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Gravitational microlensing occurs when a massive lens¢ally a star) deflects light
from a more distant source, creating two unresolvable imdigat are magnified. The
effect is transient due to the motions of the lens and sourcethenchanging magnifi-
cation gives rise to a characteristic lightcurve. If thesiegy object is a binary star or
planetary system, more images are created and the liglet@@womes more compli-
cated. Detection of these lightcurve features allows the mpanion’s presence to
be inferred.

Orbital motion of the binary lens can be detected in some gteasing events,
but the expected fraction of events which show orbital motias not been known
previously. We use simulations of orbiting-lens microliegsevents to determine the
fraction of binary-lens events that are expected to showtarinotion. We also use
the simulations to investigate the factors th@ieet this detectability.

Following the discovery of some rapidly-rotating lenseshia simulations, we in-
vestigate the conditions necessary to detect lenses tatgma complete orbit during
a microlensing event. We find that such events are detecamol¢hat they should oc-
cur at alow but detectable rate. We also derive approximaieegsions to estimate the
lens parameters, including the period, from the lightcuMeasurement of the orbital
period can in some cases allow the lens mass to be measured.

Finally we develop a comprehensive microlensing simuja#taBulLS, that uses
the output of the Besancon Galaxy model to produce symtimatiges of Galactic star-
fields. Microlensing events are added to the images and pteity of their lightcurves
simulated. We apply these simulations to a proposed migsaig survey by th&uclid

space mission to estimate its planet detection yield.
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Gravitational microlensing: basic

theory

1.1 Introduction

Gravitational microlensing occurs when the mass of an ¢lbjerds and magnifies the
light from a more distant star passing almost directly bdhinThis chance alignment
is transient, and the relative motions of the backgroundceand foreground lens
give rise to a recognizable lightcurve as the apparent brggs of the source changes.
The presence of additional masses in the lensing systerh,asustellar or planetary
companions, can cause a diverse range of more complicatettuirves, whose fea-
tures can be used to infer the presence and properties obthpanions. Microlensing
simulations can be used to aid the design of microlensingraxgnts and provide in-
sight into complex aspects of microlensing phenomena. Bioas also play a vital
role in the interpretation of microlensing surveys.

This thesis describes several pieces of work where micsoigrsimulations have
been used to better understand complex microlensing phemar to judge the per-
formance of a proposed microlensing survey. The structifeeonvork is as follows. In

this first chapter, the basic theory of gravitational mier@ing, by both single masses
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1: GRAVITATIONAL MICROLENSING: BASIC THEORY

and binary systems, is introduced. Chapter 2 describes hamolansing events are
observed and how microlensing surveys can be simulated. t&h3dpdescribes the
development and results of a simulation investigating tifieces of orbital motion in

binary microlenses. Chapter 4 develops the theory of ‘rgpidtating lenses’ and
uses simulations to estimate the occurrence rate of mitsolg events involving such
lenses. Chapter 5 describes the development of the firsttplgmmicrolensing sim-

ulator to use a population synthesis Galactic model, andlepihe simulations to a

planetary microlensing survey by the propo&adtlid space mission.

1.2 The single lens

We begin by examining the simplest case of microlensing:roteasing by a single
point mass. The topics covered in this section and the nesg baen the subject of
many reviews (Pachski 1996; Wambsganss 2006; Mao 2008; Gaudi 2010, to name
a few). Unless otherwise referenced, we refer the readéetsetarticles here, in order
to avoid repetitive referencing.

Although first derived by Einstein (1936), and expanded offikiov (1938), the
derivation of the properties of a single point-mass lensewerhaps most clearly and
concisely described, independently and simultaneouglizidbes (1964) and Refsdal
(1964). They were also the first to quantitatively estimaterafensing event rates
(see Section 2.1.1), based on knowledge of the Galaxy atithat However, it was
Paczyski (1986) who proposed microlensing as a method to seanckerk mat-
ter in the form of MACHOS, that finally provided the justification to begin massive
searches for microlensing. Shortly after the first micrsiag surveys began, Mao and
Paczyski (1991) and Gould and Loeb (1992) showed that microfgnsould be used
to detect planets orbiting lens stars.

Einstein (1915) derived the deflection angle of a light rag gravitational field of

IMAssive Compact Halo Objects

22 SIMULATIONS OF GRAVITATIONAL MICROLENSING



1.2: THE SINGLE LENS

- L L

Figure 1.1 — The geometry of light paths through a gravitational lens. Lightkthe source

S and passes the lelhsto reach the observed, appearing as two imagek,(andl_). The
two-dimensional angle vectgis the true position of the source on the sky, measured relative
to the origin, which we assume to be the position of the Iéris.the apparent position of an
image andy is the deflection angle of passing lighf.= 4D, andij = 4Ds are the projected
distance vectors in the plane of the sky of the lens and source, reghgaindD; andDs are

the distance from the observer to the lens and source, respecidglg;the distance between

the lens and source.
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1: GRAVITATIONAL MICROLENSING: BASIC THEORY

a point massvl to be
AGM &
@ &2

whereé is the two-dimensional displacement veétof the light ray from the mass

(1.1)

=38

at their closest approach (in the plane perpendicular tditieeof sight to the lens),
andG andc are the gravitational constant and speed of light, resgsgti Using the
geometry shown in Figure 1.1, and assuming small anglestétim (1936) derived
expressions for the image positions and magnifications ahgleslens. Figure 1.1
shows light rays emitted by a sourBeat distanceDs deflected by a massive deflector
L (the lens) at distancB,, so that they reach an obsern@r We choose the origin
of our sky coordinate system to coincide with the lens. Inahsence of deflection,
the source would be separated from the lens by the ghgléwo dimensional vector
on the sky. Light rays that reach the observer pass the IetmsaNdispIacemenf
and so the observer sees an imaga the angled = £/D,. The physical projected
displacement of the source from the originjis: SDs.

Using simple geometry, and assuming small angles, we cde down the rela-
tionship between the undeflected source position and thgarpasition, known as the
lens equation

== Disd, (1.2)
whereDj is the distance between the lens and source. This can bdtegwin terms

of the angleg andd as

. . 4GM Dy @
=6- —, 1.3

by dividing through byDs. Defining the angular Einstein radius as

4GM D
O = +/ s 1.4
E ¢z D,DS’ (14)

and dividing Equation 1.3 bge, we obtain the normalized lens equation

r—.)

2°

G=r- (1.5)

-

2For the single point-mass lens, the lensing potential isyaimetric and the vector notation can be

dropped, but we retain it as it is necessary for the latetrimeat of binary lenses.
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1.2: THE SINGLE LENS

whered = /6 and? = /6 are the vector positions of the source and images,
respectively, with magnitudes normalizedda It can immediately be seen that if
6 > e thenu — r and the &ect of the lens will be negligible. Therefoée defines
the angular separation scale over which lensifigats are important. In this work we
will consider the lensingféects of stars on other stars in the Galaxy, so in the typical
units of Solar masses and kpc

0 = 2.85 maS(MMQ)l/Z (1%()1/2 (k%i:) 1/2, (1.6)

where we have defined the fractional lens distaxee D,/Ds. At the position of the

lens, the physical scale 6f is

M |2 D. \ /2
_ — _ _ 12| =s
re = D/ = 2.85 AU (M@) [X(1 - X)] (kpc) : (1.7)

the physical Einstein radius.

The lens equation can be used to determine the undeflectecksmusition given
the position of an image, but often we are interested in tkierge problem: finding
the image positions given the source position. As the soleos and observer all lie
in the same plane, due to symmetry, so must the images, andayelrop the vector
notation. The lens equation for a single lens is then

u=r-— F (18)

This is easily rearranged into a quadratic and solved, yigltivo solutions

uzx Vuz+4

> (1.9)

ri:

corresponding to two images: one, the major image,at 1, outside the Einstein
radius, and the other, the minor image-dt < r_ < 0, inside the Einstein radius and
on the opposite side of the lens. The images are separated-by_| ~ 2whenu < 1

(an angle~6 mag \/W:), implying that the images cannot be resolved by optical

telescopes for typical microlensing events in the Galaxy.
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1: GRAVITATIONAL MICROLENSING: BASIC THEORY

If the images cannot be resolved, then the only way that fgosing can be de-
tected is if it magnifies the source stafhe magnification of the source can be calcu-
lated by considering the lensing of a small annular segmighickness d and width
ude at the position of the source,(@) in polar coordinates. The source segment is
lensed into two annular image segments, with the same angidéh and thickness

dr.. The magnification, of each image is given by the ratio of the image to source

areas
r.dedr .
2
_ux vur+A4dr, (1.11)
2u du
1 u? + 2 )
=1+ ——2 ). (1.12)
2( uvZ + 4

The second non-constant term always has a magnitude gteateone, so the major
image has a magnificatiqn,, which is always positive and greater than n&im-
ilarly, the minor image always has a negative magnificatior 0, so the image is
inverted and may be either magnified or demagnified. We arblemnaresolve the im-
ages, but as gravitational lensing conserves surfacethegh (Schneider et al. 1992),

the total absolute magnificatignis an observable quantity

W= el + | = py — e (1.13)
u + 2
=— = (1.14)
uvu? +4

3This is not strictly true, as the lens may cause significaiftssto the light centroid of the source,
even when the source is not significantly magnified (Hog et205; Walker 1995; Dominik and Sahu
2000). Such centroid shifts can be measured to accuracsesaif fractions of a pixel if the point spread
function is well sampled. We do not consider such astromaticrolensing &ects in this thesis, so do

not discuss them further.
4The sign of the magnification indicates its parity. A positparity image is not inverted, while

a negative parity image is inverted. The magnitude of thenifiagtion indicates whether an image
is magnified of demagnified. A magnified image has magnifiodtip> 1 and so is larger than the
unlensed source, while a demagnified image has magnifidatienl and is smaller than the unlensed

source.
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1.2: THE SINGLE LENS

Unless otherwise noted, all further references to the nimgiion should be taken to
mean the total absolute magnification.

The magnification of a point-mass lens has the following irtggd properties:

¢ the magnification is always greater than or equal to one,

the magnification scales as! for u < 1,

the magnification diverges asends to zero,

the magnification scales as+12u= for u > 1,

the magnification tends to one asends to infinity.

So, a lensed source is never demagnified and as a source elpgsqeerfect alignment
its magnification diverges. This is obviously unphysicaidave discuss how real
lenses behave when perfectly aligned in Section 2.1.3.

The components of the systems we consider (source stasgsl@md the observer
on Earth) are all in motion relative to each other, so thegrahent is transient. The
timescale over which a source will be lensed is the time td&ethe source to move
relative to the observer-lens line of sight by an angulatatise equal to the angular
Einstein radius. This is the Einstein radius crossing teaése, which we shall simply
call the microlensing, event or Einstein timescale. If weusse the source, lens and
observer are all in rectilinear motion

te = P r—E, (1.15)
Hrel Vi
where ure is the relative proper motion between the lens and source vars the
relative lens-source transverse velocity measured aetie [Typical velocities within
the Galaxy are-200 km s?, so in the standard units
1/2 1/2 -1
te = 49.4d(MM®) [X(1 - X)] 2 (k%sc) (ﬁ) . (1.16)
Microlensing will therefore cause a temporary brightenafgan otherwise constant

background source over the course of a month or so. If we assiensource travels
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Figure 1.2 — Lightcurves and source trajectories of a single lens. LiglgsyEquation 1.18)
of single lenses with dierent values of the impact parametgrare shown in dferent colours.
The inset shows the source trajectories for the lightcurves in the main plet.dashed line

shows the Einstein ring, while the point shows the position of the lens.

in a straight line, relative to the lens, then the source-legparation as a function of

time in our normalized units will be

, [(t=to)?
u(t) = y[ug + , (2.17)
te
wheretg is the time of lens-source closest approachayid the minimum lens-source
separation, in units of the Einstein radius. The magnificatif the source as a function
of time is then found by substituting(t) into Equation 1.14
u(t)? + 2
p(t) = ———.
u(t) yu(t)? + 4

This is the so-called Pacagki lightcurve (Paczyski 1986).

(1.18)

Figure 1.2 shows several examples of the Paskilightcurve with diterent values
of up. The dfect of the timescalé: is only to stretch the lightcurve in time, whitg

shifts the lightcurve in time. The lightcurve is symmetriwoait a single peak, and is
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constant far from the peak. This is in contrast to other g@stysical variable sources,
which may have asymmetric lightcurves with constant bassli(e.g., Supernovae,
Novae), continuous periodic variability (e.g., variabtars such as Cepheids and RR
Lyrae), or repeating episodes of variability (e.g., cataglic variables). It should be
noted that the only parameter of a single-lens lightcune h physically interesting
is the timescaldg. The other parametetts and uy reflect the random timing and
alignment of the microlensing event. This means that alirifegmation that we would
like to know about the lens (its mass, distance and velowtgpnstrained by just one
parameter. It is therefore impossible to determine thesafifies uniquely without
additional information. This is known as the microlensiregdneracy, and we shall

discuss how it can be broken in the next chapter.

1.3 Binary lenses

A large fraction of stars are not isolated, but part of binarymultiple star sys-
tems (Duquennoy and Mayor 1991; Raghavan et al. 2010) oefaansystems (Cum-
ming et al. 2008; Johnson et al. 2010; Sumi et al. 2010; Howawl. 2011; Mayor
et al. 2011). In this section we derive the properties of olemsing by binary lenses.
As microlensing is sensitive to mass and not light, plaryetaass bodies can also

affect the lightcurve.

1.3.1 The lens equation

In the previous section we saw how the lens equation of aesiegk can be derived di-
rectly from the lensing geometry, provided one knows thefof the deflection angle.
Derivation of the multiple point-mass lens equation is digusraight forward. Equa-
tion 1.1 can be generalized for a mads not necessarily at the origin, that deflects a

light ray by an angle

-

2 5 &
02 E-2p 29
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whereé — & is the two-dimensional ray-lens displacement vecfas the ray position
and& the position of the point-mass leijs The total deflection that a ray experiences

is simply the sum of all deflections froi point-mass lenses (Bourassa et al. 1973)

N
&= d. (1.20)

N -
B=E-a ) m g_f' : (1.21)

where for convenience we have chosen to define the lens equatiterms of the
Einstein radius of the total lens makk and wheram, = M;/M, the ratio of massto

the total mass. This equation can then be normalized in tine seay as Equation 1.3

N
z=z-) (1.22)

i=1
where we have switched to a complex notation first used by &saret al. (1973) and
first applied to microlensing by Witt (1990). The two dimesrsal vectors& = (x,Y)
etc.) are replaced with complex numbers={ x + iy etc.) and crucially the vector
inverse, e.q.£/|&?, is greatly simplified by replacing it with a complex divisiol/z,
where the bar represents complex conjugation. As a binaxyikethe most complex
lens considered in the thesis, we do not pursue a solutidmeaf¢éneraN-point-mass
lens equation, though similar steps to those we will takétferbinary lens can be used
to derive the result for larger values Nf(e.g., Rhie 2002).

The binary point-mass lens was first considered in detail dyn8ider and Weiss
(1986), and most of the results in the remainder of this sadbllow from that work.
However, before beginning, it is helpful to describe thendtad parametrization of a
binary lens. While not axisymmetric like the single lens, tirary lens does possess
a reflectional symmetry axis (the binary axis), which passesigh the two lens com-
ponents. Without loss of generality, we can define a referdraame with its origin

somewhere along the binary axis, such that the lens positicandz, are real. There
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are many good choices for the position of the origin, depamdin the problem at
hand. As we will study orbital motion of the binary lens in sequent chapters, the
lens centre of mass is the obvious choice of origin. It is n@ssgible to completely
parametrize the binary lens with two parameters: the massqas M,/M; = my/my,
which completely specifies the component masses, as we bavalized relative to
the total mass; and the projected separasienz, —z|, which completely specifies the
position of the lenses relative to their centre of mass. Weuse the terms primary
and secondary lens to refer to the more and less massivederngonents respectively.
It is sandq that are the observables of a binary lens. Unless additiof@mation is
available, the microlensing degeneracy and projectioh®birbit prevents andq be-
ing converted into the physical quantities that we wouleé li& know: the companion
mass and the orbital radius.

From Equation 1.22, and substituting in our definition of thass ratio, the lens

equation can be written

M rm)’ (1.23)

Z:4+E—z+2—z
wheremy = 1/(1+q), m, = d/(1+q) and|z — z| = s. Again, we would like to
know the image positions given the source position, so we salge the lens equa-
tion. However, ag andz are linearly independeftywe have one equation with two

unknowns. We can eliminaieby taking the complex conjugate of Equation 1.23

+

m
L rm), (1.24)
Z2—77 Z—2D

Z=7Z+ (
to yield an expression farthat can be substituted back into Equation 1.23. The lens
equation can then be rearranged into a fifth order polyngmiaich, in general must

be solved numerically. The polynomial order implies theresimbe five solutions,
however, not every solution to the polynomial is a solutiothie lens equation and each
solution found must be checked. In fact, there are alway&ethree or five solutions

to the binary-lens equation (Schneider and Weiss 1986)gashall see below, this has

important implications for binary-lens lightcurves.

5This can be seen by constructing the quantifiés+ 2) = Re) and3(z- 2) = Im(2).
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Just as for a single lens, the magnification of the image<isatio of their area to
the area of the source. An infinitesimal area element on theeglane &S; is related

to one on the image plané$| by
d?Ss = |J|d°S,, (1.25)

wherelJ is the Jacobian of the lens equation

0(Zs, Zs)
= —. 1.26
4z 2 (1.26)
The magnification of an imageof a point source is therefore
1 1
A= 0C T (1.27)

the inverse of the Jacobian determinant, evaluated at te#éiggoof the image. It is
straightforward to dterentiate the lens equation to obtain
_ 0n0%_ 020%
020z 0z 0z
_1_ ‘ my N my
(z-27)? (z-2)?

Similar to the single lens, images may have positive or negdgiarity, and the total

, (1.28)

magnification is the sum of the absolute magnification ofraliges

Nimages
A= Z AL (1.29)

1.3.2 Critical curves and caustics

Before proceeding to plot lightcurves of a binary lens, iingportant to pause and
examine the Jacobian a little more closely. It can be sedrithy equal zero, when
the terms within the modulus brackets lie on the unit cirdlhen this occurs, the
magnification of an image becomes infinite. We can find thetpaimere this occurs

by settingd = 0 to yield
m oM )
(z-z) (z-2)°

=1, (1.30)
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Figure 1.3 — Example critical curves and caustics of each of the three tpesicclose, res-
onant and wide. Dashed lines mark the boundaries between the topolpigigsd on the
separation-mass ratie-g) plane. Dot-dash lines show critical curves, while solid lines show
caustics and dots show the position of the lenses, the more massive lenslefh. tidl the
critical curves and caustics are plotted on the same scale, shown by laéacaith length

fe. The mass ratio of each lensds= 0.1, while the close lens has a separatsoa 0.7, the

resonants = 1.05 and the wides = 1.75. Figure design based on a similar figure by Cassan
(2008).

which becomes

m m
C-ar e (131)

which can be solved for by rearranging into to a fourth order polynomial. This

eqguation can be solved, usually numerically, for any givalue of the parameter,
to yield four solutions. Whew is run over 0— 2r, the four solutions join to form

smooth, closed curves, called critical curves. The magtifio of images on these
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curves diverges. The positions on the source plane thatrggeeto critical images
can be found by mapping the critical curves back to the soplaee using the lens
equation. These curves are called caustics, and are forfradamth, so-called fold
curves, which meet at sharp ‘cusps’. Figure 1.3 shows exasrgficritical curves and
caustics.

The critical curves, being locations whede= 0, separate regions of opposite
image parity. The caustics separate regions of the souace plith diferent numbers
of images: for a binary lens, outside the caustics the sasile@sed into three images,
while inside it is lensed into five (Schneider and Weiss 198&) a source enters (or
leaves) a caustic, two images of opposite parity are creaestroyed) at the critical
curve. This behaviour causes large discontinuities initfi@durves of binary lenses
(see Section 1.3.3 below).

Schneider and Weiss (1986) showed that the number of caustieir size, and
their shape, is determined only by the mass rgtend projected separatianof the
lens. They found that there were only three possible caastifigurations for a binary
lens. Thesdopologies called close, resonant and wide, have three, one, and two
disjoint caustics, respectively. Erdl and Schneider (2988nd analytic expressions

for the lines in thes-q plane that divide the ¢lierent topologies:

2
2= a- ¢y (1.32)

divides regions of close and resonant topology, and

S

_ (1+ q1/3)3

T (1.33)

divides regions of resonant and wide topology. Figure 1@nshexamples of each
configuration, as well as the lines that separate them. Atthees the multiple caus-
tics of the close and wide topologies merge to form the singg®nant caustic. The
caustic that lies close to the primary lens in both close aittwopologies is often

referred to as the central caustic, while the other caustieknown as secondary or

planetary caustics.
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1.3.3 Lightcurves

The lightcurve of a binary-microlensing event can be foup@gain assuming that the
source moves along a straight trajectory. As the lens is ngdoaxisymmetric, we
must specify the angle of the source trajectoryelative to the binary axis, along with
the impact parametey, relative to our chosen origin. The additional three parnse
(s, g and ) result in significantly more variety in the lightcurves ahbry lenses
compared to single lenses (Mao and Paxsky 1991). It is dificult to summarize this
variety, but Figures 1.4 and 1.5 show two example lightcsirfigg the same binary
lens. In Figure 1.4 the source does not cross a caustic, whitegure 1.5 it does. In
general, binary-lens lightcurves are asymmetric and mag loae or more peaks. In
many cases the binary lightcurve can resemble that of aesiegk, with only small
deviations from the Paciagki form, or it may have large deviations localized to a $mal
section of the lightcurve. Such deviations can be misségeeihrough low signal-to-
noise photometry or sparse sampling of the lightcurve; kanaple, the lightcurve in
Figure 1.4 could be mistaken for a single-lens lightcurvih@ photometry was only
accurate to-0.1 magnitudes and the lightcurve was not densely sampled.

The strongest features in binary lightcurves are assatiaitth caustics, and a great
deal of work has gone into characterizing their features effetts® When a source
enters (or leaves) a caustic, two additional, highly-magdiimages are created (or
destroyed) causing a large, sharp increase (decreaseg itotdd magnification. A
source that enters a caustic must also leave it, so causssings cause strong U-
shaped features in binary lightcurves, as can be seen iréigb. Even passage
close to a caustic can cause strong lightcurve featurescisly passage near a cusp.
Unless the lightcurve sampling is very sparse, caustiadged features can usually
be detected even with very poor photometry. Therefore, thbability of detecting

the binary nature of the lens is closely approximated by tiedability of the source

6See for example Witt and Mao (1995), Dominik (1999), Bozz89d), Bozza (2000a), Bozza
(2000b), Han et al. (2000), Gaudi and Petters (2002a), GanaliPetters (2002b), An (2005), Chung
et al. (2005), Han (2006), Chung (2009), Chung and Lee (2011)
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Figure 1.4 — Example of a non-caustic-crossing microlensing lightcurvee(ipanel) caused
by a binary lens with projected separatisrr= 0.9 and mass ratig = 0.1. The upper panel
shows the caustic in red and the source trajectory, moving from left to rigllack. The

impact parameter igg = —0.5 and the trajectory angle is= 240°.
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Figure 1.5 — Example of a caustic-crossing microlensing lightcurve. That é&véentical to

that shown in Figure 1.4, but for the impact parameter, which for this esept= —0.1.
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encountering a caustic, which is roughly proportional ® ¢austic size.

The caustics are largest when the mass i@isoclose to one, and when the separa-
tion sis close to one (Schneider and Weiss 1986). For small mases (ae., planetary
lenses) the caustic size decreases roughty/agor planetary caustics and roughly as
g for central caustics (Bozza 1999; Han 2006). The shallovirsgaf the planetary
caustic size means that planetary caustics are still detkectvith mass ratiog ~ 1076,
i.e., of the order of the Earth-Sun mass ratio. ksecomes large, the size of the plane-
tary caustic scales approximatelysis, while, ass becomes small it scales as(Han
2006); the size of the central caustic scales approximael@ + s1)~2 whens is
either large or small (Chung et al. 2005). The strong scalindp® planetary caustic
size leads to the concept olensing zonga range of separations surroundisg 1,
over which the size of the planetary caustic is largest amelatien of a planet is most
likely (Gould and Loeb 1992). This zone is typically conseteto extend over the
range 06 < s< 1.6 (Wambsganss 1997; Griest and Safizadeh 1998; Han 2009b).
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Microlensing observations and

simulations

Having discussed the basic theory of microlensing in Chajptere now focus on the
more practical aspects of observing and simulating miasitey. After a brief theo-

retical detour to calculate the expected number of micitenevents, the first section
describes the strategies and equipment that microlensinvgys employ, before dis-
cussing some of the complications associated with realte\tbat were not covered
in the first chapter. The second section introduces micsitgnsimulations, detailing
the various aspects that should be considered when buigdsigulation, and briefly

reviews some of the ways microlensing simulations have lbsed in the past.

2.1 Microlensing observations

2.1.1 The probability of microlensing

The probability that any given source is currently beingnoliensed is closely related
to the microlensing optical depth to that source. The optleath is the cross section
of all lenses lying between the observer and the source,sanddsen to be the area

enclosed by the Einstein radius of each lens. Thereforephead depth to a source at
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Dsis . o

T=~2 fo SAdD|n(D))nrg, (2.1)
(Vietri and Ostriker 1983), wher&AdD, is an infinitesimal volume element along the
line of sight to the source, withA representing a small area perpendicular to the line
of sight andn(D)) is the number density of lenses along the line of sight abdise
D,. When the number density is replaced by the mass density e€$eiiD,), the

dependence ak on the individual lens masses cancels out, andn be written

_ fDS 47Gp(Dy) Dy(Ds — D')dD|. 2.2)
0

c? Ds

The probability that a given source is being microlensed is
P=1-¢€". (2.3)

Whenr is small,P ~ 7, which is the case for Galactic microlensing. To get an oader
magnitude estimate of the optical depth, we can assumehthaass density of stars
is constant, with its local value DM,pc®; for a source at the distance of the Galactic
centreR, = 8 kpc, the optical depth is thereforex 6 x 10-’. Observations, as well as
estimates of the optical depth calculated using more tea(Balactic models, suggest
larger values of ~ 1-5x10°° (Bissantz et al. 1997; Han and Gould 2003; Hamadache
et al. 2006; Popowski et al. 2005; Sumi et al. 2003; Koztov2€Kl7; Sumi et al. 2006;
Kerins et al. 2009, ordered by the optical depth estimates).

The microlensing event rate, the rate at which new micratgnsvents occur, is
closely related to the optical depth. The rate at which niéersing events occur for a

given source is
2
n(te)

where (tg) is the event timescale averaged over the distribution of lgistances,

y (2.4)

masses and relative lens-source velocities. The totakestaT is

Ns
r=>% 27Dy (2.5)
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whereN; is the number of monitored sources. Adopting a valué©f~ 20 d, yields
a total event rate
Ns

_ T

It is therefore necessary to monitor millions of stars toéhavreasonable chance of

detecting a microlensing event.

2.1.2 Microlensing surveys

The primary aim of most current microlensing surveys is ttedeextrasolar planets.
The probability of a planet causing a detectable signatui@y given microlensing
event is small~102 (e.g., Mao and Pachgki 1991; Gould and Loeb 1992; Bennett
and Rhie 1996). This implies that in order to have a reasenctihnce of detecting a
planet, hundreds of microlensing events must be monitdr¢ith microlensing event
ratesI” ~ 10 events per year per million stars, a survey must monitt®® stars in
order to have a reasonable chance of detecting a planet factoes that &ect the de-
tection dficiency are taken into account). A typical microlensing eVvers a timescale
te ~ 20 d, so to detect and characterize such events requires>xamaitely nightly
photometry. However, planetary signatures are of a muchehduration (from a few
hours to a few days), so in order to fully characterize the glemlightcurve shapes,
photometry with a cadené®f 5-30 min is necessary. These requirements dictate to
every aspect of microlensing observations: the source #tat are targeted, the fre-
guency of observations, and the telescopes and instrutrmnthat are used.

In order to maximize the numbers of source stars observettptansing surveys
target the areas of sky with the highest surface densityao$ s¥ithin the Galaxy these
are regions of low extinction towards the Galactic bulge amebr disc, while exter-
nally the Magellanic Clouds and the Andromeda Galaxy are comtargets. Even in
the Galactic bulge where the density of identifiable staashes~800 arcmin? (e.g.,

Sumi 2004), surveys must monitor tens to hundreds of squegeeds to observe

10bserving frequency.
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enough microlensing events. From the ground the stellasitjein these fields is
at the confusion limit and often many stars are blended withe same point spread
function (PSF; see Section 2.1.3 for details of tifiee of blending on lightcurves).
Accurate time-series photometry in these confusion lichfields requires the use of
difference image analysis (DIA, Tomaney and Crotts 1996; Alactlarpton 1998;
Alard 2000; Waniak 2000; Bramich 2008) or PSF fitting (Stetson 1987; Sktezc
et al. 1993), each of which works best when the PSF is well &ainpe., there are
many pixels within a seeing disc. This requires a pixel-sedl.3 arcsec for the best
observing sites. Large CCD chips typically have a few millioxefs and thus cover
~100 arcmii of sky. Of the order of 300 pointings are then required to cdie
requisite survey area, which if 5 minutes per field is allovi@dimage exposure and
overheads, implies a cadence of roughly one image every ights1 The usable field
of view of the telescope may be significantly bigger than tifae CCD chip, and if
so the focal plane can be tiled with an array of CCDs to increbsecadence. For
example, the OGLE-III survey used an eight-chip mosaic CCyenavith 034 ded
total field of view to allow a cadence of roughly one image pgghh(Udalski 2003).
As previously explained, nightly cadence igfstient to detect microlensing events,
but not to detect and characterize the signatures of plgnetizrolensing. Tradition-
ally, follow-up observations have been necessary to aehasvadence of the order of
minutes, with 24 hour coverage. These are carried out by druwf networks (cur-
rently PLANET?, MicroFUN3, RoboNet and MiINDSTESR), employing many tele-
scopes with mirror sizes ranging from 2 m down to~ 30 cm, distributed over six
continents in order to provide round-the-clock coveragheyftarget a limited num-
ber of microlensing events that are alerted by the survemse@GLE and MOA,

and monitor them intensively for planetary signatures. HEEamploys diferent selec-

2httpy/planet.iap.ft
Shttpy/www.astronomy.ohio-state.gticrofury
“httpy//robonet.lcogt.ngt
Shttpy/www.mindstep-science.otg
Shttpy/ogle.astrouw.edu.pl
httpy//www.phys.canterbury.ac.fimod
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tion and observing strategies in order to maximize thiiency of their observing
resources. For example, MicroFUN, composed mainly of she#discopes operated
by amateur observers, targets rare, highly-magnified n@osing events, which have
a high sensitivity to planets (e.g., Gould et al. 2010), @IHLANET uses larger tele-
scopes to monitor more microlensing events, each with arlovwavidual sensitivity to
planets (e.g., Gaudi et al. 2002). The RoboNet and MiINDSE€BmE use sophisticated
computer algorithms to schedule their follow-up obsenrdiwithout introducing hu-
man selection biases (Dominik et al. 2008; Tsapras et aB200

The survey-follow-up paradigm is extremely resource iste®, and can severely
complicate the analysis of events, especially the steaiséinalysis of planet detections
and non-detections (see e.g., Gould et al. 2010; Dominik 2040). In many ways it
is beneficial if the surveys can detect planets without tredrfer follow-up. This is
only efective if the surveys can achieve a cadence of several ingegdsour. To this
end, both OGLE and MOA have recently upgraded their instntateon: OGLE-IV
with a 32 chip mosaic imager with4-ded total field of view, which observes with a
cadence of roughly one image per hour on the densest fielddgki@011), and MOA-

Il with a 10 chip mosaic with a.2-ded field of view, which observes with a cadence of
~10 min, again on a small number of dense fields (Sako et al.)200&e near future
they will be joined by KMTNet, a network of three microlengisurvey telescopes,
each with a 4-degfield of view, to be sited in Chile, South Africa and Australia,
which combined will allow continuous high-cadence survegervations (Kim et al.
2010). Continuous, long-term monitoring will also be pobsilsith AST3, a series of
telescopes sited at Dome A, Antarctica (Yuan et al. 2010).

The other option for continuous, high-cadence microlejsimrveys is a space tele-
scope. Outside the Earth’s atmosphere, such a telescoerhash better resolution
than is possible from the ground and so can resolve muchefastars. A wide-field
imager need not observe as many fields to monitor the same etuoflstars as a
ground-based survey and so it is possible to conduct a kggke, high-cadence sur-

vey with only a limited number of fields. Moreover, by monitay smaller, fainter
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source stars, a space-based microlensing survey is sertsifower-mass planets (see
Chapter 5). There are currently two promising proposals tmhsmissions: ESAs
Euclid (Beaulieu et al. 2010) and NASAWFIRST(Bennett 2011). In Chapter 5, we

simulate a microlensing survey by such a mission.

2.1.3 Complications

We have discussed the basics of microlensing theory andwaism, but there are a
number of complications that arise when observing actuataténsing events, which
may need to be accounted for in their analysis. These coatjgits are caused either
by the imperfections of observing systems or by the breakrdof our assumptions
about the events. While complicating the analysis, it isroftee case that these ad-
ditional efects provide extra, valuable information about the evensame cases al-
lowing the microlensing degeneracy to be partially or fullpken. Some of the most

important dgfects are introduced below.

