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Evolution of Genuine Cross-Correlation Strength of
Focal Onset Seizures
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Summary: To quantify the evolution of genuine zero-lag cross-correlations
of focal onset seizures, we apply a recently introduced multivariate measure
to broad band and to narrow–band EEG data. For frequency components
below 12.5 Hz, the strength of genuine cross-correlations decreases signifi-
cantly during the seizure and the immediate postseizure period, while higher
frequency bands show a tendency of elevated cross-correlations during the
same period. We conclude that in terms of genuine zero-lag cross-correla-
tions, the electrical brain activity as assessed by scalp electrodes shows a sig-
nificant spatial fragmentation, which might promote seizure offset.
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For the quantitative analysis of complex systems like the human
brain, development and application of sophisticated tools of time

series analysis are indispensable. During the past decade, especially
the application of nonlinear measures became popular, mostly,
because it was supposed that the mechanisms underlying an EEG
signal are nonlinear or even chaotic (Babloyantz and Destexhe, 1986;
Babloyantz et al., 1985; Lehnertz et al., 2000; Nan and Jinghua,
1988; Rapp et al., 1985; Skarda and Freeman, 1987). Hence, a mul-
titude of different techniques like the estimation of the largest
Lyapunov exponent (Iasemidis et al., 2003), the correlation dimen-
sion (Lehnertz and Elger, 1998), generalized correlations via mutual
information (Mars and Lopes da Silva, 1983), nonlinear regression
(Pijn and Lopes da Silva, 1993; Wendling et al., 2001), or synchro-
nization measures (Arnhold et al., 1999; Bhattacharya, 2001;
Mormann et al., 2000; Rosenblum et al., 2004; Stam and van Dijk,
2002) have been applied. A comprehensive review of the most
prominent techniques applied to EEG analysis can be found in the
review by Stam (2005). All the before-mentioned methods are uni-
variate or bivariate, evaluating properties of single or the interplay of
pairs of data channels of a multivariate EEG recording. However, if

one aims at detecting relationships between m. 2 data channels and
at quantifying the total strength of interrelations, a multivariate
approach seems most promising. This conjecture is motivated by
the typical network structure of mammalian brains (Bartolomei
et al., 2001; Netoff et al., 2004; Ponten et al., 2007; Sporns and
Zwi, 2004), where interconnections lead to more complex structures
than those given by a set of bivariate relations.

A linear multivariate approach was applied in the study by
Schindler et al. (2007b) to intracranial recordings of 100 focal onset
seizures of 60 patients to study the evolution of zero-lag cross-cor-
relations between the signals measured by different electrodes. The
authors provided evidence that the total amount of cross-correlation
remains approximately unchanged throughout the first part of the
seizures but increases gradually during the final part. Also, based
on the earlier work by Topolnik et al. (2003), the authors proposed
that increasing neuronal synchronization during epileptic seizures
might be an emergent self-regulatory mechanism for seizure offset.
As one possible molecular mechanism that could promote seizure
offset, it was proposed that Na1- and Ca21-activated potassium
currents overcome hyperpolarization-activated depolarizing ionic
currents (Topolnik et al., 2003). It was speculated that activation
of potassium currents might be most effective in hyperpolarizing
neuronal membranes, thereby suppressing ictal activity when
occurring simultaneously in spatially extended neuronal networks
(Schindler et al., 2007b). Thus, it was postulated that the increase
of correlated EEG activity before seizure offset could be an active
seizure offset mechanism and not simply an epiphenomenon. Further
evidence for this hypothesis was put forward in Schindler et al.
(2007a), where the evolutions of six status epilepticus EEG record-
ings were studied.

The studies presented in Schindler et al. (2007a, 2007b) are
based on the eigenvalue spectrum of the zero-lag cross-correlation
matrix with Pearson correlation coefficients as elements. Naturally,
all matrix elements are estimated over a finite time window, usually
chosen as small as possible to obtain an optimal time resolution.
However, any measure, whose rigorous mathematical definition con-
tains integrals over an infinite range bears deficiencies, when applied
to data segments of finite lengths. This is particularly true for the
Pearson coefficient, which is generally contaminated by random
correlations (e.g., Müller et al., 2005, 2006; Plerou et al., 2002).

Importantly, the amount of random correlations may change,
when the frequency contents of the signals, that is, the power spectra
vary (Müller et al., 2008a; Rummel et al., 2010). This effect is
illustrated in Fig. 1A, where the distribution of nondiagonal elements
of the correlation matrix is displayed for surrogate data of different
segments of a 19-channel scalp EEG recording. The surrogates con-
serve the power spectra of the original data, while all linear as well as
nonlinear relationships between the data channels are destroyed
(see Surrogate Data and Estimating the Strength of Genuine Cross-
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Correlation). The EEG segments chosen for this illustration are from
a temporal lobe seizure in case of the solid line histogram and from
the immediate postseizure period in case of the dashed probability
distribution. The power spectra (of electrode Fz) of these epochs are
shown in Fig. 1B. In case of immediate postseizure period (dashed
line histogram), the amount of slow frequencies is considerably
higher than during the seizure, while it contains less contribution
from higher frequencies.

As expected for uncorrelated data, both distributions shown in
Fig. 1A are bell shaped and centered around zero. However, the
width of the distribution drawn from the data with a higher contri-
bution of slow frequencies is much larger, providing a higher prob-
ability for the (incidental) appearance of large cross-correlation
coefficients. However, the widths of the 2 distributions shown in
Fig. 1A do not represent any genuine cross-correlations of the data.
They are unique because a large value for the correlation coefficient
may appear by chance, if estimated from a finite amount of data
points. Therefore, this phenomenon is usually referred to as “random
correlations” (Plerou et al., 2002).

