
INFERRING INFORMATION ABOUT

CORRESPONDENCES BETWEEN

DATA SOURCES FOR DATASPACES

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2011

By

Chenjuan Guo

School of Computer Science

Contents

Abstract 10

Declaration 11

Copyright 12

Acknowledgements 13

1 Introduction 14

1.1 Schematic Correspondences . 15

1.1.1 Definition . 15

1.1.2 Classification . 16

1.2 Dataspaces: Next Generation of Data Integration 19

1.2.1 Traditional data integration 19

1.2.2 Dataspaces . 20

1.3 Research Context . 22

1.4 Thesis Aims, Objectives and Contributions 26

1.5 Thesis Structure . 29

2 Schema Matching and View Generation 30

2.1 Schema Matching Definition and Classification 31

2.1.1 Definition . 31

2.1.2 Technical classification . 32

2.2 Schema-Level Matching . 34

2.2.1 Element-level matching techniques 35

2.2.2 Structure-level matching techniques 37

2.3 Instance-Level Matching . 38

2.4 State-of-the-Art Schema Matching Systems 40

2

2.5 View Generation . 45

2.5.1 View definition . 45

2.5.2 Generating views . 47

2.6 Summary and Conclusions . 49

3 MatchBench 51

3.1 Related Work . 51

3.1.1 Experimental evaluation of schema matching 52

3.1.2 Generation of test cases for schema matching and mapping 55

3.1.3 Benchmarks for schema matching and mapping 56

3.2 Overview of MatchBench . 57

3.3 MatchBench Scenarios . 59

3.3.1 Initial schemas . 60

3.3.2 Positive scenarios for one-to-one entity correspondences . . 61

3.3.3 Negative scenarios for one-to-one entity correspondences . 65

3.3.4 Positive scenarios for many-to-one attribute correspondences 66

3.3.5 Positive scenarios for many-to-many entity correspondences 67

3.4 Experiments . 68

3.4.1 Effectiveness measures . 68

3.4.2 Experiment design . 69

3.5 Summary and Conclusions . 75

4 Application of MatchBench 76

4.1 Matching Systems . 76

4.1.1 COMA++ configuration 76

4.1.2 Rondo configuration . 80

4.1.3 OpenII Configuration . 81

4.1.4 Comparison of Configurations 82

4.2 Effectiveness comparison . 83

4.2.1 Experiment 1: Identifying when the same entity occurs in

positive scenarios . 83

4.2.2 Experiment 2: Identifying when the same entity occurs in

negative scenarios . 86

4.2.3 Experiment 3: Identifying where different names have been

given to equivalent attributes in positive scenarios 87

3

4.2.4 Experiment 4: Identifying where different names have been

given to equivalent attributes in negative scenarios 88

4.2.5 Experiment 5: Identifying missing attributes in positive

scenarios . 89

4.2.6 Experiment 6: Identifying missing attributes in negative

scenarios . 90

4.2.7 Experiment 7: Identifying many-to-one attribute correspon-

dences in positive scenarios 90

4.2.8 Experiment 8: Identifying many-to-one attribute correspon-

dences in negative scenarios 91

4.2.9 Experiment 9: Identifying many-to-many entity correspon-

dences in positive scenarios 92

4.2.10 Experiment 10: Identifying many-to-many entity correspon-

dences in negative scenarios 95

4.3 Summary and Conclusions . 96

5 Inferring Schematic Correspondences 99

5.1 Related Work . 100

5.1.1 Semantic relationships between data sources 100

5.1.2 Methods for inferring complex correspondences 101

5.1.3 Identifying correspondences as a search problem 104

5.1.4 Identifying matches without applying parameters 104

5.2 Overview of the Approach . 105

5.3 A Framework for Searching Entity-Level Relationships 110

5.4 Representations of Entity-Level Relationships 112

5.5 Objective Function . 117

5.5.1 Background: vector space model 118

5.5.2 Overview of the objective function 120

5.5.3 Identification of equivalent attributes 122

5.5.4 Source and target vector spaces 127

5.5.5 Weight calculation . 132

5.5.6 Vector similarity . 133

5.5.7 Aggregation . 136

5.6 Identification of Attribute-Level Relationships 138

5.7 Summary and Conclusions . 140

4

6 Experimental Evaluation 142

6.1 Experimental Settings . 143

6.1.1 Dataset description . 143

6.1.2 Metrics . 143

6.1.3 Genetic algorithm setup 143

6.1.4 Basic matches . 144

6.2 Experimental Evaluation on MatchBench 146

6.2.1 Experiment 1: Identifying when the same entity occurs in

positive scenarios . 147

6.2.2 Experiment 2: Identifying when the same entity occurs in

negative scenarios . 152

6.2.3 Experiment 3: Identifying where different names have been

given to equivalent attributes in positive scenarios 153

6.2.4 Experiment 4: Identifying where different names have been

given to equivalent attributes in negative scenarios 154

6.2.5 Experiment 5: Identifying missing attributes in positive

scenarios . 154

6.2.6 Experiment 6: Identifying missing attributes in negative

scenarios . 154

6.2.7 Experiment 7: Identifying many-to-one attribute correspon-

dences in positive scenarios 155

6.2.8 Experiment 8: Identifying many-to-one attribute correspon-

dences in negative scenarios 156

6.2.9 Experiment 9: Identifying many-to-many entity correspon-

dences in positive scenarios 156

6.2.10 Experiment 10: Identifying many-to-many entity correspon-

dences in negative scenarios 160

6.3 Experimental Evaluation on Amalgam 161

6.4 Summary and Conclusions . 164

7 Conclusion 166

7.1 Significance of Results and Contributions 166

7.2 Future Work . 171

Bibliography 175

5

A Amalgam Benchmark 188

A.1 Schema s1 . 188

A.2 Schema s2 . 192

A.3 Schema s3 . 197

A.4 Schema s4 . 200

Word Count: 79,803

6

List of Tables

2.1 A Classification of Schema Matching Techniques. 32

2.2 A Classification of Schema-Level Matching Techniques. 35

2.3 Characteristics of the State-of-the-Art Schema Matching Systems. 41

3.1 The number of scenarios generated by MatchBench. 59

4.1 Configurations of the three matching platforms. 82

5.1 Comparison of semantic relationships. 100

6.1 The number of ground truth occurrences of each type of schematic

correspondences between the Amalgam databases. 143

6.2 The number of successfully identified schematic correspondences

between the Amalgam databases, following order: our method,

Default COMA++, Tuned COMA++ and the ground truth. . . . 161

7

List of Figures

1.1 Examples for schema matching results. 23

3.1 MatchBench Work Flow. 58

3.2 The source and target databases used as a basis for scenario gen-

eration. 60

3.3 Positive scenario space for one-to-one entity correspondences. . . . 62

3.4 Examples for the positive scenario space for one-to-one entity cor-

respondences. 63

3.5 Negative scenario space for one-to-one entity correspondences. . . 66

3.6 Positive scenarios for many-to-one attribute correspondences. . . . 67

3.7 Positive scenarios for many-to-many entity correspondences. . . . 68

4.1 Example for the Threshold+MaxDelta method. 78

4.2 Comparison of COMA++ results for different settings of (thresh-

old, delta): F-measure. 79

4.3 Comparison of Rondo results without and with the instance matcher:

F-measure. 81

4.4 Experiment 1 for COMA++, Rondo and OpenII: Recall. 84

4.5 Results of Experiment 1 for COMA++, Rondo and OpenII: Aver-

age F-measure. 84

4.6 Results of Experiment 2 for COMA++, Rondo and OpenII: Aver-

age (1-F-measure). 86

4.7 Results of Experiments 3 and 4 for COMA++, Rondo and OpenII. 88

4.8 Results of Experiments 5 and 6 for COMA++, Rondo and OpenII. 89

4.9 Results of Experiments 7 and 8 for COMA++, Rondo and OpenII. 91

4.10 Results of Experiment 9 for COMA++, Rondo and OpenII: Aver-

age F-measure. 93

8

4.11 Results of Experiment 10 for COMA++, Rondo and OpenII: Av-

erage (1-F-measure). 95

5.1 Examples for input and output of our method. 106

5.2 Overview of the approach. 107

5.3 Matches between RDB1 and RDB2. 114

5.4 Matches between attributes of RDB1 and RDB2. 124

6.1 COMA++ Name matcher results given different threshold values. 146

6.2 Experiment 1 for Genetic Algorithm (GA), COMA++ default set-

ting and COMA++ tuned setting: F-measure. 147

6.3 Experiment 1 for Genetic Algorithm (GA), COMA++ default set-

ting and COMA++ tuned setting: Precision. 148

6.4 Experiment 1 for Genetic Algorithm (GA), COMA++ default set-

ting and COMA++ tuned setting: Recall. 149

6.5 Experiment 2 for Genetic Algorithm (GA), COMA++ default set-

ting and COMA++ tuned setting. 152

6.6 Experiments 3 and 4 for Genetic Algorithm (GA), COMA++ de-

fault setting and COMA++ tuned setting. 153

6.7 Experiments 5 and 6 for Genetic Algorithm (GA), COMA++ de-

fault setting and COMA++ tuned setting. 155

6.8 Experiments 7 and 8 for Genetic Algorithm (GA), COMA++ de-

fault setting and COMA++ tuned setting. 156

6.9 Experiment 9 for Genetic Algorithm (GA), COMA++ default set-

ting and COMA++ tuned setting. 158

6.10 Experiment 10 for Genetic Algorithm (GA), COMA++ default

setting and COMA++ tuned setting. 161

6.11 Amalgam results by Genetic Algorithm (GA), COMA++ default

setting and COMA++ tuned setting. 162

A.1 ER Diagram of Schema s1. 189

A.2 ER Diagram of Schema s2. 193

A.3 ER Diagram of Schema s3. 198

A.4 ER Diagram of Schema s4. 201

9

Abstract

Traditional data integration offers high quality services for managing and query-

ing interrelated but heterogeneous data sources but at a high cost. This is because

a significant amount of manual effort is required to help specify precise relation-

ships between the data sources in order to set up a data integration system. The

recent proposed vision of dataspaces aims to reduce the upfront effort required

to set up the system. A possible solution to approaching this aim is to infer

schematic correspondences between the data sources, thus enabling the develop-

ment of automated means for bootstrapping dataspaces.

In this thesis, we discuss a two-step research programme to automatically infer

schematic correspondences between data sources. In the first step, we investigate

the effectiveness of existing schema matching approaches for inferring schematic

correspondences and contribute a benchmark, called MatchBench, to achieve this

aim. In the second step, we contribute an evolutionary search method to identify

the set of entity-level relationships (ELRs) between data sources that qualify as

entity-level schematic correspondences. Specifically, we model the requirements

using a vector space model. For each resulting ELR we further identify a set

of attribute-level relationships (ALRs) that qualify as attribute-level schematic

correspondences. We demonstrate the effectiveness of the contributed inference

technique using both MatchBench scenarios and real world scenarios.

10

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

11

Copyright

i. The author of this thesis (including any appendices and/or schedules to

this thesis) owns certain copyright or related rights in it (the “Copyright”)

and s/he has given The University of Manchester certain rights to use such

Copyright, including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or

electronic copy, may be made only in accordance with the Copyright, De-

signs and Patents Act 1988 (as amended) and regulations issued under it

or, where appropriate, in accordance with licensing agreements which the

University has from time to time. This page must form part of any such

copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other

intellectual property (the “Intellectual Property”) and any reproductions of

copyright works in the thesis, for example graphs and tables (“Reproduc-

tions”), which may be described in this thesis, may not be owned by the

author and may be owned by third parties. Such Intellectual Property and

Reproductions cannot and must not be made available for use without the

prior written permission of the owner(s) of the relevant Intellectual Property

and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication

and commercialisation of this thesis, the Copyright and any Intellectual

Property and/or Reproductions described in it may take place is available

in the University IP Policy (see http://documents.manchester.ac.uk/

DocuInfo.aspx?DocID=487), in any relevant Thesis restriction declarations

deposited in the University Library, The University Library’s regulations

(see http://www.manchester.ac.uk/library/aboutus/regulations) and

in The University’s policy on presentation of Theses

12

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisors, Prof.

Norman W. Paton and Dr. Alvaro A. A. Fernandes, for their insightful supervi-

sion and guidance. I could not have imagined having better supervisors for my

Ph.D study. I would also like to thank my advisor, Prof Andrei Voronkov, for his

comments on my research. I would like to extend my appreciation to Dr. Cor-

nelia Hedeler and Dr. Khalid Belhajjame for their helpful suggestions. Thanks

also to School of Computer Science in the University of Manchester for providing

a brilliant Ph.D. training and research environment.

I would also like to thank Dr. Kwanchai Eurviriyanukul who has been so kind

and willing to take some time to help me in the beginning of my Ph.D. study.

Thanks to Lily S. Safie, Lu Mao and many of my CS friends for their continuous

encouragement and companion.

Thanks to my parents and grandparents for their constant love and support.

Last but not the least, for my loving and supportive husband, Dr. Bin Yang, his

encouragement and support during the whole Ph.D. study are so appreciated.

13

Chapter 1

Introduction

Nowadays, demand for managing and querying interrelated but heterogeneous

data sources is widespread. For example, each university employs an independent

data source to record information of students, staff and courses. If a national

education department conducts a survey of university employees on, say, salaries

and working conditions, the department needs to query the data source of each

university separately, which is inconvenient and time consuming. Such examples

motivate the research conducted by the data integration community [HRO06]

that users should be able to query different data sources via a unified interface

rather than by visiting each of them separately.

Traditional data integration systems provide high-quality services but at a

high cost [HRO06]. Before offering the integration services to users, precise map-

pings that describe the relationships of heterogeneous data sources are required

in order to return accurate query results. However, the process of specifying map-

pings takes a great amount of manual effort [LN07, ATV08], thereby increasing

the cost required to set up the data integration systems [Haa07] to quite a high

level.

To reduce the high upfront cost of traditional data integration, dataspaces

were proposed in 2005 [FHM05]. They aim at automatically setting up a data

integration system, and meanwhile allow users to gradually improve the quality

of the system. One element of the strategy to reduce the upfront cost is to

automatically bootstrap the system, with the benefit of releasing experts from

the tedious process of mapping specification. With the help of information that

specifies the relationships between elements in different data sources, i.e., a degree

of expressiveness equivalent to the schematic correspondences defined by Kim et

14

1.1. SCHEMATIC CORRESPONDENCES 15

al. [KS91], mappings can be automatically generated [MBPF09]. This constitutes

a significant step towards automating the bootstrapping process of dataspaces

[FHM05, HFM06]. The idea of automatically deriving schematic correspondences

between data sources motivates the research described in this thesis.

The remainder of this chapter is organized as follows. In Section 1.1, we elab-

orate on the definition of schematic correspondences. We explain the process of

traditional data integration in Section 1.2.1, along with the high-quality but also

high-cost feature it exhibits. Next, in Section 1.2.2, we compare traditional data

integration and dataspaces in order to motivate the need for automatic generation

of views in dataspaces. We discuss the research background of inferring schematic

correspondences in Section 1.3, and state the aim, objectives and contributions

reported in the thesis in Section 1.4. Section 1.5 concludes by describing the

structure of the remainder of this thesis.

1.1 Schematic Correspondences

Data sources usually refer to sources of digital data in the form of, e.g., databases,

computer files or data streams. Apart from data, structured (and often semi-

structured) data sources also contain schemas, or so-called metadata, which pro-

vide information about the data, such as their types, domain, time and date of

creation, and authors.

Data sources that represent the same or similar real world information can

exhibit great heterogeneity. For example, they may be represented using different

database models, e.g., relational or XML models. It is also common that they are

devised independently by different designers without coordination, whose views

of the world differ even on the same objects. However, over time these data

sources may come to be used together. Therefore, it is crucial to understand the

heterogeneities among these data sources before we can really utilize and manage

them together.

1.1.1 Definition

As mentioned above, a data source generally refers to a store of information rather

than a specific source type. In this thesis, the research undertaken mainly ad-

dresses problems related with a particular type of data source, namely databases,

16 CHAPTER 1. INTRODUCTION

and as such we will use the term database and the general name data source as

synonyms.

A database consists of a collection of data records structured under some

schema, where the underlying data captures the real world information in a

special domain. Once a particular schema definition has been designed for a

database, the associated data must comply with the schema. The schema spec-

ifies the structure of the data and the associated constraints using, for example,

the relational data model, the object-relational data model, or the object-oriented

data model [SKS02]. It also specifies the descriptive names, and the types of the

underlying data. Unlike the structures of the data, which are constrained by the

rules of the utilized data model, the names and types of the data could be fairly

subjective to designers.

Heterogeneities or conflicts between databases mainly refer to different sym-

bolic representations of data that represent the same real world information

[KS91, KCGS93], mainly including two types:

• data model heterogeneities, which denote that data representing the same

real world information are structured differently, for example, using different

data models (e.g., relational and XML);

• schematic heterogeneities, which refer to the discrepancies between databases

due to the use of different names or data types to describe the same real

world information.

These two types of heterogeneities often appear simultaneously in real world

applications, thus significantly increasing the complexity of reconciling them. For

the purposes of this thesis, we chose as a representative schema definition, the

relational schema, and address the problem of schematic heterogeneities. The

problem of reconciling both data model heterogeneities and schematic hetero-

geneities is left for future work.

The term schematic correspondence refers to the linkage between the parts of

schemas where a schematic heterogeneity exists, so we consider correspondence

and heterogeneity as synonyms in this thesis.

1.1.2 Classification

Previous research yields several classifications of schematic correspondences be-

tween database schemas [Ler00, KS91, KCGS93]. In this thesis, we adopt the

1.1. SCHEMATIC CORRESPONDENCES 17

classification of schematic correspondences between relational schemas proposed

by Kim et al. [KS91], which characterizes different symbolic representations of

data that present the same real world information. In what follows, we have

refined the characteristics of many-to-many entity type correspondences from

[KS91] to distinguish horizontal and vertical partitioning. Before moving on to

state the details, consider the schemas of two independently designed relational

databases RDB1 and RDB2, where symbols ∗ and + indicate primary key and

foreign key attributes, respectively.

RDB1:

home cust (id∗, name, birth, a id+, p city, p area, p local)

overseas cust (id∗, name, birth, a id+, p city, p area, p local)

account (id∗, name, balance, tax)

RDB2:

customer (key∗, c fname, c lname, c birth, account key+)

cust phone (key∗, city, area, local, extension)

cust account (key∗, account name, account balance)

Both RDB1 and RDB2 contain information about customers and their ac-

counts, even though they represent the information differently. It can be identi-

fied that they represent broadly the same real world information, but that het-

erogeneities exist between them at both entity and attribute levels:

(i) Entity-level correspondences indicate the equivalence between two (sets of)

entity types (i.e., tables), and can be decomposed into one-to-one and many-to-

many entity type correspondences, where

• One-to-one entity type correspondences relate pairs of entity types that rep-

resent the same information. For example, account in RDB1 and cust account

in RDB2 can be considered to represent equivalent real-world notions but

show the following heterogeneities:

– name conflict, which indicates that the equivalent entity types have

different names. In the following, this conflict is called Different Names

for the Same Entity type (DNSE). When different entity types happen

to have the same name, we call the conflict Same Name for Different

Entity types (SNDE).

18 CHAPTER 1. INTRODUCTION

– missing attributes conflict, which indicates attributes that are present

in one entity type but not in the other (e.g., attribute tax in account

is missing in cust account).

• many-to-many entity type correspondences relate two sets of entity types

that represent the same information. For example, in RDB1 home cust and

overseas cust together describe the same information about customers as

customer and cust phone in RDB2. Note that these two sets of entity types

do not have the same structure in RDB1 and RDB2, but the underlying

information is similar. This difference in structure between each set of

entity types results in distinct kinds of many-to-many conflict. Inheriting

terms from distributed database systems [OV89], we define the structure

within a set of entity types as:

– horizontal partitioning (HP), where an original entity type is par-

titioned along its instances into new entity types. As such, all at-

tributes of the original entity are present in each of new entity types

(e.g., home cust and overseas cust in RBD1 are horizontal partitioning

of customer information).

– vertical partitioning (VP), where an original entity type is partitioned

into new entity types whose attributes are subsets of the original en-

tity. As such, some attributes are present in each of the new entity

types, which are primary keys, whereas other attributes of the original

entity types are present only once across all the new entity types (e.g.,

customer and cust phone in RDB2 are vertical partitioning of customer

information).

Given the above partitioning information, we are then able to enumerate 4

types of many-to-many entity type correspondences: HP vs HP, HP vs VP,

VP vs HP and VP vs VP correspondences. For example, the correspon-

dence between entity type sets {home cust, overseas cust} and {customer,

cust phone} is a HP vs VP correspondence.

(ii) Attribute-level correspondences indicate the equivalence between two (sets of)

attributes. For the remainder of the thesis, we assume that attributes associated

by attribute-level correspondences belong to entity types that are participating

in some entity-level correspondence. Similar to entity-level correspondences, the

1.2. DATASPACES: NEXT GENERATION OF DATA INTEGRATION 19

attribute-level correspondences can be decomposed into one-to-one and many-to-

many correspondences as follows:

• One-to-one attribute correspondences relate pairs of attributes. Equivalent

attributes may have different names, so such a conflict is called Different

Names for the Same Attributes (DNSA) (e.g., attributes account.name in

RDB1 and cust account.account name in RDB2). By contrast, attributes

that are different but may have the same name give rise to Same Name for

Different Attributes (SNDA) correspondences.

• Many-to-many attribute correspondences associate two sets of attributes

that represent the same property of equivalent entity types. For example,

both the single attribute home cust.name in RDB1 and the set of attributes

customer.c fname and customer.c lname in RDB2 represent names of cus-

tomers.

Because of such schematic heterogeneities, it is hard for users to query different

data sources using the same query expressions. This raises the need to offer users

an integration system that reconciles heterogeneities between the data sources

and provides a unified query interface, as presented in the next section.

1.2 Dataspaces: Next Generation of Data Inte-

gration

From a user’s perspective, it is more convenient to issue queries against a single

integrated schema than visiting a number of different data sources separately.

However, as stated in Section 1.1, data sources may exhibit great diversity and

heterogeneity, thus making it hard to use them together. In this section, we

introduce two versions of a general solution for managing and querying heteroge-

neous data sources: traditional data integration in Section 1.2.1 and its evolution

dataspaces in Section 1.2.2.

1.2.1 Traditional data integration

Data integration is a difficult challenge faced by applications that need to query

across multiple autonomous and heterogeneous data sources. In a traditional

data integration system, the data sources are usually referred to as local sources

20 CHAPTER 1. INTRODUCTION

and the schemas are referred to as local schemas. The single interface through

which users can access the data sources for queries is usually called a mediated

(or global) schema [HRO06].

The initialization of a traditional data integration system generally requires

the following two steps [Len02]: i) (semi-)automatically identifying matches that

associate equivalent or similar parts between schemas; and ii) specifying views

that explicitly describe the semantic mappings between elements of the mediated

and the local schemas on the basis of the matches obtained in the previous step.

Techniques for identifying matches and for specifying views are introduced in

more detail in Chapter 2. When the user poses a query over the mediated schema,

the query needs to be reformulated into a set of queries over the local schemas

[HRO06] using the views. The query results are then evaluated, combined and

returned to the user.

Several approaches have been proposed to define the views, including Local-as-

View (LAV) [DGL00, FW97], Global-as-View (GAV) [GMPQ+97, ACPS96], and

more recently Global-and-Local-as-View (GLAV) [FLM99, HIST03]. In contrast

to GAV, where the mediated schema is presented as a view over the local schemas,

LAV describes a local schema as a view over the mediated schema. Both methods

have advantages and disadvantages, which we will discuss in Section 2.5, so GLAV

was proposed in order to combine the benefits of GAV and LAV.

One of the bottlenecks in setting up a data integration system is the effort

and knowledge required to specify views between the mediated schema and the

local schemas, in order to return accurate query results. The knowledge required

includes both an expertise in constructing the views (i.e., expressing them in a

formal language) and domain knowledge about local sources (i.e., understanding

the meaning of the schemas being mapped) [HRO06], and thus a human must be

in the loop of specifying views [BM07].

1.2.2 Dataspaces

Dataspaces can be viewed as the next step in the evolution of traditional data

integration [HFM06], as they share some characteristics with traditional data

integration. Dataspaces, though being a new concept, have attracted significant

attention [TIP10, MA10, DHY07, MCD+07, DS06, BDG+07, SDK+07, JFH08,

SDH08, BEG+06, CKP08]. Most of these approaches have been classified in the

survey [HBF+09], which also clarifies the representative key concepts in this area

1.2. DATASPACES: NEXT GENERATION OF DATA INTEGRATION 21

and characterizes the life cycle a dataspace management system may support.

Facing the same application scenarios as traditional data integration systems

do, dataspace management systems are likewise required to offer query services

over a large number of diverse and heterogeneous but interrelated data sources.

Principally, a dataspace management system works in a “pay-as-you-go” fashion:

“in a sense, the dataspace approach postpones the labor-intensive aspects of data

integration until they are absolutely needed” [HFM06]. With this philosophy,

the aim of a dataspace management system is to automatically offer integration

services on demand at lower up-front cost with, as a consequence, potentially

lower quality at the beginning. As “effort”, e.g., in the form of feedback from

users and developers, is incrementally put into improving the system, increased

“quality” will become available to users, e.g., in terms of improvement to the

accuracy of query results [BPE+10].

A dataspace management system aims to release experts from the tedious

process of mapping specification required to set up a traditional data integration

system, and as such reduces the high upfront cost of traditional data integration.

Thus, a dataspace management system can be defined as a data integration man-

agement system that offers two additional features: i) the system should be set

up automatically; and ii) users are allowed to incrementally improve the quality

of the system by annotating query results.

The research described in this thesis addresses the first feature of dataspaces,

specifically, the feature of setting up a dataspace management system automat-

ically. A step towards the automation of dataspace management systems is to

automatically generate views, as proposed by Mao et al. [MBPF09]. The au-

thors argue that “the classical approach of correspondence identification followed

by (manual) mapping generation can be simplified through the removal of the sec-

ond step by judicious refinement of the correspondences captured”. This judicious

refinement of the correspondences defined in the paper refers to the schematic cor-

respondences we have introduced in Section 1.1.2. Thus, since the kind of expres-

sive information captured by schematic correspondences between two schemas is

so important for automatic view generation, which in turn is crucial for boot-

strapping dataspaces, is it possible to automatically infer such schematic corre-

spondences between schemas? This thesis contributes one approach to solving

this problem.

22 CHAPTER 1. INTRODUCTION

Before closing this section, we also need to mention that automatic view gen-

eration is not only applicable to bootstrapping dataspaces, but is also suitable

in some other applications, such as data exchange. Data exchange declara-

tively specifies mappings that transfer and restructure data under one schema

(called a source schema) into instances of a different schema (a target schema)

[FHH+09, FKMP03]. It is used in tasks where data needs to be transferred be-

tween independently devised data sources. Despite this being a different use from

views in data integration that reformulate queries, the mappings in data exchange

are still a type of view. As such, the process of automatic view generation can also

be used in data exchange to reduce the amount of manual effort involved. Hence,

to generalize the problem of view generation, we do not particularly emphasize

the role of views in data integration that exist between the mediated schema and

several local schemas, but consider them prevalent between any two schemas.

1.3 Research Context

Various kinds of associations that describe the semantic relationships between

two schemas can be specified, such as matches identified by schema matching

approaches, views specified manually or inferred semi-automatically, or schematic

correspondences we refer to in this thesis. In this section, we introduce different

levels of semantic relationships between two schemas that have been proposed by

others, with the aim of demonstrating the novelty of the research conducted in

this thesis.

Bernstein et al. [BM07] summarized three types of semantic relationships be-

tween two schemas where information carried is successively refined from matches

to views and to transformations.

• Matches, the lowest level of semantic relationships, are defined as pairs

of elements between two schemas that are believed to be related in some

unspecified way. Examples of matches are presented in Figure 1.1 using the

relational schemas RDB1 and RDB2 introduced earlier in Section 1.1.2. In

Figure 1.1, each line (i.e., a match) relates a pair of elements (e.g., tables

and attributes) between the two schemas that show certain similarity, e.g.,

in their names, data types, instances or structures, and is labeled with a

score to indicate the degree of similarity, usually in the range between [0,

1]. A higher similarity score indicates that the related elements are more

1.3. RESEARCH CONTEXT 23

overseas_cust

id*

name

birth

a_id+

p_city

p_area

p_local

account

id*

name

balance

tax

cust_account

key*

account_name

account_balance

0.52

0.9

0.93

0.74

0.89

0.81

home_cust

id*

name

birth

a_id+

p_city

p_area

p_local

overseas_cust

id*

name

birth

a_id+

p_city

p_area

p_local

customer

key*

c_fname

c_lname

c_birth

account_key+

cust_phone

key*

city

area

local

extension

0.7

0.6

0.98

0.78

0.98

…...

0.6

(a) (b)

0.60.7

0.5

0.78

0.78

Figure 1.1: Examples for schema matching results.

similar. Figure 1.1 only shows a subset of matches between the two schemas,

as we omit some others for simplicity. For example, in Figure 1.1(b), the

matches between overseas cust and customer and between overseas cust and

cust phone are similar to the matches between home customer and customer

and between home cust and cust phone, and thus are omitted.

These matches only indicate that elements are associated between the two

schemas and could be used in the process of view generation. They do not

specify a view. Popular schema matching techniques for identifying matches

between elements include comparison of, e.g., names, data values or data

types [DR07, MGMR02, DDH01, DLD+04, XE06], as will be discussed in

detail in Chapter 2. Some benchmarks for evaluating schema matching

systems [DBH07, EFH+09] have been developed to assess the accuracy of

their identified matches based, e.g., on precision, recall and F-measure.

However, few researchers have ever asked: what is the meaning of a match?

How much useful information is carried by a match that can be employed

to generate views? How can a benchmark be devised to evaluate matches

in terms of the way they associate elements rather than their accuracy?

• Views, an intermediate level of semantic relationships, have been mentioned

earlier in Section 1.2. They are defined as a declarative specification of

relationships between instances of two schemas. Various approaches (e.g.,

Clio [FHH+09]) have been proposed for (semi-)automatically generating

views with the help of matches, a task known as schema mapping. In

24 CHAPTER 1. INTRODUCTION

Chapter 2, we define three kinds of views, namely Local-as-View (LAV),

Global-as-View (GAV), and Global-and-Local-as-View (GLAV), and discuss

schema mapping techniques in more detail.

In general, views are generated by interpreting the matches. For example,

given the matches shown in Figure 1.1(a), the interpretations that account

and cust account are equivalent and that overseas cust and cust account are

equivalent would give rise to Views 1 and 2 below. However, not every

generated view captures the correct meaning, e.g., View 2, and as such

needs to be removed manually.

View 1:

SELECT id, name, balance FROM account =

SELECT key, account name, account balance FROM cust account

View 2:

SELECT id, name FROM overseas cust =

SELECT key, account name FROM cust account

Based on the matches presented in Figure 1.1(b), the interpretations, such

as i) home cust and customer are equivalent, ii) overseas cust and customer

are equivalent, or iii) {home cust, overseas cust} is equivalent to {customer,

cust phone}, would give rise to Views 3 to 5. Among them, Views 3 and 4

only partially reflect the real world information. View 5 precisely specifies

the relationship between the elements, but has to be generated using ad-

ditional knowledge (e.g., integrity constraints), in order to determine that

home cust and overseas cust should be unioned, and that customer should

be joined with cust phone on their primary keys key [FHH+09].

View 3:

SELECT id, name, birth, a id FROM home cust =

SELECT key, concat(c fname, c lname), c birth, account key FROM customer

View 4:

SELECT id, name, birth, a id FROM overseas cust =

SELECT key, concat(c fname, c lname), c birth, account key FROM customer

View 5:

SELECT id, name, birth, a id, p city, p area, p local

FROM home cust

UNION

1.3. RESEARCH CONTEXT 25

SELECT id, name, birth, a id, p city, p area, p local

FROM overseas cust

=

SELECT A.key, concat(A.c fname, A.c lname), A.c birth, A.account key, B.city,

B.area, B.local,

FROM customer as A, cust phone as B

WHERE customer.key = cust phone.key

As can be observed, human has to be involved in the loop of specifying

views, because there is a greater likelihood that incorrect or incomplete

interpretations of matches give rise to incorrect or partial views, thereby

implying the need for manual effort to remove them, e.g., Views 2, 3 and 4.

Furthermore, additional knowledge is required to generate accurate views,

e.g., View 5, which may not always be available. These are due to the fact

that matches only associate elements by assigning them a similarity score

based on names and data values, but cannot provide sufficient information

required by schema mapping approaches.

• Transformations, or so-called functional views, are queries that can be uti-

lized by certain runtime environment that specify the highest-level semantic

relationships between the two schemas. This process takes as input views

and produces queries in the form of, e.g., Xquery or XSLT. Representative

examples for generating transformations are found in the publications of

Clio project [FHH+09]. The process of developing transformations is be-

yond the scope of this thesis. Therefore, we will not elaborate on it further.

The principle contribution of this thesis, i.e., inferring schematic correspon-

dences between two schemas, bridges the gap between identifying matches and

specifying views. Schematic correspondences differ from views in that they do

not aim to declaratively specify a relationship expression. On the other hand,

they tend to offer more information than the matches identified by the existing

schema matching approaches, as required by automatic view generation. For

example, a schematic correspondence explicitly indicates that its associated ele-

ments represent the same real world information, and thus (in our example above)

overseas cust and cust account will not be related. Furthermore, a schematic cor-

respondence also specifies the equivalence between two groups of elements, e.g.,

26 CHAPTER 1. INTRODUCTION

{home cust, overseas cust} and {customer, cust phone}, with partitioning infor-

mation, e.g., horizontal and vertical partitioning, respectively. Consequently, a

horizontal partitioning indicates that the elements in a group should be unioned,

and a vertical partitioning indicates that they should be joined. Thus, if such

information is available, View 5 (in our example) should be generated automat-

ically [MBPF09].

1.4 Thesis Aims, Objectives and Contributions

As described in Section 1.2.2, one of the distinguishable features of dataspaces is

to automatically set up a dataspace system. This feature motivates the research

presented in this thesis. However, as manual effort has to be required to specify

views between data sources using the state-of-the-art techniques (see Section 1.3),

a novel method for inferring a different type of relationships between data sources

to bootstrap the setup process of a dataspace system shows great influence to

dataspaces. Thus, this thesis aims to investigate the identification of schematic

correspondences between interrelated but heterogeneous data sources, which are

expressive enough to underpin algorithms for automatically generating views with

a view to reducing the manual effort involved in setting up a dataspace system.

We follow a two-step research programme to achieve the overall aim of the

thesis. In the first step, we develop a benchmark to investigate whether or not

the existing schema matching systems are effective in inferring schematic corre-

spondences, and thus we can diagnose whether or not the systems can be used

by the method for automatically specifying views [MBPF09]. In the second step,

we devise a novel method for inferring schematic correspondences based on the

lessons learnt from the first step. In principle, we address the following objectives:

• To develop a benchmark that identifies, describes and empirically evalu-

ates the effectiveness of existing schema matching approaches for inferring

schematic correspondences between data sources. Diagnosing the problems

exhibited in current techniques allows us to understand their shortcom-

ings fundamentally, and, thus, facilitates devising a method for inferring

schematic correspondences.

• To devise an inference technique that enables the characterization of cor-

respondences at a level suitable for automatic view generation with quality

1.4. THESIS AIMS, OBJECTIVES AND CONTRIBUTIONS 27

measures, and to evaluate the resulting proposal.

Given the aim and the objectives, the main contributions of this thesis are

the empirical evaluation of the existing schema matching approaches and the

technique for automatically inferring schematic correspondences. In terms of

the empirical evaluation, we have developed a benchmark, called MatchBench,

thereby making the following contributions:

• A collection of synthetic scenarios that manifest various types of schematic

heterogeneities of Kim et al. [KS91]. MatchBench offers four scenario

spaces, where the amount of heterogeneity between pairwise schemas in

each scenario systematically varies: a collection of scenarios with one-to-

one equivalent but heterogeneous entity types, a collection of scenarios with

different entity types having some similarities between them, a collection of

scenarios with many-to-one attribute correspondences, and a collection of

scenarios with many-to-many equivalent but heterogeneous entity types.

• An experimental design over the above scenarios that investigates the ef-

fectiveness of existing schema matching approaches in diagnosing schematic

heterogeneities. We have designed experiments that can be categorized into

positive and negative test cases. Given a particular type of schematic cor-

respondence, the corresponding positive experiment selects scenarios where

the current heterogeneity is present and evaluates the performance of match-

ers in diagnosing it. In contrast, the corresponding negative experiment

runs the matchers on scenarios where such a heterogeneity is absent and

evaluates whether the matchers are able to not report the heterogeneity

where they should not do so. In total, we cover DNSE (Different Names for

the Same Entity types), DNSA (Different Names for the Same Attributes),

missing attributes, many-to-one attributes, and many-to-many entity types

conflicts.

• An empirical study of three well-known schema matching platforms, namely

COMA++ [DR07], Rondo [MRB03] and OpenII [SMH+10] using Match-

Bench. These platforms have been used in the evaluation because they are

among the best known schema matching platforms, and are publicly avail-

able. We investigate the advantages and disadvantages exhibited in these

platforms and summarize the lessons learnt from the empirical study with

a view to developing the method for inferring schematic correspondences.

28 CHAPTER 1. INTRODUCTION

In terms of the technique for inferring schematic correspondences, we have

conducted a two-step approach that firstly infers the schematic correspondences

at the entity-level and secondly identifies attribute-level schematic correspon-

dences for each resulting entity-level schematic correspondence. In particular,

the following contributions have been made:

• An evolutionary search method, specifically a genetic algorithm, that infers

entity-level schematic correspondences between source and target schemas

using matches provided by existing schema matching approaches. We de-

fine a solution as a set of entity-level relationships (ELRs), which associate

pairwise entities/entity sets between the source and target schemas. We

apply the genetic algorithm to search for a particular solution that satis-

fies the requirements of entity-level schematic correspondences. Applying

the search method allows different solutions to compete with each other,

and thus does not require heuristic rules, e.g., thresholds, to select the fi-

nal result. We have designed phenotype and genotype representations of a

set of ELRs, and have implemented the various operators required by the

genetic algorithm, including an objective function used for evaluating solu-

tions and for guiding the search process. A set of ELRs that is assigned the

highest fitness value by the objective function is considered as the entity-

level schematic correspondences, based on which we further identify a set

of attribute-level relationships (ALRs) as the schematic correspondences at

the attribute-level.

• An objective function that models the requirements for identifying entity-

level schematic correspondences and calculates the relative fitness value

of a solution within the search space. The requirements include that: i)

each entity-level schematic correspondence represents the equivalent rela-

tionship between two (sets of) entities, implying that two different (sets of)

entities that coincidentally have overlapping information should not be asso-

ciated; ii) equivalent n-to-m entities should be associated by an entity-level

schematic correspondence rather than its subsets of entities, e.g., (n-1)-to-

m entities; iii) each entity-level schematic correspondence that associates

n-to-m entities is able to establish their specific partitioning types (i.e., hor-

izontal and vertical partitioning); and iv) the more entity-level schematic

correspondences that satisfy requirements i) - iii) that are identified the

1.5. THESIS STRUCTURE 29

better. Given a solution composed of a set of ELRs, the objective func-

tion calculates a similarity score for each ELR using the vector space model

[SWY75], and aggregates these similarity scores as the fitness value of the

solution.

• An empirical evaluation that assesses the effectiveness of our approach for

inferring schematic correspondences. In particular, we compare our method

to COMA++ [DR07] using experiments provided by MatchBench and re-

lational databases representing various schematic heterogeneities offered by

the Amalgam benchmark [MFH+01]. We decided to make a comparison

with COMA++ only because it has already been shown to perform better

than the other two platforms, i.e., Rondo [MRB03] and OpenII [SMH+10],

in an application of the MatchBench benchmark. The experimental results

show that our method is more effective (i.e., higher Precision, Recall and

F-measure) in inferring schematic correspondences than COMA++.

1.5 Thesis Structure

The remainder of this thesis is structured as follows. We discuss the technical

details of schema matching and view generation operators in Chapter 2 with

the aim of providing a general background for the research described in this

thesis. In Chapter 3, we introduce the synthetic scenarios offered in Match-

Bench and the experiments designed for evaluating existing schema matching ap-

proaches for diagnosing schematic correspondences. We discuss the application of

MatchBench to three well-known matching platforms, namely COMA++ [DR07],

Rondo [MRB03], and OpenII [SMH+10] in Chapter 4. We present the method

for inferring schematic correspondences, including the evolutionary search frame-

work for searching entity-level relationships (ELRs), representations of the ELRs,

the objective function and the method for inferring attribute-level schematic cor-

respondences, in Chapter 5. We report on an experimental evaluations of our

approach for inferring correspondences in Chapter 6. We review the most signifi-

cant contributions reported in this thesis in Chapter 7, and we also discuss some

of the remaining open research issues.

Chapter 2

Schema Matching and View

Generation

Schematic correspondences specify relationships between elements in two schemas.

They provide richer semantic information than matches, and aim to support the

bootstrapping of dataspaces by enabling the process of automatic view gener-

ation, as introduced in Chapter 1. In this chapter, we present a background

research on inference of schematic correspondences, including a detailed descrip-

tion and classification of schema matching approaches that identify matches, and

an introduction to techniques for view generation. We mainly focus on presenting

schema matching approaches in this chapter, because their techniques form the

foundation for inferring schematic correspondences, and their results are used as

the input for the inference process. We also present issues in view generation to

illustrate the difficulty to directly generate views from matches, thus highlighting

the importance of being able to infer schematic correspondences that can then

be used for the automatic generation of views.

The remainder of this chapter is organized as follows. In Section 2.1, we

define the schema matching operator along with its input and output, and present

a general classification of matching techniques. Following one of classification

categories, we present schema-level and instance-level matching techniques in

Sections 2.2 and 2.3, respectively. In Section 2.4, we summarize some of the

state-of-the-art schema matching approaches. We introduce schema mapping

techniques in Section 2.5 and conclude the chapter in Section 2.6.

30

2.1. SCHEMA MATCHING DEFINITION AND CLASSIFICATION 31

2.1 Schema Matching Definition and Classifica-

tion

Although the outcome of schema matching approaches has given several names,

e.g., matches [DR07, MGMR02, DLD+04], mappings [RB01, HRO06, DDH01]

and value correspondences [MHH00], they mainly represent the same type of

semantic relationship between two schemas, i.e., the matches introduced in Sec-

tion 1.3. In this section, we elaborate on the definition of the schema matching

operator, its inputs and outputs, and provide a technical classification.

2.1.1 Definition

The schema matching operator takes as input two data sources, usually referred

to as the source schema and the target schema [RB01, SE05]. Each schema needs

to conform to a data model, e.g., the relational model, XML model or Ontology

[DR07, TC07, GSY04, CFM06]. We define results of a schema matching operator

as a collection of 4-tuple matches 〈E1, E2, R, S〉, each of which indicates that

elements (e.g., tables or attributes in the relational model) of the source and

target schemas are associated in a particular manner, where

• E1 is a set of elements from the source schema;

• E2 is a set of elements from the target schema;

• R is an expression that specifies the relationship between the associated

elements E1 and E2, and may be equivalence (≡) or more general (w), etc.;

• S is a score that indicates the similarity degree between E1 and E2 the

matching operator provides given the relationship R identified.

We define the schema matching operator as a function that takes as input two

schemas and control parameters, and produces a collection of 4-tuple matches

between them. For example, given the relational databases RDB1 and RDB2

presented in Section 1.1.2, the schema matching operator produces a collection

of matches graphically described in Figure 1.1 in Section 1.3. The association

between account.id and cust account.id in Figure 1.1(a) can be defined as a 4-

tuple match 〈account.id, cust account.id, ≡, 0.81〉.

32 CHAPTER 2. SCHEMA MATCHING AND VIEW GENERATION

2.1.2 Technical classification

Schema matching techniques can be classified along three criteria: input, output

and technical parameters, as shown in Table 2.1.

Input

Schema type
XML

Relational
Ontology

Number of Schemas
1:1
1:n

Schema Scale
Large

Medium
Small

Internal Representation
Direct labelled graph

Hierarchy tree
Conceptual model

Output

Type of result
Equivalence
Semantics

Type of score
Similarity coefficients

Probabilities

Technical Parameters

Granularity
Element-level
Structure-level

Matching level
Schema-level
Instance-level

Reuse
Reuse

Non-Reuse

Base
Lexical

Constraint

Combination
Hybrid

Composite

Cardinality

1:1
1:n
n:1
n:m

Auxiliary information
Dictionaries

Thesauri

Table 2.1: A Classification of Schema Matching Techniques.

Input describes information related to the source and target schemas that is

required by a given schema matching approach, and can be categorized as follows:

• Schema type mainly specifies the schema definition of data sources that

a given matching approach is able to support. For example, some ap-

proaches, e.g., [BN05, DLD+04, DR07, DDH01, KN03, KN08, BEFF06,

WT06, DKS+08], identify matches between relational schemas; some meth-

ods, e.g., [DR07, MBR01, TC07, ASS09, GYS07, TC07], match XML schemas;

and some others, e.g., [DMDH02, TLL+06, PDYP05, CFM06, ZLL+09,

HQC08, TLL+06], align elements between ontologies. Given different types

of schemas, the basic techniques for matching schemas, such as comparing

their element names, may be similar, but specific techniques are usually

required during the match process to handle distinct schema structures.

• Number of schemas refers to the number of source and target schemas that

a given matching approach can match. Usually, matches are between one

source and one target schema [DR07, BEFF06, HQC08]. Some approaches,

2.1. SCHEMA MATCHING DEFINITION AND CLASSIFICATION 33

e.g., LSD [DDH01], match elements between a mediated schema and several

local schemas in traditional data integration scenarios.

• Schema scale describes the size of the input schemas, as special techniques

may be required to match large scale schemas when considering the effi-

ciency of a given matching approach, as addressed by COMA++ [DR07]

and Falcon [HQC08].

