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Abstract 

 
Protein-protein interactions (PPIs) play a fundamental role in many biological 

processes such as signal transduction from the extracelluar space to cytosol. Functions 

of less characterized proteins can often be deduced from PPI networks. Various 

sequence-based approaches were taken to predicting and understanding potential PPIs 

using bioinformatic means. Initially, the mirrortree method was comprehensively 

examined to derive a robust approach for PPI predictions. The analysis has revealed that 

mirrortree is extremely sensitive to many factors especially sequence diversity and the 

selection of orthologues. Indeed, higher sequence diversity improves the predictive 

power of the approach. In an attempt to improve prediction accuracy, various speciation 

signal correction methods were evaluated and the RNA-based approaches appear to be 

more effective in removing the speciation signal and ultimately produce more accurate 

predictions. The utility of mirrortree was further extended for domain-domain 

interactions in fibrillin-1. However, due to the low sequence diversity of the 

orthologues, poor prediction results were obtained. Furthermore, a residue based 

method utilizing the mutual information (MI) statistic was evaluated for intramolecular 

protein interaction predictions. Similar to the mirrortree method, removal of the 

background signal occurring from common ancestry improves the prediction accuracy. 

When MI of a third position was incorporated to facilitate the interaction prediction 

between two contacting positions, the prediction quality was increased. Moreover, in 

order to identify clusters consisting of three contacting residues, position combinations 

with the highest significant partial correlation coefficients were extracted and their 

atomic distances were compared to assess the accuracy of the prediction. Lastly, an 

analysis was carried out to study the association between PRINTS fingerprints and 

functionally important interaction sites in seven G protein-coupled receptor families. 

More than 50% of the functional sites acquired from literature were found to be in close 

proximity to fingerprint motifs. In the surface patch analysis, over 80% of the functional 

sites were shown to overlap a motif cluster. Overall, the approaches taken in this thesis 

have tackled interaction predictions from various directions and keenly provide some 

insights for protein-protein interactions and evolution.      
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1. Introduction 

 

Proteins are essential parts of organisms and play a critical role in the primary 

machinery of cells. Composed of up to 20 different types of amino acid, proteins are 

linear polymers. However, in order to carry out biological functions properly, proteins 

fold into 3-dimensional structures and interact with other proteins to form a larger 

protein-protein interaction (PPI) network. As PPIs are responsible for most cellular 

functions, the interruption of PPIs often leads to diseases. In many early studies, one 

gene was studied for a disease. However, most diseases are not monogenic. 

Furthermore, studying individual enzymes does not provide a full understanding of the 

cellular organization of functions. Instead, pathways and networks should be studied. As 

more structures are catalogued, the attention of biological research is turning towards 

interactions and networks.   

 

1.1. Types of Protein-Protein Interactions 

Protein-protein interactions have diverse roles in biology, and differ in many 

aspects. Different types of PPIs have been described in literature (Nooren and Thornton, 

2003), including stable vs. transient, ordered vs. disordered and domains vs. motifs. 

 

PPIs can be classified as stable or transient. Stable complexes are permanent and 

irreversible (Jones and Thornton, 1996; Tsai et al., 1998), and are associated with 

proteins that form multimers, which can consist of the same protein (homo-multimer) or 

different proteins (hetero-multimers). Examples of multi-subunits for stable complexes 

are hemoglobin and core RNA polymerase. Transient PPIs are temporary in nature and 

occur in a wide range of cellular process, such as transport and signaling. Proteins in 

transient PPIs interact to fulfill a specific function, and disassociate after the function is 

achieved. These proteins include enzyme-inhibitor or signaling-effector complexes. 

However, specific conditions are generally required to initiate transient interactions. It 

has been shown that the interface residues for stable interactions tend to evolve at a 

slower rate than transient interaction interface residues, permitting correlated mutations 

to occur between interacting partners (Mintseris and Weng, 2005). In contrast, residues 
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in transient interaction interfaces are more likely to have higher substitution rates, and 

therefore lead to little or no coevolution between the interaction partners. Moreover, 

stable and transient interactions were found to have different interface structure 

properties (Mintseris and Weng, 2003), and can be either strong or weak.    

   

Some interactions are essentially unchanged in structural terms upon complex 

formation and, are referred to as ordered. Those without defined structures prior to 

interactions are defined as disordered. Generally, it is thought that proteins need to be in 

their natural structural form in order to function properly; however, approximately 30% 

of proteins in the eukaryotic system are classified as disordered (Ward et al., 2004). It 

was found that disordered proteins are more prevalent in more complex organisms and 

are potentially involved in the evolution of complexity. In addition, disordered proteins 

are often found to be involved in cellular functions, such as cell signaling and the 

regulation of transcription. Meszaros and colleagues (2007) have found that ordered 

proteins have a higher proportion of hydrophobic residues, whereas disordered proteins 

contain more polar and charged residues. Furthermore, binding interfaces for disordered 

PPIs tend to be a single continuous stretch of residues, while the interaction interfaces 

for ordered PPIs are more fragmented. It has also been suggested that the flexibility of 

disordered proteins may enable the binding of various interacting partners to ensure 

functional diversity (Sandhu, 2009). In a recent study, Prakash (2011) analyzed the 

linear free-energy relationships for ordered and disordered PPIs and found that the 

binding affinity of ordered and disordered PPIs is linked to their disassociation and 

association rates respectively.    

 

Interactions can occur at the protein level, domain level, or even at the motif 

level. Most high-throughput screening methods for identifying PPIs define the 

interaction at the protein level (i.e. yeast two-hybrid and tandem affinity purification), 

but the interaction may well be dictated by domain. For instance, when two multi-

domain proteins interact, only two of the many domains may be involved. Protein 

domains are often defined as stable protein subunits that are structurally, functionally 

and evolutionarily independent of the rest of the protein. Considered as the building 

blocks of evolution, domains are often duplicated and shuffled to generate proteins with 

different functions (Bornberg-Bauer et al., 2010). Similarly, motifs are a short segment 

of a protein sequence that may be functionally or structurally important, and are often 
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conserved in many sequences. They are usually shorter than domains and can 

sometimes coalesce to form domains. Short Linear Motifs (SLiMS) are functional 

protein subunits that are responsible for mediating functions such as protein interaction 

and post-translational modification. They are involved in biological pathways. These 

motifs are usually less than 10 amino acids long and are typically found in disordered 

parts of a protein. Given that SLiMS are defined by a pattern that typically has fewer 

than five defined positions, they certainly have an advantage over domains, as the 

flexibility of the motif sequences can facilitate the acquisition of new functionality to 

proteins (Diella et al., 2008).    

 

1.2. Experimental Methods for Detecting Protein-

Protein Interactions 

Different experimental methods have been developed to measure PPIs based on 

their genetic, biochemical and physical properties. While some methods are capable of 

detecting large protein complexes, other methods detect more focused binary 

relationships. Physical interactions can be detected by methods such as yeast two-hybrid 

(Fields and Song, 1989; Ito et al., 2001; de Folter and Immink, 2011), affinity 

purification-mass spectrometry (Rigaut et al., 1999; Ho et al., 2002; Gavin et al., 2006; 

Krogan et al., 2006; Volkel et al., 2010) and protein microarrays (MacBeath and 

Schreiber, 2000; Zhu et al., 2000; Zhu et al., 2001; Chen and Snyder, 2010). In 

addition, some methods, such as DNA microarray/gene expression (Eisen et al., 1998) 

and synthetic lethality (Ye et al., 2005; Nijman, 2011), infer PPIs via functional 

associations. A high-throughput experimental method opens the door to large scale PPI 

analyses, but in terms of sensitivity and specificity, each method has its own particular 

strengths and weakness. Since PPI data generated by physical interaction methods are 

probably more reliable and have lower false positive and false negative rates, these 

methods are discussed in further detail. Moreover, analyses utilizing high quality 

experimental PPI data generated using these methods can be found in Chapters 2 and 4.  
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1.2.1. Yeast Two-Hybrid 

The yeast two-hybrid (Y2H, Figure 1.1) system has been the primary 

experimental method for detecting PPIs since its introduction in 1989 (Fields and Song, 

1989). Unlike many other high-throughput methods, it is an in-vivo technique in that 

interactions can be detected in its natural physical state (von Mering et al., 2002). Due 

to such an advantageous condition, Y2H is very sensitive and can detect transient and 

unstable interactions. Many large scale studies (Uetz et al., 2000; Ito et al., 2001; Ho et 

al., 2002; Cornell et al., 2004; Gavin et al., 2006; Krogan et al., 2006; Collins et al., 

2007) have successfully generated PPI data from the use of this system. It identifies 

potential binary PPIs by taking advantage of the delicate property of transcription 

factors. That is, a transcription activator is first separated into a DNA-binding domain 

(BD) and a transcription activation domain (AD). The DNA-binding domain is then 

fused to a “bait” protein and bound to the upstream activation sequence of a reporter 

gene while the transcription activation domain is fused to a “prey” protein. Upon the re-

joining of the two domains, the transcription activation signal can be measured to 

determine physical interactions between the two proteins under test. Since Y2H is very 

sensitive, as it is capable of detecting transient interactions, it would not be surprising 

for a high level of false positives to be acquired. Indeed, it has been estimated that the 

false positive rate could be as high as 70% (Deane et al., 2002). As the system is not the 

natural physical state for most proteins (i.e. non-yeast and non-nuclear), it is inevitable 

that non-biological interactions would be detected by mistake. Also, many bait proteins 

are capable of activating the transcription without even forming physical contact with a 

transcription activation domain. Moreover, activation sometimes occurs by random 

chance.  
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Figure 1.1. The yeast two-hybrid system. It detects interactions based on the principle 
that interaction between two fusion proteins BAIT and PREY can activate transcription. 
 

1.2.2. Tandem Affinity Purification/Mass Spectrometry 

As stated in the Y2H system, proteins rarely act on their own in a physiological 

system; instead, they often bind to other proteins or macromolecules to form a 

functional complex. However, it is quite challenging to separate each protein from a 

protein complex without destroying the interaction signal. To address this issue, the 

affinity purification technique was developed. The principle of the affinity purification 

technique is the use of inherent interactions between two proteins. One protein is 

covalently coupled to a matrix in a column, and afterwards protein extracts are passed 

over the column. Only proteins that interact and bind to the immobilized protein 

naturally will be retained; the rest of the proteins will flow through the column. Many 

different affinity purification methods, such as immunoprecipitation, GST-pulldown and 

tandem affinity purification (TAP; Puig et al., 2001) have been developed for the 
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retrieval of protein complexes. Among these methods, TAP is often combined with 

mass spectrometry (MS) to retrieve high order interactions, and remarkably has become 

one of the most accurate methods for detecting PPIs. The MS method works by using 

enzymes such as trypsin to digest proteins to peptides in order to generate peptide 

fragments which are then separated based on their mass-to-charge ratios. For each 

protein, the masses of all peptide fragments are compared to a database containing 

masses of known protein sequences in order to determine the amino acid sequence of 

the protein.   The high sensibility of affinity purification, and the precision of MS, 

greatly reduce the detection of false positive interactions, and is an effective tool for 

large scale experiments. Furthermore, TAP-MS has been shown to be very effective in 

detecting protein complexes in a large scale study (Ho et al., 2002), as 3,617 associated 

proteins in the yeast proteome were detected in this study. However, prior to the 

potential interaction taking place, a tag is attached to the end of each protein; therefore, 

it is possible that these tags might interfere with the interaction and result in indirect 

interactions. Furthermore, this method is more likely to detect stable interactions rather 

than transient interactions, as loosely associated proteins may flow through the column 

during purification.           

 

1.2.3. Protein Microarray 

Protein arrays have emerged as a useful tool for the large scale screening of 

many types of interactions, such as protein-DNA, protein-RNA, protein-protein and 

protein-ligand interactions. It works by first covalently attaching proteins (probe) to a 

glass slide at separate locations to form a microscopic array. Subsequently, target 

proteins are hybridized to the probe proteins for potential interactions. As the first 

research group to construct a proteome microarray, Zhu and colleagues (Zhu et al., 

2000) have reported more than 5,800 yeast proteins, which is equivalent to 58% of the 

yeast proteome. Indeed, the advantages that protein arrays have are high sensitivity and 

the ability to test a large number of proteins or even the entire proteome in one 

experiment. However, the denatured state of the proteins being analyzed can be a 

critical factor for the success of PPI detections (Liotta et al., 2003). For instance, many 

antibodies require denaturation of antigens for the linearization of the epitope. However, 
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PPIs can be interrupted by denaturation. In addition, this can eliminate the interaction 

between linearized epitopes and antibodies that require natural 3-dimensional structures.      

 

1.2.4. Crystallography 

Crystallography is a structural-based approach for studying protein-protein 

complexes. By solving structures that consist of two binding proteins, PPI interfaces can 

be detected. X-ray crystallography is the primary method for identifying proteins 

structures. Solving protein structures by X-ray crystallography involves several steps. 

First, proteins need to purified and crystallized; afterwards, an intense beam of X-rays 

strikes the crystal and diffracts into a characteristic pattern of spots. The diffraction data 

are then analyzed and arranged into a 3-dimensional electron density map which is then 

used to determine the arrangement of atoms within a crystal. As of July 2011, more than 

74,000 protein structures had been solved and housed in the Protein Data Bank (PDB; 

Rose et al., 2011) database. Indeed, the ability to provide detailed atomic information 

makes X-ray crystallography the most popular method, especially for identifying 

interactions for pharmaceutical drug targets (Scapin, 2006). However, the requirement 

of aligning molecules in the same order places a restriction on the crystallization of 

flexible proteins, as the electron density map of flexible regions cannot be determined. 

It has been challenging to crystallize membrane proteins because they are often very 

low in natural abundance, unstable in detergent solutions and have flexible structures. 

However, many membrane proteins are important for vital biological functions. For 

instance, G protein-coupled receptors (GPCRs) are membrane proteins that are involved 

in signal transduction pathways, and have important medical implications due to the fact 

that more than 60% of marketed drugs are associated with GPCRs. As a result of the 

common challenges to crystallize membrane proteins, the first human GPCR structure 

was not available until 2007. Nevertheless, the availability of crystal structures does 

facilitate the identification of PPIs tremendously. However, it is time-consuming, and as 

such, the number of PPIs that can be identified from structure still remains relatively 

low when compared to other methods.  

 

As different datasets used for the analyses in this thesis were obtained from 

various sources that contained PPI data generated using the aforementioned high-
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throughput techniques, it is necessary to understand their technological differences in 

order to better interpret the results of the analyses. Particularly for the benchmarking 

study (Chapter 2), different datasets obtained from different sources that include PPIs 

derived using different techniques were compared. For instance, the Hake+ dataset 

contains only structure-based interactions while the Tan+ dataset consists of PPIs 

derived from various methods, such as Y2H and TAP-MS. Certainly, a large 

discrepancy in the prediction results was observed for these two datasets. Without an 

understanding of the biological differences and methods used to generate the datasets, 

the results could be interpreted inappropriately.  

 

It should be noted that all of these methods may be missing some 

ordered/disordered interactions that only occur in-vivo in particular subcelluar 

localizations of conditions. Furthermore, high-throughput methods are known to 

generate data with a significant fraction of false positives (Deane et al., 2002), and 

distinguishing between direct and indirect (mediated by a intermediate proteins) PPIs 

can also be quite challenging (Edwards et al., 2002).  

 

1.3. Computational Approaches for Protein-Protein 

Interaction Predictions 

High-throughput experimental methods for detecting PPIs generate a large 

amount of data. In addition to high false positive and negative rates, experimental 

methods are generally labour-intensive and time-consuming. Hence, development of 

computational methods for the prediction of PPIs is necessary to complement 

experimental interaction detection methods. As computational methods are not 

restricted to specific experimental conditions, the rate of interaction identification is 

much faster than experimental methods. Not only can the data generated by 

computational methods be used to expand the interaction repertoire, but it can also be 

used to validate the existing protein-protein interactions detected by experimental 

methods.   
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1.3.1. Support Vector Machine 

One popular method that uses machine learning approaches is the support vector 

machine (SVM) system which involves training the physiochemical properties of 

sequence data (Bock and Gough, 2001; Bradford and Westhead, 2005). This method 

recognizes correlated patterns of interacting sequences and sub-structures in an 

automated fashion. The resulting patterns often consist of many functional residues in 

each protein. It has been reported that binding sites often have similar properties which 

enable the differentiation between these important sites from the rest of the protein 

(Chothia and Janin, 1975; Jones and Thornton, 1996). Hydrophobic residues tend to 

cluster at binding interfaces, which is also where polar residues are often found. Other 

important properties for binding interfaces are residue conservation, shape, solvent 

accessibility and surface tension. In the study carried out by Bock and Gough (2001), 

features such as charge, hydrophobicity, and the surface tension of each residue were 

utilized to capture important characteristics of the proteins in their training dataset. 

