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Abstract

Synthetic biology is an emergent field incorporating aspeift computer science
molecular biology-based methodologies in a systems byobogtext, taking naturally
occurring cellular systems, pathways, and molecules, alettively engineering them
for the generation of novel or beneficial synthetic behawidinis study described the
construction of a novel synthetic gene circuit, which a&b the inducible downstream
transcriptional activation properties of the pheromoesponse pathway in the budding
yeastSaccharomyces cerevisias the basis for initiation. The circuit was composed
of three novel yeast expression plasmids; (1) a reportenpthin which the luciferase
reporter gene was fused to the iron response element (IRB)egoressed under the
control of the pheromone-induciblEUS1 promoter, (2) a repressor plasmid which
constitutively expressed the mammalian iron responsepr@RP), which can bind to
the IRE in the luciferase mRNA transcript, blocking tratisia, and (3) a de-repressor
plasmid which also utilised the pheromone-inducibldS1 promoter to express the
bacterial LexA protein that represses transcription of IRB gene, and thereby de-
represses luciferase translation.

Yeast cultures were propagated in media that selected ft& @entaining all three
plasmid components of the gene circuit. In these cells,nduviegetative growth
conditions, reporter gene translation is constitutivelgressed by IRP until addition
of pheromone. Upon pheromone-induction, the pheromongorse pathway up-
regulated the expression of the LexA protein which repiegsanscription of IRP,
enabling the translation of luciferase, which is itself negulated by the pheromone
response pathway. The combination of the repressors ametdito increase the ratio
of induction of the reporter gene between pheromone-indlacel un-induced states.
Proteins and mRNA species expressed by each plasmid welieqeantified using
SDS-PAGE, Western blot, and RT-qPCR. Luciferase expresg&s measured using an
in vitro whole cell luminescence assay, and the data used to defice¢hé “output”.

Metabolic control analysis was used prior to building theuwit in silico, and identified
the transcription of IRP, as well as the IRP protein hal-lds significant control
points for increasing the expression of luciferasevivo. Modelling resulted in
the development of multiple variations of the circuit, ingorating strong and weak
constitutive promoters for the IRP. For the degradatioa,rtite IRP was fused with a
degradation tag from the PEST rich C-terminal residue ofGh& protein, forming
IRPpesT, With approximately a 10-fold reduced half-life comparedwtild type. By
varying the promoter strength and half-life of the IRP, thewgt could be tuned in terms
of the amplitude and period of luciferase expression dupimgromone induction.

Simulated annealing and Hooke-Jeeves algorithms were tasedtimate model pa-
rameter values from the experimental luminescence ddiajng the modelling such
that it produced accurate time course simulation of theutirmutput. While further
characterisation of the individual components would beaatiageous, the construction
of the system represents a completed cycle of extensive limyjeexperimentation,
and further model refinement.
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Preface

This work details investigations into synthetic gene dirgiby the parallel employment
of both in vivo laboratory experiments and silico computational modelling. The
two approaches were employed in a simultaneous fashioninglegéd each approach
frequently used information gained from the other to vakdaypotheses, and aid
rational experimental design. While it is hoped that thigkvtus demonstrates the
power of such interdisciplinary methods, for illustratiddarity the author has largely
segregated the descriptions of the two aspects of this vialsuch, the computational
modelling collected together in chapter five actually diéss simulations developed
over the course of this entire work, and can be cross-refecemwith the laboratory
experiments depicted in chapter four. The author has mddeseto indicate such

cross-referencing in the text, wherever appropriate.



CHAPTER

ONE

INTRODUCTION

1.1 Aims and Objectives

The objective of this project was to build a novel gene cirénithe yeastSaccha-
romyces cerevisiathat could enable cells to respond to environmental stimitki the
expression of a quantifiable reporter gene. Published nedséas shown that reporter
genes can be coupled to promoters that control the expressgenes involved in the
yeast pheromone response pathway (or “mating pathwayhleggacells to express a
gene of interest in response to the presence of an extriEzedlimulus. [1-3]. In this
way, the project investigated the construction of a symttststem that could be used

to study features such as amplification, sensitivity, andeno

Previous research in the McCarthy lab characterized theahunon response protein
(IRP) and its interaction with genes containing the irorpaese element (IRE) as
an effective repressor of translation in yeast [4]. Alseersh by Brent and Ptashne
had shown that the LexA repressor fr@scherichia colifunctioned as a repressor of

transcription in yeast [5].
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In this project, a gene circuit was designed that utilizethbaf the IRP and LexA
repressors, that resulted in repression at both transsriphd translation levels, with
a pheromone response pathway-inducible reporter gene. cifisuit design is unique
from previously published work linking reporter genes te thating response, in that
the circuit was designed to suppress the basal expressibe iporter gene in an OFF-
state, and then simultaneously de-repress and triggeessipn in an ON-state. The
design of the circuit therefore reduces the level of badkgdonoise from the reporter
gene through inhibition of basal expression, enabling &drigelative-fold increase
in expression, compared with a pheromone response patimgdagible reporter gene
alone [1, 6, 7]. Also, at the time of writing this approach tmobting the output of
a reporter gene, and combining transcriptional and tréiosk inhibition in a gene

circuit, had not been attempted.

To achieve these objectives, the project utilized a symtheiblogy approach to
building a system of interacting plasmids that function ambination as a module.
The simultaneous interactions of multiple components pcedcomplex, dynamic
behaviours that are impossible to conceptualize withoet did of mathematical
modelling and computer simulation [8, 9]. Synthetic bigtagcorporates aspects of
computer science from systems biology to augment moletiddogy with computer
aided-design and enable the modelling of gene circuits asngimeer would design
electronic devices [10-13]. Synthetic biology projectsutein rounds of iterative
design and development as models are constructed and ugpdd®e experimental
design. Parameter values are obtained experimentallyh@nchddel evolves alongside

the engineered system [11, 14-16].

1.2 The YeastSaccharomyces cerevisiae

TheSaccharomyces cerevisigenome was one of the first to be completely sequenced,
and is a widely recognized model organism for studying thaegie systems of
eukaryotes, providing rapid growth, dispersed cells, smgplica plating and mutant

isolation, together with a well-defined genome [17-2ZR)]cerevisiaés non-pathogenic,
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FIGURE 1.1: Diagrammatic representation of the yeast mating gock. Yeast cells
produce mating pheromone that binds to receptors on celteafpposite mating type.
2. Cells exhibit chemotaxis, and grow towards the opposétng type. 3. The haploid
cells fuse to form a diploid cell. Reproduced with permiagsiom A. Fijalkowski [21].

can be handled with few precautions, and can be propagaséy @ad cheaply in large

guantities giving rise to an ideal organism for biochemstatlies [18].

1.2.1 Yeast Mating

Yeast cells exist in two distinct haploid forms, a andith genotypes MA&and MATa
respectively, which can mate to form a diploidiaell (figure 1.1). The mating between
Mata and Mati enables genetic transfer within the yeast population amdbles the
colony to evolve through genetic recombination [20]. Thelald cells can continue to
bud in vegetative growth until they encounter starvationdittons, at which point the

cells undergo meiosis and sporulation, re-establishiadnéploid phase [22-29].

Each cell type produces a 13 amino acid peptide pheromorteiprthat binds to
specific receptors on the surface of the opposite mating ty@@da cells producen-

factor ( WHWLQLKPGQPMY) and binds td/1ATa cells [26]. MATa cells produce
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a-factor (YIIKGVFWDPAC) that binddVIATa cells [22, 25]. Binding of one of these
pheromone proteins to a cell of the opposite mating typeshib# cell cycle, induces
changes in cell morphology, and prepare the cell for cyspla and nuclear fusion
[29-34]. This signalling system in yeast has become onesofithst well characterized
signal transduction and developmental systems, and nedirigf the pathway has
now been extensively documented through molecular gemetell biology, and

biochemistry studies [35—-42].

Yeast are non-motile organisms and therefore require somehamism to orient
themselves into close proximity with cells of the oppositatimy type [18]. In order
to achieve this, yeast exhibit a chemotropic response toopihene secreted by the
opposite mating type through asymmetric cellular orgaroma directing their growth
towards the mating partner [29, 32, 34, 43]. Yeast dematestie ability to polarize
their actin cytoskeleton in the direction of the site of eghpheromone concentration
[34]. The cells elongate towards the mating partner, fogman structure termed
a “mating projection”, containing proteins involved in sajling, polarization, cell
adhesion, and fusion, causing the cells to take on a “pkei-horphology known
as a “Shmoo” (figure 1.1) [34, 38, 43].

The yeast mating response involves a complex cascade ofsevext enable yeast to
translate changes in environmental conditions into an@pfate genetic and metabolic
response [31, 44]. The mating response is an intracelligaaktransduction pathway
comprising a trans-membrane spanning heterotrimericdiePr-coupled receptor, and
a mitogen activated protein kinase (MAPK) cascade whiclivaets transcription

factors for genes that enable the appropriate genetic mespm the nucleus to a
particular input stimulus at the cell surface receptor [83;-47]. Understanding the
interactions and dynamic behaviour of the cascade is irmappb#when building gene
circuits that use the mating response pathway as a gen@italrocessing module”
[1, 2, 46].
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FIGURE 1.2: Diagram of the yeast Ste2 G-protein receptor demdirgjrahe 7-
transmembrane domains (H1-H7,), 4 extracellular dom&tis§4) and 4 intra-cellular
domains (C1-C4), an intracellular loop for G-protein caong] and a cytoplasmic
carboxy-terminal domain.
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1.2.2 Pheromone Receptor-G-protein Coupling

S. cerevisiae MAA cells express the Staf-factor binding receptor, anfATa cells
express Ste3 a-factor binding receptor [22, 25, 26, 32]. pifegromone receptors have
a structural topology of seven trans-membrane domaingrdittiracellular loop that
is involved in G-protein coupling, and a cytoplasmic canpeerminal domain that
mediates ligand-induced endocytosis and desensitizffigure 1.2) [38]. Hundreds
of G-protein coupled receptors have been identified in guiarcells, responding to a
variety of stimuli such as hormones, neurochemicals, ligtiours, and tastes [48, 49].
G-proteins constitute a large proportion of known drug ¢ésg as the released G-
proteins elicit biochemical responses, and changes inlaefpphysiology by stimulating
a variety of target (effector) enzymes [50-52]. G-protezneptors share a common
design consisting of 7 membrane spanning regions linkdtetGtprotein [33]. In yeast,
the G-proteins are formed from three subunitsx &pal), @ (Sted), and @ (Stel8)
[53, 54]. @3 and Gyact as a heterodimerf$y [48], and Gx subunit interacts @y to form
the inactive @y trimer (figure 1.3 1.) [33, 55]. A superfamily of G-proteinkaunits
has been identified in eukaryotes comprising 17 distirect &GB3, and 6 Gy isoforms,
allowing for many combinatorial possibilities for cell equtors [49]. G-proteins are
activated when a ligand molecule binds to the linked surfaceptor, in this case the
mating pheromone from the opposite cell type, causing acrordtional change in

the receptor that is transmitted to the G-protein causiegGh subunit to exchange
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FIGURE 1.3: Diagrammatic representation of the process of G-praetivation. 1
and 2. Pheromone binds to the extracellular Ste2 receptbisainternalized by the
receptor. 3 and 4. GDP is exchanged for GTP anditkabunit disassociates from the
Gy units, resulting in activation of the pheromone responskwey. 5 and 6. During
the process of switching off the pheromone response pathivayGx subunit binds
GDP in place of GTP and re-associates with tHgy &bunits.

GTP for GDP and disassociate fronfd{exposing the effector binding regions o
[38, 42, 56, 57] (figure 1.3). The release@\ds then able to participate in a 3 level
(MAP) kinase cascade that quickly transmits the pheromamairg signal through the
cell to the nucleus [48, 51, 54, 58, 59] (figure 1.3 5, and figureright.). The @&
subunit is released from the inner membrane into the cysopl@8]. The @ subunit
has been shown to be most significant in activation of theasiggsponse, while {has
been found to contain a conserved cysteine-aliphatidatip-X motif at the carboxy

terminus that is thought to localize thgdgsubunits to the membrane [33].

1.2.3 Pheromone-Induced G-protein Activation

The free Ste4 @Gy subunit interacts with three effectors: Ste5/Stell core20

protein kinase, and Farl/Cdc24 complex via a binding siéwas previously buried
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FIGURE 1.4: Diagrammatic representation of the main componentthefyeast
pheromone response pathway. Left is the inactive pathway po pheromone
activation. Right is the pheromone stimulated, active wath The activated G-
protein results in the phosphorylation of Ste20, subsetyusgsulting in the sequential
phosphorylation of Stell, Ste7, and Fus3, forming the MABBcade. The MAPK
cascade communicates the pheromone receptor binding #avengh the cytosol to
the nucleus where the appropriate mating response genep-aegulated via the de-
repression of the Stel2 transcription factor by the phaggéted Fus3. (Image from
yeastpheromonemodel.org [61])

within the Go associated molecule [49, 55]. The StelByGomplex anchors the
By G-protein subunits to the inner cell surface by covalenttpced lipid farnesyl
and palmitoyl groups [54, 60]. The association of thByGubunit with the inner
cell membrane surface localizes the position of the matesponse, and assists in
orientating the cell towards the pheromone gradient, aedhting partner [25, 34,
54, 60]. Localization of the By subunit results in Ste20 moving in close proximity
to Stell and Ste5, forming the initiating step in the sigrascade 1.4 [38]. Ste20
exists in an inactive form in the cytoplasm and is activatgdalsmall 21kD, Rho-
like G-protein Cdc42 [38]. Cdc42 in yeast has a similar amémwad sequence to
members of th&kassuper family and is known to be involved in the control of sale
morphogenetic events during the cell cycle, including teaagation of cell polarity,
development of normal cell shape, localization of secretend deposition of cell-
surface material [62]. Cdc42 binds to the CRIB domain of #rgeé N-terminal region

of Ste20 that ordinarily sterically occludes and autoitsithe active kinase C-terminal
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FIGURE 1.5: Schematic overview of yeast MAP kinase modules thatesBaell,
adapted from Drogen F. [51]. Yeast signalling pathways apable of sharing
components but maintaining signal specificity through tke of pathway specific
scaffold proteins. Stell and Ste7 are shared pheromonie,okigolarity, and low
nitrogen response pathways but differentiated throughutieeof the Ste5 and Pbs2
scaffolds that ensure signal specificity and prevent ctalgsbetween physiological
responses [51].

region, thereby activating Ste20 by permitting auto-plhasplation of the exposed
activation loop [63]. Cdc42 is also permanently tacked &itmer leaflet of the plasma

membrane, assisting in localizing Ste20 to the membrane [63

Ste5 is a large, multi-functional scaffold protein that lsthaving no catalytic activity,
serves as a scaffold and binding platform for componente®MAP kinase cascade
[63—67]. In yeast, the pheromone pathway scaffold Ste5s8td11, Ste7, and Fus3,
whilst the high osmolarity glycerol pathway scaffold Pbs@feracts with Stell and
Hogl (see figure 1.5) [51]. There are common components ih pathway (figure
1.5) and the scaffold serves to insulate the signal, prevgietoss-activation between
signalling pathways [51, 68—71]. Choi, 1994 demonstrategdast two-hybrid analysis
and co-immunoprecipitation that Stel1, Ste7, and FusZadsavith different domains
of Ste5 implying, that Ste5 simultaneously binds the conepts of the MAP kinase
reaction. Ste5 initially forms an adapter betwegBy@nd Stell, bringing Stell into
proximity with Cdc42-bound Ste20 at the plasma membrarsyltiag in immediate
phosphorylation of Stell by Ste20 [64—66].

The third effector to bind @By is Farl, complexed with Cdc24 [55]. Farl moves from

the nucleus to the cytoplasm when cells are stimulated byophene, and interacts
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with Gy at the cell membrane transiently via the MAP kinase cascadle [The N-
terminal domain of Farl contains a RING H2 domain that irdesravith By, while the
C-terminal end binds Cdc24, a guanine nucleotide exchaagerf(GEF) that promotes
exchange of GTP for Cdc42 [72]. GTP-bound Cdc42 is then ableind to Ste20
and several other regulators of cell polarity and the actinskeleton [43]. Farl is a
multi-functional regulator of the mating process. One tiortis to bind to Cdc24 and
facilitate growth towards the mating partner, another fiomcis to mediate pheromone-
induced cell cycle arrest [32]. Chang demonstrated thal Fdactor arrest”) is a
non-essential gene, induced 4 to 5 fold by pheromone-ird&tel2 which, in turn,
interacts with Cdc28 cyclin-dependent kinase, the mastgilator of the cycle growth
phase [32]. This interaction provides the link between tgaa transduction pathway
and cell cycle arrest under pheromone stimulation [73]. @kect mechanism of how
Farl inhibits the cell cycle is unclear. However Pi and Gartetermined that Fus3-

mediated phosphorylation of Farl is required for cell cyolest [28, 72].

1.2.4 The MAP Kinase Cascade

The MAP kinase cascade is the most prominent signalling ar@sh in yeast,
facilitating a rapid response to extracellular stimuli [340, 43]. MAP kinase
cascades are found ubiquitously in eukaryotic organismstioning in cell growth,
differentiation, tumorigenesis, and stress responsedBl(074]. MAP kinase pathways
usually consist of three protein kinases that act in seadtAP kinase kinase kinase
(MAPKKK), a MAP kinase kinase (MAPKK), and a MAP kinase (MARKigure 1.4)
[39, 43, 75, 76]. When the cascade is activated, the MAPKKIgspihorylates the
MAPKK, which in turn phosphorylates the MAPK [77]. In yeashe MAPKKK is
Stell and the MAPKK is Ste7, and there are two MAPKSs: Kssl ars3f47, 74, 78]
(figure 1.4 and figure 1.5 left). The MAPK usually serve to laggitranscription factors
by MAPK-mediated phosphorylation, and many intracell@ad extracellular signals
modulate transcription of specific genes through activato inhibition of MAPK
cascades [28, 35, 79].
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1.2.4.1 Stell, Ste7 and Fus3

The MAPK cascade function is facilitated by Ste5 and Ste2@i(é 1.4) [39, 67]. Stell
bound to Ste5 is activated by Ste20 and subsequently aesi%ie7 by phosphorylating
a threonine residue in the Ste7 activation loop [47]. Ste&sduot bind strongly to
the Ste5 scaffold, but binds with high affinity to Fus3 and KE]. Ste7 contains a
highly-conserved catalytic domain and a less conserveeridihal domain, in which
the first 20 amino acid residues form the MAPK-binding/dogsite (D-site) [27]. Ste7
activates Fus3 and Kssl1 by phosphorylating threonine amsitye residues in their
activation loops [64, 65]. The MAPK'’s Fus3 and Kss1 are pldirected kinases and
phosphorylate their targets on serine or threonine resithat are immediately followed
by a proline and primarily target the Ste12/Dig1/Dig2 tramsion factor complex as
well as Farl, and both can activate Stel2, demonstratingifunal redundancy [74].
Fus3, however can also activate Ste7 and Ste5, and can mingspé Farl, whereas
Kssl1 cannot [65]. Bardwell hypothesizes that this redunggmrovides overlapping
reinforcing contributions to the activation of the MAPKSs bt a loss of the mating
response is only observed when multiple links are sevemadls&neously ([55]. A
recent publication by Malleshaiadt al. revealed that a phosphatase Ptc5 competes
with Fus3 for phosphorylation sites on Ste5, facilitatingvétch-like response in the

mating pathway and ultra-sensitivity to pheromone [80].

1.2.4.2 Stel2 and The Pheromone Response Element

Stel2 is a protein consisting of 688 amino acids with an Niteal DNA-binding
region providing its function as a transcriptional actoraenabling it to form a protein-
DNA complex specifically with the genes it regulates [28, &2]. Genes up-regulated
following pheromone induction all contain a common pheramoesponse element
(PRE) with sequence BTGAAACA (or sometimes reported asTBSAAACA) [81].
The PRE sequence is found in over 200 genes associated Withateng [83, 84], of
which over 100 are induced two-fold by the pheromone resppashway [28, 73, 82,
85, 86.



Chapter 1Introduction 11

Yuan and Fields partially characterized the DNA binding domof Stel2, localizing
the minimum region to 164 amino acids near the N-terminus/éetnh amino acids 41
and 204 [86]. They also found an N-terminal domain can binapeoatively to two
copies of the PRE in a manner independent of the orientabiowling head-to-tail or
tail-to-tail with variable spacing between the two elense®6]. Kirkman-Correiat al
located the transcriptional activation domain at the @ateus (residues 384-688), and
it has been shown that deletion mutants lack the ability tovae basal and induced
transcription of PRE genes, however, only region 255-354dsiired for pheromone-

induced transcription [87].

Stel2-dependent, pheromone-induced genes includev@bgiticting components of
the mating pathway (Ste2, Fus3, and Farl), together withthegfeedback regulators
of the pathway (Sst2, Msg5, Ptcl, and Gpal), as well as genwedved in the

process of cell fusion (Fusl, Fus2, Figl, Fig2, Agal) [28, &]. Stel2 has been
shown to up-regulate its own transcription during pheroenagsponse and can also
work in conjunction with other transcription factors, inrpeular Teclp, forming a

heteromultimer with Stel12 regulated by Kss1 [68, 89], ansl¢bmplex guides Stel2

to specific genes in the filamentous growth pathway [85, 90].

1.3 Switching Off The Pheromone Response

A natural property of G-protein signalling systems is thaligbto attenuate the

response following prolonged stimulation [91]. Haploidlgghat do not mate and

form diploids must return to the vegetative growth state B&. It has been observed
in many signalling systems, and particularly with G-proteoupled receptors, that
prolonged signal exposure results in desensitizationefésponse [91, 94-96]. This
attenuation of signal response involves a number of compieghanisms that are
activated within minutes of receptor activation, and thesehanisms are thought to
be responsible for attenuation in response to light, celoagtours, chemical stimulants
and narcotics [91]. Unlike the detailed information thas lieeen accumulated about

the activation and response of the mating pathway, thereushntess understanding
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of the mechanisms involved in switching it off [43, 90, 92].9The yeastu-factor
desensitization mechanism is similar to hormone deseasitn in animal cells and
receptor desensitization has been extensively studideindrtebrat@-adrenergic and
rhodopsin receptors [91]. In yeast, there are a number @tivegeedback mechanisms

that facilitate control of the mating response.

The four main mechanisms employed to attenuate the phemsignal are: pheromone
degradation, pheromone de-sensitization, phosphooyladf the @ subunit, and
dephosphorylation of the Fus3 MAPK by a phosphatase endoglddisg5 [92]. Chan
and Otte screened for genes involved in the desensitizatmohrecovery from the
mating response [98, 99]; by screening for haploid cell$ were hyper-sensitive to
pheromone-induced cell-cycle arrest, they discovered dlasses of super-sensitive
mutants designate8isti\ and SstA [98]. Sst]A mutants are allelic for the gene Barl
which encodes a 587 amino acid endoprotease and cleafexstor, inactivating the
pheromone and forming a negative feedback loop in the phememesponse pathway
[1, 99]. SSTN mutants demonstrate hyper-sensitivity to pheromone aadlarv to

recover from G growth arrest [100].

SST2\ mutants are unable to degramidactor pheromone and cannot recover from cell
cycle arrest [99]. The SST¢mutants defined a novel gene that was the first discovery of
the RGS (“regulator of G-protein signalling”) factor familRGS factors are negative
regulators of G-proteins, so called because they stimtifetenydrolysis of the GTP
bound active form of the & subunit, back into inactive GDP bounax@49, 101]. Sst2
stability is increased by phosphorylation by Fus3 and has lshown to increase the
rate of hydrolysis of active & by at least 20-fold [55]. The activity of Sst2 serves
to complete the G-protein cycle by sequestering fr@y &ibunits thereby forming a
second negative feedback loop, terminating signal respared restoring the pool of

inactive GxBy [52].

Chen reported in the absence of ligand, the Ste3 receptobjedt to rapid degradative
endocytosis [56]. However, when bound to a-factor pherantre receptor transcrip-
tion is up-regulated and subjected to a process of recycinigereby the ligand is

degraded prompting ligand disassociation and re-utibmaat the membrane surface
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[56]. This ensures that a suitable quantity of receptorsaaeglable throughout the
mating response and, more importantly, receptor expnessitocused at the point of
pheromone contact, facilitating the chemotropic resparséhe pheromone gradient
[56]. This response is not as prominent in theactor stimulated Ste2 receptor,
where pheromone stimulation increases Ste2 vacuoletddé@nsport and degradation
[96, 102]. Dohlmaret alreports Ste2 desensitization occurs through binding dRGB&
protein Sst2, such that it is positioned in close proximityapal [31].

Research suggests that the Gubunit of the heterotrimeric G-protein has a positive
signalling role and is responsible for pheromone deseasitin and recovery back
to the vegetative haploid growth stage [49, 92, 103, 104]. P&k-deficient Gpal
mutants demonstrate constitutive expression of pheromesponse elements and
morphological changes in the absence of pheromone [104]. 10&rjan, 1991
introduced mutations in the SCG1 gene, encoding thes@unit and observed defects
in mating response, growth and cell morphology [105]. Ddainand Thorner later
found that inactivating mutations in theoGgene Gpal do not block pheromone
response, but result in constitutive signalling and it hasrbconcluded that this is
due to uncontrolled pathway activation by fre@y349]. It was also found that over-
expression of @ leads to diminished signal transduction due to over-sdratem of
GPy [33, 101, 106]. Coleest al also demonstrated how over expression of saibunit
leads to suppression of the mating response, and reprdssessponse even when
over expressing the [Gand Gy subunits [33]. Deletions in either of thefGor Gy
genes results in pheromone insensitive sterile cells, siviover-expression leads to
constitutive activation of the mating pathway [33, 49, 10&] has also been shown
by Coleet althat over expression of Ste4 Bwith expression of Stel8 (b promotes

constitutive activation of the pheromone signalling pagy33, 101].

Blackwell et al reported that Msg5 works in concert witho@o down-regulate the
mating signal by inhibiting the pheromone-induced inceeat Fus3 in the nucleus
[107]. Doi et al earlier reported that & may induce a post translational modification
of Msg5 resulting in enhanced protein phosphatase actortthat Gx may induce
transcription of Msg5. The MSG5 nucleotide sequence sugdbat it functions as

a PTPase; an enzyme group that specifically dephosph@ylatessphotyrosyl residues
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in selected proteins [108]. Both Fus3 and Kss1 require igeophosphorylation for
activation, making them potential targets for Msg5, and d&-®t8g5 fusion protein has
been shown to dephosphorylate and deactivatgro phosphorylated Fus3 [108]. Doi
et al went on to show that epistatic interactions imply that Msgbctions between
Stell and Stel2, disruption of the Msg5 gene enhances epESident kinase activity,
and over expression of Msg5 suppresses pheromone-induoddication of Fus3

[108].

In addition, studies by Stratoet al demonstrated the @subunit functions as a slow
negative feedback function on activation of the signal wathby 3y and interacts
with an effector molecule, stimulating an adaptive sighait tdecreases sensitivity to
pheromone over time and eventually shuts off the matingaresp downstream of
the receptor [92]. This signal is delayed relative to theingasignal and through
observations using two-hybrid analysis, does not invokguestration of Gy [92].
Zhou et al demonstrated how, under low pheromone conditioms i@eracts with
the GTPase activating protein Sst2, stimulatinfyGequestration [109]; through
pheromone concentrations sufficient to halt the cell cy@ke functions as an adaptive
mechanisms to recover the cell from the mating response].[108etodiev et al
using GST-tagged & protein with glutathione-agarose pull-down experime2i3,gel
electrophoresis, and mass spectrometry, founda&sociated with the phosphorylated
form of Fus3[110]. Histidine-tagged Fus3 applied to a nickéumn also demonstrated
binding to Gx [110]. A number of hypotheses were presented by Metodteal to
explain the association of @Gwith Fus3. Firstly, it is thought that & might anchor
Fus3 to the membrane and restrict it from transmitting themgaignal to the nucleus,
and secondly, the active form ofoGs targeted for degradation and interaction with
Fus3 might include the kinase in this degradation proce$8][1Finally, Metodiev
et al. postulated that in cells exposed to a physiological gradiémpheromone, G
recruits Fus3 to the mating projection site where the kimpdmesphorylates 3y, which
promotes assembly or stabilization of th@y@-arl complex required for chemotropic
growth [110]. The function of G presents a paradox, in that@cts as both an effector

and inhibitor of Fus3 activity in the mating pathway [10601111].



Chapter 1Introduction 15

In conclusion, published research has revealed the mattigmMay as not a simple
linear chain of events from pheromone stimulation of the fiokeme receptor through
the MAP kinase cascade to the transcription factors. Idsteare is a subtle interplay
of secondary messengers and auxiliary effectors fine tuhmgteraction of the major
components, ensuring an appropriate level of responseiatytrecovery from the
mating process. [80, 90, 97, 106, 109, 110].

1.4 Modelling The Mating Pathway

Systems biology is an emerging scientific field that undexdak holistic approach to
understanding biological processes through the intenastrf the component parts [14].
Systems biology seeks to gain an understanding of the fumtif biological systems,
using methods that cannot be described by studying the coemponacromolecules in
isolation, and consequently requires interaction betva@esrse experimental fields and
datasets to arrive at this understanding [9, 14, 112-11Ag ghysiological response
of cells to internal and external stimuli is governed by a ptexr set of interacting
genes and proteins with non-linear reaction kinetics arttivipay fluxes [113, 115].
Recent advances in theoretical biology have shown thaodicdl reaction networks
can be accurately modelled using mathematics [116—118}hese models can provide
understanding of the principles of biological control €yst as well as predictions that
can be varied experimentally in the laboratory [14, 115,]11€gure 1.6 illustrates
the cycle of systems biology research, employing an itexgirocess of computational
and experimental science to explore complex biologicablems through modelling
and systems analysis. The model provides hypotheses ferimmgntal research, which
produces data that feeds back into the model, driving nevenrstahding and further

hypothesis generation.

This iterative modelling and experimentation approach theen applied to the yeast
mating pathway by a number of researchers [46, 75, 76, 126]mAntioned eatrlier,
the yeast mating pathway is a well-characterized systemisheasily modified and

has a number of discrete and accessible quantifiable behawvitaking it a favourable
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FIGURE 1.6: Hypothesis driven research in systems biology, adafram Kitano
et al[14]. Hypotheses can be explored using “dry science” tegtes of modelling
and systems analysis. Models can be parameterised throgmgriraentation and
data analysis which leads to further knowledge and unduiitg, leading to further
hypothesis. [14]

target for mathematical modellers [77, 121-125]. In thdofwing sections the key

publications in modelling budding yeast pathways will becdissed.

1.4.1 Chenet al (2000): Kinetic Analysis of Budding Yeast Cell
Cycle Model

Chenet al have developed a kinetic model of the cyclins CIn1-3 and @hbthich
have been shown to coordinate the events of the cell cycleA Bjthesis, bud
emergence, spindle formation, nuclear division, and eglbgation in yeast [56]. Chen
converted the established mechanisms of cyclin synthesisdagradation into a set
of differential equations, describing the time courseshoé¢ major classes of cyclin-
dependant kinase activities [56]. The model was then useddmine the molecular
events controlling the initiation of chromosome replioatibud formation, and mitosis
(the “start” of cell division) and also the transition thghumetaphase to anaphase
(the “finish” steps of cell division) in both wild-type and alsction of mutants [56].
After refining the model based on laboratory experimenttd,dahe model included 10

non-linear ordinary differential equations for the cysliand their associated proteins,
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three algebraic functions for transcription factors, ¢éhtmtegrators” to trigger DNA

synthesis, budding, and spindle formation, and a simpkefarl separating mother and
daughter cells at division [56]. The model includes apprately 50 parameters that
are fitted to the phenotypic behaviour of yeast and requitbén optimization, but are

sufficient to account for the properties of cell cycle cohimgyeast [56].

1.4.2 Yietal G-Protein Model

Yi et al quantitatively characterized the G-protein cycle in yebsised on direcin
vivo measurements using fluorescence resonance energy tré&REEF) [126]. A cyan
fluorescent tagged protein (CFP&Gand yellow fluorescent protein (YFP) taggeflyG
were used to observe a reduction in FRET when the receptorstiasilated with
pheromone, causing the G-protein to disassociate [126jneTéourse experiments
were performed and data was obtained on how Sst2 and thena@drtail of thea-
factor receptor, modulates the kinetics of G-protein digia The data used to build a
guantitative model to estimate threvivo rates of G-protein activation and deactivation

in yeast [126].

The model validated existing observations that the mgjofithe control of the mating
pathway resides at the G-protein cycle [126]. The work @higd by Yiet alalso found
that G-protein activation, transcriptional inductiondarell-cycle arrest responded with
the same K5 value for pheromone dose response, and aligns with obsgargan
mammalian G-proteins, wheregor receptor-antagonist binding andgiCvalues for
inhibiting the corresponding physiologic downstream psses overlap. The work by
Yi et al provides quantitative evidence that the overall G-protgicle determines the

dose response of G-protein systems, not just the recegtordidynamics.

1.4.3 Haoet al RGS Protein Pheromone Desensitization Model

Hao et al published a model of the activation, desensitization, adensitization

steps of the mating pathway, following pheromone inducfiti2/]. The study used
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a combination of experimental and mathematical techniquéso et al investigated
how external signals produce responses inside the cetlifadly G-protein activation
and desensitization by the pheromone receptor and the R@8ins (Sst2 and ).
Radio-ligand binding measurements were used to measugptogexpression, while
guantitative immunoblotting on whole cell extracts wasdise quantify Sst2 and
Ga. Expression levels were measured for wild-type and also utants engineered
to over-express Ste2,d; GBy, Sst2, and Stel8, and changes in protein level were
measured with immunoblotting. [127]. The functional chesmdgrought about by
altered expression were investigated using a reportesdrgoion assay comprised
of a pheromone-responsive promoteétJS] fused toLacZ (B-galactosidase) [127].
Experimental data was used to build a mathematical modehefpathway using

differential equations (equation 1.1 and figure 1.7)

An overview of the model is presented in figure 1.7. Ha@ls model simulates the
pathway activation and inactivation with two coupled oadindifferential equations,

and assumes that free3Gactivates the expression of pheromone response genes and
RGS protein switches the pathway off by attenuating the arnoifree @3y through
recombination with @. The model provided predictions that could be compared with
the experimental results and both correlated a sharp rig<e3induring pheromone
stimulation and a slower increase in Sst2. A mathematigalession for the response

of the signalling pathway was derived from the model usispomser of the signalling
pathway as a function of pheromone concentratignywhere Rnin is the response in

the absence of pheromone alRgax is the maximum response and C in termsdf |

steady state RGS concentration [127]. (equation 1.1).

R— RminC + Rmax(L]
C+[L

(1.1)

The model did not predict a reduction in the mating responisenaover-expressing
Sst2 however, which prompted a second round of experimentaith a GFP-tagged
LacZ reporter and individual cells assessed by flow cytometry dsess wild-type
and mutant cells with over-expressed Sst2. Following 90utes exposure ta-

factor, the wild-type displayed a small intensity peak imfescence, which diminished
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FIGURE 1.7: Pathway regulation by RGS and3proteins. Upon binding of the
ligand (L) a-factor @F) to its receptor (R, Ste2), the G-protainsubunit (Gpal)
releases GDP, binds to GTP, and liberates the G-prd@igisubunits (Ste4/Stel8).
Sustained signalling requires activation of multiple effes (not shown) by the
dissociated @By components. These effectors activate a pathway (dottedl Iading
to transcription of several genes including the RGS pro8st?2. GTP hydrolysis is
accelerated by the RGS protein, and this leads to subumigseciation and pathway
inactivation. The model assumes that GTP hydrolysis is #te-limiting step of
subunit reassembly. A potential positive feedback loopglileato Sst2 degradation
is indicated by a darker line. Adapted from Heioal.

and was replaced by a second peak of higher intensity, hovibedower intensity

peak continued in the Sst2 mutant cells [127]. The authopothesize that when
Sst2 is over-expressed, the graded response-factor is replaced with a binary
response through positive feedback regulation where angde@dback loop promotes
degradation of Sst2 [127]. Implementing the experimerakovations into the model,
the author was able to explain the slow initial induction etZ as seen in Sst2 over-
expression mutants. The model was used to show that attesain the expression
of Sst2 occur slower than alterations in the active staté@fG-protein such that the
activation state of the G-protein adjusts rapidly to thevsthhange in Sst2 expression
and is therefore in equilibrium, allowing the state of thetsyn to be determined by
Sst2 expression levels [127]. Degradation of Sst2 occues @institutive rate when
pheromone is absent and is proportional to expression (astitative steady-state”).
Following pheromone induction, the rate of Sst2 produceaneeds the constitutive
degradation rate and as Sst2 levels increase, expressiombs inhibited by increasing
levels of inactive G-protein and the production rate redugsack to the constitutive
rate, forming a positive feedback loop. In over-expressmants the level of Sst2

degradation falls much more rapidly than the productioe &ad the rate of production
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rises until it reaches a new steady state, correlating wethrekperimental observations
[127]. In addition, the model was modified with a stochasé&ort to account for
random fluctuations in protein concentration. 10,000 satoihs were run using the
new random model, averaged for a mean time course and thésrdemonstrated the
binary behaviour observed in the experimental work for tsi2 Sver-expression mutant
[127]. To confirm that pheromone stimulation promotes S&igradation, cells were
grown for an hour in presence affactor, treated with cyclohexamide to block further
protein synthesis, and the remaining Sst2 protein was m@ualtwith immunoblotting.
Results demonstrated a faster reduction in Sst2 when ptetrevith pheromone, as

predicted by the model [127].

The work published by Haet al demonstrates the iterative process of mathematical
modelling combined with wet lab experimentation descrilbgdKitano et al. The
modelling component of the work provided unique insight® ithe biological inter-
actions and hypothesis generation that could not be detivedigh experimentation
alone, such as the positive feedback loop that facilitagesctivation of the pathway
that had not been observed prior to the study. The model agslaped from a simple
mathematical derivation of the activation and de-actorabf the signalling pathway,

to anin vivo representative simulation of the mating response, evéyinaluding the
feedback loops that provide the timing and coordinationciantrolling the pathway

response.

1.4.4 The Kofahl and Klipp Yeast Pheromone Pathway Model.

Kofahl and Klipp published a mathematical model of the dyiwanof the pheromone
pathway in haploid yeast cells of mating type MATa after siiaion with a-factor
[128]. Yi et aland Hacet al modelled specific aspects of the yeast pheromone pathway
to augment the specific areas of their research [126, 127¢r tr Kofahl and Klipp
there was no single model that attempted to simulate the leaenpheromone pathway
and concatenate the research conducted in this field. ThahKahd Klipp model
consists of a set of coupled differential equations thatudes the transmission of the

mating signal from the surface receptor, through the Gegimotto the MAP kinase
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cascade, and activation of the Stel2 transcription fad®8][ (see figure 1.8). The

model includes:

activation of the membrane-bound pheromone receptor.
* activation of the G-protein.

» formation and activation of the scaffold-bound MAP kinasscade.

activation of transcription factor Ste12.

downstream effects on gene expression alteration anéaepn for mating.

down regulation of the signal process through Sst2 and.Barl

The Kofahl and Klipp model was not part of a combined wet and ekperimental
project as with the work by Yet al and Haoet al, but the authors used parameter
values obtained from published literature to fit the modéidweour to experimental
observations of the changes in the relative levels of thangatesponse pathway
components over time [126—-128]. The model attempts to geothhe most complete
representation of the yeast mating pathway, in terms obidob all of the interactions
between the known components and the available kinetic (figiawe 1.9). [128].
The model groups the reactions that comprise the yeast gnagponse into a series
of complexes which represent the temporal order of eventhepathway including
receptor activation, the G-protein cycle, Ste5 complexnfation, and down stream
effects of phosphorylated Fus3 and Farl (figure 1.9). Udiegntodel to investigate
mutant phenotypes, Kofahl and Klipp were able to demorestthe pheromone
desensitization response of yeast cells to prolonged pitmre exposure. Colet
al showed that over expressingaGesulted in five times the normal level of-
factor required to induce a mating response and can comigefmsasuper sensitivity
to pheromone observed in Sst2 and Ste2 mutant strains,tingsuh pheromone
desensitization [33]. Cole hypothesized that this was duedreased G mopping up
available @y and preventing progression of the mating signal througi¢éoMAPK
cascade [33]. This observation was also observed in thehKafad Klipp model

where an increase indscreates a decrease in fre@yGresulting in shortened complex
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FIGURE 1.8: Spatial diagram of the pheromone pathway in yeast. #dafrom
Kofahl et al[128]. Thea-factor pheromone binds to the Ste2 receptor in the memprane
which is close to the heterotrimeric G-protein (middle) eT&a subunit disassociates
from the @B and Gy sub-units. The @ andy subunits are bound by Ste20 and to Ste5
which functions as a scaffold for the sequential phosplatioh of the MAPK cascade
components Stell, Ste7, and Fus3, as well as Cdc24 and Bight). (rElements

of the MAPK cascade shuttle to and from the nucleus (Fus3 ad)B Fus3pp
phosphorylates Digl and Dig2 resulting in de-repressiotheftranscription factor
Stel2 which initiates transcription of the mating respogeees resulting in the up-
regulation of over 200 genes (bottom).

®
g

formation, reduced Fus3 phosphorylation and FarlBi-@nd eventually reduced
pheromone sensitivity [128]. The published role of the Gtpin components Sst2,
Stel2, Stell, Ste20, Msg5, and Farl were replicated in tiielrand used to validate

its response to observed phenotypic changes [128].

The Kofahl and Klipp model also produces the same quamgagisults as the Yi model
for the G-protein cycle, however it does not include the Beak loops developed by

Yi et al, but replicates the observed behaviour [126, 128]. The mioderporates
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FIGURE 1.9: Diagram of the reactions modelled in the Kofahl and Klipodel. The
model includes reactions for G-protein cycling, assemlbithe MAPK scaffold, and
sequential phosphorylation of the Stell, Ste7, and Fus&é&m The model results in
the activation of the transcription factor Stel2, as welllesSst2 and Barl negative

feedback components [128].
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regulatory control with several feedback loops. Phosplatey Fus3 activates Sst2
which stimulates hydrolysis of @5TP, closing the G-protein cycle [128]. Also, the
transcription and activation of Barl results in the degtiadaof a-factor resulting in

down regulation of the pathway and negative feedback unddomged pheromone

stimulation [128].

