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Abstract

We consider a modified version of the classical optimal dividends prob-
lem of de Finetti in which the objective function is altered by adding in
an extra term which takes account of the ruin time of the risk process,
the latter being modeled by a spectrally negative Lévy process. We show
that, with the exception of a small class, a barrier strategy forms an opti-
mal strategy under the condition that the Lévy measure has a completely
monotone density. As a prerequisite for the proof we show that under
the aforementioned condition on the Lévy measure, the q-scale function
of the spectrally negative Lévy process has a derivative which is strictly
log-convex.
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1 Introduction

In this paper we consider the classical de Finetti’s optimal dividends problem
but with an extra component regarding the ruin time added to the objective
function. Within this problem we assume that the underlying dynamics of the
risk process is described by a spectrally negative Lévy process which is now
widely accepted and used as a replacement for the classical Cramér-Lundberg
process (cf. [1, 3, 8, 9, 11, 14, 16, 19, 20, 23]). Recall that a Cramér-Lundberg risk
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process {Xt : t ≥ 0} corresponds to

Xt = x+ ct−
Nt∑
i=1

Ci,

where x > 0 denotes the initial surplus, the claims C1, C2, . . . are i.i.d. positive
random variables with expected value µ, c > 0 represents the premium rate
and N = {Nt : t ≥ 0} is an independent Poisson process with arrival rate λ.
Traditionally it is assumed in the Cramér-Lundberg model that the net profit
condition c > λµ holds, or equivalently that X drifts to infinity. In this paper
X will be a general spectrally negative Lévy process and the condition that X
drifts to infinity will not be assumed.

We will now state the control problem considered in this paper. As men-
tioned before, X = {Xt : t ≥ 0} is a spectrally negative Lévy process which is
defined on a filtered probability space (Ω,F ,F = {Ft : t ≥ 0},P) satisfying the
usual conditions. Within the definition of a spectrally negative Lévy process
it is implicitly assumed that X does not have monotone paths. We denote by
{Px, x ∈ R} the family of probability measures corresponding to a translation
of X such that X0 = x, where we write P = P0. Further Ex denotes the ex-
pectation with respect to Px with E being used in the obvious way. The Lévy
triplet of X is given by (γ, σ, ν), where γ ∈ R, σ ≥ 0 and ν is a measure on
(0,∞) satisfying ∫

(0,∞)

(
1 ∧ x2

)
ν(dx) <∞.

Note that even though X only has negative jumps, for convenience we choose
the Lévy measure to have only mass on the positive instead of the negative half
line. The Laplace exponent of X is given by

ψ(θ) = log
(
E
(
eθX1

))
= γθ +

1
2
σ2θ2 −

∫
(0,∞)

(
1− e−θx − θx1{0<x<1}

)
ν(dx)

and is well defined for θ ≥ 0. Note that the Cramér-Lundberg process corre-
sponds to the case that σ = 0, ν(dx) = λF (dx) where F is the law of C1 and
γ = c −

∫
(0,1)

xν(dx). The process X will represent the risk/surplus process of
an insurance company before dividends are deducted.

We denote a dividend or control strategy by π, where π = {Lπt : t ≥ 0} is
a non-decreasing, left-continuous F-adapted process which starts at zero. The
random variable Lπt will represent the cumulative dividends the company has
paid out until time t under the control π. We define the controlled (net) risk
process Uπ = {Uπt : t ≥ 0} by Uπt = Xt − Lπt . Let σπ = inf{t > 0 : Uπt < 0} be
the ruin time and define the value function of a dividend strategy π by

vπ(x) = Ex

[∫ σπ

0

e−qtdLπt + Se−qσ
π

]
,

where q > 0 is the discount rate and S ∈ R is the terminal value. By definition
it follows that vπ(x) = S for x < 0. A strategy π is called admissible if ruin
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does not occur due to a lump sum dividend payment, i.e. Lπt+ − Lπt ≤ Uπt ∨ 0
for t ≤ σπ. Let Π be the set of all admissible dividend policies. The control
problem consists of finding the optimal value function v∗ given by

v∗(x) = sup
π∈Π

vπ(x)

and an optimal strategy π∗ ∈ Π such that

vπ∗(x) = v∗(x) for all x ≥ 0.

When S = 0 the above optimal control problem transforms, albeit within
the more general framework of a spectrally negative Lévy risk process, to the
original optimal dividends problem introduced firstly in a discrete time setting
by de Finetti [7] and later studied in, amongst others, [3, 4, 12, 19, 20]. The
general case when S ∈ R we consider here is not new. Thonhauser and Albrecher
[26] have studied in the Cramér-Lundberg setting the case S < 0. In that case
the extra term added to the value function penalizes early ruin and so this model
can be used if, besides the value of the dividend payments, one also wants to
take into consideration the lifetime of the risk process. The parameter S can
then be used to find the desired ’balance’ between optimizing the value of the
dividends and maximizing the ruin time. When S > 0, the model can be used if
the company, when it becomes bankrupt, has a salvage value equaling S which is
distributed to the same beneficiaries as the dividends are, see also the discussion
in Radner and Shepp [22, Section 3]. In a Brownian motion/diffusion setting
this control problem has been studied in [5, 24].

