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Summary

carbon footprint
data gaps There is an increasing need for life cycle data for bio-based
extrapolated data products, which becomes particularly evident with the recent
industrial ecology drive for greenhouse gas reporting and carbon footprinting

proxy data studies. Meeting this need is challenging given that many bio-

products have not yet been studied by life cycle assessment
(LCA), and those that have are specific and limited to certain
Supporting information is available geographic regions.

on the JIE Web site In an attempt to bridge data gaps for bio-based products,
LCA practitioners can use either proxy data sets (e.g, use
existing environmental data for apples to represent pears) or

surrogate data

extrapolated data (e.g., derive new data for pears by modifying
data for apples considering pear-specific production character-
istics). This article explores the challenges and consequences
of using these two approaches. Several case studies are used
to illustrate the trade-offs between uncertainty and the ease of
application, with carbon footprinting as an example. As shown,
the use of proxy data sets is the quickest and easiest solution
for bridging data gaps but also has the highest uncertainty. In
contrast, data extrapolation methods may require extensive
expert knowledge and are thus harder to use but give more
robust results in bridging data gaps. They can also provide a
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Introduction

There is an increasing need to describe and
quantify the life cycle environmental impacts of
bio-based! products. This is particularly true in
the area of carbon footprinting (CF) and green-
house gas (GHG) reporting of products and or-
ganizations (Weidema et al. 2008). Such life-
cycle-based studies are very data intensive, and
data availability in traditional life cycle assess-
ment (LCA) databases is currently very limited
for many bio-based products; for example, Ecoin-
vent V2 only provides data for potatoes from two
countries (Switzerland and the United States),
although potatoes are a staple food in many parts
of the world. Even for products for which several
studies exist, the geographical coverage of bio-
based production is very limited. This is particu-
larly an issue given the variability of agricultural
production in different regions (see, e.g., Mila i
Canals et al. 2006, 2007; Mouron et al. 2006; Sim
2006; Edwards-Jones et al. 2009). The coverage
in terms of product groups is also concentrated on
a few subsectors (e.g., meat, milk, a few cereals,
some vegetable oils), with many basic food ingre-
dients not covered, including most vegetables,
fruit, herbs, and spices. In recognition of these
data gaps, several recent studies provide a com-
pilation of the carbon footprint data for different
bio-based products, including the work of Defra
(2009) and CCalL.C (2010).

In the absence of data, LCA practitioners have
to either fill the gap by creating a new data set,
find a “surrogate” that bridges the data gap, or
leave a data gap. The first option is often not pos-
sible due to time and resource constraints, and the
last is not recommended due to the uncertainty
related to the excluded data. Therefore, inding
surrogate data may be a compromise between the
two ends of the spectrum. By “surrogates,” we re-
fer to any data set (source data) that is sufficiently
similar to the process, material, or product for
which data do not exist (target data) and that is
used to represent the target data.

This article focuses on the use of data surro-
gates in GHG assessments and CF of bio-based
products. The principles discussed here should be
applicable to other environmental impacts; how-
ever, spatial dependency is higher in impacts such
as toxicity, acidification, eutrophication, and bio-
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diversity, and readers should take care when in-
terpreting the conclusions and recommendations
from this article.

The variability in the production of bio-based
products is larger than for abiotic ones. This is
mainly due to the fact that bio-based products
are derived from natural systems, which are sub-
ject to environmental conditions, as opposed to
technical systems, where conditions are normally
controlled (and often standardized). The main
sources of variability in agricultural production
include soil, climate, topography, crop or animal
variety, farming system and intensity of farming,
type of farm (specialized versus mixed farm, stock-
less versus farm with livestock), tradition, and
education of the farmer (see, e.g., Mila i Canals
et al. 2006; Mouron et al. 2006; Edwards-Jones
et al. 2009; Nemecek et al. 2009a).

Developing ways to derive surrogate LCA data
sets for bio-based products that account for their
variability would help address the challenge of
poor data availability. In addition, researchers
need guidance to justify suitable surrogates when
data on a particular product are not available.
Thus, the motivation to progress in this area of
work includes the following:

e the need for guidance on approaches to
bridging the data gaps and the types of data
that can be used as surrogates

e the need to understand how the inherent
variability of bio-based products may be
taken into account

o the need to understand the uncertainty re-
lated to the use of surrogate data.

This article focuses on the first point by explor-
ing the main approaches that can be used in LCA
to provide surrogates and discussing their consid-
eration of variability and uncertainty. The next
section offers definitions and a systematic classifi-
cation of these approaches, which are later illus-
trated with examples using surrogate data for bio-
based products; most examples are drawn from
existing studies, and one was specifically devel-
oped for this article. The implications of such ap-
proaches are then discussed in terms of balancing
the effort with quality of the results (uncertainty)
in relation to potential applications; finally, the
main conclusions and further research needs are

highlighted.



Description of Existing
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1. Use of proxy data sets: These describe alter-
native products for which data exist (source

Approaches data) and are assumed to have similar en-
Two main approaches for bridging data gaps vironmental impacts to the products of in-
in LCA studies are distinguished in this article terest (target). They are used to bridge data
(table 1): gaps without changing the original values

Table | Types of surrogate data used for bridging life cycle assessment (LCA) data gaps for bio-based

products
Source
Formal inventory/LCI
Term Definition representation modeling llustrative example
Scaled proxies Use known LCIs of A through F Unchanged®  In a multi-ingredient

Products A through represent G
F (weighted through K
according to the
product mix) to
represent the
unknown LClIs of
Products G through
K, which may be
functionally quite
different

Direct proxies Use LCI of Product A A represents B
to represent LCI of
Product B; Products
A and B are assumed
to have similar
characteristics and
function

Averaged proxies Use weighted or A through F
nonweighted represent G
average or median
LCI of Products A
through F to
represent LCI of
Product G. Products

A through F are
considered similar
o G
Extrapolated data Using LCI of Product A is used to
A or LClIs of generate data

Products A through for B
X to estimate LCI of

Product B, making
appropriate changes

product, such as
pizza, accurate LCI
data for only
85%,, of the
ingredients are
available. The data
gaps are bridged by
linearly scaling up
the data for 85% of
ingredients to 100%
Unchanged®  Using an LCI of apples
to represent pears

Unchanged®  Using the average of
LClIs of apples from
four countries,
weighted, for
example, according
to production
volume, to
represent, for
example, French
apples

Adapted to the Taking the LCI of

target system chicken production
to derive an adapted
LCI of turkey
production, by
changing
production
parameters

Note: LCI = life cycle inventory.