One of the central concerns of the present article is to
discriminate random from genuine components of cross-correlation
(avoiding the influence of the spectral content of the signals) and to

probe the hypothesis formulated in (Schindler et al., 2007a, 2007b),
where an increase of zero-lag correlations was considered as an
active self-regulatory mechanism for seizure offset. For this purpose,
we focus on a recently introduced measure that quantifies the
strength of genuine zero-lag cross-correlations (CCS) (Müller
et al., 2008a). This approach is applied to 12 scalp EEG recordings
of 5 patients containing focal onset seizures to characterize the evo-
lution of the genuine cross-correlation strength (CCS) from the pre-
seizure to the postseizure period. We found that genuine and random
correlations behave very differently, an effect that, to the best of our
knowledge, has not been accounted for in previous approaches. Fur-
thermore, we test whether the results change, when different spatial
scales, as those covered by scalp or foramen ovale electrodes, are
assessed. As different frequency contributions may show distinct
behavior on different spatial scales, we repeat the analysis for band
pass–filtered data.

METHODS
We first discuss why we focus in the present work on a linear

approach and summarize the definition and some important math-
ematical properties of the zero-lag cross-correlation matrix. Then, we
describe the surrogate data used in this article, and the way they are
invoked (1) to test for the null hypothesis of uncorrelated data and
(2) to define a (normalized) measure that quantifies the strength of
genuine cross-correlations. Thereafter, we describe the statistical
tests to evaluate changes from the pre- to the postseizure period.
Finally, we report relevant details about data acquisition and
preprocessing and discuss briefly the influence of the EEG reference
on the spectrum of eigenvalues of the correlation matrix.

Selection of an Appropriate Bivariate Measure
The multivariate method used in this article is based on

a bivariate interrelation measure. Naturally, its performance and the
interpretation of the results depend crucially on the choice of this
measure. Therefore, we include a brief discussion of this issue.

In principle, one expects that the dynamics of a complex
system consisting of a huge number of coupled excitable oscillators
is essentially nonlinear and probably chaotic. As for the mathemat-
ical description of neurons, nonlinear differential equations are used
(see e.g., (Keener and Sneyd, 1998)), and this seems particularly true
for the human brain. Consequently, one expects that measures sen-
sitive to nonlinear features in experimental data perform better than
those that extract only linear relationships.

However, as the number of degrees of freedom is of the order
of 1010, the underlying attractor is expected to be high dimensional
and, in addition, experimental signals are generally noise contami-
nated. Due to the non-stationarity of the EEG only comparably small
data segments can be used for estimating the characteristic quanti-
ties. Thus it seems impossible to dissolve such high dimensional
deterministic structures from experimental recordings. Besides in
general, it is a delicate issue to apply sophisticated measures requir-
ing the adjustment of several technical parameters (e.g., as any mea-
sure based on a phase space reconstruction via embedding) in an
unsupervised manner using a running window approach (Kantz and
Schreiber, 1997). These might be the main reasons for the results
presented in various studies (Casdagli, 1992; Palus, 1996; Pijn et al.,
1991, 1997; Stepien, 2002; Theiler, 1995; Theiler and Rapp, 1996),
where it has been reported that EEG recordings are well described by
linear stochastic processes and little or no evidence for the presence
of nonlinear or even chaotic determinism could be found.

FIG. 1. A, Distribution of the nondiagonal elements of the
correlation matrix constructed from surrogate data generated
from selected segments of the EEG recording of seizure 2. Solid
line histogram indicates seizure period, and dashed line indicates
immediate postseizure epoch. B, Power spectra from selected
segments of seizure 2: Solid line reflects the seizure period, and
dashed line reflects the postseizure epoch of electrode Fz. The
inlet shows the same data on a logarithmic scale.
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Furthermore, in a quantitative comparison of different
linear and nonlinear interrelation measures using data derived
from well defined test frameworks, it turns out that linear
measures perform equally good or even better than nonlinear
methods in detecting the coupling between nonlinear or even
chaotic units (Ansari–Asl et al., 2006; Kreuz et al., 2007). Al-
though it results that there is no universal method that outper-
forms others in all studied cases, it was shown that in the context
of seizure prediction and detection linear approaches are highly
competitive (Jerger et al., 2002; Mormann et al., 2005). The
authors of Ansari–Asl et al. (2006) explicitly recommend to apply
correlation measures as a first attempt to characterize the func-
tional coupling in systems under study.

Finally, we remark that several popular measures may lead to
erroneous results for the particular application of EEG analysis. As
an example, we mention synchronization measures based on the
Hilbert transformation. To yield interpretable results, the power
spectrum of the signals should be narrow with only one prominent
peak (Chavez et al., 2006; Pikovsky et al., 2001). Otherwise, the
interpretation of the results obtained by synchronization measures
may remain ambiguous and the term “synchronization” may lose its
meaning (Chavez et al., 2006). Hence, a possible way to solve this
problem would be the study of band pass–filtered data. However,
band pass filtering may lead to a spurious increase of the degree of
phase synchronization (Xu et al., 2006). For these reasons, we con-
centrate on the study of linear cross-correlations estimated by the
Pearson coefficient.

The Zero-Lag Correlation Matrix
For a measured multivariate time series Xi (t) (i¼ 1.M), the

zero-lag correlation matrix Ĉ (e.g., (Anderson, 2003; Morrison,
2005)) is constructed by first normalizing each data channel within
a given window of length T data points to zero mean and unit
variance

~X iðtÞ5XiðtÞ2 hXiit
st
i

(1)

and then evaluating the matrix elements as

~CijðtÞ5 1

T

XT
t51

~X iðtÞ~X jðtÞ5
D
~X i
~X j

E
t

(2)

In the last 2 equations, averages are denoted by hi and the standard
deviations by s. They are calculated over the time window T. The
M eigenvalues li and eigenvectors v!i of Ĉ are obtained by solving
the equation

Ĉ v!i 5 li v
!

i (3)

The index of the eigenvalues indicates an increasing order li # li 1 1.
With the help of the eigenvalues and eigenvectors, it is possible not
only to separate random from nonrandom contributions but also to
capture interrelations between 2 # m # M signals (Conlon et al.,
2009a, 2009b; Müller et al., 2005, 2006; Rummel et al., 2007a;
Rummel, 2008).