Although many models of MAP kinase cascades have been peblisthey are
not parameterised with data from yeast, and do not includstymating pathway-
specific features such as the Steb5 scaffold and the Dig1/Big22 activation complex.
Parameters are often obtained from studies of MAP kinasmdas in Xenopus species
[120, 122, 124] and focus on the phosphorylation of the tkneases in isolation. The
models also do not incorporate more recently identified comepts of the pathway such
as Ptcl, observed by Malleshaiahal [80]. It was hypothesized that the non-linear
behaviour of the yeast mating pathway may influence the expetally observed
behaviour of the gene circuit. The inclusion of an ultrassiéve cascade relevant to
the yeast cells in which the circuit is embedded may be moeful$or predicting
experimental observations than a simplified version of tb&akl and Klipp model that

does not incorporate any of the dynamic behaviours of theackes

The Kofahl and Klipp model disregards a number of importaytfeatures of the yeast
mating response, particularly the central MAPK cascadetthasfers the extra-cellular
signal through the cytoplasm to the nucleus (figure 1.8).r& has been a great deal of
research conducted into MAPK cascades over the past 30, y®#lsexperimentally
and mathematically. A number of researchers have invastigashy eukaryotic
signalling systems are comprised of three sequentiallyatetd kinases with multiple
rounds of non-processive phosphorylation [77, 129]. Esitenmodelling work by
Goldbeter in the early 1970s, Kholodenko, Huang and Feraell Markevich in the
1990s and early 2000’s, Xaio Wang, and Fernando Ortega i6,20@ O’Shaughnessey
etalin 2011 have shown that the signalling cascades producdrarsansitive response
to input, converting a graded input signal to a binary outsponse through the
action of nested feedback loops within the cascade and acagilbn through repeated
phosphorylation of the kinases [76, 120, 122-124, 130-132fe model by Kofahl
and Klipp did not replicate any of the behaviours observeatner models of MAP
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kinase cascades, and did not build on any of the previouamasén this field. While
the author has included all of the known components of thevgay, the relationship
between them and the dynamic behaviour of the cascade waseplatated. The
Kofahl and Klipp model did not produce a sigmoidal increaséhe steady-state level
of Fus3pp in response increasing initial concentrationprefromone, characteristic
of ultra-sensitivity [133]. The model also did not replieahe chronological order of
events observed experimentally (as reported betYal during time course simulations,
in terms of the activation of the G-protein, followed by seqtial phosphorylation of
the kinases, and Stel2 [121].

The Kofahl and Klipp model is capable of reproducing the gem the relative

amounts of the components in mutants of the mating pathwzgj[but cannot be used
to study the systems-level behaviour of the signal casdataunderlines the pathway,
such as ultra-sensitivity to pheromone, or potentially enmymplex behaviour, such as

bi-stability and oscillation [77, 120, 131].

1.4.5 Modelling tools

Simulation and modelling is becoming a standard approaahderstanding biological
systems, and this requires software tools that enable neds@a to access diverse
mathematical modelling and simulation methods [134]. Uhuately there are a
range of applications available that enable researcheexdess these tools without

a mathematics specialism, which will be discussed below][13

1.4.5.1 Copasi

Copasi is a software application for the simulation andsialof biological networks.
The software is free for non-commercial use and runs on glbnwperating systems
[134]. The Copasi project is an international collabonati@tween three groups at the
Virginia Bioinformatics Institute, the University of Hedétberg, and the University of
Manchester. Copasi has a number of unique features, imgjutle criteria to switch

between stochastic, deterministic, and hybrid modellirgghuds; flexible parameter
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scans, optimization of arbitrary expressions and paramestenation using time course

and steady-state data [134].

Copasi can be used to build models of systems of biocheméeadtions with pre-
set rate laws, such as mass-action and Michaelis-Menterwetlsas the option
to program custom rate laws. Copasi includes a number oflatron functions,
including time course simulations, steady state, sefisitiand metabolic control
analysis, and flux balance analysis. Copasi can also perfouitiple parameter
scans, parameter estimation and fitting of experimental, @ded includes a number of
optimization algorithms including: genetic algorithmsvenberg-Marquardt, particle
swarm, simulated annealing, and steepest descent. Thdsar@a aumber of ODE
solvers available including the LSODA deterministic metha hybrid Runga-Kutta
method, a Gibson and Bruck stochastic simulator as walllaaping methods. Copasi
also includes 2D graphing functions and can output csv foreyort files containing
simulation output data that can be imported into other pigitmodelling, or statistics

tools.

Copasi however cannot be used to simulate algebraic eqsairalifferential equations
such as partial, difference or delay functions. Copasi eésmot be used to investigate
bistable systems or search for multiple steady-statesad$tstate analysis can be
performed, however Copasi cannot implement features ssi¢tudiclines, or expand
around steady states in the graphical interface, such adealone with XPPAUT.
Copasi also lacks the capability to perform statisticalysia on stochastic simulations
or output 3D plots of multiple parameters. These functi@tgiire the user to process

the output data from Copasi with additional tools such ad&iadr AUTO.

1.45.2 XPPAUT

XPPAUT is a tool for solving differential, difference, dglaand functional equations
as well as solving boundary value problems and stochastiatems [136]. XPPAUT
provides an interface to the commonly used bifurcation ®ldTO and can be used
to analyse steady states and bifurcation points [136]. XPIPA freely available on

all major operating systems and uses a graphical useractednabling easy access
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for non-mathematicians. The systems biology format cdeveproject, available
from http://sourceforge.net/projects/sbfc/ has devetgnftware to convert SBML files
to other common modelling file-formats including XPPAUT.eTKPPAUT interface
however is difficult to use and the AUTO component is prone tasleing. The
Python extensions XPPy enables scripting functions thateahandled by XPPAUT,
eliminating the need to use the interface [137], and XPPAEMains the best tool
for bifurcations analysis and has been used in a variety mnsfic fields from

engineering to biology (Ermentrout B. (2011), Personal mamication. Department

of Mathematics University of Pittsburgh).

1.45.3 Cytoscape

Cytoscape is an open-source bioinformatics tool for viguraj molecular interactions.
Cytoscape can import SBML model files and represent them stdd graphs,
enabling further bioinformatics study such as network togg, as well as integration
with gene expression profiles [138]. Cytoscape provideséulmeans of visualizing
complex models and contains a number of graph layout featina enable locating
functional modules and sub-networks in larger models. HAaoldal features for
annotation and interaction with databases of proteingmoprotein-DNA interactions
can be augmented through a library of plugins developed &ytmmunity of users.

Cytoscape can be downloaded from http://www.cytoscage.or

1.4.5.4 Mathematical Programming Languages

There are a number of commercially-available mathemagioajramming tools that
can be used in engineering, scientific, and mathematicdkfiel solve sets of complex
equations. Two commonly-used tools are MatLab from Mati&/@nd Mathematica
from Wolfram Research. Matlab (meaning “matrix laboratprig a commercial,

industry standard numerical programming environmentbkmg scientists to perform
matrix manipulation, plotting of functions and data, implentation of algorithms,

creation of user interfaces, and interfacing with programsther languages [139].
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Wolfram Mathematica is a commercial mathematical programynsoftware used in
scientific, engineering, and mathematical fields much likeldb. Matlab focuses on
high speed algorithms for numerical computation [140],lerMathematica is designed

for symbolic algebra with features such as unlimited preniarithmetic [141].

1.4.5.5 Scripting Languages

Scripting languages are high-level programming languaigaisare interpreted rather
than compiled and use a simpler, more intuitive language tba-level “machine
languages” [142] such as C and Assembly language. Fortaarg, Python, and
Perl, are scripting languages suited to processing large s&ts and matrices and
are consequently used for a wide range of applications bypaten scientists [143].
Specific builds of these languages have been developed éoinusiosciences, such
as BioPerl, and BioPython, and include specialized rosatifoe bioinformatics and
modelling. Scripting languages can be used to build program automate the
manipulation of large data sets and can be adapted to almpstpplication, however
they are slower than machine languages, as they must be noaugthan interpreter,
making them less suited to simulating large-scale comjuually intensive models
[144]. There are also many interfacing libraries availabolePython such as XPPy,
Matplotlib, and the Copasi language bindings that enallengathe functions of 3rd
party software packages such as XPPAUT, Matlab, and Copasi Within a Python

script, combining their features into custom modelling dath handling tools.

1.45.6 SBML

The systems biology mark-up language (SBML) is an XML-bas@uputer language
designed for representing and exchanging models betwedfsmnedit simulation and
analysis tools [145]. SBML is an effort to standardize a camrfile-format, providing
compatibility between systems biology researcher’s usiifigrent modelling tools.
SBML can store the details of systems of reactions such adaast, parameter values,

species numbers and concentrations, and compartment @sland can be annotated
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with the author’'s notes and publications [146]. Models wdan SBML can also
be uploaded to public access databases such as biomogel8lodels can then be
imported into the researchers choice of modelling softwaresimulation or further

development, and data produced by a model are reproduailaleyi lab with software
that can read SBML. SBML is an open project and the file-forimditee to use from

http://www.sbml.org. There are also a number of interfaneslable for programming
languages such as Python, Perl, Java, Mathematica anddvladtenable the import
and export of SBML model files that can then be simulated orifremblusing their own

native tools [140, 141, 147].

1.4.6 Metabolic Control Analysis

Metabolic control analysis (MCA), or metabolic control timg is a sensitivity analysis
of metabolic systems [148]. MCA is a method of analysing htne tontrol of
fluxes (J) or metabolite concentration (S) in a metabolitway is distributed among
the different enzymes that constitute the pathway [149]. AVikan be applied to
synthetic biology to determine the control coefficientstt# parameters in a network
of interactions [150]. The control coefficients generatgdrietabolic control analysis
are related to sensitivity analysis used in engineerind,ragasure the relative steady
state change in a system variable in response to a relatarggehin a parameter. The
two main control coefficients are the flux (equation 1.2) andcentration control

coefficients (equation 1.3) [119].
oJp ovi p oinJ
J- = —_— —_— =
S <6pJ> / <6p vi) dInvi (1.2

s (0Sp dvip) 0InS
Ci= (a)é) / (Fpﬁ) ~ 3Invi (1.3)

Where J is the flux through the pathway, S is the concentrafian intermediate in the

pathway,i is the reaction step in the pathwayjs the parameter, and is the steady
state rate of the reaction that is perturbed. Any variabéesystem can be analysed with

MCA. An important property of the steady state of a networthe for a given flux the
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sum of all of the flux control coefficients in a pathway is eqteaunity [119, 149—
151]. For a small increasein the rates of all reactions in a pathway, the relative rates
of production of the metabolites in the pathway increasehlgydame amoum, as
does the relative rates of consumption. Therefore the robtaltoncentrations remain
unchanged and the flux of the system increases exactly [$0]. Mathematically,
this means that the flux is a homogenous function of degreeandethe metabolite
concentration of degree zero. The summation theorem wasaped by Gierch and
employs the Euler theorem for homogeneous functions for d¢luxtrol coefficients

(equation 1.4) and concentration control efficient (equrati.5) [152].

YGi=1 (1.4)

SCp =0 (1.5)

The summation theorem can be applied over all the steps ithavpg, and connected
pathways therefore MCA and the summation theorem couldyinciple be applied

over all of the metabolic steps in a cell [119, 152].

1.4.7 Parameter Estimation

Parameter estimation is the process of attempting to ckwnhodel parameter values
based on a dataset [153, 154]. A number of mathematicalitligts can be used to
estimate a given set of parameter values based on expeaidatd. For this project, the
Hooke and Jeeves, and simulated annealing algorithms 8erk as it is good practise
to apply multiple parameter estimation algorithms for pagger fitting to compare
results (Mendes P. (2009)). Personal communication. Masteh Centre for Integrative

Systems Biology).

The method of Hooke and Jeeves is a direct search algorithinst#arches for the
minimum of a non-linear function without requiring deriveags of the function [155].
At each iteration, this method first defines a pattern of gdiytmoving each parameter

one by one, so as to optimize the current loss function. Thieegpattern of points is
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then shifted or moved to a new location; this new locatioreiednined by extrapolating
the line from the old base point in the m dimensional paransiace to the new base
point. The step sizes in this process are constantly adjtisteero in” on the respective
optimum [155]. The Hooke and Jeeve’s algorithm is consiiénebe one of the oldest
and simplest of the parameter estimation algorithms, boviges a fast and simple

method of fitting experimental data [153].

The method of simulated annealing was developed by Kirkgatt al using statistical

mechanics applied to the way in which perfect crystals anméal. Perfect crystals are
formed by first melting a substance, and then allowing it tol a@ry slowly over a

long period of time. At high temperature, the molecules & thystal vibrate with a

wide amplitude, which decreases as the temperature lomnitshe molecules settle
into the optimum configuration, forming a crystal [153, 156he simulated annealing
optimization algorithm uses a similar concept: the obyectunction is considered a
measure of the energy of the system and this is maintainesfararfor a certain number
of iterations, called a temperature cycle. During eaclaiten, the parameters of the
model are changed by a small amount and the new objectivéidanis calculated. If

the value has decreased then the new state is accepted.vHltleeincreased then the
state is accepted with a probability that follows a Boltzmalistribution, therefore, a
lower temperature means a higher probability of acceptiegiew state. After a fixed
number of iterations, the stopping criterion is checkedt;ig not time to stop, then the

system’s temperature is reduced and the algorithm cordifilss].

Simulated annealing is one of the most robust global op#tion algorithms, and
although it is also one of the slowest it is guaranteed to exge/if run for an infinite

number of iterations. [134, 153].

1.4.8 Signal to Noise Ratio

The signal to noise ratio (SNR) is a method of differentigtietween the level of a
desired signal and the level of a signal from the backgrouisenof the system [157].

A high SNR results from a high signal detection and low sigrah the background,
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and a low SNR results from a low signal detection and a higkdrawnd signal. The
SNR is calculated as the reciprocal of the coefficient ofataon, or the ratio of the
mean to the standard deviation of a signal (equation 1.6rehis the mean of the data

set ando is the standard deviation of the data set). [158-160].

SNR= (1.6)

al=

Noise in a biological system can originate from extrinsicsepin which the cellular
capacity to produce proteins, and the regulatory mechangdrthe cell fluctuate over
time, or from intrinsic noise which is due to stochastic &tan in the transcription and

translation events in the cell [157].

In relation to this project, the gene circuit is designeddgpress the background signal
from the reporter gene, increasing the fold change in egspesvhen expression of the
reporter gene is induced by the yeast pheromone responseefdie, the expression
of the reporter gene in the gene circuit should have a high& ®an cells expressing
only the reporter gene, as the background signal shoulddteehfrom the control than

the circuit.

1.5 Synthetic Biology

Synthetic biology is an emergent scientific field, develggnem advances in molecular
biology and new collaborations between biological and cat@psciences [161-164],
and utilizes a pragmatic approach of designing interactomponents previously
studied in isolation by classical fields such as moleculatogly [165]. Synthetic
biology projects currently attempt to construct genetrcuits in the same way as an
engineer combines electrical components, building discin living organisms with
pre-determined, predictable, and robust behaviours [1,58,161, 166]. The term
“synthetic biology” first appeared in the Journal Gene and waed by the Polish
geneticist Waclaw Szybalski in 1974 [167], describingvitro transcription, and was
later used by Hobunet al in 1980 describing bacteria that had been genetically

engineered using recombinant DNA technology, and the fiaklrhore recently been
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synonymous with “bioengineering” [162]. The term was usggia at the 2000
Annual American Chemical Society in San Francisco to dbscwork in the field
of bio-mimetic chemistry where organic synthesis was usegrbduce artificial
molecules that reproduce biological components genegratrtificial, life-emulating
systems [162, 168]. Therefore, there are two different ieddch claiming the term
“synthetic biology” - chemists mimicking biology and bi@ists engineering synthetic
phenotypes. The term “synthetic biology”, much like “sysgebiology” is not new,
and the work done by synthetic biologists has originatedassical fields of molecular
biology and genetic engineering, leading to scepticismhefterm used in research
and in what it can deliver over existing established field§9[1170]. Synthetic
biology differs from molecular biology, in that it focusea building novel functions
and behaviours from molecular interactions, and apply tireiotechnology [169].
Also, synthetic biology enables the “reverse engineeriofybiology by attempting
to construct biological systems from the bottom-up usinghgonent parts of gene
and protein interactions [161, 171]. Biological processash as oscillations and
switches that pervade biological processes such as theycédlare not fully understood
[172], and by engineering such systems through synthetlodyy we gain a greater

understanding of how they function in native systems [171].

Synthetic biology integrates computer science by buildngdels to predict and
optimize the behaviour of these interactions prior to cartston in the laboratory
[10, 173]. The key to building biological systems is not inwhthe individual
components function (as studied in classical fields of mdé&diology), but on how

they interact [169].

Currently, synthetic biologists share the holistic philplky of systems biology in that
rather than studying individual genes or pathways, thegrabte systems of genes and
gene products into interacting biological devices that sarcombined into modular
components, conferring new functions on the systems intclwthey are embedded
[8, 55, 170, 174, 175]. However, the synthetic biologisbaftempts to rationalise the
emergent behaviour into a set of rules for the modular caostm of these behaviours

8, 11, 176].



Chapter 1Introduction 34

In using this approach, synthetic biologists digress frdassical molecular biology
towards the field of engineering through the constructiomtarchangeable parts lists
of “biological circuitry” [8, 170, 177]. The engineering pective presents biology
as a tool set of parts that can be used to achieve a specifidtask68], whilst
testing modularization concepts in biology, and explorihg challenge of artificial
reconstruction [10, 168]. The evolution of synthetic bgptdhrough combination with
systems biology and engineering is facilitating the aggtian ofin silico design and
testing of cellular circuitry prior to fabrication, allong for “design-based engineering”
of biological systems [168, 170, 173].

Synthetic biology modules cover a wide range of applicatiand tend to originate
from naturally occurring systems, modified by the synthkiidogist towards a desired
function [8, 168]. However, it can be difficult to transplamild-type genetic circuits
that have evolved and been optimized over millions of yeatheir host environment
into an artificial context, this requires rational rededigised on modelling and directed
evolution to help them interface together and function g&ite their host [8]. Thus-far
in the development of synthetic biology, synthetic trag@ynal regulation networks
are the most widely implemented and characterized modala$,have been used to
build cascades, feed-forward, and feedback loops, forrewigching and oscillating

responses as well as rudimentary information processsig {@6, 118, 178-184].

1.5.1 Transcription Cascades

Regulatory cascades are sequences of genes that actichteoth@r in a step-wise
manner through the cascade, passing a signalling input thentop of the cascade
through to an output response at the bottom [8, 46, 168, 1B&gulatory cascades
are ubiquitous in biological systems and can be found inadigansduction and protein
kinase pathways, such as the MAP kinase cascade in buddasgased flagellar motion
in E. coli[8, 185]. Regulatory cascades provide an “all or nothingpense to graded
input signals, where small changes in input concentratwitck the output between
high and low levels. Hooshangt al demonstrated that the longer the transcriptional

cascade, the higher the sensitivity and the faster it segtdietween steady-states, and
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also the higher the amplification of noise at each step, glisrg synchronisation within

cell populations [8, 185].

1.5.2 Synthetic Oscillators

Oscillations of protein levels are vital to coordinatindlgkar events such as the cell
cycle or circadian rhythms [168]. Elowitz and Leibler desmg a cyclic negative-
feedback loop using three transcriptional repressor sysieEscherichia coliforming

an oscillating network which they termed the “represiltaigee figure 1.10) [179].

The repressilator was constructed using a low-copy numlsnpd containing th&acl
gene fromE. coli which inhibits transcription of the second repressor gégi from
the tetracycline-resistance transposord,rwhose protein product in turn inhibits the
expression of a third genel from A phage, and thel gene product inhibit$acl
expression, completing the cycle [179] (see figure 1.10)e Tdpressilator activity
was observed using a high-copy number reporter plasmicacong a tet-repressible
promoter fused to an intermediate-stability GFP gene pimdLoscillating fluorescence

[179]. The represillator was simulated using a set of calipl#erential equations

Lambda cl L

| Promoter B | | Repressor A
Lacl
| Promoter C | | Repressor B

TetR
Promoter A | | Repressor C | | GFP Reporter

FIGURE 1.10: Diagrammatic representation of an oscillating gansuic. Adapted
from Elowitz and Liebler [179].

with repressor-protein concentrationsand the corresponding mRNA concentrations,

m; (where i islacl, tetR,or cl) were treated as continuous dynamic variables. Each
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of the six molecular species participated in transcriptioanslation, and degradation
reactions. All three repressors were treated identicakgept for their DNA-binding
specificities. The kinetics of the system were determinedway coupled first-order
differential equations (equations 1.7 and 1.8) where theber of protein copies
per cell produced from a given promoter type during contusugrowth isag in the
presence of saturating amounts of repressor (owing to gakithess” of the promoter),
anda + ag in its absencef denotes the ratio of the protein decay rate to the mRNA

decay rate; and is a Hill coefficient [179].

dm a

AR

+ 0o (1.7)

—= = —B(p—my) (1.8)

The represillator demonstrated it was possible to desighamstruct an artificial
genetic network with new functional properties from geaeomponents that naturally
occur in other contexts [179]. However, the represillat@swoisy and subject to
variation in the amplitude of oscillation which the resdmms attributed to possible
stochastic effects inherent in natural gene-expressistes)s, particularly when there
are a small number of reactants [186]. The variation wasaaeld in the Elowitz model

when these stochastic interactions were simulated [179].

Barkai et al, using the Monte Carlo algorithm also simulated stochastaction
events in an oscillating gene network and demonstrateati@miin the amplitude of
oscillations when changing the rates of transcription aadsiation [186]. It has been
suggested that the presence of both posiind negative feedback control elements
in natural oscillatory systems enables bistability andténesis, and therefore noise
resistance [178, 179, 186].

Later, in 2002 Hastyet al published a theoretical oscillator comprising positivel an
negative feedback controls as a set of ordinary differemtmations. Strickeet
al utilized the theoretical synthetic oscillator circuit pased by Hastyet al, and
constructed the circuitry ifE. coli [180]. Stricker built on previous published work

and assembled the circuitry using linked positive and negdétedback loops (figure
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FIGURE 1.11: Network diagram of the dual-feedback oscillator. Aitig promoter
Plac/era-1 drives transcription ofraC andlacl, forming positive and negative feedback
loops. Adapted from Strickeat al[178].

1.11) [178]. Stricker’s oscillator circuit was compriseidaohybrid Rac/ara—1 Promoter
with the activation operator site from th&raBAD promoter placed upstream of
the transcription start site, and repression operatos $item thelacZYA promoter
placed both upstream and immediately downstream of thesdrgation start site
[178] (figure 1.11). The circuit is activated by the AraC miatin the presence
of arabinose and repressed by the Lacl protein in the absahs®propyl 3-D-1-
thio-galactopyranoside (IPTG) [178]. Stricker placgdC, lacl andyemGFP(yeast-
enhanced green fluorescent protein) genes under the cohthoke identical copies of
Plac/ara—1 t0 form three co-regulated transcription modules. Actorabf the promoters
by the addition of arabinose and IPTG to the growth mediunalte# transcription of
each component of the circuit, and increased productionrafCAn the presence of
arabinose results in a positive feedback loop that incegaisemoter activity [178]. The
concurrent increase in production lafcl results in a linked negative feedback loop
that decreases promoter activity, and the differentiaVigtof the two feedback loops

drives the oscillatory behaviour [178].

The author was able to modulate the oscillator responseryyngthe level of arabinose
in the medium and “tune” the oscillatory period. At a fixeduabf 2mM IPTG and at
37°C, the oscillatory period can be tuned from 13min to 58pyinarying the arabinose
concentration [178]. Strickest alhowever found that the original model by Hastyal

predicted a small parameter space for the inducer that waaltitate oscillation, and
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did not predict the experimental observation [178]. The elgdquired fine tuning
of the parameter values to achieve an oscillatory respohsgeas the circuits vivo
behaviour was robust through a range of parameter valu&.[Strickeret al further
developed the model to include both the positive and neg&rdback loops and it was
found that directly modelling protein-DNA binding, multerization, translation, DNA
looping, enzymatic degradation and protein folding gseiattreased the accuracy of the
model [178]. The result was a computational model that wag nabust to parameter
variations and correctly describes the dynamics of thellagwi for a large range of

IPTG and arabinose concentrations [178].

This observation was also investigated by Tedaal who researched the significance of
feed-forward and backward loops in regulatory circuitsngsa modelling approach
[187]. Tsaiet al analysed a large number of established oscillatory modéls w
various loop back systems including negative, negative pagative, and negative plus
forward feedback loops (figure 1.12). Tsdial constructed a set of three hypothetical
oscillator circuits, consisting of a three-variable teiplegative feedback loop, one with
no additional feedback, another with added positive feekllend a third with an added
negative feedback loop (figure 1.12) [187]. A random paramsét for each of the
models was generated, which were then observed for limlesycThe parameter sets
were generated until 500 oscillating sets had been foun@doh model. The study
found that the inclusion of a feed-forward with a feedbactplgroduces a wider
parameter space to vary the frequency of oscillation, winilaintaining a constant
amplitude, compared with a feedback loop alone [187]. Faekilbops that include an
additional feed-forward loop are more robust than feedladmke, maintaining constant
oscillatory period and amplitude over a wider parametegeaand provided insight into

the reasoning behind the natural design of cell signal eggud [187].

The work published by Strickeat aldemonstrated the advantage of a synthetic biology
approach, adopting computer modelling with more clasdiedds such a molecular
biology. Using wet lab molecular biology alone resulted stiblatory circuits with
high variability and noise, and could not provide insighibideveloping a persistent and
robust oscillator [179]. Pure theoretical studies prodideéhypothesis for the design of

an oscillatory circuit, however the response predictedngymodel was not replicated
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FIGURE 1.12: Tsaiet al negative-feedback models parameterised with random value
to find oscillatory behaviour. A. Negative feedback only. Fsitive-plus-negative
feedback. C. Negative-plus-negative feedback. Adaptad frsaiet al[187].

in the laboratory, and modelling alone was not able to gudie all the parameters
affecting thein vivo response [180]. The approach of combining modelling with
laboratory experimentation by Stricketr al and later Tsaéet al enabled the refinement
of both the modelling and thia vitro circuit, which would not have been possible from

the individual approaches [178, 187].

1.5.3 Synthetic Switches

Gardneret al designed a genetic “toggle switch”, and created a geneiteoabling

a bistable state and “memory” in a biological system [188he Toggle switch was
constructed inE. coli and consisted of a bistable gene-regulatory network, using
integrated theoretical modelling and laboratory expentagon[188]. The switch was
comprised of two repressors and two constitutive promptehere each promoter is
inhibited by the repressor that is transcribed by the opp@somoter (see figure 1.13).
Gardner cites this design as the most efficient configurdtioa switch, as it requires

the fewest genes amms-regulatory elements to achieve a robust behaviour, ingerm
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Inducer 1

| Repressor 2
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FIGURE 1.13: Gardneet altoggle switch design. Repressor 1 inhibits transcription
from promoter 1 and is induced by inducer 1. Repressor 2iishitanscription from
promoter 2 and is induced by inducer 2. Adapted from Gardnhat[188].

of tolerance to fluctuations in gene expression [188]. Tlggl®switch was modelled
using a set of coupled differential equations (see equatidhand 1.10), where U is the
concentration of repressor 1, V is the concentration ofagsor 2,04 is the effective
rate of synthesis of repressordy is the effective rate of synthesis of repressof &
the cooperativity of repression of promoter 2 arid the cooperativity of repression of

promoter 1 [188].

du o1

~_ 7L 1.
dt  1+VP (1.9)
av oo

o 1+UV_ (1.10)

The bi-stability arises from the mutually-inhibitory angement of the repressors. In
the absence of inducers the switch either transcribes sepre from promoter 1 or
transcribes repressor 1 from promoter 2. Introducing anded of the current active
repressor activates the switch through maximal transoripf the opposite repressor,
until it stably represses the original active promoter [188e Gardner toggle switch
was the first form of “synthetic biology” that was significhntlifferent from genetic

engineering because it utilized network architecture fog switching mechanism,
rather than proteins and other regulatory elements to aehtee required behaviour
[188]. The toggle switch provided a simple self-containgdgoammable circuit,

requiring transient rather than sustained induction, atdimed its new stable state
after induction. Later, in 2001 Becskei published an atitwe method of producing a
genetic switch circuit using positive feedback throughiatgycline-dependant activator

that up-regulated its own expression (see figure 1.14) [1B6tskeiet al constructed
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FIGURE 1.14: Diagrammatic representation of the Becskeal positive feedback
genetic switch circuit. Adapted from Becslatial [189]

the circuit from well-defined promoters and transcriptioactivators, and the circuit
operated autonomously of the existing genetic machinemhefcell. The circuit is
comprised of a plasmid containing the tetracycline-resp@ntransactivator (rtTA):
rtTA produces a graded response in constitutive systemisngaossible the analysis
of positive feedback by the model [189]. The circuit can @rha graded response to
the inducer (tetracycline) or gene copy number into a bin@sponse from the reporter
(GFP) [189]. The results of tha vitro work demonstrated that under conditions where
rtTA is expressed with positive feedback the cell poputatgodivided into populations
of “on-cells” and “off-cells” (GFP expression or no expresy, and the number of cells
in each state is proportional to inducer concentration [18%-cells were also capable
of switching to the on-state in a stochastic manner, and théetnsuggested that on-
cells could also switch to the off-state, however this walsaliserved experimentally
[189]. The population of off-cells became a population oked on/off cells over time,
independent of the level of basal expression indicatingalagh basal expression rate
was not required for activation of the circuit after indocti[189]. Becskei suggests
the switch could be defined as a “noise-based” switch ratrer & toggle switch (as
designed by Hastgt al, 2000) as the population continues to switch from the off to
the on-state over a range of inducer concentrations rakizar the entire population

switching at once, as seen with the Gardeteal switch [188].

Ajo-Franklin et al built on the work by Gardner and Becskei, by designing and
constructing a memory circuit in yeast [188-190]. The airevas constructed from
an activator gene and a reporter gene (figure 1.15). Theasatigene consists
of a DNA binding domain (DBD), two copies of the red fluoresoerprotein gene

(RFP) (mCherry), the viral activation domain VP64, and tMel@ nuclear localization
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Sensor Gene

pGAL1 DBD VP64 activator NLS term

— Auto-Feedback Gene

pCYC1 YFP YFP DBD VP64 activator NLS term

FIGURE 1.15: Ajo-Franklin memory circuit diagram. The circuit cists of a sensor
gene and an auto-feedback gene. Upon addition of galadiesgrowth medium, the
sensor gene promotes the expression of RFP and up-regthatespression of the
auto-feedback gene. The auto-feedback gene expressesndripaegulates its own
expression, maintaining expression of YFP after removghtdictose from the growth
medium. Adapted from Ajo-Franklin [190].

sequence (NLS), under the control of the galactose-inteigimmoter (GALL). The
reporter gene contained ti'C1lpromoter and two copies of the yellow fluorescence
protein (YFP). The DBD'’s used were LexA, an engineered wersi the murine zinc-
finger Zif268 (ZifH), and the human zinc finger Glil. The compats were arranged
into a positive auto-feedback loop that switches betweendigady states following
activation (figure 1.15). During vegetative growth the seadkpress neither reporter
gene. Upon stimulation with galactose the cells expredsRBP and YFP as the sensor
gene expresses the activator fl£YC1 The CYClpromoter up-regulates expression
of its own activator, maintaining expression of YFP. Theref upon returning to
raffinose the cells continue to express YFP in the absencalatigpse. The circuit
therefore moves to a second steady state and demonstratemaryncharacteristic
[190]. The project incorporated construction of the menurguit as well as modelling
that enabled prediction of relationship between the aftiivaoncentration and the
production rate of either the reporter or auto-feedbackatctr. Using Michaelis-
Menten kinetics, the experimental data for the expressiahe fluorescent reporter
genes was used to fit a hill coefficient in the model rate eqoatto build ann vivo
relevant model of the system that could predict the expoedsvel of the reporter genes

and the switch point between the steady states of the sy&1@h [
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FIGURE 1.16: Diagrammatic representation of the mechanism ofskadional
regulation by the Bayer and Smolke riboswitch. Adapted fidayer and Smolke
[182].

1.5.4 Riboswitches

A third type of genetic switch circuit was published by Baged Smolke, utilizing an
anti-switch molecule that regulates gene expression/o[182]. The authors designed
a set of non-coding smaitans-acting RNA riboregulators, termed “antiswitches” that
regulate gene expression in a ligand dependant manner.iddregulators consist of
two distinct domains. One end of the molecule contains aisemte domain that is
specific to the gene that is to have its expression contradlad the other end has an
aptamer domain that recognizes a specific effector liga8d][MWhen a ligand binds to
the aptamer domain it induces a conformational change inlibeegulator that exposes
the antisense domain that can bind with the mRNA transcfiph® target gene and
block translation. In the absence of ligand, the antiselseaih is sequestered in an
“antisense” stem and is not available for mRNA binding, amel @antiswitch is in the
“off” state. [182]. In this state the antiswitch is unableltiod to the target transcript,
which has a green fluorescence protein coding region, andesuli, GFP production
is on. In the presence of effector, the antiswitch binds &dvitch molecule, forcing
the aptamer stem to form, switching its confirmation to tha"“state. In this state
the antisense domain of the antiswitch will bind it the taryanscript and through
and antisense mechanism turn the production of GFP off fidui6) [182]. The

work demonstrated that engineered ligand controlledsante RNAs can be used as
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allosteric regulators of gene expression [182]. In the abseof the ligand the free
energy of the anti-sense stem is lower than that of the aptat@e and binding of the
ligand stabilizes the formation of the aptamer stem faatilig binding to the antisense
domain of the target mRNA transcript [55]. The anti-switemde used to enable both
positive and negative regulation, with “on” switches degig such that the absence of
ligand destabilizes the aptamer stem binds to the antiesdomain and disables the
molecule from binding to the transcript [55]. The riboregfokrs can also be tuned by
engineering the free energy of the antisense domain, radt¢hie conformation of the
riboregulator with a predictable functional effect [55].hd study demonstrated that
this approach can be used to decrease the stability of tiseasé stem, decreasing the
ligand concentration necessary to switch the riboregutanformation and conversely,
increasing the stability of the antisense stem increasesttount of ligand required and

shifts the system’s dynamics to favour the “off” state at layand concentration [55].

The riboregulator “antiswitch” mechanism is also modularthat ligand response
and transcript targeting can be engineered by swapping idsmathin the aptamer
and anti-sense molecule and both domains operate indepgndéhe customizable
generic nature of riboswitches provides a potential widweaof applications in both
prokaryotes and eukaryotes. Specific transcripts coulatyeted in gene therapy or
cell specific targeting to complement existing therapi&g.[$he technology could also
be applied in synthetic biology in the design of regulatoaytpvays and control loops
for synthetic circuit design by enabling the cell to sensé sespond to intracellular
metabolite levels and environmental signals, potentipityviding “smart regulators”

capable of targeting any gene with any ligand [182].

1.5.5 Application of Synthetic Biology

The growing range of tools being developed in syntheticdgglare enabling re-
searchers to construct increasingly complex synthetiadiebrs through the modular
combination of genetic components [12, 190]. These syithadtcuits can be
implemented in practical applications to solve biotecbgglproblems. For example,

bacteria and yeast are already in widespread use in thebiaagy and fermentation
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industries. The application of multi-cellular fermentatisystems comprising separate
“sender” and “receiver” cells presents the opportunity licmimate the requirement
for expensive inducers, as cultures will maintain their ogane expression levels,
eliminating the need for monitoring batch cultures [191heTproduction of expensive
small molecules can also be replaced by synthetic biologggsses, as demonstrated
by Du Pont and Tate & Lyle to produce chemicals commonly usdebitiles from corn
sugar [192]. Artemisinin, a naturally occurring anti-nmé&hdrug produced through an
expensive and low efficiency plant extraction process cawlm®obtained from yeast,

which produce a precursor to the active drug with a high yi£838].

Coupling gene regulatory networks to external stimuli canused to produce new
biosensor cells for the detection of a variety of compoundth wndustrial and
medical applications [1]. Programmed behavioural intéoas between prokaryotes
and eukaryotes could provide new disease treatments, asndénated by Anderson
et al who engineered. coli cells to invade specific mammalian cells exhibiting a
tumourogenic phenotype under specific inducer conditipngyiding potential new

cancer treatments [194].

This project builds on the concept of engineering modulegenfetic interactions that
confer synthetic phenotypes on the host cell. The projatzed the yeast mating
response pathway as a generic input and signal processithgiepexploiting the signal
amplification and noise attenuating features of the MAPKads [131, 195, 196]. The
circuit was constructed from three independent plasmidisghwby themselves do not
produce an effect on the phenotype of the host cell; howexreen in combination they
form a discrete network or system, and it is the emergentgrtgmf this system that
produces the synthetic behaviour in the host [197, 198]s $iistems-level interaction
also presents a complexity in understanding and desighmgitcuit, which requires
new modelling and simulation tools from systems biologynderstand and predict its
behaviour [112, 113].

Founding research in synthetic biology has so far focusedrat building interacting
genetic “parts lists” inE. coli; through efforts such as the Biobricks Foundation and

iGem there are registries of parts that can be combinedhegéd build synthetic
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behaviours [11, 199, 200]. This project is one of a limitednier of studies that
have attempted to construct, and characterize such syntrets in more complex
eukaryotic yeast cells [1, 2, 190], allowing for the creatmf more complex circuits
and provide a stepping stone towards building more compjexhstic systems and

even organisms [8, 12, 161, 201, 202].

1.5.6 Project Overview

Building on the concept of combining defined genetic compts@to circuits, the
project aims to utilize three components previously charésed by published research.
The iron response protein (IRP) by Kolotegtal, the LexA repressor by Brent and
Ptashne, and the luciferase reporter gene, assayed withlishmdin vivo whole cell
assay [4, 203, 204]. The combination of these componentsienaepressors to be
combined that function separately at the transcription taagislation levels [4, 203].
This enables the hierarchical and time-scale separatidimeofepressors, and also the
further characterisation of the two components in a syittébdlogy application, using
a well characterized and sensitive reporter assay [204]e IR®P repressor is well-
defined in mammalian systems [205-207], and has been shofumd¢tion in yeast
where it can repress translation of genes containing tiget#RE stem-loop structure
[4]. The circuit is designed to express the luciferase repa@ene, which has been well
characterized and used extensively in both prokaryoticeahkaryotic cells [208—210].
Expression of the luciferase gene is linked with the yeast@inone response pathway
via Prysi, the promoter for th&US1gene which is known to be up-regulated by the
Stel2 transcription factor and involved in initiation filanmous growth and formation
of the Schmoo tip [211]. This system forms the sensor compoofehe circuit, using
the pheromone response pathway as a signal processingutecdec expression of the

luciferase reporter gene as the output.

The two repressors, IRP and LexA, are designed to tune tbeittsriuciferase output.
The IRP is designed to be expressed constitutively usingvknoonstitutive yeast
promoters that can be interchanged to express differeetdexf IRP concentration

within the cell [212]. The luciferase reporter gene inclsitiee IRE sequence, encoding
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FIGURE 1.17: Schematic diagram of the gene circuit demonstratiegiriteraction
of the components. The yeast pheromone response pathwatjofisras a signal
processing module translating pheromone binding at thé reekeptor to Stel2
transcription factor activation. Stel2 up-regulates eggion of the reporter and de-
repressor plasmids, resulting in repression of IRP trgptsmn and de-repression of
luciferase translation. Solid line denotes constitutigpression by the IRP. Dotted
lines denote pheromone response pathway induced reactions

a stem-loop structure in the luciferase mMRNA molecule toclithe IRP can bind
and block translation by the ribosome [4]. Constitutiveresgion of luciferase mRNA
translation is designed to reduce basal expression of gwetex gene during vegetative
growth and reduce noise in the circuit output. The secondesspr gene; LexA is
expressed from the sameJ31 pheromone inducible promoter as luciferase, and LexA
operator sequences (DNA binding domains for the LexA pmteiere placed upstream
of the IRP constitutive promoter. This design enables pheree inducible repression
of IRP transcription, and simultaneous up-regulation aiferase expression during

pheromone induction (figure 1.17).

The hypothesis for the circuit is that through repressiobagal gene expression, the
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circuit achieves a higher fold change increase in luciie@gression compared with
cells that would contain a pheromone-induced luciferap®nter gene alone. The
circuit is unique in the application of both transcriptibaad translational repression,
and enables the characterisation of these two systems imtlaetic biology circuit. The
project aims to characterize the expression of each of thgoaents of the circuit
through quantification of MRNA and protein expression Isyas well as investigating

the interaction of the components as a circuit using lunteese.

There are a number of interactions within the circuit, at mbar of hierarchical levels
within the cell, which leads to complex non-linear dynamitshe behaviour of the
circuit. The project therefore uses mathematical modgliinbuild a predictive model
of the circuit that can be further refined through params#¢ion with experimental
data. The combination of experimental and theoretical Siefda novel approach
that differentiates synthetic biology from molecular bigy. Modelling enables faster
design and development cycles of gene circuits, throughagmication of systems
analysis to identify key control points in the pathways unctenstruction. Metabolic
control and sensitivity analysis will be employed at thetstéthe project to understand
the role of each interaction in the circuit, and then furtiparameterisation with
experimental data will enable predictive time course satiohs to be constructed.
The model will then become a tool for tuning the behaviourh&f tircuit and adding
additional features, driving hypothesis generation fax #xperimental work. The
interplay of each of the component fields therefore, formswehapproach compared

to classical genetic engineering of yeast.
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MATERIALS AND METHODS

2.1 Plasmids

The plasmids used in this study are listed in table 2.1.

2.2 Primers

The primers used in this study are listed in table 2.2.

2.3 Yeast & Bacterial Strains

The yeast strains used in this study are listed in table 218 Bacterial strain used
in this study wask. coli TOP10. The strain details are as followE. coli TOP
10F' [F'lac9Tn10 (Tet)mcrA A (mrr-hsdRMS-mcrBCF80 lacZA M15 Dlac74 de®
recAlaraD139A (ara-leu) 7697galU galK rpsL endAl nupG

49



Plasmid Notes Source
pRS315 single copy yeast ARS-CEN plasmidEU?2) Sikorski and Hieter. [213]
pRS313 single copy yeast ARS-CEN plasmidIS3) Sikorski and Hieter. [213]

pRS315-Pysr-IRE-luciferase
PRS313-PysrLexA
pRS315pFUS1Pax3uciferase

YCp33-Supex2
LEXAOp-PDCD]_-lRP

Leonp—PTEFl—IRP
pJM4

pJM6

pTRPEX
pDCDex

pTEFex

pSVal7
TOPO TA Cloning Vector

single copy yeast ARS-CEN plasmidgU?2). pFUS1 cloned BamHI and Ndel, lucifera
cloned with Ndel and Hindlll, and IRE cloned with Ndel.

single copy yeast ARS-CEN plasmiHlIS3) with pFUS1 cloned with BamHI and Nde
and LexA cloned with Ndel and HindlllI.

single copy yeast ARS-CEN plasmidgU?2) with pFUS1-Pax3 cloned with BamHI an
Ndel.

single copy yeast ARS-CEN plasmidRA3.

single copy yeast ARS-CEN plasmidRA3. LexA operator cloned with Hindlll, IRH
cloned with Sall and Xhol.
single copy yeast ARS-CEN plasmidRA3J. LexA operator cloned with Hindlll, IRF
cloned with Sall and Xhol.

single copy yeast ARS-CEN plasmid based on YCp22-FL witifduase URA3J,
single copy yeast ARS-CEN plasmid based on YCp33-Supex?iRiP URA3J)

single copy yeast ARS-CEN plasmid based on YCp33-Supex2 WRP1 promoter
(URA3.

single copy yeast ARS-CEN plasmid based on YCp33-Supex2 m@D1 promoter
(URA3.

single copy yeast ARS-CEN plasmid based on YCp33-Supex2 WiF1 promoter
(URA3

CIn2 PEST taggedEGFPvector plasmid

seBased on pRS315.
| Based on pRS313.
dBased on pRS315-pFUS1-IRE-luciferas

Oliveiraet al[214].
Based on pDCDex, Oliveiret al [214].

