supplemented with the appropriate (ForMediumtm) drop out medium: -

LEU, -URA3, or -HIS3 respectively with 2% glucose, or on plates containing 2%

agar. Cells containing combinations of plasmids were grownin the appropriate

combinations of drop out media for the auxotrophic marker combinations. Yeast cells

containing the circuit were grown in in liquid yeast nitrogen base (YNB) without amino

acids, supplemented with (ForMediumtm) drop out: -LEU, -URA3, -HIS3. Luciferase

control strains were grown in liquid yeast nitrogen base (YNB) without amino acids

(ForMediumtm) drop out: -LEU. No de-repressor plasmid controls containing the

repressor plasmid and reporter plasmid were grown in liquidyeast nitrogen base (YNB)

without amino acids (ForMediumtm) drop out: -LEU, -URA3. All media contained

2% glucose as carbon source. Cultures were also grown in the equivalent agar plates

containing 2% agar.

Broth cultures were grown in 25ml volumes of liquid broth in 100ml baffled shake

flasks, incubated at 30°C with shaking at 250rpm. Plate cultures were incubated

at 30°C. Stocks strains were stored in the appropriate brothmedia containing 25%

glycerol, and stored at -70°C.
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2.5 Bacterial Growth Conditions

E. coli TOP10 cells were cultured in 2ml LB (Luria-Bertani) broth (Formedium) (1%

bacto-typtone, 0.5% bacto-yeast extract and 0.5% NaCl) or LB agar plates containing

1% agar.E. coli TOP10 in liquid broth were incubated at 37°C with shaking at 250rpm.

Plates were incubated at 37°C overnight, and then stored at 4°C.

All circuit plasmids contained the ampicillin resistance marker, which was added to the

LB broth medium and agar plates at a concentration of 100µg per ml (ForMediumtm).

2.6 Transformation of competentE. coli TOP10 cells

0.5µl of plasmid was transferred to 100µl of competentE. coli TOP10 cells and

incubated on ice for 30 minutes. The cells were heat shocked at 42°C for 1 minute and

then incubated on ice for 5 minutes. 1ml of LB broth was added,and the cells incubated

for 1 hour at 37°C. 200µl of cells was plated onto LB agar containing the appropriate

antibiotic resistance marker for the plasmid being transformed. For the gene circuit

plasmids all cells were plated onto LB agar containing 100µgper µl ampicillin.

2.7 MINIPrep Plasmid Purification

Plasmid DNA was obtained from 2ml overnight cultures ofE. coli TOP10 cells in

liquid LB broth (containing 100µg per ml) ampicillin), using the QIAgen QIAprep

Spin miniprep kit (QIAgen catalogue number 27106). A 2ml culture of E. coli cells

harbouring the plasmid for purification was grown in suitable selective liquid broth

culture overnight (for a maximum of 16 hours). 1ml of culturewas transferred to

a 2ml centrifuge tube, and centrifuged at 4,000g (13,000rpm) for 5 minutes. The

supernatant was discarded and the pellet re-suspended in 250µl of buffer P1. The

protocol continued as directed in the QIAgen QIAprep Spin Miniprep Kit handbook for
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plasmid purification with a micro-centrifuge. The DNA boundto the miniprep column

was eluted using 50µl of sterile distilled water.

2.8 Manual Miniprep Plasmid Purification Protocol

When large numbers of plasmid purifications were required, manual purification of

plasmid DNA was performed to save using commercial equipment and reagents. The

protocol was adapted from the cleared lysate procedure of D.B. Clewell and D. R.

Helinski [218]. The advantages of this method are; high yield (as opposed to alkaline

lysis), high purity; suitable for restriction, ligation, sequencing, and transformation of

E. coli and S. cerevisiae; and after additional phenol-chloroform extraction,in vitro

transcription. The method is also simple and fast, enablingDNA purification of 24

samples using a single microfuge tube, without organic extractions, in under one hour

(Hughes J. (2009), Personal Communication. (McCarthy lab).

2.8.1 Reagents

2.8.1.1 25% sucrose

Sucrose solution consisted of a 25% w/v of solution of sucrose in 50mM Tris pH 7.5

2.8.1.2 Lysozyme

Lysozyme solution consisted of 4mg/ml Lysozyme (Sigma), 0.1mg/ml RNase A in

50mM Tris, pH 7.5, 50% glycerol. Lysozyme was stored at -20°C.

2.8.1.3 Triton Lytic Mix

Triton lytic mix consisted of 50mM Tris, pH 7.5, 20mM EDTA, pH8.0, and 0.1% Triton

X-100.
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A single colony of transformedE. coli TOP10 was inoculated into 1.5ml LB growth

media containing appropriate antibiotic for the transformed plasmid, and grown

overnight at 37°C. The culture was transferred to an 2ml centrifuge tube and centrifuged

at 3,000rpm for 1 minute. The supernatant was discarded, andthe pellet re-suspended

in 200µl of 25% sucrose solution. 20 µl of lysozyme solution was added and the

suspension was vortexed briefly, then incubated for 5 minutes at room temperature.

Following incubation 400µl of triton lytic mix was added followed immediately with

the addition of 80µl of 8M potassium acetate. The cell solution was mixed by inversion

several times and the cells incubated on ice for 5 minutes. Following incubation on ice,

the tube was centrifuged for 20 minutes at maximum speed at room temperature. After

centrifugation the supernatant was transferred to a clean 1.5ml centrifuge tube and the

pellet was discarded. 0.5ml isopropanol was added to the supernatant and mixed several

times by inversion. The solution was then centrifuged for 10minutes at maximum speed

to sediment the plasmid DNA. Following centrifugation the supernatant was discarded

and the pellet re-suspended in 0.5ml 70% ethanol, and centrifuged at maximum speed

for 1 minute. The supernatant was discarded and the pellet allowed to air dry for 10

minutes. Following air-drying, the pellet was re-suspended in 10µl sterile distilled water

and incubated at 70°C to inactivate remaining DNase activity. The plasmid suspension

was then stored at -20°C until required.

2.9 Plasmid DNA Restriction digest

Plasmid DNA was digested with restriction enzymes purchased from Fermentas and

New England Biolabs. T4 DNA ligase was purchased from New England Biolabs.

Standard recombinant DNA techniques were used, as in Sambrook et al [219]. For

ligations of DNA with incompatible end structures, the endswere first made flush with

Klenow DNA polymerase (for 5′ extensions) or T4 DNA polymerase (for 3′ extensions).
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2.9.1 Analytical Plasmid DNA Digest

Analytical digests were performed to check for correct restriction sites, complete

digestions, and DNA miniprep yields. In a 20µl total volume,5µl of DNA for

analysis was added to 2µl of appropriate restriction enzymebuffer. 0.5µl of appropriate

restriction enzyme(s) was added, and the volume made up to 20µl with distilled

water. The digest was incubated at 37°C for 1-3 hours. Following incubation

appropriate volume of loading dye was added and the analytical digest observed using

gel electrophoresis.

2.9.2 Preparative Digest

Preparative digests were performed to digest plasmid DNA inpreparation for gel

extraction. A larger total volume of 200µl was used to maximize DNA yield from

the digest. 40µl DNA was added to 20µl of appropriate enzyme buffer. 3µl of restriction

enzyme(s) was added, and the volume made up to 200µl with distilled water. The digest

was incubated at 37°C overnight. Following incubation, thedigest was phenol extracted

and ethanol precipitated, and the resulting DNA pellet re-suspended in 15µl distilled

water. A microlitre of the DNA preparation was observed using gel electrophoresis to

check the yield. The remaining DNA was loaded onto an agarosegel and run at 100V

for 30 minutes before extraction of the appropriate bands.

2.10 Cranenburgh Ligation Method

DNA and RNA was quantified using a Thermo Scientific Nanodrop 2000 spectropho-

tometer. The method detailed by Cranenburgh, 2004 was employed for ligating DNA

fragments. The method utilizes equations 2.1 and 2.2.

Vv =
T

(Vc·Ii ·Ir
Ic·Vi

)+1
(2.1)
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Iv = T −Vv (2.2)

The equations above enable the determination of volumes required in a ligation reaction.

Insert and vector parameters must both be in the same units (e.g. kilobases for length

and micrograms per microlitre for concentration).Il Insert length,Vl vector length,Ic

insert concentration,Vc vector concentration,Ir required insert-to-vector concentration,

T volume of DNA solution component,Vv vector volume,Iv insert volume. TheIr

should be inserted as insert/vector (e.g 2 for a two-fold excess, 0.5 for a two-fold vector

excess) [220].

2.11 Primer Design

Primers for amplification of DNA were designed by obtaining the nucleotide sequence

from the EBI online database and isolating the ATG start codon for the gene of interest

and cross checked against the corresponding protein sequence in the Pubmed online

database. The primer sequence was extended 20 bases in the 3′ direction from the start

codon with the required DNA restriction site added to the 5′ end with 8 nucleotides

upstream. The 3′ end of the primer contained a guanidine and cytosine nucleotides,

forming a “GC clamp” to stabilize the association of the primer with the DNA to be

amplified. The same procedure was used for the 3′ to 5′ antisense strand primer, starting

at the stop codon and adding the appropriate restriction enzyme recognition sites and

8 nucleotide overhand added to the start of the primer. The melting temperatures of

the primers were calculated using the Eurogentec online “melt temp calculator” during

purchase of the primers and checked to be of a similar temperature and the primers

ordered from Eurogentec.com.
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2.12 PCR

PCR amplification was performed using the Expand Long Template PCR System kit

from Roche (catalogue number 11681834001), using a BioRad C-1000 PCR machine.

Using approximately 100ng of template DNA, the reaction mixwas formulated by

adding 4µl of deoxyribonucleotide mixture (containing 2.5mM of each nucleotide), 5µl

of 10x buffer 2, and 2.5µl of a 2.5mM primer solution was addedfor each primer. 0.5µl

Expand DNA polymerase (2.5 units) was added, and the reaction mix made up to 50µl

with sterile distilled water.

The PCR reaction was performed using a program consisting ofan initial heating period

of 94°C for 5 minutes, followed by a cycle of 94°C for 30 seconds, the primer melting

temperature for 1 minute per kb, 72°C for 1 minute. The cycle was repeated 25-30

times, then 72°C for 7 minutes before holding at 4°C.

2.13 Colony PCR Protocol

Colony PCR was performed using a BioRad C-1000 PCR machine and the REDTaq

DNA polymerase kit (Sigma Aldrich catalogue number D4309).Colony PCR was used

to confirm the insertion of cloned DNA into plasmids prior to sequencing. The PCR

reaction mix was formulated with 0.2µl of each primer (from aprimer stock of 2.5mM)

and 10µl of REDTaq DNA polymerase mix. A single colony of transformedE. coli

TOP10 was transferred from the transformation plate and inoculated into the colony

PCR reaction mix, and into a 2ml culture of LB medium containing the approporate

antibiotic for the selection marker on the plasmid. The PCR run was performed as

above.
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2.14 Genomic DNA Extraction

E. coli TOP10 genomic DNA was extracted by centrifuging an overnight culture of

cells at 5000rpm for 5 minutes. The supernatant was discarded and 200µl of extraction

buffer added to the pellet. 200µl of phenol:chlorophorm isoamyl 25:24:1 was added

to the solution with a volume of glass beads equivalent to thesize of the pellet. The

mixture was vortexed for 2.5 minutes and then centrifuged at13,000rpm (or maximum

speed of the benchtop centrifuge) for 5 minutes. The top layer of the supernatant was

extracted into a fresh 1.5ml centrifuge tube and phenol-chlorophorm extracted, before

ethanol precipitation. The DNA was re-suspended in 50µl sterile distilled water.

2.14.1 Extraction Buffer

The genomic DNA extraction buffer consists of 2% Triton X-100, 1% SDS, 100nM

NaCl, 10mM TrisCl (pH 8.0), and 1mM EDTA (pH 8.0).

2.15 Site Directed Mutagenesis Protocol

Site directed mutagenesis was performed using the Westlab Quickchange II site-

directed mutagenesis kit (catalogue number 200524). A set of forward and reverse

primers containing the modified sequence for insertion weremanually designed and

ordered from Eurogentec. The PCR reaction mix was formulated with 5µl 10x

buffer, 0.2µl double stranded DNA template (5-50ng final concentration), 1µl of

forward and reverse mutagenic primer (120ng final concentration), 1µl mixture of

deoxyribonucleotides containing 2.5mM of each base, and 1µl PFU Ultra enzyme (2.5U

per µl). The reaction mix was made up to a final volume of 50µl with sterile de-ionized

water.
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2.15.1 Site Directed Mutagenesis PCR Reaction Program

Site directed mutagenesis was performed using the BioRad C-1000 PCR machine. The

program was 95°C for 30 seconds, followed by 18 cycles of 95°Cfor 30 seconds, 55°C

for 1 minute, 68°C for 30 seconds. Following the PCR amplification cycles, 1µl of

DPNI enzyme (10 Units per µl) was added to digest the parent plasmid. The PCR mix

was incubated at 37°C for 1 hour before 1µl was used to transform 100µl ofE. coli XL

Gold ultra-competent cells, provided with the mutagenesiskit.

2.16 Phosphorylation and Annealing of Synthetic Oligonu-

cleotides

Olignonucleotides for annealing, such as the iron responseelement and LexA operators

were ordered from Eurogentec as a set of complementary sequences that require

phosphorylating and annealing prior to ligation into a plasmid construct. Phosphory-

lation was carried out using 50pmol of each oligonucleotide(0.5µl of 100µmol stock

solution), 200pmol of ATP (0.5µl of 100 µmol stock solution), and 5µl of 10x PNK.

The phosphorylation reaction was incubated at 37°C for 30 minutes, and then 95°C

for 3 minutes. The oligonucleotides were then placed in a beaker of boiling water and

allowed to cool to room temperature to anneal.

2.17 Agarose Gel Electrophoresis

1% agarose gels were used for visualizing and obtaining plasmids and DNA fragments.

Agarose was melted in 1x TAE buffer using a microwave. 100ml of molten agarose was

transfered to a casting tray and allowed to cool slightly before the addition of 3µl of

2mg/ml ethidium bromide. The ethidium bromide was mixed into the gel and allowed

to cool and solidify with a comb of appropriate size for the number of samples to be

loaded. DNA and plasmid preparations were mixed with DNA loading dye. Samples
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were run for 30 minutes at 100V with the gel immersed in TAE buffer in a gel running

tank (BioRad). 5µl of Fermentas GeneRuler or New England Biolabs DNA ladder was

added next to the samples for size comparison and estimation. 1kb and 100bp ladders

were used depending on the sample DNA length. Agarose gels were visualized using

an ultra-violet light transilluminator and a Kodac Gel Logic 100 imaging system.

2.17.1 TAE buffer - 5 Litre, 10x stock

TAE buffer was made as a 10x stock and diluted to 1x for each experiment in distilled

water. The 10x stock was prepared with 242g Tris base, 57ml glacial acetic acid, 100ml

0.5M EDTA pH8.0, made up to 5L with distilled water.

2.17.2 Preparation of DNA loading dye

DNA Loading dye was prepared as a 6x concentrated stock and diluted in the sample to

a final concentration of 1x. The 6x stock was prepared with 10mM Tris-HCl (pH 7.6),

0.03% bromophenol blue, 0.03% xylene cyanol, 60% glycerol,and 60mM EDTA.

2.18 Yeast Transformation

The yeast transformation protocol is based on the method by Guldeneret al [221].

2.18.1 Preparation of Solutions and Growth Media for Yeast Trans-

formation

Yeast cells were grown overnight at 30°C in a baffled shake flash containing 5ml YP

growth medium with 2% glucose (YPD).
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2.18.1.1 Preparation of 10x LiAc and 10X TE solution for yeast transformation

10x LiAc consisted of 1M LiAc pH7.5, 10x TE consisted of 0.1M Tris, 0.01M EDTA

pH7.5. 200ml volumes of each were prepared and sterilized byautoclaving.

2.18.1.2 Preparation of 20ml PEG/LiAc/TE solution

PEG/LiAc/TE solution was prepared by mixing 8g PEG 2000, 2ml10x LiAc, 2ml 10X

TE, 9.75ml distilled water and filter sterilized with a 0.2µlsyringe filter. The solution

was stored at room temperature for a maximum of 1 month.

2.18.1.3 Preparation of YP agar

500ml of 2xYNB and 200ml of 2x CSM knock out amino acid media were prepared

and stored separately until required, at which time they could be diluted together

forming 1xYNB. Glucose was added after autoclaving by filtersterilization, forming

YPD medium.

2.18.2 Yeast transformation protocol

Optical density measurements were collected using a Shimadzu UVMini 1240 spec-

trophotometer. Yeast cells were transformed by diluting the 5ml overnight culture to a

starting OD600nm of 0.2 and then growing the cells to 0.7-1.0 OD600nm (approximately

3-4 hours). Salmon sperm carrier DNA was boiled at 95°C for 10minutes and cooled

to room temperature. Cells were harvested by centrifugation at 4,000rpm for 5 minutes

and re-suspended in 10ml sterile distilled water. The centrifugation was repeated and

the pellet re-suspended in 1ml sterile water. The cell suspension was centrifuged at

5000rpm for 1 minute and the pellet re-suspended in 1.5ml TE/LiAc solution. The cells

were centrifuged at 5,000rpm for 5 minutes and the pellet re-suspended in 1ml TE/LiAc.

10 µl of plasmid DNA was added to 5µl (50µg) of carrier DNA, and50µl of cells.

300µl of PEG/TE/LiAc was added to the mixture and incubated at 30°C in a shaking
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incubator for 30 minutes, and then transferred to 40°C for 15minutes. Following the

40°C heat shock step, 800µl of sterile distilled water was added and the cells harvested

by centrifugation at 13,000rpm for 10 seconds. The pellet was re-suspended in 1ml YPD

broth and incubated at 30°C for 2-3 hours in a shaking incubator. Following incubation,

the cells were centrifuged at 13,000 rpm for 10 seconds and the pellet re-suspended in

200µl of YPD and plated onto YP knock out media lacking the appropriate auxotrophic

marker for the plasmid being transformed. Agar plates were incubated for 2-3 days at

30°C.

2.19 Yeast Protein Extraction

Total cell protein was extracted fromS. cerevisiaecells using the methodology from

Von der Haar [222]. Cells were collected at an equivalent optical density of 4x OD600nm

of 1.0. The cells were harvested by centrifugation at 4,500rpm for 5 minutes and the

pellet washed in 1ml sterile distilled water. The cells werecentrifuged at 13,000rpm for

10 seconds, the supernatant discarded and the pellet snap frozen at -80°C. The frozen

pellet was re-suspended in 100µl lysis buffer, and boiled at95°C for 10 minutes. 3µl of

4M acetic acid was added to the cells and boiled for 95°C for 10minutes. 25µl of SDS

sample buffer was then added to the cell suspension and used immediately for western

blot, or stored at -20°C until required.

2.19.1 Lysis buffer

Yeast cell lysis buffer consists of 0.1M NaOH, 0.05M EDTA, 2%SDS, and 2%β-

mercaptoethanol.

2.19.2 SDS Sample buffer

SDS sample buffer consists of 0.06M Tris-HCl pH6.8, 5% glycerol, 2% SDS, 4%β-

mercaptoethanol and 0.0025% bromophenol blue.
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2.19.3 Preparation of SDS PAGE Protein Gels

NuSep density gradient (4-20%) pre-cast protein gels were purchased from Generon

(http:www.generon.com) (catalogue number NH31-420, 15 sample wells per gel).

2.20 Western blotting

2.20.1 Polyacrylamide gel electrophoresis protocol

10µl of protein extracts was loaded on to 15% pre-cast NuSep density gradient pre-cast

gels. Samples were loaded alongside 10µl of Fermentas PageRuler pre-stained protein

ladder plus marker for size estimation. Protein gels were run at 80V for approximately

1 hour.

2.20.2 Western Blot Transfer protocol

A semi-dry pierce fast-transfer deck (from Thermo Fisher) was used for all western

blots. Nitrocellulose filter (Hybond C from Amersham Biosciences) was used for

increased resolution over PVDF film. Blotting paper and film were cut to the appropriate

size to cover the gel during the transfer, and soaked in transfer buffer. Protein gels had

the stacking gel removed and were washed in 10ml transfer buffer. 2 pieces of blotting

paper were transferred to the transfer deck, followed by thenitrocellulose film, the gel,

and 2 further pieces of blotting paper. A clean stripette wasused to roll across the

surface of the blotting stack to remove any air bubbles. The transfer deck was wetted

with transfer buffer and then closed over the blotting stack. The transfer was run at

400mA constant amps with a limit of 25V for 1 hour.

Following the transfer, the blotting stack was discarded and the film incubated in

Ponceau S staining solution (Thermo Fisher) to check for efficient transfer of protein to

the membrane. The Ponceau S stain was removed by briefly rinsing the membrane in

distilled water. The membrane was then incubated for 10 minutes in miser antibody
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extender solution (Thermo Scientific) to enhance primary antibody binding. The

membrane was then washed 5 times in distilled water before blocking with PBST+5%

milk (phosphate buffered saline + 0.1% Tween20 + 5% milk) fora minimum of 1 hour

at room temperature, or overnight at (4°C) on a rocking platform.

2.20.3 Antibody binding

Primary antibody concentration was calculated from the accompanying data sheet for

the relevant antibody. Luciferase, LexA, and IRP antibodies were purchased from

Abcam and used at a concentration of 1:200. Primary antibodywas prepared in 5

% milk PBS + 1:100 10% sodium azide solution. FITC and horseradish peroxidase

conjugated secondary antibody were prepared at a concentration of 1:20,000 in 5% milk

PBS without sodium azide. Alkaline phosphatase conjugatedsecondary antibody was

prepared at a concentration of 1:5000 in 5% milk PBS solution. All antibody solutions

were stored at 4°C in the dark.

The membrane was sealed in plastic sheeting using a heat sealer and 1ml of the primary

antibody added to the membrane. The membrane was then incubated overnight at

4°C. Following incubation, the primary antibody was collected (for re-use) and the

membrane rinsed 3 times for 10 minutes in 5ml PBST solution. 5ml of secondary

antibody solution was then added to the membrane and incubated for a minimum of 1

hour at room temperature of a rocking platform. Following incubation the secondary

antibody was collected for re-use, and the membrane washed 3times for 10 minutes in

5ml PBST, or 10 times if using the alkaline phosphatase secondary antibodies.

2.20.4 Western Blot Imaging

The membrane was transferred to a clear plastic sleeve and 1ml ECL reagent applied

to the surface of the membrane. The film was left at room temperature for 1 minute in

the dark for the membrane to react with the ECL. The excess ECLwas removed and

the membrane placed in a photographic cassette (Kodac) and transferred to the dark
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room for developing. Photographic film was applied to the membrane and exposed for

5 minutes before being transferred to the developer. Longertime periods can be used

depending on the signal from the membrane.

2.20.5 Alkaline Phosphatase Protocol

For alkaline phosphatase reaction, the alkaline phosphatase buffer was prepared in a

50ml falcon tube and consisted of 1ml 1M Tris-HCl pH 9.5, 0.25ml 4M NaCl, 50µl

1M MgCl2, 8.7ml deionized water for a 10ml final volume. 66µl of NBT wasadded

and mixed, followed by 33µl of BCIP. The solution was mixed and 5ml applied to

the membrane. The membrane was incubated in the dark at room temperature on a

rocking platform and regularly observed for the development of a colour reaction on

the membrane. Once sufficient bands have developed the reaction can be stopped by

washing the membrane in distilled water.

2.20.6 Quantification of Western Blot Images

For quantification of western blots, the membrane was scanned on a flatbed scanner

(Canon) and the image saved as an 8bit (greyscale) uncompressed TIFF image. Images

were then quantified using the Gel-Pro Analyzer software (version 3.1) from Media

Cybernetics. Data was then transferred to Microsoft Excel and OriginLab Origin for

plotting and further analysis.

2.21 DNA Sequence Alignment

Sequence alignment was performed using the ClustalW software package, version 2.1

compiled for Linux from source code available from http://www.clustal.org. [223]

Analysis of plasmid constructs was performed using Sequencher 4.9 from Gene Codes.
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2.22 DNA Primer Design

Primers were designed manually by identifying the transcription start site from the

literature concerning the gene of interest, finding the nucleotide sequence in online

databases such as NCBI and matching the nucleotide sequencewith the protein database

sequence to locate the open reading frame. The primer was then constructed using 20

bases upstream of the 5′ to 3′ start site and 20 bases downstream of the 3′ to 5′ start

site. Suitable restriction enzyme sites were added to the 5′ and 3′ primers together with

8 random nucleotides at each end to facilitate binding to thetarget sequence. Primers

were ordered online from Eurogentec.

2.23 Pheromone Induction of Yeast Cells for Lumines-

cence Assay

A 10ml overnight culture of yeast cells were grown in a 50ml baffled shake flask

(incubated in a shaker incubator at 30°C, 250rpm), and diluted the following morning

to an optical density of 0.2 OD600nm in 25ml fresh YP broth medium (containing

appropriate amino acid drop out media, and 2% glucose) in a 100ml baffled shake flask

(incubated in a shaker incubator at 30°C, 250rpm). Cells were then grown to an optical

density of approximately 0.6-0.8 OD600nm and then stimulated with 100nM of alpha-

factor pheromone (Zymo Research Y1001).

2.24 Optical Density Measurements

Optical density measurements were prepared with a 1:10 dilution of the yeast culture

in a 1ml volume of YP both, in a 1.5ml SemiMicro Cuvette (Starlab catalog number

E1412-4150). Optical density Measurements were made usinga Shimadzu UVmini-

1240 UV-VIS spectrophotometer. Optical density measurements were used to estimate
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the cell growth phase for pheromone induction, and the cellometer was used to calculate

cell number for luminescence data normalisation.

2.25 Cellometer Cell Measurements

In addition to measuring biomass using optical density, cell numbers were calculated

using a cellometer Auto T4, purchased from Nexcelom Bioscience. 20µl of cells was

transferred to a cellometer counting chamber. The chamber was left on the bench

for approximately 10 minutes to settle before reading in thecellometer instrument.

Counts were obtained using the cellometer software in cellsper ml. Cell images were

exported along with the raw data in Microsoft Excel format. Relative luminescence

units measured by the luminometer were divided by the cell count to convert the

measured luminescence to relative luminescence units per cell.

2.26 Yeast Growth Rate Measurements

Yeast cells were grown overnight on YPD complete with 2% glucose, for wild-type

cells, or YP -LEU, -HIS, -URAwith 2% glucose for cells transformed with the circuit

plasmids. The culture was diluted to an optical density of 0.001OD600nm, and the optical

density of the cultures measured every hour for 16 hours. TheLog base 2 optical density

measurements were plotted against time to identify the logarithmic growth phase (log

phase), and the growth rate was then determined by calculating 1/slope, and compared

across strains.

2.27 Yeastin situ Luciferase Assay

The following assay is based on the publication by Vieites J.M. et al., and enables thein

vivo measurement of luciferase activity without requiring celllysis [204]. 50µl of each

yeast culture was transferred to a luminometer tube containing 150µl m-citrate buffer,
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pH3 (0.2M sodium citrate (28.8g/l) and 0.2M citric acid (42.2g/l)) (m-citrate buffer

was aerated prior to use by vortexing for 15 seconds prior to each measurement). The

buffer enhances the permeability of the membrane, enablingexposure of intra-cellular

luciferase to extra-cellular luciferin.

The luciferin stock was prepared at 10mM in 10mM sodium bicarbonate. 10µl of

luciferin solution was added to 50µl of cells in 150µl of sodium citrate buffer, making a

final concentration of Luciferin of 0.5mM n the reaction mixture.

The luminometer (Berthold Lumat LB 9507) was configured to sample 25µl of the

reaction mixture, and measure the average luminescence over 30 seconds. The lumi-

nescence measurement (measured as relative luminescence units) was then converted

to relative luminescence units per cell using the cell countmade using the cellomoter.

Three reaction mixtures were prepared for each time point and each mixture measured

once. The average of the three luminescence measurements was calculated, and

converted to relative luminescence units per cell using thecorresponding cellometer

cell count.

2.28 Real-time Quantitative PCR (RT-qPCR)

2.28.1 RT-qPCR Primer Design

Primers for RT-qPCR were designed using the PrimerPy software from

http://code.google.com/p/oligobench.

2.28.2 mRNA extraction and purification

Frozen cell pellets were thawed on ice for approximately 5 minutes and re-suspended

in 750µl chilled TES (10mM Tris-HCl pH7.5, 10mM EDTA, 0.5% SDS). 750µl of

phenol-chloroform 5:1 pH 7.4 (Sigma P1944-400ML) was added, and vortexed for 5

seconds. The solution was incubated for 1 hour at 65°C with shaking. Following
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incubation the cells were chilled on ice for 1 minute and mixed by vortexing for 20

seconds before being centrifuged at 13,000rpm for 5 minutes. 700µl of the aqueous

phase was transferred to a new centrifuge tube and 700µl of phenol-chloroform and

mixed by inversion. The suspension was centrifuged at 13,000rpm for 1 minute and the

aqueous phase transferred to a new centrifuge tube. 650µl ofthe aqueous phase was

transferred to 650µl of chloroform-asoamyl alcohol (25:1)and mixed by inversion. The

solution was centrifuged at 13,000rpm for 1 minute and 500µlof the aqueous phase

transferred to a new centrifuge tube. 1.5ml of 100% ethanol was added with 50µl of 3M

sodium acetate, pH5.2 and the mRNA precipitated at -80°C for30 minutes. The solution

was then centrifuged at 13,000rpm for 10 minutes and the supernatant discarded. The

pellet was washed in 500µl 70% ethanol and centrifuged at 13,000rpm for 1 minute.

The supernatant was discarded and the pellet air dried. The pellet was re-suspended

in 100µl DEPC water and incubated for 1 minute at 65°C to dissolve the pellet. The

mRNA yield was quantified using a Nanodrop spectrophotometer and stored at -80°C.

2.28.3 Turbo DNase protocol

40µg of mRNA was transferred to a new centrifuge tube and 300µl (6 units) of Turbo

DNase added. The reaction mixture was incubated for 30 minute at 37°C. The mix was

then phenol-chloroform purified and ethanol precipitated as in the above section and the

pellet re-suspended in 200µl DEPC water. The mRNA yield was quantified using the

Nanodrop spectrophotometer. The DNase treated mRNA was stored at -80°C.

2.28.4 Reverse Transcriptase protocol

The reverse transcription reaction was carried out using the PrimerDesign Precision

Reverse Transcription Kit (catalogue number RT-nanoScript). To anneal the RT

primers, mRNA template was added at approximatley 1µg (recommended 2ng - 2µg),

with 1µl of RT Primer, and made up to a final volume of 10µl with RNase/DNase free

water. The reverse transcriptase reaction mixture was thenheated to 65°C for 5 minutes

using the BioRad C-1000 thermocycler and then placed on ice.Following the annealing
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step the reverse transcriptase reaction mix was prepared byadding 2µl of nanoScript 10x

buffer, with 1µl of dNTP mix (containing 10mM of each dNTP), 2µl 100mM DTT, 4µl

of RNase/DNase free water, and 1µl of nanoScript reverse transcriptase enzyme. The

reverse transcriptase reaction mix was then added to the annealed mRNA reaction mix

forming a final reaction mixture volume of 20µl.

2.28.5 RT-qPCR protocol

The mRNA quantification was used to calculate an equivalent volume of approximately

25ng cDNA (assuming all of the mRNA in the reverse transcription reaction had been

transcribed to cDNA) for the qPCR reaction mix. 5µl of 2x Precision master mix

containing SYBR green (PrimerDesign catalogue number Precision-SY) was added

to 6µl of the reverse transcriptase reaction and made up to a final volume of 10µl

with DNase/RNase free water. 10µmol solutions of each primer were prepared in

DNase/RNase free water and 1µl of each primer pair was mixed in a Qiagen PCR

tube. 8µl of the qPCR reaction mix containing the cDNA template was mixed with

the primer making a 10µl final reaction volume. The tubes wereloaded into a Qiagen

Rotorgene Q qPCR machine, programmed with a protocol consisting of 10 minutes

enzyme activation at 95°C (hot start), 50x cycles of 15 second denaturing at 95°C

followed by 60 seconds at 60°C for data collection. The qPCR cycles were then

completed with a melt curve, pre-programmed by QiaGen. The amplification efficiency

wash checked to be above 1.6 and the data was then analysed using the RotorGene Q

series software provided by Qiagen.