We will now introduce two types of dividend strategies and state our main
theorem. We denote by πa = {Lat : t ≥ 0} the barrier strategy at level a ≥ 0
with corresponding value function va and ruin time σa. This strategy is defined
by La0 = 0 and

Lat =
(

sup
0≤s<t

Xs − a

)
∨ 0 for t > 0.

Note that πa ∈ Π. So if dividends are paid out according to a barrier strategy
with the barrier placed at a, then the corresponding controlled risk process will
be a spectrally negative Lévy process reflected in a.

We further introduce the take-the-money-and-run strategy πrun = {Lrun
t :

t ≥ 0} which is the strategy where directly all of the surplus of the company
is paid out and immediately thereafter ruin is forced (note that ruin is defined
as the state when the controlled risk process is strictly below zero). The value
of this strategy is vrun(x) = x + S for x ≥ 0. In case X is not a Cramér-
Lundberg risk process, this strategy is the same as the barrier strategy with the
barrier placed at zero (i.e. almost surely, L0

t = Lrun
t for all t ≥ 0). But if X

is a Cramér-Lundberg risk process, then the barrier strategy at zero does not
imply immediate ruin; ruin occurs only after the first jump/claim which takes
an exponentially distributed with parameter ν(0,∞) amount of time. Therefore
the value of the latter strategy might be different than the value of the take-the-
money-and-run strategy. In particular for large terminal values, vrun might be
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bigger than v0 since it can be beneficial to become ruined as soon as possible.
Note that in the Cramér-Lundberg case, ruin can be forced in an admissible
way by paying out dividends at a rate which is larger than the premium rate
immediately after taking out all the surplus.

Recall that an infinitely differentiable function f : (0,∞) → [0,∞) is com-
pletely monotone if its derivatives alternate in sign, i.e. (−1)nf (n)(x) ≥ 0 for
all n = 0, 1, 2, . . . for all x > 0. The main theorem of this paper reads now as
follows.

Theorem 1. Suppose the Lévy measure of the spectrally negative Lévy process
X with Lévy triplet (γ, σ, ν), has a completely monotone density. Let c = γ +∫ 1

0
xν(dx). Then the following holds.

(i) If σ > 0, or ν(0,∞) = ∞, or ν(0,∞) <∞ and S ≤ c/q, then an optimal
strategy for the control problem is formed by a barrier strategy.

(ii) If σ = 0 and ν(0,∞) <∞ and S > c/q, then the take-the-money-and-run
strategy is an optimal strategy for the control problem.

Note that the parameter c is strictly positive since we assumed that the
paths of X are not monotone decreasing. For X being equal to a Brownian
motion with drift, this control problem has been solved in [5, 24]. In the case
when X is a Cramér-Lundberg process with exponentially distributed claims,
the control problem was solved by Gerber [12] for S = 0 and by Thonhauser and
Albrecher [26] for S < 0 (note that Thonhauser and Albrecher [26, Lemma 10]
distinguish between the cases of the optimal strategy being a barrier strategy
where the barrier is placed at zero and where the barrier is placed at a strictly
positive level, whereas we in Theorem 1 distinguish between the cases where a
barrier strategy is optimal and where the take-the-money-and-run strategy is
optimal). Note that both cases are examples for which the Lévy measure has a
completely monotone density and thus are contained in Theorem 1. Some other
examples of spectrally negative Lévy processes which have a Lévy measure with
a completely monotone density can be found in [20].

Building on the work of Avram et al. [3], Loeffen [20] proved Theorem 1
for S = 0. In particular, it was shown that optimality of the barrier strategy
depends on the shape of the so-called scale function of a spectrally negative
Lévy process. To be more specific, the q-scale function of X, W (q) : R → [0,∞)
where q ≥ 0, is the unique function such that W (q)(x) = 0 for x < 0 and
on [0,∞) is a strictly increasing and continuous function characterized by its
Laplace transform which is given by∫ ∞