Blending

Both the optics of the telescope and the Earth’s atmosplogte amear out the point-
like image of a star into a finite disc, the PSF, limiting ouiliabto resolve details
of objects near to each other on the sky. From the ground, ttnesphere is the
dominant factor for all but the smallest telescopes and &wdhe best sites the average
full width at half maximum (FWHM) of the PSF is1 arcsec. From space, without
atmospheric distortion, resolution is limited byffdaction, optical imperfections or
instrumentation.

In the crowded star fields necessary for microlensing, iftisrothe case that more
than one star falls within the same seeing disc, so that pheitars are seen as a single
object (known as the blend, Di Stefano and Esin 1995zmé&k and Pac#Zyski 1997;
Smith et al. 2007). Should one of the stars contributing &éltlend be the source of a

microlensing event, the apparent magnification of the bigitide less than the actual
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magnification of the source. Blending may also make an eyap#ar to have a shorter
timescale, as small magnifications in the wings of the evalitbe less apparent.

Similarly, small changes in magnification due to lens bityamay also be washed out,
possibly concealing the binary nature of the lens. If thesstiaat make up the blend
have a diferent colour to the source, then as the microlensing evecteds the colour

of the blend will change (Kamionkowski 1995; Buchalter etl®196).

The problem of blending is eased significantly by using Didg(Section 2.1.2),
which subtracts flux that is constant in time, leaving onlx fllnat has varied between
images. But even with DIA, uncertainty remains as to whattfoa of the subtracted,
constant, flux the unlensed source is responsible for. Haidd to a degeneracy be-
tween the unlensed source flux, the impact parameter and avescale when fitting
models to microlensing data. While generally a nuisanceditgy can sometimes be
welcome. If it is the lens star that causes the blending, § passible to infer the
lens mass and distance from its colour and magnitude oncsotlree and lens have
separated (Alcock et al. 2001a; Koztowski et al. 2007). Thisspecially useful in
planetary microlensing events because it allows the plarasts and projected separa-

tion to be expressed in physical rather than relative uBiengett et al. 2007).

Finite sources

The theoretically infinite magnification of a point sourcg,dither a single or binary
lens, is obviously unphysical. This divergence of the maggtion is a result of our
approximation of geometrical optics, and it would be neags$o treat lensing with
wave optics in order to properly calculate the magnificabba true point source near
a caustic (e.g Ohanian 1983). However, well before the watieoregime is reached,
our approximation of a point source breaks down: real mamsing sources are stars,
with finite angular extent. Although the angular radius oftar 8, is usually small
compared to the angular Einstein radids/¢= ~ 103, near a caustic or the centre
of a single lens, the magnification can change drasticalgr avsuch a small scale.

This can lead to one part of the star being significantly moagmified than another
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and to calculate the apparent magnification of the sourdg,necessary to integrate
the product of the point-source magnification and starensity profile over the face
of the star (Gould 1994b; Witt and Mao 1994; Nentirand Wickramasinghe 1994).
While significantly increasing the computational complgxit microlensing cal-
culations, for both singfeand binary lensefinite-source &ects also allow the mea-
surement of several useful quantities. When finite-souffects are measurable in a
lightcurve it is possible to measure the time taken for thes®to move by one source
radius,t.. The ratio of the angular source radius to the angular Emséglius is then
simply p. = t./te. From the source star’s colour and magnitude, we can edirtsat
angular radiug., allowing the measurement & = 6. /p. (Nemiroff and Wickramas-
inghe 1994). From Equation 1.15, this also implies a measent of the magnitude
of the relative lens-source proper motipR*® (Gould 1994b; Nemirfy and Wickra-
masinghe 1994). Measurementpfpartially breaks the microlensing degeneracy, and

allows a mass-distance relation to be defined

2
Mol X (ES) (E) @2.7)
k1—x\mag \kpc
wherex = 8.144magM,, (see e.g., Gould 2000a)js again the fractional lens distance,
and the source distan€® is assumed to be known, at least approximately.

Parallax

In calculating the lightcurve previously, we have assunmed the source, lens and ob-

server each travel at a constant velocity. This may be a nedd® assumption for stars

8See, e.g., Gould (1994b), Witt and Mao (1994) and Lee et @0gp
%See, e.g., Schramm and Kayser (1987), Wambsganss et a2){T®@minik (1995), Bennett and

Rhie (1996), Gould and Gaucherel (1997), Dong et al. (20D6ininik (2007), Pejcha and Heyrovisk

(2009), Gould (2008), Bennett (2010), Bozza (2010)
10Not to be confused with the magnificatipn This proper motion is actually the instantaneous geo-

centric proper motion, rather than the more useful helitdear barycentric proper motion. Conversion
requires that the direction and not just the magnitude optper motion be known. This can be found

by measuring microlens parallax or directly detecting #rslonce it has separated from the source.
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moving in the Galactic potential, but an observer on Earttoisstantly accelerating
as the Earth orbits the Sun. It will be important to consides tacceleration if the
microlensing event has a duration which is a significanttioacof the Earth’s orbital
period and if the projection of the Einstein radius from tharge to the observer plane

(the back-projected Einstein radius)

Foz L E (2.8)

is of the order of 1 AU (Gould 1992). This may well be the caghéf lens is close to
the observer. Thefiect, known as microlensing orbital parallax, causes a natu
of the standard microlensing lightcurve as the source Vglappears to have an addi-
tional varying component due to the Earth’s motion. A redadect, often referred to
as space-based parallax occurs if two observers simulizheobserve a microlensing
event from two diferent locations, with separations of the ordergfifi this case each
observer sees a slightlyfterent microlensing event due to theiffdrent viewing an-
gles (Refsdal 1966; Gould 1992, 1994a). In extreme casel,asihigh-magnification
events and caustic crossings, a terrestrial parali@ceis observable due to theflir-
ing locations of observers on the Earth (Hardy and Walkeb1@buld and Andronov
1999).

In each case, if suchffects are present in the lightcurve, it is possible to measure
the microlensing parallax

AU
. €.ers (2.9)
E

-
T =

which is the inverse of the back projected Einstein radie® (8.9., Gould 2000a);
the microlensing parallax is a vector quantity, with direotparallel to the relative
lens-source proper motion vectag,(, is a unit vector in this direction). Combining

Equations 2.8 and 2.9 it is possible to construct a masasdistrelation (e.g., Alcock

et al. 1995) , .
M = 1‘(&) 1:((&) ) (2.10)
K\ 7 X \Kkpc
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Mass measurements

As we have seen, measurements of finite-soufferes or parallax allow additional
constraints to be placed on the lens mass and distance.dShbelpossible to measure
both dfects in the same event, it is possible to completely solveteat for the lens

mass and distance. The constraints of Equations 2.7 andcari®e combined and

solved for the mass and distance (e.g., Gould 2000a)

M= B (2.11)
KTTE
) = ngbg + 7, (2.12)

wherer; = AU/D, andrg = AU/Ds are the parallax of the lens and source, respec-
tively. Additionally, it is possible to measuée by directly imaging the lens once it has
separated from the source after the microlensing evenimFnis the relative proper
motion of the lens and sourgg, can be measured, and combined with Equation 1.15

to determinee. This, however, requires that the lens is bright enough tddtectable.

Other complications

Additional lightcurve complications can arise if the saaiis a binary system. If both
components are luminous, and their separation is of ther afdthe angular Einstein
radius, then both stars will be microlensed byfeling amounts, and the resulting
lightcurve will be the superposition of two separate mierding lightcurves (Griest
and Hu 1992). A binary source will also undergo orbital motigvhich can cause
effects similar to the parallaxkects of the Earth’s orbit, whether the second component
is luminous or not, provided it is massive (Cherepashchuk &©985; Han and Gould
1997; Paczgiski 1997; Rahvar and Dominik 2009). Sudfieets are calledallarap,
being the mirror of parallaxféects in the source plane.

Should the lens be a binary, its components also undergtabrobtion. This
motion, as we shall discuss in Chapter 3, causes significarttg complicatedféects

than orbital motion of the source or observer. Binary-leightturves can also be
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complicated by the presence of additional lens componsuats) as distant perturbing
masses (Bozza 2000a), multiplanet systems (Gaudi et &, Hah et al. 2001; Gaudi
et al. 2008), or extrasolar moons (Bennett and Rhie 2002; atahHan 2002; Han
2008; Liebig and Wambsganss 2010).

2.2 Microlensing simulations

The aim of most microlensing observations is to learn, natuabhe physics of mi-
crolensing, but about the objects that are involved in therofensing events. The
observed distribution of events results from a complex doatinn of the underlying
population of sources and lenses, together with the obsgisystems and strategies
used. It is therefore very flicult to predict the outcome or understand the results of
any microlensing experiment without simulating it. In teection we outline the vari-
ous ingredients that go into microlensing simulations awilew some of the previous

work where microlensing simulations have played an impuntale.

2.2.1 Requirements of a microlensing simulation

While the goals of microlensing simulations may vary, we oféteant to know what
the results of a microlensing survey are likely to be. Fomegke, if we are searching
for planets, we would like to know how many planets a survel discover and how
their properties relate to the underlying population. Tewer these questions to a
reasonable degree, our simulations must model the surveypregnt and strategy,
as well as the distributions of lenses and sources. Thevelahportance of each
component may not be the same from simulation to simulatiah,some choice of
each must be made. For example, if comparing the relativétsnartwo proposed
telescopes, it will be necessary to accurately model tlestelpes and their observing
strategies, but the details of the source and lens popotatiay not be too important,

so long as they are roughly representative of those thabeitibserved. In this section
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we describe the éierent components of a microlensing simulation.

The Galactic distribution of sources and lenses

In a simulation, the Galactic distribution of sources anusés (e.g., their distance,
kinematic, luminosity and mass distributions) will be gowed by a Galactic model.
This need not be the same model for each component (lensesoancks) or even
each quantity (mass, distance etc.). These fundamentalesand lens properties are
drawn from the Galactic model in order to determine the Eimstadius and timescale

of each event, which determine the relative rate at whiclukited events occur
v o« gV (2.13)

If we are interested only in relative rates (as in Chapter 3heed only select simulated
events with probabilities proportional to this relativdea However, if we wish to
compute absolute event rates (as in Chapters 4 and 5) we nrastliee to the overall
microlensing event raté, computed either from our Galactic model or from empirical

estimates.

Source and lens parameters

The next elements of the simulation to consider are the ptiegeof the sources and
lenses. Examples of these properties include the semimagjerand mass ratio of
binary lenses. These properties are not fundamental, ax&mple, a simulation of
single-lens events will not need to worry about binary mas®s. It will often be the

case that if these properties are included in the simulaties will have a uniform

or logarithmic distribution in order to be used as an indejeen variable. The line is
somewhat fuzzy between a parameter belonging to the Galaciiel or to the source

or lens, especially for quantities such as the lens mass.
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Observing system and strategy

A model of the observing system and its observing strateggtrba included. The
model should produce simulated observations which resethigl observations con-
ducted by real observatories with similar photometric utaisties and time sampling.
This can either be achieved using a model (as we do in theafimipchapters) or by
using the actual data that has been produced by surveys jactig simulated events

into this data (e.g., Alcock et al. 2000b; Afonso et al. 2003)

Detection criteria

The detection criteria are used to select a (hopefully glsample of events of interest
from the data of a survey. An ideal set of detection criterith pass all the events of
interest, while rejecting both non detections and falsétpesvents without rejecting
any false negatives. This isfficult to achieve in practise. The burden of proof is
significantly reduced for a simulation compared to an experit because all the inputs
and the parent population are fully known. However, a sitnteshould try to recreate
the stringent detection criteria of an experiment as cloaslpossible, or risk being too
optimistic.

Common types of detection criteria include:

e a Ay? cut — this is used to assess the relative likelihood modeis db and
do not include a feature of interest, for example a planeieamg model and a
single-lens model. The value @y? indicates the significance of a detection
over a non-detection, with larger values indicating higignificance. For more
details see Appendix A, which discuss&g? thresholds in the context of the

work presented in Chapter 5.

e a reliability cut — if a data set contains outliers, theny& cut may pass events
that are caused by a single outlier data point. These falsitiyas can usually
be rejected by requiring that several consecutive datapaiso show signs of

the signal of interest.
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The question of detection criteria is often turned on itsdh®aasking the question:
with what dficiency does the experiment select events for the sampledteetion
efficiency of an experiment is the product of the experimentasis@ity and the detec-
tion criteria. By applying a chosen set of detection craea simulated events injected
into experimental data, the survey detectidiceency can be evaluated. It is then pos-
sible to estimate the underlying population of events byngkhe observed sample of

events and dividing through by the detectidhicency.

Blending

Blending does not fit easily into any of the simulation comgras described so far.
Strictly it is a purely instrumentalftect (it is caused by the telescope optics and the
atmosphere above it). However, it can be easily parametase constant term added
to the lightcurve, suggesting that it could be included asuace parameter. In reality
though, it is strongly dependent on the stellar crowding @omain of the Galactic
model). A proper treatment of blending requires the comtioameof the Galactic model
with the observing system model. We do this in each subseaiapter, but only in

Chapter 5 do we treat blending in a manner that is consistehtour Galactic model.

2.2.2 Applications of microlensing simulations

Large numbers of microlensing simulations have been pesd; predicting the re-
sults of surveys, investigating new phenomena, or suppiéngethe analysis of ex-
perimental results. Often, depending on the nature of thekwall simulations as
described above are not performed, but one or more simalabmponents are used.
Many surveys have used simulations to evaluate their detegficiency: the frac-
tion of microlensing events that will be positively idergii in the data. Only with
knowledge of the detectiorfliciency, is it possible to infer the properties of the parent
distribution from the observed distribution. To do thiss MIACHO, EROS and OGLE

collaborations have conducted extensive simulations¢titjg a large number of sim-
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ulated microlensing events into real data, either at thegerlavel (e.g., Alcock et al.
2000b, 2001b; Sumi et al. 2003; Wyrzykowski et al. 2009, 3Qirlat the photome-
try level (Afonso et al. 2003; Hamadache et al. 2006; Tigser@t al. 2007). These
semi-simulated data were then analyzed with the same miogegipelines that ana-
lyzed the real data. Knowing the events that were input, gteatfion &iciency of the
experiments can then be determined by comparing the nunilexeats that survive
selection cuts to the number of input events. These sinomgtio not require a Galac-
tic model as the aim is to find the detectidfi@ency as a function of the parameter
the only observable parameter that is determined by thecBalaodel for single-lens
events (ignoring parallax etc.). A similar process can @@ out to calculate plan-
etary detection féiciencies (Gaudi and Sackett 2000; Gaudi et al. 2002; Goudd. et
2010).

Various simulations of planetary microlensing have beeedu® advocate mi-
crolensing planet searches. Early works (e.g., Mao andylhakz 1991; Gould and
Loeb 1992; Bolatto and Falco 1994; Bennett and Rhie 1996 yali carry out full sim-
ulations, but instead integrated over relatively simpléa@éc models and parameter
distributions, using semi-analytic detection critétiand averaging over uninteresting
parameters. Full simulations that include models of oket@ms and more realistic de-
tection criteria have followed (e.g., Peale 1997, 2001;#&¢tand Rhie 2002, Gaudi et
al., unpublished), arguing the case for ground- and spase¢bplanetary microlensing
surveys; the work presented in Chapter 5 follows in this tradi It should be noted
that, while not being as realistic as the full simulatioransanalytic integrations are
often more general, as full simulations strictly only appythe observational set-up
that they model. In practice however, it may be more accuce¢gtrapolate the results
of a full simulation to a dferent set-up than it is to extrapolate semi-analytic result

Simulations have also been used to investigate newly desedvor poorly under-

stood éfects in microlensing. Examples include simulations of [paxaffects (Buchal-

LFor example, rather than simulating data to calculate\iffeof a detection, it is possible to estimate

the Ay? contribution of data points that are taken at a constantoate an event.
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ter and Kamionkowski 1997), high-magnification events ¢&riand Safizadeh 1998;
Rattenbury et al. 2002), blending (Sumi et al. 2006; Smital€2007) and extrasolar
moons (Han and Han 2002; Liebig and Wambsganss 2010). Thepresented in
the following two chapters provide two more examples, withidations being used to
explore the &ects of orbital motion in Chapter 3 and to estimate the rateofioence

of an extreme form of orbital motion event in Chapter 4.
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The detectability of orbital motion In

microlenses

Kepler’'s laws of orbital motion have proved invaluable thgbout all areas of astron-
omy and astrophysics, enabling the measurement of cdlpsisses from astrometry
and the timing of orbiting bodies. Microlensing is no exéept Detection of lens
orbital motion in a binary microlensing event can be espcialuable, as it can en-
able the deprojection of the binary orbit. This potentialiows the semimajor axis,
inclination and eccentricity of the orbit to be constrairssdopposed to just the instan-
taneous projected separation of the lens components thatigdly measured (Bennett
et al. 2010). However, in many microlensing events it is \afircult to recover orbital
information about the lens. This is because the binary rfreaging éfect only depends
on projected quantities, but also because of a mismatcheleetwicrolensing and or-
bital timescales (Dominik 1998b), the former typically bgia factor~100 shorter than
the latter. While the probability of detecting orbital maties low, in a small number
of binary microlensing events the precise timing allowedchystic-crossing features
has helped to overcome the mismatch in timescales (e.gowlét al. 2000; An et al.

2002; Gaudi et al. 2008), allowing th&ects of orbital motion to be detected in both

1The work presented in this chapter has been published as Mefny, S. Mao, and E. Kerins,
MNRAS, 412:607-626, 2011.
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stellar-binary and planetary microlensing events.

Whilst past detections show that it is possible to detect tebgal motion, it is
not known how frequently we can expect such detections. indapter we attempt
to quantify the detectability of orbital motion. We do thig bimulating binary mi-
crolensing events with orbiting lenses, instead of staisés as is usually assumed
in more general microlensing studies. We simulate the ebsiens of a near future
survey and fit these observations with static binary-lenset®to determine when a
detection can be claimed. To obtain the numbers necessaaystatistical sample, we
automated the fitting process. In order to be confident of esults from this proce-
dure, we repeated the process with a control sample of §taey lenses, taking care
to ensure that the fitting of the two samples was conductedidim way. While compu-
tational constraints prevent us from including finite-smudfects in our lightcurves,
our results allow us for the first time to estimate the fractid events with detectable
orbital motion. We also use the simulations to investighgefactors thatféect the de-
tectability of orbital motion. By looking at some exampldetdions, we show that to a
certain extent the orbital motiorffects that are detectable fall into one of two classes:
separationabr rotational, as suggested by Gaudi (2009). Separational-class events a
caused by the rapid deformation of a resonant caustic duelioation or eccentricity,
and show large changes to the lightcurve over a short pefitiche. Rotational-class
events are caused by the slow rotation of the lens, and shbtiesdfects over the
whole lightcurve.

The structure of the chapter is as follows. In Section 3.1 eweww some of the
previous work on orbital motionfeects in microlensing and in Section 3.2, we outline
how orbital motion canfdect microlensing lightcurves. Section 3.3 describes aur si
ulations of microlensing events and Section 3.4 describas\ile measure theflects
of orbital motion. In Section 3.5, we present the resultshef simulations. We draw

conclusions and discuss the results in Section 3.6.
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3.1 Introduction

If the components of a binary microlens are gravitationbtiyind, they will orbit each
other and their projected orientation will change as a nhgrsing event progresses.
As the magnification pattern produced by a binary lens is attionally symmetric,
the change in orientation may be detectable in the lightcofthe event. If the orbit
is inclined relative to the line of sight, then the projectegaration of the lens com-
ponents will also evolve, causing changes in the structitfeeomagnification pattern,
which again may be detectable. In a small fraction of binaigrotensing events we
can expect to see théects of this orbital motion in their lightcurves. If orbitalotion
can be detected in a microlens it can provide constrainthemtass of the lens, and
information about the binary orbit. While it is possible toasere the mass of a binary
lens by measuring a combination of other higher-ordégats, as discussed in the pre-
vious chapter, the only way to deproject the binary orbit amehsure the semimajor
axis is to measure the orbital motion.

To date, six binary microlensing events have shown stroipece of orbital mo-
tion in the lens system. The first, MACHO-97-BLG-41, was alatahass binary.
Modelling of the event was able to measure the change in tbegqed angle and
separation of the binary in the time between two caustic entsss, but was unable
to constrain the orbital parameters (Albrow et al. 2000).e Becond event, EROS-
BLG-2000-5, had very good lightcurve coverage, which aldwhe measurement of
the rates of change of the binary’s projected separatioraagte; these measurements
were then used to obtain a lower limit of the orbit's semima&is and an upper
limit on the combined #ect of inclination and eccentricity (An et al. 2002). Thethi
and fourth examples, OGLE-2003-BLG-267 and OGLE-2003-B93, both seem
to show orbital motion ects (Jaroszynski et al. 2005). However, only OGLE survey
data was used in their analysis, without follow-up measems) so the lightcurve cov-
erage was not ideal. Combined with parallax measuremenin#sses of both binary

lenses were constrained, but no constraints could be placéide orbits (Jaroszynski
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et al. 2005). In each of these four cases, the ratio of the coemt masses is large
(near unity), indicative of the lens systems being binaayssthowever, orbital motion
has recently been measured in two events involving playetess secondaries.

OGLE-2006-BLG-109 was an event involving a triple lens, hwvéinalogues of
Jupiter and Saturn orbiting an0.5-M,, star (Gaudi et al. 2008). The lightcurve of
the event had extremely good coverage and showed multigtertes, allowing the or-
bital motion of the Saturn analogue to be detected. The tieteaf orbital motion was
so strong that the semimajor axes of both planets could béytigonstrained (Gaudi
et al. 2008). A more complete analysis of the event, incaog measurements of the
lens flux and orbital-stability constraints, carried outBgnnett et al. (2010), tightly
constrained four out of six Keplerian orbital parametershaf Saturn analogue, and
weakly constrained a fifth. The planet OGLE-2005-BLG-0714. Bn~4 Jupiter-mass
planet orbiting an~0.5-M,, star (Udalski et al. 2005). Measurements of the orbital
motion in this event have allowed some constraints to beeplam the planet’s or-
bit (Dong et al. 2009b). In all six events other higher-ordffects have also been
detected, most notably microlens parallax and finite-sodiects, which are detected
in all the events, and in each case allow the measuremeng ¢éitis mass.

Despite these detections, there has been relativelytlitleretical work on orbital
motion in microlensing, likely due to the traditional asqutian that the &ects of
orbital motion on a binary-microlens lightcurve will be sin@and in most cases neg-
ligible (e.g., Mao and Pachgki 1991; Gould and Loeb 1992). The problem was first
considered in detail by Dominik (1998b), who concluded tihamost microlensing
events the fects of lens orbital motion were likely to be small, thouglsame cases,
lightcurves could be dramatically feerent. Dominik (1998b) points out that the ef-
fect is most likely to be seen in long-duration binary miermding events with small
projected binary separations. loka, Nishi, and Kan-Ya @)2@so studied the problem
and noted that thefiect of binary-lens rotation is likely to be important in skdhsing
events in the Magellanic clouds. Rattenbury et al. (2002)v& that orbital motion

could dfect the planetary signatures seen in high-magnificationtsve
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The six microlensing events that display orbital motion mak a significant frac-
tion of the few tens of large-mass-ratio binary microlegsavents$ that have been
modelled (e.g., Alcock et al. 2000a; Jaroszynski 2002;s¥mski et al. 2004, 2006;
Skowron et al. 2007), which begins to shed doubt on the pusvi@nclusion that lens
orbital motion is likely to be unimportant in most binary ex®. The two planetary
events constitute approximately 15 percent of the entildiglued microlensing planet
population. These observations motivate us to revisit thestion: how likely are we to
see lens orbital motion in a microlensing event? This qoasts made especially per-
tinent in the context of the next generation of ground- aretegbased high-cadence
microlensing surveys, which will make the dense, largeyptmuous lightcurve cover-
age of EROS-BLG-2000-5 and OGLE-2006-BLG-109 the normenatinan the excep-
tion. The aim of this chapter is to estimate the fraction eflat-binary and planetary
microlensing events where orbital motion is detectablel aninvestigate the factors
that dfect the detectability. To do this, we simulate a large nundfenicrolensing

events caused by orbiting binary lenses.

3.2 Orbital motion in a binary microlens

The lightcurve of a microlensing event can be consideredaseadimensional probe
by the source of the two-dimensional magnification patteodpced by the lens (Wamb-
sganss 1997). The magnification pattern of a single lenst&ionally symmetric
about the position of the lens, but the magnification pattéra binary lens is more
complicated, containing strong caustic structures thhibéixa reflectional symmetry
about the binary axis (the axis connecting the lens compgsn&chneider and Weiss
1986). However, far away from the caustics the magnificapiatiern can resemble
that of a single lens.

As the lens components orbit each other, their positioneaagh their projected

2\We will refer to binary lenses with mass ratiqs> 0.01 as stellar binaries, and those witk 0.01

as planetary.
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separation can change. These changes cause changes irethation and structure
of the magnification pattern respectively. It is clear, hegrethat only if the source
traverses regions of the magnification pattern th&edisignificantly from that of a
single lens, will it be possible to detect thesBeets of orbital motion. For thefiects
to be measurable, the lightcurve of the event mustffexted in a significant way that
is not reproducible by a static binary-lens model. It is gdegsible to detect thefect
of orbital motion by showing that a static model is less pbgy plausible than an
orbiting model, but this will usually require further infmiation about the event, such
as an independent constraint on the lens mass.

The dtects of orbital motion on a lightcurve can also be mimickeather higher-
order dfects, especially parallax and xallarap. Paralld&as are caused by the motion
of the Earth about the Sun and cause the source to take aneafipasurved path
through the magnification pattern (e.g., Smith, Mao, and¥eki 2003). In the case
of xallarap, the source travels along a curved path throbhghmtagnification pattern as
a result of binary orbital motion in the source system (Graewd Hu 1992; Pachgski
1997; Dominik 1998b; Rahvar and Dominik 2009). These cupeths can look very
similar to those taken by the source in the rotating binarnslcentre-of-mass frame

and hence it can sometimes béidult to identify the true cause of théfect.

3.3 Simulating a high-cadence microlensing survey

The aims of this study are:

¢ to determine the fraction of microlensing events that wdldfected by orbital

motion, as will be observed by next-generation microlegsiarveys, and

¢ to investigate the factors thaffact the detectability of orbital motion, to aid the

targeting of such events without resorting to exhaustiveleliomg eforts.

To achieve the first goal, the various factors that go intoabgervation of a mi-

crolensing event should be simulated: accurate modellitgeoobserving setup, the
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distributions of planetary and stellar-binary lens systeand the distribution of the
sources and lenses throughout the Galaxy. To achieve toadgoal we must sim-
plify the parameter space we investigate, as far as possitleut removing essential
elements from the model, so as to allow a clear interprataifdhe results.

To balance these somewhat contradictory requirements wesehto accurately
simulate ideal photometry and use a semi-realistic modét@iGalaxy, while inves-
tigating a logarithmic distribution of companion massed aaparations. This allows
us to use our simulations to gain a good order of magnitudenat# of the results
expected from future surveys, whilst simultaneously itigasging the factors that have
the largest impact on the detection of orbital motion ovezlatively uniform parame-

ter space.

3.3.1 The Galactic model

To simulate the kinematic and distance distributions ofgbarce and lens popula-
tions, we assume a simplistic bulge and disc model of the xgal&Vve assume all
sources are located in the bulge, at a fixed distddgce- Ry = 8 kpc, in the direc-
tion of Baade’s Window, wher&, is the distance to the Galactic centre. The lens
distances are distributed according to the stellar derbgiribution of Model Il of
Binney and Tremaine (2008), which consists of a thin and ektekponential disc
and an oblate spheroidal bulge with a truncated power-lawgitedistribution. The
kinematics of our Galactic model are based on that of Han amadx1995b) who
describe the kinematics of a stellar disc and a barred bdige.distribution of trans-
verse lens-source relative velocitiesy/dv;, is dependent on the observer’s velocity,
and the velocity distributions of the lens and source pdmria. The observer is as-
sumed to follow the Galactic rotation at the position of then&nd therefore has a
velocity (vo, Vop) = (2252,7.2) km st in the direction of Galactic coordinates b),
once the Solar peculiar velocity is included. The sourcelanslare assumed to follow

the Galactic rotation with an additional random componémthe directions’ andb,
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their velocities have the form
Ve = Vot + Viandes Vb = Vrandbs (3.2)

wherev, is the rotational component of the velocity, anghq, andviangp are random
velocities in the directiong andb, respectively. The rotation curve of the bulge is
assumed to be flat beyond a distance of 1 kpc from the Galastite; and that of a
solid body within 1 kpc. Therefore, the rotational veloattymponenty,, for bulge

stars is

v vmax(k—';:) if R< 1 kpc (3.2)
rot — .
Vinax if R>1Kkpc

wherevima, = 100 km st is the maximum rotational velocity of the bulge aRd=
VX2 + Y2, where ¥, Y,Z) is a Galactocentric coordinate system with #axis in-
creasing towards the observer and #axis pointing out of the Galactic plane. For
the disc,viot = 200 km s*. The random velocity components are assumed to follow
Gaussian distributions, with dispersions taken from Hath @ould (1995a). These
dispersions arext;, o) = (30, 20) km s for the disc and

(ox,0v,07) = (110,825,66.3) km s for the bulge. From these quantities, the rel-
ative transverse velocity of the sourge(the quantity we are interested in) can be

calculated from the relative velocities in th@ndb directions,v, andvy, respectively,

Ve = V2 + V2, (3.3)

where (e.g., Han and Gould 1995b)

as

Vep = (M — Vo)eb + X(Vo — Vs)ebs (3.4)

andv,, v andvs are the observer, lens and source velocities respectivellge direc-
tions¢ andb.

The final distribution of lens distances and velocities sakéo account the depen-
dence of the event rafé « v; vX(1 — X) on the distribution of each parameter. While

the kinematic and density distributions are produced froffecent Galactic models,
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Figure 3.1 — The Einstein timescale distribution &0 000 simulated events. The solid line
and data points show the simulated data, and the dashed lines show line®d alug-3, the

expected asymptotic behaviour of the distribution.

they qualitatively reproduce the observed Einstein tiraksdclistribution, shown in

Figure 3.1, including its asymptotic behaviour (Mao andZyaski 1996).

3.3.2 The microlensing events
Blending

When observing a microlensing event, it is often the casetti®light of the source
being magnified is blended with that of nearby stars in thel fiBi Stefano and Esin
1995). The amount of blending can be quantified by a blendiagtibn fs, which

we define to be the fraction of the total flux of the observedtléhat the source
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contributes when unmagnified, such that the time dependaghitude of the blend is
[(t) = I, — 25log[fA(t) + (1 - )], (3.5)

wherely, is the baseline magnitude of the observed blend when thesaiunmagni-
fied andA(t) is the magnification caused by the lens.

The distribution of baseline magnitudes and blending foastis drawn from sim-
ulations of blending fects by Smith et al. (2007) who perform photometry on mock
images of typical Galactic bulge fields with high stellar siéyn Specifically, we cal-
culate the blending fraction and baseline magnitude foh exent from the input and
output magnitudes of source stars drawn from their simufatvith 1.05-arcsec see-
ing and input stellar density of 13Bstars arcmir? down to a mangitude df = 17,
before any detectionfigciency cuts are made to the catalogue. As the phenomenon of
negative blending (the source apparently contributingaetion fs > 1 to the total flux
of the blend; Park et al. 2004; Smith et al. 2007) is poorlyarstbod, we only include
sources with moderate negative blending, requiring that1.2.

The mock images are produced by Smith et al. (2007) using #tbed of Sumi
et al. (2006), drawing stars from the Hubble Space Telestdyaend luminosity func-
tion of Holtzman et al. (1998), adjusted to account for defiséds and brighter stars
using OGLE data. Extinction was accounted for using thenekttn maps of Sumi
(2004) and the baseline magnitudes were measured usingatidasd OGLE pipeline
based omornot (Schechter et al. 1993). Full details of the method are gbye8mith

et al. (2007), and references therein.

Lenses and sources

The lens systems are composed of a primary of m&sand secondary of madd,.

The primary’s mass is drawn from a broken power-law distiti

(3.6)

dn o M(a+0'5)' o -13 Ml < Myreak
_— i : —
dM, =2.0 M1 > Myrear
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matching that of Gould (2000b), though with a slightly lowseak massnyreax =
0.5M,) and with lower and upper limits of.05M, and 12M,, respectively. The addi-
tion of 0.5 to the power-law index is to account for the dependencesofiticrolensing
event rate on the mass of the lens. We do not include a populafi stellar rem-
nant lenses, such as white dwarfs, neutron stars and bldek.h@he mass ratiq
of the secondary to the primary is drawn from a logarithmistr@bution, with limits
102 < g < 1 for stellar-binary lenses and T0< q < 1072 for planetary lenses. Note
that for lower-mass primaries, the distribution of steltémary mass ratios includes
secondaries with masses as low-&;pites i.€., well into the planetary-mass regime.
The lower limit of the planetary mass ratio distribution iineg a secondary o1 Earth
mass for a B-M,, primary.

The components of the lens orbit their combined centre ofsnra&eplerian or-
bits, of semimajor axis, distributed logarithmically (e.g., Abt 1983) over the gen
a = 0.1-20 AU. These orbits are inclined to the line of sight, witllination angles
distributed uniformly. For stellar binaries we performedbtsets of simulations, one
with zero eccentricitye and another with bound, eccentric orbits with eccentasiti
distributed uniformly over & e < 1.

The source trajectories were parametrized by the angleecgdiarce trajectory rel-
ative to the binary axisyg, at the time of closest approatjand the impact parameter
Uo, the projected source-lens separation in units of Eingtadin att,. We setty = O,
for simplicity, andag andug were distributed uniformly over the rangesOao < 27

and-1.5 < ug < 1.5 respectively.