2.29 Mathematical Modelling

Mathematical modelling was performed using the Copasi version 4.7 (build 34)

available from http://www.copasi.org, and referenced in Hoopset. al. The Kofahl and

Klipp model of the yeast pheromone response pathway was obtained in SBML format
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Parameter Value
Modulation Factor 1x10−9

Resolution 1x10−9

Derivation Factor 0.001
Newton method 1
Integration 1
Back Integration 1
Accept Negative Concentrations 0
Iteration Limit 50
Maximum duration for forward integration 1x10−9

Maximum duration for backward integration 1x10−9

TABLE 2.4: Copasi metabolic control analysis parameter values.

from http://www.biomodels.net [224]. Additional parameter values were obtained from

http://www.bionumbers.org [225].

2.29.1 Metabolic Control Analysis

Metabolic control analysis was performed using the Copasi software package, with

steady state analysis and the parameters described in table2.4.

2.29.2 Sensitivity Analysis

Sensitivity analysis concentration control coefficients were calculated using Copasi, on

all non-constant concentrations of species, and all parameter values.

Sensitivity analysis is performed by making a change to all parameters in the reactions

of the model by a value delta (∆) and measuring the change in the steady state values of

all the concentrations of the reactants. Copasi uses the current value of the parameter

times the delta factor as variation. If this number is smaller than the delta value then a

delta minimum value is used.

Copasi sensitivity analysis was performed using the following parameter values:∆

factor of 0.001 and∆ minimum of 1x10−12.
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2.29.3 Metabolic Control Analysis

Metabolic control analysis concentration control coefficients were calculated using

Copasi. Metabolic control analysis was performed using thedefault Copasi parameters

with a modulation factor of 1x10−9, resolution of 1x10−9, deviation factor of 0.001,

with Newton, integration, and back integration, and an iteration limit of 50. Maximum

duration of forward integration was 1x10−9 and maximum duration of backward

integration of 1x10−6.

2.29.4 Signal to Noise Ratio

The signal to noise ratio was calculated using the formula:

SNR=
µ
σ

(2.3)

The mean, standard deviation, and variance were calculatedfor each time point, and the

confidence interval for the mean and the variance used to calculate the error propagation

for each time point. Using a confidence interval of 95%, the following formula was used

to calculate the confidence limit for the mean:

CIm= x± tα/2 · (σ/
√

n) (2.4)

whereCIm is the confidence limit for the mean,x is the mean of the sample population,

σ is the standard deviation,α is the confidence level divided by 100, andtα/2 is the

t-distribution value, and n is the sample size. For the luminescence assays reported in

this work,n=9.

The standard deviation confidence interval for variance wascalculated for a confidence

interval of 95% using the formula:

CIv = [(n−1) ·S2/X2
α/2,n−1]≤ σ2 ≤ [(n−1) ·S2/X2

α/2,n−1] (2.5)
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whereCIv is the confidence interval for variance,n is the sample size,S is the variance,

α is 1-(confidence level divided by 100), andX2
α/2,n−1 is the Chi-square table value.

Using CI asδµ, CIv as δσ, together with the mean (µ) and standard deviation (σ),

calculated from equations 2.4 and 2.5, the error propagation for the signal to noise

ratio at each time point was calculated using the formula:

R= SNR·

√

(

δµ
µ

)2

+

(

δσ
σ

)2

(2.6)

WhereR is the error,SNRis the signal to noise ratio (calculated in equation 2.3),σ is

the standard deviation of the mean, andµ is the mean of the sample set for each time

point.

2.29.5 Parameter Estimation

For the final models in chapter 5, section 5.6 fitting was performed using the

luminescence time course data. The data from each strain wasused to fit to the generic

circuit model, to create a new model specific to the strain from which the luminescence

data was fitted.

Parameter estimation was performed using Copasi. The parametersVmax, KM, Ki , V, k,

ands for each of the reactions in the model were allowed to vary between +/- 100%.

The promoter strength parameterP was fixed with the corresponding value of zero or

sixty, depending on whether the data was from a TEF1 or DCD1 promoter strain. The

Hooke and Jeeves optimisation algorithm was run first to obtain a fit to the experimental

data, followed by the simulated annealing algorithm to confirm and/or improve on the

Hooke and Jeeves algorithm. The fitted model was then saved asa separate model file,

producing four models corresponding with each of the four circuit strains.

The parameters for the Hooke and Jeeve’s algorithm were: an iteration limit of 50, a

tolerance of 1x10−5, and a Rho value of 0.2. The simulated annealing algorithm was

used with a start temperature of 1, cooling factor of 0.85, and tolerance of 1x10−6.
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2.30 Dissertation

Graphs were produced using LibreOffice version 3.4.5 available from http://www.libreoffice.org,

and Origin 8.5, available from http://www.originlab.com.Statistical analysis was per-

formed using IBM SPSS version 19, available from https://www-01.ibm.com/software/analytics/spss/.

Additional stochastic data analysis was performed using the Python programming

language, version 2.6 available from http://www.python.org.

The dissertation was written using an IBM compatible personal computer with LATEX

running Ubuntu 11.10, available from http://www.ubuntu.org.



CHAPTER

THREE

RESULTS - CIRCUIT CONSTRUCTION

3.1 Introduction

Three plasmids were designed to exploit the cellular machinery associated with the

yeast mating response. The presence of, and thus the cellular response to,α-mating

factor drives the simultaneous expression of plasmid-derived proteins that regulate

the experimental gene circuitin vivo (figure 3.4). The circuit was constructed from

three individually well characterized genetic components; the luciferase reporter gene

[209], theE. coli LexA repressor [203], and the mammalian IRP repressor [4]. The

PFUS1 promoter from the yeast mating response pathway has been used in a number of

publishes studies to enable reporter genes to be expressed in response to pheromone

stimulation [1, 3, 6, 7, 211, 226, 227].

3.1.1 The Iron Responsive Element-Binding Protein

The human iron response protein (IRP) is a cytosolic, RNA binding protein that has

been well characterised in its ability to repress the expression of iron metabolism genes

[206, 207, 228–231]. The IRP regulates the translation of encoding proteins for iron

76
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FIGURE 3.1: The iron response element nucleotide sequence was converted into an
RNA sequence and a hypothetical secondary structure was calculated using the m-fold
software package with an initial∆G = -8.40 kcal/mol. A single structure was predicted
and demonstrates the hair-pin loop structure that binds theIRP to block translation [4].

FIGURE 3.2: Crystal structure of the iron response protein in complex with ferritin
mRNA. Adapted from Waldenet al [232].

transport and storage in mammalian cells by blocking the initiation of translation by

the 40S ribosomal subunit [4, 231, 232]. It has been shown that the IRP binds to a 62

nucleotide stem-loop structure(figure 3.1) in the mRNA template of iron response genes

(figure 3.2) with high affinity (Kd 10−10 - 10−11) and is sufficient to block translation

[4, 205, 232]. Kolotevaet al have shown that the IRP functions in yeast, and can bind

to the IRE placed upstream of reporter genes [4]. Kolotevaet al also investigated the
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FIGURE 3.3: Unrefined crystal structure of a LexA-DNA complex, adapted from
Zhanget al [240]

position of the IRE relative to the start codon on the mRNA molecule and found the IRP

is able to inhibit translation if it is located at the 5′ end of the molecule and within 50

nucleotides of the mRNA CAP structure. When the IRP is not bound to the IRE, the IRE

does not interfere with translation as the 40S ribosomal subunit is able to overcome the

structural resistance of the stem-loop structure during the scanning process and initiate

translation at the start codon [4].

3.1.2 The LexA DNA Binding Protein

LexA is an E. coli transcriptional repressor that represses the SOS responsegenes

coding for DNA polymerases required for repairing DNA damage [233]. LexA binds

with high affinity to a specific DNA recognition sequence called the “LexA operator”,

and blocks RNA polymerase-mediated transcription of downstream genes. [233–235]

(figure 3.3). LexA has been well characterised in bacteria [233, 235, 236] and has been

shown to function as a transcriptional repressor in mammalian cells [237] as well as

yeast [5, 203, 238, 239].
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3.1.3 Yeast Promoters

There are a number of varying strength promoters available in yeast that have been well

characterized and provide the capability to vary the expression levels of the genes that

they regulate [241]. TheDCD1 promoter (PDCD1) from the yeast dCMP deaminase

gene, provides a weak promoter for the gene circuit and was designed to express a

low number of mRNA transcripts from the genes it regulates [212, 242]. The TRP1

promoter (from the yeast tryptophan biosynthesis pathway)(PTRP1) is a similar strength

promoter to PDCD1 that has also been well studied in yeast [243]. TheTEF1promoter

is a strong promoter in that it expresses a high number of mRNAtranscripts from the

genes it regulates [212, 244]. The combination of these different strength promoters

enables differentiating the expression levels of the components of the circuit and tuning

the expression of the reporter gene.

Individually, these components provide a tool-kit of partsthat can be combined to form

synthetic gene circuits. The pheromone response pathway itself forms a generic input

module that interfaces these parts with the external environment and enables the circuit

to be activated by the addition of an extra-cellular stimulus.

One of the problems encountered when assaying reporter genes and building synthetic

circuits with discrete behaviours is discriminating between gene activation and back-

ground expression [245–247]. To this end, the gene circuit attempts to reduce noise

from background (basal) expression, and attempts to increase the ratio between the

inactive and active state of the reporter gene. The circuit also enables the investigation

of two separately well characterised genetic control elements (the IRP and LexA

repressors) in a synthetic biology application.
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3.2 Circuit Overview

3.2.1 Design overview

Figure 3.4 outlines the design of the gene circuit constructed for this project. The

luciferase reporter gene was placed downstream of the PFUS1 pheromone response

pathway promoter, interfacing the reporter gene with the pheromone response, enabling

the cells to express luciferase in response to pheromone. The IRE was placed upstream

of the luciferase reporter gene, interfacing the reporter plasmid with the repressor

plasmid. The repressor plasmid contained yeast constitutive promoters controlling the

expression of the IRP gene, facilitating constitutive expression of IRP and repression

of luciferase mRNA translation. A third plasmid de-represses luciferase by expressing

LexA, also from the pheromone response pathway PFUS1 promoter. Upon pheromone

stimulation, the cells express LexA which binds to a set of LexA binding domains on

the repressor plasmid up-stream of the constitutive promoter. De-repression occurs

simultaneously with expression of luciferase, lifting repression on the reporter gene,

which is itself up-regulated. This mechanism of controlledrepression of the reporter

gene enables repression of basal expression that is de-repressed upon activation,

boosting the induction ratio through reduced background activity.

3.2.2 Component Interactions

The reporter plasmid expresses a reporter gene that can be measured experimentally

providing a means of observing the behaviour of the circuit experimentally (figure

3.4 right). The repressor protein functions at the level of translation, inhibiting the

progression of the ribosome translocation along the mRNA molecule (figure 3.4 middle)

[4]. The de-repressor plasmid expresses the LexA inhibitorthat binds to a specific

DNA recognition sequence (the LexA operator) cloned upstream of the promoter in

the repressor plasmid, blocking transcription of the IRP gene (figure 3.4 left). This

approach produces repression on two different time scales.Repression of the luciferase

reporter gene is fast as the IRP blocks the translation of thereporter gene mRNA.
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FIGURE 3.4: The circuit is comprised of three plasmids that expressproteins that
interact to form an discrete circuit in the host cell. The circuit uses the yeast mating
response to induce a quantifiable reporter gene (luciferase) (right), the expression
of which is controlled through the interactions of the products of the other two
plasmids (left and middle). The repressor plasmid (middle)contains a constitutive
yeast promoter, expressing a repressor protein (IRP) that continuously represses mRNA
translation of the luciferase reporter gene, forming the circuit OFF-state. Upon
pheromone stimulation of the cells, the yeast mating response is activated and the
Ste12 transcription factor up-regulates the expression ofthe de-repressor plasmid that
expresses its own repressor protein (LexA) which repressestranscription of the IRP
gene (right). The reporter plasmid is also up-regulated by Ste12 and expresses the
luciferase reporter gene, forming the circuit ON-state. The interaction of the three
components ensures repression of basal (non-induced) expression of the reporter gene
and maximizes a switch-like response when the circuit movesfrom the OFF-state to
the ON-state.

Depending on the half life of the reporter gene, this blocks the accumulation of the

reporter protein directly. Repression of IRP by LexA is slower however as LexA inhibits

progression of RNA polymerase during transcription. Residual IRP mRNA molecules

that were transcribed before up-regulation of LexA (activation of the circuit) circuit

will continue to be translated into functional repressor proteins that can continue to

repress reporter gene translation. De-repression is therefore a function of the repressor

mRNAandprotein degradation rates. Repression of the reporter is only a function of the

degradation rate of the luciferase protein. The circuit cantherefore inhibit expression

of the reporter gene under normal growth conditions, and upon pheromone activation,

the circuit can begin simultaneously de-repressing and up-regulating the reporter gene.
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3.2.3 Overview of Luciferase Gene Expression Tuning

Understanding the interaction of the components is key to understanding the perfor-

mance characteristics of the circuit, and the ability to “tune” the controlling elements

enable the optimization of the circuit towards maximal reporter gene expression.

Understanding the effect of simultaneous interactions however is difficult to achieve

analytically, therefore systems biology techniques of mathematical modelling were

employed to provide insight into the interactions prior to construction of the gene

circuit, when there is an absence of experimental data.

The first round of modelling indicated theIRP gene’s rate of transcription, and

degradation rate of the IRP protein exerts the most control over the output of the

circuit (chapter 5, and figure 5.7). Therefore, additional circuit design variations were

incorporated into the laboratory construction phase that included strong and weak

promoters, enabling high and low expression levels of the IRP.

In addition to tuning the expression level of the IRP repressor, modelling indicated that

the degradation rate of the IRP is also a key control point of the circuit. A degradation

tag was also designed and added to the IRP to provide a short and long half-life variant

of the repressor protein. Perturbing the half-life of the IRP was predicted to be an

effective method of controlling the rate of repression of the luciferase reporter gene.

A literature review of protein degradation tags revealed previous work by Mateus and

Avery, where the yeast-optimized GFP (yEGFP3) was fused to the C-terminus of the

constitutively unstable yeast C1 cyclin, Cln2 protein [216]. The C-terminus residue

contains PEST motifs of Cln2 that are thought to target the protein for ubiquitin

(Ub)-dependent degradation [248–250]. This form of degradation is constitutive and

therefore does not require heat induction or activation by aligand molecule, as found in

other degradation tags [181]. The PEST tag has been shown to reduce the half-life of

human thymidine kinase from 2 hours to 12 minutes, and reducethe half-life of eGFP

from 7 hours to approximately 30 minutes [216].

There is no published half-life for the IRP, but some researchers have recorded a half-

life of greater than 12 hours [205, 251, 252]. If a 10-fold reduction in the half-life of
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IRP can be achieved with the addition of the C-terminus PEST tag it would result in

IRP with a half-life of approximately 1 hour which is within the time-scale of the yeast

pheromone response.

3.3 Construction of the Reporter Plasmid

The reporter plasmid was constructed using the pRS315 plasmid backbone which

is one of a series of pBluescript-based centromere vectors (NCBI accession number

U03441), created by Sikorski and Hieter [213]. The plasmid contains the ampicillin

antibiotic resistance marker for selection in bacteria andtheLEU2 auxotrophic marker

for selection in yeast (table 2.1). The pheromone response pathway promoter PFUS1,

from yeast was cloned into the pRS315 multiple-cloning site(MCS) between BamHI

and NdeI restriction sites, prior to the start of this project by the McCarthy lab.

The luciferase gene was cloned from plasmid pJM4 from the McCarthy lab plasmid

collection, utilizing the HindIII and NdeI sites downstream of the PFUS1promoter so that

expression of luciferase was pheromone-inducible via the yeast mating response (see

figure 3.6). The PFUS1 promoter links expression of the reporter gene to the pheromone

response pathway which provides a signal input module for the circuit.

3.3.1 The Luciferase Reporter Gene

The luciferase/luciferin bioluminescent system is found in the firefly (Photinus pyralis)

[253] (figure 3.5)In vitro, the activity of the luciferase enzyme is assayed by the addition

of its substrate firefly Luciferin, ATP and magnesium ions. Luciferase oxidizes ATP-

activated luciferin through a dioxetanone intermediate, and produces carbon dioxide

and oxyluciferin in an excited state which decays quickly, emitting a yellow-green light

with a high quantum yield [204, 254]. The luciferase reporter gene provides a method of

assaying the behaviour of the circuit with high sensitivitycompared with other common

methods such as fluorescent proteins (McCarthy J. (2009) Personal communication

(McCarthy Lab). The firefly luciferase gene was obtained fromplasmid pJM4 from
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FIGURE 3.5: Crystal structure of firefly luciferase at 2.0Å resolution. The protein
is folded into two compact domains. The large N-terminal domain consists of a
beta-barrel and two beta-sheets. The sheets are flanked by alpha-helices to form an
alphabetaalphabetaalpha five-layered structure. The C-terminal portion of the molecule
forms a distinct domain, which is separated from the N-terminal domain by a wide
cleft. Image reproduced with permission from Conti [254].

the McCarthy lab plasmid collection. The luciferase gene was located between NdeI

and HindIII restriction sites in plasmid pJM4 making it compatible with the pRS315-

PFUS1-eGFP plasmid (figure 3.6). The luciferase gene was cloned inplace of the

eGFP reporter gene in the plasmid pRS315-PFUS1-eGFP, creating the pRS315-PFUS1-

luciferase plasmid, and the cloning was confirmed by sequencing. The reporter plasmid

was then further modified with the ligation of the IRE sequences enabling interaction

with the repressor plasmid. The expression of the luciferase reporter gene needs to

be reduced to a minimum level during the circuit OFF-state, reducing noise from the

circuit and maximizing the switch to the ON-state. To achieve this repression of basal

expression levels the repressor plasmid was further modified with the incorporation of

the iron response element, described by Kolotevaet al [4].
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FIGURE 3.6: Map of the pRS315-PFUS1-IRE-luciferase reporter plasmid.

3.4 Insertion of the Iron Response Element

A set of synthetic oligonucleotides was designed containing the IRE nucleotide

sequence from Kolotevaet al between overhanging CA nucleotides (figures 3.7 and

3.8), enabling the IRE to be ligated into the NdeI restriction site on the reporter plasmid

(figure 3.6) [4]. The IRE oligonucleotides were synthesizedby Eurogentec, annealed

together into a double stranded DNA fragment duplex, and ligated into the reporter

plasmid. Using this cloning strategy with a single restriction site and a small insert

presents a high probability of the vector plasmid re-annealing during ligation resulting

in a large number of false positive transformation colonies. However, the IRE contains

an additional HindIII restriction site and the eliminationof the reporter plasmid’s

single NdeI restriction site during ligation provided a screening method for identifying

transformed colonies using restriction enzyme digest. Following transformation ofE.

coli TOP10, a number of colonies were selected for miniprep DNA amplification and

screened by restriction enzyme digest (figure 3.9). The plasmid was digested with

restriction enzymes, and agarose gel electrophoresis was used to determine the sizes

of the bands following enzymatic digestion, and to confirm the IRE had been correctly
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5’-CACCAATTATCTACTTAAGCTTCAACAGTGCTTGAACTTAAGAACACAAAACTCGAGAAGA-3’
3’-GGTTAATAGATGAATTCGAAGTTGTCACGAACTTGAATTCTTGTGTTTTGAGCTCTTCTAC-5’

FIGURE 3.7: Nucleotide sequence of the iron response element (IRE), constructed as
a synthetic oligonucleotide by Eurogentec for annealing into double stranded DNA,
and ligating into the reporter plasmid. The CA overhangs (marked in bold) enable
the insertion of the IRE into an NdeI restriction site. The underlined region forms the
stem-loop hairpin structure that is bound by the IRP, blocking translation.

FIGURE 3.8: Schematic diagram of the IRE position, in relation to the FUS1 promoter
and IRE gene.

ligated (figure 3.9). The plasmids were digested with HindIII, and BamHI. The IRE

ligated reporter plasmid produces 6kb, 2kb fragments and a 500bp fragment due to an

additional HindIII site located in the IRE. The pRS315-PFUS1-luciferase without the

IRE was used as a control and produces 6kb 2.6kb fragments.

The IRE ligated plasmid was sent for sequencing to confirm theIRE had inserted in the

correct orientation, and transformed intoS. cerevisiae sst2∆ strain.
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FIGURE 3.9: Insertion of the IRE into the plasmid was confirmed by digestion with
restriction enzymes. L is NEB 1kb ladder. U is undigested pRS315-PFUS1-IRE-
luciferase plasmid. T is the pRS315-pFUS1-IRE-luciferaseplasmid digested with
BamHI and HindIII restriction enzymes. C is the control pRS315-PFUS1-luciferase
enzyme digested with BamHI and HindIII. The additional HindIII site in the IRE
produces 6kb, 2kb and 500bp fragments while the single HindIII site in the control
cuts 6kb and 2.6kb fragments.

3.5 Construction of the Repressor Plasmid

The repressor plasmid was initially constructed using the pTRPex plasmid, containing

the yeastTRP1constitutive promoter (see figure 3.11), and has been used asa low

strength constitutive promoter in previous work in the lab (Firczuk, M (2009), personal

communication. University of Warwick). In wild type yeast PTRP1controls expression

of the TRP1gene ofS. cerevisiaewhich codes for N(5′phosphoribosyl)-anthranilate

isomerise which catalyses the third step in the tryptophan biosynthetic pathway [255].

The PTRP1 promoter has been found to generate two mRNA groups with different 5′

ends named “transcript I” and “transcript II” [255]. One group of mRNA transcripts

is transcribed with leader sequences which are 60 to 200bp longer than the other

[256]. Each group has been found to be transcribed from a region of the promoter

with a sequence homologous to the consensus sequence of the TATA box [255].

The PTRP1 promoter region in the pTRPex plasmid was identified betweenpositions

571 and 2185bp. The second TATA box was identified between 1864 and 2190bp,

and the TATA box identified at 1929bp. It was hypothesized theTRP1 promoter

would provide an appropriate level of IRP expression and efficient inhibition of basal

expression of the reporter plasmid, and the published studies of theTRP1promoter

would provide sufficient understanding to design effectivecontrol elements to control

IRP expression. Site directed mutagenesis was used to insert a NotI restriction site into
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theTRP1promoter at 1864bp to enable the insertion of LexA operator sequences into

the promoter that would prevent the second TATA box from promoting the transcription

of downstream genes (see section 3.4.2).

3.5.1 Cloning the Iron Response Protein Gene

3.5.1.1 TRP1 promoter strategy

The iron response protein gene was obtained from the laboratory plasmid library pJM6

plasmid (figure 3.10). The pJM6 plasmid and pTRPex plasmids are both based on

the same pSupex plasmid, published by Oliveriaet al [214], and theTRP1promoter

and IRP gene have been cloned between compatible restriction enzymes sites. A

problem was encountered whilst attempting to clone the IRP gene from pJM6. The IRP

gene repeatedly failed to ligate into the pTRPex plasmid with none of the transformed

colonies producing fragments with XhoI and XbaI restriction enzyme digests. The IRP

was also amplified from the plasmid pJM6 using PCR and primersdesigned to introduce

SalI and XhoI restriction sites at the 5′ and 3′ ends of the IRP to enable cloning into

the pTRPex plasmid, however this strategy also failed to ligate successfully. A large

number of cloning attempts were made by the author, along with assistance from senior

post doctoral researchers however a successful ligation ofthe IRP gene into the pTRPex

plasmid could not be achieved. It is believed that the problems encountered cloning the

PCR amplified IRP gene may have been due to a technical problemwith the SalI enzyme

not cutting PCR products. New England Biolabs have acknowledged this problem and

are investigating at the time of writing. The pTRPex plasmidis a large 8kb plasmid, and

the PTRP1promoter is a large promoter, 3kb in length. It was possible that a secondary

structure motif in the IRP DNA fragment was interacting withthe plasmid during the

ligation reaction, or attempting to construct a plasmid of 11kb was also resulting in

a problematic ligation. The shorterDCD1 promoter was available in the McCarthy

lab and provides the same promoter strength aspTRP1(Firczuk M. (2010). Personal

communication (McCarthy Lab), [212, 242]). TheDCD1 promoter was also shorter

than pTRP1and does not produce a heterogeneous mRNA population or consist of
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FIGURE 3.10: Map of the pJM6 hIRP plasmid used for cloning the IRP gene into
the repressor plasmids (from the McCarthy lab plasmid library). pJM6 is a yeast
expression plasmid based on the pSupex plasmid, and contains theURA3auxotrophic
marker for selection in yeast and the ampicillin resistancemarker for selection in
bacteria. pJM6 contains the IRP gene under the control of thegalactose inducible
promoter, PGAL.

multiple transcription start sites, as was reported for theTRP1promoter. It was decided

therefore, to exchange PTRP1for PDCD1 in the circuit.

3.5.1.2 DCD1 promoter strategy

TheDCD1 promoter is a low strength promoter, and has been studied previously in the

McCarthy lab (Firczuk, M. (2010). Personal communication.University of Warwick).

PDCD1 is the promoter for the gene Deoxycytidine monophosphate (dCMP) deaminase

required for dCTP and dTTP synthesis and is expressed constitutively in S. cerevisiae

[212, 242]. TheDCD1 promoter is 209bp in length and has not been shown in the
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FIGURE 3.11: Map of the pTRPex plasmid from the McCarthy lab plasmidlibrary.
The plasmid pTRex is a yeast expression plasmid based on the pSupex plasmid
[214]. The plasmid contains theTRP1yeast constitutive promoter, modified with
a NotI restriction site to enable insertion of additional control elements within the
promoter. The plasmid is based on the pSupex plasmid, and contains theURA3
auxotrophic marker for selection in yeast and ampicillin resistance marker for selection
in bacteria. pTRPex contains the constitutive medium strength yeast promoter, PTRP1

and a downstream MCS for the insertion of additional genes.

literature to produce heterogeneous mRNA populations frommultiple transcription start

sites, as observed from PTRP1 [242, 255]. PDCD1 therefore provides a more compact

promoter than PTRP1, and can be more easily modified with up-stream control elements,

rather than internal control elements as in the previous design with PTRP1. TheDCD1

promoter was obtained from the pDCDex plasmid, constructedby Maja Firczuk in the

McCarthy lab (figure 3.12), and based on pSupex published by Oliviera et al [214].

Plasmid PDCD1 and pJM6 were digested using the SalI and SpeI restriction enzymes and

the IRP ligated into the pDCDex plasmid, downstream of theDCD1 promoter. Colony

PCR was performed using the PDCD1 forward primer and the internal IRP primer#2.

The PDCD1 primer binds to the 5′ end of the promoter, and the IRP primer #2 binds to

the complementary strand of the IRP gene 700bp downstream from the 5′ end of the

IRP. A PCR product therefore can only be produced by both theDCD1 promoter and
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FIGURE 3.12: LexAop-pDCD1-IRP repressor plasmid map.

the IRP gene being present in the correct orientation. The colony PCR results provided

a high ratio of colonies with PCR product of the correct size (figure 3.13). Plasmids

capable of generating correctly-sized PCR products were sequenced to confirm the

correct sequence and orientation of the IRP gene in the pDCDex plasmid.

3.5.1.3 TEF1 promoter strategy

TheTEF1promoter is a strong constitutive yeast promoter, promoting mRNA expres-

sion levels higher than PTRP1 and PDCD1 promoters [244]. PTEF1 is a 590bp promoter

that is also shorter than PTRP1 and can potentially be modified with upstream control

elements using the same strategy as PDCD1. The IRP gene was cloned from the plasmid

pJM6 into the vector plasmid PTRPex (also based on the pSupexplasmid) using the SalI

and SpeI restriction enzymes as a double digested. Following the ligation of the IRP

gene into the pTEFex vector plasmid, transformed colonies were screened using colony
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FIGURE 3.13: Agarose gel electrophoresis of colony PCR products from bacterial
colonies transformed after ligation of the IRP gene with thepDCDex plasmid. The
left lane contains the New England Biolabs 1kb ladder for size verification. The right
hand lane contains the colony pcr product from the PDCD1-IRP plasmid construct. The
colony PCR experiment produced a DNA fragment of approximately 800bp which is
the expected size produced by the polymerase reaction usingthe PDCD1 and IRP#2
combination of primers.

PCR with the internal IRP primer #2, which binds to the complementary strand of the

IRP gene 700bp upstream of the 5′ end of the gene, and also the PTEF1 primer binding to

the 5′ end of theTEF1promoter. Only plasmids containing the PTEF1-IRP construct in

the correct orientation can produce a fragment of approximately 1.2kb in size. Bacterial

colonies that were harbouring plasmids that were capable ofgenerating correctly-sized

PCR products were used for plasmid miniprep purification andthe plasmids sent for

sequencing to confirm the correct sequence and orientation of the IRP gene.

3.5.2 Insertion of LexA Operator Control Sequences

The E. coli LexA protein expressed by the de-repressor plasmid binds toa specific

DNA recognition sequence called the “LexA operator” [236, 237]. The LexA operator

is comprised of the nucleotide sequence: TCGAGTACTGTATGTACATACAGTAC.

The LexA protein has been expressed in yeast in previous workpublished by Brent

and Ptashne and has been shown to inhibit expression of galactose inducible LacZ

genes when placed between the upstream activator sequence and transcription start point

[203]. It has been suggested that multiple repeats of the LexA operator are required to

block downstream transcription [203, 235], however there is no agreed consensus in

the literature as to how many repeats are optimum for repressing gene expression [235].
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FIGURE 3.14: Map of the LexAop-pTEF1-IRP repressor plasmid. This version of the
repressor plasmid contained the IRP gene expressed by theTEF1strong constitutive
promoter [244]. The plasmid vector was based on pSupex, published by Oliveriaet al
[214].

Also, research published by Brent indicates positioning the LexA operators within 60bp

upstream of the start codon is sufficient to inhibit transcription by up to 10 fold [203].

Therefore, a set of two tandem repeats of the LexA operator was designed based on

the sequence published by Brent and Ptashne that could be inserted into the HindIII

restriction site that is found immediately upstream of the 5′ end of theDCD1 and

TEF1 promoters [203]. In addition, a unique PacI restriction site was also designed

into the 3′ end of the operator sequences to enable screening by restriction enzyme

digest. The LexA operator sequence was ordered from Eurogentec as a custom set of

complementary oligonucleotides. The oligonucleotide strands were annealed together

into a double stranded DNA molecule and ligated into the repressor plasmid, linearised

by HindIII restriction enzyme digest. A number of plasmids were purified by miniprep

from transformed bacterial colonies, and screened by restriction enzyme digest using

the PacI enzyme. The digests were visualized by agarose gel electrophoresis and

plasmids that were linearised by the PacI enzyme were sent for sequencing to confirm
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5’-AGCTTCGAGTACTGTATGTACATACAGTACTCGAGTACTGTATGTACATACAGTACTTAATTAAA-3’
3’-AGCTCATGACATACATGTATGTCATGAGCTCATGACATACATGTATGTCATGAATTAATTTTCGA-5’

FIGURE 3.15: The LexA operator sequence containing flanking HindIII restriction
sites (bold) and internal PacI restriction site (underlined). The LexA operator
sequences were ordered as a set of oligonucleotides, annealed, and ligated into the
HindIII restriction site in the PDCD1-IRP and PTEF1-IRP plasmids enabling interaction
of the repressor plasmid with the LexA protein expressed from the de-repressor plasmid
during pheromone induction of the gene circuit.

the insertion and location of the LexA operators.