• Internal representation denotes the data structure into which the schemas

are internalized, and over which the match operation is performed. Some

methods, e.g., [DR07, MBR01], translate the source and target schemas,

which may be defined differently in terms of the schema type, into an inter-

nal representation before matching them. Some approaches, e.g., [MGMR02,

XE06], do not explicitly state the schema types they support, and take as

input data sources structured under the internal representation. Others,

e.g., [BN05, DLD+04], directly match schemas without using any internal

representation. Typical internal representations include the directed graph

models supported by, e.g., Similarity Flooding [MGMR02] and COMA++

[DR07], the hierarchical trees used by, e.g., Cupid [MBR01], and conceptual-

model graphs used by, e.g., Xu et al. [XE06].

Output describes information returned as result of the matching process, giving

rise to the following classification:

• Type of result describes the semantic relationship postulated by a match.

Most schema matching approaches, e.g., [DLD+04, KN08, TLL+06, DR07],

postulate an equivalence relationship (≡). A few others are able to provide

more expressive results, such as more general (w), less general (v) and

incompatible (⊥) [GYS07], or Has-a and Is-a [WP08].

• Type of score expresses the nature of the score that represents the strength

of the matches and usually lie in the [0, 1] interval.

Technical Parameters classify the various properties exploited by the state-of-

the-art schema matching approaches as follows.

• Schema or instance: some methods only consider schema-level informa-

tion during matching (e.g., element names and data types); others consider

instance-level information (i.e., data content).

34 CHAPTER 2. SCHEMA MATCHING AND VIEW GENERATION

• Element or structure: matching methods may identify matches between

individual schema elements (e.g., attributes) or between combinations of

elements that appear as complex structures (e.g., the path from the root

element to the matched element).

• Reuse or non-reuse: matching approaches may exploit and reuse informa-

tion from previous experience to improve the output, e.g., previous match-

ing results and corresponding user feedback.

• Lexical or constraint : a matcher may use a lexical approach, such as com-

paring names and textual descriptions of schema elements, or a constraint-

based approach that utilizes constraints of two schemas, such as comparing

primary key constraints or unique constraints.

• Composite or hybrid : a matcher may combine distinct match functions

(such as comparing element names, data types or instances) differently. A

composite matcher combines results (i.e., matches) of other matchers, each

of which implements a specific function. A hybrid matcher implements

various functions inside and returns matches that are comparable to results

of a composite matcher.

• Matching cardinality : matching approaches may relate different numbers

(i.e., one or more) of elements between source and target schemas. Thus,

we can enumerate four cardinalities of associated elements: 1:1, n:1, 1:n,

n:m.

• Auxiliary information: some matching methods make use of auxiliary in-

formation, such as dictionaries and thesauri (e.g., WordNet [Mil95]).

A more comprehensive description will be presented in Sections 2.2 and 2.3.

2.2 Schema-Level Matching

Schema-level matching only makes use of schema information to identify matches

between source and target schemas [DR07, MBR01, MGMR02, TC07]. Depend-

ing on the expressiveness of schema languages and the chosen internal represen-

tation, the available information usually includes properties of schema elements,

2.2. SCHEMA-LEVEL MATCHING 35

such as names, descriptions, data types and constraints (e.g., integrity and refer-

ential constraints); relationships between schema elements, such as part-of and

is-a; and schema structures, such as relational and XML models. Table 2.2

provides a classification of schema-level matching techniques. In particular, the

techniques are categorized into element-level and structure-level matching.

Category Method Description

Element-level

String-based Affix, Edit distance, N-gram, etc.
Lexical Tokens, Stemming, Elimination, etc.

Semantics-based Semantic relations (e.g., Synonyms)
Constraint-based Data types, keys constraint, etc.

Domain-based Domain thesauri

Structure-level

Scope
Global Considering the complete schema
Local Considering parts of the schema

Neighborhood
Distinctive Serving different roles
Ambiguous Serving the same roles

Traversal Strategy
Top-down Considering descendants when matching
Bottom-up Considering ascendants when matching

Table 2.2: A Classification of Schema-Level Matching Techniques.

2.2.1 Element-level matching techniques

Element-level matching techniques compare properties of single elements in iso-

lation, regardless of their relationships with other elements. These techniques

are usually used before the structure-level techniques, and as such serve as the

foundation for matching element structures. The major element-level techniques

are classified as follows:

String-based techniques compare name and description strings of elements

by considering their lexical structures. Such comparisons usually express the

distance between the two strings through a similarity coefficient, where a greater

value indicates more similar strings. In particular, the techniques exploited by

the schema matching approaches [DR07, NM01, GYS07, MGMR02, MBDH05]

include:

• Affix comprises prefix and suffix identifications. The prefix comparison

checks two strings from their beginnings; suffix, on the other hand, compares

their endings. For example, the prefix comparison will assign a greater value

36 CHAPTER 2. SCHEMA MATCHING AND VIEW GENERATION

to int and integer than to phone and telephone because the former pair has

the same beginning, while the suffix technique will do the opposite.

• Edit distance computes the similarity between two strings by counting the

number of edit operations (i.e., insertion, deletion and substitution) re-

quired to transform one into the other, and is usually normalized by the

length of the longer string. For example, the edit distance between strings

empl and employee is 0.5.

• N-gram calculates the number of shared n-grams (i.e., sequences of n char-

acters), and is normalized by the cardinality of the longer n-gram set. For

example, addr has two 3-gram {add, ddr} and address has five 3-gram {add,

ddr, dre, res, ess}, and both share the 3-gram set {add, ddr}. Normalized by

the cardinality of the largest 3-gram set, their 3-gram similarity score is 0.4.

Lexical techniques exploit natural language processing methods to parse the

name and description strings of elements [GYS07, MBR01, TC07, TLL+06, ASS09,

IIK08], with the purpose of preprocessing these strings before applying the string-

based techniques, and are classified as follows.

• Tokens are parsed from a string by a tokenizer that cuts the original string

at punctuation, upper cases, special symbols, digits, etc.. For example,

author names can be parsed into the tokens author and names.

• Stemming algorithms identify the basic form of a word by removing its

variations (e.g., plural, past tense). For example, names is stemmed into

name.

• Elimination discards tokens, e.g., articles, prepositions, conjunctions, in or-

der to avoid comparing strings that are known not to denote real-world

concepts.

Semantic-based techniques estimate similarity of two elements from the mean-

ing denoted by their names [PS11, GYS07, XE06, IIK08, DMDH02, CFM06]. In

contrast to string-based and language-based techniques that only rely on the

character sequence of strings, the semantic-based techniques consider the seman-

tic relationships of two strings (e.g., S1 and S2), such as synonymy (i.e., S1 and S2

2.2. SCHEMA-LEVEL MATCHING 37

describe the same object), hyponymy (i.e., S1 is a kind of S2) or hypernymy (i.e.,

S2 is a kind of S1). For example, strings ‘postcode’ and ‘zipcode’ are synonyms

according to WordNet [Mil95], and as such may be deemed equivalent. This ap-

proach usually requires auxiliary sources, such as dictionaries and thesauri (e.g.,

WordNet [Mil95]), in order to identify such semantic relationships.

Domain-based techniques apply thesauri that store specific domain knowledge

to improve the accuracy of string comparisons [DR07, MBR01, GYS07]. For ex-

ample, they could help to recognize multi-word strings (e.g., firstname = fname),

acronyms (e.g., PO = PurchaseOrder) and abbreviations (e.g., addr = address).

Constraint-based techniques make use of data modeling constraints to match

individual elements that declare, for example, data types, value ranges, unique-

ness, characteristics of key attributes (e.g., primary and foreign) and cardinalities

[TLL+06, DR07, CFM06, ASS09].

2.2.2 Structure-level matching techniques

Structure-level matching techniques identify matches between two schemas by

comparing combinations of elements that appear together in a structure. The

structural similarity of two elements is derived from their element-level similar-

ity, complemented with an analysis of their positions in the schemas and the

combined similarities of their neighbour elements. We refer to such a process as

similarity propagation, during which similarities from neighbour in elements are

propagated to the matched elements, using various strategies, as described in the

following.

Scope represents the range of schema elements over which the structure-level

techniques operate, because it is not always necessary to include the whole

schemas during matching. A global strategy always includes the complete set of

schema elements in the structural matching [MGMR02, TC07, DR07, TLL+06,

MBR01]. In contrast, a local strategy only considers partial schema elements, and

is found helpful when dealing with large scale schemas [HQC08, XE06, DR07],

as it usually decomposes the whole schemas into reasonably small segments and

then matches them against each other.

38 CHAPTER 2. SCHEMA MATCHING AND VIEW GENERATION

Neighbourhood refers to the nearby elements whose similarity may influence

the matched elements. Sometimes, nearby elements in a special position (e.g.,

parents, children and siblings), called the distinctive neighbours, have a unique

influence on the matched elements. The similarities of the distinctive neigh-

bours will be combined in different ways to the matched elements [DR07, TC07,

MBR01, ASS09]. Other approaches, e.g., Similarity Flooding [MGMR02], com-

bine similarities of neighbour elements in any position (e.g., parents, children and

siblings), called ambiguous neighbours, in the same way to the matched elements.

Traversal strategy concerns the order in which similarities between elements

are explored. For example, a top-down method explores similarities from root ele-

ments to leaf elements and a bottom-up method aggregates similarities of children

to a higher-level similarity. Usually, structure-level techniques consider similarity

propagation in both directions. The top-down method combines similarity of two

elements down to their children when they are considered similar enough, and the

children’s similarities are in turn propagated to their own children recusively. It

usually involves a pruning process, which no longer passes the similarity down if

two elements are considered different. The bottom-up method works in the oppo-

site direction but is more expensive than the top-down method as it works without

pruning. On the other hand, it can also achieve more precise results [MBR01] by

gradually combining the lowest-level similarities into the higher-level similarities,

as the lower-level similarities that might be pruned in the top-down method are

used by the bottom-up method.

The advantage of schema-level techniques lies in their use of direct and sim-

ple properties of schema information. However, although different structure-level

techniques are applied, most schema matching approaches only identify simple

one-to-one matches between individual elements [DR07, MBR01] rather than as-

sociating two sets of elements, and thus are not particularly helpful to discover

more complex many-to-many schematic correspondences.

2.3 Instance-Level Matching

Instance-level techniques exploit the underlying data content of source and tar-

get schemas to perform the matching tasks. Sometimes, these techniques are

2.3. INSTANCE-LEVEL MATCHING 39

designed and implemented with the purpose of complementing the schema-level

techniques, thereby helping to improve the overall matching accuracy (i.e., preci-

sion and recall) [EM07]. In special scenarios where the schema information exists

but cannot be used by the schema-level techniques (e.g., elements have opaque

names), only instance information can be utilized during matching [KN03, KN08].

Some approaches [DLD+04, WT06, DKS+08, XE06] identify complex attribute

matches, e.g., concat(first-name, last-name) = name, by investigating the linkage

between attribute instances. Others [XE06, TLL+06] try to reconcile the data

conflicts (e.g., 06/2010 and June 2010) in order to match equivalent attributes.

The way that instances are utilized during the matching may also be different.

Most approaches, e.g., [DMDH02, DDH01, EM07, DLD+04, WT06, DKS+08,

XE06, TLL+06, BN05], match elements by directly comparing their instances.

Some earlier works, e.g., [DMDH02, DDH01], apply machine learning techniques

to train matchers using a subset of instances before matching elements. Other

methods, e.g., [KN03, KN08], match schema graphs that model the interdepen-

dencies among elements, which are constructed by analyzing the relationships of

element instances.

Most instance-level approaches identify matches between the lowest-level ele-

ments that are directly associated with data content (e.g., attributes) rather than

between higher-level elements (e.g., tables in relational model), because the sim-

ilarity propagation techniques presented in Section 2.2.2 can be applied to infer

the higher-level similarities from lowest-level ones. Similar to schema-level tech-

niques, instance-level approaches identify one-to-one matches [DMDH02, DDH01,

BN05, KN03, KN08, EM07, XE06] and many-to-many matches [DLD+04, WT06,

DKS+08, XE06, TLL+06, XE06], and can be classified along the following dimen-

sions:

• Pattern-based matching requires formulae before the matching process can

be carried out. The formulae are used to transform instances between two

sets of attributes. Usually, several different types of formulas are provided,

each of which serves a special matching purpose, such as concat(att-i, att-

j) = att (e.g., concat(first-name, last-name) = name) and att-i/att-j /att-k

= att (e.g., day/month/year = date). Any two sets of attributes from

the source and target schemas whose instances satisfy a particular formula

can be identified as being equivalent. The matching of attributes is then

considered to be a process of searching and validating attributes that satisfy

40 CHAPTER 2. SCHEMA MATCHING AND VIEW GENERATION

the formulae. In some instance-level approaches, formulae are manually

specified with the help of domain knowledge [XE06, TLL+06, DLD+04,

WT06, DKS+08]; others derive the formulae by training with given data

[DMDH02, DDH01].

• String-based matching compares values of attributes, but does not differ-

entiate their data types (e.g., numeric, char), taking each value as sim-

ply a sequence of characters. String-based techniques presented in Section

2.2.1 are, therefore, also suitable for matching attribute instances. In gen-

eral, there are two methods to compare instance values, namely vertical

and horizontal comparisons. The vertical instance comparison technique

derives the instance similarity of two attributes by comparing their data

values [EM07], whereas the horizontal instance comparison technique is

only applied to compare attribute instances between relational databases

[BN05], which first computes similarities of tuples between two tables and

then derives the similarity of two attributes from the similarities of tuples.

2.4 State-of-the-Art Schema Matching Systems

In this section, we compare the characteristics of six state-of-the-art schema

matching systems (see Table 2.3), in terms of the schema matching techniques

described earlier in this chapter. Note that average F-measure at the bottom of

Table 2.3 directly comes from the original papers, and therefore, the test cases

used by these systems are different. We also describe their matching procedures

by discussing how such techniques are utilized. It is noticeable that some ap-

proaches tend to focus only on either schema-level matching (e.g., Similarity

Flooding [MGMR02]) or instance-level matching (e.g., iMAP [DLD+04], Dumas

[BN05] and LSD [DDH01]), while others (e.g., COMA++ [DR02, DR07, EM07]

and Xu et al. [XE06]) try to use both kinds of information, if available. Specifi-

cally,

• COMA++ [DR07] is a schema matching platform that provides a combina-

tion of schema-level and instance-level matching supported by a library of

matchers. It extends COMA [DR02] to include more schema-level match-

ers and matching strategies, and complements it with instance-level match-

ing [EM07]. COMA++ identifies 1-to-1 matches between elements of two

2.4. STATE-OF-THE-ART SCHEMA MATCHING SYSTEMS 41

COMA++ SF iMAP Dumas LSD Xu et al.
Matchers [DR02] [MGMR02] [DLD+04] [BN05] [DDH01] [XE06]

[DR07]
[EM07]
Relational, Relational, Relational Relational XML —

Schema types XML, XML,
Ontology ...

Number of schemas 1:1 1:1 1:1 1:1 1:n 1:1
Small, Small Small Small Small Small

Schema scale Medium,
Large
Directed Directed — — — Conceptual

Internal graph labelled model
Representation graph (OIM) (OSM-L)

[BBC+99] [Emb97]
[LEW00]

Eleme- String, String — — — Semantic
nt- Semantic, -based
level Constraint,

Schema- Domain
level Struct- Global Global, — — — Global

ure- & local, & local,
level Distinctive, Ambiguous, Distinctive,

Top-down & Top-down
Bottom-up

Patter- — — Manual — Training Manual
Instance- based formula formula formula
level String- Vertical — — Horizontal — Vertical

based
Reuse Previous — — — — —

results
Combination Composite Hybrid Composite Hybrid Composite Hybrid

1:1 1:1 1:1, 1:1 1:1 1:1,
Cardinality n:1 n:1, n:1,

n:m n:m n:m
Dictionaries — Domain — Domain Domain

Auxiliary of constraints constraints Knowledge,
information synonyms & WordNet

abbreviations [Mil95]
Accuracy
(Average 75% 55% 65% 73% 78% 96%
F-measure)

Table 2.3: Characteristics of the State-of-the-Art Schema Matching Systems.

42 CHAPTER 2. SCHEMA MATCHING AND VIEW GENERATION

schemas. Before carrying out the matching procedure, it constructs a di-

rected graph as the internal representation for each schema, in order to

support matching between different schema types (e.g., relational, XML

schemas, or ontologies).

As a matcher library, COMA++ provides schema-level element match-

ers, e.g., name and data type matchers, schema-level structural matchers,

e.g., parents (top-down propagation) and leaves (bottom-up propagation)

matchers, and instance-level matchers (vertical comparison). In addition

to the element-level matchers, COMA++ also supports the lookup of syn-

onyms and abbreviations. COMA++ offers choices for combining results of

different matchers (composite combination), including average (with equal

weight to results of different matchers), and max/min (always returning

matches with the maximum/minimum similarity scores).

On top of the matchers, matching strategies are available, including All-

Context, which matches paths from the root to nodes in hierarchical data

sets; NoContext, which only considers single nodes during matching; and

FilteredContext, which seeks to match paths of nodes only when the nodes

are identified as being similar. COMA++ claims to be able to match large

scale schemas efficiently. This is achieved by first segmenting the large

schemas into element fragments and then matching fragments only if their

root elements are identified as being similar. COMA++ also supports the

refining of previous match results into new results, a process called reuse,

where the n-to-1 (1-to-n) and n-to-m matches are produced by simply merg-

ing the 1-to-1 matches together that are associated with the same elements.

Note that these are different from the n-to-m schematic correspondences

we have discussed in Section 1.1, where the n (m) elements that appear to-

gether indicate an internal relationship (e.g., the n elements are horizontally

partitioned).

• Similarity Flooding (SF) [MGMR02] is a schema-level matching method,

which applies a different structure-level matching technique from COMA++.

It identifies 1-to-1 matches between elements of two schemas, each of which

is imported into an internal graph model supported by Microsoft Open In-

formation Model (OIM) specification [BBC+99], for the benefit of matching

2.4. STATE-OF-THE-ART SCHEMA MATCHING SYSTEMS 43

different types of schemas. Similarity Flooding applies a hybrid combina-

tion technique: initial matches are produced at the element-level, and these

matches are then used as the input for the structure-level matching. Struc-

tural matching is based on the assumption that whenever two elements in

the two graph models are found to be similar, similarity in their adjacent

elements increases, using so-called ambiguous propagation. This process

is repeated until the similarities of elements reach a fixpoint, and a col-

lection of candidate matches is produced. With the aim of discovering a

best match for each element, Similarity Flooding strictly returns a subset

of 1-to-1 matches from the candidate matches.

• iMAP [DLD+04] discovers complex semantic n-to-m attribute matches be-

tween two relational schemas using instance-level information. It consists of

three main procedures that are applied in sequence: generating candidate

matches, evaluating similarities and selecting final matches. The gener-

ating procedure uses a collection of searchers. Each searcher contains a

manually specified formula and aims at quickly detecting a relatively small

set of promising candidate matches for each attribute that satisfies its for-

mula. As such, it is possible for a single attribute to participate in more

than one candidate match. The searchers (formulae) currently supported

by iMAP include, for example, Text (e.g., name = concat(first-name,last-

name)), Numeric (e.g., list-price = price * (1 + tax-rate)), Date (e.g.,

birth-date = b-day/b-month/b-year) and Unit conversion (e.g., weigh-kg

= 2.2 * net-weight-pounds). The evaluating procedure revises the similar-

ity of each candidate match produced in the previous step by combining

similarities from name-based and instance-level matchers. Finally, the se-

lecting procedure searches for the best global match assignment among the

candidate matches by considering domain constraints (for example, that

each attribute can only take part in a single match).

• Dumas [BN05] matches attributes between two relational databases. In-

stead of comparing instances of individual attributes, this approach com-

pares tuples of relational tables to derive the matches between attributes,

using so-called horizontal string-based instance matching. Dumas makes in-

tensive use of string comparison methods, including edit distance measures,

token-based similarity measures and hybrid distance measures [CRF03].

44 CHAPTER 2. SCHEMA MATCHING AND VIEW GENERATION

Given source and target schemas, two collections of tuple strings are gener-

ated by concatenating attribute values in each tuple. Dumas first discovers

the top k similar pairs of tuple strings, and then constructs a matrix for each

tuple pair. The matrix stores similarity scores between each two attribute

values that belong to the tuple pair. Finally, it combines the k matrixes

together into a single matrix and calculates the overall average similarity

scores to derive the attribute-level matches.

• LSD [DDH01] is an instance-level matching method that semi-automatically

discovers the 1-to-1 matches between a mediated schema and local schemas

in data integration scenarios, where source data is stored in XML files that

conform to DTDs. It is a machine learning method that operates in two

phases: the training phase asks users to manually specify matches in order

to train the basic matchers using the instances of associated attributes; then

the matching phase applies the internal classification rules obtained in the

training phase for matchers to identify a collection of candidate matches.

Similar to iMAP, domain constraints, such as a constraint on the number

of matches for each element, are required to select a small set of matches

from the candidate matches.

• Xu et al. [XE06] propose a method that exploits both schema-level and

instance-level information to derive 1-to-1 and n-to-m matches. The method

takes as input two schemas represented by their conceptual-model specifi-

cations [LEW00]. The authors propose a hybrid approach that applies

the element-level and structure-level techniques successively. It derives

similarities of individual elements by comparing their names (semantic-

based matching) and data values (string-based matching). Furthermore,

it applies manually specified formulae (e.g., concatenating and decompos-

ing strings) to investigate the transformation between element instances,

and identifies the n-to-m matches between elements that directly contain

instances (e.g., attributes). During the structure-level matching step, this

method matches elements only when their higher-level elements in the hi-

erarchical graphs have been identified as being similar during the previous

element-level matching process (top-down propagation). To derive the n-

to-m matches between higher-level elements (i.e., elements that indirectly

2.5. VIEW GENERATION 45

contain instances, such as tables in the relational model), it uses conceptual-

model specific constraints to describe the internal relationship among the

n or m elements. In the matching results returned by Xu et al., a single

element usually participates in several matches (i.e., 1-to-1 or n-to-m), thus

requiring users to select their desired results.

2.5 View Generation

As we have mentioned in Section 1.2, views play significant roles in several ap-

plication scenarios. For example, in data integration [HRO06, Len02], views are

used to reformulate queries posed over a mediated schema into queries over local

schemas; in data exchange [FHH+09, FKMP03], they restructure and translate

instances of a source schema into instances of a target schema; and in model

management 2.0, schema operators (e.g., Merge, Compose and Diff) are pro-

vided [BM07, MBHR05, MAB07], where views serve as scripts that describe the

relationships between two schemas and offer support functions for these opera-

tors. Views are usually generated by interpreting matches, as presented in Section

1.3. In this section, we briefly present some issues regarding views, including their

definitions and a brief introduction to methods for (semi-)automatic view gener-

ation. We also illustrate how matches produced by schema matching techniques

described in Sections 2.1 to 2.4 can be used to generate views.

2.5.1 View definition

A view is a virtual relation, whose content is expressed as a query over a (set

of) base relation(s) or other views in the databases [Kot09]. In data integra-

tion, views explicitly specify the semantic relationships of elements between the

global schema (or mediated schema) and the local schemas, so as to underpin

the reformulation of a query over a global schema into a set of queries over the

local schemas. So far, the research community has proposed three basic ap-

proaches for defining views in traditional data integration systems, called Global-

As-View (GAV), Local-As-View (LAV), and more recently Global-and-Local-As-

View (GLAV). Specifically,

• in the GAV approach [GMPQ+97, ACPS96, Ull00], each element in the

global schema is expressed as a view over the local schemas. The immediate

46 CHAPTER 2. SCHEMA MATCHING AND VIEW GENERATION

benefit of GAV is that this kind of mappings explicitly specifies how to

retrieve the source data in terms of a query posed over elements of the global

schema. However, the GAV approach is mostly suited for scenarios where

the local sources are comparatively stable, because adding a new local source

to the current system or changing the schemas of already integrated sources

requires modification of the global schema definition, and thus requires the

redefinition of the associated views;

• in the LAV approach [DGL00, FW97], each local schema is expressed as a

view over the global schema. As such, extending the system with a new

source would not require the revision of the existing view definitions and

would only require extending the system with a new view. On the other

hand, answering queries using views is a relatively harder task [Hal01], be-

cause each view only describes partial information about the local sources in

terms of the global schema. Thus, techniques for rewriting queries [BLR97]

aim to find a query expression on the local schemas using a set of views

that is equivalent to a given query over the global schema.

• dissatisfied with the disadvantages of both GAV and LAV, the GLAV ap-

proach [FLM99, HIST03] establishes the views by combining the expressive

power of both GAV and LAV, while allowing for the flexibility of extend-

ing the integration system with a new local source. Basically, the GLAV

approach defines views as a collection of assertions, in the form of two con-

junctive queries (i.e., select-project-join queries) over the global and the

local schemas, respectively. The conjunctive queries specify that elements

of the global schema correspond to elements of the local schemas [Len02].

More recently, the research community has also dedicated effort to the lan-

guages and grammars that specify the view definitions, mostly using the GLAV

approach. Examples are source-to-target tuple generating dependencies (tgds)

[BV84] used by Clio [FHH+09], An et al. [ABMM07], GeRoMe [KQ+09, KQLJ07]

and Papotti et al. [PT09], second-order tgds [FKPT04] developed by Fagin

et al., and a few self-defined mapping languages used in specific applications

[PB08, ABBG09, MBHR05, YP04, ALM09].

2.5. VIEW GENERATION 47

2.5.2 Generating views

Since views are so important in several scenarios, some enterprise tools have been

developed to address the problem of view generation, as described and evalu-

ated in a recent survey [LN07]. However, most research proposals mentioned in

Section 2.5.1 have only developed languages and approaches to defining rather

than generating views [MH03]. In what follows, we will briefly introduce research

prototypes that involve (semi-)automatic view generation. As can be observed,

automatic view generation is not a simple problem, so most research prototypes

that address this problem have to rely on complete schema definitions (e.g., refer-

ential integrity) or external resources (e.g., rich specification for the relationships

of schemas) for help.

• The Clio project has been developed for ten years, and aims to address

the problem of generating views (mappings) automatically as needed for

data integration and data exchange [FHH+09]. The Clio tool takes as

input two schemas (e.g., relational and XML schemas) and the matches

between the schemas (Clio authors call them value correspondences) to

specify views. Over the last ten years, the Clio tool has gradually grown

from a research prototype [FKMP03, Kol05] that discovered queries as

GLAV [MHH00, PVM+02] in the form of source-to-target tuple generating

dependencies (tgd) [BV84] to an industrial tool that produces executable

queries [HHH+05]. However, as the input matches are inherently ambigu-

ous [PVM+02], they may have many interpretations. Several views that are

consistent with the matches are produced, but not all of them have the cor-

rect meaning. As such, what Clio offers is an alternative to precise views:

a collection of likely views is generated by enumerating different interpreta-

tions of the matches, which requires additional user feedback for the most

appropriate views to be chosen. The Clio tool also makes extensive use of

schema information (e.g., referential constraints as well as relational and

nesting structures), in order to join or union schema elements, and as such

to express views in the form of conjunctive queries required by GLAV. In the

cases where complete schema information is absent (e.g., foreign keys are

not defined), it is difficult for the Clio tool to generate views automatically.

• Model Management 2.0 [BM07] is the evolution of Model Management

[BHP00, Ber03]. The aim of these approaches is to provide a generic set of

48 CHAPTER 2. SCHEMA MATCHING AND VIEW GENERATION

operators for manipulating data models and mappings between them. Both

versions of the approach comprise a wide range of operators, such as Match

(i.e., identifying similar elements between two models), Diff (i.e., discover-

ing differences between two models), Merge (i.e., merging two models into a

third model using mappings between them), and Compose (i.e., combining

two mappings into one mapping). The major difference between the two

versions lies in the mapping representation used by the operators. In Model

Management, mappings are the results of the Match operator, i.e., matches

that relate elements between data models in an unspecified way [BM07].

However, as many application scenarios (e.g., data integration) manipulate

data models that contain both metadata and instances, the simple matches

are not enough to specify the relationships between instances, and as such

views are proposed to replace matches with mappings in Model Manage-

ment 2.0 [BM07]. Thus, a simple method for automatic view generation

is proposed, which takes as input two schemas and the matches between

them and produces view expressions in relational algebra [MBHR05] (e.g.,

πatt1,att2(table1 ./ table2) = πatt′1,att′2(table
′
1 ./ table′2)). In this approach,

tables are joined on primary and foreign keys, and attributes associated by

matches are taken as equivalent.

• Pottinger et al. [PB08] address the general problem of data integration by

inferring a mediated schema from the local schemas and generating views

between them. The method is built on the assumption that apart from

the local schemas themselves, there exists a specification of their overlap-

ping parts that can be used as input and has been presented in the form

of conjunctive queries. For the purpose of capturing all the semantic in-

formation presented in the local schemas, the mediated schema is designed

to contain all their elements, including both the overlapping parts and the

source-specific elements. To construct the mediated schema, the method

incrementally merges each local schema into the existing mediated schema

by extending it with the source-specific elements and combining the over-

lapping elements. With the explicit and rich specification of local schema

relationships in hand, this method generates GLAV between the mediated

schema and the local schemas. Pottinger et al. demonstrate the effective-

ness of the generated GLAV on query rewriting, which, however, requires

a rich semantic specification of relationships among local sources, which is

2.6. SUMMARY AND CONCLUSIONS 49

not always available.

Given matches between two schemas, Clio [FHH+09] and Model Management

2.0 [MBHR05] usually require a complete schema definition, especially informa-

tion about primary keys and foreign keys, in order to generate views in the form

of conjunctive queries. This is because tables can be joined into conjunctive

queries only if paths between primary keys and foreign keys are given. Clio

allows different views to be associated with a single element (e.g., a table in rela-

tional schemas), because it has to enumerate different interpretations of the input

matches to generate the views. Therefore, Clio requires user effort to pick their

desired views. Although Pottinger et al. [PB08] can automatically construct a

mediated schema and generate GLAV between the mediated schema and local

schemas, it relies on a strong assumption that the overlapping parts of the local

schemas are specified in the form of conjunctive queries. The question arises as

to whether or not the input conjunctive queries can be generated automatically.

Approaches to (semi-)automatic generation of views have been developed in

the past few years, but they may not be suitable to be applied for dataspaces.

As pointed out in Section 1.2.2, a dataspaces management system may start with

providing low quality services but at low cost, which can be gradually improved

as more effort is poured in. The setup of the dataspaces management system

mostly emphasizes the automation of the process, and thus users are not ex-

pected to select views from a set of candidate views. Furthermore, dataspaces

target at integrating syntactically diverse data sources (e.g., relational databases,

ontologies, or personal information in the form of text documents) and thereby

consider explicit referential constraints optional to schema definitions. Therefore,

relying on primary keys and foreign keys to identify join paths between elements

is not always applicable in dataspaces. The above disadvantages displayed in the

existing methods for generating views are due to the ambiguous information car-

ried by the matches. Additional research on inferring relationships between two

schemas that offer more semantics than the matches is necessary and important.

2.6 Summary and Conclusions

In this chapter, we presented the general research context of inferring schematic

correspondences, including techniques for identifying matches and generating

views. We defined the schema matching operator in Section 2.1, followed by

50 CHAPTER 2. SCHEMA MATCHING AND VIEW GENERATION

a comprehensive description of schema-level and instance-level techniques in Sec-

tions 2.2 and 2.3, respectively. We brought various matching techniques together

through presenting the state-of-the-art schema matching systems in Section 2.4.

A general observation of these systems is that one-to-one elements are associated

mostly because they have similar names or instances rather than because there

is firm evidence that they represent the same concept. It is common that two

elements representing different concepts are matched because of similar names.

For example, considering RDB1 and RDB2 in Figure 1.1, overseas customer.name

and cust account.account name could be matched, thus giving rise to incorrect

views (e.g., View 2 in Section 1.3). In addition, matches produced by the exist-

ing schema matching systems cannot explicitly indicate how to join two elements

(e.g., tables in a relational database) inside a schema, and as such cannot offer

enough information for generating the conjunctive queries in GLAV. Clio and

Model Management 2.0, therefore, assume that referential constraints are avail-

able explicitly in schema definitions to compensate for the inadequacy of matches,

which is not desirable for dataspaces, as discussed in Section 2.5.

The research described in this thesis aims to infer schematic correspondences

between source and target schemas based on matches, in order to provide suffi-

cient information for the automatic generation of views [MBPF09]. However, the

ability of matches to represent schematic correspondences and the technical gap

between identifying matches and inferring schematic correspondences have not

been appropriately established. Hence, we propose a two-step research to achieve

the goal of this thesis: i) to evaluate the effectiveness of existing schema match-

ing systems on diagnosing schematic heterogeneities (Chapters 3 and 4); and ii)

based on lessons learnt from the evaluation, to devise an approach to inferring

schematic correspondence (Chapter 5) and to evaluate its effectiveness (Chapter

6).

Chapter 3

MatchBench

In this chapter, we present MatchBench, a benchmark that evaluates the effec-

tiveness of schema matching proposals in terms of their ability to diagnose the

schematic heterogeneities presented in Section 1.1. We expect to understand the

underlying techniques of the schema matching proposals, and identify a collection

of existing matchers that produce matches suitable for inferring schematic corre-

spondences. MatchBench employs a generator to create a wide range of synthetic

scenarios with well defined characteristics in terms of of schematic heterogeneities,

against which schema matching systems are evaluated. MatchBench also provides

positive and negative experiments for testing each type of schematic heterogene-

ity, where the positive experiment assesses the effectiveness of the matchers when

a heterogeneity is present, while the negative experiment measures them when

the heterogeneity is absent.

This chapter is structured as follows. Section 3.1 illustrates the related work to

MatchBench, followed by Section 3.2 that presents an overview of the MatchBench

method. Sections 3.3 and 3.4 introduce the collection of synthetic scenarios and

the description of experiments designed for diagnosing schematic heterogeneities,

respectively. Section 3.5 summarizes the whole chapter.

3.1 Related Work

Before moving on to describe MatchBench in detail, we first discuss related work,

with the aim of showing the novelty and contributions made with our benchmark.

In contrast to Chapter 2 that merely provides a general research background for

the whole thesis, which reviews schema matching techniques and representative

51

52 CHAPTER 3. MATCHBENCH

matching systems, this section discusses previous work on evaluating schema

matching systems. In particular, we revisit established criteria for assessing such

systems, the evaluation test cases that have been synthetically generated, and

existing benchmarks for testing schema matching and mapping approaches in

Sections 3.1.1, 3.1.2 and 3.1.3, respectively.

3.1.1 Experimental evaluation of schema matching

In a review of schema matching evaluation, Do et al. [DMR02] summarized the

main criteria for assessing schema matching tools by surveying published reports

of experimental evaluations. The criteria include:

• input, which refers to the input data employed by the matching approaches,

including schema type, number of schemas, schema scale and auxiliary in-

formation, as introduced in Section 2.1.2. Do et al. also proposed schema

similarity in this criterion which is the ratio between the number of cor-

rect matches identified manually and the number of elements in both input

schemas.

• output, which indicates the information provided about the matched ele-

ments. Do et al. break down this criterion further as element representation

that describes match types (i.e., matches between element nodes or between

element paths) and match cardinality as presented in Section 2.1.2.

• quality measures, which are used to evaluate the system performance. The

metrics discussed by Do et al. mostly follow the canonical evaluation model

of Information Retrieval [BYRN99], i.e., Precision, Recall and F-measure,

but also include Overall introduced in Similarity Flooding [MGMR02]. In

particular, the performance of the matching approaches can be measured

by comparing their results with the ground truth, i.e., the correct matches,

thus allowing to determine true positives (TP), i.e., matches correctly iden-

tified; false positives (FP), i.e., matches incorrectly identified; and false

negatives (FN), i.e., matches incorrectly missed; true negatives (TN), i.e.,

false matches that are correctly discarded. Given the cardinalities of the

above sets (i.e., |TP|, |FP|, |FN| and |TN|), Precision, Recall, F-measure

and Overall are defined as follows:

3.1. RELATED WORK 53

– Precision = |TP|
|TP|+|FP| specifies the fraction of correct matches among

all detected matches;

– Recall = |TP|
|TP|+|FN| specifies the fraction of correct matches among all

detectable matches;

– F-measure = 2 ∗ Precision∗Recall
Precision+Recall

is the harmonic mean of Precision and

Recall ;

– Overall = |TP|−|FP|
|TP|+|FN| = Recall∗ (2− 1

Precision
) estimates the labor savings

obtained by using an automatic matcher, i.e., effort needed for adding

the false negatives and removing the false positives.

• effort, which assesses the human involvement in the process of running

matchers, including pre-match effort required before running the matchers

(e.g., training these matchers, configuring their parameters, and specifying

auxiliary information), and post-match effort to add the false negatives and

remove the false positives, as measured by Overall.

Instead of suggesting a set of standard criteria for evaluating matching sys-

tems, Do et al. [DMR02] only offer a summary of existing evaluation criteria,

because most systems have chosen specific criteria to illustrate their effectiveness

in particular contexts. Do et al. also explicitly stated that the diversity of the

evaluation criteria has been problematic: “While there have been some evalua-

tions, the overall effectiveness of currently available automatic schema matching

systems is largely unclear. This is because the evaluations were conducted in di-

verse ways making it difficult to assess the effectiveness of each single system,

let alone to compare their effectiveness.” [DMR02]. This motivates MatchBench,

in demonstrating that there is a need to develop a benchmark for evaluating

and comparing matching systems in more general contexts and specifying the

matching tasks (i.e., input), the expected results (i.e., output) and the quality

measures.

Recently, some other metrics have been proposed, in addition to these intro-

duced by Do et al. to complement the quality measures introduced above:

• response time, which refers to the running time required by the matchers

to complete a matching task [ASS09, CHT05, DKS+08, BEFF06, WT06,

KN08, DR07].

54 CHAPTER 3. MATCHBENCH

• matching accuracy, which is defined as the percentage of source/target at-

tributes that are matched correctly [DDH01, DLD+04].

While designing MatchBench, we decided to use some of the evaluation cri-

teria introduced by Do et al., because they are well-known in the research com-

munity, thus being understandable and justifiable. In particular, we choose pairs

of small scale relational schemas that represent one or more types of schematic

heterogeneities as the input ; we expect that 1-to-1, n-to-1 (1-to-n) or n-to-m

individual elements are matched as the output ; we measure the effectiveness of

schema matching systems by reporting Precision, Recall and F-measure but not

Overall.

Ontology Alignment Evaluation Initiative (OAEI) [EFH+09] is the most

comprehensive evaluation activity on ontology matching, and runs an annual

competition. This involves different types of test case that address different as-

pects of ontology matching. Every year, the OAEI organizers first publish a few

initial test cases online1, which allows potential participants to send observations,

correct mistakes or suggest other test cases. After all test cases have been final-

ized, participants are required to run their matching systems automatically on

these cases and report matching results to the organizers. The participants are

also requested to use the same configuration throughout the competition, which,

however, could be the one that is able to achieve the best results. Finally, the

organizers will evaluate the results of the matching approaches used by the par-

ticipants and provide comparisons and conclusions. Specifically, we categorize

the OAEI event according to the evaluation criteria introduced previously:

• the input released by the OAEI organizers consists of ontology files of vary-

ing scale ranging from small to large. The input ontologies are categorized

into tracks, each of which represents a specific matching context, includ-

ing a comparison track that provides several synthetic tests and introduces

variations (e.g., by changing attribute names or removing attributes) into

two identical schemas, expressive ontologies and directories and thesauri

tracks that offer real world examples in special domains.

• the output produced by ontology matching consists of ontology alignments.

Most of them are 1-to-1 matches between ontology elements.

1http://oaei.ontologymatching.org/

3.1. RELATED WORK 55

• the quality measures used by the OAEI organizers include Precision, Recall,

F-measure. Response time is reported where required, especially in the cases

of matching large scale ontologies.

MatchBench shares some common properties with the OAEI, for example,

the synthetic test cases and the use of Precision, Recall, F-measure as the qual-

ity measures. However, the synthetic test cases provided by the OAEI seem ad

hoc; MatchBench, in contrast, explicitly follows a systematic procedure to in-

ject different types of schematic heterogeneities. Instead of simply assessing the

quality performance, MatchBench focuses on the extent to which systematically

introduced variations affect the ability of the system to identify specific schematic

correspondences, and thus different experiments have been developed to address

this goal. The OAEI has not addressed this overall requirement in its synthetic

tests.

3.1.2 Generation of test cases for schema matching and

mapping

eTuner [SLDR05, LSDR07] is an approach to systematically setting control pa-

rameters in schema matching systems, supported by a collection of automatically

generated test cases. In essence, eTuner considers this setting process as a search

problem that seeks effective configurations for parameter values under certain

circumstances. The configuration space of a matching system is defined to be

different combinations of component matchers that potentially require candidate

values for various control parameters. In order to tune a matching system, eTuner

first generates a collection of synthetic test cases for which the ground truth is

known. It then applies the system on such test cases, compares the results to

the ground truth and reports the F-measures. The configuration with which the

matching system has achieved the highest F-measure is identified as an effective

parameter setting. The test schemas over which eTuner evaluates the systems

are generated by applying a number of rules for introducing perturbations into

existing schemas. These perturbations overlap with those described in Section

3.3, but differ in the following respects:

• rather than following an established classification of schematic heterogeneities,

they represent a limited enumeration of possible matching scenarios;

56 CHAPTER 3. MATCHBENCH

• their ground truth contains only 1-to-1 matches, while MatchBench offers

scenarios whose ground truth are collections of 1-to-1 and n-to-m matches;

and

• they do not offer negative scenarios to evaluate whether systems do not

match elements that should not be matched.

STBenchmark [ATV08] is a benchmark for comparing visual interactive map-

ping construction systems that aim at assisting an expert in generating a precise

specification of mappings between two schemas with less effort. STBenchmark

creates a basic suite of mapping scenarios that are the result of a careful analysis

of various data integration applications. Instead of exhaustively enumerating all

possible mapping scenarios, the authors only intend to present common cases that

exhibit wide industrial relevance. In essence, the MatchBench scenarios described

in Section 3.3, where different types of variations are injected into an initial pair

of schemas, overlap with STBenchmark scenarios but exhibit more variety, as

follows:

• STBenchmark provides a basic tool for injecting different types of variation

into initial schemas in order to produce pairwise task schemas. However,

both the selection of types of variation and the generation of evaluation sce-

narios rest on the shoulders of users. On the other hand, MatchBench does

not emphasize its contribution to injection techniques, but focuses on offer-

ing scenarios that represent different types of schematic heterogeneity, thus

allowing users to investigate the influence of the combined heterogeneities

captured by the scenarios.

• STBenchmark mainly focuses on injecting structural perturbations on the

initial schemas, e.g., horizontal and vertical partitioning, nesting and flat-

tening; MatchBench, on the other hand, not only considers the structural

perturbations but also atomic changes, e.g., changing table and attribute

names.

3.1.3 Benchmarks for schema matching and mapping

XBenchMatch [DBH07] has been developed as a benchmark in the context

of XML schema matching. It provides a software tool for computing proper-

ties of given scenarios, applying matching systems and deriving matching results.

3.2. OVERVIEW OF MATCHBENCH 57

XBenchMatch chooses four sets of real world XML schemas as matching tasks,

each of which represents a matching scenario (e.g., a set of schemas that describe

persons, or a set of schemas that cover university courses). Given the ground

truth, this tool compares them with the matching results of the evaluated sys-

tems and reports Precision, Recall and F-measure. Although both XBenchMatch

and MatchBench contribute to evaluating schema matching systems, their major

differences lie in the following:

• The scenarios used by XBenchMatch to compare the matching systems

are selected from real world examples. As such, their ability to explore

a systematic collection of representative issues, or at least the common

cases as covered by STBenchmark, is unknown. In contrast, MatchBench

systematically explores its chosen context of schematic heterogeneities, and

concentrates on this diagnostic assessment.

• XBenchMatch focuses more on building a benchmark and only reports the

matching quality of tested systems (e.g., F-measure) without analytical con-

clusions, whereas MatchBench develops a benchmark in a different context,

and compares and analyzes the effectiveness of the tested systems in its

specific context.

STBenchmark [ATV08] has been discussed above in terms of its test case gener-

ation capability. It has also been designed for assessing the human effort required

to implement a mapping through the visual interface of interactive mapping sys-

tems, such as Clio [HHH+05], Microsoft BizTalk2 and Stylus Studio3, rather than

measuring the quality of specified mappings. As such, STBenchmark is comple-

mentary to MatchBench. Insights from MatchBench may inform the development

of helper components for interactive mapping tools that suggest to users what

mappings may be most appropriate in a given setting.

3.2 Overview of MatchBench

The aim of this thesis, i.e., to infer schematic correspondences between two

schemas, requires a good understanding of existing schema matching proposals, as

the correspondences will be inferred from matches. Therefore, we have designed

2http://www.microsoft.com/biztalk/en/us/default.aspx
3http://www.stylusstudio.com

58 CHAPTER 3. MATCHBENCH

Initial Schemas …...…...…...
Synthetic Schemas Experiment 2:- Requirements- ScenariosExperiment 1:- Requirements- Scenarios

Experiment 10:- Requirements- Scenarios
…...

Experiment 1:- Reporting Results- ConclusionsExperiment 2:- Reporting Results- Conclusions
Experiment 10:- Reporting Results- Conclusions

…...
Experimental Design Experimental Results

GT GT
GT

GT
GT

ScenarioGen ExperimentGen Evaluation
Figure 3.1: MatchBench Work Flow.

and implemented MatchBench to obtain knowledge about the latter. The hy-

pothesis behind MatchBench is that the effectiveness of matching algorithms can

be evaluated in terms of their ability to diagnose the schematic heterogeneities

described in Section 1.1. The objectives of MatchBench are:

1. to identify the extent to which different matching systems can diagnose the

heterogeneities of interest;

2. to establish under what circumstances specific systems struggle to diagnose

which kind of heterogeneities;

3. to support the identification of complementary matchers building on the

results of 1 and 2.

Meeting such objectives requires systematic investigation into how matching

systems perform given a collection of scenarios that exhibit the heterogeneities of

interest. As such, MatchBench uses the following operators to meet this require-

ment, as illustrated in Figure 3.1:

• ScenarioGen is the operator that generates a collection of new scenarios by

systematically injecting different types of schematic heterogeneities into a

pair of initial schemas. Thus, the strength of available evidence to support

the diagnosis of schematic heterogeneities in different scenarios varies in a

controlled manner. In essence, each new scenario consists of two schemas

that represent one or more types of schematic heterogeneity and the ground

truth that defines equivalent parts. Details about the injection process and

the generated scenarios is presented in Section 3.3.