3.3.3 Simulation of photometry

In the hunt for planets, the proposed next generation of gehased microlensing
surveys will consist of a (potentially homogeneous) nelwof telescopes located
throughout the southern hemisphere such that the targds fielthe Galactic bulge

can be monitored continuously during the times when theeéidgobservable. The
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telescopes will have diameters betwee8-20 m and fields of view #—40 ded.
They will operate at a cadence of approximately 10 min andceapected to discover
several thousand microlensing events per year. An exarséMTNet, a network
of three identical B-m telescopes due to enter operation in 2014 (Kim et al. 010
Such surveys can operatéfextively without the need for intensive follow-up obser-
vations due to their high cadence and continuous coverageeter, it is likely that
the surveyfollow-up observing paradigm will persist, with low-cadmnsurveys mon-
itoring far larger areas of sky. High-cadence surveys gthbelin operating near the
middle of the decade-015), and will likely be followed by space-based microlens
ing surveys. However space-based surveys will not begiorbebughly the end of the
decade, and so this work concentrates on ground-based/surve

Unfortunately, the ffects of the weather amongst other things make completely
continuous, high-cadence observations unachievablelityeRather than including
complicated models of thesdfects, we instead choose a simpler prescription. Each
event is monitored with continuous photometry at a redueetonce of 30 min. These
observations are performed by telescopes wiBirh efective diameter observing in
thel-band. For each exposure of 120 s the seeing is chosen frogmarimal distribu-
tion with mean 12 arcsec and standard deviatio2® arcsec, and a background flux
distributed as

F = 8500 LN(15, 0.4) photon arcse@, (3.7)

which is integrated over a seeing disc, and where(L i) is a lognormal distribution
with meanu and standard deviatian. New values of seeing and background flux are
chosen for each observation. A lower limit on the photonsediGcuracy is imposed
by adding a Gaussian noise component, with dispersion 0&pg to the photon
counts, which are calculated by assuming 10 photohgrt reaches the observer from
al = 22 source.

To ensure that all the features of a lightcurve are coverebitlaat there is a good
balance between the baseline, peak and features of thedigktwhen fitting (see the

next section), the lightcurve is monitored continuouslgiothe times-5tg < t —tg <

66 SIMULATIONS OF GRAVITATIONAL MICROLENSING



3.3: SIMULATING A HIGH-CADENCE MICROLENSING SURVEY

16.6
16.8

17 +

17.2 +

=~ 174
176

17.8 | g oo ainiis

18 -

-0.1 | \ s
“ Liy gl 4 i tmﬂh\ d il } it u i .‘“ b “M L L u.
iimee L U AR
0'1_W|* +|{H+M|¥
0.2 ! !
-150 -100 -50 0 50 100 150

Residual
(@)

Figure 3.2 — An example lightcurve from the simulations that required coedtalge extended

to cover a feature far from the lightcurve peak. The upper panel stiogvlightcurve -band
magnitude) and the lower panel shows the Paskiresidual (-band residuals from the single-
lens fit). The red points show the simulated data points with error bars, ackl, lgleeen and
blue lines are the best-fitting Padwki model, the best-fitting static-binary model and the true
orbital motion model (largely hidden below the green static model curvg)ectisely. Only

1 in 24 data points are shown for clarity. The lightcurve shown is for thatroévent by a
stellar-binary lens witlg = 0.22, s ~ 8.6 andtg = 14.9 d. Usually, only data points that cover
the inner %z are used, apart from some data points used to constrain the baseline magnitu
(cf. the lightcurve for timeg > O d); however additional data points are used to fully cover
the additional lightcurve feature down to the baseline (cf. the lightcurve 06 d). Further

details for the event can be found in Tables 3.1 and 3.2.
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5tg, and over 1(bte < |t —tg| < 9.5t to sample the baseline. To ensure that all features
are covered, if the magnification of the source rises alfove Anesh = 1.0062, the
coverage is extended so as to be continuous within one Hiristeescale of the feature
and continuous between the feature @nd to. Figure 3.2 shows an example of a

lightcurve where coverage had to be extended.

3.4 Measuring orbital motion

Ultimately, we are interested in finding the fraction of ypanicrolensing events that
show signs of orbital motion. This requires that we classify events we simulate
into those binary events that do show orbital motion, thbs¢ do not, and events that
do not show binary signatures. This classification can beenbdsed on how well
single-lens and static-lens models fit the simulated data.fist fit each simulated
event with a single-lens model. Those events which are pdibby the single-lens
model, we then fit with a static binary-lens model.

To evaluate theféectiveness of each stage of the fitting process, we also aienal
control sample. For the single-lens model fitting, the can a sample of simulated
single-lens events, and similarly for the static-lens mditteng the control is a sample
of simulated static binary-lens events. Using these ctswve can evaluate what frac-
tion of events that are poorly fit are due to orbital motion aunét fraction are due to a
failure of the fitting routines. We can then correct our réstdr these false positives.

We simulate~100 000 lightcurves, of which nearly 3000 are detected aarhin
lenses. Such a large number of events requires that we geaelolly automated-
fitting pipeline that requires no human supervision. Theje for single-lens models
is relatively straight forward, due to the simple naturet@f single-lens lightcurve. The
problem at hand is complicated significantly by the requiatrihat we treat a control
sample of static lenses in the same way as we do the orbitnsgée Were we not to

do this, the two methods that we present below could be sigmitiy simplified.
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3.4.1 Fitting with the single-lens model

The single-lens model has five parameters: the time of di@ggsoactt], the event
timescaleg, the impact parameteg, the baseline magnitudg§ and the blending frac-
tion f°. We perform g¢? minimization using them~urr routine fromcernus (James
and Roos 1975), with all parameters free; all parameterargenstrained, except for
f>, which is constrained to be within®@ < f& < 1.2. For each event, we perform
seven single-lens fits, with @érent initial blending fractionsf!’ = 0.05, 02, 0.4, 056,

0.8, 10 and 12. For each fit, the initial guesses for each parameter are:
. tg =0,
¢ the timescale is the true timescale,

¢ the baseline magnitude is taken to be the magnitude of thel&ita point on the

lightcurve, and

¢ the impact parameter is chosen such that,=at", the magnitude of the event is

that of the brightest data point.

This prescription works well for events which are well mdddl by a single-lens
model, but not so well for events with strong binary featuwsesvents which are heav-
ily blended and barely rise above the baseline. We expeciteweth strong binary
features to be poorly modelled, but we do not want to include lieavily blended
events in our sample of binary-lens events. We thereforaiedite heavily blended
events before performing the fitting, so that only the evéms the single-lens model
fails to fit are ones that show genuine signs of lens binafitys cut is described in the

next section.

3.4.2 Fitting with the binary-lens model

To fit the binary-lens lightcurves, we found it necessarypit the events into caustic-
crossing events and non-caustic-crossing events and tacht eategory using a dif-

ferent parametrization. The non-caustic-crossing evangsfitted with a standard
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parametrization, with a reference frame centred on the qgntens® The parame-

ters are:

¢ the time of closest approach to the lens primﬁry

the event timescal,

the impact parameter between the lens primary and the sagirce

the angle of the source trajectory to the binary as

the logarithm of the projected binary separation $dg

the logarithm of the normalized secondary massngg

the baseline magnitudg, and

the blending fractiorf?.

For brevity we introduce the vector notation

=S

pS = (65,12 U5, 5. log %, logm3, 15, 15). (3.8)

to represent the parameter set of the standard binary panaaten.

Because of the number of lightcurves necessary to obtaiod gfatistical sample,
a full search of the entire binary-lens parameter spacetisaoputationally feasible,
we perform just one minimization per lightcurve. We musté#iere pay special atten-
tion to the choice of initial guesses we use, first so as to miaei the chance of finding
a good minimum, and second so as to treat the fitting of theedtatary events com-
parably to the orbiting-binary events. The static-binanjdations are drawn from the
same distributions as the orbiting-binary simulations,ahly diference being that the

lens is frozen in the state it would be intat t,.

3This frame was chosen because it can lfgadlilt to fit wide binary lenses using the centre-of-mass

frame.
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As we have simulated the microlensing events, we alreadg hawerfect knowl-
edge of the lensing systems and we can use this knowledgetdonabgood set of
initial guesses. We note that at a given time, the state oflaitirgg-binary lens can be
described by a static-binary model. We can therefore desair lens at timé using

the time dependent parameter set

p(t) = (to, te, Uo, @o(t), (1), G, Iv, Ts) , (3.9)

where we have used the centre-of-mass reference frame. thimttenly two of the
parameters are time-dependent and so we can use the tr@s \wdlthe constant pa-
rameters as initial guesses, having applied the apprepadrdinate transformatiofis.
However, we are still left with the problem of choosing theegses ofyg ands®. We
could chooseg(tp) ands(tp), but this would bias the fitting success probability urifair
towards static-binary events, i.e., the initial guess wdw the actual model used to
simulate the data, guaranteeing a good fit.

Instead, we choose to usé;) andao(t;), wheret; is the time of a feature in the
lightcurve. We define a feature simply as any maximum in tktturve, or a max-
imum or minimum in the Pachski residual (the residual of the true lightcurve with
respect to the best-fitting single-lens model) with- I, > 0.1, wherel is thel-
band magnitude of the true model, ahd. the I-band magnitude of the best-fitting
Paczyiski model. As there is in general more than one feature, wesththe feature
that gives the best?(p(t;)). If the initial guesses for fits to static-binary lightves
are chosen in the same way (as if the binary were orbiting) the initial guesses for
static lenses should be worse than for orbiting lenses. i§tigcause, at the time of
the chosen feature the true orbiting-lens magnificatioh exactly match the magni-
fication of the initial guess static model. In reality, fiprx to there will likely be a
bias in favour of static lenses and fgr# ty there will be a bias in favour orbiting

lenses, but we do not believe this wilfect results significantly. To fit the events, we

“4In the reference frame gf°, t, andu, would also be time dependent as the origin (the primary

mass) is not fixed.
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again use then~urr minimizer, allowing all parameters to vary. All parametare
unconstrained, except fdg, which is constrained to the range<0fe < 1.2.

The binary-lens fitting procedure can be summarized asvistio

1. find the lightcurve features (peaks in the lightcurve aeaks and troughs in the

residuals)

2. find the static model with the begt from the orbiting model frozen at the time

of the feature

3. perform avinurr minimization starting at this point.

3.4.3 Fitting caustic-crossing events

While the method just described is suitable for events whichw&d smooth binary
features, it is not always suitable for those events whidtik@ixcaustic crossings. For
these events, in addition to fitting with the standard pateagagion, we also used the
alternative parametrization of Cassan (2008). This regltioe parameters specifying
the source trajectonyty, t2, U3, «5), with parameters that better reflect the sharp caustic-
crossing features of the lightcurvi(tS, 1S 1S) the times of a caustic entry and exit
and the positions of the entry and exit on the caustic, raisgdg 1S andIS, are
defined to be the chord length along the caustic, normaliget that 0< IS, < 2 and

0 < IS, < 2. Full details of the parametrization can be found in Cas2@0§). The

X

parameter set we use for caustic-crossing events is threrefo

BC = (650 50 160 150 10g %, log 0%, 15, £5), (3.10)
where the parameter I0g§ has been replaced by lo§ as a matter of preference; the
two parameters are related by = q°/(1 + g°).

The accurate calculation of thg, andIS, parameters is quite computationally ex-
pensive, compared to the calculation of a lightcurve, aretlado be repeated each

time sor g changes. Also, despite the improved parametrizationytrsarface is still
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Figure 3.3 — Example lightcurve and caustic map of an event where a npacead caustic
entry—exit pair was chosen for fitting with the Cassan (2008) parametrizafioe lightcurve
is shown in the left-hand panel, where red points show the simulated datduéniinle is the
true model and the green line is the static-binary model. The right-hand glamebk a map of
the caustic of the static-binary model, plotted in red, and the source trajegkoited in black.
The numbers indicate the order of the caustic crossings. The static madatéa adjusted by
hand to better show the two fixed and two free caustic crossings. Furttagisder the event

can be found in Tables 3.1 and 3.2.

very complicated, especially in thg-S, plane, containing many local minima. For

these reasons we pursue a multi-stage minimization process

1. We begin by conducting a grid search over the eltirdS, plane, with 12& 128
points spaced evenly iy, and|S,, and with all other parameters, including the
caustic-crossing times, fixed at their true values, excapibfys©. We fix logs®
at a random value chosen from the rargeg s = 1.5[log S(te,) — l0g S(ter)] or
Alog s© = 0.015, whichever is greater, centred on the midpoint ofdbgtween
the caustic crossings, whesé.,) and s(te,) are the projected separations at the
caustic entry and exit times, respectively. The ranga lofg s© is truncated, if
necessary, to ensure that it only covers the caustic topdag the time of the

crossings. For the static lenses, Kgs chosen from a uniform distribution with
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the same range as if the lens were orbiting.

2. The grid search is then refined by performing a secondx1288 grid search

over a box of side length/B2 about the grid point with the lowegt.

3. Five more pairs of low- and high-resolution grid searc{#s 128 x 128 grid
points for each pair) are performed withfidirent random values of Ia&. In
cases where there are multiple caustic crossingkgrdnt pairs of caustic cross-
ings are used to defin€S( t$, IS, IS) for each grid search. Figure 3.3 shows an

example lightcurve where the first caustic exit defingsI) and the second

caustic entry definesd, IS,).

4. The next stage of the fitting simply polishes the model ftbebest-fitting grid
point by performing am~urr minimization starting from this point over just the

parameterts andIS,, with all other parameters fixed.

5. In the final stage of the fitting, all parameters except$pandtS, are allowed to
vary in a furthemnurr minimization. Again, all parameters are unconstrained,

except forf<, which is constrained to the range<0fE < 1.2.

We found that at all stages of the minimization for caustizssing events, the
minimization performed better when the first and last datmtganside the caustic
crossing were not considered in the fit. This is because, théthigh-cadence obser-
vations that we simulate, the point source is typically vdoge to the inside of the fold
caustic, and hence is magnified by many orders of magnitudis.|@ads to unrealistic
photometry in two ways: firstly, in a real detector, satuativould become a problem,

and secondly, a real, finite, source would not be magnifiedah sin extreme way.

3.4.4 Classification of events

With the modelling procedures in place, we now describe thssdication of the

events. The aim is to determine the orbital motion detectfGiciency: the fraction
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of binary-lens events that show orbital motion signatufi@sdo this we not only need
to define how orbital motion events are classified, but alse hioary events are clas-
sified, too. Events are classified by applying a series of tuthe full sample of
simulated events. Examples of events that narrowly misk eatwill be shown in
Figure 3.4.

The classification is performed by a series of cuts based eg4hesults of the
fitting described in the last section. The first cut, the Jahy cut, removes events
that do not show significant variability. This is done withditting by comparing the
x*? values of the simulated data relative to the true mogfg|,, and relative to a constant
lightcurve with no variability at the true baseline maguiély2. We exclude events
that do not satisfy

2 2 2
AXp _ Xb —Xom
Nobs Nobs
wherengys Is the number of observations.

> 0.3, (3.11)

The second cut is used to classify events into single-liesl/ents and binary-lens
events: i.e., events that do not and do exhibit binary-lens featimdiseir lightcurves,
respectively. Using the results of the single-lens modg]li’3,, the x* of the simu-

lated data with respect to the single-lens model, we defieatsuthat satisfy
A)(gac = XI%aC_X?)M > ZOQ (3'12)

to be binary events, and those that do not to be single evéiis. corresponds to a
detection of a deviation from the single lens at a level ddo-. Binary events can then
be further split into caustic-crossing events and smooénesv We define a caustic-
crossing event as one where at least one data point is mdasten the source is
inside a caustié.

The final cut is based on the result of lightcurve fitting withdsy models. Events
that satisfy

Ax3 = x5 - x3u > 200 (3.13)

SFor brevity, single-lens events from here on.
6The removal of data points in the fitting process does flecathe classification.
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are classified as events that exhibit orbital motion (otliation events) and those that
do not are classified as static events, wherés taken to be thg? of the best-fitting
static-binary model. For smooth events, this isfef the best-fitting standard binary
model; for caustic-crossing events it is theof the better fitting of the Cassan (2008)
caustic-crossing model or the standard binary model. lcdise of the caustic-crossing
events, the data points removed from the lightcurve do notritiute toy?,,.
With these classifications in place, we can now define therpidatection éi-

ciency and the orbital motion detectioffieiency. The binary detectiorffeciency is

the fraction of detectable microlensing events that shovatyi signatures

N
€as = —22, (3.14)
le

whereN,, is the number of events satisfyilzrx‘;;(ﬁ/nobS > 0.3 andNgs is the number of
events satisfyingyy3,. > 200. The orbital motion detectiorffigiency is the fraction
of binary events that show orbital motion signatures

= —— 3.15
€oMm Nas s ( )

whereNow is the number of events satisfyirg2 > 200.

To be confident of our results, we must quantify tifieetiveness of the modelling
prescriptions we use. We can do this by measuring the ratalsé positives in our
samples. To measure these rates, we simulate both simgfelents and static-binary
events, drawn from the same distributions as the orbitergs-levents. These events
then go through the same fitting procedure as the orbiting-vents and are subject
to the same cuts. The binary-lens false-positive @’g@'e is therefore the fraction
of detectable single-lens microlensing events that sarthieAy3,. > 200 cut and the
orbital motion false-positive rat€ais the fraction of static-binary events that survive
the Ay > 200 cut. Figure 3.4 shows some lightcurves from the simutati which

were slightly below the threshold for each cut.
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Figure 3.4 — Example lightcurves of three events that narrowly failed otleeoflassification
cuts (continued on the following page). The lightcurve above faile(%%e % > 0.3 cut,
while the top and bottom lightcurves in the continued figure failedAbg, . = x3,.— x3y >

200 andAy3 = x2 — x3,, > 200 cuts, respectively. The latter two lightcurves show only the
central portion of the lightcurve without the data used to constrain the baselihe upper
panel of each subplot shows the lightcurve, and the lower panel tldmadsvith respect to the
appropriate model for the cut, that is, the constant baseline model, thétbiegtPaczyski
model and the best-fitting static-binary model in the top, middle and lower subpisisec-
tively. Colour coding is the same as in Figure 3.2 and the cyan line in the tojosshpws the

constant baseline ‘model’. Further details for the events can be fourmbiled3.1 and 3.2.
3.5 Results

3.5.1 What fraction of events show orbital motion?

We begin by presenting and analyzing the results of the sitluls as a whole, cal-

culating the fraction of microlensing events in which we egjto see orbital motion
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Figure 3.4 — Continued
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Table 3.1 — Summary of the results for planetary lenses.

Orbit static circular
Single 48511 49226
Binary 1364 1366
Caustic 410 449
Caustic static 397 414
Caustic orbital motion 7 35
Smooth 954 917
Smooth static 931 883
Smooth orbital motion 23 34

Table 3.2 — Summary of the results for stellar-binary lenses.

Orbit static circular eccentric
Single 4151 4046 4153
Binary 1413 1424 1385
Caustic 641 635 613
Caustic static 608 538 550
Caustic orbital motion 25 86 61
Smooth 772 789 772
Smooth static 764 743 729
Smooth orbital motion 8 46 43

events. Tables 3.1 and 3.2 summarize the results of the eatsided in the previous
section, for planetary and stellar-binary events, respelgt It should be noted that
in a small number of caustic-crossing events, the fittingedure failed; these events
have been excluded from the analysis of the orbital motideali®n dficiency, but not
from the analysis of the binary detectioffieiency. These events are included in the

Binary and Caustic rows of Tables 3.1 and 3.2, but not in thersth
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Table 3.3 — Binary and orbital motion detectioffiéencies.

Orbit circular eccentric
q<0.01 egs 0.0772+0.0014 -

g < 0.01 Caustic ey 0.061+0.010 -

g < 0.01 Smooth eoy 0.0130+ 0.0055 -

g < 0.01 All eom 0.029+ 0.005 -
g>0.01 egss 0.260+0.004 0251+0.004
g > 0.01 Caustic eoy 0.098+0.011 Q060+ 0.010
g > 0.01 Smooth eoy  0.048+0.006 Q045+ 0.006
g = 0.01 All eom 0.070+0.006 Q052+ 0.006

Table 3.3 shows the binary detectiofi@ency and orbital motion detectiorte
ciency for both planetary and stellar-binary lenses. ltudthdbe noted that the binary
detection éiciency will be larger than for microlensing events with fengources, as
the dfect of the finite source will be to smooth out sharper lightedeatures, and usu-
ally reduce the amplitude of deviations from the singleslemodel. This means that
egs for planetary lenses is likely a significant overestimatmyéver, for stellar-binary
lenses the result is likely to be more realistic, as stddiaary lightcurve features tend
to be stronger and have longer durations. The detectiidciencies presented have
been corrected for systematic false positives from eadhdititage by subtracting the
measured false-positive ratex”° ande2i from the detection ficiencies measured
for orbiting lenses. From a simulation of 48ingle lenses with no false positives, we
measuredie®® = 0+4™19° where the error quoted is a statisticaklconfidence limit,
calculated using Wilson’s score method (Wilson 1927; Newge 1998b). To calcu-
late the errors on the corrected detectidiiceencies shown in Table 3.3, and on those
we present in the next section, we use Wilson’s score mettiapitad for the dference
of two proportions (Newcombe 1998a, method 10). For plageteents, we measured

false-positive rates offa" = 0.0241 59938 for smooth events anef@ic = 0.0173:29259
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for caustic-crossing events. For stellar-binary eventsneasured32ic = 0.010429028

for smooth events anefa™ = 0.039570.99%° for caustic-crossing events. The overalll
orbital motion detectionféciencies were calculated as a weighted average of the de-
tection dficiencies for smooth and caustic-crossing events, onceced for false
positives.

While in many cases we may not be able to say whether or not &ligle in
our simulations definitively shows orbital motion signa&si{due to the relatively high
rates of false-positive detections), there is a clearlgctetd excess of detections in the
circular- and eccentric-orbit simulations relative to #tatic ones. The significance of
this excess is above @{Poisson noise) for both binary and planetary causticsings
events and smooth binary events. However, detection ofiXtess is only marginal in
smooth planetary events.

Interestingly, there appears to be a discrepancy in theabriotion detection féi-
ciencies for stellar-binary caustic-crossing eventsyeen the circular- and eccentric-
orbit simulations:egy = 0.098 + 0.011 for circular orbits andgy = 0.060+ 0.010
for eccentic orbits. However, the same static-orbit sirtiataresults were used to cal-
culate the corrected orbital motiotfieiencies for both circular and eccentric orbits,
which means that the measurements are not independent.tiAdseccentricity of the
orbits allows the projected separation to take a wider raigalues than the circular
orbits, which means the false-positive rate measured Wwetsame distribution for cir-
cular orbits is likely an overestimate for eccentric orpitsr caustic-crossing events,
the majority of false positives are caused by events witbmmast caustic topology (see
Figure 3.17 later in this section). We therefore believediserepancy to be caused
largely due to a combination of a relatively large statgtifuctuation in the num-
ber of eccentric-orbit events that do show orbital motiamj an overestimate of the

false-positive rate for eccentric orbits.
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3.5.2 What dfects the detectability of orbital motion?

We now investigate thefiects that various system parameters have on the detetstabili
of orbital motion. We look at the dependence of the orbitatiorodetectability on
both the standard microlensing parameters and the physibahl parameters, and
compare them where appropriate. We conducted two sets aflaions, one with
circular orbits and one with eccentric orbits. Both data se€ in good agreement, so

we only present the results for events with circular orbits.

The impact parameter

We begin by looking at the dependence on the impact paramgténe sole param-
eter that determines the maximum magnification of a singhes-Imicrolensing event
Amax = (U3 + 2)/(Uup /U3 + 4). For all binary lenses, except wide stellar binaries, the
central caustic is located near to the centre of mass ang determines whether or
not the source will encounter this caustic. Figure 3.5 glo¢sorbital motion detection
efficiency and the number of orbital motion detections agaigstThe results are pre-
sented separately for caustic-crossing and smooth evesfgectively. The orbital mo-
tion detection #iciency results have been corrected for false positives byracting
the false positive rate in each bin. The number of detecaoaslisplayed uncorrected,
together with the number of detections in the static-oribigations. Note that the or-
bital motion detectionféiciency we plot can be negative due to statistical fluctuation
when it is, the measurement should be considered to be temisigith zero.

The plots of orbital motion detectiorffeciency (from here on, detectiofffieiency)
against|ug| for caustic-crossing events show much the same trends fibr fdane-
tary and stellar-binary lenses. There is a significant detecticiency for high-
magnification (lowlug|) events only, with no caustic-crossing planetary detestior
lup] = 0.6 and only a few for stellar binaries. This is due to the lcmatof central
and resonant caustics close to the center of mass, whichndpaib® crossed in events

with small|ug|. Consequently, for the events with lardey], the source can only cross
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Figure 3.5 — Plot of the orbital motion detectiofiieiency, corrected for systematic false pos-
itives (top panels), and the absolute number of orbital motion detections irinthibaions
(lower panels), against the impact paraméiglt Results are shown for lenses with planetary
mass ratios (left-hand panels) and stellar-binary mass ratios (right-fasuedsp. Red lines with
filled squares show the results for caustic-crossing events and blue lithe#lled circles show
the results for smooth events. In the upper panels a line marks zero orbiiahndetection
efficiency. All events had circular orbits, and in the lower panels resultshanersfor events
where the lens components were in orbit (solid lines, filled points) and wheyewere held
static for the calculation of the false-positive rate (dashed lines, openspoiBvents have
been binned into bins of equal width, and points plotted at the centre of thdNbie that in

the lower panels the scales ardfelient and that a factor 69 more planetary events were

simulated than stellar-binary events.
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weaker secondary caustics. In wide binaries these secpedastics will typically
move slowly, and in close binaries the secondary caustesyaically very small and
are rarely crossed. The secondary caustics of close skeilaries are significantly
larger and stronger than those of planetary lenses, andcesoare likely to be crossed
by the source. Being larger, the caustic also has a longeritinvhich to change due
to orbital motion as the source crosses it. Both factors teadde small but significant
detection éiciency for|ug| = 0.6 in stellar caustic-crossing events.

For smooth events, the planetary and stellar-binary lesBe® weak but oppos-
ing trends, with the #iciency increasing slightly gsp| increases for planetary events
and decreasing slightly dsq| increases for stellar-binary events. This indicates that
the impact parameter only plays a small role in orbital motietectability for smooth
lightcurves. Note, however, that for both smooth and caustissing events, the num-
ber of orbital motion detections, as opposed to the detecfiticiency, is a strong
function of|uo|, peaking at small values due to the dependence of the bimdegiibn

efficiency on the impact parameter.

The event timescale

Figure 3.6 plots the detectiorfieiency against the event timescate All classes of
binary event (planetary or stellar-binary, smooth or caustossing) show a strong de-
tection dficiency dependence on the event timescale. The reason $aie¢pendence

is simply because a longer timescale allows the lens to cetel larger fraction of

its orbit. This means there can be a larger change in the rheafmon pattern during

the course of any binary-lens features. In the case of gapétnses, it seems that

a timescale of greater thavilO d is necessary for caustic-crossing events to show de-
tectable orbital motion, and slightly longer for smoothmge Caustic-crossing events
show larger detectionfigciency than smooth events, even at shorter timescales. This
is likely due to the high accuracy with which caustic-cragsiimes and the lightcurve
shape around caustic crossings can be measured. In thef €26&B-2006-BLG-109,

this has allowed the orbital motion of the lens to be measfrmed data covering just
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Figure 3.6 — As Figure 3.5, but plotted against the event timesgcale

~0.2 percent of the orbit (Gaudi et al. 2008; Bennett et al. 208jooth events in
contrast, require a much larger fraction of the orbit to easgnificantly detectable
changes in the lightcurve and hence require a longer tineeszachieve the same de-
tection dficiency. However, typically it is possible for smooth fe&sito cover a much
larger fraction of the lightcurve than caustic-crossingttges, lessening thefect of
this discrepancy.

For stellar-binary lenses, orbital motion features can &e be detectedfiec-
tively over almost the entire range of timescales that weukated, though with a
low efficiency for timescales below40 d for smooth events anell0 d for caustic-
crossing events. For events with timescales ove00 d, the detectionfigciency
reaches~20 percent for smooth events ard0 percent for caustic-crossing events.
The detection ficiencies are similar for planetary events. The majority lahptary

and stellar-binary events showing orbital motion have soades of around10-40 d,
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with few events at largete due to the steefg® distribution at large timescales (Mao
and Paczgski 1996). However, the strong dependencegf on timescale means
that the slope of the higti-tail of the distribution of orbital motion events is much

shallower tharz3.

The projected separation and semimajor axis

The plots of detectionficiency against projected separatiand semimajor axia
(shown in Figure 3.7) tell largely the same story. The detectfticiency in stellar
binaries has a significant inverse dependence on §atimda, as would be expected
from the dependence of the orbital velocity on the semimajas. However, the be-
haviour for planetary lenses is less intuitive: for caustiossing events, there is a
significant peak in the detectiofffieiency ata ~ 4 AU, and a pealshoulder atgy ~ 2.
There is a second peak égy with s5. The two peaks occur at values fwhere the
boundaries between caustic topologies occur for the higheass ratio planets. It is
at these boundaries that the caustics deform most rapatysrhall changes in pro-
jected separation d(lag). The peak ineoy againsta ata ~ 4 AU for caustic-crossing
planetary events is accompanied by a hint of a peak at smakv@afa. The peak at
a ~ 4 AU can be explained by considering the typical scale of timst&in ring and
by considering the trend ety with the event timescale. The typical size of the Ein-
stein ring for a microlensing event is 2—3 AU, but as seen gufé 3.6, orbital motion
effects typically occur in events with larger timescales. Astimescale is correlated
with the Einstein ring size and caustic-crossing eventgally occur in systems with
S ~ 1, the peak orbital motion detectioffieiency occurs at a semimajor axis slightly
above the typical Einstein ring size,at- 4 AU. The increase in orbital velocity a&s
decreases likely causes the second weaker pegadsiat smallera. Little can be said
about the trend oéoy with a for smooth planetary events, due to the small number of
events and the distribution of Einstein radius sizes, thierdaerving to smear out any
obvious trends. However, when plotted agaigsicon does increase towards smaller

values ofsy as would be expected from orbital-velocity considerations
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Figure 3.7 — As Figure 3.5, but plotted agaisgtthe lens separation at tinig¢ above, and the
semimajor axis, below.
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Returning to the caustic-crossing stellar-binary eveats, flattens o asa in-
creases te-4 AU, before dropping to zero. This flattening likely has thene cause as
the peak for planetary caustic-crossing events. We see tine imuitive inverse trend
in stellar binaries because of the stronger and larger nfiagtion pattern features that
they exhibit, and the larger range sbver which the caustics have a significant size.
This results in a distribution of events oveands, that is broader and somewhat less
peaked than for planetary events (see the lower panels plokein Figure 3.7). This
allows the inverse relationship between orbital velocitg @emimajor axis to have a
greater influence on the trend in the orbital motion detecédiciency. We note that
the reason we see such a complicated relationship betwgeanda and sy, but not
for example betweegyy andtg, is that the factors thatict the timescale (lens mass,
source velocity) all act monotonically tdfact the detectionf&ciency, whereas the

caustic size and strength is a strongly peaked functicsy ahda.

The mass ratio

Figure 3.8 plots the detectiorfieiency against the mass ratio Treating both plane-
tary and stellar-binary lenses together, there is a tremmboéasing detectionfgciency
with increasingg, for both smooth and caustic-crossing events. Howevedastic-
crossing events, this increase is very shallow, with a faotgS 3 increase over three
decades irg, from logqg ~ -3 to logq = 0. For smooth events, there is a stronger
trend, with the detectionfieciency being &ectively zero for logy < —3.5, while ris-
ing from ~1 percent to~10 percent over the range3.5 < logq < 0. These shallow
dependencies are somewhat unexpected in relation to thegsiig®® dependence of
the binary detectionficiency, which derives directly from the dependence of caus-
tic size ong (Han 2006). However, the orbital detectiofi@ency dfectively divides
through by this dependence (unlike the curves of the numberbital motion detec-
tions, which show a strong dependencegnto leave a very shallow orbital motion
detection éiciency curve. The otherfiect thatq has on the lightcurve features is to

make them stronger apincreases. In caustic-crossing events, the caustic feaare
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Figure 3.8 — As Figure 3.5, but plotted against the mass catio

usually strong, independent of the valuegpfand hence the caustic-crossing events
curve is shallower than the curve for smooth events, for Wwile dependence of the

feature strength ogis much more important.

The lens mass and distance

Figure 3.9 shows the detectioffieiency plotted against the primary-lens mass. The
dependence is as expected for both mass ratio regimes amatfotypes of binary
event, increasing as the mass of the primary increases rdimis strongest in smooth,
stellar-binary events.

Figure 3.10 plots the detectioffigiency against the lens distance. In all cases, a
trend of increasing detectiorffiziency with decreasing lens distance is seen, though
caustic-crossing events fser from small number statistics at low values Bf/ Ds.

Note however, that the number of orbital motion detectioaals atD,/Ds ~ 0.7 due
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Figure 3.9 — As Figure 3.5, but plotted against the primary lens leass

to the Galactic distribution of lenses.

The orbital period

Figure 3.11 shows the detectiofiieiency plotted against the orbital period. Both types
of stellar-binary event show a significant inverse trend. lakge periods, planetary
caustic-crossing events show a peak and stellar causissiag events a flattening.
These features correspond directly to similar featuretencurves okoy with a and
will have the same cause: a strong dependence of the caosttbe projection of the

semimajor axis.