3.5.3 Cloning the IRP PEST Degradation Tag

The plasmid pSVA17 containing the gene yEGFP3-CLN2PEST was obtained from

Simon Avery (University of Nottingham) who (with Carolina Mateus) had constructed

a short half-life GFP by the addition of the degradation signal from the 3-terminal 534

nucleotides ofCLN2 to the 3′ terminus of yEGFP3 [216]. In order to obtain the PEST

tag in a form suitable for tagging the IRP gene, the primers used by Mateus and Avery

were modified to exchange the restriction sites in yEGP3 for the MscI restriction sites

compatible with the IRP gene, and an additional unique NruI site for screening potential

clones after ligation (figures 3.18 and 3.19) [216]. TheCLN2degron tag was inserted,

in-frame at the 3′ terminus of the IRP upstream of the stop codon, creating the degron

sequence tagged IRPPEST gene (see appendix A).

The 534bp PEST tag was amplified using PCR with the PEST Fwd andPEST Rev

primers containing the MscI restriction sites for insertion into the IRP gene on the

repressor plasmids (figure 3.16), and ligated into LexAop-PDCD1-IRP (figure 3.18)

and LexAop-pTEF1-IRP (figure 3.19), linearised by restriction enzyme digest with the

enzyme MscI. The ligation was transformed intoE. coli TOP10 and the transformed

colonies screened by colony PCR using the PEST Fwd and PGK1 terminator primers.

The colony PCR product was expected to be approximately 750bp from the 534bp PEST

sequence and 273bp PGK1 terminator sequence (figure 3.17). Plasmid preparations

were made from bacterial colonies harbouring plasmids thatproduced colony PCR
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FIGURE 3.16: PCR amplification of the PEST degron tag from plasmid pSVA17 from
Mateus and Avery [216].

FIGURE 3.17: Colony PCR agarose gel electrophoresis performed on transformed
bacterial colonies containing theTEF1 and DCD1 promoter repressor plasmids
following ligation of the plasmids with the PEST degradation tag. L is the (Fermentas)
1kb ladder for size determination, dcd is the repressor plasmid with the DCD1
promoter, and tef is the repressor plasmid with theTEF1promoter. Colony PCR was
performed with the PEST Fwd and PGK1 terminator Rev primer.

fragments of the correct size, and the plasmids were sent forsequencing to confirm

the correct sequence and orientation of the PEST tag.

3.6 Construction of the De-Repressor Plasmid

The de-repressor plasmid was initially constructed from the pRS315 plasmid. The LexA

protein fromE. coli was cloned downstream of the PFUS1 promoter. Expression of

the LexA protein is therefore up-regulated by the yeast mating response. The LexA

protein gene was amplified fromE. coli TOP10 genomic DNA by PCR using primers

containing 5′ NdeI and 3′ HindIII restriction enzyme sites for compatibility with the

pRS315 plasmid (see table 2.2) (figure 3.21). The amplified LexA gene was cloned

into pRS315-PFUS1-eGFP in place of eGFP, forming pRS315-PFUS1-LexA (figure 3.20).

Using the pRS315 plasmid for both the de-repressor and reporter plasmid creates a
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FIGURE 3.18: Map of the repressor plasmid containing theDCD1 promoter and IRP,
modified with the PEST degradation tag.

selection issue as both plasmids share the same LEU2 auxotrophic marker and therefore

cannot be co-expressed. The prs313 plasmid backbone, a pBluescript-based centromere

vector (NCBI accession number U03439), created by Sikorskiand Hieter [213] contains

the His3 auxotrophic marker, however the His3 gene did not contain any compatible

restriction sites to clone into the pRS315 plasmid. The PFUS1-LexA elements from the

pRS315 plasmid were cloned as a cassette into the pRS313 plasmid using the BamHI

and SalI restriction enzyme sites, to utilize the His3 auxotrophic marker. Following

ligation, transformed colonies were grown overnight in LB with amicillin and plasmid

DNA purified by miniprep. The plasmids were digested with SalI and BamHI restriction

enzymes to confirm the ligation of PFUS1-LexA into the pRS313 vector plasmid (see

figure 3.22 A and B). The plasmid was digested alongside emptypRS313 plasmid

(figure 3.22 B). Digestion with SalI and BamHI produced fragment of approximately

1.2kb from the pRS313-PFUS1-LexA plasmid and no fragment from the empty pRS313
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FIGURE 3.19: Map of the repressor plasmid containing theTEF1promoter and IRP,
modified with the PEST degradation tag.

control plasmid. Plasmids producing a 1.2kb fragment following restriction enzyme

digestion with BamHI and SalI were sent for sequencing to confirm the sequence and

orientation of the PFUS1 promoter and LexA gene.
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FIGURE 3.20: Map of the pRS313-pFUS1-LexA de-repressor plasmid.

FIGURE 3.21: PCR product of the LexA gene fromE. coli genomic DNA. L is the
(Fermentas) 1kb ladder for size determination, and LexA is the PCR product.

3.7 Conclusion

Following confirmation of the sequencing data for each of theplasmids, the circuit

was transformed intoS. cerevisiae sst2∆ (Euroscarf strain Y06055).S. cerevisiae sst2∆

strain is hyper-sensitive to pheromone due to the mutation in theSST2gene that inhibits

the negative feed-back loop in the yeast pheromone responsepathway [49], and would

enable the strongest possible response to pheromone induction for luciferase expression.

S. cerevisiaewas transformed sequentially, first with the reporter plasmid, growing the

cells in YPD with-LEU drop out supplement. These cells provided a luciferase control
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FIGURE 3.22: Ligation of the LexA gene with the pRS313 de-repressorplasmid. A. L
is the (Fermentas) 1kb ladder, pRS313 is the pRS313 vector digested with the BamHI
and SalI restriction enzymes. LexA is the PFUS1-LexA fragment. B. pRS313 plasmid
after ligation with the PFUS1-LexA fragment digested with BamHI and SalI restriction
enzymes. S1 is BamHI single digest. S2 is SalI single digest.D1 is BamHI and SalI
double digest. C1 is control pRS313 plasmid cut with the SalIenzyme. C2 is control
pRS313 plasmid cut with BamHI. C3 is control pRS313 plasmid cut with SalI and
BamHI restriction enzymes. U2 undigested pRS313 plasmid DNA.

strain that could be used for comparison with the circuit luciferase expression. The

yeast were next transformed with the de-repressor plasmid,and grown on YPD medium

with -LEU, -HISdrop out supplement. The cells containing both the reporterand de-

repressor plasmids were finally transformed with one of the four repressor plasmids, and

grown on YP medium with-LEU, -HIS, -URAdrop out supplement. The final round of

transformations produced four different strains of cells,each containing one of the four

circuits, named after the repressor plasmid they contain (table 3.1). In addition to the

four circuit strains, and addition strain was transformed with only the reporter plasmid,

to create a “luciferase control” strain, to measure maximumluciferase expression from

thesst2∆ in the absence of LexA and IRP interactions.

Circuit Variation IRP Respressor Variation
PDCD1 PDCD1 weak constitutive expression of the IRP
PTEF1 PTEF1 strong constitutive expression of the IRP
PDCD1-PEST PDCD1 weak constitutive expression of short half-life IRPPEST

PTEF1-PEST PTEF1 strong constitutive expression of short half-life IRPPEST

Luciferase control Reporter plasmid only. No repressor or de-repressor plasmids

TABLE 3.1: Table of the four circuit variants (strains) that had been constructed for
tuning the expression of the luciferase reporter gene. All cells contain the pheromone
inducible luciferase gene plasmid, and the pheromone inducible LexA gene plasmid.
These plasmids are then combined with the third circuit plasmid, which constitutively
expresses the wild type IRP or short half-life IRPPEST repressor, with either the low
expressionDCD1or the high expressionTEF1promoter.
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The set of four circuit designs enables the tuning of the circuit for short and long half-

life as well as the overall intra-cellular levels of the IRP repressor. Model simulations

indicate the abundance of IRP is a key control point in the circuit therefore the

modifications prevent the repressor from overwhelming the LexA de-repressor and

preventing luciferase expression (see chapter 5). The choice of circuit combination also

provides the flexibility to investigate tuning the dynamic behaviour of the luciferase

output through the interaction of IRP and LexA. Strong IRP expression can be coupled

with a short half-life, and vice versa to investigate the effect on luciferase signal

amplitude and period.



CHAPTER

FOUR

RESULTS - CIRCUIT CHARACTERIZATION

4.1 Introduction

Following construction of the gene circuit plasmids, the plasmids were transformed

into S. cerevisiae sst2∆ forming four separate strains of circuit, PDCD1, PTEF1, PDCD1-

PEST, and PTEF1-PEST representing theDCD1 weak promoter, and theTEF1 strong

promoter expressing the IRP repressor, and the short half-life IRPPESTvariant. The cells

were grown individually in broth culture and the expressionof the circuit components

measured following activation of the circuit by stimulation of the pheromone response

pathway with 100nMα-factor pheromone. The expression of the components was

measured using a range of techniques to obtain quantitativedata at the various

hierarchical expression levels within the cell. Luminescence was measured as the circuit

“output” using the luminometer and thein vivo luminescence assay to obtain real-time

kinetic data of luciferase expression. Luminescence measurements provided general

circuit performance data that could be used to determine thebehaviour of the circuit

and compare with model predictions (detailed in chapter 5).

Protein levels were measured to determine the level of the LexA and IRP repressors,

and infer kinetic parameters from the effect on the change inthe luciferase output of

101
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the circuit. The mRNA expression of the components was also measured using RT-

qPCR to quantify the change in transcription levels. The IRPis repressed at the level of

transcription by LexA, therefore reduction in IRP mRNA levels can be attributed to the

activity of LexA, and the kinetics of the LexA repressor investigated through both the

protein levels of the repressor, and also the reduction in IRP mRNA transcription.

4.2 Growth Rate Investigation

In addition to quantifying the relative levels of the components of the circuit, the host

yeast strain was checked for the effect of maintaining the circuit on the growth rate

of the cells, as changes in the output of the circuit could be due to the burden of

maintaining three plasmids. The PTEF1 circuit was transformed into the pTC5 lab strain

of S. cerevisiaeto test alongside the pheromone hyper-sensitivesst2∆ mutant strain that

was used for expressing the circuit. The data would then enable the investigation of

effect on growth rate of both the circuit and thesst2∆ mutation. It was hypothesized

that the PTEF1 circuit would exert the greatest burden on the cells due to the higher

expression level of the IRP protein. If a difference was observed between the cells

carrying the circuit plasmids and those without, the remaining plasmid circuits would be

investigated further. The growth rate data was recorded (figure 4.1), and the growth rate

was calculated from the slope of the exponential growth phase (table 4.1). The growth

strain Slope R2 doubling time (hours)
pTC5 0.45 0.99 2.2
pTC5 + circuit 0.4 0.99 2.5
sst2∆ 0.31 0.99 3.2
sst2∆ + circuit 0.3 0.99 3.3

TABLE 4.1: Growth rate of yeast strains pTC5 and sst2∆ with and without the gene
circuit to investigate the metabolic burden of maintainingthe plasmids. The data was
calculated using figure 4.1

rate data revealed that the plasmids did not produce a significant lag in the growth rate

of the cells hosting the circuit (table 4.1). The doubling time of the pTC5 strain was

approximately 2.2 hours, and increased to 2.5 hours following plasmid transformation.

For thesst2∆ strain the growth rate was approximately 3.2 hours and increased to 3.3
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FIGURE 4.1: Log log plot of the growth curve for thesst2∆ strain +/- circuit (yellow
and green), and the standard pTC5 laboratory strain +/- circuit (blue and orange).

hours following transformation. Thesst2∆ strain had a slower growth rate than pTC5,

but was still sufficient for studying the gene circuit, and enabled hyper-sensitivity to

pheromone and potentially a higher-fold increase in luciferase expression [93]. The

sst2∆ strains transformed with the gene circuit plasmids maintained 97% of the growth

rate of the cells without the plasmids, therefore it was concluded that the gene circuit

does not introduce a significant burden on the metabolism of the host cell.

4.3 Luminescence Measurement

Luminescence data were collected for each of the four circuit strains, in triplicate,

from cultures that were induced with 100nM pheromone and cultures that were un-

induced with pheromone (baseline luminescence). In addition, luminescence data was

collected from the same yeast strain, containing only the pheromone inducible reporter

plasmid as a “luciferase control” strain. This strain represents the maximum expression

of luciferase that could be produced by thesst2∆ yeast cells, for comparison with the

circuit expression levels.
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FIGURE 4.2: Luminescence expression for the PDCD1 and PDCD1-PEST circuits (n=9).
A. Time course measurements of luciferase expression for induced cells. The error
bars represent the standard deviation from the mean calculated for each time point
measurement. B. Scatter plot of the same data used in plot A, demonstrating the
dynamic range of the luciferase expression of the circuits.

Due to the high sensitivity of the luminometer, three biological replicates were

performed, and three replicate samples collected at each time point. Each sample

was measured three times in the luminometer, providing a final n number of nine data

points for each time point. In addition, at each time-point,samples were collected in

triplicate for western blot and RT-qPCR analysis from each replicate culture. The data

was normalised for cell growth using the cell count for each time point. The data for the

luciferase expression of the PDCD1 and PDCD1-PEST circuits demonstrated a higher level

of luciferase expression from the PDCD1 circuit, and higher again from the PDCD1-PEST

circuit, compared with the luciferase control (figure 4.2).The baseline expression of un-

induced cells was investigated to check the functionality of the repressors (figure 4.3).
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FIGURE 4.3: Baseline luciferase expression for the PDCD1 and PDCD1-PEST circuits
(n=9). A. Time course measurements of baseline expression for un-induced cells. The
error bars represent the standard deviation from the mean calculated for each time
point measurement. B. Scatter plot of the same data used in plot A, demonstrating the
dynamic range of the luciferase expression of the circuits.

The data show that the PDCD1 and PDCD1-PEST circuits do not repress the basal level of

expression of luciferase below the basal level of the luciferase control. The expression

of the PDCD1 and PDCD1-PEST circuits is higher than the control, particularly forthe

PDCD1-PEST with the short half-life IRPPEST. The data were collected on different

days however, introducing variation between the cell cultures. In addition, the baseline

luminescence of the control provides an indication of the minimal level of luciferase

expression of the reporter gene on the reporter plasmid, however the data from the

control cannot be directly related to the circuit strains asin indication of the baseline

luminescence from the circuit.
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The relative fold change was calculated in order to ascertain a fold increase in luciferase

expression for each of the circuits. The luminescence measurement was converted to

relative luminescence units per ml using the cell count fromthe cellometer, and the

RLU per cell for pheromone stimulated cells divided by the RLU per cell for the non-

pheromone stimulated cells, at each time point. Using this data, it was possible to

compare the fold increase in luciferase expression betweenpheromone stimulated and

unstimulated cells. A higher fold change indicates a higherexpression in relation to the

baseline expression level.

As each strain has the same theoretical maximum expression level of luciferase from

the pheromone inducible FUS1 promoter, a fold change difference between strains can

be equated to a larger difference between the induced level and uninduced basal level

of expression of luciferase. Analysis of the fold change data showed the PDCD1 circuit

indicated a directional increase in luciferase expressioncompared with the luciferase

control strain4.4). However, the higher level of variationin the data prevents an exact

calculation of the fold change difference between the circuit and the control strains.

Maximum luciferase expression was achieved at approximately 200 minutes, compared

with 120 minutes from the control, and the transition to the OFF-state requires the same

level of time for both the PDCD1 circuits and the control, indicating the IRP repressor

did not rapidly inhibit luciferase translation following pheromone-induction.

The PDCD1-PEST circuit demonstrated a similar rate of increase in luminescence as the

PDCD1 circuit, similar to that of the control. The PDCD1-PEST circuit also required 200

minutes to reach maximum luciferase output, as observed from the PDCD1 circuit (figure

4.4). The PDCD1-PEST circuit achieved a maximum fold change increase in luciferase

expression of approximately 6 fold. This fold change increase was not as high as the

PDCD1 circuit which was presumed to be due to the attenuated half-life of the IRP and

the lower abundance of the repressor in the cell, enabling a higher expression from

un-induced cells. Reduction of signal after 200 minute is also slower in the PDCD1-

PEST circuit compared with the PDCD1 circuit, also suggesting the shorter half-life IRP

reduces the overall level of repression of luciferase translation.



Chapter 4.Circuit Characterization 107

FIGURE 4.4: Fold change in luciferase expression by the PDCD1 and PDCD1-PEST
circuits compared with the luciferase control (n=9). A. Time course measurements
of the relative fold change in luminescence between the induced and un-induced cells
expressing the PDCD1 and PDCD1-PEST gene circuits. The error bars represent the
standard deviation from the mean calculated for each time point measurement. B.
Scatter plot of the same data used in plot A, demonstrating the dynamic range of the
luciferase expression of the circuits.

The experiment was repeated with the PTEF1 and PTEF1-PEST circuits (figures 4.5 and

4.6). As expected, the luminescence expression was reducedfrom the PTEF1, and PTEF1-

PEST circuits, which was attributed to the higher level of IRP expression from theTEF1

promoter. The baseline data was also plotted and showed a lower level of baseline

expression for the PTEF1, when compared with the luciferase control and the PDCD1

circuits (figure 4.3). The PTEF1-PEST circuit showed a higher level of expression than

the PTEF1 circuit, similar to the level of the luciferase control, dueto the shorter half-life

of the IRPPEST repressor (figure 4.6 B). The fold change in luciferase was plotted for

the PTEF1 and PTEF1-PEST circuits (figure 4.6). The data showed a reduction in the
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FIGURE 4.5: Luminescence expression for the PTEF1 and PTEF1-PEST circuits (n=9).
A. Time course measurements of luciferase expression for induced cells. The error
bars represent the standard deviation from the mean calculated for each time point
measurement. B. Scatter plot of the same data used in plot A, demonstrating the
dynamic range of the luciferase expression of the circuits.

output of luciferase compared with the PDCD1 and PDCD1-PEST circuits (figure 4.7 and

4.4). The PTEF1 promoter expressed a higher level of IRP in the cell, and inhibits the

translation of luciferase mRNA expressed during pheromone-induction of the circuit

(and was confirmed by western blot, figure 4.17). The low levelof luciferase output

from the PTEF1 circuit also indicated the high level of IRP in the cell was sufficiently

high to negate repression of IRP transcription by pheromone-induced expression of

LexA during the period of the pheromone response pathway. The PTEF1 circuit reaches

maximum output of luciferase within 120 minutes, comparable with the control however

the fold change induction is less than 4 fold, compared with approximately 5 fold
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FIGURE 4.6: Baseline luciferase expression for the PTEF1 and PTEF1-PEST circuits
(n=9). A. Time course measurements of baseline expression for un-induced cells. The
error bars represent the standard deviation from the mean calculated for each time
point measurement. B. Scatter plot of the same data used in plot A, demonstrating the
dynamic range of the luciferase expression of the circuits.

from the control. The PTEF1-PEST circuit data showed a higher level of luciferase

expression following pheromone-induction compared with the PTEF1 circuit (figure 4.7)

with a 1.5 times higher-fold change increase in luciferase.The PTEF1-PEST circuit

luciferase expression reached approximately 5-fold induction, similar to the fold change

increase of the control. However the PTEF1-PEST circuit requires approximately 200

minutes to achieve maximum output (as with the PDCD1 circuits), compared with 120

minutes with the control. After 200 minutes the luminescence fold change reduced to

approximately 3 fold within 100 minutes, making a faster return to the OFF-state for



Chapter 4.Circuit Characterization 110

FIGURE 4.7: Fold change in luciferase expression by the PTEF1 and PTEF1-PEST
circuits compared with the luciferase control (n=9). A. Time course measurements
of the relative fold change in luminescence between the induced and un-induced cells
expressing the PTEF1 and PTEF1-PEST gene circuits. The error bars represent the
standard deviation from the mean calculated for each time point measurement. B.
Scatter plot of the same data used in plot A, demonstrating the dynamic range of the
luciferase expression of the circuits.

the PTEF1-PEST circuit when compared with the PTEF1 circuit, as well as the PDCD1

circuits. The observation of a faster reduction in the luminescence fold change from

the PTEF1-PEST circuit was likely to be a combination of effects of thereduction in the

activity of the pheromone response pathway and the decreased repression, relative to

the PTEF1 circuit.

The maximum fold-induction in luminescence was calculatedfor each circuit (figure

4.8). The maximum fold-induction was observed from the PDCD1 and PDCD1 -PEST



Chapter 4.Circuit Characterization 111

FIGURE 4.8: Maximum luminescence fold change for each circuit (n=9). The control
circuit is the pheromone-induced luciferase reporter genealone, with no repression.
The fold change is the ratio of luminescence between the induced and un-induced cells,
and the graph shows the maximum ratio achieved by each of the circuits during time
course experiment.

circuits, compared with the PDCD1 circuits. The PTEF1 circuit is repressed by the

strong promoter, and addition of the short half-life IRP in the PTEF1-PEST restores

the fold-change to a similar level as the control strain. Thefold-change luminescence

measurements indicated the expression level of the luciferase reporter gene is governed

primarily by the rate of IRP production by the repressor plasmid, as predicted by the

model (chapter 5, figures 5.13 and 5.14). The pheromone-induced LexA repressor does

not appear to have a strong influence on the level of luciferase output as induction

times are slower in all of the circuits compared with the control strain (figures 4.4 and

4.7). This could be due to the time required for transcriptional inhibition to reduce the

protein abundance in the cell, especially with the long half-life IRP repressor. A high

level of IRP mRNA template in the cell coupled with a long-lived repressor protein

provides a large reservoir of repressor molecules and template. The IRP’s function as

a translational repressor also enables it to rapidly inhibit the expression of additional

luciferase protein from the mRNA template, enabling it to repress the output of the

circuit within a shorter time-scale than LexA can repress IRP expression. As the model

predicted from sensitivity and metabolic control analysis(chapter 5), the largest change

in the dynamics of the luciferase output were observed from directly perturbing the

constitutive promoter strength and half-life of the IRP.
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In addition to assessing the circuit behaviour, a set of control circuits were created

containing only the reporter and repressor plasmids (figure4.9, for comparison with the

full circuit schematic, see figure 1.17, chapter 1.5.6, page47). TheS. cerevisiae sst2∆

cells were not transformed with the de-repressor plasmid containing the pheromone-

inducible LexA repressor and therefore constitutively repress the luciferase reporter

gene. Differences in the expression of the luciferase reporter gene between the control

and full circuits could be attributed to the activity of the LexA de-repressor. The

FIGURE 4.9: Schematic diagram of the control experiment with cellstransformed with
the repressor and reporter plasmids only (no LexA de-repressor plasmid).

data from the PDCD1 and PDCD1-PEST control circuits showed a continuous level of

repression of luciferase output by the circuits (figure 4.10). Taking 240 minutes as time-

point for maximum luciferase expression (see figure 4.10), PDCD1 repressed luciferase

expression by approximately 60% and PDCD1-PEST by approximately 70%. Across the

entire time course experiment, the PDCD1 control circuit inhibits expression of luciferase

by approximately 80% and the PDCD1-PEST control circuit by 50%. The short half-life

IRPPEST repressor had its efficacy reduced by approximately 30% withthe addition
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FIGURE 4.10: Fold change in luciferase output from the PDCD1 and PDCD1-PEST
control circuits minus the de-repressor plasmid (n=3).

FIGURE 4.11: Fold change in luciferase output from the PTEF1 and PTEF1-PEST
circuits minus the de-repressor plasmid.

of the PEST degradation tag, compared with the wild-type IRP. The experiment was

repeated with the PTEF1 and PTEF1-PEST control circuits (figure 4.11). The data

from the PTEF1 and PTEF1-PEST circuits also demonstrated constitutive repressionof

luciferase expression, as with the PDCD1 and PDCD1-PEST control circuits. At maximum

expression of luciferase, taken at 240 minutes in the experiment luciferase expression

was inhibited by approximately 66% by the PTEF1 circuit, and approximately 40% by

the PTEF1-PEST circuit. As observed in the PDCD1-PEST circuit, the PEST degradation

tagged IRP repressor activity was reduced by approximately30% compared with the



Chapter 4.Circuit Characterization 114

wild-type IRP.

For both the PDCD1 and PTEF1 control circuits, there is no fold change increase in

luciferase expression over the control, as observed from the full PDCD1 and PDCD1-PEST

circuits (figure 4.4). The data provided evidence that the LexA repressor is functioning

within the circuit to repress the IRP repression on luciferase translation, and the circuits

are functioning as designed. As with the circuit luminescence assay however, there was

a large amount of variability in the data which prevents forming significant conclusions

on the expression of the circuit components and the characteristics of the circuit.

4.3.1 Luciferase Signal to Noise Ratio

The project goal was to investigate the reduction in basal expression of luciferase

by the interaction of the circuit components. Basal expression was recorded as the

luminescence from non-pheromone induced cells, and compared with luminescence

measured from the pheromone induced cells. The signal to noise ratio (SNR) provides a

method of investigating the difference between the signal from the circuit (luminescence

following pheromone induction) and the background luminescence (basal expression

from non-induced cells).

A low SNR would indicate a smaller difference between luciferase expression from

pheromone induced and non-induced cells, and a high SNR indicates a larger difference

between basal and pheromone induced luciferase expression, which can be attributed to

the activity of the circuit, repressing basal luciferase expression.

The SNR was calculated using the ratio of the mean luminescence measurement at

each time point, and the standard deviation from the mean at each time point (section

2.29.4). The luminescence SNR was then compared between circuit strains, and the

control strain (pheromone induced luciferase expression with no additional repressors),

for each of the time course experiments.

The SNR data for the PDCD1 circuits shows an increase in the SNR during the

pheromone response (figure 4.12), which was expected as the circuit has a higher output
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of luciferase (figure 4.4). The SNR decreases rapidly following the two hour period of

the pheromone response compared with the control (figure 4.12 A). This indicates the

circuit becomes more noisy in the OFF-state than the controlwith only the pheromone-

inducible reporter gene without the repressor interactions.

FIGURE 4.12: Luciferase expression signal to noise ratio (SNR) forthe PDCD1 and
PDCD1-PEST circuits, and the control (pheromone induced luciferase expression only)
using the luminescence time course data. A and B are the same data represented by
two charts due to the size of the error. A. The change in the SNRratio over time for
each circuit throughout the experiments. B. The noise propagation throughout the time
course experiment for each circuit.
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The SNR for the PTEF1 circuits was also calculated (figure 4.13). The data also show

the same increase in SNR as the circuit is induced (figure 4.13A). The PTEF1 circuits

retain a higher SNR compared with the control strain during the first two hours of

the pheromone response, despite the PTEF1-PEST circuit producing the same level of

luciferase output as the control (figure 4.7).

The PTEF1-PEST circuit maintains a longer period of high SNR than the PDCD1, PDCD1-

PEST and PTEF1 circuits over approximately 200 minutes (figure 4.12), and this was

attributed to the PTEF1-PEST circuit taking longer to reach maximum luciferase output.

Both of the PTEF1and PTEF1-PEST circuits also reduce the SNR rapidly as the luciferase

levels reduce, and the circuits returned to the OFF-state (figure 4.13 A). The lower SNR

is maintained for the remainder of the time course, as with the PDCD1 circuits, compared

with the control strain.

The data indicated that both the PTEF1 and PDCD1 circuits had a lower level of noise in

the ON-state compared with the control, and a higher level ofnoise in the OFF-state,

and in transitioning from the ON to the OFF-state (figures 4.12 and 4.13).

The modelling data indicated the addition of the PEST tag to the IRP repressor may

increase noise in the expression of luciferase (chapter 5, figure 5.18). A lower SNR was

observed from the PDCD1-PEST circuit, compared with the PDCD1 circuit (figure 4.12),

however it was not observed from the PTEF1-PEST circuit compared with the PTEF1

circuit (figure 4.13).

In addition, the SNR was plotted as a function of the luminescence measurement

for each of the circuits, to confirm the SNR was increasing with the increase in

luminescence (figure 4.14).

The signal to noise ratio of luciferase expression in the control circuits (without the

LexA component) was calculated (figures 4.15 and 4.16) for comparison with the full

circuit (figures 4.12 and 4.13). The SNR data from the controlcircuits showed a

similar, or lower SNR compared with the control strain (pheromone inducible luciferase

expression without the repressors), during pheromone induction (the first 120 minutes
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FIGURE 4.13: Luciferase expression signal to noise ratio (SNR) calculated for
the PTEF1 and PTEF1-PEST circuits , and the control (pheromone induced luciferase
expression only), using the luminometer time course data. Aand B are the same data
represented by two charts due to the size of the error. A. The change in the SNR
ratio over time, for each circuit throughout the time courseexperiment. B. The noise
propagation throughout the time course experiment for eachcircuit.

of the time course experiment), and this was attributed to the lower expression level of

luciferase from the control circuits.

The circuits without the LexA de-repressor demonstrated a higher SNR following

pheromone activation, compared with the pheromone inducedcontrol strain, indicating
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FIGURE 4.14: Signal to Noise Ratio plotted as a function of luminescence for each
of the four gene circuits. A. PDCD1 circuit with the DCD1 promoter and wild-type
IRP. B. PDCD1-PEST circuit with theDCD1promoter and short half-life IRP, C. PTEF1

circuit with theTEF1promoter and wild-type IRP, PTEF1-PEST circuit with the strong
TEF1promoter and short half-life IRP. E. Control strain with thepheromone-induced
luciferase reporter gene with no repression.

luciferase expression from the circuit without LexA was less noisy than the control

strain without the repressors, as well as the full circuit with all of the components.

Noise propagation in the SNR throughout the experiments however was high (figures

4.12 B, 4.13 B, 4.15 B, and 4.16 B), corresponding with the high level of variation in

the luminescence data which was used to make the calculations. The size of the error

propagation prevents making significant conclusions from the data, and the changes in

SNR can only be used as anecdotal evidence of the behaviour ofthe circuit. More data

is required to further investigate the significance of the changes in SNR observed in this

work, as well as the contributions of the circuit componentsto noise (see chapter 6).
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FIGURE 4.15: A and B are the same data represented by two charts due tothe
size of the error. A. Signal to Noise Ratio calculated for thePDCD1 and PDCD1-
PEST circuits without LexA, and the control (pheromone induced luciferase expression
only), calculated using the luminometer time course data. B. The noise propagation
throughout the time course experiment for each circuit.
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FIGURE 4.16: A and B are the same data represented by two charts due tothe
size of the error. A. Signal to Noise Ratio calculated for thePTEF1 and PTEF1-PEST
circuits without LexA, and the control (pheromone induced luciferase expression
only), calculated using the luminometer time course data. B. The noise propagation
throughout the time course experiment for each circuit.

4.4 Protein Quantification

From the luciferase data it was concluded that the initial time zero, plus the 1 hour, 2

hours, 4 hours, and 5 hours time course samples would providerepresentative samples

for investigating protein expression by western blot. Antibodies for luciferase, LexA,
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FIGURE 4.17: Representative IRP antibody western blot of the PDCD1 and PTEF1 gene
circuits with (+) and without (-) pheromone-induction. Lanes are labelled with the
sampling time (minutes). sst2 Control is theS. cerevisiae sst2∆ control strain that was
not transformed with the circuit plasmids.

and IRP were purchased from a range of suppliers. An equivalent of 4ml of culture at an

OD600nm=1.0 was collected at each time point however, luciferase and IRP proved to be

very difficult to detect by western blot (figure 4.17, and 4.20). Luciferase quantification

by western blot was not essential as the luminometer provided accurate measurement

of this component however, the presence of LexA and IRP couldonly be inferred from

the luminescence data and not quantified. Western blot detection was attempted using a

number of secondary antibody conjugates, and corresponding detection strategies were

tested in order to enhance LexA and IRP detection. Fluorescein Isothiocyanate (FITC),

Horseradish peroxidase (HRP), and infra-red conjugated secondary antibodies were

used, and finally alkaline phosphatase bound secondary antibodies with the Promega

BCIP/NBT colour development substrate kit. Of these methods, only the alkaline

phosphatase conjugate secondary antibodies detected the IRP, but only from the PTEF1

and PTEF1-PEST circuits with the higher expression level of IRP (figures 4.17 and 4.20).