Based on pTEFex, Oliveirat al[214].
Oliveiraet al[215].
Oliveiraet al[215].
Oliveiraet al[215].
Oliveiraet al[215].
Oliveiraet al[215].

Gift from Simon Avery [216].
Invitrogen TOPO cloning kit.

TABLE 2.1: List of plasmids used in this study.

5.
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Name

Nucleotide Sequence

PCR primers and Oligonucleotides

LexAOpCaslLeft
LexAOpCasRight
Luciferase Fwd
Luciferase Rev
LexA Fwd

LexA Rev

IRE Left

IRE Right
PEST Fwd
PEST Rev

IRP Sall

IRP Xhol

AGCTTCGAGTACTGTATGTACATACAGTACTCGAGTATGTATGTACATACAGTACTTAATTAA

AGCTTTAATTAAGTACTGTATGTACATACAGTACTCAGTACTGTATGTACATACAGTACTCGA

CTAGCTTAGTCGACGAAGACGCCAAAAACATAAAG

CTAGCTTACTCGAGTTACACAATTTGGACTTTCCG
ATCGCTAGCATATGATGAAAGCGTTAACGGCCAGG
ATCGCTAGAAGCTTTTACAGCCAGTCGCCGTTGCG
TACCAATTATCTACTTAAGCTTCAACAGTGCTTGAACTTAAGAACACAAAACTCGAGAAGA
TATCTTCTCGAGTTTTGTGTTCTTAAGTTCAAGCACTGTTGASCTTAAGTAGATAATTGG
ACAATCGATGGCCATCGCGAAAGCATCCAACTTGAACATTTCG

TAATTAGTTGGCCA TCGCGA CTATATTACTTGGGTATTGCC
CGTGTAACGTCGACATGAGCAACCCATTCGCA
CGCGTCACCTCGAGGCTTGGTTCTCTCTTTCTGGC

Sequencing Primers

DCD1-SEQ-FWD GCGGTACGCAGTTATGAG
DCD1-SEQ-REV ATTCACACCTTTAATGTGCCAA
IRP1-SEQ-FWD CAACCCATTCGCACACCTTG
IRP2-SEQ-REV GAATGCCCAAGCCATCAATC
IRP3-SEQ-FWD GGGAGATTCGGTAACAACTG
IRP4-SEQ-REV GCGGATCATGTAGTTGAG

IRP5-SEQ-REV CGCTGAAGGGTAACATAG
IRP6-SEQ-FWD ATGACGCCAGATGGCAGTAG
PGG-Terminator CGCTGAAGGGTAACATAG

IRP-SEQ-REV GTAAGCGTGTGGAACGACT
TEF1-SEQ-REV CTTTCCTAGGCAGCTGAGCT

M13-Fwd (-20) GTAAAACGACGGCCAGT

M13-Rev (-27) CAGGAAACAGCTATGAC

gPCR Primers

gALG9-Fwd CACGGATAGTGGCTTTGGTGAACAATTAC
gALG9-Rev TATGATTATCTGGCAGCAGGAAAGAACTTGGG
gHEM2-Fwd TTCCGCTATTCATCTCCGATAATCCAG
gHEM2-Rev ACAGACATCGCAAATAATATACAGTTCAGG
gALG9-Fwd CACGGATAGTGGCTTTGGTGAACAATTAC
gALG9-Rev TATGATTATCTGGCAGCAGGAAAGAACTTGGG
gIRP-Fwd AACCCATTCGCACACCTTG

gIRP-Rev ATGGTAAGCGCCCATATCTTG

gLexA-Fwd CAGGAAGAGGAAGAAGGGTTG
gLexA-Rev TCGGCTTGAATAAGGAAGGA

gLucif-Fwd TACTGGGACGAAGACGAACA

gLucif-Rev TTCCGTGCTCCAAAACAAC

TABLE 2.2: List of primers used in this study.

SPOYISN pue SfeusteN z Jaideyd
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Strain Genotype Source

pTC5 (BY5741)| Mata;his3A leu2A0 met1R0 ura3A0 Euroscarf, Brachmaet a[217]
sst (BY4741) | Mata; his3 Al; leu2A0; metlR0; ura3A0; | Euroscarf
YLR452c::kanMX4

TABLE 2.3: List of yeast strains used in this study.

2.4 Yeast Growth Conditions

Yeast cells were grown in liquid broth media consisting oastepeptone dextrose
(YPD) (ForMediuni™) (1% yeast extract, 2% peptone, 2% glucose) or on agar plates
containing 2% agar. Yeast transformed with plasmids comtgiauxotrophic markers
LEU2, URA3 or HIS3were grown in liquid yeast nitrogen base (YNB) without amino
acids, and supplemented with the appropriate (ForMeWumrop out medium:-
LEU, -URA3 or -HIS3 respectively with 2% glucose, or on plates containing 2%
agar. Cells containing combinations of plasmids were gramrthe appropriate
combinations of drop out media for the auxotrophic markenlomations. Yeast cells
containing the circuit were grown in in liquid yeast nitrogease (YNB) without amino
acids, supplemented with (ForMeditifh drop out: LEU, -URA3 -HIS3 Luciferase
control strains were grown in liquid yeast nitrogen base BY Without amino acids
(ForMediuni™) drop out: +EU. No de-repressor plasmid controls containing the
repressor plasmid and reporter plasmid were grown in ligaast nitrogen base (YNB)
without amino acids (ForMediutf) drop out: £EU, -URA3 All media contained
2% glucose as carbon source. Cultures were also grown inginigagent agar plates

containing 2% agar.

Broth cultures were grown in 25ml volumes of liquid broth B0l baffled shake
flasks, incubated at 30°C with shaking at 250rpm. Plate mdtwvere incubated
at 30°C. Stocks strains were stored in the appropriate brwtia containing 25%

glycerol, and stored at -70°C.
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2.5 Bacterial Growth Conditions

E. coli TOP10 cells were cultured in 2ml LB (Luria-Bertani) brotro(fedium) (1%
bacto-typtone, 0.5% bacto-yeast extract and 0.5% NaCl)Boagar plates containing
1% agarE. coliTOP10 in liquid broth were incubated at 37°C with shaking=arpm.

Plates were incubated at 37°C overnight, and then storetCat 4

All circuit plasmids contained the ampicillin resistancanker, which was added to the

LB broth medium and agar plates at a concentration of 100pgmpéorMedium™).

2.6 Transformation of competentE. coli TOP10 cells

0.5pl of plasmid was transferred to 100ul of competEntcoli TOP10 cells and
incubated on ice for 30 minutes. The cells were heat shodk&2°& for 1 minute and
then incubated on ice for 5 minutes. 1ml of LB broth was added,the cells incubated
for 1 hour at 37°C. 200ul of cells was plated onto LB agar coirig the appropriate
antibiotic resistance marker for the plasmid being tramséml. For the gene circuit

plasmids all cells were plated onto LB agar containing 108grgul ampicillin.

2.7 MINIPrep Plasmid Purification

Plasmid DNA was obtained from 2ml overnight cultureskafcoli TOP10 cells in
liquid LB broth (containing 100ug per ml) ampicillin), ugjrthe QlAgen QIAprep
Spin miniprep kit (QIAgen catalogue number 27106). A 2mluxd of E. coli cells

harbouring the plasmid for purification was grown in suiéabklective liquid broth
culture overnight (for a maximum of 16 hours). 1ml of cultwes transferred to
a 2ml centrifuge tube, and centrifuged at 4,000g (13,000rfam5 minutes. The
supernatant was discarded and the pellet re-suspendedjd @6 buffer P1. The

protocol continued as directed in the QIAgen QlAprep Spinilgtiep Kit handbook for
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plasmid purification with a micro-centrifuge. The DNA boutodthe miniprep column

was eluted using 50ul of sterile distilled water.

2.8 Manual Miniprep Plasmid Purification Protocol

When large numbers of plasmid purifications were requirednumal purification of
plasmid DNA was performed to save using commercial equipraed reagents. The
protocol was adapted from the cleared lysate procedure @&.[Clewell and D. R.
Helinski [218]. The advantages of this method are; highdy{el opposed to alkaline
lysis), high purity; suitable for restriction, ligationeguencing, and transformation of
E. coli and S. cerevisiagand after additional phenol-chloroform extraction,vitro
transcription. The method is also simple and fast, enaldDhg\ purification of 24
samples using a single microfuge tube, without organicaetimns, in under one hour

(Hughes J. (2009), Personal Communication. (McCarthy. lab)

2.8.1 Reagents
2.8.1.1 25% sucrose

Sucrose solution consisted of a 25% w/v of solution of steiH0mM Tris pH 7.5

2.8.1.2 Lysozyme

Lysozyme solution consisted of 4mg/ml Lysozyme (Sigmal,n@/ml RNase A in

50mM Tris, pH 7.5, 50% glycerol. Lysozyme was stored at -20°C

2.8.1.3 Triton Lytic Mix

Triton lytic mix consisted of 50mM Tris, pH 7.5, 20mM EDTA, |80, and 0.1% Triton
X-100.
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A single colony of transformeé&. coli TOP10 was inoculated into 1.5ml LB growth
media containing appropriate antibiotic for the transfedmplasmid, and grown
overnightat 37°C. The culture was transferred to an 2mkdage tube and centrifuged
at 3,000rpm for 1 minute. The supernatant was discardedthengellet re-suspended
in 200l of 25% sucrose solution. 20 pl of lysozyme solutioasvadded and the
suspension was vortexed briefly, then incubated for 5 meateroom temperature.
Following incubation 400ul of triton lytic mix was added limhved immediately with
the addition of 80pul of 8M potassium acetate. The cell solutvas mixed by inversion
several times and the cells incubated on ice for 5 minutewing incubation on ice,
the tube was centrifuged for 20 minutes at maximum speecdbat temperature. After
centrifugation the supernatant was transferred to a cléanlXentrifuge tube and the
pellet was discarded. 0.5ml isopropanol was added to thersafant and mixed several
times by inversion. The solution was then centrifuged foniButes at maximum speed
to sediment the plasmid DNA. Following centrifugation thgpernatant was discarded
and the pellet re-suspended in 0.5ml 70% ethanol, and tiegged at maximum speed
for 1 minute. The supernatant was discarded and the pelteted to air dry for 10
minutes. Following air-drying, the pellet was re-suspehidelOpl sterile distilled water
and incubated at 70°C to inactivate remaining DNase agtiVihe plasmid suspension

was then stored at -20°C until required.

2.9 Plasmid DNA Restriction digest

Plasmid DNA was digested with restriction enzymes purcthdsam Fermentas and
New England Biolabs. T4 DNA ligase was purchased from Newl&rdy Biolabs.
Standard recombinant DNA techniques were used, as in Satletoal [219]. For
ligations of DNA with incompatible end structures, the emgse first made flush with

Klenow DNA polymerase (forzextensions) or T4 DNA polymerase (fdréktensions).
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2.9.1 Analytical Plasmid DNA Digest

Analytical digests were performed to check for correct rreson sites, complete
digestions, and DNA miniprep yields. In a 20ul total volumigyl of DNA for
analysis was added to 2pl of appropriate restriction enzyuffer. 0.5ul of appropriate
restriction enzyme(s) was added, and the volume made up jib &ieh distilled
water. The digest was incubated at 37°C for 1-3 hours. Fatigwncubation
appropriate volume of loading dye was added and the analytigest observed using

gel electrophoresis.

2.9.2 Preparative Digest

Preparative digests were performed to digest plasmid DNArgparation for gel
extraction. A larger total volume of 200ul was used to maxanDNA yield from
the digest. 40ul DNA was added to 20pul of appropriate enzyuffet 3ul of restriction
enzyme(s) was added, and the volume made up to 200ul withedisvater. The digest
was incubated at 37°C overnight. Following incubation digest was phenol extracted
and ethanol precipitated, and the resulting DNA pelletuspgnded in 15ul distilled
water. A microlitre of the DNA preparation was observed gsyel electrophoresis to
check the yield. The remaining DNA was loaded onto an agagekand run at 100V

for 30 minutes before extraction of the appropriate bands.

2.10 Cranenburgh Ligation Method

DNA and RNA was quantified using a Thermo Scientific Nanodrop@®spectropho-
tometer. The method detailed by Cranenburgh, 2004 was gexglior ligating DNA

fragments. The method utilizes equations 2.1 and 2.2.

Vy = (2.1)

(i) +1
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The equations above enable the determination of volumesreshjn a ligation reaction.
Insert and vector parameters must both be in the same urgtskgobases for length
and micrograms per microlitre for concentratioh)lnsert length), vector length|
insert concentration/; vector concentratiori; required insert-to-vector concentration,
T volume of DNA solution componeny,, vector volume,l, insert volume. Thd,
should be inserted as insert/vector (e.g 2 for a two-folekegc0.5 for a two-fold vector
excess) [220].

2.11 Primer Design

Primers for amplification of DNA were designed by obtainihg hucleotide sequence
from the EBI online database and isolating the ATG start addothe gene of interest
and cross checked against the corresponding protein segjirerthe Pubmed online
database. The primer sequence was extended 20 bases irdtteeBon from the start
codon with the required DNA restriction site added to theedd with 8 nucleotides
upstream. The’3end of the primer contained a guanidine and cytosine nudiest
forming a “GC clamp” to stabilize the association of the pimwith the DNA to be
amplified. The same procedure was used for the 3 antisense strand primer, starting
at the stop codon and adding the appropriate restrictiogre@zecognition sites and
8 nucleotide overhand added to the start of the primer. Théngdaemperatures of
the primers were calculated using the Eurogentec onlindt‘texap calculator” during
purchase of the primers and checked to be of a similar teryyerand the primers

ordered from Eurogentec.com.
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212 PCR

PCR amplification was performed using the Expand Long Tete?£R System kit
from Roche (catalogue number 11681834001), using a BioR&4AAD PCR machine.
Using approximately 100ng of template DNA, the reaction mixs formulated by
adding 4ul of deoxyribonucleotide mixture (containingraM of each nucleotide), 5ul
of 10x buffer 2, and 2.5ul of a 2.5mM primer solution was adftedach primer. 0.5ul
Expand DNA polymerase (2.5 units) was added, and the remactin made up to 50pl

with sterile distilled water.

The PCR reaction was performed using a program consistiag wiitial heating period
of 94°C for 5 minutes, followed by a cycle of 94°C for 30 secgnitie primer melting
temperature for 1 minute per kb, 72°C for 1 minute. The cycss wepeated 25-30

times, then 72°C for 7 minutes before holding at 4°C.

2.13 Colony PCR Protocol

Colony PCR was performed using a BioRad C-1000 PCR machid¢renREDTaq

DNA polymerase kit (Sigma Aldrich catalogue number D43@)lony PCR was used
to confirm the insertion of cloned DNA into plasmids prior #gsiencing. The PCR
reaction mix was formulated with 0.2pl of each primer (fropremer stock of 2.5mM)
and 10ul of REDTag DNA polymerase mix. A single colony of stmmmedE. coli

TOP10 was transferred from the transformation plate anduladed into the colony
PCR reaction mix, and into a 2ml culture of LB medium contagnthe approporate
antibiotic for the selection marker on the plasmid. The PQR was performed as

above.
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2.14 Genomic DNA Extraction

E. coli TOP10 genomic DNA was extracted by centrifuging an overnatiture of

cells at 5000rpm for 5 minutes. The supernatant was disdaadé 200l of extraction
buffer added to the pellet. 200ul of phenol:chlorophormamgl 25:24:1 was added
to the solution with a volume of glass beads equivalent tosthe of the pellet. The
mixture was vortexed for 2.5 minutes and then centrifugel32200rpm (or maximum
speed of the benchtop centrifuge) for 5 minutes. The toprlaféhe supernatant was
extracted into a fresh 1.5ml centrifuge tube and phenadrodphorm extracted, before

ethanol precipitation. The DNA was re-suspended in 50pilstéistilled water.

2.14.1 Extraction Buffer

The genomic DNA extraction buffer consists of 2% Triton X81A% SDS, 100nM
NacCl, 10mM TrisCl (pH 8.0), and 1mM EDTA (pH 8.0).

2.15 Site Directed Mutagenesis Protocol

Site directed mutagenesis was performed using the Westlabk€hange Il site-
directed mutagenesis kit (catalogue number 200524). A fs@revard and reverse
primers containing the modified sequence for insertion weagually designed and
ordered from Eurogentec. The PCR reaction mix was formdlateéh 5Sul 10x
buffer, 0.2ul double stranded DNA template (5-50ng final agoriration), 1ul of
forward and reverse mutagenic primer (120ng final concgairgp 1ul mixture of
deoxyribonucleotides containing 2.5mM of each base, ahBBEWU Ultra enzyme (2.5U
per ul). The reaction mix was made up to a final volume of 50¢t wferile de-ionized

water.
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2.15.1 Site Directed Mutagenesis PCR Reaction Program

Site directed mutagenesis was performed using the BioR&A0OD-PCR machine. The
program was 95°C for 30 seconds, followed by 18 cycles of 96fG0 seconds, 55°C
for 1 minute, 68°C for 30 seconds. Following the PCR ampliitcacycles, 1ul of
DPNI enzyme (10 Units per ul) was added to digest the parasnpd. The PCR mix
was incubated at 37°C for 1 hour before 1ul was used to tremsi@Opul ofE. coli XL

Gold ultra-competent cells, provided with the mutagenkisis

2.16 Phosphorylation and Annealing of Synthetic Oligonu-

cleotides

Olignonucleotides for annealing, such as the iron respeleseent and LexA operators
were ordered from Eurogentec as a set of complementary seesidhat require
phosphorylating and annealing prior to ligation into a plakconstruct. Phosphory-
lation was carried out using 50pmol of each oligonucleof@é&pul of 100umol stock
solution), 200pmol of ATP (0.5ul of 100 umol stock solutipahd 5ul of 10x PNK.
The phosphorylation reaction was incubated at 37°C for 3@uies, and then 95°C
for 3 minutes. The oligonucleotides were then placed in &dreaf boiling water and

allowed to cool to room temperature to anneal.

2.17 Agarose Gel Electrophoresis

1% agarose gels were used for visualizing and obtainingrptssand DNA fragments.
Agarose was melted in 1x TAE buffer using a microwave. 100miolten agarose was
transfered to a casting tray and allowed to cool slightlyobethe addition of 3ul of
2mg/ml ethidium bromide. The ethidium bromide was mixea itite gel and allowed
to cool and solidify with a comb of appropriate size for thenber of samples to be

loaded. DNA and plasmid preparations were mixed with DNAdlog dye. Samples
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were run for 30 minutes at 100V with the gel immersed in TAEdwiin a gel running
tank (BioRad). 5pl of Fermentas GeneRuler or New EnglanteBoDNA ladder was
added next to the samples for size comparison and estiméitidnand 100bp ladders
were used depending on the sample DNA length. Agarose gets wisualized using

an ultra-violet light transilluminator and a Kodac Gel Logi00 imaging system.

2.17.1 TAE buffer - 5 Litre, 10x stock

TAE buffer was made as a 10x stock and diluted to 1x for eacleraxgent in distilled
water. The 10x stock was prepared with 2429 Tris base, 57anlajlacetic acid, 100ml
0.5M EDTA pH8.0, made up to 5L with distilled water.

2.17.2 Preparation of DNA loading dye

DNA Loading dye was prepared as a 6x concentrated stock &untédlin the sample to
a final concentration of 1x. The 6x stock was prepared with MOmis-HCI (pH 7.6),
0.03% bromophenol blue, 0.03% xylene cyanol, 60% glycamd, 60mM EDTA.

2.18 Yeast Transformation

The yeast transformation protocol is based on the methodubyeBeret al [221].
2.18.1 Preparation of Solutions and Growth Media for Yeast Tans-
formation

Yeast cells were grown overnight at 30°C in a baffled shaké ftastaining 5ml YP
growth medium with 2% glucose (YPD).
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2.18.1.1 Preparation of 10x LiAc and 10X TE solution for yeatstransformation

10x LiAc consisted of 1M LiAc pH7.5, 10x TE consisted of 0.1Ms[ 0.01M EDTA

pH7.5. 200ml volumes of each were prepared and sterilizexlbyclaving.

2.18.1.2 Preparation of 20ml PEG/LIAc/TE solution

PEG/LIAC/TE solution was prepared by mixing 8g PEG 2000, 26x LiAc, 2ml 10X
TE, 9.75ml distilled water and filter sterilized with a 0.Zyringe filter. The solution

was stored at room temperature for a maximum of 1 month.

2.18.1.3 Preparation of YP agar

500ml of 2xYNB and 200ml of 2x CSM knock out amino acid mediaevprepared
and stored separately until required, at which time theylccdne diluted together
forming 1xXYNB. Glucose was added after autoclaving by fifterilization, forming

YPD medium.

2.18.2 Yeast transformation protocol

Optical density measurements were collected using a SkzmmbiYMini 1240 spec-
trophotometer. Yeast cells were transformed by dilutirgg3ml overnight culture to a
starting OQoonm Of 0.2 and then growing the cells to 0.7-1.0 gBhm (approximately
3-4 hours). Salmon sperm carrier DNA was boiled at 95°C foml@utes and cooled
to room temperature. Cells were harvested by centrifugatia!,000rpm for 5 minutes
and re-suspended in 10ml sterile distilled water. The degttion was repeated and
the pellet re-suspended in 1ml sterile water. The cell susipa was centrifuged at
5000rpm for 1 minute and the pellet re-suspended in 1.5miLiPE/solution. The cells
were centrifuged at 5,000rpm for 5 minutes and the pellsuspended in 1ml TE/LIAc.
10 pl of plasmid DNA was added to 5ul (50ug) of carrier DNA, &@ul of cells.
300ul of PEG/TE/LIAc was added to the mixture and incubate808C in a shaking
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incubator for 30 minutes, and then transferred to 40°C fomldutes. Following the
40°C heat shock step, 800l of sterile distilled water wakeddand the cells harvested
by centrifugation at 13,000rpm for 10 seconds. The pellstressuspended in 1ml YPD
broth and incubated at 30°C for 2-3 hours in a shaking inarb&bllowing incubation,
the cells were centrifuged at 13,000 rpm for 10 seconds amgelet re-suspended in
200ul of YPD and plated onto YP knock out media lacking therappate auxotrophic
marker for the plasmid being transformed. Agar plates wecabated for 2-3 days at

30°C.

2.19 Yeast Protein Extraction

Total cell protein was extracted frof. cerevisiaeells using the methodology from
Von der Haar [222]. Cells were collected at an equivalentaptiensity of 4x ORpgm

of 1.0. The cells were harvested by centrifugation at 4,500for 5 minutes and the
pellet washed in 1ml sterile distilled water. The cells wesatrifuged at 13,000rpm for
10 seconds, the supernatant discarded and the pellet ssram fat -80°C. The frozen
pellet was re-suspended in 100ul lysis buffer, and boil&@b&€ for 10 minutes. 3ul of
4M acetic acid was added to the cells and boiled for 95°C famirfutes. 25ul of SDS
sample buffer was then added to the cell suspension and mseddiately for western

blot, or stored at -20°C until required.

2.19.1 Lysis buffer

Yeast cell lysis buffer consists of 0.1M NaOH, 0.05M EDTA, bS, and 2%3-

mercaptoethanol.

2.19.2 SDS Sample buffer

SDS sample buffer consists of 0.06M Tris-HCI pH6.8, 5% gtpte2% SDS, 4%{3-

mercaptoethanol and 0.0025% bromophenol blue.
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2.19.3 Preparation of SDS PAGE Protein Gels

NuSep density gradient (4-20%) pre-cast protein gels warehased from Generon

(http:www.generon.com) (catalogue number NH31-420, byda wells per gel).

2.20 Western blotting

2.20.1 Polyacrylamide gel electrophoresis protocol

10pl of protein extracts was loaded on to 15% pre-cast Nu8apity gradient pre-cast
gels. Samples were loaded alongside 10ul of Fermentas BkaygiRe-stained protein
ladder plus marker for size estimation. Protein gels weneatuBOV for approximately

1 hour.

2.20.2 Western Blot Transfer protocol

A semi-dry pierce fast-transfer deck (from Thermo Fisheaswsed for all western
blots. Nitrocellulose filter (Hybond C from Amersham Bicseces) was used for
increased resolution over PVDF film. Blotting paper and filer&/cut to the appropriate
size to cover the gel during the transfer, and soaked infeabsffer. Protein gels had
the stacking gel removed and were washed in 10ml transféerb@f pieces of blotting

paper were transferred to the transfer deck, followed bytitiecellulose film, the gel,

and 2 further pieces of blotting paper. A clean stripette wsed to roll across the
surface of the blotting stack to remove any air bubbles. Téesfer deck was wetted
with transfer buffer and then closed over the blotting statke transfer was run at

400mA constant amps with a limit of 25V for 1 hour.

Following the transfer, the blotting stack was discarded #re film incubated in
Ponceau S staining solution (Thermo Fisher) to check fariefft transfer of protein to
the membrane. The Ponceau S stain was removed by brieflpgitis8 membrane in

distilled water. The membrane was then incubated for 10 tegin miser antibody
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extender solution (Thermo Scientific) to enhance primarybady binding. The
membrane was then washed 5 times in distilled water befaekirig with PBST+5%
milk (phosphate buffered saline + 0.1% Tween20 + 5% milk)@@ninimum of 1 hour

at room temperature, or overnight at (4°C) on a rocking ptatt

2.20.3 Antibody binding

Primary antibody concentration was calculated from theaqgmnying data sheet for
the relevant antibody. Luciferase, LexA, and IRP antibsdiere purchased from
Abcam and used at a concentration of 1:200. Primary antilvealy prepared in 5
% milk PBS + 1:100 10% sodium azide solution. FITC and hodishaperoxidase
conjugated secondary antibody were prepared at a conttentod1:20,000 in 5% milk

PBS without sodium azide. Alkaline phosphatase conjugs¢éedndary antibody was
prepared at a concentration of 1:5000 in 5% milk PBS solutidhantibody solutions

were stored at 4°C in the dark.

The membrane was sealed in plastic sheeting using a heat aadl1ml of the primary
antibody added to the membrane. The membrane was then tedubaernight at
4°C. Following incubation, the primary antibody was coléxt (for re-use) and the
membrane rinsed 3 times for 10 minutes in 5ml PBST solutioml & secondary
antibody solution was then added to the membrane and ineditf@t a minimum of 1
hour at room temperature of a rocking platform. Followingubation the secondary
antibody was collected for re-use, and the membrane washetS8 for 10 minutes in

5ml PBST, or 10 times if using the alkaline phosphatase staryrantibodies.

2.20.4 Western Blot Imaging

The membrane was transferred to a clear plastic sleeve ahB#Qmreagent applied
to the surface of the membrane. The film was left at room teatpes for 1 minute in
the dark for the membrane to react with the ECL. The excess &&4 removed and

the membrane placed in a photographic cassette (Kodac)ransférred to the dark



Chapter 2 Materials and Methods 66

room for developing. Photographic film was applied to the oeme and exposed for
5 minutes before being transferred to the developer. Lotiger periods can be used

depending on the signal from the membrane.

2.20.5 Alkaline Phosphatase Protocol

For alkaline phosphatase reaction, the alkaline phospbdiaffer was prepared in a
50ml falcon tube and consisted of 1ml 1M Tris-HCI pH 9.5, @23M NacCl, 50ul
1M MgCly, 8.7ml deionized water for a 10ml final volume. 66ul of NBT weakled
and mixed, followed by 33ul of BCIP. The solution was mixed &ml applied to
the membrane. The membrane was incubated in the dark at mopetature on a
rocking platform and regularly observed for the developtnadra colour reaction on
the membrane. Once sufficient bands have developed theoreaein be stopped by

washing the membrane in distilled water.

2.20.6 Quantification of Western Blot Images

For quantification of western blots, the membrane was schonea flatbed scanner
(Canon) and the image saved as an 8bit (greyscale) uncoseprés=F image. Images
were then quantified using the Gel-Pro Analyzer softwares{a 3.1) from Media
Cybernetics. Data was then transferred to Microsoft Exoel @riginLab Origin for

plotting and further analysis.

2.21 DNA Sequence Alignment

Sequence alignment was performed using the ClustalW sadtpackage, version 2.1

compiled for Linux from source code available from httpww.clustal.org. [223]

Analysis of plasmid constructs was performed using Secuant.9 from Gene Codes.
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2.22 DNA Primer Design

Primers were designed manually by identifying the trapsion start site from the
literature concerning the gene of interest, finding the emidlle sequence in online
databases such as NCBI and matching the nucleotide sequihdlke protein database
sequence to locate the open reading frame. The primer wasctmstructed using 20
bases upstream of thé ® 3 start site and 20 bases downstream of theo¥ start
site. Suitable restriction enzyme sites were added to’'thad3 primers together with
8 random nucleotides at each end to facilitate binding taadhget sequence. Primers

were ordered online from Eurogentec.

2.23 Pheromone Induction of Yeast Cells for Lumines-

cence Assay

A 10ml overnight culture of yeast cells were grown in a 50mifled shake flask
(incubated in a shaker incubator at 30°C, 250rpm), andediltive following morning
to an optical density of 0.2 Odgam in 25ml fresh YP broth medium (containing
appropriate amino acid drop out media, and 2% glucose) irDenlbaffled shake flask
(incubated in a shaker incubator at 30°C, 250rpm). Cell®wen grown to an optical
density of approximately 0.6-0.8 Qbym and then stimulated with 100nM of alpha-

factor pheromone (Zymo Research Y1001).

2.24 Optical Density Measurements

Optical density measurements were prepared with a 1:1@atflof the yeast culture
in a 1ml volume of YP both, in a 1.5ml SemiMicro Cuvette (Sdarcatalog number
E1412-4150). Optical density Measurements were made @asBigimadzu UVmini-

1240 UV-VIS spectrophotometer. Optical density measuregawere used to estimate
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the cell growth phase for pheromone induction, and the cedter was used to calculate

cell number for luminescence data normalisation.

2.25 Cellometer Cell Measurements

In addition to measuring biomass using optical density, m@bers were calculated
using a cellometer Auto T4, purchased from Nexcelom Bigsme 20ul of cells was
transferred to a cellometer counting chamber. The chamiasrleft on the bench
for approximately 10 minutes to settle before reading in ¢ceBometer instrument.
Counts were obtained using the cellometer software in peltanl. Cell images were
exported along with the raw data in Microsoft Excel formatel&®ive luminescence
units measured by the luminometer were divided by the calintdo convert the

measured luminescence to relative luminescence unitsfier ¢

2.26 Yeast Growth Rate Measurements

Yeast cells were grown overnight on YPD complete with 2% g&; for wild-type
cells, or YP LEU, -HIS, -URAwith 2% glucose for cells transformed with the circuit
plasmids. The culture was diluted to an optical density @00 Dso0m, and the optical
density of the cultures measured every hour for 16 hoursLdgdvase 2 optical density
measurements were plotted against time to identify theritigmic growth phase (log
phase), and the growth rate was then determined by caleglatslope, and compared

across strains.

2.27 Yeastin situ Luciferase Assay

The following assay is based on the publication by Vieiths &t al., and enables thie
vivo measurement of luciferase activity without requiring ¢gdis [204]. 50ul of each

yeast culture was transferred to a luminometer tube cantaitbOul m-citrate buffer,
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pH3 (0.2M sodium citrate (28.8g/l) and 0.2M citric acid (2@/l)) (m-citrate buffer
was aerated prior to use by vortexing for 15 seconds prioath eneasurement). The
buffer enhances the permeability of the membrane, enablkpgsure of intra-cellular

luciferase to extra-cellular luciferin.

The luciferin stock was prepared at 10mM in 10mM sodium Hioaate. 10ul of
luciferin solution was added to 50ul of cells in 150ul of sodicitrate buffer, making a

final concentration of Luciferin of 0.5mM n the reaction nuise.

The luminometer (Berthold Lumat LB 9507) was configured togke 25ul of the

reaction mixture, and measure the average luminescence80v&conds. The lumi-
nescence measurement (measured as relative luminesaats)enas then converted
to relative luminescence units per cell using the cell conatle using the cellomoter.
Three reaction mixtures were prepared for each time poihieach mixture measured
once. The average of the three luminescence measuremestsahailated, and
converted to relative luminescence units per cell usingcthreesponding cellometer

cell count.

2.28 Real-time Quantitative PCR (RT-qPCR)

2.28.1 RT-gqPCR Primer Design

Primers for RT-qPCR were designed using the PrimerPy sodtivam
http://code.google.com/p/oligobench.

2.28.2 mRNA extraction and purification

Frozen cell pellets were thawed on ice for approximately Butds and re-suspended
in 750pl chilled TES (10mM Tris-HCI pH7.5, 10mM EDTA, 0.5% S 750ul of
phenol-chloroform 5:1 pH 7.4 (Sigma P1944-400ML) was ada@ed vortexed for 5

seconds. The solution was incubated for 1 hour at 65°C witkisly. Following
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incubation the cells were chilled on ice for 1 minute and rdikg vortexing for 20
seconds before being centrifuged at 13,000rpm for 5 minui@®ul of the aqueous
phase was transferred to a new centrifuge tube and 700ulefgblchloroform and
mixed by inversion. The suspension was centrifuged at 080 for 1 minute and the
agueous phase transferred to a new centrifuge tube. 65@péafqueous phase was
transferred to 650pl of chloroform-asoamyl alcohol (2249l mixed by inversion. The
solution was centrifuged at 13,000rpm for 1 minute and 5@@the aqueous phase
transferred to a new centrifuge tube. 1.5ml of 100% ethasladded with 50ul of 3M
sodium acetate, pH5.2 and the mRNA precipitated at -80°G@aninutes. The solution
was then centrifuged at 13,000rpm for 10 minutes and thersafant discarded. The
pellet was washed in 500ul 70% ethanol and centrifuged &008pm for 1 minute.
The supernatant was discarded and the pellet air dried. €let pvas re-suspended
in 100ul DEPC water and incubated for 1 minute at 65°C to diresthe pellet. The
MRNA yield was quantified using a Nanodrop spectrophotonzete stored at -80°C.

2.28.3 Turbo DNase protocol

40ug of mRNA was transferred to a new centrifuge tube and I3@0ynits) of Turbo
DNase added. The reaction mixture was incubated for 30 mig®@7°C. The mix was
then phenol-chloroform purified and ethanol precipitatethdahe above section and the
pellet re-suspended in 200ul DEPC water. The mRNA vyield wastified using the
Nanodrop spectrophotometer. The DNase treated mRNA wesdsib -80°C.

2.28.4 Reverse Transcriptase protocol

The reverse transcription reaction was carried out usiegPthmerDesign Precision
Reverse Transcription Kit (catalogue number RT-nano$cripTo anneal the RT
primers, mRNA template was added at approximatley 1ug tnecended 2ng - 2ug),
with 1ul of RT Primer, and made up to a final volume of 10ul withd®e/DNase free
water. The reverse transcriptase reaction mixture washbated to 65°C for 5 minutes

using the BioRad C-1000 thermocycler and then placed orFgéowing the annealing
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step the reverse transcriptase reaction mix was preparaddigg 2l of nanoScript 10x
buffer, with 1pl of ANTP mix (containing 10mM of each dNTPYI200mM DTT, 4ul

of RNase/DNase free water, and 1ul of nanoScript reverssdrgptase enzyme. The
reverse transcriptase reaction mix was then added to thealsthmRNA reaction mix

forming a final reaction mixture volume of 20pl.

2.28.5 RT-gqPCR protocol

The mRNA quantification was used to calculate an equivaleluime of approximately
25ng cDNA (assuming all of the mRNA in the reverse transwmipteaction had been
transcribed to cDNA) for the gPCR reaction mix. 5pul of 2x Fs@m master mix
containing SYBR green (PrimerDesign catalogue numberistoeeSY) was added
to 6pl of the reverse transcriptase reaction and made up toeabviolume of 10pl
with DNase/RNase free water. 10umol solutions of each priwere prepared in
DNase/RNase free water and 1l of each primer pair was mixead Qiagen PCR
tube. 8ul of the gPCR reaction mix containing the cDNA tertgpl@as mixed with
the primer making a 10yl final reaction volume. The tubes Weaided into a Qiagen
Rotorgene Q qPCR machine, programmed with a protocol dimgisf 10 minutes
enzyme activation at 95°C (hot start), 50x cycles of 15 sdcdenaturing at 95°C
followed by 60 seconds at 60°C for data collection. The gP@Bles were then
completed with a melt curve, pre-programmed by QiaGen. Ti@iéication efficiency
wash checked to be above 1.6 and the data was then analysgdhesiRotorGene Q

series software provided by Qiagen.

2.29 Mathematical Modelling

Mathematical modelling was performed using the Copasiioerg.7 (build 34)
available from http://www.copasi.org, and referenced oopiset. al The Kofahl and

Klipp model of the yeast pheromone response pathway wamebitan SBML format
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Parameter Value
Modulation Factor 1x10°
Resolution 1x10°
Derivation Factor 0.001
Newton method 1
Integration 1
Back Integration 1
Accept Negative Concentrations 0
Iteration Limit 50

Maximum duration for forward integration ~ 1x18
Maximum duration for backward integration 1x10

TABLE 2.4: Copasi metabolic control analysis parameter values.

from http://www.biomodels.net [224]. Additional parareetvalues were obtained from

http://www.bionumbers.org [225].

2.29.1 Metabolic Control Analysis

Metabolic control analysis was performed using the Copafivare package, with

steady state analysis and the parameters described ir2tdble

2.29.2 Sensitivity Analysis

Sensitivity analysis concentration control coefficieneygvcalculated using Copasi, on

all non-constant concentrations of species, and all paexnaalues.

Sensitivity analysis is performed by making a change toalameters in the reactions
of the model by a value delté) and measuring the change in the steady state values of
all the concentrations of the reactants. Copasi uses thenturalue of the parameter
times the delta factor as variation. If this number is srmalian the delta value then a

delta minimum value is used.

Copasi sensitivity analysis was performed using the falgwparameter valuesA

factor of 0.001 and\ minimum of 1x1012,
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2.29.3 Metabolic Control Analysis

Metabolic control analysis concentration control coediits were calculated using
Copasi. Metabolic control analysis was performed usingiéfault Copasi parameters
with a modulation factor of 1x1®, resolution of 1x10°, deviation factor of 0.001,
with Newton, integration, and back integration, and aratien limit of 50. Maximum
duration of forward integration was 1x1® and maximum duration of backward

integration of 1x10°.

2.29.4 Signal to Noise Ratio
The signal to noise ratio was calculated using the formula:

SNR=

al=

(2.3)

The mean, standard deviation, and variance were calcutatedch time point, and the
confidence interval for the mean and the variance used talesécthe error propagation
for each time point. Using a confidence interval of 95%, thievang formula was used

to calculate the confidence limit for the mean:

Clm = X=£ty/2- (0/v/N) (2.4)

whereCly, is the confidence limit for the meanjs the mean of the sample population,
o is the standard deviatiom, is the confidence level divided by 100, ad, is the
t-distribution value, and n is the sample size. For the l@saence assays reported in

this work,n=9.

The standard deviation confidence interval for variancecaésulated for a confidence

interval of 95% using the formula:

Cly=[(N=1)- /X5 ;0 1] O° < [(N=1)-F/XF ;5 4] (2.5)
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whereCly is the confidence interval for varianaeis the sample siz&is the variance,

a is 1-(confidence level divided by 100), ab(g/z 11 Is the Chi-square table value.

Using CI asdy, Cly as do, together with the meany) and standard deviatioro),
calculated from equations 2.4 and 2.5, the error propagdtio the signal to noise

ratio at each time point was calculated using the formula:

2 2
R=SNR \/<6—“) + (6—0) (2.6)
M o

WhereR is the error,SNRIis the signal to noise ratio (calculated in equation 203)s

the standard deviation of the mean, ani$ the mean of the sample set for each time

point.

2.29.5 Parameter Estimation

For the final models in chapter 5, section 5.6 fitting was peréd using the
luminescence time course data. The data from each strainseaksto fit to the generic
circuit model, to create a new model specific to the straimfvehich the luminescence

data was fitted.

Parameter estimation was performed using Copasi. The péeasWnax, Kvm, Ki, V, K,
ands for each of the reactions in the model were allowed to varywbeh +/- 100%.
The promoter strength parametemas fixed with the corresponding value of zero or
sixty, depending on whether the data was from a TEF1 or DCDBinpter strain. The
Hooke and Jeeves optimisation algorithm was run first toiolatéit to the experimental
data, followed by the simulated annealing algorithm to comfand/or improve on the
Hooke and Jeeves algorithm. The fitted model was then savedesarate model file,

producing four models corresponding with each of the foroust strains.

The parameters for the Hooke and Jeeve’s algorithm weretegation limit of 50, a
tolerance of 1x10°, and a Rho value of 0.2. The simulated annealing algoriths wa

used with a start temperature of 1, cooling factor of 0.88, taferance of 1x10°.
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2.30 Dissertation

Graphs were produced using LibreOffice version 3.4.5 avalmom http://www.libreoffice.org,
and Origin 8.5, available from http://www.originlab.cor@tatistical analysis was per-

formed using IBM SPSS version 19, available from https:Mw@d.ibm.com/software/analytics/sps

Additional stochastic data analysis was performed usirgy Rlgthon programming

language, version 2.6 available from http://www.pythog.o

The dissertation was written using an IBM compatible peas@omputer with ATEX

running Ubuntu 11.10, available from http://www.ubuntg.o



CHAPTER

THREE

RESULTS - CIRCUIT CONSTRUCTION

3.1 Introduction

Three plasmids were designed to exploit the cellular mashimssociated with the
yeast mating response. The presence of, and thus the celslaonse tog-mating
factor drives the simultaneous expression of plasmidvddriproteins that regulate
the experimental gene circuit vivo (figure 3.4). The circuit was constructed from
three individually well characterized genetic compongtite luciferase reporter gene
[209], theE. coli LexA repressor [203], and the mammalian IRP repressor [4le T
Prus1 promoter from the yeast mating response pathway has bednruaenumber of
publishes studies to enable reporter genes to be exprassedponse to pheromone
stimulation [1, 3, 6, 7, 211, 226, 227].

3.1.1 The Iron Responsive Element-Binding Protein

The human iron response protein (IRP) is a cytosolic, RNAliig protein that has

been well characterised in its ability to repress the exgio@of iron metabolism genes

[206, 207, 228-231]. The IRP regulates the translation obdimg proteins for iron
76
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FIGURE 3.1: The iron response element nucleotide sequence wasrtednto an
RNA sequence and a hypothetical secondary structure wadatd using the m-fold
software package with an initidlG = -8.40 kcal/mol. A single structure was predicted
and demonstrates the hair-pin loop structure that binddRReo block translation [4].