The baseline magnitude and blending

Figures 3.12 and 3.13 plot the detectidfia@ency against the baseline magnituge

and blending fractiorfs, respectively. For our purposes, the primafieet of both pa-
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Figure 3.10 — As Figure 3.5, but plotted against the lens distBpnce

rameters is toféiect the accuracy with which microlensing variations can leasured
in the lightcurve. For a fixed observing setup, the baseliagmitude determines the
photometric accuracy, which should lead to a trend of irgirepdetection ficiency
with decreasing magnitude. This is seen to a certain exteadt cases, but events with
brighter baselines may fiar significantly from blending if it is not the event source
that is bright, but a blend.

Blending determines the relative strength of features énlitthtcurve and as such
has a much more significanffect on the detection of smooth binary features, which
have a continuous range of shapes and sizes. This is comioatieel éfect on caus-
tic crossings, which are typically sharp and very strong.tifNpthat we define the
blending fraction to be the fraction of baseline flux conitdx by the source, it is no
surprise that smooth stellar-binary events show a sigmificecrease in orbital motion

detection éiciency with blending fraction. This is less obvious in plearg lenses,
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Figure 3.11 — As Figure 3.5, but plotted against the orbital pefiod

likely because the smooth lightcurve features of planetamges are often very weak
and dificult to detect even without the hindrance of the blendingl would not per-

mit the measurement of higher-ordefexts for any value of blending fraction. It is
more surprising perhaps, that caustic-crossing events shsignificant dependence
on blending. In the simulations, all caustic-crossing ¢vérad detectable binary fea-
tures, regardless of blending. The observed trend thenesihat, at least in some
orbital motion detections in caustic-crossing events athditional smooth features in
the lightcurve (such as peaks and shoulders due to cuspagh@® outside the caustic
and features due to fold caustic approaches within the icjyday an important role

in the detection of orbital motion. Some of these smootha&tufiees in caustic-crossing

lightcurves can be seen in lightcurves (a) and (e) showngarei3.19.
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Figure 3.12 — As Figure 3.5, but plotted against the baseline magrigude

The orbital inclination

Figure 3.14 plots the detectiorfieiency against inclination. There is little evidence
for any significant dependence on inclination, either farstec-crossing events or for
smooth planetary events. There is however, a stronger feerginooth stellar-binary
events, the detectionfieciency decreasing as the inclination increases. This would
be expected in systems whage < s, near the boundary between close and reso-
nant caustic topologies, where a reduction in the projesggzhiration due to inclina-
tion would reduce the size of the caustics and reduce thetdbibty of both binary
features and orbital motion signatures. Unfortunatelyg tlu the similar &ects of
inclination and eccentricity on the projected orbit, thead&om the eccentric-orbit
simulations did not show any dependence®f with eccentricity. This however im-
plies that the ffects of eccentricity on the orbital motion detectidfi@ency are not

likely to be significantly stronger than those of inclinatio
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Figure 3.13 — As Figure 3.5, but plotted against the fraction of baselin@#isaciated with the

sourcefs.

Timescale and velocity ratios

It is important not just to consider the system parameteilisatation, but also their
combined &ects on the orbital motion detectiofftieiency. For example, Dominik
(1998b) introduced two dimensionless ratios to describarlagnitude of orbital mo-

tion effects on a binary lens:

t
Rr = ?E (3.16)
the ratio of timescales, and
R, = —orc, (3.17)
Vit

the ratio of velocities, where,. = a/2nT is the circular velocity of the orbit. These
ratios attempt to encapsulate the most important factas determine if an event
will show orbital motion features. Figures 3.15 and 3.16 phe detection #iciency

againstRr andR,, respectively. Both ratios prove to be good descriptoriefdrbital
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Figure 3.14 — As Figure 3.5, but plotted against the orbital inclination

motion detection ficiency, witheoy showing strong increasing trends Bs andR,
increase. This trend occurs across all mass ratios andatligre types, though with a
lower significance in planetary events. It would even seeahiththe case of smooth
events, there exists a threshold value of the ratios, beltwelwthe orbital motion
detection €iciency is negligible. For the ratio of timescales, the thodd is logRr ~

-2 for both planetary and stellar-binary lenses, while fag thatio of velocities the
value appears to be more dependent on the mass ratio, taddunesvof logR, ~ —2.5

for planetary lenses and I&) ~ —2.75 for stellar-binary lenses. There may be similar
thresholds for caustic-crossing events at smaller valtigs; andR,, but this is not

clear due to the small number of simulated events with veryRp andR,.
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Figure 3.15 — As Figure 3.5, but plotted against the ratio of microlensing itabtimescales
Rr =tg/T.

3.5.3 Are there two classes of orbital motion event?

Gaudi (2009) has suggested that orbital motion deatathe lightcurves of microlens-
ing events in two ways. In the first scenario, the orbital motTects are dominated
by rotation in the lens, as the orientation of the binary akianges during the time
between two widely-separated lightcurve features. Thersgtype of &ect is due
to changes in the projected separation over the course ofgéedightcurve feature,
such as a resonant caustic crossing. In this section we @atiribe the typical features
of each type of event before investigating to what extenitarimotion events can be
classified in such a way.

Gaudi (2009) describes theeparationalclass of event as typically occurring in
archetypal binary microlenses with resonant caustic angss If the binary’s orbit is

inclined, the projected separation of the lenses changesimg a stretching or com-
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Figure 3.16 — As Figure 3.5, but plotted against the ratio of orbital ancdceatglocitiesR, =

Veire/Vt-

pression of the resonant caustic. If the projected separasi close to a boundary
between caustic topologies,~ . or s ~ s, the changes in the caustic structure can
be very rapid. If the microlensing event occurs while thesgnges are happening, and
the source crosses or passes close to the caustics, theserysgood chance of detect-
ing the orbital motion. As a whole though, the changes in ttassucture during the
caustic-crossing timescale will be fairly small, e.g., thference in caustic-crossing
time between the static lens and the orbiting lens may beebther of minutes to
hours (cf. the orbital period of several years). It is onlg ixtremely high accuracy
with which caustic crossings can be measured and timeddbgitdtes the high orbital
motion detection probability. These changes to the casgsiipe will often be more
significant than the changes in orientation of the causti turotation, and so we

class them as separational orbital motidieets.
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Gaudi (2009) described thretational class of event as occurring when a source
encounters two disjoint caustics of a typically close-logy lens. In the time be-
tween the two caustic encounters, which are separated byeaAi ~ tg, the lens
components have time to rotate and show detectable sigisabfiorbital motion. We
extend the class by considering the importdtie to be the long baseline over which
binary-lensing features can be detected. If binary-lentufes are detectable across a
significant fraction of the lightcurve, then a significant@mt of rotation can occur
in the lens while the features are detectable. Such largle-$eatures occur in both
stellar-binary and planetary magnification patterns. Timjude regions of excess
magnification that stretch between the central and secgrdastics in stellar-binary
lenses and regions of relative demagnification in planderges. If lenses with such
features rotate rapidly, then the source may encounter theoch a way that a static-
lens interpretation of the lightcurve features is not paigsiand lens rotation must be

invoked.

Is there evidence of two classes in the distribution of orbél motion events?

We begin by looking for evidence of two classes of event indications of the orbital
motion events in thex-q plane. Figure 3.17 plotg againsts, for all events with
detected binary signatures. It is immediately clear thaistia-crossing and smooth
orbital motion events reside in ftierent regions of they-q plane, with virtually all
events within the intermediate topology regime being dausbssing. Almost all
smooth orbital motion events are located in the close-togpolegion. This broadly
reflects the underlying pattern for all binary events andoisin itself evidence of two
classes of orbital motion events, but is instead a resultfééreént caustic sizes in the
different caustic topologies.

Another feature of the plot is the clustering of causticssiag orbital motion
events near the boundary of the close and intermediatedgdl. It is close to the
topology boundaries that the changes in projected separagiuse the largest changes

in the caustics. It is, however,flicult to attribute this clustering to faster caustic mo-
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Figure 3.17 — Scatter plot @f againstsy for microlensing events with detectable binary signa-
tures. Caustic-crossing events are plotted with red squares, and smeothwith blue circles.
Events classified as orbital motion events are plotted with larger, darked, gitlimts and those
classified as static with smaller, lighter, open points. The black lines show #itops of the

caustic topology boundaries.

tions due to separational changes, as orbital velocityergely correlated witlsy, and
so there should be more orbital motion events at smalleregatiisy in any case. In
support of the existence of a separational class, thereiigt @afclustering against the
resonant-wide boundary. However, the caustic size pediathatopology boundaries,
as the single resonant caustic stretches before spligiag anto central and secondary
caustics, possibly meaning that simply the increased dizkeocaustics causes the
increased density of detections.

Figure 3.18 plots the impact parameter agassand is very useful in separating

different kinds of binary event, especially for planetary lesngéne events follow a dis-
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Figure 3.18 — As Figure 3.17, but showihug| plotted against.

tinctive pattern, with a large clump of events centreflgit~ 0 and logs, ~ 0, which
consists of high-magnification events that encounter timtrakeor resonant caustic.
At very small|ug|, this clump extends over a significant rangesgn but narrows as
lug| increases to its narrowest pointlag| ~ 0.3 (or at largerug| for stellar binaries),
corresponding to the maximum size of the regidfeeted by resonant caustics. As
lug| increases, the plot shows a distinctive V' shape, with nwaby signatures being
detected for events witly ~ 0. This 'V’ shape arises as in events with largi®yf, the
source passes through regions of the magnification pattetrcan only contain sec-
ondary caustics, and does not enter the regions contaieimigat or resonant caustics.
In other words, the binary features in lenses wg§h~ 1 only occur in regions of the
magnification pattern that the sources with lajggdo not probe.

The events which occur on the branch with lafgg and larges, are caused by

wide-topology lenses, and therefore involve only a singleosidary-caustic encounter.
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Table 3.4 — Microlensing parameters for the example lightcurves.

Figure Orbit Uy ap/° S q te/d Iy fs

3.2 C 0.48 307 8.64 0.22 14.9 17.9 1.04
3.3 S -0.091 186 0.95 0.054 14.7 19.2 0.59
3.4tF C 1.43 315 5.23 0.030 7.5 18.8 0.41
3.4tr C -0.16 155 0.61 0.14 12.6 19.3 0.082
3.4bF C 0.37 255 2.92 0.21 6.9 14.5 0.93
3.19a C -0.011 255 1.06 0.0016 26.2 17.1 0.19
3.19b C -0.024 285 1.31 0.0076 132.2 18.7 0.067
3.19c C -0.071 81 1.04 0.0015 12.2 19.6 0.71
3.19d C 0.22 265 0.87 0.00045 65.7 18.0 0.38
3.19¢ C 0.16 169 0.94 0.0038 26.3 17.3 0.15
3.19f E -0.20 16 0.55 0.49 14.8 17.3 0.073
3.20a C 0.15 52 0.57 0.33 54.6 18.6 0.67
3.20b C 0.033 69 0.45 0.56 88.3 18.2 0.72
3.20c C -0.56 353 0.18 0.30 49.3 16.0 1.04
3.20d C -0.076 245 2.38 0.0059 9.0 20.0 1.04
3.20e E -0.33 163 0.34 0.29 824 15.3 0.96
3.20f E 0.21 77 0.79 0.29 24.3 18.7 0.20

TC—circular orbit, S—static orbit, E—eccentric orbit

*tl—top left, t—top right, bl—bottom left

The rotation of these lenses is typically very slow, and dlershort duration of the
binary features (typically of the order of a day), the lenmptetes only a very small
fraction of its orbit. This points towards separational mfpes being the dominant
effect in the detection of orbital motion features in eventshos branch, even with the
enhancement of rotational velocity due to the longer sabidyldlever arm’.

The events that occur on the branch with laiggand smallsy are largely smooth
events, with the occasional caustic-crossing event. Tlomdmevents are likely caused
by the source crossing the large cusp extensions that atclose-binary lenses, sug-

gesting that they will belong to the rotational class of ésen
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Figure 3.19 — Example lightcurves of simulated everffsaed by separational-type orbital
motion dfects. In each subfigure, the left-hand panels show the lightcurve, itkiadsvith
respect to the best-fitting Padiski model and its residual with respect to the best-fitting static-
binary model, from top to bottom, respectively. Simulated data are shown,itheeBaczgiski
model is shown in black, the static-binary model is shown in green and thentsdel is shown

in blue. The right-hand panel shows the caustics at various times anduite $majectory in
the frame of reference rotating with the projected binary axis. The sdrajgetory is plotted

in black, and the caustics are colour coded according to the time. Colooiats pn the
lightcurve panel show the time at which the caustic was in the state shown andldleed
points on the source trajectory show the position of the source at this timegpaFhmeters of

the microlensing events can be found in Tables 3.1 and 3.2.
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Figure 3.19 — Continued

Evidence for two classes of orbital motion event by example

Unfortunately, it is dificult to attribute the cause of any one grouping of orbitaliorot
events in Figures 3.17 and 3.18 to either the rotational®stparational class, partly
because both types of motion wilffact each event to some extent. Despite this, it is
possible to classify many individual events as either arsgjomal or rotational event.

Figures 3.19 and 3.20 show example lightcurves of both etagkorbital motion event,
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Figure 3.19 — Continued

separational and rotational, respectively. The plots sti@alightcurves and residuals
in the left-hand panels, together with a map of the sourgediary and caustic motions
in the right-hand panels. The source trajectory and casatie shown in the frame of
reference that rotates with the binary axis, with its origirthe centre of mass. In this
frame, rotation of the lens causes the source trajectorgpear curved, while changes

in lens separation cause the caustics to change shape aed hate that in event (f)
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Figure 3.20 — As Figure 3.19, but showing example lightcurves of simulattedected by

rotational-type orbital motionféects.

in Figure 3.19, and events (e) and (f) in Figure 3.20, the @b#s are eccentric, SO
that the source does not travel along the shown trajectamycanstant rate.

Figure 3.19 shows examples of separational events. In eahme the source
trajectory appears relatively straight, indicating tha¢ 1ens rotates little; however,
in each case the caustics move significantly. Events (a),(¢b)and (e) all involve

resonant-caustic crossings and conform well to the piadeseribed by Gaudi (2009).
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Figure 3.20 — Continued

Event (d) could be described as the encounter of two disfaostics, similar to the
original description of the rotational class of events byu@g2009), but other than
the close topology, the event is remarkably similar to eetthe source trajectory
is slightly curved, but it is clear that separationfieets are dominant. At first glance,
event (f) would clearly fit into the picture of disjoint caigsencounters, but the source

trajectory reveals that rotation plays only a minor rolethis event, a static fit to just
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Figure 3.20 — Continued

the features about= to would suggest a close encounter with a large secondaryicaust
att ~ 1.5tg, but instead changes in the binary’s separation cause theesto not just
encounter, but cross a now much smaller secondary caustic 21f-.

In contrast to Figure 3.19, the source trajectories in FBgRI20 show significant
curvature. Event (a) fits the description of rotational égdasy Gaudi (2009), exactly.

The source first encounters a secondary caustic, but thisorotz the lens causes the
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Table 3.5 — Physical parameters for the example lightcurves.

Figure Orbit M;/M, My a/AU  T/d e i/°f vi/kms?t D/kpc

3.2 C 0.084 0.0181, 10.7 39799 0 214 134.8 5.75
3.3 S 0.70 0.0381, 1.88 1090 0 300 215.7 7.40
3.4tF C 0.058 0.0018v1, 4.46 14047 0 173 196.3 6.04
3.4t C 0.13 0.01' Mg 1.22 1298 0 311 183.8 5.95
3.4bF C 0.10 0.021M,, 3.52 6852 0 112 282.8 6.43
3.19a C 0.55 0.8MMyypiter  5.82 6924 0 93 167.3 6.12
3.19b C 0.75 6.Mjyupiter  4.32 3767 0 115 39.8 6.01
3.19c C 0.27 0.43Myypiter  0.51 256 0 243 63.2 7.91
3.19d C 0.89 0.4Mjypiter  3.83 2899 0 136 88.8 2.13
3.19¢e C 1.17 4. Mjyupiter  3.42 2130 0 56 173.5 7.19
3.19f E 0.21 0.1M, 0.61 306 0.92 102,216 183.0 6.90
3.20a C 0.56 0.184, 1.88 1098 0 16 101.2 2.44
3.20b C 0.38 0.2M, 1.69 1044 0 40 57.4 2.69
3.20c C 0.68 0.20/, 0.65 205 0 30 115.8 5.97
3.20d C 0.65 4.Mjyupier 2.70 2005 0 2 218.3 7.75
3.20e E 0.59 0.1%™, 1.35 656 0.77 303,213 68.2 5.56

3.20f E 0.39 0.1M, 2.14 1609 0.18 2,143 187.0 5.64

TFor events with eccentric orbits, two values of inclinateme quoted, representing inclinations about
two orthogonal axes on the sky. Thiext of this second inclination is absorbed into the sourgjedr
tory for circular orbits.

*tl—top left, t—top right, bl-bottom left

source to pass the opposite side of the central causticti®otdso prevents the source
from crossing the magnification excess between the cerdratic and the other sec-
ondary caustic. During the entire event, separationalgbswause only slight changes

in the caustics. In event (c), the rotation is more extrem,tlhe caustics smaller.
The binary features are therefore more subtle, being calbigesimall magnification
excesses between the caustics, the secondary caustigsidieated at-(—3, +4) and

the central caustic at(0,0). The rotation of the lens causes the source to cross each

excess more than once, and there are several minor degatisible in the residual
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between the static and true model of the event. Event (d)lewdding caused by a
wide lens, which is expected to rotate slowly, is clearlyssaiby rotation. During
the event, there are virtually no separational changesheyprecision with which the
secondary caustic-crossing and cusp approach featuretr@aonthe source trajectory
mean that the very slight rotation, which brings the soutoser to the central caus-
tic, is detectable. Events (b) and (e) both show strong sifnstation in their source
trajectories, but separational changes are also impoghtle we assign them to the
rotational class of events, in reality, they may better fivia third, hybrid class. Event
(f) also shows signs of both rotational and separationatairinotion dfects, but we
assign it to the rotational class, because without rotatensecond caustic crossing
would be significantly shorter.

We have been able to classify the example events shown imdsi@ul9 and 3.20,
demonstrating that the dichotomy suggested by Gaudi (28083leed real. The clas-
sification does not so much reflect a physicétietence between the two types of event
(though we might generally expect separational events ¥e teger semimajor axis
than rotational events), but more dfdrence in the circumstances of observation (e.g.,
different orbital inclinations). As is often the case with cifasations defined qualita-
tively, some events are ftiicult to firmly classify, as they show aspects of both types
of orbital motion. These events can be classified into a thiytbrid class of orbital

motion events, or perhaps it is more appropriate to say biegthbelong to both classes.

3.6 Summary and discussion

We have simulated the lightcurves €100 000 microlensing events caused by stars
orbited by a companion star or planet. By fitting simulatethdaith single-lens and
static-binary models we have determined the fraction afeteents where the binarity
of the lens is detected and we have also estimated the fnaatithese events where
orbital motion is detected. For an observational set up ths¢mbles a near-future

microlensing survey conducted by a global network of tedpges without intensive
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follow-up observations, we found that orbital motion wasedted in~5-10 percent

of simulated stellar-binary microlensing events, depegdn the characteristics of
the event. Similarly, the rate of detection of orbital matia simulated microlensing
events where a planet is detected wds-6 percent.

We investigated thefects of various event parameters on the fraction of events
showing orbital motion. orbital motion detectioffieiency as a fraction of binary de-
tections was found to depend only weakly on the mass ratibeobinary, but strongly
on the event timescale. We found that a significant numberiofalensing events
showing orbital motion can be classified into one of two aasshose where the dom-
inant cause of orbital motiorfiects is either the separational motion of the binary due
to either inclination or eccentricity, or those where it e trotational motion of the
binary.

Before closing the Chapter, we will now discuss some of thdigapons of the
work presented. We examine some of the limitations of thekwbefore comparing
our simulation results with observations. Finally we lookwhat can be expected in

the future.

3.6.1 Limitations of the study

The questions that we wanted to answer in this work were: fvhetion of microlens-
ing events observed by the next-generation microlensimgega will be dfected by
orbital motion and what type of events are thteets likely to be seen in? While we
do not claim to have fully answered these questions, we ddHaéethis work repre-
sents an important step in that direction. The simulatiothefphotometry is slightly
optimistic, and does not include th€&ects of weather and the systematifeliences
in the site conditions and observing systems distributedsacthe Globe that would
make up the network of telescopes needed for a continuouganiag microlensing
survey. The observing setup we simulated is in some respemts like a space-based

microlensing telescope than a ground-based network. Henvthe photometric accu-
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racy that we simulated is not too optimistic, and thiedences between the static and
orbiting simulations show that orbital motion plays a sfgrant role in a significant
fraction of microlensing events.

As discussed in Section 3.3, our choice of models will ndyfahswer the question
of how many microlensing events with orbital motiofiexts will be seen; however,
they do provide a good order of magnitude estimate. The pidetection #iciencies
we find assume that all stars have a companion, and so musjusteataccordingly
to account for this. For example, current estimates sugestonly ~33 percent of
stellar systems are binaries (e.g., Lada 2006), so assuthm@ next generation mi-
crolensing survey detects2000 events per year, we can expect to s80 stellar-
binary microlensing events showing orbital motion sigmesuper year. However, the
true rate may be higher as the mass ratio distribution thatseefor stellar binaries is
not realistic; the real distribution is likely to be peakedhe range @ < q< 1 (e.g.,
Duquennoy and Mayor 1991; Raghavan et al. 2010). A simillutation for plan-
etary lenses, assuming the fraction of stars hosting p@aeet0.5, yields a detection
rate of ~1.5 caustic-crossing orbital motion events per year. Agdirs éstimate is
affected significantly by our assumptions. Our mass ratioidigion is optimistic (for
the detection of orbital motion), as current microlensiaguits suggest an inverse re-
lation between planet frequency and mass ratio in the regmnorolensing is sensitive
to (Sumi et al. 2010). This implies our estimates will be opstic, but we have also
assumed there is only one planet per system. Many multipkystems have been
discovered to date (e.g., Gaudi et al. 2008; Fischer et 88Pand they are thought to
be common. The microlensing planet detectifficeency in multiplanet systems is in-
creased, as the planets are spread over a range of semixagorTdnis will somewhat
compensate for the overestimate due to the incorrect masgistribution.

The major limitation of this work is that finite-sourcéfects are not considered.
The finite size of the source acts to smooth out the extremenificafion peaks as a
source crosses a caustic, limiting the precision with winiggnifications can be mea-

sured and caustic crossings timed, and thus plays an inmpadi in orbital motion
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detection. However, in most cases, the caustic-entry toarstill be timed accurately
if the caustic crossing is monitored with high enough caderic some cases, the ef-
fect may increase the detectability of orbital motion asdberce will probe more of
the magnification pattern, especially when a source traajgtsoximately parallel to
and very close to the inside of a fold caustic, producing taoltkl peaks between the
caustic crossings. We cannot quantitatively estimate fleets that finite source size
has on the orbital motion detectioffieiency, but we do not believe it will significantly
affect our order of magnitude estimates. Unfortunately, iditlg finite source sizes in
the modelling of a microlensing event increases the requicanputation time by sev-
eral orders of magnitude, so th&ext could not easily be included in the simulations

without significantly reducing the sample size.

3.6.2 Comparison with observations

While our simulations are more representative of future olesing surveys, itis pos-
sible for us to compare the results of our simulations withrésults of the current mi-
crolensing observations. Current microlensing planettesr using the survgpllow-
up strategy routinely achieve a cadence similar to, or b#tan, that expected for fu-
ture high-cadence surveys for a small number of microlenswvents per year (e.g.,
Dong et al. 2009a). We can therefore compare the detecfimeacy of orbital mo-
tion in the events where planets are detected. At the timeriihgy, there were ten
published detections of planets by microlensing (Bond.€2@04; Udalski et al. 2005;
Beaulieu et al. 2006; Gould et al. 2006; Gaudi et al. 2008;nBéret al. 2008; Dong
et al. 2009a; Sumi et al. 2010; Janczak et al. 2010), and skth&even had high-
cadence coverage of a significant proportion of the lighteutn two of these events
the orbital motion of the planet was detected (Gaudi et @)82@ong et al. 2009b),

leading us to estimate an orbital motion detectidficeency of ~0.29'513 percent.

"While the orbital motion of the Jupiter analogue was not detéin the OGLE-2006-BLG-109
system, the planet itself would still have been detectechénabsence of the Saturn analogue, so it

contributes to the denominator of the detectiiicéency, but not to the numerator.
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This dficiency is larger than we find in our simulations. However, tiital mo-
tion effects in the OGLE-2005-BLG-71 event are very subtle, and avpithe fit by
Ay < 200 (Udalski et al. 2005; Dong et al. 200%b)neaning that it would not be
classed as a detection in our simulations; this reducesdimparable detectionfié-
ciency estimate t0.04"3%. Our estimate of @6+ 0.01 for planetary caustic-crossing
events is roughly consistent with this rate. It should beeddhat this figure could
be biased as events showing orbital motion signatures aké# significantly longer to
analyse. Unfortunately a similar estimate for stellaranlenses is not so simple as
they are usually not followed-up to the same degree thaepday events are, either in
terms of observations or modelling.

We have identified two dlierent classes of orbital motion event so it is natural to
try to classify the orbital motion events that have alreadgrbseen. The orbital mo-
tion detected in OGLE-2006-BLG-109 (Gaudi et al. 2008; Bxnhet al. 2010) was
detected due to deformation of a resonant caustic, so the esa easily be assigned
to the class with separational changes. OGLE-2005-BLGtdalski et al. 2005;
Dong et al. 2009b) is harder to classify, as the orbital notfiects observed were
very subtle. The event fiers from the well known close-wide degeneracy (Griest
and Safizadeh 1998; Dominik 1999), and rather strangelythirclose ¢ < 1) solu-
tion, separational changes are more prominent than rotdtiand vice versa for the
wide (s > 1) solution, where we might normally expect the opposite. tihdxefore
do not assign the event to either class. Of the stellar-pileanses, MACHO-97-BLG-
41 (Albrow et al. 2000) was mainly influenced by rotation, avak detected by two
disjoint caustic crossings, so is classed as a rotatioreadte EROS-2000-BLG-5 (An
et al. 2002) undoubtedly belongs to the separational ctagscaustic structure was

resonant withs close tos,, and changes in separation were measured with high signif-

8The overall reduction iy? between the two analyses was much less than 200 when thef siee o
data sets and fiering degrees of freedom were accounted for. The full amalysDong et al. (2009b)
included higher-orderféects not included in the original Udalski et al. (2005) asaysome of which

had a much largerféect than orbital motion.
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icance, while rotational changes were consistent with.zéte final events, OGLE-
2003-BLG-267 and OGLE-2003-BLG-291 (Jaroszynski et ab3)@re not very well
constrained, so we do not attempt to classify them.

We finally suggest that the event OGLE-2002-BLG-069 (Kubaal.e2005) is a
strong candidate for showing rotational-type orbital raotigfects. The event was
modelled successfully by Kubas et al. (2005) without ingigdorbital motion, with
a close-binary solution favoured physically and by the niode The event had a
timescaldg ~ 105 d and binary parametess= 0.46 andq = 0.58. The lightcurve was
very similar to event (b) shown in Figure 3.20, having a lomg]l covered central-
caustic crossing, with measurements of both caustic entlyeait. The physical lens
parameters obtained from the modelling suggest lens madsels = 0.51M, and
M, = 0.30M,, and a projected separation-e1.7 AU, with a corresponding minimum
period of T = 900 d. The baseline is relatively bright, gt ~ 16.2, and so subtle
magnification deviations could probably be constrainedheydata, if they have been
covered. The combination of the relatively large timescate tz/T ~ 1/9 and the
bright baseline suggest that the lens will complete a sahatgart of an orbit during
the event (which is significantly magnified for a duration e¥aral event timescales),
meaning there is a significant chance that the source wilbemer the secondary

caustics if they rotate.

3.6.3 Future prospects

Interestingly, our results show that the orbital motioned¢ion dficiency depends only
weakly on the mass ratio. In the case of planetary eventsticatrossing orbital mo-
tion detections occur preferentially in high- to moderatagnification eventsi 2> 5),
while smooth orbital motion detections occur in all but higlagnification events. Our
results therefore suggest that the strategy of targetigig-magnification events (Griest
and Safizadeh 1998; Han and Kim 2001) should allow causbtigsang orbital motion

events to be detectedhieiently. However, the strong dependence of orbital motion

114 SIMULATIONS OF GRAVITATIONAL MICROLENSING



3.6: SUMMARY AND DISCUSSION

detection éiciency on the event timescale suggests that long-timesealas should

also be routinely followed up. While follow-up of these evemequires a significant
investment of resources from the follow-up teams, like higégnification events, they
are relatively rare. For a given cadence, these events allbetter signal to noise de-
tection of planetary deviations, and also allow more timetifi@ prediction of future

features. Long-timescale events are also more likely tavgbarallax features, allow-

ing constraints to be placed on the lens mass.

High-cadence, continuous-monitoring microlensing sysveill begin operating
in the next few years. Already, the MOA-II survey (Hearnshetval. 2006; Sako et al.
2008) has been surveying a fraction of its total survey angaacadence o£10 min
for some time, and the OGLE-IV survey (Udalski 2009) has Imegperations this
year, and should provide significant increases in cadenee OGLE-IIl. KMTnet,
a uniform network of telescopes with near continuous cayerand operating at a
cadence o~10 min should begin operating around 2014; this promises|aost
order of magnitude increase in the detection rate of miasiley events, and a similar,
if not bigger, increase in the detection rate of planets bgrabdensing. The uniform
nature of the survey network will also make statistical ggial of the planets detected
easier, greatly enhancing the work already done in thisctior (Sumi et al. 2010;
Gould et al. 2010). The work we have presented shows thatrafisant fraction of
the events will show signs of orbital motion, which will sifjoantly complicate the
interpretation of future planet detections. However, ghesmplications can be used to
provide valuable additional constraints on the lens.

Often overlooked are binary-star microlensing events. fiket generation sur-
veys will detect many more binary-star events than plagetaents. A large number
of these lenses will be located in the Galactic bulge and leposed of low-mass
stars, providing an opportunity to study the propertieshaf bulge binary-star popu-
lation. Our results show that a significant fraction of thesents will show orbital
motion signatures, and it is likely that in a significant nianbf these events it will

be possible to measure the masses of the system. It shoulaiteebe possible to
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measure the statistics of a population that fEclilt to reach by current spectroscopic

and astrometric methods due to their low brightness and pemigpds.
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4

Rapidly-rotating lenses: repeating
orbital motion features in close binary

microlense<

In the previous chapter we looked at some of the possithects of orbital motion
on microlensing events. We showed that some of the orbitdlom@vents could be
classified as separational events, where the detectaltalartotion signatures were
caused by rapid changes to the structure of resonant caastia binary moved in an
inclined orbit. Alternatively, more gradual orbital roia across an entire event can
give rise to more subtle, yet still detectable, signatufesrbital motion. We showed
that the majority of orbital motion events that fall into gsh6econd, rotational class
are caused by binary lenses with orbits smaller than thet&msadius. In fact, in
Figure 3.20 (c) we show an example of an event with such a ddsethat the lens
completes more than one orbit in the time that the sourcegisfsiantly magnified.
In this chapter we investigate in more detail if rapidlyatimg lenses (RRLs) with
repeating, detectable features such as this are likely tmbenon. We also explore

what information can be extracted from such lenses.

1The work presented in this chapter has been published as Hefny, E. Kerins and S. Mao,
MNRAS, 417:2216-2229, 2011.
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We begin in Section 4.1 by reviewing the aspects of microfenthat are relevant
to the work in this chapter. In particular we examine the nifagation pattern of
a close-binary lens and discuss how orbital motidiecs this. In Section 4.2 we
give a definition of an RRL event and look at what happens toirtteges during
the event. In Section 4.3 we estimate the detectability &edrate at which RRLs
occur. In Section 4.4 we describe how physical parametarsbeameasured from
RRL lightcurves, including in some cases the mass and bgatameters of the RRL.
In Section 4.6 we briefly introduce additional factors thah gotentially &ect the
lightcurve and the parameters measured from it. We closeftapter with a discussion

in Section 4.7.

4.1 Introduction

The complexities of microlensing lightcurves can be coesad as deviations from the
single-lens Pac#ski form. The deviations may be relatively minor and canerov
the entire lightcurve, as in most parallax events (e.g.,tlsmi al. 2002a), or they
can be large and cover only a small fraction of the lightcuagin many binary-lens
events (e.g., Kubas et al. 2005; Beaulieu et al. 2006). larpitens events, these devi-
ations from the single-lens form are caused byffedence in the magnification pattern
of the lens. The most prominent features of the binary-leagmification pattern are
caustics, where the magnification of a point source divefg@s Figure 4.1). A source
passing over a caustic will show a sharp rise in magnificati®it enters the caustic
and a sharp fall as it leaves. Other, more smooth magnifitaadtern features can also
be associated with the caustics. For example, just outs&ledustics, near the cusps,
there are excesses of magnification that cause peaks imgttiedrve (e.g., Pejcha and
Heyrovsk 2009). Also, between the facing cusps of the central andretary caus-
tics, there is an ‘arm’ of excess magnification, weaker ti@cusp excesses but often
still detectable. The significance of these magnificationsawill become clear below.