2 That is, the source data are kept intact or only averaged to represent the target system.
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beyond statistical calculations, such as av-
eraging. The selection and use of proxy data
sets is usually based on the knowledge and
experience of the LCA practitioner, and
the possibility to validate such choices is of-
ten limited. In table 1, three types of proxy
data can be identified:

o Scaled proxies scale the existing data to
estimate the missing data on the basis of,
for example, quantities or composition
of the products.

e Direct proxies represent direct substitutes
of the target with source data with no
changes.

o Averaged proxies refer to the data derived
through averaging the data for a group of
(source) products that can be assumed to
be similar to the target product.

2. Data extrapolation: This approach gener-
ates new data by adapting data from source
data sets outside the range of their origi-
nal validity to reflect better the target sit-
uations, for example, between countries or
regions, products, technologies, or time pe-
riods. The newly generated data are then
used to bridge the data gap in the target
situation. The level of detail and sophisti-
cation of the extrapolation algorithms can
vary, but, in general, this approach requires
thorough knowledge of the systems being
extrapolated and involves some changes in
life cycle inventory (LCI) models.

In table 1, the approaches are ranked accord-
ing to the effort required from the practitioner,
which is almost nil when one is scaling data (the
study is focused on those products for which data
exist, and the overall result is scaled up linearly
to include the missing data); the effort increases
in direct proxies (the practitioner has to find one
suitable proxy for each data gap), and it is fur-
ther increased in averaged proxies (two or more
alternative data sets are needed for each gap).
Finally, extrapolation requires significantly more
effort, as the source system characteristics need
to be explored and modified to represent better
the target system for each data gap.

A qualitative relationship between the level
of effort and the uncertainty expected with each
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of these approaches is illustrated in figure 1. This
relationship is discussed in the following sections.

Proxy Approaches

The motivation for using proxy data is usu-
ally that LCA practitioners feel that leaving the
data gap unfilled, thereby contributing a burden
of zero to the overall LCA result, is more wrong
than using proxy data. Using proxy data allows for
the estimation of an approximate contribution of
the target part of the whole system. As noted in
table 1, three main approaches for deriving proxy
data sets can be distinguished: scaled, direct, and
averaged proxies; these are discussed below.

In scaled proxies, all parts of the system for
which data are not available are ignored, and
once the impact is calculated for the remaining
parts, the result is linearly scaled up to 100%.
The advantage of this procedure is that it enables
quick estimates because it avoids the search for
suitable (direct or average) proxies of the missing
parts of the system; the obvious drawback is that
the researcher does not know whether the source
data (in the pizza example, e.g., for wheat and
mozzarella) are a good proxy for the target data
(e.g., mushrooms and artichokes).

In the case of direct proxies, a source data set
is used to represent a similar (target) product.
The uncertainty associated with the use of direct
proxies is generally high, because even if variabil-
ity between production systems is incorporated,
one cannot know whether such variability would
include the potential values for the target system.
To reduce uncertainty, the researcher needs good
knowledge of the target (and source) production
systems to evaluate whether the source is a good
proxy for the target. For example, the following
key indicators related to agricultural (and possi-
bly other biotic) systems should be as similar as
possible between the source and target products:
yield, nitrogen input, diesel use, amount of irri-
gation water, and the intensity of pesticide use.
Other criteria may include duration of cultiva-
tion (permanent versus annual crops), taxonomy
(genus, species, cultivar, etc.), harvested parts
(seeds, leaves, roots, etc.), and type of farming
system (organic or conventional).

In averaged proxies, the average (or median,
weighted or unweighted) values of two or more
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Figure | Trade-offs between effort and uncertainty in the approaches to managing environmental data

gaps. LCl = life cycle inventory.

source data sets are used to represent a target
product. If averaging is performed with a sig-
nificant number of initial data sets that cover
a broad range of products within the target group
and if variability is incorporated into the final re-
sult, then the range of impacts from the resultant
proxy data should be a reasonable representation
of the expected impacts of the target process. The
influence of the proxy data sets on the results can
be examined as usual—that is, through sensitivity
or contribution-to-variance analysis.

Extrapolation Approaches

As mentioned above, “extrapolation” refers to
the adaptation of data from source data sets to the
target situations by means of models. Such adap-
tation requires initial knowledge of the parame-
ters that influence the values in the source data
sets. Information on these parameters is usually
more readily available than information on the
environmental impacts; thus, when comparing
the parameter values for the existing and the new
situations, one should be able to extrapolate the
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environmental impacts from one to the other. In
cases in which the source and target production
systems are similar, the predicted environmental
impacts are likely to be more indicative of the
actual impacts.

Case Studies

This section presents several case studies that
illustrate applications of both proxy and extrap-
olated data and the impact on the overall study
results. Most examples are drawn from the liter-
ature and contain a mix of approaches, of which
we have highlighted the most relevant for illus-
tration purposes.

Use of Proxy Data: Scaled, Direct,
and Averaged Proxies

Data gaps abound in assessments of complex
products—for example, studies of people’s diets,
national food sector assessments, complex multi-
ingredient food products, or product portfolio
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analyses. The next sections discuss some exam-
ples in which proxy approaches have been pre-
dominantly used.