Proteins with unknown interacting partners were then compared using the trained 

feature patterns, and pairs with similar patterns were deemed as interacting. 

Consequently, 80% of correct protein interaction predictions were obtained. In another 

study (Bradford and Westhead, 2005), the authors used an approach that combines SVM 

and surface patch analysis to predict interface surface patches. In addition to the features 

used in the Bock and Gough study, conservation, shape and solvent accessibility were 

also used. As a result, the binding site locations of 76% of the proteins in their dataset 

were successfully identified.  

 

1.3.2. Gene Neighbour 

It has been suggested that genes present in the same order in multiple species are 

more likely to share similar functions (Tamames et al., 1997); this constitutes the basis 

of the gene neighbour method. The conservation of gene order is largely observed in 

bacteria in the form of operons, a group of genes that is expressed and regulated 

together in a single unit. Two studies (Dandekar et al., 1998; Huynen et al., 2000) have 

shown that over 60% of co-regulated genes within three bacterial and archaeal genomes 

were found to interact physically. Similar results were observed for two eukaryotic 

genomes, Saccharomyces cerevisiae and Caenorhabditis elegans (Teichmann and Babu, 
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2002). In these two eukaryotic genomes, interactions were detected in over 90% of the 

conserved co-regulated gene pairs. However, conservation of gene order in eukaryotic 

genomes is not generally as prevalent as it is in prokaryotic genomes. Although it has 

been applied to few eukaryotic genomes successfully (Teichmann and Babu, 2002), 

great challenges still remain in applying this technique to a large number of eukaryotic 

genomes.  

 

1.3.3. Gene Fusion 

Through the observation that some protein pairs present in different genomes 

fuse into a single protein in another genome, protein interactions can be deduced with 

the assistance of gene fusion events. Some efforts have been made to predict PPIs 

through the use of this method, sometimes termed the Rosetta Stone method, with 

reasonable success (Enright et al., 1999; Marcotte et al., 1999). For instance, Enright 

and colleagues (Enright et al., 1999) identified 6,809 putative protein interactions in E. 

coli and 45,502 in S. cerevisiae. In these studies, a significant sequence similarity was 

observed between putative interacting proteins in separate genomes, and in the genome 

where the fusion event took place, more than half of these proteins were found to be 

functionally linked. However, this method is limited to proteins with shared domains in 

distinct proteins (Sprinzak and Margalit, 2001), and appears to offer a rather limited 

general approach.   

 

1.3.4. Phylogenetic Profile 

Early attempts to predict PPIs focused on the presence/absence of proteins in 

complete genomes (Pellegrini et al., 1999). When two genes are present or absent 

together in several species, it often indicates that they underwent similar evolutionary 

processes and therefore are strongly functionally linked. Although one could assume 

that two genes that are in the same biological process share similar functions, it does not 

necessarily mean a physical interaction between the two is always the case. A simple 

phylogenetic profile can be constructed by assigning a score of 1 for a protein presence 

and a score of 0 for a protein absence. This method is particularly useful when sequence 

similarity is not evident, since proteins that are part of the same biological process are 
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more likely to share the same functions regardless of the genomic content. However, the 

biggest drawback of this method is that a large number of complete genomes are 

required for accurate predictions. Furthermore, proteins that are common to most 

organisms, or specific to only one single organism, should be avoided as false 

predictions can be made through the use of these data. 

 

1.3.5. Mirrortree 

The mirrortree approach (Goh et al., 2000; Pazos and Valencia, 2001) has 

emerged as a coevolution-based method for predicting PPIs, and variations of this 

approach have been developed vigorously to improve prediction accuracy (Jothi et al., 

2005; Noivirt et al., 2005; Pazos et al., 2005; Sato et al., 2005; Craig and Liao, 2007). 

The standard mirrortree approach is based on the assumption that interacting proteins 

share similar evolutionary history. Hence, the phylogenetic trees of two proteins can be 

compared to determine the degree of coevolution, and subsequently a prediction of the 

interaction can be made. However, due to the complexity and intensive computation 

power required to compare tree topologies, an indirect approach to obtain intergenic 

distances is often applied instead. The mirrortree method has been shown to be prone to 

high false positives and negatives, which implies that simply comparing two 

phylogenetic trees cannot fully capture the coevolutionary signal between two protein 

families; rather, some underlying background signals could be embedded, and they need 

to be removed in order to unmask the true coevolutionary signal (Sato et al., 2006). It 

has been observed that species in a phylogenetic tree are not independent of each other; 

instead, they are related due to the common ancestry constraint (Felsenstein, 1985; 

Harvey and Pagel, 1991). Hence, attempts to remove signals related to such 

phylogenetic relationships among the sequences used to build a phylogenetic tree were 

made by several groups (Pazos et al., 2005; Sato et al., 2005). Certainly, improvement 

in the prediction results has been reported. As each of these so-called improved methods 

was only applied to a limited dataset, the real utility of these methods is still unclear. As 

a result, they were further examined in the benchmarking study in Chapter 2, using 

various datasets that were generated by different experimental techniques.  
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1.4. Protein Interaction Databases 

A model organism is a species that has been studied so extensively that its basic 

biology is well-understood. As a result, it can serve as an ideal reference model for 

studying other organisms. A substantial amount of protein interaction data generated 

using model organisms have been published, and still more are in progress (Marcotte et 

al., 1999; Uetz et al., 2000; Ito et al., 2001; Ho et al., 2002). To date, the most complete 

genetic interaction map (Costanzo et al., 2010) was constructed for a model organism, 

Saccharomyces cerevisiae, which consists of approximately 75% of all genes in the 

budding yeast genome. The availability of these interaction data has provided many 

opportunities for examining and characterizing PPIs in many organisms where such 

relationships are normally not as well understood. Many databases have been developed 

to house PPIs generated by different methods for different organisms, and are discussed 

below.     

 

The Database of Interacting Proteins or DIP (Xenarios et al., 2000) is one of the 

largest protein interaction databases publically available, and contains more than 70,000 

interactions from more than 68,000 experiments. These experiments include, but are not 

limited to: Y2H, protein microarray and TAP-MS. Approximately 23,000 proteins are 

included in DIP. Experimentally determined protein interactions are curated manually 

by experts to form a high quality core set, as well as by automated computational 

approaches. Additionally, three computational methods are implemented to assess the 

accuracy of protein interactions in the DIP database. The first method, the expression 

profile reliability (EPR) index (Deane et al., 2002), compares the RNA expression 

profiles of the proteins under test with a high quality core set of the DIP database. In a 

similar fashion, the paralogous verficiation method or PVM (Deane et al., 2002) 

evaluates the patterns of interactions between large-scale PPI datasets and the high 

quality DIP core set so that potential paralogues are identified. The domain verification 

(DPV) method (Deng et al., 2002) uses evolutionarily conserved domains and the 

maximum likelihood estimation method to detect potential domain-domain interactions.  

 

Another high quality PPI database, the MIPS mammalian protein-protein 

interaction database (Pagel et al., 2005) acquires PPI data only through manual 

literature curation. The interaction information stored in this database is indeed of 
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superior quality as only data from individual experiments, rather than data generated 

from large-scale high-throughput experiments, are included. However, due to the nature 

of manual human curation, the size of the database is rather limited. As reported by 

Pagel and colleagues (Pagel et al., 2005), 1,800 interactions with experimental evidence 

were extracted from more than 370 scientific journal articles for 10 species. This 

provided interaction information for more than 900 proteins. Unlike many other PPI 

databases, such as DIP, BIND and MINT, which contain very little mammalian data, 

more than 90% of the interactions in MIPS were derived from Homo sapiens, Mus 

musculus and Rattus norvegicus. The availability of interaction data for these species is 

seen as a great benefit for studies with prospective medical implications.   

 

The Biomolecular Interaction Network Database or BIND (Bader et al., 2003) is 

a PPI database that contains binary interactions, molecular complexes and pathways. 

Interacting objects in this database are defined as DNA, RNA or protein. A large portion 

of the data come from yeast and humans, and as many as 300 of the interactions stored 

in BIND associate with mammalian proteomes. Most of the interaction data in the 

BIND database are extracted from PDB, and many large-scale high-throughput 

interaction methods, such as yeast two-hybrid, mass spectrometry, genetic interactions 

and phage display. User submission of individual experimental results also facilitated 

the expansion of this database to more than 6,000 interactions.   

 

The largest interaction resource database at the moment is the General 

Repository for Interaction Datasets (BioGRID; Stark et al., 2006), which contains more 

than 246,000 interactions derived from over 31,000 proteins for 17 different species. 

This database was originally designed to only accommodate interaction data from yeast 

two-hybrid and mass spectrometry experiments, but it is now extended to also include 

interaction data from literature and from other high-throughput experiments. As claimed 

by the authors, BioGRID is now the largest repository of PPI data for both the budding 

yeast, Saccharomyces cerevisiae, and the fission yeast, Schizosaccharomyces pombe. A 

useful feature of the BioGRID web server was the development of a visualization tool, 

Osprey.  This tool allows for annotating interaction data using Gene Ontology (GO). 

 

IntAct (Kerrien et al., 2007) is a database developed and maintained by the 

European Bioinformatics Institute. Users can freely obtain interaction data and analyze 
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them by using the tools that are available on the website. All data are extracted from 

published literature or from user submissions. Disease-focused datasets based on 

proteins with an association to Alzheimer’s and cancer are also available. Additionally, 

four tools were developed to assist the analysis of PPI data. While ProViz can be used 

to visualize interactions, MiNe is capable of computing minimal connecting network for 

a selected protein set. The Targets tool is specifically designed to predict targets for 

pull-down experiments, and Validator is a PSI-MI semantic validator for various PSI 

file formats. Moreover, gene ontology annotations are provided for all interactions in 

the database to help link protein networks with their functional aspects. What sets 

IntAct apart from most other protein interaction databases (but similar to BIND) is that 

it contains not only protein interactions, but also other complex interactions, such as 

DNA, RNA and other small molecule interactions. There are currently more than 

229,000 binary interactions in the IntAct database.  

 

MINT or Molecular INTeraction database (Ceol et al., 2009), is a relational 

database that contains both direct contact (physical association) and indirect contact 

(association) PPIs. Like many high-quality PPI databases, it takes a literature-based 

approach to obtain PPI information through professional curators. For quality 

assessment purposes, a reliability score is assigned to each interaction in the MINT 

database. Interaction data are extracted from four peer-reviewed journals: FEBS Letters, 

EMBO Journal, EMBO Reports and FEBS Journal. Because of the fully manual process 

and the small curation team, the number of interactions in MINT is rather limited. 

Hence, to increase the size of the database, a less detailed ‘light curation’ has been 

applied. This strategy has significantly increased the coverage of interactions that are 

mediated by modular domains and interactions between viral and host proteins. 

Although the majority of the interactions in MINT are binary, MINT also supports 

molecular complexes and biological pathways, and consists of over 89,000 interactions. 

Interaction data for Homo sapiens, and for model organisms such as Saccharomyces 

cerevisiae and Drosophila melanogaster, account for most of the interaction entries in 

MINT. There are 26,517 and 22,338 interactions for Saccharomyces cerevisiae and 

Drosophila melanogaster, respectively. 
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1.5. Protein Structure 

Protein structures have been shown to be more conserved than linear protein 

sequences (Chothia and Lesk, 1986). In particular, active sites of distantly related 

species have been found to have very similar geometries (Lesk and Chothia, 1980; 

Chothia and Lesk, 1982; Read et al., 1984); this is thought to be the result of evolution 

for maintaining functional stability. Protein sequences that share a common ancestor are 

termed homologues and usually perform the same function. In order to determine 

homology, linear protein sequences are often compared, and a conclusion is made based 

on sequence similarity. However, low sequence similarity is often detected among 

distantly related species and therefore the homology relationship among them can be 

mistakenly ignored. Due to higher conservation between structures, protein structures 

can be compared instead of primary sequences in order to overcome such issue. 

 

The three experimental methods that are currently used to solve protein 

structures are X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy 

and electron microscopy (ER). The main advantage of X-ray crystallography over NMR 

is that X-ray crystallography is capable of solving structures for large molecules as 

opposed to small molecules (70 kDa) for NMR. The PDB databse contains the largest 

collection of 3-dimensional structures for proteins, RNA, DNA and other important 

biological macromolecules. It was first established in 1971 and has grown from 7 

structures to over 74,000 structures in 2011. The structure data contained in the PDB 

database are generated using X-ray crystallography, NMR, EM and from theoretical 

modeling. However, the most common method used to determine a structure is X-ray 

crystallography, which accounts for approximately 86% of all structures in PDB (Figure 

1.2).  
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Figure 1.2. Pie charts for different types of structures in PDB. The pie chart on the left 
is based on different construction methods. The number of structures generated using 
each method is ranked in descending order: X-ray > NMR > EM > other > Hybrid. The 
pie chart on the right is based on molecule types. The number of structures generated for 
each molecule type is ranked in descending order: protein > protein/DNA complexes > 
DNA > other. 
 

1.6. Homology 

Protein sequences that share a common ancestor are termed homologues, and 

usually perform the same function. There are two types of homologues: orthologues and 

paralogues. As shown in Figure 1.3, orthologues are homologues that were separated by 

a speciation event, and are often found performing the same function in different 

species. However, the other type of homologue, paralogue, was developed through a 

duplication event. Paralogues are generally found performing similar functions in the 

same species and can provide insight into how genomes evolve. Although most 

paralogues are found in the same species, some paralogues exist in different species. For 

instance, the human hemoglobin and chimpanzee myoglobin are paralogues. For most 

evolution based studies in Bioinformatics, orthologues should be used instead of 

paralogues to represent speciation events. However, this is not an easy task. It is 

possible that homologues detected from different species are paralogues, particularly 

when multiple copies of duplicate genes are found in the same genome. Many tools 
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(Altschul et al., 1990; O'Brien et al., 2005) have been developed to help detect and 

reconstruct homology and some of the most commonly used tools are described below.  

Common ancesstor

Gene1 Gene2 Gene3

Speciation

Duplication

 

Figure 1.3. Evolutionary tree showing the formation of orthologues and paralogues. A 
duplication event generated paralogues Gene2 and Gene3, which are co-orthologues to 
Gene1 due to a speciation event.  
 

The Basic Local Alignment Search Tool, or BLAST (Altschul et al., 1990), 

compares sequences and determines the level of similarity between them. It is a quick 

and powerful method to detect homology for uncharacterized sequences. BLAST 

identifies statistically significant similarities between sequences by first using the 

dynamic programming technique to obtain an optimal alignment. Generally, two types 

of alignments are produced: global and local. For global alignments, the best alignment 

is found by aligning both sequences along their entire lengths, while in local alignments, 

only the best aligned regions are returned. The global alignment approach uses the 

Needleman-Wunsch algorithm (Needleman and Wunsch, 1970), and the local alignment 

approach uses the Smith-Waterman algorithm (Smith and Waterman, 1981).  

 

Multiple sequence alignments (MSAs) are the base of most bioinformatic 

research. They are widely used to construct phylogenetic trees in order to determine 

evolutionary relationships among different species; to determine signature patterns; to 

characterize protein families; and finally, to identify evolutionarily conserved functional 

residues in protein families. As MSAs have become the prerequisite for many molecular 

analyses, the need for a method to quickly construct a well-aligned MSA has led to the 

development of many MSA tools. Two of the most frequently used multiple sequence 
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alignment methods, CLUSTALW (Thompson et al., 1994) and MUSCLE (Edgar, 2004) 

were used to construct MSAs in all studies in this thesis; and all default parameters were 

utilized.  

 

CLUSTALW is the most widely used multiple sequence alignment for DNA or 

proteins. It uses a progressive approach that starts by building a guide tree. Based on the 

guide tree, pairwise alignments are subsequently added to the growing MSA from the 

most similar sequence to the least similar sequence. As it takes a heuristic approach, the 

alignments cannot be guaranteed to be globally optimal. Nevertheless, alignments 

generated using CLUSTALW are often used to depict evolutionary relationships 

between species within a MSA. Another popular method to produce MSAs is the 

alignment by log-expectation method, MUSCLE. It takes a similar approach as 

CLUSTALW by adding sequences progressively from the most similar to the least 

similar. However, what sets MUSCLE apart from CLUSTALW is that after each 

addition, sequences are re-aligned to ensure better accuracy. It is thought to produce 

more accurate MSAs than CLUSTALW without compromising the speed. However, in 

the benchmarking study, as a preliminary analysis (data not shown), both methods were 

utilized to construct MSAs and little difference was observed. Hence, only MSAs 

generated using one method (CLUSTALW) are shown in Chapter 2. 