In a binary-lens event, the caustics are largest and usstatingest when the pro-
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jected lens separatiog~ 1, i.e., when the lens components orbit with semimajor axis
a which is similar to the Einstein radiug ~ 2—-3 AU. At these separations there is
only a single, so-called resonant caustic that residesthedens centre of mass and
only rotates slowly. The orbital periods of these lensedygeally T ~ 1000 d, much
longer than the microlensing event timescale, which forpacyl Galactic microlens-
ing event idg ~ 20 d. The lenses therefore complete only a small fractioheaif brbit
during the course of the microlensing event and only a foactf the events are ex-
pected to show detectable signs of orbital motion in thghticurves (see the previous
chapter and Gaudi and Gould 1997; Dominik 1998b; Konno and€ol1999; loka
et al. 1999; Rattenbury et al. 2002). Those events whergabrption is detected are
typically separational-type events where the orbital otiletection comes through
the deformation of the resonant caustic during a caustissing; because the sharp
caustic-crossing features on the lightcurve can be prigdiseed, the crossings can be
used to constrain even small lens motions (Albrow et al. 2@00et al. 2002; Gaudi
et al. 2008; Ryu et al. 2010; Hwang et al. 2010; Skowron et @112 Batista et al.
2011). However, in only two of these events has orbital mmoélbowed measurements
of multiple orbital parameters (Bennett et al. 2010; Skawet al. 2011). In the rest
it was only possible to place relatively weak constraintgtmnorbits due to the tiny
fraction of the orbit that was probed.

Lenses with closer orbital separations have three caustnesat the centre of mass
and two secondary caustics separated from the centre (f8enia@d Weiss 1986). The
two secondary caustics will move rapidly as the magnificapiattern rotates as a solid
body. These caustics are smaller than those of resonamylbemses, meaning itis less
likely that the source will encounter them; therefore, tighiicurves of binary lenses
with very close orbits will in most cases resemble singlsén However, in favourable
cases the binary-lens lightcurve features are detectslitd. close orbits these lenses
will have orbital periods much more closely matched to therolensing timescale.
Analogous to observational celestial mechanics, measamenof orbital parameters

are much more accurate if observations cover more than desangit (e.g., Boden
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et al. 2005). Rapidly-rotating lenses with detectableufies therefore represent an
opportunity to map a complete or nearly-complete orbit ofreaky microlens, possi-
bly allowing stronger constraints to be placed on the lefst@rparameters than are

possible with resonant, separational-type orbital moteents.

4.2 What is a rapidly-rotating lens?

We define a rapidly-rotating lens (RRL) to be a binary micnglewhich, if monitored
continuously with suitable photometric accuracy, wouldiguntee that at least one fea-
ture of its magnification pattern would be seen to repeatastlence in its lightcurve
due to the lens orbital motion. This implies that the lens plates at least two orbits
during the time in which its binary-lensing features areeddble. We choose this def-
inition over the more simple comparison of microlensing anital timescales (e.g.,
T < te Dominik 1998b) because without detecting binary featurésimpossible to
measure the binary’s rotation. As mentioned in the previrdion, the strength of
binary features declines as the orbital separation anageiecrease. So simply de-
creasing the period does not necessarily increase thegutsspf detecting a repeated
feature. Therefore, an RRL can only result from a comprorheteveen a fast rotation
rate and detectable binary-lensing features.

Throughout the chapter we shall focus on close-topologgdenwhich have sep-
arationss < 0.7 (Schneider and Weiss 1986; Erdl and Schneider 1993), e
shall justify in Section 4.3. Figure 4.1 shows the magnifaapattern of a close-
topology lens and labels a number of features. The struetogdefeatures of the mag-
nification pattern depend only on the projected separatfdhelens components,
and the mass ratiq (Erdl and Schneider 1993). The most important features ®f th
close magnification pattern are a central caustic, locatttedens centre of mass, and
two secondary caustics which lie away from the lens centteethed between the
central and secondary caustics are two ‘arms’ of excess ffinzggion (relative to the

magnification that would be caused by a single lens of masal eéguhe total binary
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Figure 4.1 — The magnification pattern of a close-topology microlens. Theldatste the lens
positions, with the primary lens at negatixeThe lens has a mass ratic= 0.3 and projected

separatiors = 0.6. Notable features of the magnification pattern are labelled.

mass). During a microlensing event, a source will travebasthe magnification pat-
tern and we will observe the source change in brightnessfarheof this lightcurve is

determined by the trajectory that the source takes. As theesanoves, the magnifica-
tion pattern will not stay fixed, as the binary will also mowets orbit. Should the lens
orbit lie face-on to the line of sight, then the magnificatmattern will rotate as the

source moves across it. Should the orbit be inclined or édcethe structure of the
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Figure 4.2 — The lightcurve of an RRL. The upper panel shows the RRL lighean black,

and the Pac#yski lightcurve of a single lens with the same total mass in grey. The lowef pane
shows the residual with respect to the Pdsky lightcurve. Features due to the magnifica-
tion arms appear as peaks in the residual, while between them there anerdtatiagnifica-
tions. Large, short-duration spikes occur when the secondary cpasses close to or over the
source. The system has parameters 61 d,T =92d,s=0.23,q=0.8,up = 0.3, ¢g = L.75

(see Section 4.4 for definitions a§ andgy).

magnification pattern will also change, as it depends on tbeged lens separation
s (Schneider and Weiss 1986).

Figure 4.2 shows the lightcurve of an RRL with a similar méigation pattern
to that shown in Figure 4.1. It closely resembles the lightewof a single lens, the
Paczyski lightcurve, but with a quasi-periodic variation ovieetentire lightcurve that
only becomes obvious in the residual that is left once theyeki curve is subtracted

from the lightcurve. These periodic features corresportiéanagnification arms that
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extend between the secondary and central caustics, whiebysawver the source as the
lens rotates. The microlensing timescale of the lightcwivewn istz ~ 60 d, but it is
clear that repeating binary features remain in the lightewt a time from peak magni-
fication much greater than this, which corresponds to a soposition far outside the
Einstein ring. This is because the secondary caustics edarlioutside the Einstein
ring, their distance from the lens centre increasing as tharp separation decreases.
However, both the size of the secondary caustics, and thagitr of the magnifica-
tion arms connecting them with the central caustic, deeredth decreasing binary
separation. We note at this point that, despite the largaraépn of the secondary
caustics, we need not consider relativistiteets of superluminal caustics (Zheng and
Gould 2000) as the ratio of the caustic rotational speeddaspeed of light in all the

cases we will consider is1072.

4.2.1 What happens to the images?

The image configuration of a point-mass lens consists of magies: a major image,
of positive parity and magnificatiom, > 1, outside the Einstein ring and a minor im-
age of negative parity and magnification < 0, inside the Einstein ring (e.g., Refsdal
1964; Liebes 1964). The addition of a second mass to the &rses an additional im-
age of negative parity to be produced if the source does@utithin a caustic (Schnei-
der and Weiss 1986). If the lens is far from resonance, s.es; 1 or s > 1, two of
the three images can still be associated with the major andmrnages of the single
lens, while the new third image is labelled a tertiary image.

It is interesting to study what is happening to each of theehmages during the
course of an RRL event. Dubath, Gasparini, and Durrer (2801gy the &ects of
an orbiting close-binary lens on the major image by castirgglénsing potential as
a time-varying quadrupole. They show that the major imageexhibit significant
time-dependent deviations from the single-lens form whenhighly magnified, and

go on to calculate the expected rate of events showing sushtaas. Unfortunately,
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Figure 4.3 — Lightcurves and residuals for each image of a microlensing ewth repeating
features. The top panel shows the absolute magnification of the combineelsiifadlg and the
individual major (u.|), minor (u-|) and tertiary [u3|) images in diferent shades of grey. The
central panels show the absolute magnification residual with respect tintfle-lens form

for all images combined, the major image and the minor image, going from top to bottom,
respectively; the bottom panel shows the absolute magnification of the yéntiage, which

has no single-lens counterpart. The event has the didactic, but uticgplisametersiy = 0.4,

s=0.3,9=10andtg/T = 10.

they neglect to consider both the tertiary image and the mimage, the latter of
which will be magnified by a similar degree to the primary irmagsu, > 1 and
lui| — |lu_| = 1 (e.g Refsdal 1964; Liebes 1964).

In the top panel of Figure 4.3 we plot the lightcurves of alehimages for an RRL
with an unrealistically short period compared to its evémescale. The observable
lightcurve (u| against) clearly exhibits strong repeating features. The lightesrof
the major and minor imagesu(| and |u_|, respectively) also show strong features,
while the tertiary image lightcurvigs| is flat and extremely demagnified over most of
the event. However, it is more informative to look at the desil lightcurve (the RRL
lightcurve minus the single-lens lightcurve of the samaltotass) for each image and
all images combined, which are shown in the lower panels gfiféi 4.3. The tertiary
image has no single-lens counterpart, so we just show hgcligve with an expanded
scale.

In the residuals, each image shows a strikinglffeslent pattern of features: the
major image is only significantly perturbed from its singd@$ form when the source is
within ~rg of the centre of mass, while the minor image shows signifiparturbations
out to the position of the secondary caustics. It is only witensource is close to the
secondary caustics that the tertiary image is magnifiedfgigntly. It is interesting
to note that the periodic variations in the major and minoag® are out of phase

and cancel each other to a significant degree around thecliglg peak where the
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amplitude of the major image variations is large. Also, tlglout the lightcurve the
amplitude of the minor image residual is larger than thathaf mmajor image. Both
points have implications for the expected rates calculayeDubath et al. (2007).
Figures 4.2 and 4.3 show that an RRL can clearly exhibit @stitng, repeating
lightcurve features if the binary period and separationspime. However, this could
be a very rare occurrence, and in order to see if RRL eventdbwitletectable in real
microlensing surveys we must consider how their propersash as the amplitude of

the periodic signal, relate to the physical parametersefehsing system.

4.3 Are RRLs detectable?

In the previous section we defined a criterion for a lens torbRRL and described the
features of an RRL event. In this section we put the definitiora more quantitative
basis and investigate whether RRLs will occur amongst theat@nsing events that
are detected by surveys. To determine if detection is pheisive investigate the range
of physical parameters required to produce a microlensuggtewith repeating fea-
tures, first analytically and then numerically. Finally wepsy our numerical method

to simulated microlensing surveys to estimate the expeetiedof RRL detections.

4.3.1 An analytical approach

To see repeating features in a microlensing event, the mosiainental requirement
of the system is that the lens completes more than one orbitglthe event. The
magnification pattern of a binary lens is complicated buteéhsential features of a
close-binary lens can be captured by assuming it to be cosjpafswo straight, radial
arms that extend from the centre of mass to the position okdw®ndary caustics.
Under this assumption (and assuming a random initial phagkearepeating features

are guaranteed to be observed if the lens completes twa anliiie time that the source
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spends within the radius swept out by the arms. We can wiigeathan inequality

2T < guitE, (4.1)

whereu, is the radial position of the secondary caustics in unitsiogtein radii (see
Figure 4.10) and the factor af/2 is the mean chord length across a unit circle, which
accounts for the random impact parameter of source trajestoelative to the lens
centre of mass. It should be noted that it is possible for tufedo repeat if the binary
completes between one and two orbits, but this requiresreciciEnce in the timing of
the first feature.

Both the orbital period and the Einstein timescale depenthi@tens mass, and the
period also depends on the lens semimajor axis, so it islpedsiwrite this constraint
in terms ofM anda. For projected lens separatioask 1, Bozza (2000b) has derived
an analytical approximation for the secondary-caustiatipps (see Equation 4.14),

which if we keep only the first order terms is
u.(s,q) ~ s (4.2)

Using the definitions of the Einstein radius and timescatgéfions 1.7 and 1.15) and
Kepler’s third law, with a little algebra we can then writeudion 4.1 as a constraint

on the semimajor axis of the binary
a < 451 AU [x(1 - x)]%°DZ/5;2*M3/5, (4.3)

where we have assumed a face-on orbit so $hkat/rg, and whereM is the total lens
mass in Solar massd3g the source distance in kpg= D,/Ds is the ratio of lens and
source distances amlthe relative lens-source velocity in km's

While we have an upper limit on the lens semimajor axis, in oi@eRRL lightcurve
features to be detected they must be strong enough to bea@dem the photometry
of the microlensing event. This requirement is somewhatigndus but as the mag-
nification pattern depends only aandq and the strength of features decreases with

decreasings, we can assume that, for a given photometric precision arsb matio,
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magnification pattern features will be detectable only when separation is larger
than a certain value, i.e.,

S > Syet (44)

where syget depends o and the photometric accuracy. For stellar-binary masssati
there will only be a small dependence@hut there will be a strong dependence on the
photometric accuracy; however, a valuesgf, = 0.3 is reasonable (see Section 4.3.2).

We can again write this constraint as a limit on the semimais
a> 2.85 AU sy X(1 - X)]Y2DY2MY2, (4.5)

We now have an upper and a lower limit aywhich are dependent on other param-
eters of the lensing system, the most interesting beingata¢ lens mass. Figure 4.4
shows these constraints on the semimajor axis as a fundtimass, for a lens system
with x = 0.75, Ds = 8 kpc andv; = 50 km s, with values ofsye; = 0.3,0.2 and 01.
Other than the slow lens-source velocity;X ~ 200 km s? for a bulge microlensing
event), these values are typical of a microlensing evenatds/the Galactic bulge.
The plot shows that most of the parameter space is excludedhdnks to the dier-
ing power-law indices on the mass dependence, there is d angk of parameters
over which repeating features should be detectable. Fqrahemeters shown, the de-
tectable region opens up bt ~ 1M anda ~ 1 AU, and widens t@ = 3.3—44 AU by
M = 10M,. The dependence of the limits on other parameters meanththatgion
of detectability will get smaller and move to largeas the source distance grows; will
get larger and move to smallarandM as the lens moves closer to the source or the
observer; and will get smaller as the relative lens-sourdecity increases. A small
but significant fraction of binary stars will have total massnd semimajor axes in the
range of detectability (e.g., Duquennoy and Mayor 19919, @aren more if improved

photometric accuracy can redusg:
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Figure 4.4 — Plot showing the region of the total mass-semimajor axis plane \ndm@eating
features are observable. The red line shows the upper limatfmovided by the constraint in
Equation 4.3, while blue lines show the lower limit arprovided by the constraint in Equa-
tion 4.5, with values ofge; = 0.3, 0.2 and 01 from top to bottom. The other parameters are set
atx = 0.75,Ds = 8 kpc andv; = 50 km s. The region where repeating features are detectable

for sget = 0.3 is shaded grey.

4.3.2 A numerical approach

In deriving analytical limits on the range of lens parametee have had to make
assumptions about the magnification pattern and strengteatfires. If we instead
proceed numerically, we need not make these assumptiongs aamwdetermine pre-
cisely the regions of the magnification pattern where festare detectable for any
given photometric accuracy. We define a detectabdithat is the probability that,
for a given lens system and photometric precision, an RRh waiface-on orbit will

exhibit at least one detectable repeating feature in itddigrve. A feature is said to be
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detectable at a radial positianif the range of magnifications over a circle of radius

u satisfies

Hmax(U)
,Umin(U ] > AMyin, (46)

where we have expressed the range of magnifications (& umax) asS a magnitude

Am= 25 Iog[

differenceAm and whereAm,,;, is the photometric detection threshold, which can be
taken to mean the typical uncertainty in magnitude on a daitat n the baseline of
the lightcurve. In calculating we average over the random parameters of the source
trajectory and phase angle.

We can now test the predictions we made in Section 4.3.1 byaadny them with
the numerically calculated detectability. Figure 4.5 pltte numerical detectability
£ against total masM and semimajor axia for the set of parameters we used for
Figure 4.4. At some values &fl anda the numerical calculation fails due to loss of
precision from catastrophic cancellation in the calcolatof the magnification. The
analytical upper and lower limits of Equations 4.3 and 4& a&so shown in the fig-
ure, however withsye; = 0.28 as opposed t0.8. It can be seen in the figure that the
analytical upper limit of Equation 4.3 agrees very well witie numerical region of
detectability, coinciding with the boundary wherdegins to fall from unity as in-
creases. Equation 4.3, without the factor of 2 that was éhuiced on the left-hand side
of Equation 4.1 to guarantee a repeated feature, also desaniell the region where
detection becomes possible but is not guaranteed (ie5 & 1).

The analytical lower limit, once the parametgg; has been adjusted to28 for a
guaranteed repeating feature, also agrees well with theerioah region of detectabil-
ity. It should be noted however, that the slope of the lowegyesaf the numerical region
is slightly shallower than the analytical lower limit. THi®comes more pronounced
when the lens gets closer to the source, the total mass sesea the source velocity
decreases. This is because the assumption that there ectadbdét features over the en-
tire magnification pattern within < u. breaks down and the detectable features lie in
two disjoint regions: a disc surrounding the central caustid an annulus containing

the secondary caustics. The size of these regions depenglar@hso the lower limit
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Figure 4.5 — Plot of the average detectabilityplotted with darkening shades of grey as
increases) against total lens magsand semimajor axia for a lens with mass ratiq = 0.3

and a photometric precisioimy, = 0.01. The lens and source distances and relative velocity
are the same as used in Figure 4.4. The red line is the analytical upper limiuafi&q 4.3,
while the blue line is the analytical lower limit of Equation 4.5 with a valuegf= 0.28. The
green line at the top of the figure marks the boundary between regiomesef @nd resonant-
topology lenses — we only calculatdor close-topology lenses. The green points lower in the

figure mark points where our calculation ©failed (see text for details).

onabecomes a shallower function M. This dfect is more important in determining

the slope of the lower limit oa wheree = 0.

The dfects of lens distance and lens-source velocity

Having looked at the role of mass and orbital separatioss, inportant to investigate

how the detectability of repeating features depends orr @dleors. Figure 4.6 shows
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Figure 4.6 — Maps of detectability plotted against and M for a binary of mass ratig =
0.99, photometric thresholdmyin = 0.01 and various values of the fractional lens distance
x = D;/Ds and source velocity;. Each small panel is essentially the same as the plot in
Figure 4.5, but with dferent parameter values and slightly restricted rades 0.1-3M and

a = 0.1-3 AU. Moving from left to right, sub-panels haveidirent fractional lens distancgs=
0.5,0.75,0.9,0.95 and 098; the results remain the same under the transformatien(1 — x),

i.e., there is reflectional symmetry about 0.5. Moving from bottom to top, sub-panels have
different source velocity; = 50,100 150 and 200 km$. The source distance is fixed at
Ds = 8 kpc. The black line shows the boundary between close- and rescaastic structures,
above which we do not plat. As in Figure 4.5, there are points where the calculatios of

fails, but these are not shown for clarity as they do not impinge on thenggidetectability.
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detectability maps similar to that in Figure 4.5, but for assaatioq = 0.99, pho-
tometric precisiomMmy,, = 0.01 and various values of the lens distance and source
velocity. It is clear that the source velocity has a larffe@ on the detectability, with
large regions of detectability fag = 50 km st at all lens positions, which are reduced
drastically forv; = 100 km s. Oncev; = 150 km s? there is only a tiny region of
low detectability for lenses very close to the source (orh® observer, ag(1l — x)

is symmetric abouk = 0.5). Forv; = 200 km s there is only detectability in the
most favourable cases of very high photometric accuracyfi@utional lens distance.
This strong dependence enoccurs because the number of orbits completed by the
lens decreases agincreases (thtsart‘z/5 term in Equation 4.3) but does noffect the
strength of binary features (Equation 4.5 is independent)ofin other words, when
taking the ratio of the upper and lower limits afthev; term does not cancel at all but
all other terms cancel to a degree. Unfortunately, the neasing event rate peaks at
v ~ 200 km s?, but there is a significant fraction of events with< 100 km s* (e.g.,
Dominik 2006).

The lens distance does ndfect the size of the detectable region as strongly as
the source velocity does, as the upper and lower limits ofittectable region scale
with x(1- x) as similar power laws<0.4 and—0.5 respectively). However, this similar
scaling does mean that the detectable regions moxehanges, occurring at lower
and increasing in size slightly a1l — x) decreases. For microlensing events towards
the Galactic bulge, the event rate peakx at 0.8 (e.g Dominik 2006), whereas for

self lensing in the Magellanic cloudswill be close to unityx ~ 0.98.

The dfect of photometric precision

Figure 4.7 plots the detectability for feerent values of the photometric precision
Amy,in. The photometric precision of the observations stronffigas the detectability

of repeating features. Fam,, = 0.005 and 1 we see large regions of detectabil-
ity for small source velocities and fakm,,, = 0.005 even some detectability when

Vi = 200 km st. As Amy;, increases to .02, the detectable regions shrink signifi-
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Figure 4.7 — As Figure 4.6, but plotted for three more values of the photontbtdgshold
Ampin = 0.005 and 02 in the top and bottom figures, respectively, &md,;, = 0.04 in the

figure continued on the next page.
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Figure 4.7 — Continued

cantly and all but disappear foy > 100 km st. For Amy,, = 0.04 there is virtually
no detectability, with only a small chance of detection fog smallest velocities and
largest lens distances. Increasing the threshfiitavely increases the lower limit of
a at which binary features are detectable, while leaving thpeu limit unchanged.
Therefore, just as with the source velocity, the photoragknieshold has a largdtect
on the size of the detectability region. It should be notext the detection threshold
Ampin is In fact a combination of thefkects of photometric precision and the blend-
ing by unrelated starlight, which acts to add a noise compbtethe measurement
of the magnification caused by the lens. Tlieet of blending is discussed further in
Section 4.6.1.

Even in the most favourable case of low photometric threshimw source ve-
locity and high fractional lens distance, the region of d&tbility does not reach the

boundary between close- and resonant-caustic topologies.is because, as the pro-
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jected separation increases and approaches the closentdopology boundary, the
secondary caustics move rapidly inwards to merge with timrakcaustic. This de-
creases the radial range over which binary features aretdéle. At the same time the
orbital period will increase rapidly as the semimajor axisreases. These combined
effects mean that in order to see repeating features from a lgimsasonant topology,
an extremely low source velocity is necessary to allow tins e orbit in the time the
source spends near the resonant caustic. Dominik (1998bpuies lightcurves for
events with rapidly-rotating resonant caustics, but daesestimate how often such

situations will arise.

The dfect of the mass ratio

Figure 4.8 shows the same maps as Figure 4.6 but féerotig g, and the threshold
fixed atAmyn = 0.01. The maps fog = 0.3 are similar to those fay = 0.99 and there

is little difference in the size of the region of detectability. Howevagex has fallen

to 0.1, the size of the detectable region has begun to shrink,thatHior higher values
of Ampin (Not shown) there is only a very small chance of detectioh wihall source

velocities. For lower mass ratios still, there are only vemyall regions of detectability
for g = 0.03 and &ectively zero detectability fog = 0.01. If we take the boundary
between brown dwarfs and planets to be a3« there is a very small region of
detectability where the secondary lens is a planet, butpb® af the detectable region
(where the upper and lower limits meet) occurs close to thisldary regardless of the
mass ratio. So, there is little chance of detecting repgd#atures from a planetary
system unless the photometry is very accurate, the lensclesg to the source or the
source velocity is significantly smaller than 50 knt.sSuch low velocity events are
rare but are known to occur, e.g., the event OGLE-1999-BlOGdd a source velocity

Vi =125+ 1.1 km s (Smith et al. 2002b).
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Figure 4.8 — As Figure 4.7, but plotted forfidiring mass ratios in each grid. Moving from
top to bottom (continued on following pages) the detectability is plotted, fer0.3,0.1, 0.03
and Q01. The total mass corresponding to a secondary below the deuteriurimdpdimit
Mp = 13Mjypiter IS M < 0.054Mp, M < 0.14Mg, M < 0.43M, andM < 1.25M,, respectively

for each value of. The photometric detection threshold in each cagenig;, = 0.01.

4.3.3 How many RRL events will we detect?

To estimate the rate of detectable RRL events we conductedudagion of a space-
basedH-band microlensing survey, such Baclid (Beaulieu et al. 2010) OWFIRST
(Bennett 2011), and a ground-badelland survey, based on OGLE-III (Udalski et al.
1997; Udalski 2003). More details abobtclid and WFIRSTcan be found in the
next chapter. Using the Besancon population synthesiehwidhe Galaxy (Robin
et al. 2003), including a three dimensional extinction md¢Marshall et al. 2006), we

produced a catalogue of possible microlensing eventsviolig the recipe of Kerins
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Figure 4.8 — Continued
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et al. (2009). Source stars with magnitudés< 25 andls < 21 are drawn from the
Besancon model and lensed by stars of any magnitude in #zespnd ground-based
simulations respectively. The lens mass is split up into ¢@mponents with a mass
ratio g distributed logarithmically in the rangg = 0.1-1 and orbit with a semimajor
axisa distributed logarithmically in the range= 0.1-4 AU. Each event is assigned a
weightingw = 2rgViup max Proportional to its event rate, whewg nax is the maximum
impact parameter that the event could have and its peakesieagé magnification re-
main detected atdb above baseline, taking into account blending. Each evest wa
assigned a blending fractioff < 1 drawn from the blending distributions of Smith
et al. (2007), with source density 131 stars per square atcamd seeing.U arcsec
and 105 arcsec for the space-based and ground-based simulatgpectively. This
will significantly overestimate the blendingtect for the space-based simulation, as

the difraction-limited PSF for a 1-m telescope will have a full vncit half maxi-
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mum ~0.4 arcsec; Smith et al. (2007) do not simulate seeing bettar @Y arcsec.
The final blending sfliered by the sourcds also includes flux from the lens, which
is obtained from the Besangon model assuming it is a sirtgle $lowever, the lu-
minosity of binary star with the same total mass as a single will be less than
the single-star luminosity, as luminosity scales roughdyM&# for low-mass main-
sequence stars (Henry and McCarthy 1993, based-band mass-luminosity relation
for massesM = 0.18-Q5M,,). The severity of blending is thus overestimated in both
ground- and space-based simulations, much more so for Hmedmsed survey, and
as blending has a largédtect on the detectability (see Section 4.6.1), the evens rate
we estimate will be conservative. However, we do not incltiie éfect of orbital
inclination, which can decrease the amplitude of lighteuieatures slightly (see Sec-
tion 4.6.3), so this optimistic assumption will likely balze the pessimistic blending
we apply. The photometric detection threshold was caledld&tased approximately
on the proposed design of tligiclid mission (Euclid payload manager 2009) for the
space-based survey and the OGLE-III setup (Udalski et 87 1for the ground-based
setup. Total event rates are normalized to ratgs= 7000 yr* for the space-based
survey (e.g., Bennett and Rhie 2002) did = 600 yr* for the ground-based survey,
corresponding roughly with the rate detected by the OGLEdivey. The rate of RRL

eventd rg, is taken to be
L
[RrL = ﬁ Z Wi, 4.7)

the normalized sum of the product gfandw;, the detectability and weight of eveint
respectively, over all microlensing events, whigve= >’ w; is again summed over all
events.

The simulations do not account for the observing strategysssume that frequent
monitoring (a few data points per night or greater) is condddor a significant frac-
tion of the year (6 months or greater). It idfttult to assess the impact of seasonal
observability on the probability of detecting repeatingttees without performing de-

tailed detection ficiency simulations. To account for this we introduce a fadtg.s
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the fraction of a year spent continuously observing, whechpproximately the prob-
ability that an individual feature is ‘caught’. We must absmount for the fact that not
every lens is binary. Raghavan et al. (2010) find that 44 perkstellar systems are
multiple, with mass ratiog > 0.1, and of these about 20 percent lie in the appropriate
semi-major axis range, so we adopt a binary fractips 0.1.

For our entire sample of space-based survey events we finRRla events make
up a fraction (11 + 0.2) x 103 of the total microlensing event rate, which corresponds
to an event rat€rr. = (7.8 + 1.5)fscadh yr~t. Similarly for the ground-based survey
we find that a fraction (® + 0.1) x 102 of the total microlensing event rate is made
up of RRLs, which corresponds to an event latg, = (0.32+ 0.06)fscadp yr=2. Inall
cases the errors are statistical.

Figure 4.9 shows the distribution of microlensing timessdbr the detectable RRL
events and all microlensing events in the space-basedaionl The results are very
similar for the ground-based survey, other than the ovei@imalization. The distri-
butions do not take into account any timescale dependendetextion éiciency, or
the binary fraction. The timescale distribution for RRL®8ls a peak at: ~ 200 d,
i.e., at timescales a factor of ten longer than the overaltaleénsing timescale distri-
bution. Even at this timescale, however, detectable RRhtsuaake up less than one
percent of the whole. As the timescale increases, the fracti RRL events increases.
Long-timescale events are intrinsically rare, but RRL ¢s@make up a significant frac-
tion of all events with these timescales and so such eveatgomd targets to search for
RRL signals. Additionally, their long timescales mean #math event is observable for
many years and it is possible to obtain dense coverage oigelirve with standard
survey-mode observations. The timescale distributiorafbevents agrees well with
the expected asymptotic behaviour (Mao and Paskiy1996), except for the points at
very small and largé:, where small number statistics are fiffieet.

Various microlensing surveys have targeted the Galactigebmore or less con-
tinuously for roughly twenty years. These survey-mode plz®ns take place over

much of the year, so the seasonal observability fatitqewill be close to unity. There
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Figure 4.9 — Microlensing timescale distributions for detectable RRL everlid (ip&) and all
microlensing events (dashed line) for the space-based survey. Tuasied lines show the
expected asymptotic slope of the timescale distribution, with power law indi@8€¢8ao and

Paczyiski 1996).

is therefore a good chance that there is of the order of one &Rht in current mi-
crolensing data sets. New ground-based microlensing gsirgeme already in oper-
ation and some due to start in the near future, will increaseowerall microlensing
event rate significantly, so there is also a reasonable ehafrdetecting of the order of
one RRL event over a timescal® yr.

A space-based microlensing survey is proposed for two spasseions which
would launch at the end of the decade: ESAglid (Beaulieu et al. 2010) and NASA's
WFIRST(Bennett 2011). Such a mission may only spend 2—3 monthsgsarper-
forming a microlensing survey, as the majority of observiimge would be spent on

dark energy surveys. As such the seasonal observalhility~ 0.2 factor would be
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low, and a high degree of coincidence would be necessary tittipie RRL features

to fall within the observing windows. The number of spacedthRRL detections is
therefore likely to be low in reality. However, a dedicatgrhse-based microlensing
survey, possibly as a mission extensionBoclid or WFIRST, observing the bulge

continuously for most of the year would be very likely to d#tBRL events.

4.4 Estimating RRL parameters

The lightcurve of a static-binary microlensing event camtanformation on the lens,
which can be found by fitting the lightcurve with a static-4oiy microlensing model.
Similarly, the lightcurve of an RRL contains informationaalt the lens and its or-
bit. In this section we investigate the information it is pite to extract from RRL
lightcurves and how this can be done. More specifically, wezd@ number of approx-
imations that relate the parameters of the RRL, includirgaitbital period, to features
of the lightcurve. These approximate parameters can thesdeas the initial guesses
for a fit to the lightcurve.

The static-binary-lens lightcurve for a point source cardbecribed with a min-
imum of seven parameters: three to describe the sourcetimaje usually an impact
parametei, and angler, and the time of closest approach to the originone for
the lightcurve baseliney,; two to describe the lens, the mass ragi@and projected
separations in units of Einstein radii; and finally the Einstein radiuossing time
te. The coordinate system is usually chosen so that both ldieser the x-axis and
the origin is the centre of mass; we shall refer to this cowath system as th&atic
centre-of-mass system

The simplest RRL, with a face-on, circular orbit requirestjone additional param-
eter, the orbital period’, for a total of eight parameters. In contrast, a full Keg@ari
orbit requires five additional parameters (including theigmd, bringing the total to
thirteen parameters, many of which will be hard to constr&ife demonstrate below

that the eight parameters of the face-on, circular modell=mamvell constrained by
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Figure 4.10 — Parametrization of the RRL. Caustics are shown as solid rex] tire lens
positions as red circles, with the primary lens in the positive quadrant, arsthtinee trajectory

as a solid green line at positive The green line at negativeshows the trajectory of a source
with negativeuy (see text for more details). The binary axis (BA), which subtends afeang
¢(t) relative to the fixedx-axis, rotates at a frequeney = 2r/T. (Us, ) is the position of
one of the secondary caustics in polar coordinates that rotate with the lairiar similarly,

the other caustic is ati(,_). The blue dotted line shows the Bozza (2000b) approximation
to the position of the centre of the secondary caustic (Equation 4.14) fdettssThe lens has

the parameters = 0.65 andq = 0.1, and lengths are in units of the Einstein radius.
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the lightcurve and parameters cafieetively be ‘read &’ the lightcurve with only a
small amount of algebraic manipulation. It should be pdssib use these parame-
ter estimates in a more detailed modelling analysis, eitiserg the face-on, circular
model (which will be well constrained should the face-ong@iar orbit approximation
apply), or as partial constraints for a full Keplerian modghis analysis, which we de-
scribe briefly later, can significantly reduce the range ohpeeters it is necessary to
search in order to find the best-fitting event model. In Secli®.3 we briefly discuss
the dfects of orbital inclination and eccentricity on the lighteess and detectability of
RRLs, and in Section 4.6.4 we discuss tlfieet of parallax on an RRL lightcurve.

We choose a coordinate system fixed with respect to the skiy, itgi origin the
lens centre of mass. As such, the lens components are not feedonvenience, we
recast the angle — ¢o, wheregy is the angle subtended by the primary mass relative
to thex-axis at timety and we fix the angle of the source trajectory such that theceour

travels parallel to thg-axis. At timet the source is at the (complex) position

240 = (1. ) @8)

and subtends the angle

-t
ot) = arctar( 0), (4.9)
Upte
with respect to thex-axis. Similarly, the binary axis, which we define as the line

extending from the centre of mass through the primary maggeads an angle

50 = Z(t- 1) + 6o, (4.10)

with respect to the-axis. This parametrization is shown in Figure 4.10. Thepaatriza-
tion differs from that recently proposed by Skowron et al. (2011) fbitmg-binary

lenses, which is best suited for binaries with orbits muaigkr than the microlens-
ing timescale. The Skowron et al. (2011) parametrizatioaxigressed in terms of
the 3-dimensional position and velocity of one lens compgnas the on-sky posi-
tion components will be well constrained. The on-sky velpciomponents may be

well constrained and the radial position and velocity akelli to be poorly or not
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constrained. However, as we will show, for an RRL it is theitadlperiod and phase
angles that will be well constrained, so it is better to cotlat problem in terms of
these quantities.