The data from the IRP western blot (figure 4.17) revealed a signal for theTEF1promoter

IRP expression, and a weak signal for theDCD1promoter which disappeared following

pheromone-induction, making it difficult to quantify the fold change reduction in

IRP expression from PDCD1 and PDCD1-PEST samples. The PTEF1 promoter IRP
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FIGURE 4.18: Luminescence assay of the constitutive expression ofluciferase from
the DCD1 (orange) andTEF1 (blue) promoters. The fold-increase in expression of
luciferase from PTEF1 compared with PDCD1 is plotted on the secondary axis (yellow).
Figure recreated with permission from Malys N. (2011, McCarthy Lab unpublished
data).

expression signal however was stronger and enabled partialquantification of IRP

expression. Kinetic measurements of luminescence provided indication that theDCD1

promoter expression level was approximately 60 times lowerthan theTEF1promoter

(Malys N. and Pietroni P. (2011). McCarthy lab, data unpublished) (figure 4.18),

therefore although there was a low level of IRP expression from theDCD1 promoter,

expression could also be estimated from the PTEF1 expression levels. For estimating

parameter values for the model, the PTEF1 circuit could be used to quantify expression

which can then be estimated for the PDCD1 circuit. Data from the PTEF1 circuit IRP

expression level was collected and the relative levels of protein expression calculated

to investigate the repression of IRP by LexA expressed by pheromone-induced cells

(figures 4.19 and 4.20). The results indicated the IRP component of the PTEF1 circuit

was inhibited during pheromone-induction, compared with non-pheromone-induced

cells (figure 4.19). From the data it could be inferred the IRPwas being repressed by

the pheromone-induced expression of the LexA repressor. There was an increase in IRP

expression observed between the initial measurement and the remaining time course

measurements, which could not be directly explained and waslikely due to variation in

the sampling and western blot assay, however measurements across the time period of
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FIGURE 4.19: Analysis of IRP expression from the PTEF1 circuit obtained by western
blot (n=3). The data show time course expression levels of IRP from the PTEF1 circuit.
The y axis shows arbitrary units calculated from image intensity.

the experiment were consistent. The average difference between IRP expression for the

induced and un-induced cells was calculated across the timecourse experiment for the

PTEF1 and was approximately 203 arbitrary units, compared with approximately 636

from the un-induced cells, indicating IRP expression was reduced by approximately

70% during pheromone-induction. If the PDCD1 promoter produced 60 times lower

expression level of IRP than the PTEF1 promoter, and LexA also inhibited the IRP by

70% in the PDCD1 and PDCD1-PEST circuits, then this provided an explanation as to

why it was not possible to quantify IRP expression from thesecircuits.

Western blot data was collected for the PTEF1-PEST and expression compared with

the PTEF1 circuit with the wild-type IRP (figures 4.19 and 4.21). The data showed a

reduction in the expression of IRPPEST in the pheromone induced cells, compared with

un-induced cells during the period of pheromone-induction(figure 4.21). The average

reduction in IRPPEST expression in the induced cells was calculated across the time

course experiment as approximately 40% of the un-induced cells, indicating IRPPEST

was inhibited by approximately 60% during pheromone-induction. Also, the overall

level of IRPPEST was reduced by approximately 10-fold, compared with the wild-type

IRP measurements (figures 4.19 and 4.20), and this lower abundance was attributed to

the increased degradation rate of the protein due to the PESTsequence. The antibodies



Chapter 4.Circuit Characterization 124

FIGURE 4.20: Representative western blot of the IRP antibodies forthe the PTEF1 and
PTEF1-PEST circuits, with (+) and without (-) pheromone-induction. Lanes are labelled
with the sampling time (minutes). Thesst2Control is theS. cerevisiae sst2∆ control
strain that was not transformed with the circuit plasmids.

FIGURE 4.21: Analysis of the short half-life IRPPEST expression levels for the PTEF1-
PEST circuit (n=3). The graph shows the time course expression levels of pheromone-
induced cells (PTEF1-PEST +) and non-induced cells (PTEF1-PEST -). The y axis shows
arbitrary units calculated from image intensity.
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FIGURE 4.22: Percentage IRP expression for the PTEF1 and PTEF1-PEST circuits
analysed by western blot (n=3). The graph shows the percentage expression level of
IRP in pheromone-induced cells as a function of non-inducedcells during the time
course experiment.

FIGURE 4.23: Representative western blot of LexA protein expression from the PDCD1

circuit, visualized using the alkaline phosphatase method. Lanes are labelled with
the sampling time (minutes). C is theS. cerevisiae sst2∆ control strain that was not
transformed with the circuit plasmids.

against LexA proved to be more sensitive than those against IRP and LexA could be

detected by western blot (figure 4.23). As with the luciferase luminometer data, there

was a high level of variation from the LexA western blot imageanalysis (figure 4.24).

Also, there was a high baseline signal from un-induced cells, that reduced fold-change

calculations as were performed with the luminometer data. The baseline data therefore

was subtracted from the data from the induced cells and presented in figure 4.25 A

and B. The data indicated a directional increase in LexA expression in the pheromone-

induced cells, compared with the un-induced cells (figure 4.25 A and B). The directional

change was approximately the same for the PDCD1 and PTEF1 circuits. Using the initial
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FIGURE 4.24: Graph of LexA protein expression from the gene circuits obtained by
western blot (n=3). A) shows the PDCD1 and PDCD1-PEST circuit time course samples
with (+) and without (-) pheromone induction. B) shows the PTEF1 and PTEF1-PEST
circuit time course samples with (+) and without (-) pheromone induction.

measurement as a baseline and comparing the expression levels through the time course

experiment, the PDCD1 circuit demonstrated a fold-increase in LexA expression of

approximately five-fold (approximately 2,000 units at the initial measurement to 10,000

units at 130 minutes (figure 4.25 A), and a three fold-increase in the PTEF1 circuits

(2,000 units to approximately 7,000 units at 130 minutes, figure 4.25 B).

A positive control (recombinant protein) was not availablefor the IRP, luciferase, and

LexA proteins, so a calibration curve for quantitative western blotting could not be

performed. Also, the variability in the band intensity fromthe alkaline phosphatase

reaction (figure 4.23) meant accurate quantification of a calibration curve would be

difficult, and not quantitative in terms of molecules per cell. The alkaline phosphatase

detection method was found to amplify weak signals however the assay is an enzyme

reaction and variation in the time allocated for the reaction, and variation in the substrate
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FIGURE 4.25: Graph of the base-line corrected change in LexA protein expression,
comparing pheromone induced with non-induced cells, obtained by western blot (n=3).
A) PDCD1 and PDCD1-PEST LexA protein expression. B) PTEF1 and PTEF1-PEST LexA
protein expression. The y axis shows arbitrary units calculated from image intensity.

concentration across the membrane can effect the intensityof the band, adding noise to

the data.

The western blot data did however enable the measurement of relative-fold changes

between the pheromone-induced and non-induced cells, providing information on the

relative increases of the components which can be related tothe luminescence data

(figures 4.4 and 4.7). Although not quantitative, western blotting provided confirmation

of expression of the circuit components from the plasmids.

4.5 mRNA Quantification

mRNA expression of the circuit components were quantified using reverse transcription-

quantitative PCR (RT-qPCR). As with the protein quantification, the initial time zero,
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plus the 1 hour, 2 hours, 4 hours, and 5 hours time course samples would provide

representative samples for investigating mRNA expression.

4.5.1 qPCR Housekeeping Gene Selection

A range of housekeeping genes were investigated to find a stable gene with which

to normalize the expression of the circuit components. The study by Teste M.et

al was used to identify a library of housekeeping genes that could be used withS.

cerevisiae(table 4.2) [257]. The housekeeping genes used in the study were cross

referenced with the SGD database tool “Expression Connection” [258] using the micro-

array gene expression databases for the yeast pheromone response pathway (figure 4.26)

[85]. The micro-array data suggested UBC6 (YER100W), ALG9 (YNL219C), TDH3

ORF Gene Maximum fold increase Maximum fold decrease
YNL219C ALG9 1.0 -1.3
YDR519W FPR2 1.3 -1.1
YGL040C HEM2 1.1 -1.1
YBR011C IPP1 1.6 -1.4
YIL075C RPN2 1.8 -1.1
YDR167W TAF10 1.0 -1.8
YGR192C TDH3 1.4 -1.2
YER100W UBC6 1.1 -1.2
.

TABLE 4.2: Table of housekeeping gene expression fluctuation during the yeast
pheromone response. Expression data was calculated using the SGD Expression
Connection software, using micro-array data from Robertset al. [85]. Fold change
was calculated as the ratio between gene expression levels in pheromone-induced cells
and un-induced cells. Genes marked in bold were identified aspotential housekeeping
genes for the circuit RT-qPCR experiments.

(YGR192C) and HEM2 (YGL040C) would be suitable housekeeping genes for use

with RT-qPCR during the mating response as these genes demonstrates the smallest

fluctuation in fold change during the pheromone response (table 4.2). From figure 4.26,

UBC6 was consistent throughout the two hour period of the mating response, and was

cited as a reproducible house keeping in the Teste study, andtherefore was used as the

housekeeping gene for assaying the gene circuit mRNA expression levels [257].
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FIGURE 4.26: Graph of the gene expression changes for the housekeeping genes
during the yeast pheromone response. The data is plotted with Log2 ratio of
induced:un-induced gene expression levels against the twohour duration of the yeast
pheromone response pathway.

4.5.2 Primer Validation

RT-qPCR primers were designed for luciferase, LexA, and IRPgenes, and validated us-

ing plasmid DNA for the circuit primers, and genomic DNA for the housekeeping genes

(table 4.3). Miniprep plasmid and genomic DNA samples containing approximately

50ng of DNA were diluted 10−1, 10−2, 10−5, and 10−7 and a RT-qPCR experiment

performed in duplicate for each primer pair. A standard RT-qPCR cycle was run, as

detailed in material and method chapter 2 and the data observed for a signal from each

of the primers (figures 4.27). Following the RT-qPCR experiment all of the gene circuit

primers, as well as the UBC6, HEM2, and TDH3 housekeeping primers produced a

signal at the 10−7 dilution using the SYBR green detection method. The ALG9 primers

produced a signal at 10−5 dilution. The primers therefore demonstrate a detection range

of approximately 50ng to 5fg and an amplification efficiency of 1.8 (table 4.3).
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FIGURE 4.27: Representative results of the RT-qPCR primer validation experiment.
The graph shows the RT-qPCR SYBR green signal for the luciferase, LexA, IRP and
UBC6 housekeeping gene RT-qPCR primers performed on plasmid and genomic DNA.

Name Take Off Amplification
UBC6 1 40.6 1.83
UBC6 2 36 1.8
LexA 1 28.8 1.83
LexA 2 28.8 1.8
IRP 1 24.5 1.82
IRP 2 24.6 1.88
luciferase 1 25.5 1.87
luciferase 2 26.3 1.79

TABLE 4.3: Table of RT-qPCR validation data for the circuit and housekeeping gene
primers. The table shows the take off cycle and PCR amplification efficiency for each
of the RT-qPCR Primers validated on genomic and plasmid DNA.

4.5.3 Sample Preparation

For each of the gene circuit time-points, the total mRNA was extracted as in the material

and methods section (chapter 2) and RT-qPCR used to quantifythe relative amount of

mRNA in each. Each RT-qPCR reaction was repeated in triplicate, and the amplification

efficiency checked for a minimum of >1.6. For each of the RT-qPCR experiments, the

initial time point (t0) was used as the calibrator for the instrument software in order to

perform comparative quantification. The data was then expressed as the relative increase
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FIGURE 4.28: Representative results of the RT-qPCR primers with PDCD1 cDNA. The
graph shows the RT-qPCR SYBR green signal for the luciferase, LexA, IRP and UBC6
housekeeping gene RT-qPCR primers performed on plasmid derived cDNA

Name Take Off Amplification
LexA 1 21.3 1.68
LexA 2 21.7 1.71
LexA 3 22.0 1.71
luciferase 1 13.3 1.66
luciferase 2 13.0 1.66
luciferase 3 13.5 1.69
IRP 1 23.0 1.64
IRP 2 22.8 1.39
IRP 3 22.6 1.66
UBC6 1 17.5 1.68
UBC6 2 17.9 1.71
UBC6 3 18.1 1.74

TABLE 4.4: Representative RT-qPCR data using PDCD1 circuit plasmid cDNA.

from the initial time point measurement. Each of the data points was then normalised

against the signal from the UBC6 housekeeping gene, and the fold change calculated for

the induced cells compared with the un-induced cells. Finally, the mRNA expression

data was logged to base 2 to scale the data. A representative result from an RT-qPCR

experiment on PDCD1 plasmid derived cDNA is shown in figure 4.28.



Chapter 4.Circuit Characterization 132

FIGURE 4.29: Graph of the mRNA transcription data for the PDCD1 circuit following
pheromone induction, obtained by RT-qPCR.

4.5.4 pDCD1 Circuit qPCR Analysis

The data from the RT-qPCR experiments demonstrated a high level of variation. The

results from the PDCD1 circuit however show a directional increase in luciferase and

LexA mRNA expression during the first two hours of pheromone response (figure 4.29).

The luminometer data for PDCD1 showed maximum luminescence between 200 and

300 minutes (figure 4.4). This delay between mRNA expressionand the detection of

luminescence indicated the IRP was repressing translationof luciferase mRNA.
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4.5.5 pTEF1 Circuit qPCR Analysis

FIGURE 4.30: Graph of the mRNA transcription data for the PTEF1 circuit following
pheromone induction, obtained by RT-qPCR.

The data from the PTEF1 circuit showed luciferase mRNA expression increased in the

first two hours of the pheromone response (figure 4.30). The luminescence data from

the PTEF1 circuit also showed maximum luminescence between 200 and 300 minutes,

and luciferase expression in the PTEF1 circuit was lower than the PDCD1 circuit (figures

4.7, and 4.8). This data further confirmed the IRP was functioning as a repressor of

luciferase mRNA translation, as transcription levels for the PDCD1 and PTEF1 circuits

were comparable but luminescence expression profiles were different (figures 4.4, and

4.7) .

The data for the IRP mRNA expression indicated a directionaldecrease in expression

during the pheromone response from the PTEF1 data, indicating LexA was repressing

transcription of IRP mRNA. The variation in the data for IRP mRNA transcription

is extremely high however and may have been due to the low level of expression of

IRP from theDCD1 promoter creating noise in mRNA expression. However this is

speculative and further replicate data was required to obtain more reliable data.
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FIGURE 4.31: Graph of the mRNA transcription data for the PDCD1-PEST circuit
following pheromone induction, obtained by RT-qPCR.

4.5.6 pDCD1-PEST Circuit qPCR Analysis

The PDCD1-PEST circuit demonstrates the same trend in mRNA transcription as the

PDCD1 circuit (figures 4.29 and 4.31). The PDCD1-PEST circuit mRNA transcription

shows a decrease in the expression of IRP during the first two hours of the pheromone

response. It could be inferred that this is due to pheromone-induced expression of LexA,

inhibiting IRPPESTtranscription. Luciferase and LexA also remain up-regulated during

the pheromone response, however the data are highly variable, limiting a conclusive

analysis of the relative changes in transcription.

4.5.7 pTEF1 Circuit qPCR Analysis

The PTEF1-PEST circuit data demonstrated an increase in luciferase mRNA transcrip-

tion in the first hour of the pheromone response (figure 4.32).There was a directional

decrease in IRP expression compared to the PDCD1-PEST data (figure 4.31) with no

increase in transcription towards the end of the experimentas observed in the PDCD1

circuits, however as with the previous experiments there isa high degree of variability

in the data.
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FIGURE 4.32: Graph of the mRNA expression data for the PTEF1-PEST circuit
following pheromone induction, obtained by RT-qPCR.

4.5.8 qPCR Analysis Summary

The data from the RT-qPCR experiments were not sufficiently accurate for modelling,

as the data has a high degree of variability. The data do however provide evidence

that the components are present in the circuits and interacting as there is a signal from

the IRP, luciferase, and IRP transcription, and a directional change in the transcription

levels of each (figures 4.29, 4.30, 4.31, and 4.32).

A larger number of replicates was required to obtain more reliable RT-qPCR data

for model fitting (chapter 5), and to find statistically-significant differences in the

mRNA transcription levels during the pheromone response. Also, a larger number of

housekeeping genes should be run with each circuit to enablenormalisation across a

range of housekeeping genes as this may also reduce the levelof variability in the data.

In this work, three biological replicates were performed however for MIQE guidelines

it would be preferable to study ten housekeeping genes and perform ten biological

replicates of each experiment [259, 260]. However, for logistical reasons this was not

possible for this project. The RT-qPCR data provides confirmation of the interactions

of the components in the circuit, particularly for the PDCD1 and PTEF1 circuits where it

can be seen that IRP mRNA levels are being down-regulated in the PDCD1 circuit (figure
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4.31), but not in the PTEF1 circuit (figure 4.32), providing insight into the kinetics of the

LexA repressor. Inhibition of IRP is observed in the PDCD1 circuit (figure 4.29), but

a higher expression level of LexA is required for inhibitingIRP transcription from the

PTEF1 promoter.

4.6 Conclusion

The luciferase expression from the variations of the circuit indicated there was

a quantifiable difference in the dynamic behaviour of the circuits as a result of

incorporating the high and low expression levels of the IRP repressor and perturbing

the IRP half-life through the addition of the PEST degradation tag. Western blot

data indicated that fusing the PEST-rich C-terminal domainof the Mateus and Avery

yEGFP3 reporter gene to the IRP conferred a reduction in half-life of the IRP as seen in

the yEGFP (figure 4.21) [216].

Increasing the expression level of IRP reduces the overall signal output (the amplitude of

the signal), as expected, and changing the half-life can increase the signal and also tune

the deactivation of the circuit, reducing the period of the signal (figure 4.7). The IRP

and LexA repressors enable a higher-fold change in the output of the circuit between

the OFF and ON-states. The PDCD1 circuit can be used to achieve the highest fold

change output of the cells (figure 4.4) and the reduction in half-life can be used to

extend the period compared with the control. The circuit therefore provides an increase

in luciferase compared with a pheromone-induced reporter gene alone, and a tunable

output in terms of luciferase expression.



CHAPTER

FIVE

MODELLING

5.1 Introduction

Modelling of biological systems is an integral part of the design and development

process in synthetic biology [8, 10]. Mathematical modelling provides hypothesis

generation for designing gene circuits [178, 180], and computer simulation enables

prediction of complex behaviours that would be difficult to anticipate or investigate

experimentally [261, 262]. The process of computer modelling followed by laboratory

experimentation creates an iterative cycle of design and development that is a charac-

teristic of synthetic biology [14, 263].

The gene circuit model created for this project was requiredto predict control points

and the dynamic range of the output of the circuit, providingan indication of

which components and interactions would be most significant, prior to laboratory

implementation. Later, as the circuit was characterized inthe lab, gene and protein

expression data from the components could be collected and used to parameterise the

model, allowing it to evolve into an accurate predictive tool for understanding the

experimental observations. This approach provides direction for the project at inception,

137
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and then early prediction of behaviour as the circuit is tested in the laboratory. A model

that is parameterised entirely by experimental data is a valuable predictive tool that can

be used for further refinement of the circuit behaviour [14, 169, 173].

The gene circuit was designed to be activated by the Ste12 transcription factor from the

yeast pheromone response pathway. The mating response pathway formed the input

to the circuit and involved a complex cascade of reactions that ultimately resulted in

the activation of the mating response genes [55]. It was decided at the beginning of

the project to include the mating response pathway in the model as an “input module”

for the gene circuit reactions for accommodating the dynamic behaviour of the MAP

kinase cascade [128]. Currently, the most detailed model ofthe pathway that has

been published is by Bente Kofahl and Edda Klipp [128]. The model attempts to

provide a complete simulation of the pathway, including G-protein activation, the MAP

kinase cascade, and activation of the Ste12 transcription factor (figures 1.8 and 1.9).

Although the model contains all of the components of the yeast pheromone response

pathway, the individual reactions are not required when simulating the gene circuit,

and adds additional computational time to the simulations.Therefore in this project,

the model was simplified into a single rate equation to translate the flux through the

pathway into a generic input function for the circuit. To achieve this, the model was

reduced to only the components directly interacting with the cascade. The input was

limited to the formation of the complete Ste5 complex - Ste5,Ste7, Ste11,Gβγ, Fus3,

designated “complexD” in the model (figure 1.9) [128]. The output was taken as the

phosphorylated form of Ste12. The Bar1 and Far1 reactions controlling cell elongation,

chemotaxis, and pheromone degradation were removed, and the components of the

MAP kinase cascade fixed at their initial values. Changing the initial concentration

of complexD and observing the change in flux through the final reaction (v34: the

phosphorylation of Ste12 to Ste12pp) (table 5.1) enabled simulation of only the cascade

components directly involved in the phosphorylation of Ste12.

As the model was based on simple mass-action kinetics the resulting output was

a linear increase in output in response to increasing input (see figure 5.1 A). The

flux through the reactions other than v34 were found to be minimal compared with

reaction v34, therefore it was assumed that the flux through the mating response
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pathway model is primarily towards the phosphorylation of Ste12 (see figure 5.1 B).

The slope of the graph produced from scanning through reaction v34, was taken as

the rate of phosphorylation of Ste12. The model was then simplified by removing all

of the components between complexD and the double phosphorylated form of Ste12,

replacing them with a single reaction, multiplied by the rate constant for reaction

v34 from the original model (see equation 5.2). The final “minimal model” took the

input from the activated trans-membrane G-protein and activated the Ste12 transcription

factor through a single reaction, representing the flux of the reactions through the MAP

kinase cascade (equation 5.1).

d[Fus3pp]
dt

=−(k1v33 · [Fus3pp]]− (k1v34· [Ste12] · [Fus3pp]+(k1v35 · [Ste12active])

+(k1v32 · [complexD]))

(5.1)

Reaction Reaction Details Rate (reactions per minute)
v32 complexD⇋ Fus3pp 3.42x106

v33 Fus3pp⇋ Fus3 50
v34 Ste12 + Fus3pp⇋ Ste12 active 18
v35 Ste12 active⇋ Ste12 + Fus3pp 10

TABLE 5.1: The simplified MAPK model based on the yeast pheromone response
pathway model by Kofahl and Klipp [128]. The rate equations and parameters for all
reactions were taken from the model by Kofahl and Klipp, and v32 was modified with
the rate calculated from equation 5.2. “=” denotes a reversible reaction.

The rates of the reactions v32, v33, v34, v35 were taken from the Kofahl and Klipp

model, and are listed in table 5.1. Reaction v32 was modified to incorporate the rate of

flux through the MAP kinase cascade (figure 5.2) calculated from equation 5.2:

r = k · [complexD] (5.2)

Equation 5.2 was derived from the observation of the change in flux through reaction

v34 as a function of the initial concentration of complexD. The rate “r” is equal to the

slope of the line from the flux through v34 multiplied by the concentration of complexD.

The slope of the line in figure 5.1A was calculated asr = 3.42x106. The complexes that

make up the MAPK cascade were then deleted and a single reaction inserted for the
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FIGURE 5.1: MAP kinase cascade outputs plotted with varying initial concentration
of complexD. The graph shows the initial concentration of complexD (x axis) as a
function of the concentration of Ste12 active (y axis). The concentration of Ste12active
is shown in nmol/l however this is an arbitrary measure of concentration and is not an
accurate prediction of the cellular concentration of phosphorylated Ste12. A: Flux
through reaction v34, representing the change in the concentration of phosphorylated
Ste12. B: flux through the reactions producing the individual components of the MAP
kinase cascade, excluding phosphorylated Ste12.

FIGURE 5.2: Flux through reaction v34 in minimal model incorporating a single rate
equation to describe the behaviour of the MAP kinase cascade.

transformation of complexD to Ste12pp, with the reaction constantr. This model was

then run and the output behaviour checked for the new single step model. The new

simplified model was used to parameter scan increasing concentrations of complexD

and observe the rate of change in the concentration of phosphorylated Ste12 through

reaction v34 (see figure 5.2). The slope of the graph was takenas 3.37x106, which is

comparable with the original slope of the MAP kinase model (figure 5.1). From this

result, the new simplified model was taken as representativeof the original Kofahl and

Klipp model for the rate of the activation of Ste12.
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5.2 Modelling Eukaryotic Signal Cascades

After further investigation of the Kofahl and Klipp model (chapter 1.4), it was found

that the model was not sensitive to the level of pheromone andthat the steady-state

concentrations of phosphorylated forms of Fus3 and Ste12 were always zero, with

fixed levels of pheromone input. Some of the model parameter values were obtained

from the literature, but many had been fitted to validate the behaviour against wet lab

data of various mutants of the pheromone response pathway [128]. To this end, the

model predicts the results it was designed to predict, however it has little further utility,

and cannot thus be used to investigate other dynamics of the pheromone response,

such as ultra-sensitivity and the dynamic range of the signal response, as reported by

O’Shaughnessey or Yi [46, 126].

5.2.1 A Revised Mating Pathway Model

A mechanistic model of the mating pathway was constructed from current descriptions

of the pathway found in the literature (table 5.2) [55, 80]. There are no published studies

that accurately quantify the components of the yeast matingpathway. A comprehensive

search of the literature was conducted to find the most accurate quantification of the

components of the MAPK pathway in yeast (table 5.3). The behaviour of the model

using these parameters was compared with published experimental observation [126],

and models by Kholodenko, Huang and Ferrell, and Wang [120, 131, 264]. The

model incorporated the MAP kinase cascade reactions of the yeast pheromone response

pathway and models the successive phosphorylation of the MAPK components, Ste11

(MAPKKK), Ste7 (MAPKK), and Fus3 (MAPK) (figure 5.3). Ste5 was not included

in the model reactions as it was believed it is primarily involved in maintaining signal

specificity rather than facilitating signal transduction [71, 268]. The kinases interact

as they would with the scaffold (sequential phosphorylation), but the scaffold itself

is not modelled directly. Each kinase must be doubly phosphorylated before it can

phosphorylate the next kinase in the cascade, and non-specific phosphorylases can de-

phosphorylate the kinases at each reaction in the cascade. There was no experimental
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Biochemical Event Model Reaction
Ste20 binds to Ste11 #1 ste20 + mapkkk⇋ ste20-mapkkk
Ste20 phosphorylation of Ste11 #1 ste20-mapkkk→ mapkkk-p + ste20
Ste20 binds to Ste11 #2 ste20 + mapkkk-p→ ste20-mapkkk-p
Ste20 phosphorylation of Ste11 #2 ste20-mapkkk-p→ mapkkk-pp + ste20
Ste11 binds to Ste7 #1 mapkkk-pp + mapkk⇋ mapkkk-pp-mapkk
Ste11 phosphorylates Ste7 #1 mapkkk-pp-mapkk→ mapkkk-pp + mapkk-

p
Ste11 binds to Ste7 #2 mapkkk-pp + mapkk-p⇋ mapkkk-pp-

mapkk-p
Ste11 phosphorylates Ste7 #2 mapkkk-pp-mapkk-p → mapkkk-pp +

mapkk-pp
Ste7 binds to Fus3 #1 mapkk-pp + mapk⇋ mapkk-pp-mapk
Ste7 phosphorylates Fus3 #1 mapkk-pp-mapk→ mapkk-pp + mapk-p
Ste7 binds to Fus3 #2 mapkk-pp + mapk-p⇋ mapkk-pp-mapk-p
Ste7 phosphorylates Fus3 #2 mapkk-pp-mapk-p→ mapkk-pp + mapk-pp
Fus3 up-regulates expression of msg5mapk-pp→ msg5 + mapk-pp
msg5 binds to Fus3 #1 msg5 + mapk-pp→ msg5-mapk-pp
msg5 de-phosphorylates Fus3 #1 msg5-mapk-pp→ ptc1 + mapk-p
msg5 binds to Fus3 #2 msg5 + mapk-p⇋ msg5-mapk-p
msg5 de-phosphorylates Fus3 #2 msg5-mapk-p→ ptc1 + mapk
msg5 is degraded msg5→
nsp binds to Ste7 #1 mapkk-pp + nsp⇋ mapkk-pp-nsp
nsp de-phosphorylates Ste7 #1 mapkk-pp-nsp→ mapkk-p + nsp
nsp binds to Ste7 #2 mapkk-p + nsp⇋ mapkk-p-nsp
nsp de-phosphorylates Ste7 #2 mapkk-p-nsp→ mapkk + nsp
nsp binds to Ste11 #1 mapkkk-pp + nsp⇋ mapkkk-pp-nsp
nsp de-phosphorylates Ste11 #1 mapkkk-pp-nsp→ mapkkk-p + nsp
nsp binds to Ste11 #2 mapkkk-p + nsp⇋ mapkkk-p-nsp
nsp de-phosphorylate Ste11 #2 mapkkk-p-nsp→ mapkkk + nsp
Phosphorylated Fus3 activates Ste12mapk-pp + ste12→ mapk-pp + ste12-active
Ste12 de-activates ste12-active→ ste12

TABLE 5.2: Revised MAPK model reactions. The reactions are constructed for input
into the Copasi software package.

Model Species Particle Number Source
Ste20 260 Ghaemmaghami S. [265]
Ste7 736 Slaughter B. [266]
Ste11 672 Ghaemmaghami S. [265]
Fus3 848 Slaughter B. [266]
non-specific phosphatase 1000 Ghaemmaghami S. [265]
msg5 1000 Maeder C. [267]
Ste12 1390 Ghaemmaghami S. [265]

TABLE 5.3: Parameter values for the revised MAPK model. Parametervalues were
calculated in number of molecules per cell, and input into the model as particle numbers
in Copasi.
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FIGURE 5.3: Diagrammatic representation of the revised MAPK model.

data to demonstrate the mechanism of the procession of phosphorylation states during

the cascade, specifically whether the three kinases must bind as a complex and then

sequentially phosphorylate each other, or whether each binds separately, and randomly.

The Kofahl and Klipp model also follows this process of association and dissociation

of the kinases, with the Ste5 scaffold, and the complex can dissociate completely at

each phosphorylation step (figure 1.9). The revised model incorporated reversible

binding between each kinase, and double phosphorylation events for each, which are

believed to create the ultra-sensitive switch-like response, bistability, and hysteresis

behaviours observed from the MAPK cascade [77]. The model also included each

component binding to form a complex before being released ina phosphorylated or

de-phosphorylated form (equation 5.3).

Ei−1∗ +Ei ⇋ EiEi−1∗ → Ei−1∗ +E∗
i (5.3)
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These events introduced the nested feedback loops (dephosphorylation of each kinase

separately, and simultaneously with the cascade of phosphorylation reactions (figure

5.3)) modelled by Goldbeter and Markevich, and are also believed to be the feature of

MAPK cascades that facilitates ultra-sensitivity and bistability [76, 77, 123].

The model therefore combines the complex formation approach of Kofahl and Klipp

with generic MAPK cascade models such as Huang and Ferrell, and Kholodenko. [122,

124, 128, 131]. The dynamics of the G-protein cycle were not included in the model as it

was believed the G-protein cycle would be at steady-state toinitiate the phosphorylation

of the MAPK cascade and would not have further downstream effects [56, 126].

5.2.1.1 Simulation Results

Time course simulations showed the MAP kinases are sequentially phosphorylated,

followed by accumulation of active Ste12 within two hours, as observed experimentally

in the yeast mating pathway (figures 5.4) [55, 195, 196]. A parameter scan of the input

to the cascade (taken as Ste20 in the model) revealed the hyper-sensitivity characteristic

of MAPK cascades. By varying the level of signal entering thecascade, the model

demonstrated a threshold concentration of input producinga switch-like response in

the output (figure 5.5 A and B). Figure 5.5 shows that introducing reversible complex

formation between kinases and phosphatases produces the ultra-sensitive response, as

shown in published models of signal cascades [77, 124, 269].This behaviour could

not be reproduced with the Kofahl and Klipp model. Moore published an observation

that filamentous growth (the chemotropic response to pheromone) was not detected at

pheromone concentrations less than 10nM, indicating that this is the activation threshold

of the mating response [195]. A parameter scan of the input signal was run on the

model and it was found that the new model demonstrates an ultra-sensitive switch-like

response at a concentration of approximately 15nM activating signal (figure 5.5 B).