3.3. MATCHBENCH SCENARIOS 59

• The ExperimentGen operator constructs 10 pre-designed experiments that

assess matching tools in the context of each particular schematic hetero-

geneity. Each experiment provides a set of scenarios that represent a het-

erogeneity, and states the requirements that the matching tools are expected

to achieve in order to diagnose the heterogeneity, as presented in detail in

Section 3.4.

• The Evaluation operator runs selected schema matching tools on the gen-

erated scenarios, investigates whether their matching results meet the re-

quirement to diagnose specific schematic heterogeneities, and reports the

precision, recall and F-measure.

3.3 MatchBench Scenarios

This section discusses the wide range of synthetic scenarios that represent schematic

heterogeneities described in Section 1.1.2. The initial pair of databases, into which

the schematic heterogeneities are systematically injected, is presented in Section

3.3.1. MatchBench generates both positive and negative scenarios, as described

in Sections 3.3.2 to 3.3.5, whose scenario numbers are summarized in Table 3.1.

Totally, MatchBench generates 336 scenarios.

Scenario Space Number of Scenarios
Positive scenario space for one-to-one entity correspondences 207
Negative scenario space for one-to-one entity correspondences 24

Positive scenario space for many-to-one attribute correspondences 9
Positive scenario space for many-to-many entity correspondences 96

Total 336

Table 3.1: The number of scenarios generated by MatchBench.

In the positive scenarios, the starting point is an initial pair of databases

that have a single table in common, into which schematic heterogeneities are sys-

tematically introduced. They are intended to be representative of the sorts of

heterogeneity that exist in practice between independently developed databases

representing the same domain. In the negative scenarios, the starting point is

that there exists no common information between the initial pair of databases

(by removing the common table), into which similarities are systematically intro-

duced, giving rise to scenarios where tables should not be matched, but there are

some similarities between them. These negative scenarios have been designed for

60 CHAPTER 3. MATCHBENCH

the purpose of evaluating the extent to which matching algorithms can accom-

modate certain similarities but there is little other evidence that matches should

be postulated.

3.3.1 Initial schemas

Trade_ID char(16)

TDatetime DateTime

Trade_Type_ID char(3)

IS_CASH boolean

Quantity integer

Bid_Price double

Customer_Account_ID char(12)

Executing_Name char(64)

Price double

Charge double

Commission double

Tax double

Customer_Account_ID char(12)

Customer_Account (1000 Instances)

Broker_ID char(12)

Customer_ID char(12)

Name varchar(50)

Tax_Status integer(1)

Balance double

PK

Trade_Type_ID char(3)

Name char(12)

IS_Sell boolean

IS_Market boolean

Broker_ID char(12)

Name varchar(100)

Number_Trades integer(9)

Commission_Total double

Customer_ID char(12)

Last_Name varchar(30)

First_Name varchar(30)

Middle_Name char(1)

Gender varchar(1)

Tier integer(1)

Birthday DATE

Address_ID char(12)

Phone_City CHAR(3)

Phone_Area char(3)

Phone_Local char(10)

Phone_Extension char(5)

Email char(50)

Address_ID char(12)

Line1 varchar(80)

Line2 varchar(80)

Zip_Code char(12)

Town varchar(80)

ADIV varchar(80)

Country varchar(80)

PK

Trade (1000 Instances)

PK

Trade_Type (5 Instances)

PK

Address (1000 Instances)

PK

PK

Customer (1000 Instances)

Source Schema

Broker (10 Instances)

AP_CA_ID char(12)

AP_Tax_ID varchar(20)

ACL char(4),

Last_Name varchar(30)

First_Name varchar(30)

Status_Type_ID char(4)

Name char(10)

CX_TX_ID char(4)

CX_C_ID char(12)

 Customer_Taxrate (1000 Instances)

Company_ID char(12)

Company (500 Instances)

ST_ID char(4)

Name varchar(60)

IN_ID char(2)

SP_Rate char(4)

CEO char(100)

AD_ID char(12)

Open_Date Date

Industry_ID char(2)

Name varchar(50)

SC_ID char(2)

X (One of Tables in Source)

PK

PK

Account_Permission

(1000 Instances)
PK

PK

PK

Industry (102 Instances)

Status_Type (5 Instances)

Target Schemas

Figure 3.2: The source and target databases used as a basis for scenario genera-
tion.

Figure 3.2 describes the data source, which has been derived from TPC-E4,

into which schematic heterogeneities are injected to generate the scenarios in

MatchBench. Instances for the tables have been produced using the TPC-E

4http://www.tpc.org/tpce/

3.3. MATCHBENCH SCENARIOS 61

generator. From the 33 tables of TPC-E, the 11 tables shown in Figure 3.2 are

generated by removing a small number of foreign keys or by joining two tables

into a single one, combined with some renaming of tables and attributes.

In essence, these 11 tables, with the given cardinalities, have been used because

they exhibit considerable variety in the numbers, types and domains of attributes,

and because the extents are small enough to allow memory-intensive matching

algorithms to execute on standard desktop hardware.

3.3.2 Positive scenarios for one-to-one entity correspon-

dences

In positive scenarios, the initial target database is extended with a single ta-

ble from the source, and thus the two databases have a pair of common tables

to which schematic heterogeneities are injected. Figure 3.3 describes the space

of positive scenarios where one-to-one heterogeneities are introduced into the

pair of identical tables between the source and target databases. In the imple-

mentation of MatchBench, we chose three source tables (particularly Customer,

Customer Account and Trade) as the target corresponding table in Figure 3.2,

because they exhibit comparatively more variety in the numbers and types of

attributes than the rest.

Figure 3.3 (with examples in Figure 3.4 where schematic heterogeneities are

injected into an example pair of equivalent entities) shows 8 scenario sets, each

of which comprises a set of scenarios and represents one or more schematic het-

erogeneities between a pair of equivalent entities. We use the solid line boxes

to represent scenario sets and arrows to represent the systematic introduction of

heterogeneities into the scenario sets. Each scenario set and its specified scenarios

manifest examples of the heterogeneities named in the corresponding solid line

box, the definitions of which are provided below. For example, Scenario Set 1

represents the starting point for the introduction of the heterogeneities, and the

arrow leading to Scenario Set 5 indicates that it has been derived from Scenario

Set 1 through the changing of entity5 names.

In what follows, where names are described as the same, they are identical, and

where they are described as similar, their strings overlap (in the implementation

of MatchBench, we form a new name by removing a small set of characters from

5In MatchBench, we use the terms defined in Section 1.1.2, and thus table, entity and entity
types are taken to be synonyms.

62 CHAPTER 3. MATCHBENCH

Scenario Set 1: Baseline

1. SNSE

2. SNSA

Scenario Set 6:

1. DNSE

2. DNSA

Scenarios:

[59] EN-Same, SH-Same, IN-Same

[60] EN-Same, SH-Same, IN-Disjoint

Scenarios (EN-Similar):

[29] One-Att-N-Similar, IN-Same

[30] All-Atts-N-Similar, IN-Same

[31] One-Att-N-Diff, IN-Same

[32] All-Atts-N-Diff, IN-Same

[33] One-Att-N-Similar; IN-Disjoint

[34] All-Atts-N-Similar; IN-Disjoint

Scenarios (EN-Diff):

[35] One-Att-N-Similar, IN-Same

[36] All-Atts-N-Similar, IN-Same

[37] One-Att-N-Diff, IN-Same

[38] All-Atts-N-Diff, IN-Same

[39] One-Att-N-Similar; IN-Disjoint

[40] All-Atts-N-Similar; IN-Disjoint

Change entity

name

Remove

attributes

Scenarios (EN-Same, SH-Same, IN-Same):

[11] Missing one attribute

[12] Missing n attributes

[13] Each entity type has some attributes that

the other does not have (call Missing *)

Scenarios (EN-Same, SH-Same, IN-Disjoint):

[14] Missing one attribute

[15] Missing n attributes

[16] Each entity type has some attributes that

the other does not have (call Missing *)

Change

attribute namesScenario Set 2:

1. SNSE

2. DNSA

Scenario Set 3:

1. SNSE

2. SNSA

3. Missing Attributes

Scenario Set 5:

1. DNSE

2. SNSA

Scenario Set 7:

1. DNSE

2. SNSA

3. Missing Attributes

Scenarios (EN-Same):

[5] One-Att-N-Similar, IN-Same

[6] All-Atts-N-Similar, IN-Same

[7] One-Att-N-Diff, IN-Same

[8] All-Atts-N-Diff, IN-Same

[9] One-Att-N-Similar; IN-Disjoint

[10] All-Atts-N-Similar; IN-Disjoint

Scenario Set 4:

1. SNSE

2. DNSA

3. Missing Attributes

Scenarios:

[1] EN-Similar, SH-Same, IN-Same

[2] EN-Diff, SH-Same, IN-Same

[3] EN-Similar, SH-Same IN-Disjoint

[4] EN-Diff, SH-Same IN-Disjoint

Remove attributes

Change

attribute names

Scenarios (Missing one attribute):

[83] EN-Same, All-Atts-N-Similar, IN-Same

[84] EN-Same, All-Atts-N-Diff, IN-Same

[85] EN-Same, All-Atts-N-Similar, IN-Disjoint

Scenarios (Missing n attributes):

[86] EN-Same, All-Atts-N-Similar, IN-Same

[87] EN-Same, All-Atts-N-Diff, IN-Same

[88] EN-Same, All-Atts-N-Similar, IN-Disjoint

Scenarios (Missing *):

[89] EN-Same, All-Atts-N-Similar, IN-Same

[90] EN-Same, All-Atts-N-Diff, IN-Same

[91] EN-Same, All-Atts-N-Similar, IN-Disjoint

Scenarios (Missing one attribute):

[17] EN-Similar, SH-Same, IN-Same

[18] EN-Diff, SH-Same, IN-Same

[19] EN-Similar, SH-Same, IN-Disjoint

[20] EN-Diff, SH-Same IN-Disjoint

Scenarios (Missing n attributes):

[21] EN-Similar, SH-Same, IN-Same

[22] EN-Diff, SH-Same, IN-Same

[23] EN-Similar, SH-Same IN-Disjoint

[24] EN-Diff, SH-Same IN-Disjoint

Scenarios (Missing *):

[25] EN-Similar, SH-Same, IN-Same

[26] EN-Diff, SH-Same, IN-Same

[27] EN-Similar, SH-Same IN-Disjoint

[28] EN-Diff, SH-Same IN-Disjoint

Change

attribute names

Scenario Set 8:

1. DNSE

2. DNSA

3. Missing Attributes

Change

attribute names

Scenarios (Missing one attribute):

[41] EN-Similar, All-Atts-N-Similar, IN-Same

[42] EN-Similar, All-Atts-N-Diff, IN-Same

[43] EN-Similar, All-Atts-N-Similar, IN-Disjoint

[44] EN-Diff, All-Atts-N-Similar, IN-Same

[45] EN-Diff, All-Atts-N-Diff, IN-Same

[46] EN-Diff, All-Atts-N-Similar, IN-Disjoint

Scenarios (Missing n attributes):

[47] EN-Similar, All-Atts-N-Similar, IN-Same

[48] EN-Similar, All-Atts-N-Diff, IN-Same

[49] EN-Similar, All-Atts-N-Similar, IN-Disjoint

[50] EN-Diff, All-Atts-N-Similar, IN-Same

[51] EN-Diff, All-Atts-N-Diff, IN-Same

[52] EN-Diff, All-Atts-N-Similar, IN-Disjoint

Scenarios (Missing *):

[53] EN-Similar, All-Atts-N-Similar, IN-Same

[54] EN-Similar, All-Atts-N-Diff, IN-Same

[55] EN-Similar, All-Atts-N-Similar, IN-Disjoint

[56] EN-Diff, All-Atts-N-Similar, IN-Same

[57] EN-Diff, All-Atts-N-Diff, IN-Same

[58] EN-Diff, All-Atts-N-Similar, IN-Disjoint

Figure 3.3: Positive scenario space for one-to-one entity correspondences.

3.3. MATCHBENCH SCENARIOS 63

C
u
st
o
m
er
_
A
cc
o
u
n
t

C
u
st
o
m
er
_
A
cc
o
u
n
t_
ID

B
ro
k
er
_
ID

C
u
st
o
m
er
_
ID

N
am
e

T
ax
_
S
ta
tu
s

B
al
an
ce

C
u
st
o
m
er
_
A
cc
o
u
n
t

C
u
st
o
m
er
_
A
cc
o
u
n
t_
ID

B
ro
k
er
_
ID

C
u
st
o
m
er
_
ID

N
am
e

T
ax
_
S
ta
tu
s

B
al
an
ce

C
u
st
o
m
er
_
A
cc
o
u
n
t

C
u
st
o
m
er
_
A
cc
o
u
n
t_
ID

B
ro
k
er
_
ID

C
u
st
o
m
er
_
ID

N
am
e

T
ax
_
S
ta
tu
s

B
al
an
ce

C
u
st
o
m
_
A
c

C
u
st
o
m
er
_
A
cc
o
u
n
t_
ID

B
ro
k
er
_
ID

C
u
st
o
m
er
_
ID

N
am
e

T
ax
_
S
ta
tu
s

B
al
an
ce

C
u
st
o
m
er
_
A
cc
o
u
n
t

C
u
st
o
m
er
_
A
cc
o
u
n
t_
ID

B
ro
k
er
_
ID

C
u
st
o
m
er
_
ID

N
am
e

T
ax
_
S
ta
tu
s

B
al
an
ce

C
u
st
o
m
er
_
A
cc
o
u
n
t

C
u
st
o
m
er
_
A
cc
o
u
n
t_
ID

B
ro
k
er
_
ID

C
u
st
o
m
er
_
ID

N
am
e

T
ax
_
S
ta
tu
s

B
al
an
ce

C
u
st
o
m
er
_
A
cc
o
u
n
t

C
u
st
o
m
_
A
cc
_

B
ro
k
er
_
ID

C
u
st
o
m
er
_
ID

N
am
e

T
ax
_
S
ta
tu
s

B
al
an
ce

C
u
st
o
m
er
_
A
cc
o
u
n
t

C
u
st
o
m
er
_
A
cc
o
u
n
t_
ID

B
ro
k
er
_
ID

C
u
st
o
m
er
_
ID

N
am
e

T
ax
_
S
ta
tu
s

B
al
an
ce

C
u
st
o
m
er
_
A
cc
o
u
n
t

C
u
st
o
m
_
A
cc
_

C
u
st
o
m
_

N
am
T
a_
S
ta
tu
s

B
al
an

C
u
st
o
m
er
_
A
cc
o
u
n
t

C
u
st
o
m
er
_
A
cc
o
u
n
t_
ID

C
u
st
o
m
er
_
ID

N
am
e

T
ax
_
S
ta
tu
s

B
al
an
ce

C
u
st
o
m
er
_
A
cc
o
u
n
t

C
u
st
o
m
er
_
A
cc
o
u
n
t_
ID

B
ro
k
er
_
ID

C
u
st
o
m
er
_
ID

N
am
e

T
ax
_
S
ta
tu
s

B
al
an
ce

C
u
st
o
m
_
A
c

C
u
st
o
m
_
A
cc
_

B
ro
k
er
_
ID

C
u
st
o
m
er
_
ID

N
am
e

T
ax
_
S
ta
tu
s

B
al
an
ce

C
u
st
o
m
er
_
A
cc
o
u
n
t

C
u
st
o
m
er
_
A
cc
o
u
n
t_
ID

B
ro
k
er
_
ID

C
u
st
o
m
er
_
ID

N
am
e

T
ax
_
S
ta
tu
s

B
al
an
ce

C
u
st
o
m
_
A
c

C
u
st
o
m
er
_
A
cc
o
u
n
t_
ID

C
u
st
o
m
er
_
ID

N
am
e

T
ax
_
S
ta
tu
s

B
al
an
ce

C
u
st
o
m
er
_
A
cc
o
u
n
t

C
u
st
o
m
er
_
A
cc
o
u
n
t_
ID

B
ro
k
er
_
ID

C
u
st
o
m
er
_
ID

N
am
e

T
ax
_
S
ta
tu
s

B
al
an
ce

C
u
st
o
m
_
A
c

C
u
st
o
m
_
A
cc
_

C
u
st
o
m
_

N
am
T
a_
S
ta
tu
s

B
al
an

S
c
e
n
a
ri
o
 1

S
c
e
n
a
ri
o
 3

S
c
e
n
a
ri
o
 2

S
c
e
n
a
ri
o
 5

S
c
e
n
a
ri
o
 4

S
c
e
n
a
ri
o
 6

S
c
e
n
a
ri
o
 7

S
c
e
n
a
ri
o
 8

C
h
a
n
g
e

a
tt
ri
b
u
te
 n
a
m
e
s

R
e
m
o
v
e
 a
tt
ri
b
u
te
s

C
h
a
n
g
e

e
n
ti
ty
 n
a
m
e
s

C
h
a
n
g
e

a
tt
ri
b
u
te
 n
a
m
e
s

C
h
a
n
g
e

a
tt
ri
b
u
te
 n
a
m
e
s

C
h
a
n
g
e

a
tt
ri
b
u
te
 n
a
m
e
s

R
e
m
o
v
e

a
tt
ri
b
u
te
s

Figure 3.4: Examples for the positive scenario space for one-to-one entity corre-
spondences.

64 CHAPTER 3. MATCHBENCH

an original name string); neither of these properties hold for different names.

The terms below are used in Figure 3.3 to describe the properties of scenario

sets, following the terminology introduced in Section 1.1.2:

• SNSE (Same Name for Same Entity types): the names of equivalent entity

types are the same.

• DNSE (Different Names for Same Entity types): the names of equivalent

entity types are similar or different.

• SNSA (Same Name for Same Attribute): the names of equivalent attributes

are the same.

• DNSA (Different Names for Same Attribute): the names of one or more

equivalent attributes are similar or different.

• Missing Attributes: one or more attributes are missing.

The following terms describe the properties of specified scenarios, each of

which has been labelled with a unique number:

• EN-Same, EN-Similar or EN-Diff : the names of equivalent entity types

are the same, similar or different, respectively.

• SH-Same: the schemas of equivalent entity types are the same, i.e., all pairs

of equivalent attributes have the same name.

• IN-Same or IN-Disjoint : the extents of equivalent entity types contain

either the same instances (SI) or disjoint instances (DI). Disjoint instances

are generated by partitioning a single collection of instances, and thus have

common attribute values but no identical tuples.

• One-Att-N-Similar or One-Att-N-Diff : a single pair of equivalent attributes

has similar or different names, and the remaining pairs have the same name.

• All-Atts-N-Similar or All-Atts-N-Diff : all pairs of equivalent attributes have

similar or different names.

3.3. MATCHBENCH SCENARIOS 65

3.3.3 Negative scenarios for one-to-one entity correspon-

dences

The space of negative scenarios for one-to-one entity types is described in Figure

3.5. In the implementation of MatchBench, we choses three pairs of entity types

that represent different real world information into which similarities are system-

atically injected (particularly between source tables Customer, Customer Account

and Trade and the target table Company, respectively). The following terms are

used to describe the properties of the scenario sets:

• DNDE (Different Names for Different Entities): all pairs of entity types are

different, and so are their names.

• SNDE (Same Name for Different Entities): two entity types are different

but have the same name.

• DNDA (Different Names for Different Attributes): all (or all except one)

pairs of attributes are different and so are their names.

• SNSA (Same Name for Same Attribute): two equivalent attributes have the

same name.

• DNSA (Different Names for the Same Attributes): two equivalent attributes

have different names.

• SNDA (Same Name for Different Attributes): two different attributes have

the same name.

The terms that are used to describe the properties of the scenarios in each

scenario set are presented as follows:

• EN-Same or EN-Diff: different entity types have the same or different

names.

• All-Atts-N-Diff-Inst-Diff: all attributes of different entity types have differ-

ent names and different instances.

• (n-1)-Atts-N-Diff-Inst-Diff: all but one attributes of different entity types

have different names and different instances.

66 CHAPTER 3. MATCHBENCH

Change entity

name

Scenario [66]:

EN-Same,

All-Atts-N-Diff-Inst-Diff

Scenario Set 9:

(Baseline)

1. DNDE

2. DNDA

Scenario Set 10:

1. DNDE

2. DNDA

3. SNSA

Scenario Set 11:

1. DNDE

2. DNDA

3. DNSA

Add same

attributes

Scenario [63]:

EN-Diff,

(n-1)-Atts-N-Diff-Inst-Diff

1-Att-N-Same-Inst-Same

Scenario Set 13:

1. SNDE

2. DNDA

Scenario Set 15:

1. SNDE

2. DNDA

3. DNSA

Scenario Set 14:

1. SNDE

2. DNDA

3. SNSA

Add same attributes

with different names

Add same attributes

with different names

Scenario [64]:

EN-Diff,

(n-1)-Atts-N-Diff-Inst-Diff

1-Att-N-Diff-Inst-Same

Scenario [69]:

EN-Same,

(n-1)-Atts-N-Diff-Inst-Diff

1-Att-N-Diff-Inst-Same

Add same

attributes

Change attribute

names
Scenario Set 12:

1. DNDE

2. DNDA

3. SNDA

Scenario [65]:

EN-Diff,

(n-1)-Atts-N-Diff-Inst-Diff

1-Att-N-Same-Inst-Diff

Change

attribute name

Scenario [61]:

EN-Diff,

All-Atts-N-Diff-Inst-Diff

Scenario [70]:

EN-Same,

(n-1)-Atts-N-Diff-Inst-Diff

1-Att-N-Same-Inst-Diff

Scenario Set 16:

1. SNDE

2. DNDA

3. SNDA

Scenario [68]:

EN-Same,

(n-1)-Atts-N-Diff-Inst-Diff

1-Att-N-Same-Inst-Same

Figure 3.5: Negative scenario space for one-to-one entity correspondences.

• 1-Att-N-Diff-Inst-Same: a single pair of attributes of different entity types

have different names but the same instances.

• 1-Att-N-Same-Inst-Diff: a single pair of attributes of different entity types

have the same name but different instances.

• 1-Att-N-Same-Inst-Same: a single pair of attributes of different entity types

have the same name and instances.

3.3.4 Positive scenarios for many-to-one attribute corre-

spondences

In Figure 3.6, the space of attribute many-to-one correspondences is described,

where a set of attributes and a single attribute that belong to equivalent en-

tity types represent the same real world information. The following properties

describe the scenario sets:

• Attribute Many-to-One Correspondence types : three different types of at-

tribute many-to-one correspondences are considered:

– Type 1, numeric operation:

(price + charge + commission) × (1 + tax) = price

3.3. MATCHBENCH SCENARIOS 67

Change attribute
names

Scenario Set 17:
1. Attribute Many-to-One
Correspondence Types
2. SNSE
3. Similar Names for Attributes

Scenario Set 18:
1. Attribute Many-to-One
Correspondence Types
2. SNSE
3. Different Names for Attributes

Scenarios:
(SNSE, Similar Names for Attributes)
[71] Type 1, IN-Same
[72] Type 2, IN-Same
[73] Type 3, IN-Same
[75] Type 1, IN-Disjoint
[76] Type 2, IN-Disjoint
[77] Type 3, IN-Disjoint

Scenarios:
(SNSE, Different Names for Attributes)
[79] Type 1, IN-Same
[80] Type 2, IN-Same
[81] Type 3, IN-Same

Figure 3.6: Positive scenarios for many-to-one attribute correspondences.

– Type 2, string concatenation:

Concat (first name, middle name, last name) = name

– Type 3, numeric concatenation:

Concat (phone city, phone area, phone local, phone extension) = phone

• Similar Names for Attributes, which indicates that some or all of the many

attributes have similar names to the one corresponding attribute.

• Different Names for Attributes, which indicates that all of the many at-

tributes have different names from the one corresponding attribute.

Similar to Figure 3.3, extents of equivalent entity types are generated so as to

give rise to SI and DI cases for scenario set 17. Scenario set 18 contains SI cases,

but not DI, in order to retain a certain level of similarity between attributes.

3.3.5 Positive scenarios for many-to-many entity corre-

spondences

The initial target database is extended with a single table from the source, i.e.,

Customer, Customer Account and Trade, respectively. In this space, as described

in Figure 3.7, two sets of entity types (called the source and the target) repre-

sent the same real world information. The following properties characterize the

scenario sets:

• Entity Many-to-Many Correspondence types: three different types of many-

to-many correspondences are considered; for each type, the property of the

68 CHAPTER 3. MATCHBENCH

Change attribute

names

Scenario Set 19:

1. Entity Many-to-Many

Correspondence Types

2. Different Entity Names

3. Same Attribute Names

Scenarios (SH-Similar, Inst-Same):

Scenarios [108-109]: HP vs HP 1:2; 2:2

Scenarios [110-113]: VP vs VP 1:2; 1:3; 2:2; 2:3

Scenarios [114-115]: HP vs VP 2:2; 2:3

Scenarios (SH-Similar, Inst-Disjoint):

Scenarios [116-117]: HP vs HP 1:2; 2:2

Scenarios [118-121]: VP vs VP 1:2; 1:3; 2:2; 2:3

Scenarios [122-123]: HP vs VP 2:2; 2:3

Scenario Set 20:

1. Entity Many-to-Many

Correspondence Types

2. Different Entity Names

3. Similar Attribute Names

Scenarios (SH-Same, Inst-Same):

Scenarios [92-93]: HP vs HP 1:2; 2:2

Scenarios [94-97]: VP vs VP 1:2; 1:3; 2:2; 2:3

Scenarios [98-99]: HP vs VP 2:2; 2:3

Scenarios (SH-Same, Inst-Disjoint):

Scenarios [100-101]: HP vs HP 1:2; 2:2

Scenarios [102-105]: VP vs VP 1:2; 1:3; 2:2; 2:3

Scenarios [106-107]: HP vs VP 2:2; 2:3

Figure 3.7: Positive scenarios for many-to-many entity correspondences.

form n:m below represents the cardinalities of the source and target sets,

respectively. The types are:

– HP vs HP (1:2; 2:2), where the source and target sets are related by

horizontally partitioning the original entity type.

– VP vs VP (1:2; 1:3; 2:2; 2:3), where the source and target sets are

related by vertically partitioning the original entity type.

– HP vs VP (2:2; 2:3), where the source and target sets are related by

horizontal and vertical partitioning the original entity type, respec-

tively.

• Different Entity Names, which indicates that the names of the entity types

in the source and target sets are different.

• Same Attribute Names, which indicates that equivalent attributes have the

same names.

• Similar Attribute Names, which indicates that equivalent attributes have

similar names.

3.4 Experiments

3.4.1 Effectiveness measures

We decided to follow some of the evaluation criteria introduced by Do et al.,

specifically the Precision, Recall and F-measure presented in Section 3.1, to assess

3.4. EXPERIMENTS 69

the effectiveness of different matching systems for diagnosing schematic hetero-

geneities. This is because they are well-known in the research community, thus

being understandable and justifiable. Therefore, other alternative measures, such

as, Accuracy are not applied in MatchBench.

3.4.2 Experiment design

Building on the scenarios described above, MatchBench offers a collection of ex-

periments that can be used to explore the effectiveness of different schema match-

ing systems in diagnosing the presence of schematic heterogeneities. In most of

the experiments described below, the F-measure is reported, but where this is

useful for interpretation, the precision and recall may be reported separately.

MatchBench includes five positive and five negative experiments. Usually, a

positive experiment evaluates the extent to which the matching systems are able

to diagnose the presence of a schematic heterogeneity. A negative experiment,

on the other hand, tests the effectiveness of the systems in not reporting such

a schematic heterogeneity. Hence, a higher F-measure reported in the positive

experiments indicates better performance of the systems. Negative experiments

in turn report 1 - F-measure so that a lower value indicates better performance.

Specifically, Experiments 1 and 2, 3 and 4, 5 and 6, 7 and 8, and 9 and 10

are pairwise positive and negative experiments, and evaluate DNSE, DNSA, miss-

ing attributes, many-to-one attributes and many-to-many entities heterogeneities.

The experiments are defined as follows.

Experiment 1: Identifying when the same entity occurs in positive scenarios.

This experiment involves Scenario Sets 1 to 8 in Figure 3.3, and reports on the

ability of the matchers to meet two requirements:

• Requirement R1: Equivalent entity types are matched, where the ground

truth is the set of pairwise entity correspondences between equivalent entity

types. Thus,

- true positives are the identified matches between the equivalent entity

types;

- false positives are the incorrectly identified matches between different en-

tity types;

- false negatives are the matches between equivalent entity types that are

70 CHAPTER 3. MATCHBENCH

incorrectly missing.

• Requirement R2: Equivalent attributes are matched, where the ground

truth is the collection of pairwise attribute correspondences between equiv-

alent attributes. Thus,

- true positives are the identified matches between the equivalent attributes;

- false positives are the incorrectly identified matches between different at-

tributes;

- false negatives are the matches between equivalent attributes that are

incorrectly missing.

Experiment 2: Identifying when the same entity occurs in negative scenarios.

This experiment involves Scenario Sets 9 to 16 in Figure 3.5, and reports on the

extent to which the matchers meet the following requirements where no corre-

spondences exist:

• Requirement R1: Different entity types are not matched, where the ground

truth is that there are no pairwise entity correspondences between different

entity types. Thus,

- true positives are the different entity types that are not associated with

matches;

- false positives are the matches incorrectly associated with the different

entity types;

- false negatives are the different entity types that are associated with

matches.

• Requirement R2: Different attributes are not matched, where the ground

truth is that there are no pairwise attribute correspondences between at-

tributes of the different entity types. Thus,

- true positives are attributes of the different entity types that are not as-

sociated with matches;

- false positives are the matches incorrectly associated with attributes of

the different entity types;

- false negatives are attributes of the different entity types that are associ-

ated with matches.

The results reported for Experiments 1 and 2 provide the evidence necessary to

establish the presence of both the same name for different entities and different

3.4. EXPERIMENTS 71

names for equivalent entities heterogeneities of Kim et al. [KS91], and also play

a role in the detection of subsequent correspondences.

Experiments 3-8 are carried out only when the evaluated systems are able to

identify that the two entity types are equivalent; as such only correspondences

that associate attributes of equivalent entity types are measured.

Experiment 3: Identifying where different names have been given to equiva-

lent attributes in positive scenarios. This experiment involves Scenario Sets 2,

4, 6 and 8 in Figure 3.3, where the ground truth is the collection of pairwise

attribute correspondences between equivalent attributes that have similar or dif-

ferent names. Thus,

- true positives are the identified matches between equivalent attributes that have

similar or different names;

- false positives are the identified incorrect matches that associate equivalent at-

tributes that have similar or different names with different attributes;

- false negatives are the matches that are incorrectly missing between equivalent

attributes that have similar or different names.

Experiment 4: Identifying where different names have been given to equivalent

attributes in negative scenarios. This experiment involves scenarios from Sce-

nario Sets 3, 4, 7 and 8 in Figure 3.3, in which attributes have been removed

from the corresponding entity types in both the source and target databases, thus

resulting in equivalent entity types with different attributes. Note that the neg-

ative scenarios in this experiment (and in Experiments 6, 8 and 10) make use of

properties of the data sets created for testing positive scenarios – distinct data

sets have only been created specifically for negative scenarios where this is nec-

essary. The ground truth of the experiment is that there is no pairwise attribute

correspondence between different attributes. Thus,

- true positives are attributes that do not have corresponding attributes and are

not associated with matches, and as such are correctly identified as different at-

tributes;

- false positives are attributes that have corresponding attributes but are not

associated with matches, and as such are incorrectly identified as different at-

tributes;

- false negatives are attributes that do not have corresponding attributes but are

associated with matches, and as such are not identified as different attributes.

72 CHAPTER 3. MATCHBENCH

Experiment 5: Identifying missing attributes in positive scenarios. This exper-

iment involves Scenario Sets 3, 4, 7 and 8 in Figure 3.3, where some attributes

have been removed. The ground truth is that there are no correspondences asso-

ciated with the missing attributes (defined as attributes whose counterparts have

been removed). Thus,

- true positives are the missing attributes that are correctly identified, i.e., which

are not matched to any other attributes;

- false positives are the non-missing attributes that are not associated with

matches, and as such are incorrectly identified as missing attributes;

- false negatives are the missing attributes that are incorrectly matched to other

attributes.

Experiment 6: Identifying missing attributes in negative scenarios. This exper-

iment involves Scenario Sets 1, 2, 5 and 6 in Figure 3.3, where every attribute

has a counterpart. The ground truth is the collection of pairwise attribute corre-

spondences between each attribute and some corresponding attribute. Thus,

- true positives are the non-missing attributes that are associated with matches;

- false positives are the non-missing attributes that are not associated with

matches, and as such are incorrectly identified as missing attributes;

- false negatives are the non-missing attributes that are not associated with

matches.

Experiment 7: Identifying many-to-one attribute correspondences in positive

scenarios. This experiment involves Scenario Sets 17 and 18 in Figure 3.6, where

each element in the ground truth is a collection of attribute correspondences be-

tween each attribute in the set and the single attribute. Thus,

- true positive is the identified collection of matches between each attribute in the

set and the single attribute (i.e., these attributes are not associated with other

attributes);

- false positives are the identified collections of many-to-one or one-to-many at-

tribute matches that are not the ground truth (i.e., the collection of attribute

matches that is contained by, contains, overlaps or is disjoint with the ground

truth collection of matches);

- false negative is the collection of matches between each attribute in the set and

the single attribute, which is not identified.

Experiment 8: Identifying many-to-one attribute correspondences in negative

scenarios. This experiment involves Scenario Sets 1 to 8 in Figure 3.3, where

3.4. EXPERIMENTS 73

there are one-to-one but no many-to-one attribute correspondences. The ground

truth is that there are no many-to-one or one-to-many correspondences associated

with each attribute. Thus,

- true positives are the attributes that do not participate in more than one match;

- false positives are the collections of matches that associate many-to-one or one-

to-many attributes;

- false negatives are the attributes that participate in more than one match.

Experiment 9: Identifying many-to-many entity correspondences in positive

scenarios. This experiment involves Scenario Sets 19 and 20 in Figure 3.7, and

explores the following requirements in the context of the categories described in

Section 3.3.5:

• Requirement R1: Each entity type in the source set should be matched to

all entity types in the target set. The ground truth is the collection of pair-

wise entity correspondences between each entity type in the source set and

all entity types in the target set. Thus,

- true positive is the identified collection of matches between each two enti-

ties in the source and target sets (i.e., these entities are not associated with

other entities);

- false positives are the identified collections of many-to-one, one-to-many,

or many-to-many entity matches that are not the ground truth (i.e., the

collection of entity matches that is contained by, contains, overlaps or is

disjoint with the ground truth collection of matches);

- false negative is the collection of matches between each two entities in the

source and target sets, which is not identified.

The following two requirements are investigated only when the evaluated

systems are able to meet R1. As such, to diagnose them, only correspon-

dences that associate attributes of corresponding entity types in the source

and target sets are measured.

• Requirement R2: Primary key attributes in each entity type in the source set

should be matched to primary key attributes in all entity types in the target

set. The ground truth is the collection of pairwise attribute correspondences

between primary key attributes in each entity type in the source set and

primary key attributes in all entity types in the target set. The specified

true positives, false positives and false negatives are similar to these of

74 CHAPTER 3. MATCHBENCH

Requirement R1, thus being omitted.

• Requirement R3: Partitions in the source schema are matched against par-

titions in the target schema, with a view to identifying specific types of

many-to-many correspondences. For each type, the ground truth is the

collection of pairwise attribute correspondences between attributes as de-

scribed below:

– Horizontal Partitioning vs Horizontal Partitioning: Each non-key at-

tribute in each entity type in the source (target) set should be matched

to a single non-key attribute in every entity type in the target (source)

set.

– Vertical Partitioning vs Vertical Partitioning: Each non-key attribute

in each entity type in the source (target) set should be matched to a

single non-key attribute in an entity type in the target (source) set.

– Horizontal Partitioning vs Vertical Partitioning: Each non-key at-

tribute in each entity type in the source set should be matched to

a single non-key attribute in an entity type in the target set; but

each non-key attribute in each entity type in the target set should be

matched to a single non-key attribute in each entity type in the source

set.

The specified true positives, false positives and false negatives are similar

to these of Requirement R1, thus being omitted.

Experiment 10: Identifying many-to-many entity correspondences in negative

scenarios. This experiment involves Scenario Sets 1 to 8 in Figure 3.3, and

explores the following requirements:

• Requirement R1: Each entity type in the source should not be matched to

more than one entity type in the target. The ground truth is that there are

no many-to-many entity correspondences associated with each entity type

in both source and target. Thus,

- true positives are entity types that do not participate in more than one

match;

- false positives are the collections of entity matches that associate many-

to-many entity types;

- false negatives are entity types that participate in more than one match.

3.5. SUMMARY AND CONCLUSIONS 75

• Requirement R2: Each attribute in each entity type in the source set should

not be matched to an attribute in each entity type in the target set, and thus

will not be identified as many-to-many attributes required in diagnosing

many-to-many entity conflicts. The ground truth is that there are no many-

to-many attribute correspondences for each attribute in both source and

target set. The specified true positives, false positives and false negatives

are similar to these of Requirement R1, thus being omitted.

Requirement R2 is investigated only when the evaluated systems are unable to

meet Requirement R1. If that is the case, many-to-many entity correspondences

are identified between two sets of entity types (called the source and target) by

the evaluated systems. Thus, to diagnose R2, only correspondences that associate

attributes of matched entity types in the above two sets are measured.

3.5 Summary and Conclusions

This chapter has presented MatchBench, a benchmark that investigates the effec-

tiveness of schema matching proposals in the context of schematic heterogeneities

introduced earlier in Section 1.1. MatchBench offers a wide range of synthetic

scenarios with well defined characteristics of schematic heterogeneities, which dis-

tinguishes from eTuner [SLDR05, LSDR07] and STBenchMark [ATV08] as dis-

cussed in Section 3.1.2. Adopting the evaluation criteria summarized by Do et al.

[DMR02], MatchBench applies the synthetic scenarios as the input for matching

systems, and compares their output with the requirements for identifying each

type of schematic heterogeneities. In particular, MatchBench makes the following

contributions:

• it offers a wide range of synthetic scenarios that are systematically gen-

erated from a pair of schemas and represent different types of schematic

heterogeneities; and

• it defines positive and negative experiments to assess schema matching tools

in terms of their ability to diagnose the schematic heterogeneities, where a

positive experiment investigates the tools when a heterogeneity is present,

and a negative experiment assesses the tools when the heterogeneity is ab-

sent.

Chapter 4

Application of MatchBench

In this chapter, we discuss the application of MatchBench to three well-known

schema matching platforms, namely COMA++ [DR07, DR02, EM07], Rondo

[MRB03] and OpenII [SMH+10]. We chose to evaluate these approaches because

they are among the best known schema matching platforms, and are publicly

available. We describe the three matching platforms and their parameters used

by MatchBench in Section 4.1. We compare their effectiveness in diagnosing

schematic heterogeneities in Section 4.2, followed by conclusions in Section 4.3.

4.1 Matching Systems

We discuss configurations required to run the three schema matching platforms in

this section. In principle, we follow the advice of the authors on how to configure

them, for example, by employing the settings suggested in the published papers

or in direct interactions. In addition, we do what we can to help the three

platforms to perform well, e.g., by plugging an instance-level matcher into Rondo

and OpenII that are only supplied with the schema-level matchers. We describe

the configurations of COMA++, Rondo and OpenII in Sections 4.1.1, 4.1.2, and

4.1.3, respectively, followed by a summary in Section 4.1.4.

4.1.1 COMA++ configuration

As introduced in Section 2.4, COMA++ [DR07] is a schema matching plat-

form that provides a combination of schema-based and instance-based match-

ing supported by a library of matchers. It extends COMA [DR02] to include

76

4.1. MATCHING SYSTEMS 77

more schema-level matchers and matching strategies, and complements it with

instance-level matching [EM07]. The matching behaviour exhibited by COMA++

can be configured as follows:

• Choose a matching strategy. Strategies can be chosen from (i) AllContext,

which matches paths from the root to nodes in hierarchical data sets; (ii)

NoContext, which only considers matching of individual nodes; and (iii)

FilteredContext, which seeks to match paths of nodes only when the nodes

are identified as similar. As our schemas consist of flat tables, this aspect

of configuration has no impact in principle, although AllContext is used in

practice as it is the only strategy that enables the combination of schema

and instance-based matching in the COMA++ implementation.

• Choose the matchers. The following matcher combinations were selected

from the COMA++ library because they have been demonstrated to be ef-

fective in published experimental evaluations [DR07, DR02, EM07, Do06].

The following schema-level matchers are used: (i) the string matchers Name,

which determines the similarity of element names, and NamePath, which

takes the context (table names) of elements into account; (ii) the structure-

level matchers Leaves, which derives similarity of attributes from a com-

posite matcher NameType (which takes element names and data types into

account) and propagates the similarity from attributes to entity types, and

Parents, which obtains similarity of entity types from the Leaves matcher

and propagates the similarity from entity types to attributes without com-

bining information of entity types (e.g., their name similarity). At the

instance level, the Content-based matcher is used, which performs pairwise

string comparison of instance values to match attributes, and propagates

similarity from attributes to entity types.

• Choose the combination parameters. Combining correspondences from dif-

ferent matchers includes four steps: (i) aggregation, which determines a

combined similarity for two elements, configured as Average that assigns

even weights to the results of schema and instance matching; (ii) direction,

which ranks elements of a schema (e.g., S1) based on similarity of matches,

set up as Both that matches S1 to S2 and S2 to S1; (iii) selection, which

chooses matches above a specific confidence level by applying a Thresh-

old+MaxDelta, as will be discussed below; (iv) combined similarity, which

78 CHAPTER 4. APPLICATION OF MATCHBENCH

decides a combined similarity between sets of matched elements, given the

value of Average. The experimental study carried out by COMA++ authors

[DR07, Do06] identified Average, Both, Threshold+MaxDelta and Aver-

age as the most effective strategies for aggregation, direction, selection and

combined similarity, respectively, for cases where no previous matches are

reused.

Before moving on, we need to introduce more detail of the Threshold+MaxDelta

method used for selection, as COMA++ results are fairly sensitive to its config-

ured values, i.e., the threshold and delta values below. Specifically, given a collec-

tion of candidate matches (i.e., matches produced by combining results of various

matchers and to be selected as final results), Threshold+MaxDelta returns the

intersection of matches chosen by the Threshold method and by the MaxDelta

method:

• the Threshold method selects matches whose similarities pass a threshold

value set by the user;

• the MaxDelta method selects matches associated with an element whose

similarities reside in a tolerance range specified by [max−max×delta,max],

where max denotes the maximum similarity of the matches associated with

the element, and delta is a parameter to be configured.A BCDE0.80.99990.51.0 A BCDE0.99991.0 A BCDE0.80.99991.0
(a) Candidate matches (b) Matches selected by (0.1, 0.01) (c) Matches selected by (0.1, 0.3)

Figure 4.1: Example for the Threshold+MaxDelta method.

For example, assume that there are four candidate matches between attribute

A and attributes B, C, D and E, as shown in Figure 4.1(a). Figure 4.1(b) shows

the matches chosen by Threshold+MaxDelta where (threshold, delta) are set as

(0.1, 0.01): the Threshold method selects all four matches, and the MaxDelta

method chooses the matches between A and B and between A and C, as the

tolerance range is specified as [1.0–1.0×0.01, 1.0], which is [0.99, 1.0]. If (threshold,

delta) are set as (0.1, 0.3), more matches are chosen, as shown in Figure 4.1(c):

4.1. MATCHING SYSTEMS 79

the Threshold method still selects all four matches, but the MaxDelta method

specifies the tolerance range as [1.0–1.0×0.3, 1.0], which is [0.7, 1.0], and as such

matches between attribute A and attributes B, C and D will be returned.

The COMA++ authors suggested that setting (threshold, delta) to (0.5, 0.008)

yields the best average quality (i.e., using F-measure and Overall, as introduced in

Section 3.1.1) in the conducted experiments [Do06]. In Ontology Alignment Eval-

uation Initiative (OAEI) 2006 [EMS+06], COMA++ authors applied a (threshold,

delta) of (0.13, 0.0001) [MER06]. It has proven difficult to configure (threshold,

delta), which can have a significant impact on the performance of COMA++

results, as different parameter values for threshold and delta have been used in

various publications by the authors. These differences indicate that the most

effective values are context-specific. Following instructions of COMA++ au-

thors [Do06]: “With the flexibility to construct and configure matchers and match

strategies, we have been able to quickly implement and test different match algo-

rithms in various settings. This in turn allows us to identify the strategies and

configurations with high and stable quality for our default match operation.”, we

decided to employ the default setting of (threshold, delta) that is automatically

configured as (0.1, 0.01) in the COMA++ tool we obtained from the authors for

the evaluation using MatchBench.

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"(")*+"$")*+",")*+"%")*+"-")*+"&")*+".")*+"'"

!
"
#
$%
&
#
'(
)*

#
%
+,
$#
'

-.#/%$01+'

/01+23*4" /01+23*45677208+" 94:;*"

(a) Using the default setting

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"(")*+"$")*+",")*+"%")*+"-")*+"&")*+".")*+"'"

!
"
#
$%
&
#
'(
)*

#
%
+,
$#
'

-.#/%$01+'

/01+23*4" /01+23*45677208+" 94:;*"

(b) Using the tuned setting

Figure 4.2: Comparison of COMA++ results for different settings of (threshold,
delta): F-measure.

Even though during the following evaluations we employed the default setting

for threshold and delta, we did an extra experiment to tune the two parameters

on MatchBench scenarios, and have obtained values of (0.42, 0.33). Figure 4.2

shows the difference between COMA++ results in Experiment 1 for Requirement

R1 (i.e., identifying equivalent entity types) in the same instances scenarios by

80 CHAPTER 4. APPLICATION OF MATCHBENCH

applying the default setting and by applying the tuned setting, respectively.

The reason why COMA++ reported higher F-measures in the tuned setting

than in the default setting is that the threshold of 0.42 in the tuned setting

excludes most false positives between different entities, whereas the threshold of

0.1 used by the default setting tends to return matches between entities as long

as the similarity passes 0.1. This indicates again that setting parameters is rather

context-specific.