0

e−θxW (q)(x)dx =
1

ψ(θ)− q
for θ > Φ(q),

where Φ(q) = sup{θ ≥ 0 : ψ(θ) = q} is the right-inverse of ψ. Loeffen [20]
showed that when W (q) is sufficiently smooth and W (q)′ is increasing on (a∗,∞)
where a∗ is the largest point where W (q)′ attains its global minimum, then the
barrier strategy at a∗ is optimal for the control problem (in the S = 0 case).
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Here W (q) being sufficiently smooth means that W (q) is once/twice continuously
differentiable when X is of bounded/unbounded variation. It was then shown
in [20] that when X has a Lévy measure which has a completely monotone
density, these conditions on the scale function are satisfied and in particular
that W (q)′ is strictly convex on (0,∞). Shortly thereafter, Kyprianou et al.
[19] showed that W (q)′ is strictly convex on (a∗,∞) (but not necessarily on
(0,∞), see [19, Section 3]) under the weaker condition that the Lévy measure
has a density which is log-convex. Though the scale function is in that case not
necessarily sufficiently smooth, Kyprianou et al. [19] were able to circumvent
this problem and proved that the barrier strategy at a∗ is still optimal when
the Lévy measure has a log-convex density. Note that without a condition on
the Lévy measure the barrier strategy is not optimal in general. Indeed Azcue
and Muler [4] have given an example for which no barrier strategy is optimal.

The proof of Theorem 1 in the case when S 6= 0, relies on the assumption
that W (q)′ is strictly log-convex on (0,∞). Though in [20] it was only shown
under the complete monotonicity assumption on the Lévy measure, that W (q)′

is strictly convex on (0,∞), we will show in Section 2 that the stronger property
of strict log-convexity actually holds in that case. Then in Section 3 the proof
of Theorem 1 will be given.

2 Scale functions

Associated to the functions {W (q) : q ≥ 0} mentioned in the previous section
are the functions Z(q) : R → [1,∞) defined by

Z(q)(x) = 1 + q

∫ x

0

W (q)(y)dy

for q ≥ 0. Together, the functions W (q) and Z(q) are collectively known as
scale functions and predominantly appear in almost all fluctuation identities for
spectrally negative Lévy processes. As an example we mention the one sided
exit below problem for which

Ex
(
e−qτ

−
0 1(τ−0 <∞)

)
= Z(q)(x)− q

Φ(q)
W (q)(x), (1)

where τ−0 = inf{t > 0 : Xt < 0}.
We will now recall some properties of scale functions which we will need later

on. When the Lévy process drifts to infinity or equivalently ψ′(0+) > 0, the 0-
scale function W (0) (which will be denoted from now on by W ) is bounded and
has a limit limx→∞W (x) = 1/ψ′(0+). Further for q ≥ 0 there is the following
relation between scale functions

W (q)(x) = eΦ(q)xWΦ(q)(x), (2)

where WΦ(q) is the (0-)scale function of X under the measure PΦ(q) defined by

dPΦ(q)

dP

∣∣∣∣
Ft

= eΦ(q)Xt−qt.
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The processX under the measure PΦ(q) is still a spectrally negative Lévy process
and its Laplace exponent is given by ψΦ(q)(θ) = ψ(Φ(q) + θ)− ψ(Φ(q)). When
q > 0 it is known that ψ′Φ(q)(0+) = ψ′(Φ(q)) > 0.

From [15, (8.18)] and the fact that W is strictly positive on (0,∞), it follows
that we can write for x, a > 0

log(W (x)) = log(W (a)) +
∫ x

a

g(t)dt,

where g is a decreasing function and hence log(W (x)) is concave on (0,∞) (see
e.g. [27, Theorem 1.13]). Recall here that a strictly positive function f is said
to be log-concave (log-convex) whenever log(f) is concave (convex). From (2)
it now follows that for q ≥ 0, log(W (q)(x)) is concave on (0,∞) and thus W (q)

is log-concave on (0,∞) for all q ≥ 0.
The initial value of the scale function W (q)(0) is equal to 1/c, where c is as

in Theorem 1. Note that if X is of unbounded variation, then c = ∞ and thus
W (q)(0) = 0. The initial value of the derivative of the scale function is given by
(see e.g. [18])

W (q)′(0) := lim
x↓0

W (q)′(x) =


2/σ2 when σ > 0
(ν(0,∞) + q)/c2 when σ = 0 and ν(0,∞) <∞
∞ otherwise.

Despite the fact that the scale function is in general only implicitly known
through its Laplace transform, there are plenty examples of spectrally negative
Lévy processes for which there exists closed-form expressions for their scale
functions, although most of these examples only deal with the q = 0 scale
function. In case no explicit formula for the scale function exists, one can use
numerical methods as described in [25] to invert the Laplace transform of the
scale function. We refer to the papers [13, 17, 19] for an updated account on
explicit examples of scale functions and their properties.

In the sequel for a ∈ R, a function f and a Borel measure µ, we will use the
notation

∫∞
a
f(x)µ(dx) and

∫∞
a+
f(x)µ(dx) to mean integration over the interval

[a,∞) in the first case and integration over the interval (a,∞) in the second case.
In particular,

∫∞
a
f(x)µ(dx) = f(a)µ{a}+

∫∞
a+
f(x)µ(dx). We recall Bernstein’s

theorem (cf. [10, Chapter XIII.4]) which says that a real-valued function f is
completely monotone if and only if there exists a Borel measure µ such that
f(x) =

∫∞
0

e−xtµ(dt), x > 0. We now strengthen the conclusion of Theorem 3
in [20]. First we need the following proposition.