Many of the features in a close-binary-lens magnificatiotigpa are radial, or
approximately so. This makes them ideal for measuring ttegiom rate of the lens. A
feature occurs on the lightcurve when a magnification-pafieature sweeps over the
source. A radial feature that subtends the aggleslative to the binary axis will occur

on the lightcurve when
o(t) = o(t) + ys. (4.11)

By solving this equation we can use the timing of repeatetlfea to easily obtain
approximate measurements of some of the lens parametessmBans that many of
the lens parameters can be ‘redti-the lightcurve and it is possible to build an ap-
proximate model of the lens quickly, without complex anay$or such estimations,

the most important magnification map features are:

¢ the magnification arms (shown in Figure 4.1, which extenthftbe central caus-

tic to the secondary caustics),

e a planetary demagnification (a region of demagnificatioatiet to the single
lens) that lies between the secondary caustics, with iténmoim lying along the

binary axis.

The planetary demagnification feature is only present fasds with small mass ratios
g < 0.3. Both features are complementary, as in equal-massiataries the plan-
etary demagnification does not occur, but the magnificatrarsare strong and very
close to radial, while in low-mass-ratio binaries the mégation arms are weaker and
less radial, but the demagnification region is strong anégblies atys = .

Figure 4.11 shows a lightcurve where features repeat dirdivg times. The first
step to estimating RRL parameters is to fit the lightcurvénaiPaczfiski curve. This

is arelatively trivial task and most RRL lightcurves will@pximate a PacZyski curve
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Figure 4.11 — An example lightcurve of an RRL showing how lightcurve festuelate to the
parameters of the lens. The lens has paramégtets30d,T = 38d,s=0.3,g=0.1,up = 0.8,
¢o = 2.14.

with only small deviations. This fit allows an accurate estiion of the parametets,
te and|ug|, the last down to an ambiguity in sign, which correspondshi gource
moving upwards and passing the lens centre on its left (pesig) or right (negative
Up), having imposed the convention that the lens always retai#i-clockwise. This
Paczyski model completely describes the source trajectory amtd defines the left
hand side of Equation 4.11. The orbital period can now benegéd by timing two
occurrences of the same magnification-pattern feature. pened is not simply the
time elapsed between two features because the source movsg tthis time. Instead,
by solving Equation 4.11 we can find the relation between ghodT and the time of

two consecutive occurrences of the same magnificatiorqpafttature at timeg and
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T 2n
2m + [0(t2) — 6(t1)]
where the fraction is the number of orbits the source coreplbetween the two source

(to—ty), (4.12)

encounters. The degeneracy in the measurement of the sigrafdécts this equation,
due to the presence of tlgt) terms, but can be resolved if more than one pair of
features is available for estimating, as only one value ofip will give consistent
estimates ofl for different feature pairs.

With an estimate of the period, if we know the angle subtertoled feature on
the magnification mapg¢, we can also estimate the phase anfgleagain taking into

account the source motion

o= ) = 1 — = ). 413)

The planetary demagnification region hias= 0, which makes this task simple. How-
ever, the demagnification may not be obvious or, if the matés of the lens is high,
may not be present. Inthese cases it is necessary tognfmwthe magnification arms.
Knowing that they extend from the central caustic (roughlyha centre of mass) to
the secondary caustics, we need only know the position oéleendary caustics to
estimatey;. Bozza (2000b) has derived analytical approximationsHergosition and
shape of secondary caustics in close lenses swthl, using a series expansion of the
Jacobian. He finds that the secondary caustics are located at

1 | (1-9(1-9)
S(1+0q) ++4/0(2 - &)

in the static centre-of-mass system. Figure 4.10 showghigexpression is reason-

Z, =~ , (4.14)

able even whers is quite large. If we assume the magnification arms are radial
can use Equation 4.14 to approximate the angle of the magtiiitarms, to second

orderins, as

£/0(2+ &)
1-q

which is relatively insensitive to the lens separatsoit is useful to note the asymptotic

Y. ~ arcta , (4.15)

behavioury, ~ +29%2 asq — 0 andy. — +rasq — 1. While the dependence of
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onq implies an ambiguity in the estimation @§, the corollary is that we can estimate
the mass ratio from the timing of features as well. Using thees of consecutive

magnification-arm crossings, andt_, we have
1 21
sl = 5 j6(t) - 6(t.) - = (t - t.)]. (4.16)

This value can be substituted into Equation 4.13 and Equdtib5 can then be solved
for g.

The remaining parameter that we are interested in is thedeparations. The
angle of features is essentially independens, o it is not possible to estimasshy
timing features. However, by noting that the magnificatiattgrn becomes essentially
featureless beyond the secondary caustics (see Figureadd.)hat the position of the
caustics does depend anit is possible to estimats from the lightcurve. Unfortu-
nately the secondary caustics are very small, and in mostt®vwkey will not pass
directly over the source, so the estimate will not be veryaaie. The best estimate of
the position of the caustic will be derived from the largesak due to a magnification
arm in the wings of the lightcurve (e.g., the peak at—90 d in Figure 4.11). This will
occur when the radial source position approximately caolesiwith the radial caustic

position, so thalz)? ~ |z.|*. Using Equation 4.2, to first order, we can write

-
us + (u) } , (4.17)

wheret. is the time of the peak due to the caustic.

We have outlined how the parameters of an RRL can be estinfiaedpairs of
feature timings in the case of the simplest RRL. However, givan event there may
be many repetitions and better parameter estimates cantéi@ed by considering all
the lightcurve features simultaneously. For a given maggiifbn pattern and source
trajectory it is possible to compute a timing model by findallgpossible solutions of
Equation 4.119(t) = #(t) + ys for each feature. By extracting the occurrence time
of all the lightcurve features it is possible to fit timing nadsl to this timing data. It

is also possible to add additional features to this timinglehosuch as thefects of
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inclination and eccentricity by modifying the functiett), or microlensing parallax
by modifying 6(t). This modelling may be significantly faster than a full liglrve-
fitting analysis, especially when additiondfexts are included, as there is no need
to calculate finite-source magnifications. While it will nodly remove the need for
lightcurve fitting, it will significantly narrow down the ra@e of parameters over which

lightcurve fitting has to search.

4.5 Measuring RRL masses

We have shown that it is possible to estimate the parametars RRL lightcurve, but
what we would really like is to be able to measure the phygeahmeters of the lens,
most importantly the lens mass and the binary separatiohysipal units. Compared
to a static-binary lens, we have one additional piece ofrmédion with which to infer
M anda: the orbital period. Dominik (1998b) has shown that by camry the orbital
periodT and the lens separati@nit is possible to write down a mass-distance relation
4
M= C655x3(-|1- —X)D¥’

(4.18)

which relates the mass to the lens distance through knowntifjea, assuming the
source distance is known from its colour and magnitude; gms@nt
C= 2.85M51/2 AU kpcY?2 when the period is measured in years and the source dis-
tance in kpc. As we will demonstrate in Section 4.6.3, it kely that if the orbit is
inclined it will be possible to measure the inclination armg@unt for projection, so
that the value of that is measured can be used to obtain a good approximation of
a/re. This means that as Equation 4.18 has a minimur-=a0.5, we can place a firm
lower limit on the mass of the lens, and an upper limit on thmis@ajor axis.

To improve on the mass-distance relation, an additionatep@ information is
needed to break the degeneracy. This can be obtained by nmgggu= AU(1—X)/rg,
the microlensing parallax (Gould 1992), or by measurag= rg/D,, the angular

Einstein radius, through detection of finite-sour@@ets (Gould 1994b; Nemifband
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Figure 4.12 — Plot of the various mass-distance relations for the evewnshd-igure 4.11,
labelled by the parameter measurement that would allow their definition. Toesapoint
into the region that isllowed should only an upper limit off, 7g or 6 be available. If the
periodT is measured along with only one st or 8¢, the mass and distance to the lens can
not be determined uniquely, but even a relatively weak upper limit on the pt#tameter may
be suficient to rule out one possible solution; note however that a lack of finilecseadfects

places a lower limit org.

Wickramasinghe 1994; Witt and Mao 1994), or direct detectibthe lens once it has
separated from the source (Alcock et al. 2001a; Bennett @086, 2007; Koztowski
et al. 2007). Measurement of either or 6 allows a second mass-distance relation to
be written, forrg (Gould 1992)

AU?(1 -
M= AV -X) (4.19)
C2xDgr2
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or similarly for 6z (Gould 1994b; Nemirfi and Wickramasinghe 1994)
2

_ —CS(E;E)SX), (4.20)
if g is measured in units of mas. One of these relations can theorined with
Equation 4.18 to yield two possible solutions to the massdisince. This can be
seen in Figure 4.12, which plots the mass-distance reltionthe event shown in
Figure 4.112 The nz- and#g-lines cross thel -line in two places: once at the true
parameter valueg = 0.95, M = 1M, and once at other values & and x which
are dtferent for each relation. With a measurement of only onegobr g it is not
possible to uniquely determine the mass and the distangs isTlikely to be the case,
as finite-source féects are most likely in lenses close to the source, whilellpara
is most likely in lenses close to the observer. However, evamude limit on the
unmeasured parameter may be enough to rule out one possilbiii®s, e.g., an upper
limit on ¢ from the lack of parallax fects may allow the solution with small&rto
be ruled out, or a lower limit o: from the lack of finite-sourcefBects may allow the
solution with largerx to be ruled out. Direct detection of the lens may require § ver
long time baseline as RRL features are most detectable mswéth low lens-source
proper motions. However, RRLs are more likely to be more magban the average
lens (and therefore brighter) and théthction limit of 30—40-m class telescopes, such
as the Thirty Metre Telescope (TM¥)he Giant Magellan Telescope (GMT)r the
European Extremely Large Telescope (E-EEThay be s#icient to resolve the lens

and source in a reasonable time.

2Note that parallax or finite-sourcéfects were not included in the model used to plot the lighteurv
Shttpy//www.tmt.org

“http;/www.gmto.org

Shttpy//www.eso.orgpubligteles-instfe-elt.html
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Figure 4.13 — The féect of blending on the photometric detection threshold. Tiecgve
thresholdAmy,;, is plotted against the ratio of source to total blend ffusfor three values of
photometric precisioarn,. The solid lines show the exact value, whereas the dashed line shows

the approximation for smattn,.

4.6 Additional factors affecting RRL detectability

In the preceding sections we have mentioned a number ofiaditefects that can
affect the form of an RRL lightcurve and its detectability. Imstsection we briefly
outline the most importantfiects and the impact they have on RRL lightcurves and

detectability.

MATTHEW T. PENNY 153



4: RAPIDLY-ROTATING LENSES

4.6.1 Blending

For a given photometric precisian, magnitudes, theftective threshold at the event

baseline is

Ay = 25l0g(10°™ - 1+ ;) - 25log (4.21)

~25 Iog(l + 0.92%), (4.22)

S

where the approximation applies for smal} and fs is the fraction of the total light at
baseline contributed by the unlensed source. Figure 4 d8sthis for various values
of the photometric threshold. It is clear that only with theshaccurate photometry
will it be possible to detect RRL features when the blend igoutes most of the flux;
for less accurate photometny,, ~ 0.02, even a small amount of blending will sig-
nificantly afect the detectability of features. Thé&ext of blending decreases as the
magnification increases, but we wish to see features ovaritie lightcurve and only

a small region of the lightcurve will be magnified enough tgngiicantly reduce the

effect of blending.

4.6.2 Finite-source ffects

Figure 4.14 shows the lightcurve of an RRL lensing a giants®of radius 10Bg,

in comparison to the same RRL lensing a point source. Tieeteof the finite source
on the lightcurve is clear, causing a wider, lower peak miagation. Whilst the lens
centre of mass transits the source, therefisatively no deviation from the finite-
source point-lens lightcurve, except for spikes in thedwesl att ~ +20 d which are
characteristic of a large source crossing a small centradtea(Dong et al. 2009a; Han
2009a). In the wings of the lightcurve there is very litti&fdience between the finite-
and point-source lightcurves and most of the features irréseluals have the same
amplitude. Only when the source is very close to the secgnoiaustic is there any
deviation from the point-source lightcurve in the wings.eTgft inset of Figure 4.14

shows that the peak in the finite-source lightcurvet at —210 d is slightly broader
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Figure 4.14 — The lightcurve of an RRL lensing a finite source of radiu&k3dblack) com-
pared to the lightcurve of the same RRL lensing a point source (grey)insbefigures show
in more detail the residuals when the source is close to the secondary ¢andtie left) and
the central caustic (on the right). The lens has a Miss0.8M,, semimajor axig = 0.4 AU,
mass ratiay = 0.3, fractional lens distance= 0.95, source distandes = 8 kpc, source veloc-
ity vi = 50 km s, impact parameteuy = 0.1 and phase anglg = n/4. The ratio of source
to Einstein angular radjp. = 65/6g = 0.28 is very large. Thefects of finite sources are only

significant when the source is near the central or secondary caustics.

and about half the amplitude of the point-source lightcurirgerestingly, this peak,
although broadened by the finite-source, is still much weerahan the source crossing
time, which determines the width of the central peak. Itstivid instead determined
by the time taken for the secondary caustic to cross a soumoseder.

The example we have shown is very extreme, with a very largecsovery close to

the lens, and even then the finite-sourffe@s only render binary features undetectable
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over a relatively small fraction of the lightcurve. A typlagiant source star will be

up to a factor of ten smaller, so the part of the lightcurveesely dfected by finite-
source #ects will be correspondingly smaller. As the source has ttrdnesited by
the lens centre for finite-sourcéfects to become apparent at the lightcurve peak, the
probability of this occurring is also reduced by the samédiad his means that finite-
source &ects will not dfect the detectability of repeating features very much. Iféin
source fects are detected in an event, the measurement of the sadras,rcombined
with a measurement of the lens period can be used togethegdsure the lens mass

to a two fold degeneracy (Dominik 1998b).

4.6.3 Inclination and eccentricity

Inclination and eccentricity of the lens orbit will act to keathe magnification-pattern
motion much more complicated, as changes in the projecteddeparation cause the
caustics to move and change shape (see, e.g., Figures 31024). The &ects are
too complicated to investigate in detail here, but it is Wwarbnsidering them in brief.
For a lens with a given semimajor axis, inclining the orbibshll reduce the detectabil-
ity of features over part of the orbit, asdecreases. Figure 4.15 shows tifkeet of
inclination on the lightcurve of an RRL. It shows that indtion tends to decrease the
amplitude of features but does not completely wipe them exgn when the inclina-
tioni = 9C°. In this extreme case, rather than rotating, the secondaugtics move
along diagonal lines as the projected separation of theeteasanges, but their angle
does not (except for flips by every half period). Inclination significantly changes the
morphology of the lightcurve and can also change the timigeaks (see, e.g., those
att ~ —300 d), which implies that it may be possible to measure thknation of the
lens orbit from the lightcurve.

In contrast to inclination, eccentricity may increase tletedtability of features.
For a given semimajor axis, eccentricity can both increaskdecrease the projected

separation. However, Kepler's second law implies that émes lwill spend longer at
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Figure 4.15 — The lightcurves of RRLs withfflirent orbital inclinations relative to the line of
sight. For each lightcurve, the lens has miks 0.58M, semimajor axia = 0.54 AU, mass
ratioq = 0.52, fractional lens distance= 0.86, source distand®s = 9.5 kpc, source velocity
v = 61 km st, impact parametary = 0.77, phase anglgg = 4.3 measured in the plane of the

orbit. The orbit was circular, and inclined about theaxis as defined in Figure 4.10.

larger projected separations (assuming no inclinatiors)wih inclination, eccentric-
ity will also change the lightcurve morphology and timingfeatures, so it may also
be possible to measure the eccentricity of the lens fromigivdurve. Simultaneously
including the &ects of inclination and eccentricity in the modelling of aRIRevent

will likely be difficult, as together they require an additional four paranseteer the

standard RRL parametrization. However, as the angle of ifiegtion-pattern features
does not depend strongly on the projected separation,libeipossible to include in-
clination and eccentricity in the timing analysis proposedection 4.4. This may

significantly ease the analysis by narrowing down the seapelte to the range of
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parameters compatible with timing measurements.

4.6.4 Parallax

Parallax &ects due to the motion of the Earth about the Sun will caussadbece to
appear to take a curved path through the plane of the sky dhdft®ict the lightcurve
of an RRL event. If the magnitude of the paralldteet is small then it will cause only
small perturbations to the shape of the lightcurve and tinéng of features. Larger
effects may cause significant changes to the RRL lightcurveifgigntly changing the
timing of features, and possibly making them appear ledsghier or adding a stronger
annual periodicity to the lightcurve. However, while p#a@lmay significantly com-
plicate the interpretation of an RRL event, it does rfiget the magnification map and
the detectability of RRL features should remain the samerelher, the detection of
parallax in an RRL event will allow the lens mass to be meafuaeleast to a two-
fold degeneracy (see Section 4.4). Due to the photometegracy required to detect
RRLs and the long timescales of the events, the probabfiidetecting parallax along

with RRL features is significant (Buchalter and Kamionkoinds¥97).

4.7 Discussion and conclusion

Although the phenomena of microlensing by lenses with rapiital motion has been
discussed previously in the literature (Dominik 1998b; @tpand Gould 2000; Dubath
et al. 2007), no work so far has properly treated all the fisctequired to estimate a
realistic event rate. In this chapter, we have outlined i@ty of RRLs and used it to
estimate the range of parameters over which they are dbteaad the rate at which
they are expected to be observed. We find that RRLs with maswkerbital radii
typical of binary stars are detectable and that there is soregble chance that they
will be detected, either in current microlensing data set& @ngoing or near-future

microlensing surveys.
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In calculating these rates we have actually used the relgtstringent criteria of
requiring that two or more lightcurve features from the samistal phase are detected
in the lightcurve. If we relax this repetition requiremeoinsewnhat, to include lenses
that display significant signs of orbital motion (say seVdegjrees rotation pég), the
event rate will increase significantly, as lenses can thee kerger orbits and hence
stronger lightcurve features. In the previous chapter we Ishown that orbital motion
is detectable in a large fraction-15 percent, see Figure 3.11) of binary lenses with
detectable binary-lensing features and orbital periogsparable to the microlensing
timescale.

We have detailed how the features of an RRL lightcurve candeel to measure
its period and potentially measure its mass. Even if featdenot repeat, if several
features are detectable in the lightcurves of binary-leesnts then the techniques we
have outlined for timing features and extracting paramegtimates may be of some
use in their analysis. Without repeating features, thetaklpieriod may not be con-
strained as accurately, but it should be possible to plaostrints on the lens mass
and orbit in many cases.

So far we have neglected to discuss the prospects for pagitientifying RRL
events from other events which may mimic their featuresideler features may also
be induced by orbital motion in the observer and source glameintrinsic variability
in the source or a blend star. In the observer plane, thegbefiorbital parallax &ects
is well defined and unless the lens has an orbital period @irtol 1 yr, it is unlikely
the dfects will be confused. Even if the orbital period is closene gear, the shape of
features in the lightcurve are likely to befldirent. Orbital &ects in the source plane
may be more dficult to exclude as the period is not fixed. If there is only agkn
luminous source (the xallarap case, Pdsky 1997; Han and Gould 1997; Rahvar and
Dominik 2009), a timing analysis similar to the one we pragab$or the lens can be
performed for the source. This analysis should be somevwdsa¢eand more precise
for xallarap as there are no complicated features in the rfiegtion pattern. If this

timing analysis is insflicient to separate the two cases then the shape of lightcurve
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features may dierentiate the two interpretations. In the case where bailhces are
luminous, the lightcurve can take a more complicated shapeh may more closely
resemble that of an RRL (e.g., Cherepashchuk et al. 1995; hthGauld 1997). Even
in this case, timing analysis for maxima and minima of thatikgirve should be easier
than for RRLs, and full lightcurve modelling starting fromming analysis solutions
will likely be able to diferentiate the two scenarios. Finally, variability of theism®
or a blend may also produce similar lightcurve featureshilf variability is detectable
at baseline, then as long as the baseline is long enough thes&ario need not be
considered (Wyrzykowski et al. 2006).

It is worth noting that we should naively expect the rate ofLiRRgnificant lens
orbital motion events to be similar to the rate of binary+seuorbital motion events.
This is because the factors that govern their occurrenash as the ratio of orbital
separation to the Einstein ring and the ratio of orbital tenoliensing timescales, will
have similar distributions in the lens and source poputetio Similarly, we would
expect the rate of parallax events to be roughly ten timeatgrehan the rate of RRL
events with orbital periods1 yr, as the binary fraction is0.1 while the observer is
always orbiting. It is worth comparing this with the numbérreported single-lens
parallax events;20-50 (e.g., Poindexter et al. 2005; Smith et al. 2005, afedarces
therein), while~10 events have been successfully fitted with xallarap mg@ststh
et al. 2003; Poindexter et al. 2005). In contrast, only omatyi-lens event has shown
significant rotation, MACHO-97-BLG-41 (Albrow et al. 2000 this event, the lens
rotates at-4° pertg (a low rotation rate compared to RRLS), which is detectedkba
to the source crossing the central and one secondary caasbpposed to the smaller,
smoother, more continuous features of RRLs. It is possit®@esfore that many events
with significant rotational orbital motion signatures hav& been modelled or have
been interpreted as xallarap events. Thus it is importattghy event that is modelled

with xallarap also be tested with an orbiting binary-lensielo
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The Manchester-Besancon
microLensing Simulator and its

application to the Euclid mission

5.1 Introduction

In this chapter we return to the central theme of the thesisulations. With the
recent selection oEuclid by ESA (Laureijs et al. 2011) and the top prioritization of
WFIRSTby the “New Worlds, New Horizons” report (Blandford et al.1Z), there is

a significant chance that a space-based planetary michoieasrvey may be under-
taken at the end of the decade. This has produced renewedsinie microlensing
simulations, which will be used to optimize any survey befaris launched. This
chapter describes the development of a new microlensinglator,MaBulLS. It is the
first simulator to combine a population synthesis Galactclet (the Besangcon model
Robin et al. 2003) with a comprehensive treatment of mudtibimaging photometry.

As a preliminary test of the simulator we apply it to a simigdatof theEuclid mission.

Part of the work presented in this chapter will be submittegfiblication as M. T. Penny, E. Kerins,
N. J. Rattenbury, J.-P. Beaulieu, A. C. Robin and S. Mao, teutenitted.
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We begin the chapter by reviewing the current theories afgiformation and evo-
lution, and how microlensing can be used to test these. Waprde theory of plan-
etary microlensing, discuss how microlensing surveys capdrformed from space
and introduce th&uclid mission. In Section 5.2 we describe the simulator, outjnin
the major features and explaining some of the design chologhis section we also
describe the Besanc¢on Galactic model, which is used byitéator. In Section 5.3
we describe the results of the prelimindtyclid simulation, before ending with a dis-

cussion in Section 5.4.

5.1.1 Planet formation and evolution

The burgeoning list of known exoplanets is revealing hugerdity in the properties
and structure of exoplanetary systems. The formation antligon of planetary sys-
tems is still an open question and an area of significant owgeasearch. Presently,
two formation models are considered plausible: core aieraind disc instability (see
D’Angelo et al. 2011, for a review).

In the core accretion scenario (Safronov 1969; Mizuno 19&®auer 1987), plan-
ets form out of a thick disc of gas and dust by the gradual byd@f material from dust
grains into larger and larger objects through collisionac©the objects become large
enough, they begin to accrete first dust, and then gas, vidtygra runaway process
as the accretion rate increases with mass. Planet growihtsdhby the protoplanet
clearing its area of the disc or through competition withghdiouring planets (Pollack
et al. 1996). Although at the end of the process planet faonas rapid, the initial
stages of planet growth are slow, and the whole process tditles order of a few Myr,
with an upper limitimposed by the lifetime of the disc (Pokaet al. 1996). In the core
accretion model, terrestrial planets (such as Earth and)Man be considered as the
cores of planets that fail to reach the mass required forwagagas accretion, either
due to their location in the disc or the influence of other ptamearby that grow more

rapidly. The core accretion process is moiogent in a region of enhanced disc den-
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sity where water and other hydrogen compounds condensertoiée (Morfill 1985;
Stevenson and Lunine 1988). This region (the so-calledicerow-line) lies at orbital
radii ~2 AU and is thought to be where most planets form. This is atitkence that
microlensing surveys are most sensitive to planets (seet@hhpnd Section 5.1.2).

In contrast, in the disc instability model (Kuiper 1951; Caomel978; Boss 1997),
giant planets form through a gravitational instability ig@seous disc. Such an insta-
bility can cause fragmentation of the disc into clumps, \whian collapse under grav-
ity in a rapid process taking1000 yr. Stellar irradiation and other factors are thought
to prevent the growth of instabilities at orbital radii lebsn a few tens of AU, limit-
ing the dfectiveness of disc instabilities to form planets at thes¢adces (see, e.g.,
D’Angelo et al. 2011). Beyond this, it is likely that disc tability is the only mech-
anism by which giant planets can form (Boss 2011). In this ehderrestrial planets
are still thought to form through a process similar to coreratton (Boss 2006). Disc
instability therefore predicts that, unless giant plamatgrate inwards from the far
disc, microlensing experiments should detect giant pkaétarge orbital radii, but
only low-mass planets in the region of peak microlensinggity.

From the earliest discoveries of Jupiter-mass planetsaseein orbits around nor-
mal stars (Mayor and Queloz 1995; Marcy and Butler 1996) & haen clear that
the orbital structure of some, if not all, planetary systamsst undergo significant
evolution (Lin et al. 1996), either during the formationgta or in subsequent planet-
planet interactions. Migration of planets during formati@ue to interactions with
the disc, can cause both inward (Goldreich and Tremaine ; ]\8&@d 1997) and out-
ward migration (Masset and Snellgrove 2001). Resonanpingoy giant planets can
cause other planets to join in with this migration (Snellgret al. 2001). More vio-
lent planet-planet interactions can result in planetsdpstattered inwards (Nagasawa
et al. 2008), outwards or even being ejected completely trair systems (Veras et al.
2009). Recent microlensing results on the abundance ditebiplanetary-mass ob-
jects suggest that more than one Jupiter-mass planet pas gtatentially ejected in
this way (Sumi et al. 2011).
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Figure 5.1 — The planet mass—semimajor axis diagram for the known extpl@Exeplan-
ets.eu as of 17th October 2011, Schneider et al. 2011), togetheKejitler candidate plan-
ets (Borucki et al. 2011), plotted assuming the mass-radius relation yseddauer et al.
(2011). Some planets have been clipped at smaller and larger semimajoiGagig.points
show planets detected by radial velocities, green by transits, red by nmisiofe magenta by
direct imaging, orange by timing and light blue points shd@pler candidates. Solar System

planets are denoted by letters.

The planet mass—semimajor axis diagram

The complex interplay between planet formation and orlgit@lution means that the
planet mass—semimajor axis diagrali,(a diagram, see Figure 5.1 for the plot of the
known exoplanets) is a powerful diagnostic for testing pteformation theories (e.g.,
Ida and Lin 2004; Currie 2009). Planets forming via core atmnewill start off at low

masses near the centre of the diagram and move upwards aacdtreye mass (Mor-
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dasini et al. 2009a). Through orbital evolution they will vedhorizontally on the plot,
either smoothly as a result of migration or by discontinupusps due to scattering.
Similarly, planets formed by disc instability will start #ite upper right of the diagram
and may move inward through migration or scattering.

While the diference between core-accretion and disc-instability nsodkeplanet
formation are over the formation mechanism of giant planietgh models will also
predict diferent distributions of low-mass planets. This is becausatgilanets in
the process of formation will consume or disrupt some of tise chaterial that would
otherwise be available to form low-mass planets. Also, i[gienets dominate the or-
bital dynamics of planetary systems, making certain regafrthe system dynamically
unstable. Low-mass planets are therefore a valuable addltprobe of the planet for-
mation progress.

The list of more than 650 known exoplanets (Schneider etGl12Wright et al.
2011) detected through radial velocities (RV), transitajrg, direct imaging and mi-
crolensing, together with 1235 candidate planets detdayeldepler (Borucki et al.
2011), already shows significant structure in thig-a diagram (Udry and Santos

2007). Major features of the diagram are:
e a clump of~Jupiter-mass planets at small radii (the so-called hottdrg)i

¢ alarge population 0£10 Earth-mass planets in orbits with semimajor axis
0.03—-05 AU, which could extend further outwards and to lower magqties
so-called hot Neptunes and super Earths, e.g., Mayor edal)2

e a population of giant planets from 1-5 AU,
¢ arelatively small number of giant planets in large orbits,

as well as several regions between these populations wethisgly fewer planets. It
is possible to explain some of these features with eithercte accretion model or
disc instability model, but currently both models struggleeproduce all the features

of the diagram (e.g., Ida and Lin 2008a; Boss 2011). The reglmovea ~ 1 AU
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and belowM, ~ 50Mg is currently inaccessible to RV, transit and direct imaging
surveys, and will likely remain so for some time due to thetations of each survey
method. While GAIA astrometry may extend down+80Mg at ~2 AU (Casertano
et al. 2008), the only way to detect Earth-mass planets alosviad such orbital radii

is via microlensing (e.g., Bennett and Rhie 1996).

5.1.2 Planetary microlensing

Microlensing occurs when the light from a distant, backgbsource passes near
enough to an intervening mass, the lens, to be deflected byanstational field (Ein-
stein 1936). A single lens forms two unresolvable imagespposite sides of the lens,
separated by an angle20g, wherege ~ 0.5 mas is the angular Einstein radius (Liebes
1964). At the distance of the lens, typical—8 kpc, this corresponds to a physical
Einstein radiusg, which is of the order of 2—3 AU. As the source, lens and oleerv
move, the images move and their magnification changestirggith a characteristic
lightcurve, which brightens and fades symmetrically ovemeescale~20 d (Pacziiski
1986). Each of the characteristic scales of a microlensmegtgthe angular and physi-
cal Einstein radii, and the event timescale) scale as tharsqaot of the lensing mass.
However, the amplitude of the lightcurve is independent aks) depending only on
the impact parameter, the closest projected approach between the source anithlens
units of Gg.

Should the lensing object be a star with a planetary systeciféhe light from the
source star passes near to one of the planets, then theagi@awl field of the planet
will itself perturb the image and therefore the lightcuria and Paczyski 1991;
Gould and Loeb 1992). The timescale of this perturbatior saéle as the square
root of the planet mass, lasting typically of the order of & @& Jupiter-mass plan-
ets (Gould and Loeb 1992) and of the order of hours for Eardissiplanets (Bennett
and Rhie 1996). Similarly, the probability of a perturbatmccurring scales roughly as

the square root of the planet mass, or more strictly, as tharsqoot of the planet-host
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mass ratiay (Gould and Loeb 1992). This shallow sensitivity curve makesrolens-

ing ideal for detecting low-mass planets. The scaling bseddwn at<Mars mass,
where finite-source feects begin to wash-out planetary signatures, even for main-
sequence source stars (Bennett and Rhie 2002). The sipsifiimicrolensing to
planets is largest at projected semimajor axis~ re ~ 2 AU, where the microlens-
ing images are most likely to be perturbed (Wambsganss 188&st and Safizadeh
1998), but the sensitivity extends inwards to orbits vath~ 0.5 AU, and outwards to
infinity, through sensitivity to free-floating planets (Hanal. 2004; Sumi et al. 2011).

5.1.3 Infrared microlensing from space

Microlensing is a very rare phenomenon. Any given sourceistaicrolensed at most
once every~10° years (Paczyski 1986; Griest 1991) and the probability of a plane-
tary signature in each event4d percent (Mao and Paciagki 1991; Gould and Loeb
1992). Therefore, in order to detect a statistically sigaifit sample of planets, it is
necessary to monitor10® stars with a cadence short enough to characterize plane-
tary perturbations lastinghours (Tytler 1996). Due to its high stellar density and
optical depth, the Galactic bulge is the best target. Towé#nd bulge, extinction is a
significant problem in the optical, but from the ground isdmaded by an equally prob-
lematic sky background in the infrared. From the ground gkteeme stellar crowding
and arcsecond-scale seeing, mean that only the giant gtafgtion can be properly
resolved (Bennett 2004). Therefore, in order to monitorugosource stars, ground-
based surveys must regularly obser@00 ded (Tytler 1996). Current and future
ground-based surveys (e.g., MOA-II, OGLE-IV, KMTNet, ASE&e Chapter 2) with
wide-field imagers will achieve suitable cadence over agdagough area to routinely
detect large numbers of giant planets (should they existftscgent abundance), but
will not be able to monitor enough stars at the high-cademocessary to detect Earth-
mass planets at a reasonable rate. For this reason, tafgdtad-up of promising

microlensing events by large networks of small telescopesed to achieve high ca-

MATTHEW T. PENNY 167



5: MABuLS AND ITS APPLICATION T®&UCLID

dence and continuous event coverage (see, e.g., Gould2ét14l), and push the sensi-
tivity of ground-based microlensing firmly into the supearth regime (Beaulieu et al.
2006; Bennett et al. 2008). However, the follow-up netwarkly have the capacity to
observe~100 events per year or less with suitable cadence or covéRegde 2003).
This is suticient to probe the mass function downt6-10Mg,, and possibly the semi-
major axis distribution of planets abov&0Mg, but is unlikely to provide more than
isolated detections below these masses (Peale 2003; B&00dt Dominik 2011).
Observations from space are able to overcome many of thégonstfacing ground-
based observers. A space telescope has better resolugdn the lack of atmosphere
and also a lower sky background, especially in the infrafidds means that with ap-
propriate instrumentation, a space telescope can resaug sequence sources in the
bulge and monitor the required1®® sources over a much smaller area. This in turn
allows high-cadence observations on a small number of f{@dsnett and Rhie 2002;
Bennett 2004). The fundamental requirements of a spacgctgle for a microlensing
survey are a wide field of viewX 0.5 ded), with a small pixel scale. In order to min-
imize the dfect of extinction towards the Galactic bulge, it must obsarnvthe near
infrared. The telescope must also have a large enough tiotiearea to allow high-
precision photometry of main-sequence bulge stars in gxpsure times. These are
almost exactly the same requirements as the type of teleseopired to study dark
energy via a survey for weak gravitational lensing, baryooustic oscillations or su-
pernovae, each of which requires deep, high-resolutiom-iné@red images over a

wide field. Such synergy has long been recognized (BenndtRaiie 2002).