4.1.2 Rondo configuration

Rondo [MRB03] is a model management platform that provides various oper-

ators including, such as schema matching, merging, composition. For schema

matching, Rondo uses an algorithm called Similarity Flooding [MGMR02], which

consists of the following steps:

1. Build graph-based representations for schemas of the two data sources.

2. Produce initial matches using an NGram matcher that compares name

strings of elements between the two data sources.

3. Run the similarity flooding algorithm: based on the assumption that when-

ever any two elements in the two graph models are found to be similar, the

similarity of their adjacent elements increases, iteratively propagate simi-

larities of elements in the matches derived from Step 2 to their adjacent

elements until a fixpoint is reached.

4. Select a subset of good matches from the candidate matches obtained in

Step 3, whereby only one-to-one correspondences are produced.

For the evaluation of Similarity Flooding using MatchBench, the initial matches

are produced by combining results of the NGram matcher and an instance matcher

(i.e., the Content-based matcher of COMA++), rather than using the NGram

matcher alone, which acts only on schema level data. This approach enables

Similarity Flooding to make use of instance-level information in initial matches,

which turns out to be important for identifying schematic correspondences. Fig-

ure 4.3 compares Requirement R1 (i.e., identifying equivalent entity types) results

of Rondo in the same instances scenarios of Experiment 1, whose initial matches

are produced without and with the instance matcher. As can be observed, Rondo

4.1. MATCHING SYSTEMS 81

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"(")*+"$")*+",")*+"%")*+"-")*+"&")*+".")*+"'"

!
"
#
$%
&
#
'(
)*

#
%
+,
$#
'

-.#/%$01+'

/01+23*4" /01+23*45677208+" 94:;*"

(a) Without the instance matcher

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"(")*+"$")*+",")*+"%")*+"-")*+"&")*+".")*+"'"

!
"
#
$%
&
#
'(
)*

#
%
+,
$#
'

-.#/%$01+'

/01+23*4" /01+23*45677208+" 94:;*"

(b) With the instance matcher

Figure 4.3: Comparison of Rondo results without and with the instance matcher:
F-measure.

performs considerably worse in the absence of evidence from the instance matcher,

especially when equivalent entities have similar or different names (Sets 5 to 8

in Figure 4.3(a) and (b)).

4.1.3 OpenII Configuration

OpenII [SMH+10] is a suite of open-source tools designed for offering collabora-

tive assistance (which means that users are required to contribute to the tasks)

for information integration tasks, such as schema matching and data exchange.

OpenII employs a hybrid matcher called Harmony [SMM+09] that averages simi-

larities of matches generated by the following matchers: EditDistance, which com-

pares the edit distance of name strings of two elements, Documentation, which

compares words found in the names and the documentation of two elements, and

Exact, which identifies elements of source and target schemas that have exactly

the same hierarchical path from the root. Harmony also provides the Mapping

matcher, which reuses the previous results. We have not used Mapping for the

evaluation with MatchBench, as we do not consider previous matches during the

evaluation.

As an interactive matching tool, Harmony returns all candidate matches, so

that the OpenII GUI can allow the user to slide a threshold bar while visually

observing which matches pass different thresholds. The OpenII GUI also suggests

a top match for each element (i.e., the match with the greatest similarity score),

which is kept as long as it is the top match for either of its associated elements1.

1OpenII developers also suggested that applying a threshold to remove the low score matches
could improve the precision of the results. However, a suitable threshold that can be applied

82 CHAPTER 4. APPLICATION OF MATCHBENCH

As there are a large number of scenarios in MatchBench, selecting a threshold

manually for each of them is not a practical proposition. Thus, we decided

to follow the recommendation of the OpenII authors, i.e., use the top matches

associated with each element. In addition, as Harmony only works at the schema-

level, we combine it with the Content-based matcher of COMA++, to provide

the same basis in terms of initial matches as COMA++ and Rondo.

4.1.4 Comparison of Configurations

In this section, we compare configurations chosen for the three matching platforms

(see Table 4.1). In general, all three platforms combine the results of an instance-

level matcher (i.e., the Content-based matcher of COMA++) with the results of

their own schema-level matchers using average. Specifically, to generate candidate

matches in COMA++ and OpenII, their individual schema-level matchers are

combined using equal weights, and those results are in turn combined again with

equal weights with the results of the instance-level matcher. Rondo propagates

similarity of initial matches that are produced by averaging the results of the

NGram and the Content-based matchers to generate the candidate matches, as

stated in Section 4.1.2.

Schema-level Instance-level Combination Selection
matchers matchers
Name

COMA++ NamePath Content-based Average Threshold+MaxDelta, where
Parents (threshold, delta) = (0.1, 0.01)
Leaves

Rondo NGram Content-based Average 1-to-1 top matches
EditDistance

OpenII Documentation Content-based Average 1-to-1 or n-to-m top matches
Exact

Table 4.1: Configurations of the three matching platforms.

In addition to collecting evidence for candidate matches differently, the three

platforms also differ in the way candidate matches are selected. By introducing a

tolerance range, Threshold+MaxDelta employed by COMA++ selects a few of the

top matches, decided by the delta value, for each element that passes a threshold,

thus identifying what could be seen as n-to-m matches. Rondo yields a single

top match for each element only and thus returns one-to-one matches. OpenII,

though is similar to Rondo in choosing a single top match for each element, allows

in MatchBench is hard to obtain from the past experience of OpenII developers. As such we
decided to not use it in MatchBench.

4.2. EFFECTIVENESS COMPARISON 83

a match to be kept as long as it is the top match for either of its associated

elements, and as such could also identify n-to-m matches rather than just 1-to-1

matches.

4.2 Effectiveness comparison

4.2.1 Experiment 1: Identifying when the same entity oc-

curs in positive scenarios

The recall and F-measure of this experiment are presented in Figures 4.4 and

4.5. In principle, we observe whether equivalent entity types and equivalent at-

tributes can be matched using the recall, whereas the F-measure is used to report

the overall performance of the three platforms and also reflects the incorrect

matches between different entity types or different attributes. The following can

be observed:

1. All three platforms have been generally successful at matching equivalent

entity types and equivalent attributes when they have the same instances,

but have been less successful for disjoint instances (Figure 4.4(a) and (b)

for entity types, and (c) and (d) for attributes). OpenII has outperformed

COMA++ and Rondo in terms of equivalent entity types and equivalent

attributes alone (the recall reported in OpenII in Figure 4.4 is higher than

the recall reported in COMA++ and Rondo in most cases, even though the

F-measure reported is rather low in Figure 4.5).

2. The importance of instance information for the three platforms is reflected

in the fact that equivalent entity types that have the same instances can

always be matched by Rondo and OpenII, irrespective of changes to their

names and their attributes (Figure 4.4(a)). This is because matches between

equivalent entity types that have same instances are usually their highest

matches, and thus can be chosen. COMA++ has performed slightly worse

than the other two platforms on matching equivalent entity types that have

the same instances where some of their attributes are removed (Sets 3, 4,

7 and 8 in Figure 4.4(a)), because COMA++ also matches entity types

to attributes. When similarity of equivalent entity types reduces, entities

sometimes have higher similarity to attributes than to entities.

84 CHAPTER 4. APPLICATION OF MATCHBENCH

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"(")*+"$")*+",")*+"%")*+"-")*+"&")*+".")*+"'"

!
"
#
$%
&
#
'(
#
)%
**
'

+)#,%$-./'

/01233" 45675" 08*699"

(a) Expt 1: R1, same instances

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"(")*+"$")*+",")*+"%")*+"-")*+"&")*+".")*+"'"

!
"
#
$%
&
#
'(
#
)%
**
'

+)#,%$-./'

/01233" 45675" 08*699"

(b) Expt 1: R1, disjoint instances

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"(")*+"$")*+",")*+"%")*+"-")*+"&")*+".")*+"'"

!
"
#
$%
&
#
'(
#
)%
**
'

+)#,%$-./'

/01233" 45675" 08*699"

(c) Expt 1: R2, same instances

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"(")*+"$")*+",")*+"%")*+"-")*+"&")*+".")*+"'"

!
"
#
$%
&
#
'(
#
)%
**
'

+)#,%$-./'

/01233" 45675" 08*699"

(d) Expt 1: R2, disjoint instances

Figure 4.4: Experiment 1 for COMA++, Rondo and OpenII: Recall.

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"(")*+"$")*+",")*+"%")*+"-")*+"&")*+".")*+"'"

!
"
#
$%
&
#
'(
)*

#
%
+,
$#
'

-.#/%$01+'

/01233" 45675" 08*699"

(a) Expt 1: R1, same instances

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"(")*+"$")*+",")*+"%")*+"-")*+"&")*+".")*+"'"

!
"
#
$%
&
#
'(
)*

#
%
+,
$#
'

-.#/%$01+'

/01233" 45675" 08*699"

(b) Expt 1: R1, disjoint instances

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"(")*+"$")*+",")*+"%")*+"-")*+"&")*+".")*+"'"

!
"
#
$%
&
#
'(
)*

#
%
+,
$#
'

-.#/%$01+'

/01233" 45675" 08*699"

(c) Expt 1: R2, same instances

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"(")*+"$")*+",")*+"%")*+"-")*+"&")*+".")*+"'"

!
"
#
$%
&
#
'(
)*

#
%
+,
$#
'

-.#/%$01+'

/01233" 45675" 08*699"

(d) Expt 1: R2, disjoint instances

Figure 4.5: Results of Experiment 1 for COMA++, Rondo and OpenII: Average
F-measure.

4.2. EFFECTIVENESS COMPARISON 85

3. A significant number of false positives between different entity types and

between different attributes have been generated by all platforms (given

the high recall shown in Figure 4.4, the F-measures reported in Figure

4.5 are fairly low). This is due to the selection strategies these platforms

employ: for COMA++, the MaxDelta method always chooses a few of the

top matches associated with an element, even though the scores of these

matches may be fairly low due to the low threshold of 0.1, which accepts

a large number of matches with fairly low scores; Rondo returns one-to-

one matches only, and does so by selecting a best match for each element,

regardless of its similarity score; and OpenII keeps a match as long as it is

the top match for either of its associated elements irrespective of the match

scores, resulting in a large number of incorrect matches, which makes it

perform worst among the three platforms.

4. Changing the names of equivalent entity types into similar or different influ-

ences OpenII slightly on matching equivalent attributes that have disjoint

instances, but has no impact on COMA++ and Rondo (Figure 4.4(c) and

(d)). This indicates that the Parents and NamePath matchers COMA++

employs and the Similarity Flooding algorithm used in Rondo do not prop-

agate similarity of entity names into their attributes.

5. Given similar attribute names and the introduction of missing attributes,

OpenII has been more robust than COMA++ and Rondo on matching

equivalent attributes (Sets 2 to 4 and 6 to 8 in Figure 4.4(c) and (d)). The

above changes to attributes tend to affect Rondo more than COMA++, be-

cause similarity of any two elements can be propagated to their neighbours

(e.g., siblings) by similarity flooding.

In the following experiments (for COMA++, Rondo and OpenII), results are

often better in the same instances case, and we comment on this in the text only

where there is some additional point to be made.

As shown in Figure 4.5(c) and (d), results of COMA++, Rondo and OpenII

between Scenario Sets 1 and 5, 2 and 6, 3 and 7, and 4 and 8, where the

only difference is that entity names are changed, have shown no differences or

slight differences. Thus, there is no need to repeat this general lesson in the text

describing Experiments 3 to 6 and 8, where results in Scenario Sets 5 to 8 are

not reported.

86 CHAPTER 4. APPLICATION OF MATCHBENCH

4.2.2 Experiment 2: Identifying when the same entity oc-

curs in negative scenarios

The results of this experiment are presented in Figure 4.6. In this experiment, we

observe and measure results for the three platforms on pairs of different entities

into which similarities have been injected, as presented in Figure 3.5 in Section

3.3.3. To ensure that the different entities have no common parts in the baseline

scenarios, we have removed similar elements, such as primary keys. However,

even though 1- F-measure is 0 (Set 9 in Figure 4.6(a)), which means that none

of the three platforms have matched the two different entities, incorrect matches

between one of the two different entities and other entities may still be identified.

The following can be observed:

!"

!#$"

!#%"

!#&"

!#'"

("

)*+",")*+"(!")*+"((")*+"($")*+"(-")*+"(%")*+"(.")*+"(&"

!
"
#
$%
&
#
'(
)
'*
'+
*,

#
%
-.
$#
/'

01#2%$34-'

/01233" 45675" 08*699"

(a) Expt 2: R1

!"

!#$"

!#%"

!#&"

!#'"

("

)*+",")*+"(!")*+"((")*+"($")*+"(-")*+"(%")*+"(.")*+"(&"

!
"
#
$%
&
#
'(
)
'*
'+
*,

#
%
-.
$#
/'

01#2%$34-'

/01233" 45675" 08*699"

(b) Expt 2: R2

Figure 4.6: Results of Experiment 2 for COMA++, Rondo and OpenII: Average
(1-F-measure).

1. All three platforms have matched the two different entities (Figure 4.6(a))

when similarities have been injected into their names or their attributes

(e.g., SNDE, SNSA, DNSA in Figure 3.5 in Section 3.3.3). COMA++ has

performed the best among the three platforms, and only matched the two

different entities in scenarios where they have the same names (Sets 13 to 16

in Figure 4.6(a)); OpenII has been least successful in this experiment as the

two different entities have been matched in most scenarios. This is because

all the three platforms always choose the top candidate matches for each

element, and this also indicates that entity types are matched because they

are more similar to each other than to other entity types but not because

they represent the same real world notion.

4.2. EFFECTIVENESS COMPARISON 87

2. COMA++ and Rondo perform satisfactorily in not matching different at-

tributes (Figure 4.6(b)): where attributes are matched, this is normally

because similar attributes have been introduced, and the remainder results

from overlaps in the extents or the names of non-equivalent attributes.

OpenII has matched several different attributes even in the baseline sce-

narios where no similarities have been injected. This shows that to select

candidate attribute matches, the method of choosing a single match for an

attribute that has the greatest similarity seems more reasonable than the

method that does not restrict the number of matches associated with an

attribute and keeps a candidate match as long as it is the top match for

either of its associated attributes.

4.2.3 Experiment 3: Identifying where different names

have been given to equivalent attributes in positive

scenarios

The results of this experiment are presented in Figure 4.7(a). The graph distin-

guishes SI and DI cases, and includes cases where a single attribute (A1) or all

attributes (An) have had their names changed to similar or different names. The

following can be observed:

1. All three platforms have been generally successful at matching equivalent

attributes in the SI case, regardless of the changes to their names and

missing siblings. Rondo has occasionally matched an attribute to a different

attribute where evidence between equivalent attributes is weak, e.g., when

equivalent primary key attributes have different names and same instances

(Set 2 (A1) SI in Figure 4.7(a)).

2. In the DI case, better performance of the three platforms is reported where

many attribute names have changed than in the case where a single at-

tribute name is changed. This is because the ground truth involves only

the attributes whose names have changed, and in the implementation of

the experiment, where a single attribute name is changed (A1), this is often

the primary key, where the disjoint instances at the tuple level give rise

to completely disjoint instances at the attribute level, and thus there is no

contribution to the matching of the attributes from the instance matcher.

88 CHAPTER 4. APPLICATION OF MATCHBENCH

3. OpenII is able to match equivalent attributes, even given a combination of

disjoint instances and missing attributes (Set 4 (An) DI in Figure 4.7(a)),

whereas COMA++ and Rondo have performed slightly worse than OpenII.

This because OpenII tries to keep every top match irrespective of its score,

which corroborates the finding that OpenII emphasizes recall more than

the other platforms.

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"$",-(.""

)/"

)*+"$",-0.""

)/"

)*+"%",-0.""

)/"

)*+"$",-(."

1/"

)*+"$",-0."

1/"

)*+"%",-0."

1/"

!
"
#
$%
&
#
'(
)*

#
%
+,
$#
'

-.#/%$01+'

234-55" 67087" 39*0//"

(a) Expt 3

!"

!#$"

!#%"

!#&"

!#'"

("

)*+",")-")*+",".-")*+"%")-")*+"%".-"

!
"
#
$%
&
#
'(
)
*+
*,

#
%
-.
$#
/'

01#2%$34-'

/01233" 45675" 08*6--"

(b) Expt 4

Figure 4.7: Results of Experiments 3 and 4 for COMA++, Rondo and OpenII.

4.2.4 Experiment 4: Identifying where different names

have been given to equivalent attributes in negative

scenarios

The results of this experiment are presented in Figure 4.7(b). The following can

be observed:

1. Some different attributes are matched that should not be, which can be

explained as follows. In the collection of candidate matches identified by

the three platforms, each element may be matched to several elements,

supported by evidence, e.g., names and instances, therefore, an attribute

that does not have a corresponding attribute is likely to be matched to

some attribute due to coincidental name similarity or coincidental extent

overlap. Thus, the idea of choosing the best candidate match for each

element, though implemented differently by the three platforms, will always

return some match for an element, resulting in incorrect matches between

different attributes. COMA++ has performed slightly better than the other

4.2. EFFECTIVENESS COMPARISON 89

two platforms because it applies the threshold of 0.1 and this helps to remove

some incorrect matches.

2. Some attributes that have a corresponding attribute are not associated with

a match, thus being incorrectly identified as different attributes, in partic-

ular when match evidence between equivalent attributes is weak, e.g., due

to disjoint instances, (all three platforms performed worse in Set 3 DI than

Set 3 SI in Figure 4.7(b)). As there is little evidence supporting the match

of equivalent attributes, all three platforms are likely to choose a different

attribute as the best match.

4.2.5 Experiment 5: Identifying missing attributes in pos-

itive scenarios

The results of this experiment are presented in Figure 4.8(a). All three platforms

are generally able to correctly identify missing attributes (i.e., identify them as

attributes without correspondences) when equivalent entity types have the same

instances (Sets 3 SI and 4 SI in Figure 4.8(a)), but have performed slightly worse

in the disjoint instances case. Where missing attributes have been matched by

the three platforms, this is due to the selection of the best candidate match for

each element.

!"

!#$"

!#%"

!#&"

!#'"

("

)*+",")-")*+",".-")*+"%")-")*+%".-"

!
"
#
$%
&
#
'(
)*

#
%
+,
$#
'

-.#/%$01+'

/01233" 45675" 08*6--"

(a) Expt 5

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"("),")*+"("-,")*+"$"),")*+"$"-,"

!
"
#
$%
&
#
'(
)
*+
*,

#
%
-.
$#
/'

01#2%$34-'

./0122" 34564" /7*5,,"

(b) Expt 6

Figure 4.8: Results of Experiments 5 and 6 for COMA++, Rondo and OpenII.

90 CHAPTER 4. APPLICATION OF MATCHBENCH

4.2.6 Experiment 6: Identifying missing attributes in neg-

ative scenarios

The results of this experiment are presented in Figure 4.8(b). All three platforms

have generally been successful at identifying that no attributes are missing, in par-

ticular when equivalent attributes have the same instances (Set 1 SI and Set 2 SI

in Figure 4.8(b)). OpenII has performed significantly better than COMA++ and

Rondo in that most non-missing attributes (i.e., attributes with correspondences)

are matched to some attribute, because as long as an attribute is associated with

a match (no matter whether it is correct or not) in the collection of candidate

matches, OpenII will identify such an attribute as a non-missing attribute by

associating it with a match in the final results.

4.2.7 Experiment 7: Identifying many-to-one attribute

correspondences in positive scenarios

The results of this experiment are presented in Figure 4.9(a). The following can

be observed:

1. COMA++ and Rondo have failed in this experiment. In contrast to Rondo,

which only identifies one-to-one matches, the Threshold+MaxDelta method

that COMA++ employs allows the identification of many-to-one matches.

However, given the delta value of 0.01, the MaxDelta method sets a fairly

small tolerance range below the top match of an attribute, thus only being

able to return matches whose similarities are close to the top match. Never-

theless, a many-to-one attribute correspondence refers to a transformation

of instances (e.g., string concatenation or numeric operation) between the

many attributes and the one attribute rather than a selection of matches

whose similarities are close, as determined by comparing names or instances

of pairwise attributes. We anticipate that iMAP [DLD+04] could identify

the many-to-one attribute correspondences. However, since the system is

not publicly available, we have had no way to confirm or reject this assump-

tion.

2. OpenII is the only platform that could identify many-to-one attribute cor-

respondences for Types 2 and 3 presented in Section 3.3.4, where the many

attributes and the one attribute have similar names (Sets 17 SI and 17 DI

4.2. EFFECTIVENESS COMPARISON 91

in Figure 4.9(a)). This is because OpenII chooses a best match for each

element but does not restrict that the element can only be associated with

a single match, i.e., allowing a match to be kept as long as it is the best

match for either of its associated elements. When the many attributes and

the one attribute have similar names, the matches between the many at-

tributes and the one attribute are usually the top matches for the many

attributes, and thus are selected by OpenII.

3. Although OpenII has identified some many-to-one attribute matches, it does

not demonstrate the ability to diagnose the many-to-one attribute conflicts,

as the match evidence that OpenII uses comes from attribute names rather

than instances. OpenII results have been significantly influenced by the

changes of attribute names (the F-measures reported in Sets 17 SI and

18 SI in Figure 4.9(a) are completely different), but not by the changes

of attribute instances (the F-measures reported in Sets 17 SI and 17 DI

in Figure 4.9(a) are the same). OpenII cannot make use of the instance

evidence because of the instance matcher plugged in: it only compares

string similarity of extents of two attributes, but the instances of each of

the many attributes and the one attribute are always different.

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"(,")-")*+"(,".-")*+"('"

!
"
#
$%
&
#
'(
)*

#
%
+,
$#
'

-.#/%$01+'

/01233" 45675" 08*6--"

(a) Expt 7

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"(")*+"$")*+",")*+"%"

!
"
#
$%
&
#
'(
)
*+
*,

#
%
-.
$#
/'

01#2%$34-'

-./011" 23453" .6*477"

(b) Expt 8

Figure 4.9: Results of Experiments 7 and 8 for COMA++, Rondo and OpenII.

4.2.8 Experiment 8: Identifying many-to-one attribute

correspondences in negative scenarios

The results of this experiment are presented in Figure 4.9(b). The following can

be observed:

92 CHAPTER 4. APPLICATION OF MATCHBENCH

1. COMA++ and Rondo do not identify many-to-one attribute correspon-

dences where they should not, for the reasons stated in Section 4.2.7.

2. Due the best selection method implemented by OpenII, a few of incorrect

many-to-one attribute correspondences have been returned.

4.2.9 Experiment 9: Identifying many-to-many entity cor-

respondences in positive scenarios

The results of this experiment are presented in Figure 4.10. Rondo is not able

to achieve this task. COMA++ and OpenII have performed generally well in

satisfying requirements R2 and R3, which are, however, investigated only when

the evaluated systems are able to meet requirement R1, as stated in Section

3.4.2, which neither of them meets. Therefore, none of the three platforms are

able to diagnose many-to-many conflicts. Nevertheless, we still show the results

of requirements R2 and R3 for the completeness of the evaluation. The following

can be observed:

• Requirement R1, namely that each of the source entity types can be matched

with all the alternatively fragmented entity types, can barely be satisfied

by the three platforms (Figure 4.10(a) and (b)):

1. COMA++ has only been able to associate the many-to-many entity

types where the same instances are being represented in the horizontal

partitioning models (Set 19 HP vs HP and Set 20 HP vs HP in Figure

4.10(a)), but has failed in other partitioning models or in disjoint in-

stances. This is because only when the two original entity types that

have the same instances are horizontally partitioned, are the similar-

ities between each pair of entity types in the source and target sets

close, and as such are selected by the MaxDelta method.

2. Rondo is not able to identify any many-to-many entity correspon-

dences.

3. OpenII has performed slightly better than the others. However, it has

been fairly generous to associate a few of matches with an entity type

(the recalls are always high, but the precisions are fairly low). There-

fore, the patchy results shown by OpenII are because the equivalent

4.2. EFFECTIVENESS COMPARISON 93

!"

!#$"

!#%"

!#&"

!#'"

("

""")*+"(,"""""""""

-."/0"-.""

""")*+"(,"""""""""

1."/0"1.""

""")*+"(,"""""""""

-."/0"1.""

""")*+"$!"""""""""

-."/0"-.""

""")*+"$!"""""""""

1."/0"1.""

""")*+"$!"""""""""

-."/0"1.""

!
"
#
$%
&
#
'(
)*

#
%
+,
$#
'

-.#/%$01+'

234566" 789:8" 3;*9<<"

(a) R1, same instances

!"

!#$"

!#%"

!#&"

!#'"

("

""")*+"(,"""""""""

-."/0"-.""

""")*+"(,"""""""""

1."/0"1.""

""")*+"(,"""""""""

-."/0"1.""

""")*+"$!"""""""""

-."/0"-.""

""")*+"$!"""""""""

1."/0"1.""

""")*+"$!"""""""""

-."/0"1.""

!
"
#
$%
&
#
'(
)*

#
%
+,
$#
'

-.#/%$01+'

234566" 789:8" 3;*9<<"

(b) R1, disjoint instances

!"

!#$"

!#%"

!#&"

!#'"

("

""")*+"(,"""""""""

-."/0"-.""

""")*+"(,"""""""""

1."/0"1.""

""")*+"(,"""""""""

-."/0"1.""

""")*+"$!"""""""""

-."/0"-.""

""")*+"$!"""""""""

1."/0"1.""

""")*+"$!"""""""""

-."/0"1.""

!
"
#
$%
&
#
'(
)*

#
%
+,
$#
'

-.#/%$01+'

234566" 789:8" 3;*9<<"

(c) R2, same instances

!"

!#$"

!#%"

!#&"

!#'"

("

""")*+"(,"""""""""

-."/0"-.""

""")*+"(,"""""""""

1."/0"1.""

""")*+"(,"""""""""

-."/0"1.""

""")*+"$!"""""""""

-."/0"-.""

""")*+"$!"""""""""

1."/0"1.""

""")*+"$!"""""""""

-."/0"1.""

!
"
#
$%
&
#
'(
)*

#
%
+,
$#
'

-.#/%$01+'

234566" 789:8" 3;*9<<"

(d) R2, disjoint instances

!"

!#$"

!#%"

!#&"

!#'"

("

""")*+"(,"""""""""

-."/0"-.""

""")*+"(,"""""""""

1."/0"1.""

""")*+"(,"""""""""

-."/0"1.""

""")*+"$!"""""""""

-."/0"-.""

""")*+"$!"""""""""

1."/0"1.""

""")*+"$!"""""""""

-."/0"1.""

!
"
#
$%
&
#
'(
)*

#
%
+,
$#
'

-.#/%$01+'

234566" 789:8" 3;*9<<"

(e) R3, same instances

!"

!#$"

!#%"

!#&"

!#'"

("

""")*+"(,"""""""""

-."/0"-.""

""")*+"(,"""""""""

1."/0"1.""

""")*+"(,"""""""""

-."/0"1.""

""")*+"$!"""""""""

-."/0"-.""

""")*+"$!"""""""""

1."/0"1.""

""")*+"$!"""""""""

-."/0"1.""

!
"
#
$%
&
#
'(
)*

#
%
+,
$#
'

-.#/%$01+'

234566" 789:8" 3;*9<<"

(f) R3, disjoint instances

Figure 4.10: Results of Experiment 9 for COMA++, Rondo and OpenII: Average
F-measure.

94 CHAPTER 4. APPLICATION OF MATCHBENCH

many-to-many entity types have also been matched to different entity

types.

• Requirement R2, namely that primary key attributes should be matched,

has been mostly satisfied by OpenII, and to a lesser extent by COMA++

(Figure 4.10(c) and (d)), whereas Rondo has failed in this task (we do not

discuss it below):

1. This requirement is partially satisfied by COMA++ when the al-

ternatively fragmented entity types have the same instances and no

changes have been made to attribute names, and thus the similarities

of matches for many-to-many primary key attributes are close. How-

ever, there is a significant drop-off for disjoint instances (which are

more disjoint at the attribute level for keys than for other attributes)

or similar attribute names.

2. OpenII has performed fairly satisfactorily in identifying the many-to-

many primary key attributes in SI case, however, for cases where there

is less evidence (e.g., the DI case) equivalent primary key attributes

are matched to different attributes.

• Requirement 3, namely that appropriate correspondences can be identified

between non-key attributes, has been satisfied quite well by COMA++ and

OpenII, and has also been satisfied by Rondo where the original entity types

have been vertically partitioned (Figure 4.10(e) and (f)):

1. COMA++ has been generally successful at matching non-key attributes

in both scenario sets where the same instances are represented, but

has performed slightly worse in the presence of disjoint instances.

COMA++ has performed particularly well in the vertical partitioning

scenarios (Set 19 VP vs VP and Set 20 VP vs VP in Figure 4.10(e)),

as the non-key attributes only have single corresponding attributes;

but has performed less well in the horizontal partitioning scenarios

(Set 19 HP vs HP and Set 20 HP vs HP in Figure 4.10(e)) where

many-to-many correspondences between non-key attributes should be

identified. This indicates that COMA++ is more suited to identifying

one-to-one correspondences than to many-to-many correspondences.

4.2. EFFECTIVENESS COMPARISON 95

2. Rondo has performed well in matching non-key attributes with a single

corresponding attribute (Set 19 VP vs VP and Set 20 VP vs VP in

Figure 4.10(e) and (f)).

3. OpenII has been competitive with COMA++ in the SI case, but has

performed better in the DI case (Figure 4.10(e) and (f)), as the lack

of a threshold means that OpenII tends to return more matches, some

of which are true positives.

4.2.10 Experiment 10: Identifying many-to-many entity

correspondences in negative scenarios

The results of this experiment are presented in Figure 4.11. The following can be

observed:

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"(")*+"$")*+",")*+"%")*+"-")*+"&")*+".")*+"'"

!
"
#
$%
&
#
'(
)
*+
*,

#
%
-.
$#
/'

01#2%$34-'

/01233" 45675" 08*699"

(a) Expt 10: R1

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"(")*+"$")*+",")*+"%")*+"-")*+"&")*+".")*+"'"

!
"
#
$%
&
#
'(
)
*+
*,

#
%
-.
$#
/'

01#2%$34-'

/01233" 45675" 08*699"

(b) Expt 10: R2

Figure 4.11: Results of Experiment 10 for COMA++, Rondo and OpenII: Aver-
age (1-F-measure).

1. COMA++ and Rondo have performed well in this experiment in that

no many-to-many correspondences were identified for entity types in both

source and target. However, again this also indicates that the two platforms

have been designed for identifying one-to-one correspondences.

2. Although OpenII has not performed well in satisfying requirement R1 in

that several many-to-many entity correspondences have been identified (Fig-

ure 4.11(a)), it has been successful in satisfying requirement R2 (Figure

4.11(b)), namely each attribute in each source entity type should not be

matched to an attribute in each target entity type, and thus few many-to-

many attributes have been identified. Therefore, we conclude that OpenII

96 CHAPTER 4. APPLICATION OF MATCHBENCH

has demonstrated reasonable ability to not identify many-to-many entity

types in the negative scenarios.

4.3 Summary and Conclusions

In this chapter, we presented the results of an application of MatchBench to these

state-of-the-art schema matching systems with a view to identifying whether they

are successful in identifying correspondences between schemas in the presence of

the schematic heterogeneities described by Kim et al. [KS91]. The work pre-

sented here differs from most reported evaluations of schema matching proposals,

which mainly concentrate on the identification of lower-level one-to-one associa-

tions between individual schema elements. In contrast, their ability to combine

these observations to draw higher-level conclusions has not been investigated. We

summarize the lessons learnt from this application of MatchBench as follows:

• The schema matching systems used were designed to associate similar schema

elements, and have been shown to perform rather better at this task than

at diagnosing the schematic heterogeneities of Kim et al. [KS91], which

provide a characterization of the relationships between the schemas that

can be used to support mapping generation [MBPF09]. Schema elements

tend to be matched by the existing approaches when they exhibited enough

similarities, for example, when entity types have the same names or similar

attributes, even though they may represent different real world notions.

• The schema matching systems used were designed for identifying one-to-

one correspondences rather than many-to-many ones, as all three platforms

have shown generally a good performance in Experiments 1, 3, 4, 5 and 6

where only one-to-one correspondences were to be identified, but have failed

in Experiments 7 and 9 where many-to-many correspondences were sought.

• The strategy of selecting candidate matches influences the overall perfor-

mance of the schema matching system used. All three platforms employ the

same basic idea that the best match of an element should always be chosen,

though they have implemented the idea differently. The intuition behind

this idea indicates that entity types (or attributes) are associated because

they are more similar to each other than to other entity types (attributes)

4.3. SUMMARY AND CONCLUSIONS 97

rather than because they are similar enough to be identified as represent-

ing the same real world notion, thus leading to the reporting of significant

numbers of false positives in Experiment 2.

• COMA++ is a flexible schema matching platform, and offers alternative

choices of matchers for different matching tasks. We anticipate that with

more appropriate threshold and delta values, COMA++ would have per-

formed better in experiments provided in MatchBench [SLDR05, LSDR07].

However, evaluating COMA++ with MatchBench brings out the well-known

problem that setting any parameters generally requires access to at least

some training data, and this presents practical challenges in certain appli-

cations. This observation in turn raises the question whether there is an

opportunity to design a schema matching system that is less sensitive to

choice of parameters. We note that, in the context of dataspaces, having

to explore the parameter space of a matching system would be a significant

upfront cost which dataspaces aim to drastically reduce.

• Designed as an interactive tool, OpenII seems unsuitable for scenarios where

a huge number of matching tasks are required, such as MatchBench, where it

is not practical for the user to manually choose matches for every single pair

of schemas. It is also not suitable for scenarios that demand the automatic

generation of matches, as even though we have used matches suggested

by OpenII (i.e., the top matches), the F-measure reported in MatchBench

experiments, e.g., Experiment 1, is rather low. Furthermore, it is hard

to obtain a threshold that helps to remove false positives from the past

experience of OpenII developers.

• Instance-level data makes a strong contribution to the dependability of the

matches, and there is little evidence that sophisticated composite matchers

can compensate for shortcomings in the information provided by the leaves

matcher, namely that when similarity of attributes is weak, equivalent entity

types are hardly to be matched.

Lessons learnt from the application of MatchBench described in this chapter

enable us to move forward with better awareness of the shortcomings of existing

schema matching systems. The question now arise as to whether it is possible to

devise a method for automatically inferring schematic correspondences without

98 CHAPTER 4. APPLICATION OF MATCHBENCH

requiring interactive effort from users, whilst still obtaining results that are less

sensitive to choice of parameters and improving shortcomings of the existing

systems when evidence is inadequate.

Chapter 5

Inferring Schematic

Correspondences

In this chapter, we propose an approach for inferring schematic correspondences

between two schemas using an evolutionary search method, specifically a genetic

algorithm. In contrast to most existing methods (e.g., [DR07, GYS07, MGMR02])

that only identify one-to-one correspondences between two schemas, the approach

presented here is able to identify complex many-to-many correspondences that

indicate the equivalence of sets of entities and of sets of attributes, in addition

to one-to-one correspondences. We start with source and target schemas and the

matches that denote their similarity, e.g., those produced by any of the matching

approaches introduced in Chapter 2, and apply a genetic algorithm to search for a

solution from a space of potential entity-level schematic correspondences between

the two schemas. As required by the genetic algorithm, we design phenotype and

genotype representations of a solution, and devise an objective function based on

the vector space model [SWY75] in order to evaluate different solutions. Given

a solution that represents a set of entity-level schematic correspondences and

has the maximum fitness value assigned by the objective function of the genetic

algorithm, we further identify attribute-level schematic correspondences.

The remainder of this chapter is structured as follows. We compare our ap-

proach with related work in Section 5.1. We present an overview of the approach

in Section 5.2. To introduce the approach for inferring schematic correspondences

at the entity-level, we present the inference framework, i.e., the genetic algorithm,

in Section 5.3, and the representations of entity-level schematic correspondences

in Section 5.4, followed by an objective function that calculates the fitness value

99

100 CHAPTER 5. INFERRING SCHEMATIC CORRESPONDENCES

of the entity-level schematic correspondences in Section 5.5. We illustrate the

method for identifying attribute-level schematic correspondences in Section 5.6.

We conclude the chapter in Section 5.7.

5.1 Related Work

5.1.1 Semantic relationships between data sources

The relationships specified by schematic correspondences aim to capture more

semantics than the matches identified by most of the existing schema match-

ing approaches. Table 5.1 characterizes correspondences that associate schema

elements as simple correspondences and complex correspondences, and divides

each of them into four types: i) 1-to-1 entity-level correspondences, ii) 1-to-1

attribute-level correspondences, iii) n-to-m entity-level correspondences, and iv)

n-to-m attribute-level correspondences, thus resulting in the following eight types:

simple correspondences complex correspondences
1-to-1 entity-level Types1 Typec1
1-to-1 attribute-level Types2 Typec2
n-to-m entity-level Types3 Typec3
n-to-m attribute-level Types4 Typec4

Table 5.1: Comparison of semantic relationships.

• Types1 and Types2, refer to the matches that associate 1-to-1 entities or 1-

to-1 attributes, and identify the relationship of equivalence (e.g., [DR07,

MBR01, MGMR02, KN08, MBDH05, DDH01, BN05].

• Types3, denotes the equivalence relationship between two sets of entities, as

can be identified by Xu et al [XE06].

• Types4, indicates that two sets of attributes are equivalent, and can be gener-

ated by several approaches, such as iMAP [DLD+04], Dai et al. [DKS+08],

Xu et al. [XE06] and Warren et al. [WT06].

• Typec1 and Typec2, offer more semantics than Types1 and Types2 between

1-to-1 entities and 1-to-1 attributes, such as Is-a and Has-a relationships

which can be identified by SeMap [WP08], subsumption and intersection

relationships as presented by N. Rizopoulos [Riz04], and more general and

less general relationships as presented by Giunchiglia et al. [GYS07].

5.1. RELATED WORK 101

• Typec3, not only denotes the equivalence relationship between two sets of

entities, but also specifies the operators (e.g., join) that connect the entities

within each set (e.g., the indirect matches generated by Xu et al. [XE06]).

• Typec4, refers to the equivalence relationship at the attribute-level that

also indicates the association of attributes within a set, e.g., concatena-

tion. Approaches that identify Types4 have also been able to generate Typec4

[DLD+04, DKS+08, XE06, WT06].

The research conducted in this thesis contributes to the identification of com-

plex correspondences, including Typec1 (e.g., Different Names for Same Entities),

Typec2 (e.g., Different Names for Same attributes), Typec3 (i.e., many-to-many en-

tity correspondences) and Typec4 (i.e.., many-to-many attribute correspondences),

as stated in Section 1.1.2.

5.1.2 Methods for inferring complex correspondences

SeMap [WP08] is a system that identifies rich semantic relationships (e.g., Has-a,

Is-a, Associates and Equivalent) between elements of different data models (e.g.,

relational, XML, RDF, HTML), which map to Typec1 and Typec2 in Table 5.1. It

starts from a collection of initial matches that represent the equivalence relation-

ships between elements of two schemas, and are produced by ordinary matchers

introduced by Chapter 2, such as name, type, structure, or instances matchers.

Selecting from the initial matches, SeMap then assigns a match to each element

in both source and target schemas, thus obtaining two sets of candidate matches.

It selects an optimal set from the two sets of candidate matches, based on which

it then applies heuristic rules to infer the rich semantic relationships between

the elements of two schemas as the final results. For example, SeMap infers Is-

a or Has-a relationships of two elements by considering prefix/suffix of element

names (e.g., grad-TA is a TA) and by considering instance subsumption. Both

SeMap and the research presented in this thesis infer complex relationships be-

tween schema elements from matches, but differ in the following ways: i) they

differ on the specific relationship types (SeMap infers Has-a, Is-a, Associates and

Equivalent relationships, and our method infers the Equivalent relationship), and

thus SeMap can be seen as complementary to our method; ii) SeMap only identi-

fies 1-to-1 relationships, whereas our approach can infer both 1-to-1 and n-to-m

relationships, in which identifying the n-to-m relationships has been considered

102 CHAPTER 5. INFERRING SCHEMATIC CORRESPONDENCES

as a difficult problem; iii) SeMap requires various parameters to be set during

the identification, such as weights for combining the results of the matchers or

thresholds for selecting candidate matches (however, the authors never mention

the threshold values, which are actually decisive to the selection of matches, as we

have learnt from using MatchBench to evaluate various matching frameworks in

Chapter 4). By contrast, our method applies a search method to infer schematic

correspondences, and thus does not require context-specific parameters, as will

be discussed in Sections 5.3 to 5.5.

Xu et al. [XE06] propose a semi-automatic approach that infers 1-to-1 and n-

to-m complex relationships between schema elements. Specifically, the approach

is able to infer all types of complex relationships, i.e., Typec1 to Typec4 in Table

5.1. In addition to identifying that two sets of elements are equivalent, Xu et al.

also apply operators over elements in the source (or target) set that specify their

associations further, thus expressing the n-to-m relationships in the form of an

algebra. The operators supported by the method include, the following standard

operators inspired by the relational algebra: Selection, Union , Join, Projection,

and in addition some specific operators, such as Composition and Decomposition.

As we have introduced the specific techniques employed by Xu et al. in Section

2.4, we only compare them with our method here: i) Xu et al. make significant

use of domain specific ontologies, which are not always available in real world

scenarios, and sometimes require an expert to provide specific information, while

our method does not rely on such external resources or human effort; ii) Xu et

al. utilize specific constraints of the employed schema model (i.e., the conceptual

model [Emb97, LEW00]) to infer the element associations in the source (or tar-

get) set, whereas we do not make use of any constraints of the relational model

(e.g., primary and foreign key information) to identify the horizontal or vertical

partitioning, and thus our method can be easily extended to wider contexts where

schema constraints are not available; iii) a single element may be a member of

several complex relationships in the approach presented by Xu et al., thus requir-

ing the user to choose the desired relationships, whilst our method only associates

an element with a single correspondence.

Rizopoulos [Riz04] and Giunchiglia et al. [GYS07] present approaches

for identifying complex 1-to-1 relationships between elements (i.e., Typec1 and

Typec2 in Table 5.1), such as equivalence, subsumption, intersection, incompatibil-

ity, disjointness [Riz04], and equivalence, more general, less general, disjointness

5.1. RELATED WORK 103

[GYS07]. Rizopoulos compares the instance containment of elements to derive

the relationships, while Giunchiglia et al. infer such relationships by determining

the element name containment using WordNet [Mil95], e.g., synonym or hyper-

nym/hyponym (is-a relationship). The work by Rizopoulos and Giunchiglia et

al. are complementary to our approach, and could be used to improve the quality

of the matches used as input by our method.

iMAP [DLD+04], Dai et al. [DKS+08] and Warren et al. [WT06] spe-

cialize in discovering complex n-to-m relationships at the attribute-level using

instance data (i.e., Types4 and Typec4 in Table 5.1). iMAP [DLD+04], as pre-

sented in Section 2.4, detects various complex attribute matches using different

preset formulae that transform instances between the source and target attributes.

Dai et al. [DKS+08] contribute to the identification of n-to-1 attribute matches

where concatenation of the n attributes is equivalent to the single attribute. Their

method can handle the case that the n attributes have disjoint instances with the

single attribute. The approach proposed by Warren et al. [WT06] also identi-

fies n-to-1 matches for string attributes, and meanwhile creates a transformation

formula that concatenates the n attributes whose cardinality is unknown in ad-

vance into the single attribute. Our method contributes more to the inference of

complex relationships at the entity-level, though we implement a simple method

for inferring n-to-m attribute relationships. Thus, iMAP [DLD+04], and meth-

ods proposed by Dai et al. [DKS+08] and Warren et al. [WT06] can be seen as

complementary to our method.

Melnik et al. [MBHR05] implement a simple method for automatically

generating views between tables of two relational schemas for Model Management

2.0 [BM07], as introduced in Section 2.5.2. This method takes as input two

relational schemas and matches, and associates two sets of tables using relational

algebras (e.g., πatt1,att2(table1 ./ table2) = πatt′1,att′2(table
′
1 ./ table

′
2)), which map

to Typec1 in Table 5.1. However, this method makes the strong assumption that

each table has a primary key and that each foreign key-primary key join is lossless,

which may not always hold in real world schemas; our method does not make use

of key information, and thus can be easily extended to real applications where it

could be missing.

104 CHAPTER 5. INFERRING SCHEMATIC CORRESPONDENCES

5.1.3 Identifying correspondences as a search problem

Our method is not the first one that casts the schema matching problem as

an evolutionary search problem. The method proposed by Elmeleegy et al.

[EOE08] also approaches the problem from this angle, but only contributes to

the identification of 1-to-1 attribute-level relationships. The method uses infor-

mation extracted from query logs, such as the occurrence and position of an at-

tribute in query clauses (e.g., select-from-where), to identify 1-to-1 equivalent

attributes. Their method adapts the scoring functions proposed by Madhavan et

al. [MBDH05] to calculate the similarity of attributes from the query logs, and

employs a genetic algorithm to select a set of 1-to-1 attribute matches that have

the highest similarity. We apply the same approach as Elmeleegy et al., i.e., a

genetic algorithm, to infer schematic correspondences, but have designed novel

scoring functions to achieve our target: inferring equivalent 1-to-1 and n-to-m

entities and discovering the particular kinds of associations of entities, i.e., hori-

zontal or vertical partitioning, which, to the best of our knowledge, has not been

done before. In addition, it has been recognized that suitable usage data, such

as the query logs employed by Elmeleegy et al., is hard to obtain [BBR11]. By

contrast, our method is able to make use of information that tends to be more

readily available, such as schemas, instances and data types.

5.1.4 Identifying matches without applying parameters

Hong et al. [HHB10] propose a method for identifying 1-to-1 attribute matches

between source and target query interfaces supported by Web databases. Given a

particular application domain (e.g., flight booking), the two query interfaces usu-

ally represent similar information but are represented differently. The approach

proposed by Hong et al. implements three individual matchers to identify seman-

tic similarity, namely edit distance and Jaro distance of attribute names, and a

matcher to identify the data type similarity of attributes. The approach is able

to combine evidence produced by different matchers using Dempster-Shafer the-

ory (for reasoning with uncertain, imprecise and incomplete information [Sha76]),

which does not require any weight parameters. Based on the combined similar-

ities of all possible pairwise attributes, the approach selects the top k candidate

matches for each source attribute, which are further chosen into the result 1-to-1

attribute matches between the two query interfaces. Our method is similar to the

5.2. OVERVIEW OF THE APPROACH 105

one proposed by Hong et al. in that both methods consider matches produced

by various matchers as sources of evidence and try to identify correspondences

without using parameters. However, they are different in that: i) our method fo-

cuses on inferring schematic correspondences at both entity and attribute-levels,

and thus deals with a more difficult problem than the approach proposed by

Hong et al. that only identifies 1-to-1 attribute matches; and ii) as we are fac-

ing a more complicated challenge, we chose to utilize matches produced by the

existing schema matching approaches rather than implementing these matchers

again, and we also used a simpler method to combine various sources of evidence

than the approach proposed by Hong et al., whereas the latter has contributed

significantly in terms of the technique for combining evidence, which can be used

to improve the input of our method.