Direct Proxies

An example that uses direct proxies is offered
by Mufioz and colleagues (2010), who assess the
cradle-to-grave impacts of the Spanish food sec-
tor. In that study, food is divided into 53 groups,
for which direct proxy data sets are used (e.g.,
legumes are generalized with a data set for dry
peas). This approach provides an estimate of the
contribution of different food items to the envi-
ronmental impacts of the food sector that is of
the same order of magnitude as previous studies
that followed different approaches to managing
data gaps (e.g., Santacana et al. [2008], who used
an input-output approach). Thus, even though in
the absence of specific full LCA studies it is diffi-
cult to be certain which results are more correct,
the fact that different approaches lead to similar
results suggests that the conclusions at least point
in the same direction.

A similar example is provided by a project
offering a national-level consumption-orientated
GHG inventory for food and drink in the United
Kingdom (Audsley et al. 2010). The data sources
used included detailed LCA data produced by the
authors and literature data, which were used both
as direct proxies (e.g., from greenhouse toma-
toes to greenhouse peppers) and to average whole
commodity groups from a limited number of data
sets (e.g., field vegetables from the average of
several other field vegetables). Extrapolation was
also applied in some cases; for example, sugar
beets were extrapolated from potatoes according
to data from Tzilivakis and colleagues (2005) on
fertilizer application rates, tillage methods, pes-
ticide application rates, and yields. The study of
Audsley and colleagues (2010) was very useful
in quantifying the relative orders of magnitude
of primary production, postfarm gate activities
(distributing, processing, and consumption), and
GHG emissions from land-use change, although
uncertainties were large for small scale domestic
production and for some overseas commodities.

In the two case studies mentioned above, the
use of proxies allowed for the realization of com-
plex assessments in a reasonable time frame and
budget. It is not possible, however, to check the
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reliability of the outcomes other than by doing
the whole study with specific data, which would
require significant resources. In general, identify-
ing clearly all data gaps and describing the ap-
proach used to fill them can help to improve
transparency and confidence in the results.

Awveraging Proxies From Statistical Analy-
sis of Crop Life Cycle Impact Assessment
Results

Mutel and colleagues (2009) generated data
sets for a selected group of fruits and vegeta-
bles (field tomatoes, carrots, onions, pumpkins,
pineapples, papayas, kiwi fruit, and bananas) to
test whether different types of crops could be
easily grouped into generic classes (e.g., tropical
fruit versus temperate fruit). For each fruit or veg-
etable, the authors constructed a data set with un-
certainty ranges representative of global produc-
tion conditions using global databases or specific
literature sources. In many cases, this involved
adapting specific inventory data from countries
with industrialized agricultural systems, with un-
certainty ranges expected for general classes of
inputs (e.g., fertilizer, farm machinery, and irriga-
tion inputs). Uncertainty distributions were fitted
from empirical cumulative distribution functions
on the basis of data drawn from databases or a
collection of published papers for each crop pa-
rameter. Figure 2 shows the ranges observed un-
der Monte Carlo analysis for global warming po-
tential (GWP), measured in kilograms of carbon
dioxide equivalents (kg CO;-eq.) per kilogram
(kg) of product?.

For the specific crops and indicators chosen
in this case study, no groups could be statisti-
cally distinguished. For example, the sample set
of tropical fruits (pineapple, papaya, kiwi, and ba-
nana) could not be considered different from the
sample set of temperate fruits and vegetables (all
others) at even a 50% confidence level (accord-
ing to the Kolmogorov-Smirnoff two-sample test,
p=0.98). A generic data set was constructed with
kernel density estimation from the samples gener-
ated for all crops. Although this generic data set is
a poor fit for many of the individual crops, it could
be used as a proxy if crop data were not available.
The lack of observed grouping between different
product categories is tempered by the limits of
the sample data set. These results suggest that



METHODS, TOOLS, AND SOFTWARE I

0.5 T
- --— _
1 | o !
1 I ] |
I I ] |
1 — , I 1
0.4 , : X ) : R
1 — 1
\ 1 1 : ) 1
5 \ 1 1 X ) 1
=) \ 1 1 A 1
K] I I ' X I
1
5 0.3r _ | 1 1 : A 1 1
o ! | T | | X |
~ 1 \ | 1 1 !
= 1 I \ | l |
g - : \ | l 1 l
'~ 1
3 0.2 ! h ! ! J
1 l 1
S, | ! |
~ 1 | 1
1 | 1
! ! -+ L
0.1 1 | \ i , E
03 L Lt '
- o 1
1
-4
-
0.0 . S ‘o& . = ‘*@ ‘{_\Q ;_\\ ‘00 ‘(@ . <
o N Q 2 A S S e
& N > L & N
<9 S R ° ¥ &

Figure 2 Box and whisker plots of global warming potential scores expressed in kilograms of carbon
dioxide equivalents (kg CO,-eq.) from Monte Carlo analysis (n = 100) of a set of fruits and vegetables.

Boxes represent the 25% to 75% quantiles, the median is the line inside the boxes, and the dotted lines

represent the data range. The generic distribution is constructed from a Gaussian kernel density estimator;

input data were the complete sample set of all individual crop Monte Carlo runs (Mutel et al. 2009).

there is a research need for further species to be
considered in investigations of the applicability
of averaged data sets.

The analysis also indicates that life cycle im-
pact assessment (LCIA) results vary as much
within crops as they do between different crops.
For example, the ratio of the upper and lower
95% confidence limits for each crop (2.1 to 4.1)
was approximately the same as the ratio of the
median values of the lowest and highest scoring
crops (tomato and banana; ratio of 3.6). These
results show that using only a mean value can be
misleading when one is studying bio-based prod-
ucts and that variability should be incorporated
whenever possible.