The model is therefore demonstrating the switch-like behaviour replicated in previous

published models of MAP kinase cascades [132, 270], and the switching point is at a

biologically-relevant concentration of the activation signal [195].
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FIGURE 5.4: Time course simulation of the revised MAPK model. A. Accumulation
of the double phosphorylated forms of the MAP kinases. B. Accumulation of active
Ste12.

The revised MAPK model demonstrated the same characteristics as published sim-

plified models of MAP kinase cascades [122, 124]. The model also reproduces

experimental observations of the pheromone response of yeast in terms of the time

scale, order of events, and activation threshold [227]. This revised MAPK model

provides a more relevant chassis with which to study the effect of the dynamic

behaviour of MAPK cascades on gene circuitry that are coupled to the yeast pheromone

response pathway. The model requires additional reactionsto incorporate the additional

components of the pheromone response pathway, such as the G-protein cycle and the

α-factor Ste2 receptor binding. The model also requires additional parameterisation

to tune the ultra-sensitivity behaviour, as currently the rate of activation is very steep
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FIGURE 5.5: [Accumulation of the phosphorylated forms of the MAP kinases and
active Ste12 in the revised MAPK model in response to varyinglevels of input. A.
The accumulation of the double phosphorylated forms of the MAP kinases. B. The
accumulation of the Fus3pp activated Ste12. The model demonstrates an ultra-sensitive
response with a threshold activation concentration of approximately 15nM.

compared with published models of MAPK cascades (figure 5.5)([133]). A rate law

could be investigated in terms of using Michaelis-Menten type kinetics with a Hill

coefficient instead of simple mass-action kinetics [122]. Also, future research in the

McCarthy lab includes QconCAT mass spectrometry analysis of the yeast pheromone

response pathway, therefore this model can be parameterised using quantitative data,

and incorporated into this research program.
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5.3 Modelling the Gene Circuit

FIGURE 5.6: Schematic overview of the gene circuit model. Arrows represent
reactions, and shapes represent species in the model. The plasmids were not present
as species in the model, however rate equations representedthe transcription process
from the plasmid DNA to the mRNA species, which is then present as a species in the
model. Reaction numbers are detailed in table 5.4.

A model of the gene circuit was devised that would simulate the interactions of the

components, enabling investigation of the system both prior to, and during laboratory

experimentation (figure 5.6). A mechanistic model was builtusing mass-action kinetics

and Michaelis-Menten formalism, enabling representationof the activation of the

pheromone-inducible genes and inhibition of transcription and translation by LexA

and IRP respectively (table 5.4). Standard Michaelis-Menten equations were employed

(equation 5.4) where v is the rate of the reaction,Vmax is the maximum reaction rate,

[s] is the substrate concentration, andKM is the concentration of substrate that results in

50% of the maximum rateVmax [271]. Michaelis-Menten kinetics were used to model

the processes of transcription and translation as these processes can saturate, and the rate

equations provide the ability to tune the strength of the promoters through theVmax and

KM parameters [157, 190]. The circuit input signal, and degradation rates of protein and

mRNA species were represented by mass-action kinetics as these processes are unlikely
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No. Biochemical Event Model Reaction
1 IRP transcription (LexA inhibited) → IRP-mRNA; LexA
2 LexA transcription (Ste12 activated) → LexA-mRNA; Ste12
3 luciferase transcription (Ste12 activated)→ Lucif-mRNA; Ste12
4 IRP translation IRP-mRNA→ IRP + IRP-mRNA
5 LexA translation LexA-mRNA→ LexA + LexA-mRNA
6 luciferase translation (IRP inhibited) Lucif-mRNA→ Lucif + Lucif-mRNA; IRP
7 IRP mRNA degradation IRP-mRNA→⊘
8 LexA mRNA degradation LexA-mRNA→⊘
9 luciferase mRNA degradation Lucif-mRNA→⊘
10 IRP degradation IRP→⊘
11 LexA degradation LexA→⊘
12 luciferase degradation Lucif→⊘
13 Ste12 degradation Ste12→⊘

TABLE 5.4: Gene circuit model reactions. semi-colon denotes a modifier in the
reaction that either activates or inhibits the reaction from occurring. The reactions are
constructed for input into the Copasi software package. Thereaction numbers relate to
the reactions outlined in figure 5.6

to exhibit saturation phenomena under the model conditions.

V =
Vmax· [s]
KM +[s]

(5.4)

Standard Michaelis-Menten equations cannot account for basal “leak” in gene expres-

sion (genes expressed at a low level in the absence of specificactivation) [157, 190,

272]. Therefore, gene expression for transcription was modelled using a modified

form of the Michaelis-Menten equation, based on published work by Ajo-Franklin, and

included the parameterS0, representing low level of constitutive reaction flow, which in

the circuit model would represent basal expression [190].

The rate equation in 5.5 was used, wherev is the rate of transcription,S0 is the rate of

basal transcription,Vmax is the maximum rate of transcription,[A] is the concentration

of the activating signal, andKM is the concentration of the activating signal that results

in 50% of the maximum rate of transcription [157, 190]. The activating signal represents

a generic term for transcription factor, polymerase, ribosomes and the DNA/RNA

replication machinery of the cell.

v= S0+
Vmax· [A]
[A]+KM

(5.5)



Chapter 5.Modelling Synthetic Gene Circuits 149

Inhibition of transcription and translation was modelled using a further modified form

of the Michaelis-Menten equation, incorporating a competitive inhibitor (equation 5.6),

which is the same form as equation 5.4 with the addition of theconcentration of the

repressor,[i] andKi which is the concentration of inhibitor that results in 50% inhibition

of the reaction. For translation the parameter for basal expressionS0 was removed.

v=
Vmax· [A]

[A]+KM · (1+ [i]
Ki
)

(5.6)

The Michaelis-Menten formalism enables a more biologically-relevant behaviour with

inhibition, activation, and saturation of the reactions however, it is designed for enzyme-

catalysed reactions and is derived from equation 5.7.

E+S⇋ ES→ E+P (5.7)

The Michaelis-Menten scheme in equation 5.7 assumes a low concentration of enzymes,

a concentration of substrate that is not rate limiting, and that the enzyme-substrate

complex forms much faster than the formation of product, andthe reaction occurs

in a well-mixed homogeneous suspension [273]. The processes of transcription and

translation involve hundreds of components in huge complexes [274]. The dynamic

behaviours of each of these interactions is over-simplifiedin the generic Michaelis-

Menten rate equation. However, there are insufficient data available to provide accurate

mathematical representation to incorporate these processes, and the Michaelis-Menten

formalism provides a convenient framework to begin modelling biological interactions.

It would also be impractical to build a model with rate equations incorporating all of the

molecular interactions during DNA replication and proteinsynthesis.

The Michaelis-Menten formalism containsVmaxandKM parameters to describe the rate

of an enzyme-catalysed reaction and the catalytic turnoverrate [271]. These functions

can be used in the modelling of synthetic gene circuits to simulate different strength

promoters [275, 276].Vmax can be used to represent maximal promoter turnover time,

and saturation concentration of RNA polymerase (i.e. the maximal rate at which

RNA polymerases can be recruited, and transcription initiated). KM can be used to

represent the concentration of RNA polymerase molecules and/or relevant transcription
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factors that produces 50% of maximal promoter output. The substrate can represent

the components of the transcription initiation pathway; inthe case of this project, the

substrate was taken as the transcription factor, functioning as the activating signal to

recruit an RNA polymerase to the promoter and initiate transcription. This interpretation

necessarily assumes that the concentration of transcription factor is the limiting factor

in transcription initiation. Therefore, the fraction[A] / KM + [A] represents the

proportion of promoters occupied by transcription-competent RNA polymerase for any

given transcription-factor concentration, where[A] replaces the substrate in the classical

Michaelis-Menten rate equation [276]. When[A] tends to infinity, the ratio approaches

1 and represents saturation of the reaction. When[A] tends to zero the equation can

be expressed asv = (Vmax/KM)· [A] , where the factorVmax/KM represents the promoter

strength [276]. Therefore, the three dependent parameters: Vmax, KM, andVmax/KM are

sufficient to compare promoter strength. The same Michaelis-Menten formalism can be

used with translation, replacing the polymerase enzyme with the ribosome.

The circuit was initially modelled in isolation (without the interaction with the MAP

kinase cascade) to enable observation of interactions between the components in

response to externally-stipulated levels of stimulus. To this end, circuit activation was

modelled using a generic “activation-species”, which caused catalytic stimulation of the

expression of luciferase and LexA mRNA species (equations 5.8, and 5.9).

As described above, the parameter “S0” was added to the transcription equations to

account for a continuous low (basal) level of transcriptionfrom the IRP, LexA and

luciferase genes. There is no published data for the specificlevels of basal expression

of the genes expressed on the circuit plasmids, however research indicates the up-

regulation is between 10 and 100-fold [277]. For the purposes of the model therefore,

basal expression was set to 1% ofVmax.

Luci f erase transcription= S0+
Vmax· [activator]
KM +[activator]

(5.8)

LexA transcription= S0+
Vmax· [activator]
KM +[activator]

(5.9)
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IRP transcription= S0+
Vmax· [IRP activator]

[IRP activator]+KM · (1+ [LexA]
Ki

)
(5.10)

The parameter “activator” represents the output of the yeast pheromone response

pathway and incorporates Ste12 transcription factor activation and RNA polymerase

binding to the promoter. For IRP transcription, the formulaincorporates competitive

inhibition by the LexA repressor (equation 5.10) “IRP activator” represents the cellular

signal that regulates constitutive expression of theDCD1 or TEF1 promoters, and

provides a continuous activation of transcription via a model species with fixed

concentration, therefore simulating constitutive gene expression. The denominator

includes the classical Michaelis-Menten competitive inhibitor expression[i]/[K i] ,

enabling increasing levels of LexA to increase inhibition on the transcription of the

IRP, at a rate that can be tuned with the parameterKi . Using this format enables LexA

to compete with the cellular transcription machinery to suppress the production of IRP

mRNA.

For translation, the same formulae are used. For luciferasetranslation, as with

IRP transcription, a competitive inhibitor function is added to the Michaelis-Menten

equation. As the concentration of IRP increases, it increases the inhibition of translation

of luciferase mRNA to luciferase protein (equation 5.11).

Luci f erase translation=
Vmax· [Luci f erase mRNA]

[Luci f erase mRNA]+KM · (1+ [IRP]
Ki

)
(5.11)

LexA and IRP translation are represented with standard Michaelis-Menten equations

with their respective mRNA species as substrate (equations5.12, and 5.13).

LexA translation=
Vmax· [LexA mRNA]
KM +[LexA mRNA]

(5.12)

IRP translation=
Vmax· [IRP mRNA]
KM +[IRP mRNA]

(5.13)

The model was initially constructed with default values of 1for all parameters, making

all reaction rates equal throughout the model and enabling it to be interrogated in terms

of just the interactions between the components. While thisapproach did not provide

a quantitative model of the system (components cannot be quantified, nor the outputs
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species steady-state particle number
Luciferase 5
LexA 7
IRP 14

TABLE 5.5: Steady-state particle numbers of the circuit components in the absence of
pheromone (the “OFF-state”).

taken as accurate representations of what might be expectedexperimentally), the model

did nevertheless simulate thequalitative interactions between the components in the

model and therefore could be used to provide useful indications of how the interactions

of the components might behave as a systemin vitro. The steady-state values for the

components were expressed as particle numbers, because concentration is irrelevant in

the model at this time. The model was constructed to enable the investigation of the

relative changes in the levels of the components, and the changes to the steady state of

the system.

To begin, no input signal was added for up-regulation of the pheromone response and

a default number of 1000 particles of the IRP signal was addedto saturate the reaction

for the constitutive expression of the repressor plasmid. This was defined as the circuit

“OFF’-state”. The steady of state of the system was determined and set as the initial

conditions of the model to simulate the system under normal growth conditions, prior

to circuit activation (table 5.5). The data indicated luciferase expression was lower

than LexA as the IRP was repressing the translation of luciferase mRNA. The model

predicted that IRP inhibits luciferase basal expression byapproximately 30%. Addition

of input signal for the pheromone-induced promoters resulted in the expression of the

reporter gene, and the circuit transitioning to the “ON-state”. The input signal was fixed

at a constant, arbitrary value of 1000 to saturate the system(as with the IRP signal)

and the steady-state level of the pheromone induced components LexA and luciferase

was determined (table 5.6). Analysis of the steady-state particle numbers demonstrated

the IRP inhibited luciferase expression by approximately 20% (taking LexA as 100%

output). LexA also inhibited IRP, producing approximately85% (15% inhibition) of the

output observed in the OFF-state (table 5.5). From the observations of the model, it was

implied that the components were interacting as expected, in terms of IRP inhibiting

luciferase, and LexA inhibiting the IRP. The model next required parameterisation with
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species steady-state particle number
Luciferase 8
LexA 10
IRP 11

TABLE 5.6: steady-state particle numbers of the circuit components in the “ON-state”.

biological-relevant values for each of the reactions. Thiswould provide a more accurate

model of the system, which could be compared with experimental observations.

5.4 Model Parameterisation

In order to begin to build anin vivo representative model of the circuit, the model

was parameterised using published literature values for the rate of transcription and

translation inS. cerevisiae, as well as rates of protein and mRNA degradation (table

5.7). The model was run to steady-state with no signal, the model state set to the

initial state, signal added, and sensitivity analysis performed on the model to investigate

control points that could provide the ability to tune the circuit in vitro. The results are

Parameter value source
Transcription 800bp/min Zenklusen, D. [278]
Translation 9.3 codons/sec Bonven B. [279]
average mRNA half-life 23 minutes Wang Y. [280]
average protein half-life 43 minutes Belle A. [281]

TABLE 5.7: Table of generic parameter values from the published literature, used for
the first round of parameterisation of the gene circuit model.

summarized in table 5.8. Sensitivity analysis indicated the steady-state of the system

was sensitive to the IRP transcription rate, as this directly influences the level of IRP in

the system (table 5.8). This raised the concern that IRP protein concentration above

a certain threshold would effectively sequester even induced luciferase mRNA, and

thus prevent the circuit switching to the “ON”-state. Sensitivity analysis provided

the hypothesis that implementing varying rates of transcription of the IRP gene would

enable tuning the circuit, in terms of the level of IRP protein abundance, and therefore

the level of luciferase expression. A strong and weak promoter for IRP would avoid the

risk of the IRP repressing the luciferase reporter gene to such an extent that it was not
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Parameter Sensitivity Value
IRP basal transcription 1.6x1010

IRP transcriptionVmax 3313
IRP transcriptionKM 4281
IRP transcriptionKi 227
luciferase basal transcription 2214
luciferase transcriptionVmax 935
luciferase transcriptionKM 1422
LexA basal transcription 2832.86
LexA transcriptionVmax 1887
LexA transcriptionKM 62
IRP translationKM 1573
IRP translationVmax 1305
luciferase translationKM 1937
luciferase translationVmax 104
luciferase translationKi 585
LexA translationKM 154
LexA translationVmax 1202
IRP mRNA degradation 2593
LexA mRNA degradation 4262
luciferase mRNA degradation 48
IRP degradation 106
LexA degradation 1171
luciferase degradation 1210
signal degradation 2667

TABLE 5.8: Sensitivity analysis of the gene circuit model performed on all parameter
values, as a function of all non-constant concentrations ofspecies. Larger values
indicate that perturbing the parameter will have a larger effect on the steady-state of
the components of the system.

detectable, requiring the re-designing of the circuit later in the project. Therefore, the

strongTEF1and the weakerDCD1 yeast promoters were included in the experimental

phase (chapter 4) as promoters for the repressor plasmid to investigate the effect of high

and low abundance of IRP on the expression of luciferase.

The interaction of the repressors (theKi values) did not score highly in the metabolic

control analysis, indicating that they were not strong control elements of the system.

This indicated the model is not yet accurately simulating the interaction of the IRP and

LexA repressors. However, the luciferase translationKi sensitivity was 585, and the

IRP transcriptionKi is 227. This indicated that the system was approximately twice

as sensitive to translational inhibition compared with transcriptional inhibition. It was
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hypothesized that this was representative of the difference in the time scales for the

reactions, as inhibition of translation results in a changein protein abundance more

rapidly than inhibiting transcription, which would not have an effect on downstream

protein abundance until all of the pre-existing mRNA template had been degraded.

This observation, together with the high sensitivity to IRPtranscription indicated the

framework of the model was approximating the system.

In addition to sensitivity analysis, metabolic control analysis was also used to investigate

the model (table 5.9). The metabolic control coefficient could be represented as a

stacked bar chart enabling graphical interpretation of thedata. The figures 5.7 (page

148), 5.13 (page 156), and 5.14 (page 157), attempt to represent the concentration

control coefficients of the models. A positive control coefficient value indicates that

a reaction has a positive effect on the steady state concentration of a reactant, and a

negative control coefficient indicates a negative effect onthe steady state concentration

of a reactant in the model. Larger values indicate a larger effect. For example, in

figure 5.13 the largest positive control coefficient for luciferase is the IRP degradation

reaction. Increasing the rate of IRP degradation is predicted by the model to effect

the largest increase in the steady-state concentration of luciferase, compared with the

other reactions of the model. The concentration control coefficient for metabolic

control analysis are synonymous with sensitivity analysis[149] and confirmed that

luciferase expression could be increased by increasing theIRP degradation rate and

decreasing the IRP transcription rate. The model thereforeprovides valuable insight

into the controlling interactions within the network even in the absence of experimental

data, and provides useful indicators to refine or re-design the circuit beforein vitro

construction.

The circuit was designed prior to the project to maximize theratio of the expression

of the reporter gene between the OFF and the ON-state, through lowering of the basal

expression level. The original strategy for circuit designincluded IRP regulation as a

means to maximize the induced/uninduced ratio of reporter gene expression. The model

indicated that, while the IRP repressor does indeed inhibitthe basal level of output in

the OFF-state, the level of output in the ON-state is similarly inhibited, and indeed

to a similar extent. This therefore reduces the overall system output and produces an
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luciferase mRNA LexA mRNA IRP mRNA LexA luciferase IRP
luciferase transcription 1.140 0 0 0 0.880 0
LexA transcription -0.012 0.952 -0.039 -0.039 0.002 -0.039
IRP transcription 0.302 0 1 0 -0.038 1
LexA translation -0.007 -0.417 -0.024 0.583 0.001 -0.024
IRP translation 0.151 0 -0.5 0 -0.019 0.5
luciferase translation -1.114 0 0 0 0.140 0
IRP degradation -0.302 0 0 0 0.038 -1
luciferase degradation 0 0 0 0 -1 0
LexA degradation 0.013 0 0.041 -1 -0.002 0.041
luciferase basal transcription 0.114 0 0 0 0.088 0
LexA basal transcription -0.001 0.048 -0.002 0.048 7.5e-05 -0.002
LexA mRNA degradation 0.007 -0.583 0.024 -0.583 -0.001 0.024
luciferase mRNA degradation-0.140 0 0 0 -0.108 0
IRP mRNA degradation -0.151 0 -0.5 0 0.019 -0.5

TABLE 5.9: Metabolic control analysis of the gene circuit model, used to construct figure 5.7.
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FIGURE 5.7: The concentration control coefficients for the gene circuit model.
The graph shows the reactants in the model on the x axis, and the y axis shows
the concentration control coefficients for each of the reactions in terms of the
control exerted by the concentration of the reactants. The concentration control
coefficient illustrates the effect of perturbing the rate ofa reactions on the steady state
concentration of a reactant in the network. A negative control coefficient has a negative
effect on the reactant steady state concentration, and a positive control coefficient a
positive effect.

essentially unchanged ratio of induced/uninduced expression. The model also predicts

that the inhibitor must be rapidly removed from the system, to enable induced output to

reach levels typically observed in a simple “direct” pheromone-induced reporter system.

To address these concerns raised by the model, it was decidedto investigate the effects

of altering the half-life of the IRP protein and the strengthof the constitutive promoter

in the in vivo system. To this end, “strong” and “weak” constitutive promoters (PTEF1,

and PDCD1, respectively) were implemented in the repressor plasmid,and a modified

IRP with a shorter half-life (IRPPEST) was constructed (chapter 3).

5.4.1 Further Parameterisation and the Final Model

Further parameterisation was performed to improve on the generic parameter values,

using a literature search of published kinetic parameters.Kinetic data for all of the

model reactions was not available prior to the project however, text mining can provide
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a range of existing parameter values from the published literature and is used routinely

in modelling biological systems [282, 283] (table 5.10). A generic rate of transcription

in S. cerevisiaewas taken as 800 base pairs per minute [278], and for translation; 9

codons per second [279]. Based on the length of the DNA and mRNA transcript of the

component, the parameters for the gene circuit model were calculated as in table 5.10.

The circuit model was further modified to reflect the laboratory implementation of the

Parameter value source
Luciferase mRNA transcription 2 minutes Zenklusenet al [278]
LexA mRNA transcription 46 seconds Zenklusenet al [278]
IRP mRNA transcription 3.3 minutes Zenklusenet al [278]
Luciferase protein translation 2 minutes Bonven B. [279]
LexA protein translation 20 seconds Bonven B. [279]
IRP protein translation 1.6 minutes Bonven B. [279]
LexA protein half-life 1 hour Sassanfar M. [284]
IRP protein half-life 16 hours Clarke S. [252]
Luciferase protein half-life 3 hours Leclerc G.et al [285]
Ste12 numbers per cell 1390 Ghaemmaghami S. [265]
Ste12 protein half-life 25 minutes Esch R. [286]
Fold change for gene up-regulation 10-100x Buchler N. [277]

TABLE 5.10: Gene circuit parameter values sourced from publishedliterature. Specific
parameter values were calculated for each of the circuit components, improving on the
generic parameter values.

strong (TEF1) and weak (DCD1) promoters, prompted by the initial metabolic control

analysis results. The IRP transcription reaction was retained as a single rate law for both

promoters, and an additional parameter was added to incorporate the change (equation

5.14) wherep represents “promoter strength”.

Copasi enables the use of “global quantities” that can be assigned values or custom

mathematical expressions. This feature enabled the promoter strength to be modified

globally, thus acting as an additional parameter value available for parameter scanning,

optimization, or sensitivity analysis. Previous work on luciferase expression by Naglis

Malys in the McCarthy lab (unpublished) gave estimates forDCD1 promoter activity

that were approximately 60 times lower than theTEF1 promoter, therefore the rate

equation maximum rate (Vmax) and basal expression level (s) were reduced 60-fold to

simulate the transcription rate of the weaker promoter. ForPTEF1, p was set to 1, and for

PDCD1 p was set to 60. The global quantityp in equation 5.14 therefore represents the
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term 1/promoter strength. Higher values ofp represent weaker promoters, and lower

values ofp, stronger promoters.

IRP transcription=
s
p
+

Vmax
p · [IRP activator]

[IRP activator]+KM · (1+ [LexA]
Ki

)
(5.14)

5.5 Stochastic Simulation of the Gene Circuit

Deterministic modelling of the gene circuit with coupled ordinary differential equations

provided an average measurement of the behaviour of the circuit over time. However,

coupled systems of chemical equations can also be represented as a stochastic process

where the variables are numbers of molecules, and interactions are modelled as

discrete events [287]. Deterministic modelling using ordinary differential equations

to model biological systems assumes there are millions of molecules in a well mixed,

homogeneous suspensions, that have an equal probability ofinteracting at any particular

time.

While this is often sufficient for simulating simplein vitro biological behaviour, it

is less appropriate for modelling complex, compartmentalised intracellular systems,

particularly those involving interactions between small numbers of molecules [288,

289]. Stochastic modelling allows for random fluctuations in the interactions of

small numbers of molecules, thus providing a more accurate simulation of the cellular

environment [136]. The disadvantage in the use of stochastic simulations is that such

models require a greater amount of computing time, as the interaction of every molecule

at every time step must be calculated [288, 290]. Larger networks of interactions, such

as MAP kinase cascades or whole genome models require large clusters and parallel

computing to simulate short time courses [291].

The Gibson and Bruck stochastic algorithm essentially consists of an initialization

step, a Monte Carlo step, and a update step [292]. The initialization step involves

the recording of the number of molecules in the system, the reaction constants, and

initialization (i.e. seeding) of the random number generators. The Monte Carlo step

then generates two random numbers: these are used to determine the next reaction to
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occur and the time interval, respectively. As the probability of a given reaction occurring

is proportional to the number of substrate molecules, one can use the initial conditions

to both determine the relative probabilities ofall possible reactions, and to determine the

probability ofanygiven reaction occurring within a given time period. By combining

these probabilities with random numbers, one can thus (via the first random number)

determinewhichreaction occurred and (via the second random number) how much time

elapsed before that reaction occurred. The update step simply updates the molecule

numbers of the system to reflect the results of the reaction determined in the Monte

Carlo step, and increases the time elapsed by the time step similarly determined. The

process then repeats until the number of reactants is zero, or the maximum time for the

simulation has been exceeded [287, 293]. The Gibson and Bruck stochastic algorithm

is implemented in Copasi and therefore could be applied to the circuit model without

additional software or programming [134].

Initial simulations of the system with the PDCD1 promoter exhibited transcriptional and

translational bursting phenomena, due to the lower promoter strength and therefore IRP

abundance. [245, 294]. This stochastic behaviour cannot becaptured by deterministic

solvers, as the behaviour is averaged over time [288]. Closer examination of IRP

mRNA output by theDCD1promoter in the stochastic model revealed expression levels

of the order of only 1 to 2 molecules per cell (figure 5.8), which is consistent with

published literature on the promoter strength of PDCD1 [212, 242]. Such low levels of

mRNA production would be expected to result in bursting behaviour in transcription

and translation, as demonstrated in published models [294,295]. Moreover, this

behaviour would only be detectable in stochastic simulations, where molecules are

treated as discrete entities rather than concentrations. This demonstrates the power

of the stochastic approach, and this model therefore presented us with the opportunity

to study noise in the circuit output using different strength promoters to control the

expression level of the IRP repressor [288]. Stochastic trajectories represent a single

set of probabilities for the change in the state of the systemover time: as a crude

approximation, they model a single possible response of a single cell. Therefore

simulations were repeated 1000 times using the Copasi software, in order to generate

a representative population. Optimally, many hundreds of thousands of trajectories
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FIGURE 5.8: A single stochastic trajectory of the circuit model with the weakerDCD1
promoter. A. The data demonstrate low levels of mRNA transcription, with one or two
molecules being produced. B. Corresponding IRP protein translation from IRP mRNA.
The protein numbers burst simultaneously with the production of mRNA.

should be run to obtain as close to the true mean of the population as possible.

Copasi, however, outputs the raw data from each stochastic trajectory sequentially:

manual processing of the sizeable data sets thus generated rapidly becomes a non-

viable approach. To address this issue, a Python script was created that can calculate

a global mean and standard deviation for the data produced byrepeated simulations

(see appendix B), enabling a greater number of repetitions,and automatic data handling

and processing. Taking the mean of a large sample set essentially approximates the

stochastic simulation to the deterministic simulation. The standard deviation, however

incorporates the non-linear behaviour of the reactions, enabling observation of noise

[288].

The model was run to steady-state to establish resting concentrations of all the

components of the model. These values were then used to set the initial conditions

for the simulation. 1000 replicate simulations were performed over a 600 minute period

to correlate with the experimental data, and the results collated to generate an overall

representation of the time course response of the model (theexpression of the circuit

components for each experiment therefore is plotted as a graph where n=1,000).

Data on the change in the number of protein species over time was collected from a

model using parameters set to simulate the weakerDCD1 promoter (figure 5.9), and

a second model constructed, simulating the circuit with thestrongerTEF1 promoter
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FIGURE 5.9: Stochastic simulation of the PDCD1 model showing the change over time
of the protein components of the model.

FIGURE 5.10: Stochastic simulation of the PTEF1 model showing the change over time
of the protein components of the model.

(figure 5.10). From the time course simulations of the PDCD1 model, the IRP protein

level (figure 5.9, blue) decreases slightly over time as the LexA protein (figure 5.9

yellow) increases during the time course and represses the expression of IRP. From

figure 5.10 it can be seen that the luciferase expression level for the PTEF1 model does

not increase significantly, compared with the PDCD1 model. The data suggested that the

LexA repressor would not be capable of repressing the IRP in the PTEF1 model, and this

prediction was confirmed by the experimental data (chapter 4).

The luciferase protein expression levels from the models are much lower than IRP

and LexA and cannot be interpreted from figures 5.9 and 5.10, therefore they were

plotted separately in figure 5.11. The luciferase expression level from the PDCD1 model
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FIGURE 5.11: Stochastic simulation of the luciferase time course output of the PDCD1

and PTEF1 models.

was significantly higher than the PTEF1 model, by a factor of almost 25-fold. This

observation was as expected as the stronger PTEF1 promoter would generate higher

levels of IRP repressor. As might be expected, lower particle numbers appear strongly

correlated with an increase in overall noise for that particular component of the model.

Signal to noise ratios (SNR) were calculated for each circuit (figure 5.12) , confirming

that this ratio indeed decreases as particle numbers decrease. The LexA SNR remained

relatively constant through the simulation whereas the luciferase and IRP SNR decrease,

indicating the circuit output becomes more noisy over time.It was noted from this data

that experimental observations of luciferase expression could be subject to a high degree

of noise due to low overall luciferase particle number, particularly in the PTEF1 strain

with its high IRP expression, where luciferase levels my be low or even undetectable in

this circuit.

Both of the parameterised models show the highest metaboliccontrol coefficient for

luciferase expression is from the degradation rate of the IRP (figure 5.13, table 5.11,

and figure 5.14, table 5.12). No published studies have directly determined the half-life

of the IRP protein, however there is data to indicate the value exceeds 16hrs [228, 252],
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luciferase mRNA LexA mRNA IRP IRP mRNA LexA luciferase
IRP transcription 0.017 0 0.914 1 0 -0.897
luciferase transcription 1 0 0 0 0 1
LexA transcription -0.003 1 -0.174 -0.191 0.235 0.171
IRP translation 0.019 0 1 0 0 -0.981
luciferase translation -0.019 0 0 0 0 0.981
LexA translation -0.014 0 -0.741 -0.810 1 0.726
IRP mRNA degradation -0.017 0 -0.914 -1 0 0.897
LexA mRNA degradation 0.003 -1 0.174 0.191 -0.235 -0.171
luciferase mRNA degradation-0.981 0 0 0 0 -0.981
IRP degradation -0.019 0 -1 0 0 0.981
LexA degradation 0.014 0 0.741 0.810 -1 -0.726
luciferase degradation 0 0 0 0 0 -1
signal degradation 0 0 0 0 0 0

TABLE 5.11: Metabolic control analysis of the DCD1 based gene circuit model, used to construct figure 5.13.
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luciferase mRNA LexA mRNA IRP IRP mRNA LexA luciferase
IRP transcription 0.017 0 0.914 1 0 -0.897

luciferase transcription 1 0 0 0 0 1
LexA transcription -0.003 1 -0.174 -0.191 0.235 0.171

IRP translation 0.019 0 1 0 0 -0.981
luciferase translation -0.019 0 0 0 0 0.981

LexA translation -0.014 0 -0.741 -0.810 1 0.726
IRP mRNA degradation -0.017 0 -0.914 -1 0 0.897

LexA mRNA degradation 0.003 -1 0.174 0.191 -0.235 -0.171
luciferase mRNA degradation -0.981 0 0 0 0 -0.981

IRP degradation -0.019 0 -1 0 0 0.981
LexA degradation 0.014 0 0.741 0.810 -1 -0.726

luciferase degradation 0 0 0 0 0 -1
signal degradation 0 0 0 0 0 0

TABLE 5.12: Metabolic control analysis of the TEF1 based gene circuit model, used to construct figure 5.14.
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FIGURE 5.12: Signal to noise ratio for the PDCD1 and PTEF1 models. A) Is the signal
to noise ratio for the PDCD1 model, and B) is the signal to noise ratio for the PTEF1

model. Graphs show the signal to noise ratio of the luciferase, LexA, and IRP protein
components of the circuit during the time course simulation.

a time scale significantly longer than the total circuit response duration. As such, LexA-

mediated reduction in IRP expression would be unlikely to contribute significantly to

the in vivo circuit.