 

1.7. Coevolution vs. Co-adaptation 

The general concept of coevolution in biology is that the change of one entity is 

caused by another. This is broadly applied to many levels of biology, from different co-

varying ecological traits to correlated mutations in molecular biology. It is widely 

accepted that two entities in a coevolutionary relationship apply selective pressures on 

each other. The first documented use of the term “coevolution” was found in a study 

carried out by Ehrlich and Raven (1964), which examined the patterns of interactions 

between organisms with close ecological relationships. This study showed that butterfly 

groups that were closely related had similar patterns of food plant utilization. 

Determining such a relationship between a well-studied butterfly group and a newly 

discovered butterfly group could have facilitated the identification of important 

biological characteristics of the new butterfly group if the two groups had a similar 
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feeding pattern. In the context of molecular biology, the phenomenon of functionally 

linked proteins evolving at similar rates has been observed in ligands and their 

endogenous receptors (Fryxell, 1996; Pages et al., 1997).  

 

Based on the assumption that interacting proteins evolve in a correlated fashion 

(Moyle et al., 1994), interacting proteins are under some common evolutionary pressure 

(coevolution), and compensatory mutations must occur at or near the interface between 

the interacting partners in order to maintain the interaction (co-adaptation). These could 

be the result of direct evolutionary pressure to maintain interface structure, biological 

function in a pathway, or common components of a molecular “machine”. Co-

adaptation has been observed in both intra- and inter-molecular interactions (Choi et al., 

2005; Ferrer-Costa et al., 2007). It has also been proposed to be a possible mechanism 

for preventing diseases in organisms (Kulathinal et al., 2004). Essentially, when one 

protein is mutated, the other must also mutate to compensate for the change; otherwise, 

the physical interaction would be broken and diseases could be induced. As for 

coevolution, a direct relationship between interaction and evolution rates has been 

reported (Fraser et al., 2002). Fraser et al. also suggested that proteins with more 

interactors tend to evolve slowly because a larger portion of the protein is involved in 

the function. Furthermore, some indirect factors have been found to support the 

association between interaction and coevolution. For instance, the mRNA expression 

levels for interacting proteins have been found to co-evolve (Fraser et al., 2004), 

meaning that when the expression level for one protein changes, the expression level of 

its interacting partner also changes at a similar rate. A graphical representation of co-

adaptation and coevolution is illustrated in Figure 1.4. 
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Co-adaptation Coevolution

 

Figure 1.4. The difference between co-adaption and coevolution. Co-adaptation occurs 
when the interaction interface (vertical bar) is maintained by compensatory mutations 
between two interacting proteins (circles). For coevolution, interacting proteins are the 
result of indirect environmental influences which ultimately resulted in similar 
evolutionary rates. 
 

The phenomenon of co-adaptation is widely recognized, but it remains 

controversial as to whether this signal can be detected in whole protein sequences, and 

whether it can be distinguished from the background speciation signal (Hakes et al., 

2007; Juan et al., 2008a; Pazos and Valencia, 2008; Kann et al., 2009). While some 

authors suggest that a coevolutionary signal can be detected (Juan et al., 2008a; Pazos 

and Valencia, 2008), others have suggested that co-adaptation of physically interacting 

regions is not (or is only partly) responsible for this signal (Hakes et al., 2007; Kann et 

al., 2009). Indeed, one study concluded that mirrortree is less predictive than other co-

functional signals, such as co-expression (Hakes et al., 2007). Kann and colleagues 

refined this idea further and concluded that both binding neighbourhoods (co-

adaptation) and common co-functional constraints (coevolution or correlated evolution) 

contribute to the mirrortree signal. 

 

Although most of the coevolution-based methods are focused on whole protein 

sequences, many studies (Fodor and Aldrich, 2004; Shackelford and Karplus, 2007; 

Dunn et al., 2008) have applied the coevolution concept to interaction predictions at the 

residue level. It is widely accepted that correlated mutations are often found within the 
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MSAs of interacting proteins. Earlier studies have also found an association between 

correlated mutations and spatial proximity (Gobel et al., 1994; Olmea and Valencia, 

1997). The authors suggested that the destabilizing effect caused by a mutation at one 

position could be evolutionarily rescued by another mutation occurring in a nearby 

location. Such a relationship is not only found between residues in the same protein, but 

also between residues from different proteins, especially interacting proteins (Pazos et 

al., 1997; Yeang and Haussler, 2007; Burger and van Nimwegen, 2008). This 

relationship is examined in more detail in Chapter 4 using the mutual information (MI) 

statistic to measure interactions between two to three residues within a protein. 

 

1.8. Overview 

Prior to the prediction of PPIs, it was necessary to carry out a comprehensive 

benchmarking study (Chapter 2) for a full understanding of PPI methodologies. Hence, 

the frequently used PPI approach, mirrortree, was examined. This was chosen as there 

were more than 10 papers in the literature, and datasets were readily available or 

straightforward to generate. Moreover, there was growing controversy surrounding the 

utility of the method, whether it was suitable for the detection/prediction of co-

adaptation (physical interaction) and coevolution (correlated evolution, perhaps owing 

to common function), and whether species correction genuinely improve the method. It 

should be noted that this is a whole sequence-based method. Again, it was necessary to 

know whether this was truly appropriate for predicting PPIs. Hence, a full 

benchmarking study was needed. A short supplied example of the mirrortree approach 

was used to demonstrate its utility on a relevant example in fibrillin-1 (Chapter 3). As 

fibrillin-1 is a multi-domain protein, it was decided to study the relationships between 

the domains. However, poor prediction results were obtained. One possible explanation 

for such results is that there is insufficient sequence diversity of the orthologues. Given 

that the benchmarking study had suggested that whole sequence-based methods were 

limited, a residue-based approach was selected. The mutual information statistic was 

utilized to compare co-variability between two protein positions, which were 

represented by two columns in the same MSA. Results are shown in Chapter 4, which 

shows that this has considerable promise, and indeed a novel methodology used in 

mirrortree was exploited at the residue level to show a significant improvement in 
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prediction performance. Finally, a more empirical approach, using well-characterized 

motifs in a system of pharmaceutical interest where there is plenty of data, was tested. 

Different G protein-couple receptor (GPCR) binding sites were compared to motifs in 

the PRINTS database, and significant associations between certain GPCR functions and 

different hierarchical level of PRINTS motifs were found.      
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2. Benchmarking of Mirrortree Based 

Computational Protein-Protein Interaction 

Methods 

 

2.1. Aim 

The objective of this study was to derive a robust protein-protein interaction 

prediction approach by benchmarking many existing coevolution based bioinformatic 

methods in both prokaryotic and eukaryotic systems. To obtain the best combination of 

techniques for accurate predictions, many aspects that are highly influential to the 

prediction results, such as sequence diversity, orthologue selection, negative dataset 

generation, entropy reduction and speciation signal correction were also analyzed. The 

outcome of this work should provide comprehensive insight into facilitating the 

prediction of putative interacting protein partners. 

 

2.2. Introduction 

Protein-protein interactions (PPIs) are vital for all living cells. To function 

properly in a biological process, proteins cluster together to form protein complexes. 

Therefore, identifying protein-protein interactions is the first step toward understanding 

basic cellular processes. From the earliest methods, such as the yeast two-hybrid system 

(Fields and Song, 1989; Uetz et al., 2000), affinity purification and mass spectrometry 

assays (Ho et al., 2002; Gavin et al., 2006; Krogan et al., 2006), to the more recent 

protein microarray (Kung and Snyder, 2006; Weinrich et al., 2009; Yu et al., 2010), 

many high throughput experimental methods have been developed to detect PPIs; 

however, analysis of these experimental datasets shows that they are prone to a high rate 

of false positives and false negatives. Many groups have compared datasets generated 

by utilizing these methods and confirmed that only a moderate amount of these so-

called high quality datasets actually overlap. This clearly shows that experimental 

datasets require some quality control or assessment before being used for extensive 
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analysis. Nonetheless, PPI data generated using high throughput techniques or more 

focused low throughput studies can be obtained from many repositories, such as DIP 

(Xenarios et al., 2000), BIND (Bader et al., 2003), MINT (Chatr-aryamontri et al., 

2007), IntAct (Kerrien et al., 2007) and the Yeast Interactome Database (Yu et al., 

2008).  

 

In addition to experimental techniques, many computational methods were 

developed for both the prediction of putative PPIs, and as an alternative practice; data 

resulting from these methods can also be utilized for the validation of experimental 

results. These methods include text-mining (Hoffmann et al., 2005), structural templates 

(Aloy et al., 2004; Aloy and Russell, 2004), domain fusion (Enright et al., 1999), 

mutual information (Gloor et al., 2005; Dunn et al., 2008), phylogenetic profiling 

(Marcotte et al., 1999; Pellegrini et al., 1999) and coevolutionary based methods (Pazos 

and Valencia, 2002; Tan et al., 2004; Pazos et al., 2005; Sato et al., 2005). In particular, 

the similarity of phylogenetic trees, also known as the mirrortree approach (Goh et al., 

2000; Pazos and Valencia, 2001; Pazos et al., 2005), has recently been drawing much 

attention. 

 

2.2.1. Mirrortree Approach 

The basis of the mirrortree approach is that interacting proteins are often under 

similar evolutionary pressures. It has been observed that many interacting proteins tend 

to evolve in a correlated fashion (Moyle et al., 1994). That is, when mutation occurs in 

one protein, compensatory mutation must happen in the interacting partner in order to 

maintain the interaction.  If this does not occur, the mutated sequence will be removed 

by natural selection due to reduced fitness, and the interaction relationship will be lost. 

Given that coevolution of interacting proteins is likely to occur, the interaction can be 

detected by quantifying the similarity between two phylogenetic trees from two protein 

families. The implementation of this approach starts by first identifying homologous 

protein sequences, or more specifically, orthologues (homologues that occur from a 

speciation event among closely related species). Once these orthologous sequences are 

identified, they can be aligned using various sequence alignment tools, such as 

ClustalW (Thompson et al., 1994) and Muscle (Edgar, 2004), to build multiple 
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sequence alignments (MSA). Various distance methods can then be used to compute 

pairwise genetic distances between all the proteins in an alignment. However, direct 

comparisons of tree topologies are quite complex and are often omitted. As an 

alternative, tree branch lengths of two trees are estimated and represented in genetic 

distances. Finally, a linear correlation relationship between the two protein distance 

matrices is calculated using the Pearson correlation coefficient, r.  

 

2.2.2. Speciation Signal Correction Methods 

As proteins from the same set of species are included in phylogenetic tree 

constructions, there is a certain degree of inherent similarity between the two trees, 

regardless of whether the proteins interact. Without having the underlying speciation 

signal removed, it would be rather difficult to distinguish between interacting and non-

interacting proteins as both could result in a positive correlation, owing to the branch 

lengths being dominated by speciation rather than coevolution. Conversely, if the signal 

attributed to the underlying speciation process is completely removed, no correlation 

would be detected between non-interacting proteins, while interacting proteins would 

still obtain a positive correlation. An example is shown in Figure 2.1, which 

demonstrates the influence of speciation pressure among the source species on the 

interaction prediction results.     

 

An improved version of the mirrortree approach was developed by Pazos and 

colleagues (Pazos et al., 2005) to eliminate the background signal that emerged from the 

underlying speciation events. RNA and protein trees representing the overall 

evolutionary histories of the species under test are respectively constructed using 16S 

subunit ribosomal RNAs and proteins that are highly similar to the RNAs.  

Subsequently, a normalization matrix that consists of protein-RNA ratios obtained from 

the molecular protein and the RNA trees is generated to convert all distances in the 

RNA matrix to equivalent protein distances prior to the speciation signal removal step.  

After the conversion of RNA distances to protein distances, the speciation signal can be 

removed by subtracting an RNA distance matrix from the equivalent protein matrix. 

Another approach, developed by Sato and colleagues (Sato et al., 2005) with the intent 

of reducing the speciation signal between two protein sequences, claims that when using 
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a projection operator to exclude the speciation signal from distance matrices, the overall 

predictive power was improved. Additionally, instead of the rRNA distances, the overall 

average pairwise protein distances, calculated based on all proteins involved in the 

analysis, were used. 

S E

S
E

ES

ES

Non-interacting proteins

Interacting proteins

E

E

E

E

r > 0

r > 0

Removing S
r > 0

Removing S
r = 0

Figure 2.1. Influence of speciation signals on interaction prediction. The ovals represent 
proteins which contain evolutionary (E) and speciation (S) signals. When S and E are 
included for the calculation of the Pearson correlation coefficient, r, both interacting and 
non-interacting protein pairs would obtain a positive r-score. As shown in the figure, 
they retain the same shape. However, after removing the speciation signals, interacting 
protein pairs would still obtain a positive r-score, while non-interacting pairs would 
obtain an r-score of 0. As shown in the figure, the final non-interacting proteins are of 
different shapes.       
 

2.2.3. Orthogonal vs. Non-orthogonal Approaches 

Figure 2.2 illustrates a vector representation between the orthogonal approach 

(developed by Sato et al. (2005)) and the non-orthogonal approach (developed by Pazos 

et al. (2005)). Both approaches make use of the idea that raw evolutionary signals can 

be further separated into true evolutionary and speciation signals. This is represented in 

Figure 2.2 by the three vectors: VR (raw evolutionary), VE (true evolutionary) and VS 
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(speciation). In the orthogonal approach, VS is the projection of VR such that VE and VS 

are perpendicular (orthogonal) to each other. As for the non-orthogonal approach, since 

no projection is made, the angle between VS and VR is not adjusted; instead, the length 

of VS is adjusted. As suggested by Kann et al. (2007), the non-orthogonal approach is 

favoured when one protein mutates faster than the other protein, but still maintains the 

same tree branch length proportions as the other protein tree. In such a situation, the 

orthogonal approach would result in a perfect correlation between the two proteins, 

while different mutation rates would be penalized by the non-orthogonal approach. 

Another factor that could affect the prediction is that evolutionary pressure does not act 

uniformly across the whole protein sequence. Hence, some regions (highly conserved) 

could be under strong evolutionary pressure, while other regions (highly variable) are 

subject only to speciation influences. When the regions that are not under evolutionary 

pressure are much longer in one protein than the other protein, the predictive power of 

the non-orthogonal approach could be compromised due to the fact that speciation 

vector length is important for the non-orthogonal approach. In this case, the predictive 

power of the orthogonal approach is not affected. To compensate for the advantages and 

disadvantages of both approaches, Kann and colleagues implemented an entropy 

reduction step (ERS). High entropy regions are removed prior to the prediction analysis 

in an attempt to improve predictive power for both orthogonal and non-orthogonal 

approaches. After the ERS was applied, an improvement in predictive power was 

observed.  
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Figure 2.2. A schematic vector representation of orthogonal and non-orthogonal 
speciation correction methods. VS is the vector representing the speciation relationships 
among all species in a MSA while VR is the raw vector obtained directly from the 
distance matrix. The desired vector containing only evolutionary signals is signified as 
VE.   
 

2.2.4. Benchmarking Study Overview 

To examine the mirrortree approach, and explore the possibility of identifying 

the best combination of approaches for PPI predictions, a benchmarking study was 

carried out in a very systematic and meticulous fashion designed to ensure the quality of 

the assessment. High quality positive datasets were collected based on crystal structures 

and multiple experimental evidence. In addition, putative negative datasets were 

generated using different approaches in order to assess the interaction prediction 

methodologies. To determine the evolutionary relationship between two proteins, 

different orthologue selection methods, or resources, were utilized to acquire 

orthologous sequences for multiple sequence alignment construction. These methods 

were then evaluated by measuring the degree of coevolution between proteins in 

different datasets using the r- and Z-score statistics.  Finally, as an overall metric, the 

area under the Receiver Operating Characteristic (ROC) curve was calculated to assess 

the predictive power of each method. A schematic diagram showing the overall analysis 

is illustrated in Figure 2.3. 
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Although in the original analysis carried out by Pazos et al. (2005), the 

mirrortree approach was only tested using prokaryotes, to extend this method to a more 

general PPI prediction, it was important to also examine the likelihood of using such a 

method for eukaryotes. However, while most prokaryotes are unicellular and proteins 

from such organisms often contain only one functional unit (single domain), eukaryotes 

are generally more complex and contain multi-domain proteins. As conserved regions 

are often related to functional regions, and would be under more prominent evolutionary 

pressures, it is possible that restricting the analysis to these regions could increase the 

prediction accuracy. To examine this phenomenon, the entropy reduction step (ERS) 

developed by Kann and colleagues, was utilized to remove highly variable regions in 

MSAs. Indeed, improvement was observed for many datasets, especially when using 

prokaryotic data. Even without ERS, prokaryotic datasets have shown superior 

prediction performance than the eukaryotic sets. This suggests that the mirrortree 

approach relies on a similar proportion of important residues in each protein partner, 

and better predictive power is expected when using these regions. Consequently, this 

approach is likely more suitable for domain-domain interactions than for multi-domain 

protein interactions. Indeed, this was the focus of the Kann study, rather than whole 

protein sequences. 
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Figure 2. 3. Schematic diagram for the analysis of the mirrortree based protein-protein 
interaction prediction approach. 
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2.3. Methods 

2.3.1. Datasets 

In order to better reciprocate tests carried out by other groups, it was necessary 

to use the same or similar datasets as the original methods. Hence, wherever possible, 

positive and negative datasets were generated in the same way as they were in the 

original methods described by Pazos et al. (2005) and Tan et al. (2004). However, in 

order to test whether dataset origin affects prediction performance, additional datasets 

were generated from other sources. Due to the fact that many of the datasets that were 

obtained from the previous studies were quite small, an effort was also made to generate 

larger datasets to examine dataset size bias. In particular, Hakes+ and GFP- were 

generated to be three times the size of the other eukaryotic dataset, Tan+, which was 

obtained from the Advice website (http://advice.i2r.a-star.edu.sg/doc/sup.php). A 

description of all datasets used in this study is listed in Table 2.1. 