In general, an increase of (random as well as genuine) cross-
correlations leads to a broadening of the eigenvalue spectrum, while
for less correlated data, the eigenvalues are closely distributed
around unity. This broadening is caused by repulsions between
eigenvalues, which might occur at any location along the whole

spectrum. It turns out that the repulsion pattern between the li is
a characteristic feature for any particular correlation structure (Müller
et al., 2005). An illustrative explanation on how the eigenvalues
react under different conditions can also be found in Müller et al.
(2008b) and Schindler et al. (2007a, 2007b). If one aims to distin-
guish between random and genuine correlations, tools from random
matrix theory can be used (Baier et al., 2007; Müller et al., 2006), to
detect those parts of the eigenvalue spectrum where the li are altered
by nonrandom repulsions. Unfortunately, to apply these techniques,
the generation of an ensemble of correlation matrices over a station-
ary data segment is needed, where the significance of the results
depends crucially on the size of this ensemble. Especially for highly
nonstationary data sets, such as EEG recordings, this requirement
can hardly be fulfilled. Alternatively, surrogate data can be used to
test the null hypothesis of linearly uncorrelated dynamics conserving
the property that the derived measure is sensitive to local properties
of the eigenvalue spectrum. This strategy is followed in the present
article.

Surrogate Data and Estimating the Strength of
Genuine Cross-Correlation

Surrogate data are widely used for testing whether empirical
data contain any nonlinear deterministic structure (Kantz and
Schreiber, 1997). In the present case, we use surrogate data to test
for the null hypothesis that the EEG does not contain any linear,
zero-lag cross-correlations. As the amount of random correlations
depends on the frequency content of a signal, we use iterative am-
plitude adjusted Fourier transform surrogates (Schreiber and
Schmitz, 2000), which conserve the power spectrum and the ampli-
tude distribution individually for each of the M data channels but
destroy all linear and nonlinear relationships between the M signals.
All surrogate data used in this publication were generated by the
freely available TISEAN software package (Hegger et al., 1999).
Additionally, we checked the performance of shift surrogates as pro-
posed in Netoff and Schiff (2002), obtaining quantitatively equiva-
lent results.

While the distribution of eigenvalues computed from the
surrogates reflects random cross-correlations, the eigenvalue spec-
tra obtained from the original data represent both random and
genuine contributions. Hence, any significant deviation of the
eigenvalues calculated from the original data li from those
obtained from the surrogates ls indicates genuine cross-correla-
tions. As distortions of the eigenvalue spectrum caused by genuine
cross-correlations may occur locally at any site of the eigenvalue
spectrum, one has to test for significant differences for each of the
eigenvalues independently. This is important because any global
measure derived from comparing the distribution of all eigenvalues
or any kind of spectral average may wipe out the effects induced by
genuine cross-correlations and, hence, may strongly reduce the
sensitivity of the derived measure. The last statement is illustrated
in Müller et al. (2006), where the nearest neighbor spacing distri-
bution was used as a test statistics.

To evaluate whether a deviation is significant or simply
caused by statistical fluctuations, we apply a two-sided U-rank test of
Mann–Whitney–Wilcoxon (Mann and Whitney, 1947; Wilcoxon,
1945), which checks whether two samples stem from the same pop-
ulation. As the Mann–Whitney–Wilcoxon U-test is nonparametric,
no implicit assumption about the probability distribution of the
eigenvalues is made. Additionally, it can be used for comparably
small samples, which reduces the numerical effort for producing
a large number of surrogates. A direct measure for the genuine
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CCS is then given by the sum of all significant eigenvalue deviations
along the whole spectrum:

CCS5

XM
i51

���eli 2 elsi
���si

XM 2 1

i51

elsi 1 ðM 2 elsM Þ
(4)

where eli and elsi denote the median of the set of the i-th eigenvalue
calculated over a segment taken from the original data and the sur-
rogates, respectively. The factor si ensures that only significant devi-
ations between the median values are taken into account. It is zero
if the null hypothesis of statistical equivalence between li and elsi
cannot be rejected on a 1% significance level according to the Mann–
Whitney–Wilcoxon U-test and is equal to one otherwise. For this
statistical evaluation a Bonferroni correction has been applied.

The denominator in Eq. 4 properly normalizes the CCS-
coefficient such that it varies between zero and one, which can be
easily seen by considering two limiting cases. If no genuine cross-
correlations are present, the eigenvalues calculated from the original
data are statistically equivalent to those calculated from the surro-
gates and the CCS is equal to zero. However, if the system is max-
imally correlated (all time series are identical), the largest eigenvalue
lM ¼ M, while all others are equal to zero. In that case, numerator
and denominator of Eq. 4 are identical and in consequence CCS ¼ 1.
The definition Eq. 4 takes into account deviations along the whole
spectrum of eigenvalues and is therefore also sensitive to detecting
subtle correlations between only few data channels, which predom-
inantly manifested a distortions at the lower edge of the eigenvalue
spectrum (Müller et al., 2005, 2006).

The application of Eq. 4 requires an (possibly small) ensemble
of correlation matrices derived from the original data (as well as
from the surrogates). For this purpose, a window of length T is
shifted with a certain step width over predefined data segments, as
described in the section Statistical Evaluation of the Results. Then an
ensemble is obtained by creating the zero-lag cross-correlation ma-
trix (Eq. 2) for each of these windows.

Estimation of Power Spectra
To illustrate that changes of the power spectra of the EEG

may cause dramatic changes in the amount of random correlations,
we estimate occasionally the power spectra of the experimental
recordings for comparison with time evolution of the eigenvalues.
To this end, we apply a fast Fourier transform (Press et al., 2007)
calculated over a window of 512 sampling points. This window was
shifted with a step size of 50 data points over a given data segment as
defined in Statistical Evaluation of the Results. Then the power,
averaged over a predefined frequency band and over the segment,
is calculated.

Statistical Evaluation of the Results
From the 12 EEG recordings, we selected sections of 1,500

seconds from long-term recordings, such that all contain an epileptic
seizure starting approximately second 600. Then segments of 2,000
data points (equivalent to 10 seconds) were defined and shifted with
a step size of 1,000 sampling points along the recording. For each
segment, 10 Fourier-based surrogates were computed. Then, we
simultaneously analyzed the segments of the original data and those
of the surrogates. For this purpose, we constructed the zero-lag

correlation matrix over 200 data points (corresponding to 1 second),
which was then shifted with a step width of 200 data points over the
segment. In this way, we obtained an ensemble of 10 correlation
matrices for the original data and another ensemble of 100 matrices
for the surrogates. These matrices were diagonalized and the
median of the sets of each eigenvalue eli and elsi were obtained
for each segment. Then, the amount of genuine CCS within a data
segment was calculated, where for each term of the sum in the
numerator of Eq. 4, the Mann–Whitney–Wilcoxon U-test (Mann
and Whitney, 1947; Wilcoxon, 1945) was performed to determine si.