FIGURE 3.2: Crystal structure of the iron response protein in caxplith ferritin
MRNA. Adapted from Waldeet al[232].

transport and storage in mammalian cells by blocking theatmon of translation by

the 40S ribosomal subunit [4, 231, 232]. It has been showirthiealRP binds to a 62
nucleotide stem-loop structure(figure 3.1) in the mRNA tkatgoof iron response genes
(figure 3.2) with high affinity (i 10710 - 10-11) and is sufficient to block translation
[4, 205, 232]. Kolotevaet al have shown that the IRP functions in yeast, and can bind

to the IRE placed upstream of reporter genes [4]. Kolotval also investigated the
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FIGURE 3.3: Unrefined crystal structure of a LexA-DNA complex, adapfrom
Zhanget al [240]
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position of the IRE relative to the start codon on the mRNAa@cale and found the IRP
is able to inhibit translation if it is located at the énd of the molecule and within 50
nucleotides of the mMRNA CAP structure. When the IRP is notialdo the IRE, the IRE
does not interfere with translation as the 40S ribosomalsiiis able to overcome the
structural resistance of the stem-loop structure duriegstanning process and initiate

translation at the start codon [4].

3.1.2 The LexA DNA Binding Protein

LexA is an E. coli transcriptional repressor that represses the SOS respamss
coding for DNA polymerases required for repairing DNA dam§833]. LexA binds
with high affinity to a specific DNA recognition sequence edlthe “LexA operator”,
and blocks RNA polymerase-mediated transcription of dékeasn genes. [233-235]
(figure 3.3). LexA has been well characterised in bactei®8[235, 236] and has been
shown to function as a transcriptional repressor in manmanatells [237] as well as
yeast [5, 203, 238, 239].
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3.1.3 Yeast Promoters

There are a number of varying strength promoters availabteast that have been well
characterized and provide the capability to vary the exgiedevels of the genes that
they regulate [241]. Th®CD1 promoter (Bcp1) from the yeast dCMP deaminase
gene, provides a weak promoter for the gene circuit and wagoled to express a
low number of MRNA transcripts from the genes it regulateé2[242]. The TRP1
promoter (from the yeast tryptophan biosynthesis path\{Rygp1) is a similar strength
promoter to Bcpa1 that has also been well studied in yeast [243]. Th#1 promoter
is a strong promoter in that it expresses a high number of mR&®scripts from the
genes it regulates [212, 244]. The combination of thesemifft strength promoters
enables differentiating the expression levels of the camepts of the circuit and tuning

the expression of the reporter gene.

Individually, these components provide a tool-kit of pahist can be combined to form
synthetic gene circuits. The pheromone response pathgely iborms a generic input
module that interfaces these parts with the external enmemt and enables the circuit

to be activated by the addition of an extra-cellular stinsulu

One of the problems encountered when assaying reportes gaaebuilding synthetic
circuits with discrete behaviours is discriminating betwegene activation and back-
ground expression [245-247]. To this end, the gene cir¢tetrgpts to reduce noise
from background (basal) expression, and attempts to iseré@ ratio between the
inactive and active state of the reporter gene. The cirdsit @nables the investigation
of two separately well characterised genetic control etgmdthe IRP and LexA

repressors) in a synthetic biology application.
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3.2 Circuit Overview

3.2.1 Design overview

Figure 3.4 outlines the design of the gene circuit consédidor this project. The

luciferase reporter gene was placed downstream of thgi:PFpheromone response
pathway promoter, interfacing the reporter gene with thergmone response, enabling
the cells to express luciferase in response to pheromoreelRE was placed upstream
of the luciferase reporter gene, interfacing the reportasmid with the repressor
plasmid. The repressor plasmid contained yeast consgtptiomoters controlling the

expression of the IRP gene, facilitating constitutive eggron of IRP and repression
of luciferase mRNA translation. A third plasmid de-repesshkiciferase by expressing
LexA, also from the pheromone response pathwaysPpromoter. Upon pheromone
stimulation, the cells express LexA which binds to a set ofA.éinding domains on

the repressor plasmid up-stream of the constitutive premobDe-repression occurs
simultaneously with expression of luciferase, lifting regsion on the reporter gene,
which is itself up-regulated. This mechanism of controltedression of the reporter
gene enables repression of basal expression that is dessepk upon activation,

boosting the induction ratio through reduced backgrounigic

3.2.2 Component Interactions

The reporter plasmid expresses a reporter gene that can &sured experimentally
providing a means of observing the behaviour of the circygeeimentally (figure
3.4 right). The repressor protein functions at the levelrahslation, inhibiting the
progression of the ribosome translocation along the mRNFoube (figure 3.4 middle)
[4]. The de-repressor plasmid expresses the LexA inhiltitat binds to a specific
DNA recognition sequence (the LexA operator) cloned upstref the promoter in
the repressor plasmid, blocking transcription of the IRRegfigure 3.4 left). This
approach produces repression on two different time scRiegression of the luciferase

reporter gene is fast as the IRP blocks the translation ofreperter gene mRNA.
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FIGURE 3.4: The circuit is comprised of three plasmids that exppasgeins that
interact to form an discrete circuit in the host cell. Theait uses the yeast mating
response to induce a quantifiable reporter gene (lucifer@gght), the expression
of which is controlled through the interactions of the prouof the other two
plasmids (left and middle). The repressor plasmid (middtains a constitutive
yeast promoter, expressing a repressor protein (IRP) dmtinziously represses mRNA
translation of the luciferase reporter gene, forming theuii OFF-state. Upon
pheromone stimulation of the cells, the yeast mating respads activated and the
Stel2 transcription factor up-regulates the expressidhefle-repressor plasmid that
expresses its own repressor protein (LexA) which represaescription of the IRP
gene (right). The reporter plasmid is also up-regulated t®l&E and expresses the
luciferase reporter gene, forming the circuit ON-state.e Tiiteraction of the three
components ensures repression of basal (non-inducedsstpn of the reporter gene
and maximizes a switch-like response when the circuit ménaes the OFF-state to
the ON-state.

Depending on the half life of the reporter gene, this blodles accumulation of the
reporter protein directly. Repression of IRP by LexA is séowwowever as LexA inhibits
progression of RNA polymerase during transcription. ResidRP mRNA molecules
that were transcribed before up-regulation of LexA (aditvaof the circuit) circuit

will continue to be translated into functional repressasteins that can continue to
repress reporter gene translation. De-repression isfdrera function of the repressor
MRNA andprotein degradation rates. Repression of the reportetyssdanction of the

degradation rate of the luciferase protein. The circuit ttemefore inhibit expression
of the reporter gene under normal growth conditions, andygeeromone activation,

the circuit can begin simultaneously de-repressing ancegptating the reporter gene.
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3.2.3 Overview of Luciferase Gene Expression Tuning

Understanding the interaction of the components is key terstanding the perfor-
mance characteristics of the circuit, and the ability t;mm&uthe controlling elements
enable the optimization of the circuit towards maximal m@o gene expression.
Understanding the effect of simultaneous interactionsawaw is difficult to achieve
analytically, therefore systems biology techniques of hraatatical modelling were
employed to provide insight into the interactions prior mnstruction of the gene

circuit, when there is an absence of experimental data.

The first round of modelling indicated thERP gene’s rate of transcription, and
degradation rate of the IRP protein exerts the most contvel ¢the output of the
circuit (chapter 5, and figure 5.7). Therefore, additionadwit design variations were
incorporated into the laboratory construction phase thaluded strong and weak

promoters, enabling high and low expression levels of tHe IR

In addition to tuning the expression level of the IRP reppessiodelling indicated that
the degradation rate of the IRP is also a key control poinhefdircuit. A degradation
tag was also designed and added to the IRP to provide a sliblb gy half-life variant
of the repressor protein. Perturbing the half-life of thd®IRas predicted to be an
effective method of controlling the rate of repression o thciferase reporter gene.
A literature review of protein degradation tags revealezl/jmus work by Mateus and
Avery, where the yeast-optimized GFP (YyEGFP3) was fusetied-terminus of the
constitutively unstable yeast;@yclin, CIn2 protein [216]. The C-terminus residue
contains PEST motifs of CIn2 that are thought to target thetgam for ubiquitin
(Ub)-dependent degradation [248—-250]. This form of degtiad is constitutive and
therefore does not require heat induction or activation liyaand molecule, as found in
other degradation tags [181]. The PEST tag has been shovedtce the half-life of
human thymidine kinase from 2 hours to 12 minutes, and rethealf-life of eGFP

from 7 hours to approximately 30 minutes [216].

There is no published half-life for the IRP, but some redeens have recorded a half-

life of greater than 12 hours [205, 251, 252]. If a 10-folduetion in the half-life of
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IRP can be achieved with the addition of the C-terminus PEZgjTittwould result in
IRP with a half-life of approximately 1 hour which is withihé time-scale of the yeast

pheromone response.

3.3 Construction of the Reporter Plasmid

The reporter plasmid was constructed using the pRS315 plabactkbone which
is one of a series of pBluescript-based centromere vec@B( accession number
U03441), created by Sikorski and Hieter [213]. The plasnddtains the ampicillin
antibiotic resistance marker for selection in bacteria twed_ EU2 auxotrophic marker
for selection in yeast (table 2.1). The pheromone respoateMay promoter Rjss,
from yeast was cloned into the pRS315 multiple-cloning BUES) between BamHI
and Ndel restriction sites, prior to the start of this projeg the McCarthy lab.
The luciferase gene was cloned from plasmid pJM4 from the afity lab plasmid
collection, utilizing the Hindlll and Ndel sites downstreaf the R-ys; promoter so that
expression of luciferase was pheromone-inducible via gestymating response (see
figure 3.6). The Pysi promoter links expression of the reporter gene to the phenem

response pathway which provides a signal input module ®ctfcuit.

3.3.1 The Luciferase Reporter Gene

The luciferase/luciferin bioluminescent system is foumthie firefly Photinus pyrali¥
[253] (figure 3.5)n vitro, the activity of the luciferase enzyme is assayed by thetiadi
of its substrate firefly Luciferin, ATP and magnesium ions ciferase oxidizes ATP-
activated luciferin through a dioxetanone intermediate produces carbon dioxide
and oxyluciferin in an excited state which decays quickigiteng a yellow-green light
with a high quantum yield [204, 254]. The luciferase repogene provides a method of
assaying the behaviour of the circuit with high sensitieiynpared with other common
methods such as fluorescent proteins (McCarthy J. (200%oRal communication

(McCarthy Lab). The firefly luciferase gene was obtained frgdasmid pJM4 from
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FIGURE 3.5: Crystal structure of firefly luciferase at 2.0A resanti The protein
is folded into two compact domains. The large N-terminal domconsists of a
beta-barrel and two beta-sheets. The sheets are flankeglg-ladlices to form an
alphabetaalphabetaalpha five-layered structure. Themliral portion of the molecule
forms a distinct domain, which is separated from the N-taghdomain by a wide
cleft. Image reproduced with permission from Conti [254].

the McCarthy lab plasmid collection. The luciferase gens Waated between Ndel
and Hindlll restriction sites in plasmid pJM4 making it coatiple with the pRS315-
Prus1-eGFP plasmid (figure 3.6). The luciferase gene was clonepldce of the
eGFP reporter gene in the plasmid pRS3tgd?-eGFP, creating the pRS315tR1-
luciferase plasmid, and the cloning was confirmed by sequgn€he reporter plasmid
was then further modified with the ligation of the IRE sequemnenabling interaction
with the repressor plasmid. The expression of the luciteraporter gene needs to
be reduced to a minimum level during the circuit OFF-staéeucing noise from the
circuit and maximizing the switch to the ON-state. To achi#éus repression of basal
expression levels the repressor plasmid was further mddifith the incorporation of

the iron response element, described by Kolotal [4].
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CEN6 ARS4
pAmpR
AmpR
~ Leu2
PRS315-pFUS1-IRE-luciferase
8434 bp
Xhol (5628) Xhol (2411)
HindIII (5607)
PGK1 terminator' Xbal (3149)
Xbal (5336) BamHI (3161)
pFUS1

IRE

HindIll (3637)

luciferase

Xhol (3672)

FIGURE 3.6: Map of the pRS315dgs1-IRE-luciferase reporter plasmid.

3.4 Insertion of the Iron Response Element

A set of synthetic oligonucleotides was designed contgirtime IRE nucleotide
sequence from Kolotevat al between overhanging CA nucleotides (figures 3.7 and
3.8), enabling the IRE to be ligated into the Ndel restricite on the reporter plasmid
(figure 3.6) [4]. The IRE oligonucleotides were synthesibgdEurogentec, annealed
together into a double stranded DNA fragment duplex, analtéid into the reporter
plasmid. Using this cloning strategy with a single resioictsite and a small insert
presents a high probability of the vector plasmid re-aringaluring ligation resulting
in a large number of false positive transformation coloniéswever, the IRE contains
an additional Hindlll restriction site and the eliminatiaf the reporter plasmid’s
single Ndel restriction site during ligation provided aesming method for identifying
transformed colonies using restriction enzyme digestloxahg transformation oE.
coli TOP10, a number of colonies were selected for miniprep DNAldimation and
screened by restriction enzyme digest (figure 3.9). Thenpthsvas digested with
restriction enzymes, and agarose gel electrophoresis s&b to determine the sizes

of the bands following enzymatic digestion, and to confire iRE had been correctly
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5" - CACCAATTATCTACT TAAGCTTCAACAGT GCTTGAACTTAAGAACACAAAACTCGAGAAGA- 3
3’ - GGTTAATAGATGAATTCGAAGT TGTCACGAACT TGAATTCTTGIGITTTGAGCTCTTCTAC- 5°

FIGURE 3.7: Nucleotide sequence of the iron response element (I&®Bstructed as
a synthetic oligonucleotide by Eurogentec for annealirtg olouble stranded DNA,
and ligating into the reporter plasmid. The CA overhangsrked in bold) enable
the insertion of the IRE into an Ndel restriction site. Thel@rined region forms the
stem-loop hairpin structure that is bound by the IRP, blegkranslation.

IRE STEM-LOOP STRUCTURE

| FUS1 PROMOTER LUCIFERASE GENE
LUCIFERASE GENE mRNA TRANSCRIPT

5' CAP STRUCTURE

TRANSCRIPTION

—>
FUS1 PROMOTER | LUCIFERASE GENE
/ YRTER PLASMID LUCIFERASE GENE CONSTRUCT
taccaattatctacttaagcttcaacagtgcttgaacttaagaacacaaaactcgagaagatatg
IRE SEQUENCE
END OF FUSl PROMOTER LUCIFERASE START CODON

FIGURE 3.8: Schematic diagram of the IRE position, in relation ®RUJS1 promoter
and IRE gene.

ligated (figure 3.9). The plasmids were digested with Hihdlhd BamHI. The IRE
ligated reporter plasmid produces 6kb, 2kb fragments arf@Da fragment due to an
additional Hindlll site located in the IRE. The pRS31p4B:-luciferase without the

IRE was used as a control and produces 6kb 2.6kb fragments.

The IRE ligated plasmid was sent for sequencing to confirniRiiehad inserted in the

correct orientation, and transformed irBocerevisiae ssf?strain.
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FIGURE 3.9: Insertion of the IRE into the plasmid was confirmed byedigpn with
restriction enzymes. L is NEB 1kb ladder. U is undigested 3BSR-ys1-IRE-

luciferase plasmid. T is the pRS315-pFUS1-IRE-luciferatsmid digested with
BamHI and Hindlll restriction enzymes. C is the control pRS53ys;-luciferase
enzyme digested with BamHI and Hindlll. The additional Hlhaite in the IRE

produces 6kb, 2kb and 500bp fragments while the single Hisde in the control
cuts 6kb and 2.6kb fragments.

3.5 Construction of the Repressor Plasmid

The repressor plasmid was initially constructed using thRRex plasmid, containing
the yeasfTRP1 constitutive promoter (see figure 3.11), and has been usedl@as
strength constitutive promoter in previous work in the Ielbdzuk, M (2009), personal
communication. University of Warwick). In wild type yeastdp1 controls expression
of the TRP1gene ofS. cerevisiaavhich codes for N(5hosphoribosyl)-anthranilate
isomerise which catalyses the third step in the tryptophasyinthetic pathway [255].
The Prrp1promoter has been found to generate two mRNA groups witlereifft 5
ends named “transcript I’ and “transcript 11” [255]. One gmof mRNA transcripts
is transcribed with leader sequences which are 60 to 200bgefothan the other
[256]. Each group has been found to be transcribed from amegi the promoter
with a sequence homologous to the consensus sequence ofATie bbx [255].
The Prrp1 promoter region in the pTRPex plasmid was identified betwsasitions
571 and 2185bp. The second TATA box was identified betweer B8l 2190bp,
and the TATA box identified at 1929bp. It was hypothesized TiRP1 promoter
would provide an appropriate level of IRP expression andiefit inhibition of basal
expression of the reporter plasmid, and the published esuoli theTRP1 promoter
would provide sufficient understanding to design effectivatrol elements to control

IRP expression. Site directed mutagenesis was used ta anblert! restriction site into
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the TRP1promoter at 1864bp to enable the insertion of LexA operagquences into
the promoter that would prevent the second TATA box from prbng the transcription

of downstream genes (see section 3.4.2).

3.5.1 Cloning the Iron Response Protein Gene
3.5.1.1 TRP1 promoter strategy

The iron response protein gene was obtained from the ladrgrptasmid library pJM6
plasmid (figure 3.10). The pJM6 plasmid and pTRPex plasmidsbath based on
the same pSupex plasmid, published by Olivetal [214], and theTRP1promoter
and IRP gene have been cloned between compatible regtrieiaymes sites. A
problem was encountered whilst attempting to clone the I&®drom pJM6. The IRP
gene repeatedly failed to ligate into the pTRPex plasmith wane of the transformed
colonies producing fragments with Xhol and Xbal restriotemnzyme digests. The IRP
was also amplified from the plasmid pJM6 using PCR and priciesgned to introduce
Sall and Xhol restriction sites at thé &nd 3 ends of the IRP to enable cloning into
the pTRPex plasmid, however this strategy also failed tatéigsuccessfully. A large
number of cloning attempts were made by the author, alorfyagsistance from senior
post doctoral researchers however a successful ligatitredRP gene into the pTRPex
plasmid could not be achieved. It is believed that the prmklencountered cloning the
PCR amplified IRP gene may have been due to a technical protakbrthe Sall enzyme
not cutting PCR products. New England Biolabs have ackniyéd this problem and
are investigating at the time of writing. The pTRPex plasiwialarge 8kb plasmid, and
the Prrp1promoter is a large promoter, 3kb in length. It was possiég & secondary
structure motif in the IRP DNA fragment was interacting wilie plasmid during the
ligation reaction, or attempting to construct a plasmid dkid was also resulting in
a problematic ligation. The short&CD1 promoter was available in the McCarthy
lab and provides the same promoter strengtpERP1(Firczuk M. (2010). Personal
communication (McCarthy Lab), [212, 242]). THeCD1 promoter was also shorter

than pTRP1and does not produce a heterogeneous mRNA population orstaris
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HindIII (2)

GPF promoter
mcs

BamHI (672)

pBR322 ori

Xhol (702)
Ndel (711)

ampR BamHI (748)

—

IRP
Ndel (2389)

PIJM6

9469 bp

Ndel (7084) e

URA3

Z____IRP3'UTR

Xbal (3649)
PGK1 terminator

HindlIII (3019)

ARS1

Spel (4185)
CEN4

FIGURE 3.10: Map of the pJM6 hIRP plasmid used for cloning the IRPegieo

the repressor plasmids (from the McCarthy lab plasmid fifra pJM6 is a yeast
expression plasmid based on the pSupex plasmid, and ceiitaldRA3auxotrophic
marker for selection in yeast and the ampicillin resistam@rker for selection in
bacteria. pJM6 contains the IRP gene under the control ofjétactose inducible
promoter, RaL.

multiple transcription start sites, as was reported forltR& 1promoter. It was decided

therefore, to exchangerRp1 for Ppcp1 in the circuit.

3.5.1.2 DCD1 promoter strategy

TheDCD1 promoter is a low strength promoter, and has been studietbpisdy in the
McCarthy lab (Firczuk, M. (2010). Personal communicatiomiversity of Warwick).
Ppocpz is the promoter for the gene Deoxycytidine monophospha@®ie) deaminase
required for dCTP and dTTP synthesis and is expressed tansly in S. cerevisiae
[212, 242]. TheDCD1 promoter is 209bp in length and has not been shown in the
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pBR322 ori
HindlIIl (572)

Xbal (739)
ampR
pTRP1

PTRPex

7461 bp

noti modification site
BamHI (2186)
URA3 Sall (2192)
Xhol (2197)
Ndel (2206)
Xbal (2211)
PGK1 terminator
ARS1 Spel(2747)

CEN4

FIGURE 3.11: Map of the pTRPex plasmid from the McCarthy lab plastiticary.
The plasmid pTRex is a yeast expression plasmid based onShpeg plasmid
[214]. The plasmid contains thERP1lyeast constitutive promoter, modified with
a Notl restriction site to enable insertion of additionahtol elements within the
promoter. The plasmid is based on the pSupex plasmid, anthinenthe URA3
auxotrophic marker for selection in yeast and ampicillsiseance marker for selection
in bacteria. pTRPex contains the constitutive medium gtregeast promoter, {Rp1
and a downstream MCS for the insertion of additional genes.

literature to produce heterogeneous mRNA populations frauttiple transcription start
sites, as observed fromykb1 [242, 255]. Bcp1 therefore provides a more compact
promoter than fkp1, and can be more easily modified with up-stream control etésne
rather than internal control elements as in the previougydesith Prrp1. The DCD1
promoter was obtained from the pDCDex plasmid, construlsyelllaja Firczuk in the
McCarthy lab (figure 3.12), and based on pSupex published et et al [214].
Plasmid Bcp1 and pJM6 were digested using the Sall and Spel restrictipyrees and
the IRP ligated into the pDCDex plasmid, downstream of@D1 promoter. Colony
PCR was performed using the&b1 forward primer and the internal IRP primer#2.
The RBycp1 primer binds to the 5end of the promoter, and the IRP primer #2 binds to
the complementary strand of the IRP gene 700bp downstream thie 5 end of the

IRP. A PCR product therefore can only be produced by bottD@G®1 promoter and
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HindIII (1)
pDCD1
Xhol (142)

Xhol (9041)
LexA operator BamHI (211)
HindlIII (go10) Xhol (241)

Ndel (250)

BamHI (287)

ampR
IRP
Ndel (1928)
LexAop-pDCD1-IRP
9067 bp
URA3 Msel (2013)
/ \ Xbal (3188-)
Clal (5620) PGK1 terminator
WSPQI (3724)
ARS1 CEN4

FIGURE 3.12: LexAop-pDCD1-IRP repressor plasmid map.

the IRP gene being present in the correct orientation. Thangd®CR results provided
a high ratio of colonies with PCR product of the correct sizgu¢e 3.13). Plasmids
capable of generating correctly-sized PCR products wegeeseed to confirm the

correct sequence and orientation of the IRP gene in the pR@Rsmid.

3.5.1.3 TEF1 promoter strategy

The TEF1 promoter is a strong constitutive yeast promoter, prongotifRNA expres-
sion levels higher than{Rp1and Bcp1 promoters [244]. gy is a 590bp promoter
that is also shorter thanrRp; and can potentially be modified with upstream control
elements using the same strategy gsd?. The IRP gene was cloned from the plasmid
pJM6 into the vector plasmid PTRPex (also based on the pSuasmid) using the Sall
and Spel restriction enzymes as a double digested. Folipthia ligation of the IRP

gene into the pTEFex vector plasmid, transformed colon&®wcreened using colony
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FIGURE 3.13: Agarose gel electrophoresis of colony PCR products) fbacterial

colonies transformed after ligation of the IRP gene with piCDex plasmid. The
left lane contains the New England Biolabs 1kb ladder foe sierification. The right

hand lane contains the colony pcr product from teed?-IRP plasmid construct. The
colony PCR experiment produced a DNA fragment of approxéga800bp which is

the expected size produced by the polymerase reaction tisingcp; and IRP#2

combination of primers.

PCR with the internal IRP primer #2, which binds to the comatary strand of the
IRP gene 700bp upstream of thehd of the gene, and also thedp; primer binding to
the 8 end of theTEF1 promoter. Only plasmids containing thegdp:-IRP construct in
the correct orientation can produce a fragment of apprata@lypa.2kb in size. Bacterial
colonies that were harbouring plasmids that were capaliemérating correctly-sized
PCR products were used for plasmid miniprep purification tredplasmids sent for

sequencing to confirm the correct sequence and orientdftitve dRP gene.

3.5.2 Insertion of LexA Operator Control Sequences

The E. coli LexA protein expressed by the de-repressor plasmid binds gpecific
DNA recognition sequence called the “LexA operator” [2387R The LexA operator
is comprised of the nucleotide sequence: TCGAGTACTGTATGMACAGTAC.

The LexA protein has been expressed in yeast in previous wobkished by Brent
and Ptashne and has been shown to inhibit expression oftgs¢amducible LacZ
genes when placed between the upstream activator sequehtramscription start point
[203]. It has been suggested that multiple repeats of thé logperator are required to
block downstream transcription [203, 235], however ther@ad agreed consensus in

the literature as to how many repeats are optimum for rejiggene expression [235].
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HindlIII (572)

LexA operator
Xhol (603)

HindllI (630)
pTEF1

BamHI (1238)

ampR%

LexAop-pTEF1-IRP
9446 bp

Sall (1244)
Xhol (1249)
Ndel (1258)
URA3 BamHI (1295)
IRP

Ndel (2036)

ARS1

Msel (3021)

CEN4' Xbal (4196)
Spel (4732) PGK1 terminator
HindIIl (4466)

FIGURE 3.14: Map of the LexAop-pTEF1-IRP repressor plasmid. Tlision of the
repressor plasmid contained the IRP gene expressed byER#& strong constitutive
promoter [244]. The plasmid vector was based on pSupexighaal by Oliverizet al
[214].

Also, research published by Brent indicates positionimgaxA operators within 60bp
upstream of the start codon is sufficient to inhibit transtoon by up to 10 fold [203].

Therefore, a set of two tandem repeats of the LexA operatsrdesigned based on
the sequence published by Brent and Ptashne that could éeedsnto the Hindlll
restriction site that is found immediately upstream of theedd of theDCD1 and
TEF1 promoters [203]. In addition, a unique Pacl restrictior sitas also designed
into the 3 end of the operator sequences to enable screening by tiestrenzyme
digest. The LexA operator sequence was ordered from Eutega&s a custom set of
complementary oligonucleotides. The oligonucleotidareds were annealed together
into a double stranded DNA molecule and ligated into theasgor plasmid, linearised
by Hindlll restriction enzyme digest. A number of plasmidsre purified by miniprep
from transformed bacterial colonies, and screened byicgstr enzyme digest using
the Pacl enzyme. The digests were visualized by agaroselemtaphoresis and

plasmids that were linearised by the Pacl enzyme were sesetpuencing to confirm
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5 - AGCTTCGAGTACTGTATGTACATACAGTACTCGAGTACTGTATGTACATACAGTACTTAATTAAA- 3
3’ - AGCTCATGACATACATGTATGT CATGAGCT CATGACATACATGTATGTCATGAATTAATT TTCGA- 5

FIGURE 3.15: The LexA operator sequence containing flanking Hingistriction
sites (bold) and internal Pacl restriction site (undedine The LexA operator
sequences were ordered as a set of oligonucleotides, adneadd ligated into the
Hindlll restriction site in the Bep1-IRP and Rer1-IRP plasmids enabling interaction
of the repressor plasmid with the LexA protein expresseah fitte de-repressor plasmid
during pheromone induction of the gene circuit.

the insertion and location of the LexA operators.

3.5.3 Cloning the IRP PEST Degradation Tag

The plasmid pSVA17 containing the gene yEGFP3-Cppsr was obtained from
Simon Avery (University of Nottingham) who (with Carolinad#us) had constructed
a short half-life GFP by the addition of the degradation algrom the 3-terminal 534
nucleotides ofCLN2to the 3 terminus of yEGFP3 [216]. In order to obtain the PEST
tag in a form suitable for tagging the IRP gene, the primeeslus Mateus and Avery
were modified to exchange the restriction sites in yYEGP3HerMscl restriction sites
compatible with the IRP gene, and an additional unique Ntalfsr screening potential
clones after ligation (figures 3.18 and 3.19) [216]. TleN2degron tag was inserted,
in-frame at the 3terminus of the IRP upstream of the stop codon, creating ¢geath

sequence tagged IRPsTgene (see appendix A).

The 534bp PEST tag was amplified using PCR with the PEST FwdP&®IT Rev
primers containing the Mscl restriction sites for insettinto the IRP gene on the
repressor plasmids (figure 3.16), and ligated into LexAgpd?-IRP (figure 3.18)
and LexAop-pTEF1-IRP (figure 3.19), linearised by resimicenzyme digest with the
enzyme Mscl. The ligation was transformed iffocoli TOP10 and the transformed
colonies screened by colony PCR using the PEST Fwd and PGKin&tor primers.
The colony PCR product was expected to be approximately@#6m the 534bp PEST
sequence and 273bp PGK1 terminator sequence (figure 3.14asmid preparations

were made from bacterial colonies harbouring plasmids phatiuced colony PCR
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Ladder PEST

FIGURE 3.16: PCR amplification of the PEST degron tag from plasmidAdS from
Mateus and Avery [216].

FIGURE 3.17: Colony PCR agarose gel electrophoresis performedamsformed
bacterial colonies containing th€EF1 and DCD1 promoter repressor plasmids
following ligation of the plasmids with the PEST degradattag. L is the (Fermentas)
1kb ladder for size determination, dcd is the repressorngthswnith the DCD1
promoter, and tef is the repressor plasmid with Tl&-1 promoter. Colony PCR was
performed with the PEST Fwd and PGK1 terminator Rev primer.

fragments of the correct size, and the plasmids were sergefguencing to confirm

the correct sequence and orientation of the PEST tag.

3.6 Construction of the De-Repressor Plasmid

The de-repressor plasmid was initially constructed froey@RS315 plasmid. The LexA
protein fromE. coli was cloned downstream of the31 promoter. Expression of
the LexA protein is therefore up-regulated by the yeast mgatesponse. The LexA
protein gene was amplified froi. coli TOP10 genomic DNA by PCR using primers
containing 5 Ndel and 3 Hindlll restriction enzyme sites for compatibility with e¢h
pRS315 plasmid (see table 2.2) (figure 3.21). The amplifiecALgene was cloned
into pRS315-Pys1-eGFP in place of eGFP, forming pRS31pgR:-LexA (figure 3.20).
Using the pRS315 plasmid for both the de-repressor and teapplasmid creates a
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Hindlll (1)
DCD1promoter
Xhol (9586) Xhol (142)
LexA operator BamHI (211)
Hindlll (9555) Xhol(241)
Ndel (250)
BamHI (287)
ampR

Ndel (1928)

IRP
LexAop-pDCD1-IRP-pest

9612 bp

URA3 Mscl (2913)

HindIII (2943)
PEST
HindIII (3341)

ARS1 Msel (3458)

Xbal(3733)
PGK1 terminator’

Spel (4269)
CEN4

FIGURE 3.18: Map of the repressor plasmid containing B@D1 promoter and IRP,
modified with the PEST degradation tag.

selection issue as both plasmids share the same LEU2 apkatroarker and therefore
cannot be co-expressed. The prs313 plasmid backbone, aguBipt-based centromere
vector (NCBI accession number U03439), created by SikansétiHieter [213] contains
the His3 auxotrophic marker, however the His3 gene did natain any compatible
restriction sites to clone into the pRS315 plasmid. Thgs2LexA elements from the
pRS315 plasmid were cloned as a cassette into the pRS318iglasing the BamHI
and Sall restriction enzyme sites, to utilize the His3 atoqatic marker. Following
ligation, transformed colonies were grown overnight in LBhaamicillin and plasmid
DNA purified by miniprep. The plasmids were digested with 8atl BamHI restriction
enzymes to confirm the ligation of-Bs-LexA into the pRS313 vector plasmid (see
figure 3.22 A and B). The plasmid was digested alongside empRi$313 plasmid
(figure 3.22 B). Digestion with Sall and BamHI produced fragrof approximately
1.2kb from the pRS313gs1-LexA plasmid and no fragment from the empty pRS313
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Hindlll (572)
LexA operator
Xhol (603)
Hindlll (630)
pTEF1
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HindIII (4349)

CEN4"'
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FIGURE 3.19: Map of the repressor plasmid containing Tie-1 promoter and IRP,
modified with the PEST degradation tag.

control plasmid. Plasmids producing a 1.2kb fragment foihg restriction enzyme
digestion with BamHI and Sall were sent for sequencing tdioonthe sequence and

orientation of the Bys1 promoter and LexA gene.
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Ndel (694)
HindIII (808)
His3
HindIII (995)

Ndel (1371)

i

PRS313-pFUS1-LexA

6014 bp

pAmpR

/ Xbal(2008)

Amp BamHI (2110)
"pFUS1
Xhol (3208) Ndel (2569)

HindIII (2187) LexA

FIGURE 3.20: Map of the pRS313-pFUS1-LexA de-repressor plasmid.

FIGURE 3.21: PCR product of the LexA gene frobh coli genomic DNA. L is the
(Fermentas) 1kb ladder for size determination, and LexAdsRCR product.

3.7 Conclusion

Following confirmation of the sequencing data for each of glesmids, the circuit
was transformed int8. cerevisiae ssf2(Euroscarf strain YO60555. cerevisiae ssi?

strain is hyper-sensitive to pheromone due to the mutatitindSST2yene that inhibits
the negative feed-back loop in the yeast pheromone respatiseay [49], and would

enable the strongest possible response to pheromoneimitartiuciferase expression.

S. cerevisiaavas transformed sequentially, first with the reporter pidsigrowing the

cells in YPD with-LEU drop out supplement. These cells provided a luciferaseaont
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PRS313

uUlsl s1 b1 Uz Cl

FIGURE 3.22: Ligation of the LexA gene with the pRS313 de-repregtasmid. A. L

is the (Fermentas) 1kb ladder, pRS313 is the pRS313 vedesidid with the BamHI
and Sall restriction enzymes. LexA is theg2r-LexA fragment. B. pRS313 plasmid
after ligation with the Pysi-LexA fragment digested with BamHI and Sall restriction
enzymes. Sl is BamHI single digest. S2 is Sall single digestis BamHI and Sall
double digest. C1 is control pRS313 plasmid cut with the 8alyme. C2 is control
pRS313 plasmid cut with BamHI. C3 is control pRS313 plasmitiwith Sall and
BamHlI restriction enzymes. U2 undigested pRS313 plasmi& DN

strain that could be used for comparison with the circuiiferase expression. The
yeast were next transformed with the de-repressor plagmalgrown on YPD medium
with -LEU, -HISdrop out supplement. The cells containing both the repanerde-
repressor plasmids were finally transformed with one of bl fepressor plasmids, and
grown on YP medium withLEU, -HIS, -URAdrop out supplement. The final round of
transformations produced four different strains of cedl;h containing one of the four
circuits, named after the repressor plasmid they contain€t3.1). In addition to the
four circuit strains, and addition strain was transformeithwnly the reporter plasmid,
to create a “luciferase control” strain, to measure maxinhueiferase expression from

thesst\ in the absence of LexA and IRP interactions.

Circuit Variation  IRP Respressor Variation

Pocp1 Pocp1 weak constitutive expression of the IRP
Prer1 Prer1 strong constitutive expression of the IRP
Pocp1-PEST B cp1 weak constitutive expression of short half-life IR
Preg1-PEST RerF1 strong constitutive expression of short half-life Rt

Luciferase control Reporter plasmid only. No repressoresrapressor plasmids

TABLE 3.1: Table of the four circuit variants (strains) that haéreonstructed for
tuning the expression of the luciferase reporter gene. éllscontain the pheromone
inducible luciferase gene plasmid, and the pheromone ihdutexA gene plasmid.
These plasmids are then combined with the third circuitmpldswhich constitutively
expresses the wild type IRP or short half-life Rt repressor, with either the low
expressiorDCD1 or the high expressioMEF1 promoter.
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The set of four circuit designs enables the tuning of theudifor short and long half-

life as well as the overall intra-cellular levels of the IREpressor. Model simulations
indicate the abundance of IRP is a key control point in theutirtherefore the

modifications prevent the repressor from overwhelming tle®A_de-repressor and
preventing luciferase expression (see chapter 5). Theelubicircuit combination also
provides the flexibility to investigate tuning the dynamiehlaviour of the luciferase
output through the interaction of IRP and LexA. Strong IRBression can be coupled
with a short half-life, and vice versa to investigate theeeffon luciferase signal

amplitude and period.



CHAPTER

FOUR

RESULTS - CIRCUIT CHARACTERIZATION

4.1 Introduction

Following construction of the gene circuit plasmids, thasphids were transformed
into S. cerevisiae ssf2forming four separate strains of circuitpg&bi1, Prer1, Pocpi-
PEST, and er1-PEST representing tHeCD1 weak promoter, and th€EF1 strong
promoter expressing the IRP repressor, and the shortif@alRIPrgstVvariant. The cells
were grown individually in broth culture and the expressibrhe circuit components
measured following activation of the circuit by stimulatiof the pheromone response
pathway with 100nMa-factor pheromone. The expression of the components was
measured using a range of techniques to obtain quantitataa at the various
hierarchical expression levels within the cell. Lumineszewas measured as the circuit
“output” using the luminometer and tle vivo luminescence assay to obtain real-time
kinetic data of luciferase expression. Luminescence nreasents provided general
circuit performance data that could be used to determinddhaviour of the circuit

and compare with model predictions (detailed in chapter 5).

Protein levels were measured to determine the level of thkélaad IRP repressors,
and infer kinetic parameters from the effect on the changaenuciferase output of
101



Chapter 4 Circuit Characterization 102

the circuit. The mRNA expression of the components was alsasured using RT-
gPCR to quantify the change in transcription levels. TheilRfepressed at the level of
transcription by LexA, therefore reduction in IRP mRNA lis/ean be attributed to the
activity of LexA, and the kinetics of the LexA repressor istigated through both the

protein levels of the repressor, and also the reduction FniiiRNA transcription.

4.2 Growth Rate Investigation

In addition to quantifying the relative levels of the compats of the circuit, the host
yeast strain was checked for the effect of maintaining tiheudi on the growth rate
of the cells, as changes in the output of the circuit could be t the burden of
maintaining three plasmids. Theg circuit was transformed into the pTC5 lab strain
of S. cerevisia¢o test alongside the pheromone hyper-senssi®\ mutant strain that
was used for expressing the circuit. The data would thenlerthb investigation of
effect on growth rate of both the circuit and th&t2\ mutation. It was hypothesized
that the Rgp1 circuit would exert the greatest burden on the cells due ¢ohilgher
expression level of the IRP protein. If a difference was olesg between the cells
carrying the circuit plasmids and those without, the remmgplasmid circuits would be
investigated further. The growth rate data was recordedrffig.1), and the growth rate

was calculated from the slope of the exponential growth @lfable 4.1). The growth

strain Slope R  doubling time (hours)
pTC5 0.45 0.99 2.2
pTC5 + circuit 0.4 0.99 25
SSt2A 0.31 099 3.2

SStA + circuit 0.3 0.99 3.3

TABLE 4.1: Growth rate of yeast strains pTC5 and Asidth and without the gene
circuit to investigate the metabolic burden of maintainihg plasmids. The data was
calculated using figure 4.1

rate data revealed that the plasmids did not produce a signifiag in the growth rate
of the cells hosting the circuit (table 4.1). The doublingéiof the pTC5 strain was
approximately 2.2 hours, and increased to 2.5 hours folgyilasmid transformation.

For thesst2\ strain the growth rate was approximately 3.2 hours and asae to 3.3
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Yeast Growth Rate With and Without the Gene Circuit

Log2 ODB00NM

Time (hours)

—&—pTC5 —e—pTCS+ SST2 ~—#— SST2+

FIGURE 4.1: Log log plot of the growth curve for thest2\ strain +/- circuit (yellow
and green), and the standard pTC5 laboratory strain +Aitificlue and orange).

hours following transformation. Thest2\ strain had a slower growth rate than pTC5,
but was still sufficient for studying the gene circuit, andhleled hyper-sensitivity to
pheromone and potentially a higher-fold increase in luage expression [93]. The
sst\ strains transformed with the gene circuit plasmids mana@i97% of the growth
rate of the cells without the plasmids, therefore it was aahed that the gene circuit

does not introduce a significant burden on the metabolisineohost cell.

4.3 Luminescence Measurement

Luminescence data were collected for each of the four dirstwains, in triplicate,
from cultures that were induced with 100nM pheromone antuced that were un-
induced with pheromone (baseline luminescence). In addituminescence data was
collected from the same yeast strain, containing only thergione inducible reporter
plasmid as a “luciferase control” strain. This strain reygrgs the maximum expression
of luciferase that could be produced by &2\ yeast cells, for comparison with the

circuit expression levels.
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A Circuit Liminescence with DCD1 promoter and IRP with and without PEST
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FIGURE 4.2: Luminescence expression for the-B; and Rycp1-PEST circuits (n=9).
A. Time course measurements of luciferase expression thrcied cells. The error
bars represent the standard deviation from the mean ceddufar each time point
measurement. B. Scatter plot of the same data used in ploedpdstrating the
dynamic range of the luciferase expression of the circuits.

Due to the high sensitivity of the luminometer, three bidtad replicates were
performed, and three replicate samples collected at eaoh pioint. Each sample
was measured three times in the luminometer, providing arfimamber of nine data
points for each time point. In addition, at each time-posatnples were collected in
triplicate for western blot and RT-qPCR analysis from eaglicate culture. The data
was normalised for cell growth using the cell count for eactetpoint. The data for the
luciferase expression of thePp1 and cpi1-PEST circuits demonstrated a higher level
of luciferase expression from the &b, circuit, and higher again from theBp1-PEST
circuit, compared with the luciferase control (figure 4. e baseline expression of un-

induced cells was investigated to check the functionalitthe repressors (figure 4.3).
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A Baseline Luminescence of DCD1 circuit with IRP with and without PEST
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FIGURE 4.3: Baseline luciferase expression for thepy and Rycp1-PEST circuits
(n=9). A. Time course measurements of baseline expressiamtinduced cells. The
error bars represent the standard deviation from the melanlaed for each time
point measurement. B. Scatter plot of the same data usedtid\ptiemonstrating the
dynamic range of the luciferase expression of the circuits.

The data show that thepRp1 and Bycp1-PEST circuits do not repress the basal level of
expression of luciferase below the basal level of the luage control. The expression
of the Bycp1 and B¢cp1-PEST circuits is higher than the control, particularly tbhe
Pocp1-PEST with the short half-life IRR:sT. The data were collected on different
days however, introducing variation between the cell cakuln addition, the baseline
luminescence of the control provides an indication of thaimal level of luciferase
expression of the reporter gene on the reporter plasmidebhemthe data from the
control cannot be directly related to the circuit straingramdication of the baseline

luminescence from the circuit.
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The relative fold change was calculated in order to asceatéold increase in luciferase
expression for each of the circuits. The luminescence measnt was converted to
relative luminescence units per ml using the cell count fitbm cellometer, and the
RLU per cell for pheromone stimulated cells divided by thelRper cell for the non-

pheromone stimulated cells, at each time point. Using this,dit was possible to
compare the fold increase in luciferase expression betwheromone stimulated and
unstimulated cells. A higher fold change indicates a higix@ression in relation to the

baseline expression level.