 

2.3.1.1. Positive Datasets 

The Pazos+ dataset was generated based on the E. coli interacting protein file, 

Ecoli20040203, which was obtained from the DIP database (http://dip.doe-

mbi.ucla.edu/dip/Main.cgi) with 516 experimentally determined interacting protein 

pairs. However, many of these protein pairs were derived from self-self and hetero-

species interactions. Using this type of interaction data could result in biased 

predictions; hence, these protein pairs and also proteins with obsolete IDs were removed 

prior to the analysis. After restricting protein pairs to those with a minimum of 10 

orthologous species in common, the remaining 268 interacting protein pairs were further 

reduced to 154 pairs (consisting of 283 proteins). Multiple sequence alignments 

containing less than 10 species are commonly thought not to retain sufficient 

evolutionary signals, and therefore a similar minimum species cutoff has been imposed 

in other studies (Tan et al., 2004; Pazos et al., 2005). 

http://advice.i2r.a-star.edu.sg/doc/sup.php�
http://dip.doe-mbi.ucla.edu/dip/Main.cgi�
http://dip.doe-mbi.ucla.edu/dip/Main.cgi�
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Number of protein pairs for each ortholoque 

selection method (average number of species per 
MSA) 

Dataset abbreviation Interaction Status Organism Source Validation Method (s) Inparanoid ENSEMBL
BLAST-

SwissProt 
BLAST-

Proteomes 

Pazos+ 
Interacting 
proteins 
(coevolution) 

Escherichia coli 
Pazos et al., 
2005 

Annotated in Database of 
Interacting Proteins (DIP) 

154 (24) - 114 (63) 151 (27) 

Pazos- 
Non-interacting 
proteins 

Escherichia coli This study 
Random selection of two proteins 
from the Pazos+ set 

154 (19) - 108 (41) 152 (24) 

Tan+ 
Interacting 
proteins 
(coevolution) 

Saccharomyces 
cerevisiae 

Tan et al., 2004
Minimum three experimental 
results 

99 (25) 75 (28) 55 (30) 99 (28) 

Hakes+ 
Interacting 
proteins (co-
adaptation) 

Saccharomyces 
cerevisiae 

Hakes et al., 
2007 

Observed in crystal structures from 
Protein Quaternary Structure 
database 

297 (23) 296 (29) 297 (24) 297 (29) 

Tan- 
Non-interacting 
proteins 

Saccharomyces 
cerevisiae 

Tan et al., 2004

One protein found in the 
mitochondrial membrane and the 
other protein found in the nuclear 
membrane 

35 (21) 33 (28) 17 (22) 35 (27) 

GFP- 
Non-interacting 
proteins 

Saccharomyces 
cerevisiae 

This study 

Random selection of two proteins 
from two non-adjacent cellular 
compartments from the Yeast GFP 
Localization Database 

297 (20) 297 (29) 297 (16) 297 (27) 

 Table 2.1. Descriptions of positive and negative datasets generated using sequences from Escherichia coli and Saccharomyces cerevisiae.
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A dataset of 110 interacting protein pairs for Saccharomyces cerevisiae was 

obtained from the Advice website (http://advice.i2r.a-star.edu.sg/doc/sup.php), where 

all interaction data was verified by multiple experiments. The same filtering criteria 

used for the Pazos+ dataset was applied in order to remove obsolete identifiers, as well 

as protein pairs with fewer than 10 common orthologous species. Self-self interacting 

pairs were also removed; consequently, 99 pairs of interacting proteins were retained for 

the Tan+ dataset.  

 

A third positive dataset, Hakes+, was generated by randomly selecting 297 

protein pairs consisting of three sets of 99 non-redundant protein pairs taken from a 

large collection of structure-based Saccharomyces cerevisiae interacting protein pairs 

(Hakes et al., 2007). The three Hakes+ subsets were generated to ensure that any bias 

that might arise due to different dataset sizes would be minimized while being 

compared to the other eukaryotic dataset, Tan+. As our preliminary tests (not shown) 

revealed very little bias between different dataset sizes, these three subsets were 

subsequently combined to create a larger dataset consisting of 297 protein pairs. This 

data was derived, using the rule of 5 or more atomic contacts within 7.5Å of each other, 

from the Protein Quaternary Structure database (PQS, Henrick and Thornton, 1998) and 

the BioGRID database (Stark et al., 2006).  

 

2.3.1.2. Negative Datasets 

Since there are no experimentally determined datasets for non-interacting 

protein pairs for E. coli or for other organisms, a set of 154 putative non-interacting 

protein pairs was generated. Following previous research (Pazos et al., 2005), this was 

achieved by randomly selecting two proteins from the positive dataset, Pazos+, to 

produce a negative dataset, Pazos-. Protein pairs were included in this negative dataset 

only if they were not identified as interacting proteins in the positive dataset. 

 

A eukaryotic negative dataset, Tan-, was also obtained from the Advice website 

(http://advice.i2r.a-star.edu.sg/doc/sup.php) in the same way as the Tan+ dataset. The 

criteria used by the authors (Tan et al., 2004) to ensure that the proteins in this negative 

set were not interacting was based on the premise that one protein was found in the 

http://advice.i2r.a-star.edu.sg/doc/sup.php�
http://advice.i2r.a-star.edu.sg/doc/sup.php�
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mitochondrial membrane and the other protein was found in the nuclear membrane. 

Although all proteins in the Tan- set are membrane proteins, membrane proteins are 

probably under-represented in the other datasets. Due to the membrane protein bias, it is 

possible that proteins in Tan- might be under different evolutionary pressures when 

compared to the other datasets. 

 

GFP-, an additional eukaryotic negative dataset made up of 297 putative non-

interacting protein pairs, was created using data from the yeast GFP fusion localization 

database (Ghaemmaghami et al., 2003). The Saccharomyces cerevisiae fusion library in 

the database was created by tagging each open reading frame with a high-affinity 

epitope, and subsequently monitoring expression via immunochemistry from its natural 

location. After obtaining the yeast expression database from the GFP fusion localization 

website (http://yeastgfp.yeastgenome.org/), proteins shown to express in two non-

adjacent yeast subcellular compartments were selected to create the GFP- dataset. 

 

2.3.2. Orthologue Selection Methods 

As different orthologues lead to different compositions of MSAs, and result in 

different predictions, it is essential to identify a good method for selecting real 

orthologues in order to make accurate predictions. Orthologues in this study were 

generated from four different sources or methods for all eukaryotic proteins, and three 

for the prokaryotic proteins. This is because only eukaryotic data is available in the 

Ensembl Compara Homology database. These methods include: 1) Inparanoid, 2) 

ENSEMBL, 3) BLAST-SwissProt, and 4) BLAST-Proteomes. Example trees consisting 

of orthologues obtained via different orthologue selection methods are shown in Figure 

2.4 for a representative E. Coli protein, and Figure 2.5 for a representative yeast protein.  

 

The Inparanoid program (O'Brien et al., 2005), version 5.1, was obtained from 

http://inparanoid.sbc.su.se/cgi-bin/index.cgi to generate orthologues for the Inparanoid 

method. This program implements the reciprocal best BLAST hit (RBH) approach and 

works by first using BLAST to search a querying database comprised of multiple 

complete proteomes with an E-value cutoff of 10-5. The subject database is then reverse-

searched to obtain the top best-best hits, which are considered putative orthologues. The 

http://yeastgfp.yeastgenome.org/�
http://inparanoid.sbc.su.se/cgi-bin/index.cgi�
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E. coli proteome, as well as 43 fully-sequenced bacterial proteomes, were obtained from 

the integr8 database (http://www.ebi.ac.uk/integr8/EBI-Integr8-HomePage.do), and 

respectively used as the subject database and query databases. For the eukaryotic 

datasets, Saccharomyces cerevisiae and 34 complete eukaryotic proteomes were also 

obtained from the integr8 database, and were subsequently utilized as the subject and 

query databases to obtain orthologues. 

 

The ENSEMBL method obtained eukaryotic orthologous sequences from the 

Ensembl Compara Homology database (Flicek et al., 2008), a very high quality 

resource for orthologues. Although it would be ideal to also obtain orthologues from the 

same species used for the Inparanoid calculations, the Ensembl Compara Homology 

database is unfortunately limited to only eukaryotic species. Furthermore, only 29 

species in the Ensembl Compara Homology database overlapped with the 35 species 

used for the RBH approach, so orthologues were only extracted from these overlapping 

proteomes. When multiple putative orthologues emerged, the one with the highest 

percentage identity to the yeast protein was selected.   

 

In addition to the more sophisticated methods described above, two simple top 

BLAST approaches, BLAST- SwissProt and BLAST-Proteomes, were implemented. 

The BLAST-Proteomes method used a database consisting of 43 complete eukaryotic 

proteomes (the same species as were used for the Inparanoid method), while the 

BLAST-SwissProt method used the SwissProt (release 10.0) database 

(http://www.ebi.ac.uk/swissprot/). Candidate proteins were searched using BLAST 

against each database. Each top search result with an E-value lower or equal to 10-5   

was deemed an orthologue, and hence included for the analysis. 

 

 

 

 

 

 

http://www.ebi.ac.uk/integr8/EBI-Integr8-HomePage.do�
http://www.ebi.ac.uk/swissprot/�
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A) Inparanoid 

 

 

B) BLAST-SwissProt 
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C) BLAST-Proteomes 

Figure 2.4. Phylogenetic trees for protein NAGD_ECOLI (outlined in boxes), showing 
orthologues that were obtained using 3 different methods. These methods were A) 
Inparanoid, B) BLAST-SwissProt and C) BLAST-Proteomes. 
 
 
A) Inparanoid   
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B) ENSEMBL 

 

 

C) BLAST-SwissProt 
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D) BLAST-Proteomes 

 

Figure 2.5. Phylogenetic trees for protein CSK2B_YEAST (outlined in boxes), 
showing orthologues that were obtained using 4 different methods. These methods were 
A) Inparanoid, B) ENSEMBL, C) BLAST-SwissProt and D) BLAST-Proteomes. 
 

2.3.3. Genetic Distance Methods  

Orthologues derived from common species for each protein pair partner were 

aligned using ClustalW (Thompson et al., 1994) with default parameters. MSAs with 

nine or fewer sequences were removed from the analysis. Five genetic distance 

methods, 1) ClustalW, 2) PROTDIST, 3) SIMPLE, 4) MATRIX and 5) TREE, were 

then applied to the remaining MSAs, and the distance matrices were used to infer their 

coevolutionary relationships. 

 

For the ClustalW method, pairwise alignment scores, which measure the degree 

of similarity between two sequences in a MSA, were obtained from the ClustalW output 

log file. These percentage identity scores were used as a measure for genetic distance 

between two sequences. 

 

 The Protdist program (part of the Phylip package) that implemented the Jones-
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Taylor-Thornton model (JTT; Jones et al., 1992) was utilized to calculate evolutionary 

distances between two sequences for each MSA in the PROTDIST method.  The basis 

of the JTT model is the observation of amino acid exchanges in a protein sequence.  

This model generates distances in scaled units of expected fractions of amino acids 

changed, and is set as the default model in the Protdist program.   

 

 The SIMPLE method implemented a scoring system that measures the number 

of identical non-gapped positions between each two sequences in a MSA. For each two 

sequences, i and j, from the same MSA at each amino acid residue position, a score of 1 

was assigned if there was a match between the two amino acid residues, given that 

neither one of the residues was a gap. A score of -10 was assigned when it was the 

opening of a continuous stretch of gap residues, and a score of -1 was assigned when it 

was not an opening gap. Another method, MATRIX, was derived from the method 

implemented by Kim and colleague (Kim et al., 2004). This method assigned a penalty 

score of -10 for a residue if it was an opening of a continuous stretch of gap residues, 

and a score of -1 when it was not an opening gap. Unlike the SIMPLE method, 

BLOSUM62 was utilized as the amino acid substitution matrix in order to measure the 

degree of similarity between two amino acid residues at each position. Finally, SIMPLE 

and MATRIX distances between sequences i and j, dij, were calculated as follows: 
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where Sii and Sjj are the self-self alignment scores and Sij represents the pairwise 

distances between sequence i and j. 

 

Following the method used by Pazos and colleagues (Pazos et al., 2005) to 

generate distance matrices, one neighbour-joining tree for each MSA was constructed 

using ClustalW. All tree branch lengths separating each species were summed up to 

generate a distance matrix. Although phylogenetic trees are often utilized to depict the 

evolutionary history of a set of species, it is not necessary that the constructed trees 

match the known species trees to represent true sequence divergence (Graur and Li, 

2000; Nei and Kumar, 2000) as different protein trees might have different evolutionary 
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histories. When a protein tree is different from the true species tree, both the tree branch 

lengths and topology can be quite different from that of the species tree. As ClustalW 

constructs a guide tree before progressively aligning sequences to the hierarchy in the 

guide tree, it is possible that the accuracy of the phylogenetic tree could be improved by 

using more sophisticated methods (Nelesen et al., 2008) to generate guide trees. Other 

phylogenetic tree construction methods, such as maximum parsimony and maximum 

likelihood, have been shown to produce trees that are closer to the true model of 

evolution, but are more computationally intensive to run.   

 

2.3.4. Speciation Signal Correction Methods 

Three methods, RNA_TREE1 (Pazos et al., 2005), RNA_TREE2 (Sato et al., 

2005) and UAVE_TREE (Sato et al., 2005), were implemented in order to remove the 

underlying speciation signal within each MSA.   

 

The RNA_TREE1 approach follows the same approach described by Pazos et al. 

(2005). A tree of life was constructed using 16S small subunit ribosomal RNA 

sequences obtained from the European ribosomal RNA database 

(http://bioinformatics.psb.ugent.be/webtools/rRNA/). To construct the eukaryotic tree of 

life, 18S small subunit rRNA sequences were extracted from the NCBI website 

(http://www.ncbi.nlm.nih.gov/) instead. All phylogenetic trees were then constructed 

using the TREE method described in the previous section. To ensure compatibility of all 

the data, a normalization distance matrix was generated for each of the prokaryotic and 

eukaryotic sets, and used to convert RNA to protein distances. Proteins that are most 

similar to the RNA tree, determined by the Pearson correlation coefficient (r), were then 

used to construct the protein-RNA normalization matrix by computing a protein/RNA 

distance value for each inter-species comparison. All RNA distances were then 

converted to equivalent protein distances using these conversion ratios. Subsequently, 

they were subtracted from the protein distances generated by the TREE method.  

 

 The RNA_TREE2 and UAVE_TREE methods were applied using the same 

approaches developed by Sato and colleagues (Sato et al., 2005). Projection operators 

were used in an attempt to eliminate the background signal that resulted from 

http://bioinformatics.psb.ugent.be/webtools/rRNA/�
http://www.ncbi.nlm.nih.gov/�
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phylogenetic relationships among the species used for the analysis. Essentially, two 

distance matrices were first converted to phylogenetic vectors by organizing all the 

values in each matrix in the same order, and were then transformed into the projection 

vectors ρvi and ρvj. The computation of ρvi is shown below: 

 

iunitunitivi VVVV |  

 

where Vi is the phylogenetic vector for protein i and Vunit is a unit vector. iunit VV |  

represents the inner product of a unit vector and the phylogenetic vector i.  

 

 For the RNA_TREE2 method, the unit vector, Vunit_16S, was obtained using 16S 

rRNA sequences. However, in the UAVE_TREE method, the average of all 

phylogenetic vectors was used as a unit vector, Vunit_AVE, to determine projection 

operators. 
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 The prediction about the two proteins, i and j, can then be made by calculating 

the inner product of the two projection vectors, vi  and vj  
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2.3.5. Protein Interaction Prediction and Performance 

Assessment 

 The coevolutionary relationship between two proteins was measured by the 

Pearson correlation coefficient, r, as follows: 
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where x and y are the corresponding distance values from the two matrices that are 

being compared.  N represents the total number of x or y – in this case, the number of 

sequences in the MSAs of the proteins being compared. The higher the r-score, which 

must take a value between -1 and 1, the more likely that the two proteins are 

coevolving, although that does not necessarily imply a physical interaction.  