Eventually, we evaluated relative changes of the genuine
correlation strength along the time course from a preseizure to
a postseizure period. To this end, we considered four intervals. The
preseizure interval (PreS) contains the first 200 seconds of each
recording, that is, it terminates at approximately 400 seconds before
the seizure onset. The limits of the second interval (S) are given by
seizure onset and offset. Interval 3 contains 100 seconds starting at
seizure offset (P1), and the period between seconds 1,300 and 1,500
defines interval 4 (P2). Then, we tested whether the distributions of
CCS coefficients obtained for all 12 seizures of different intervals
were centered around the same value or if a significant tendency for
a relative change between intervals could be detected. After normal-
izing the CCS coefficients of each seizure to the average value
calculated over the four segments, we applied first a Friedman test.
Afterward, we applied the two-sided median test (Siegel, 1988),
which has the advantages to be nonparametric and that extreme
events do not dominate the results.

Patients, EEG Data Acquisition,
and Preprocessing

The EEG data were recorded from 5 patients (age range,
22–45 years), who had pharmacoresistant partial epilepsy with tem-
poral lobe seizures and taking part in the program for presurgical
evaluation of the Department of Neurology of the Inselspital of
the University of Bern. This retrospective study was approved by
the Ethics Committee of the Canton of Bern. Furthermore, all the
patients gave written informed consent that the EEG data might be
used for research and teaching purposes. Further information about
the patients is displayed in Table 1. For scalp EEGs, standard 10 to
20 montage positions (American EEG Society, 1986) were used.
In addition to scalp EEG, two foramen ovale electrodes were applied

TABLE 1. Information About Patients and Seizures

Patient Age Sex Seizure
Duration
in Seconds Comments

1 22 M 1 96 Hippocampal sclerosis left
2 122
3 84

2 28 F 4 132 Discrete hippocampal
atrophy right5 204

3 45 F 6 113 Left hippocampal and
amygdaloid structures
removed

7 52

4 23 M 8 150 Mesiotemporal sclerosis left
9 120
10 203

5 33 M 11 56 Hippocampal sclerosis left
12 106
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to record from mesiotemporal structures (Siegfried et al., 1985)
because for these patients, scalp EEG alone was not sufficient to
localize the site of seizure onsets. Foramen ovale electrodes of
manufacturing type CAD-FO-B4 (Ad-Tech Medical Instrument,
Corp, Racine, WI) were used. Each of these foramen ovale electro-
des (Fo) had four contacts. The smaller the number of the Fo contact,
the closer to the tip of the electrode it was positioned. Even contact
numbers denote contacts of the right foramen ovale electrode, and
odd numbers those of the left electrode. An EEG-1032 amplifier
system was used. After passing an antialiasing filter with a cutoff
frequency of 70 Hz and an attenuation of 24 dB/octave, the EEG
signals were sampled at 200 Hz analog/digital conversion had a reso-
lution of 16 bit. EEG seizure onsets and seizure offsets were visually
assessed by an experienced electroencephalographer (K.S.) in bipolar
montage. Fig. 2A shows the EEG signal of the 19 scalp and the 8
foramen ovale recordings of seizure 2. Seizure onset and offset are
marked in the amplification of 15-second segments in Figs. 2B and 2C.

Only seizures with minimal artifacts (as judged by visual
inspection) were included in the present study. The raw data were
measured with respect to earlobe references. Because of the strong
contamination of electrodes Fp1 and Fp2 with eye movements in
some of the recordings, those contacts were excluded from the
analysis in general. Instead, electrodes F9 and F10 were included. To
avoid a dominant influence of large amplitudes in the “Fo”-channels,
we normalized the data channels separately to zero mean and unit
variance. To this end, we used a data window containing 1,000 data
points, which was shifted with a maximal overlap over the record-
ings. Then, we transformed the EEG recording to global average
montage because with the exception of the smallest eigenvalue, this
specific montage turns out to distort the eigenvalue spectrum least
(Rummel et al., 2007b).

To diminish the influence of muscle artifacts, we applied
a low pass filter to the data with a cutoff frequency of 20 Hz. Also
a high pass filter with a cut off frequency of 0.5Hz has been applied.

FIG. 2. EEG from seizure 2 of patient 1. A, Complete time course of the seizure. B, Seizure onset. C, Seizure end, as determined by
visual inspection. Seizure onset is marked by a star symbol in B, and the foramen ovale electrode that show the first ictal EEG
changes and seizure offset are marked by a vertical line in C.
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These data sets are called “broad band signals” in the sequel.Even-
tually, band pass–filtered data were used, where the definition of the
frequency bands was chosen according to Zschocke (2002):
d ¼ (0.5, 3.5) Hz, u ¼ (3.5, 7.5) Hz, a ¼ (7.5, 12.5) Hz, b ¼
(12.5, 20) Hz. For this purpose a fourth order, Butterworth filter was
applied in forward and backward direction to avoid a possible shift-
ing of the signal phases. Furthermore, we checked the quality of the
filtering process by comparing the original recording with the super-
position of the filtered signals.

Influence of the EEG Reference
For the case of EEG analysis, an additional problem super-

venes. EEG references may induce strong correlations within the
data set that do not have any relation to correlations produced by
the dynamics of the system. Even for otherwise uncorrelated data,
in general, this leads to a complicated repulsion pattern of the
eigenvalues, which may lead to an erroneous interpretation of
the results. Furthermore, these additional correlations induced by
the measurement process may completely wipe out the genuine
cross-correlations caused by the brain dynamics. In the work by
Rummel et al. (2007b), the influence of six commonly used EEG
references on measures derived from the zero-lag cross-correlation
matrix has been studied under different conditions. It was found that
the global average reference mainly affects the smallest eigenvalue,
such that it is drastically displaced toward smaller values. All other
eigenvalues including spacings between them are remarkably insen-
sitive to this particular reference. Therefore, in the present article,
we use exclusively the global average reference (for the scalp as well
as for the foramen ovale electrodes) and exclude the smallest
eigenvalue from the analysis. Hence,

CCS5

XM
i52

���eli 2 elsi
���si

XM 2 1

i52

elsi 1 ðM 2 elsM Þ
(5)

However, for exemplary cases, we also tested for a bipolar
reference obtaining qualitatively the same results as presented below.