5.1.4 Euclid

Euclidis an ESA M-class mission to investigate the nature of thelacating universe
and dark matter (Laureijs et al. 2011). It will do this thrbugeasurements of weak
gravitational lensing (the small distortions to high-reifisgalaxy images due to gravi-

tational lensing by the intervening mass distribution @f timiverse) and baryon acous-
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tic oscillations (the clustering of galaxies on scales sethe decoupling of baryons
and relativistic matter in the early univers®uclid will use a 12-m Korsch telescope
with a high-resolution optical image¥(S) and a near infrared imaging spectrometer
(NISP), operating simultaneously to perform a 15 0004etife survey and 40-dég
deep survey over six years to measure galaxy shapes andnpdtato and spectro-
scopic redshiftsVIS will observe with a wide optical band-pass coverRgl andZ,
andNISPwill have available three infrared filter¥, J andH. The spacecraft design
and survey strategy duclid means that for two months per year it cannot observe its
target fields and must observe within the Galaxy. A planetaigrolensing survey can
utilize this available time (Beaulieu et al. 2010) and sushey has been included as
an additional science programme in teeclid Definition Study Report (Laureijs et al.
2011, hereafteEuclid red book).

Similar toEuclidis a proposed American mission, the Wide-Field InfraRed/&pur
Telescope\(VFIRST, Green etal. 2011). Ittoo will probe the nature of dark eggogt

unlike Euclid, a 500-day microlensing survey is one of its primary scieslgjectives.

5.2 The Manchester-Besancon microLensing Simulator
(MaBuLS)

We have designed the Manchester-Besancon microLensmgl&or MaBulL S— pro-
nouncedmay-buls) to perform detailed simulations of multi-componaritrolensing
surveys, involving telescopes on the ground and in spa@ratipg with diferent ob-

serving strategies. Ultimately, we aim to use the simuledqrerform the following:

¢ feasibility studies and figure of merit calculations for posed microlensing

surveys,
e optimization of observing strategies for current and fatsuarveys,

e model-dependent detectioffieiency calculations for survey data.
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Though in this chapter we only consider planetary micrdlapsthe simulator is an
all-purpose simulator, applicable to any Galactic mionsiag phenomena.

MaBuLS is the first microlensing simulator to use a combination obaylation
synthesis Galactic model with a realistic treatment of imgghotometry. This means
that every aspect of the simulation, including the everd cafculations, blending and
photometry are simulated self-consistently. The modud@r@ach that we have taken
means that the type of events studied can be ‘switched-astlye probably making
MaBuLSthe most versatile microlensing simulator developed te dat

As described in Section 2.2, several key ingredients ardetm order to simulate
any microlensing survey. A simulator must draw its simulaéeents from a Galactic
model and distributions of the event parameters. It mustiksita the observations of
the survey, and finally, it must also simulate the detectioterta used to select its
sample of events. It is also necessary to make a choice ag toothplexity of the
microlensing model used to simulate events. For exampliéheidens composed of
a single mass or multiple components? Are higher-ordlexces such as parallax and
orbital motion included? In the rest of this section we wialiss both howaBulLS
implements each component of the simulation and the chdiparameters we use in
the simulation of theEuclid microlensing survey. Unless stated otherwise, we have

taken the survey parameters from theclid red book.

5.2.1 The Besancon Galactic model

MaBuLS has been built with the intention of drawing microlensingm s from the
Besancon model (Robin and Creze 1986; Robin et al. 2003)palg@titon synthesis
model of the Galaxy, though in principMaBuLS can use any Galactic model that can
produce similar outputs to that of the Besancon model.

The Besancon model (Robin and Creze 1986; Robin et al. 2808 )pbpulation
synthesis model designed to model Galactic formationcgira and evolution using

constraints from observational data such as star countkinahatics. It contains four
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stellar populations, a spheroid (stellar halo), a barrdddyuand thin and thick discs.
The stars of each population are formed from gas, assumitgr d&osmation history
and initial mass function (IMF). The stars then evolve al@vglutionary tracks to
reach their present-day state (Haywood et al. 1997). Thiugeonary model deter-
mines the distribution of stellar parameters, which areveaed to colours and mag-
nitudes using stellar atmosphere models. The spatio-latierdistribution of the disc
stars is determined by integration of a self-consistenvigaional model using the
Poisson and Boltzmann equations. Finally, the observeauceland magnitudes are
determined using a three-dimensional dust model (Margtadl. 2006). A limited
number of model parameters are then optimized to reprodosereed star counts and
kinematics. The output of the model is a list of stars withwng@roperties that are
selected by colour and magnitude in small fields surroundingosen line-of-sight.
The Besancon model is in constant development (e.g., Retbah 2011, submit-
ted). In this work we use version 1106 of the Besancon madteligh an updated
version of the model has been released since. In subsequeleisnthe properties of

the bar (see below) change significantly from those we use her

The stellar halo

The stellar halo is modelled as being formed by a single bofrstar formation at
14 Gyr, with metallicity [F¢H] = —1.78. It has a triaxial velocity distribution with
dispersionsdy, oy, ow) = (131, 106 85) km s?. Its density is small near the Galactic
center and so contributes only marginally to the opticaltkdegmd microlensing event

rate.

The bulge

The bulge, altered from that used by Kerins et al. (2009)sist® of a boxy triaxial
distribution, similar to that described by Picaud and RqBid04), but with a Gaussian
density law as opposed to a Freudenreich (1998)%skash (Robin et al. 2011). The
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major axis of the triaxial structure lies at an angle ofgt 2elative to the Sun—Galactic
centre line of sight and has scale lengtisY Z) = (1.63,0.51, 0.39) kpc, where the
X direction is parallel to the major axis and theandY axes lie in the Galactic plane.
This is truncated at a Galactocentric radius d72kpc. The bulge rotates as a solid
body with a speed 40 kntskpct. The velocity dispersions in the bulge along the
axes defined above are (1135 100) km s'. The central stellar mass density of the
bulge, excluding the central black hole and clusters, i XA 0°M, kpc 2.

Embedded within the bulge is also an elongated bar (Robih 20&41). However,
in the version of the model we use here, its density is smhiler10-* times that of
the bulge, so we do not describe it further.

The stellar population of the bulge is assumed to form in glsiburst 79 Gyr
ago (Picaud and Robin 2004), following Girardi et al. (2002)e bulge IMF (dN/dM)
scales adv~* below Q7M,, and follows a Salpeter slope above this. The population
has a mean metallicity [Ad]= 0.0 with dispersion @ and no metallicity gradient.

The stellar luminosities are calculated using Padova isods (Girardi et al. 2002).

The thick disc

The thick disc is modelled by a single burst of star formatabidl Gyr. Its properties
have been constrained using star counts by &ayld Robin (2001). The thick disc
contributes only marginally to the microlensing event yat@we do not describe it in

detail. Its parameters are described by Robin et al. (2003).

The thin disc

The thin disc is assumed to have an age of 10 Gyr, over whicH@taation occurs

at a constant rate. Stars are formed with a two-slope IMFgbales as a power-law
M-8 below 1M, andM~3 above, based on the Hipparchos luminosity function (e.g.,
Haywood et al. 1997), with updates described by Robin et28038). Stars below

1M,, follow the evolutionary tracks of VandenBerg et al. (200&hile those above
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follow Schaller et al. (1992) tracks. The thin disc followms ERinasto (1979) den-
sity profile with a central hole. The density normalizatitmematics and metallicity
distribution of the disc depend on stellar age, with sevem ragges defined, whose
parameters are given by Robin et al. (2003). The Solar v§legi(Up, Vo, Wp) =
(10.3,6.3,5.9) km st, with respect to the local standard of r&tg = 226 km s?.
The disc has a scale lengtl88 kpc, and the hole has a scale lengtBillkpc, except
for the youngest disc component which has disc and hole smadghs of 5 kpc and
3 kpc, respectively. The disc is truncated atQLépc. The scale height of the disc
is computed self-consistently using the Galactic potémigathe Boltzmann equation
as described by Bienayme et al. (1987). Also modelled in tke are its warp and
flare (Reyé et al. 2009).

Extinction

Extinction is computed using a three-dimensional dustibigion model of the inner
Galaxy (¢] < 100, |b| < 10°), built by Marshall et al. (2006) from analysis of 2ZMASS
data (Cutri et al. 2003) using the Besancon model. Marshadl.g2006) did this
by comparing observed, reddened stars to unreddened sadwdtars drawn from the
Besancon model. From this the extinction as a function stiagice along a given line
of sight is computed by minimizing? between observed and simulatéd K colour
distributions. The resulting map has-&5-arcmin resolution i andb, and a distance
resolution~0.1-05 kpc, resulting from a compromise between angular and ista

resolution.

Other components

The Besancon model also takes account of other Galactipaoents, including the
mass due to the dark matter halo and interstellar medium déteels of these compo-
nents are given by Robin et al. (2003). White dwarfs are iretuich the model sep-

arately to normal stars, with separate densities and lusitjnéunctions determined
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from observational constraints (Robin et al. 2003, andregfees therein). The evolu-
tionary tracks and atmosphere models of Bergeron et al.5)188d Chabrier (1999)

are used to compute their colours and magnitudes.

Microlensing with the Besangon model

Following the method of Kerins et al. (200Q1aBuL S uses two star lists output by
the Besancon simulation to construct catalogues of plessiicrolensing events and
calculate their properties. The first list, the source listdrawn from the Besancgon
model using a single magnitude cut in the primary observiagdoof the survey. A
second list, the lens list, is drawn from the model without agmitude cut. Both
source and lens lists are truncated at a distance of 15 kpopmve the statistics of
nearer lenses and sources that are much more likely to bedéssing.

Overall microlensing event rates are calculated alongipialtines of sight, with
spacings set by the resolution of the Marshall et al. (2006} thap. The total rate due
to each pair of source and lens lists, about the line-oftgiglb), is

QI Source 1 Lenses
I'(t,b) = —= — 26) 5.1
(0) = 5o ZI(SQID; Eurel), (5.1)

whereQ,qs is the solid angle covered by a dust-map resolution-elepatsQQs and

6Q), are the solid angles over which the source and lens catadogrgeselected, re-
spectively. The rate is calculated over the all possible@®iens pairs to minimize
the noise of counting statistics. The inner sum over theders related to the opti-
cal depth integral of Equation 2.1, which is a line integnaiophysical quantities (in
this caserV;, the product of the physical Einstein radius and the redaans-source
velocity). However, the lens catalogue is selected fromanband so the quantities
must be weighted by a factoy@? to counteract the increasing volume of an element
along the beam; the integrand then becofi¢s,, the angular counterparts of and

Vt, Whereu,g is the relative lens-source proper motion. The total evatds are then

stored for later use.
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To simulate microlensingylaBuL S draws sources and lenses from their respective
lists with replacement, requiring the source be more didfaan the lens. From the
source and lens parameters, the Einstein radius and titeeseacomputed, as well as

the rate weighting assigned to the event

Y= uOmaxgElJreI’ (5-2)

whereupmax IS the maximum impact parameter of the event; h@way is determined
is discussed in the following sections. Events are simdlated those that pass the
detection criteria are flagged. The rate of detections invargdust-map element is
the sum of the weights of detected events normalized to tmecfuhe rate weightings
for all the simulated events — this is essentially a detactiiciency. The detection
efficiency is then multiplied by the total line-of-sight ratengouted in Equation 5.1
to yield the expected detection rate faR® x 0.25 ded, the size of the dust-map
element. These rates are then summed over all the dust-erae s to yield the total

simulation event rate.

5.2.2 The microlensing events

MaBulL S uses user-supplied functions to compute microlensingdigtres including
any dfects that the user wants to model. For this work we modelldy planetary
lens systems composed of a single planet orbiting a singde dtar. As we want to
investigate the planet detection capabilityfoiclid as a function of planet mas4, and
semimajor axi|, we chose to simulate systems with various fixed values ofgbéay
mass and semimajor axis distributed logarithmically inrdwege 003 < a < 30 AU.
We assume a circular planetary orbit that is inclined ranigdmthe line of sight. The
orbital phase at the time of the event is again random; atstihaige we do not model
the dfects of orbital motion in the lens. The impact parameter argleaof the source

trajectory are distributed randomly, with the impact paesen in the rangel, = 0—

Uomax:

MATTHEW T. PENNY 175



5: MABuLS AND ITS APPLICATION T®&UCLID

The maximum impact parametasnax iS chosen such that, if the lens were sin-
gle, the total flux at the event peak (of the magnified sourckamy nearby blend)
would be at least a factor of@L25 larger than the total flux at baseline, regardless of
whether such an increase is observa&bl8o, if the source is heavily blended in the
primary band, the minimum peak magnification required igéar andugmax cOnse-
guently smaller. This condition is necessary to ensuretiimea is not spent simulating
microlensing events that would never be detected, but cahése cost of missing
some fraction of planet detections where the primary lemsirent would not be seen,
but lensing by a planet would be. These missed events woutthissified as isolated
or free-floating planet detections, which can be simulaggmhgately withMaBulLS.
We do not simulate free-floating planets observedthyglid here, but will do so in the
near future.

The planetary microlensing lightcurves are computed assyithat the source has
a uniform intensity profile (in other words, no limb darkeg)nThe finite-source mag-
nification is computed using the hexadecapole approximatiben finite-source ef-
fects are small (Pejcha and Heyroys009; Gould 2008) and the contouring method
when they are not (Gould and Gaucherel 1997; Dominik 1998a)te-source fects
are accounted for in single-lens lightcurve calculatiossg the method of Witt and
Mao (1994). When fitting lightcurves with the single-lens rabave use a finite-source
single-lens model if the impact parametgr< 2p., wherep., is the ratio of angular
source radius to the angular Einstein radius. Otherwiseptiet-source single-lens

model is used.

5.2.3 Euclid observing strategy

The observing strategy governs the way that each telescwp@strument observe the

survey fields, including the exposure times, stacking atiteding of images, and visit

2This corresponds togmax = 3 for an unblended source. The calculation is done in the gim

observing pass-band.
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patterns MaBuLS allows fine control of the time budget through user-defineseol-
ing sequences, taking account of the time required for ditgeand readout between
the images of a stack, and allowing foifféring amounts of dead-time between each
new field pointing. For ground-based observatories, dame-tdue to bad weather,
or any other cause, is included through nightly bad weathabgbilities, and obser-
vations are only simulated after astronomical twilight amoen the moon is not too
close a target field.

For theEuclid simulation, we assume that most of the observations wilakert in
the primary observing band, while colour information wi# bbtained by one obser-
vation of each field every 12 hours in each of the three auyibands. WhileEuclid's
VISandNISPinstruments are designed to image simultaneously, we asthahonly
one instrument images at any one time, in order to be cornsavad his also allows for
the possibility that the down-link bandwidth is notiaent to download simultaneous
imaging data.

In order to achieve a cadence of less than 20 min, the survesinuglate targets
3 fields of ~0.5 ded with a total exposure of 270 s per pointing, split into staoks
3 (Y- andJ-band) or 5 H-band) exposures witNISP. We assume that there is 5 s of
dead time between the exposures of a stack. Mlisanstrument observations consist
of a single 540-s exposure. We assume a slew and settle tifd® sf according to
a space-craft design using reaction whe&saqlid red book). We assume that any
readout, filter wheel rotation and data down-link is perfechduring slewing. Some
of these parameters are summarized in Tables 5.1 and 5\&.B&ksimulate a survey

by Euclid of 300 days, spread over 5 years in seasons lasting 60 days.

5.2.4 Photometry

MaBuLS simulates optimal crowded field photometry (CFP) by simatpimages of
crowded fields and counting flux in a small aperture centrethersource. We sub-

tract the background, assuming it to be perfectly known. Whjerture photometry
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performs poorly in real CFP applications, the main reasoritsris the lack of good
measurements of the background in crowded fields. By asguanperfectly known
background, we arefkectively simulating the performance of PSF fitting (Stetson
1987; Schechter et al. 1993) offfdirence imaging analysis (DIA) photometry (Alard
2000; Wazniak 2000; Bramich 2008), both of which fit for the backgrdwver a large
area of the image. The possible optimism of the backgroudraction should be
offset by the remaining deficiencies of standard aperture phetty, which remains
sub-optimal even if the background is perfectly known. Fxareple, photometric
scatter can be reduced by using an optimized aperture (Na9@8) or by PSF fit-
ting (Schechter et al. 1993). The latter technique shoulespecially &ective for data
from Euclid's VIS instrument, as weak lensing measurements require thatSkebP
extremely well characterized over the entire instrumerd foé view (Euclid red book).

MaBuLS can also include thefect of systematic photometry errors to a limited
degree. One such source of systematic errors is sub-pikgipgerrors, which can be
significant in under-sampled images. The sub-pixel shiftslie added to the simulated
images at each epoch or the size of the error bar estimated ifteal simulations.
However, the inclusion of these errors is optional, as theay loe corrected for with
accurate pointing data; we do not include them inElielid simulations, assuming that
accurate telemetry will be available. We assume that edoesto small movements
of the telescope during exposures (jitter) are accountethfthe PSF. Other possible
sources of systematic errors can be added to the photoreatricsimply as a fractional
error in quadrature. We assume a fractional systematic efi@003.

The simulated images themselves are constructed usingstsdrom the Besangon
model. Stars are added to each image and kept track of schihatan be added to
images of the same source taken witkfetient filters, instruments or telescopes. In
this way we account for blending in a manner that is fully ¢stemt across all bands
and instruments. In fact, several star lists are used fon éatd; each list covers a
different set of non-overlapping magnitude ranges in order tomize the #ects of

small-number statistics on rarer bright stars. The stagsadded using either a user-
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Table 5.1 — Parameters of tReiclid telescope. All parameter values have been drawn from the

Euclid red book.

Telescope parameters

Diameter (m) 12
Central blockage (m) a

Slew+ settle time (s) 85

defined PSF function or a numerical PSF model, each of whiaitegrated over the
detector pixels. As the star lists used to generate imagesr @l magnitudes, they
take account of the ffuse background due to unresolved stars. A background due to
other dffuse sources, such as zodiacal light and night-sky brightnesalso added
and can be varied between exposures. Finally, light duedsdirce and lens stars
is added. Time series photometry is performed by repeategilacing the variable
source in each new image.

The number counts that are recorded by the detector in a gixehare determined
by a set of detector parameters, all of which are user-defifiégse parameters are
listed in Table 5.2, where their values for the vari&iglid instruments and bands are

also listed. We note the following about the parametersdig the table:

e The zero-point is the AB magnitude of a point source, whicluMda@ause one
count st in the detector, after all telescope and instrumentficiencies have
been accounted for. THeuclid zero-points assume end-of-life instrument per-

formance (M. Cropper, G. Seidel, private communication).

e We distinguish between dark current and thermal backgrotiheé dark current
is the rate of counts induced by thermal souradhin the detector pixelsand
is independent of the observing band. The thermal backgr@ithe count rate
due to thermal photons emitted by all components of the gpaftehat hit the

detector.
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Table 5.2 — Parameters of tiiauclid detectors. Unless footnoted, all parameter values have

been drawn from th&uclid red book. Where necessary parameters are explained in the text.

Detector parameters

Instrument VIS NISP

Filter RI1Z Y J H
Size (pixels) 24k« 24k 8kx 8k

Pixel scale (arcsec) .D 0.3

PSF FWHM (arcsec) .08 03 0.36° 0.45°
Bias level () 380 380

Full well depth () 216 216

Zero-point (ABmag)

258 2425 2429 2492

Readout noise (¢ 4.5 1.5¢ 7.5 9.1
Thermal background (es™?) 0 0.26 002 002
Dark current (e s1) 0.00056 0.1*
Systematic error 003 0.003

Diffuse background (ABmag arcsér 215 213 213 21.4*

Exposure time (s) 540 90 90 54
Images per stack 1 3 3 5
Readout time (s) <85 5

*Schweitzer et al. (2010). The readout noise depends on théeof non-destructive reads; see text

for further details.

fAssumed in this work.

*M. Cropper, private communication.

**G. Seidel, private communication.

°CCD203-82 data sheet, issue 2, 2007. e2v technologiesfdhndlY, USA.

Calculated based on field locations, taking values for titkanal background from Leinert et al.

(1998), and assuming an extr2 Gnagnitudes from other sources such as scattered light.
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e FortheEuclid simulations, we assume that thé&dse background is due primar-
ily to zodiacal light but that there is also an additiondfase background with
20 percent of the intensity of the zodiacal light, which agus for all other
sources of diuse background. The zodiacal light background is calcdlde

each band using data given by Leinert et al. (1998).

e TheVIS RIZ andNISP Y-bands are not included in the Besan¢con model, so we
assume that the AB magnitude of a star in Ri&Z-band is the average of iR
andl AB magnitudes, and similarly we assume thatYakand magnitude is the

average of andJ.

Should a pixel within the photometry aperture saturate,di&a point is flagged
and is not included in the subsequent analysis. We do nongaide the &ects of
cosmic rays in the images, but will in future versionsvtdBuL S. For theEuclid simu-
lations, cosmic rays will only significantlyfiect observations with thélSinstrument,
because th&lISPinstrument, made up of infrared arrays, will use up-theditting
with non-destructive reads (Fixsen et al. 2000) to reduadaat noise and correct de-
tector nonlinearities (Schweitzer et al. 2010; BeleticleP@08). As a consequence of
the multiple reads, up-the-ramp fitting mitigates agairsgtdoss due to cosmic rays
and saturation. In order to ensure conservatism, we assataenith saturated pixels
is lost completely. Currently we simulate tNeSPinstrument as a conventional CCD,
but with variable read-noise determined by a fundamentd+oise (13 € and the
number of non-destructive reads during an exposure, wheehsgume occur at a con-
stant rate of once every5 s (Schweitzer et al. 2010). A more realistic simulation of
the performance of imaging photometry with up-the-rampniittwill be included in
a future version of the simulator. We do not simulate the noomaplicated &ects of
charge smearing (see, e.g., Cropper et al. 2010) and ghostdfight stars.

For theEuclid simulations we use numerical PSFs computed for each insttum
and each band. THéISPPSFs are computed near the edge of the detector field of view

and include theféect of jitter and instrument optics in the worst case scen@i Sei-
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NISP Y VIS RIZ

Figure 5.2 —Top left: Example of a simulated false-colour composite image of a typical star-
field from theEuclid MaBuLS simulation, with colours assigned as rédSP H greenNISP

J and blue¥IS RIZ each with a logarithmic stretch. The light green box surrounds the region
that is shown zoomed-in in lower panels. The image covers 77 arcsec, equivalent tg a4

of a singleNISP detector, of which there are 16. These are shown to the rigjop right:
Approximate representation of tilSPinstrument ‘paw-print’. The white areas show active
detector regions, while black areas show the gaps between detectibis clirner of one of the
detectors is shown the size of a simulated image relative to the detectors. (Capttnued

on next page)
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Figure 5.2 — (ContinuedBottom panels:The bottom panels show a small image region sur-
rounding a microlensing event (located at the center), the top row shaomiges at baseline
and the bottom row showing images at peak magnificatien224. Panels from right to left
showNISP H J, Y, andVIS RIZimages, respectively. The small red box shows the aperture
that was used to compute photometry in MiISPimages; the/ISaperture is a similar size but
different shape. At peak, the event saturates in b8P HandVIS RIZimages, but not in
NISP JandY images.

del, private communication). TR&SPSF is similarly computed (M. Cropper, private
communication). Figure 5.2 shows an example of a simulateldur-composite im-
age of a field with a microlensing event at its centre. TheHidgstars in the image
are red-clump giants in the bulge, except for those whichdaenctly bluefwhiter,
which are~F-stars in the disc. The fainter, resolved stars are ttiflasod upper-main-
sequence stars in the bulge. The figure also shows an ap@texnepresentation of
the scale of théNISP instrument, which is constructed fromxd4 HgCdTe infrared
arrays, each of 20482048 pixels covering 12 10 arcmin, for a total detector area of
0.47 ded; the gaps between detectors are approximately to scale.ovetdnclude
these gaps in the simulation and assume the instrument igyke §192x 8192-pixel
detector. The lower section of Figure 5.2 shows a set of zoeimémage sections,
centered on the microlensing event at peak and at basetiregah of theNISPand
VIS bands. Note the draction spikes and Airy rings in th€IS images, especially
those due to the bright star just out of frame below centekespdue to the out-of-
frame star can just about be made out inlH&Pimages also. Such spikes and rings
can significantly &ect photometry of faint sources. Figure 5.3 shows the ligivie

of the simulated event that occurs in the example imageydney the points that are
lost to saturation. The event peaks at magnification 224 and saturates over the
peak in bothH-band andvIiSimages, but not in- andY-band images. For the sake
of computational fficiency only a small image segment, just bigger than the $irge

aperture, is simulated in standard operation.

MATTHEW T. PENNY 183



5: MABuLS AND ITS APPLICATION T®&UCLID
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Figure 5.3 — Lightcurve of the simulated event shown in Figure 5.2, with alefitscaled to
H-band. Grey, red, green and blue show data fiéI8P H, J, Y andVIS RIZ respectively.
SaturatedH-band data points are shown in black, and saturRi€dband data points are shown
in light blue. The event reaches a peak magnificatior 224, but the normalized flux only
increases by a factor 6f12 because the sourckl (= 20.3) is blended with a brighter star
at the edge of the aperture and a much brighter-skaNISRpixels away, as well as the lens
(H = 21.6) and fainter stars. At baseline, the source contributes just 5 parttrd total flux.
Some of the event parameters are shown above the fiddrés the host-star massy? is

introduced in the next section.

5.2.5 Planet detections

To determine whether a planet is detected in a microlensiagtave use a simpl&y?
test, whereAy? is the diference iny? between the best-fitting single-lens model and
the best-fitting planetary model, which we assume to be tleeunderlying model that

was used to simulate the event. We require tet > 160, which corresponds to a
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o > 126 detection of the planet. We choose this value in order teamdparison with
other simulations (Bennett and Rhie 2002, Gaudi et al., biighed). Ay? > 160 is
also the value adopted by tMgFIRSTscience definition team for their calculations
of the exoplanet figure of merit (Green et al. 2011). In Apperidwe show that this
choice is conservative with regards to the comparison betwengle and planetary
models, but also argue that this may not be the case for theséauw of possible false
positives.

In order to allow fair comparisons between thdfelient bands thaEuclid can
observe in, we also require that the contributiomAie? from the primary observing
band is at least half of the total. This condition ensurestti@primary band provides
most of the information about the planet and excludes ewenése a planet is detected
but most of the data is lost (due to saturation, for example).

Figure 5.4 shows some example lightcurves from the simanatirhe lightcurves
show planet detections with varying degrees of significaremeging from a detection
that barely passed the cut (lightcurve (A)? = 168) to a very significant detection
(lightcurve (e),Ax? = 1327). Note however, that many events will have much higher
Ax? than this, up ta\y? ~ 10°~". The example lightcurves also cover a range of host
and planet masses; the event with the lowest-mass planeeig €), which has a
planet mas#, = 0.03Mg, and is strongly detected withy? = 1327. Note that due to
a small bug in the observation scheduling modul®&aBuLS, observations irY and
RIZ start and finish a day late. This should not significanffee the results, but will

be corrected in future versions of the simulator.

5.3 Expected yields

In this section we discuss preliminary results from our agion of theMaBulL Ssim-
ulator to theEuclid mission. Unless otherwise noted, we present the resultsrasg
that each lens star in the simulation is orbited by a singéegl of masdM,, with

semimajor axis in the range@B < a < 30 AU.
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Figure 5.4 — Example lightcurves from tihaBul S simulation ofEuclid, continued on later
pages. Only 1 season of data is shown for each lightcurve. Errosbavsthe 1le- photometric
uncertainty, but data points are not scattered for clarity. Moving sedligrirom (a) to (e)
the Ay? for each lightcurve increases. Lightcurve (a) is only just classifieddesection with
Ax? = 168. Some event parameters are shown above each plot, including teemkss. The
planet masses range froly, = 0.03Mg, for (e) (which has the highedty? of these examples)
to Mp = 100Mg for (a). In all cases except (b) the inset shows a small region of thieligre

around the planetary deviation; for (b) the 1-season lightcurve is shotihe inset.

Figure 5.5 shows the expected number of planet detectipasplotted against
planet mass, using our default assumption that there is @retpof masdM, and
semimajor axis @3 < a < 30 AU per star. The value that is actually plotted on the
y-axis, Nget/ f(M;), takes into account our ignorance of the planetary masstifum
f(Mp). In all plots, except Figures 5.6 and 5.f(M,) is defined to be the expected

number of planets of magd, orbiting a star with semimajor axis@ < a < 30 AU;
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Figure 5.4 — Continued.
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Figure 5.4 — Continued.
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Figure 5.5 — Number of planets detected in a 300-day survdyuayid, plotted against planet
massMp, assuming one planet of mab, per star with semimajor axis.@8 < a < 30 AU.

The solid line shows the yield for a survey wikh as the primary band and the dashed line
shows the yield for a survey with as the primary band. The masses of Solar System planets

are indicated by letters.

the mass functions used in the other figures will be describedlie course. The
error bars on all plots show the uncertainty due to the finitaber of events that we
simulate. This does not include~&-percent systematic uncertainty resulting from the
calculation of the overall event rate using source and lextalagues. Neither does
it include any contribution to the error due to uncertaisitie the Besancon model
parameters or models. This implies that the prediction ef tthtal expected vyield
contains significant uncertainty, but that comparisonsvbet simulations should be

good to the errors quoted.
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The plot in Figure 5.5 shows results of simulations with thignary observing
bandsH andJ. Of the bands available uclid, theH-band is the mostfeective band
with which to perform a planetary microlensing survey, witalds~50 percent higher
than those expected for tlleband. Should our default assumptions apply, a 10-month
microlensing survey byeuclid, primarily observing inH-band, should be expected
to detect~200 Jupiter-mass planets,110 Saturn-mass planets40 Neptune-mass
planets~6 Earth-mass planets ar€.75 Mars-mass planet&uclid can detect planets
with masses less than Mars mass, but with Idkceency.

Recent measurements of planet abundances using sevémaigiees have shown
that our default assumptions about the abundance of plareetpiite unrealistic. Mul-
tiple studies have suggested that the number of planetsases with decreasing planet
mass (Cumming et al. 2008; Johnson et al. 2010; Sumi et al,, 20M@ard et al. 2011,
Mayor et al. 2011) and that planets are not distributed itlgaically in semimajor
axis (Cumming et al. 2008). This picture is also supported|lapgt population syn-
thesis models (Mordasini et al. 2009a,b; Ida and Lin 200Bblrigure 5.6 we attempt

to improve our yield estimates by using a simple two-parampower-law planetary

N Mp\”
f(M;) = dlogM,dloga . (W) ’ (5:3)

where f(M,) is now the number of planets of malsk, per decade of planet mass per

mass function

decade of semimajor axis per star and whigiie the planet abundance (in déstar?)
at some mashl, about which the mass function pivots. Hearas the slope of the mass
function, with negative values implying increasing plargtabundance with decreas-
ing planetary mass. For simplicity, and because there anegasurements of the slope
of the planetary semimajor axis distributions in the regpr&bed by microlensing, we
assume thatM/d logais constant.

We use two estimates of the mass-function parameters basedeasurements
made using both RV and microlensing data sets. The first, rmoneervative mass
function (in terms of the yield of low-mass planets) uses rtiess-function slope

a = —0.31 + 0.20 measured by Cumming et al. (2008) from planets with periods
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Figure 5.6 — Predictions of the planet yield based on recent estimates datiet pbundance
and planet-mass distribution. The solid line shows our default logarithmic gfrione planet
per decade of mass and semimajor axis per star. The dashed line (labe)lstid®¥s the ex-
pected yield using an extrapolation of the mass-function slope measuredrogni@g et al.
(2008) using RV data combined with a normalization measured by Gould et0dl0)2rom
microlensing data. The dot-dashed line (labeji&d shows the expected yield using the same
Gould et al. (2010) normalization, but using a mass-function slope mebbyr&umi et al.
(2010) from microlensing data. The circle shows the point about whiclethgirical mass
functions are pivoted, while the grey shaded region shows the regidaseal when the pa-
rametersf, anda are changed byd from both the RV and microlensing mass-function pa-
rameters. More details are given in the text. The masses of Solar Systestspdae denoted

by letters.
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in the rangelT = 2-2000 d, detected via radial velocities. For the normabnawe
usef, = 0.36 = 0.15 atM, ~ 80Mg, measured by Gould et al. (2010) from high-
magnification microlensing events observed by MicroFUNuldeet al. (2010) argue
that this value is consistent with the abundance and semiragjs distribution mea-
sured by Cumming et al. (2008), extrapolated to orbits witk 2.5 AU. We note
that the host stars studied by Cumming et al. (2008) typidalye higher masses than
those that are probed by microlensing. We call the comlonaif the Cumming et al.
(2008) slope and Gould et al. (2010) normalization, the Résrfanction. The second
mass function we consider uses the same Gould et al. (20@®gafiration, but a slope
a = 0.68+0.20 measured by Sumi et al. (2010) from 10 microlensing pldatdctions
and assuming a reasonable detectifiitiency as a function of planet mass. We call
this the microlensing mass function.