Aweraging and Scaling

Mila i Canals and colleagues (2009b, 2011)
assessed the global CF of the Knorr brand portfo-
lio. The complexity of Knorr’s product portfolio
made a bottom-up, conventional product-based
carbon footprint approach impractical. Ingredi-
ents and processes that were considered similar
were aggregated in “building blocks” (e.g., “dairy

Mila i Canals et al., Bridging LCA Data Gaps for Bio-based Products

products” instead of milk, cream, etc.; “drying”
instead of air drying, spray drying, drum drying,
etc.), and this facilitated assessments of different
combinations of such building blocks for differ-
ent products. Apart from the simplification in
the analysis, such grouping was required due to
the lack of specific data for most of the ingre-
dients used in Knorr products. To assess the ro-
bustness of the results, they individually assessed
the variability around the averaged proxies for
most building blocks and propagated it through
the calculations (Mila i Canals et al. 2011). Once
the majority of the portfolio’s volume had been
assessed, the results were scaled to estimate the
total impact of the brand. For example, the im-
pact calculated for wet soups was scaled to the
production volume of wet soups and wet sauces
(the latter were not specifically assessed).

The variability assessment of the averaged
proxies greatly supported the interpretation of the
results by identifying a confidence range around
the carbon footprints for both product format
(e.g., dry soups, wet soups, bouillon cubes) assess-
ment and target setting. Using only mean values,
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they estimated Knorr’s carbon footprint as 3.5 (or
“between 3 and 4,” Mila i Canals et al. 2009b)
million tonnes CO;-eq. per year’, whereas the
variability analysis suggested that it lies between
3.4and 4.8 with a95% confidence interval (Mila i
Canals etal. 2011). Such a range provides at least
the order of magnitude for the brand’s footprint
and facilitates target setting for improvement. As
long as progress against the target is measured
with the same approach, it should be possible
to assess with reasonable confidence whether the
brand is moving in the right direction and at what
rate.

The implications of using averaged proxies
rather than specific data for most ingredients are
clear in this case study. First, the use of prox-
ies allowed the realization of the study, which
could not have been carried out had all ingredi-
ents needed assessments with specific studies. By
characterizing them with an averaged proxy and
variability range, the probability density function
(PDF) of the final impact could be more confi-
dently stated to contain the real impact. When
the studied product types were scaled up to cover
the whole of the portfolio, the uncertainty in-
creased, but in an informed manner: The brand
consciously chose to study some products in more
detail and accepted that minor product formats
were more coarsely estimated. Therefore, the fi-
nal result is valuable as an indication of where
the impacts lie and to monitor progress against
reduction targets. In comparison to direct and
scaled proxies, the use of averaged proxies with
variability ranges is considered to provide more
robust and less uncertain results.

Extrapolation of Data Sets

When enough knowledge and resources are
available, extrapolation allows researchers to bet-
ter represent the target system by modifying the
source data.

Extrapolation of Specific Life Cycle Inven-

tory Parameters: From Chicken to Turkey

In trying to estimate the impacts for turkey
production, one could assume that turkeys are suf-
ficiently similar to other poultry for which LCA
studies exist, such as chickens. Stichnothe and
colleagues (2010) have used chicken data as an

714 Journal of Industrial Ecology

averaged proxy for turkey on the basis of a range
of literature data for chicken meat (see table 2).

Alternatively, instead of using the chicken
values for turkey as direct or averaged proxy, it
may be possible to study the production prac-
tices for these two species to determine how they
compare and what flows one needs to adapt in
the inventory data to extrapolate from one to
the other. Much of the data are available from
standard management texts—for example, the
work of Nix (2009) or ABC (2009). Values for
the main production parameters for chicken and
turkey have been gathered from the literature
and are detailed in the Supporting Information
available on the journal’s Web site together with
definitions for such parameters (see table S1); the
differences between the work of Nix (2009) and
ABC (2009) give an indication of the variability
of typical production data.

Thus, with these readily available data and
with an LCA model of broiler chicken produc-
tion that includes feed requirements and conver-
sion to meat (Williams et al. 2006), together with
time-dependent variables (e.g., ammonia emis-
sion rate), we estimated turkey production on
the basis of broilers, as described in detail in the
Supporting Information on the Web. Some sim-
plifying assumptions were needed regarding the
parameters that could be used to extrapolate the
various impacts; for example, we extrapolated im-
pacts related to feed inputs and manure outputs
using the feed conversion ratio (FCR), and we
extrapolated impacts from direct energy use in
proportion to the days of production per unit live
weight.

As an example, the GWP related to the pro-
duction of feed for chicken is 1,721 kg CO;-
eq./tonne of chicken meat (Williams et al. 2006),
and the average FCR is 1.8 for chicken and 3.1 for
turkey (table S1 in the Supporting Information
on the Web); thus, by multiplying the GWP for
feed production for chicken by the relationship
between these parameters (3.1/1.8), we obtain
the extrapolated value for GWP for feed produc-
tion for turkey (3,052 kg CO;-eq./tonne turkey
meat). The full results are shown in table S2 in
the Supporting Information on the Web. With
the extrapolation, the GHG emissions for turkey
are estimated at about 4.46 kg CO;-eq./kg meat,
or about 50% higher than for chicken, which
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Table 2 Carbon footprint values for chicken and poultry (developed from Stichnothe et al. 2010)

Reference

kg COseq./kg functional unit Functional unit

Danish database on food (www.lcafood.dk)
Danish database on food (www.lcafood.dk)

German database (www.probas.umweltbundesamt.de)

Jungbluth (2000)

Williams and colleagues (2006)
Wallén and colleagues (2004)
Baumgartner and colleagues (2008)
Pelletier (2008)

Azapagic and colleagues (2011)

1.86 Live chicken
3.11t03.28 Chicken meat
1.57 to 1.83 Live chicken
2.32t0 2.90 Chicken meat
2.57 Poultry meat
2.81 Poultry meat
2.8t03.3 Live chicken
1.4 Live chicken
3.7 Chicken meat

Note: kg CO;eq. = kilograms of carbon dioxide equivalents.

has an average GHG value of around 3 kg CO;-
eq./kg meat (if we consider the values per meat
from table 2).