5.2 Overview of the Approach

As motivated in Chapter 1, the aim of the work presented in this thesis is to

develop a method for automatically inferring schematic correspondences between

two schemas in order to bootstrap dataspace management systems. To achieve

this aim, the following four requirements have to be fulfilled by the designed

method:

1. as we aim to infer the correspondences as automatically as possible and re-

quire as little user involvement as possible, it should not return a collection

of candidate schematic correspondences for an element and ask the user

to choose a desired one, and as such schematic correspondences should be

disjoint, i.e., an element participates in at most a single schematic corre-

spondence;

2. it should not require the user to set context-specific parameter values (e.g.,

thresholds to select correspondences) before executing the function, because

setting such parameters usually needs training data, which is hard to obtain

by the user;

3. it should not assume that external resources (e.g., domain specific ontolo-

gies) are available; and

4. it should not assume that schemas contain referential constraints, as they

may be missing in real world applications, e.g., web tables [CHW+08].

106 CHAPTER 5. INFERRING SCHEMATIC CORRESPONDENCES

Significant work has been done on schema matching approaches (e.g., [DR07,

MGMR02, MBDH05, DMDH02, DDH01, EM07]), and thus we decided to use

their representation of the similarity of schema elements (e.g., name or instance

similarity) along with the two schemas as input to the approach we present here.

Furthermore, we do not require any additional information, such as external re-

sources or referential constraints, for the inference of schematic correspondences.

Specifically, our method takes as input a pair of schemas and matches between

them that are identified by existing schema matching systems (e.g., COMA++

[DR07]), and produces schematic correspondences between the input schemas. To

illustrate our method, let us reuse the relational databases RDB1 and RDB2 in

Section 1.1.2 as a running example, where primary and foreign keys are removed

to fit in with our assumption, as presented in Example 1.

Example 1 Relational databases.

RDB1:

home cust (id, name, birth, a id, p city, p area, p local)

overseas cust (id, name, birth, a id, p city, p area, p local)

account (id, name, balance, tax)

RDB2:

customer (key, c fname, c lname, c birth, account key)

cust phone (key, city, area, local, extension)

cust account (key, account name, account balance)

Figure 5.1 is an example that visually describes the input and output of our

method, where Figure 5.1(a) presents an example for the input matches between

RDB1 and RDB2, and Figure 5.1(b) describes the resulting schematic correspon-

dences.

home_cust

overseas_cust

account

customer

cust_phone

cust_account

id

name

balance

tax

key

account_name

account_balance

HP:VP

DNSA

DNSA

DNSE

DNSA

missing attribute

RDB1 RDB2

home_cust
 id
 name
 ...
overseas_cust
 id
 ...
account
 id
 name
 balance
 tax

customer
 key
 c_fname
 c_lname

cust_phone
 key
 ...
cust_account
 key
 account_name
 account_balance

RDB1 RDB2

0.7

0.98

0.98

0.6
0.6

...

0.81

0.93
0.89

0.9

(a) Input schemas and matches (b) Output schematic correspondences

Figure 5.1: Examples for input and output of our method.

5.2. OVERVIEW OF THE APPROACH 107

Our method for inferring schematic correspondences consists of three steps, as

described in Figure 5.2. The method takes as input a pair of schemas, e.g., RDB1

and RDB2 above, and matches identified by existing schema matching systems,

e.g., COMA++ [DR07]. It then goes through three steps, as presented in detail

in Algorithm 1, and produces schematic correspondences between the two input

schemas as the output.

Step 1: An evolutionary search method for inferring a set of ELRs

Input: Schemas S and T + Matches between S and T

Step 2: Specifying a set of ALRs for each ELR

Step 3: Expressing ELRs and ALRs as schematic correspondences

 Output: Schematic correspondences between schemas S and T

A set of ELRs

A set of ALRs

Figure 5.2: Overview of the approach.

In the first step (Line 1 in Algorithm 1), we obtain a set of disjoint entity-

level relationships (ELRs) between RDB1 and RDB2, e.g., ELR1 and ELR2 in

Example 2. An ELR associates a pair of entity sets. ELR2 represents a pair of

1-to-1 entities and indicates that they are equivalent, thus representing the same

real world concept. ELR1 associates n-to-m entities, which not only denotes the

equivalence relationship between its associated sets of entities but also carries

information about the nature of the entity association in each set. In particular,

home cust and overseas cust are horizontally partitioned (HP), and customer and

cust phone are vertically partitioned (VP). Disjointness of the two ELRs means

that each source or target entity only participates in a single schematic corre-

spondence as mentioned previously1.

Example 2 Disjoint entity-level relationships between RDB1 and RDB2.

ELR1 = ({home cust, overseas cust}, {customer, cust phone}), HP vs VP

ELR2 = ({account}, {cust account})
1For the remainder of this thesis, whenever we mention a set of ELRs, we usually refer to a

set of disjoint ELRs between source and target schemas, unless stated otherwise.

108 CHAPTER 5. INFERRING SCHEMATIC CORRESPONDENCES

Algorithm 1 Inference(Schema S, Schema T , sets of matches {M1, ..., Mη})
1: identify a set of disjoint entity-level relationships {ELR1, ELR2, ..., ELRn};
2: for each ELRi ∈ {ELR1, ELR2, ..., ELRn} do
3: identify a set of disjoint attribute-level relationships {ALR1, ALR2, ..., ALRm};
4: express {ELR1, ELR2, ..., ELRn} and {ALR1, ALR2, ..., ALRm, ...} as schematic

correspondences.

In the second step (Lines 2 and 3 in Algorithm 1), we identify a set of

disjoint attribute-level relationships (ALRs) for each ELR identified in the first

step. For ELR2 in Example 2, we identify a set of disjoint ALRs as presented in

Example 3. Similar to an ELR, each ALR represents an equivalence relationship

of its associated attribute sets.

Example 3 Disjoint attribute-level relationships for ELR2.

ALR1 = ({account.id}, {cust account.key}),
ALR2 = ({account.name}, {cust account.account name})
ALR3 = ({account.balance}, {cust account.account balance})

In the last step (Line 4 in Algorithm 1), we express the identified ELRs

and ALRs as schematic correspondences as described in Section 1.1.2. Schematic

correspondences transformed from ELR1 and ELR2 (Example 2) and from ALR1

to ALR3 (Example 3) are presented in Example 4.

Example 4 Example schematic correspondences between RDB1 and RDB2.

{home cust, overseas cust} and {customer, cust phone} are HP vs VP;

account and cust account are Different Names for the Same Entities (DNSE);

account.tax is a missing attribute of cust account;

account.id and cust account.key are Different Names for the Same Attributes (DNSA);

account.name and cust account.account name are DNSA;

account.balance and cust account.account balance are DNSA.

We cast the first step in Algorithm 1, i.e., the problem of inferring ELRs,

as a search and optimization problem, where the search refers to the process of

exploring the space of potential sets of ELRs and the optimization indicates that

search seeks to maximize on the value of an objective function. In our context,

we aim to identify a set of ELRs that associate 1-to-1 or n-to-m entities (a search

problem), and such that each ELR that represents an equivalence relationship

has as high a similarity score as possible (an optimization problem). We call such

5.2. OVERVIEW OF THE APPROACH 109

a set of ELRs a solution. Casting the problem as a search and optimization

problem allows different solutions to compete with each other, and thus there

is no need to apply context-specific heuristic rules (Requirement 2 above), e.g.,

thresholds.

As the search space of all possible solutions between source and target schemas

is very large, an exhaustive search may be very time consuming and expensive,

and, therefore, infeasible. Other search approaches, e.g., hill climbing, local search

and simulated annealing, explore the search space based on a single solution, and

the quality of the initial solution influences the quality of the returned solution

significantly. In the context of inferring ELRs, no preferred solution can be used

as the initial solution, and thus searching for an optimal solution using those

approaches may be time consuming. The evolutionary algorithm is a population-

based search method that relies on a collection of solutions rather than a single

solution for future exploration, thus using much less time to complete the task

than other search methods [MF04]. It also visits the space more efficiently, by

not only exploring neighborhoods of a single solution (using a mutation operator)

but also by examining the neighborhoods of pairwise solutions (using a crossover

operator), and thus the quality of the initial solutions is not decisive in terms

of finding the best result. Furthermore, this algorithm adopts the survival-of-

the-fittest insight from evolution theory and only passes the best solutions down

to the next generation, which in turn are used to generate new solutions, thus

helping to reach an optimal solution faster than other search methods. For these

reasons, we decided to employ an evolutionary algorithm, specifically a genetic

algorithm [ES03], to search for a particular set of ELRs.

In the following sections, we present the techniques required for the first step

(the identification of a set of ELRs), including the search framework employed by

the genetic algorithm, the representations of ELRs and the objective function that

models our requirement for identifying ELRs, in Sections 5.3 to 5.5, respectively.

We describe the method used in the second step for identifying ALRs in Section

5.6. As transforming ELRs and ALRs into schematic correspondences is a fairly

easy step (also see Example 4), we do not discuss it here.

110 CHAPTER 5. INFERRING SCHEMATIC CORRESPONDENCES

5.3 A Framework for Searching Entity-Level Re-

lationships

Before moving on to describe the search framework used by the genetic algorithm,

we first introduce some terms defined by Eiben et al. [ES03] that are necessary

to understand the framework. In the context of this thesis, a solution represents

a set of disjoint ELRs between source and target schemas. Usually, a solution

has phenotype and genotype representations that represent the solution in the real

world context and in the problem-solving space, respectively. In particular, we

design the phenotype representation and adopt a binary string as the genotype

representation for a set of ELRs, as illustrated in Section 5.4. A generation

forms the basic unit of the genetic algorithm and holds a set of solutions, known

as a population. The population size represents the number of solutions in a

population (or generation), and is fixed to a chosen size during the whole search

process. We set the population size as 30, as empirical studies have shown that,

for binary genotype representations, population sizes as small as 30 are quite ad-

equate in many cases [SCED89, Gre86]. A parent is a solution in a population

that has been chosen to go through mutation and crossover operators to repro-

duce new solutions. Offspring are the newly generated solutions resulting from

mutation and crossover. The objective function usually models the require-

ments of the proposed search problem and assigns a fitness value to a solution to

indicate its relative quality among all solutions with respect to the requirements.

Population size, as well as other parameters mentioned in this section, are

a part of the evolutionary search. In principle, we follow the literature on the

genetic algorithm to configure the parameters, whose settings do not change in

different contexts, and therefore, are not context-specific.

Algorithm 2 Genetic Algorithm
1: initialize a population with random solutions;
2: evaluate each solution in the population by the objective function;
3: repeat
4: select parents;
5: reproduce offspring by applying mutation and crossover operators on the parents;
6: evaluate offspring by the objective function;
7: select survivors as the next generation;
8: until termination condition is satisfied

As described in Algorithm 2 [ES03], a genetic algorithm usually begins with

5.3. A FRAMEWORK FOR SEARCHING ENTITY-LEVEL RELATIONSHIPS111

an initial population composed of a set of randomly generated solutions, each of

which is assigned a fitness value using the objective function (defined in Section

5.5). This is followed by an iteration of the search process (as stated in Lines

4 to 7 in Algorithm 2) until a termination condition is satisfied. In the case of

our problem of inferring schematic correspondences from matches, there is not a

known optimal fitness level to terminate the algorithm, i.e., a fitness value that

we anticipate an optimal solution to have or exceed. In such a case, Eiben et

al. [ES03] suggest applying an upper limit of, such as some elapsed CPU time

or some total number of fitness evaluations, to the search process to guarantee

it eventually stops at some point. We choose the termination condition as the

parameter iterations, which specifies the number of times the search process

should be repeated, as it is the simplest parameter to control. In particular, the

following steps are completed at each search iteration. We usually manipulate

solutions in their phenotype representations to each of the steps, unless stated

otherwise.

• Selecting parents selects from the current generation those that should

be used as parents for the next generation with the aim of improving the

quality of subsequent generations over time [ES03]. Roulette-wheel selection

is applied in this step, as using this technique solutions whose fitness values

are comparatively high in the generation have a higher chance of being

chosen, and thus serve as the parents solutions to reproduce offspring via

mutation and crossover operators. It maps the fitness value fi of each

solution i in the current generation (µ solutions in total) to a probability

value Psel(i) = fi/
∑µ

j=1 fj. For the 1 to µ solutions, it then calculates a

list of values [a1, ..., aµ] where ai =
∑i

j=1 Psel(j). Roulette-wheel selection

picks a random float value r from [0, 1], and sequentially scans solutions 1

to µ until it finds a solution j whose corresponding value aj > r.

• Mutation is a unary variation operator that manipulates a single parent

genotype (a binary string) and is used to improve the diversity of a pop-

ulation [BR03]. It randomly generates a number in the range of [0, 1] for

each bit in the genotype, and compares it with the value of a parameter

mutation rate pm in order to decide whether this particular bit should be

changed (inverted in our case from 0 to 1 or from 1 to 0). If the random

number generated for a bit is smaller than pm, its corresponding binary

112 CHAPTER 5. INFERRING SCHEMATIC CORRESPONDENCES

value in the genotype is inverted [ES03]. We choose to set pm = 1/n (n

is the length of the genotype), because it produces good results for a wide

variety of test functions as suggested in [MSV93].

1 0 0 1 0 1 1 1 → 1 1 0 1 0 1 1 1

• Crossover is a binary variation operator that merges information from two

parent genotypes into two offspring genotypes [ES03], and explicitly tries

to combine “good” parts of the two parent solutions [BR03]. We apply the

simplest one-point crossover, namely one that chooses a random number x

in the range of [0, n − 1] (n is the length of the genotype), splits the two

parents at the xth bit, and exchanges the tails of the two parents starting

from the xth bit.

1 0 0 1 0 1 1 1 1 0 0 0 0 1 0 1
x=2→

1 1 0 0 0 1 0 1 1 1 0 1 0 1 1 1

Crossover is usually applied probabilistically according to the crossover rate

pc. It chooses a random number between 0 and 1, and if the number is

smaller than pc, the operator is applied on the parents to reproduce the

offspring; otherwise the parents are copied into the offspring. Given a small

population (with 20 - 40 solutions), good performance is associated with a

high crossover rate pc ≈ 0.9 [SCED89, Gre86].

• Selecting survivors determines the next generation by choosing µ sur-

vivors (µ is the population size and is set to 30) that have the highest

fitness values from µ parent solutions in the last generation and λ offspring

that is produced from the µ parent solutions using mutation and crossover

operators, where µ represents the population size. It is sometimes suggested

that λ should be set to µ [ES03].

5.4 Representations of Entity-Level Relationships

Before introducing the representations of a solution (i.e., a set of ELRs), we define

schemas (Definition 1) and matches (Definition 2) as follows.

5.4. REPRESENTATIONS OF ENTITY-LEVEL RELATIONSHIPS 113

Definition 1 Schema. A schema S is composed of a set of entities (e.g.,

tables) {S1, S2, ..., Sµ}, where each Si (i = 1, ..., µ) contains a set of attributes

{Si.A1, Si.A2, ..., Si.Aα}. A construct is either an entity or an attribute in a

schema S.

Definition 2 Match. A basic match m between schemas S and T is a triple

〈s, t, δ〉 where s is a construct in S, t is a construct in T (note that, a match only

associates either two entities or two attributes here), and δ is a float value in

the range of [0, 1] that indicates the similarity of s and t (0: completely different;

1: exactly the same). A set of basic matches Mk = {mk
1,m

k
2, ...,m

k
γ} associates

each two constructs from S and T , e.g., mk
i = 〈ski , tki , δki 〉 (i = 1, ..., γ), which

are identified by the kth matcher. In particular, γ = es × et + as × at, where

es and et represent the numbers of entities in S and T , respectively, and as and

at represent the total numbers of attributes in S and T , respectively. Assuming

there are η matchers, we have η sets of matches M1,M2, ...,Mη, from which we

derive a new set of matches M = {m1,m2, ...,mγ}, where mi = 〈si, ti,∆i〉
(i = 1, ..., γ) is a derived match, in which ∆i =

∑η
k=1 δ

k
i is a float value in the

range of [0, η].

As we are dealing with a more complicated problem, i.e., inferring schematic

correspondences, we decided to pay as little attention to the input matches as

possible. We do not wish to use weights to combine basic matches produced by

different matchers, and thus we simply choose to sum up their similarity scores,

as described in Definition 2. However, we anticipate that an effective method

for combining evidence without using weights, such as the method proposed by

Hong et al. [HHB10], would be helpful to improve the quality of match evidence

used in this chapter (i.e., Definition 2). In the following discussion, we use the

term match to refer to the derived match. And the derived matches are used

as the input of the evolutionary search algorithm, together with schemas S and

T .

In an evolutionary algorithm (EA), the same solution may be represented

differently by its phenotype and genotype, which map to the solution in the real

world context and in the problem-solving space (i.e., EA space), respectively

[MF04]. Usually, the phenotype representation of a solution is problem-specific

and is necessary for designing an EA, while the genotype representation is the

encoding of the phenotype representation within the EA and is optional for the

114 CHAPTER 5. INFERRING SCHEMATIC CORRESPONDENCES

design. Options for the genotype representation are binary representations, in-

teger representations, permutation representations, etc. [ES03]. While designing

the EA, we decided to also include the genotype for a solution in addition to

the phenotype, because we can then adopt the canonical mutation and crossover

operators for the genotypes during the search (Section 5.3) rather than designing

the operators for the phenotype representations by ourselves, thereby reducing

the complexity of the algorithm and increasing the trust it can command. Specif-

ically, we employ the simplest genotype representation (i.e., the binary string),

as it is recommended to select the smallest alphabets to represent a chromosome

that permits a natural expression of the problem [Gol89]. We define the phenotype

and genotype representations of a solution in Definitions 3 and 4, respectively.

Definition 3 Phenotype. Given schemas S and T , and matches M, the phe-

notype P of a solution is defined as a set of ELRs {ELR1, ..., ELRn}, where

ELRi = (ESsi , ES
t
i), i = 1, ..., n. ESsi and ESti are source and target en-

tity sets with cardinalities>1, respectively, and satisfy the following conditions:

i) there exists at least either an entity-level match or an attribute-level match

m ∈ M between each entity Sa ∈ ESsi and each entity Sb ∈ ESti ; and ii) for

each ELRi′ = (ESsi′ , ES
t
i′) ∈ P, i′ 6= i, ESsi ∩ ESsi′ = ∅ and ESti ∩ ESti′ = ∅.

Specifically, entity sets ESsi and ESti are associated by ELRi ∈ P, i = 1, ..., n.

Each entity Sj ∈ S (or ∈ T) that satisfies Sj /∈ ∪ni=1ES
s
i (or /∈ ∪ni=1ES

t
i) is called

an unassociated entity of P. home_custoverseas_custaccount customercust_phonecust_account
Figure 5.3: Matches between RDB1 and

RDB2.

Considering Example 1 again, we

present the derived matches between

RDB1 and RDB2 in Figure 5.3, where a

set of matches, irrespective of whether

they are at the entity-level or the

attribute-level, between two entities

is represented by a line. Examples

for phenotypes are presented in Example 5. Given P2, {overseas cust} and

{cust account} are associated by P2; the remaining entities, e.g., home cust and

customer, are unassociated entities of P2.

Example 5 Phenotypes.

P1={({home cust, overseas cust}, {customer, cust phone}), ({account}, {cust account})}
P2={({overseas cust}, {cust account})}

5.4. REPRESENTATIONS OF ENTITY-LEVEL RELATIONSHIPS 115

P3={({home cust}, {cust phone}), ({overseas cust}, {customer})}
P4={({home cust, overseas cust}, {customer, cust phone})}
P5={({home cust}, {customer}), ({overseas cust}, {cust phone}),

({account}, {cust account})}

Definition 4 Genotype. Given schemas S and T , and matchesM, a sequence

of chromosomes is defined as C = 〈c1, c2, ..., cm〉, where ci = (Sa, Tb) is a pair

of source and target entities (i = 1, ...,m), between which there exists at least

either an entity-level match or an attribute-level match m ∈ M. The genotype

of a solution is defined as a sequence of binary values G = 〈x1, x2, ..., xm〉, where

xi ∈ {0, 1} (i = 1, ...,m). In particular, xi = 1 (or 0) represents that the ith pair

of entities in the sequence of chromosomes C, i.e., ci = (Sa, Tb), is (or is not)

associated in the solution.

Following on with our example, we show the sequence of chromosomes in

Example 6, which is fixed throughout the whole search process, and genotype

representations for phenotypes P1 to P5 in Example 7.

Example 6 Chromosome.

C = 〈(home cust, customer), (overseas cust, customer), (home cust, cust phone),

(overseas cust, cust phone), (overseas cust, cust account), (account, cust account)〉

Example 7 Genotypes.

G1 = 〈1, 1, 1, 1, 0, 1〉; G2 = 〈0, 0, 0, 0, 1, 0〉; G3 = 〈0, 1, 1, 0, 0, 0〉;
G4 = 〈1, 1, 1, 1, 0, 0〉; G5 = 〈1, 0, 0, 1, 0, 1〉.

Encoding refers to the process that transforms the phenotype of a solution into

its genotype representation, and decoding transforms the genotype of the solution

into its corresponding phenotype representation, as defined by Algorithms 3 and

4, respectively.

Example 8 illustrates the process that two solutions in their phenotype rep-

resentations (e.g., P2 and P3 in Example 5) evolve into two new solutions also

in the phenotype representations using the decoding and encoding algorithms

(Algorithms 3 and 4) and the crossover operator (see Section 5.3).

Example 8 Encoding, Crossover and Decoding

P2={({overseas cust}, {cust account})}

116 CHAPTER 5. INFERRING SCHEMATIC CORRESPONDENCES

Algorithm 3 Encoding(Phenotype P , A Sequence of Chromosomes C)
1: construct a sequence of binary values G = 〈x1, ..., xm〉, where xi = 0 (i = 1, ...,m);
2: for each ELRi = (ESsi , ES

t
i) ∈ P do

3: obtain a set of entity pairs E = ESsi × ESti ;
4: for each ε ∈ E do
5: find an entity pair ci ∈ C, and ε = ci;
6: xi ← 1;
7: return G.

Algorithm 4 Decoding(Genotype G, A Sequence of Chromosomes C)
1: C′ ← ∅;
2: for each pair of entities ci = (Sa, Tb) ∈ C do
3: if xi = 1, where xi ∈ G then
4: C′ ← C′ ∪ {ci};
5: Phenotype P ← ∅;
6: while C′ 6= ∅ do
7: get a pair of entities ci = (Sa, Tb) ∈ C′, and remove ci from C′;
8: ELR← (ESs, ESt), where ESs = {Sa} and ESt = {Tb};
9: while there exists a pair of entities cj = (Sx, Ty) ∈ C′, and Sx ∈ ESs or Ty ∈ ESt

do
10: ESs ← ESs ∪ {Sx} and ESt ← ESt ∪ {Ty}, and remove cj from C′;
11: P ← P ∪ {ELR};
12: return P.

P3={({home cust}, {cust phone}), ({overseas cust}, {customer})}

encoding
=⇒
G2 = 〈0, 0, 0, 0, 1, 0〉;
G3 = 〈0, 1, 1, 0, 0, 0〉;

crossover
=⇒

G2 0 0 0 0 1 0 G6 0 0 1 0 0 0
x=1→

G3 0 1 1 0 0 0 G7 0 1 0 0 1 0

G6 = 〈0, 0, 1, 0, 0, 0〉;
G7 = 〈0, 1, 0, 0, 1, 0〉;

decoding
=⇒
P6={({home cust}, {cust phone})}

5.5. OBJECTIVE FUNCTION 117

P7={({overseas cust}, {customer, cust account})}

After applying mutation and crossover operators on solutions in genotype

representations, not every newly generated solution (also in the genotype rep-

resentation) can be decoded into a feasible phenotype representation, as they

may not satisfy the conditions required in Definition 3. The part of the search

space that is composed of such genotypes is usually called the infeasible space

[ES03]. For example, genotype G8 = 〈0, 0, 0, 1, 1, 1〉 cannot be decoded into a

feasible phenotype solution, as there is no match between entities account and

cust phone, and as such {({overseas cust, account}, {cust phone, cust account})}
is not a feasible phenotype. Thus, we usually continue search for neighbours of

the genotype whose decoded phenotype is not feasible until we find a genotype

that can be decoded into a feasible phenotype.

5.5 Objective Function

As required by a genetic algorithm, the objective function models requirements

of the problem to be solved and is responsible for calculating the fitness value

of a solution representing its relative quality among the search space. A solu-

tion assigned the greatest fitness value during the search process is considered

as an optimal solution and is returned. In principle, we expect the objective

function that calculates the fitness value of a set of ELRs to model the following

requirements:

1. It should assign a reasonable similarity to a single ELR. We propose this

requirement because attributes of different entities (e.g., overseas cust.name

in RDB1 and cust account.account name in RDB2) are matched frequently

due to coincidental overlap between their names or instances, as stated in

Chapter 4. When a phenotype (e.g., P2 in Example 5) associates different

entities (e.g., overseas cust and cust account), the similarity of the entities

would be incorrectly increased due to the coincidental overlap between their

attributes. Sometimes it is difficult to differentiate between the similarity

of two equivalent (sets of) entities and the similarity of two different (sets

of) entities that coincidentally have overlapping information. Therefore, we

expect that the objective function could assign distinguishable similarities

between equivalent entities and different entities.

118 CHAPTER 5. INFERRING SCHEMATIC CORRESPONDENCES

2. The similarity of a single ELR associating equivalent n-to-m entities should

be higher than the similarity of another ELR associating its subset entities,

e.g., (n-1)-to-m entities. In Example 5, the ELR in P1 that associates

{home cust, overseas cust} and {customer, cust phone} should have higher

similarity than the ELR in P3 that associates home cust and cust phone.

3. Given a single ELR that associates n-to-m entities, the objective function

should be able to establish the partitioning of each entity set, in addition to

the similarity of the ELR. For example, the objective function should iden-

tify that {home cust, overseas cust} and {customer, cust phone} associated

by phenotype P1 are horizontally and vertically partitioned, respectively.

4. Without using an absolute threshold to select ELRs and without knowing

the number of ELRs to be returned, the objective function should assign the

top fitness value to a solution (i.e., the returned solution) that contains as

many ELRs whose similarities are relatively high as possible. For example,

we assume that ELR1 and ELR2 in Example 2 have higher similarities

than any other possible ELRs. Given phenotypes P1 = {ELR1, ELR2} and

P4 = {ELR1} in Example 5, P1 consists of two ELRs whose similarities are

relatively high, but P4 is only composed of one of them. Thus, the objective

function should assign a higher fitness value to P1 than to P4.

Given a solution (i.e., a set of ELRs), we first use the intuition behind the

vector space model [SWY75] to calculate the similarity of each ELR, and then

aggregate these similarities as the fitness value of the solution. In the remainder

of this section, we first introduce the vector space model in Section 5.5.1, fol-

lowed by an overview of the objective function in Section 5.5.2. We then present

the technique for calculating ELR similarity in Sections 5.5.3 to 5.5.6 and the

aggregation function in Section 5.5.7.

5.5.1 Background: vector space model

In traditional information retrieval [BYRN99], each document is described by a

set of distinct words known as index terms. Words, such as articles and prepo-

sitions, that do not convey real world meaning are removed from the document.

Each index term represents a word (probably occurring many times) in the docu-

ment. For example, in a document that discusses the iPad, all occurrences of iPad

5.5. OBJECTIVE FUNCTION 119

are represented as a single index term. Similarly, a query posed over documents

is also represented by index terms.

Generally speaking, the vector space model [SWY75] considers both docu-

ments and queries as vectors and calculates the vector similarity of the query

and each document, as presented in Algorithm 5. An information retrieval system

then ranks documents based on their similarities with the query and returns the

top documents. To calculate the similarity of an ELR, we only need to appeal

to the intuition behind the method for representing documents and the query as

vectors and the method for calculating similarity of the query and each document.

The process for ranking documents is not of interest to us here because of the

evolutionary search approach we have adopted.

Algorithm 5 Vector Space Model (Documents d1, ..., dn, Query q)

1: obtain a set of index terms K = {k1, ..., kt} that cover meaningful words in docu-
ments d1, ..., dn and in the query q;

2: represent the query q as a vector ~q = (w1q, w2q, ..., wtq), where,
3: wiq > 0 (i = 1, ..., t) indicates that term ki ∈ K appears in query ~q;
4: wiq = 0 (i = 1, ..., t) indicates that term ki ∈ K does not appear in query ~q;
5: for each document dj (j=1,...,n) do

6: represent dj as a vector ~dj = (w1j , w2j , ..., wtj);

7: calculate the vector similarity of ~q and ~dj .

The first step in an information retrieval system is to collect a vocabulary of

distinct words (Line 1 in Algorithm 5) known as index terms. The index terms

are then used to describe the query q as vector ~q (Lines 2 to 4 in Algorithm

5) and each document dj as vector ~dj (Line 6 in Algorithm 5). In particular,

the weight wij, best known as term frequency-inverse document frequency, of the

index term ki ∈ K that appears in the document dj can be calculated as tf × idf ,

with tf = ti
T

and idf = logN
ni

, where,

• ti refers to the number of times term ki appears in document ~dj;

• T denotes the total number of terms in ~dj;

• N represents the total number of documents used to build the vocabulary;

and

• ni is the number of documents in which term ki appears.

The intuition behind tf × idf is that the more frequently term ki appears

in document ~dj, the more likely it is that it contributes to characterizing the

120 CHAPTER 5. INFERRING SCHEMATIC CORRESPONDENCES

meaning of the document, and thus tf is assigned a higher value; whilst the more

often term ki appears in different documents, the lesser its ability to distinguish

document ~dj from other documents is, and as such idf has a lower value. The

weight of an index term in a vector indicates the importance of the term to

describing the vector.

One of the methods for quantifying the similarity of each document dj and

the query q is to calculate the cosine of the angle between vectors ~dj and ~q, as

presented in Function 5.1.

sim(~dj, ~q) =

∑t
i=1wij × wiq√∑

t
i=1(wij)

2 ×
√∑

t
i=1(wiq)

2
(5.1)

Although a large number of alternative methods can be used for calculating

the similarity of a document and a query, the vector space model is known for its

simplicity and good performance. The vector space model is either superior to or

almost as good as the known alternatives [SWY75]. Assuming there is a query

q, one of whose words (e.g., ki) also appears in the document dj, the weights wij

and wiq of the word ki in both ~dj and ~q would be greater than 0. A higher weight

wij would derive a higher similarity of ~dj and ~q, which reflects that when a term

is more unique to a document, its term weight in the document is higher, and

therefore, when a query contains such a term, the document is the more relevant

to the query. We use this intuition in calculating ELR similarities in the next

sections.

5.5.2 Overview of the objective function

Following the intuition behind the vector space model, the objective function uses

the following steps to calculate the fitness value for a phenotype, as presented in

Algorithm 6:

• The first step (Lines 1 and 2) is to construct a vocabulary of index terms

for source and target schemas S and T , respectively. In the context of

inferring schematic correspondences, we consider each entity construct as a

single index term. We also consider a set of attribute constructs belonging to

different entities in a schema but representing the same notion as a single

index term. For example, in RDB1 (Example 1), we consider the set of

attribute constructs home cust.name, overseas cust.name and account.name

as a single index term. The details are described in Section 5.5.3.

5.5. OBJECTIVE FUNCTION 121

Algorithm 6 Objective Function(Source Schema S, Target Schema T , Phe-
notype P = {ELR1, ..., ELRn})
1: construct a set of index terms Ks for S;
2: construct a set of index terms Kt for T ;
3: for each ELRi = (ESsi , ES

t
i) ∈ P do

4: represent the entity set ESsi as a source vector ~V s
i ;

5: represent the entity set ESti as a target vector ~V t
i ;

6: for each source entity Sj that is not associated by P (i.e., Sj /∈ ∪ni=1ES
s
i) do

7: represent the entity Sj as a source vector ~V s
j

8: for each target entity Tj that is not associated by P (i.e., Tj /∈ ∪ni=1ES
t
i) do

9: represent the entity Tj as a target vector ~V t
j

10: for each ELRi = (ESsi , ES
t
i) ∈ P do

11: derive weights for index terms in vector ~V s
i using Ks and all vectors in S;

12: derive weights for index terms in vector ~V t
i using Kt and all vectors in T ;

13: calculate the similarity simi of vectors ~V s
i and ~V t

i using a cosine function;
14: given sim1,...,simn, calculate the overall fitness value f for phenotype P;
15: return f .

• Given a phenotype P , the second step (Lines 3 to 9) represents the source

and target schemas S and T as two vector spaces, where each associated

entity set of P and each unassociated entity of P are represented as vectors.

Each associated entity set of P with cardinality>1 is further represented as

horizontal and vertical vectors, respectively, aiming to establish its parti-

tioning (i.e., Requirement 3). This step is presented in Section 5.5.4.

• The third step (Lines 11 to 12) utilizes the tf × idf function to calculate

term weights of vectors. In information retrieval, a term weight captures

information about the frequency of appearance of a term in its vector using

the tf part, and the more frequently it appears the higher of the tf part

would be; it also captures the appearance of a term in other vectors using

the idf part, where a higher frequency leads to a lower idf part.

Here, if a construct is more unique to its entity, the construct is more

likely to describe the entity. Thus, if a unique construct in schema S (e.g.,

account.balance in RDB1) is matched to a construct in schema T (e.g.,

cust account.account balance in RDB2), we put a higher weight on their

similarity, thus giving rise to a higher similarity score of their entities (e.g.,

account and cust account). In contrast, if a construct (e.g., attribute name)

appears in several entities (e.g., home cust, overseas cust and account in

RDB1), its ability to distinguish these entities is low, and as such a lower

122 CHAPTER 5. INFERRING SCHEMATIC CORRESPONDENCES

weight should be assigned to its similarity with a construct in the other

schema (e.g., cust account.account name in RDB2). If an ELR associates

different entities (e.g., overseas cust and cust account) that coincidentally

have similar attributes, the similarity of the ELR should be low. This

intuition helps to achieve Requirements 1 and 2, as presented in Section

5.5.5.

• The fourth step (Line 13) adopts Function 5.1 to calculate the similarity

score of an ELR in the phenotype P by calculating the cosine of the angle

between two vectors that represent the two associated entity sets of the ELR.

Given an n-to-m ELR, each of its entity set is represented as horizontal and

vertical vectors, respectively. Thus, this step computes four similarities

between source horizontal and target horizontal vectors, source horizontal

and target vertical vectors, source vertical and target horizontal vectors,

and source vertical and target vertical vectors. The pair of partitioning

types whose corresponding vector similarity is the maximum among the

four similarities is identified as the ELR’s partitioning type. The detail is

described in Section 5.5.6.

• The fifth step (Line 14) presents a function that aggregates the ELR simi-

larities into the fitness value of the phenotype. As stated in Requirement 4

in the preamble of Section 5.5, the top phenotype should contain as many

ELRs that have relatively high similarities as possible, as presented in Sec-

tion 5.5.7.

5.5.3 Identification of equivalent attributes

In this section, we illustrate the first step in Algorithm 6, where we build index

terms for schemas S and T , respectively. It maps to the process of constructing

index terms from a space of documents in traditional information retrieval.

An index term can be an entity, an attribute or a set of attributes. In par-

ticular, when we consider a set of attributes as a single index term, it is usually

the case that the set of attributes in different entities are equivalent. Note that

we only count attributes belonging to distinct entities in a schema as equivalent

attributes, as those attributes appearing in the same entity often represent dif-

ferent features of the entity. For example, in RDB1, we consider home cust.name,

overseas cust.name and account.name as being the same.

5.5. OBJECTIVE FUNCTION 123

We utilize a set of derived matches M between schemas S and T (defined in

Section 5.4) to structure equivalent attributes into sets L1,L2, ...,LX in S (we

repeat the same process for T), where X varies given different schemas and is

unknown before the identification process. This is because we require that source

attributes represented as a term are not only similar to each other but also simi-

lar to a term in the target schema, and vice versa, because our overall aim is to

use equivalent source and target terms to identify the similarity of two schemas.

Furthermore, there may not be enough evidence to support the identification of

equivalent attributes in a schema by matching the schema against itself. For ex-

ample, equivalent attributes in distinct entities of a schema that are horizontally

partitioned usually have disjoint instances, and thus the evidence for identify-

ing them as being the same is weak. However, each of the same, e.g., source,

attributes may have overlapping instances with a, e.g., target, attribute, which

may provide more evidence to support us in identifying the source attributes as

being the same.

Assuming S has entities S1, S2, ..., Sµ, we denote the set of all their attributes

as L. We require that L1 ∪ L2 ∪ ... ∪ LX = L, and L1 ∩ L2 ∩ ... ∩ LX = ∅. The

cardinality of Li (i = 1, ..., X) belongs to [1, µ], which means that Li contains at

least an attribute that is different from any other attributes in L, or at most has

µ equivalent attributes, each of which belongs to a distinct entity.

Assume that sets of equivalent attributes L1,L2, ...,Lj have been identified,

and L′ = L − (L1 ∪ L2 ∪ ... ∪ Lj) 6= ∅. We illustrate the method for identifying

a new set Lj+1 ⊆ L′ in the following text. In the running example, assuming

sets L1 to L4 have been identified for RDB1, we further identify a new set of

equivalent attributes L5 from L′, as shown in Example 9.

Example 9 Equivalent attributes and remaining attributes in RDB1

L1={home cust.id, overseas cust.id}
L2={home cust.name, overseas cust.name, account.name}
L3={home cust.birth, overseas cust.birth}
L4={home cust.a id, overseas cust.a id, account.id}
L′={home cust.p city, home cust.p area, ..., account.balance, account.tax}

The method for identifying a set of equivalent attributes from L′ is presented

in Algorithm 7. Given all attributes L in a schema, this algorithm will be used

iteratively to retrieve all sets of equivalent attributes.

124 CHAPTER 5. INFERRING SCHEMATIC CORRESPONDENCES

Algorithm 7 EquivalentAttributes(Attribute Set L′, Derived Match SetM)

1: A← the first attribute in L′; // to identify equivalent attributes of A.
// Lines 2 to 8: identify sets of attributes that are potentially equivalent to A.

2: identify attributes B1, ..., Bn to which A is associated by matches in M;
3: identify A1, ..., An sets of attributes using M, where Ai = {A,Ai1, ..., Aim} (1 6
i 6 n) satisfies:

4: (i) A ∈ Ai and |Ai| > 1;
5: (ii) Ai ⊆ L′;
6: (iii) all attributes of Ai are associated with the same attribute Bi by matches in

M;
7: (iv) each attribute in Ai belongs to a distinct entity;
8: (v) Aij (1 6 j 6 m) has higher similarity with Bi than other attributes in the

same entity.
// Lines 9 to 11: calculate similarity of each potential set and A.

9: for each pair of (Ai, Bi) (1 6 i 6 n) do
10: Di = {d, di1, ..., dim} ← AttributeSim(Ai, Bi, M);

11: avg(Di)←
∑m

j=1 dij
m ;

// Line 12: select a set whose attributes are more similar to A than other sets.
12: (A, B)← one of (Ai, Bi), 1 6 i 6 n, that has the maximum avg(Di);

// Lines 13 to 19: identify equivalent attributes of A from the selected set.
13: A′ ← A− {A};
14: C′1, ..., C′k ←all combinatorial combinations of A′ with all possible lengths;
15: C0 ← {A}, C1 ← C′1 ∪ {A}, ..., Ck ← C′k ∪ {A}
16: for each of Ci (0 6 i 6 k) do
17: Dci = {d, di1, ..., dim} ← AttributeSim(Ci, B, M);

18: agg(Dci) =
(d+

∑m
j=1 dij)

2

|Dc
i |

;

19: return Cj whose agg(Dcj) is the maximum among agg(Dc1), ..., agg(Dck).

home_cust.p_cityoverseas_cust.p_cityoverseas_cust.p_areaaccount.balance 0.40.3
1.01.0 cust_phone.citycust_account.account_balance1.0
0.30.30.3

Figure 5.4: Matches between attributes of RDB1

and RDB2.

In the running example,

Algorithm 7 takes as input at-

tribute set L′ and the set of de-

rived matches M between at-

tributes in L′ and attributes

in RDB2 (we show a subset

of M in Figure 5.4). We

start with the source attribute

home cust.p city in L′ (Line 1

in Algorithm 7), and find target attributes B1 (cust phone.city) and B2

(cust account.account balance) to which home cust.p city is matched (Line 2 in

Algorithm 7). Based on B1 and B2, two sets of source attributes A1 and A2

that contain potential equivalent attributes as A are identified (Lines 3 to 8 in

5.5. OBJECTIVE FUNCTION 125

Algorithm 7) as:

A1={home cust.p city, overseas cust.p city, account.balance},
A2={home cust.p city, overseas cust.p area, account.balance}.

We apply Algorithm 8 to calculate the similarity of each candidate attribute

set (e.g., A1 and A2) and attribute A (e.g., home cust.p city) (Lines 9 to 11 in

Algorithm 7), thus enabling us to select a set (e.g., A1) whose attributes are

more similar to attribute A than other sets (Line 12 in Algorithm 7). Finally, we

identify a (sub)set of attributes from A1 as equivalent attributes as A (Lines 13

and 19 in Algorithm 7). Specifically, we explain Line 10 (Algorithm 8) and Lines

11 to 19 using the running example in the following text, respectively.

In Algorithm 8, remember that η (Line 1 Algorithm 8) denotes the number

of different matchers we use to produce the input matches. As the maximum

match similarity produced by each individual matcher is 1.0, η is also the maxi-

mum match similarity produced by all matchers we use, which denotes that two

attributes are exactly the same, as defined in Definition 2 in Section 5.4. In the

running example, we assume there is a single matcher used to produce the input

matches, and thus η = 1.0. Using matches in Figure 5.4, for a candidate set,

e.g., A1, we obtain the similarity of A (home cust.p city) and B1 (cust phone.city)

as 1.0 (Line 2 in Algorithm 8), and similarities of other attributes in A1 and B1

(Line 4 in Algorithm 8):

A11 (overseas cust.p city) and B1 (cust phone.city) as 1.0,

A12 (account.balance) and B1 (cust phone.city) as 0.3.

Similarly, we obtain the following similarities for set A2:

A (home cust.p city) and B2 (cust account.account balance) as 0.3,

A21 (overseas cust.p area) and B2 (cust account.account balance) as 0.4,

A22 (account.balance) and B2 (cust account.account balance) as 1.0.

We can only infer similarity dij of attribute Aij ∈ Ai and A ∈ Ai (Lines 5 to

8 in Algorithm 8) in the minimum case. Both attributes A (home cust.p city) and

A11 (overseas cust.p city) are matched to B1 (cust phone.city) with the similarity

of 1.0, and thus A, A11 and B1 are exactly the same d11=1.0. Given that A

and B1 are the same and the similarity of A12 (account.balance) and B1 is 0.3,

similarity d12 of A and A12 is 0.3 for sure (therefore, ∆AB1 + ∆A12B1 − η =

1.0 + 0.3 − 1.0 = 0.3). However, given that A and A21 (overseas cust.p area) are

matched to B2 (cust account.account balance) with 0.3 and 0.4, respectively, A

and A21 in the maximum case may be quite similar with the similarity of 0.9,

126 CHAPTER 5. INFERRING SCHEMATIC CORRESPONDENCES

Algorithm 8 AttributeSim(Attribute Set Ai, Attribute Bi, Derived Match Set
M)
1: η ← the maximum match similarity;
2: ∆ABi ← the derived match similarity of attributes A ∈ Ai and Bi;
3: for each Aij ∈ Ai (1 6 j 6 m) do
4: ∆AijBi ← the derived match similarity of attributes Aij and Bi;
5: if ∆ABi + ∆AijBi − η > 0 then
6: dij ← ∆ABi + ∆AijBi − η;
7: else
8: dij ← 0.0;
9: d← η;

10: Di ← {d, di1, ..., dim} is the set of similarities between attributes in Ai and A;
11: return Di.

but may be completely different in the minimum case. Therefore, we design

dij = ∆ABi
+ ∆AijBi

− η to denote the similarity of A and Aij in the minimum

case. If ∆ABi
+ ∆AijBi

− η < 0, we consider that Aij and A may be completely

different, and as such we set dij = 0.0. d = η refers to the fact that A and A

are the same (Line 9 in Algorithm 8). Thus, we obtain D1 = {1.0, 1.0, 0.3} and

D2 = {1.0, 0.0, 0.3} using Algorithm 8.

We explain the maximum and minimum cases of comparison using a simple

example. Assume A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and B2 = {a, b, c, d, e, f, g, 7, 8, 9},
their string similarity is 0.3. Given A21 = {0, 1, 2, 3, 4, 5, g, 7, 8, 9} (the maximum

case), the similarity of A21 and B2 is 0.4, the similarity of A and A21 is 0.9. Given

A21 = {a, b, c, d, z, y, x, w, v, u} (the minimum case), the similarity of A21 and B2

is also 0.4, but the similarity of A and A21 is 0.0.