 

 To determine the significance of r-scores, the Z-score approach developed by 

Kim and colleagues (Kim et al., 2004) was implemented. For the estimation of the 

background mean, rmean, and standard deviation, σr, used for the Z-score calculation, the 

sequential order of one of the MSAs for each protein pair was randomly shuffled 1000 

times. A Z-score was then computed using the following equation: 
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Z-scores of 1.64, 2.33 and 3.09 correspond to p-values of 0.05, 0.01 and 0.001, 

respectively. In addition to Z-scores and the Z-score-derived p-values, the significance 

of r-scores can also be determined by comparing rmean values from the randomizations 

and from the predictions to calculate p-values using standard t-tests.      

 

The accuracy of the predictions was then measured by computing the sensitivity 

(SN) and specificity (SP) using the following equations: 
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where TP, FN, TN and FP, respectively, denote true positives, false negatives, true 

negatives and false positives. Receiver operating characteristic (ROC) curves were 

computed to estimate the sensitivity and specificity for each method at different r score 

thresholds. The area under a ROC curve (AUC) was then generated using the trapezoid 

rule to assess the predictive power for each method. An AUC value of 0.5 suggests a 

random prediction. 

 

2.3.6. Entropy Reduction 

Although the mirrortree approach was originally designed to predict PPIs using 

whole sequences, it is possible that functionally or structurally important regions were 

isolated to be used for the predictions. It is widely believed that highly conserved 

positions among orthologous sequences derived from different species are more likely 

to be functionally important and therefore less likely to be affected by the underlying 

speciation signals that are embedded within MSAs (Kann et al., 2007). Several attempts 

have been made to increase the accuracy of PPI predictions by utilizing residues from 

specific regions such as surface and interface (Hakes et al., 2007), or those that are 

simply conserved (Kann et al., 2007). The entropy reduction step (ERS), as described 

by Kann and colleagues (Kann et al., 2007), was implemented in order to eliminate 

regions outside of these conserved domains in a MSA. In this method, the standard 

Shannon entropy H was computed via the use of the al2co program (Pei and Grishin, 

2001). It should be noted that the entropies calculated by the al2co program are scaled, 

and therefore are not directly comparable to raw Shannon’s entropies. An al2co entropy 

cutoff of 1.9 was used to remove all columns with entropy above the cutoff value. In 

addition to using the entropy cutoff, a second approach involving removing all of the 

gapped columns in a MSA was taken to eliminate highly variable columns. 

Subsequently, genetic distance matrices and the Pearson correlation coefficients were 

computed to determine the level of coevolution for all protein pairs in various datasets. 

Furthermore, AUC scores were also calculated to assess the overall effect of restricting 

the analysis to conserved domains.  
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It should be noted that structural domains could also be utilized as an alternative 

(or potentially as an addition) to the ERS. Evolutionary domains (which may also be 

structural) are fundamental evolutionary “units” of a protein. In the analysis of co-

occurring domain sets in yeast proteins, Cohen-Gihon et al. (2007) found that co-

occurring domains (whether sequence-based or structural-based) have similar functions 

and are likely to co-interact. This means that if the coevolutionary signal is there 

because domains interact, whole protein sequences, especially those related to 

eukaryotic systems, should not be used. However, while some groups have studied 

domain-domain interactions using the mirrortree approach and come to results that no 

enormous difference was observed (Hakes et al., 2007), others (Kann et al., 2009) found 

improvements. To further investigate domain-domain interactions, a multi-domain 

protein, fibrillin-1, was studied. The results are shown in Chapter 3.  

 

2.3.7. Optimal Protein-RNA Ratio Experiment  

An experiment was designed to determine the optimal protein-RNA ratio for the 

conversion of genetic distances from RNA to protein space. Essentially, an artificial 

protein-RNA normalization matrix filled with a single value, ranging from 0.01 to 5, 

was utilized for the interaction predictions made using the RNA_TREE1 method. The 

ratio was systematically increased by 0.1, and the Pearson correlation coefficient was 

re-generated based on the new artificial normalization matrix. The results shown in 

Figure 2.10 contain r-scores up to 3 as the trend is quite consistent after 3.  

 

2.3.8. Sequence Diversity Experiment 

In order to determine whether MSAs with different sequence diversities would 

affect interaction prediction results, a controlled experiment was designed to 

progressively either increase or reduce the overall sequence diversity by selectively 

removing species from the MSAs.  

 

Ten interacting protein pairs and ten non-interacting protein pairs were selected 

from the Pazos+ and Pazos- datasets. All the selected MSAs contained 36 sequences 

initially. The number of sequences in each MSA was reduced one at a time until only 3 
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sequences were left. The reason for this is that this is the minimum number of sequences 

required to build a phylogenetic tree. For each protein pair, distance matrices were 

constructed by summing up all tree branch lengths in each tree, according to the TREE 

method. Next, all the genetic distance values associated with each species were summed 

up. For the decreasing sequence diversity test, the species with the highest overall 

average distance between two proteins was removed from the phylogenetic trees for 

both proteins. Alternatively, the sequence with the lowest average overall distance was 

removed for the increasing sequence diversity test. The r- and Z-scores were 

recalculated after each sequence removal from both MSAs. Using an average distance 

between protein pairs across two MSAs to measure the average sequence diversity 

ensures that a single species is removed each time, and guarantees that the same number 

of sequences is in each MSA. An illustration of the experiment for decreasing sequence 

diversity is shown in Figure 2.6.  
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Figure 2.6. Example of a decreasing sequence diversity experiment. 1) A neighbour-
joining tree is constructed for Protein A and B. 2) All pairwise tree branch lengths are 
determined for species A to F. 3) Sum of all tree branch lengths associated with each 
species is calculated. 4) An average sum of tree branch lengths between Protein A and B 
for each species is calculated. 5) The sequence associated with the longest average tree 
branch species is removed from protein A and B. Steps 1 to 5 were repeated to remove 
the sequence with the next highest tree branch length, one sequence at a time, until only 
three sequences were left in a MSA. The Pearson correlation coefficient is also 
calculated after one sequence is removed from each MSA to determine the degree of 
interaction. 
 



 63

It is possible that the source database for the generation of orthologue sets could 

have an effect on the experiment, although it probably does not change the general 

conclusion. In an extreme case, if the query species is very closely related to another 

species, it could be the first species to be removed by the increasing diversity test. 

Conversely, if the query species is particularly divergent from the rest of the species, it 

could also be removed first by the decreasing diversity test. For example, the query 

sequence CSK2B_YEAST in Figure 2.5B) has a relatively long overall tree branch 

length from root to the terminal node, and would probably be eliminated early in the 

case of removing the most divergent species. The main reason is likely due to the fact 

that many of the species in the Ensembl database are vertebrate, where yeast could be 

considered as an outlier. Although the sequence diversity calculations for the individual 

alignment could be affected, it does not change the overall trend. The influence could 

also be protein family specific, where some are affected and some are not. As this 

experiment was designed to test whether one protein family interacts with another, as 

well as the association with sequence diversity, it does not make much difference what 

species the removed sequence comes from. For example, as shown in Figure 2.8, the 

increasing diversity set consistently has better predictive power for interaction, even 

after removing just one sequence. Although the choice of database, method to align the 

sequences, and all the other parameters are important for the mirrortree approach, they 

are secondary to this experiment.     

 

2.4. Results and Discussion 

2.4.1. Datasets 

Most studies often only utilize one dataset from one domain of life for their 

analysis; however, when tested by other groups using a different dataset, the results 

sometimes differ or even contradict the original findings. Hence, in order to 

comprehensively benchmark mirrortree based methods, several datasets (Table 2.1) 

were generated for both positive and negative examples from prokaryotic and 

eukaryotic proteomes. Where possible, the same number of protein pairs was used 

throughout the analysis. However, different orthologue selection methods resulted in 

different orthologues, and with the minimum requirement of 10 common species, it was 



 64

impossible for some protein pairs to meet the criteria. As such, they were excluded from 

the analysis. Nevertheless, the number of protein pairs varies slightly, but remains 

broadly the same across all orthologue selection methods.  

 

Interacting protein pairs in the positive datasets were obtained either through 

multiple independent experimental results (i.e. Pazos+ and Tan+), or directly from 

crystal structures (Hakes+). All protein pairs in the Hakes+ dataset obtained from the 

Protein Quaternary Structure database (PQS; Henrick and Thornton, 1998) display five 

or more inter-molecular atomic contacts within 7.5Å of each other. These positive 

datasets are therefore all considered to be high quality. Although there are many high 

quality PPI datasets, the availability of high quality non-interacting datasets was still 

inadequate. Often, negative datasets were derived from randomly selecting unpaired 

proteins from a positive dataset. However, this method could face the risk of pairing 

non-identified real interacting protein pairs. Consequently, in addition to the negative 

dataset (Pazos-) generated using this method, two negative datasets consisting of 

proteins selected from non-adjacent subcelluar compartments were obtained (Tan-) and 

generated (GFP-) following reported good practice from previous studies (Tan et al., 

2004; Ben-Hur and Noble, 2006) .  

 

The mirrortree approach was applied to all datasets in Table 2.1, using all 

appropriate orthologue selection methods and intergenic distance metrics. The Pearson 

correlation coefficient, r, for each protein pair was then computed to determine the 

degree of coevolution. The r-score essentially measures the similarity between the two 

distance matrices that were derived from the proteins under consideration, with r 

ranging from -1 to 1. Higher r-scores indicate a greater probability that the two proteins 

interact. These were also converted to Z-scores, a normalization step that has been 

proposed to assess the statistical significance of individual r-scores (Goh et al., 2000). 

One of the pairwise distance matrices is shuffled 1000 times to mimic the background 

distribution so that a background mean and the associated standard deviation can be 

obtained to compute the Z-score. The prediction results are summarized in Table 2.2A 

for the prokaryotic, and 2.2B for the eukaryotic datasets.  
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A)       
  Inter-protein interaction prediction in r (Z)   

Dataset   Inparanoid 
BLAST-

SwissProt 
BLAST-

Proteomes 
Average 

r (Z) 
 

ClustalW 0.85 (8.91) 0.77 (14.67) 0.81 (9.41)  
PROTDIST 0.78 (6.89) 0.67 (10.99) 0.73 (6.94)  
SIMPLE 0.73 (6.84) 0.64 (11.21) 0.67 (7.01)  
MATRIX 0.83 (8.22) 0.73 (13.31) 0.78 (8.51)  

Pazos+ 

TREE 0.78 (6.85) 0.77 (14.17) 0.82 (9.49) 

0.76 (9.56) 

 
ClustalW 0.75 (6.58) 0.68 (10.98) 0.67 (7.27)  
PROTDIST 0.63 (4.77) 0.53 (6.96) 0.52 (4.58)  
SIMPLE 0.63 (4.88) 0.56 (7.60) 0.50 (4.63)  
MATRIX 0.73 (5.99) 0.65 (9.57) 0.63 (6.30)  

Pazos- 

TREE 0.64 (4.71) 0.68 (10.7) 0.68 (7.29) 

0.63 (6.85) 

 
Average r (Z) 0.73 (6.46) 0.67 (11.02) 0.68 (7.14)   
       
B)       
  Inter-protein interaction prediction in r (Z)  

Dataset   Inparanoid ENSEMBL 
BLAST-

SwissProt 
BLAST-

Proteomes 
Average 

r (Z) 

ClustalW 0.83 (8.87) 0.63 (4.13) 0.64 (8.81) 0.71 (7.71) 
PROTDIST 0.76 (6.24) 0.66 (4.03) 0.56 (6.23) 0.60 (4.87) 
SIMPLE 0.53 (4.56) 0.40 (2.51) 0.60 (7.11) 0.45 (4.02) 
MATRIX 0.75 (7.39) 0.54 (3.45) 0.66 (8.76) 0.66 (6.62) 

Tan+ 

TREE 0.77 (6.06) 0.60 (3.55) 0.56 (5.91) 0.61 (4.72) 

0.63 (5.78)

ClustalW 0.74 (7.44) 0.56 (3.62) 0.46 (5.49) 0.59 (6.29) 
PROTDIST 0.67 (5.53) 0.61 (3.70) 0.36 (3.83) 0.48 (3.88) 
SIMPLE 0.51 (4.56) 0.34 (2.14) 0.39 (4.14) 0.38 (3.48) 
MATRIX 0.69 (6.70) 0.47 (3.06) 0.45 (5.22) 0.55 (5.61) 

Hakes+ 

TREE 0.67 (5.38) 0.52 (3.13) 0.36 (3.73) 0.48 (3.72) 

0.51 (4.53)

ClustalW 0.80 (7.77) 0.53 (3.39) 0.48 (6.79) 0.68 (8.51) 
PROTDIST 0.74 (5.85) 0.65 (3.92) 0.33 (4.10) 0.59 (6.30) 
SIMPLE 0.55 (4.36) 0.27 (1.64) 0.40 (5.12) 0.39 (4.33) 
MATRIX 0.73 (6.56) 0.43 (2.66) 0.46 (6.32) 0.62 (7.43) 

Tan- 

TREE 0.75 (5.78) 0.52 (3.03) 0.34 (3.90) 0.59 (5.91) 

0.54 (5.19)

ClustalW 0.72 (7.59) 0.56 (4.22) 0.27 (2.53) 0.51 (6.21) 
PROTDIST 0.64 (5.77) 0.62 (4.14) 0.17 (1.29) 0.38 (3.46) 
SIMPLE 0.46 (4.21) 0.36 (2.64) 0.17 (1.52) 0.28 (2.91) 
MATRIX 0.69 (7.08) 0.51 (3.83) 0.25 (2.31) 0.48 (5.63) 

GFP- 

TREE 0.64 (5.53) 0.56 (3.69) 0.16 (1.21) 0.39 (3.37) 

0.44 (3.96)

Average r (Z) 0.68 (6.16) 0.52 (3.32) 0.40 (4.72) 0.52 (5.25)  
 

Table 2.2. Interaction prediction results for all orthologue selection and distance 
methods. 
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As shown in Table 2.2, most of the Z-scores obtained for both the positive and 

negative sets are higher than 1.64, which corresponds to a p-value of 0.05. This suggests 

that all protein pairs have above-background correlations, and that the r-scores are 

significant. Generally, the mean r-scores from the randomizations are close to 0, which 

is much lower than the lowest mean r-score (GFP-) of the negative set. P-values can 

also be calculated by directly comparing the randomization r-scores to the predicted r-

scores. For example, the r-score for the protein pair from Pazos+, ATP6_ECOLI and 

ATPL_ECOLI , was calculated as 0.85 with a Z-score of 9.09, which corresponds to a 

p-value smaller than 0.001. Furthermore, the randomized p-value was determined to be 

0 where all randomized r-scores were lower than the highest predicted r-score. A 

similar trend was also observed for the negative datasets. For instance, the negative 

protein pair from Pazos-, ACRB_ECOLI and ATPE_ECOLI, had an r-score of 0.53 and 

a Z-score of 2.85, which corresponds to a significant p-value of 0.002. The randomized 

p-value was computed as 3.25 x 10-12 where 7 randomized r-scores were found to be 

higher than the highest predicted r-score. As the results of Z-score-derived p-values 

have been shown to be in agreement with the randomized p-value results, the Z-score 

statistic appears to be a reasonable approach for determining the significance of r-

scores, at least assuming the method used to shuffle sequence order in one protein MSA 

is a good Null model. 

 

To evaluate the effectiveness of the prediction methods, ROC-style calculations 

were performed, computing AUC (Area Under the Curve) values for both r- and Z-score 

statistics, for matched pairs of positive and negative datasets. This is a more effective 

way to evaluate prediction performance than r-scores alone, with random prediction 

equivalent to an AUC of 0.5. The Hakes+/Tan- set performed the worst, with a mean 

AUC value of 0.46, while the best performance was found in the Tan+/GFP- set, which 

had a mean AUC value of 0.71 (Table 2.3). The poor performance of the Hakes+/Tan- 

set could be explained by the poor quality of the negative dataset, Tan-. When the 

Hakes+ positive dataset was paired with another negative dataset, GFP-, the mean AUC 

value increased to 0.58. The same trend was also reflected for the Tan+/Tan- and 

Tan+/GFP- sets, as the mean AUC value for Tan+/GFP- is much higher than the mean 

AUC value for the Tan+/Tan- set. Interestingly, both the r- and Z-scores for the Tan- 

negative set are higher than the same statistics found for the Hakes+ positive set (Table 
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2.2). For a negative dataset to result in higher correlation between the proteins under test 

than a positive dataset, it suggests that either the proteins in the positive set were 

mistakenly annotated as interacting or the non-interacting proteins in the negative set 

were actually yet to be discovered interacting proteins. The former is rather unlikely for 

the positive datasets utilized in this chapter, as experimental or structural evidence was 

taken into account when generating these datasets.  