Stichnothe and colleagues (2008, 2010) re-
port a similar value of 4.97 (turkey LCA based on
the feed composition, the feed conversion rate,
emissions from turkeys, waste, etc.), and Williams
and colleagues (2006) suggest 5.13 kg CO;-eq./kg
turkey in a different LCI for turkey production.
The values available for chicken (table 2) sug-
gest that using direct or averaged proxy values for
turkey on the basis of chicken data is inadequate
(see also Stichnothe et al. 2010). Using chicken
LCI data as a starting point, however, and ex-
trapolating them with the relevant production
parameters (available in agricultural literature)
results in a reasonable estimate when compared
with turkey LCI data, as illustrated here. In ad-
dition, the extrapolation process forces the ana-
lyst to critically explore the characteristics of the
whole system and the relevance of the data be-
ing used. It is thus reasonable to assume that the
outcome will be at least more reliable than using
direct proxies without further adaptation.

Full Extrapolation of LCI Data for Crops

Nemecek and colleagues (2009a) and Roches
and colleagues (2010) describe MEXALCA,
a modular extrapolation of agricultural LCA.
Within MEXALCA, the impacts of crop produc-
tion are estimated for all producing countries by
means of one single inventory and estimators for
the main production parameters, developed for
all the countries from statistical data from the
Food and Agriculture Organization (FAQO; see
Roches et al. 2010). Such parameters include ni-
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trogen (N), phosphorus (P), and potassium (K)
fertilizers; pesticides; irrigation water; and water
to be evaporated in drying as well as the mech-
anization and tillage intensity. The impacts are
then weighted for each country by the production
volume of the country, and the statistical distribu-
tion of the weighted impacts on the global scale
is determined. Extrapolating values in this way
offers a relatively quick estimate of the probabil-
ity density function of production impacts in the
world for a given crop. For instance, the extrap-
olated statistical distribution of GWP for potato
production in the world is displayed in figure 3;
the percentage in the x-axis is the cumulative
share of global potato production that is pro-
duced with a GWP equal to or lower than the
value shown in the y-axis. It shows that 50%
of the potato production is estimated to have a

GWP below 0.13 kg CO;-eq./kg, the other 50%

-~
o > o ®»o v Ao

GWP [kg CO,-eq. / kg potatoes]

0% 25% 50% 75%
Cumulative global potato production

100%

Figure 3 Global warming potential (GWP) as
extrapolated by MEXALCA expressed as a function
of the cumulative global potato production. Values
are in kilograms of carbon dioxide equivalents per
kilogram of potatoes (kg CO,-eq. kg™").
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above this value. The distribution is left-skewed,
as 90% of producers have values in the 0.1 to 0.22
bracket and 10% of the producers are in the 0.22
to 1.4 bracket.

The possibilities for extrapolation are quite
different depending on the impacts and products
concerned (Roches et al. 2010). For example, for
global resources, such as fossil energy or miner-
als (e.g., P and K), extrapolation works relatively
well. This is also the case for environmental im-
pacts, such as global warming and ozone forma-
tion. This is because such impacts are the same
regardless of where resources are consumed or
emissions are caused.

Regional and local environmental impacts are
much more difficult to extrapolate, because they
are influenced by a number of site-dependent
parameters, such as soil characteristics, topogra-
phy, and climate. This applies, for example, to
the assessment of eutrophication, acidification,
and biodiversity. Furthermore, toxicity impacts
of agricultural systems are mostly dominated by
pesticides; without very specific knowledge of the
pesticide applied, extrapolation is hardly possible.
In the same vein, the use of water for irrigation is
highly dependent on the climate, and the sever-
ity of the impacts depends on the availability of
the water in the watershed (Mila i Canals et al.
2009a). This requires quite a high geographical
resolution and is thus not easily extrapolated.

MEXALCA provides a framework for deriving
extrapolated values, helping the analyst to un-
derstand better the extrapolated system. Its main
strength possibly lies in the explicit description of
variability in production conditions of the stud-
ied area. For example, figure 3 suggests one or-
der of magnitude variance in the GWP of world
potato production; however, it also shows that
about 90% of the world’s potatoes are produced
with a GWP that varies only two-fold.

Exploration of Variability in Food
Commodities With Full Life
Cycle Inventory

The main advantage of using the FAO statis-
tics in such an exhaustive way as explained in
the preceding section is that the results present a
picture of where impacts are likely to lie for a crop
from a certain region (continent) or even from
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nowhere in particular. This approach may be par-
ticularly useful when one is describing impacts of
bio-based commaodities traded in the open mar-
ket, for which there is no traceability to produc-
tion region and conditions (which can affect their
environmental impacts significantly).