As each strain has the same theoretical maximum expressiehdf luciferase from
the pheromone inducible FUS1 promoter, a fold change éiffeg between strains can
be equated to a larger difference between the induced ledeliainduced basal level
of expression of luciferase. Analysis of the fold changexddiowed the f:-p; circuit
indicated a directional increase in luciferase expressmmpared with the luciferase
control strain4.4). However, the higher level of variatiarthe data prevents an exact

calculation of the fold change difference between the diand the control strains.

Maximum luciferase expression was achieved at approxign2@® minutes, compared
with 120 minutes from the control, and the transition to tHé-cstate requires the same
level of time for both the Bcps circuits and the control, indicating the IRP repressor

did not rapidly inhibit luciferase translation followindipromone-induction.

The Rycp1-PEST circuit demonstrated a similar rate of increase inh@scence as the
Ppcpa1 circuit, similar to that of the control. Thegp1-PEST circuit also required 200
minutes to reach maximum luciferase output, as observedtine Rcp circuit (figure
4.4). The Bcp1-PEST circuit achieved a maximum fold change increase ifease
expression of approximately 6 fold. This fold change inseewas not as high as the
Pocpz circuit which was presumed to be due to the attenuated if@ldd the IRP and
the lower abundance of the repressor in the cell, enablingylaeh expression from
un-induced cells. Reduction of signal after 200 minute s alower in the Bcps-
PEST circuit compared with theyRp; circuit, also suggesting the shorter half-life IRP

reduces the overall level of repression of luciferase tedios.
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A CircuitLuminescence with DCD1 promoter and IRP with and without PEST
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FIGURE 4.4: Fold change in luciferase expression by thed? and Rcpi-PEST
circuits compared with the luciferase control (n=9). A. €imourse measurements
of the relative fold change in luminescence between thecdedwand un-induced cells
expressing the fp; and RBcp1-PEST gene circuits. The error bars represent the
standard deviation from the mean calculated for each tiniet ppeasurement. B.
Scatter plot of the same data used in plot A, demonstratiaglyfmamic range of the
luciferase expression of the circuits.

The experiment was repeated with thg=f and Rgr1-PEST circuits (figures 4.5 and
4.6). As expected, the luminescence expression was refiaredhe Reri, and Rers-
PEST circuits, which was attributed to the higher level d® & pression from thEEF1
promoter. The baseline data was also plotted and showed ex lewel of baseline
expression for the f2g1, when compared with the luciferase control and thed?
circuits (figure 4.3). The f=g1-PEST circuit showed a higher level of expression than
the Preps circuit, similar to the level of the luciferase control, doehe shorter half-life

of the IRR-esTrepressor (figure 4.6 B). The fold change in luciferase waggd for

the Prep1 and Rep-PEST circuits (figure 4.6). The data showed a reduction én th
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A Circuit Luminescence with TEF1 promoter and IRP with and without PEST
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FIGURE 4.5: Luminescence expression for thg=F and Rgr-PEST circuits (n=9).
A. Time course measurements of luciferase expression thrced cells. The error
bars represent the standard deviation from the mean ctddufar each time point
measurement. B. Scatter plot of the same data used in ploe#pdstrating the
dynamic range of the luciferase expression of the circuits.

output of luciferase compared with thedd1 and Rcpi1-PEST circuits (figure 4.7 and
4.4). The Regr1 promoter expressed a higher level of IRP in the cell, andoitdihe
translation of luciferase mMRNA expressed during pherorindaction of the circuit
(and was confirmed by western blot, figure 4.17). The low |lefdlciferase output
from the Rgfg; circuit also indicated the high level of IRP in the cell wadfistently
high to negate repression of IRP transcription by pheromodeced expression of
LexA during the period of the pheromone response pathwag.Pfig; circuit reaches
maximum output of luciferase within 120 minutes, compagatith the control however

the fold change induction is less than 4 fold, compared wghraximately 5 fold
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A Baseline Luminescence of TEF1 circuit with IRP with and without PEST
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FIGURE 4.6: Baseline luciferase expression for thgf} and Bgr1-PEST circuits
(n=9). A. Time course measurements of baseline expressiamtinduced cells. The
error bars represent the standard deviation from the melanlaed for each time
point measurement. B. Scatter plot of the same data usedtid\ptiemonstrating the
dynamic range of the luciferase expression of the circuits.

from the control. The fr1-PEST circuit data showed a higher level of luciferase
expression following pheromone-induction compared wWithRgg; circuit (figure 4.7)
with a 1.5 times higher-fold change increase in lucifera¥@e Prgr1-PEST circuit
luciferase expression reached approximately 5-fold itidncsimilar to the fold change
increase of the control. However thed?,-PEST circuit requires approximately 200
minutes to achieve maximum output (as with thep; circuits), compared with 120
minutes with the control. After 200 minutes the lumineseefaid change reduced to

approximately 3 fold within 100 minutes, making a fasteurstto the OFF-state for
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A CircuitLuminescence with TEF1 and IRP with and without PEST
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FIGURE 4.7: Fold change in luciferase expression by thedP and Rgr-PEST
circuits compared with the luciferase control (n=9). A. €imourse measurements
of the relative fold change in luminescence between thededwand un-induced cells
expressing the #r1 and Rer-PEST gene circuits. The error bars represent the
standard deviation from the mean calculated for each tiniet ppeasurement. B.
Scatter plot of the same data used in plot A, demonstratiaglyimamic range of the
luciferase expression of the circuits.

the Prep1-PEST circuit when compared with thedg1 circuit, as well as the f:p1
circuits. The observation of a faster reduction in the lusstence fold change from
the Prer1-PEST circuit was likely to be a combination of effects of teduction in the
activity of the pheromone response pathway and the decteapeession, relative to

the Preg; circuit.

The maximum fold-induction in luminescence was calculdtadeach circuit (figure

4.8). The maximum fold-induction was observed from thgf and Rcp1 -PEST
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Maximum Luciferase Fold Change
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FIGURE 4.8: Maximum luminescence fold change for each circuit nI%e control
circuit is the pheromone-induced luciferase reporter gdorae, with no repression.
The fold change is the ratio of luminescence between thegdiand un-induced cells,
and the graph shows the maximum ratio achieved by each ofirtigts during time
course experiment.

circuits, compared with the J2p1 circuits. The Rgg1 circuit is repressed by the
strong promoter, and addition of the short half-life IRP I tFrgr1-PEST restores
the fold-change to a similar level as the control strain. fidlé-change luminescence
measurements indicated the expression level of the lasiéereporter gene is governed
primarily by the rate of IRP production by the repressor pi@s as predicted by the
model (chapter 5, figures 5.13 and 5.14). The pheromonezetuexA repressor does
not appear to have a strong influence on the level of lucieemgput as induction
times are slower in all of the circuits compared with the colngtrain (figures 4.4 and
4.7). This could be due to the time required for transcrilanhibition to reduce the
protein abundance in the cell, especially with the long-ht#fIRP repressor. A high
level of IRP mMRNA template in the cell coupled with a longeld/repressor protein
provides a large reservoir of repressor molecules and &mpTlhe IRP’s function as
a translational repressor also enables it to rapidly inhii@ expression of additional
luciferase protein from the mRNA template, enabling it tpress the output of the
circuit within a shorter time-scale than LexA can repred8 BXpression. As the model
predicted from sensitivity and metabolic control analyslsapter 5), the largest change
in the dynamics of the luciferase output were observed frarctly perturbing the

constitutive promoter strength and half-life of the IRP.
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In addition to assessing the circuit behaviour, a set of robmircuits were created
containing only the reporter and repressor plasmids (figugefor comparison with the
full circuit schematic, see figure 1.17, chapter 1.5.6, p&de TheS. cerevisiae ssf?
cells were not transformed with the de-repressor plasmidatoing the pheromone-
inducible LexA repressor and therefore constitutivelyresg the luciferase reporter
gene. Differences in the expression of the luciferase tepgene between the control

and full circuits could be attributed to the activity of the&XA de-repressor. The

Extracellular environment

Pheromone stimulation

\C

CELL MEMBRANE

o O

Luciferase

Q CYTOPLASM

pheromone response pathway

NUCLEUS

’
Rl reporter plasmid
Ste12 |,

NO LEXA DE-REPRESSOR PLASMID

Repressor plasmid

FIGURE 4.9: Schematic diagram of the control experiment with deflasformed with
the repressor and reporter plasmids only (no LexA de-reprgdasmid).

data from the Bcp1 and Bycp1-PEST control circuits showed a continuous level of
repression of luciferase output by the circuits (figure 1.T@king 240 minutes as time-
point for maximum luciferase expression (see figure 4.183pP repressed luciferase
expression by approximately 60% angldp1-PEST by approximately 70%. Across the
entire time course experiment, thedp control circuit inhibits expression of luciferase
by approximately 80% and thesBp1-PEST control circuit by 50%. The short half-life
IRPpesT repressor had its efficacy reduced by approximately 30% thi¢haddition
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DCD1 and DCD1-PEST Circuit Fold Change
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FIGURE 4.10: Fold change in luciferase output from thecp: and Rcpi-PEST
control circuits minus the de-repressor plasmid (n=3).

TEF1 and TEF1-PEST Circuit Fold Change

NO DE-REPRESSOR PLASMID

il ol 1
P ﬂli i :

time (minutes)

Luminescence Fold Change

WMTEF1 WMTEF1-PEST = Control

FIGURE 4.11: Fold change in luciferase output from thgsR and Rgr-PEST
circuits minus the de-repressor plasmid.

of the PEST degradation tag, compared with the wild-type Rf¢ experiment was
repeated with the /g1 and Rgpi-PEST control circuits (figure 4.11). The data
from the Rgr1 and Rep1-PEST circuits also demonstrated constitutive repression
luciferase expression, as with thedp: and Rcp1-PEST control circuits. At maximum
expression of luciferase, taken at 240 minutes in the exyari luciferase expression
was inhibited by approximately 66% by thedp1 circuit, and approximately 40% by
the Prgr1-PEST circuit. As observed in theyPp1-PEST circuit, the PEST degradation

tagged IRP repressor activity was reduced by approxim&@¥s compared with the
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wild-type IRP.

For both the Bcp1 and Regp control circuits, there is no fold change increase in
luciferase expression over the control, as observed frerffulhPpcp1 and Bcp1-PEST
circuits (figure 4.4). The data provided evidence that theAleepressor is functioning
within the circuit to repress the IRP repression on lucgeraanslation, and the circuits
are functioning as designed. As with the circuit lumineseesissay however, there was
a large amount of variability in the data which prevents fimgrsignificant conclusions

on the expression of the circuit components and the chaistats of the circuit.

4.3.1 Luciferase Signal to Noise Ratio

The project goal was to investigate the reduction in basplession of luciferase
by the interaction of the circuit components. Basal expoeswas recorded as the
luminescence from non-pheromone induced cells, and cardpaith luminescence
measured from the pheromone induced cells. The signal sematio (SNR) provides a
method of investigating the difference between the sigwahfthe circuit (luminescence
following pheromone induction) and the background lummeese (basal expression

from non-induced cells).

A low SNR would indicate a smaller difference between lugife expression from
pheromone induced and non-induced cells, and a high SNPRBatedi a larger difference
between basal and pheromone induced luciferase expresgia can be attributed to

the activity of the circuit, repressing basal luciferaspression.

The SNR was calculated using the ratio of the mean luminescereasurement at
each time point, and the standard deviation from the meaadt #me point (section
2.29.4). The luminescence SNR was then compared betwearntdtrains, and the
control strain (pheromone induced luciferase expressitmmwe additional repressors),

for each of the time course experiments.

The SNR data for the dgp1 circuits shows an increase in the SNR during the

pheromone response (figure 4.12), which was expected asc¢h# bas a higher output
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of luciferase (figure 4.4). The SNR decreases rapidly falgvthe two hour period of
the pheromone response compared with the control (figu2A)1This indicates the
circuit becomes more noisy in the OFF-state than the conitblonly the pheromone-

inducible reporter gene without the repressor interastion

A DCD1 and DCD1-PEST Circuits Signal to Noise Ratio

Signal:Nolss Ratio

time (minutes)

—&—DCD1 —e—DCD1-PEST Caontrol

B DCD1 and DCD1-PEST Circuits Signal to Noise Ratio
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FIGURE 4.12: Luciferase expression signal to noise ratio (SNR)ttier cp1 and
Pocp1-PEST circuits, and the control (pheromone induced luafferexpression only)
using the luminescence time course data. A and B are the sataeapresented by
two charts due to the size of the error. A. The change in the &iR over time for
each circuit throughout the experiments. B. The noise gatian throughout the time
course experiment for each circuit.
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The SNR for the Per; circuits was also calculated (figure 4.13). The data alsawsho
the same increase in SNR as the circuit is induced (figure 4)13he Prgg; circuits
retain a higher SNR compared with the control strain durimg first two hours of
the pheromone response, despite therRPEST circuit producing the same level of

luciferase output as the control (figure 4.7).

The Prep1-PEST circuit maintains a longer period of high SNR than tbed?, Pocpi1-
PEST and g1 circuits over approximately 200 minutes (figure 4.12), amd tvas
attributed to the fp1-PEST circuit taking longer to reach maximum luciferasepatit
Both of the Rgr1and Rgp1-PEST circuits also reduce the SNR rapidly as the luciferase
levels reduce, and the circuits returned to the OFF-staperéi4.13 A). The lower SNR

is maintained for the remainder of the time course, as weHtp1 circuits, compared

with the control strain.

The data indicated that both thed?1 and R¢p1 circuits had a lower level of noise in
the ON-state compared with the control, and a higher leveloade in the OFF-state,
and in transitioning from the ON to the OFF-state (figure24id 4.13).

The modelling data indicated the addition of the PEST tadh&IRP repressor may
increase noise in the expression of luciferase (chaptegefi.18). A lower SNR was
observed from the fp1-PEST circuit, compared with theyBp1 circuit (figure 4.12),
however it was not observed from thedp1-PEST circuit compared with therPr1

circuit (figure 4.13).

In addition, the SNR was plotted as a function of the lumieese measurement
for each of the circuits, to confirm the SNR was increasinghwvilie increase in

luminescence (figure 4.14).

The signal to noise ratio of luciferase expression in thetrcbrircuits (without the
LexA component) was calculated (figures 4.15 and 4.16) fargarison with the full
circuit (figures 4.12 and 4.13). The SNR data from the contnaduits showed a
similar, or lower SNR compared with the control strain (mmeone inducible luciferase

expression without the repressors), during pheromonectiau(the first 120 minutes
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A TEF1 and TEF1-PEST Circuits Signal to Noise Ratio
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FIGURE 4.13: Luciferase expression signal to noise ratio (SNRrutated for
the Frgrr and Ber-PEST circuits , and the control (pheromone induced luagfer
expression only), using the luminometer time course datandB are the same data
represented by two charts due to the size of the error. A. Hamge in the SNR
ratio over time, for each circuit throughout the time cousgperiment. B. The noise
propagation throughout the time course experiment for eachit.

of the time course experiment), and this was attributededdtver expression level of

luciferase from the control circuits.

The circuits without the LexA de-repressor demonstratedgadr SNR following

pheromone activation, compared with the pheromone indocettol strain, indicating
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FIGURE 4.14: Signal to Noise Ratio plotted as a function of lumimese for each
of the four gene circuits. A. fp; circuit with the DCD1 promoter and wild-type
IRP. B. Rycp1-PEST circuit with theDCD1 promoter and short half-life IRP, C1B-1
circuit with theTEF1promoter and wild-type IRP,#2r1-PEST circuit with the strong
TEF1promoter and short half-life IRP. E. Control strain with fileeromone-induced
luciferase reporter gene with no repression.

luciferase expression from the circuit without LexA wasslemisy than the control

strain without the repressors, as well as the full circuttwaill of the components.

Noise propagation in the SNR throughout the experimentsehiemwas high (figures

4.12 B, 4.13 B, 4.15 B, and 4.16 B), corresponding with thénhayel of variation in

the luminescence data which was used to make the calcudatidme size of the error

propagation prevents making significant conclusions froendata, and the changes in

SNR can only be used as anecdotal evidence of the behavithe ofrcuit. More data

is required to further investigate the significance of thenges in SNR observed in this

work, as well as the contributions of the circuit componeatsoise (see chapter 6).
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FIGURE 4.15: A and B are the same data represented by two charts dtre to
size of the error. A. Signal to Noise Ratio calculated for figp; and Bcpi-
PEST circuits without LexA, and the control (pheromone retliluciferase expression
only), calculated using the luminometer time course dataTH& noise propagation
throughout the time course experiment for each circuit.
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FIGURE 4.16: A and B are the same data represented by two charts dtie to
size of the error. A. Signal to Noise Ratio calculated for Fyger1 and Rgr-PEST
circuits without LexA, and the control (pheromone inducediferase expression
only), calculated using the luminometer time course dataTH& noise propagation
throughout the time course experiment for each circuit.

4.4 Protein Quantification

From the luciferase data it was concluded that the initraktzero, plus the 1 hour, 2
hours, 4 hours, and 5 hours time course samples would proepdesentative samples

for investigating protein expression by western blot. Aatlies for luciferase, LexA,
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FIGURE 4.17: Representative IRP antibody western blot of teedr and Rer1 gene
circuits with (+) and without (-) pheromone-induction. lemnare labelled with the
sampling time (minutes). sst2 Control is tBecerevisiae ssf2control strain that was
not transformed with the circuit plasmids.

and IRP were purchased from a range of suppliers. An equivafelml of culture at an
ODgsoonm=1.0 was collected at each time point however, luciferasd R proved to be
very difficult to detect by western blot (figure 4.17, and 4.2Quciferase quantification
by western blot was not essential as the luminometer prdvegdeurate measurement
of this component however, the presence of LexA and IRP conllglbe inferred from
the luminescence data and not quantified. Western blottitategas attempted using a
number of secondary antibody conjugates, and correspguigitection strategies were
tested in order to enhance LexA and IRP detection. Fluomressethiocyanate (FITC),
Horseradish peroxidase (HRP), and infra-red conjugatedrslary antibodies were
used, and finally alkaline phosphatase bound secondatyoaints with the Promega
BCIP/NBT colour development substrate kit. Of these meshamhly the alkaline
phosphatase conjugate secondary antibodies detecte@Rhbut only from the fr1
and Rer1-PEST circuits with the higher expression level of IRP (fegi.17 and 4.20).
The data from the IRP western blot (figure 4.17) revealedraasigr theTEF1promoter
IRP expression, and a weak signal for l€D1 promoter which disappeared following
pheromone-induction, making it difficult to quantify theldochange reduction in

IRP expression from gp: and Bycpi1-PEST samples. ThetBr1 promoter IRP
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Kinetic Luminescence Measurements
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FIGURE 4.18: Luminescence assay of the constitutive expressidacdérase from
the DCD1 (orange) andrEF1 (blue) promoters. The fold-increase in expression of
luciferase from Pgr1 compared with Beps is plotted on the secondary axis (yellow).
Figure recreated with permission from Malys N. (2011, MdB&aiab unpublished
data).

expression signal however was stronger and enabled pgugtification of IRP
expression. Kinetic measurements of luminescence prdvigication that thédCD1
promoter expression level was approximately 60 times |avan theTEF1 promoter
(Malys N. and Pietroni P. (2011). McCarthy lab, data unml@d) (figure 4.18),
therefore although there was a low level of IRP expressiomfthneDCD1 promoter,
expression could also be estimated from thed? expression levels. For estimating
parameter values for the model, the=P; circuit could be used to quantify expression
which can then be estimated for thedpi circuit. Data from the egq circuit IRP
expression level was collected and the relative levels ofgim expression calculated
to investigate the repression of IRP by LexA expressed bygohene-induced cells
(figures 4.19 and 4.20). The results indicated the IRP compioof the Rgg; circuit
was inhibited during pheromone-induction, compared witim-pheromone-induced
cells (figure 4.19). From the data it could be inferred the IR being repressed by
the pheromone-induced expression of the LexA repressarelas an increase in IRP
expression observed between the initial measurement &ncethaining time course
measurements, which could not be directly explained andikelyg due to variation in

the sampling and western blot assay, however measurenwogsdhe time period of
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PTEF1 Circuit IRP Protein Expression
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FIGURE 4.19: Analysis of IRP expression from thedp; circuit obtained by western
blot (n=3). The data show time course expression levels BfftBm the Rgg; circuit.
The y axis shows arbitrary units calculated from image isitgn

the experiment were consistent. The average differeneecieetIRP expression for the
induced and un-induced cells was calculated across thectinnese experiment for the
Prer1 and was approximately 203 arbitrary units, compared withr@xamately 636
from the un-induced cells, indicating IRP expression wakiced by approximately
70% during pheromone-induction. If theygh1 promoter produced 60 times lower
expression level of IRP than the#; promoter, and LexA also inhibited the IRP by
70% in the Bcp1 and Bycp1-PEST circuits, then this provided an explanation as to

why it was not possible to quantify IRP expression from thesauits.

Western blot data was collected for thegP;-PEST and expression compared with
the Pregg; circuit with the wild-type IRP (figures 4.19 and 4.21). Thealahowed a
reduction in the expression of IRPstin the pheromone induced cells, compared with
un-induced cells during the period of pheromone-inducffure 4.21). The average
reduction in IRBgsT expression in the induced cells was calculated across rie ti
course experiment as approximately 40% of the un-inducksl aedicating IRRPesT
was inhibited by approximately 60% during pheromone-iniduc Also, the overall
level of IRResT Was reduced by approximately 10-fold, compared with thelsype
IRP measurements (figures 4.19 and 4.20), and this lowerdalnge was attributed to

the increased degradation rate of the protein due to the BEQTence. The antibodies
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FIGURE 4.20: Representative western blot of the IRP antibodiethimthe Regr; and
Prer1-PEST circuits, with (+) and without (-) pheromone-indoati Lanes are labelled
with the sampling time (minutes). Thest2Control is theS. cerevisiae ssf2control
strain that was not transformed with the circuit plasmids.

PTEF1-PEST Circuit Short Half-life IRP Expression
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m PTEF1-PEST+ m PTEF1-PEST-

FIGURE 4.21: Analysis of the short half-life IRR2stexpression levels for therPri-
PEST circuit (n=3). The graph shows the time course expmadsvels of pheromone-
induced cells (Per1-PEST +) and non-induced cellsi1-PEST -). The y axis shows

arbitrary units calculated from image intensity.
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PTEF1 & PTEF1-PEST IRP Percentage IRP Expression
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FIGURE 4.22: Percentage IRP expression for thef? and Rgp-PEST circuits
analysed by western blot (n=3). The graph shows the pegemtapression level of
IRP in pheromone-induced cells as a function of non-induoglts during the time
course experiment.
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FIGURE 4.23: Representative western blot of LexA protein expagsBiom the Bcp;
circuit, visualized using the alkaline phosphatase methbdnes are labelled with
the sampling time (minutes). C is ti& cerevisiae ssf2control strain that was not
transformed with the circuit plasmids.

against LexA proved to be more sensitive than those agdRidtand LexA could be
detected by western blot (figure 4.23). As with the luciferasninometer data, there
was a high level of variation from the LexA western blot imaglysis (figure 4.24).
Also, there was a high baseline signal from un-induced it reduced fold-change
calculations as were performed with the luminometer daltee Gaseline data therefore
was subtracted from the data from the induced cells and preden figure 4.25 A
and B. The data indicated a directional increase in LexA&sgon in the pheromone-
induced cells, compared with the un-induced cells (figu2é& A and B). The directional

change was approximately the same for thedl and Rgg1 circuits. Using the initial
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LexA Protein Expression for PDCD1 and PDCD1-PEST Circuits
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FIGURE 4.24: Graph of LexA protein expression from the gene ciscalitained by
western blot (n=3). A) shows they)Bp1 and Ry¢cp1-PEST circuit time course samples
with (+) and without (-) pheromone induction. B) shows thefR and Rgr-PEST
circuit time course samples with (+) and without (-) pheromanduction.

measurement as a baseline and comparing the expressitathereeigh the time course
experiment, the F:p1 circuit demonstrated a fold-increase in LexA expression of
approximately five-fold (approximately 2,000 units at theial measurement to 10,000
units at 130 minutes (figure 4.25 A), and a three fold-ineeasthe Rgg1 circuits

(2,000 units to approximately 7,000 units at 130 minutesirégt.25 B).

A positive control (recombinant protein) was not availatolethe IRP, luciferase, and
LexA proteins, so a calibration curve for quantitative veestblotting could not be
performed. Also, the variability in the band intensity frahre alkaline phosphatase
reaction (figure 4.23) meant accurate quantification of &alon curve would be
difficult, and not quantitative in terms of molecules pei.céhe alkaline phosphatase
detection method was found to amplify weak signals howdwveralssay is an enzyme

reaction and variation in the time allocated for the reaxtaond variation in the substrate
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LexA Protein Expression for PDCD1 and PDCD1-PEST Circuits
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FIGURE 4.25: Graph of the base-line corrected change in LexA prad&pression,
comparing pheromone induced with non-induced cells, nbthby western blot (n=3).
A) Ppcpr and Byep1-PEST LexA protein expression. By and Rer-PEST LexA
protein expression. The y axis shows arbitrary units cated from image intensity.

concentration across the membrane can effect the interfditye band, adding noise to

the data.

The western blot data did however enable the measurememeiative-fold changes
between the pheromone-induced and non-induced cellsidingvinformation on the

relative increases of the components which can be relatedetduminescence data
(figures 4.4 and 4.7). Although not quantitative, westeantthig provided confirmation

of expression of the circuit components from the plasmids.

4.5 mRNA Quantification

MRNA expression of the circuit components were quantifiétgugverse transcription-

guantitative PCR (RT-gPCR). As with the protein quantifmat the initial time zero,
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plus the 1 hour, 2 hours, 4 hours, and 5 hours time course samyuld provide

representative samples for investigating mRNA expression

45.1 gPCR Housekeeping Gene Selection

A range of housekeeping genes were investigated to find desg@me with which
to normalize the expression of the circuit components. Ttneysby Teste M.et
al was used to identify a library of housekeeping genes thakdcbe used withS.
cerevisiae(table 4.2) [257]. The housekeeping genes used in the stwlg wross
referenced with the SGD database tool “Expression Coromed258] using the micro-
array gene expression databases for the yeast pherompoasegpathway (figure 4.26)

[85]. The micro-array data suggested UBC6 (YER100W), AL&BI(219C), TDH3

ORF Gene Maximum fold increase Maximum fold decrease
YNL219C ALGY9 1.0 -1.3
YDR519W FPR2 1.3 -1.1
YGL040C HEM2 1.1 -1.1
YBR011C IPP1 1.6 -1.4
YILO75C RPN2 1.8 -1.1
YDR167W TAF10 1.0 -1.8
YGR192C TDH3 1.4 -1.2
YER100W UBC6 1.1 -1.2

TABLE 4.2: Table of housekeeping gene expression fluctuatiomglutie yeast

pheromone response. Expression data was calculated usn§&D Expression
Connection software, using micro-array data from Robettal. [85]. Fold change

was calculated as the ratio between gene expression levgieromone-induced cells
and un-induced cells. Genes marked in bold were identifigzbtntial housekeeping
genes for the circuit RT-gPCR experiments.

(YGR192C) and HEM2 (YGLO040C) would be suitable housekegmenes for use
with RT-gPCR during the mating response as these genes démai@s the smallest
fluctuation in fold change during the pheromone respon®ée(ta2). From figure 4.26,
UBC6 was consistent throughout the two hour period of thengatsponse, and was
cited as a reproducible house keeping in the Teste studythanefore was used as the

housekeeping gene for assaying the gene circuit mRNA esipretevels [257].
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FIGURE 4.26: Graph of the gene expression changes for the housegegenes
during the yeast pheromone response. The data is plottdd waig2 ratio of
induced:un-induced gene expression levels against théndwoduration of the yeast

pheromone response pathway.

4.5.2 Primer Validation

RT-gPCR primers were designed for luciferase, LexA, anddBfes, and validated us-
ing plasmid DNA for the circuit primers, and genomic DNA faethousekeeping genes
(table 4.3). Miniprep plasmid and genomic DNA samples doittg approximately
50ng of DNA were diluted 10%, 1072, 10°°, and 107 and a RT-gPCR experiment
performed in duplicate for each primer pair. A standard RGR cycle was run, as
detailed in material and method chapter 2 and the data ai$éov a signal from each
of the primers (figures 4.27). Following the RT-gPCR expernitrall of the gene circuit
primers, as well as the UBC6, HEM2, and TDH3 housekeepinggns produced a
signal at the 107 dilution using the SYBR green detection method. The ALG#neris
produced a signal at 18 dilution. The primers therefore demonstrate a detectingea

of approximately 50ng to 5fg and an amplification efficientyL & (table 4.3).
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Validation of Gene Circuit and Housekeeping Gene RT-qPCR Primers
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FIGURE 4.27: Representative results of the RT-qPCR primer vatidagxperiment.
The graph shows the RT-gPCR SYBR green signal for the lasterLexA, IRP and
UBC6 housekeeping gene RT-qPCR primers performed on pilesnai genomic DNA.

Name Take Off Amplification
UBC6 1 40.6 1.83

UBC6 2 36 1.8

LexA 1 28.8 1.83

LexA 2 28.8 1.8

IRP 1 24.5 1.82

IRP 2 24.6 1.88
luciferase 1 25.5 1.87
luciferase 2 26.3 1.79

TABLE 4.3: Table of RT-gPCR validation data for the circuit and $ekeeping gene
primers. The table shows the take off cycle and PCR ampiificagfficiency for each
of the RT-qPCR Primers validated on genomic and plasmid DNA.

4.5.3 Sample Preparation

For each of the gene circuit time-points, the total MRNA wdseted as in the material
and methods section (chapter 2) and RT-gPCR used to quamifyelative amount of
MRNA in each. Each RT-qPCR reaction was repeated in trijgli@and the amplification
efficiency checked for a minimum of >1.6. For each of the RCBRexperiments, the
initial time point (t0) was used as the calibrator for thetiasent software in order to

perform comparative quantification. The data was then egackas the relative increase
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RT-qPCR Primer Validation on pDCD1 Circuit cDNA
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FIGURE 4.28: Representative results of the RT-qPCR primers wighPCDNA. The
graph shows the RT-gPCR SYBR green signal for the lucifetaseA, IRP and UBC6
housekeeping gene RT-gPCR primers performed on plasmidedesDNA

Name Take Off Amplification
LexA 1 21.3 1.68
LexA 2 21.7 1.71
LexA 3 22.0 1.71
luciferase 1 13.3 1.66
luciferase 2 13.0 1.66
luciferase 3 13.5 1.69
IRP 1 23.0 1.64
IRP 2 22.8 1.39
IRP 3 22.6 1.66
UBC6 1 17.5 1.68
UBC6 2 17.9 1.71
UBC6 3 18.1 1.74

TABLE 4.4: Representative RT-gPCR data usipgf circuit plasmid cDNA.

from the initial time point measurement. Each of the datan{soivas then normalised
against the signal from the UBC6 housekeeping gene, andlihetiange calculated for
the induced cells compared with the un-induced cells. Finle mMRNA expression
data was logged to base 2 to scale the data. A representasivi from an RT-qPCR

experiment on Bcp1 plasmid derived cDNA is shown in figure 4.28.
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PDCD1 Circuit mRNA expression
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FIGURE 4.29: Graph of the mRNA transcription data for the:B; circuit following
pheromone induction, obtained by RT-gPCR.

4.5.4 pDCDL1 Circuit gPCR Analysis

The data from the RT-gPCR experiments demonstrated a high ¢ variation. The
results from the Bcp1 circuit however show a directional increase in luciferasd a
LexA mRNA expression during the first two hours of pheromasponse (figure 4.29).
The luminometer data forgdp; showed maximum luminescence between 200 and
300 minutes (figure 4.4). This delay between mRNA expresaiahthe detection of

luminescence indicated the IRP was repressing translatilutiferase mRNA.
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455 pTEF1 Circuit g°PCR Analysis
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FIGURE 4.30: Graph of the mRNA transcription data for thg=F} circuit following
pheromone induction, obtained by RT-qPCR.

The data from the f£¢1 circuit showed luciferase mRNA expression increased in the
first two hours of the pheromone response (figure 4.30). Tenlescence data from
the Prggq circuit also showed maximum luminescence between 200 a@dB0utes,
and luciferase expression in thed?, circuit was lower than thedp; circuit (figures
4.7, and 4.8). This data further confirmed the IRP was funotg as a repressor of
luciferase mRNA translation, as transcription levels tog 8cp1 and Rgg1 circuits
were comparable but luminescence expression profiles wibeeedt (figures 4.4, and
4.7).

The data for the IRP mMRNA expression indicated a directidealease in expression
during the pheromone response from theR data, indicating LexA was repressing
transcription of IRP mRNA. The variation in the data for IRFRNA transcription

is extremely high however and may have been due to the low tfvexpression of
IRP from theDCD1 promoter creating noise in mRNA expression. However this is

speculative and further replicate data was required tamlbtare reliable data.
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PDCD1-PEST Circuit Protein Expression
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FIGURE 4.31: Graph of the mRNA transcription data for thecB:-PEST circuit
following pheromone induction, obtained by RT-gPCR.

45.6 pDCD1-PEST Circuit gPCR Analysis

The Rcp1-PEST circuit demonstrates the same trend in mRNA transeni@as the
Ppcpz circuit (figures 4.29 and 4.31). TheEb1-PEST circuit mRNA transcription
shows a decrease in the expression of IRP during the first twostof the pheromone
response. It could be inferred that this is due to pheromodeced expression of LexA,
inhibiting IRPegsttranscription. Luciferase and LexA also remain up-regdaturing
the pheromone response, however the data are highly variloiiting a conclusive

analysis of the relative changes in transcription.

4.5.7 pTEFL1 Circuit gPCR Analysis

The Prep1-PEST circuit data demonstrated an increase in luciferdgBAntranscrip-
tion in the first hour of the pheromone response (figure 4.3Bere was a directional
decrease in IRP expression compared to thep>PEST data (figure 4.31) with no
increase in transcription towards the end of the experirasnibserved in thed?p:
circuits, however as with the previous experiments theeehggh degree of variability

in the data.
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PTEF1-PEST Circuit mRNA Expression
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FIGURE 4.32: Graph of the mRNA expression data for thg=f?-PEST circuit
following pheromone induction, obtained by RT-qPCR.

4.5.8 gPCR Analysis Summary

The data from the RT-gPCR experiments were not sufficierttyieate for modelling,

as the data has a high degree of variability. The data do hewmwvide evidence
that the components are present in the circuits and intagpas there is a signal from
the IRP, luciferase, and IRP transcription, and a direefichange in the transcription

levels of each (figures 4.29, 4.30, 4.31, and 4.32).

A larger number of replicates was required to obtain moralbkd RT-gPCR data
for model fitting (chapter 5), and to find statistically-siggant differences in the
MRNA transcription levels during the pheromone respondso.fa larger number of
housekeeping genes should be run with each circuit to emadstealisation across a

range of housekeeping genes as this may also reduce thetewlability in the data.

In this work, three biological replicates were performeavheer for MIQE guidelines
it would be preferable to study ten housekeeping genes aridrpeten biological
replicates of each experiment [259, 260]. However, fordogal reasons this was not
possible for this project. The RT-gPCR data provides corirom of the interactions
of the components in the circuit, particularly for thedd1 and Rgg1 circuits where it

can be seen that IRP mRNA levels are being down-regulatéeiRycp; circuit (figure



Chapter 4 Circuit Characterization 136

4.31), but not in the f:g4 circuit (figure 4.32), providing insight into the kineticbtbe
LexA repressor. Inhibition of IRP is observed in thgdg: circuit (figure 4.29), but
a higher expression level of LexA is required for inhibitilRP transcription from the

Prer1 promoter.

4.6 Conclusion

The luciferase expression from the variations of the cir¢odicated there was
a quantifiable difference in the dynamic behaviour of theuwts as a result of
incorporating the high and low expression levels of the IBpreéssor and perturbing
the IRP half-life through the addition of the PEST degramtatiag. Western blot
data indicated that fusing the PEST-rich C-terminal donwdithe Mateus and Avery
YEGFP3 reporter gene to the IRP conferred a reduction inlifi@lbf the IRP as seen in
the yEGFP (figure 4.21) [216].

Increasing the expression level of IRP reduces the ovegalbtoutput (the amplitude of
the signal), as expected, and changing the half-life carase the signal and also tune
the deactivation of the circuit, reducing the period of tignal (figure 4.7). The IRP
and LexA repressors enable a higher-fold change in the bofpihe circuit between
the OFF and ON-states. Thedb circuit can be used to achieve the highest fold
change output of the cells (figure 4.4) and the reduction iftlfi@ can be used to
extend the period compared with the control. The circuitdfare provides an increase
in luciferase compared with a pheromone-induced repogae@lone, and a tunable

output in terms of luciferase expression.



CHAPTER

FIVE

MODELLING

5.1 Introduction

Modelling of biological systems is an integral part of thesiga and development
process in synthetic biology [8, 10]. Mathematical moadjliprovides hypothesis
generation for designing gene circuits [178, 180], and aaerpsimulation enables
prediction of complex behaviours that would be difficult tatieipate or investigate
experimentally [261, 262]. The process of computer mouigHollowed by laboratory
experimentation creates an iterative cycle of design andldpment that is a charac-

teristic of synthetic biology [14, 263].

The gene circuit model created for this project was requicepredict control points
and the dynamic range of the output of the circuit, providieng indication of
which components and interactions would be most significpnibr to laboratory
implementation. Later, as the circuit was characterizethenlab, gene and protein
expression data from the components could be collected sedl to parameterise the
model, allowing it to evolve into an accurate predictiveltéar understanding the

experimental observations. This approach provides dine&r the project at inception,

137
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and then early prediction of behaviour as the circuit isse#t the laboratory. A model
that is parameterised entirely by experimental data is @aidé predictive tool that can

be used for further refinement of the circuit behaviour [1689,1173].

The gene circuit was designed to be activated by the Steddmiation factor from the
yeast pheromone response pathway. The mating responseagdibrmed the input
to the circuit and involved a complex cascade of reactioas titimately resulted in
the activation of the mating response genes [55]. It wasdaecat the beginning of
the project to include the mating response pathway in theetresian “input module”
for the gene circuit reactions for accommodating the dyedmehaviour of the MAP
kinase cascade [128]. Currently, the most detailed modehefpathway that has
been published is by Bente Kofahl and Edda Klipp [128]. Thedetattempts to
provide a complete simulation of the pathway, includingi@tgin activation, the MAP
kinase cascade, and activation of the Stel2 transcripictorf (figures 1.8 and 1.9).
Although the model contains all of the components of the typasromone response
pathway, the individual reactions are not required whenukting the gene circuit,
and adds additional computational time to the simulatioRserefore in this project,
the model was simplified into a single rate equation to teatesthe flux through the
pathway into a generic input function for the circuit. To este this, the model was
reduced to only the components directly interacting with thscade. The input was
limited to the formation of the complete Ste5 complex - S&&7, Stell,@y, Fus3,
designated “complexD” in the model (figure 1.9) [128]. Thepui was taken as the
phosphorylated form of Stel2. The Barl and Farl reactionsabtng cell elongation,
chemotaxis, and pheromone degradation were removed, andothponents of the
MAP kinase cascade fixed at their initial values. Changirgyitiitial concentration
of complexD and observing the change in flux through the fieattion (v34: the
phosphorylation of Ste12 to Ste12pp) (table 5.1) enabledlsition of only the cascade

components directly involved in the phosphorylation ofi&te

As the model was based on simple mass-action kinetics thdtirgs output was
a linear increase in output in response to increasing inpe figure 5.1 A). The
flux through the reactions other than v34 were found to be nmahicompared with

reaction v34, therefore it was assumed that the flux throlnghnbating response
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pathway model is primarily towards the phosphorylation t#12 (see figure 5.1 B).
The slope of the graph produced from scanning through @aetd4, was taken as
the rate of phosphorylation of Stel2. The model was thenlgiegpby removing all
of the components between complexD and the double phodpledyform of Stel2,
replacing them with a single reaction, multiplied by theerabnstant for reaction
v34 from the original model (see equation 5.2). The final “imial model” took the
input from the activated trans-membrane G-protein andaetd the Stel2 transcription
factor through a single reaction, representing the flux efréactions through the MAP

kinase cascade (equation 5.1).

d[Fus3 .
% — _(Klus- [FUs3pp]] — (Klyas- [Stel2] - [Fus3pp] + (Klias- [Stel2active)
+(Klyaz- [complexD))
(5.1)
Reaction Reaction Details Rate (reactions per minute)
v32 complexD= Fus3pp 3.42x10
v33 Fus3pp= Fus3 50
v34 Stel2 + Fus3pp: Stel2 active 18
v35 Stel2 active= Stel2 + Fus3pp 10

TABLE 5.1: The simplified MAPK model based on the yeast pheromosportse
pathway model by Kofahl and Klipp [128]. The rate equationd parameters for all
reactions were taken from the model by Kofahl and Klipp, aB# was modified with
the rate calculated from equation 5.2. “=" denotes a relokrsieaction.

The rates of the reactions v32, v33, v34, v35 were taken fitoeniktofahl and Klipp
model, and are listed in table 5.1. Reaction v32 was modifieddorporate the rate of

flux through the MAP kinase cascade (figure 5.2) calculatexh fequation 5.2:
r =k-[complexD (5.2)

Equation 5.2 was derived from the observation of the chandkix through reaction
v34 as a function of the initial concentration of complexeTrate t” is equal to the

slope of the line from the flux through v34 multiplied by thencentration of complexD.
The slope of the line in figure 5.1A was calculated as3.42x16. The complexes that

make up the MAPK cascade were then deleted and a singleaweansterted for the
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FIGURE 5.1: MAP kinase cascade outputs plotted with varying ihitancentration
of complexD. The graph shows the initial concentration aihptexD (x axis) as a
function of the concentration of Stel2 active (y axis). Thraentration of Stel2active
is shown in nmol/l however this is an arbitrary measure ofcemtration and is not an
accurate prediction of the cellular concentration of plhosplated Stel2. A: Flux
through reaction v34, representing the change in the coratem of phosphorylated
Stel2. B: flux through the reactions producing the individieemponents of the MAP
kinase cascade, excluding phosphorylated Stel2.
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FIGURE 5.2: Flux through reaction v34 in minimal model incorpaongtia single rate
equation to describe the behaviour of the MAP kinase cascade

transformation of complexD to Stel2pp, with the reactionstantr. This model was
then run and the output behaviour checked for the new singferaodel. The new
simplified model was used to parameter scan increasing ntnatiens of complexD
and observe the rate of change in the concentration of pbogaled Stel2 through
reaction v34 (see figure 5.2). The slope of the graph was takéh37x18, which is

comparable with the original slope of the MAP kinase modeuie 5.1). From this
result, the new simplified model was taken as representatittee original Kofahl and

Klipp model for the rate of the activation of Stel2.
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5.2 Modelling Eukaryotic Signal Cascades

After further investigation of the Kofahl and Klipp modelh@pter 1.4), it was found
that the model was not sensitive to the level of pheromonethatthe steady-state
concentrations of phosphorylated forms of Fus3 and Stel2 wkvays zero, with
fixed levels of pheromone input. Some of the model parametieles were obtained
from the literature, but many had been fitted to validate thieaviour against wet lab
data of various mutants of the pheromone response pathvsy}. [TTo this end, the
model predicts the results it was designed to predict, hewehas little further utility,
and cannot thus be used to investigate other dynamics of Heeomone response,
such as ultra-sensitivity and the dynamic range of the siggsgponse, as reported by
O’Shaughnessey or Yi [46, 126].