Using Lines 11 to 19 in Algorithm 7, we consider attributes in set A1 to

be more similar to A than set A2 (Lines 11 and 12 in Algorithm 7). However,

not all attributes in A1 are the same as A, e.g., account.balance. Therefore, we

need further steps to enumerate potential sets of equivalent attributes as A from

set A1 (Lines 13 to 15 in Algorithm 7), calculate their similarities with A (Line

17 in Algorithm 7), and choose a set whose attributes are mostly similar to A as

the result L5 (Lines 18 to 19 in Algorithm 7). Thus, we obtain C0, ..., C3 and

their corresponding Dc0, ..., Dc3 as:

C0={home cust.p city}, Dc0 = {1.0}
C1={home cust.p city, overseas cust.p city}, Dc1 = {1.0, 1.0}
C2={home cust.p city, account.balance}, Dc2 = {1.0, 0.3}

5.5. OBJECTIVE FUNCTION 127

C3={home cust.p city, overseas cust.p city, account.balance}, Dc3 = {1.0, 1.0, 0.3}

We derive agg(Dc0) = 1.0, agg(Dc1) = 2.0, agg(Dc2) = 0.845 and agg(Dc3) = 1.76

using the aggregation function in Line 18 in Algorithm 7. This aggregation value

is high if similarities in Dci are close to the highest similarity (i.e., η), which means

that attributes in Ci are similar to attribute A. We then obtain attributes in C1
as being the same, and thus L5 = {home cust.p city, overseas cust.p city}. For the

convenience of future explanation, we extend equivalent attributes in Example 9

to a full list of equivalent attributes in RDB1 and in RDB2 in Example 10, where

we omit attribute sets whose cardinality is 1 (attributes that are different from

others) for the sake of simplicity.

Example 10 Equivalent attributes in RDB1 and in RDB2.

In RDB1:

Ls1={home cust.id, overseas cust.id}
Ls2={home cust.name, overseas cust.name, account.name}
Ls3={home cust.birth, overseas cust.birth}
Ls4={home cust.a id, overseas cust.a id, account.id}
Ls5={home cust.p city, overseas cust.p city}
Ls6={home cust.p area, overseas cust.p area}
Ls7={home cust.p local, overseas cust.p local}

In RDB2:

Lt1={customer.key, cust phone.key}
Lt2={customer.account key, cust account.key}

The step of identifying equivalent attributes for the source (or target) schema

allows us to structure source (or target) attributes that represent the same concept

as a term, thus helping us to represent the source (or target) schema as a vector

space, as presented in Section 5.5.4.

5.5.4 Source and target vector spaces

In this section, we discuss the second step of Algorithm 6 presented in Section

5.5.2, where given a phenotype P = {ELR1, ELR2, ..., ELRn}, the source and

target schemas S = {S1, S2, ..., Sµ} and T = {T1, T2, ..., Tυ} are represented as

source and target vector spaces VS and VT, as defined in Definition 5.

128 CHAPTER 5. INFERRING SCHEMATIC CORRESPONDENCES

Definition 5 Vector Space. Given a phenotype P, a schema S is represented

as a vector space V = {~V1, ..., ~VN}, where each vector ~Vi = (w0 ·k0, w1 ·k1, ..., wϕ ·
kϕ) represents either an associated entity set of P or an unassociated entity of P.

Specifically, wj · kj (j = 0, ..., ϕ) represent dimensions in vector ~Vi, where each

kj is a term representing a (set of) construct(s) and wj is the term weight.

Given the phenotype P , we take the source vector space VS representing

schema S as an example. For each ELRi = (ESsi , ES
t
i) ∈ P (i = 1, ..., n) where

ESsi represents an associated entity set, we use a vector to represent ESsi . For the

remaining entities (e.g., Sj) in S, which are the unassociated entities of P (i.e.,

Sj /∈ ∪ni=1ES
s
i), we use separate source vectors to represent each of them (e.g.,

Sj). Thus, every entity in S is represented by or contained in a vector in the

source vector space VS. We present source and target vector spaces constructed

using phenotypes P1 and P2 (Example 5) in Example 11.

Example 11 Vector space.

Using P1, source and target vector spaces VS1 and VT1 are constructed as:

VS1 = {~V s
1 , ~V

s
2 }, where ~V s

1 and ~V s
2 represent the associated entity sets {home cust,

overseas cust} and {account}, respectively;

VT1 = {~V t
1 ,
~V t
2 }, where ~V t

1 and ~V t
2 represent the associated entity sets {customer,

cust phone} and {cust account}, respectively.

Using P2, source and target vector spaces VS2 and VT2 are constructed as:

VS2 = {~V s
1 , ~V

s
2 , ~V

s
3 }, where ~V s

1 represents the associated entity set {overseas cust},
and ~V s

2 and ~V s
3 represent the unassociated entities home cust and account;

VT2 = {~V t
1 ,
~V t
2 ,
~V t
3 }, where ~V t

1 represents the associated entity set {cust account},
and ~V t

2 and ~V t
3 represents the unassociated entities customer and cust phone.

A single vector, as defined in Definition 6, in a vector space represents either an

associated entity set (with cardinality=1) of the phenotype P or an unassociated

entity of P .

Definition 6 Single Vector. An entity Si, containing attributes Si.A1, ..., Si.Aα,

is represented as a single vector ~Vi = (w0 · k0, w1 · k1, ..., wα · kα), where k0 = Si

is the term for the entity construct and kj = Si.Aj (j = 1, ..., α) is a term for

each attribute construct Si.Aj.

5.5. OBJECTIVE FUNCTION 129

Following on with Example 11, using P2, the associated entity set {cust account}
is represented as a single vector ~V t

1 ∈ VT2, and the unassociated entity account

is also represented as a single vector ~V s
3 ∈ VS2, as presented in Example 12.

Example 12 Single vector.
~V s
3 = (w0 · account, w1 · account.id, w2 · account.name, w3 · account.balance,

w4 · account.tax);
~V t
1 = (w0·cust account, w1·cust account.key, w2·cust account.account name,

w3·cust account.account balance).

If a vector represents an associated entity set of the phenotype P whose

cardinality>1, it is further extended into a horizontal vector (Definition 7) and

a vertical vector (Definition 8). This enables the objective function to establish

the partitioning type of the associated entity set.

The basic idea of horizontal partitioning is that an original entity is partitioned

along its instances into new entities, and as such all attributes of the original

entity are present in each of new entities. Given an associated entity set whose

cardinality>1, a horizontal vector models the requirement for identifying the

entity set as being horizontally partitioned, which is that the more attributes are

shared by all the entities in the set, the more likely the entities are horizontally

partitioned. A set of attributes shared by entities are the equivalent attributes of

the entities, as identified in Section 5.5.3. To support the above notion within

the vector space model, the horizontal vector is defined in Definition 7.

Definition 7 Horizontal Vector. A set of entities {S1, ..., S%} is expressed as

a horizontal vector ~V H = (w0·k0, w1·k1, ..., wP ·kP), where k0 = {S1, ..., S%}
is the term representing the set of entity constructs and ki (i = 1, ..., P) are

terms representing attribute constructs. For equivalent attributes of all entities

S1.Ac, ..., S%.Ac, ki is defined as {S1.Ac, ..., S%.Ac}; for equivalent attributes of a

subset of all entities, e.g., S1.Anc and S2.Anc, ki is defined as {S1.Anc, S2.Anc, S3.ψ,

..., S%.ψ}, where Sj.ψ (j = 3, ..., %) represents that the entity Sj does not contain

an equivalent attribute as entities S1 and S2.

Following on with Example 11, ~V s
1 ∈ VS1 and ~V t

1 ∈ VT1 are further repre-

sented as horizontal vectors ~V sH
1 and ~V tH

1 , as presented in Example 13.

Example 13 Horizontal vectors.
~V sH
1 = (wsH0 ·{home cust, overseas cust}, wsH1 ·{home cust.id, overseas cust.id},

130 CHAPTER 5. INFERRING SCHEMATIC CORRESPONDENCES

wsH2 ·{home cust.name, overseas cust.name},
wsH3 ·{home cust.birth, overseas cust.birth},
wsH4 ·{home cust.a id, overseas cust.a id},
wsH5 ·{home cust.p city, overseas cust.p city},
wsH6 ·{home cust.p area, overseas cust.p area},
wsH7 ·{home cust.p local, overseas cust.p local});

~V tH
1 = (wtH0 ·{customer, cust phone}, wtH1 ·{customer.key, cust phone.key},

wtH2 ·{customer.c fname, cust phone.ψ},
wtH3 ·{customer.c lname, cust phone.ψ},
wtH4 ·{customer.c birth, cust phone.ψ},
wtH5 ·{customer.account key, cust phone.ψ},
wtH6 ·{customer.ψ, cust phone.city},
wtH7 ·{customer.ψ, cust phone.area},
wtH8 ·{customer.ψ, cust phone.local},
wtH9 ·{customer.ψ, cust phone.extension});

In Example 13, ~V sH
1 and ~V tH

1 model the requirement for identifying the

source entity set {home cust, overseas cust} and the target entity set {customer,

cust phone} as being horizontally partitioned, respectively. Equivalent attributes

shared by all entities in the source set (e.g., home cust.name, overseas cust.name)

are represented as a single dimension in ~V sH
1 (e.g., wsH2 ·{home cust.name, overseas

cust.name}), which indicates that entities home cust and overseas cust share an

equivalent attribute name. There are also attributes not shared by all entities in

the target set (e.g., customer.c birth), and thus each of such attributes and a ψ at-

tribute are represented as a single dimension in ~V tH
1 (e.g., wtH4 ·{customer.c birth,

cust phone.ψ}. If more dimensions in a horizontal vector do not contain ψ at-

tributes (e.g., ~V sH
1), there are more attributes shared by all the entities in the

set that the horizontal vector represents, and thus it is more likely that these

entities are horizontally partitioned (e.g., {home cust, overseas cust}); otherwise

the entities are not horizontally partitioned (e.g., {customer, cust phone}).
The basic idea of vertical partitioning is that an original entity is partitioned

into new entities whose attributes are subsets of the original’s. In particular, some

attributes are present in each new entity, referring to key attributes, whereas other

attributes of the original entity are present only once across all the new entities.

Similar to a horizontal vector, a vertical vector models the requirement for iden-

tifying that an associated entity set whose cardinality>1 is vertically partitioned,

5.5. OBJECTIVE FUNCTION 131

which is that some attributes are shared by all the entities in the set and the

remaining attributes are not shared by all the entities. To support this intuition,

the vertical vector is defined in Definition 8.

Definition 8 Vertical Vector. A set of entities {S1, ..., S%} is expressed

as a vertical vector ~V V = (w0·k0, w1·k1, ..., wQ·kQ), where k0 = {S1, ..., S%}
is the term representing the set of entity constructs and ki (i = 1, ..., Q) are

terms representing attribute constructs. For equivalent attributes of all entities

S1.Ac, ..., S%.Ac, ki is defined as {S1.Ac, ..., S%.Ac} referring to key attributes of

all entities; for equivalent attributes of a subset of all entities, e.g., S1.Anc and

S2.Anc, ki is defined as {S1.Anc} and ki′ = {S2.Anc} (i 6= i′); for an attribute Anc

in Sj (j = 1, ..., %) that is different in entities S1, ..., S%, ki is defined as {Sj.Anc}.

Following on with Example 11, ~V s
1 ∈ VS1 and ~V t

1 ∈ VT1 are further repre-

sented as vertical vectors ~V sV
1 and ~V tV

1 , as presented in Example 14.

Example 14 vertical vectors.
~V sV
1 = (wsV0 ·{home cust, overseas cust}, wsV1 ·{home cust.id, overseas cust.id},

wsV2 ·{home cust.name, overseas cust.name},
wsV3 ·{home cust.birth, overseas cust.birth},
wsV4 ·{home cust.a id, overseas cust.a id},
wsV5 ·{home cust.p city, overseas cust.p city},
wsV6 ·{home cust.p area, overseas cust.p area},
wsV7 ·{home cust.p local, overseas cust.p local});

~V tV
1 = (wtV0 ·{customer, cust phone}, wtV1 ·{customer.key, cust phone.key},

wtV2 ·{customer.c fname}, wtV3 ·{customer.c lname},
wtV4 ·{customer.c birth}, wtV5 ·{customer.account key},
wtV6 ·{cust phone.city}, wtV7 ·{cust phone.area},
wtV8 ·{cust phone.local}, wtV9 ·{cust phone.extension});

~V sV
1 and ~V tV

1 model the requirement for identifying the source entity set

{home cust, overseas cust} and the target entity set {customer, cust phone} as

being vertically partitioned, respectively. A set of equivalent attributes shared

by all the entities in the target set is represented as a single dimension in ~V tV
1 (e.g.,

wtV1 ·{customer.key, cust phone.key}), referred to as key attributes. There are also

attributes in the target set not shared by all the entities (e.g., customer.c fname),

which refer to attributes of the original entity that are present only once across

132 CHAPTER 5. INFERRING SCHEMATIC CORRESPONDENCES

all the new entities, and thus each of such attributes is represented as a single di-

mension (e.g., wtV2 ·{customer.c fname}). In the source set, equivalent attributes

shared by all the entities are represented as a single dimension in ~V sV
1 (e.g.,

wsV2 ·{home cust.name, overseas cust.name}). As there is not such a dimension in
~V sV
1 whose attribute is present only once in all the entities in the source set, the

vertical partitioning requirement is not met. Thus, the source entity set is not

vertically partitioned.

5.5.5 Weight calculation

In Section 5.5.3, we structure equivalent attributes in source schema S and target

schema T into index terms, and use the index terms to construct source and target

vector spaces VS and VT to represent source and target schemas S and T , as

presented in Section 5.5.4. In this section, we describe the method for calculating

the term weights of each vector, which maps to the third step of the objective

function presented in Algorithm 6 in Section 5.5.2. We follow the intuition behind

the design of the vector space model, and use the tf × idf method to calculate

weight wi for term ki (i = 0, ..., ϕ) in each vector ~V = (w0 ·k0, w1 ·k1, ..., wϕ ·kϕ) ∈
VS (VT), where tf = ti

T
and idf = logN

ni
are defined as follows:

• ti refers to the number of the equivalent constructs (entities or attributes)

in the term ki (we consider ψ used in horizontal vectors as a construct as

well);

• T denotes the total number of constructs in vector ~V ;

• N represents the total number of vectors in VS; and

• ni denotes the number of vectors in VS that have the equivalent constructs

as the term ki.

For example, the term weight w1 for term {home cust.id, overseas cust.id} in
~V s
1 (e.g., ~V sH

1 in Example 13) ∈ VS1 (Example 11) can be calculated as: t1=2

for the two attribute constructs in the term; T=16 for the total number of 16

constructs in ~V sH
1 ; N=2 as there are 2 vectors ~V s

1 (e.g., ~V sH
1) and ~V s

2 in VS1;

n1=2 as term account.id in ~V s
2 ∈ VS1 contains equivalent construct as term

{home cust.id, overseas cust.id} in ~V s
1 (i.e., ~V sH

1) ∈ VS1.

To meet Requirement 1 in the preamble of Section 5.5, the idea is that the

more unique a term to a vector, the term is more likely to describe the vector.

5.5. OBJECTIVE FUNCTION 133

Thus, if ni of wi is lower (the idf part of wi is higher), the constructs in the term

are more likely to represent the meaning of the vector. We take phenotype P2

as an example to explain the necessity of the ni part in the term weight for this

method. There are ~V s
1 , ~V s

2 and ~V s
3 in VS2 (Example 11) representing the schema

S. The ni part for the term overseas cust.name in ~V s
1 is 3, because ~V s

2 and ~V s
3 have

terms home cust.name and account.name, respectively, which contain equivalent

constructs as the term overseas cust.name. In contrast, ni of other terms in ~V s
1

(e.g., overseas cust.birth) is 1, because the terms are unique to ~V s
1 . Thus, ni of 3

for the term overseas cust.name in ~V s
1 gives rise to a lower idf value than other

terms in ~V s
1 . Therefore, even though entities overseas cust (~V s

1) and cust account

(~V t
1) are associated by P2 and the coincidental match between overseas cust.name

and cust account.account name provides evidence to support their association, the

lower weight assigned to the term overseas cust.name could help to reduce this

coincidental evidence.

To address Requirement 2, the idea is that the more often a term appears in

a single vector, the more likely it is able to represent the meaning of the doc-

ument, and if so the tf part of the term weight should be assigned a higher

value. We use phenotypes P1 and P3 as an example. In Example 11, ~V s
1

(e.g., ~V sH
1) represents {home cust, overseas cust} associated by P1, which are

horizontally partitioned. The equivalent attributes (e.g., home cust.p city and

overseas cust.p city) are structured as a term in ~V sH
1 , thus giving rise to ti=2

and ni=1. In contrast, entities home cust and overseas cust are represented by

two separate vectors given P3, and as such the weight of term home cust.p city

in the vector home cust are calculated using ti=1 and ni=2. Thus, the term

{home cust.p city, overseas cust.p city} (given P1) has a higher tf and a lower idf

than the term home cust.p city (given P3), and thus has a higher weight. The

difference of weights helps to assign a higher similarity to equivalent entities

{home cust, overseas cust} and {customer, cust phone} associated by P1 than the

pair of entities home cust and cust phone associated by P3.

5.5.6 Vector similarity

This section describes the fourth step of Algorithm 6 in Section 5.5.2, i.e., the

function for calculating vector similarity. Given a phenotype P , each ELR in P
associates two (sets of) entities represented by a pair of vectors ~V s and ~V t. We

calculate the similarity of ~V s and ~V t, and regard it as the ELR similarity.

134 CHAPTER 5. INFERRING SCHEMATIC CORRESPONDENCES

In Example 11, between VS1 and VT1 (for phenotype P1) we calculate the

similarity of ~V s
1 and ~V t

1 as the similarity of the ELR ({home cust, overseas cust},
{customer, cust phone}), and calculate the similarity of ~V s

2 and ~V t
2 as the similarity

of the ELR ({account}, {cust account}). In particular, the similarity of ~V s and
~V t is derived as the maximum similarity among similarities of ~V sH

1 and ~V tH
1 , ~V sH

1

and ~V tV
1 , ~V sV

1 and ~V tH
1 , and ~V sV

1 and ~V tV
1 . We consider the fittest partitioning of

the ELR as the corresponding partitioning of the two vectors assigned with the

maximum vector similarity among the four similarities.

For phenotype P2, although each of vector spaces VS2 and VT2 has three

vectors, as P2 only contains a single ELR that associates entities overseas cust

(represented as ~V s
1 ∈ VS2) and cust account (represented as ~V t

1 ∈ VT2), we only

need to calculate the similarity of ~V s
1 and ~V t

1 as the ELR similarity.

Let us assume that we have vectors ~V s = (ws0 ·ks0, ws1 ·ks1, ..., wsM ·ksM) and
~V t = (wt0 · kt0, wt1 · kt1, ..., wtN · ktN). We adopt the traditional cosine function,

presented in Function 5.1 in Section 5.5.1, to calculate their similarity.

We first identify 1-to-1 matched terms. As defined in Section 5.5.4, a term

in a vector represents either a construct (i.e., an entity or an attribute) or a

set of constructs. Thus, if there are matches between two (sets of) constructs

represented by two terms, we consider that the two terms are 1-to-1 matched.

We define the term similarity as the (average) match similarity of the two (sets

of) constructs the two terms represent, which is a float value between [0, η] (Recall

that we assume there are η matchers used for producing the input matches and

the maximum match similarity produced by each individual matcher is 1.0. Thus,

η also represents the maximum similarity that denotes that two constructs are

exactly the same). We use ks0 and kt0 to represent the two (sets of) entity

constructs in ~V s and ~V t, respectively. We assume that if term ksi of ~V s (0 6

i 6M) has a term similarity greater than 0 with more than one term in ~V t, the

matched term of ksi is the term ktj in ~V t that has the maximum term similarity

with ksi. We require that ktj in ~V t cannot be the matched term of any other term

ksi′ in ~V s (0 6 i′ 6M and i′ 6= i).

If a term contains ψ attributes in a horizontal vector (e.g., in Example 13, term

{customer.ψ, cust phone.city} in ~V tH
1), we consider the match similarity of the ψ

attribute and any attribute as 0.0. Thus, the more ψ attributes that are contained

in a term, the lower the term similarity between this term and its equivalent term

(diluted by the match similarity of 0.0), and the lower the vector similarity (see

5.5. OBJECTIVE FUNCTION 135

Function 5.2 below). Therefore, introducing ψ attributes to horizontal vectors is

used to identify whether a set of entities is horizontally partitioned. For example,

given a set of non-HP entities (e.g., {customer, cust phone} in phenotype P1),

several terms of its horizontal vector (e.g., ~V tH
1 in Example 13) may contain

ψ attributes, and thus the term similarities would be low, which would also

result in a low similarity of the horizontal vector (e.g., ~V tH
1) and the other vector

(e.g., ~V sH
1 in Example 13 or ~V sV

1 in Example 14), thus indicating that the set

of entities is not horizontally partitioned. By contrast, for a set of good HP

entities (e.g., {home cust, overseas cust} in P1), its horizontal vector usually has

few ψ attributes (e.g., ~V sH
1 in Example 13), thus giving rise to a high vector

similarity. Therefore, we can infer that {home cust, overseas cust} is horizontally

partitioned, and {customer, cust phone} is vertically partitioned. In particular,

we show matched terms between vectors ~V sH
1 (Example 13) and ~V tV

1 (Example

14) in Example 15.

Example 15 Matched terms.

{home cust, overseas cust} ⇐⇒ {customer, cust phone}
{home cust.id, overseas cust.id} ⇐⇒ {customer.key, cust phone.key}
{home cust.name, overseas cust.name} ⇐⇒ {customer.c fname}
{home cust.birth, overseas cust.birth} ⇐⇒ {customer.c birth}
{home cust.a id, overseas cust.a id} ⇐⇒ {customer.account key}
{home cust.p city, overseas cust.p city} ⇐⇒ {cust phone.city}
{home cust.p area, overseas cust.p area} ⇐⇒ {cust phone.area}
{home cust.p local, overseas cust.p local} ⇐⇒ {cust phone.local}

Assume that we have identified R 1-to-1 matched terms between ~V s and ~V t,

where R 6 min(M,N). For the sake of simplicity, we reallocate terms in vector
~V t, in order to express matched terms between ~V s and ~V t using the same subscript

numbers. Thus, we represent the source and target vectors as:

~V s = (ws0 · ks0, ..., wsR · ksR, ..., wsM · ktM)

~V t = (w′t0 · k′t0, ..., w′tR · k′tR, ..., w′tN · k′tN)

In particular, wsl · ksl and w′tl · k′tl (0 6 l 6 R) are 1-to-1 matched terms between
~V s and ~V t, whose term similarity we denote as ml. We calculate the similarity

136 CHAPTER 5. INFERRING SCHEMATIC CORRESPONDENCES

of vectors ~V s and ~V t as:

sim(~V s, ~V t) =

∑R
l=0ml × wl × w′l√∑

M
i=0(wi)

2 ×
√∑

N
j=0(w

′
j)

2
(5.2)

For a phenotype P = {ELR1, ELR2, ..., ELRn}, where each ELRi ∈ P as-

sociates entity sets ESsi and ESti , we generate different types of vectors for ESsi

and ESti given their cardinalities, as defined in Section 5.5.4. If ESsi and ESti

are 1-to-1 entities, we construct a single vector to represent each of them. If ESsi

and ESti are n-to-m entities, we construct a horizontal vector ~V sH and a vertical

vector ~V sV for ESsi , and similarly vectors ~V tH and ~V tV for ESti .

In the case where ESsi and ESti are 1-to-1 entities, we apply Function 5.2

to calculate their similarity. When ESsi and ESti are n-to-m entities, we calcu-

late four kinds of similarities using Function 5.2 for the following combinations

of partitioning: HP vs HP, HP vs VP, VP vs HP, VP vs VP, i.e., sH−H =

sim(~V sH , ~V tH), sH−V = sim(~V sH , ~V tV), sV−H = sim(~V sV , ~V tH) and sV−V =

sim(~V sV , ~V tV) to denote the fitness of ESsi and ESti that are HP and HP, HP

and VP, VP and HP, and VP and VP, respectively. We consider the similarity

of ESsi and ESti as the maximum value of sH−H , sH−V , sV−H , and sV−V , and

report the corresponding partitioning types.

5.5.7 Aggregation

Given a phenotype P = {ELR1, ELR2, ..., ELRn}, we calculate the similarity,

denoted as si, of each ELRi ∈ P (i = 1, ..., n) in Sections 5.5.3 and 5.5.6. In

this section, we illustrate the last step in computing a value for the objective

function (Algorithm 6 in Section 5.5.2), which calculates the fitness value for

the phenotype P by aggregating ELR similarities. As stated in Requirement

4 in the preamble of Section 5.5, we anticipate that the aggregation function

assigns a higher value to a phenotype, if more ELRs that have comparatively

high similarities are contained by the phenotype. Note that we do not define

a similarity threshold that arbitrarily denotes whether the pair of entity sets

associated by an ELR is similar or not, and we do not know in advance how

many such ELRs should be contained in the phenotype.

The sum aggregation function tends to favor a larger number of aggregated

values and is higher when more si values are aggregated, even though these values

5.5. OBJECTIVE FUNCTION 137

are low; whereas the average aggregation tends to favor the highest value among

si (i = 1, ..., n), which may result in the highest fitness value being assigned

to a phenotype that only contains a single ELR whose similarity is the highest

among all possible ELRs. Therefore, we consider that the aggregation function

should be a balance between the sum and average of si (i = 1, ..., n), such as

sum(si)× average(si), where i = 1, ..., n.

However, by applying sum(si) as a part of the aggregation function, the func-

tion tends to give a higher value to a phenotype that contains several 1-to-1

ELRs rather than a phenotype that contains a single n-to-m ELRi, even though

the similarity of the n-to-m ELRi is greater than the similarity of each of 1-to-1

ELRs. For example, given Phenotypes P1 and P5 in Example 5, where P1 is a

better characterization of the relationship between RDB1 and RDB2 than P5:

P1={({home cust, overseas cust}, {customer, cust phone}),
({account}, {cust account})}

P5={({home cust}, {customer}), ({overseas cust}, {cust phone}),
({account}, {cust account})}

we assume the similarities of the ELRs in P1 are 0.9 and 0.85, respectively;

and the similarities of the ELRs in P5 are 0.7, 0.7 and 0.85, respectively. Using

sum(si)×average(si), the fitness value of P1 is (0.9+0.85)×(0.9+0.85)/2 = 1.53,

and the fitness value of P5 is (0.7 + 0.7 + 0.85) × (0.7 + 0.7 + 0.85)/3 = 1.685,

which will result in P5 being incorrectly returned. Therefore, we decided to

combine the coverage (i.e., the number of entities associated by an ELR) with

the sum(si)× average(si) function in the aggregation function.

Taking all factors into consideration, we derive the aggregation Function 5.3

to calculate the fitness value for the phenotype P = {ELR1, ELR2, ..., ELRn}:

sum(si × ci)× average(si × ci) = [
n∑
i=1

(si × ci)]×
∑n

i=1(si × ci)∑n
i=1 ci

=
(
∑n

i=1 si × ci)2∑n
i=1 ci

(5.3)

where si is the similarity of ELRi = (ESsi , ES
t
i), and ci = avg(|ESsi |, |ESti |) is its

coverage, in which |ESsi | and |ESti | represent the number of entities in the sets

ESsi and ESti , respectively.

In the previous example, we derive the fitness value of P1 as (0.9× 2 + 0.85×
1)2/(2 + 1) = 2.34, and the fitness value of P5 as (0.7 × 1 + 0.7 × 1 + 0.85 ×

138 CHAPTER 5. INFERRING SCHEMATIC CORRESPONDENCES

1)2/(1 + 1 + 1) = 1.685. Thus, P1 is assigned a higher fitness value.

Until now (in Sections 5.3 to 5.5), we have described the method for inferring

a set of ELRs between source and target schemas, including the framework of

searching for a particular set of ELRs (Section 5.3), the representations of the

set of ELRs (Section 5.4), and the objective function (Section 5.5) that models

the requirements for inferring schematic correspondences at the entity-level and

assigns relative fitness values to all possible sets of ELRs, where the set of ELRs

with the highest fitness value is returned, such as P1. Therefore, the entity-

level schematic correspondences between the source and target schemas can be

represented by the phenotype P1. However, the schematic correspondences at the

attribute-level still need to be worked out, as presented in Section 5.6.

5.6 Identification of Attribute-Level Relation-

ships

Identifying the attribute-level relationships (ALRs) is a post-processing step af-

ter the evolutionary search that identifies a set of ELRs (Sections 5.3 to 5.5),

and completes the second step for inferring schematic correspondences (Algo-

rithm 1 in Section 5.2). In this section, we identify ALRs for a phenotype

P = {ELR1, ELR2, ..., ELRn} that has the maximum fitness value among all

phenotypes in the search space. In particular, we identify a set of ALRs between

each pair of entity sets ESsi and ESti associated by ELRi (i = 1, ..., n) to denote

the equivalent 1-to-1 or n-to-m attributes. Remember that we have identified

1-to-1 matched terms while calculating the similarity of ESsi and ESti in Section

5.5.6. The matched terms associate 1-to-1 equivalent attributes between 1-to-1

entities; they also relate 1-to-1 or n-to-m equivalent attributes between n-to-m

entities. Thus, we directly utilize the 1-to-1 matched terms as ALRs. Example

15 in Section 5.5.6 is also an example for ALRs.

In this section, we mainly discuss the identification of attribute many-to-

one correspondences between equivalent entity sets ESsi and ESti associated by

ELRi ∈ P . As presented in Section 1.1, an attribute many-to-one correspondence

indicates that instances of a set of attributes can be translated into instances of a

single attribute using a formula. We cover the common formulae enumerated by

Kim et al. [KCGS93], which can easily be extended to other formulae, as follows:

5.6. IDENTIFICATION OF ATTRIBUTE-LEVEL RELATIONSHIPS 139

Algorithm 9 Many2One(Attribute Set A, Attribute Set B, Derived Match Set
M)

1: R← ∅;
2: for each attribute B ∈ B do
3: identify a set of attributes A′ from A, and each attribute Ax ∈ A′ satisfies:
4: (i) there exists a derived match m ∈ M, where m = 〈Ax, B,∆AxB〉 and

∆AxB > 0;
5: (ii) attributes Ax and B have the same data type;
6: A1, ...,An ←all combinatorial combinations of A′ with all lengths ∈ [2, |A′|];
7: for each attribute set Ai = {A1, ..., Ak}, where 1 6 i 6 n do
8: for each formula Fj provided do
9: a new attribute aij ← using Fj on attributes in setAi; //transform instances

of Ai into instances of aij.
10: δ ←instance similarity of attributes aij and B;
11: if δ > 0 then
12: ∆aijB (the similarity of Ai and B using Fj) ← δ + ∆A1B + ... + ∆AkB,

where ∆A1B, ...,∆AkB are the derived match similarities between at-
tributes A1,...,Ak and B, respectively;

13: else
14: ∆aijB ← 0.0;
15: R← R∪ {(Ai, B)}, where an attribute set Ai (i ∈ [1, n]) has the maximum sim-

ilarity (∆aijB > 0) with B using a formula Fj among similarities of all attribute
sets A1, ...,An and B using all provided formulae;

16: return R.

• string concatenation, e.g.,

concat (first name, last name) = name

concat (str num, str name, city, zip) = address

• numeric concatenation, e.g.,

concat (phone city, phone area, phone local, phone extension) = phone

• date concatenation, e.g., concat (day/month/year) = date

Algorithm 9 describes the process for identifying attribute many-to-one cor-

respondences, which can also be applied to identify attribute one-to-many corre-

spondences (omitted here). It takes as input all attributes of equivalent entities

in ESsi and in ESti (Attribute Sets A and B in Algorithm 9), and the derived

matches. Algorithm 9 starts with identifying different subsets of attributes from

set A for each attribute B ∈ B, where each attribute in set A and attribute B

are associated by a derived match whose similarity is greater than 0 and these

attributes should have the same data type (Lines 2 to 6 in Algorithm 9). As we

140 CHAPTER 5. INFERRING SCHEMATIC CORRESPONDENCES

identify attribute many-to-one correspondences only between equivalent entities

and restrict that attributes in each subset of A and attribute B are matched and

have the same data type, the search of alternative subsets of A is restricted to

a fairly small space. In particular, we look for a subset of attributes Ai whose

instances can be transformed into the instances of attribute B using a formula

(Lines 7 to 11 in Algorithm 9). Meanwhile the attribute set Ai should have the

maximum similarity with attribute B among all attribute sets (Lines 12 to 15 in

Algorithm 9). We consider such a pair of attribute set Ai and attribute B as an

attribute many-to-one correspondence.

5.7 Summary and Conclusions

This chapter has presented an approach for inferring schematic correspondences

at both entity and attribute levels. As discussed in Section 5.2, given two schemas

and sets of basic matches, we employ an evolutionary search method to discover

the entity-level schematic correspondences, i.e., ELRs, that associate pairs of

equivalent entity sets, based on which we further identify specific attribute-level

correspondences, i.e., ALRs. We have illustrated the search framework in Section

5.3, designed the representations of solutions to entity-level schematic correspon-

dences in Section 5.4, and defined the objective function in Section 5.5. We also

introduced the technique for identifying ALRs in Section 5.6. Specifically, we

have made the following contributions:

• We have presented an approach that can identify complex many-to-many

correspondences between entities and between attributes, in addition to one-

to-one correspondences; whereas most existing approaches are only able to

identify one-to-one correspondences, as discussed in Section 5.1.1.

• To discover entity-level schematic correspondences, we apply an evolution-

ary search method to allow different solutions (ELRs) to compete with each

other, and we select the set of ELRs assigned the highest fitness value as

the result. Thus, we do not require context specific rules, e.g., thresholds,

to derive the entity-level schematic correspondences, which might have to

be adjusted between applications or may require training data to identify

the ideal values. By contrast, SeMap [WP08] infers complex relationships

between two schemas, but uses heuristic rules to derive the results (Section

5.7. SUMMARY AND CONCLUSIONS 141

5.1.2). The method proposed by Elmeleegy et al. [EOE08] uses an evolu-

tionary search method to identify 1-to-1 attribute matches (Section 5.1.3),

and hence focuses on an easier problem than we do.

• We model the requirements for identifying entity-level schematic correspon-

dences using an objective function. In particular, the requirements include:

i) each single ELR is assigned a reasonable similarity (especially, different

entities that coincidentally have common attributes should be assigned low

similarities); ii) an equivalent n-to-m ELR has higher similarity than ELRs

associating its subsets of entities; iii) establish partitioning of an n-to-m

ELR; and iv) return as many ELRs that have comparatively high similari-

ties as possible. To satisfy the requirements, we represent an entity or a set

of entities associated by each ELR as a vector, and calculate the similarity

of the ELR by comparing vectors that represent the ELR. We aggregate the

ELR similarities as the fitness value of the set of ELRs. Methods devised by

Xu et al. [XE06] and Melnik et al. [MBHR05] also identify many-to-many

entity associations (Section 5.1.2), but require specific schema information

(e.g., integrity constraints), which is not needed in our method.

Chapter 6

Experimental Evaluation

The research presented in this thesis aims to infer schematic correspondences that

can be used for automatically generating mappings. As presented in Section 5,

we have devised a method that i) infers entity-level relationships (ELRs) that

associate 1-to-1 or n-to-m entity sets using an evolutionary search method, i.e.,

the genetic algorithm, and ii) identifies attribute-level relationships (ALRs) for

each ELR. During the search, our method applies an aggregation function to

derive an overall fitness value of ELRs whose similarities are calculated using an

adaptation of the vector space model used in traditional information retrieval.

This chapter presents experimental studies of our method to evaluate its effec-

tiveness. We evaluate our method using the collection of MatchBench scenarios

and a set of real world relational databases provided by the Amalgam benchmark

[MFH+01]. We compare results of our method only with COMA++ [DR07],

because it has been demonstrated to achieve better performance than Rondo

[MRB03] and OpenII [SMH+10] in Chapter 4. For the sake of simplicity, we do

not repeat the results of Rondo and OpenII in this chapter.

The remainder of this chapter is structured as follows. Section 6.1 presents

settings of the experimental study, including the description for the employed

datasets, evaluation metrics, the genetic algorithm configuration, and basic matches

we use as input of our method. Sections 6.2 and 6.3 show results of our method

and COMA++ using scenarios provided by MatchBench and by the Amalgam

benchmark, respectively. We conclude the chapter in Section 6.4.

142

6.1. EXPERIMENTAL SETTINGS 143

6.1 Experimental Settings

6.1.1 Dataset description

As we have presented the MatchBench scenarios (the first set of scenarios) in

detail in Chapter 3, we do not describe them here. The second set of scenar-

ios we used to evaluate our method is provided by the Amalgam benchmark,

which comprises four relational databases (referred to as s1, s2, s3 and s4) on the

bibliographic domain devised by different designers [MFH+01]. The schemas of

s1 to s4 are presented in Appendix A. We asked three experts who have good

understanding of the bibliographic domain and schematic heterogeneities to man-

ually specify the ground truth for schematic correspondences between pairwise

Amalgam relational databases. As a result, we decided to use four pairs, but not

others (e.g., s1/s2), of Amalgam databases as test cases, because they represent

most types of schematic heterogeneities defined in Section 1.1, as presented in

Table 6.1 where we list the number of ground truth occurrences of each type of

schematic correspondence. Unfortunately, n-to-1 attribute correspondences are

not represented in any pair of Amalgam databases.

the number of schematic correspondences
1-to-1 n-to-m n-to-m n-to-m n-to-m 1-to-1/n-to-m

S/T equivalent HP vs HP VP vs VP HP vs VP VP vs HP equivalent missing n-to-1
databases entities entities entities entities entities attributes attributes attributes
s1/s3 1 1 10 28
s1/s4 1 1 7 64
s2/s3 1 1 10 10
s3/s4 1 1 6 23

Table 6.1: The number of ground truth occurrences of each type of schematic
correspondences between the Amalgam databases.

6.1.2 Metrics

To evaluate the effectiveness of our method for inferring schematic correspon-

dences, we use the traditional metrics in schema matching, i.e., precision, recall

and F-measure, as defined in Section 3.1.1.

6.1.3 Genetic algorithm setup

As stated in Section 5.3, running a genetic algorithm requires parameters for pop-

ulation size, offspring size, mutation rate, crossover rate and generation numbers.

144 CHAPTER 6. EXPERIMENTAL EVALUATION

In principle, we follow suggestions from text books and papers [SCED89, Gre86,

ES03], did a sensitivity analysis and set population size as 30, offspring size as

30, mutation rate as 1/n (n represents the length of chromosome), and crossover

rate as 0.9. Usually, if the search goes through more generations, it is more likely

to obtain the global optimal solution. Therefore, for the small and medium scale

schemas, we terminate the search when 500 generations have been produced.

The search space of all possible sets of ELRs is very large. For example, in

MatchBench scenarios where both schemas have 6 entities, if we assume there

is at least one match between each pair of entities, the search space is 236 (i.e.,

using a binary string with the length of 6×6 as the genotype representation of

a solution, as defined in Definition 4), but if both schemas have 10 entities, the

search space is 2100. We ran all our experiments on a 1.86 GHz Intel core2

processor with 1.0 GB RAM running Windows XP. For MatchBench scenarios, it

takes 15 minutes on average to terminate the evolutionary search (500 iterations).

For the Amalgam benchmark where schemas are larger than the MatchBench

scenarios, it takes more than 20 minutes on average to terminate the evolutionary

search (500 iterations). Due to the large search space, the proposed method is

not particularly scalable.

6.1.4 Basic matches

Our method for inferring schematic correspondences takes as input a source and

a target schema and sets of basic matches between them that denote element sim-

ilarities. As a number of schema matching approaches have been designed and

implemented, we decided to utilize some of the matchers provided by COMA++

to produce the basic matches. In particular, we chose the Name and Content-

based matchers, which have been demonstrated to be effective in Chapter 4, to

compute the name similarities and the instance similarities of elements between

the two schemas, because these two types of similarities mostly represent the com-

monalities and differences between the elements. We sum up similarity scores of

the two sets of basic matches as evidence on which the identification of schematic

correspondences can be based. Note that other types of similarity evidence, e.g.,

data type similarities or synonym similarities, can also be easily added up to

support the identification in additional to the name and instance similarities,

although they are not applied in this thesis.

6.1. EXPERIMENTAL SETTINGS 145

By investigating the basic matches produced by COMA++, we have no-

ticed that almost every pair of elements between source and target schemas are

matched. Some basic matches associate elements that have overlapping name

strings or instance values, e.g., attributes broker id and ap tax id, are matched

by the Name matcher with similarity 0.4, which we denote as the signal matches

since the name strings of their associated elements do overlap. However, other

basic matches associate completely different elements, although with fairly low

similarity scores, e.g., attributes zip code and name are matched by the Name

matcher with the similarity score of 0.1, which we call noise matches. A collec-

tion of signal matches plus a large collection of noise matches leave us a fairly

large search space.

To reduce the search space and make better use of match evidence, we need to

distinguish useful signal matches from noise matches by excluding basic matches

that associate elements that do not exhibit commonalities. We ran a sensitivity

analysis for the basic matches using a small set of scenarios from the MatchBench

collection as follows (see also Figures 3.3 and 3.7 in Section 3.3). We require

that equivalent entities and equivalent attributes in the chosen scenarios pertain

overlapping name strings or overlapping instance values, and thus we can use

matches between equivalent entities/attributes as signal matches, and consider

others as noise matches. For the Name matcher, we choose scenarios where

equivalent entities and equivalent attributes have the same names (e.g., a subset

of scenarios in Set 1 of Figures 3.3) or similar names (e.g., a subset of scenarios

in Set 6 of Figures 3.3); for the Content-based matcher, we select scenarios where

1-to-1 equivalent entities have the same instances (e.g., a subset of scenarios in

Sets 1 and 3 in Figures 3.3), and n-to-m scenarios where equivalent entity sets

have the same instances (e.g., a subset of scenarios in Sets 19 of Figure 3.7).

We apply the same process for excluding noise matches to the Name and

Content-based matchers, but only show the results of the Name matcher as an

example. In the process, we wish to obtain a threshold for the Name matcher to

remove most noise matches while keeping signal matches. We incrementally raise

the threshold on matches produced by the Name matcher from 0.1 to 0.9, and

observe the recall and precision at each threshold, as shown in Figure 6.1. The

following can be observed: (i) given the threshold of 0.4, some of true positives

that have similar names are not returned (Figure 6.1(a)); (ii) precision increases

from thresholds 0.1 to 0.3 (Figure 6.1(b)), while recall remains constant at 1.0

146 CHAPTER 6. EXPERIMENTAL EVALUATION

!"

!#$"

!#%"

!#&"

!#'"

("

!#(" !#$" !#)" !#%" !#*" !#&" !#+" !#'" !#,"

!
"
#
$%
&
#
'(
#
)%
**
'

+)#,%$-./'

-./"(" -./"&"

(a) Recall

!"

!#$"

!#%"

!#&"

!#'"

("

!#(" !#$" !#)" !#%" !#*" !#&" !#+" !#'" !#,"

!
"
#
$%
&
#
'(
$#
)*
+*
,
-
'

.)#-%$*,+'

-./"(" -./"&"

(b) Precision

Figure 6.1: COMA++ Name matcher results given different threshold values.

(Figure 6.1(a)). As we aim to remove as many of the noise matches as possible

while keeping as many of the signal matches as possible, we decided to use the

threshold of 0.3 for the Name matcher. We did the same experiment for the

Content-based matcher, and obtained the threshold of 0.3 as well. The threshold

of 0.3 for both the Name and Content-based matchers is not a context sensitive

threshold. We propose to apply such threshold not because our method requires

them but because the two matchers provided by COMA++ associate attributes

that have no commonalities with low similarity scores, which results in a large

number of input matches, and therefore a large search space. The threshold of 0.3

for both Name and Content-based matchers will not change in different scenario

contexts. The thresholds are also tested on the Amalgam scenarios, and have

been demonstrated to be helpful in removing noise matches.

6.2 Experimental Evaluation on MatchBench

In this section, we compare the results of our method (denoted as GA in Fig-

ures 6.2 to 6.10) with the results of COMA++ using the following two different

configuration settings. The first configuration of COMA++ is the one we used

in Chapter 4, where the threshold and delta used in the Threshold+MaxDelta

method is set as default (i.e., 0.1 and 0.01). In the second setting, we keep the

majority of the parameters (e.g., matching strategy, chosen matchers and com-

bination parameters) the same, and use as the threshold and delta the values

(i.e., 0.42 and 0.33), which we had already identified as resulting in the best

performance of COMA++ when applied to the MatchBench scenarios (see Chap-

ter 4). Briefly, we call the first setting Default COMA++ and the second Tuned

6.2. EXPERIMENTAL EVALUATION ON MATCHBENCH 147

COMA++ in the remainder of this chapter. To illustrate lessons learnt in this sec-

tion, we carefully investigated the experimental results and manually conducted

intensive analyses in Subsection 6.2.1 to 6.2.10.

6.2.1 Experiment 1: Identifying when the same entity oc-

curs in positive scenarios

The F-measure, precision and recall of this experiment are presented in Figures

6.2, 6.3 and 6.4, respectively. We evaluate the overall performance of our method

and COMA++ in this experiment using the F-measure. We also report the

precision and recall for a more detailed comparison with COMA++. Compared

with Default COMA++ and Tuned COMA++, our method has performed as

follows:

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"(")*+"$")*+",")*+"%")*+"-")*+"&")*+".")*+"'"

!
"
#
$%
&
#
'(
)*

#
%
+,
$#
'

-.#/%$01+'

/0" "1*2345+"678099" :4;*<"678099""

(a) Expt 1: R1, same instances

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"(")*+"$")*+",")*+"%")*+"-")*+"&")*+".")*+"'"

!
"
#
$%
&
#
'(
)*

#
%
+,
$#
'

-.#/%$01+'

/0" "1*2345+"678099" :4;*<"678099""

(b) Expt 1: R1, disjoint instances

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"(")*+"$")*+",")*+"%")*+"-")*+"&")*+".")*+"'"

!
"
#
$%
&
#
'(
)*

#
%
+,
$#
'

-.#/%$01+'

/0" "1*2345+"678099" :4;*<"678099""

(c) Expt 1: R2, same instances

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"(")*+"$")*+",")*+"%")*+"-")*+"&")*+".")*+"'"

!
"
#
$%
&
#
'(
)*

#
%
+,
$#
'

-.#/%$01+'

/0" "1*2345+"678099" :4;*<"678099""

(d) Expt 1: R2, disjoint instances

Figure 6.2: Experiment 1 for Genetic Algorithm (GA), COMA++ default setting
and COMA++ tuned setting: F-measure.