Proposition 2. Suppose q > 0. Then

lim inf
x→∞

eΦ(q)xW ′
Φ(q)(x) = 0.

Proof. Taking derivatives on both sides in (1) and using (2), we get

d
dx

Ex
(
e−qτ

−
0 1(τ−0 <∞)

)
= − q

Φ(q)
eΦ(q)xW ′

Φ(q)(x).
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Suppose now that the conclusion of the proposition does not hold. Then
eΦ(q)xW ′

Φ(q)(x) will eventually be bounded from below by a strictly positive
constant. It follows then that

lim
x→∞

Ex
(
e−qτ

−
0 1(τ−0 <∞)

)
= −∞,

which contradicts the positivity of the expectation. �

Theorem 3. Suppose the Lévy measure ν has a completely monotone density
and q > 0. Then the q-scale function can be written as

W (q)(x) =
eΦ(q)x

ψ′(Φ(q))
− f(x), x > 0,

where f is a completely monotone function.

Proof. It was shown in [20] that if the Lévy measure ν has a completely mono-
tone density, then WΦ(q) is a Bernstein function and therefore admits the rep-
resentation

WΦ(q)(x) = a+ bx+
∫ ∞

0+

(1− e−xt)ξ(dt) x > 0, (3)

where a, b ≥ 0 and ξ is a measure on (0,∞) satisfying
∫∞
0+

(t ∧ 1)ξ(dt) < ∞.
Since q > 0, WΦ(q) will be bounded and therefore b = 0 and by using Fatou’s
lemma

ξ(0,∞) =
∫ ∞

0+

lim
x→∞

(1− e−xt)ξ(dt) ≤ lim
x→∞

∫ ∞

0+

(1− e−xt)ξ(dt)

= lim
x→∞

WΦ(q)(x)− a <∞.

We now deduce from Proposition 2, (3) and Fatou’s lemma

0 = lim inf
x→∞

eΦ(q)xW ′
Φ(q)(x) = lim inf

x→∞

∫ ∞

0+

e−x(t−Φ(q))tξ(dt)

≥
∫ ∞

0+

lim inf
x→∞

e−x(t−Φ(q))tξ(dt) ≥ Φ(q)ξ(0,Φ(q)].

It follows that ξ(0,Φ(q)] = 0 and using (2) and (3), we can write

W (q)(x) = eΦ(q)x (a+ ξ(Φ(q),∞))−
∫ ∞

Φ(q)+

e−x(t−Φ(q))ξ(dt)

= eΦ(q)x (a+ ξ(Φ(q),∞))−
∫ ∞

0+

e−xtξ(dt+ Φ(q)).
(4)

Now the conclusion of the theorem follows by Bernstein’s theorem and the fact
that a+ ξ(Φ(q),∞) = limx→∞WΦ(q)(x) = 1/ψ′(Φ(q)). �
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Denote by W (q,n)(x) the n-th derivative of W (q)(x) for x > 0 and n =
0, 1, 2, . . ..

Corollary 4. Suppose the Lévy measure ν has a completely monotone density,
q > 0 and n is an odd integer. Then log

(
W (q,n)(x)

)
has a strictly positive

second derivative for all x > 0. Consequently, the function W (q,n) is strictly
log-convex on (0,∞).

Proof. Suppose that the Lévy measure has a completely monotone density,
q > 0 and n is an odd integer. Let f(x) = eΦ(q)x

ψ′(Φ(q))−W
(q)(x) and g(x) = −f ′(x).

By Theorem 3, f and g are completely monotone functions and

W (q,n)(x) =
Φ(q)n

ψ′(Φ(q))
eΦ(q)x + g(n−1)(x), (5)

where g(n−1) is the (n−1)-th derivative of g. Since n is odd, g(n−1) is completely
monotone and hence positive (in the weak sense). Further, as q > 0, Φ(q) > 0
and therefore W (q,n)(x) > 0 for x > 0. This means that the following is well
defined for x > 0,

hn(x) =
(
W (q,n)(x)

)2 [
log
(
W (q,n)(x)

)]′′
= W (q,n)(x)W (q,n+2)(x)−

(
W (q,n+1)(x)

)2

.

We need to prove that hn(x) > 0 for all x > 0. Using (5) we get

hn(x) =
[
g(n−1)(x)g(n+1)(x)−

(
g(n)(x)

)2
]

+
Φ(q)n

ψ′(Φ(q))
eΦ(q)x

{
Φ(q)2g(n−1)(x) + g(n+1)(x)− 2Φ(q)g(n)(x)

}
.