5.2.1 A Revised Mating Pathway Model

A mechanistic model of the mating pathway was constructeh turrent descriptions
of the pathway found in the literature (table 5.2) [55, 8(jefe are no published studies
that accurately quantify the components of the yeast matatigiway. A comprehensive
search of the literature was conducted to find the most arcgpaantification of the
components of the MAPK pathway in yeast (table 5.3). The Welba of the model
using these parameters was compared with published exgaahobservation [126],
and models by Kholodenko, Huang and Ferrell, and Wang [13Q, 264]. The
model incorporated the MAP kinase cascade reactions ofdastypheromone response
pathway and models the successive phosphorylation of thBféomponents, Stell
(MAPKKK), Ste7 (MAPKK), and Fus3 (MAPK) (figure 5.3). Ste5 waot included
in the model reactions as it was believed it is primarily ireal in maintaining signal
specificity rather than facilitating signal transductiafi| 268]. The kinases interact
as they would with the scaffold (sequential phosphoryigtidut the scaffold itself
is not modelled directly. Each kinase must be doubly phogpated before it can
phosphorylate the next kinase in the cascade, and nonfisgaudosphorylases can de-

phosphorylate the kinases at each reaction in the cascduge Was no experimental
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Biochemical Event Model Reaction

Ste20 binds to Stell #1 ste20 + mapkkk= ste20-mapkkk

Ste20 phosphorylation of Stell #1 | ste20-mapkkk— mapkkk-p + ste20

Ste20 binds to Stell #2 ste20 + mapkkk-p~ ste20-mapkkk-p

Ste20 phosphorylation of Stell #2 | ste20-mapkkk-p-» mapkkk-pp + ste20

Stell binds to Ste7 #1 mapkkk-pp + mapkk= mapkkk-pp-mapkk

Stell phosphorylates Ste7 #1 mapkkk-pp-mapkk- mapkkk-pp + mapkk-
p

Stell binds to Ste7 #2 mapkkk-pp + mapkk-p=mapkkk-pp-
mapkk-p

Stell phosphorylates Ste7 #2 mapkkk-pp-mapkk-p — mapkkk-pp +
mapkk-pp

Ste7 binds to Fus3 #1 mapkk-pp + mapk= mapkk-pp-mapk

Ste7 phosphorylates Fus3 #1 mapkk-pp-mapk- mapkk-pp + mapk-p

Ste7 binds to Fus3 #2 mapkk-pp + mapk-p= mapkk-pp-mapk-p

Ste7 phosphorylates Fus3 #2 mapkk-pp-mapk-p—~ mapkk-pp + mapk-pq

Fus3 up-regulates expression of msghapk-pp— msg5 + mapk-pp

msg>5 binds to Fus3 #1 msg5 + mapk-pp-» msg5-mapk-pp

msg5 de-phosphorylates Fus3 #1 | msg5-mapk-pp- ptcl + mapk-p

msg5 binds to Fus3 #2 msg5 + mapk-p= msg5-mapk-p

msg5 de-phosphorylates Fus3 #2 | msg5-mapk-p— ptcl + mapk

msg5 is degraded msg5—

nsp binds to Ste7 #1 mapkk-pp + nsp= mapkk-pp-nsp

nsp de-phosphorylates Ste7 #1 mapkk-pp-nsp— mapkk-p + nsp

nsp binds to Ste7 #2 mapkk-p + nsp= mapkk-p-nsp

nsp de-phosphorylates Ste7 #2 mapkk-p-nsp— mapkk + nsp

nsp binds to Stell #1 mapkkk-pp + nsp= mapkkk-pp-nsp

nsp de-phosphorylates Stell #1 mapkkk-pp-nsp— mapkkk-p + nsp

nsp binds to Stell #2 mapkkk-p + nsp= mapkkk-p-nsp

nsp de-phosphorylate Stell #2 mapkkk-p-nsp— mapkkk + nsp

Phosphorylated Fus3 activates Stelanapk-pp + stel2» mapk-pp + stel2-active

Stel2 de-activates stel2-active— stel2

TABLE 5.2: Revised MAPK model reactions. The reactions are cocistd for input
into the Copasi software package.

Model Species Particle Number Source

Ste20 260 Ghaemmaghami S. [265]
Ste7 736 Slaughter B. [266]

Stell 672 Ghaemmaghami S. [265]
Fus3 848 Slaughter B. [266]
non-specific phosphatase 1000 Ghaemmaghami S. [265]
msg5 1000 Maeder C. [267]

Stel2 1390 Ghaemmaghami S. [265]

TABLE 5.3: Parameter values for the revised MAPK model. Paranvelees were
calculated in number of molecules per cell, and input intorttodel as particle numbers
in Copasi.
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FIGURE 5.3: Diagrammatic representation of the revised MAPK model

data to demonstrate the mechanism of the procession of pboodation states during
the cascade, specifically whether the three kinases mudtasira complex and then
sequentially phosphorylate each other, or whether eadaslsieparately, and randomly.
The Kofahl and Klipp model also follows this process of asst@n and dissociation
of the kinases, with the Ste5 scaffold, and the complex casodiate completely at
each phosphorylation step (figure 1.9). The revised modmrporated reversible
binding between each kinase, and double phosphorylatientsor each, which are
believed to create the ultra-sensitive switch-like resggorbistability, and hysteresis
behaviours observed from the MAPK cascade [77]. The moda micluded each
component binding to form a complex before being releasea phosphorylated or

de-phosphorylated form (equation 5.3).

Ei_++E=EE_1- > E_1++E (5.3)
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These events introduced the nested feedback loops (ddpirgtation of each kinase
separately, and simultaneously with the cascade of phoglalion reactions (figure
5.3)) modelled by Goldbeter and Markevich, and are alsebed to be the feature of
MAPK cascades that facilitates ultra-sensitivity andddgity [76, 77, 123].

The model therefore combines the complex formation appraéd<ofahl and Klipp
with generic MAPK cascade models such as Huang and FemellKholodenko. [122,
124,128, 131]. The dynamics of the G-protein cycle weremdtded in the model as it
was believed the G-protein cycle would be at steady-statstiate the phosphorylation

of the MAPK cascade and would not have further downstreaeteff56, 126].

5.2.1.1 Simulation Results

Time course simulations showed the MAP kinases are se@lignphosphorylated,
followed by accumulation of active Ste12 within two hourspdserved experimentally
in the yeast mating pathway (figures 5.4) [55, 195, 196]. Aapuaater scan of the input
to the cascade (taken as Ste20 in the model) revealed the $gpsitivity characteristic
of MAPK cascades. By varying the level of signal entering thscade, the model
demonstrated a threshold concentration of input produaisgvitch-like response in
the output (figure 5.5 A and B). Figure 5.5 shows that intragigiceversible complex
formation between kinases and phosphatases producedriesensitive response, as
shown in published models of signal cascades [77, 124, 26Bis behaviour could
not be reproduced with the Kofahl and Klipp model. Moore mt#d an observation
that filamentous growth (the chemotropic response to phene)was not detected at
pheromone concentrations less than 10nM, indicating lisig the activation threshold
of the mating response [195]. A parameter scan of the ingutasiwas run on the
model and it was found that the new model demonstrates amsdtnsitive switch-like
response at a concentration of approximately 15nM actigasignal (figure 5.5 B).
The model is therefore demonstrating the switch-like behaweplicated in previous
published models of MAP kinase cascades [132, 270], andwitelsng point is at a

biologically-relevant concentration of the activatiogrsal [195].
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A Sequential Phosphorylation of the MAP Kinases
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FIGURE 5.4: Time course simulation of the revised MAPK model. A. Aculation
of the double phosphorylated forms of the MAP kinases. B.uivwglation of active
Stel2.

The revised MAPK model demonstrated the same charactsrias published sim-
plified models of MAP kinase cascades [122, 124]. The modsb akproduces
experimental observations of the pheromone response &t yederms of the time
scale, order of events, and activation threshold [227]. sTrevised MAPK model
provides a more relevant chassis with which to study thecefté the dynamic
behaviour of MAPK cascades on gene circuitry that are caljgl¢he yeast pheromone
response pathway. The model requires additional readitansorporate the additional
components of the pheromone response pathway, such as pghet€i cycle and the
o-factor Ste2 receptor binding. The model also requirestewtdil parameterisation

to tune the ultra-sensitivity behaviour, as currently thge rof activation is very steep
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A Parameter Scan of Signal Input and Phosphorylated MAPK Accumulation
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FIGURE 5.5: [Accumulation of the phosphorylated forms of the MARdges and
active Stel2 in the revised MAPK model in response to varyingls of input. A.
The accumulation of the double phosphorylated forms of thPMkinases. B. The
accumulation of the Fus3pp activated Ste12. The model dsimates an ultra-sensitive
response with a threshold activation concentration of@pprately 15nM.

compared with published models of MAPK cascades (figure $133]). A rate law
could be investigated in terms of using Michaelis-Mentepetkinetics with a Hill
coefficient instead of simple mass-action kinetics [122]s0A future research in the
McCarthy lab includes QconCAT mass spectrometry analyfsiseoyeast pheromone
response pathway, therefore this model can be parametersseg quantitative data,

and incorporated into this research program.
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5.3 Modelling the Gene Circuit
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FIGURE 5.6: Schematic overview of the gene circuit model. Arrowpresent
reactions, and shapes represent species in the model. d$mige were not present
as species in the model, however rate equations represi@achnscription process
from the plasmid DNA to the mRNA species, which is then préssra species in the
model. Reaction numbers are detailed in table 5.4.

A model of the gene circuit was devised that would simulageithieractions of the
components, enabling investigation of the system bothr poioand during laboratory
experimentation (figure 5.6). A mechanistic model was lusihg mass-action kinetics
and Michaelis-Menten formalism, enabling representatbrthe activation of the
pheromone-inducible genes and inhibition of transcriptémd translation by LexA
and IRP respectively (table 5.4). Standard Michaelis-Meriguations were employed
(equation 5.4) where v is the rate of the reactidpax is the maximum reaction rate,
[s] is the substrate concentration, & is the concentration of substrate that results in
50% of the maximum rat¥nax [271]. Michaelis-Menten kinetics were used to model
the processes of transcription and translation as thesegses can saturate, and the rate
equations provide the ability to tune the strength of themoters through th¥,axand

Km parameters [157, 190]. The circuit input signal, and degfiad rates of protein and

MRNA species were represented by mass-action kineticeas gfrocesses are unlikely
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No. Biochemical Event Model Reaction

1 IRP transcription (LexA inhibited) — IRP-mRNA; LexA

2 LexA transcription (Stel2 activated) — LexA-mRNA; Stel2

3 luciferase transcription (Stel2 activated)}> Lucif-mRNA; Stel2

4 IRP translation IRP-mRNA> IRP + IRP-mRNA

5 LexA translation LexA-mRNA— LexA + LexA-mRNA
6 luciferase translation (IRP inhibited) Lucif-mRNA Lucif + Lucif-mRNA; IRP
7 IRP mRNA degradation IRP-mRNA> ©

8 LexA mRNA degradation LexA-mRNA» @

9 luciferase mRNA degradation Lucif-mRNA @

10 IRP degradation IRP> ©

11  LexA degradation LexA+ ©

12 luciferase degradation Lucik @

13  Stel2 degradation Stel2©

TABLE 5.4: Gene circuit model reactions. semi-colon denotes aifiapdn the
reaction that either activates or inhibits the reactiomfimccurring. The reactions are
constructed for input into the Copasi software package.r&aetion numbers relate to
the reactions outlined in figure 5.6

to exhibit saturation phenomena under the model conditions

V= \% (5.4)
Standard Michaelis-Menten equations cannot account feallfeeak” in gene expres-
sion (genes expressed at a low level in the absence of spactiiation) [157, 190,
272]. Therefore, gene expression for transcription was eted using a modified
form of the Michaelis-Menten equation, based on publishedkwy Ajo-Franklin, and
included the paramet&, representing low level of constitutive reaction flow, whin

the circuit model would represent basal expression [190].

The rate equation in 5.5 was used, wheis the rate of transcriptiorg is the rate of
basal transcriptiorVmax is the maximum rate of transcriptiofA] is the concentration

of the activating signal, andy, is the concentration of the activating signal that results
in 50% of the maximum rate of transcription [157, 190]. Thinating signal represents

a generic term for transcription factor, polymerase, rdmess and the DNA/RNA

replication machinery of the cell.

(5.5)
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Inhibition of transcription and translation was modellesing a further modified form

of the Michaelis-Menten equation, incorporating a contpetinhibitor (equation 5.6),

which is the same form as equation 5.4 with the addition ofcitvecentration of the

repressotfi] andK; which is the concentration of inhibitor that results in 50%ibition

of the reaction. For translation the parameter for basalesgonS, was removed.
Vinax- [A

= _ 5.6
A K @ D) 0

The Michaelis-Menten formalism enables a more biologyesglevant behaviour with
inhibition, activation, and saturation of the reactiong/bwer, it is designed for enzyme-

catalysed reactions and is derived from equation 5.7.

E+S=ES—E+P (5.7)

The Michaelis-Menten scheme in equation 5.7 assumes a logeotration of enzymes,
a concentration of substrate that is not rate limiting, dmat the enzyme-substrate
complex forms much faster than the formation of product, #redreaction occurs
in a well-mixed homogeneous suspension [273]. The prosesk&anscription and
translation involve hundreds of components in huge congslgk74]. The dynamic
behaviours of each of these interactions is over-simpliirethe generic Michaelis-
Menten rate equation. However, there are insufficient daddadble to provide accurate
mathematical representation to incorporate these preseaad the Michaelis-Menten
formalism provides a convenient framework to begin modglhiological interactions.
It would also be impractical to build a model with rate eqaas incorporating all of the

molecular interactions during DNA replication and protsymthesis.

The Michaelis-Menten formalism contaiNgaxandKy parameters to describe the rate
of an enzyme-catalysed reaction and the catalytic turn@ter[271]. These functions
can be used in the modelling of synthetic gene circuits taukate different strength
promoters [275, 276]Vmax Can be used to represent maximal promoter turnover time,
and saturation concentration of RNA polymerase (i.e. the&imal rate at which
RNA polymerases can be recruited, and transcription teiip Ky can be used to

represent the concentration of RNA polymerase moleculéfkarelevant transcription
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factors that produces 50% of maximal promoter output. THestsate can represent
the components of the transcription initiation pathwaytha case of this project, the
substrate was taken as the transcription factor, functgas the activating signal to
recruit an RNA polymerase to the promoter and initiate tcapsion. This interpretation
necessarily assumes that the concentration of transmmifdctor is the limiting factor
in transcription initiation. Therefore, the fractidi] / Ky + [A] represents the
proportion of promoters occupied by transcription-corepeRNA polymerase for any
given transcription-factor concentration, whfhé replaces the substrate in the classical
Michaelis-Menten rate equation [276]. WhEX] tends to infinity, the ratio approaches
1 and represents saturation of the reaction. Wgntends to zero the equation can
be expressed as= (Vina¥Km)- [A], where the facto¥ma/Ky represents the promoter
strength [276]. Therefore, the three dependent paramafges, Km, andVmadKy are
sufficient to compare promoter strength. The same Mich&déisten formalism can be

used with translation, replacing the polymerase enzymie tvé ribosome.

The circuit was initially modelled in isolation (withoutéhinteraction with the MAP

kinase cascade) to enable observation of interactionseegtwwhe components in
response to externally-stipulated levels of stimulus. hiis &€nd, circuit activation was
modelled using a generic “activation-species”, which ealusatalytic stimulation of the

expression of luciferase and LexA mRNA species (equatiodisamd 5.9).

As described above, the paramet&™was added to the transcription equations to
account for a continuous low (basal) level of transcriptioom the IRP, LexA and
luciferase genes. There is no published data for the spémiits of basal expression
of the genes expressed on the circuit plasmids, howeveandséndicates the up-
regulation is between 10 and 100-fold [277]. For the purpafe¢he model therefore,

basal expression was set to 1%0xfax

Vmax: [activator]
Km + [activator]

Luciferase transcriptior= S+ (5.8)

Vmax- [activator]
Km + [activator]

LexA transcription= S+ (5.9)
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Vmax: [IRP activatot

[IRP activatoi + Ky - (1+ 524)

IRP transcription= S+ (5.10)

The parameter “activator” represents the output of the typasromone response
pathway and incorporates Stel2 transcription factor aittim and RNA polymerase
binding to the promoter. For IRP transcription, the formmeorporates competitive
inhibition by the LexA repressor (equation 5.10) “IRP aatm” represents the cellular
signal that regulates constitutive expression of B@D1 or TEF1 promoters, and
provides a continuous activation of transcription via a slospecies with fixed
concentration, therefore simulating constitutive genpression. The denominator
includes the classical Michaelis-Menten competitive ltior expression|[i}/[K ],
enabling increasing levels of LexA to increase inhibitiam the transcription of the
IRP, at a rate that can be tuned with the parami€tetJsing this format enables LexA
to compete with the cellular transcription machinery topegs the production of IRP

MRNA.

For translation, the same formulae are used. For lucifetemgslation, as with
IRP transcription, a competitive inhibitor function is &ddto the Michaelis-Menten
equation. As the concentration of IRP increases, it in@g#®e inhibition of translation

of luciferase mRNA to luciferase protein (equation 5.11).

Vmax: [Luci ferase mMRNA

Luciferase translatior= RP
[Luciferase mRNA+ Ky - (1+ %)

(5.11)

LexA and IRP translation are represented with standard dlis-Menten equations

with their respective mRNA species as substrate (equaiidis and 5.13).

Vmax: [LEXA mMRNA

LexA translation=
Km + [LexA mRNA

(5.12)

Vinax: [IRP MRNA
Km -+ [[RP mRNA

IRP translation= (5.13)

The model was initially constructed with default values dbdall parameters, making
all reaction rates equal throughout the model and enaldliagae interrogated in terms
of just the interactions between the components. Whileapgoach did not provide

a quantitative model of the system (components cannot betifjed, nor the outputs
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species steady-state particle number
Luciferase 5

LexA 7

IRP 14

TABLE 5.5: Steady-state particle numbers of the circuit comptsierthe absence of
pheromone (the “OFF-state”).

taken as accurate representations of what might be expeqgpedimentally), the model
did nevertheless simulate thyialitative interactions between the components in the
model and therefore could be used to provide useful indinatof how the interactions
of the components might behave as a sysiemitro. The steady-state values for the
components were expressed as particle numbers, becaussntration is irrelevant in
the model at this time. The model was constructed to enabkléntrestigation of the
relative changes in the levels of the components, and thegesato the steady state of

the system.

To begin, no input signal was added for up-regulation of therpmone response and
a default number of 1000 particles of the IRP signal was addedturate the reaction
for the constitutive expression of the repressor plasmids Was defined as the circuit
“OFF’-state”. The steady of state of the system was detezthand set as the initial
conditions of the model to simulate the system under norm@i/tlh conditions, prior
to circuit activation (table 5.5). The data indicated lecise expression was lower
than LexA as the IRP was repressing the translation of ltassie mMRNA. The model
predicted that IRP inhibits luciferase basal expressioagproximately 30%. Addition
of input signal for the pheromone-induced promoters resgulh the expression of the
reporter gene, and the circuit transitioning to the “ONestaT he input signal was fixed
at a constant, arbitrary value of 1000 to saturate the sysasmvith the IRP signal)
and the steady-state level of the pheromone induced compohexA and luciferase
was determined (table 5.6). Analysis of the steady-stat&cfnumbers demonstrated
the IRP inhibited luciferase expression by approximatél§otaking LexA as 100%
output). LexA also inhibited IRP, producing approximat@§# (15% inhibition) of the
output observed in the OFF-state (table 5.5). From the gagens of the model, it was
implied that the components were interacting as expecteterms of IRP inhibiting

luciferase, and LexA inhibiting the IRP. The model next riegh parameterisation with
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species steady-state particle number
Luciferase 8
LexA 10
IRP 11

TABLE 5.6: steady-state particle numbers of the circuit comptiarthe “ON-state”.

biological-relevant values for each of the reactions. Wosilld provide a more accurate

model of the system, which could be compared with experiai@fitservations.

5.4 Model Parameterisation

In order to begin to build amn vivo representative model of the circuit, the model
was parameterised using published literature values ®rdke of transcription and
translation inS. cerevisiagas well as rates of protein and mRNA degradation (table
5.7). The model was run to steady-state with no signal, thdemnstate set to the
initial state, signal added, and sensitivity analysisqrenied on the model to investigate

control points that could provide the ability to tune thecait in vitro. The results are

Parameter value source
Transcription 800bp/min Zenklusen, D. [278]
Translation 9.3 codons/sec Bonven B. [279]
average mRNA half-life 23 minutes Wang Y. [280]
average protein half-life 43 minutes Belle A. [281]

TABLE 5.7: Table of generic parameter values from the publisttecaliure, used for
the first round of parameterisation of the gene circuit model

summarized in table 5.8. Sensitivity analysis indicatezl dteady-state of the system
was sensitive to the IRP transcription rate, as this diyesfluences the level of IRP in
the system (table 5.8). This raised the concern that IRReprabncentration above
a certain threshold would effectively sequester even iaduaciferase mRNA, and
thus prevent the circuit switching to the “ON”-state. Séwgy analysis provided
the hypothesis that implementing varying rates of trapsiom of the IRP gene would
enable tuning the circuit, in terms of the level of IRP protabundance, and therefore
the level of luciferase expression. A strong and weak prenfor IRP would avoid the

risk of the IRP repressing the luciferase reporter gene ¢b an extent that it was not
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Parameter Sensitivity Value
IRP basal transcription 1.6x190
IRP transcriptionVmax 3313

IRP transcriptiorkKy 4281

IRP transcriptiorK; 227
luciferase basal transcription 2214
luciferase transcriptioNmax 935
luciferase transcriptioKy 1422
LexA basal transcription 2832.86
LexA transcriptionVmax 1887
LexA transcriptionKy, 62

IRP translatiorKy 1573

IRP translatiorVmax 1305
luciferase translatioKy 1937
luciferase translatioNmax 104
luciferase translatioK; 585

LexA translationKy 154

LexA translationVmax 1202

IRP mRNA degradation 2593
LexA mRNA degradation 4262

luciferase mMRNA degradation 48

IRP degradation 106
LexA degradation 1171
luciferase degradation 1210
signal degradation 2667

TABLE 5.8: Sensitivity analysis of the gene circuit model perfechon all parameter

values, as a function of all non-constant concentrationspefcies.

Larger values

indicate that perturbing the parameter will have a largércefon the steady-state of

the components of the system.

detectable, requiring the re-designing of the circuitrl@ethe project. Therefore, the
strongTEF1and the weakeDCD1 yeast promoters were included in the experimental
phase (chapter 4) as promoters for the repressor plasmmuddstigate the effect of high

and low abundance of IRP on the expression of luciferase.

The interaction of the repressors (tkgvalues) did not score highly in the metabolic
control analysis, indicating that they were not strong oarglements of the system.
This indicated the model is not yet accurately simulatiregititeraction of the IRP and
LexA repressors. However, the luciferase transla@rsensitivity was 585, and the
IRP transcriptiorK; is 227. This indicated that the system was approximatelgdwi

as sensitive to translational inhibition compared witmsexiptional inhibition. It was
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hypothesized that this was representative of the differanahe time scales for the
reactions, as inhibition of translation results in a chamgerotein abundance more
rapidly than inhibiting transcription, which would not fean effect on downstream
protein abundance until all of the pre-existing mRNA tenplhad been degraded.
This observation, together with the high sensitivity to IR&scription indicated the

framework of the model was approximating the system.

In addition to sensitivity analysis, metabolic control iysés was also used to investigate
the model (table 5.9). The metabolic control coefficientlddoe represented as a
stacked bar chart enabling graphical interpretation ofdd#i. The figures 5.7 (page
148), 5.13 (page 156), and 5.14 (page 157), attempt to représe concentration
control coefficients of the models. A positive control caaéfnt value indicates that
a reaction has a positive effect on the steady state comtiemrof a reactant, and a
negative control coefficient indicates a negative effecth@nsteady state concentration
of a reactant in the model. Larger values indicate a largecef For example, in
figure 5.13 the largest positive control coefficient for facase is the IRP degradation
reaction. Increasing the rate of IRP degradation is preditty the model to effect
the largest increase in the steady-state concentratiomcdgétase, compared with the
other reactions of the model. The concentration controfficdent for metabolic
control analysis are synonymous with sensitivity analy$#9] and confirmed that
luciferase expression could be increased by increasingRRedegradation rate and
decreasing the IRP transcription rate. The model thergioreides valuable insight
into the controlling interactions within the network evertihe absence of experimental
data, and provides useful indicators to refine or re-dedigncircuit beforein vitro

construction.

The circuit was designed prior to the project to maximize rét@ of the expression
of the reporter gene between the OFF and the ON-state, thiougering of the basal
expression level. The original strategy for circuit desiigciuded IRP regulation as a
means to maximize the induced/uninduced ratio of repogregxpression. The model
indicated that, while the IRP repressor does indeed intikitbasal level of output in
the OFF-state, the level of output in the ON-state is siryilarhibited, and indeed

to a similar extent. This therefore reduces the overallesysbutput and produces an



luciferase mMRNA| LexA mRNA | IRP mRNA | LexA | luciferase| IRP
luciferase transcription 1.140 0 0 0 0.880 0
LexA transcription -0.012 0.952 -0.039 -0.039| 0.002 -0.039
IRP transcription 0.302 0 1 0 -0.038 1
LexA translation -0.007 -0.417 -0.024 0.583 | 0.001 -0.024
IRP translation 0.151 0 -0.5 0 -0.019 0.5
luciferase translation -1.114 0 0 0 0.140 0
IRP degradation -0.302 0 0 0 0.038 -1
luciferase degradation 0 0 0 0 -1 0
LexA degradation 0.013 0 0.041 -1 -0.002 0.041
luciferase basal transcription 0.114 0 0 0 0.088 0
LexA basal transcription -0.001 0.048 -0.002 0.048 | 7.5e-05 | -0.002
LexA mRNA degradation 0.007 -0.583 0.024 -0.583| -0.001 0.024
luciferase mMRNA degradation-0.140 0 0 0 -0.108 0
IRP mRNA degradation -0.151 0 -0.5 0 0.019 -0.5

TABLE 5.9: Metabolic control analysis of the gene circuit modskdito construct figure 5.7.

SHN2IID U9 JNBYIUAS BulllopoIN'G Ja1deyd

94T



Chapter 5Modelling Synthetic Gene Circuits 157

Concentration Control Coefficlents for the Circult Model
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(lexa translation)
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FIGURE 5.7: The concentration control coefficients for the geneuiir model.
The graph shows the reactants in the model on the x axis, an¢ txis shows
the concentration control coefficients for each of the fieast in terms of the
control exerted by the concentration of the reactants. Tdrecentration control
coefficient illustrates the effect of perturbing the rateaakactions on the steady state
concentration of a reactant in the network. A negative betefficient has a negative
effect on the reactant steady state concentration, andiivpasontrol coefficient a
positive effect.

essentially unchanged ratio of induced/uninduced exfnes3 he model also predicts
that the inhibitor must be rapidly removed from the systengrable induced output to
reach levels typically observed in a simple “direct” pheama-induced reporter system.
To address these concerns raised by the model, it was ddoid@eestigate the effects
of altering the half-life of the IRP protein and the strengthlihe constitutive promoter
in thein vivo system. To this end, “strong” and “weak” constitutive praere (Rgr1,
and B cp1, respectively) were implemented in the repressor plasamd, a modified

IRP with a shorter half-life (IRPesT) was constructed (chapter 3).

5.4.1 Further Parameterisation and the Final Model

Further parameterisation was performed to improve on tmemge parameter values,
using a literature search of published kinetic paramet&igetic data for all of the

model reactions was not available prior to the project h@megext mining can provide
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a range of existing parameter values from the publishexhtitee and is used routinely
in modelling biological systems [282, 283] (table 5.10). éngric rate of transcription
in S. cerevisiaavas taken as 800 base pairs per minute [278], and for trams]d
codons per second [279]. Based on the length of the DNA and AnfRihscript of the
component, the parameters for the gene circuit model wdcelated as in table 5.10.

The circuit model was further modified to reflect the laboraimplementation of the

Parameter value source

Luciferase mRNA transcription 2 minutes  Zenklustral [278]
LexA mRNA transcription 46 seconds Zenklussral [278]
IRP mRNA transcription 3.3 minutes Zenklusetal [278]
Luciferase protein translation 2 minutes  Bonven B. [279]
LexA protein translation 20 seconds Bonven B. [279]
IRP protein translation 1.6 minutes Bonven B. [279]
LexA protein half-life 1 hour Sassanfar M. [284]
IRP protein half-life 16 hours Clarke S. [252]
Luciferase protein half-life 3 hours Leclerc & al[285]
Stel2 numbers per cell 1390 Ghaemmaghami S. [265]
Stel2 protein half-life 25 minutes Esch R. [286]

Fold change for gene up-regulation 10-100x Buchler N. [277]

TABLE 5.10: Gene circuit parameter values sourced from publibtezdture. Specific
parameter values were calculated for each of the circuippoomants, improving on the
generic parameter values.

strong TEF1) and weak PCD1) promoters, prompted by the initial metabolic control
analysis results. The IRP transcription reaction wasmethas a single rate law for both
promoters, and an additional parameter was added to in@igthe change (equation

5.14) wherep represents “promoter strength”.

Copasi enables the use of “global quantities” that can biggred values or custom
mathematical expressions. This feature enabled the pssrstength to be modified
globally, thus acting as an additional parameter valudaiai for parameter scanning,
optimization, or sensitivity analysis. Previous work onifarase expression by Naglis
Malys in the McCarthy lab (unpublished) gave estimates¥@D1 promoter activity
that were approximately 60 times lower than fhEeF1 promoter, therefore the rate
equation maximum ratéVfnay) and basal expression level (s) were reduced 60-fold to
simulate the transcription rate of the weaker promoter.Hrgg1, pwas setto 1, and for

Pocp1 p was set to 60. The global quantiyin equation 5.14 therefore represents the
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term 1/promoter strength. Higher valuespofepresent weaker promoters, and lower

values ofp, stronger promoters.

s ¥max. [IRP activatot
IRP transcription= — +

P [IRP activatot + Ky - (1+ 24)

(5.14)

5.5 Stochastic Simulation of the Gene Circuit

Deterministic modelling of the gene circuit with coupledimary differential equations
provided an average measurement of the behaviour of thaitcineer time. However,
coupled systems of chemical equations can also be repeesasta stochastic process
where the variables are numbers of molecules, and interectare modelled as
discrete events [287]. Deterministic modelling using oady differential equations
to model biological systems assumes there are millions ¢éootes in a well mixed,
homogeneous suspensions, that have an equal probabilitgcdcting at any particular

time.

While this is often sufficient for simulating simple vitro biological behaviour, it
is less appropriate for modelling complex, compartmesgaliintracellular systems,
particularly those involving interactions between smalhtbers of molecules [288,
289]. Stochastic modelling allows for random fluctuationstle interactions of
small numbers of molecules, thus providing a more accuratalation of the cellular
environment [136]. The disadvantage in the use of stoahastiulations is that such
models require a greater amount of computing time, as tkedation of every molecule
at every time step must be calculated [288, 290]. Larger owdsvof interactions, such
as MAP kinase cascades or whole genome models require llusfers and parallel

computing to simulate short time courses [291].

The Gibson and Bruck stochastic algorithm essentially istsi®©f an initialization

step, a Monte Carlo step, and a update step [292]. The in#iadn step involves
the recording of the number of molecules in the system, theti@n constants, and
initialization (i.e. seeding) of the random number germsat The Monte Carlo step

then generates two random numbers: these are used to detdiminext reaction to
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occur and the time interval, respectively. As the probghdlf a given reaction occurring
is proportional to the number of substrate molecules, onausa the initial conditions
to both determine the relative probabilitiesabifpossible reactions, and to determine the
probability of any given reaction occurring within a given time period. By camig
these probabilities with random numbers, one can thus féditst random number)
determinavhichreaction occurred and (via the second random number) hova time
elapsed before that reaction occurred. The update stegdysupfdates the molecule
numbers of the system to reflect the results of the reacticermdéned in the Monte
Carlo step, and increases the time elapsed by the time stélprty determined. The
process then repeats until the number of reactants is zetiog onaximum time for the
simulation has been exceeded [287, 293]. The Gibson andkBtochastic algorithm
is implemented in Copasi and therefore could be appliedéaiftuit model without

additional software or programming [134].

Initial simulations of the system with theyBp1 promoter exhibited transcriptional and
translational bursting phenomena, due to the lower pronsttength and therefore IRP
abundance. [245, 294]. This stochastic behaviour cannoapwired by deterministic
solvers, as the behaviour is averaged over time [288]. Clesamination of IRP
MRNA output by thddCD1 promoter in the stochastic model revealed expressiondevel
of the order of only 1 to 2 molecules per cell (figure 5.8), whis consistent with
published literature on the promoter strength gEps [212, 242]. Such low levels of
MRNA production would be expected to result in bursting véha in transcription
and translation, as demonstrated in published models [298]. Moreover, this
behaviour would only be detectable in stochastic simutatiovhere molecules are
treated as discrete entities rather than concentratiomss demonstrates the power
of the stochastic approach, and this model therefore pregers with the opportunity
to study noise in the circuit output using different stréngtomoters to control the
expression level of the IRP repressor [288]. Stochastjedtaries represent a single
set of probabilities for the change in the state of the systeer time: as a crude
approximation, they model a single possible response ohglesicell. Therefore
simulations were repeated 1000 times using the Copasi a@fvin order to generate

a representative population. Optimally, many hundredshotisands of trajectories
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FIGURE 5.8: A single stochastic trajectory of the circuit modeltwtite weakeDCD1

promoter. A. The data demonstrate low levels of mRNA trapsion, with one or two
molecules being produced. B. Corresponding IRP proteistation from IRP mRNA.
The protein numbers burst simultaneously with the prodactif mRNA.

should be run to obtain as close to the true mean of the populais possible.
Copasi, however, outputs the raw data from each stochasjectory sequentially:
manual processing of the sizeable data sets thus geneggietlyrbecomes a non-
viable approach. To address this issue, a Python script veasecl that can calculate
a global mean and standard deviation for the data producaepgsated simulations
(see appendix B), enabling a greater number of repetiteom$automatic data handling
and processing. Taking the mean of a large sample set edBeapproximates the
stochastic simulation to the deterministic simulationeBtandard deviation, however
incorporates the non-linear behaviour of the reactionapkmg observation of noise

[288].

The model was run to steady-state to establish resting otmaci®ns of all the
components of the model. These values were then used toeseatitilal conditions
for the simulation. 1000 replicate simulations were perfed over a 600 minute period
to correlate with the experimental data, and the resulisteal to generate an overall
representation of the time course response of the modekipression of the circuit

components for each experiment therefore is plotted asphgraere n=1,000).

Data on the change in the number of protein species over tiaseosllected from a
model using parameters set to simulate the we@kéb1 promoter (figure 5.9), and

a second model constructed, simulating the circuit withgtiengerTEF1 promoter
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Timecourse simulation of the circuit output with wild type IRP and pDCD1 promoter
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FIGURE 5.9: Stochastic simulation of the;Pp; model showing the change over time
of the protein components of the model.

Timecourse simulation of the circuit output with wild type IRP and pTEF1 promoter
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FIGURE 5.10: Stochastic simulation of thgg; model showing the change over time
of the protein components of the model.

(figure 5.10). From the time course simulations of thgf model, the IRP protein
level (figure 5.9, blue) decreases slightly over time as theALprotein (figure 5.9
yellow) increases during the time course and repressesxjiression of IRP. From
figure 5.10 it can be seen that the luciferase expressiohf@mvihe Prer1 model does
not increase significantly, compared with the-B; model. The data suggested that the
LexA repressor would not be capable of repressing the IRReter; model, and this

prediction was confirmed by the experimental data (chapter 4

The luciferase protein expression levels from the modetsmanch lower than IRP
and LexA and cannot be interpreted from figures 5.9 and 5Hdyetore they were

plotted separately in figure 5.11. The luciferase expredsiel from the Bcp; model
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pDCD1 Circuit Luciferase Time Course Simulation

particle numbers

time (minutes)

B pTEF1 Circuit Luciferase Time Course Simulation

particle numbers

time (minutes)

FIGURE 5.11: Stochastic simulation of the luciferase time courgput of the Bcps
and Pgg; models.

was significantly higher than therB-; model, by a factor of almost 25-fold. This
observation was as expected as the strongeg;Ppromoter would generate higher
levels of IRP repressor. As might be expected, lower particimbers appear strongly
correlated with an increase in overall noise for that paticcomponent of the model.
Signal to noise ratios (SNR) were calculated for each dif@igiure 5.12) , confirming
that this ratio indeed decreases as particle numbers decréae LexA SNR remained
relatively constant through the simulation whereas thiédrteese and IRP SNR decrease,
indicating the circuit output becomes more noisy over titheias noted from this data
that experimental observations of luciferase expressaidde subject to a high degree
of noise due to low overall luciferase particle number, ipatarly in the Bgg1 strain
with its high IRP expression, where luciferase levels mydvedr even undetectable in

this circuit.

Both of the parameterised models show the highest metabaetitrol coefficient for
luciferase expression is from the degradation rate of the (fijure 5.13, table 5.11,
and figure 5.14, table 5.12). No published studies havettiirdetermined the half-life
of the IRP protein, however there is data to indicate theevakceeds 16hrs [228, 252],



luciferase mMRNA| LexA mRNA | IRP IRP mRNA | LexA | luciferase

IRP transcription 0.017 0 0914 | 1 0 -0.897
luciferase transcription 1 0 0 0 0 1

LexA transcription -0.003 1 -0.174| -0.191 0.235 | 0.171
IRP translation 0.019 0 1 0 0 -0.981
luciferase translation -0.019 0 0 0 0 0.981
LexA translation -0.014 0 -0.741| -0.810 1 0.726
IRP mRNA degradation -0.017 0 -0.914| -1 0 0.897
LexA mRNA degradation 0.003 -1 0.174 | 0.191 -0.235| -0.171
luciferase mMRNA degradation-0.981 0 0 0 0 -0.981
IRP degradation -0.019 0 -1 0 0 0.981
LexA degradation 0.014 0 0.741 | 0.810 -1 -0.726
luciferase degradation 0 0 0 0 0 -1

signal degradation 0 0 0 0 0 0

TABLE 5.11: Metabolic control analysis of the DCD1 based genaiitimodel,

used to construct figure 5.13.
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luciferase mMRNA| LexA mRNA | IRP | IRP mRNA | LexA | luciferase
IRP transcription 0.017 0 0.914 1 0 -0.897
luciferase transcription 1 0 0 0 0 1
LexA transcription -0.003 1 -0.174| -0.191 0.235| 0.171
IRP translation 0.019 0 1 0 0 -0.981
luciferase translation -0.019 0 0 0 0 0.981
LexA translation -0.014 0 -0.741 -0.810 1 0.726
IRP mRNA degradation -0.017 0 -0.914 -1 0 0.897
LexA mRNA degradation 0.003 -1 0.174 0.191 -0.235| -0.171
luciferase mMRNA degradation -0.981 0 0 0 0 -0.981
IRP degradation -0.019 0 -1 0 0 0.981
LexA degradation 0.014 0 0.741 0.810 -1 -0.726
luciferase degradation 0 0 0 0 0 -1
signal degradation 0 0 0 0 0 0

TABLE 5.12: Metabolic control analysis of the TEF1 based geneaiitinmodel, used to construct figure 5.14.
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A Signal:Noise Ratio of the pDCD1 Model Protein Species
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FIGURE 5.12: Signal to noise ratio for theopBp1 and Regr; models. A) Is the signal
to noise ratio for the Fcp; model, and B) is the signal to noise ratio for the=p
model. Graphs show the signal to noise ratio of the luciferaexA, and IRP protein
components of the circuit during the time course simulation

a time scale significantly longer than the total circuit @@sge duration. As such, LexA-
mediated reduction in IRP expression would be unlikely totgbute significantly to

thein vivo circuit.

It was hypothesized from the model data that modifying th#-lifa of the IRP
could increase expression level of luciferase from theudirc The data prompted
the investigation of the development of a CIn2 PEST degradaagged IRP in the
repressor plasmid (chapter 3.4.3), and the model adjustagtorporate the predicted
shorter half-life of 30 minutes [216].

At this pointin the project there were four distinct verssanf the circuit: Bcpi, Prery,
Pocp1-PEST, and er1-PEST, each requiring their own model parameters (table 3.1
chapter 3.6). The model parameter values and rate equatemesidentical apart from

the promoter strength global parameter value and the IRIPadation rate. For the
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Concentration Control Coefficients for the pDCD1 parameterised model

- i -
w\
M (signal degradation)

® (uciferase degradation)
m(exadegradation)

(irp degradation)
IRP mRNA ® (ucif_mma degradation)
(lexa_mma degradation)

;g B (i _mrna degradation)
& (exatransiation)

S
3 W (luciferase transiation)
(lexatranscription)
™ (luciferase transcription)
W (irp transcripion)

LasA il

Liciferase mRNA

-4 -3 -2 -1 ] 1 2 3 4

Concentration C ontrol C oefiicient

FIGURE 5.13: Metabolic control analysis results for thed3, parameterised model.
The graph shows the reactants in the model on the x axis, ang txis shows
the concentration control coefficients for each of the tfieast in terms of the
control exerted by the concentration of the reactants. Tdmcentration control
coefficient illustrates the effect of perturbing the ratewkactions on the steady state
concentration of a reactant in the network. A negative a@biewefficient has a negative
effect on the reactant steady state concentration, andifivpasontrol coefficient a
positive effect.

Pocp1 and Reg circuits, the IRP degradation rate was based on the publigtie half
life of approximately 16 hours, which was input as 0.001 ipke$ per minute (at this
stage in the development of the model, dilution of the mRNA protein species by
cell doubling was not incorporated into the rate laws.). thershort half-life IRBesT
models the IRP degradation rate was increased by 10 foldfofarticles per minute,

based on the estimated reduction in half-life of eGFP by Matnd Avery [216].