1. Our method has been generally successful at satisfying requirement R1,

i.e., matching equivalent entities, and has performed better than Default

COMA++, though it met this requirement less well than Tuned COMA++

148 CHAPTER 6. EXPERIMENTAL EVALUATION

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"(")*+"$")*+",")*+"%")*+"-")*+"&")*+".")*+"'"

!
"
#
$%
&
#
'(
$#
)*
+*
,
-
'

.)#-%$*,+'

/0" "1*2345+"678099" :4;*<"678099""

(a) Expt 1: R1, same instances

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"(")*+"$")*+",")*+"%")*+"-")*+"&")*+".")*+"'"

!
"
#
$%
&
#
'(
$#
)*
+*
,
-
'

.)#-%$*,+'

/0" "1*2345+"678099" :4;*<"678099""

(b) Expt 1: R1, disjoint instances

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"(")*+"$")*+",")*+"%")*+"-")*+"&")*+".")*+"'"

!
"
#
$%
&
#
'(
$#
)*
+*
,
-
'

.)#-%$*,+'

/0" "1*2345+"678099" :4;*<"678099""

(c) Expt 1: R2, same instances

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"(")*+"$")*+",")*+"%")*+"-")*+"&")*+".")*+"'"

!
"
#
$%
&
#
'(
$#
)*
+*
,
-
'

.)#-%$*,+'

/0" "1*2345+"678099" :4;*<"678099""

(d) Expt 1: R2, disjoint instances

Figure 6.3: Experiment 1 for Genetic Algorithm (GA), COMA++ default setting
and COMA++ tuned setting: Precision.

(Figure 6.2(a) and (b)). Our method has been competitive with Default

COMA++ in terms of recall (Figure 6.4(a) and (b)), but has shown sig-

nificant improvement to it in terms of precision (Figure 6.3(a) and (b)).

This is because: (i) false positives between different entities are assigned

rather low similarities using the vector space model (VSM), as targeted

by the objective function (Section 5.5); (ii) when the similarity between

equivalent entities is high, the aggregation Function 5.3 in Section 5.5.7 is

able to assign a lower fitness value to a solution that contains both false

positives and the true positive than the solution that only contains the

true positive, thus helping to remove false positives. Tuned COMA++ has

outperformed our method, but relies on training data that can be used to

identify a tuned threshold of 0.42, and as such can remove most false posi-

tives between different entities; by contrast, the threshold of 0.1 applied by

Default COMA++ is rather low, which leads to several false positives being

returned.

2. When only weak match evidence is available (e.g., equivalent attributes

6.2. EXPERIMENTAL EVALUATION ON MATCHBENCH 149

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"(")*+"$")*+",")*+"%")*+"-")*+"&")*+".")*+"'"

!
"
#
$%
&
#
'(
#
)%
**
'

+)#,%$-./'

/0" "1*2345+"678099" :4;*<"678099""

(a) Expt 1: R1, same instances

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"(")*+"$")*+",")*+"%")*+"-")*+"&")*+".")*+"'"

!
"
#
$%
&
#
'(
#
)%
**
'

+)#,%$-./'

/0" "1*2345+"678099" :4;*<"678099""

(b) Expt 1: R1, disjoint instances

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"(")*+"$")*+",")*+"%")*+"-")*+"&")*+".")*+"'"

!
"
#
$%
&
#
'(
#
)%
**
'

+)#,%$-./'

/0" "1*2345+"678099" :4;*<"678099""

(c) Expt 1: R2, same instances

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"(")*+"$")*+",")*+"%")*+"-")*+"&")*+".")*+"'"

!
"
#
$%
&
#
'(
#
)%
**
'

+)#,%$-./'

/0" "1*2345+"678099" :4;*<"678099""

(d) Expt 1: R2, disjoint instances

Figure 6.4: Experiment 1 for Genetic Algorithm (GA), COMA++ default setting
and COMA++ tuned setting: Recall.

have similar names and disjoint instances), our method is able to return

more true positives than COMA++ (higher recall in Sets 4 and 8 in Figure

6.4(b) is reported for GA than on Default and Tuned COMA++). This is

because we sum up the match evidence produced by various basic matchers

(e.g., Name or Instances matchers) rather than averaging this evidence,

which would dilute the match evidence. Tuned COMA++ performed the

worst because the threshold of 0.42 resulted in several true positives that

have similar names and disjoint instances being removed.

3. Our method has been much more successful than Default COMA++ and

Tuned COMA++ in meeting requirement R2, i.e., matching equivalent at-

tributes (Figure 6.2(c) and (d)). Although our method has been competitive

with COMA++ (for both configuration settings) in associating equivalent

attributes (recall is similar in Figure 6.4(c) and (d)), it has significantly out-

performed COMA++ on removing false positives (precision of GA is much

higher than Default COMA++ and Tuned COMA++ in Figure 6.3(c) and

150 CHAPTER 6. EXPERIMENTAL EVALUATION

(d)). Our method follows a top-down approach, which identifies equiv-

alent attributes only between entities that have been identified as being

equivalent, therefore, once equivalent entities are correctly associated, the

chance that equivalent attributes are matched is high. When true positives

of equivalent entities are not returned, it is usually because the match ev-

idence between the equivalent entities is weak, and a different entity may

have a few similar attributes with one of the equivalent entities thus being

associated with them together. In such cases, equivalent attributes can also

be identified successfully. This approach also helps to exclude false posi-

tives that associate one of equivalent attributes with attributes in different

entities.

The reasons for the worse performance of COMA++ are as follows: (i) with

a small delta of 0.01, Default COMA++ is able to remove false positives by

associating an attribute with only a limited number of matches (e.g., a sin-

gle match), but the low threshold of 0.1 is not able to remove sufficient false

positives; (ii) Tuned COMA++ uses the delta of 0.33, and as such might

associate multiple matches with a single attribute, which is not appropriate

given the requirement of associating 1-to-1 attributes here. The threshold

of 0.42 is able to remove some but not all false positives, and sometimes

also removes true positives. This observation again indicates that in or-

der to enable COMA to perform well, COMA++ needs to be configured

appropriately for the context it is applied. This might be quite a signifi-

cant challenge if schemas to be matched have different contexts throughout

them. For example, some entities/attributes (e.g., scenarios used in Exper-

iment 1) have only 1-to-1 matches whereas others (e.g., scenarios used in

Experiment 9) have n-to-m matches, both of which would require a different

configuration of COMA and a good knowledge of the schemas by the user

who configures COMA.

Considering the precision and recall reported in Figures 6.3 and 6.4, we observe

the following in terms of the performance of our method.

1. When strong evidence for matching equivalent entities is available, e.g.,

when they have the same instances and the same attributes, no false posi-

tives between different entities are returned (precision is 1.0 for Sets 1 and

5 in Figure 6.3(a)). However, when such evidence is weak, different entities

might be associated (precision is smaller than 1.0 for Sets 2 and 6 in Figure

6.2. EXPERIMENTAL EVALUATION ON MATCHBENCH 151

6.3(a), while recall is 1.0 in the same scenario sets in Figure 6.4(a)). This

is due to the aggregation Function 5.3. Whether ELRs can be included to

a top solution (i.e., the solution in the search space assigned the top fitness

value by Function 5.3) is decided by the ELR that has the top similarity

among all possible ELRs. If the top ELR similarity is much higher (e.g., 1.0)

than similarities of other ELRs (e.g., 0.3), the top solution only contains the

top ELR. By contrast, if the top ELR does not have much higher similarity

(e.g., 0.5) than other ELRs (e.g., 0.3), the top solution might include other

ELRs. In this experiment, the top ELR is usually the true positive that

associates equivalent entities. Thus, when strong evidence for matching

equivalent entities is available, the top solution would only contain the true

positive without including any false positives whose ELR similarities are

much lower than the true positive. However, when the match evidence is

weak between the equivalent entities, the ELR that associates them has low

similarity, and as such the top solution may contain both the true positive

and some false positives.

2. When match evidence for equivalent entities is weak, the top solution may

contain an ELR that associates one of the equivalent entities with a differ-

ent entity; sometimes the top solution may also have an n-to-m ELR that

associates equivalent entities with other entities (recall is 1.0 only in Sets

1, 2, 5 and 6 in Figure 6.4(a), but is smaller than 1.0 in other scenario

sets in Figure 6.4(a) and (b)). Where one of equivalent entities is matched

to a different entity, it is because the match evidence between equivalent

entities is rather weak, e.g., a significant number of attributes are removed

and equivalent entities have disjoint instances. The case that the n-to-m

entities, where the equivalent entities are a part, are associated incorrectly

is because when Function 5.3 (i.e.,
(
∑n

i=1 si×ci)2∑n
i=1 ci

) aggregates similarities (si)

of ELRs in a solution, it also considers the coverages (ci) of the ELRs. Thus,

Function 5.3 is a tradeoff between the similarity and the coverage of each

ELR. Assuming there are two solutions, such that the first solution contains

a 1-to-1 ELR that associates the equivalent entities and the second solution

contains an n-to-m ELR that associates the equivalent entities with other

entities. When the similarity of the 1-to-1 ELR is much higher than the n-

to-m ELR, si× ci of the 1-to-1 ELR would be higher than the n-to-m ELR;

however, when the similarity of the 1-to-1 ELR is merely a little higher than

152 CHAPTER 6. EXPERIMENTAL EVALUATION

the n-to-m ELR, si× ci of the n-to-m ELR would be higher than the 1-to-1

ELR. Therefore, the incorrect n-to-m ELR, where the equivalent entities

are a part, may be included in the top solution.

Similar to the observation in Chapter 4, we observe here that results of our

method and COMA++ (for both configuration settings) between Scenario Sets 1

and 5, 2 and 6, 3 and 7, and 4 and 8, where the only difference is a change in the

entity names, only differ slightly, as shown in Figure 6.2(c) and (d). Thus, we will

not report the results for Scenario Sets 5 to 8 in the text describing Experiments

3 to 6 and 8 (Sections 6.2.3 to 6.2.6 and 6.2.8).

6.2.2 Experiment 2: Identifying when the same entity oc-

curs in negative scenarios

The results of this experiment are reported in Figure 6.5. Using the same strategy

as Section 4.2.2, in this experiment we only observe and measure results produced

by our method and by COMA++ between the pair of different entities, where

similarities (e.g., SNDE, SNSA, DNSA in Figure 3.5 in Section 3.3.3) are injected.

The following can be observed:

!"

!#$"

!#%"

!#&"

!#'"

("

)*+",")*+"(!")*+"((")*+"($")*+"(-")*+"(%")*+"(.")*+"(&"

!
"
#
$%
&
#
'(
)
*+
*,

#
%
-.
$#
/'

01#2%$34-'

/0" "1*2345+"678099" :4;*<"678099""

(a) Expt 2: R1

!"

!#$"

!#%"

!#&"

!#'"

("

)*+",")*+"(!")*+"((")*+"($")*+"(-")*+"(%")*+"(.")*+"(&"

!
"
#
$%
&
#
'(
)
*+
*,

#
%
-.
$#
/'

01#2%$34-'

/0" "1*2345+"678099" :4;*<"678099""

(b) Expt 2: R2

Figure 6.5: Experiment 2 for Genetic Algorithm (GA), COMA++ default setting
and COMA++ tuned setting.

1. Our method has associated more pairs of different entities than COMA++

(Average(1-F-measure) reported for GA is higher than for Default COMA++

and Tuned COMA++ in Figure 6.5(a)), which is due to the following two

reasons: (i) when the source and target schemas have little in common,

the aggregation Function 5.3 assigns the top fitness value to a solution that

6.2. EXPERIMENTAL EVALUATION ON MATCHBENCH 153

associates several pairs of entity sets even though their similarity scores

as calculated by VSM are fairly low; (ii) our method does not utilize any

threshold to remove false positives, while COMA++ with both settings

employs the thresholds of 0.1 and 0.42, respectively.

2. Our method associates more pairs of different attributes than COMA++

between the pairs of different entities into which similarities have been in-

jected (Figure 6.5(b)). As we identify attribute-level relationships (ALRs)

for ELR associated by the top solution, associations of different entities

reported in Figure 6.5(a) leads to associations of different attributes.

6.2.3 Experiment 3: Identifying where different names

have been given to equivalent attributes in positive

scenarios

The results of this experiment are presented in Figure 6.6(a), where we distinguish

SI and DI cases, and show results for A1 and An cases separately, similarly to our

reporting style earlier in Section 4.2.3. Our method has performed better than

COMA++ in all scenario sets (F-measure reported in Figure 6.6(a) is higher for

GA than for Default COMA++ and Tuned COMA++), and has been able to

associate equivalent attributes that have disjoint instances, where both Default

COMA++ and Tuned COMA++ have failed (Set 2 (A1) DI in Figure 6.6(a)).

Our method mostly benefits from the strategy of not applying any threshold, and

as such equivalent attributes that have limited similarities can be associated.

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"$",-(.""

)/"

)*+"$",-0.""

)/"

)*+"%",-0.""

)/"

)*+"$",-(."

1/"

)*+"$",-0."

1/"

)*+"%",-0."

1/"

!
"
#
$%
&
#
'(
)*

#
%
+,
$#
'

-.#/%$01+'

2-" "1*3456+"789-::" ;50*<"789-::""

(a) Expt 3

!"

!#$"

!#%"

!#&"

!#'"

("

)*+",")-")*+",".-")*+"%")-")*+"%".-"

!
"
#
$%
&
#
'(
)
*+
*,

#
%
-.
$#
/'

01#2%$34-'

/0" ".*1234+"567088" 93:*;"567088""

(b) Expt 4

Figure 6.6: Experiments 3 and 4 for Genetic Algorithm (GA), COMA++ default
setting and COMA++ tuned setting.

154 CHAPTER 6. EXPERIMENTAL EVALUATION

6.2.4 Experiment 4: Identifying where different names

have been given to equivalent attributes in negative

scenarios

The results of this experiment are reported in Figure 6.6(b). Our method has

performed slightly worse than COMA++ in that a small number of different

attributes are associated incorrectly for the following reason: as mentioned in

Section 6.2.1, when the match evidence is weak, e.g., equivalent attributes have

similar names and equivalent entities have disjoint instances, the equivalent en-

tities are sometimes associated incorrectly with other entities to form n-to-m

associations, which can lead to different attributes being associated.

6.2.5 Experiment 5: Identifying missing attributes in pos-

itive scenarios

The results of this experiment are shown in Figure 6.7(a). Our method has out-

performed Default COMA++, and is competitive with Tuned COMA++. Oc-

casionally, our method has matched the missing attributes (attributes between

equivalent entities that do not have corresponding attributes) to some non-missing

attributes (attributes between equivalent entities that have corresponding at-

tributes) incorrectly, when their similarity scores are higher than those of equiv-

alent attributes (e.g., Sets 3 DI and 4 DI in Figure 6.7 (a)). Our method has

performed better than COMA++ because we do not apply a threshold to remove

matches, and thus most equivalent attributes are associated. However, using the

threshold COMA++ has been able to remove false positives but may also re-

move true positives that have low similarity scores, and thus has reported some

non-missing attributes incorrectly as missing attributes.

6.2.6 Experiment 6: Identifying missing attributes in neg-

ative scenarios

The results of this experiment are presented in Figure 6.7(b). Most of non-

missing attributes (attributes between equivalent entities that have correspond-

ing attributes) are associated with an attribute by our method, whereas both

Default COMA++ and Tuned COMA++ have incorrectly reported a few non-

missing attributes as missing. As stated previously, our method identifies ALRs

6.2. EXPERIMENTAL EVALUATION ON MATCHBENCH 155

!"

!#$"

!#%"

!#&"

!#'"

("

)*+",")-")*+",".-")*+"%")-")*+%".-"

!
"
#
$%
&
#
'(
)*

#
%
+,
$#
'

-.#/%$01+'

/0" ".*1234+"567088" 93:*;"567088""

(a) Expt 5

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"("),")*+"("-,")*+"$"),")*+"$"-,"

!
"
#
$%
&
#
'(
)
*+
*,

#
%
-.
$#
/'

01#2%$34-'

./" "-*0123+"456/77" 829*:"456/77""

(b) Expt 6

Figure 6.7: Experiments 5 and 6 for Genetic Algorithm (GA), COMA++ default
setting and COMA++ tuned setting.

for each ELR associated by the top solution. Given a 1-to-1 ELR, ALRs are

usually the 1-to-1 top matches between attributes. Thus, as long as the 1-to-1

equivalent entities are associated correctly, non-missing attributes would usually

be associated correctly. Default COMA++ may associate one of the non-missing

attributes with some attribute in a different entity in the other schema, if it

has higher similarity with the different attribute than its corresponding attribute

(Default COMA++ always chooses a top match among all matches between two

schemas for an attribute), and thus its corresponding attribute would be incor-

rectly identified as a missing attribute. Tuned COMA++ with its threshold of

0.42 removes true positives with low similarity scores (below 0.42) (Set 2 DI in

Figure 6.7(b)), and as such equivalent attributes that are not associated after

applying the threshold are incorrectly identified as missing attributes.

6.2.7 Experiment 7: Identifying many-to-one attribute

correspondences in positive scenarios

The results of this experiment are shown in Figure 6.8(a). Our method has been

able to identify two types of attribute many-to-one correspondences out of three

types presented in Section 3.3.4, when equivalent many-to-one attributes have

similar names and same instances (F-measure reported for Set 17 SI in Figure

6.8(a) is the average F-measure of the three types). Our method requires that

there is match evidence between each pair of attributes associated by the many-

to-one correspondences, and that the instances of the many attributes can be

transformed into the instances of the single attribute using the formulae presented

in Section 5.6. Therefore, our method failed in Set 17 DI where instances are

156 CHAPTER 6. EXPERIMENTAL EVALUATION

disjoint between the many and the one attributes, and it failed in Set 18 SI

because no match evidence is available to support the association of equivalent

many-to-one attributes (these attributes have different names and each pair of

these attributes always has disjoint instances).

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"(,")-")*+"(,".-")*+"('"

!
"
#
$%
&
#
'(
)*

#
%
+,
$#
'

-.#/%$01+'

/0" ".*1234+"567088" 93:*;"567088""

(a) Expt 7

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"(")*+"$")*+",")*+"%"
!
"
#
$%
&
#
'(
)
*+
*,

#
%
-.
$#
/'

01#2%$34-'

-." "/*0123+"456.77" 829*:"456.77""

(b) Expt 8

Figure 6.8: Experiments 7 and 8 for Genetic Algorithm (GA), COMA++ default
setting and COMA++ tuned setting.

Default COMA++ only identifies 1-to-1 matches due to its delta value of 0.1,

and thus is not able to identify many-to-one associations between attributes. By

contrast, Tuned COMA++ employs the threshold of 0.42 that has removed all

true positives as they have similarity scores of less than 0.42 because the match

evidence only comes from name similarities.

6.2.8 Experiment 8: Identifying many-to-one attribute

correspondences in negative scenarios

The results of this experiment are presented in Figure 6.8(a). Our method has

identified only a small number of attribute many-to-one correspondences incor-

rectly due to coincidental instance overlap. However, Tuned COMA++ has in-

correctly associated several many-to-one attributes because of the delta of 0.33.

Using a small delta of 0.01, Detault COMA++ has not associated any many-to-

one attributes.

6.2.9 Experiment 9: Identifying many-to-many entity cor-

respondences in positive scenarios

The results of this experiment are presented in Figure 6.9. Our method has

outperformed Default COMA++ and Tuned COMA++ in this experiment. Our

6.2. EXPERIMENTAL EVALUATION ON MATCHBENCH 157

method and Tuned COMA++ have performed generally well when equivalent en-

tity sets have the same instances (Figure 6.9(a), (c) and (e)), but have performed

less well when there is less match evidence (due to disjoint instances) to support

the identification of equivalent entity sets (Figure 6.9(b), (d) and (f)). Default

COMA++ failed in this experiment (Figure 6.9(a) and (b)), as the default set-

tings are more suitable to identifying 1-to-1 matches. As we have discussed results

of Default COMA++ in detail in Section 4.2.9, we do not discuss them below.

Comparing our method with Tuned COMA++, the following can be observed:

• Our method has outperformed Tuned COMA++ in most scenarios in terms

of satisfying Requirement R1, namely that each of the source entity types

can be matched with all the alternatively fragmented entity types. As shown

in Figure 6.9(a) and (b), except for Set 19 VP vs VP in Figure 6.9(a) and

Set 20 HP vs HP in Figure 6.9(b), higher F-measures are reported for our

method. We discuss the reasons in the following.

– Our method employs the vector space model (VSM) to calculate the

similarity of two (sets of) entities, and enables different solutions to

ELRs to compete with each other using the evolutionary search. The

F-measure reported in Figure 6.9(a) demonstrates the effectiveness

of our method for calculating the similarity of n-to-m entities given

sufficient match evidence. Analyzing the results, the following charac-

teristics of our method can be observed:

1. it is rather conservative when associating equivalent n-to-m enti-

ties, and sometimes returns (n-1)-to-m entities if the number of

matches between the unassociated entity and the set of m entities

is small, or if their match similarities are low. This is most com-

monly the case for VP vs VP scenarios (among all partitioning

types: the lowest F-measures are usually reported for VP vs VP

in Sets 19 and 20 in Figure 6.9(a) and (b)), because the number

of matches between each two VP vs VP entities is the smallest

among all partitioning types. This is also the case when more

differences are injected into the equivalent n-to-m entities (Set 20

in Figure 6.9(b)), resulting in low match similarities;

2. as stated in Section 6.2.1, whether ELRs can be included in a top

solution is decided by the ELR that has the top similarity among

158 CHAPTER 6. EXPERIMENTAL EVALUATION

!"

!#$"

!#%"

!#&"

!#'"

("

""")*+"(,"""""""""

-."/0"-.""

""")*+"(,"""""""""

1."/0"1.""

""")*+"(,"""""""""

-."/0"1.""

""")*+"$!"""""""""

-."/0"-.""

""")*+"$!"""""""""

1."/0"1.""

""")*+"$!"""""""""

-."/0"1.""

!
"
#
$%
&
#
'(
)*

#
%
+,
$#
'

-.#/%$01+'

23" "4*5678+"9:;3<<" =7>*?"9:;3<<""

(a) R1, same instances

!"

!#$"

!#%"

!#&"

!#'"

("

""")*+"(,"""""""""

-."/0"-.""

""")*+"(,"""""""""

1."/0"1.""

""")*+"(,"""""""""

-."/0"1.""

""")*+"$!"""""""""

-."/0"-.""

""")*+"$!"""""""""

1."/0"1.""

""")*+"$!"""""""""

-."/0"1.""
!
"
#
$%
&
#
'(
)*

#
%
+,
$#
'

-.#/%$01+'

23" "4*5678+"9:;3<<" =7>*?"9:;3<<""

(b) R1, disjoint instances

!"

!#$"

!#%"

!#&"

!#'"

("

""")*+"(,"""""""""

-."/0"-.""

""")*+"(,"""""""""

1."/0"1.""

""")*+"(,"""""""""

-."/0"1.""

""")*+"$!"""""""""

-."/0"-.""

""")*+"$!"""""""""

1."/0"1.""

""")*+"$!"""""""""

-."/0"1.""

!
"
#
$%
&
#
'(
)*

#
%
+,
$#
'

-.#/%$01+'

23" "4*5678+"9:;3<<" =7>*?"9:;3<<""

(c) R2, same instances

!"

!#$"

!#%"

!#&"

!#'"

("

""")*+"(,"""""""""

-."/0"-.""

""")*+"(,"""""""""

1."/0"1.""

""")*+"(,"""""""""

-."/0"1.""

""")*+"$!"""""""""

-."/0"-.""

""")*+"$!"""""""""

1."/0"1.""

""")*+"$!"""""""""

-."/0"1.""

!
"
#
$%
&
#
'(
)*

#
%
+,
$#
'

-.#/%$01+'

23" "4*5678+"9:;3<<" =7>*?"9:;3<<""

(d) R2, disjoint instances

!"

!#$"

!#%"

!#&"

!#'"

("

""")*+"(,"""""""""

-."/0"-.""

""")*+"(,"""""""""

1."/0"1.""

""")*+"(,"""""""""

-."/0"1.""

""")*+"$!"""""""""

-."/0"-.""

""")*+"$!"""""""""

1."/0"1.""

""")*+"$!"""""""""

-."/0"1.""

!
"
#
$%
&
#
'(
)*

#
%
+,
$#
'

-.#/%$01+'

23" "4*5678+"9:;3<<" =7>*?"9:;3<<""

(e) R3, same instances

!"

!#$"

!#%"

!#&"

!#'"

("

""")*+"(,"""""""""

-."/0"-.""

""")*+"(,"""""""""

1."/0"1.""

""")*+"(,"""""""""

-."/0"1.""

""")*+"$!"""""""""

-."/0"-.""

""")*+"$!"""""""""

1."/0"1.""

""")*+"$!"""""""""

-."/0"1.""

!
"
#
$%
&
#
'(
)*

#
%
+,
$#
'

-.#/%$01+'

23" "4*5678+"9:;3<<" =7>*?"9:;3<<""

(f) R3, disjoint instances

Figure 6.9: Experiment 9 for Genetic Algorithm (GA), COMA++ default setting
and COMA++ tuned setting.

6.2. EXPERIMENTAL EVALUATION ON MATCHBENCH 159

all possible ELRs. When the similarity of the top ELR (usually

the true positive) drops (Set 20 in Figure 6.9(a) and Set 19 in

Figure 6.9(b)), the top solution may contain the top ELR and

other ELRs that associate different entities (precision is smaller

than 1.0); and (iii) additional entities may be associated incor-

rectly with the equivalent n-to-m entities, when VSM similarity

of the equivalent n-to-m entities is fairly low, as Function 5.3 is a

tradeoff between the similarity and the coverage of the associated

entity sets.

– Tuned COMA++ mostly relies on the tuned delta of 0.33 that sets the

similarity range for matches with a score below the score of the top

match of an entity to determine matches associated with the entity,

and employs the threshold of 0.42 to remove false positives. When

equivalent entity sets have the same instances and their equivalent at-

tributes have the same names (Set 19 in Figure 6.9(a)), similarities of

each pair of equivalent n-to-m entities in the two schemas tend to be

close and relatively high. Thus, using this tuned setting COMA++

is able to identify many-to-many associations between the n-to-m en-

tities. However, when more differences are injected into the equiva-

lent entity sets (Set 20 in Figure 6.9(a) and Sets 19 and 20 in Figure

6.9(b)), similarities of each pair of the equivalent n-to-m entities tend

to be more different, and some of their similarities tend to be smaller

than 0.42. The effects can be observed by a significant decrease of

the F-measure reported for Tuned COMA++ resulting in their ex-

clusion (Figure 6.9(a) to (b)). As the configuration setting utilized

for Tuned COMA++ is rather MatchBench specific, Tuned COMA++

may fail when applied to a different set of scenarios without training

data, which may not always be available.

• Our method has been competitive with Tuned COMA++ in satisfying Re-

quirement R2, namely that primary key attributes should be matched (Fig-

ure 6.9(c) and (d)). Primary key attributes are incorrectly associated by

our method when their entities have been associated incorrectly. Using the

delta of 0.33, Tuned COMA++ has set a fairly large similarity range to

return n-to-m attribute matches, and thus has associated several different

attributes with the primary key attributes (Set 19 in Figure 6.9(a) and (b)

160 CHAPTER 6. EXPERIMENTAL EVALUATION

and Set 20 in Figure 6.9(c)). Using the threshold of 0.42, Tuned COMA++

sometimes has removed almost all true positives (Set 20 in Figure 6.9(d)).

• Our method has also outperformed Tuned COMA++ in terms of Require-

ment 3, namely that appropriate correspondences can be identified between

non-key attributes (Figure 6.9(e) and (f)). Using our method, correct n-

to-m ELRs usually result in the correct associations of 1-to-1 or n-to-m

attributes. Tuned COMA++ employs a context-specific setting to select

matches, and the configuration setting has been determined using a train-

ing set, which means that it is successful for some scenarios (e.g., Set 19 VP

vs VP in Figure 6.9(e)), where false positives and true positives have rather

different similarities, and thus false positives are removed by the delta of

0.33; however, this also results in it being less successful when applied to

other scenarios that are less similar to the context used in turning thresholds

(e.g., Set 20 in Figure 6.9(f)) due to the high threshold of 0.42.

6.2.10 Experiment 10: Identifying many-to-many entity

correspondences in negative scenarios

The results of this experiment are presented in Figure 6.10. As can be ob-

served, our method has identified a few incorrect n-to-m entity associations (Fig-

ure 6.10(a)), which also leads to incorrect n-to-m attribute associations (Figure

6.10(b)). This is due to the fact that the aggregation Function 5.3, as discussed

in Section 6.2.1, reflects a balance between the similarity and the coverage of

associated entities. When equivalent 1-to-1 entities have less in common (Sets 2

to 8 in Figure 6.10), their VSM similarity decreases. Thus, the coverage may play

a more dominant role in Equation 5.3 than the similarity. The top solution may

associate n-to-m entities rather than 1-to-1 entities. However, given the relatively

high F-measure reported in Experiment 9, the performance of our method in this

experiment is satisfactory. Default COMA++, though, has not matched incorrect

n-to-m entities and attributes where it should not, but also not performed well

in Experiment 9. Due to the use of MatchBench specific configuration settings,

Tuned COMA++ has outperformed our method in this experiment. However, the

training data required to identify the context specific settings may not always be

available.

6.3. EXPERIMENTAL EVALUATION ON AMALGAM 161

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"(")*+"$")*+",")*+"%")*+"-")*+"&")*+".")*+"'"

!
"
#
$%
&
#
'(
)
*+
*,

#
%
-.
$#
/'

01#2%$34-'

/0" "1*2345+"678099" :4;*<"678099""

(a) Expt 10: R1

!"

!#$"

!#%"

!#&"

!#'"

("

)*+"(")*+"$")*+",")*+"%")*+"-")*+"&")*+".")*+"'"

!
"
#
$%
&
#
'(
)
*+
*,

#
%
-.
$#
/'

01#2%$34-'

/0" "1*2345+"678099" :4;*<"678099""

(b) Expt 10: R2

Figure 6.10: Experiment 10 for Genetic Algorithm (GA), COMA++ default set-
ting and COMA++ tuned setting.

6.3 Experimental Evaluation on Amalgam

In this section, we present the experimental studies of our method using the Amal-

gam benchmark [MFH+01]. As introduced in Section 6.1.1, Amalgam provides

four relational databases in the bibliography domain devised by independent de-

velopers, and represents various types of schematic heterogeneities, as presented

in Table 6.1.

the number of schematic correspondences
1-to-1 n-to-m n-to-m n-to-m n-to-m 1-to-1/n-to-m

S/T equivalent HP vs HP VP vs VP HP vs VP VP vs HP equivalent missing
databases entities entities entities entities entities attributes attributes
s1/s3 1, 1, 0, 1 1, 0, 0, 1 10, 2, 7, 10 28, 28, 28, 28
s1/s4 1, 1, 0, 1 0, 0, 0, 1 2, 4, 3, 7 64, 48, 60, 64
s2/s3 0, 0, 0, 1 1/h, 0, 0, 1 6, 4, 0, 10 10, 10, 10, 10
s3/s4 1, 1, 0, 1 0, 0, 0, 1 2, 3, 3, 6 23, 20, 22, 23

Table 6.2: The number of successfully identified schematic correspondences be-
tween the Amalgam databases, following order: our method, Default COMA++,
Tuned COMA++ and the ground truth.

The results of this experiment are presented in Figure 6.11 and Table 6.2.

We omit the column for n-to-1 attributes in Table 6.2, as schemas provided by

Amalgam do not represent this heterogeneity (see Table 6.1). We report the over-

all performance of our method, Default COMA++ and Tuned COMA++ using

F-measure, i.e., F-measure of entity-level relationships (ELRs) and F-measure of

attribute-level relationships (ALRs), and present the results in Figure 6.11(a) and

(b), respectively. In addition, we list the number of correctly identified schematic

correspondences in each cell in Table 6.2, following order: our method, Default

COMA++, Tuned COMA++ and the ground truth. “1/h” in Table 6.2 means

162 CHAPTER 6. EXPERIMENTAL EVALUATION

that (n-1)-to-m entities of the ground truth are associated rather than the ground

truth n-to-m entities. The following can be observed:

1. Our method has outperformed Default COMA++ and Tuned COMA++

in terms of identifying ELRs (Figure 6.11(a)). Default COMA++ in turn

has outperformed Tuned COMA++, as the latter cannot identify any of

ELRs (the numbers of entity-level schematic correspondences identified by

Tuned COMA++ are all 0 in Table 6.2). All the 1-to-1 ELRs identified by

Default COMA++ have also been identified by our method, as reported in

Column 1-to-1 equivalent entities in Table 6.2. Default COMA++ cannot

identify any n-to-m ELRs, whereas our method has associated one and a

half pairs of n-to-m entities out of a total of 4 pairs. In addition, our method

has incorrectly associated a few pairs of different entities (F-measure<1.0

is reported for our method for s1/s3 in Figure 6.11(a), even though all true

positives are identified (see Table 6.2).

!"

!#$"

!#%"

!#&"

!#'"

("

)(*)+")(*)%")$*)+")+*)%"

!
"#

$
%
&'
($
)

+,)-.$#%&)

,-" "./01234"567-88" 92:/;"567-88""

(a) ELRs

!"

!#$"

!#%"

!#&"

!#'"

("

)(*)+")(*)%")$*)+")+*)%"

!
"#

$
%
&'
($
)

+,)-.$#%&)

,-" "./01234"567-88" 92:/;"567-88""

(b) ALRs

Figure 6.11: Amalgam results by Genetic Algorithm (GA), COMA++ default
setting and COMA++ tuned setting.

The databases provided by the Amalgam benchmark reflect real world sce-

narios. In the ground truth we have manually identified equivalent n-to-

m entities, but rather little match evidence can be found between them.

The first case of limited match evidence is that there are very few pairs of

equivalent attributes between the equivalent n-to-m entities. For example,

databases s3/s4 contain a pair of 1-to-2 VP vs VP entities, where the source

and target sets have in total 16 and 15 attributes, respectively, but only 4

pairs of attributes in the two entity sets are identified as being equivalent

in the ground truth (this can also be seen on the large number of missing

attributes between s3/s4, as stated in Table 6.2). Therefore, our method

6.3. EXPERIMENTAL EVALUATION ON AMALGAM 163

has not been able to associate the n-to-m entities between s3/s4 (Table

6.2). For the same reason our method has failed to identify the equiva-

lent n-to-m entities between s1/s4 and was only able to identify half of the

equivalent n-to-m entities between s2/s3. The second case of limited avail-

ability of sufficient match evidence is that equivalent attributes have fairly

little information in common. In the real world scenarios representing the

Amalgam benchmark, equivalent entities have little overlap at the instance

level, and thus the match evidence that can be used by our method is the

name similarity. Where equivalent attributes have similar names (e.g., the

n-to-m HP vs HP entities between s1/s3), our method has performed fairly

well where the pair of n-to-m entities is correctly identified; however, when

the names of equivalent attributes have little in common, e.g., the attribute

that represents abstract in bibliographic domain is called txt in database s2

but is called abstract in database s3, our method has failed.

Default COMA++ has performed well at identifying 1-to-1 entities, as dis-

cussed above. For application on the Amalgam benchmark, the fairly low

threshold of 0.1 used by Default COMA++ appears to be suitable for re-

taining the true positives between entities, even though their similarities

are quite low due to the disjoint instances between most pairs of equiva-

lent attributes. Tuned COMA++ configured with the MatchBench-specific

configuration setting in form of threshold of 0.42 is unsuitably high for

the Amalgam benchmark and, therefore, results in the removal of all true

positives between entities. This indicates that: (i) the default setting sug-

gested by COMA++ developers appears to be suitable for the application

on the Amalgam benchmark and in contexts with similar properties, i.e.,

match evidence of limited strength; (ii) to ensure the best performance of

COMA++, training data is required to determine the most appropriate

configuration setting for the specific context in which it is to be applied.

2. Our method has generally been more successful than COMA++ in associat-

ing ALRs (Figure 6.11(b)). When equivalent entities, irrespective of 1-to-1

or n-to-m, have been associated by our method (e.g., s1/s3), it has usu-

ally been able to associate equivalent attributes as well (F-measure of our

method reported for s1/s3 is quite good in Figure 6.11(b)). As stated pre-

viously, the effectiveness of our method on matching equivalent attributes

mostly depends on the ELRs results. Tuned COMA++ has outperformed

164 CHAPTER 6. EXPERIMENTAL EVALUATION

Default COMA++ in associating ALRs between all pairs of databases, ex-

cept s2/s3, because the delta of 0.33 used by Tuned COMA++ allows more

attributes to be associated with an attribute, thus resulting in the asso-

ciation of n-to-m equivalent attributes rather than just 1-to-1 attributes.

Default COMA++, on the other hand, has only returned 1-to-1 attributes

due to the small delta of 0.1, which only tends to retain the top match for

an attribute.

6.4 Summary and Conclusions

In this chapter, we evaluated our method for inferring schematic correspondences

using a collection of synthetic scenarios generated using MatchBench and a col-

lection of real world relational databases provided by the Amalgam benchmark,

both of which feature various representative types of schematic correspondences

between source and target schemas. We compared the results of our method with

the results of COMA++ configured with the default settings, i.e., (threshold,

delta) = (0.1, 0.01), and configured with the settings that we tuned specifically

using MatchBench scenarios, i.e., (threshold, delta) = (0.42, 0.33).

In general, our method outperformed Default COMA++ when applied to both

MatchBench and Amalgam scenarios in terms of its ability to inferring schematic

correspondences. Our method has been competitive with Tuned COMA++ (with

its MatchBench-specific setting) in the experimental studies on MatchBench sce-

narios. However, our method has been more successful than Tuned COMA++

on the Amalgam scenarios.

Compared to COMA++, which needs to rely on a context-specific setting to

be effective in a given matching task, our method is not sensitive to its settings

and has shown consistent effectiveness in inferring schematic correspondences in

different domains, e.g., MatchBench and Amalgam. As presented in Sections

6.2 and 6.3, when the input matches are able to provide enough similarity evi-

dence to support the search, our method has always been successful in identifying

schematic correspondences. However, our method tends to be less effective in in-

ferring schematic correspondences where the quality of matches is poor, such as

s1/s4 schemas in the Amalgam benchmark. In summary, our method has shown

the following features:

• Our method does not require a context-specific threshold to be specified

6.4. SUMMARY AND CONCLUSIONS 165

by the user to retain true positives or to remove false positives. Instead,

our method employs an objective function to rank different solutions and

returns the solution with the top fitness value specifying the entity-level

relationships (ELRs) identified between source and target schemas.

• Our method takes as input the source and target schemas and in addition

different sets of matches (e.g., a set of name matches and a set of instance

matches). Therefore, the quality of the input matches is important to our

method. We anticipate that with more accurate matches (e.g., matches that

associate attributes whose names are synonyms) our method would perform

better on the real world scenarios provided by the Amalgam benchmark.

• Our method sums up the similarity scores of different sets of matches and

does not use a threshold to select matches, and as such has been able

to associate attributes whose similarity is weak (e.g., similar names and

disjoint instances); by contrast, as COMA++ averages the similarity scores

and uses a threshold, matches with lower similarity scores are removed

prematurely.

• The objective function utilizes an adapted vector space model (VSM) to

calculate the similarity of two (sets of) entities, and is able to assign a

reasonable VSM similarity to a pair of entity sets using the input match

evidence. VSM similarities of most pairs of equivalent entities can be dis-

tinguished from VSM similarities of most pairs of different entities, thus

helping to effectively keep true positives and remove false positives using

the aggregation Function 5.3 in Section 5.5.7.

• The objective function allows both 1-to-1 and n-to-m entities to be associ-

ated in the top solution.

• Following a top down method for identifying attribute-level relationships

(ALRs), i.e., ALRs are identified for each ELR associated by the top solu-

tion, our method has achieved fairly good performance in matching equiv-

alent 1-to-1 and n-to-m attributes.

Chapter 7

Conclusion

In this chapter, we summarize the major research results and contributions pre-

sented in this thesis in Section 7.1, and discuss the open issues we have encoun-

tered while conducting the current research as the future work in Section 7.2.

7.1 Significance of Results and Contributions

Dataspaces aim to reduce the high upfront effort required to set up a traditional

data integration system. Thus, a dataspace management system is defined as a

data integration system that can be set up automatically and can be incrementally

improved by user’s annotations. However, most existing methods for specifying

views require manual effort, and thus are not suitable for setting up a dataspace

management system. This is because the majority of existing schema match-

ing approaches, such as [DR07, MGMR02, BN05, MBR01], match one-to-one

elements that have similar names, instances, data types, or structures between

source and target schemas. A well-known issue with these approaches is that the

meaning carried by these matches is unspecified and ambiguous [BM07, MHH00],

and therefore leads to the situation in which most methods for generating views

rely heavily on external resources (e.g., rich specfication for the relationships of

schemas) or human interaction [FHH+09, MBHR05, PB08, XE06].

Thus, the research presented in this thesis was motivated by the idea of in-

ferring schematic correspondences between heterogeneous but interrelated data

sources, which in turn are used as input of a method for automatically specify-

ing views [MBPF09] and bootstrap the setup process of a dataspace management

166

7.1. SIGNIFICANCE OF RESULTS AND CONTRIBUTIONS 167

system. Specifically, schematic correspondences characterize one-to-one or many-

to-many equivalent relationships between elements (e.g., tables and attributes in

relational databases) of source and target schemas, as discussed in Section 1.1.

Our research aimed to identify schematic correspondences that are expressive

enough to serve as the basis for the automatic generation of views. By survey-

ing the state-of-the-art on schema matching techniques, we have established that

existing approaches have been good at identifying and combining similarity ev-

idence (e.g., name and instances) between one-to-one elements, as presented in

Chapter 2. However, their ability to identify correspondences that carry more in-

formation than the simple similarity evidence, such as schematic correspondences,

has not been evaluated previously. We aimed to identify whether or not the ex-

isting schema matching approaches are able to infer schematic correspondences,

and thus helped to identify whether or not the output of the existing schema

matching approaches can be used as the input of the method for automatically

specifying views [MBPF09], as required by dataspaces. We built our research

upon the existing schema matching approaches, as our focus was not to propose

a more solid method for collecting various kinds of similarity evidence, but to

devise a method for effectively making use of such similarity evidence, in order

to infer more expressive information that characterizes relationships between the

schemas and that therefore can be used to generate views in dataspaces. Thus,

we have conducted two-step research to achieve our overall aim:

1. We have evaluated the effectiveness of existing schema matching approaches

on identifying schematic correspondences and developed a benchmark for

this purpose, namely MatchBench. By doing this, we gained an under-

standing of the advantages and disadvantages of underlying techniques of

the existing approaches, and thus were able to identify a collection of match-

ers that can be employed for inferring schematic correspondences. We have

conducted a series of experiments using three well-known and publicly avail-

able schema matching platforms, and have summarized their performance

into lessons on necessary steps to overcome the limitations of the existing

schema matching techniques on inferring schematic correspondences.

2. Based on the lessons we have learnt from the conducted experiments, we

have devised a method for inferring schematic correspondences using evolu-

tionary search, i.e., a genetic algorithm, which allows different solutions to

168 CHAPTER 7. CONCLUSION

compete with each other, and does not utilize heuristic rules, e.g., thresh-

olds, to identify a solution to schematic correspondences in light of the

available evidence. We have designed a novel objective function for the

search method based on the vector space model. We have demonstrated

the effectiveness of our method using a set of experiments.

In summary, the major contributions of the research presented in this thesis

are:

A wide range of scenarios that manifest schematic heterogeneities

We have developed a collection of scenarios in MatchBench based on schematic

heterogeneities summarized by Kim et al. [KS91], as presented in Section 3.3.

MatchBench starts with two relational databases that contain a pair of exactly

equivalent entities (i.e., tables), and systematically injects perturbations (e.g.,

various types of schematic heterogeneities presented in Section 1.1) into the pair

of equivalent entities. MatchBench offers three scenario spaces where equivalent

entities exhibit various types of schematic heterogeneities: a space of scenarios

where one-to-one equivalent entities either represent each of DNSE, DNSA and

missing attributes conflicts or represent a combination of these conflicts; a space of

scenarios where one-to-one equivalent entities represent various types of attribute

many-to-one conflict; and a space of scenarios where many-to-many equivalent

entities represent HP vs HP, HP vs VP and VP vs VP conflicts combined with

changes of attribute names. In addition, MatchBench also provides a space for

different entities. It starts with two relational databases where the pair of equiv-

alent entities are removed, and systematically injects similarities (e.g., SNDE,

SNDA and SNSA) into a pair of different entities.

A collection of experiments over the scenarios

We have designed experiments to evaluate the effectiveness of schema matching

platforms in identifying one-to-one equivalent entities (referring to as DNSE),

DNSA, missing attributes, many-to-one equivalent attributes and many-to-many

equivalent entities (containing HP vs HP, HP vs VP and VP vs VP conflicts),

as presented in Section 3.4. For each above type of schematic correspondences,

we have designed a positive and a negative experiment. The positive experiment

evaluates matching platforms on scenarios where the schematic correspondence is

present, while the negative experiment selects scenarios where the correspondence

7.1. SIGNIFICANCE OF RESULTS AND CONTRIBUTIONS 169

is absent, thus requiring that the platforms should not identify such correspon-

dences.

An evaluation of schema matching systems using MatchBench

We have applied MatchBench to evaluate three well-known and publicly avail-

able schema matching platforms, namely COMA++ [DR07], Rondo [MRB03],

and OpenII [SMH+10], as presented in Chapter 4. COMA++ has performed

fairly well on comparing elements and determining their similarity. However, as

a result of having to use heuristic choices for its configuration, COMA++’s results

suffer from being sensitive to specific configurations. To account for this fact in

the MatchBench experiments, we followed the instruction of COMA++ authors,

and used its default setting (i.e., threshold=0.1, delta =0.01) to identify matches

on MatchBench scenarios, as discussed in Section 4.1.1. This setting is mostly

intended for identifying one-to-one matches and has failed in most of experiments

where many-to-many matches are expected. Rondo is a model management plat-

form providing operations that act on schemas and the correspondences between

them, such as Merge, Compose and Difference. It employs Similarity Flooding

[MGMR02] to identify one-to-one matches between two schemas, and therefore

is less suitable for identifying many-to-many schematic correspondences. OpenII

specializes in providing an interactive user interface for data integration tasks,

such as schema matching. As suggested by OpenII developers, we chose to use

the best match associated with each element as OpenII results, which leads to

a significant number of false positives being returned. In summary, the method

of selecting candidate matches directly affects the quality of the final matching

results. However, although the existing schema matching approaches have per-

formed fairly well in comparing elements and producing candidate matches, none

of the three evaluated platforms offers an effective strategy for selecting candidate

matches.