(6)

By Bernstein’s theorem and Hölder’s inequality we have for any completely
monotone function v that for some Borel measure µ

v(x)v′′(x)−(v′(x))2 =
∫ ∞

0

e−xtµ(dt)
∫ ∞

0

t2e−xtµ(dt)−
(∫ ∞

0

te−xtµ(dt)
)2

≥ 0

and therefore v is log-convex. Since g(n−1) is completely monotone, it is log-
convex and therefore the expression between the square brackets in (6) is pos-
itive. Further, the complete monotonicity of g(n−1) implies that each of the
terms between the curly brackets in (6) is positive and hence hn(x) ≥ 0. As
Φ(q) > 0, it suffices to prove that one of the terms between the curly brack-
ets, say g(n+1)(x), is strictly positive. We do this by contradiction. Suppose
g(n+1)(x) = 0. Then it is easily seen from Bernstein’s theorem that the function
f has to be equal to a constant. In that case (4) implies that f ≡ 0. But this
means that for λ > Φ(q)

1
ψ(λ)− q

=
∫ ∞

0

e−λxW (q)(x)dx =
∫ ∞

0

e−(λ−Φ(q))x

ψ′(Φ(q))
dx =

1
(λ− Φ(q))ψ′(Φ(q))

.
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Thus ψ(λ) is the Laplace exponent of a subordinator (consisting of just a single
drift term). But subordinators were excluded from the definition of a spectrally
negative Lévy process, which gives us the desired contradiction. �

3 Proof of main theorem

In this section the proof of Theorem 1 will be given with the aid of a series
of lemmas. The approach is similar to [3] and [20], namely calculating the
value of a barrier strategy where the barrier is arbitrary, then choosing the
‘optimal’ barrier and finally putting this particular barrier strategy (or the take-
the-money-and-run strategy) through a verification lemma.

First we recall what we mean by the term sufficiently smooth. A function
f : R → R which vanishes on (−∞, 0) and which is right-continuous at zero, is
called sufficiently smooth at a point x > 0 if f is continuously differentiable at
x when X is of bounded variation and is twice continuously differentiable at x
when X is of unbounded variation. A function is then called sufficiently smooth
if it is sufficiently smooth at all x > 0. Note that we implicitly assume that a
sufficiently smooth function is right-continuous at zero and that it equals zero
on (−∞, 0). We let Γ be the operator acting on sufficiently smooth functions
f , defined by

Γf(x) = γf ′(x) +
σ2

2
f ′′(x) +

∫ ∞

0+

[f(x− y)− f(x) + f ′(x)y1{0<y<1}]ν(dy).

Lemma 5 (Verification lemma). Suppose π̂ is an admissible dividend strategy
such that (vπ̂ − S) is sufficiently smooth, vπ̂(0) ≥ S and for all x > 0

max{Γvπ̂(x)− qvπ̂(x), 1− v′π̂(x)} ≤ 0. (7)

Then vπ̂(x) = v∗(x) for all x ≥ 0 and hence π̂ is an optimal strategy.

Proof. By definition of v∗, it follows that vπ̂(x) ≤ v∗(x) for all x ≥ 0. We write
w := vπ̂ and show that w(x) ≥ vπ(x) for all π ∈ Π for all x ≥ 0. First we suppose
x > 0. We define for π ∈ Π the stopping time σπ0 by σπ0 = inf{t > 0 : Uπt ≤ 0}
and denote by Π0 the following set of admissible dividend strategies

Π0 = {π ∈ Π : σπ0 = σπ Px-a.s. for all x > 0}.

Note that when X is of unbounded variation, Π0 = Π, but that Π0 is a strictly
smaller set than Π when X is of bounded variation. We claim that any π ∈ Π
can be approximated by dividend strategies from Π0 in the sense that for all
ε > 0 there exists πε ∈ Π0 such that vπ(x) ≤ vπε(x) + ε and therefore it is
enough to show that w(x) ≥ vπ(x) for all π ∈ Π0. Indeed, we can take πε
to be the strategy where you do not pay out any dividends until the stopping
time κ := inf{t > 0 : Lπt ≥ ε}, then at that time point κ pay out a dividend
equal to the size of the overshoot of Lπ over ε and afterwards follow the same
strategy as π until ruin occurs for the latter strategy at which point you force
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ruin immediately. Note that πε ∈ Π0 because if σπε
0 < κ, then σπε

0 = σπε since
until the first dividend payment is made, the process Uπε is equal to X and for
the spectrally negative Lévy process X, the first entry time in (−∞, 0] is equal
almost surely to the first entry time in (−∞, 0), provided X0 > 0. Further if
σπε

0 ≥ κ and κ <∞, then since Uπε
κ > Uπκ we have σπε

0 ≥ σπ and thus σπε
0 = σπε

since σπ = σπε on the event {σπε
0 ≥ κ, κ <∞} by construction.