RESULTS
The presentation of the results is divided into several parts.

First, we illustrate the performance of the method with the help of an

exemplary case for the whole set of the 12 recordings. We further
present the evolution of eigenvalues, the genuine CCS, and the
evolution of the power spectra. Finally, we present the outcomes of
the whole set of recordings and a statistical validation of the results.

Eigenvalue Spectra for Scalp and Foramen
Ovale Electrodes

In a first step, we calculate the time evolution of the
eigenvalues from the recordings with scalp electrodes. Figs. 3A
and 3C display the development of the largest eigenvalue el19 (solid
line) and the average of some of the smallest eigenvalues, namely,

hlsmalli 5 1

11

X12
i 5 2

eli (dashed line) for seizure 2 of Table 1. Seizure

onset and offset are marked by vertical lines.
Before seizure onset, both the largest and the average of the

small eigenvalues fluctuate around some mean value. Then, during
the seizure, the largest eigenvalue decreases and shows a pronoun-
ced minimum while lsmall encounters its maximal values. Just before
seizure offset, the eigenvalue spectrum spreads out. el19 increases
drastically, while lsmall decreases and encounters minimal values
approximately at second 800. Approximately 300 seconds after the
seizure offset, the eigenvalue spectrum tends to be more narrow
again, which can be clearly seen by the increase of lsmall at about
second 900 to 1,000. Hence, the width of the eigenvalue spectrum
becomes considerably more narrow during the epileptic seizure and
its largest extension occurs during the immediate postseizure period.

Because of the argumentation given in The Zero-Lag Correla-
tion Matrix, one can state that the total amount of cross-correlations
is small, when el19 takes small and lsmall takes large values. In this
case, the eigenvalues are narrowly distributed around one. Other-
wise, the eigenvalue spectrum is splayed, and the data set contains
an elevated amount of cross-correlations. Accordingly, Figs. 3A and
3C display a pronounced correlation loss during the seizure and
a drastic increase of correlations just at the seizure offset. Maximal
values of the correlation strength are measured during the immediate
postseizure period. As el19 stays on the average at slightly larger
values during the whole postseizure period compared with those
before seizure onset (and simultaneously lsmall stays at somewhat
smaller values), one might conclude further that the dynamics stay
more correlated even several minutes after seizure offset.

To assess the amount of random correlations, we repeat the
analysis with the corresponding data segments of the surrogates.
Figs. 3B and 3D display the results. Although, all genuine cross-
correlations are destroyed, the curves show qualitatively similar

FIG. 3. Evolution of median of eigenvalues of
the zero-lag cross-correlation matrix calculated
from the 19-channel scalp recording of seizure 2.
The median is taken over the set of eigenvalues
obtained for each data segment: A, Median ofel19 obtained from the original data. B, Median ofel19 obtained from the surrogates. C, Average of
the median of the 11 smallest eigenvalues,
determined from the original data. D, Average
same as (C) but obtained from surrogates.
Seizure onset and offset are indicated by vertical
solid lines.
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characteristics. During the seizure, the spectrum gets more narrow,
but as in the previous case, a strong repulsion between the largest
and the average of the smallest eigenvalues occurs just before seizure
offset and even more pronounced during the immediate postseizure
period, which lasts approximately 300 seconds.

The present case illustrates that considering the eigenvalues
computed from the experimental recording alone may lead to
erroneous conclusions. Comparing the results of Figs. 3A and 3B,
it remains fully unclear how genuine cross-correlations change dur-
ing and after seizures.

Estimation of the Genuine
Cross-Correlation Strength

On the grounds of the results presented in Fig. 3, the question
arises whether those observations are uniquely caused by incidental
contributions or if they are at least partially caused by genuine spatial
correlations of neuronal activity. Fig. 4A displays the evolution of
the CCS coefficient (Eq. 5) calculated from scalp recordings of
seizure 2 discussed so far. Seizure onset and offset are indicated
by vertical solid lines.

We note a gradual decrease of the CCS during the seizure,
although with some fluctuations. In particular, a pronounced but
narrow peak just at seizure offset can be seen. However, such
a behavior is not reflected in the overall behavior of all 12 cases
(Fig. 5C). The decrease becomes more pronounced after seizure
offset, showing a pronounced minimum of approximately 0.02
around second 800. Thereafter, it increases gradually and recuperates
approximately the preseizure value at approximately second 1000.

Fig.4B displays the CCS for the case of seizure 2 calculated
from the recordings of foramen ovale electrodes. In this case, just at
seizure onset, the CCS values encounters an abrupt maximum, but
then, as in the case of the extracranial measurement, large fluctua-
tions can be seen during the seizure, again with a decreasing ten-
dency, and it encounters minimal values during the immediate
postseizure period. Then, it shows on the average an increasing
tendency, and for times larger than second 1,000 fluctuates somehow
around the mean preseizure value. Beside of the sudden increase just
at seizure onset, the foramen ovale electrodes show qualitatively the
same behavior as the scalp electrodes.

Evolution of the Power Spectra
As we suspect that changes in the frequency content of the

signals are the reason for the distribution of eigenvalues of the
surrogate data, we calculate the average power within the EEG
bands. For visual presentation, the power spectra of each data
channel (electrode) were normalized between zero and one. The
results for the 19 scalp electrodes of seizure 2 are shown in Fig. 6.

The power in the d-band decreases slightly during the first
half of the seizure but shows a well-pronounced maximum toward
seizure offset and during the immediate postseizure period. Then, the
power of this band remains on the average at a value slightly below
that of the preseizure period.