An evolutionary search method for inferring schematic correspondences

Given basic matches that associate elements that have similar names or instances,

we have developed a two-step method for inferring schematic correspondences

between source and target schemas, as described in Chapter 5: i) using an evo-

lutionary search to infer a set of entity-level relationships (ELRs) between two

relational databases, and ii) deriving a set of attribute-level relationships (ALRs)

170 CHAPTER 7. CONCLUSION

for the ELRs identified in the first step. By applying the evolutionary search, we

do not need to apply heuristic rules to select equivalent entities from candidate

matches. Specifically, we model our requirement of identifying schematic corre-

spondences as an objective function, which calculates the relative fitness value of

a solution in the search space, thus allowing different solutions (ELRs) to com-

pete with each other. The solution that is obtained during the search and has

a greater fitness value than any of the other solutions is obtained as the result

ELRs. To apply the evolutionary search, we have implemented various operators

required for the evolutionary search, e.g., mutation, crossover and selection, as

presented in Section 5.3, and have designed the phenotype and genotype repre-

sentations for a set of ELRs in Section 5.4.

A novel objective function

To guide the search process, we model the requirements for inferring a set of ELRs

using an objective function in Section 5.5. Our requirements include: i) assign-

ing a similarity score to a pair of entity sets sufficient to differentiate between a

pair of equivalent entity sets and a pair of different entity sets that coincidentally

have overlapping attribute names or instances; ii) assigning a higher similarity

to equivalent n-to-m entities than its subsets of entities, e.g., (n-1)-to-m entities;

iii) determining partitioning of a pair of n-to-m entity sets, i.e., horizontal par-

titioning (HP) or vertical partitioning (VP); and iv) selecting as many pairwise

entity sets that have high similarities as possible. To meet requirements i) and

ii), we follow the intuition behind the design of the vector space model to calcu-

late the similarity of pairwise entity sets. In particular, we represent two entity

sets associated by an ELR as two vectors (Section 5.5.4) and calculate the vector

similarity as their similarity (Section 5.5.6). To meet requirement iii), we express

each of the two entity sets (if cardinality > 1) as being horizontal and vertical

vectors, respectively, as presented in Secton 5.5.4. Choosing the maximum sim-

ilarity among similarities of HP vs HP, HP vs VP, VP vs HP, and VP vs VP

vectors allows us to discover the specific partitioning of the two entity sets. To

meet requirement iv), we devise an aggregation function to calculate an overall

similarity for a set of ELRs given their similarities, as presented in Section 5.5.7.

This function assigns a higher overall similarity to a set of ELRs if it contains

more ELRs with similarities closer to the highest ELR similarity. The set of

ELRs that has the maximum aggregation similarity obtained during the search

7.2. FUTURE WORK 171

is considered as the result ELRs.

An experimental explanation of the effectiveness of our approach for

inferring schematic correspondences

We evaluated our approach using the synthetic scenarios generated by Match-

Bench, and four Amalgam [MFH+01] relational databases devised by indepen-

dent designers. All these test cases contain various schematic correspondences

between source and target schemas. We compare the performance of our ap-

proach with COMA++ configured with two different settings, which differ in the

values chosen for the two parameters Threshold and Delta. The first setting, so-

called Default COMA++ in Chapter 6, uses Threshold=0.1 and Delta=0.01, is

the default setting of COMA++ tool we obtained from COMA++ developers;

the second setting, so-called Tuned COMA++ in Chapter 6, uses Threshold=0.42

and Delta=0.33 which we identified as the best settings for applying COMA++

on MatchBench scenarios. Our work has been demonstrated to be effective for

inferring schematic correspondences. It has outperformed Default COMA++ for

both MatchBench and Amalgam scenarios, and has been able to identify most of

the schematic correspondences given sufficient match evidence (e.g., the same in-

stances between equivalent entities). It has performed slightly worse than Tuned

COMA++ as it sometimes returns more false positives than Tuned COMA++,

while Tuned COMA++ that utilizes the MatchBench-specific setting is able to

return true positives and remove most false positives more effectively than our

approach, which has not been tuned specifically for the MatchBench scenarios.

However, our method has performed much better than Tuned COMA++, which

was tuned specifically for the MatchBench scenarios, in identifying schematic

correspondences between Amalgam databases. Our method meets the scalability

issue and should be improved in future work, as stated in the next section.

7.2 Future Work

In this thesis we have not investigated the complete list of schematic hetero-

geneities proposed by Kim et al. [KS91, KCGS93]. Furthermore, there are alter-

native ways of characterizing relationships between elements in two schemas, in

addition to the schematic correspondences. These remarks, therefore, point to a

number of open issues that could be explored in future work as follows:

172 CHAPTER 7. CONCLUSION

• Covering a wider range of schematic heterogeneities. In this thesis, we have

focussed our research on various types of schematic heterogeneities spec-

ified between two interrelated but heterogeneous relational databases at

the schema-level. There are several types of instance-level conflicts [KS91]

not addressed here, such as different instance representations for similar

attributes (e.g., 06.2011 vs June 2011). Furthermore, data model hetero-

geneities and schematic heterogeneities tend to occur together in real world

scenarios, as stated in the beginning of this thesis (Section 1.1), and thus

may require further attention. Additional types of heterogeneities between

relational databases and object-oriented databases have been classified by

Kim et al. [KCGS93]. B. S. Lerner also categorizes various heterogeneities

due to modifications to databases when their schemas evolve over time

[Ler00]. These classifications may be extended to capture more types of

semantic relationships between two interrelated but heterogeneous data

sources, and may also be utilized as guidance for the inference of asso-

ciations between the data sources.

• Developing and implementing a more general benchmark for diagnosing var-

ious types of heterogeneities, e.g., combined schematic heterogeneities and

data model heterogeneities. A new benchmark could eliminate the limita-

tions of the current MatchBench, which only generates scenarios between

pairwise relational schemas. An improved MatchBench could take as input

a single data source represented using any model, not just relational, and

automatically generate scenarios that represent schematic heterogeneities

and data model heterogeneities between data sources.

• An inference method that is able to infer schematic correspondences be-

tween pairwise data sources represented using different data models (e.g.,

relational, XSD, object, ontology, etc.). A possible approach is to utilize a

model-generic method, e.g., using a canonical model, to capture common

features of different data models and infer schematic correspondences be-

tween the two canonical models [HBM+]. This method currently supports

a generalization of relational, XSD, object and object-relational schemas.

However, data sources may be represented by ontologies, and schematic

correspondences may be present between a traditional database and an

ontology or between two ontologies. To the best of our knowledge, this

7.2. FUTURE WORK 173

research problem has not been addressed yet.

• An improvement to the quality of input matches. Several existing schema

matching approaches have been developed to identify various similarities

(e.g., names, instances and data types) between elements of source and

target schemas, so-called matches, as presented in Chapter 2. Due to the

large corpus of previous work on schema matching, the method for infer-

ring schematic correspondences we devised in Chapter 5 mostly contributes

to how to utilize these matches to derive more information (i.e., schematic

correspondence) rather than competing with previous work (i.e., identify-

ing matches). However, the quality of input matches does affect the overall

performance of the inference work. In the real world applications, e.g.,

those provided by the Amalgam scenarios used in Section 6.3, it appears

to be rather common that attributes representing the same real world con-

cept have little overlap on their names and instances, and thus tend not

to be matched. In those cases without sufficient match evidence, our ap-

proach for inferring schematic correspondences from matches does not per-

form well. Therefore, we suggest that additional efforts to recognize similar

attributes whose names represent the same meaning but are denoted by dif-

ferent strings or whose instances belong to the same domain but are disjoint

are necessary to improve the performance of our approach. It is also possible

to apply the pay-as-you-go approach [FHM05] that utilizes user feedback

to refine the input matches, and thus help to achieve more accurate results

of inferring schematic correspondences.

• Identification of more types of many-to-many entity associations in addition

to horizontal partitioning and vertical partitioning. Following the classifica-

tion of Kim et al. [KS91], many-to-many entities that represent horizontal

or vertical partitioning are associated by our approach so as to show that the

two sets of entities represent the same real world concept. In fact, two sets of

entities that do not satisfy the requirements of horizontal or vertical parti-

tioning may also represent the same real world information, and thus should

be identified as being equivalent. For example, entities seldom appear alone

and are usually associated with relationships in entity-relationship (ER)

models. In such cases, more general many-to-many entity-relationship as-

sociations may capture the equivalence relationships between source and

174 CHAPTER 7. CONCLUSION

target ER models more precisely than horizontal or vertical partitioning.

Thus, more work is required for summarizing and inferring these more gen-

eral relationships.

• Scalability of the evolutionary search. The approach presented in Chap-

ter 5 using an evolutionary search method is mostly suitable for inferring

schematic correspondences between small scale relational databases. This

is because as the number of entities in a schema increases, the search space

increases exponentially. The large search space usually requires more gen-

erations/iterations to identify an optimal solution and may cause the search

to get trapped in a local optimal solution rather than returning a global op-

timal solution. Thus, one way to infer schematic correspondences between

large scale schemas is to partition the schemas into segments, and employ

the evolutionary search to infer the correspondences between similar seg-

ments. Techniques used by, e.g., COMA++ [DR07] and Falcon [HQC08],

may be investigated to address this issue.

• Similar to schema matching approaches, the method for inferring schematic

correspondences may also be suitable to address issues of interdisciplinary

research, such as bioinformatics and medicine, where data integration tech-

niques are highly demanded [GS08, LMMS+07, KN04]. Of course, further

research combining both domain knowledge and our approach would be

necessary.

Bibliography

[ABBG09] Paolo Atzeni, Luigi Bellomarini, Francesca Bugiotti, and Giorgio

Gianforme. A runtime approach to model-independent schema and

data translation. In EDBT, pages 275–286, 2009.

[ABMM07] Yuan An, Alexander Borgida, Renée J. Miller, and John Mylopou-

los. A semantic approach to discovering schema mapping expres-

sions. In ICDE, pages 206–215, 2007.

[ACPS96] Sibel Adali, K. Selçuk Candan, Yannis Papakonstantinou, and V. S.

Subrahmanian. Query caching and optimization in distributed me-

diator systems. In SIGMOD Conference, pages 137–148, 1996.

[ALM09] Shun’ichi Amano, Leonid Libkin, and Filip Murlak. Xml schema

mappings. In PODS, pages 33–42, 2009.

[ASS09] Alsayed Algergawy, Eike Schallehn, and Gunter Saake. Improving

xml schema matching performance using prüfer sequences. Data

Knowl. Eng., 68(8):728–747, 2009.

[ATV08] Bogdan Alexe, Wang Chiew Tan, and Yannis Velegrakis. Stbench-

mark: towards a benchmark for mapping systems. PVLDB,

1(1):230–244, 2008.

[BBC+99] Philip A. Bernstein, Thomas Bergstraesser, Jason Carlson, Shankar

Pal, Paul Sanders, and David Shutt. Microsoft repository version 2

and the open information model. Inf. Syst., 24(2):71–98, 1999.

[BBR11] Zohra Bellahsene, Angela Bonifati, and Erhard (Eds.) Rahm.

Towards large-scale schema and ontology matching, pages 3–28.

Schema Matching and Mapping. Springer, 2011.

175

176 BIBLIOGRAPHY

[BDG+07] Lukas Blunschi, Jens-Peter Dittrich, Olivier René Girard, Shant Ki-

rakos Karakashian, and Marcos Antonio Vaz Salles. A datas-

pace odyssey: The imemex personal dataspace management system

(demo). CIDR, pages 114–119, 2007.

[BEFF06] Philip Bohannon, Eiman Elnahrawy, Wenfei Fan, and Michael

Flaster. Putting context into schema matching. VLDB, pages 307–

318, 2006.

[BEG+06] Bishwaranjan Bhattacharjee, Vuk Ercegovac, Joseph S. Glider,

Richard A. Golding, Guy M. Lohman, Volker Markl, Hamid Pira-

hesh, Jun Rao, Robert M. Rees, Frederick Reiss, Eugene J. Shekita,

and Garret Swart. Impliance: A next generation information man-

agement appliance. CoRR, abs/cs/0612129, 2006.

[Ber03] Philip A. Bernstein. Applying model management to classical meta

data problems. In CIDR, 2003.

[BHP00] Philip A. Bernstein, Alon Y. Halevy, and Rachel Pottinger. A vision

of management of complex models. SIGMOD Record, 29(4):55–63,

2000.

[BLR97] Catriel Beeri, Alon Y. Levy, and Marie-Christine Rousset. Rewrit-

ing queries using views in description logics. In PODS, pages 99–108,

1997.

[BM07] Philip A. Bernstein and Sergey Melnik. Model management 2.0:

manipulating richer mappings. pages 1–12, 2007.

[BN05] Alexander Bilke and Felix Naumann. Schema matching using du-

plicates. ICDE, pages 69–80, 2005.

[BPE+10] Khalid Belhajjame, Norman W. Paton, Suzanne M. Embury, Alvaro

A. A. Fernandes, and Cornelia Hedeler. Feedback-based annotation,

selection and refinement of schema mappings for dataspaces. In

EDBT, pages 573–584, 2010.

[BR03] Christian Blum and Andrea Roli. Metaheuristics in combinatorial

optimization: Overview and conceptual comparison. ACM Comput.

Surv., 35(3):268–308, 2003.

BIBLIOGRAPHY 177

[BV84] Catriel Beeri and Moshe Y. Vardi. A proof procedure for data

dependencies. J. ACM, 31(4):718–741, 1984.

[BYRN99] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern informa-

tion retrieval. ACM press New York, 1999.

[CFM06] Silvana Castano, Alfio Ferrara, and Stefano Montanelli. Matching

ontologies in open networked systems: Techniques and applications.

pages 25–63, 2006.

[CHT05] Kajal T. Claypool, Vaishali Hegde, and Naiyana Tansalarak.

QMatch - a hybrid match algorithm for xml schemas. In ICDE

Workshops, page 1281, 2005.

[CHW+08] Michael J. Cafarella, Alon Y. Halevy, Daisy Zhe Wang, Eugene Wu

0002, and Yang Zhang. Webtables: exploring the power of tables

on the web. PVLDB, 1(1):538–549, 2008.

[CKP08] Laura Chiticariu, Phokion G. Kolaitis, and Lucian Popa. Interactive

generation of integrated schemas. In SIGMOD Conference, pages

833–846, 2008.

[CRF03] William W. Cohen, Pradeep D. Ravikumar, and Stephen E. Fien-

berg. A comparison of string distance metrics for name-matching

tasks. In IIWeb, pages 73–78, 2003.

[DBH07] Fabien Duchateau, Zohra Bellahsene, and Ela Hunt. XBenchmatch:

a benchmark for XML schema matching tools. VLDB, pages 1318–

1321, 2007.

[DDH01] AnHai Doan, Pedro Domingos, and Alon Y. Halevy. Reconciling

schemas of disparate data sources: A machine-learning approach.

pages 509–520, 2001.

[DGL00] Oliver M. Duschka, Michael R. Genesereth, and Alon Y. Levy. Re-

cursive query plans for data integration. J. Log. Program., 43(1):49–

73, 2000.

[DHY07] Xin Luna Dong, Alon Y. Halevy, and Cong Yu. Data integration

with uncertainty. VLDB, pages 687–698, 2007.

178 BIBLIOGRAPHY

[DKS+08] Bing Tian Dai, Nick Koudas, Divesh Srivastava, Anthony K. H.

Tung, and Suresh Venkatasubramanian. Validating multi-column

schema matchings by type. ICDE, pages 120–129, 2008.

[DLD+04] Robin Dhamankar, Yoonkyong Lee, AnHai Doan, Alon Y. Halevy,

and Pedro Domingos. imap: Discovering complex mappings between

database schemas. In SIGMOD Conference, pages 383–394, 2004.

[DMDH02] AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Y.

Halevy. Learning to map between ontologies on the semantic web.

pages 662–673, 2002.

[DMR02] Hong Hai Do, Sergey Melnik, and Erhard Rahm. Comparison of

schema matching evaluations. Web, Web-Services, and Database

Systems, pages 221–237, 2002.

[Do06] Hong Hai Do. Schema Matching and Mapping-based Data Integra-

tion. Verlag Dr. Müller (VDM), 2006.

[DR02] Hong Hai Do and Erhard Rahm. COMA - A System for Flexible

Combination of Schema Matching Approaches. VLDB, pages 610–

621, 2002.

[DR07] Hong Hai Do and Erhard Rahm. Matching large schemas: Ap-

proaches and evaluation. Information Systems, 32(6):857–885, 2007.

[DS06] Jens-Peter Dittrich and Marcos Antonio Vaz Salles. iDM: A Unified

and Versatile Data Model for Personal Dataspace Management. In

VLDB, pages 367–378, 2006.

[EFH+09] Jérôme Euzenat, Alfio Ferrara, Laura Hollink, Antoine Isaac, Cliff

Joslyn, Véronique Malaisé, Christian Meilicke, Andriy Nikolov,

Juan Pane, Marta Sabou, François Scharffe, Pavel Shvaiko, Vas-

silis Spiliopoulos, Heiner Stuckenschmidt, Ondrej Sváb-Zamazal,

Vojtech Svátek, Cássia Trojahn dos Santos, George A. Vouros, and

Shenghui Wang. Results of the ontology alignment evaluation ini-

tiative 2009. In OM, 2009.

[EM07] Daniel Engmann and Sabine Maßmann. Instance Matching with

COMA++. BTW Workshops, pages 28–37, 2007.

BIBLIOGRAPHY 179

[Emb97] David W. Embley. Object database Development: concepts and prin-

ciples. Addison-Wesley Longman Publishing Co., Inc. Boston, MA,

USA, 1997.

[EMS+06] Jérôme Euzenat, Malgorzata Mochol, Pavel Shvaiko, Heiner Stuck-

enschmidt, Ondrej Sváb, Vojtech Svátek, Willem Robert van Hage,

and Mikalai Yatskevich. Results of the ontology alignment evalua-

tion initiative 2006. In Ontology Matching, 2006.

[EOE08] Hazem Elmeleegy, Mourad Ouzzani, and Ahmed K. Elmagarmid.

Usage-based schema matching. In ICDE, pages 20–29, 2008.

[ES03] Agoston E. Eiben and James E. Smith. Introduction to evolutionary

computing. Springer Verlag, 2003.

[FHH+09] Ronald Fagin, Laura M. Haas, Mauricio A. Hernández, Renée J.

Miller, Lucian Popa, and Yannis Velegrakis. Clio: Schema mapping

creation and data exchange. In Conceptual Modeling: Foundations

and Applications, pages 198–236, 2009.

[FHM05] Michael J. Franklin, Alon Y. Halevy, and David Maier. From

databases to dataspaces: a new abstraction for information man-

agement. ACM SIGMOD Record, 34(4):27–33, 2005.

[FKMP03] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian

Popa. Data exchange: Semantics and query answering. ICDT,

pages 207–224, 2003.

[FKPT04] Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wang Chiew

Tan. Composing schema mappings: Second-order dependencies to

the rescue. In PODS, pages 83–94, 2004.

[FLM99] Marc Friedman, Alon Y. Levy, and Todd D. Millstein. Navigational

plans for data integration. In AAAI/IAAI, pages 67–73, 1999.

[FW97] Marc Friedman and Daniel S. Weld. Efficiently executing

information-gathering plans. In IJCAI (1), pages 785–791, 1997.

180 BIBLIOGRAPHY

[GMPQ+97] Hector Garcia-Molina, Yannis Papakonstantinou, Dallan Quass,

Anand Rajaraman, Yehoshua Sagiv, Jeffrey D. Ullman, Vasilis Vas-

salos, and Jennifer Widom. The tsimmis approach to mediation:

Data models and languages. J. Intell. Inf. Syst., 8(2):117–132, 1997.

[Gol89] David E. Goldberg. Genetic algorithms in search, optimization, and

machine learning. Addison-wesley Reading Menlo Park, 1989.

[Gre86] J.J. Grefenstette. Optimization of control parameters for genetic

algorithms. Systems, Man and Cybernetics, IEEE Transactions on,

16(1):122–128, 1986.

[GS08] Carole A. Goble and Robert Stevens. State of the nation in data

integration for bioinformatics. Journal of Biomedical Informatics,

41(5):687–693, 2008.

[GSY04] Fausto Giunchiglia, Pavel Shvaiko, and Mikalai Yatskevich. S-

match: an algorithm and an implementation of semantic matching.

In ESWS, pages 61–75, 2004.

[GYS07] Fausto Giunchiglia, Mikalai Yatskevich, and Pavel Shvaiko. Seman-

tic matching: Algorithms and implementation. J. Data Semantics,

9:1–38, 2007.

[Haa07] Laura M. Haas. Beauty and the beast: The theory and practice of

information integration. In ICDT, pages 28–43, 2007.

[Hal01] Alon Y. Halevy. Answering queries using views: A survey. VLDB

J., 10(4):270–294, 2001.

[HBF+09] Cornelia Hedeler, Khalid Belhajjame, Alvaro A. A. Fernandes,

Suzanne M. Embury, and Norman W. Paton. Dimensions of datas-

paces. In BNCOD, pages 55–66, 2009.

[HBM+] Cornelia Hedeler, Khalid Belhajjame, Lu Mao, Chenjuan Guo, Ian

Arundale, Bernadette Farias Lóscio, Norman W. Paton, Alvaro A.A.

Fernandes, and Suzanne M. Embury. DSToolkit: An architecture

for flexible Dataspace Management. TLDKS Journal (to appear).

BIBLIOGRAPHY 181

[HFM06] Alon Y. Halevy, Michael J. Franklin, and David Maier. Principles

of dataspace systems. PODS, pages 1–9, 2006.

[HHB10] Jun Hong, Zhongtian He, and David A. Bell. An evidential approach

to query interface matching on the deep web. Inf. Syst., 35(2):140–

148, 2010.

[HHH+05] Laura M. Haas, Mauricio A. Hernández, Howard Ho, Lucian Popa,

and Mary Roth. Clio grows up: from research prototype to indus-

trial tool. In SIGMOD Conference, pages 805–810, 2005.

[HIST03] Alon Y. Halevy, Zachary G. Ives, Dan Suciu, and Igor Tatarinov.

Schema mediation in peer data management systems. In ICDE,

pages 505–516, 2003.

[HQC08] Wei Hu, Yuzhong Qu, and Gong Cheng. Matching large ontologies:

A divide-and-conquer approach. Data Knowl. Eng., 67(1):140–160,

2008.

[HRO06] Alon Y. Halevy, Anand Rajaraman, and Joann J. Ordille. Data

integration: The teenage years. VLDB, pages 9–16, 2006.

[IIK08] Aminul Islam, Diana Zaiu Inkpen, and Iluju Kiringa. Applica-

tions of corpus-based semantic similarity and word segmentation

to database schema matching. VLDB J., 17(5):1293–1320, 2008.

[JFH08] Shawn R. Jeffery, Michael J. Franklin, and Alon Y. Halevy. Pay-as-

you-go user feedback for dataspace systems. SIGMOD Conference,

pages 847–860, 2008.

[KCGS93] Won Kim, Injun Choi, Sunit K. Gala, and Mark Scheevel. On resolv-

ing schematic heterogeneity in multidatabase systems. Distributed

and Parallel Databases, 1(3):251–279, 1993.

[KN03] Jaewoo Kang and Jeffrey F. Naughton. On schema matching with

opaque column names and data values. SIGMOD Conference, pages

205–216, 2003.

[KN04] Michael Krauthammer and Goran Nenadic. Term identification

in the biomedical literature. Journal of Biomedical Informatics,

37(6):512–526, 2004.

182 BIBLIOGRAPHY

[KN08] Jaewoo Kang and Jeffrey F. Naughton. Schema matching us-

ing interattribute dependencies. IEEE Trans. Knowl. Data Eng.,

20(10):1393–1407, 2008.

[Kol05] Phokion G. Kolaitis. Schema mappings, data exchange, and meta-

data management. PODS, pages 61–75, 2005.

[Kot09] Yannis Kotidis. View definition. In Encyclopedia of Database Sys-

tems, pages 3325–3326. 2009.

[KQ+09] David Kensche, Christoph Quix, Xiang Li 0002, Yong Li, and

Matthias Jarke. Generic schema mappings for composition and

query answering. Data Knowl. Eng., 68(7):599–621, 2009.

[KQLJ07] David Kensche, Christoph Quix, Yong Li, and Matthias Jarke.

Generic schema mappings. In ER, pages 132–148, 2007.

[KS91] Won Kim and Jungyun Seo. Classifying schematic and data hetero-

geneity in multidatabase systems. IEEE Computer, 24(12):12–18,

1991.

[Len02] Maurizio Lenzerini. Data integration: A theoretical perspective.

PODS, pages 233–246, 2002.

[Ler00] Barbara Staudt Lerner. A model for compound type changes

encountered in schema evolution. ACM Trans. Database Syst.,

25(1):83–127, 2000.

[LEW00] Stephen W. Liddle, David W. Embley, and Scott N. Woodfield. An

active, object-oriented, model-equivalent programming language. In

Advances in Object-Oriented Data Modeling, pages 335–361. 2000.

[LMMS+07] Brenton Louie, Peter Mork, Fernando Mart́ın-Sánchez, Alon Y.

Halevy, and Peter Tarczy-Hornoch. Data integration and genomic

medicine. Journal of Biomedical Informatics, 40(1):5–16, 2007.

[LN07] Frank Legler and Felix Naumann. A classification of schema map-

pings and analysis of mapping tools. BTW, pages 449–464, 2007.

BIBLIOGRAPHY 183

[LSDR07] Yoonkyong Lee, Mayssam Sayyadian, AnHai Doan, and Arnon

Rosenthal. etuner: tuning schema matching software using syn-

thetic scenarios. VLDB J., 16(1):97–122, 2007.

[MA10] Hatem A. Mahmoud and Ashraf Aboulnaga. Schema clustering and

retrieval for multi-domain pay-as-you-go data integration systems.

In SIGMOD Conference, pages 411–422, 2010.

[MAB07] Sergey Melnik, Atul Adya, and Philip A. Bernstein. Compiling

mappings to bridge applications and databases. In SIGMOD Con-

ference, pages 461–472, 2007.

[MBDH05] Jayant Madhavan, Philip A. Bernstein, AnHai Doan, and Alon Y.

Halevy. Corpus-based schema matching. ICDE, pages 57–68, 2005.

[MBHR05] Sergey Melnik, Philip A. Bernstein, Alon Y. Halevy, and Erhard

Rahm. Supporting executable mappings in model management.

SIGMOD Conference, pages 167–178, 2005.

[MBPF09] Lu Mao, Khalid Belhajjame, Norman W. Paton, and Alvaro A. A.

Fernandes. Defining and using schematic correspondences for au-

tomatically generating schema mappings. In CAiSE, pages 79–93,

2009.

[MBR01] Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic

schema matching with cupid. VLDB, pages 49–58, 2001.

[MCD+07] Jayant Madhavan, Shirley Cohen, Xin Luna Dong, Alon Y. Halevy,

Shawn R. Jeffery, David Ko, and Cong Yu. Web-scale data inte-

gration: You can afford to pay as you go. CIDR, pages 342–350,

2007.

[MER06] Sabine Massmann, Daniel Engmann, and Erhard Rahm.

COMA++: Results for the Ontology Alignment Contest OAEI

2006. Ontology Matching, 2006.

[MF04] Zbigniew Michalewicz and David B. Fogel. How to solve it: modern

heuristics. Springer-Verlag New York Inc, 2004.

184 BIBLIOGRAPHY

[MFH+01] Renée J. Miller, Daniel Fisla, Mary Huang, David Kymlicka, Fei

Ku, and Vivian Lee. The Amalgam Schema and Data Integration

Test Suite. www.cs.toronto.edu/ miller/amalgam, 2001.

[MGMR02] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity

flooding: a versatile graph matching algorithm and itsapplication to

schema matching. ICDE, pages 117–128, 2002.

[MH03] Jayant Madhavan and Alon Y. Halevy. Composing mappings among

data sources. In VLDB, pages 572–583, 2003.

[MHH00] Renée J. Miller, Laura M. Haas, and Mauricio A. Hernández.

Schema mapping as query discovery. Proceedings of the 26th In-

ternational Conference on Very Large Data Bases table of contents,

pages 77–88, 2000.

[Mil95] George A. Miller. Wordnet: A lexical database for english. Com-

mun. ACM, 38(11):39–41, 1995.

[MRB03] Sergey Melnik, Erhard Rahm, and Philip A. Bernstein. Rondo: a

programming platform for generic model management. ACM SIG-

MOD, pages 193–204, 2003.

[MSV93] Heinz Mühlenbein and Dirk Schlierkamp-Voosen. Predictive mod-

els for the breeder genetic algorithm, i: Continuous parameter op-

timization. Evolutionary Computation, 1(1):25–49, 1993.

[NM01] Natalya F. Noy and Mark A. Musen. Anchor-prompt: Using non-

local context for semantic matching. In Proceedings of the work-

shop on ontologies and information sharing at the international joint

conference on artificial intelligence (IJCAI), pages 63–70. Citeseer,

2001.

[OV89] M. Tamer Ozsu and Patrick Valduriez. Principles of distributed

database systems. Addison-wesley Reading Menlo Park, 1989.

[PB08] Rachel Pottinger and Philip A. Bernstein. Schema merging and

mapping creation for relational sources. In EDBT, pages 73–84,

2008.

BIBLIOGRAPHY 185

[PDYP05] Rong Pan, Zhongli Ding, Yang Yu, and Yun Peng. A bayesian

network approach to ontology mapping. In International Semantic

Web Conference, pages 563–577, 2005.

[PS11] Laura Po and Serena Sorrentino. Automatic generation of prob-

abilistic relationships for improving schema matching. Inf. Syst.,

36(2):192–208, 2011.

[PT09] Paolo Papotti and Riccardo Torlone. Schema exchange: Generic

mappings for transforming data and metadata. Data Knowl. Eng.,

68(7):665–682, 2009.

[PVM+02] Lucian Popa, Yannis Velegrakis, Renée J. Miller, Mauricio A.

Hernández, and Ronald Fagin. Translating web data. In VLDB,

pages 598–609, 2002.

[RB01] Erhard Rahm and Philip A. Bernstein. A survey of approaches to

automatic schema matching. The VLDB Journal The International

Journal on Very Large Data Bases, 10(4):334–350, 2001.

[Riz04] Nikos Rizopoulos. Automatic discovery of semantic relationships

between schema elements. In ICEIS (1), pages 3–8, 2004.

[SCED89] J. David Schaffer, Rich Caruana, Larry J. Eshelman, and Rajarshi

Das. A study of control parameters affecting online performance of

genetic algorithms for function optimization. In ICGA, pages 51–60,

1989.

[SDH08] Anish Das Sarma, Xin Dong, and Alon Y. Halevy. Bootstrap-

ping pay-as-you-go data integration systems. SIGMOD Conference,

pages 861–874, 2008.

[SDK+07] Marcos Antonio Vaz Salles, Jens-Peter Dittrich, Shant Kirakos

Karakashian, Olivier René Girard, and Lukas Blunschi. itrails: Pay-

as-you-go information integration in dataspaces. VLDB, pages 663–

674, 2007.

[SE05] Pavel Shvaiko and Jérôme Euzenat. A survey of schema-based

matching approaches. J. Data Semantics IV, pages 146–171, 2005.

186 BIBLIOGRAPHY

[Sha76] Glenn Shafer. A mathematical theory of evidence, volume 1. Prince-

ton university press Princeton, NJ, 1976.

[SKS02] Abraham Silberschatz, Henry Korth, and S. Sudarshan. Database

system concepts. McGraw-Hill New York, 2002.

[SLDR05] Mayssam Sayyadian, Yoonkyong Lee, AnHai Doan, and Arnon

Rosenthal. Tuning schema matching software using synthetic sce-

narios. pages 994–1005, 2005.

[SMH+10] Len Seligman, Peter Mork, Alon Y. Halevy, Ken Smith, Michael J.

Carey, Kuang Chen, Chris Wolf, Jayant Madhavan, Akshay Kan-

nan, and Doug Burdick. Openii: an open source information inte-

gration toolkit. In SIGMOD Conference, pages 1057–1060, 2010.

[SMM+09] Ken Smith, Michael Morse, Peter Mork, Maya Hao Li, Arnon Rosen-

thal, David Allen, and Len Seligman. The role of schema matching

in large enterprises. In CIDR, 2009.

[SWY75] Gerard Salton, A. Wong, and C. S. Yang. A vector space model for

automatic indexing. Communications of the ACM, 18(11):613–620,

1975.

[TC07] Naiyana Tansalarak and Kajal T. Claypool. QMatch–Using paths

to match XML schemas. Data & Knowledge Engineering, 60(2):260–

282, 2007.

[TIP10] Partha Pratim Talukdar, Zachary G. Ives, and Fernando Pereira.

Automatically incorporating new sources in keyword search-based

data integration. In SIGMOD Conference, pages 387–398, 2010.

[TLL+06] Jie Tang, Juan-Zi Li, Bangyong Liang, Xiaotong Huang, Yi Li, and

Kehong Wang. Using bayesian decision for ontology mapping. J.

Web Sem., 4(4):243–262, 2006.

[Ull00] Jeffrey D. Ullman. Information integration using logical views.

Theor. Comput. Sci., 239(2):189–210, 2000.

[WP08] Ting Wang and Rachel Pottinger. Semap: a generic mapping con-

struction system. In EDBT, pages 97–108, 2008.

BIBLIOGRAPHY 187

[WT06] Robert H. Warren and Frank Wm. Tompa. Multi-column substring

matching for database schema translation. VLDB, pages 331–342,

2006.

[XE06] Li Xu and David W. Embley. A composite approach to automating

direct and indirect schema mappings. Inf. Syst., 31(8):697–732,

2006.

[YP04] Cong Yu and Lucian Popa. Constraint-based xml query rewriting

for data integration. In SIGMOD Conference, pages 371–382, 2004.

[ZLL+09] Qian Zhong, Hanyu Li, Juanzi Li, Guo Tong Xie, Jie Tang, Lizhu

Zhou, and Yue Pan. A gauss function based approach for unbalanced

ontology matching. In SIGMOD Conference, pages 669–680, 2009.

Appendix A

Amalgam Benchmark

The schemas, namely s1, s2, s3 and s4, provided by the Amalgam Benchmark

[MFH+01] are included in the appendix.

A.1 Schema s1

The entity-relationship diagram of schema s1 is presented in Figure A.1. The

schema definition of s1 is described as follows:

create table s1.InProceedings

(inprocID char(35) not null, title char(254), bktitle char(250), year int,

month char(8), pages char(12), vol int, num int, loc char(150),

class char(150), note char(254), annote varchar(2800),

primary key(inprocID))

create table s1.Article

(articleID char(35) not null, title char(254), journal char(150), year int,

month char(8), pages char(12), vol int, num int, loc char(150),

class char(150), note char(254), annote varchar(2800),

primary key(articleID))

create table s1.TechReport

(techID char(35) not null, title char(254), inst char(200), year int,

month char(8), pages char(12), vol int, num int, loc char(150),

class char(150), note char(254), annote varchar(2800),

188

A.1. SCHEMA S1 189

Figure A.1: ER Diagram of Schema s1.

190 APPENDIX A. AMALGAM BENCHMARK

primary key(techID))

create table s1.Book

(bookID char(35) not null, title char(254), publisher char(200), year int,

month char(8), pages char(12), vol int, num int, loc char(150),

class char(150), note char(254), annote varchar(2800),

primary key(bookID))

create table s1.InCollection

(collID char(35) not null, title char(254), bktitle char(250), year int,

month char(8), pages char(12), vol int, num int, loc char(150),

class char(150), note char(254), annote varchar(2800),

primary key(collID))

create table s1.Misc

(miscID char(35) not null, title char(254), howpub char(200),

confloc char(100), year int,

month char(8), pages char(12), vol int, num int, loc char(150),

class char(150), note char(254), annote varchar(2800),

primary key(miscID))

create table s1.Manual

(manID char(35) not null, title char(254), org char(200), year int,

month char(8), pages char(12), vol int, num int, loc char(150),

class char(150), note char(254), annote varchar(2800),

primary key(manID))

create table s1.Author

(AuthID int not null, name char(80) not null,

primary key (AuthID))

–RELATIONSHIP TABLES

create table s1.InprocPublished

(inprocID char(35) not null, AuthID int not null,

A.1. SCHEMA S1 191

primary key(inprocID, AuthID),

foreign key (inprocID) references s1.InProceedings

on delete CASCADE, foreign key (AuthID)

references s1.Author on delete CASCADE)

create table s1.ArticlePublished

(articleID char(35) not null, AuthID int not null,

primary key(articleID, AuthID),

foreign key (articleID) references s1.Article

on delete CASCADE, foreign key (AuthID)

references s1.Author on delete CASCADE)

create table s1.TechPublished

(techID char(35) not null, AuthID int not null,

primary key(techID, AuthID),

foreign key (techID) references s1.TechReport

on delete CASCADE, foreign key (AuthID)

references s1.Author on delete CASCADE)

create table s1.BookPublished

(bookID char(35) not null, AuthID int not null,

primary key(bookID, AuthID),

foreign key (bookID) references s1.Book

on delete CASCADE, foreign key (AuthID)

references s1.Author on delete CASCADE)

create table s1.InCollPublished

(collID char(35) not null, AuthID int not null,

primary key(collID, AuthID),

foreign key (collID) references s1.InCollection

on delete CASCADE, foreign key (AuthID)

references s1.Author on delete CASCADE)

create table s1.MiscPublished

(miscID char(35) not null, AuthID int not null,

192 APPENDIX A. AMALGAM BENCHMARK

primary key(miscID, AuthID),

foreign key (miscID) references s1.Misc

on delete CASCADE, foreign key (AuthID)

references s1.Author on delete CASCADE)

create table s1.ManualPublished

(manID char(35) not null, AuthID int not null,

primary key (manID, AuthID),

foreign key (manID) references s1.Manual

on delete CASCADE, foreign key (AuthID)

references s1.Author on delete CASCADE)

A.2 Schema s2

The entity-relationship diagram of schema s2 is presented in Figure A.2. The

schema definition of s2 is described as follows:

create table s2.allBibs

(citKey char(20) not null, primary key (citKey))

create table s2.citForm

(citKey char(20) not null, form char(20),

primary key (citKey),

foreign key (citKey) references s2.allBibs on delete cascade)

create table s2.authors

(citKey char(20) not null, autNm char(100) not null,

primary key (citKey, autNm),

foreign key (citKey) references s2.allBibs on delete cascade)

create table s2.editors

(citKey char(20) not null,

edNm char(100) not null, primary key (citKey, edNm),

foreign key (citKey) references s2.allBibs on delete cascade)

A.2. SCHEMA S2 193

Figure A.2: ER Diagram of Schema s2.

194 APPENDIX A. AMALGAM BENCHMARK

create table s2.titles

(citKey char(20) not null, title char(200),

primary key (citKey),

foreign key (citKey) references s2.allBibs on delete cascade)

create table s2.schools (citKey char(20) not null, schoolNm char(100),

primary key (citKey),

foreign key (citKey) references s2.allBibs on delete cascade)

create table s2.institutions

(citKey char(20) not null, institNm char(100),

primary key (citKey),

foreign key (citKey) references s2.allBibs on delete cascade)

create table s2.addresses

(citKey char(20) not null, address char(100),

primary key (citKey),

foreign key (citKey) references s2.allBibs on delete cascade)

create table s2.types

(citKey char(20) not null, type char(100),

primary key (citKey),

foreign key (citKey) references s2.allBibs on delete cascade)

create table s2.ISBN

(citKey char(20) not null, isbnNum char(20),

primary key (citKey),

foreign key (citKey) references s2.allBibs on delete cascade)

create table s2.notes

(citKey char(20) not null, note char(200) not null,

primary key (citKey, note),

foreign key (citKey) references s2.allBibs on delete cascade)

A.2. SCHEMA S2 195

create table s2.volumes

(citKey char(20) not null, volNum char(50),

primary key (citKey),

foreign key (citKey) references s2.allBibs on delete cascade)

create table s2.numbers

(citKey char(20) not null, num char(50),

primary key (citKey),

foreign key (citKey) references s2.allBibs on delete cascade)

create table s2.months

(citKey char(20) not null, mon char(20),

primary key (citKey),

foreign key (citKey) references s2.allBibs on delete cascade)

create table s2.years

(citKey char(20) not null, yr char(20),

primary key (citKey),

foreign key (citKey) references s2.allBibs on delete cascade)

create table s2.pages

(citKey char(20) not null, pgRange char(50),

primary key (citKey),

foreign key (citKey) references s2.allBibs on delete cascade)

create table s2.abstracts

(citKey char(20) not null, txt varchar(3500),

primary key (citKey),

foreign key (citKey) references s2.allBibs on delete cascade)

create table s2.publisher

(pubNm char(100), pubID integer not null,

primary key (pubID))

create table s2.citPublisher

196 APPENDIX A. AMALGAM BENCHMARK

(citKey char(20) not null, pubID integer not null,

primary key (citKey, pubID),

foreign key (citKey) references s2.allBibs on delete cascade,

foreign key (pubID) references s2.publisher on delete cascade)

create table s2.journal

(jrnlNm char(200), jrnlID integer not null,

primary key (jrnlID))

create table s2.citJournal

(citKey char(20) not null, jrnlID integer not null,

primary key (citKey, jrnlID),

foreign key (citKey) references s2.allBibs on delete cascade,

foreign key (jrnlID) references s2.journal on delete cascade)

create table s2.series

(seriesNm char(50), seriesID integer not null,

primary key (seriesID))

create table s2.citSeries

(citKey char(20) not null, seriesID integer not null,

primary key (citKey, seriesID),

foreign key (citKey) references s2.allBibs on delete cascade,

foreign key (seriesID) references s2.series on delete cascade)

create table s2.booktitle (bkTitleNm char(100), bktitleID integer not null,

primary key (bktitleID))

create table s2.citBkTitle

(citKey char(20) not null, bktitleID integer not null,

primary key (citKey, bktitleID),

foreign key (citKey) references s2.allBibs on delete cascade,

foreign key (bktitleID) references s2.booktitle on delete cascade)

create table s2.keyWord

A.3. SCHEMA S3 197

(word char(50), keyWdID integer not null,

primary key (keyWdID))

create table s2.citKeyWd

(citKey char(20) not null, keyWdID integer not null,

primary key (citKey, keyWdID),

foreign key (citKey) references s2.allBibs on delete cascade,

foreign key (keyWdID) references s2.keyWord on delete cascade)

A.3 Schema s3

The entity-relationship diagram of schema s3 is presented in Figure A.3. The

schema definition of s3 is described as follows:

create table s3.article (

articleID varchar(30) not null,

title varchar(150) not null,

volume int not null,

number varchar(20)not null,

pages varchar(30) not null,

month varchar(100) not null,

year int not null,

refkey varchar(50),

note varchar(150),

remarks varchar(400),

references varchar(2000),

xxxreferences varchar(600),

fullxxxreferences varchar(400),

oldkey varchar(50),

abstract varchar(3000),

preliminary varchar(100),

primary key (articleID)) IN CSC494TABLESPACE

create table s3.author (

198 APPENDIX A. AMALGAM BENCHMARK

Figure A.3: ER Diagram of Schema s3.

A.3. SCHEMA S3 199

authorID int not null,

name varchar(40) not null,

primary key (authorID))

create table s3.unpublished (

unpubID varchar(30) not null,

title varchar(150) not null,

refkey varchar(20),

note varchar(50),

preliminary varchar(100),

references varchar(2000),

primary key(unpubID))

create table s3.articleAuthor (

articleID varchar(30) not null,

authorID int not null,

primary key (articleID, authorID),

foreign key (articleID) references s3.article

on delete cascade,

foreign key (authorID) references s3.author

on delete restrict)

create table s3.unpubAuthor (

unpubID varchar(30) not null,

authorID int not null,

primary key (unpubID, authorID),

foreign key (unpubID) references s3.unpublished

on delete cascade,

foreign key (authorID) references s3.author

on delete restrict)

200 APPENDIX A. AMALGAM BENCHMARK

A.4 Schema s4

The entity-relationship diagram of schema s4 is presented in Figure A.4. The

schema definition of s4 is described as follows:

create table s4.author (

aid integer not null, name varchar(50) not null unique,

affiliations varchar(200),

primary key(aid))

create table s4.descriptor (

did integer not null, descriptor varchar(50) not null unique,

primary key(did))

create table s4.location (

lid integer not null , countrypub varchar(50) not null,

countryorigin varchar(50) not null,

unique(countrypub,countryorigin),

primary key(lid))

create table s4.publication (

pid integer not null, title varchar(500) not null,

titleext varchar(100), abstract varchar(3000) not null,

abstractind varchar(5) not null, language varchar(50) not null,

journal varchar(255), journalann varchar(20), confinfo varchar(500),

book varchar(500), category varchar(100) not null,

primary key (pid))

create table s4.record (

rid integer not null, availability varchar(255) not null,

updatecode varchar(25) not null, numref varchar(3),

contractnum varchar(100), issn varchar(25),

isbn varchar(25), notes varchar(100),

subfile varchar(10) not null, source varchar(255),

series varchar(100), accessionnum varchar(100) not null,

primary key (rid))

A.4. SCHEMA S4 201

Figure A.4: ER Diagram of Schema s4.

202 APPENDIX A. AMALGAM BENCHMARK

create table s4.described (

pid integer not null, did integer not null,

primary key(pid, did),

foreign key(pid) references s4.publication,

foreign key(did) references s4.descriptor)

create table s4.located (

pid integer not null, lid integer not null,

primary key(pid, lid),

foreign key(pid) references s4.publication,

foreign key(lid) references s4.location)

create table s4.recorded (

pid integer not null, rid integer not null, recordtype varchar(100),

primary key(pid, rid),

foreign key(pid) references s4.publication,

foreign key(rid) references s4.record)

create table s4.written (

aid integer not null, pid integer not null,

pubyear varchar(100) not null, publisher varchar(100),

primary key(pid, aid),

foreign key(pid) references s4.publication,

foreign key(aid) references s4.author)