Time course simulations were performed on tiaef-PEST and Per1-PEST models

to investigate the effect of the IRPst species on the luciferase expression level in
the circuit (figures 5.15 and 5.16). Time course simulatibthe Pbcp1-PEST model
revealed a higher level of luciferase compared with eashewlations with the wild-
type half-life IRP (figure 5.9). IRP levels were maintaingcadower level, enabling
the up-regulation of luciferase during circuit activatiorhe circuit required the same
time to reach maximal luciferase expression, at around 30Qites. The model did

not predict shortening the half-life of the IRP would incsedhe rate of expression of
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Concentration Control Coefficients for the pTEF1 parameterised model
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FIGURE 5.14: Metabolic control analysis results for the=P; parameterised model.
The graph shows the reactants in the model on the x axis, an¢ txis shows
the concentration control coefficients for each of the fieast in terms of the
control exerted by the concentration of the reactants. Tdrecentration control
coefficient illustrates the effect of perturbing the rateaakactions on the steady state
concentration of a reactant in the network. A negative @betrefficient has a negative
effect on the reactant steady state concentration, andivpasontrol coefficient a
positive effect.

luciferase for the Bcp1-PEST circuit. The simulations were repeated with thed?
PEST model (figure 5.16). The data showed a lower expressiah of the IRP and
a higher expression level of luciferase compared with tineuktions of the wild-
type IRP (figure 5.10). Simulations with the strondé&tF1 promoter still showed a
reduction in luciferase expression compared with the wepkemoter in the Bcp:
model, indicating the abundance of IRP in the cell, despigeshort half-life was still
sufficiently high to negate repression by LexA (figure 5.1he luciferase expression
levels were re-plotted for thepp1-PEST and Per1-PEST models for comparison
(figure 5.17 A and B). The simulations showed approximatbel/ $ame rate in the
increase of luciferase expression for both models, regamaximum expression after
approximately 300 minutes. Comparison with the lucifer@garession levels from the
wild type IRP models (Bcp1 and Reri) (figure 5.11) showed a significantly increased
level of luciferase for both PEST models, due to the loweresgion levels of IRF:sT.

The Bcp1-PEST and Per1-PEST models result in a higher expression level of
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Timecourse simulation of the circuit output with short half-life IRP and pDCD1 promoter
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FIGURE 5.15: Time course simulation of the gene circuit with the rshalf-life
IRPpestand theDCD1 promoter. Protein species are plotted against time.

Timecourse simulation of the circuit output with short half-life IRP and pTEF1 promoter
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FIGURE 5.16: Time course simulation of the gene circuit with HRBrand the Rer1
promoter. Protein species are plotted against time.

luciferase, and lower expression level of IRP, as expedataah the reduction in the
half-life of the IRP protein. The shorter half-life IRP spes however remains at a

sufficiently high expression level negate the repressidRBftranscription by LexA.

The SNR data for thedp1-PEST and Per1-PEST models (figure 5.18) demonstrated
a significantly lower SNR compared with thedh1 and Bgr1 models for the IRP
protein species (figure 5.12). The expression ofdRf is more noisy than the wild-
type IRP. It was noted that the SNR for luciferase did not geasignificantly for the
Prer1-PEST model compared with therd; model, however this is most likely be
due to the low expression of luciferase in both of these nsdi#dspite the shorter

half-life IRP (figure 5.17). The fp1-PEST luciferase SNR dropped more rapidly
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Time course simulation with the pDCD1 circuit and short half-life IRP
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FIGURE 5.17: Time course simulation of the gene circuicB1 and Rgr1 simulated
promoters and IRf:st. A. Luciferase expression from the,gh:-PEST model. B.
Luciferase expression from thgg1-PEST model.

than the Bcps circuit in the first 100 minutes of the simulation, despite thigher
particle numbers of luciferase from the reduced represioiRP (which would be
expected to increase the SNR). The degradation rate of tRgiBtein with the PEST
degradation tag was speculative and required furtheratadid with experimental data
to provide an accurate kinetic parameter for the model. WHewd he lower SNR in the
PEST models indicates the shorter half-life IRP modificatmthe PEST circuits may
introduce additional noise into the expression of lucgergpossibly through increased

noise in expression of the IRP repressor.
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A Signal:Noise Ratio of the pDCD1-PEST Model Protein Species
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FIGURE5.18: A) Is the signal to noise ratio for thg&h1 model, and B) is the signal to
noise ratio for the :r1 model. Graphs show the signal to noise ratio of the luciferas
LexA, and IRP protein components of the circuit during timeeticourse simulation.

5.6 Parameter Estimation

The final stage in the construction of the model was to “fit” exmental data to
the parameter values and attempt to refine the model with & raocurate time
course simulation that represented the behaviour ofinthévo circuits. luciferase
data had been collected from the lab, and provided data ®b#haviour of each
circuit strain. The particle numbers from the simulatiortadare not related to the
relative luminescence units from the luminometer, theeefan additional parameter
value was added to convert the luciferase particle numlnetbe same scale as the
relative luminescence data. Firstly, a global quantity wesated for the transient
number of luciferase particles minus the initial number ufiferase particles. This
number was then multiplied by a second global quantity natigaéh”. The gain

value could be tuned to scale the particle numbers to thévwelluminescence units
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(RLU) recorded experimentally, and the luciferase patimimbers from the model
are baseline subtracted, as with the lab data being fittepagiaovas used to perform
the parameter fitting as it is pre-programmed with a numbgranhmeter estimation
algorithms [148]. The luciferase data for each luciferasetcourse experiment was
fitted against the promoter strength in the model and therlesgence global variable.
Parameter estimation was performed using the Hooke aneédedgorithm and the
simulated annealing algorithm. The models were then coedbaith the experimental
time course data for each circuit strain. The parameteregahbtained from the

parameter estimation algorithms are presented in tab& 5.1

pDCD1 Circuit Parameter Estimation
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FIGURE 5.19: Graph of the fi-p1 model fitted to experimental luciferase time course
measurements. The x axis contains the simulation time (mutes) and the y axis
contains the relative luminescence units (RLU) per celtadsulated experimentally.

For the B¢cp1 model fitting, the simulation closely tracked the experitaédata and
replicated the dynamic range of the circuit response (figui®). Peak luciferase
expression was observed at approximately 200 minutes @amdslbwly declined over

200 - 500 minutes. There was a margin of approximately 5%r dyedween the

pTEF1 Circuit Parameter Estimation
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FIGURE 5.20: Graph of the 1 model fitted to experimental luciferase time course
measurements. The x axis contains the simulation time (mutes) and the y axis
contains the relative luminescence units (RLU) per celtadsulated experimentally.
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pDCD1-PEST Circuit Parameter Estimation
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FIGURE 5.21: Graph of the fp;-PEST model fitted to experimental luciferase
time course measurements. The x axis contains the simuléitiee (in minutes)
and the y axis contains the relative luminescence units (Ridy cell, as calculated
experimentally

pTEF1-PEST Circuit Parameter Estimation
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FIGURE 5.22: Graph of the fer1-PEST model fitted to experimental luciferase
time course measurements. The x axis contains the simuléitiee (in minutes)
and the y axis contains the relative luminescence units (Ridy cell, as calculated
experimentally.

experimental and simulation data (figure 5.19). The paramegtimation algorithms
have made small changes to all of the parameters in the maddlmade a large

reduction in the basal expression level of IRP (table 5.13).

For the Rer1 model, the simulation also closely tracked the experimetdta, with
an error of approximately 20% (figure 5.20). The model repéd the lower level
of luciferase expression from therg4 circuit, and the slower decline in luciferase
expression compared with thegb; circuit. The algorithms made large reductions in
the mRNA degradation rate of the IRP and LexA, and incredsedfinity of the FUS1

promoter for the LexA and luciferase genes.

For the Bcp1-PEST model the simulation tracked the experimental datia approx-
imately 6% error. The f1-PEST model however was more difficult to fit. The

simulation tracked the experimental data with an error gfrapimately 35%. This
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Prer1-PEST model was the most difficult to fit due to the sharp dechriuminescence
between 200 and 300 minutes, presenting a problem for cutiveyfalgorithms to map
the parameters to. The model however predicted the maximgifetase expression
at 200 minutes with only a 6% over-shoot and tracked the temlum luminescence
over the 200 to 500 minute duration. The algorithms have désweased the basal

transcription rate of IRP, as well as the transcription aadglation rates.

The fitting algorithms provided a good fit to the experimemtata, however sharp
increases and decreases in expression levels were prdlaeavas not possible to
obtain a more accurate curve fit for thegP-PEST circuit using additional genetic,
particle swarm, and Levenberg-Marquardt parameter esamalgorithms, and a set
of parameters to produce such steep decent after the 20@asimeasurement (figure
5.22) could not be found. The parameter estimation algostiieduced the LexA
translation rate, and reduced the basal transcriptionafteexA and the affnity of

LexA for the IRP gene. The algorithms made additional snaihges across all of the

model parameters, as observed from the other models.

For a more accurate model of thed?-PEST circuit, additional measurements around
the 200 minutes time point needed to be collected to obtaim@other curve from
the experimental data. Attempts to fit the model with addaiodata from RT-qPCR
and western blotting (chapter 4) resulted in models thatndidaccurately track the
luciferase experimental data. As the “output” of the citauas the luciferase reporter
gene, fitting the model with luminometer data provided sigfit predictive accuracy.
More quantitative data is required from RT-gPCR and weditttechniques, with less

variability for fitting with the luminometer data.

In terms of the modelling objective of the project, this aggarth demonstrated how to
build a model of the biological circuit, parameterise it hwliterature data to obtain
representative results, and then refine the model behawmilirspecific experimental
data. Sensitivity and metabolic control analysis also pled continuous experimental
direction and hypothesis generation, throughout the coctsbn phase in the absence

of experimental data. The process demonstrated the valusiio modelling as an
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investigative tool prior to building synthetic gene cirtsjieven in the absence of accu-
rate time course simulations. The model was used to refinexiperimental approach
during the construction of the circuit, and the data therduserefine the model into

an accurate simulation of tha vivo circuit response. This process demonstrates a
complete cycle of model design, hypothesis generationgapdrimental investigation

that is characteristic of synthetic biology. [13, 14].



Model Parameter generic model DCD1 DCD1-PEST TEF1 TEF1-PEST
IRP degradatiok 0.001 0.001 0.03 0.001 0.03
IRP mRNA degradatiok 0.04 0.08 0.001 1.6e° 0.04
IRP transcriptiorK; 0.001 0.001 0.004 0.02 0.003
IRP transcriptiorKy 0.1 0.18 0.19 0.2 0.2
IRP transcriptiorP N/A 60 60 1 1

IRP transcriptiors 0.003 4.9x1012 0.002 0.002 0.005
IRP transcriptiorVyax 0.3 0.6 0.01 0.6 0.7
IRP translatiorKy 0.1 0.2 0.01 0.006 0.1
IRP translatiorv 0.75 1.5 0.7 1.5 1.5
LexA degradatiork 0.02 0.03 0.03 0.04 0.04
LexA mRNA degradatiork 0.04 0.03 0.02 4.5x107° 0.04
LexA transcriptionKy 0.1 0.08 0.15 4.3e6 0.18
LexA transcriptions 0.013 0.14 0.01 0.0003 0.0008
LexA transcriptionVyax 1.3 0.94 0.3 5.3x10°6 0.05
LexA translationKy 0.1 0.13 0.05 0.2 0.2
LexA translationv 1.3 2.5 2 4x10°8 5x10-8
luciferase degradatida 0.006 0.01 0.01 0.003 0.002
luciferase transcriptioKy 0.1 0.001 0.09 6.8x10°° 0.06
luciferase transcription 0.005 0.01 0.006 3.2x10°7 0.01
luciferase transcriptioNyax 0.5 0.01 0.9 0.94 0.94
luciferase translatioK; 0.01 0.02 0.005 0.01 0.01
luciferase translatioKy 0.1 0.04 0.13 0.16 0.04
luciferase translatiol 0.5 0.07 0.06 1 0.2
luciferase mMRNA degradatidn| 0.04 0.07 0.05 0.08 0.08
signal degradatiok 0.02 0.04 0.01 0.04 0.04

TABLE 5.13: Circuit model parameters, following parameter eatiom using experimental luminescence time course dataef@emodel refers

to the model of the circuit prior to parameter estimation.
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CHAPTER

SIX

DISCUSSION

6.1 Introduction

The gene circuit was designed to utilize components that beeh characterized
previously in yeast [4, 203, 208, 238], as a circuit that wioluinction as a module,
enabling cells to produce a quantifiable output in respoms@ extra-cellular stimulus.
The project utilized a synthetic biology approach to buigdihe circuit, through the
application of computer modelling to augment moleculardgy techniques, with

computer aided design to understand the behaviour of therays

The application of mathematical modelling enabled theyearédiction of the inter-

actions within the circuit while it was under constructio8ensitivity and metabolic
control analysis provided insight into the key control ednts of the circuit, such as
the promoter strength and degradation rate of the IRP repre§ hrough modelling
and simulation, the circuit was modified from a single desiga multiple versions of

the circuit that enabled tuning of the luminescence outdutis form of design and
development is iconic of synthetic biology and differetdgathe field from classical

molecular biology and microbiology [8, 11, 14].

177
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6.2 Design and Development

The primary strategy for measuring the circuit behavious weameasure the luciferase
reporter gene using luminescence. Additional measuresyathe mRNA transcrip-
tion, and protein expression levels were performed usingiRTR and SDS-PAGE
and western blotting, in order to gather data to parametenwsin vivo-relevant,in
silico model of the gene circuit. The modelling approach providedaight into the
dynamics of the circuit, and modelling could be integratei ithe construction, as
opposed to having distinct phases of construction and ringelThe two phases of
the project were complementary and inter-dependent raktaer successive. During
construction, a simple mechanistic model of the interastivas sufficient to enable
sensitivity and metabolic control analysis to be perforrme@n unparameterised model

(figure 5.7).

Metabolic control analysis provided an early indicationred control that the IRP could
assert over the expression of the luciferase reporter gdie. model indicated the
abundance of the IRP repressor, and its rate of degradatimmd exert a high level
of influence on the expression of the reporter gene. To iyedst the influence of
IRP abundance, two alternative promoters were incorpodrat® the circuit design:
the strong Per1 promoter and the weakppi promoter. Rgrpp1 had been shown
in the McCarthy lab to be approximately 60 times strongentRgcpi, which may

only produce one or two mRNA transcripts per cell (Malys Nd &hetroni P. (2011)

McCarthy Lab, personal communication).

For perturbing the degradation rate of the IRP, the exadtlifialof the wild type IRP
had not been reported, however published research indidgageover 12 hours, [205,
251, 252], which would make it difficult to repress with LexAtkn the two hour
time-scale of the pheromone response pathway. A shortifelGFP, yEGFPBesT
was provided by Simon Avery, from published work by Mateud Awmery [216]. The
YEGFP protein was fused with a PEST-rich 178 C-terminaldesiof the G cyclin
ClIn2, which was shown to reduce the half-life of the proteyn1® fold [216]. The
C-terminal residue was cloned to the C-terminus of the IR&niattempt to reduce the

half-life by the same 10 fold, which would be approximatel hours and within the
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2 hours time period of the yeast pheromone response [1286]infnary western blot
data indicated IRF:sT did have a reduced half-life, and expression appeared t® hav

been reduced by approximately 10 fold (figures 4.19 and 4.21)

The combination of modelling and experimental investigailuring the construction
phase resulted in four versions of the circuit that enalileduning of the reporter gene
expression; Bepi, Prers, Pocp1-PEST, and er-PEST. The four circuits enabled
investigating high and low expression levels of the IRP, bmad with short and wild-

type half-life of the IRP.

6.3 Characterisation

The circuits were first assayed using the luminometer to rebstheir behaviour in
terms of expression of luciferase. Direct comparison of e data from each
experiment (figures 4.2, 4.5, 4.3, 4.6) showed unexplagasults, such as theyfb1-
PEST circuit demonstrating higher expression of lucifertfsan the Bcp1 circuit,
which intuitively should not be so, as the circuit also destoated a higher base line
expression compared with the &b, circuit and control (figure 4.3). An explanation
for this was that thddCD1 promoter expression of IRP is very low in the cell and
consequently, is not inhibiting the translation of lucéise mMRNA. However this does
not explain anincreasein expression from cells harbouring thedpd1 and RBcps-
PEST circuit plasmids. Comparison across experimentsebvemis unreliable due
to variation between cultures and experimental conditiohberefore, relative fold-
change in expression was calculated for each experimeneitaled comparison of
the ratio of baseline expression of each experiment to ttheced level of expression.
It was also hypothesized that a true negative control farwork may not be possible,
as this would require a promoter that is not induced by theghene response but
provides equivalent basal expression as the wild typgsPpromoter. Finally, the
baseline expression of the gene circuits was compared wahtytransformed with the
reporter plasmid alone. The expression of the reporter geudd be expressed under

different cellular conditions, compared with cells traorsfied with three plasmids, and
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grown in different auxotrophic drop out media. Fluctuatbagsal expression from the
repressor and de-repressor plasmids would affect expressithe reporter plasmid,
as well as the metabolic differences between control amditicells. If the work was
repeated, the luciferase control should have been run waith experiment, however
logistical limitations of batch culture of three biologicaplicates, with three technical
replicates precluded additional cell cultures, if measyoptical density, cell number,
and luminescence simultaneously, whilst sampling for aresblot and RT-gPCR, from
cultures with and without pheromone induction over a ninarhgeriod. For these
reasons it was decided that calculating the increase ifehasie expression in induced
cells as a function of luciferase expression in un-induaal$ of the same culture (the
fold-change induction), provided a reasonable compartothe level of induction

between the circuits.

From the circuit variants constructed during the projdw, Bcp1 promoter expressed
the most effective level of IRP repression when compareth wie stronger f:r1
promoter, producing a higher fold-change increase in thiédrase output of the circuit,

compared with the f&g; circuit.

The time required to reach maximum expression of lucifeveeeextended for both the
Pocp1 and Rgg; circuits when compared with the control strain (figures 4d 4.7).
Signal transduction through the pheromone response pgtregaires approximately
two hours to reach maximum expression [55], as observed fra@mcontrol strain,
transformed with only the reporter plasmid (figures 4.4 and).4 Both the Bcp:
and RBgg1 circuits required approximately 3.5 hours to reach maximaxpression.
This delay can be explained by the system used for de-repgetige system. LexA
transcription is also up-regulated by the yeast pheromasponse and therefore
requires approximately two hours to reach maximum expoedsvels, at which time
it is able to repress transcription of the IRP. The system tlquires the existing IRP
MRNA transcripts to be degraded by the cell (a process thastapproximately 23

minutes [280]), and for the existing IRP protein to degrade.

The wild-type IRP has a half-life of over 12 hours [205] tHere overall expression of

luciferase would be inhibited for significantly longer thitwe period of the pheromone
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response. Using western blot analysis the short halfff&-E stwas estimated to have
a 10 fold reduced level of expression in thg=P-PEST circuit (figure 4.20), indicating
the PEST residues fused to the C terminus where functiomngrget the IRP for

degradation.

The effect on luciferase expression in thesR-PEST circuit was to increase the level
of luminescence to a similar level as the control within 3 tspuwompared with the
wild-type IRP in the Rgg1 circuit which remained lower than the control throughout
the experiment (figure 4.7). For they&h1-PEST circuit, the IRPest resulted in a
longer period of luminescence following pheromone induttompared with the wild-
type IRP in the Bcp1 circuit, due to reduced repression of luciferase mRNA tietits
(figure 4.4). The data contained a high level of variabiliopMever, and estimation of
protein half-life and luminescence could not be measuret sufficient accuracy to

make significant conclusions.

Control data obtained for the circuits without the de-repog plasmid demonstrate the
interaction of the LexA protein in the full circuits. In themtrol circuits, maximum
luciferase expression was observed increasing betweemrdr240 minutes in both the
circuits and the control, but luminescence was maintainedlawer level throughout
the experiments (figures 4.10 and 4.11). At the maximum lefeiciferase expression
for the control (approximately 240 minutes), thedd: and Bcpi1-PEST circuits
demonstrates an increase of approximately 50% of the dpwntnde the Prggs circuits
where approximately 30% of the control, increased to apprately 70% of the control
for Prep1-PEST. The LexA de-repressor restores luciferase outpileolycp; circuit
to 120% and Bcpi-PEST to 160% of the control (figure 4.4). For the stronggfeP
promoter, repression of IRP transcription by LexA is iniéint to restore luciferase
expression to the same level as the control, and it remaiagpabximately 75% of the

control (figure 4.7).

Further characterisation was possible through SDS-PAGEveestern blot. There
was a problem obtaining antibodies sufficiently sensitiwedetect low levels of
luciferase and IRP protein in yeast cell extracts by meansestern blot. Antibodies

were obtained from Santa Cruz, Sigma Aldrich, and Abcam astetl at 1:200
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to 1:100 dilutions with multiple repeats. No signal could bbtained for the
luciferase antibodies using fluorescein Isothiocyanalf€(ql; Horseradish peroxidase
(HRP), alkaline phosphatase, and infra-red conjugateahsizry antibodies. However,
luminometer data was available to quantify luciferase esgion. For the IRP, neither
the Sigma Aldrich or Santa Cruz primary antibodies coul@deetd the protein, however
the Abcam antibodies produced a signal when using the akkalhosphatase detection
method, but only for thefg1 circuit with the higher IRP expression level (figure 4.20).
The alkaline phosphatase method is an enzyme-based asdalyeaefore amplified the
weak signal from the IRP primary antibodies, but requireda kevel of expression to
produce a signal. The lack of western blot signal for thed? circuit correlated with
the hypothesis that theoRp; promoter produces a low level of transcription (Malys N.
and Paola P. (2011). McCarthy Lab. Personal communicatiamjher work is ongoing
at the McCarthy lab to characterize the expression leveh®fcp: promoter. The
increase in fold-induction observed from the luminesceastata for the Bcps circuit
could be explained by the possible high affinity of the IRP tfee IRE [4] and the
long half-life of the protein [252], resulting in sufficieekpression of IRP to repress
luciferase translation, but sufficiently weak to enabler@gpion of transcription by
LexA, resulting in the higher fold-change observed in thaihescence data, whereas
the stronger f&g1 promoter results in the IRP quenching the signal from theudir
However, the antibodies for IRP are not sensitive as theyatiprovide a strong signal

at low dilution, and high concentration of the protein frame ©gzr1 promoter.

Preliminary western blot data could be collected from ttgnai obtained from the
Prer1 and Reg1-PEST circuits. The western blot data for thg=p; circuit showed an
70% reduction in IRP expression during the pheromone resgavhich was attributed
to repression by LexA (figure 4.22). Inhibition increasedbtighout the duration of
the yeast pheromone response and remained for the durétibe experiment (figure
4.20), correlating with an increase in LexA expression leemvtwo and five hours
after pheromone stimulation (figure 4.25). The short h&fdRPpesT produced a
weaker signal than the wild-type IRP, and was difficult toaditfor the expression

of the PEST tagged IRP, however preliminary western blct dadicated a reduction
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of approximately 60% compared with the wild type at the alitheasurement (figure
4.20).

The western blot data for LexA showed a high basal expressiot a smaller fold-
change in expression, compared with the luciferase lurnerese data (figures 4.24
and 4.25). The lower fold-change in LexA (three to five-faldrease) compared with
luciferase (five to seven- fold increase) could indicateA @as not being expressed
correctly. There was a high level of variation in the data &esv,making accurate
guantification of fold-change difficult. The higher foldaige in luciferase protein
expression compared with LexA protein expression may dtgiaight the effect of the
circuit design, in that constitutive repression of lucifee by IRP decreased baseline
expression, increasing the fold-change under pheromaheiion. This conclusion is
speculative however due to the variation in the data, andpeoimg expression levels

across different assays.

The quantitative data from the western blot using the atkghhosphatase method were
very noisy. The reaction is enzyme-based, as with the ltastemethod therefore it is
difficult to relate the signal measured from the film in terrhawmbers of molecules in
the protein extract. Variation in the amount of protein ia triginal protein extract, the
western blot transfer, and the enzyme reaction on the mermabraake quantification
of fold-changes in protein levels speculative. The dataiges an indication as to the
directional change in the protein levels expressed by tloaiits during the pheromone
response. As such, the western blot confirms the express$idmred_exA and IRP
components of the circuit and indicates a relative redagtidRP compared to the non-
induced circuit during the pheromone response that cée®lgith a similar increase in

LexA signal that can be inferred as repression of IRP by theé\lrepressor.

Finally, RT-gPCR was used to attempt to quantify the foldsale in mMRNA expression
that was occurring in the circuit during the pheromone raspo RT-gPCR had not
previously been used in the McCarthy lab for quantificatibm&NA, since calibrated
northern blotting had been the preferred method. A RotoeGeR-gPCR machine
was sourced from QiaGen and a series of house keeping gelstea for use in

yeast, based on published data by Testal. (table 4.2) [257]. House keeping genes
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were confirmed using bioinformatics data from the SGD daela58], based on
micro-array data of gene expression during the pherom@ponse [85], and primers
designed for the components of the luciferase, IRP, and LaatAponents of the gene

circuit (table 2.2).

The mRNA data obtained from the time-course samples werevas/ noisy, and a
larger number of replicates was required to obtain stae#iliyi significant data. The
data obtained by RT-gPCR however provided an indicationir@ctional changes in
the relative expression levels of components of the gewaiticomparing induced and
non-induced cells. The data indicated that during the phere response, the level of
luciferase and LexA mRNA increased, as expected from gygfpheromone-induced
promoter. MRNA expression increased from approximatelgpdr fafter induction for
luciferase and LexA (figures 4.29, 4.32, 4.31, and 4.32) fociecuits. IRP mRNA
levels began to reduce within 2 hours of pheromone stimanatiThe Rgp1 circuit
demonstrates a higher rate of recovery with approximatébjcbincrease in expression
of IRP after 5.5 hours of pheromone stimulation (figure 4@fmpared with a 2 fold
increase after 7.5 hours after stimulation fgeB1 (figure 4.29). The data supported the
western blot and luciferase data showing higher IRP exmmes$svel from the stronger
Prer1 promoter, and mRNA levels correlate with the increasesangom and luciferase
expression levels. The data from the RT-qPCR experimem&Vver were extremely
noisy and statistical analysis to determine significarfedéinces was not possible. A
larger number of replicates is required for reliable guaaiion of the mRNA levels
in the circuit, also screened against a number of housexk@g@nes simultaneously
to normalise the relative expression levels of the comptsnemhe RT-gPCR MIQE
guidelines provide recommendations for performing RT-BR@udies and recommend
a minimum of 10 replicates for each time point screened witbast 10 house keeping
genes [259]. It was not possible with the resources availabthis project to perform
RT-gPCR in accordance with all MIQE guidelines. Howeveg tlata does provide
information on the directional changes in mMRNA expressarels in the circuit and
can be used to confirm the interactions of the LexA and IRP @orapts and to confirm

the plasmids are being expressed in the host cell.
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The inhibition of luciferase observed from the lumineseedata confirms the inter-
action of the IRP with the IRE, cloned upstream of the luai$er reporter gene, as
published by Kolotevat al[4]. The inhibition of IRP expression during the pheromone
response, observed by RT-gPCR and western blot, and thevedsep-regulation in
LexA also by RT-gPCR and western blot, confirms the inteosabif the LexA repressor
with the IRP gene, and the function of LexA in yeast as puklighy Brent [5]. The data
confirms the LexA operators are functioning in their posiimmediately upstream of
the promoter on the repressor plasmid by the repression Bf TRe RT-gPCR data
indicates the LexA protein is capable of blocking trangaoip of IRP from the Bcp1
promoter, and for a shorter period of time from thgF promoter. The half-life of the
IRP however can negate the inhibition of transcription, tpvpling a long-lived protein
that can continue to repress the reporter gene, prevengngmession of the circuit
output, as observed from thed?; circuits. The IRP western blot data demonstrated
the half-life of the IRP protein can be reduced through thditaah of the CIn2-PEST
C-terminal residue to the protein. The western blot datdarams with the published
work by Mateus and Avery [216], and western blot data inéidahe abundance of
the IRP was reduced by approximately 10-fold (figure 4.21)rther work, and more
effective antibodies are required to determine the exalftlifa of IRPpesT Species
in yeast. From the preliminary data however, the develogroéthe short half-life
IRPpesT provides additional tools for synthetic biology circuitsthva high affinity,
short-lived translational repressor. The PEST degrad#sig could also be cloned into
additional proteins such as luciferase, to obtain a shalftreporter gene that would

permit higher response times for the circuit output.

6.4 Noise

Signal:Noise ratio (SNR) is of interest to this project, ase af the objectives of

the circuit design was to reduce the noise from the repoeeedy repressing basal
expression levels. The SNR was calculated for the luciéedasa to explore the change
in noise in the circuit output during the time course expenits (figures 4.12 B, and

4.13 B). The data showed that as the expression of lucifenaseases in the first 200
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minutes of pheromone-induction, the SNR increases for fathe circuits, and the
control (the reporter gene with no repression) (figure 4.14pwever, although the
reduction in the expression of luciferase for the-B; circuits occurs at approximately
the same rate as the control (figure 4.4), the SNR reduceglgHar the circuits,

with a lower SNR for all of the circuits after 200 minutes caamgd with the control
(figures 4.12 and 4.13 B). The SNR decreases at a sharpehast¢he luminescence
measurements decrease, while the control remains cordiiainiy the decrease in

luminescence, after the two hour time scale of the pheromespmonse pathway.

Noise propagation throughout the experiments is high hew¢as observed from
the luminescence data), which makes it impossible to dratsstally significant
conclusions from the data (figures 4.12 A, and 4.13 A). Olaams of the effect of the
circuit design and function on the level of noise from theugit output is speculative.
From the data obtained from this project, the SNR data inelicahe circuits are
less noisy when the circuit is at maximum luciferase expoesscompared with the
pheromone-induced reporter gene alone, but the circutshare noisy than the control
when the circuit returns to the OFF-state (from 200 minudeké end of the time course
experiments). The increased SNR in the circuit, comparel thie control however
indicated the design of the circuit may be working. As theihgscence measurement
is a measurement of a population of cells, some would be nespg to pheromone and
some would not, in a stochastic response to pheromone siiiol As the luciferase
reporter gene is expressed from a wild typgy§l promoter and therefore only capable
of the same maximum luciferase expression level as thealotite higher SNR can be

attributed to lower basal expression level in the circuiitsce

Interaction with the IRP, and fluctuations in IRP expressioough interaction with
LexA may add noise to the luciferase protein expressiomy dfte maximum period
of activation by the pheromone response pathway has passed.is a hypothesis
however, and requires more quantitative data than wasrdataiduring this project,
such as quantitative mass spectrometry to accurately ifpéme expression levels of

each of the protein species.
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It is possible that in addition to the small fold increase utilerase expression,
the circuit design may have additional effects on noise i@ éxpression of the
reporter gene when incorporating low level constitutiveression. The model of the
Pocpz circuit predicted bursting in transcription, and consetlyebursting in protein
expression levels, from the low level of activity of tRECD1 promoter. TheDCD1
promoter therefore, may contribute additional noise toltin@nescence measurement
(figure 5.8). More data is required to support the hypothesasle regarding noise
in the circuit. Noise propagation and the effects of noiselumiferase expression
could be further investigated using high-throughput snggll measurements using
instrumentation such as flow cytometry, as has been doneosditiating circuits by
Elowitz and Liebler, and later by Atkinson, and attempt téed@ine the source and
contribution of intrinsic and extrinsic noise in expressiaf the circuit components.

[165, 179, 296, 297].

6.5 Modelling

The modelling component of the project has generated a gebtsf and an approach
that can be used for building circuits from interacting geneomponents. Previous
published research attempts to build fully parameterisedets of biological systems
that incorporate all of the details of the involved reacsigh28], or even all of the
reactions in the cell [298—300]. While fully parameteriseddels theoretically provide
a quantitative, predictive tool for biology, mechanistiodaels that represent what is
known about the system being studied can be interrogated) isols from systems
biology such as metabolic control analysis [149] and sefitsitanalysis [301]. The
mechanistic model of the system built at the start of thiggmtgorovided a framework,
from which MCA was used to determine the most influential tieas of the circuit
(figure 5.7, 5.13, and 5.14), and investigate the contmstiof each component to
the systems level behaviour of the circuit. MCA has been usestudies of large
models of yeast metabolism [302, 303], however it has nothhesed in synthetic
biology applications where published models focus on pted time course simulation

[8, 128, 178-180]. The application of MCS in this study waso&aeh approach to
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using a model as a design toolhkaild the circuit, rather than as a tool to confirm the
understanding of experimental observations [126, 128].1#8 many synthetic and
systems biology studies, data is obtained from biologigsiesns in order to refine the
model, whereas in this study the model was used to refine thledy, and then the
experimental data used to refine the model to enable additfanctionality, such as

time course simulation.

The MCA data highlighted the control of the IRP, leading te ttlevelopment of
additional versions of the circuit with varying strengthoproters for the repressor.
The circuit combined repression at transcription and tedio® and throughout the
simulations, the repression of luciferase translationaieed the most significant
component in changing the level of luciferase output. Thididated that tuning
repression of the IRP by LexA would not have as large an efisctuning the IRP
expression levels and half-life. It is expected that tratishal inhibition would be more
effective than transcriptional inhibition, due to the abance of mMRNA template and
repressor protein after the initiation of repression byAekherefore, while the model
was created using Michaelis-Menten kinetics, the preatisticonformed with expected
biological understanding of the system, and validated gpga@ach taken to modelling

the gene circuit.

The half-life of the repressor was also highlighted and tB&Ptag modified IRPesT
was developed. Therefore, while a molecular biology urtdading of the interactions
of the components guided construction of the circuit expentally, the model provided
data on tuning the behaviour of the circuit which could notrivestigated empirically.
These hypotheses could not have been made during the adimirphase of the
project, and would have required testing followed by renspf the circuit with
further construction and testing. Using the modelling apph, construction could be
expanded prior to generating experimental data, providoumnds of modelling and

construction, followed by rounds of data acquisition andieiaevelopment.

Populating the model with parameter values from the pubtishiterature enabled
refining the model, such that it began to provide time-cowigaulation predictions

of the behaviour of the circuit (table 5.7 and figure 5.11)] predicted an output that
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correlated with the 2 hour time-scale of the yeast pheromesponse pathway, and

could be fitted to experimental data.

Deterministic modelling of the system using a set of coupletinary differential equa-
tions provided an overview of the behaviour of the circuawmever these simulations
rely on a well mixed, homogeneous environment with a largeler of molecules.
Many biological processes have been shown to be stochastiature, with small
numbers of randomly distributed molecules [288]. Stodhasmulation of the circuit
revealed, for the f-p1 promoter using a rate law 60 times lower than thed? circuits,
produced mRNA levels at 1 or 2 molecules per time course sitiau, which correlated
with the estimated number of mMRNA per cell produced from gr@moter (Malys N.
(2011), personal communication) (see figure 5.8 A). AltHotigere was no kinetic
data available for the exact rate of transcription from thed? and Rgg1 promoters,
the model was accurately simulating an appropriate levetlRNA expression for the
circuit. The stochastic events in mMRNA transcription in thedel were also producing
bursting behaviour in the protein translation level in thedal (figure 5.8 B). The model
also provides a tool, therefore for investigating noiseamscription and translation in
the circuit. It is likely from the model prediction that the&h circuit will have more
noise than thefg; circuit, due to stochastic noise gene expression of the égessor.
The model provides a potential tool for the further investiign of the SNR data in the
luminescence data (figure 4.13), using stochastic modelimvestigate more detailed
interactions such as bursting, which can be key to detenmithie origin and influence

of noise in a biological system [295, 304].

At the end of the project, the model parameter values wesslfttt the luminescence
data, to produce a model output that represents the obsergettimental behaviour.
Parameter fitting provided final models for each of the cictinat simulated time
course experiments in terms of luciferase expression,avtbse fit to the experimental
data (figures 5.19, 5.20, 5.21, and 5.22).

The fitting algorithms are not able to make changes that asedb@n biological
understanding, and the changes are not consistent actasisté models (chapter

5, table 5.13). The rates of transcription and translat®rconsistent across the
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gene circuits as they use the same promoters, however thteseare different across
models following parameter estimation. Further work waguneed on the strategy
for parameter estimation, to standardize the rates of ¢rggt®n and translation and
attempt to fit the model based on the known changes that hadrbaée to the circuit.
Allowing the parameter estimation algorithms to fit the expental data to all of the
model parameters provided a first pass at refining the modetsas they provide am
vivo relevant simulation of luciferase expression for each efdincuits. The models
can be further developed with additional experimental dedature investigation for
parameter values for transcription and translation forsecific promoters, as well as

the binding affinities for the repressors and transcriptambors.

The MAP kinase model developed in the early stage of thiseptojas not utilized
for the modelling of the gene circuit, as the circuit was\ated with a saturating
concentration of pheromone, and the data was collected tiherpheromone response
pathway at steady-state, therefore fluctuation in the MAB&cade was not expected
to influence the dynamic behaviour of the circuit. The MAPKdabalso incorporated
a large number of reactions and would have added signifiaanpatational time to
stochastic simulations of the circuit, which were used far time course simulations.
Fitting experimental data to a large model would also rexairlarge amount of
computational time, which was not available towards the ehdhe project. If
unexpected experimental behaviour had been observed thberircuit model could
have been coupled with the reactions from the MAPK model toeiase the detall
of the simulations. Also, with regard to modelling circugsupled with the mating
response pathway, smaller mechanistic models such as tihel impHuang and Ferrell
can simulate the dynamic behaviour of the MAPK cascade withequiring all of the
detail of the pheromone response pathway [122]. This appro&using a simplified
model of the cascade was recently used by O’Shaughretssyto model a synthetic

signalling cascade in yeast [46].

It should not be ignored however, that the circuit is actdaby a complex cascade
of upstream events. The MAPK cascade provides a number efiiteeand issues for
investigating the circuit. Using the circuit to study noiseell signalling is not possible,

as the cascade functions to dampen fluctuations in the akteignal, generating a
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binary response once the signal achieves a threshold doaten (hyper-sensitivity).
Varying the level of pheromone therefore would have no éftecthe output of the
level of circuit behaviour, except at threshold activatievels where activation may
burst, however this is purely hypothetical and has not bdmewed experimentally
[120]. The MAPK cascade does however provide a native signuadessing module for
the circuit, and perturbation of the cascade componentisl gsoduce more complex

behaviours in the circuit output such as oscillations [124]

6.6 Summary and Further Work

For modelling, the number of molecules per cell of the regrogene would provide
guantitative data for parameter fitting, and performinglpotve stochastic time course
simulations. luminescence can be measured in terms oéhasié molecules per cell if it
is properly calibrated, however the reaction is enzymexthand is therefore non-linear,
requiring understanding of the kinetics of the enzyme reacin the specific conditions
of the experiment [204]. A more suitable reporter gene wineld fluorescence protein,
such as GFP, that enables direct quantification of fluorescttrat can be coupled with
a simultaneous cell count, such as is possible with flow cetoyj159, 178, 305]. High
throughput instrumentation is not currently widely aviai&ato measure luminescence,
and requires additional steps of substrate addition poomeasurement, and then
maintenance of a saturating substrate concentration iuned over time. Therefore,
reporter genes encoding fluorescent proteins would be nppr@priate for time course
measurements of gene circuits. However, GFP can also bebvigiyt, and produce a
high basal fluorescence that would reduce any observedrfotdase during induction
with pheromone. Also, GFP is a very stable protein, and wddire the short half-life
species constructed by Mateus and Avery to enable obsemngaif the dynamic range of
the circuit behaviour within the time-scale of the pheromoesponse pathway [216].
Further refinement of thim vivo luminescence assay to reduce the variation between
measurements, and transferring to a micro-plate basel;thigughput methodology
would benefit future work by retaining the sensitivity of theninescence reporter gene,

compared with moving to fluorescent proteins.
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A number of potential experimental investigations of thewit were outstanding at the
end of the project. Firstly, this study focused on the congmbs behaving as a system
of interactions. It would be useful to characterise the b&ha of the components
individually, and obtain specific Ki values for the IRP andkBerepressor in the ssf?
yeast strain that were hosting the circuit. This would pdevadditional parameter data
to further refine the model. It would also be of use to invedeghe dynamics of the
circuit in terms of returning to the OFF-state. The dataemiftd during the project
characterised the global behaviour of the circuit, in teohshe output in response
to activation signal. The cells should be stimulated witlenoimone, observed for
maximum luciferase activity, and then the pheromone washgaf the system, and
the rate of decrease in the luciferase reporter measureslwblild provide data on the
efficiency of the IRP repressor for inhibiting the reporteng, as well as the ability of
the circuit to reset after activation. This is another intpot feature of the combination
of repressors in the circuit: their ability to control thendynic range of the circuit and
increase the sensitivity of the pheromone-induced repgeee to activation and de-
activation. The data collected from this work indicateg¢hs a gradual decline in the
pheromone-induced reporter gene. Thed?-PEST circuit provided an indication that
the circuit is capable of initiating a faster return to theFdtate compared to the control
strain. The Bcps circuits did not sufficiently repress the reporter gene tectfa rapid
transition to the OFF-state upon the de-activation of trerg@mone response. Also, the
interactions of the LexA de-repressor will be influentiathis reaction as following the
pheromone response, LexA will continue to de-repress tireft®mn the weaker fp1

promoter for a longer period of time than the stronggtd? promoter.

The design of the circuit incorporated repression at thestraptional and translational
levels. This is unique in the design of repressor interastim current published
gene circuits, where researchers focus on the repressitvarscription. The circuit
presents the opportunity to investigate the timing diffeebetween translational and
transcriptional repression. Swapping the level of repoessn the IRP and luciferase
components would enable comparison of the effect of differgerarchical levels of
control on the output of the circuit; this could be achievgddéversing the repressors

in the circuit. The LexA repressor could be cloned into thaessor plasmid in place
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of the IRP, and the IRP cloned into the pheromone-induceedeessor plasmid. The
IRE in the reporter plasmid could be replaced with the Lex&ragors and the IRE
placed in the repressor plasmid upstream of LexA. This wauhte constitutive
repression of the transcription of luciferase and pheravioduced repression of
LexA mRNA translation. Theoretically, this would enable trepression of luciferase
MRNA transcription, which would be effective within the gnframe of the luciferase
degradation rate (three hours) [285] (which could also b&Ptagged for a shorter half-
life). Upon pheromone stimulation, the LexA repressor widag inhibited at translation
by the IRP, which could be faster than the current circuiigiesand enable a faster up-
regulation of luciferase. A faster induction time, and arslhalf-life luciferase could
enable a faster transition between the ON and OFF-statdseofitcuit and a more
sensitive circuit response to pheromone activation. Shalftlife variants of all of the
components would enable tuning of the repressor and ref@te expression, and the

dynamic range of the circuit output.

Chromosomal integration of the circuit would have been beia¢ during the project
as, although the plasmids are believed to be single copkg ikeno confirmation of
this in the data from this project. The plasmids also reqgair@uxotrophic amino acid
biosynthesis marker to be retained by the host cell, whielkddeto a burden on cell
metabolism. The growth rate of the cells transformed with ¢hrcuit plasmids was
checked, and the circuit did not appear to have a detrimeffedt on the growth rate,
however the cells are grown in an environment lacking egdeminino acids which
are substituted on the plasmids, but requiring synthegither than uptake from the
media. This may have an additional effect on the metabolistineohost cell that could
be avoided by integrating the circuit components into thetosome. Also, following
chromosomal integration, the cells cannot lose the gemaitiunlike with plasmids.
Chromosomal integration of the gene circuit would also éndhe addition of new

components to the circuit, using additional plasmids.