The power of the u-band shows a strong increase during the
first half of the seizure and a drastic loss of power after seizure offset,
which lasts approximately up to second 900 to 950. Thereafter, the
average power in the u-band recuperates approximately its value of
the preseizure period. Higher frequency bands behave in a similar
manner. During the seizure, a sharp maximum can be observed,
which starts clearly after seizure onset and terminates before seizure
offset. However, the region of missing power in the postseizure
period is extended for the higher frequency bands. The power in
the a-band and b-band remains low over the whole time course after
the seizure. The time evolution of the power of the different fre-
quency bands of the foramen ovale recordings is qualitatively similar
to that of the scalp recordings of seizure 2.

Relative Changes of the Genuine
Cross-Correlation Strength

We turn now to the statistical evaluation of relative changes of
the CCS for all 12 seizures, as described above. The results for the
scalp and for the foramen ovale electrodes are summarized in Figs.
5A and 5B, which shows median CCS values for the 4 segments of
the scalp and the foramen ovale recordings, respectively, while Figs.
5C and 5D shows the evolution of the median value of all 12 seizures
for the seizure period, respectively, for scalp and foramen ovale
recordings. To obtain the results of Figs. 5C and 5D, we normalized
the duration of all 12 seizures to the same unit length.

The results obtained for EEGs recorded with scalp electrodes
(Figs. 5A and 5C) reflect qualitatively the behavior illustrated by the
example of seizure 2. The CCS is slightly decreased during the
seizure period and reaches a pronounced minimum in the immediate
postseizure period P1 (Fig. 5A). Only a few minutes after seizure
offset (segment P2), the amount of cross-correlations attains an
average value marginally below that of the preseizure period. The
inspection of the seizure period reveals that the median CCS values
of the first half of the seizure are on the average larger than those of
the second half (Fig. 5C). This confirms the observations of seizure
2 (Fig. 4A), where on the average, a continuous decrease of the

FIG. 4. The CCS value (Eq. 5) obtained from the 19-channel
scalp recording of seizure 2 (A) and from 8 foramen ovale
electrodes (B). Seizure onset and offset are indicated by vertical
solid lines.
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average CCS value has been observed during seizure and immediate
postseizure period.

For the foramen ovale electrodes (Fig. 5B), the CCS value of
the seizure epoch is slightly larger than in segment PreS. For later
periods, the behavior is qualitatively similar to that of the scalp
recordings. The median value for P2 is slightly lower than that of
segment PreS, and minimal values are measured for segment P1.

However, Fig. 5D does not show the slight decrease of gen-
uine correlations during the seizure period of the scalp electrodes (it
neither shows any kind of increasing tendency). Now the median
values fluctuate somehow around some constant value.

In view of the exemplary results for the power spectra, the
question arises whether the evolution of the CCS alters for different
frequency bands. Therefore, we repeated the same analysis for band
pass–filtered signals. The results for the scalp electrodes are drawn in
the left and those for the foramen ovale in the right column of Fig. 7.
The P values of a two-sided median test for the transitions from on
segment to another are given in Table 2.

Scalp Electrodes
The results obtained for the d-band, u-band, and a-band are

qualitatively similar for the four previously defined segments. In all
cases, a gradual decrease of the CCS can be seen for segment S and
P1, that is, for the whole seizure and the immediate postseizure
period. Minimal values are always detected for segment P1. This
behavior is most pronounced for frequencies below 12.5 Hz. For the
b-band, the situation is different. Here, the median value of CCS is
maximal for segment S while, like in the case of lower frequencies,
minimal values are detected for segment P1.

Foramen Ovale Electrodes
The evolution of the CCS from the preseizure to the post-

seizure period is qualitatively different to that obtained by the
extracranial measurement. Now the maximum median value of the
CCS is attained for the seizure segment S for all frequency bands.

The behavior of the minimal value is not such uniform. For the
d-band, it is given for the immediate postseizure period P1, while for
all other cases, the preseizure period is characterized by minimal
CCS values. However, for all cases, the median values for segment
P1 are significantly lower than those of the period S.

To quantify the significance of the changes of the 12 seizures
between the first three and all four segments, we apply a Friedman test.

According to the Friedman test, the null hypothesis that the
CCS values of the three segments of the scalp recordings are
statistically equivalent can be rejected, with the exception of the
d-band, that is, beside of the slowest frequency, the changes from
preseizure to immediate postseizure activity are significant.

For foramen ovale electrodes, in the a-band, the null hypoth-
esis cannot be rejected. Considering all four segments, the Friedman
test cannot reject the null hypothesis in all cases for the foramen
ovale electrodes and for the d-band and a-band in case of the scalp
recordings. These results are caused by transitions to the postseizure
period P2. However, in most cases, the CCS values of the first three
segments show significant differences. By looking at each pair of
segments separately via a two-sided median test, one gains a more
detailed picture (Table 3). According to the results presented in
Table 3, the null hypothesis can be rejected for all cases of the broad
band data, on a 1% significance level with one exception. The CCS
values of postseizure segment P2 seem to be statistically equivalent
to those of the seizure period.

Furthermore, for extracranial recordings, the segments PreS
and P2 are considered equivalent in the d-band, a-band, and b-band,
while the segments S and P2 are not significantly different for the
d-band and u-band. For the semi-invasive foramen ovale electrodes
for all pairs of segments of the broad band case as well as the d-band,
the null hypothesis of equivalence can be rejected, while segments
PreS and P1 show statistically similar median values for the a-band
and b-band and equivalently the segments PreS and S for the u-band.
Furthermore, there are no significant changes between the two post-
seizure periods when considering the b-band, and the seizure

FIG. 5. Median CCS values of each
segment for the scalp recording (A)
and the foramen ovale electrodes (B).
The 1 sign indicates the median
values of each seizure and the ·
symbol marks the median of all
recordings. The dashed line connects
the median values of all recordings for
a better visibility. To improve the
visibility, we connected the · symbols
with a dashed line. C, Evolution of the
median CCS value during the
(normalized) seizure period (solid
line). The median is taken from the
CCS values of the 12 seizures. The
dashed line markers the 75%
confidence interval. D, Same as (C) for
the foramen ovale electrodes .
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segment S is not significantly different to the postseizure period P2
for the a-band.