 

It has been suggested that restricting the selection of negative protein-protein 

interaction pairs to only a few specific cellular compartments could lead to substantial 

bias in results (Ben-Hur and Noble, 2006). Membrane proteins are under-represented in 

all the other datasets; however, all Tan- dataset proteins are membrane proteins which 

might be under different evolutionary pressure.  Therefore, it is not surprising to obtain 

inferior prediction results when using the Tan- negative set. As for the positive datasets, 

Tan+ outperformed Hakes+ with higher mean AUC scores when paired with both the 

eukaryotic negative datasets, Tan- and GFP-. Higher r- (0.63) and Z-scores (5.78) were 

also obtained for the Tan+ set. 

 

It is somewhat surprising to see that the structurally defined dataset (Hakes+) 

produced poor prediction performance, as such data is often considered to be a “Gold 

standard” for directly interacting proteins. Three possible explanations should be 

considered. First, perhaps 3D data is not as good as data obtained from other 

experimental sources, and does not capture the full repertoire of coevolutionary signals 

present in the sequences. Second, there might be some pre-existing bias in the Hakes+ 

data set which leads to lower quality predictions. Finally, it is possible that the 

mirrortree approach attempts to determine the coevolutionary relationship between two 

proteins (coevolution) rather than direct, physical contacts (co-adaptation) between 

them. It has been suggested that coevolving proteins are often not directly contacting in 

3-dimensional space, but rather are located in the same protein complexes and/or have 

similar functions (Pazos et al., 1997; Yeang and Haussler, 2007; Burger and van 

Nimwegen, 2008). As a result, it is more likely that the lower prediction performance of 

the Hakes+ set is due to the third possibility. Indeed, Yeang and Haussler observed 

similar findings using residue-based approaches, noting that coevolution is not 

necessarily well-correlated with physical interaction. The discrepancy among different 
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datasets strongly implies that multiple high quality datasets are essential for PPI 

analysis in order to obtain unbiased inferences.
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  Methodology performance assessment: AUC based on r (AUC based on z)   

Datasets 
(positive/negative) 

  Inparanoid ENSEMBL BLAST-SwissProt BLAST-Proteomes 
Average AUC, excluding 

ENSEMBL 
Average AUC, including 

ENSEMBL 

ClustalW 0.68 (0.67) 0.61 (0.62) 0.76 (0.65) 

PROTDIST 0.71 (0.70) 0.64 (0.66) 0.77 (0.72) 

SIMPLE 0.66 (0.69) 0.59 (0.62) 0.74 (0.72) 

MATRIX 0.69 (0.68) 0.60 (0.63) 0.75 (0.67) 

Pazos+/Pazos- 

TREE 0.71 (0.69) 

- 

0.61 (0.62) 0.76 (0.65) 

0.69 (0.66) - 

ClustalW 0.62 (0.61) 0.64 (0.67) 0.68 (0.59) 0.57 (0.41) 

PROTDIST 0.58 (0.57) 0.52 (0.54) 0.70 (0.56) 0.55 (0.33) 

SIMPLE 0.50 (0.54) 0.68 (0.68) 0.71 (0.62) 0.58 (0.49) 

MATRIX 0.59 (0.58) 0.64 (0.67) 0.71 (0.61) 0.60 (0.41) 

Tan+/Tan- 

TREE 0.58 (0.56) 0.59 (0.60) 0.69 (0.57) 0.55 (0.35) 

0.61 (0.52) 0.61 (0.55) 

ClustalW 0.73 (0.64) 0.61 (0.49) 0.84 (0.85) 0.78 (0.67) 

PROTDIST 0.73 (0.59) 0.57 (0.50) 0.81 (0.82) 0.76 (0.69) 

SIMPLE 0.59 (0.54) 0.57 (0.48) 0.88 (0.87) 0.70 (0.64) 

MATRIX 0.63 (0.52) 0.54 (0.44) 0.87 (0.87) 0.75 (0.61) 

Tan+/GFP- 

TREE 0.74 (0.61) 0.56 (0.48) 0.82 (0.82) 0.75 (0.69) 

0.76 (0.70) 0.71 (0.64) 

ClustalW 0.41 (0.46) 0.53 (0.56) 0.48 (0.45) 0.34 (0.23) 

PROTDIST 0.42 (0.46) 0.46 (0.46) 0.50 (0.43) 0.36 (0.21) 

SIMPLE 0.47 (0.52) 0.59 (0.61) 0.48 (0.45) 0.47 (0.42) 

MATRIX 0.48 (0.52) 0.56 (0.59) 0.48 (0.46) 0.38 (0.29) 

Hakes+/Tan- 

TREE 0.42 (0.45) 0.50 (0.52) 0.50 (0.44) 0.36 (0.23) 

0.44 (0.40) 0.46 (0.44) 

ClustalW 0.54 (0.49) 0.49 (0.36) 0.69 (0.69) 0.61 (0.51) 

PROTDIST 0.57 (0.49) 0.51 (0.42) 0.68 (0.70) 0.62 (0.57) 

SIMPLE 0.56 (0.53) 0.48 (0.41) 0.71 (0.71) 0.62 (0.57) 

MATRIX 0.53 (0.46) 0.44 (0.33) 0.70 (0.70) 0.60 (0.48) 

Hakes+/GFP- 

TREE 0.57 (0.50) 0.46 (0.38) 0.68 (0.70) 0.61 (0.56) 

0.62 (0.58) 0.58 (0.53) 

Average AUC, excluding Pazos+/Pazos- 0.56 (0.53) 0.55 (0.51) 0.68 (0.65) 0.58 (0.47)   

Average AUC, including Pazos+/Pazos- 0.59 (0.56) - 0.67 (0.64) 0.61 (0.51)   

Table 2.3. Interaction performance assessment for all orthologue selection and distance methods without the speciation signal correction.
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2.4.2. Orthologue Selection Methods 

 

In general, from different orthologue selection methods, there is a high degree of 

sensitivity in the r- and Z-score statistics. The data shows that different orthologue sets 

produced a wide variation in the reported r- and Z-scores. This is not surprising, as 

detection of orthology is not a trivial task, and different methods will find different 

proteins and also different numbers of species. The Inparanoid method, implemented 

the RBH approach, is widely held to be a more accurate approach to determining 

orthology than a simple BLAST search (O'Brien et al., 2005). Indeed, it generated the 

highest average r- and Z-score statistics, while the BLAST-SwissProt method generated 

the lowest (Table 2.2). However, r- and Z-score statistics alone are not necessarily a 

good measure for determining the performance of a specific method for a single dataset; 

instead, positive and negative datasets should be compared for prediction purposes.  

 

Shown in Tables 2.3 and 2.4, the highest mean AUC value was detected for the 

BLAST-SwissProt method, while ENSEMBL was shown to be the worst method. The 

performance could be ranked as follows: BLAST-SwissProt > BLAST-Proteomes > 

Inparanoid > ENSEMBL.  Interestingly, the all-vs.-all mean sequence diversity for 

datasets generated using these methods follows exactly the same trend. The all-vs.-all 

sequence diversity was calculated by subtracting the mean percentage similarity from 1. 

The mean percentage similarity was derived by calculating the fraction of identical 

positions over the entire MSA length for each sequence pair in the MSA. Furthermore, 

an alternative approach was also taken to calculate sequence diversity by only 

comparing the query protein (the first protein in the MSA) and all non-query proteins 

instead of the all-vs.-all approach described above. Although the AUC rank for 

Inparanoid, BLAST-Proteomes and BLAST-SwissProt remains the same, the mean 

sequence diversity for ENSEMBL becomes the second highest from the lowest (Table 

2.4). Essentially, this suggests that the sequences in the ENSEMBL dataset are quite 

divergent to the query protein, while many of the non-query sequences are closely 

related. Indeed, this is reflected in the poor performance (the lowest mean AUC score) 

of the data generated using the ENSEMBL method, as most ENSEMBL species are 

vertebrate while the query species is yeast. In contrast, the other orthologue methods 
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would obtain more fungi so that the species are more closely related, and show reduced 

sequence diversity from the query sequence.  

 

As for the Inparanoid and BLAST-Proteomes methods, although the same 35 

fully sequenced eukaryotic proteomes were utilized for their orthologue selections, 

BLAST-Proteomes had a slightly higher mean sequence diversity, which resulted in a 

higher mean AUC score. Since the BLAST-Proteomes method was a simplified version 

of the Inparanoid method, it was expected that the orthologues obtained using the 

BLAST-Proteomes method would not be as thoroughly evaluated. Consequently, some 

related but “false positive” sequences could be included. This is shown in the datasets, 

as the BLAST-Proteome generated datasets possess a slightly higher mean sequence 

diversity than the Inparanoid generated datasets. It is reasonable to assume that a set of 

true orthologous sequences should result in more accurate predictions; however it is 

evident that the sequence diversity of orthologous sequences with a major role could 

sometimes be a more imperative factor in achieving accurate predictions. The best 

orthology detection method was determined to be BLAST-SwissProt, which uses a 

query database that is comprised of sequences from over 10,000 species. Such a 

database selects sequences from a wide collection of species (either divergent or closely 

related) as opposed to the small number of species used for the other methods 

examined. Certainly, there is a positive correlation between predictive power and 

sequence diversity.  

 

In addition to sequence diversity, the number of sequences per MSA for each 

different orthology selection method was also considered when to determining factors 

that might affect prediction results. Although the SwissProt database contains sequences 

derived from a large number of different organisms, many sequences are still missing 

due to the incorporation of incomplete proteomes. This means that for some species, 

more sequences are available than the others. Such variation in the completeness of 

different proteomes is revealed in the mean number of species. Essentially, when 

including Pazos+/Pazos- the set has the highest number of species for the BLAST-

SwissProt method, but when excluding Pazos+/Pazos- it contains the lowest number of 

sequences per MSA (Table 2.4). Furthermore, the methodology difference between the 

RBH and simple BLAST approaches is reflected again in the mean number of 



 72

sequences, as more sequences were filtered out by the more sophisticated Inparanoid 

method than the BLAST-Proteomes method.  

 

 Orthologue method 
Inparanoid ENSEMBL 

BLAST-
SwissProt 

BLAST-
Proteomes

Number of species 
per MSA 

22 29 23 28 

Sequence diversity 
(all-vs.-all) 

0.59 0.43 0.66 0.62 

Sequence diversity 
(query vs. non-

query) 
0.58 0.63 0.70 0.60 

Excluding 
Pazos+/Pazos- 

AUCr (AUCz) 0.56 (0.53) 0.55 (0.51) 0.68 (0.65) 0.58 (0.47)

Number of species 
per MSA 

22 - 32 27 

Sequence diversity 
(all-vs.-all) 

0.58 - 0.62 0.61 

Sequence diversity 
(query vs. non-

query) 
0.54 - 0.63 0.57 

Including 
Pazos+/Pazos- 

AUCr (AUCz) 0.59 (0.56) - 0.67 (0.64) 0.61 (0.51)

 
Table 2.4. Average number of species per MSA, sequence diversity and AUC scores for 
different orthology detection methods. 
 

Although the differences in the mean number of sequences per MSA for each 

orthologue method were small, they are broadly equivalent, averaging between 22 and 

29 for the yeast datasets. The only exception was when incorporating the E. coli dataset 

using BLAST-SwissProt, an average of 32 sequences per MSA was produced. Overall, 

no evidence for performance improvement was observed with increasing numbers of 

species. 

 

2.4.3. Distance Methods 

Producing correct intergenic distances to measure the evolutionary relationships 

among all species in a MSA is critical for mirrortree based predictions, as this method 

compares the evolutionary relationship of two protein families. If the distance matrix of 
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one protein family is incorrectly generated, the degree of similarity between the two 

MSAs will not be measured correctly. In an attempt to determine the best method for 

measuring the intergenic distances among all species in a MSA, five distance methods, 

ranging from the more sophisticated PROTDIST method to the SIMPLE method, which 

uses a rather crude scoring system to measure the similarity among all sequences, were 

evaluated. 

 

A similarly wide variation in r- and Z-scores was observed for different distance 

methods. Shown in both Table 2.2 and Figure 2.7, the ClustalW method generally 

produced the highest r and Z-scores, while the lowest mean r and Z-scores were 

observed for the SIMPLE method. Whether it was based on different datasets or 

orthologue methods, this trend was rather consistent. Since the SIMPLE distance 

method uses the crudest scoring system, which does not take different amino acid 

substitution rates into account when constructing distance matrices, the inability to 

detect full coevolutionary signal is to be expected. Consequently, this method produced 

the lowest average correlation scores. Several authors have favoured the use of 

PROTDIST and indeed this method does produce the highest correlation scores for 

orthologues selected via ENSEMBL (Table 2.2).   

 

Nearly opposite trends of distance method performance were detected for the 

prokaryotic and eukaryotic datasets. The prokaryotic performance for different distance 

methods could be ranked as follows: PROTDIST > TREE > CLUSTALW > MATRIX 

> SIMPLE, while the performance rank for the eukaryotic set could be positioned as: 

SIMPLE > CLUSTALW > MATRIX > TREE > PROTDIST. PROTDIST performed 

the best, with the highest mean AUC score (0.707) when used to generate distance 

matrices for the prokaryotic set; however, it produced the lowest mean AUC score 

(0.584) for the eukaryotic set. In contrast, the SIMPLE distance method generated the 

highest mean AUC score (0.599) for the eukaryotic set and the lowest mean AUC score 

(0.663) for the prokaryotic set. The TREE method was found to be the second best 

method when evaluated using the prokaryotic data, but was determined to be the second 

worst method for the eukaryotic set.   
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Figure 2.7. Average r-scores for different methods to estimate genetic distance between 
aligned protein sequences. The average r-scores for each distance method are presented 
when averaging over either all orthologue methods or over all datasets in this study 
(based on data in Table 2.3). For instance, the orthologue method based average r-score 
for the ClustalW distance method (first black bar) was calculated by averaging all of the 
ClustalW mean r-scores that were obtained for each of the four orthologue methods: 
Inparanoid, ENSEMBL, BLAST-SwissProt and BLAST-Proteomes, over all datasets. 
As for the dataset based ClustalW average r-score (first white bar), it was calculated by 
averaging all the ClustalW mean r-scores that were obtained for each of the 6 datasets: 
Pazos+, Pazos-, Tan+, Hakes+, Tan- and GFP- for all orthologue methods. 
 

It has been suggested that different amino acid substitution matrices should be 

utilized for datasets with different sequence diversity in order to properly estimate 

evolution distances among all species in a MSA. Hence, in addition to the BLOSUM62 

matrix used for all the predictions in Table 2.3, BLOSUM45 was also utilized for the 

Pazos+/Pazos- set, which was generated using the Inparanoid orthologue method. Since 

MATRIX performed worse when using the prokaryotic data, it was decided to use this 

dataset to evaluate whether an improvement would be obtained by using BLOSUM45. 

In general, higher numbered BLOSUM matrices are designed to be used for less 

divergent MSAs, while lower numbered BLOSUM matrices are designed for more 

divergent MSAs. Essentially, BLOSUM62 should be utilized to compare more closely 

related sequences, while BLOSUM45 should be used for more distantly related 

sequences. However, no significant improvement was found when using BLOSUM45, 
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as the resulting mean AUC scores for these two substitution matrices were very similar. 

The BLOSUM45 matrix produced a mean AUC score of 0.688 while the BLOSUM 62 

generated a mean AUC score of 0.689. Overall, regardless of all the effort made to try 

to determine an overall best distance method, there is no clear pattern to support one 

method above another. 

 

2.4.4. Sequence Diversity Experiment 

According to earlier results (Table 2.3 and Table 2.4), it is quite apparent that 

sequence diversity is a key factor in detecting coevolutionary signals. In order to 

properly assess the association between higher sequence diversity and accurate 

predictions, a focused sequence diversity experiment was conducted on a controlled set 

of protein family pairs from E. coli. In an iterative process, either the most or least 

divergent species were removed from the MSAs of the protein pairs at each step. This 

allowed for the creation of a set of MSAs of either increasing or decreasing diversity, 

while controlling the number of species and ensuring sequences from the same species 

were being compared at each step.  

 

The sequence diversity experiment results are shown in Figure 2.8, for both r- 

and Z-score statistics, and using the TREE distance method. In general, the r and Z-

scores increase for cases where the sequence diversity decreases, as more closely related 

sequences are being compared. However, more importantly, the difference between the 

positive and negative sets is higher for the increasing diversity (orange lines) than for 

the decreasing diversity (purple lines). This difference was achieved almost 

immediately after removing one or two sequences and increasing the sequence diversity 

in the alignments. The pattern of the difference between the positive and negative sets 

was more consistent when it was measured using r-scores throughout the stepwise 

removal of sequences. When measured with the Z-scores, a larger difference for the first 

few sequences was shown, but it was only when 26 sequences were left that it decreased 

to a smaller difference. The results shown in Figure 2.8 offer further support to the 

observation that increasing diversity in multiple sequence alignments improves the 

predictive power of the approach. However, there also came a point where there were 

too few sequences remaining, which significantly reduced the overall predictive power. 
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In this case, a minimum of 20 sequences were retained to maintain decent performance, 

but the performance degraded when fewer than 10 sequences were present. 