For quantification of the components, addition of a C or Nwnieal Myc or HA tag
to the IRP would enable the quantification of expressionl¢eaea higher resolution
than was achieved during this project. Alternatively, sfiecustom antibodies could

be created for the components, however modification with a otyHA tag would
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enable more accurate protein quantification by western wittiout expensive custom
antibodies. The luciferase, IRP, and LexA components dfeigmtly different in size
that tagging all of the components with myc or HA would enaiplantification of all
of the components in a single western blot. Purified protemirols for each of the
components is required however for further western blotysa A positive control
is required to confirm the western blot signal is correct alsg a calibration curve
could be created from a known quantity of purified proteirgldimg quantification of
the components instead of the relative fold-change, whichlevbe more informative

and also more appropriate for model parametrization.

Blotting techniques are only semi-quantitative howeveriation can occur during the
protein extraction, gel loading, transfer, and imagingye&a increasing the separation
between the original cell culture and the final data. A calalbion was being
undertaken at the end of the project between University ofwidk, University
of Manchester, and University of Liverpool to use mass spewttry to quantify
components of the pheromone response pathway with QconlBAd technique, once
validated would provide quantitative data on the expreskeel of the protein species
in the circuit, to an accuracy significantly greater thant thehievable by western
blotting or luminometer measurement. Quantification ofyteast pheromone response
pathway, especially Stell, Ste7, and Fus3, would also emsvthmetrization of the
MAPK model and development of phospho-proteomics, whichild@nable a much
more accurate model of the phosphorylation states of thgpoaents. This would allow
for the investigation into the signal flux through the cagcadd allow the propagation
of the signal at a much greater resolution and understarttieng has been currently
published. It has been shown that a MAPK cascade can be laatsgp between
organisms [46], therefore this data and the model wouldigeoa signal transduction
input module for synthetic circuits that could be transptanbetween eukaryotic
organisms, and understanding of the dynamic behavioureoptiosphorylation states
would enable tuning of the signal dynamics to customisedbpanse to environmental

stimuli.

Quantitative data on the dynamics of the MAPK cascade, aktiaeichanges in the

levels of the circuit components, would also enable a motalde understanding of the
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interactions that make up the whole process of translatieggmone-binding at the cell
membrane, through to induction of the pheromone respomsesgand the circuit output.
This data may reveal complex behaviours at different stagéee signal cascade, such
as bursting or oscillation. Understanding of these varmysamic behaviours within
the overall behaviour observed during this project wouldd® more accurate models
to be constructed. The mechanisms of the interactions sonedly well understood,
enabling mechanistic models to be made, however a lack oérstahding of the
dynamic behaviours results in rate laws that do not acdyregpresent the behaviour
of the reaction, and result in a model that is correct in teahshe reactions but
does not simulate the behaviour observed experimentalhydetstanding the rate of
phosphorylation of the MAPK components, or the stochastirsting in transcription
and translation [304] will ultimately lead to a greater desion for modelling and

consequently synthetic circuits and systems, with pratlletand robust behaviour.

Additional loops could be added into the circuit for more gd&x dynamic behaviours.
For example, a feed-forward loop could be integrated thincaigheromone inducible
plasmid containing thex-factor pheromone gene, as in the study by Gressl,
where pheromone-induced pheromone expression was usedaasdifier in a gene
circuit [1]. Addition of such an “amplifier plasmid” coulddel to a toggle-switch type
behaviour with a continuous signal after activation. Irtlecpromoters from other
pathways, such as the Hog pathway for osmotic stress couigdukto induce secondary
circuits such as Hog-induced expression of Barl, a proteaseh degradesi-factor,
could be used as a second toggle-switch to switch the ampdifieuit off. Adding
plasmids to the circuit for constitutive expression of mmone and pheromone-
induced expression of Barl could also induce oscillatohal@ur in the circuit. These
reporter genes could also be tagged with different fluorgsgeteins such as green
and red fluorescent proteins, to enable dual reporter sgstebe developed, similar to
the work by Ajo-Franklin [190]. Simultaneous applicatiohdifferent signal pathway
induced promoters, such as the pheromone response patmdahe Hog osmotic
shock pathway would enable the investigation of cross tatkvben the pathways, as

well as investigating the ability of cells to respond to rpi# environmental stimuli.
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The host cell is also of interest for studying the behaviduthe circuit. The strain
of yeast used in this study wefe cerevisiae ssff with a mutation in the negative
feedback of the pheromone response pathway (the re-assn@athea subunit of the
membrane bound G-protein to tAgsubunits to stop the phosphorylation of the MAPK
cascade). This mutation makes the cells hyper-sensitipaeécomone, enabling lower
concentrations to be used to stimulate the pheromone regpand a longer period of
stimulation to be achieved. This strain is therefore opedifor studying the activation
of the circuit and obtaining the maximum possible fold-aj@m the activated circuit.
The cells will continue to express Barl, a protease thatatksgo-factor pheromone
and Farl which growth arrests the cells in preparation fotinga A mutant strain
containing additional mutations of tHAR1and BAR1genes was under construction
at the time of writing and would provide a better host strain the circuit, as the
cells would not undergo growth arrest during the pheromaspanse, and continue
to grow and express the circuit components following statiah, which may further
amplify the luciferase circuit output. Ultimately, mutati of all of the yeast pheromone
response genes would result in a cell that directs the praremesponse exclusively
to the gene circuit, however this requires the mutation a@r®00 genes (3% of the
genome) [55] and the systems level effect of this is unknoasjs the degree of
complexity of the interaction between the components ofitagng response with other

metabolic pathways [71].

The design of the “chassis” for gene circuits is an importamsideration for synthetic
biology, and is as important as the design of the circuit.t&ws biology programs are
attempting to understand the metabolisnSofcerevisiag299], however this research
is still emerging. Other researchers are attempting totoactsa “minimal cell” by

deleting all the “non-essential” genes that are not reguiiog sustaining a viable cell
using “bottom-up synthetic biology” [306, 307]. A minimaklt chassis provides
a base from which to study a synthetic gene circuit wherehallibteractions can
be understood. Building such a system, even in prokaryogarasms remains an

enormously complex task [202].
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6.7 Conclusion

The project represents a complete cycle of design and dawelot in synthetic biology
(figure 1.6) [14]. The model and circuit were constructedd dme experimental
data fed back into the model for parameter estimation andeinedinement. The
model provided ann silico relevant simulation of the circuit that can be used in a
computer-aided design role to build additional functioos further tune the circuit.
The IRP repressor, previously characterised in the Mc@dr#i functions alongside
the LexA repressor, characterised by Brent in the contex géne circuit in yeast
[4, 5]. The application of a constitutive repressor can bedu® “boost” the ratio
of expression of a reporter gene between the induced andduteéd states, however
the interactions create additional noise in the outputctvitian be tuned through the
application of varying strengths of the constitutive regsice and the half-life of the
repressor protein. The development of a short half-life PEg enabled the tuning the
dynamic range of the circuit output, and also provides aitiaaal tool for constructing
synthetic biology circuit components. The project progidenovel combination of
transcriptional and translational repression that carsled to study noise, and to control
the expression of genes at different hierarchical levetkiwithe cell. Differentially-
regulating transcription and translation also enablesrhestigation of the temporal

separation of these events as well as noise at each levehefeyg@ression.

The mathematical modelling approach undertaken in thidyspuovided a truly novel
approach to investigating the behaviour of the gene cincugilico, as a predictive
design tool for building circuitsn vivo. The approach identified key control points
within the circuit without requiring a fully parameterisedodel, or accurate time
course simulations, prompting the construction of mudtipersions of the circuit,
modifications of the components, and expanding the scopéefptoject. These
hypotheses would not have been formulated from empiricaéndation of the circuit
design, and would have required multiple rounds of experiateon to obtain the
data from this project. Parameterisation of the model thewviged additional
predictive capabilities such as time course simulatidreg,¢ould be further refined with

experimental data, evolving the model alongside the diremd completing the cycle
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of modelling, hypothesis generation, experimentatiord amther model refinement
[14]. The project therefore demonstrates the benefit of ¢oimip computational and

biological sciences in future biotechnology and genetmgimgering studies.
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APPENDIX

A.1 Sequences

A.1.1 Iron Response Element (IRE) Nucleotide Sequence

1 CCAATTATCT ACTTAACCTT CAACAGTCCT TCAACTTAAG AACACAAAAC
51 TCCACA

Wild type Iron Response Element, from Koloteizal [4].

A.1.2 Prys-IRE-Luciferase Nucleotide Sequence

1 CCATCCCGCCA CCAGAACCCC TACTCGAACCA TCATTCACTT CCCCTTCTAT
51 CCTTTCTTTA CCTATTTCTT TATATATATA ACTTTATTTT TTTTTATTAA
101 TTCCCCTCCA ACACAATTTT CTTCTCACTG ATCCCTCAAT CCTTCTTTTG
151 CTTCCATATT TACCATCTCG ACCCTTTCAA AACACACTTG TATCTCTCCA
201 CCATCCCCTT TTTCACCTAT TCAATCCCAT AATTCCACTG TCACTTTTCG
251 CCCTCTCTCA TTTTCCTCCG ATCATCAAAC AAACATCAAA CCTCTCTAAT

235
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301
351
401
451
501
951
601
651
701
751
801
851
901
951
1001
1051
1101
1151
1201
1251
1301
1351
1401
1451
1501
1551
1601
1651
1701
1751
1801

TTCAAACAAA TAACCTAATT CTCCCCATTG CTTTTATTTA AATCACAATG
TACCACTCCC TTTCTAACCT ATCTCTTCCT CTTAAAATAT TTCCATACCA
CATCCTTTAT CTTTTTTCCT TTAACACCAG CATATAAGCC ATCAACTTTC
TCAAAATCCA TACCAATTAT CTACTTAACC TTCAACAGTG CTTCAACTTA
ACAAGAGAAA AGIGECAGAAG ANATCCAACA CCCCAAAAAC ATAAACAAAG
CCCCCCCCCC ATTCTATCCA CTACACCATG CAACCCCTCG ACACGCAACTG
CATAACGCCTA TCAACACATA CCCCCTCCTT CCTCCAACAA TTCCTTTTAC
ACATCCACAT ATCCACCTCA ACATCACCTA CCCCCAATAC TTCCAAATCT
CCCTTCCCTT CCCACAACCT ATCAAACCAT ATCCCCTCGAA TACAAATCAC
ACAATCCTCG TATCCACGTCA AAACTCTCTT CAATTCTTTA TCCCCCTCTT
CCCCCCCTTA TTTATCCCAG TTCCACTTCC CCCCCCCAAC CACATTTATA
ATCAACCTCA ATTCCTCAAC ACTATCAACA TTTCCCACCC TACCCTACTG
TTTCTTTCCA AAAACCCCTT CCAAAAAATT TTCAACCTCC AAAAAAAATT
ACCAATAATC CACAAAATTA TTATCATCCA TTCTAAAACG CATTACCACG
CATTTCACTC CATCTACACG TTCCTCACAT CTCATCTACC TCCCCCTTTT
AATCAATACG ATTTTCTACC ACACTCCTTT CATCCTCACA AAACAATTCC
ACTCATAATG AATTCCTCTG CATCTACTCG CTTACCTAAG CCTCTCCCCC
TTCCCCATAG AACTCCCTCC CTCACATTCT CCCATCCCAG ACATCCTATT
TTTCCCAATC AAATCATTCC CCATACTCCG ATTTTAACTG TTCTTCCATT
CCATCACCCT TTTCCAATCT TTACTACACT CCCATATTTG ATATCTCCAT
TTCCACTCCT CTTAATCTAT ACATTTCAAG AACACCTCTT TTTACCATCC
CTTCAGCATT ACAAAATTCA AACTCCCTTG CTACTACCAA CCCTATTTTC
ATTCTTCCCC AAAACCACTC TCATTCACAA ATACCATTTA TCTAATTTAC
ACCAAATTCC TTCTCCCCCC CCACCTCTTT CCAAACAACGT CCCCCAACCG
CTTCCAAAAC CCTTCCATCT TCCACCCATA CCACAACCAT ATCCCCTCAC
TCACACTACA TCACGCTATTC TCATTACACC CCAGCCCCAT CATAAACCCG
CCCCCCTCCG TAAACTTCTT CCATTTTTTG AACCCAACGCT TCTCCATCTG
CATACCCCCA AAACCCTCCG CCTTAATCAG ACAGCCCAAT TATCTCTCAG
ACCACCTATG ATTATCTCCG CTTATCTAAA CAATCCCCAA CCCACCAACG
CCTTCATTCA CAAGCATCCA TCCCTACATT CTCCAGACAT ACCTTACTCG
CACCAACACG AACACTTCTT CATACTTCAC CCCTTCAACT CTTTAATTAA




Appendix A.Appendix 237

1851 ATACAAACCA TATCACCTCG CCCCCCCTCA ATTCCAATCG ATATTCTTAC
1901 AACACCCCAA CATCTTCCAC CGCCGCCCCTCG CACGCTCTTCC CCACGATCAC
1951 CCCCCTCGAAC TTCCCCCCCC CCTTCTTCTT TTCCACCACG CAAACACCAT
2001 CACCCAAAAA CACATCCTCG ATTACCTCCC CACTCAACGTA ACAACCCCCA
2051 AAAAGTTCCG CCCACCACTT CTCTTTCTCG ACCAACTACC CAAACCTCTT
2101 ACCCCAAAAC TCCACCCAAG AAAAATCACA CGACATCCTCA TAAACCCCAA
2151 CAACCCCCCA AACTCCAAAT TCTAA

FUS1 promoter (green), with iron response element (red), andLtieferase gene

(yellow)

A.1.3 Prysi-LexA Nucleotide Sequence

1 CCATCCCGCCA CCAGAACCCC TACTCGAACCA TCATTCACTT CCCCTTCTAT
51 CCTTTCTTTA CCTATTTCTT TATATATATA ACTTTATTTT TTTTTATTAA
101 TTCCCCTCCA ACACAATTTT CTTCTCACTG ATCCCTCAAT CCTTCTTTTG
151 CTTCCATATT TACCATCTCG ACCCTTTCAA AACACACTTG TATCTCTCCA
201 CCATCCCCTT TTTCACCTAT TCAATCCCAT AATTCCACTG TCACTTTTCG
251 CCCTCTCTCA TTTTCCTCCG ATCATCAAAC AAACATCAAA CCTCTCTAAT
301 TTCAAACAAA TAACCTAATT CTCCCCATTG CTTTTATTTA AATCACAATG
351 TACCACTCGCC TTTCTAACGCT ATCTCTTCCT CTTAAAATAT TTCCATACCA
401 CATCCTTTAT CTTTTTTCCT TTAACACCAG CATATAACCC ATCAACGTTTC
451 TCAAAATCCA TATCATCAAA CCCTTAACCG CCACGCCAACA AGACCTCTTT
501 CATCTCATCC CGTCATCACAT CACCCACACA CCTATCGCCCC CCGACCGCCTCC
551 CCAAATCCCG CACCCTTTCG CCTTCCCTTC CCCAAACCCG GCTCAACGAAC
601 ATCTCAACGCC CCTCCCACCC AAAGCCCTTA TTCAAATTCT TTCCCCCCGCA
651 TCACCCCCCA TTCCTCTCTT CCAGCAACAG CAAGAACCCT TCCCCCTCCET
701 ACCTCCTCTG CCTGCCCCETG AACCACTTCT CCCCCAACAG CATATTCAAG
751 CTCATTATCA CCTCCATCCT TCCTTATTCA ACCCCAATCC TCATTTCCTG
801 CTCCCCCTCA CCCCCATCTC CATCAAACAT ATCCCCATTA TCCATCCTCA
851 CTTCCTCCCA CTCCATAAAA CTCACCATCT ACCTAACCCT CACCTCCTTG
901 TCCCACCTAT TCATCACCAA CTTACCCTTA ACCCCCTCAA AAAACACCCC
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951 AATAAACTCG AACTCTTCCC ACAAAATACC CACTTTAAAC CAATTCTCCT
1001 TCACCTTCCT CAGCACACCT TCACCATTCA ACCCCTCCCG CTTCCCCTTA
1051 TTCCCAACCG CCACTCCCTG TAA

Prusi promoter (green) and tHe. coli LexA gene (yellow)

A.1.4 Yeast CIn2 Protein Sequence (Uniprot P20438)

1 NASAEPRPRM GLVI NAKPDY YPI ELSNAEL LSHFEMLGEY HCEI STNVI A
51 CSCKFKPNPK LI DQCPEMNP VETRSNI | TF LFELSWTRV TNGI FFHSVR
101 LYDRYCSKRI VLRDGAKLWW ATCLWLAAKT WGGCNHI | NN WI PTGCRFY
151 GPNPRARI PR LSELVHYCGD GQVFDESMFL GQMERHI LCTL NVNI YEPM N
201 DYVLNVDENC LMCYELYENQ VTYDKQCSEK RGSCLSCDSD ATVDERPYGN
251 EEEEEEDLKL KI KLI NLKKF LI DVSAWGYD LLRYELFEVS HG FSI | NGF
301 TNCDHGPFLM TPNTSESKNG EI LSTLMNGI VS| PNSLVEV YKTVNGVLPF
351 | NQVKEYHLD LGRKLC| ASN isNmSRksinS DRSGSEENSN SISERSRASS
401 SGSHTPVRNM SSLSDNSVFS RNVEGSSPI T PSNYGFGQQQ SNSI CGSTVS
451 VNSLVNTNNK GRI YEGI TGP NSNNAI NDYI DLLNLNESNK ENGNPATAHY
501 LNGGPPKTSF | NHGVFPSPT CTI NSCKSSS ASFENFFWYG GYPSNI VPVL
551 FM NECGFCQ TYGKETNI I R FNKRKAFI FC GKRETTYSVY RYNENGI YLY
601 FCKSNKQPTK FCVELKKCH

The carboxy-terminal PEST-rich region is highlighted id.re

A.1.5 Nucleotide Sequence of the PEST-rich

Carboxy-terminal region of CIn2

1 CAATTCTACA AACCATCCAA CTTCAACATT TCCACAAACC TTACCATATC
51 AACCCCATCA TCCTCTTTCG AAAATTCAAA TACGCACATCC ATTCCTTCCC
101 CCCCTTCCTC ATCTCAAACC CACACTCCAA TCACAAACAT CAGCTCACTC
151 TCTCATAACA CCCTTTTCAG CCCCAATATG CAACAATCAT CACCAATCAC
201 TCCAACTATG TACCAATTTG CTCACCACCA CTCAAACACT ATATCTCCTA
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251
301
351
401
451
501

CCACCCTTAG TCTCAATACT CTCCTCAATA CAAATAACAA ACAAAGCATC
TACCAACAAA TCACCCCTCC TAACACCAAT AACCCAACCA ATCATTATAT
TCATTTCCTA AACCTAAATG ACTCTAACAA CCAAAACCAA AATCCCCCAA
CCCCCCATTA CCTCAATCCG CCCCCACCCA ACACAACCTT CATTAACCAT
CCAATCTTCC CCTCCCCAAC TCCCACCATA AATACCCCTA AATCTACCAG
TCCCTCATCT TTAATTTCTT TTCCTATCCG CAATACCCAA CTAATATACG

A.1.6 Iron Response Protein (IRP) Nucleotide Sequence

1
51
101
151
201
251
301
351
401
451
501
551
601
651
701
751
801
851
901
951
1001
1051

ATCACCAACC CATTCCCACA CCTTCCTCAG CCATTCCATC CTCTACAACC
ACCAAACAAA TTCTTCAATT TCAATAAATT CCACCATTCA ACATATCCCC
CCTTACCATT TTCCATCACA CTTCTTCTCG AACCACGCCAT TCCCAATTCT
CATCACGTTTT TCCTCAACAA ACACCATATT CAAAATATTC TACATTCCAA
TCTCACTCAG CACAACAACA TACAACTCCC ATTTAACCCT CCTCCTCTCA
TCCTCCACCA CTTTACCCCT CTCCCCCCTG TCCTTCACTT TCCTCCAATG
CCTCATCCTG TCAAAAACTT ACCACCACAT CCACACAAAA TAAACCCTCT
CTCCCCTCCT CATCTTCTAA TACATCATTC CATCCACCTT CATTTCAACA
CAACCCCACA CACTTTACAG AACAATCAAG ACCTCCAATT TCAAACAAAT
ACACACCCAT TTCAATTTTT AAACTCCCCT TCCCACCCTT TTCACAACAT
CCCCATTATT CCCCCTCCCT CACCAATCAT CCACCACCTG AATTTCCAAT
ATTTCCCAAG ACTCCTATTT CATCACCATG CATATTATTA CCCACACACC
CTCCTCCCCA CACACTCCCA CACTACCATG ATTCATCCCT TCCCCATTCT
TCCTTCCCCT CTCCCTCCTA TTCAACCACA ACCTCTCATG CTCCCTCACGC
CAATCACTAT CCTCCTTCCT CACCTCATTG CCTACACCCT CATCCCCAAG
CCCCACCCTC TCCTAACATC CACTCACATC CTCCTCACCA TTACCAAGCA
CCTCCCCCAG CTTCGCCCTAG TCCCCAAATT TCTCCACTTC TTCCCCCCTG
CACTACGCCCA CTTCTCCATT CCTCACCCAG CTACCATTCC TAACATCTCT
CCACACTACG CACCAACTCC TCCCTTTTTC CCACTTCATG AACTTACTAT
CACCTACCTG CTCCAAACAG CTCCTCATCA ACAAAAATTA AACTATATTA
AAAAATATCT TCACCCTCTA CCAATCTTTC CACATTTCAA TCACCCTTCT
CAACACCCAG ACTTCACCCA CCTTCTCCAA TTACATTTCA AAACACTACT
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1101
1151
1201
1251
1301
1351
1401
1451
1501
1551
1601
1651
1701
1751
1801
1851
1901
1951
2001
2051
2101
2151
2201
2251
2301
2351
2401
2451
2501
2551
2601

CCCTTCCTCT ACGTCCACCCA AAAGCCCTCA CCACAAACGTT CCTCTCTCCG
ACATCAAAAA CCACTTTCAG ACCTCCCTTG CACCCAACCA ACCATTTAAA
CCATTCCAAG TTCCTCCTCA ACATCATAAT CACCATAACA CCTTTATCTA
TCATAACACT CAATTCACCC TTCCTCATCG TTCTCTCCTC ATTCCTCCCA
TTACTACCTG CACAAACACC ACGTAATCCCT CTCTCATCTT AGCCCCACCA
TTCTTACCAA ACAAACCTCT CCATCCTCCC CTCAACCTCA TCCCTTACAT
CAAAACTACC CTCTCTCCTG CCACGTCCCCT CCTCACCTAC TACCTACAAG
AAACCCCACT CATCCCTTAT CTCTCTCAGC TTCCCTTTCGA CCTCCTCCCC
TATCCCTCCA TCACCTCCAT TCCCAACACT CCCCCTTTAC CTCAACCTCT
CCTACAACCC ATCACACACG CACACCTTCT ACCTCTTCCA CTACTATCTG
CAAACACCAA TTTTCAACCT CCACTTCACC CCAACACCCG CCCCAACTAT
TTACCCTCTC CCCCCTTACT AATACCATAT CCAATTCCTG CAACCATCAG
AATCCACTTT CACAAACACC CATTCCCACT AAATCCAAAG CCACACCAGG
TATTTCTCAA ACATATCTCG CCCACTACAG ACCACATCCA CCCACTCCAG
CCTCACTATG TCATCCCCCG CATCTTTAAG CAACTCTATC ACAAAATACA
CACTCTCAAT CAAACCTCCA ATCCCTTACC AACCCCATCA CATAACCTCT
TTTTCTCCAA TTCCAAATCT ACCTATATCA AATCACCACC ATTCTTTCAA
AACCTCACTT TCCATCTTCA CCCCCCTAAA TCTATACTCG ATCCCTATCT
CCTCCTAAAT TTCCCACATT CCCTAACAAC TCACCACATC TCCCCACCTG
CAAATATTCC AACAAACACT CCTCCTCCTC CCTACTTAAC TAACACACGCC
CTAACTCCAC CACAATTCAA CTCCTATCCC TCCCCCCCAG CTAATCACCC
CCTCATCCCA CCCCCAACAT TTCCCAACAT TCCCTTCTTA AACACATTTT
TCAACAACCA CCCACCACAG ACTATCCATC TCCCTTCTCG CCAAATCCTT
CATCTCTTTG ATCCTCCTCA CCCCTACCAG CACCCACCCC TTCCCCTCAT
CCTTCTCCCT CCCAAACACT ACCCTCCACG CACCTCCCCA CACTCCCCAG
CTAACCCCCC TTTCCTCCTG CCAATCAAAG CCCTCCTCGCC CCACAGCTAC
CACCCCATTC ACCCCACTAA CCTCCTTCCG ATCCCTCTCA TCCCACTTCA
ATATCTCCCT CCTCACAATG CACATCCCCT CCCCCTCACA CCCCAACAAC
CATACACTAT CATTATTCCA CAAAACCTCA AACCACAAAT CAAACTCCAG
CTCAACGCTCG ATACTCCCAA CACCTTCCAG CCTCTCATCA CCTTTCGACAC
TCATCTCCAG CTCACTTATT TCCTCAACCG CCCCATCCTC AACTACATCA
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2651
2701
2751
2801
2851
2901

TCCCCAACAT CCCCAACTAG CACACCTCCA CTTCCTCCTG CCCCCACCCA
CCAACCCCCA CCACCACCCA CCCCACGCCCC TCCTCCACGAG CCCTCCCTCG
CTCCCTCTCG CACCCCTCCT CCCTTCTACGA TCCACCAACT CACCACTCAG
CCTCTCCTCC CAATCCTCTA CCCACAAAAC CACAACGTTTC TACATTCTCT
ATTTTTCTTA ATCATCTTCT CTTTTTCCAG AATTTCCAAG CTACAATCCT
CCCAATCTCA CTACTCCCAG AAACACACAA CCAAG

A.1.7 IRPpestNucleotide Sequence

1
51
101
151
201
251
301
351
401
451
501
551
601
651
701
751
801
851
901
951
1001
1051

ATCACCAACC CATTCCCACA CCTTCCTCAG CCATTCCATC CTCTACAACC
ACCAAACAAA TTCTTCAATT TCAATAAATT CCACCATTCA ACATATCCCC
CCTTACCATT TTCCATCACA CTTCTTCTCG AACCACGCCAT TCCCAATTCT
CATCACGTTTT TCCTCAACAA ACACCATATT CAAAATATTC TACATTCCAA
TCTCACTCAG CACAACAACA TACAACTCCC ATTTAACCCT CCTCCTCTCA
TCCTCCACCA CTTTACCCCT CTCCCCCCTG TCCTTCACTT TCCTCCAATG
CCTCATCCTG TCAAAAACTT ACCACCACAT CCACACAAAA TAAACCCTCT
CTCCCCTCCT CATCTTCTAA TACATCATTC CATCCACCTT CATTTCAACA
CAACCCCACA CACTTTACAG AACAATCAAG ACCTCCAATT TCAAACAAAT
ACACACCCAT TTCAATTTTT AAACTCCCCT TCCCACCCTT TTCACAACAT
CCCCATTATT CCCCCTCCCT CACCAATCAT CCACCACCTG AATTTCCAAT
ATTTCCCAAG ACTCCTATTT CATCACCATG CATATTATTA CCCACACACC
CTCCTCCCCA CACACTCCCA CACTACCATG ATTCATCCCT TCCCCATTCT
TCCTTCCCCT CTCCCTCCTA TTCAACCACA ACCTCTCATG CTCCCTCACGC
CAATCACTAT CCTCCTTCCT CACCTCATTG CCTACACCCT CATCCCCAAG
CCCCACCCTC TCCTAACATC CACTCACATC CTCCTCACCA TTACCAAGCA
CCTCCCCCAG CTTCGCCCTAG TCCCCAAATT TCTCCACTTC TTCCCCCCTG
CACTACGCCCA CTTCTCCATT CCTCACCCAG CTACCATTCC TAACATCTCT
CCACACTACG CACCAACTCC TCCCTTTTTC CCACTTCATG AACTTACTAT
CACCTACCTG CTCCAAACAG CTCCTCATCA ACAAAAATTA AACTATATTA
AAAAATATCT TCACCCTCTA CCAATCTTTC CACATTTCAA TCACCCTTCT
CAACACCCAG ACTTCACCCA CCTTCTCCAA TTACATTTCA AAACACTACT
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1101
1151
1201
1251
1301
1351
1401
1451
1501
1551
1601
1651
1701
1751
1801
1851
1901
1951
2001
2051
2101
2151
2201
2251
2301
2351
2401
2451
2501
2551
2601

CCCTTCCTCT ACGTCCACCCA AAAGCCCTCA CCACAAACGTT CCTCTCTCCG
ACATCAAAAA CCACTTTCAG ACCTCCCTTG CACCCAACCA ACCATTTAAA
CCATTCCAAG TTCCTCCTCA ACATCATAAT CACCATAACA CCTTTATCTA
TCATAACACT CAATTCACCC TTCCTCATCG TTCTCTCCTC ATTCCTCCCA
TTACTACCTG CACAAACACC ACGTAATCCCT CTCTCATCTT AGCCCCACCA
TTCTTACCAA ACAAACCTCT CCATCCTCCC CTCAACCTCA TCCCTTACAT
CAAAACTACC CTCTCTCCTG CCACGTCCCCT CCTCACCTAC TACCTACAAG
AAACCCCACT CATCCCTTAT CTCTCTCAGC TTCCCTTTCGA CCTCCTCCCC
TATCCCTCCA TCACCTCCAT TCCCAACACT CCCCCTTTAC CTCAACCTCT
CCTACAACCC ATCACACACG CACACCTTCT ACCTCTTCCA CTACTATCTG
CAAACACCAA TTTTCAACCT CCACTTCACC CCAACACCCG CCCCAACTAT
TTACCCTCTC CCCCCTTACT AATACCATAT CCAATTCCTG CAACCATCAG
AATCCACTTT CACAAACACC CATTCCCACT AAATCCAAAG CCACACCAGG
TATTTCTCAA ACATATCTCG CCCACTACAG ACCACATCCA CCCACTCCAG
CCTCACTATG TCATCCCCCG CATCTTTAAG CAACTCTATC ACAAAATACA
CACTCTCAAT CAAACCTCCA ATCCCTTACC AACCCCATCA CATAACCTCT
TTTTCTCCAA TTCCAAATCT ACCTATATCA AATCACCACC ATTCTTTCAA
AACCTCACTT TCCATCTTCA CCCCCCTAAA TCTATACTCG ATCCCTATCT
CCTCCTAAAT TTCCCACATT CCCTAACAAC TCACCACATC TCCCCACCTG
CAAATATTCC AACAAACACT CCTCCTCCTC CCTACTTAAC TAACACACGCC
CTAACTCCAC CACAATTCAA CTCCTATCCC TCCCCCCCAG CTAATCACCC
CCTCATCCCA CCCCCAACAT TTCCCAACAT TCCCTTCTTA AACACATTTT
TCAACAACCA CCCACCACAG ACTATCCATC TCCCTTCTCG CCAAATCCTT
CATCTCTTTG ATCCTCCTCA CCCCTACCAG CACCCACCCC TTCCCCTCAT
CCTTCTCCCT CCCAAACACT ACCCTCCACG CACCTCCCCA CACTCCCCAG
CTAACCCCCC TTTCCTCCTG CCAATCAAAG CCCTCCTCGCC CCACAGCTAC
CACCCCATTC ACCCCACTAA CCTCCTTCCG ATCCCTCTCA TCCCACTTCA
ATATCTCCCT CCTCACAATG CACATCCCCT CCCCCTCACA CCCCAACAAC
CATACACTAT CATTATTCCA CAAAACCTCA AACCACAAAT CAAACTCCAG
CTCAACGCTCG ATACTCCCAA CACCTTCCAG CCTCTCATCA CCTTTCGACAC
TCATCTCCAG CTCACTTATT TCCTCAACCG CCCCATCCTC AACTACATCA
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2651 TCCCCAACAT COooASAGeA NOGAAGINEA AGANNMOSAS AAACONIAGE
2701 ATATCAACCC CATCATCCTC TTTCCAAAAT TCAAATACGCA CATCCATTCC
2751 TTCCCCCCCT TCCTCATCTC AAACCCACAC TCCAATCACA AACATCACCT
2801 CACTCTCTCA TAACACCCTT TTCAGCCGCA ATATCCAACA ATCATCACCA
2851 ATCACTCCAA CTATCTACCA ATTTCGCTCAG CACCACTCAA ACACTATATG
2901 TCCTACCACC CTTACGTCTCA ATACTCTCCT CAATACAAAT AACAAACAAA
2951 CCATCTACCA ACAAATCACG CCTCCTAACA CCAATAACCC AACCAATCAT
3001 TATATTCATT TCCTAAACCT AAATCACTCT AACAACCAAA ACCAAAATCC
3051 CCCAACCCCG CATTACCTCA ATCGCCGCCGCCC ACCCAACGACA ACCTTCATTA
3101 ACCATCCAAT CTTCCCCTCG CCAACTCCCA CCATAAATAG CCCTAAATCT
3151 ACCACTCGCCT CATCTTTAAT TTCTTTTCCT ATCCCCAATA CCCAACTAAT
3201 ABAGREECCA ACTACCACAC CTCCACTTCG TCCTCCCCCC ACCCACCAAG
3251 CCCCACCACC ACCCACCCCA CGCCCCTCCTG CGAGACCCCTC ccTeecTece
3301 TCTCCCACCG CTCCTCCCTT CTACATCCAG CAACTCACCA CTCAGCCTCT
3351 CCTCCCAATC CTCTACCCAC AAAACCACAA CTTTCTACAT TCTCTATTTT
3401 TCTTAATCAT CTTCTCTTTT TCCAGAATTT CCAACGCTACA ATCCTCCCAA
3451 TCTCACTACT CCCACAAACA CACAACCAAG

The fused PEST-rich C-terminal region of the Mateus and YWeIn2 protein is
highlighted in red. [216].

A.1.8 to demonstrate reading frame

1 NMSNPFAHLAE PLCPVCPCKK FFNLNKLECS RYCRLPFSI R VLLEAAI RNC
51 DEFLVKKCEI ENI LEWNVTQ HKNI EVPFKP ARVI LCCFTG VPAWDLFAAM
101 RDAVKKLCCD PEKI NPVCPA CLVI DHSI QV DFNRRACSLQ KNGCLEFERN
151 RERFEFLKVWG SCAFHNVRI | PPCSCl | HQV NLEYLARVVF DCDCYYYPES
201 LVCTBSHTTM | BCLCI LCWG VCCl EAEAVM LCCPI SWLP QVI CYRLMCK
251 PHPLVTSTCl VLTI TKHLRQ VCWCKFVEF FCPCGVACLSI ADRATI ANVC
301 PEYCATAAFF PVCEVSI TYL VCTCREEEKL KYI KKYLGAV CNMFRDFNDPS
351 CDPCFTQWE LELKTWPCC SCPKRPCEKV AVSDMKKEFE SCLCAKCCFK
401 CFQVAPEHHN DHKTFI YENT EFTLAHCSWV | AAI TSCTNT SNPSVNMLCAG
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451 LLAKKAVDCAG LNVNVPYI KTS LSPGSCGWTY YLCESGVWPY LSGLGFCWG
501 YGCNTCI GNS GPLPEPWWEA | TQGDLVAVG VLSCNRNFEG RVHPNTRANY
551 LASPPLVI AY Al AGTI RI DF EKEPLGVNAK GGQVFLKDI W PTRDEI CAVE
601 RGYVI PGVFK EVYCKI ETVN ESWNALATPS DKLFFWNSKS TYI KSPPFFE
651 NLTLDLGPPK SI VDAYVLLN LGDSVTTOH SPAGNI ARNS PAARYLTNRG
701 LTPREFNSYG SRRGNDAVNA RGTFANI RLL NRFLNKGAPQ TI HLPSCGEI L
751 DVFDCAAERYQ GAGLPLI VLA CKEYGAGSSR DWAAKGPFLL Gl KAVLAESY
801 ERI HRSNLVG MGVI PLEYLP GENADALGLT GCERYTI || P ENLKPGMVKVQ
851 VKLOCTCKTFQ AVNRFDTCVE LTYFLNGGI L NYM RKVAKA SiisNmSRil
901 | STPSCSFEN SNSTSI PSPA SSSCSHTPNR NVSSLSCNSV FSRNVECSSP
951 | TPSMYGFGQ GQGSNSI CGST VSVNSLVNTN NKGRI YEQI T GPNSNNATND
1001 YI DLLNLNES NKENGNPATA HYLNGCGPPKT SFI NHGVFPS PTCTI NSCKS
1051 SSASSHESEG MENIQWE\'PS RRRALGRAPR EEAAPPASAG PGCEASLAAS
1101 GRCGAALMEQV STECGLVPI LA QNCKFLHSLF LLI | FSFSRI WKLEWECGC
1151 CKERTK

The protein sequence of the IRP (white) with Mateus and ARE$T-rich C-terminal

region, demonstrating the in-frame insertion of the tag@]21

A.1.9 LexA Operator, DCD1 promoter, and IRP Nucleotide Se-

quence

1 CCACTACTCT ATCTACATAC ACTACTCCAG TACTCTATCT ACATACACTA
51 CAACCTTCTT CCTGCCTAAA CACCAACGACA AACCATCCCA CACCCCCTCG
101 CTTCAATTCC CACCTCCCCC CATTATAATT TTTTCACTTT TTTCTTCTTT
151 CCAACAACCC CCCCTACCCA CTTATCACAT CATCTAGCCA ATCTCCAGAA
201 TTCAAACTTC TCCATTACCA TACAATTCAA CATCTTTTTT TCCCACATTA
251 AACETCTCAA MECATCCAAT TATCTACTTA ACAACACAAA ACTCCACAAC
301 ATATCACCAA CCCATTCCCA CACCTTCCTG ACGCCATTCCA TCCTCTACAA
351 CCACCAAACA AATTCTTCAA TTTCAATAAA TTCCAGCATT CAACATATCG
401 e
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The nucleotide sequence of the LexA operator region (y¢|lalae DCD1 promoter
(green) and the first 100 nucleotides of the IRP gene (red .ifitervening white section

between th&®CD1 promoter and the IRP is a multi-cloning site.

A.1.10 LexA Operator, TEF1 promoter, and IRP Nucleotide Se-

quence

1 CCACTACTCT ATCTACATAC ACTACTCCAG TACTCGTATCT ACATACACTA
51 CAACCTTTCA TTACCCCTCC CAGTCACGAC CTTCTAAAAC CGACCCCCAGT
101 CCTACAATCG CGCCCGCATA CCTATCCATC CTCACCCTCC ACGCCTCACCG
151 CATCCATCCG TCACCCGCAT ATTACATATA ATACATATCA CATAGCAAGC
201 AACACCCCGCG TTCCACTTTT AATTTTCCAG CACCCCGAAT CCTTACATCA
251 CACCCAATCC CCCACAAGTG ATCCCCCACA CACCATACCT TCAAAATCTT
301 TCTACTCCTT TTTTACTCTT CCACATTTTC TCCCACTCCG CCCATCCGCCG
351 TACCACTTCA AAACACCCAA CGCACACCATA CTAAATTTCC CCTCTTTCTT
401 CCTCTAGCCT CTCCTTAATT ACCCCTACTA AACCTTTCCA AAACAAAAAA
451 CACACCCGCCT CCTTTCTTTT TCTTCCTCCA AAAACCCAAT AAAAATTTTT
501 ATCACCTTTC TTTTTCTTCA AAATTTTTTT TTTTACTTTT TTTCTCTTTC
551 CATCACCTCC CATTCATATT TAACTTAATA AACCCTCTTC AATTTCTCAA
601 CTTTCACTTT CATTTTTCTT CTTCTATTAC AACTTTTTTT ACTTCTTCTT
651 CATTAGAAAG CATCCCTCCA CTCCACAACA THIGAGOAAE GOANIGEOAS
701 ACCTTCCTCA CCCATTCCAT CCTCTACAAC CACCAAACAA ATTCTTCAAT
751 TTCAATAAAT TCCACCATTC AACATATCCG CG

The nucleotide sequence of the LexA operator region (yéllalae TEF1 promoter

(green) and the first 100 nucleotides of the IRP gene (red).
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B.1 Python script for processing Copasi stochastic data

#!'/ usr/bin/ python

#To execute the script call:

#calcul ate_statisitcs. py |NPUTFILE MEAN_FILE SD_FILE NUM_STEPS NUM_REPEATS

i mport sys

i mport string

import math

if(len(sys.argv)!=6):
print "Wong number of arguments."”
sys.exit(1)

| NPUTFI LE=sys. argv[1]

MEAN_OUTFI LE=sys. argv[ 2]

SD_OUTFI LE=sys. argv[ 3]

NUM_STEPS=int (sys. argv[4])

NUM_REPEATS=i nt (sys. argv[5])

I NPUT=file(INPUTFILE,"r"). readlines()

246
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if(len(INPUT) != (NUM REPEATS * (NUM STEPS + 2) + 1)):
print "Wong number of data points."
sys. exit (1)

DATA=[]

LI NENUMBER=1

NUMCOLUMNS=I en(string.split(INPUT[1]))
MEAN=] |

HEADER=| NPUT[ 0]

for X in range(0, NUM_STEPS+1):
MEAN. append([])
for Y in range(0, NUMCOLUMNS - 1):
MEAN[ X] . append(0)

for X in range(0, NUM_REPEATS):
SET=[]
for Y in range(0, NUM STEPS+1):
LI NE=I NPUT[ LI NENUMBER]
COLUMNS=string. split(LINE)
if(len( COLUMNS)!=NUMCOLUMNS):
print "Wong number of elements on |line %d"9% LI NENUMBER)
sys.exit(1)
ROWE[ ]
for Z in range(0,len(COLUMS)-1):
v=float (COLUMNS[ Z+1])
ROW. append(v)
MEAN[ Y] [ Z] =MEAN[ Y] [ Z] +v
SET. append( ROW)
LI NENUMBER=L| NENUMBER+1
DATA. append( SET)
LI NENUMBER=LI NENUMBER+1 # skip the empty line

MEANOUT=f i | e( MEAN_OUTFI LE, " w")
MEANOUT. wr i t e ( HEADER)
for X in range(0, NUM_STEPS+1):
line=string.join([str(X)],",")
for Y in range(0, NUMCOLUMNS-1):
MEAN[ X] [ Y] =MEAN[ X] [ Y] / NUM_REPEATS
line=string.join([line,str( MEAN[XI[Y])].,",")
line=line+"\n"
MEANOUT. write(line)
MEANOUT. cl ose()

SD=[]
for X in range(0, NUM_STEPS+1):
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SD. append([])
for Y in range(0, NUMCOLUMNS-1):
SD[ X] . append(0)

for X in range(0, NUM_REPEATS):
for Y in range(0, NUM_STEPS+1):
for Z in range(0, NUMCOLUMNS-1):
SD[Y][Z]=SD[Y][Z]+math. pow(( DATA[ X][Y][Z]-MEAN[Y][Z]),2)

SDOUT=fi | e( SD_OUTFI LE, " w")
SDOUT. wr i t e( HEADER)
for X in range(0, NUM_STEPS+1):
line=string.join([str(X)],",")
for Y in range(0, NUMCOLUMNS-1):
SD[X][ Y] =math. sqrt (SD[ X] [ Y]/ NUM_REPEATS)
line=string.join([line,str(SD[X]I[Y])].,",")
[ine=line+"\n"
SDOUT. write(line)
SDOUT. cl ose()
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