It was hypothesized from the model data that modifying the half-life of the IRP

could increase expression level of luciferase from the circuit. The data prompted

the investigation of the development of a Cln2 PEST degradation tagged IRP in the

repressor plasmid (chapter 3.4.3), and the model adjusted to incorporate the predicted

shorter half-life of 30 minutes [216].

At this point in the project there were four distinct versions of the circuit: PDCD1, PTEF1,

PDCD1-PEST, and PTEF1-PEST, each requiring their own model parameters (table 3.1,

chapter 3.6). The model parameter values and rate equationswere identical apart from

the promoter strength global parameter value and the IRP degradation rate. For the
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FIGURE 5.13: Metabolic control analysis results for the PDCD1 parameterised model.
The graph shows the reactants in the model on the x axis, and the y axis shows
the concentration control coefficients for each of the reactions in terms of the
control exerted by the concentration of the reactants. The concentration control
coefficient illustrates the effect of perturbing the rate ofa reactions on the steady state
concentration of a reactant in the network. A negative control coefficient has a negative
effect on the reactant steady state concentration, and a positive control coefficient a
positive effect.

PDCD1 and PTEF1 circuits, the IRP degradation rate was based on the published IRP half

life of approximately 16 hours, which was input as 0.001 particles per minute (at this

stage in the development of the model, dilution of the mRNA and protein species by

cell doubling was not incorporated into the rate laws.). Forthe short half-life IRPPEST

models the IRP degradation rate was increased by 10 fold to 0.01 particles per minute,

based on the estimated reduction in half-life of eGFP by Mateus and Avery [216].

Time course simulations were performed on the PDCD1-PEST and PTEF1-PEST models

to investigate the effect of the IRPPEST species on the luciferase expression level in

the circuit (figures 5.15 and 5.16). Time course simulation of the PDCD1-PEST model

revealed a higher level of luciferase compared with earliersimulations with the wild-

type half-life IRP (figure 5.9). IRP levels were maintained at a lower level, enabling

the up-regulation of luciferase during circuit activation. The circuit required the same

time to reach maximal luciferase expression, at around 300 minutes. The model did

not predict shortening the half-life of the IRP would increase the rate of expression of
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FIGURE 5.14: Metabolic control analysis results for the PTEF1 parameterised model.
The graph shows the reactants in the model on the x axis, and the y axis shows
the concentration control coefficients for each of the reactions in terms of the
control exerted by the concentration of the reactants. The concentration control
coefficient illustrates the effect of perturbing the rate ofa reactions on the steady state
concentration of a reactant in the network. A negative control coefficient has a negative
effect on the reactant steady state concentration, and a positive control coefficient a
positive effect.

luciferase for the PDCD1-PEST circuit. The simulations were repeated with the PTEF1-

PEST model (figure 5.16). The data showed a lower expression level of the IRP and

a higher expression level of luciferase compared with the simulations of the wild-

type IRP (figure 5.10). Simulations with the strongerTEF1 promoter still showed a

reduction in luciferase expression compared with the weaker promoter in the PDCD1

model, indicating the abundance of IRP in the cell, despite the short half-life was still

sufficiently high to negate repression by LexA (figure 5.11).The luciferase expression

levels were re-plotted for the PDCD1-PEST and PTEF1-PEST models for comparison

(figure 5.17 A and B). The simulations showed approximately the same rate in the

increase of luciferase expression for both models, reaching maximum expression after

approximately 300 minutes. Comparison with the luciferaseexpression levels from the

wild type IRP models (PDCD1 and PTEF1) (figure 5.11) showed a significantly increased

level of luciferase for both PEST models, due to the lower expression levels of IRPPEST.

The PDCD1-PEST and PTEF1-PEST models result in a higher expression level of
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FIGURE 5.15: Time course simulation of the gene circuit with the short half-life
IRPPESTand theDCD1promoter. Protein species are plotted against time.

FIGURE 5.16: Time course simulation of the gene circuit with IRPPESTand the PTEF1

promoter. Protein species are plotted against time.

luciferase, and lower expression level of IRP, as expected from the reduction in the

half-life of the IRP protein. The shorter half-life IRP species however remains at a

sufficiently high expression level negate the repression ofIRP transcription by LexA.

The SNR data for the PDCD1-PEST and PTEF1-PEST models (figure 5.18) demonstrated

a significantly lower SNR compared with the PDCD1 and PTEF1 models for the IRP

protein species (figure 5.12). The expression of IRPPEST is more noisy than the wild-

type IRP. It was noted that the SNR for luciferase did not change significantly for the

PTEF1-PEST model compared with the PTEF1 model, however this is most likely be

due to the low expression of luciferase in both of these models, despite the shorter

half-life IRP (figure 5.17). The PDCD1-PEST luciferase SNR dropped more rapidly
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FIGURE 5.17: Time course simulation of the gene circuit PDCD1 and PTEF1 simulated
promoters and IRPPEST. A. Luciferase expression from the PDCD1-PEST model. B.
Luciferase expression from the PTEF1-PEST model.

than the PDCD1 circuit in the first 100 minutes of the simulation, despite the higher

particle numbers of luciferase from the reduced repressionby IRP (which would be

expected to increase the SNR). The degradation rate of the IRP protein with the PEST

degradation tag was speculative and required further validation with experimental data

to provide an accurate kinetic parameter for the model. However, The lower SNR in the

PEST models indicates the shorter half-life IRP modification to the PEST circuits may

introduce additional noise into the expression of luciferase, possibly through increased

noise in expression of the IRP repressor.
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FIGURE 5.18: A) Is the signal to noise ratio for the PDCD1 model, and B) is the signal to
noise ratio for the PTEF1 model. Graphs show the signal to noise ratio of the luciferase,
LexA, and IRP protein components of the circuit during the time course simulation.

5.6 Parameter Estimation

The final stage in the construction of the model was to “fit” experimental data to

the parameter values and attempt to refine the model with a more accurate time

course simulation that represented the behaviour of thein vivo circuits. luciferase

data had been collected from the lab, and provided data for the behaviour of each

circuit strain. The particle numbers from the simulation data are not related to the

relative luminescence units from the luminometer, therefore an additional parameter

value was added to convert the luciferase particle numbers to the same scale as the

relative luminescence data. Firstly, a global quantity wascreated for the transient

number of luciferase particles minus the initial number of luciferase particles. This

number was then multiplied by a second global quantity named“gain”. The gain

value could be tuned to scale the particle numbers to the relative luminescence units
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(RLU) recorded experimentally, and the luciferase particle numbers from the model

are baseline subtracted, as with the lab data being fitted. Copasi was used to perform

the parameter fitting as it is pre-programmed with a number ofparameter estimation

algorithms [148]. The luciferase data for each luciferase time course experiment was

fitted against the promoter strength in the model and the luminescence global variable.

Parameter estimation was performed using the Hooke and Jeeves algorithm and the

simulated annealing algorithm. The models were then compared with the experimental

time course data for each circuit strain. The parameter values obtained from the

parameter estimation algorithms are presented in table 5.13.

FIGURE 5.19: Graph of the PDCD1 model fitted to experimental luciferase time course
measurements. The x axis contains the simulation time (in minutes) and the y axis
contains the relative luminescence units (RLU) per cell, ascalculated experimentally.

For the PDCD1 model fitting, the simulation closely tracked the experimental data and

replicated the dynamic range of the circuit response (figure5.19). Peak luciferase

expression was observed at approximately 200 minutes and then slowly declined over

200 - 500 minutes. There was a margin of approximately 5% error between the

FIGURE 5.20: Graph of the PTEF1 model fitted to experimental luciferase time course
measurements. The x axis contains the simulation time (in minutes) and the y axis
contains the relative luminescence units (RLU) per cell, ascalculated experimentally.
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FIGURE 5.21: Graph of the PDCD1-PEST model fitted to experimental luciferase
time course measurements. The x axis contains the simulation time (in minutes)
and the y axis contains the relative luminescence units (RLU) per cell, as calculated
experimentally

FIGURE 5.22: Graph of the PTEF1-PEST model fitted to experimental luciferase
time course measurements. The x axis contains the simulation time (in minutes)
and the y axis contains the relative luminescence units (RLU) per cell, as calculated
experimentally.

experimental and simulation data (figure 5.19). The parameter estimation algorithms

have made small changes to all of the parameters in the model,and made a large

reduction in the basal expression level of IRP (table 5.13).

For the PTEF1 model, the simulation also closely tracked the experimental data, with

an error of approximately 20% (figure 5.20). The model replicated the lower level

of luciferase expression from the PTEF1 circuit, and the slower decline in luciferase

expression compared with the PDCD1 circuit. The algorithms made large reductions in

the mRNA degradation rate of the IRP and LexA, and increased the affinity of the FUS1

promoter for the LexA and luciferase genes.

For the PDCD1-PEST model the simulation tracked the experimental data with approx-

imately 6% error. The PTEF1-PEST model however was more difficult to fit. The

simulation tracked the experimental data with an error of approximately 35%. This
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PTEF1-PEST model was the most difficult to fit due to the sharp decline in luminescence

between 200 and 300 minutes, presenting a problem for curve fitting algorithms to map

the parameters to. The model however predicted the maximum luciferase expression

at 200 minutes with only a 6% over-shoot and tracked the reduction in luminescence

over the 200 to 500 minute duration. The algorithms have alsodecreased the basal

transcription rate of IRP, as well as the transcription and translation rates.

The fitting algorithms provided a good fit to the experimentaldata, however sharp

increases and decreases in expression levels were problematic. It was not possible to

obtain a more accurate curve fit for the PTEF1-PEST circuit using additional genetic,

particle swarm, and Levenberg-Marquardt parameter estimation algorithms, and a set

of parameters to produce such steep decent after the 200 minutes measurement (figure

5.22) could not be found. The parameter estimation algorithms reduced the LexA

translation rate, and reduced the basal transcription rateof LexA and the affnity of

LexA for the IRP gene. The algorithms made additional small changes across all of the

model parameters, as observed from the other models.

For a more accurate model of the PTEF1-PEST circuit, additional measurements around

the 200 minutes time point needed to be collected to obtain a smoother curve from

the experimental data. Attempts to fit the model with additional data from RT-qPCR

and western blotting (chapter 4) resulted in models that didnot accurately track the

luciferase experimental data. As the “output” of the circuit was the luciferase reporter

gene, fitting the model with luminometer data provided sufficient predictive accuracy.

More quantitative data is required from RT-qPCR and westernblot techniques, with less

variability for fitting with the luminometer data.

In terms of the modelling objective of the project, this approach demonstrated how to

build a model of the biological circuit, parameterise it with literature data to obtain

representative results, and then refine the model behaviourwith specific experimental

data. Sensitivity and metabolic control analysis also provided continuous experimental

direction and hypothesis generation, throughout the construction phase in the absence

of experimental data. The process demonstrated the value ofusing modelling as an
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investigative tool prior to building synthetic gene circuits, even in the absence of accu-

rate time course simulations. The model was used to refine theexperimental approach

during the construction of the circuit, and the data then used to refine the model into

an accurate simulation of thein vivo circuit response. This process demonstrates a

complete cycle of model design, hypothesis generation, andexperimental investigation

that is characteristic of synthetic biology. [13, 14].
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Model Parameter generic model DCD1 DCD1-PEST TEF1 TEF1-PEST
IRP degradationk 0.001 0.001 0.03 0.001 0.03
IRP mRNA degradationk 0.04 0.08 0.001 1.6e−9 0.04
IRP transcriptionKi 0.001 0.001 0.004 0.02 0.003
IRP transcriptionKM 0.1 0.18 0.19 0.2 0.2
IRP transcriptionP N/A 60 60 1 1
IRP transcriptions 0.003 4.9x10−12 0.002 0.002 0.005
IRP transcriptionVMAX 0.3 0.6 0.01 0.6 0.7
IRP translationKM 0.1 0.2 0.01 0.006 0.1
IRP translationV 0.75 1.5 0.7 1.5 1.5
LexA degradationk 0.02 0.03 0.03 0.04 0.04
LexA mRNA degradationk 0.04 0.03 0.02 4.5x10−5 0.04
LexA transcriptionKM 0.1 0.08 0.15 4.3e−6 0.18
LexA transcriptions 0.013 0.14 0.01 0.0003 0.0008
LexA transcriptionVMAX 1.3 0.94 0.3 5.3x10−6 0.05
LexA translationKM 0.1 0.13 0.05 0.2 0.2
LexA translationV 1.3 2.5 2 4x10−8 5x10−8
luciferase degradationk 0.006 0.01 0.01 0.003 0.002
luciferase transcriptionKM 0.1 0.001 0.09 6.8x10−5 0.06
luciferase transcriptions 0.005 0.01 0.006 3.2x10−7 0.01
luciferase transcriptionVMAX 0.5 0.01 0.9 0.94 0.94
luciferase translationKi 0.01 0.02 0.005 0.01 0.01
luciferase translationKM 0.1 0.04 0.13 0.16 0.04
luciferase translationV 0.5 0.07 0.06 1 0.2
luciferase mRNA degradationk 0.04 0.07 0.05 0.08 0.08
signal degradationk 0.02 0.04 0.01 0.04 0.04

TABLE 5.13: Circuit model parameters, following parameter estimation using experimental luminescence time course data. Generic model refers
to the model of the circuit prior to parameter estimation.



CHAPTER

SIX

DISCUSSION

6.1 Introduction

The gene circuit was designed to utilize components that hadbeen characterized

previously in yeast [4, 203, 208, 238], as a circuit that would function as a module,

enabling cells to produce a quantifiable output in response to an extra-cellular stimulus.

The project utilized a synthetic biology approach to building the circuit, through the

application of computer modelling to augment molecular biology techniques, with

computer aided design to understand the behaviour of the system.

The application of mathematical modelling enabled the early prediction of the inter-

actions within the circuit while it was under construction.Sensitivity and metabolic

control analysis provided insight into the key control elements of the circuit, such as

the promoter strength and degradation rate of the IRP repressor. Through modelling

and simulation, the circuit was modified from a single designinto multiple versions of

the circuit that enabled tuning of the luminescence output.This form of design and

development is iconic of synthetic biology and differentiates the field from classical

molecular biology and microbiology [8, 11, 14].

177
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6.2 Design and Development

The primary strategy for measuring the circuit behaviour was to measure the luciferase

reporter gene using luminescence. Additional measurements of the mRNA transcrip-

tion, and protein expression levels were performed using RT-qPCR and SDS-PAGE

and western blotting, in order to gather data to parameterise an in vivo-relevant,in

silico model of the gene circuit. The modelling approach provided an insight into the

dynamics of the circuit, and modelling could be integrated into the construction, as

opposed to having distinct phases of construction and modelling. The two phases of

the project were complementary and inter-dependent ratherthan successive. During

construction, a simple mechanistic model of the interactions was sufficient to enable

sensitivity and metabolic control analysis to be performedon an unparameterised model

(figure 5.7).

Metabolic control analysis provided an early indication ofthe control that the IRP could

assert over the expression of the luciferase reporter gene.The model indicated the

abundance of the IRP repressor, and its rate of degradation,would exert a high level

of influence on the expression of the reporter gene. To investigate the influence of

IRP abundance, two alternative promoters were incorporated into the circuit design:

the strong PTEF1 promoter and the weak PDCD1 promoter. PTEF1 had been shown

in the McCarthy lab to be approximately 60 times stronger than PDCD1, which may

only produce one or two mRNA transcripts per cell (Malys N. and Pietroni P. (2011)

McCarthy Lab, personal communication).

For perturbing the degradation rate of the IRP, the exact half-life of the wild type IRP

had not been reported, however published research indicated it is over 12 hours, [205,

251, 252], which would make it difficult to repress with LexA within the two hour

time-scale of the pheromone response pathway. A short half-life GFP, yEGFP3PEST

was provided by Simon Avery, from published work by Mateus and Avery [216]. The

yEGFP protein was fused with a PEST-rich 178 C-terminal residue of the G1 cyclin

Cln2, which was shown to reduce the half-life of the protein by 10 fold [216]. The

C-terminal residue was cloned to the C-terminus of the IRP inan attempt to reduce the

half-life by the same 10 fold, which would be approximately 1.2 hours and within the
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2 hours time period of the yeast pheromone response [126]. Preliminary western blot

data indicated IRPPEST did have a reduced half-life, and expression appeared to have

been reduced by approximately 10 fold (figures 4.19 and 4.21).

The combination of modelling and experimental investigation during the construction

phase resulted in four versions of the circuit that enabled the tuning of the reporter gene

expression; PDCD1, PTEF1, PDCD1-PEST, and PTEF1-PEST. The four circuits enabled

investigating high and low expression levels of the IRP, combined with short and wild-

type half-life of the IRP.

6.3 Characterisation

The circuits were first assayed using the luminometer to observe their behaviour in

terms of expression of luciferase. Direct comparison of theraw data from each

experiment (figures 4.2, 4.5, 4.3, 4.6) showed unexplainable results, such as the PDCD1-

PEST circuit demonstrating higher expression of luciferase than the PDCD1 circuit,

which intuitively should not be so, as the circuit also demonstrated a higher base line

expression compared with the PDCD1 circuit and control (figure 4.3). An explanation

for this was that theDCD1 promoter expression of IRP is very low in the cell and

consequently, is not inhibiting the translation of luciferase mRNA. However this does

not explain anincreasein expression from cells harbouring the PDCD1 and PDCD1-

PEST circuit plasmids. Comparison across experiments, however is unreliable due

to variation between cultures and experimental conditions. Therefore, relative fold-

change in expression was calculated for each experiment that enabled comparison of

the ratio of baseline expression of each experiment to the induced level of expression.

It was also hypothesized that a true negative control for this work may not be possible,

as this would require a promoter that is not induced by the pheromone response but

provides equivalent basal expression as the wild type PFUS1 promoter. Finally, the

baseline expression of the gene circuits was compared with yeast transformed with the

reporter plasmid alone. The expression of the reporter genewould be expressed under

different cellular conditions, compared with cells transformed with three plasmids, and
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grown in different auxotrophic drop out media. Fluctuatingbasal expression from the

repressor and de-repressor plasmids would affect expression of the reporter plasmid,

as well as the metabolic differences between control and circuit cells. If the work was

repeated, the luciferase control should have been run with each experiment, however

logistical limitations of batch culture of three biological replicates, with three technical

replicates precluded additional cell cultures, if measuring optical density, cell number,

and luminescence simultaneously, whilst sampling for western blot and RT-qPCR, from

cultures with and without pheromone induction over a nine hour period. For these

reasons it was decided that calculating the increase in luciferase expression in induced

cells as a function of luciferase expression in un-induced cells of the same culture (the

fold-change induction), provided a reasonable comparisonof the level of induction

between the circuits.

From the circuit variants constructed during the project, the PDCD1 promoter expressed

the most effective level of IRP repression when compared with the stronger PTEF1

promoter, producing a higher fold-change increase in the luciferase output of the circuit,

compared with the PTEF1 circuit.

The time required to reach maximum expression of luciferasewas extended for both the

PDCD1 and PTEF1 circuits when compared with the control strain (figures 4.4 and 4.7).

Signal transduction through the pheromone response pathway requires approximately

two hours to reach maximum expression [55], as observed fromthe control strain,

transformed with only the reporter plasmid (figures 4.4 and 4.7). Both the PDCD1

and PTEF1 circuits required approximately 3.5 hours to reach maximumexpression.

This delay can be explained by the system used for de-repressing the system. LexA

transcription is also up-regulated by the yeast pheromone response and therefore

requires approximately two hours to reach maximum expression levels, at which time

it is able to repress transcription of the IRP. The system then requires the existing IRP

mRNA transcripts to be degraded by the cell (a process that takes approximately 23

minutes [280]), and for the existing IRP protein to degrade.

The wild-type IRP has a half-life of over 12 hours [205] therefore overall expression of

luciferase would be inhibited for significantly longer thanthe period of the pheromone
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response. Using western blot analysis the short half-life IRPPEST was estimated to have

a 10 fold reduced level of expression in the PTEF1-PEST circuit (figure 4.20), indicating

the PEST residues fused to the C terminus where functioning to target the IRP for

degradation.

The effect on luciferase expression in the PTEF1-PEST circuit was to increase the level

of luminescence to a similar level as the control within 3 hours, compared with the

wild-type IRP in the PTEF1 circuit which remained lower than the control throughout

the experiment (figure 4.7). For the PDCD1-PEST circuit, the IRPPEST resulted in a

longer period of luminescence following pheromone induction compared with the wild-

type IRP in the PDCD1 circuit, due to reduced repression of luciferase mRNA translation

(figure 4.4). The data contained a high level of variability however, and estimation of

protein half-life and luminescence could not be measured with sufficient accuracy to

make significant conclusions.

Control data obtained for the circuits without the de-repressor plasmid demonstrate the

interaction of the LexA protein in the full circuits. In the control circuits, maximum

luciferase expression was observed increasing between zero and 240 minutes in both the

circuits and the control, but luminescence was maintained at a lower level throughout

the experiments (figures 4.10 and 4.11). At the maximum levelof luciferase expression

for the control (approximately 240 minutes), the PDCD1 and PDCD1-PEST circuits

demonstrates an increase of approximately 50% of the control, while the PTEF1 circuits

where approximately 30% of the control, increased to approximately 70% of the control

for PTEF1-PEST. The LexA de-repressor restores luciferase output ofthe PDCD1 circuit

to 120% and PDCD1-PEST to 160% of the control (figure 4.4). For the stronger PTEF1

promoter, repression of IRP transcription by LexA is insufficient to restore luciferase

expression to the same level as the control, and it remains atapproximately 75% of the

control (figure 4.7).

Further characterisation was possible through SDS-PAGE and western blot. There

was a problem obtaining antibodies sufficiently sensitive to detect low levels of

luciferase and IRP protein in yeast cell extracts by means ofwestern blot. Antibodies

were obtained from Santa Cruz, Sigma Aldrich, and Abcam and tested at 1:200
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to 1:100 dilutions with multiple repeats. No signal could beobtained for the

luciferase antibodies using fluorescein Isothiocyanate (FITC), Horseradish peroxidase

(HRP), alkaline phosphatase, and infra-red conjugated secondary antibodies. However,

luminometer data was available to quantify luciferase expression. For the IRP, neither

the Sigma Aldrich or Santa Cruz primary antibodies could detected the protein, however

the Abcam antibodies produced a signal when using the alkaline phosphatase detection

method, but only for the PTEF1 circuit with the higher IRP expression level (figure 4.20).

The alkaline phosphatase method is an enzyme-based assay, and therefore amplified the

weak signal from the IRP primary antibodies, but required a high level of expression to

produce a signal. The lack of western blot signal for the PDCD1 circuit correlated with

the hypothesis that the PDCD1 promoter produces a low level of transcription (Malys N.

and Paola P. (2011). McCarthy Lab. Personal communication). Further work is ongoing

at the McCarthy lab to characterize the expression level of the PDCD1 promoter. The

increase in fold-induction observed from the luminescencedata for the PDCD1 circuit

could be explained by the possible high affinity of the IRP forthe IRE [4] and the

long half-life of the protein [252], resulting in sufficientexpression of IRP to repress

luciferase translation, but sufficiently weak to enable repression of transcription by

LexA, resulting in the higher fold-change observed in the luminescence data, whereas

the stronger PTEF1 promoter results in the IRP quenching the signal from the circuit.

However, the antibodies for IRP are not sensitive as they do not provide a strong signal

at low dilution, and high concentration of the protein from the PTEF1 promoter.

Preliminary western blot data could be collected from the signal obtained from the

PTEF1 and PTEF1-PEST circuits. The western blot data for the PTEF1 circuit showed an

70% reduction in IRP expression during the pheromone response, which was attributed

to repression by LexA (figure 4.22). Inhibition increased throughout the duration of

the yeast pheromone response and remained for the duration of the experiment (figure

4.20), correlating with an increase in LexA expression between two and five hours

after pheromone stimulation (figure 4.25). The short half-life IRPPEST produced a

weaker signal than the wild-type IRP, and was difficult to obtain for the expression

of the PEST tagged IRP, however preliminary western blot data indicated a reduction
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of approximately 60% compared with the wild type at the initial measurement (figure

4.20).

The western blot data for LexA showed a high basal expression, and a smaller fold-

change in expression, compared with the luciferase luminescence data (figures 4.24

and 4.25). The lower fold-change in LexA (three to five-fold increase) compared with

luciferase (five to seven- fold increase) could indicate LexA was not being expressed

correctly. There was a high level of variation in the data however,making accurate

quantification of fold-change difficult. The higher fold-change in luciferase protein

expression compared with LexA protein expression may also highlight the effect of the

circuit design, in that constitutive repression of luciferase by IRP decreased baseline

expression, increasing the fold-change under pheromone induction. This conclusion is

speculative however due to the variation in the data, and comparing expression levels

across different assays.

The quantitative data from the western blot using the alkaline phosphatase method were

very noisy. The reaction is enzyme-based, as with the luciferase method therefore it is

difficult to relate the signal measured from the film in terms of numbers of molecules in

the protein extract. Variation in the amount of protein in the original protein extract, the

western blot transfer, and the enzyme reaction on the membrane make quantification

of fold-changes in protein levels speculative. The data provides an indication as to the

directional change in the protein levels expressed by the circuits during the pheromone

response. As such, the western blot confirms the expression of the LexA and IRP

components of the circuit and indicates a relative reduction in IRP compared to the non-

induced circuit during the pheromone response that correlates with a similar increase in

LexA signal that can be inferred as repression of IRP by the LexA repressor.

Finally, RT-qPCR was used to attempt to quantify the fold-change in mRNA expression

that was occurring in the circuit during the pheromone response. RT-qPCR had not

previously been used in the McCarthy lab for quantification of mRNA, since calibrated

northern blotting had been the preferred method. A RotorGene RT-qPCR machine

was sourced from QiaGen and a series of house keeping genes validated for use in

yeast, based on published data by Testeet al. (table 4.2) [257]. House keeping genes
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were confirmed using bioinformatics data from the SGD database [258], based on

micro-array data of gene expression during the pheromone response [85], and primers

designed for the components of the luciferase, IRP, and LexAcomponents of the gene

circuit (table 2.2).

The mRNA data obtained from the time-course samples were also very noisy, and a

larger number of replicates was required to obtain statistically significant data. The

data obtained by RT-qPCR however provided an indication of directional changes in

the relative expression levels of components of the gene circuit, comparing induced and

non-induced cells. The data indicated that during the pheromone response, the level of

luciferase and LexA mRNA increased, as expected from the PFUS1pheromone-induced

promoter. mRNA expression increased from approximately 1 hour after induction for

luciferase and LexA (figures 4.29, 4.32, 4.31, and 4.32) for all circuits. IRP mRNA

levels began to reduce within 2 hours of pheromone stimulation. The PTEF1 circuit

demonstrates a higher rate of recovery with approximately 5fold increase in expression

of IRP after 5.5 hours of pheromone stimulation (figure 4.30,compared with a 2 fold

increase after 7.5 hours after stimulation for PDCD1 (figure 4.29). The data supported the

western blot and luciferase data showing higher IRP expression level from the stronger

PTEF1 promoter, and mRNA levels correlate with the increases in protein and luciferase

expression levels. The data from the RT-qPCR experiments however were extremely

noisy and statistical analysis to determine significant differences was not possible. A

larger number of replicates is required for reliable quantification of the mRNA levels

in the circuit, also screened against a number of house-keeping genes simultaneously

to normalise the relative expression levels of the components. The RT-qPCR MIQE

guidelines provide recommendations for performing RT-qPCR studies and recommend

a minimum of 10 replicates for each time point screened with at least 10 house keeping

genes [259]. It was not possible with the resources available to this project to perform

RT-qPCR in accordance with all MIQE guidelines. However, the data does provide

information on the directional changes in mRNA expression levels in the circuit and

can be used to confirm the interactions of the LexA and IRP components and to confirm

the plasmids are being expressed in the host cell.
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The inhibition of luciferase observed from the luminescence data confirms the inter-

action of the IRP with the IRE, cloned upstream of the luciferase reporter gene, as

published by Kolotevaet al [4]. The inhibition of IRP expression during the pheromone

response, observed by RT-qPCR and western blot, and the observed up-regulation in

LexA also by RT-qPCR and western blot, confirms the interaction of the LexA repressor

with the IRP gene, and the function of LexA in yeast as published by Brent [5]. The data

confirms the LexA operators are functioning in their position immediately upstream of

the promoter on the repressor plasmid by the repression of IRP. The RT-qPCR data

indicates the LexA protein is capable of blocking transcription of IRP from the PDCD1

promoter, and for a shorter period of time from the PTEF1 promoter. The half-life of the

IRP however can negate the inhibition of transcription, by providing a long-lived protein

that can continue to repress the reporter gene, preventing de-repression of the circuit

output, as observed from the PTEF1 circuits. The IRP western blot data demonstrated

the half-life of the IRP protein can be reduced through the addition of the Cln2-PEST

C-terminal residue to the protein. The western blot data conforms with the published

work by Mateus and Avery [216], and western blot data indicated the abundance of

the IRP was reduced by approximately 10-fold (figure 4.21). Further work, and more

effective antibodies are required to determine the exact half-life of IRPPEST species

in yeast. From the preliminary data however, the development of the short half-life

IRPPEST provides additional tools for synthetic biology circuits with a high affinity,

short-lived translational repressor. The PEST degradation tag could also be cloned into

additional proteins such as luciferase, to obtain a short-half reporter gene that would

permit higher response times for the circuit output.

6.4 Noise

Signal:Noise ratio (SNR) is of interest to this project, as one of the objectives of

the circuit design was to reduce the noise from the reporter gene by repressing basal

expression levels. The SNR was calculated for the luciferase data to explore the change

in noise in the circuit output during the time course experiments (figures 4.12 B, and

4.13 B). The data showed that as the expression of luciferaseincreases in the first 200
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minutes of pheromone-induction, the SNR increases for all of the circuits, and the

control (the reporter gene with no repression) (figure 4.14). However, although the

reduction in the expression of luciferase for the PDCD1 circuits occurs at approximately

the same rate as the control (figure 4.4), the SNR reduces sharply for the circuits,

with a lower SNR for all of the circuits after 200 minutes compared with the control

(figures 4.12 and 4.13 B). The SNR decreases at a sharper rate than the luminescence

measurements decrease, while the control remains constantduring the decrease in

luminescence, after the two hour time scale of the pheromoneresponse pathway.

Noise propagation throughout the experiments is high however (as observed from

the luminescence data), which makes it impossible to draw statistically significant

conclusions from the data (figures 4.12 A, and 4.13 A). Observations of the effect of the

circuit design and function on the level of noise from the circuit output is speculative.

From the data obtained from this project, the SNR data indicated the circuits are

less noisy when the circuit is at maximum luciferase expression, compared with the

pheromone-induced reporter gene alone, but the circuits are more noisy than the control

when the circuit returns to the OFF-state (from 200 minutes to the end of the time course

experiments). The increased SNR in the circuit, compared with the control however

indicated the design of the circuit may be working. As the luminescence measurement

is a measurement of a population of cells, some would be responding to pheromone and

some would not, in a stochastic response to pheromone stimulation. As the luciferase

reporter gene is expressed from a wild type PFUS1 promoter and therefore only capable

of the same maximum luciferase expression level as the control, the higher SNR can be

attributed to lower basal expression level in the circuit cells.

Interaction with the IRP, and fluctuations in IRP expressionthough interaction with

LexA may add noise to the luciferase protein expression, after the maximum period

of activation by the pheromone response pathway has passed.This is a hypothesis

however, and requires more quantitative data than was obtained during this project,

such as quantitative mass spectrometry to accurately quantify the expression levels of

each of the protein species.
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It is possible that in addition to the small fold increase in luciferase expression,

the circuit design may have additional effects on noise in the expression of the

reporter gene when incorporating low level constitutive repression. The model of the

PDCD1 circuit predicted bursting in transcription, and consequently bursting in protein

expression levels, from the low level of activity of theDCD1 promoter. TheDCD1

promoter therefore, may contribute additional noise to theluminescence measurement

(figure 5.8). More data is required to support the hypothesismade regarding noise

in the circuit. Noise propagation and the effects of noise onluciferase expression

could be further investigated using high-throughput single cell measurements using

instrumentation such as flow cytometry, as has been done withoscillating circuits by

Elowitz and Liebler, and later by Atkinson, and attempt to determine the source and

contribution of intrinsic and extrinsic noise in expression of the circuit components.