 

The sequence diversity for the existing protein pairs in the various datasets used 

throughout this study was also explored. These consisted of two positive datasets: one 

containing the prokaryotic Pazos+ set, and the other containing a combination of two 

eukaryotic datasets, Tan+ and Hakes+. Following the all-vs.-all approach utilized by 

Pazos et al., negative datasets were generated by pairing all proteins in each positive set 

and all non-positive pairs were considered non-interacting. As shown in Figure 2.9, the 

Pearson correlation coefficient for each protein pair was then calculated and plotted 

against the average sequence diversity for the same protein pair.      

 

Fitting a linear regression line to the positive and negative data points shows a 

trend with sequence diversity. Greater separation between the positive (red lines) and 

negative (black lines) datasets with increasing sequence diversity was observed. This 

trend is more clearly demonstrated in the prokaryotic datasets than the eukaryotic ones, 

but is present in both nonetheless. As has been noted before (Pazos et al., 2005), 

mirrortree appears more successful when predicting prokaryotic species. The 

observation here is consistent with these results, as better separation of positive and 

negative datasets was seen for the Pazos+ set. Given that more prokaryotic genomes 

have been sequenced from a greater diversity of species, it is quite possible that the 

higher predictive power for prokaryotic species is associated with sequence diversity. 

This is also consistent with the proposed hypothesis that sequence diversity is an 

important factor in detecting any coevolutionary signal. 
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Figure 2.8. Effect of sequence diversity on prediction performance. Ten positive and ten negative protein pairs were selected from the Pazos+ 
and Pazos- datasets for this experiment. Based on the average sequence diversity, one sequence was removed at each step until only 20 sequences 
were left in each MSA. After the removal of the most or the least divergent sequence, r and Z-score statistics were computed using the standard 
TREE methods. The pos_deDiv and neg_deDiv curves represent the positive and the negative datasets with decreasing average sequence 
diversity, while the pos_inDiv and neg_inDiv curves represent the positive and the negative datasets with increasing average sequence diversity. 
The differences between the positive and the negative datasets with decreasing and increasing diversity are denoted as "pos_deDiv – neg_deDiv" 
and "pos_inDiv – neg_inDiv“. Datasets with increasing sequence diversity appear to perform better (there are greater differences between the 
positives and the negatives). 
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Figure 2.9. Investigation of the relationship between the Pearson correlation 
coefficient and sequence diversity.  Shown in scatter plots for A) the prokaryotic 
set (Pazos+) and B) the eukaryotic set (Tan+ plus Hakes+). The linear correlation 
coefficients for all pairwise protein interaction tests are plotted against sequence 
diversity, averaged over the two protein MSAs. All negative dataset points were 
generated using positive datasets based on the all-vs.-all approach. Two linear 
regression lines are fitted to the data for the positive (red lines) and negative 
(black lines) examples in both plots. 
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It should be noted that sequence diversity from the query protein should 

also be considered when selecting appropriate orthologues for mirrortree style 

analysis. As shown in Table 2.4, the datasets generated using the ENSEMBL 

orthologue method resulted in the poorest prediction performance with the lowest 

mean sequence diversity when the all-vs.-all approach was applied to calculate 

sequence diversity. However, when the query vs. non-query relationships were 

considered, the ENSEMBL mean sequence diversity increased. Because as 

expected, the yeast query sequence is actually quite divergent from the other 

sequences in the same MSA. Although it was shown that higher sequence 

diversity generally results in more accurate predictions, too much distance from 

the query protein could potentially disrupt any coevolutionary signal, as the 

proteins being tested might be under quite different evolutionary pressures. 

 

2.4.5. Speciation Signal Correction Methods 

An earlier analysis (Section 2.4.3) evaluated five different distance 

methods and revealed no clear single best method for generating distance 

matrices for mirrortree style interaction predictions. Independent studies (Pazos 

et al., 2005; Sato et al., 2005) have suggested that there is a phylogenetic 

relationship among the species in a MSA and that such background signals could 

risk masking the true coevolutionary signal and eventually lead to incorrect 

predictions.  

 

To address this issue, three approaches, all of which attempt to remove 

the underlying speciation signal, thereby maximizing any true coevolutionary 

signal produced by interaction or common functions, were evaluated. An 

overview is shown in Figure 2.1. The method, referred to here as RNA_TREE1 

(Pazos et al., 2005), uses small subunit ribosomal RNA sequences as sentinel 

sequences from which to estimate the species tree. It then scales RNA distances 

to protein distances, and subtracts the normalized RNA-based species signal 

from the protein trees. Pearson correlation coefficients, as well as Z-scores, are 

then calculated from the corrected distance matrices (see Methods). Conceptually 

similar methods were also developed by Sato and colleagues (Sato et al., 2005). 
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The first method by Sato et al. uses RNA sequences again, but transforms 

distance matrices into unit vectors prior to the subtraction of the orthogonal 

component (referred to here as RNA_TREE2). A second method uses the 

average values across all proteins under consideration to generate a unit vector of 

average distances which is also subtracted (UAVE_TREE). Both methods were 

reported to significantly improve predictions for a test set of 26 E. coli proteins 

(Sato et al., 2005), but were not tested on eukaryotic proteins. Next, prediction 

performance was assessed using separate positive and negative datasets 

(Pazos+/Pazos- and Hakes+/GFP-). Additionally, an all-vs.-all comparison of 

proteins in the positive test-set (Pazos+, Tan+ and Hakes+), which  assumes all 

but positive-positive pairings are non-interacting, was carried out to minimize 

any possible bias created by  using a small set of negative examples. All MSAs 

were generated using the Inparanoid method; the prediction performance for the 

separate positive and negative sets is summarized in Table 2.5, while the 

prediction performance for the all-vs.-all sets is shown in Table 2.6. In order to 

evaluate the performance of the three analyzed speciation signal correction 

methods, the TREE method (without any background signal correction) was also 

included for comparison purposes. 

 

As shown in Tables 2.5 and 2.6, there is a general improvement in 

prediction performance in all cases where the two RNA-based correction 

methods, RNA_TREE1 and RNA_TREE2, have been applied. RNA_TREE1 

appears to be a more effective method in reducing the speciation signal, as it 

outperformed RNA_TREE2 in most cases. However, consistently poor 

prediction performance was observed for all UAVE_TREE results, despite the 

fact that it was reported to significantly reduce the number of false positives and 

improve PPI predictions (Sato et al., 2005).  
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 Prokaryotes 
 Methodology performance assessment: AUC 
Distance method No ERS ERS - 1.9 ERS - no gap 
TREE (No correction) 0.689 0.693 0.704 
RNA_TREE1 0.708 0.706 0.712 
RNA_TREE2 0.698 0.704 0.712 
UAVE_TREE 0.666 0.667 0.680 
    
 Eukaryotes 
 Methodology performance assessment: AUC 
Distance method No ERS ERS - 1.9 ERS - no gap 
TREE (No correction) 0.576 0.587 0.606 
RNA_TREE1 0.651 0.678 0.671 
RNA_TREE2 0.581 0.600 0.622 
UAVE_TREE 0.491 0.500 0.513 
 

Table 2.5. Performance assessment of tree-based distance methods for the 
separate positive/negative dataset approach. This approach compares separate 
positive and negative datasets (Pazos+/Pazos- and Hakes+/GFP-) for the 
calculations of AUC scores as exemplars for prokaryotic and eukaryotic species. 
 

Again, there is dataset dependent variation in performance, with the 

poorest results obtained from the Hakes+ set (average AUC score of 0.544), and 

the best from the Tan+ dataset (average AUC score of 0.706). As pointed out by 

other studies (Pazos et al., 1997; Yeang and Haussler, 2007; Burger and van 

Nimwegen, 2008), direct physical contact between coevolving proteins is not 

often observed; instead, many of the proteins located in the same protein 

complexes perform the same or similar functions. Hence, it is understandable 

that the 3D structure-based Hakes+ dataset would perform poorly when 

compared to the multiple-experimental-method based Tan+ set. In addition, it 

appears that sequence diversity was also a factor that contributed to such results, 

as Tan+ has a higher sequence diversity than Hakes+. Similar trends were 

observed for datasets that were generated using either the separate 

positive/negative or all-vs.-all approaches. 
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 Pazos+ 
 Methodology performance assessment: AUC 
Distance method No ERS ERS - 1.9 ERS - no gap 
TREE (No correction) 0.674 0.682 0.689 
RNA_TREE1 0.687 0.679 0.669 
RNA_TREE2 0.682 0.689 0.696 
UAVE_TREE 0.648 0.654 0.660 
    
 Tan+ 
 Methodology performance assessment: AUC 
Distance method No ERS ERS - 1.9 ERS - no gap 
TREE (No correction) 0.723 0.708 0.678 
RNA_TREE1 0.744 0.747 0.740 
RNA_TREE2 0.741 0.731 0.711 
UAVE_TREE 0.670 0.655 0.622 
    
 Hakes+ 
 Methodology performance assessment: AUC 
Distance method No ERS ERS - 1.9 ERS - no gap 
TREE (No correction) 0.540 0.536 0.548 
RNA_TREE1 0.576 0.566 0.562 
RNA_TREE2 0.543 0.539 0.552 
UAVE_TREE 0.522 0.516 0.526 
 

Table 2.6. Performance assessment of tree-based distance methods for the all-
vs.-all approach. This approach compares three positive sets (Pazos+, Tan+ and 
Hakes+) with corresponding negative sets that were generated by pairing all 
proteins against all others in each positive set, and considering all non-positive 
pairings as negative examples.  
 

Using a representative set of protein families to calculate the conversion, 

Pazos et al. reported an average intergenic distances ratio of 0.42 for 

protein:rRNA. However, in this benchmarking study, the ratio was typically 

estimated to be over 2.0. At very small values of p/r, only a very small correction 

will be made for any common speciation signal and the calculation produces 

effectively the standard mirrortree method. At large values of this conversion 

factor, the speciation signal will apparently dominate and lead to negative 

distances once the “speciation” signal is subtracted. The calculation, and hence 

prediction performance, is therefore extremely sensitive to the estimation of the 

correction factor p/r when converting RNA to protein distances.  
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Figure 2.10. Correlation coefficient as a function of a protein/RNA conversion 
ratio when using the RNA_TREE1 correction method. A) Combined Tan and 
Hakes positives/negatives for yeast. B) The standard Pazos E.coli dataset for 
prokaryotic species. 
 

To determine the optimal protein:RNA ratio, an experiment using paired 

positive and negative datasets for yeast and E. Coli were carried out to repeat the 

RNA_TREE1 correction step but varied the conversion ratio systematically 

rather than estimated it from a set of proteins that co-vary with ribosomal RNA 

matrices. As shown in Figure 2.10, this has an effect on the calculated correlation 
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coefficients averaged over the different datasets. The difference between the 

positive and negative datasets in r values is shown, and this peaks at around a p/r 

ratio of 0.25 for yeast, and slightly less for the E. coli dataset. 

 

In addition to using the AUC statistic to evaluate the prediction 

performance, the percentage of false positives was also computed. Using the 

same method as described by Pazos and colleagues (Pazos et al., 2005), r-scores 

for all protein pairs in an all-vs.-all calculation using positive sets were sorted in 

descending order for each individual protein, counting all non-interacting protein 

pairs ranked higher than the first true interacting protein pair as false positives. 

The percentage of false positives was then calculated by dividing the number of 

false positives by the total number of protein pairs in the dataset. For instance, a 

dataset with 50 protein pairs would produce a total of 100 r-scores for each 

individual protein vs. all others, only one of which is the true pair. After ranking 

the protein pairs based on their r-scores in descending order, if 10 protein pairs 

ranked higher than the true protein pair, the false positive rate would be 10%. 

Hence, an ideal predictor would universally rank the true interaction first above 

all false positives, and a random prediction would give an average of 50%. As 

shown in Table 2.7, the percentage of false positives varies when using different 

datasets, with values ranging from 18-35%. Nonetheless, the RNA_TREE1 

appears to produce the lowest percentage of false positives, while the 

UAVE_TREE seems to produce the highest. The trend observed using 

percentage false positives is generally the same as the AUC score trend. Again, 

noticeably poorer performance results were obtained using the Hakes+ set 

compared to the other datasets.  

 

Finally, also investigated was the relative entropy correction method 

(Kann et al., 2007), where highly divergent and gapped positions in MSAs were 

removed via ERS, an entropy reduction step. This was done due to the fact that 

evolutionary pressures resulting from protein interactions are likely to act on 

only subsections of the sequence (Kann et al., 2007). ERS uniformly improves 

the predictive performance for the all-vs.-all E. coli dataset (Table 2.6) and both 

the paired E. coli and yeast test sets (Table 2.5), but had almost no benefit in the 

all-vs.-all eukaryotic tests (Tan+ and Hakes+). Since eukaryotic proteins 
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generally contain multiple domains, many of which have been found to be 

independent proteins in prokaryotic proteomes (Davidson et al., 1993), the 

process of identifying functional domains (supposedly more conserved and with 

a stronger coevolutionary signal than non-functional regions) in eukaryotic 

proteins is certainly more complex. Using a single entropy cutoff for the 

exclusion of columns from the alignments could lead to accidental removal of 

important functional positions; as such, a reduced coevolutionary signal as the 

optimal threshold is probably not general, and is likely to vary for alignment 

length, number and diversity of species. 

 

 Pazos+ 
 Average % False positives 
Distance method No ERS ERS - 1.9 ERS - no gap 
TREE (No correction) 26.32 25.28 24.44 
RNA_TREE1 20.82 21.53 21.50 
RNA_TREE2 24.30 23.69 22.99 
UAVE_TREE 28.61 27.53 26.96 
    
 Tan+ 
 Average % False positives 
Distance method No ERS ERS - 1.9 ERS - no gap 
TREE (No correction) 20.45 20.44 23.58 
RNA_TREE1 18.28 17.90 20.31 
RNA_TREE2 19.39 19.56 21.58 
UAVE_TREE 22.72 23.20 26.40 
    
 Hakes+ 
 Average % False positives 
Distance method No ERS ERS - 1.9 ERS - no gap 
TREE (No correction) 33.81 34.70 33.75 
RNA_TREE1 32.15 33.98 33.99 
RNA_TREE2 33.78 34.90 33.76 
UAVE_TREE 33.98 35.11 34.32 
 

Table 2.7. Average false positive rates for tree-based distance methods for the 
all-vs.-all approach. 
 

2.5. Summary 

Protein-protein interactions have been extensively studied, as proteins 

often interact with other proteins to perform their biological functions; indeed, 
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PPIs are the initial step toward gaining a full understanding of cellular 

machinery. Many experimental and computational methods have been developed 

to detect or predict PPIs. However, large discrepancies in the data produced 

using many of these methods also exist. Prior to an in-depth analysis, a full 

understanding of the data and methods is necessary, as without it incorrect 

interpretations are possible. As such, an extensive benchmarking analysis was 

carried out to study a coevolution based PPI approach, mirrortree. Many other 

important factors that might influence the prediction results were also examined.  

 

Different approaches were taken to obtain positive (multiple experimental 

methods and structural properties) and negative (different cellular compartments 

or non-positive pairs from all-vs.-all comparisons) datasets. It was revealed that 

different datasets could eventually lead to very different mean r- and Z-scores. In 

comparison to the structural-based dataset (Hakes+), better predictive 

performance on datasets was derived from high-throughout experiments (Tan+), 

such as yeast-two-hybrid and tandem affinity purifications. This is in strong 

agreement with the results from residue-based methods (Yeang and Haussler, 

2007), which have revealed that although coevolving residue pairs are closer in 

space in the protein structures than would happen by chance, the converse was 

not true; physically interacting residue pairs were generally not observed to be 

coevolving. For the best global distance method, no clear consensus can be 

made, because the mean AUC values evidently cluster based on the datasets and 

orthologue selection methods rather than the distance methods. Within each 

dataset generated using a different orthologue selection method, the performance 

for all distance methods can be ranked accordingly by the mean AUC values.  

However, the ranks vary from dataset to dataset. 