We now assume without loss of generality that π ∈ Π0 and we let L̃π, Ũπ

be the right-continuous modifications of Lπ, Uπ. Note that since the filtration
F was assumed to be right-continuous, L̃π and Ũπ are adapted processes. Let
(Tn)n∈N be the sequence of stopping times defined by Tn = inf{t > 0 : Ũπt >

n or Ũπt < 1
n}. Since Ũπ is a semi-martingale and w is sufficiently smooth -

in particular w and its derivatives are bounded on [1/n, n] for each n - we can
use the change of variables/Itô’s formula (cf. [21, Theorem II.31 & II.32]) on
e−q(t∧Tn)w(Ũπt∧Tn

) together with (7) to deduce

w(Ũπ0 ) ≥
∫ t∧Tn

0+

e−qsdL̃πs + e−q(t∧Tn)w(Ũπt∧Tn
) +Mt, (8)

where {Mt : t ≥ 0} is a zero-mean Px-martingale. The details yielding this
inequality are given in the Appendix. Using that w ≥ S which follows from the
assumptions w(0) ≥ S and w′ ≥ 1, taking expectations, letting t and n go to
infinity and using the monotone convergence theorem we get

w(Ũπ0 ) ≥ Ex

(∫ σπ

0+

e−qsdL̃πs

)
+ SEx

(
e−qσ

π
)
.

Note that we used here that Tn ↗ σπ Px-a.s. which follows because π ∈ Π0.
Now using the mean value theorem together with the assumption that w′(·) ≥ 1
on (0,∞), we get

w(Ũπ0 ) = w(x− Lπ0+) ≤ w(x)− Lπ0+

and combining with

Ex

(∫ σπ

0+

e−qsdL̃πs

)
= Ex

(∫ σπ

0

e−qsdLπs

)
−Lπ0+ = vπ(x)−SEx

(
e−qσ

π
)
−Lπ0+,

we deduce w(x) ≥ vπ(x) and hence we proved w(x) ≥ v∗(x) for all x > 0.
To finish the proof, note that v∗ is an increasing function (in the weak

sence) since the set of admissible strategies is larger when the initial reserves are
higher and hence because w is right-continuous at zero, v∗(0) ≤ limx↓0 v∗(x) ≤
limx↓0 w(x) = w(0). �

Proposition 6. Assume W (q) is continuously differentiable on (0,∞). The
value function of the barrier strategy at level a ≥ 0 is given by

va(x) =

SZ
(q)(x) +W (q)(x)

(
1−qSW (q)(a)
W (q)′(a)

)
if x ≤ a

x− a+ SZ(q)(a) +W (q)(a)
(

1−qSW (q)(a)
W (q)′(a)

)
if x > a.

10



Proof. Clearly the proposition only needs to be proved for 0 ≤ x ≤ a. Let
x ∈ [0, a]. By Avram et al. [3, Proposition 1], it follows that

Ex

[∫ σa

0

e−qtdLat

]
=
W (q)(x)
W (q)′(a)

.

Since

σa = inf{t > 0 : Xt − Lat < 0} = inf{t > 0 :
(

sup
0≤s<t

Xs

)
∨ a−Xt > a},

it follows by Avram et al. [2, Theorem 1] that

Ex
[
e−qσ

a
]

= Z(q)(x)−W (q)(x)
qW (q)(a)
W (q)′(a)

.

�

Define the function ζ : [0,∞) → R by

ζ(x) =
1− qSW (q)(x)

W (q)′(x)
for x > 0

and ζ(0) = limx↓0 ζ(x). We now define the (candidate) optimal barrier level by

a∗(S) = sup {a ≥ 0 : ζ(a) ≥ ζ(x) for all x ≥ 0} .

Hence a∗(S) is the last point where ζ attains its global maximum. Note that
a∗(0) is the point a∗ mentioned in Section 1. In the sequel we will write a∗

instead of a∗(0).

Proposition 7. Suppose W (q) is continuously differentiable on (0,∞). Then
a∗(S) <∞.

Proof. Define

f(x) = ζ(x) +
qS

Φ(q)
=

1 + qS
(
Φ(q)−1W (q)′(x)−W (q)(x)

)
W (q)′(x)

.

Since limx→∞
W (q)(x)

W (q)′ (x)
= 1

Φ(q) (see e.g. [3, Section 3.3]) and W (q) is continuously
differentiable, it follows that limx→∞ f(x) = 0 and f is continuous. Hence
a∗(S) <∞ if there exists x ≥ 0 such that f(x) > 0. But by (2)

f(x) =
1 + qS

Φ(q)e
Φ(q)xW ′

Φ(q)(x)

W (q)′(x)

and thus by Proposition 2, there exists x ≥ 0 such that f(x) > 0. �
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Note that when a∗(S) > 0 and W (q) is twice continuously differentiable, then
ζ ′(a∗(S)) = 0. Further, it is easily seen that if an optimal strategy is formed
by a barrier strategy, then the barrier strategy at a∗(S) has to be an optimal
strategy.