[165, 179, 296, 297].

6.5 Modelling

The modelling component of the project has generated a set oftools and an approach

that can be used for building circuits from interacting genetic components. Previous

published research attempts to build fully parameterised models of biological systems

that incorporate all of the details of the involved reactions [128], or even all of the

reactions in the cell [298–300]. While fully parameterisedmodels theoretically provide

a quantitative, predictive tool for biology, mechanistic models that represent what is

known about the system being studied can be interrogated using tools from systems

biology such as metabolic control analysis [149] and sensitivity analysis [301]. The

mechanistic model of the system built at the start of this project provided a framework,

from which MCA was used to determine the most influential reactions of the circuit

(figure 5.7, 5.13, and 5.14), and investigate the contributions of each component to

the systems level behaviour of the circuit. MCA has been usedin studies of large

models of yeast metabolism [302, 303], however it has not been used in synthetic

biology applications where published models focus on predictive time course simulation

[8, 128, 178–180]. The application of MCS in this study was a novel approach to
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using a model as a design tool tobuild the circuit, rather than as a tool to confirm the

understanding of experimental observations [126, 128, 178]. In many synthetic and

systems biology studies, data is obtained from biological systems in order to refine the

model, whereas in this study the model was used to refine the biology, and then the

experimental data used to refine the model to enable additional functionality, such as

time course simulation.

The MCA data highlighted the control of the IRP, leading to the development of

additional versions of the circuit with varying strength promoters for the repressor.

The circuit combined repression at transcription and translation and throughout the

simulations, the repression of luciferase translation remained the most significant

component in changing the level of luciferase output. This indicated that tuning

repression of the IRP by LexA would not have as large an effectas tuning the IRP

expression levels and half-life. It is expected that translational inhibition would be more

effective than transcriptional inhibition, due to the abundance of mRNA template and

repressor protein after the initiation of repression by LexA. Therefore, while the model

was created using Michaelis-Menten kinetics, the predictions conformed with expected

biological understanding of the system, and validated the approach taken to modelling

the gene circuit.

The half-life of the repressor was also highlighted and the PEST tag modified IRPPEST

was developed. Therefore, while a molecular biology understanding of the interactions

of the components guided construction of the circuit experimentally, the model provided

data on tuning the behaviour of the circuit which could not beinvestigated empirically.

These hypotheses could not have been made during the construction phase of the

project, and would have required testing followed by revision of the circuit with

further construction and testing. Using the modelling approach, construction could be

expanded prior to generating experimental data, providingrounds of modelling and

construction, followed by rounds of data acquisition and model development.

Populating the model with parameter values from the published literature enabled

refining the model, such that it began to provide time-coursesimulation predictions

of the behaviour of the circuit (table 5.7 and figure 5.11), and predicted an output that
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correlated with the 2 hour time-scale of the yeast pheromoneresponse pathway, and

could be fitted to experimental data.

Deterministic modelling of the system using a set of coupledordinary differential equa-

tions provided an overview of the behaviour of the circuit, however these simulations

rely on a well mixed, homogeneous environment with a large number of molecules.

Many biological processes have been shown to be stochastic in nature, with small

numbers of randomly distributed molecules [288]. Stochastic simulation of the circuit

revealed, for the PDCD1 promoter using a rate law 60 times lower than the PTEF1 circuits,

produced mRNA levels at 1 or 2 molecules per time course simulation, which correlated

with the estimated number of mRNA per cell produced from thispromoter (Malys N.

(2011), personal communication) (see figure 5.8 A). Although there was no kinetic

data available for the exact rate of transcription from the PDCD1 and PTEF1 promoters,

the model was accurately simulating an appropriate level ofmRNA expression for the

circuit. The stochastic events in mRNA transcription in themodel were also producing

bursting behaviour in the protein translation level in the model (figure 5.8 B). The model

also provides a tool, therefore for investigating noise in transcription and translation in

the circuit. It is likely from the model prediction that the PDCD1 circuit will have more

noise than the PTEF1circuit, due to stochastic noise gene expression of the IRP repressor.

The model provides a potential tool for the further investigation of the SNR data in the

luminescence data (figure 4.13), using stochastic modelling to investigate more detailed

interactions such as bursting, which can be key to determining the origin and influence

of noise in a biological system [295, 304].

At the end of the project, the model parameter values were fitted to the luminescence

data, to produce a model output that represents the observedexperimental behaviour.

Parameter fitting provided final models for each of the circuits that simulated time

course experiments in terms of luciferase expression, witha close fit to the experimental

data (figures 5.19, 5.20, 5.21, and 5.22).

The fitting algorithms are not able to make changes that are based on biological

understanding, and the changes are not consistent across all of the models (chapter

5, table 5.13). The rates of transcription and translation is consistent across the
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gene circuits as they use the same promoters, however these rates are different across

models following parameter estimation. Further work was required on the strategy

for parameter estimation, to standardize the rates of transcription and translation and

attempt to fit the model based on the known changes that had been made to the circuit.

Allowing the parameter estimation algorithms to fit the experimental data to all of the

model parameters provided a first pass at refining the models so that they provide anin

vivo relevant simulation of luciferase expression for each of the circuits. The models

can be further developed with additional experimental and literature investigation for

parameter values for transcription and translation for thespecific promoters, as well as

the binding affinities for the repressors and transcriptionfactors.

The MAP kinase model developed in the early stage of this project was not utilized

for the modelling of the gene circuit, as the circuit was activated with a saturating

concentration of pheromone, and the data was collected fromthe pheromone response

pathway at steady-state, therefore fluctuation in the MAPK cascade was not expected

to influence the dynamic behaviour of the circuit. The MAPK model also incorporated

a large number of reactions and would have added significant computational time to

stochastic simulations of the circuit, which were used for the time course simulations.

Fitting experimental data to a large model would also require a large amount of

computational time, which was not available towards the endof the project. If

unexpected experimental behaviour had been observed, thenthe circuit model could

have been coupled with the reactions from the MAPK model to increase the detail

of the simulations. Also, with regard to modelling circuitscoupled with the mating

response pathway, smaller mechanistic models such as the model by Huang and Ferrell

can simulate the dynamic behaviour of the MAPK cascade without requiring all of the

detail of the pheromone response pathway [122]. This approach of using a simplified

model of the cascade was recently used by O’Shaughnessyet al to model a synthetic

signalling cascade in yeast [46].

It should not be ignored however, that the circuit is activated by a complex cascade

of upstream events. The MAPK cascade provides a number of benefits and issues for

investigating the circuit. Using the circuit to study noisein cell signalling is not possible,

as the cascade functions to dampen fluctuations in the external signal, generating a
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binary response once the signal achieves a threshold concentration (hyper-sensitivity).

Varying the level of pheromone therefore would have no effect on the output of the

level of circuit behaviour, except at threshold activationlevels where activation may

burst, however this is purely hypothetical and has not been observed experimentally

[120]. The MAPK cascade does however provide a native signalprocessing module for

the circuit, and perturbation of the cascade components could produce more complex

behaviours in the circuit output such as oscillations [124].

6.6 Summary and Further Work

For modelling, the number of molecules per cell of the reporter gene would provide

quantitative data for parameter fitting, and performing predictive stochastic time course

simulations. luminescence can be measured in terms of luciferase molecules per cell if it

is properly calibrated, however the reaction is enzyme-based and is therefore non-linear,

requiring understanding of the kinetics of the enzyme reaction, in the specific conditions

of the experiment [204]. A more suitable reporter gene wouldbe a fluorescence protein,

such as GFP, that enables direct quantification of fluorescence that can be coupled with

a simultaneous cell count, such as is possible with flow cytometry [159, 178, 305]. High

throughput instrumentation is not currently widely available to measure luminescence,

and requires additional steps of substrate addition prior to measurement, and then

maintenance of a saturating substrate concentration if measured over time. Therefore,

reporter genes encoding fluorescent proteins would be more appropriate for time course

measurements of gene circuits. However, GFP can also be verybright, and produce a

high basal fluorescence that would reduce any observed fold-increase during induction

with pheromone. Also, GFP is a very stable protein, and wouldrequire the short half-life

species constructed by Mateus and Avery to enable observations of the dynamic range of

the circuit behaviour within the time-scale of the pheromone response pathway [216].

Further refinement of thein vivo luminescence assay to reduce the variation between

measurements, and transferring to a micro-plate based, high-throughput methodology

would benefit future work by retaining the sensitivity of theluminescence reporter gene,

compared with moving to fluorescent proteins.
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A number of potential experimental investigations of the circuit were outstanding at the

end of the project. Firstly, this study focused on the components behaving as a system

of interactions. It would be useful to characterise the behaviour of the components

individually, and obtain specific Ki values for the IRP and LexA repressor in the sst2∆

yeast strain that were hosting the circuit. This would provide additional parameter data

to further refine the model. It would also be of use to investigate the dynamics of the

circuit in terms of returning to the OFF-state. The data collected during the project

characterised the global behaviour of the circuit, in termsof the output in response

to activation signal. The cells should be stimulated with pheromone, observed for

maximum luciferase activity, and then the pheromone washedout of the system, and

the rate of decrease in the luciferase reporter measured. This would provide data on the

efficiency of the IRP repressor for inhibiting the reporter gene, as well as the ability of

the circuit to reset after activation. This is another important feature of the combination

of repressors in the circuit: their ability to control the dynamic range of the circuit and

increase the sensitivity of the pheromone-induced reporter gene to activation and de-

activation. The data collected from this work indicates there is a gradual decline in the

pheromone-induced reporter gene. The PTEF1-PEST circuit provided an indication that

the circuit is capable of initiating a faster return to the OFF-state compared to the control

strain. The PDCD1 circuits did not sufficiently repress the reporter gene to effect a rapid

transition to the OFF-state upon the de-activation of the pheromone response. Also, the

interactions of the LexA de-repressor will be influential inthis reaction as following the

pheromone response, LexA will continue to de-repress the IRP from the weaker PDCD1

promoter for a longer period of time than the stronger PTEF1 promoter.

The design of the circuit incorporated repression at the transcriptional and translational

levels. This is unique in the design of repressor interactions in current published

gene circuits, where researchers focus on the repression oftranscription. The circuit

presents the opportunity to investigate the timing difference between translational and

transcriptional repression. Swapping the level of repression on the IRP and luciferase

components would enable comparison of the effect of different hierarchical levels of

control on the output of the circuit; this could be achieved by reversing the repressors

in the circuit. The LexA repressor could be cloned into the repressor plasmid in place
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of the IRP, and the IRP cloned into the pheromone-induced de-repressor plasmid. The

IRE in the reporter plasmid could be replaced with the LexA operators and the IRE

placed in the repressor plasmid upstream of LexA. This wouldcreate constitutive

repression of the transcription of luciferase and pheromone-induced repression of

LexA mRNA translation. Theoretically, this would enable the repression of luciferase

mRNA transcription, which would be effective within the time frame of the luciferase

degradation rate (three hours) [285] (which could also be PEST tagged for a shorter half-

life). Upon pheromone stimulation, the LexA repressor would be inhibited at translation

by the IRP, which could be faster than the current circuit design, and enable a faster up-

regulation of luciferase. A faster induction time, and a short half-life luciferase could

enable a faster transition between the ON and OFF-states of the circuit and a more

sensitive circuit response to pheromone activation. Shorthalf-life variants of all of the

components would enable tuning of the repressor and reporter gene expression, and the

dynamic range of the circuit output.

Chromosomal integration of the circuit would have been beneficial during the project

as, although the plasmids are believed to be single copy, there is no confirmation of

this in the data from this project. The plasmids also requirean auxotrophic amino acid

biosynthesis marker to be retained by the host cell, which leads to a burden on cell

metabolism. The growth rate of the cells transformed with the circuit plasmids was

checked, and the circuit did not appear to have a detrimentaleffect on the growth rate,

however the cells are grown in an environment lacking essential amino acids which

are substituted on the plasmids, but requiring synthesizing rather than uptake from the

media. This may have an additional effect on the metabolism of the host cell that could

be avoided by integrating the circuit components into the chromosome. Also, following

chromosomal integration, the cells cannot lose the gene circuit, unlike with plasmids.

Chromosomal integration of the gene circuit would also enable the addition of new

components to the circuit, using additional plasmids.

For quantification of the components, addition of a C or N-terminal Myc or HA tag

to the IRP would enable the quantification of expression levels at a higher resolution

than was achieved during this project. Alternatively, specific custom antibodies could

be created for the components, however modification with a myc or HA tag would
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enable more accurate protein quantification by western blot, without expensive custom

antibodies. The luciferase, IRP, and LexA components are sufficiently different in size

that tagging all of the components with myc or HA would enablequantification of all

of the components in a single western blot. Purified protein controls for each of the

components is required however for further western blot analysis. A positive control

is required to confirm the western blot signal is correct and also a calibration curve

could be created from a known quantity of purified protein, enabling quantification of

the components instead of the relative fold-change, which would be more informative

and also more appropriate for model parametrization.

Blotting techniques are only semi-quantitative however. Variation can occur during the

protein extraction, gel loading, transfer, and imaging stages, increasing the separation

between the original cell culture and the final data. A collaboration was being

undertaken at the end of the project between University of Warwick, University

of Manchester, and University of Liverpool to use mass spectrometry to quantify

components of the pheromone response pathway with QconCAT.This technique, once

validated would provide quantitative data on the expression level of the protein species

in the circuit, to an accuracy significantly greater than that achievable by western

blotting or luminometer measurement. Quantification of theyeast pheromone response

pathway, especially Ste11, Ste7, and Fus3, would also enable parametrization of the

MAPK model and development of phospho-proteomics, which would enable a much

more accurate model of the phosphorylation states of the components. This would allow

for the investigation into the signal flux through the cascade and allow the propagation

of the signal at a much greater resolution and understandingthan has been currently

published. It has been shown that a MAPK cascade can be transplanted between

organisms [46], therefore this data and the model would provide a signal transduction

input module for synthetic circuits that could be transplanted between eukaryotic

organisms, and understanding of the dynamic behaviour of the phosphorylation states

would enable tuning of the signal dynamics to customise the response to environmental

stimuli.

Quantitative data on the dynamics of the MAPK cascade, as well the changes in the

levels of the circuit components, would also enable a more detailed understanding of the
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interactions that make up the whole process of translating pheromone-binding at the cell

membrane, through to induction of the pheromone response genes and the circuit output.

This data may reveal complex behaviours at different stagesin the signal cascade, such

as bursting or oscillation. Understanding of these variousdynamic behaviours within

the overall behaviour observed during this project would enable more accurate models

to be constructed. The mechanisms of the interactions is reasonably well understood,

enabling mechanistic models to be made, however a lack of understanding of the

dynamic behaviours results in rate laws that do not accurately represent the behaviour

of the reaction, and result in a model that is correct in termsof the reactions but

does not simulate the behaviour observed experimentally. Understanding the rate of

phosphorylation of the MAPK components, or the stochastic bursting in transcription

and translation [304] will ultimately lead to a greater resolution for modelling and

consequently synthetic circuits and systems, with predictable and robust behaviour.

Additional loops could be added into the circuit for more complex dynamic behaviours.

For example, a feed-forward loop could be integrated through a pheromone inducible

plasmid containing theα-factor pheromone gene, as in the study by Grosset al,

where pheromone-induced pheromone expression was used as an amplifier in a gene

circuit [1]. Addition of such an “amplifier plasmid” could lead to a toggle-switch type

behaviour with a continuous signal after activation. Inducible promoters from other

pathways, such as the Hog pathway for osmotic stress could beused to induce secondary

circuits such as Hog-induced expression of Bar1, a proteasewhich degradesα-factor,

could be used as a second toggle-switch to switch the amplifier circuit off. Adding

plasmids to the circuit for constitutive expression of pheromone and pheromone-

induced expression of Bar1 could also induce oscillatory behaviour in the circuit. These

reporter genes could also be tagged with different fluorescent proteins such as green

and red fluorescent proteins, to enable dual reporter systems to be developed, similar to

the work by Ajo-Franklin [190]. Simultaneous application of different signal pathway

induced promoters, such as the pheromone response pathway and the Hog osmotic

shock pathway would enable the investigation of cross talk between the pathways, as

well as investigating the ability of cells to respond to multiple environmental stimuli.
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The host cell is also of interest for studying the behaviour of the circuit. The strain

of yeast used in this study wereS. cerevisiae sst2∆, with a mutation in the negative

feedback of the pheromone response pathway (the re-association of theα subunit of the

membrane bound G-protein to theβγ subunits to stop the phosphorylation of the MAPK

cascade). This mutation makes the cells hyper-sensitive topheromone, enabling lower

concentrations to be used to stimulate the pheromone response, and a longer period of

stimulation to be achieved. This strain is therefore optimized for studying the activation

of the circuit and obtaining the maximum possible fold-change in the activated circuit.

The cells will continue to express Bar1, a protease that degradesα-factor pheromone

and Far1 which growth arrests the cells in preparation for mating. A mutant strain

containing additional mutations of theFAR1andBAR1genes was under construction

at the time of writing and would provide a better host strain for the circuit, as the

cells would not undergo growth arrest during the pheromone response, and continue

to grow and express the circuit components following stimulation, which may further

amplify the luciferase circuit output. Ultimately, mutation of all of the yeast pheromone

response genes would result in a cell that directs the pheromone response exclusively

to the gene circuit, however this requires the mutation of over 200 genes (3% of the

genome) [55] and the systems level effect of this is unknown,as is the degree of

complexity of the interaction between the components of themating response with other

metabolic pathways [71].

The design of the “chassis” for gene circuits is an importantconsideration for synthetic

biology, and is as important as the design of the circuit. Systems biology programs are

attempting to understand the metabolism ofS. cerevisiae[299], however this research

is still emerging. Other researchers are attempting to construct a “minimal cell” by

deleting all the “non-essential” genes that are not required for sustaining a viable cell

using “bottom-up synthetic biology” [306, 307]. A minimal cell chassis provides

a base from which to study a synthetic gene circuit where all the interactions can

be understood. Building such a system, even in prokaryotic organisms remains an

enormously complex task [202].
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6.7 Conclusion

The project represents a complete cycle of design and development in synthetic biology

(figure 1.6) [14]. The model and circuit were constructed, and the experimental

data fed back into the model for parameter estimation and model refinement. The

model provided anin silico relevant simulation of the circuit that can be used in a

computer-aided design role to build additional functions,or further tune the circuit.

The IRP repressor, previously characterised in the McCarthy Lab functions alongside

the LexA repressor, characterised by Brent in the context ofa gene circuit in yeast

[4, 5]. The application of a constitutive repressor can be used to “boost” the ratio

of expression of a reporter gene between the induced and un-induced states, however

the interactions create additional noise in the output, which can be tuned through the

application of varying strengths of the constitutive repressor and the half-life of the

repressor protein. The development of a short half-life PEST tag enabled the tuning the

dynamic range of the circuit output, and also provides an additional tool for constructing

synthetic biology circuit components. The project provides a novel combination of

transcriptional and translational repression that can be used to study noise, and to control

the expression of genes at different hierarchical levels within the cell. Differentially-

regulating transcription and translation also enables theinvestigation of the temporal

separation of these events as well as noise at each level of gene expression.

The mathematical modelling approach undertaken in this study provided a truly novel

approach to investigating the behaviour of the gene circuitin silico, as a predictive

design tool for building circuitsin vivo. The approach identified key control points

within the circuit without requiring a fully parameterisedmodel, or accurate time

course simulations, prompting the construction of multiple versions of the circuit,

modifications of the components, and expanding the scope of the project. These

hypotheses would not have been formulated from empirical observation of the circuit

design, and would have required multiple rounds of experimentation to obtain the

data from this project. Parameterisation of the model then provided additional

predictive capabilities such as time course simulations, that could be further refined with

experimental data, evolving the model alongside the circuit, and completing the cycle
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of modelling, hypothesis generation, experimentation, and further model refinement

[14]. The project therefore demonstrates the benefit of combining computational and

biological sciences in future biotechnology and genetic engineering studies.
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APPENDIX

A

APPENDIX

A.1 Sequences

A.1.1 Iron Response Element (IRE) Nucleotide Sequence

1 CCAATTATCT ACTTAAGCTT CAACAGTGCT TGAACTTAAG AACACAAAAC

51 TCGAGA

Wild type Iron Response Element, from Kolotevaet al [4].

A.1.2 PFUS1-IRE-Luciferase Nucleotide Sequence

1 GGATCCGGCA CCAGAACCGC TACTGAACGA TGATTCAGTT CGCCTTCTAT

51 CCTTTGTTTA CGTATTTGTT TATATATATA ACTTTATTTT TTTTTATTAA

101 TTGGGCTGCA AGACAATTTT GTTGTCAGTG ATGCCTCAAT CCTTCTTTTG

151 CTTCCATATT TACCATGTGG ACCCTTTCAA AACAGAGTTG TATCTCTGCA

201 GGATGCCCTT TTTGACGTAT TGAATGGCAT AATTGCACTG TCACTTTTCG

251 CGCTGTCTCA TTTTGGTGCG ATGATGAAAC AAACATGAAA CGTCTGTAAT

235
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301 TTGAAACAAA TAACGTAATT CTCGGGATTG GTTTTATTTA AATGACAATG

351 TAGGAGTGGC TTTGTAAGGT ATGTGTTGCT CTTAAAATAT TTGGATACGA

401 CATCCTTTAT CTTTTTTCCT TTAAGAGCAG GATATAAGCC ATCAAGTTTC

451 TGAAAATCCA TACCAATTAT CTACTTAAGC TTCAACAGTG CTTGAACTTA

501 AGAACACAAA ACTCGAGAAG ATATGGAAGA CGCCAAAAAC ATAAAGAAAG

551 GCCCGGCGCC ATTCTATCCA CTAGAGGATG GAACCGCTGG AGAGCAACTG

601 CATAAGGCTA TGAAGAGATA CGCCCTGGTT CCTGGAACAA TTGCTTTTAC

651 AGATGCACAT ATCGAGGTGA ACATCACGTA CGCGGAATAC TTCGAAATGT

701 CCGTTCGGTT GGCAGAAGCT ATGAAACGAT ATGGGCTGAA TACAAATCAC

751 AGAATCGTCG TATGCAGTGA AAACTCTCTT CAATTCTTTA TGCCGGTGTT

801 GGGCGCGTTA TTTATCGGAG TTGCAGTTGC GCCCGCGAAC GACATTTATA

851 ATGAACGTGA ATTGCTCAAC AGTATGAACA TTTCGCAGCC TACCGTAGTG

901 TTTGTTTCCA AAAAGGGGTT GCAAAAAATT TTGAACGTGC AAAAAAAATT

951 ACCAATAATC CAGAAAATTA TTATCATGGA TTCTAAAACG GATTACCAGG

1001 GATTTCAGTC GATGTACACG TTCGTCACAT CTCATCTACC TCCCGGTTTT

1051 AATGAATACG ATTTTGTACC AGAGTCCTTT GATCGTGACA AAACAATTGC

1101 ACTGATAATG AATTCCTCTG GATCTACTGG GTTACCTAAG GGTGTGGCCC

1151 TTCCGCATAG AACTGCCTGC GTCAGATTCT CGCATGCCAG AGATCCTATT

1201 TTTGGCAATC AAATCATTCC GGATACTGCG ATTTTAAGTG TTGTTCCATT

1251 CCATCACGGT TTTGGAATGT TTACTACACT CGGATATTTG ATATGTGGAT

1301 TTCGAGTCGT CTTAATGTAT AGATTTGAAG AAGAGCTGTT TTTACGATCC

1351 CTTCAGGATT ACAAAATTCA AAGTGCGTTG CTAGTACCAA CCCTATTTTC

1401 ATTCTTCGCC AAAAGCACTC TGATTGACAA ATACGATTTA TCTAATTTAC

1451 ACGAAATTGC TTCTGGGGGC GCACCTCTTT CGAAAGAAGT CGGGGAAGCG

1501 GTTGCAAAAC GCTTCCATCT TCCAGGGATA CGACAAGGAT ATGGGCTCAC

1551 TGAGACTACA TCAGCTATTC TGATTACACC CGAGGGGGAT GATAAACCGG

1601 GCGCGGTCGG TAAAGTTGTT CCATTTTTTG AAGCGAAGGT TGTGGATCTG

1651 GATACCGGGA AAACGCTGGG CGTTAATCAG AGAGGCGAAT TATGTGTCAG

1701 AGGACCTATG ATTATGTCCG GTTATGTAAA CAATCCGGAA GCGACCAACG

1751 CCTTGATTGA CAAGGATGGA TGGCTACATT CTGGAGACAT AGCTTACTGG

1801 GACGAAGACG AACACTTCTT CATAGTTGAC CGCTTGAAGT CTTTAATTAA
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1851 ATACAAAGGA TATCAGGTGG CCCCCGCTGA ATTGGAATCG ATATTGTTAC

1901 AACACCCCAA CATCTTCGAC GCGGGCGTGG CAGGTCTTCC CGACGATGAC

1951 GCCGGTGAAC TTCCCGCCGC CGTTGTTGTT TTGGAGCACG GAAAGACGAT

2001 GACGGAAAAA GAGATCGTGG ATTACGTGGC CAGTCAAGTA ACAACCGCGA

2051 AAAAGTTGCG CGGAGGAGTT GTGTTTGTGG ACGAAGTACC GAAAGGTCTT

2101 ACCGGAAAAC TCGACGCAAG AAAAATCAGA GAGATCCTCA TAAAGGCCAA

2151 GAAGGGCGGA AAGTCCAAAT TGTAA

FUS1 promoter (green), with iron response element (red), and theLuciferase gene

(yellow)

A.1.3 PFUS1-LexA Nucleotide Sequence

1 GGATCCGGCA CCAGAACCGC TACTGAACGA TGATTCAGTT CGCCTTCTAT

51 CCTTTGTTTA CGTATTTGTT TATATATATA ACTTTATTTT TTTTTATTAA

101 TTGGGCTGCA AGACAATTTT GTTGTCAGTG ATGCCTCAAT CCTTCTTTTG

151 CTTCCATATT TACCATGTGG ACCCTTTCAA AACAGAGTTG TATCTCTGCA

201 GGATGCCCTT TTTGACGTAT TGAATGGCAT AATTGCACTG TCACTTTTCG

251 CGCTGTCTCA TTTTGGTGCG ATGATGAAAC AAACATGAAA CGTCTGTAAT

301 TTGAAACAAA TAACGTAATT CTCGGGATTG GTTTTATTTA AATGACAATG

351 TAGGAGTGGC TTTGTAAGGT ATGTGTTGCT CTTAAAATAT TTGGATACGA

401 CATCCTTTAT CTTTTTTCCT TTAAGAGCAG GATATAAGCC ATCAAGTTTC

451 TGAAAATCCA TATGATGAAA GCGTTAACGG CCAGGCAACA AGAGGTGTTT

501 GATCTCATCC GTGATCACAT CAGCCAGACA GGTATGCCGC CGACGCGTGC

551 GGAAATCGCG CAGCGTTTGG GGTTCCGTTC CCCAAACGCG GCTGAAGAAC

601 ATCTGAAGGC GCTGGCACGC AAAGGCGTTA TTGAAATTGT TTCCGGCGCA

651 TCACGCGGGA TTCGTCTGTT GCAGGAAGAG GAAGAAGGGT TGCCGCTGGT

701 AGGTCGTGTG GCTGCCGGTG AACCACTTCT GGCGCAACAG CATATTGAAG

751 GTCATTATCA GGTCGATCCT TCCTTATTCA AGCCGAATGC TGATTTCCTG

801 CTGCGCGTCA GCGGGATGTC GATGAAAGAT ATCGGCATTA TGGATGGTGA

851 CTTGCTGGCA GTGCATAAAA CTCAGGATGT ACGTAACGGT CAGGTCGTTG

901 TCGCACGTAT TGATGACGAA GTTACCGTTA AGCGCCTGAA AAAACAGGGC
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951 AATAAAGTCG AACTGTTGCC AGAAAATAGC GAGTTTAAAC CAATTGTCGT

1001 TGACCTTCGT CAGCAGAGCT TCACCATTGA AGGGCTGGCG GTTGGGGTTA

1051 TTCGCAACGG CGACTGGCTG TAA

PFUS1 promoter (green) and theE. coli LexA gene (yellow)

A.1.4 Yeast Cln2 Protein Sequence (Uniprot P20438)

1 MASAEPRPRM GLVINAKPDY YPIELSNAEL LSHFEMLQEY HQEISTNVIA

51 QSCKFKPNPK LIDQQPEMNP VETRSNIITF LFELSVVTRV TNGIFFHSVR

101 LYDRYCSKRI VLRDQAKLVV ATCLWLAAKT WGGCNHIINN VVIPTGGRFY

151 GPNPRARIPR LSELVHYCGD GQVFDESMFL QMERHILDTL NWNIYEPMIN

201 DYVLNVDENC LMQYELYENQ VTYDKQCSEK RQSQLSQDSD ATVDERPYQN

251 EEEEEEDLKL KIKLINLKKF LIDVSAWQYD LLRYELFEVS HGIFSIINQF

301 TNQDHGPFLM TPMTSESKNG EILSTLMNGI VSIPNSLMEV YKTVNGVLPF

351 INQVKEYHLD LQRKLQIASN LNISRKLTIS TPSCSFENSN STSIPSPASS

401 SQSHTPMRNM SSLSDNSVFS RNMEQSSPIT PSMYQFGQQQ SNSICGSTVS

451 VNSLVNTNNK QRIYEQITGP NSNNAINDYI DLLNLNESNK ENQNPATAHY

501 LNGGPPKTSF INHGMFPSPT GTINSGKSSS ASFFNFFWYG QYPSNIVPVL

551 FMINECQFCQ TYQKETNIIR FMKRKAFIFC GKRETTYSVY RYNFNGIYLY

601 FCKSMKQPTK FCVELKKGH

The carboxy-terminal PEST-rich region is highlighted in red.