In summary, the changes of CCS values between the
segments preictal, ictal, and immediate postictal are significant for
all cases when scalp recordings are considered. Only some of the
transitions to the postictal segment do not cause significant changes
of the CCS values. For the broad band case and for frequencies
below 12.5 Hz, this means a continuous significant decrease of
genuine cross-correlations. For foramen ovale recordings, only for
broad band data and the d-band, CCS values of the immediate post-
seizure period encounter significantly smaller values as those of the
preseizure period. For higher frequency bands, there is no significant
difference between the CCS values considering a 1% significance
level. However, the observed increase of genuine cross-correlation
during the seizure period is significant for broad band data and for all
frequency bands (transition PreS-S and S-P1).

DISCUSSION
Central objects of the present study are the eigenvalues of the

zero-lag cross-correlation matrix. By just considering the width of
the eigenvalue distribution, we observe a loss of total cross-
correlations during the seizure followed by a drastic increase in
the total strength of correlations at seizure offset (Figs. 3A and 3C).
These findings are in accordance with the results obtained by Barto-
lomei et al. (2004), Guye et al. (2006), Schindler et al. (2007b), and
Wendling et al. (2003), where occasionally a slight correlation loss at
seizure onset has been observed but in any case enhanced correlation

of the brain dynamics measured by intracranial recordings toward
seizure offset. However, in this case, no distinction between random
and genuine cross-correlation is made.

The observed variation of the widths of the eigenvalue spectra
(Figs. 3A and 3C) coincides with characteristic changes of the power
spectra as demonstrated by the example of seizure 2 (Fig. 6). During
the seizure, the d-power is slightly suppressed and increases consid-
erably in the immediate postseizure epoch. The u-power behaves
exactly opposite to that: it increases during seizure and decreases
at seizure offset, a behavior even more pronounced in the a-band and
b-band. This alternation of the power spectra has a direct influence
on the amount of random correlations, which enter to matrix (Eq. 2)
and provoke characteristic changes of the eigenvalue distribution
(Figs. 3B and 3D). A relative increase (decrease) of the d-power
promotes a broadening (narrowing) of the eigenvalue distribution
while a relative enhancement (suppression) of higher frequency
bands cause a narrowing (broadening) of the spectrum.

However, conclusions drawn uniquely from the eigenvalues
may change drastically, when the influence of the frequency content
of the signals is accounted for. The measure (Eq. 5) captures exclu-
sively the strength of genuine zero-lag cross-correlations and is
designed such that also subtle correlations between a few data chan-
nels are detected (Müller et al., 2008a). According to this measure,
we gave clear evidence that seizures are characterized by a reduced
amount of genuine zero-lag cross-correlations with a further decrease
during the immediate postseizure period. This is at least true for
frequencies below 12.5 Hz when scalp recordings are considered
(see Figs. 5A and 7; Tables 2 and 3).

FIG. 6. Normalized power of the
different frequency band of the scalp
recording of seizure 2. The evolution
of the power averaged over the
d-band (A), u-band (B), a-band (C),
and b-band (D) are shown. The
numbering of the electrodes is as
follows: 1-F3, 2-F4, 3-C3, 4-C4, 5-P3,
6-P4, 7-O1, 8-O2, 9-F7, 10-F8, 11-T3,
12-T4, 13-T5, 14-T6, 15-F9, 16-F10,
17-Fz, 18-Cz, and 19-Pz. Seizure onset
and offset are indicated by vertical
solid lines. Gray scale coding: black
color corresponds to a relative power
equal to one, and white corresponds
to zero.
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In view of the results for the CCS, this implies that the
increased power of the u-band and a-band during the seizure and the
increased power of the d-band in the immediate postseizure epoch is
essentially uncorrelated in terms of zero-lag correlations. Most prom-
inent in this context is the increase of d activity and the simultaneous
decrease of power in the higher frequency bands starting before
seizure offset. During the same period, the largest eigenvalues (cal-
culated from the surrogates and the original data) repel strongly with
most of the smallest eigenvalues, that is, the eigenvalue distribution
becomes broader, clearly indicating an increase of the total correla-
tion strength. As the CCS value shows a well-pronounced minimum

within the same epoch (Figs. 4A, 5A and 7), the increase in total
correlation is uniquely caused by random contributions. Further-
more, the sharp maximum of higher frequency power during seizure
(Fig. 6) neither increases the amount of genuine nor that of random
correlations. Hence, decorrelation is observed in terms of CCS for
a relatively broad frequency band of approximately 0.5 to 12.5 Hz.
This result might be interpreted as a functional segregation of brain
dynamics. In contrast, higher frequency components (b-band) be-
come more correlated during seizure (Fig. 7G). However, despite
low-pass filtering at 20 Hz, we cannot exclude with certainty that
at least part of this effect might be caused by muscle artifacts.

FIG. 7. Median CCS for the scalp
recording (A, C, E, and G) and the
foramen ovale electrodes (B, D, F, and
H). The , CCS . for band pass–
filtered signals according to the EEG
bands. d-band (A and B), u-band (C
and D), a-band (E and F), and b-band
(G and H). Symbols are chosen as in
Figs. 5A and 5B. The dashed line
connects the median values of all
recordings for a better visibility.
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Our observation is consistent with a study of intrahemispheric
and interhemispheric propagation of ictal discharges of complex
partial seizures (Lieb et al., 1987). There, coherence and phase anal-
ysis have been applied to 28 recordings of 10 patients to reveal the
emergence of linear relationships between different brain regions.
The authors report that although strong intrahemispheric coherence
reliably emerge in both the epileptogenic and nonepileptogenic
hemisphere during seizure onset and collateral spread, these relation-
ships were usually not observed for interhemispheric comparison.
Also, the application of nonlinear techniques failed to prove the
emergence of any relationships between left and right hemispheres
(Mars et al., 1985). A missing functional coupling between the hemi-
spheres and therefore a reduced long-range functional coupling
surely promote the loss of genuine correlation strength, as observed
in the present study.