If variability (e.g., PDF) were not estimated
through extrapolated data as done by MEX-
ALCA, full LCIs would be required for a large
number of producers in the region that needs
representing, which is very resource intensive.
For example, Thoma and colleagues (2010) pro-
vide GWDPs for milk production in more than
500 U.S. farms (see figure 4 and figure S1 in
the Supporting Information on the Web), which
demonstrates the variability associated with these
impacts across production practices. Analysis of
these data shows that the variation in GWP is
strongly correlated to farm management and not
strongly correlated to region or herd size. Thus,
because milk is traded as a commodity (at least
within countries and regions), using its average
impact together with probable ranges of varia-
tion that include the mix of production practices
may be more appropriate than using a single value
from a well-characterized practice (farm). Thoma
and colleagues (2010) collected data by survey
from more than 500 U.S. dairy farms that repre-
sented a wide range of production practices, from
small pasture-based to large confined-animal fa-
cilities. Rations for each animal class were used
to create an individual farm footprint. Direct and
averaged proxies and extrapolation were all used
to determine the footprint of the total farm ra-
tion. For example, for some farms incomplete ra-
tions were reported and regional average rations
were substituted; in other cases data were un-
available for some specific feeds, and the authors
created a proxy by taking an average of several
similar feeds for which data did exist. Thoma and
colleagues (2010) thus provide a level of depth
for milk that is very uncommon to find in LCI
databases; this could be seen as an aspiration in
terms of data but is highly unlikely to be achieved
for many bio-based products.

The high degree of variability that is shown
in these data underscores the importance of at-
taching uncertainty information to LCI data. In
this case, as shown in table 3, although there are
outliers at both the high and low ends of the
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Figure 4 Global warming potentials (GWPs) of fat and protein corrected milk (FPCM) at the farm gate
(4% fat; 3.3% protein) in U.S. farms (data from Thoma et al. 2010). The box represents the 25th and 75th
percentiles, with the median represented by the horizontal line. The thick bars denote the 10th and 90th

percentiles; outliers are shown as discrete points. Values are in kilograms of carbon dioxide equivalents per

kilogram of FPCM (kg CO,-eq./kg FPCM).

spectrum, the mean value for U.S. production
could be reasonably substituted as a direct proxy
for milk production in most regions of the world,
and the reverse is also true. Here, the underlying
production similarities appear to dominate milk
production globally, in contrast to the previous
example with fruits and vegetables (figure 2), for
which a factor of 2 is approximately the best we
can expect in terms of the accuracy of replace-
ment data. This further underscores the critical
role of the analysts’ understanding of the source
and target systems.

Discussion

The above examples illustrate some of the im-
plications of different approaches to managing
data gaps for bio-based products. They also indi-
cate the balance between effort and quality of the
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results provided by the different approaches (fig-
ure 1). In general, expert judgment suggests that
effort and quality increase as one moves from
scaled proxies to direct to averaged ones (with
consideration of variability) and then to extrap-
olation. Uncertainty in all the processes to find
surrogate data still needs to be further resolved
through comparison of surrogates with full stud-
ies, however.

In all approaches and particularly with prox-
ies, sensitivity analyses should be carried out, but
it is often difficult to identify sensible data ranges
for such analyses. In any case, even direct proxies
are probably closer to reality (i.e., impact higher
than zero) than leaving a data gap, and thus prac-
titioners will continue to use them as demand for
bio-based LCA and CF studies increases more
rapidly than the capacity to provide full studies
of all products.
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Table 3 Summary of previously published life cycle assessment (LCA) for fluid milk production and

consumption

Allocation  Characterization
Emissions % to factors

Study (kg COz-eq.) Functional unit milk  (CO;, CHy, N;O)  Study description

Basset-Mens 0.72 kg milk at farm 85 1,21,310  New Zealand,
and gate estimated national
colleagues average
(2009)

Capper and 1.35 kg milk at farm U.S. average, 1944
colleagues gate versus 2007
(2009)

Cederberg and 09t01.04 kg milk at farm 90 1,21,310  Sweden, 23 farms
Flysjo (2004) gate

Cederberg and 090to1.1 kg ECM at farm 85 IPCC 1995 Sweden, organic versus
Mattsson gate conventional
(2000)

Cederberg and 1.02 kg ECM at farm 85 1,25,298  Sweden, 1990 versus
colleagues gate 2005
(2009)

Cederberg and 1.08 kg ECM at retail 85 1,25,298  Sweden, 1990 versus
colleagues 2005
(2009)

DEFRA (2007) 1.18 kg milk at farm 100 - United Kingdom

gate

Eide (2002) ~0.54 to 0.65 kg milk at end 65 - Norway, study of three

of life dairies

Eide (2002) ~0.41 t0 0.46 kg milk at farm 65 - Norway, study of three

gate dairies

Gerber and 2.4 kg FPCM at ~90 1,25,298  International average
colleagues retail
(2010)

Gerber and 1.3 kg FPCM at ~90 1,25,298  U.S. average
colleagues retail
(2010)

Gerber and 1 kg FPCM at ~90 1,25,298  U.S average
colleagues farm gate
(2010)

Haas and 1.0to 1.3 kg milk at farm - - Southern Germany,
colleagues gate intensive, extensive,
(2001) and organic

Guinard and 1.2 kg milk at end  Economic 1,25,298  Literature review of 60
colleagues of life studies, primarily
(2009) European

Guinard and 1 kg milk at farm  Economic 1,25,298  Literature review of 60
colleagues gate studies, primarily
(2009) European

Thoma and 1.23 kg FPCM at Biophysical/ 1,25,298  U.S. national average,
colleagues farm gate causal primary data
(2010) collected from more

than 500 farms

Note: kg CO;-eq. = kilograms carbon dioxide equivalents; CO; = carbon dioxide; CH4 = methane; N;O = nitrous
oxide; FPCM = fat and protein corrected milk; ECM = energy corrected milk, which is equivalent to FPCM.
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When one is averaging data, it is possible to
suggest ranges for variability and sensitivity anal-
yses, although it is still uncertain whether such
ranges cover the whole spectrum of the product
or group represented. As shown in the Knorr ex-
ample (Mila i Canals et al. 2011), propagating
the expected variability may enhance the robust-
ness of results and provide enough information
to support decisions that require only a notion of
orders of magnitude or trends (e.g., detection of
hotspots, broad-brush strategic decisions, target
setting).