Figure 5.6 plots the yields that would be expected for thressrfunctions: the
two determined empirically and described above, and forgamson, our default as-
sumption of a logarithmic mass function & 0) with one planet per 3 decadesaf
(f. = 1/3 dex? star?! at any value oM,). The shaded regions in the plot enclose the
range of expected yields possible withior df all the input mass-function parameters
(e.g.,—0.88 < @ < -0.11; the 1o upper limit of the RV slope nearly coincides with
the 1o lower limit of the microlensing slope, so the degree of utaiaty essentially
covers the entire range).

Perhaps the most important thing that Figure 5.6 highlighthe degree of un-
certainty that is involved in predicting the yields of plarseirveys. There remain a
number of sources of uncertainty we have not consideredh, asithat from the choice
of semimajor axis distribution. Even at the pivot point of thass functions, anchored
by measurements afl, ~ 100Mg, the uncertainty in expected yield is a factor of
three. At low planet masses the uncertainty is greater thi@e torders of magnitude.

It seems reasonable, however, to assume that the planedaieincreases to-
wards lower masses. If this is indeed the case, the expemktof low-mass planets

will exceed that of our default assumptions, possibly bym@leoof magnitude or more.
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We choose to continue using the default assumptions thoughe rest of the chapter
in order to remain conservative. This conservatism is gmate as we have to extrap-
olate the empirical mass functions over a significant rarfmwvever, should the em-
pirical mass functions be correct, planet yields will béisient for the measurement
of abundance statistics down to Mars masdNy) or Mercury mass (05Mg,) for
the RV and microlensing mass-function parameters, resjedct The negative slope
of the mass functions does imply lower yields for planetdwiitasses larger than the
pivot mass, but even the steep slope of the microlensing fuaston predicts yields
greater than 10 dex planets over the entire planetary mass regiig & 13Mjypite)-

In fact, the mass-function slope measured through micsohgralmost exactly cancels
the detection ficiency slope, leaving a relatively flat yield curve above Marass,
which peaks at Earth mass witlye; * 120 dex?. This number means th&uclid
would detect approximately 60 planets with mass in the raige: 0.56-18Mg (half

a decade surroundinigl, = 1Mg) and semimajor axis in the range= 1-10 AU, if

this mass function were assumed.

5.3.1 TheMp—-adiagram

We have discussed the ability of our simulated survey to @rble planetary mass
function, but a perhaps more important goal of such a survéy explore the planet
mass—semimajor axidV,-a) plane where planet formation models predict a lot of
structure (e.g., Ida and Lin 2004; Mordasini et al. 2009ayufe 5.7 plots contours
of planet detection yields for the simulated survey in lga plane, assuming there
is one planet per host at a given point in the plane. The positof planet detec-
tions to date, by all detection methods (RV, transits, didetection, timing and mi-
crolensing) are also shown, as well as candidate planetstdet byKepler (Borucki

et al. 2011), which have been plotted by assuming the plgnetass-radius relation,
M, = (Ry/Rgp)?°®Mg, which is used by Lissauer et al. (2011). It is clear that mi-

crolensing surveys probe affilirent region of theéMy-a plane to all other detection
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Figure 5.7 — Red lines show the expected yield of a 300&#aglid survey with 60 days of
observations per year, plotted against planet mass and semimajor axisjrEs®ne planet
per star at each point in the planet mass—semimajor axis plane. The gréy gt planets
detected by all methods up to 17th October 2011 (Schneider et al. 2dtiljght blue points
show candidate planets from tKeplermission, with masses calculated using the mass-radius
relation of Lissauer et al. (2011). The red points show planets dete@edigrolensing to

date.

methods, covering planets in orbi®.3—10 AU. The peak sensitivity of the simulated
Euclid survey is at a semimajor axeés ~ 2—3 AU, in good agreement with previous
simulations of space-based microlensing surveys (BermmettRhie 2002, Gaudi et

al., unpublished). The planeEuclid is sensitive to lie in wider orbits than those de-
tectable byKepler, and stretch to much lower masses than can be detected by RV in

this semimajor axis range, reaching down to Mars mass. Tingeraf semimajor axis
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Figure 5.8 — Predictions of the planet yield as a function of semimajoraaxis

probed byEuclid decreases with decreasing mass, fro@8 to more than 20 AU for
Jupiter-mass planets, down td—10 AU for Earth-mass planets ard.5-4 AU for
Mars-mass planets. There will be a significant degree oflapdyetweertuclid and
full-mission Kepler detections at separations30< a < 1 AU. Similarly, at masses
larger thanM, 2> 50Mg, there will be overlap with RV surveys over a wide range
of semimajor axes. Both overlaps will facilitate compansdetween the data sets of
each technique. It should be noted however, that the hosti@agns probed by each
technique are dierent, as we will see in the next section.

Figure 5.8 plots the expected yields for various planet emss a function of
semimajor axisa, using our default assumptions. The peak sensitivitfEotlid is
to planets with semimajor axia ~ 2—-3 AU. The sensitivity is within an order of

magnitude of the peak in the rangb (< a < 20 AU. Should the mass function of
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Figure 5.9 — Predictions of the 100g planet yield as a function of lens (solid lines) and
source (dashed line) distanc&g,andDs, respectively. The red and green lines show the con-
tributions due to bulge and thin disc lenses, respectively; thick disc anddredes contribute

the remainder, which is small.

planets resemble the microlensing mass function we useguar&i5.6, each of the
curves shown in Figure 5.8 would lie somewhere between theesifor 10Mg and
100-Mg planets, suggesting that it would be possible to measuredimemajor axis
distribution over the range.® < a < 30 AU for planets down to Earth or possibly

even Mars mass.

5.3.2 The host-star populations

Figure 5.9 plots the distribution of 100ky planet detections as a function of lens

and source distanceB; andDs, respectively. The contribution of thin-disc and bulge

196 SIMULATIONS OF GRAVITATIONAL MICROLENSING



5.4: DISCUSSION

populations to the yields is also plotted. Thick disc andlatdéalo lens yields have
not been plotted as at no point are they dominant. Howevar, the Galactic centre

it should be noted that stellar halo lenses have a highed yien the thin disc due
to the disc hole (see Section 5.2.1). Most of the host st&rs@ar-side bulge stars
between % < D, < 8 kpc. Beyond this, the number of lenses with detected panet
drops-df exponentially with increasing distance, dropping by foudters of magnitude
from D, ~ 9 to 15 kpc. The steepness of this fall is partly caused byrimecation

of the source distribution at 15 kpc. Though the majorityarides are in the bulge,
a substantial number reside in the near disc. The contabutf planet detections
by each component is 60, 30, 3 and 7 percent for the bulge dik@) thick disc and
stellar halo populations, respectively. The distributadrplanetary host stars probed
by Euclid is very diferent to that probed by any other technique. For examplet mos
of Euclids host stars are M-dwarfs in the bulge, whereas modtaglers host stars
are FGK-dwarfs in the disc (Howard et al. 2011). Unlike theslstars, the majority of
source stars reside in the far bulge, with a small fractiothenfar disc. Very few near
disc stars act as sources due to the low optical depth tosswortthe near side of the

bulge.

5.4 Discussion

We have developeilaBulLS, an all-purpose microlensing simulator with a particular
focus on exoplanetary microlensing. Using the Besancdaxganodel (Robin et al.
2003) and comprehensive image simulations, it is the firstalensing simulator to
generate blending and event parameter distributions iffa&@esistent manner. The
Marshall et al. (2006) three-dimensional dust model, comdiwith the use of evo-
lutionary tracks and stellar atmosphere models, enabldstie comparisons of the
performance of microlensing surveys that observe ffedént pass-bands in the opti-
cal and infrared.

As an example oMaBuLSs use, we have simulated a 300-day planetary mi-
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crolensing survey by th&uclid space-craft. We show that of the and H-bands
available toEuclid,® a survey primarily conducted il will perform best, detecting
~6 Earth-mass planets during the survey, compareditéor the J-band survey, both
assuming there is one Earth-mass planet per star with sgarimveis between ©3
and 30 AU. Using perhaps more realistic assumptions of thegtary mass function,
Euclid could expect to detect of the order of 100 Earth-mass plasmatisa similar
number of Mars-mass planets. Such low-mass planets in thies ggrobed byEu-
clid (0.5-10 AU) are inaccessible to any other planet detectionnigcile, including
microlensing surveys from the ground.

MaBuLS is still under active development, but is already a powetdol for the
optimization of microlensing survey&uclid has only just been selected by ESA, and
the mission and its surveys will enter a more intensive pead development in the
coming few yearsMaBuL Swill play a major role in the design and optimization of a
Euclid microlensing survey. There are also exciting possibgifa the use oMaBuL S
in planetary detectionfciency calculations for current ground-based surveys. How
ever, we devote the rest of this chapter to a discussion oésiitne current limitations

of the simulator and our plans to develop it in the contexhefiuclid mission.

5.4.1 The Besancon model

The Besancon model has been in development for over 25 yRatsin and Creze
1986) and is by this point a highly sophisticated model of@aaxy. This develop-
ment is not complete and the model will continue to be refiredveer more data on
the Galaxy becomes available. The version of the model we hagd in this chapter
includes an improved model of the Galactic bulge but witrepaeters that have since
been updated (Robin et al. 2011). This active developmedépendent oMaBulS,

is extremely valuable, enablifgaBuLSto incorporate the latest understanding of the

Galaxy without any need to update the simulator itself.

3Surveys withNISP YandVIS RIZas the primary band have not yet been simulated.
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The continuing development of the Besancon model reflaststdl relatively lim-
ited understanding of the Galaxy. This is especially the @gdsen it comes to the bulge,
where the interpretation of observations is extremely lehging due to the multiple
stellar populations and large amounts of dust along thedingght. Studies of the
triaxial bulggbar exemplify this, with dferent investigators reporting bar angles rang-
ing from 10 to 40 (e.g., Picaud and Robin 2004; Rattenbury et al. 2007; Bdanjam
et al. 2005) and the evidence is building for more than ongsire (e.g., Babusiaux
and Gilmore 2005; Nishiyama et al. 2005; Cabrera-Lavers.e2@7). Such uncer-
tainties in structures and their parameters must propdgedagh our simulations and
on into our absolute yields in a way that idfiult to quantify. Nevertheless, the
Besancon model is the most self-consistent Galactic ntods# used in microlensing
simulations to date. This will be reflected in comparatived#ts such as the survey

optimization we plan to perform.

5.4.2 Systematics

For the simulations presented here we have assumed a sotmawheary value of
the amplitude of systematic photometry errors that can lpeeed withEuclid data.
Preliminary examination of the simulations suggests thatresults could be quite
sensitive to this choice, as in many cases the photometrse n® dominated by the
systematic component and not photon noise. This warraatsith look more closely
at the efect of systematics in future work. It is very important to estigate how
expected yields will vary with diering amplitudes of systematic error, as the value
we use may be a significant overestimate. Certainly, the tightrol of systematics
required byEuclid for galaxy-shape measurements should meanEhatid will be
one of the best-characterized optical observatories ewir (Euclid red book). To
what degree this control will translate to crowded field gmoetry, however, is not yet

clear.
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5.4.3 Planet mass measurements

In this work we have presented estimates of the expecteciptiatection yield for
a Euclid microlensing survey. While space-based microlensiftgrs significantly
higher yields per unit time than do ground-based obsemstithis is not the only moti-
vation for space-based observations. A standard planet&rplensing event does not
automatically imply a measurement of planet mass or serimaajs, only the planet-
star mass ratio and the projected star-planet separationiis of the Einstein radius
re. As discussed in Chapter 2, to measure the planet mass we reasure the lens
mass, either by detecting subtle, higher-ordéeas in the microlensing lightcurve,
such as microlensing parallax (e.g., Gould 2000a; An etQf122, or directly detecting
the lens star (Alcock et al. 2001a; Koztowski et al. 2007)thafut these the mass can
only be determined probabilistically (e.g., Dominik 20@&aulieu et al. 2006). The
projected separation in physical units can be determindteifens mass and distance
are known (as well as the source distance, which it is passdlestimate from its
colour and magnitude). Determining the semimajor axis wdjuire the detection of
orbital motion (Bennett et al. 2010; Skowron et al. 2011},this will only be possible
in a subset of events (see Chapter 3).

For a survey byeuclid we expect parallax measurements to be rare. Pardliests
are strongest in long microlensing events lasting a subatdraction of a year due to
the acceleration of the Earth (Gould 1992), Buclid's seasons will be too short to
constrain or detect a parallax signal in most events (Snhath 2005). However, thanks
to the high-resolution imaging capabilities of tMESinstrument, lens detection should
be routine (Bennett et al. 2007). In events where the lighheflens is detected, the
lens mass and distance can be determined by combining ne@asuoits of the angular
Einstein radiugge (which gives a mass-distance relation, see Equation 2tiA)aynain-
sequence mass-luminosity relation. Measuremerfizaghould be possible in most
events, either from finite-sourcdfects in the lightcurve or by measuring the relative

lens-source proper motion as the pair separate (Benndtt26Gv).
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It is also possible to estimate the lens mass and distanoe fteasurements of
it colour and magnitude (Bennett et al. 2007). From a singlech of NISPandVIS
images, this will likely not be possible. However, over eaehson at least 100 images
will be taken in eaclVISandNISPband, which will be randomly dithered. These can
be stacked to form a much deeper, higher-resolution imagadah band. From these
images it should be possible to isolate the source (whogghtoess is known from
the lightcurve) from any blended light. After subtractidgetsource, if the remaining
light is due to the lens, its mass can be estimated from isuc@nd magnitude. The
planet mass can then be determined, as the planet-host atisis tknown from the
lightcurve. However, if either the source or lens has a lwagicompanion, estimating
the lens mass will be moreftlicult (Bennett et al. 2007).

We do not attempt to estimate the number of planet detectiithanass measure-
ments in this work, but note that the image simulations westtlaveloped provide the
necessary tools to perform this calculation. In future wookget an accurate estimate
of the uncertainties on measured planet parameters, westaitk simulated images
that have been dithered and attempt to extract from them unemgnts of the lens
colour and magnitude and the lens-source proper motion. Weambine these with
estimates of the lightcurve parameter uncertainties froarkdv Chain Monte Carlo
fits to the lightcurve data in order to fully estimate the utamty on the planet mass
and projected separation in physical units. These caloalawill allow a full deter-
mination of planetary microlensing figures of merit, suchtlas one defined by the
WFIRSTScience Definition Team (Green et al. 2011).

5.4.4 Survey optimization

The survey we simulate in this work has not been optimizecerd@lare many factors
that can be varied to increase planet yields, such as theelwditarget fields, the
number of target fields and the strategy with which they aseoled. However, planet

yields are not the only measure of the scientific yield of thevey. For example,
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planetary-mass measurements without the need for adalitiolow-up observations
are an important goal of theuclid microlensing survey, and so any assessment of the
relative performance of flierent possible surveys must also evaluate performances in

this respect. Figures of merit will be used to quantify thérmoation process.
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In Chapter 3 we simulated microlensing lightcurves by ongitbinary lenses in order
to determine the fraction of binary-lens lightcurves that @fected by orbital motion.
This was done by fitting the lightcurves with static binagyg models. Those that were
poorly fit by the static model were counted as orbital motietedtions. We corrected
for systematic false-positive detections by also fitting lightcurves of static-binary
lenses. We found that for a continuous-monitoring survehet intensive follow-up
of high-magnification events, the orbital motion detec#fiiciencyeoy for planetary
events with caustic crossingsdgy = 0.061+ 0.010, consistent with observational
results; for planetary events without caustic crosskags= 0.0130+0.0055. Similarly
for stellar binaries, we foundoy = 0.098+ 0.011 for events with caustic crossings
andeoy = 0.048+ 0.006 for events without caustic crossings.

We also investigated how various microlensing parametéestathe orbital motion
detectability. We found that the orbital motion detectidhiogency increases as the
binary mass ratio and event timescale increase, and as ffecirparameter and lens
distance decrease. For planetary caustic-crossing evetsletection fciency is
highest at relatively large values of semimajor ax# AU, due to the large size of
the resonant caustic at this orbital separatiofieis due to the orbital inclination are
small and appear to only significantlffact smooth stellar binary events.

We find that, as suggested by Gaudi (2009), it is possibleassdly many orbital
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motion events into one of two classes. The first clagparationalevents, typically
show large &ects due to subtle changes in resonant caustics, causeadibyashin the
projected binary separation. The second claestgtional events, typically show much
smaller éfects which are due to the magnification patterns of closeekerghibiting
large changes in angular orientation over the course of anteMhese changes typi-
cally cause only subtle changes to the lightcurve.

In Chapter 4 we studied rapidly-rotating lenses (RRLs), g¥ound examples of
detectable binary lenses orbiting with a period similarteit microlensing timescale
in the previous chapter. That these events are detectabdeniarkable because the
strength of binary-lens features decreases rapidly asrthigabseparation decreases.
Yet, we show both analytically and numerically that it is gpibte to detect repeating
features in the lightcurve of binary microlenses that catelseveral orbits during
the microlensing event. We use a simulation to estimatedtesaf RRL events for a
ground-based and space-based microlensing survey t@B& @nd 78f, events per
year, respectively, assuming year-round monitoring andre/, is the binary frac-
tion. We also detail how RRL event parameters can be quickiynated from their
lightcurves, and suggest a method to model RRL events usmgg measurements
of lightcurve features. Modelling RRL lightcurves will yeethe lens orbital period
and possibly measurements of all orbital elements incythie inclination and eccen-
tricity. Measurement of the period from the lightcurve alka mass-distance relation
to be defined, which, when combined with a measurement ofaheics parallax or
finite-source #ects, can yield a mass measurement to a two-fold degendtangy
be possible to remove this degeneracy, even with only velgtiveak limits on finite-
source €ects or on the microlensing parallax.

In Chapter 5 we develop a microlensing simulator: the Manehnd®esancon mi-
croLensing Simulator, oMaBulL S. By drawing on the Besancgon population synthesis
Galactic model and performing detailed image simulatidhis simulator is one of
the most comprehensive microlensing simulators yet deegloSynthetic images are

created by using a detailed set of detector parameters ameharital or analytic point
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spread function. Microlensing events, together with stiesvn from the Besancon
model, are added to the image and photometry performvaBul S can simulate mi-
crolensing surveys conducted by a combination of obsemest@n the ground and

in space, observing in flerent pass-bands and with a potentially complex observing
strategy. The simulator has been designed to be modulahasdhte user can define
their own lightcurve-generator and detection-criteriadtions in order to study fier-

ent phenomena.

We have demonstrated the useMé&BuLS by applying it to the recently selected
Euclid space mission. A microlensing survey has been proposed agdimonal sci-
ence program on the mission. We show that such a survey wékctle6 Earth-mass
planets if there is one such planet per star with a semimajeriathe range = 0.03—
30 AU. If instead of this we assume that the planetary masstifum follows values
recently measured, of the order of 60 Earth-mass plangds18Mg) should be de-

tected, along with similar numbers of all other planet masse

6.1 Future work

At the time of writing Chapter 3 there was only one event whetstal motion had
been used to obtain a measurement of orbital parametersiéBest al. 2010). This
event was clearly a special event containing signaturesmptanets as well as orbital
motion signatures, and at the time it was certainly posdidé such an event was a
fluke. However, since that time two more events have yieldatl/fstrong Keplerian
orbital parameter constraints (Skowron et al. 2011; Shial.e2011), suggesting that
such measurements should be possible in a reasonablefrattevents. The amount
of work needed to model such events is significant becauséutherbital motion
parameter space is large. It is possible that an ‘assay bylaiion’ of orbital motion
events, following an approach similar to that taken in Chaftemay contribute to
the understanding of the parameter space. The rationalg fellaws: rather than

fitting the simulated events with static-binary models, evauld fit them with full

MATTHEW T. PENNY 205



6: SUMMARY AND FUTURE WORK

Keplerian models. This time it would not be the degree of agrent between models
that was of interest, but the uncertainty in the parameteas ¢ould be derived. A
Markov Chain Monte Carlo minimizer would be the most apprdgrtaol to estimate
the uncertainties, as in many cases there may be broadowteatidor degeneratg?
minima. The results of this simulation would hopefully be aprof the parameter
space suggesting where strong orbital constraints coutdbtaened. However, it is not
clear if such an endeavor would succeed in producirffjcsent significant results to
reward the required work.

In Chapter 4 we showed that there was a reasonable chanceRhatWould be
detected, either in archival data, or in data that will bdemdéed in the near future.
The best chance of detecting RRLs would appear to be in OGL&ata. OGLE-IV
began alerting microlensing events this year and the lisi@fts has exceeded 1500,
i.e., OGLE-IV is detecting over two and a half times the nundfeevents that OGLE-
Il was detecting. Also, certain fields are now sampled witinich higher cadence.
After a few years of routine operation, once the OGLE-IV biasehas been built-
up, a search for RRL events in conjunction with a search foalfzx and xallarap
events similar to those by Smith et al. (2002a) and Poindesttal. (2005) would
likely produce interesting results.

Perhaps the most promising line of future work will be thelexkption ofMaBul S.
The simulations we have presented dteively preliminary results; we are awaiting
an updated set of parameters tuclid, following the announcement of its selection
early in October 2011, in order to run full simulations compg each of the available
band-passes and investigating thieets of systematics. There is also a small amount
of work needed to implement simulations of mass measuresrintlirect detection
of the lens and to begin performing figure of merit simulasionlowever, all the tools
for this are ready, they just need to be brought together.

A potentially valuable extension t®laBulS would be to make it an end-to-end
simulator. At presenMaBulLS has the capability to produce realistic images, but it

skips over perhaps the most crucial phase of the producfidighdcurves: crowded
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field photometry.MaBuLS currently simulates aperture photometry, but it would pro-
duce more realistic results, together with many of the syatec errors, if it were
to run standard crowded field photometry (CFP) routines onsthrulated images.
Such a development will almost certainly be needed to perfiealistic simulations
of ground-based surveys. However, it would come at conalilercomputational cost,
due to the additional image processing. That said, it isylikeat the additional realism

would be well worth the additional expense.

6.2 Wider impact

In Chapters 3 and 4 we have focused on the somewhat speciad@edf orbital mo-
tion in microlensing, a relatively rarely-detectefileet. However, by making possible
the measurement of the semimajor axis and other orbitahpetexs, orbital motion de-
tection can enable the like-for-like comparison of micramg planet detections with
those made by radial velocities and other methods. In faiugh the measurement of
orbital motion signatures, Skowron et al. (2011) recentldicted the radial velocity
signature of a binary microlens, which falls within the séwisy range of current radial
velocity instruments. This makes possible the first indeeentest of a microlensing
detection and interpretation. The application of this pszcto other events will prove
invaluable in tying together the disconnected parametgrepof each planet detection
technique, therefore allowing a more complete picture efdistribution of planetary
systems to be developed.

In Chapter 5 we have developed a powerful tool for optimizingeaoplanetary
microlensing survey b¥euclid. Such a survey will probe the distribution of cold, low-
mass planets at the position of the snow-line and beyondplaiimg the census of
Earth-mass planets th&epler has begun. The combined data sets of each method,
with large numbers of detected planets, will allow theowégplanet formation and
evolution to be tested to an unprecedented degree. An uaddisg of these pro-

cesses and the planetary systems that they form will uleipd¢ad to a much better
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understanding of the number and types of planets that caanpally harbour life,

which in turn will contribute to estimates of the abundantéfe in the universe.
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Appendix A

On the choice of detection criteria

In this appendix we discuss the choicergf threshold for planet detections in Chap-
ter 5, though much of the discussion also applies to the ehoichreshold used in
Chapter 3. In Chapter 5, we are concerned with determining idagbary microlens-
ing signature can be said to be detected.

The problem at hand is one of model selection: do we prefesithpler single-lens
model (modelS), or do we prefer the more complicated planetary model (rh&de
for binary)? We can evaluate this quantitatively in a Bagedramework, using our
lightcurve data and our prior knowledge about the modelstaed parameters (see
Gregory 2005, for a review). The posterior probability weiga to model given the
dataD and background informatioh P(S|D, I), is by Bayes theorem

P(DIS, )P(S|I)

P(SID, 1) = PO

(A.1)

where P(DIS, 1) is the probability of the data given the model, i.e., theelifkood,
P(S|I) is the prior probability we assign to the model aR(D|l) is the evidence. A
similar expression can be written for the posterior probighive assign to modeB,
P(B|D, I).

To compare our two models we can take the ratio of their pmstprobabilities,

the Bayes factor,
P(BID,1) _ P(DIB,1)P(B|I)
P(SID,1) ~ P(DIS, )P(S|1)’

(A.2)
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where the evidence has cancelled out. If this ratio is laiggn we favour the binary-
lens model to that of the single lens. We may take the ratiormir pprobabilities
P(B, 1)/P(S]l) to be of the order of one, i.e., the lens is roughly as likelp¢ orbited
by a planet as itis not to be. This leaves us with the ratickelilhoods to be calculated.

The likelihood of modebB, which has the set of paramettﬁgs is
P(DIS, 1) = f P(D|s, S, 1)P(6s|S, 1)dds, (A.3)

whereP(D|ds, S, I) is the likelihood of the set of parametéks, P(6s|S, 1) is the prior
probability of the parameters, and the integral margirainver the range of each
parameter. A similar expression can be written for the ik@bd of modeB, P(D|B, I),
marginalized over the parametéks

The likelihood is related to the? for modelS as

Xé(gs)
5 )

P(D|fs, S, 1) exp[— (A.4)

WhereX§(§s) is they? of the single-lens model with parametﬁgsand where the terms
hidden by the proportionality sign depend only on the datainilar expression can be
written for P(D|dg, B, 1). The hidden data terms are equal for both models and can be
taken outside the integral in Equation A.3 and will cancelheather in Equation A.2.
Before deciding on the priors of each parameter, we notehleagingle-lens model
is a special case of the binary-lens model, with the paramqtéhe mass ratio) and
s (the projected separation) equal to zero and the sourcectaay anglea becom-
ing completely degeneratethe other parameters of the model are identical. Also, in
most cases the source radjus(in units of the Einstein radius) is almost completely
degenerate in the single-lens model but not in the binarg-laodel. If we choose
uninformative, uniform priors (or logarithmic where nesasy) on the common free
parameters of the models, then the prior for each paramaitebbe taken outside of the
integral in Equation A.3 to be cancelled in Equation A.2. e also choose uninfor-

mative, uniform priors for the remaining four parameterdha binary-lens moded,

L should not be confused with the mass-function slope.
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g, « andp, to take them outside the integral. The priors

P(loggB, 1) = P(logqlB, 1) = (A.5)

1
2-(-1y 0-(=8)
1 1
_1_—(_7) and P((},"B, I) = Z, (A6)

P(logp.|B,1) =
are suitably uninformative, i.e.,D < s < 100, 108 < q<1,0< a < 2r and
107 < p. <0.1.

We can now write down the ratio of posteriors
P(BID.1) _ 5 J €% dda

= A7
P(SID,1) ~ [ e/2dds (A7)

If we assume that the likelihood functions for both modets\aell described by mul-
tivariate Gaussians and that the parameters are uncewdelat can approximate the

marginalized likelihood (Equation A.3) as

P - N ; /\/é,min
(DIS, 1) ~ ﬂ V2ro |exp > (A.8)
i=0

(see, e.g., Gregory 2005) wherg is the uncertainty on th&" parameter ofis and
)(gmm is they? of the best-fitting single-lens model, and similarly f&(D|B, I). From
here on we will drop the ‘min’ subscript and all usageydfthat follows will assume
that it is they? of the best-fitting model. We will return to the assumptionnof
correlation later.

It is reasonable to assume that the uncertainties on the corparameters of each
model will be of similar magnitude, (though the uncertaiatyhese parameters in the
binary-lens model will be slightly larger due to the addit@freedom &orded by each
additional free parameter). The uncertainties on the compavameters then cancel,

and we are left with

P(BID, 1) - (27r)20_log s0logq0 o T logp., es/2

~ A.9
P(SID, 1) 2887 e xs/2 (A.9)
n Ax?
~ 7_2(7'Iog s0logq? o logp. eXp(T) > (A.10)
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whereAy? = ¥2 — x4. As Ay? can become very large, it is helpful to take logs of both
sides of Equation A.10

A 2
AL ~ % +INTiogs + INTlogq + Ny + IN g, — 3.1, (A.11)

whereAL = InP(BID, 1) — In P(S|D, 1); note the order of the subtraction is opposite
to that of Ay2. So, if AL > 3 or so, i.e., the ratio of posterior probabilities is greate
than 16 or so, then the binary-lens model is favoured. In fact, if wanto be con-
servative and require that the binary model be ‘stronglyptaed’ we should require
AL > 10 (Jefreys 1961; Robert et al. 2009).

Equation A.11 implies that for a fixetly? we will be lesslikely to believe a de-
tection thesmallerthe error bars on its parameters are. This is to be expected. W
should be suspicious of a model if the parameters need vesytdimng to produce
only a weak signal. Assuming that the uncertainties on eachrpeter were equal,
even forAy? = 100, which is below our adopted threshold, the uncertairyld have
to be< 10~* on each parameter in order to warrant suspicion about trestien. This
seems to be unlikely for planetary microlensing events.

At this point it is worth investigating some examples. FemiA.1 and A.2 show
two example lightcurves afy? ~ 100 from an earlier simulation of tHeuclid mission
using a version oMaBuL Sthat did not include image simulations. Figure A.1 involves
a Mars-mass planet, and the planetary deviation is veryilszh Figure A.2 involves
a 100Mg planet with a deviation that covers a significant fractiorthaf lightcurve,
but with an amplitude less than the uncertainty in individleda points. We performed
a Markov Chain Monte Carlo (MCMC) minimization using the methdédoran and
Muller (2004) on each of the lightcurves in order to evaluag uncertainties on the
event parameters.

The results of the MCMC minimization are shown in Figure A.Bislclear that
theseAy? ~ 100 detections provide measurements of the mass ratio ajetprd sep-
aration of the planets, though the uncertainties in thessssorements are significantly

larger than those for a much stronger detection such ashbatrsin Figure A.4. The
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Figure A.1 — Lightcurve of a A-Mg planet orbiting a @4-M,, star at 068 AU, which is
detected withAy? = 103. The planet causes~&2-day deviation in the wing of the host
star's microlensing event, which has an amplitude similar to the accuracy ofitharg H-
band photometry. Dierent coloured points with error bars show photometric data points and
their uncertainties in diierent bands, magenta showing data in the broad visual-Ba8gnd
green, blue and red showing data in the near infrafed- and primaryH-band respectively.
The black line shows the best-fitting point-lens model. The inset figure sholesexup of the
planetary deviation, witl/1S data points removed for clarity. Fluxes in each band have been
scaled to that of thél-band. All other lightcurve examples in this Appendix will follow the
same conventions, unless otherwise stated. The events shown in thig evexptgenerated in

a previous version d1aBulL Swhich did not use image simulations.
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Figure A.2 — AAy? = 102 detection of a 1004g planet orbiting a @1-M,, star at 13 AU.
The inset shows the residual with respect to the best-fit point-lens maduekddviation, which
covers most of the event, is clearly detectable in the birtdxind residuals, shown with cyan

points.

AL values for each of the examples are:
e 0.1-Mg planet (top left of Figure A.3)AL = 32.1,
e 100-Mg planet (top right) AL = 359,
e 10-Mg planet (bottom left)AL = 29400,

where we have taken the errors on each parameter to be tleef@odjuncertainties (i.e.
the square root of the variance of the parameter values afgw the MCMC run). In
each case the binary-lens interpretation is strongly feeuHowever, it can be seen

that in some cases the parameters are correlated. Corrslatith reduceAL, because
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Figure A.3 — Results of an optimized Markov Chain Monte Carlo (MCMC) routised to

model the lightcurves of the example events shown in Figures A.1 (top left-panel) and

A.2 (top right-hand panel). The red, green and blue points fill in 1-, 8% error ellipses

in the logg-logs plane, respectively. The inset panels show the planetary deviation being

modelled. The bottom right-hand panel shows the results of an MCMC minimizigica

much strongeny? = 58900 detection, the lightcurve for which is shown in Figure A.4. These

three panels are shown at the same scale, with a range 8000.1 and a range in log of

1. The bottom left-hand panel zooms in by a factor of ten on the error eliggshe strong

detection.

the error ellipses will fill a smaller fraction of the spacéoaled by the priors than is

suggested by their projected errors. However, even forAtpecases we show, the

correlations would have to be extremely strong to redhcéo 10. This suggests that

aAy? threshold of 100 or even lower may beflscient to define a planet detection.
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Figure A.4 — A strongAx? = 58900, detection of a 1B4g planet orbiting a A4-M,, star at
0.82 AU.

lection problem between a binary- and a single-lens modeal wiicrolensing event.
The uncertainties of the binary-lens model parametersiforiow-y? example events,
suggest a\y? threshold of 100 would be ficient to claim detection of a planet, and
that even lower thresholds may be possible. However, whédehawve shown that a
binary-lens interpretation is strongly favoured over agi&rlens model, we have not
shown that it is preferred over any other plausible modeishss a binary-source star
being lensed, or a blended irregular or long-period vadatar. These are not simu-
lated in our model so it is easy to rule them out, but in the dagh this will not be so
easy. Each of these types of potential false positive evagtanwill occur and some
of their lightcurves will pass the simplgy? cut we have used here. Thg? cut will
not be the only cut that planet detections will have to pasduture work it will be

important to model these cuts as well.
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