A further support for the observation of a correlation loss at
seizure onset even for higher frequencies has been reported by Wen-
dling et al. (2003), where recordings from intracranial electrodes
implanted in the prefrontal or frontal region have been analyzed.
In this analysis, only frequencies between 24 and 128 Hz have been

studied by computing the Pearson coefficient. The authors reported
a significant decorrelation (mainly between 60 and 90 Hz, i.e., a fre-
quency band not considered in the present work) during the phase of
rapid discharges, while the power in this frequency band simulta-
neously increases. Then, an abnormally high recoupling, when sei-
zure develops, was observed with highest values toward seizure
offset. However, for higher frequency bands, the role of random
correlations diminishes because here the time window used to cal-
culate the Pearson coefficient gets large in comparison with the
period of the oscillations (Rummel et al., 2010). Also, in the present
study, we observed elevated values for the genuine cross-correlations
for the b-band for the seizure and postseizure period measured by
extracranial and intracranial recordings (Figs. 7G and 7H), although,
as already mentioned, we cannot exclude the influence of muscle
artifacts for the b-band, especially during seizure.

Foramen ovale measurements cover a much smaller area than
several grid or strip electrodes placed directly onto (selected areas of)
the cortex or extracranial measurements that cover the whole scalp
surface. Furthermore, shorter time scales as defined by higher
frequency components correspond to smaller spatial scales, namely,
wavelengths. This may explain why we found a significant increase in
genuine cross-correlations during the seizure for broad band data
(Fig. 5B), which is mostly generated by activity in the a-band and
b-band (Figs. 7F and 7H) but not by lower frequencies of the d-band.
Also, the minimal correlation values during the immediate postseizure
period are caused mainly by frequencies of the d-band and u-band.

When considering zero-lag cross-correlations, one might
expect volume conduction to affect the results, in particular during
high-amplitude seizure activity. However, it is plausible to assume
that volume conduction would increase the amount of zero-lag cross-
correlations, particularly during the seizures, when high-amplitude
signals are generated. Instead, we observed a clear tendency for
a decorrelation toward seizure offset (Fig. 5C) for the scalp record-
ings. Hence, if volume conduction has an effect in the cases consid-
ered in this study, we expect that it diminished the significance of our
main findings (decrease of CCS during seizure and immediate post-
seizure period).

Finally, we come back to the hypothesis that a more correlated
neuronal activity might be an emergent self-regulatory mechanism for
seizure offset. If, as argued in Schindler et al. (2007a, 2007b), the
brain generates a more correlated dynamics, which then leads to sei-
zure offset, our results suggest that this goal is reached on macroscopic

TABLE 3. P Values of the Two-Sided Median Test of the CCS Values for the Transition Between Different Segments for the Scalp
(Above) and Foramen Ovale Electrodes (Below)

Case/Transition Pre-S Pre-P1 Pre-P2 S-P1 S-P2 P1-P2

Scalp electrodes
Broad band 0.1E-4 0.1E-10 0.1E-10 0.1E-10 0.15 0.1E-10
d 0.4E-3 0.1E-10 0.02 0.2E-4 0.32 0.6E-7
u 0.1E-10 0.1E-10 0.15E-3 0.13E-3 0.006 0.1E-10
a 0.1E-10 0.1E-10 0.06 0.4E-3 0.5E-5 0.1E-10
b 0.9E-3 0.1E-10 0.15 0.1E-10 0.1E-3 0.1E-10

Foramen ovale
Broad band 0.6E-4 0.1E-10 0.1E-10 0.1E-10 0.1E-10 0.1E-10
d 0.003 0.1E-10 0.001 0.1E-10 0.1E-10 0.4E-5
u 0.43 0.1E-10 0.9E-6 0.1E-3 0.0025 0.1E-10
a 0.2E-8 0.73 0.3E-7 0.1E-10 0.019 0.5E-5
b 0.1E-10 0.17 0.1E-4 0.1E-10 0.1E-10 0.03

Transitions that are not significant on a 1% significance level are marked with bold face numbers.

TABLE 2. P Values of the Two-Sided Friedman Test for the
First Three Segments Pre, S, and P1 (Denoted by F3) and All
Four Segments Pre, S, P1, and P2 (Denoted by F4)

Case\Number of Segments F3 F4

Scalp electrodes
Broad band 0.0023 0.0031
d 0.09 0.135
u 0.001 0.0003
a 0.01 0.013
b 0.004 0.002

Foramen ovale
Broad band 0.0003 0.02
d 0.004 0.03
u 0.002 0.61
a 0.09 0.11
b 0.002 0.02

Transitions that are not significant on a 1% significance level are marked with bold
face numbers.
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scale (whole scalp) only in a statistical sense, at least when frequency
components below 12.5 Hz are considered. For those slow compo-
nents, we find that only the random but not the genuine cross-corre-
lations increase around seizure offset. However, the amount of the
random contributions depends not only on the relative power of the
frequency bands but also on the choice of T (i.e., the length of the data
segment used for the construction of the Pearson coefficients Cij), as
argued in the discussion of Fig. 1 (Müller et al., 2008a; Rummel et al.,
2010).Therefore, we do not consider the evolution of random corre-
lations in this article. Alternatively, one might hypothesize that the
successive decrease of the amount of genuine zero-lag cross-correla-
tions and therefore the functional disintegration of different brain areas
on large spatial scales for low frequency activity is the responsible
mechanism for seizure offset. At least, seizure offset is accompanied
by a suppression of genuine zero-lag cross-correlations.

However, such questions cannot be conclusively answered in
the present study but require further investigations. Furthermore, we
stress that the fact that zero-lag cross-correlations decrease does not
necessarily implies that the brain dynamics diminishes its collectivity
if non–zero lags or nonlinear interactions are considered. It is also
conceivable that some oscillatory dynamical state, as, for example,
detected during sleep (Massimini et al., 2004; Olbrich and Acker-
mann, 2005; Steriade, 2006), produce almost constant phase differ-
ences of the signals measured by different scalp electrodes, such that
zero-lag cross-correlations decrease on the average, which might be
another interesting aspect for a subsequent study. Finally, we pro-
pose a similar study with intracranial data similar to those used in
Schindler et al. (2007b) to investigate whether a similar characteristic
decrease of genuine cross-correlations occur also within a spatial
scale defined by the dimensions of a grid of electrodes or if our
results for the foramen ovale electrodes can be reproduced.
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