A more common type of proxy data use (al-
though practitioners may not often recognize it as
such) is when data for one product grown in one
country are used to represent the same product in
another country (e.g., using GHG emissions for
Dutch milk to represent English milk). Nemecek
and colleagues (2009b) have shown for cereals,
however, that the impacts of wheat and barley
within a country can be more similar than the
impacts of the same species in two neighboring
countries. In this sense, it may be wiser to use
slightly different products from the same country
as proxies than to use the same product from a
different country.

When more time is devoted to the analysis
and adaptation of LCI data (data extrapolation),
the results are likely to be more credible, but the
effort is higher. This approach is thus good when
a relatively small number of products are to be
assessed and enough technical knowledge exists
but perhaps there is limited access to data. The ef-
fort for the analysis increases if there are no main
hotspots within the system or if the key influenc-
ing parameters are completely unknown. Extrap-
olation methods, such as MEXALCA, allow for
a quick assessment of large amounts of statisti-
cal data describing agricultural production con-
ditions (e.g., from FAO); such approaches give
a broad picture of likely impacts and variability,
which are enough for several types of decisions,
but are associated with a relatively high level of
uncertainty at the individual country level. Thus,
extrapolation is a valuable approach for deriv-
ing a generic value for apple cultivation at the
global (world) or at the regional (e.g., European)
scale. When one first extrapolates the impacts to
all producing countries and then calculates the
median and some quantiles of these impacts (at

Mila i Canals et al., Bridging LCA Data Gaps for Bio-based Products

METHODS, TOOLS, AND SOFTWARE I

the global or regional scales), the obtained value
should give a more robust estimate for bio-based
commodities than when one averages solely the
regional values.

Apart from the considerations on uncertainty
of the surrogates, this article has also illustrated
the importance of considering variability in bio-
based products. Approaches for considering such
variability have been shown for averaged prox-
ies and for extrapolation from agricultural statis-
tics with MEXALCA. Indeed, there is no reason
why a better consideration of variability should
not be more common practice in bio-based LCA
studies: Information on variability is available in
agricultural statistics, yet this is not usually in-
corporated into the LCA results. Such statistical
information may be used to provide, for example,
3-5-year averages, which may be more represen-
tative for bio-based production than very detailed
information covering one single year. A more de-
tailed analysis of this issue is offered by Roos and
colleagues (2010) in a case study of table potatoes,
where they report a variation of about +/—30%
in a simple product (fresh potatoes) from a sin-
gle region in Sweden, or the work of Thoma and
colleagues (2010), who reported a range larger
than a factor of 3 for milk produced in the upper
Midwest in the United States.

The inclusion of variability reduces the dis-
criminatory capacity of the results (due to
overlaps of variability ranges) but reduces the
uncertainty and increases the robustness of the
conclusions when differences are shown. For ex-
ample, the range of values used to derive the av-
eraged proxy may overlap with values for other
products (e.g., New Zealand apples); this could be
seen as limiting the usefulness of results (we can-
not say, “A is better than B”) but above all would
avoid spurious certainty based on mean values.

On the basis of discussions around the ap-
proaches illustrated in this article, table 4 suggests
what types of applications may be supported when
researchers use data derived following the above-
discussed approaches. For instance, product label-
ing should not rely on 100% direct proxies, but
a small percentage of proxy data (e.g., less than
10%) in a study supporting labeling may be ac-
ceptable. This is important because, as discussed
throughout the article, there is an increasing fo-
cus on assessing the environmental impacts of
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Table 4 Potential applications of approaches to finding surrogate data explored in this article

Extrapolation

Extrapolation

with full
parameters
from
agricultural

from single statistics (with

Application Scaled proxies  Direct proxies  Awveraged proxies parameters variability)

Strategic OK for initial ~ OK for initial OK OK OK
planning screenings screenings

Hotspot analysis ~ OK for initial ~ OK for initial OK OK OK
and screenings screenings
innovation

Ingredient Not suitable Not suitable May be OK for OK OK
selection and changes
product between
incremental groups of
changes ingredients

(e.g,
vegetables for
meat)

Sourcing and Not suitable Not suitable Not suitable May be OK if ~ May be OK if
supplier key key
selection influencing influencing

parameters parameters
are known for  are known for
product type product type
and supplier-  and supplier-
specific specific
parameters parameters
are used are used
(rather than
national
statistics)

Labeling, Envi-  Not suitable Not suitable
ronmental

Product

Declarations,

and external

claims

Not suitable

Not suitable Not suitable

bio-based products, and some of the approaches
allowing quick access to data may be more
or less appropriate depending on the intended
application.

Scaled and direct proxies are the most uncer-
tain of all the approaches reviewed here; how-
ever, they can still be informative in screening
studies for strategic decisions and hotspot anal-
ysis to guide innovation. In addition to support-
ing decisions that only require orders of mag-
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nitude and trends, averaged proxies are useful
for establishing environmental hotspots for fu-
ture in-depth investigations to focus on these.
They might help to reduce the list of thou-
sands of ingredients or products to a few dozen,
probably most relevant ones. It should be the
goal in a next step to establish more accurate
LCA data for those dozens (instead of probably
unimportant ones). For less important ingredi-
ents, a direct proxy might be acceptable for many



applications. Checking the developed proxy ap-
proaches against real, specific data also helps to
establish the suitability of those approaches; how-
ever, this is not possible in many cases, as it is the
lack of data that forces us to use proxies. It should
not be the goal to keep forever the proxies that
turn out to be relevant. Continuous improvement
of data quality should be anticipated and planned
for.