Lemma 8. Suppose W (q) is sufficiently smooth and that

ζ(a) ≥ ζ(b) for all a, b such that a∗(S) ≤ a ≤ b. (9)

Then the following holds.

(i) If ζ(a∗(S)) ≥ 0, then the barrier strategy at a∗(S) is an optimal strategy.

(ii) If a∗(S) = 0 and ζ(0) ≤ 0, then the take-the-money-and-run strategy is
optimal.

Note that Lemma 8 is a generalization of Theorem 2 in [20]. Indeed when
S = 0, ζ(a∗) = 1/W (q)′(a∗) > 0 and condition (9) transforms into the condition
that W (q)′ is increasing on (a∗,∞).

Proof. We first prove (i) by showing that va∗(S) satisfies the conditions of
the verification lemma. Using (9), all the conditions of the verification lemma
can be proved following the same arguments as in the proofs of Lemma 5 and
Theorem 2 in [20], with the exception being the condition that va∗(S)(0) ≥ S.
(Note that in deducing the analogue of equation (4) in [20], one also uses the
fact that

(
e−q(t∧τ

−
0 ∧τ

+
a )Z(q)(Xt∧τ−0 ∧τ

+
a

)
)
t≥0

is a Px-martingale, cf. [15, p.229].)

The missing condition now follows from

va∗(S)(0) = SZ(q)(0) +W (q)(0)ζ(a∗(S)) ≥ S,

where the inequality follows from the assumption that ζ(a∗(S)) ≥ 0.
For case (ii) we prove that vrun satisfies the conditions of the verification

lemma. Note that since vrun(x) = x+ S for x ≥ 0, the only non-trivial thing to
show is that (Γ−q)vrun(x) ≤ 0 for all x > 0. This can be achieved by mimicking
the proof of Theorem 2 in [20], which involves proving that

lim
y↑x

(Γ− q)(vrun − vx)(y) ≤ 0 for x > 0.

Note that in order to prove the above inequality, one uses that vrun(0) ≥ vx(0)
which follows from ζ(x) ≤ 0 and the latter is due to the assumption that ζ(0) ≤ 0
and a∗(S) = 0 (combined with (9)). �

Proof of Theorem 1. Since the case S = 0 was proved in Loeffen [20], we
assume without loss of generality that S 6= 0. Note that by Theorem 3, W (q) is
infinitely differentiable (this was proved for the first time in [6]) and therefore
certainly smooth enough. Further note that W (q)′′ is strictly negative on (0, a∗),

12



strictly positive on (a∗,∞) and if a∗ > 0, then W (q)′′(a∗) = 0. We will show
that

ζ is strictly increasing on (0, a∗(S)) and strictly decreasing on (a∗(S),∞),
(10)

from which it follows that a∗(S) is the only point where ζ has a local/global
maximum and that (9) holds.

First note that with g(x) = −qSW (q)′(x)/W (q)′′(x) for x ∈ (0,∞)\{a∗}, the
following differential equation holds for ζ

ζ ′(x) = −W
(q)′′(x)

W (q)′(x)
(ζ(x)− g(x)) , x ∈ (0,∞)\{a∗}.

From this it follows that
for x ∈ (0, a∗) ζ ′(x) > 0(< 0,= 0) iff ζ(x) > g(x)(< g(x),= g(x)),

for x ∈ (a∗,∞) ζ ′(x) > 0(< 0,= 0) iff ζ(x) < g(x)(> g(x),= g(x)).
(11)

Suppose that S > 0. Since

ζ ′(x) =
qS
[
W (q)(x)W (q)′′(x)−

(
W (q)′(x)

)2]−W (q)′′(x)(
W (q)′(x)

)2 (12)

and the expression between square brackets is negative due to the log-concavity
of W (q), it follows that ζ ′(x) < 0 on (a∗,∞) and therefore a∗(S) ≤ a∗. If
a∗ = 0, (10) now holds, so we can assume without loss of generality that a∗ > 0.
Then limx↑a∗ g(x) = ∞ and (11) imply a∗(S) 6= a∗ and thus a∗(S) < a∗. By
the strict log-convexity of W (q)′ (Corollary 4), g is strictly increasing on (0, a∗).
The foregoing and (11) imply then that either ζ intersects g exactly once on
(0,∞) (at a∗(S)) and (10) holds or that ζ ′(x) < 0 for all x > 0 and in that case
a∗(S) = 0. Hence (10) holds when S > 0.