A.1.5 Nucleotide Sequence of the PEST-rich

Carboxy-terminal region of Cln2

1 GAATTGTACA AAGCATCCAA CTTGAACATT TCGAGAAAGC TTACCATATC

51 AACCCCATCA TGCTCTTTCG AAAATTCAAA TAGCACATCC ATTCCTTCGC

101 CCGCTTCCTC ATCTCAAAGC CACACTCCAA TGAGAAACAT GAGCTCACTC

151 TCTGATAACA GCGTTTTCAG CCGGAATATG GAACAATCAT CACCAATCAC

201 TCCAAGTATG TACCAATTTG GTCAGCAGCA GTCAAACAGT ATATGTGGTA
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251 GCACCGTTAG TGTGAATAGT CTGGTGAATA CAAATAACAA ACAAAGGATC

301 TACGAACAAA TCACGGGTCC TAACAGCAAT AACGCAACCA ATGATTATAT

351 TGATTTGCTA AACCTAAATG AGTCTAACAA GGAAAACCAA AATCCCGCAA

401 CGGCGCATTA CCTCAATGGG GGCCCACCCA AGACAAGCTT CATTAACCAT

451 GGAATGTTCC CCTCGCCAAC TGGGACCATA AATAGCGGTA AATCTAGCAG

501 TGCCTCATCT TTAATTTCTT TTGGTATGGG CAATACCCAA GTAATATAGG

A.1.6 Iron Response Protein (IRP) Nucleotide Sequence

1 ATGAGCAACC CATTCGCACA CCTTGCTGAG CCATTGGATC CTGTACAACC

51 AGGAAAGAAA TTCTTCAATT TGAATAAATT GGAGGATTCA AGATATGGGC

101 GCTTACCATT TTCGATCAGA GTTCTTCTGG AAGCAGCCAT TCGGAATTGT

151 GATGAGTTTT TGGTGAAGAA ACAGGATATT GAAAATATTC TACATTGGAA

201 TGTCACTCAG CACAAGAACA TAGAAGTGCC ATTTAAGCCT GCTCGTGTCA

251 TCCTGCAGGA CTTTACGGGT GTGCCCGCTG TGGTTGACTT TGCTGCAATG

301 CGTGATGCTG TGAAAAAGTT AGGAGGAGAT CCAGAGAAAA TAAACCCTGT

351 CTGCCCTGCT GATCTTGTAA TAGATCATTC CATCCAGGTT GATTTCAACA

401 GAAGGGCAGA CAGTTTACAG AAGAATCAAG ACCTGGAATT TGAAAGAAAT

451 AGAGAGCGAT TTGAATTTTT AAAGTGGGGT TCCCAGGCTT TTCACAACAT

501 GCGGATTATT CCCCCTGGCT CAGGAATCAT CCACCAGGTG AATTTGGAAT

551 ATTTGGCAAG AGTGGTATTT GATCAGGATG GATATTATTA CCCAGACAGC

601 CTCGTGGGCA CAGACTCGCA CACTACCATG ATTGATGGCT TGGGCATTCT

651 TGGTTGGGGT GTCGGTGGTA TTGAAGCAGA AGCTGTCATG CTGGGTCAGC

701 CAATCAGTAT GGTGCTTCCT CAGGTGATTG GCTACAGGCT GATGGGGAAG

751 CCCCACCCTC TGGTAACATC CACTGACATC GTGCTCACCA TTACCAAGCA

801 CCTCCGCCAG GTTGGGGTAG TGGGCAAATT TGTCGAGTTC TTCGGGCCTG

851 GAGTAGCCCA GTTGTCCATT GCTGACCGAG CTACGATTGC TAACATGTGT

901 CCAGAGTACG GAGCAACTGC TGCCTTTTTC CCAGTTGATG AAGTTAGTAT

951 CACGTACCTG GTGCAAACAG GTCGTGATGA AGAAAAATTA AAGTATATTA

1001 AAAAATATCT TCAGGCTGTA GGAATGTTTC GAGATTTCAA TGACCCTTCT

1051 CAAGACCCAG ACTTCACCCA GGTTGTGGAA TTAGATTTGA AAACAGTAGT
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1101 GCCTTGCTGT AGTGGACCCA AAAGGCCTCA GGACAAAGTT GCTGTGTCCG

1151 ACATGAAAAA GGACTTTGAG AGCTGCCTTG GAGCCAAGCA AGGATTTAAA

1201 GGATTCCAAG TTGCTCCTGA ACATCATAAT GACCATAAGA CCTTTATCTA

1251 TGATAACACT GAATTCACCC TTGCTCATGG TTCTGTGGTC ATTGCTGCCA

1301 TTACTAGCTG CACAAACACC AGTAATCCGT CTGTGATGTT AGGGGCAGGA

1351 TTGTTAGCAA AGAAAGCTGT GGATGCTGGC CTGAACGTGA TGCCTTACAT

1401 CAAAACTAGC CTGTCTCCTG GGAGTGGCGT GGTCACCTAC TACCTACAAG

1451 AAAGCGGAGT CATGCCTTAT CTGTCTCAGC TTGGGTTTGA CGTGGTGGGC

1501 TATGGCTGCA TGACCTGCAT TGGCAACAGT GGGCCTTTAC CTGAACCTGT

1551 GGTAGAAGCC ATCACACAGG GAGACCTTGT AGCTGTTGGA GTACTATCTG

1601 GAAACAGGAA TTTTGAAGGT CGAGTTCACC CCAACACCCG GGCCAACTAT

1651 TTAGCCTCTC CCCCCTTAGT AATAGCATAT GCAATTGCTG GAACCATCAG

1701 AATCGACTTT GAGAAAGAGC CATTGGGAGT AAATGCAAAG GGACAGCAGG

1751 TATTTCTGAA AGATATCTGG CCGACTAGAG ACGAGATCCA GGCAGTGGAG

1801 CGTCAGTATG TCATCCCGGG GATGTTTAAG GAAGTCTATC AGAAAATAGA

1851 GACTGTGAAT GAAAGCTGGA ATGCCTTAGC AACCCCATCA GATAAGCTGT

1901 TTTTCTGGAA TTCCAAATCT ACGTATATCA AATCACCACC ATTCTTTGAA

1951 AACCTGACTT TGGATCTTCA GCCCCCTAAA TCTATAGTGG ATGCCTATGT

2001 GCTGCTAAAT TTGGGAGATT CGGTAACAAC TGACCACATC TCCCCAGCTG

2051 GAAATATTGC AAGAAACAGT CCTGCTGCTC GCTACTTAAC TAACAGAGGC

2101 CTAACTCCAC GAGAATTCAA CTCCTATGGC TCCCGCCGAG GTAATGACGC

2151 CGTCATGGCA CGGGGAACAT TTGCCAACAT TCGCTTGTTA AACAGATTTT

2201 TGAACAAGCA GGCACCACAG ACTATCCATC TGCCTTCTGG GGAAATCCTT

2251 GATGTGTTTG ATGCTGCTGA GCGGTACCAG CAGGCAGGCC TTCCCCTGAT

2301 CGTTCTGGCT GGCAAAGAGT ACGGTGCAGG CAGCTCCCGA GACTGGGCAG

2351 CTAAGGGCCC TTTCCTGCTG GGAATCAAAG CCGTCCTGGC CGAGAGCTAC

2401 GAGCGCATTC ACCGCAGTAA CCTGGTTGGG ATGGGTGTGA TCCCACTTGA

2451 ATATCTCCCT GGTGAGAATG CAGATGCCCT GGGGCTCACA GGGCAAGAAC

2501 GATACACTAT CATTATTCCA GAAAACCTCA AACCACAAAT GAAAGTCCAG

2551 GTCAAGCTGG ATACTGGCAA GACCTTCCAG GCTGTCATGA GGTTTGACAC

2601 TGATGTGGAG CTCACTTATT TCCTCAACGG GGGCATCCTC AACTACATGA
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2651 TCCGCAAGAT GGCCAAGTAG GAGACGTGCA CTTGGTCGTG CGCCCAGGGA

2701 GGAAGCCGCA CCACCAGCCA GCGCAGGCCC TGGTGGAGAG GCCTCCCTGG

2751 CTGCCTCTGG GAGGGGTGCT GCCTTGTAGA TGGAGCAAGT GAGCACTGAG

2801 GGTCTGGTGC CAATCCTGTA GGCACAAAAC CAGAAGTTTC TACATTCTCT

2851 ATTTTTGTTA ATCATCTTCT CTTTTTCCAG AATTTGGAAG CTAGAATGGT

2901 GGGAATGTCA GTAGTGCCAG AAAGAGAGAA CCAAG

A.1.7 IRPPESTNucleotide Sequence

1 ATGAGCAACC CATTCGCACA CCTTGCTGAG CCATTGGATC CTGTACAACC

51 AGGAAAGAAA TTCTTCAATT TGAATAAATT GGAGGATTCA AGATATGGGC

101 GCTTACCATT TTCGATCAGA GTTCTTCTGG AAGCAGCCAT TCGGAATTGT

151 GATGAGTTTT TGGTGAAGAA ACAGGATATT GAAAATATTC TACATTGGAA

201 TGTCACTCAG CACAAGAACA TAGAAGTGCC ATTTAAGCCT GCTCGTGTCA

251 TCCTGCAGGA CTTTACGGGT GTGCCCGCTG TGGTTGACTT TGCTGCAATG

301 CGTGATGCTG TGAAAAAGTT AGGAGGAGAT CCAGAGAAAA TAAACCCTGT

351 CTGCCCTGCT GATCTTGTAA TAGATCATTC CATCCAGGTT GATTTCAACA

401 GAAGGGCAGA CAGTTTACAG AAGAATCAAG ACCTGGAATT TGAAAGAAAT

451 AGAGAGCGAT TTGAATTTTT AAAGTGGGGT TCCCAGGCTT TTCACAACAT

501 GCGGATTATT CCCCCTGGCT CAGGAATCAT CCACCAGGTG AATTTGGAAT

551 ATTTGGCAAG AGTGGTATTT GATCAGGATG GATATTATTA CCCAGACAGC

601 CTCGTGGGCA CAGACTCGCA CACTACCATG ATTGATGGCT TGGGCATTCT

651 TGGTTGGGGT GTCGGTGGTA TTGAAGCAGA AGCTGTCATG CTGGGTCAGC

701 CAATCAGTAT GGTGCTTCCT CAGGTGATTG GCTACAGGCT GATGGGGAAG

751 CCCCACCCTC TGGTAACATC CACTGACATC GTGCTCACCA TTACCAAGCA

801 CCTCCGCCAG GTTGGGGTAG TGGGCAAATT TGTCGAGTTC TTCGGGCCTG

851 GAGTAGCCCA GTTGTCCATT GCTGACCGAG CTACGATTGC TAACATGTGT

901 CCAGAGTACG GAGCAACTGC TGCCTTTTTC CCAGTTGATG AAGTTAGTAT

951 CACGTACCTG GTGCAAACAG GTCGTGATGA AGAAAAATTA AAGTATATTA

1001 AAAAATATCT TCAGGCTGTA GGAATGTTTC GAGATTTCAA TGACCCTTCT

1051 CAAGACCCAG ACTTCACCCA GGTTGTGGAA TTAGATTTGA AAACAGTAGT
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1101 GCCTTGCTGT AGTGGACCCA AAAGGCCTCA GGACAAAGTT GCTGTGTCCG

1151 ACATGAAAAA GGACTTTGAG AGCTGCCTTG GAGCCAAGCA AGGATTTAAA

1201 GGATTCCAAG TTGCTCCTGA ACATCATAAT GACCATAAGA CCTTTATCTA

1251 TGATAACACT GAATTCACCC TTGCTCATGG TTCTGTGGTC ATTGCTGCCA

1301 TTACTAGCTG CACAAACACC AGTAATCCGT CTGTGATGTT AGGGGCAGGA

1351 TTGTTAGCAA AGAAAGCTGT GGATGCTGGC CTGAACGTGA TGCCTTACAT

1401 CAAAACTAGC CTGTCTCCTG GGAGTGGCGT GGTCACCTAC TACCTACAAG

1451 AAAGCGGAGT CATGCCTTAT CTGTCTCAGC TTGGGTTTGA CGTGGTGGGC

1501 TATGGCTGCA TGACCTGCAT TGGCAACAGT GGGCCTTTAC CTGAACCTGT

1551 GGTAGAAGCC ATCACACAGG GAGACCTTGT AGCTGTTGGA GTACTATCTG

1601 GAAACAGGAA TTTTGAAGGT CGAGTTCACC CCAACACCCG GGCCAACTAT

1651 TTAGCCTCTC CCCCCTTAGT AATAGCATAT GCAATTGCTG GAACCATCAG

1701 AATCGACTTT GAGAAAGAGC CATTGGGAGT AAATGCAAAG GGACAGCAGG

1751 TATTTCTGAA AGATATCTGG CCGACTAGAG ACGAGATCCA GGCAGTGGAG

1801 CGTCAGTATG TCATCCCGGG GATGTTTAAG GAAGTCTATC AGAAAATAGA

1851 GACTGTGAAT GAAAGCTGGA ATGCCTTAGC AACCCCATCA GATAAGCTGT

1901 TTTTCTGGAA TTCCAAATCT ACGTATATCA AATCACCACC ATTCTTTGAA

1951 AACCTGACTT TGGATCTTCA GCCCCCTAAA TCTATAGTGG ATGCCTATGT

2001 GCTGCTAAAT TTGGGAGATT CGGTAACAAC TGACCACATC TCCCCAGCTG

2051 GAAATATTGC AAGAAACAGT CCTGCTGCTC GCTACTTAAC TAACAGAGGC

2101 CTAACTCCAC GAGAATTCAA CTCCTATGGC TCCCGCCGAG GTAATGACGC

2151 CGTCATGGCA CGGGGAACAT TTGCCAACAT TCGCTTGTTA AACAGATTTT

2201 TGAACAAGCA GGCACCACAG ACTATCCATC TGCCTTCTGG GGAAATCCTT

2251 GATGTGTTTG ATGCTGCTGA GCGGTACCAG CAGGCAGGCC TTCCCCTGAT

2301 CGTTCTGGCT GGCAAAGAGT ACGGTGCAGG CAGCTCCCGA GACTGGGCAG

2351 CTAAGGGCCC TTTCCTGCTG GGAATCAAAG CCGTCCTGGC CGAGAGCTAC

2401 GAGCGCATTC ACCGCAGTAA CCTGGTTGGG ATGGGTGTGA TCCCACTTGA

2451 ATATCTCCCT GGTGAGAATG CAGATGCCCT GGGGCTCACA GGGCAAGAAC

2501 GATACACTAT CATTATTCCA GAAAACCTCA AACCACAAAT GAAAGTCCAG

2551 GTCAAGCTGG ATACTGGCAA GACCTTCCAG GCTGTCATGA GGTTTGACAC

2601 TGATGTGGAG CTCACTTATT TCCTCAACGG GGGCATCCTC AACTACATGA
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2651 TCCGCAAGAT GGCCAAAGCA TCCAACTTGA ACATTTCGAG AAAGCTTACC

2701 ATATCAACCC CATCATGCTC TTTCGAAAAT TCAAATAGCA CATCCATTCC

2751 TTCGCCCGCT TCCTCATCTC AAAGCCACAC TCCAATGAGA AACATGAGCT

2801 CACTCTCTGA TAACAGCGTT TTCAGCCGGA ATATGGAACA ATCATCACCA

2851 ATCACTCCAA GTATGTACCA ATTTGGTCAG CAGCAGTCAA ACAGTATATG

2901 TGGTAGCACC GTTAGTGTGA ATAGTCTGGT GAATACAAAT AACAAACAAA

2951 GGATCTACGA ACAAATCACG GGTCCTAACA GCAATAACGC AACCAATGAT

3001 TATATTGATT TGCTAAACCT AAATGAGTCT AACAAGGAAA ACCAAAATCC

3051 CGCAACGGCG CATTACCTCA ATGGGGGCCC ACCCAAGACA AGCTTCATTA

3101 ACCATGGAAT GTTCCCCTCG CCAACTGGGA CCATAAATAG CGGTAAATCT

3151 AGCAGTGCCT CATCTTTAAT TTCTTTTGGT ATGGGCAATA CCCAAGTAAT

3201 ATAGTGGCCA AGTAGGAGAC GTGCACTTGG TCGTGCGCCC AGGGAGGAAG

3251 CCGCACCACC AGCCAGCGCA GGCCCTGGTG GAGAGGCCTC CCTGGCTGCC

3301 TCTGGGAGGG GTGCTGCCTT GTAGATGGAG CAAGTGAGCA CTGAGGGTCT

3351 GGTGCCAATC CTGTAGGCAC AAAACCAGAA GTTTCTACAT TCTCTATTTT

3401 TGTTAATCAT CTTCTCTTTT TCCAGAATTT GGAAGCTAGA ATGGTGGGAA

3451 TGTCAGTAGT GCCAGAAAGA GAGAACCAAG

The fused PEST-rich C-terminal region of the Mateus and Avery Cln2 protein is

highlighted in red. [216].

A.1.8 to demonstrate reading frame

1 MSNPFAHLAE PLDPVQPGKK FFNLNKLEDS RYGRLPFSIR VLLEAAIRNC

51 DEFLVKKQDI ENILHWNVTQ HKNIEVPFKP ARVILQDFTG VPAVVDFAAM

101 RDAVKKLGGD PEKINPVCPA DLVIDHSIQV DFNRRADSLQ KNQDLEFERN

151 RERFEFLKWG SQAFHNMRII PPGSGIIHQV NLEYLARVVF DQDGYYYPDS

201 LVGTDSHTTM IDGLGILGWG VGGIEAEAVM LGQPISMVLP QVIGYRLMGK

251 PHPLVTSTDI VLTITKHLRQ VGVVGKFVEF FGPGVAQLSI ADRATIANMC

301 PEYGATAAFF PVDEVSITYL VQTGRDEEKL KYIKKYLQAV GMFRDFNDPS

351 QDPDFTQVVE LDLKTVVPCC SGPKRPQDKV AVSDMKKDFE SCLGAKQGFK

401 GFQVAPEHHN DHKTFIYDNT EFTLAHGSVV IAAITSCTNT SNPSVMLGAG
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451 LLAKKAVDAG LNVMPYIKTS LSPGSGVVTY YLQESGVMPY LSQLGFDVVG

501 YGCMTCIGNS GPLPEPVVEA ITQGDLVAVG VLSGNRNFEG RVHPNTRANY

551 LASPPLVIAY AIAGTIRIDF EKEPLGVNAK GQQVFLKDIW PTRDEIQAVE

601 RQYVIPGMFK EVYQKIETVN ESWNALATPS DKLFFWNSKS TYIKSPPFFE

651 NLTLDLQPPK SIVDAYVLLN LGDSVTTDHI SPAGNIARNS PAARYLTNRG

701 LTPREFNSYG SRRGNDAVMA RGTFANIRLL NRFLNKQAPQ TIHLPSGEIL

751 DVFDAAERYQ QAGLPLIVLA GKEYGAGSSR DWAAKGPFLL GIKAVLAESY

801 ERIHRSNLVG MGVIPLEYLP GENADALGLT GQERYTIIIP ENLKPQMKVQ

851 VKLDTGKTFQ AVMRFDTDVE LTYFLNGGIL NYMIRKMAKA SNLNISRKLT

901 ISTPSCSFEN SNSTSIPSPA SSSQSHTPMR NMSSLSDNSV FSRNMEQSSP

951 ITPSMYQFGQ QQSNSICGST VSVNSLVNTN NKQRIYEQIT GPNSNNATND

1001 YIDLLNLNES NKENQNPATA HYLNGGPPKT SFINHGMFPS PTGTINSGKS

1051 SSASSLISFG MGNTQVIWPS RRRALGRAPR EEAAPPASAG PGGEASLAAS

1101 GRGAALMEQV STEGLVPILA QNQKFLHSLF LLIIFSFSRI WKLEWWECQC

1151 QKERTK

The protein sequence of the IRP (white) with Mateus and AveryPEST-rich C-terminal

region, demonstrating the in-frame insertion of the tag [216].

A.1.9 LexA Operator, DCD1 promoter, and IRP Nucleotide Se-

quence

1 CGAGTACTGT ATGTACATAC AGTACTCGAG TACTGTATGT ACATACAGTA

51 CAAGCTTCTT CCTGCCTAAA CAGGAAGACA AAGCATGCGA GAGGCCCTGG

101 GTTCAATTCC CAGCTCGCCC CATTATAATT TTTTCACTTT TTTGTTCTTT

151 GCAAGAACGC GCGGTACGCA GTTATGAGAT GATGTAGGCA ATCTCGAGAA

201 TTGAAACTTC TGCATTACCA TAGAATTCAA CATCTTTTTT TGGCACATTA

251 AAGGTGTGAA TGGATCCAAT TATCTACTTA AGAACACAAA ACTCGAGAAC

301 ATATGAGCAA CCCATTCGCA CACCTTGCTG AGCCATTGGA TCCTGTACAA

351 CCAGGAAAGA AATTCTTCAA TTTGAATAAA TTGGAGGATT CAAGATATGG

401 GC
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The nucleotide sequence of the LexA operator region (yellow), the DCD1 promoter

(green) and the first 100 nucleotides of the IRP gene (red). The intervening white section

between theDCD1 promoter and the IRP is a multi-cloning site.

A.1.10 LexA Operator, TEF1 promoter, and IRP Nucleotide Se-

quence

1 CGAGTACTGT ATGTACATAC AGTACTCGAG TACTGTATGT ACATACAGTA

51 CAAGCTTTGA TTACGCCTCC CAGTCACGAC GTTGTAAAAC GACGGCCAGT

101 GCTACAATCG CGGCCGCATA GGTATCGATC GTCACCCTGC AGGGTGACGG

151 GATCGATCCG TCACCCGCAT ATTACATATA ATACATATCA CATAGGAAGC

201 AACAGGCGCG TTGGACTTTT AATTTTCGAG GACCGCGAAT CCTTACATCA

251 CACCCAATCC CCCACAAGTG ATCCCCCACA CACCATAGCT TCAAAATGTT

301 TCTACTCCTT TTTTACTCTT CCAGATTTTC TCGGACTCCG CGCATCGCCG

351 TACCACTTCA AAACACCCAA GCACAGCATA CTAAATTTCC CCTCTTTCTT

401 CCTCTAGGGT GTCGTTAATT ACCCGTACTA AAGGTTTGGA AAAGAAAAAA

451 GAGACCGCCT CGTTTCTTTT TCTTCGTCGA AAAAGGCAAT AAAAATTTTT

501 ATCACGTTTC TTTTTCTTGA AAATTTTTTT TTTTAGTTTT TTTCTCTTTC

551 GATGACCTCC CATTGATATT TAAGTTAATA AACGGTCTTC AATTTCTCAA

601 GTTTCAGTTT CATTTTTCTT GTTCTATTAC AACTTTTTTT ACTTCTTGTT

651 CATTAGAAAG GATCCGTCGA CTCGAGAACA TATGAGCAAC CCATTCGCAC

701 ACCTTGCTGA GCCATTGGAT CCTGTACAAC CAGGAAAGAA ATTCTTCAAT

751 TTGAATAAAT TGGAGGATTC AAGATATGGG CG

The nucleotide sequence of the LexA operator region (yellow), the TEF1 promoter

(green) and the first 100 nucleotides of the IRP gene (red).
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B.1 Python script for processing Copasi stochastic data

#!/usr/bin/python

#To execute the script call:

#calculate_statisitcs.py INPUTFILE MEAN_FILE SD_FILE NUM_STEPS NUM_REPEATS

import sys

import string

import math

if(len(sys.argv)!=6):

print "Wrong number of arguments ."

sys.exit(1)

INPUTFILE =sys.argv[1]

MEAN_OUTFILE=sys.argv[2]

SD_OUTFILE =sys.argv[3]

NUM_STEPS =int(sys.argv[4])

NUM_REPEATS =int(sys.argv[5])

INPUT=file(INPUTFILE ,"r"). readlines ()
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if(len(INPUT) != (NUM_REPEATS * (NUM_STEPS + 2) + 1)):

print "Wrong number of data points."

sys.exit(1)

DATA=[]

LINENUMBER =1

NUMCOLUMNS =len(string.split(INPUT[1]))

MEAN=[]

HEADER=INPUT[0]

for X in range(0,NUM_STEPS +1):

MEAN.append([])

for Y in range(0,NUMCOLUMNS - 1):

MEAN[X].append(0)

for X in range(0,NUM_REPEATS ):

SET=[]

for Y in range(0, NUM_STEPS +1):

LINE=INPUT[LINENUMBER ]

COLUMNS=string.split(LINE)

if(len(COLUMNS )!=NUMCOLUMNS ):

print "Wrong number of elements on line %d"%(LINENUMBER )

sys.exit(1)

ROW=[]

for Z in range(0,len(COLUMNS)-1):

v=float(COLUMNS[Z+1])

ROW.append(v)

MEAN[Y][Z]=MEAN[Y][Z]+v

SET.append(ROW)

LINENUMBER =LINENUMBER +1

DATA.append(SET)

LINENUMBER =LINENUMBER +1 # skip the empty line

MEANOUT=file(MEAN_OUTFILE ,"w")

MEANOUT.write(HEADER)

for X in range(0,NUM_STEPS +1):

line=string.join([str(X)],",")

for Y in range(0,NUMCOLUMNS -1):

MEAN[X][Y]=MEAN[X][Y]/NUM_REPEATS

line=string.join([line ,str(MEAN[X][Y])],",")

line=line+"\n"

MEANOUT.write(line)

MEANOUT.close()

SD=[]

for X in range(0,NUM_STEPS +1):
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SD.append([])

for Y in range(0,NUMCOLUMNS -1):

SD[X].append(0)

for X in range(0,NUM_REPEATS ):

for Y in range(0,NUM_STEPS +1):

for Z in range(0,NUMCOLUMNS -1):

SD[Y][Z]=SD[Y][Z]+math.pow((DATA[X][Y][Z]-MEAN[Y][Z]),2)

SDOUT=file(SD_OUTFILE ,"w")

SDOUT.write(HEADER)

for X in range(0,NUM_STEPS +1):

line=string.join([str(X)],",")

for Y in range(0,NUMCOLUMNS -1):

SD[X][Y]=math.sqrt(SD[X][Y]/NUM_REPEATS )

line=string.join([line ,str(SD[X][Y])],",")

line=line+"\n"

SDOUT.write(line)

SDOUT.close()


	List of Figures
	List of Tables
	Abbreviations
	Abstract
	Declaration of Authorship
	Copyright
	Acknowledgements
	Preface
	1 Introduction
	1.1 Aims and Objectives
	1.2 The Yeast Saccharomyces cerevisiae
	1.2.1 Yeast Mating
	1.2.2 Pheromone Receptor-G-protein Coupling
	1.2.3 Pheromone-Induced G-protein Activation
	1.2.4 The MAP Kinase Cascade
	1.2.4.1 Ste11, Ste7 and Fus3
	1.2.4.2 Ste12 and The Pheromone Response Element


	1.3 Switching Off The Pheromone Response
	1.4 Modelling The Mating Pathway
	1.4.1 Chen et al (2000): Kinetic Analysis of Budding Yeast Cell Cycle Model
	1.4.2 Yi et al G-Protein Model
	1.4.3 Hao et al RGS Protein Pheromone Desensitization Model
	1.4.4 The Kofahl and Klipp Yeast Pheromone Pathway Model.
	1.4.5 Modelling tools
	1.4.5.1 Copasi
	1.4.5.2 XPPAUT
	1.4.5.3 Cytoscape
	1.4.5.4 Mathematical Programming Languages
	1.4.5.5 Scripting Languages
	1.4.5.6 SBML

	1.4.6 Metabolic Control Analysis
	1.4.7 Parameter Estimation
	1.4.8 Signal to Noise Ratio

	1.5 Synthetic Biology
	1.5.1 Transcription Cascades
	1.5.2 Synthetic Oscillators
	1.5.3 Synthetic Switches
	1.5.4 Riboswitches
	1.5.5 Application of Synthetic Biology
	1.5.6 Project Overview


	2 Materials and Methods
	2.1 Plasmids
	2.2 Primers
	2.3 Yeast & Bacterial Strains
	2.4 Yeast Growth Conditions
	2.5 Bacterial Growth Conditions
	2.6 Transformation of competent E. coli TOP10 cells
	2.7 MINIPrep Plasmid Purification
	2.8 Manual Miniprep Plasmid Purification Protocol
	2.8.1 Reagents
	2.8.1.1 25% sucrose
	2.8.1.2 Lysozyme
	2.8.1.3 Triton Lytic Mix


	2.9 Plasmid DNA Restriction digest
	2.9.1 Analytical Plasmid DNA Digest
	2.9.2 Preparative Digest

	2.10 Cranenburgh Ligation Method
	2.11 Primer Design
	2.12 PCR
	2.13 Colony PCR Protocol
	2.14 Genomic DNA Extraction
	2.14.1 Extraction Buffer

	2.15 Site Directed Mutagenesis Protocol
	2.15.1 Site Directed Mutagenesis PCR Reaction Program

	2.16 Phosphorylation and Annealing of Synthetic Oligonucleotides
	2.17 Agarose Gel Electrophoresis
	2.17.1 TAE buffer - 5 Litre, 10x stock
	2.17.2 Preparation of DNA loading dye

	2.18 Yeast Transformation
	2.18.1 Preparation of Solutions and Growth Media for Yeast Transformation
	2.18.1.1 Preparation of 10x LiAc and 10X TE solution for yeast transformation
	2.18.1.2 Preparation of 20ml PEG/LiAc/TE solution
	2.18.1.3 Preparation of YP agar

	2.18.2 Yeast transformation protocol

	2.19 Yeast Protein Extraction
	2.19.1 Lysis buffer
	2.19.2 SDS Sample buffer
	2.19.3 Preparation of SDS PAGE Protein Gels

	2.20 Western blotting
	2.20.1 Polyacrylamide gel electrophoresis protocol
	2.20.2 Western Blot Transfer protocol
	2.20.3 Antibody binding
	2.20.4 Western Blot Imaging
	2.20.5 Alkaline Phosphatase Protocol
	2.20.6 Quantification of Western Blot Images

	2.21 DNA Sequence Alignment
	2.22 DNA Primer Design
	2.23 Pheromone Induction of Yeast Cells for Luminescence Assay
	2.24 Optical Density Measurements
	2.25 Cellometer Cell Measurements
	2.26 Yeast Growth Rate Measurements
	2.27 Yeast in situ Luciferase Assay
	2.28 Real-time Quantitative PCR (RT-qPCR)
	2.28.1 RT-qPCR Primer Design
	2.28.2 mRNA extraction and purification
	2.28.3 Turbo DNase protocol
	2.28.4 Reverse Transcriptase protocol
	2.28.5 RT-qPCR protocol

	2.29 Mathematical Modelling
	2.29.1 Metabolic Control Analysis
	2.29.2 Sensitivity Analysis
	2.29.3 Metabolic Control Analysis
	2.29.4 Signal to Noise Ratio
	2.29.5 Parameter Estimation

	2.30 Dissertation

	3 Results - Circuit Construction
	3.1 Introduction
	3.1.1 The Iron Responsive Element-Binding Protein
	3.1.2 The LexA DNA Binding Protein
	3.1.3 Yeast Promoters

	3.2 Circuit Overview
	3.2.1 Design overview
	3.2.2 Component Interactions
	3.2.3 Overview of Luciferase Gene Expression Tuning

	3.3 Construction of the Reporter Plasmid
	3.3.1 The Luciferase Reporter Gene

	3.4 Insertion of the Iron Response Element
	3.5 Construction of the Repressor Plasmid
	3.5.1 Cloning the Iron Response Protein Gene
	3.5.1.1 TRP1 promoter strategy
	3.5.1.2 DCD1 promoter strategy
	3.5.1.3 TEF1 promoter strategy

	3.5.2 Insertion of LexA Operator Control Sequences
	3.5.3 Cloning the IRP PEST Degradation Tag

	3.6 Construction of the De-Repressor Plasmid
	3.7 Conclusion

	4 Results - Circuit Characterization
	4.1 Introduction
	4.2 Growth Rate Investigation
	4.3 Luminescence Measurement
	4.3.1 Luciferase Signal to Noise Ratio

	4.4 Protein Quantification
	4.5 mRNA Quantification
	4.5.1 qPCR Housekeeping Gene Selection
	4.5.2 Primer Validation
	4.5.3 Sample Preparation
	4.5.4 pDCD1 Circuit qPCR Analysis
	4.5.5 pTEF1 Circuit qPCR Analysis
	4.5.6 pDCD1-PEST Circuit qPCR Analysis
	4.5.7 pTEF1 Circuit qPCR Analysis
	4.5.8 qPCR Analysis Summary

	4.6 Conclusion

	5 Modelling
	5.1 Introduction
	5.2 Modelling Eukaryotic Signal Cascades
	5.2.1 A Revised Mating Pathway Model
	5.2.1.1 Simulation Results


	5.3 Modelling the Gene Circuit
	5.4 Model Parameterisation
	5.4.1 Further Parameterisation and the Final Model

	5.5 Stochastic Simulation of the Gene Circuit
	5.6 Parameter Estimation

	6 Discussion
	6.1 Introduction
	6.2 Design and Development
	6.3 Characterisation
	6.4 Noise
	6.5 Modelling
	6.6 Summary and Further Work
	6.7 Conclusion

	A Appendix
	A.1 Sequences
	A.1.1 Iron Response Element (IRE) Nucleotide Sequence
	A.1.2 PFUS1-IRE-Luciferase Nucleotide Sequence
	A.1.3 PFUS1-LexA Nucleotide Sequence
	A.1.4 Cln2 Protein Sequence
	A.1.5 PEST region nucleotide sequence
	A.1.6 Iron Response Protein (IRP) Nucleotide Sequence
	A.1.7 IRPPEST Nucleotide Sequence
	A.1.8 IRPPEST protein sequence
	A.1.9 LexA Operator, DCD1 promoter, and IRP Nucleotide Sequence
	A.1.10 LexA Operator, TEF1 promoter, and IRP Nucleotide Sequence


	B Appendix
	B.1 Python script for processing Copasi stochastic data