Averaged proxies may also be useful to se-
lect between different product types, depending
on the overlap in variability ranges. For exam-
ple, averaged proxies would probably support dis-
tinctions between animal and vegetable fats, al-
though they would likely not suffice to distinguish
one type of vegetable oil from another unless
their impacts were clearly differentiated and the
difference was clearly supported by enough stud-
ies. Nonetheless, 100% proxy data should not
be used to select suppliers or sourcing regions,
as the available data will usually not be suffi-
cient to differentiate between options. With data
extrapolation, conversely, it should be possible
to construct new data sets that are representa-
tive enough of suppliers as long as the parameters
driving environmental impacts (e.g., N fertilizer
use) are known and values for such parameters
are available for each supplier. In the extreme,
this could be applied to select sourcing regions
as long as statistical information is available on
the relevant parameters (e.g., from FAO) and it
can be incorporated in the calculations (e.g., with
methods such as MEXALCA).

For other uses that require high precision (e.g.,
carbon labeling), the approaches presented here
are not suitable, and more detailed assessments
with study-specific data are recommended. Even
for carbon labels, however, certain parts of the
production system may be better represented by
an extrapolated value with variability range than
by a study-specific, well-characterized value. For
example, it would be preferable to describe the
commodity wheat with an extrapolated PDF rep-
resenting the main growing regions in the world
instead of a specific single-farm value from a very
well-characterized study that is representative of
less than 1% of the system suppliers. One ad-
ditional note regarding carbon label application
relates to the consideration of data variability:
When such variability is incorporated (as shown,
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e.g., in figures 2, 3, and 4 and in the Knorr
case study), one may question whether report-
ing results as a single number in carbon labels is
appropriate.

Conclusions

As explored in this article, there are many
approaches to bridging data gaps for bio-based
products with surrogate data; these will continue
to be used with the rise in LCA and, particularly,
CF studies, and better understanding of their im-
plications is needed. This article has defined some
of the main approaches for bridging data gaps and
has discussed their advantages and shortcomings.
The obvious advantage common to all the surro-
gates is that they facilitate the impact estimation
when a full assessment would be too costly (e.g.,
assessment of a whole product portfolio, diet, or
sector). Conversely, surrogates are almost always
wrong or, at the very least, poor approximations
of reality, and the difficult question is how to
determine whether the results are close to real
data (and how much closer to, or perhaps further
from, reality they are, as compared to leaving a
data gap). An added difficulty is that it is often
not possible to validate the results, for the same
reason that makes surrogates necessary: lack of
data. The hierarchy proposed in this article rep-
resents a first and important step in establishing
guidelines for use of surrogate data and establish-
ing a common vocabulary to allow an extension
of the discussion.

The application of detailed environmental
knowledge to life cycle management will prob-
ably generate more need for basic data, particu-
larly if it keeps proving useful and robust enough
to provide fit-for-purpose answers even when re-
search moves into unexplored territories. The
current situation suggests that there are more
gaps than data, particularly for bio-based prod-
ucts. As a first step, before detailed knowledge is
available, careful use of the approaches reviewed
here could help support such application and
guide research into major data gaps. The defini-
tions and discussion provided in this article could
help practitioners to describe better what data
are being used in their studies and their potential
implications.
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Extensive data are available from agricultural
statistics on key production parameters that drive
environmental impacts; researchers should fur-
ther exploit such data sources to derive expected
values for a range of situations starting from de-
tailed LCA studies (data extrapolation). This
seems to be a more promising approach than using
direct proxy data. When not enough resources are
available (time, budget, or technical expertise)
the use of averaged proxies with consideration of
variability may be a good compromise for initial
assessments and even for guiding broad product
group selection (e.g., vegetable oils versus ani-
mal fats). Direct proxies with no or low vari-
ability may still be informative of the expected
trends and orders of magnitude in environmen-
tal impacts, which are enough for many appli-
cations (e.g., strategic planning, identification of
hotspots). Caveats should be placed, however,
when common sense or rules of thumb are used
to bridge data gaps between products or regions
with direct proxies. For example, Swiss wheat
may be a better proxy for Swiss barley than is
French barley; chicken data are not a good proxy
for turkey, even though both are poultry. Initial
explorations are required by product experts who
understand the key parameters driving the envi-
ronmental impacts of a product life cycle and are
able to make such rules of thumb.

The use of surrogate data as explored here em-
phasizes even more the unavoidably uncertain
and incomplete nature of LCA results. More re-
search is needed, in particular on the considera-
tion of variability for bio-based ingredients. Ide-
ally, proxy data should only be used with proper
consideration of the potential effects of variabil-
ity, and refinement of results should be planned
for those products or components represented by
proxies that influence the overall environmen-
tal impact. Once the variability and uncertainty
around the data used are factored into the analy-
sis, the use of single numbers for communication
of environmental impacts (e.g., in carbon labels)
seems inadequate, even when surrogates are not
used and all data are specific to the study. Data
expressing variability and uncertainty around a
mean are preferable.

In conclusion, assessment of carbon foot-
prints (among other environmental impacts)
and business-to-business communication of re-
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sults will remain positive drivers for environ-
mental improvements (and LCA applications).
It is therefore important that the analysis and
reported results include proper consideration of
data availability, variability, and uncertainty.
This will help not only to obtain more reliable
results but also to improve the trust in LCA and
related approaches.
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Notes

1. For the purposes of this article, bio-based products
are those derived from biotic systems, including
agriculture, forestry, and fisheries.

2. One kilogram (kg, SI) ~ 2.204 pounds (Ib).

3. One tonne (t) = 10’ kilograms (kg, SI) ~ 1.102
short tons.
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Supporting Information

Supporting information may be found in the online version of this article:

Supporting Information S1: The supporting information provides additional data and worked-
out examples illustrating the contents of this article. First, concept definitions, further production
parameter data (table S1), assumptions, and a table showing the step-by-step calculations (table
S2) of the simplified extrapolation example (from chicken to turkey) are provided. Then, an
alternative representation of figure 4 is given in figure S1.

Please note: Wiley-Blackwell is not responsible for the content or functionality of any supporting
information supplied by the authors. Any queries (other than missing material) should be
directed to the corresponding author for the article.
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