Suppose now that S < 0 and a∗ > 0. Then ζ is strictly positive on (0,∞)
by definition and g is strictly negative on (0, a∗). Hence a∗(S) ≥ a∗. Due to the
strict log-convexity of W (q)′, g is in this case strictly decreasing on (a∗,∞) and
combined with (11) and the fact that limx↓a∗ g(x) = ∞, this implies that ζ and
g intersect each other exactly once, a∗(S) > a∗ and that (10) holds.

This leaves the final case when S < 0 and a∗ = 0. If ζ(0) ≥ g(0), then
(11) and g being strictly decreasing on (0,∞) implies ζ is strictly decreasing on
(0,∞) and hence a∗(S) = 0. If ζ(0) < g(0), then a∗(S) > 0 and further (10)
holds by the same arguments as before.

Suppose now that σ > 0, or ν(0,∞) = ∞, or ν(0,∞) < ∞ and S ≤ c/q.
Then from the values of W (q)(0) and W (q)′(0) given in Section 2, it follows that
ζ(0) ≥ 0 and hence ζ(a∗(S)) ≥ 0 by definition of a∗(S). Thus part (i) of the
theorem follows from Lemma 8(i).

To prove part (ii), suppose that σ = 0 and ν(0,∞) <∞ and S > c/q. This
implies S > 0 and ζ(0) < 0. If a∗ = 0 then a∗(S) = 0 since S > 0. If a∗ > 0
then g(0) > 0 and hence by (11) and (12), ζ ′(x) < 0 for all x > 0 and therefore
a∗(S) = 0. Part (ii) follows now from Lemma 8(ii).

�
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Appendix

We give here the details which lead to (8).
Applying the change of variables/Itô’s formula to e−q(t∧Tn)w(Ũπt∧Tn

) gives

e−q(t∧Tn)w(Ũπt∧Tn
)− w(Ũπ0 ) =

∫ t∧Tn

0+

e−qs
(
σ2

2
w′′(Ũπs−)− qw(Ũπs−)

)
ds

+
∫ t∧Tn

0+

e−qsw′(Ũπs−)d(Xs − (L̃πs )
c)

+
∑

0<s≤t∧Tn

e−qs[∆w(Ũπs )− w′(Ũπs−)∆Xs],

(13)

where we use the following notation: ∆Ũπs = Ũπs − Ũπs−, ∆w(Ũπs ) = w(Ũπs ) −
w(Ũπs−) and (L̃πs )

c = L̃πs −
∑

0<u≤s ∆L̃πu. Note that we have used here the fact
that the continuous martingale part of X is its Gaussian part. One can easily
verify that∑

0<s≤t∧Tn

e−qs[∆w(Ũπs )− w′(Ũπs−)∆Xs] =

∑
0<s≤t∧Tn

e−qs[∆w(Ũπs− + ∆Xs)− w′(Ũπs−)∆Xs]

−
∑

0<s≤t∧Tn

e−qs[w(Xs − L̃πs−)− w(Xs − L̃πs− −∆L̃πs )]. (14)

Since by admissibility of Lπ, we have ∆L̃πs ≤ Xs − L̃πs− and so by the mean
value theorem and the hypothesis that w′ ≥ 1,

w(Xs − L̃πs−)− w(Xs − L̃πs− −∆L̃πs ) ≥ ∆L̃πs for 0 < s < t ∧ Tn. (15)
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Combining (13), (14) and (15) leads to

e−q(t∧Tn)w(Ũπt∧Tn
)− w(Ũπ0 ) ≤

∫ t∧Tn

0+

e−qs
(
σ2

2
w′′(Ũπs−)− qw(Ũπs−)

)
ds

+
∫ t∧Tn

0+

e−qsw′(Ũπs−)d(Xs − (L̃πs )
c)

+
∑

0<s≤t∧Tn

e−qs[∆w(Ũπs− + ∆Xs)− w′(Ũπs−)∆Xs −∆L̃πs ]

=
∫ t∧Tn

0+

e−qs(Γ−q)w(Ũπs−)ds−
∫ t∧Tn

0+

e−qsw′(Ũπs−)d(L̃πs )
c−

∑
0<s≤t∧Tn

e−qs∆L̃πs

+

{∫ t∧Tn

0+

e−qsw′(Ũπs−)d[Xs − γs−
∑

0<u≤s

∆Xu1{|∆Xu|≥1}]

}

+

{ ∑
0<s≤t∧Tn

e−qs[∆w(Ũπs− + ∆Xs)− w′(Ũπs−)∆Xs1{|∆Xs|<1}]

−
∫ t∧Tn

0+

∫ ∞

0+

e−qs
[
w(Ũπs− − y)− w(Ũπs−) + w′(Ũπs−)y1{0<y<1}

]
ν(dy)ds

}
.

By the Lévy-Itô decomposition the expression between the first pair of curly
brackets is a zero-mean martingale and by the compensation formula (cf. [15,
Corollary 4.6]) the expression between the second pair of curly brackets is also
a zero-mean martingale. Now using (7), the inequality (8) follows.
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