  

A few commonly used orthologue selection methods were utilized to 

generate orthologues for multiple sequence alignment construction.  An apparent 

correlation between mean AUC scores and mean sequence diversity was 

discovered. Essentially, datasets constructed using more divergent species 

resulted in better prediction performance. In particular, the BLAST-SwissProt 

datasets have both the highest mean sequence diversity and the highest mean 

AUC score. There is no doubt that this method is likely to produce orthologues 
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from more diverse species, as the underlying database, SwissProt, consists of 

sequences from over 10,000 species. To further examine the association found 

between higher sequence diversity and better predictive performance, a sequence 

diversity experiment was carried out using both prokaryotic and eukaryotic 

sequences. Indeed, the increasing diversity test set performed better when there 

were greater differences in r-scores between the positive and the negative sets. 

Sequence diversity in MSAs is an important consideration, because if one 

considers an extreme example using closely related species, the pairwise 

intergenic distances derived from the MSA will all be small and very sensitive to 

any changes in the individual sequences, even when they have little bearing on 

the function. It may be particularly challenging to detect coevolution against such 

a background. As shown in the results in this study, this would not be expected to 

be the case in highly divergent families. Taken as a whole, these results suggest 

that sequence diversity should be considered when selecting orthologues.  

 

It has been suggested that by removing the underlying speciation signal, 

predictive power should dramatically improved. Indeed, both RNA_TREE1 and 

RNA_TREE2 produced higher mean AUC scores than the non-background-

signal-corrected TREE method. In particular, RNA_TREE1 appears to be 

removing the speciation background signal more efficiently than RNA_TREE2, 

as it consistently produced higher mean AUC scores. However, the non-RNA 

based method, UAVE_TREE, produced poor performance and does not seem to 

offer any benefits for PPI prediction. Hakes and colleagues found that restricting 

alignments to surface or interface residues offers no improvement (Hakes et al., 

2007), although Kann et al. (2007) found that subtracting the binding regions 

from the alignments invariably reduced prediction performance (Kann et al., 

2009). In agreement with Hakes et al. but contrary to Kann et al., no 

improvement was found after removing either highly variable or gapped columns 

for the all-vs.-all eukaryotic sets.   

 

In summary, the mirrortree approach is highly sensitive to many 

dependent parameters. Nevertheless, improvement can be achieved by carefully 

selecting these parameters. As an example, ROC curves for the best performing 

prokaryotic and eukaryotic sets were plotted and shown in Figure 2.11. Previous 
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studies (Pazos and Valencia, 2001; Pazos et al., 2005) suggested a correlation 

coefficient of 0.80 as a reasonable cutoff to distinguish between interacting and 

non-interacting proteins. However, the corresponding sensitivity and specificity 

for such a cutoff in this study was found respectively to be 0.20 and 0.97 for the 

prokaryotic set. This indicates that only 20% of true interacting protein pairs 

would be correctly identified, and 97% of non-interacting protein pairs would be 

correctly identified. As for the eukaryotic set, the same cutoff of 0.80 would 

result in a sensitivity of 0.37 and a specificity of 0.91. Although the false 

negative rates are quite low for this cutoff, the probability of identifying true 

positives is arguably too low to be of practical use. To address this issue, a 

universal cutoff which usually gives a very high sensitivity at a modest 

specificity could be set. This would be tolerable in a genome wide screen, as 

some correct PPIs would be predicted with high accuracy. Indeed, Juan et al. 

shows some promise for this. However, it is not easy to derive a universal 

‘optimal’ cutoff, and selecting a single r-score cutoff is not advisable as results 

will be highly variable; in some cases it would be over-predicting and in others 

under-predicting.  

 

Due to the large number of factors that could influence prediction results, 

if parameters are not selected carefully, an application of the mirrortree approach 

for whole proteome studies could face a risk of erroneous results. For instance, 

due to different evolutionary selective constraints, comparing membrane and 

non-membrane proteins could result in poor predictions, as seen in the low mean 

AUC score for the Hakes+/Tan-. However, this could be used for more focused 

studies where the parameters are easier to adjust for, such as interactions between 

different ligands and protein families. It also shows more convincing 

performance when applied to protein datasets with higher sequence diversity, and 

for more generalized concepts of co-function/coevolution rather than direct, 

physical interactions, characterized as co-adaptation (Juan et al., 2008b). For the 

prediction of physical interactions, residue-based coevolutionary methods appear 

better suited (Shackelford and Karplus, 2007; Yeang and Haussler, 2007; 

Hamacher, 2008). Lastly, the removal of the underlying speciation signal appears 

to be a critical step in improving prediction performance. 
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A) Best prokaryotic predictive performance

B) Best eukaryotic predictive performance

 

Figure 2.11. ROC curves for the A) prokaryotic and B) eukaryotic sets with the 
best predictive performance. The prokaryotic set with the highest predictive 
power was found to be the Pazos+/Pazos- set with all gaps removed and 
RNA_TREE1 or RNA_TREE2 (not shown here) methods applied. The best 
performing eukaryotic set was found to be the Tan+ all-vs.-all set when all 
columns with an entropy higher than 1.9 were removed. The distance method 
used for this set was RNA_TREE1. 
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3. Domain-Domain Interactions of the 

Fibrillin-1 Family  

 

3.1. Aim 

The aim of this study was to assess the utility of the mirrortree approach 

to the prediction of domain-domain interactions within a multi-domain protein 

that is of genuine experimental interest to structural biologists. Human fibrillin-1 

was used as the test protein, and all predicted interdomain interactions were 

evaluated and compared with associated PDB structures and experimental results 

acquired from scientific literature. 

 

3.2. Introduction 

A protein domain is usually classified as a structurally, functionally and 

evolutionarily independent protein segment. During the course of evolution, 

domains may duplicate and shuffle to generate novel proteins with different 

functions (Bornberg-Bauer et al., 2010). Hence, gaining insight into the 

evolutionary relationship between protein sequences is best achieved by 

comparing protein domains. 

 

Many proteins, particularly eukaryotes, contain multiple domains. These 

domains often interact with each other, or with domains in other proteins, to 

maintain functional and structural integrity. For instance, in Figure 3.1A, the 

multi-domain human fibrillin-1 protein consists of 56 domains (Pereira et al., 

1993); 43 are calcium-binding epidermal growth factor-like (cbEGF) domains, 

four are epidermal growth factor (EGF) -like domains, seven are ‘eight-cysteine' 

or ‘TGFβ-binding protein-like’ (TB) domains and the remaining two are hybrid 

domains that are similar to cbEGF and TB domains. Early studies have shown 

that fibrillin-1 proteins form the backbone of microfibrils in a head-to-tail 

arrangement (Keene et al., 1991; Sakai et al., 1991; Reinhardt et al., 1996). More 
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recent studies carried out by Lin et al. (2002), Marson et al. (2005) and 

Hubmacher et al. (2008) have also revealed interactions between the same 

terminal regions, i.e. N-terminus to N-terminus or C-terminus to C-terminus 

(Figure 3.1B). Fibrillin-1 has been found to be expressed in both developmental 

and adult stages, as it helps to provide structural support for microfibrils. It has 

also been identified in regions such as the heart, lungs, liver and central nervous 

system (Lin et al., 2002). Many genetic disorders in connective tissue, such as 

Marfan syndrome and related conditions, are linked to fibrillin-1 (Lee et al., 

1991; Lemaire et al., 2006; Lima et al., 2010). As connective tissue is present 

throughout the body, deciphering the assembly mechanism of the fibrillin-1 

protein family could facilitate an understanding of connective tissue 

pathogenesis.  

 

The coevolution based mirrortree approach which was extensively 

studied in Chapter 2, has been proposed by several groups as a useful tool (Pazos 

et al., 2005; Sato et al., 2005; Juan et al., 2008b; Kann et al., 2009)  for 

predicting protein-protein interaction using full protein sequences. Although this 

approach is highly sensitive to many dependent parameters, relatively accurate 

predictions can still be achieved by carefully selecting such parameters. As it is 

widely established that protein domains represent the core of evolution 

(Bagowski et al., 2010), it would be intriguing to know whether such an 

approach could be utilized to predict domain-domain interactions using a current 

problem of local interest. To assess the feasibility of such application, various 

approaches were taken to obtain as many putative orthologues of the multi-

domain protein, human fibrillin-1, as possible. Multiple sequence alignments 

(MSAs) representing each of the 56 domains and both terminal regions were 

extracted from the overall MSA and utilized as independent MSAs for the 

analysis. Predictions were then carried out using two mirrortree based methods: 

TREE and UAVE_TREE (see Chapter 2 Methods). Furthermore, the predictive 

power of these methods was evaluated using AUC scores, and 2-tailed t-tests 

were carried out to determine the significance of the results.  
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Figure 3.1. Schematic diagrams of human fibrillin-1. Fifty-six domains have 
been found in the human fibrillin-1 protein, and the domain organization is 
shown in A). Three current models of homotypic fibrillin-1 interactions are 
shown in B). 
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3.3. Methods 

3.3.1. Datasets 

Orthologous sequences for the human fibrillin-1 protein were obtained 

from Ensembl Genes 52 (Flicek et al., 2008) for all available species in the 

database. In addition, to ensure the inclusion of all available orthologous 

sequences, the best reciprocal top-hit BLAST approach (Altschul et al., 1990) 

was implemented, using default BLAST parameter values and an E-value cutoff 

of 10-5.  The query database for the BLAST searches consisted of all sequences 

from the SwissProt 56.7 and TrEMBL 56.7 datasets from the UniProt database 

(Magrane and Consortium, 2011). As shown in Table 3.1, the combination of the 

two orthologue methods led to the identification of 32 orthologues derived from 

a range of metazoan species. 

 

The multiple sequence alignment program, ClustalW (Thompson et al., 

1994), was utilized with all default parameters to align all orthologous sequences 

acquired for the fibrillin-1 protein family. The N- and C-terminal regions and 56 

(43 cbEGF, 4 EGF, 7 TB, and 2 hybrid) domain boundaries were then defined 

according to the domain positions described on the UniProt website 

(http://www.uniprot.org/uniprot/P35555).  

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.uniprot.org/uniprot/P35555�
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Species Taxon ID 

Homo sapiens 9606 

Erinaceus europaeus 9365 

Sorex araneus 42254 

Cavia porcellus 10141 

Ochotona princeps 9978 

Mus musculus 10090 

Rattus norvegicus 10116 

Dipodomys ordii 10020 

Pan troglodytes 9598 

Pongo pygmaeus 9600 

Macaca mulatta 9544 

Tarsius syrichta 9478 

Tursiops truncates 9739 

Equus caballus 9796 

Bos taurus 9913 

Sus scrofa 9823 

Microcebus murinus 30608 

Otolemur garnettii 30611 

Myotis lucifugus 59463 

Tupaia belangeri 37347 

Spermophilus tridecemlineatus 43179 

Lama pacos 30538 

Oryctolagus cuniculus 9986 

Procavia capensis 9813 

Pteropus vampyrus 132908 

Monodelphis domestica 13616 

Gallus gallus 9031 

Xenopus tropicalis 8364 

Takifugu rubripes 31033 

Tetraodon nigroviridis 99883 

Oryzias latipes 8090 

Xenopus laevis 8355 

Podocoryna carnea 6096 

 
Table 3.1. Species of fibrillin-1 orthologues. 
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3.3.2. Domain-Domain Interactions 

Each domain in the fibrillin-1 MSA was treated as an independent MSA, 

and two mirrortree style methods, TREE and UAVE_TREE (see Chapter 2 

Methods), were applied to obtain the Pearson correlation coefficient, r, and 

subsequently the Z-statistic for all putative domain-domain interactions. Due to 

the absence of certain regions in some orthologous sequences, the number of 

sequences for each domain MSA was not identical. Hence, only interactions 

between domains that contained a minimum of 10 sequences from common 

species were determined. 

 

3.4. Results and Discussion 

The benchmarking study in the previous chapter has shown promising 

results in predicting intermolecular protein interactions using the mirrortree 

approach. However, the study was mainly performed using full protein 

sequences, except in the entropy reduction section, where highly variable regions 

were removed in an attempt to reduce the background bias. To further extend 

such an approach by predicting protein interactions at the domain level, the 

potential coevolutionary relationships among all domains and terminal regions in 

fibrillin-1 were determined using the mirrortree approach. Additionally, 

experimental evidence and structural information were incorporated to evaluate 

the effectiveness of the application. 

 

The coevolution analysis for interdomain interaction predictions was 

carried out using the TREE and UAVE_TREE methods. The other two protein-

protein interaction prediction methods, RNA_TREE1 and RNA_TREE2, as 

described in Chapter 2, were not implemented for this study since an equivalent 

region of the RNA could not be obtained for each domain. Given that the aim of 

this study was to determine whether domain-domain interactions could be 

predicted by utilizing the mirrortree approach, the prediction results for the 

TREE and UAVE_TREE methods should be sufficient to demonstrate the 

functionality of this approach, in spite of the technical difficulties in 

implementing the RNA_TREE1 and RNA_TREE2 approaches. 
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A Pearson correlation coefficient, r-score, was calculated for each 

domain-domain or domain-terminus pair in order to predict any putative domain-

domain interactions. One thousand six hundred and fifty-three pair combinations 

were produced utilizing the all-vs.-all approach, with the average r- and Z-scores 

calculated using the TREE and the UAVE_TREE methods. In order to assess the 

predictive power of the mirrortree approach for domain-domain interactions, 

values of the area under ROC curves (AUCs) were computed by comparing the 

predicted results to the known interacting regions in fibrillin-1 proteins. The true 

interacting domains include experimentally determined homotypic interactions 

(Ashworth et al., 1999; Lin et al., 2002; Marson et al., 2005; Hubmacher et al., 

2008), structurally contacting positions (Berman et al., 2000) and adjacent 

domains. In a study for mapping intramolecular and intermolecular protein 

family interactions, Park and colleagues (Park et al., 2001) used a cutoff of 30 

amino acids to denote interactions. Based on their analysis, all domains 

connected by less than 30 amino acids are likely to be interacting 

intramolecularly, and any sequence longer than 30 amino acids has a significant 

probability of containing a domain. As the average number of residues separating 

two adjacent domains was less than 30 amino acids in this study, adjacent 

domains were considered to be interacting domains. Of the 1653 domain pairs, 

100 pairs were determined to be true interacting pairs while the rest were 

categorized as non-interacting domain pairs.  

 

As shown in Table 3.2, the mean r-score that was computed using the 

TREE method for interacting domain pairs was 0.733, while a slightly smaller 

mean r-score (0.723) was obtained for the non-interacting set. The minuscule 

difference between the interacting and non-interacting sets was reflected in the 

close-to-random AUC score (0.516), as an AUC score of 0.500 signifies random 

predictions. After applying UAVE_TREE, a non-RNA based correction method, 

the mean r-score for the interacting set was calculated as 0.481, while the non-

interacting set yielded a mean r-score of 0.516 using the same method. Unlike 

the TREE results, the negative set resulted in a higher AUC score than the 

positive set, and subsequently led to a ‘below random’ (AUC<0.500) AUC score. 

In addition, the Z-score statistic was utilized for the prediction calculations, with 

results similar to the r-score predictions obtained (Table 3.2). Although the AUC 
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scores for the TREE method are higher than those for the UAVE_TREE method, 

it is uncertain whether one method is superior to the other method, given that the 

overall performance is so poor, and that there is also uncertainty as to whether 

the negatives are truly negative and the positives are truly positive.  

 

 r (Z)  

 Interacting Non-interacting AUC 

TREE(no correction) 0.733 (4.30) 0.723 (4.26) 0.516 (0.503) 

UAVE_TREE 0.481 (3.70) 0.516 (3.89) 0.482 (0.488) 

 

Table 3.2. Fibrillin-1 domain-domain predictions using the TREE and 
UAVE_TREE methods. 
 

The sequence diversity test carried out in Chapter 2 suggests that there is 

a positive association between predictive power and sequence diversity for 

mirrortree methods. Due to the poor prediction performance of the two 

mirrortree methods utilized for the fibrillin-1 domain-domain interaction 

predictions, sequence diversity was used to filter out domain pairs with low 

sequence diversity in an attempt to increase the overall mean sequence diversity. 

Two different methods were used to determine the sequence diversity for each 

MSA. The first method took an all-vs.-all approach by averaging all pairwise 

sequence identity values in the same MSA. The second method explored the 

relationship between the query sequence (the top sequence in the MSA) and the 

rest of the sequences in the MSA by calculating the average value of sequence 

identity values for all query vs. non-query pairs. Subsequently, the sequence 

diversity value could be calculated by subtracting the average sequence identity 

value from 1.  Additionally, various sequence diversity cutoff values were 

applied, and the corresponding AUC values were determined after removing 

domain-domain pairs with lower mean sequence diversity than the cutoff value.  

 

As is shown in Table 3.3, the unfiltered all-vs.-all mean sequence 

diversity is 0.109, which would suggest that most of the MSAs were highly 

conserved, with an average difference of 10% in pairwise sequence identity in 

each MSA. The mean sequence diversity cutoff was increased in increments of 

0.01 from 0 to 0.19. A dramatic decrease in AUC scores was observed when the 
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mean sequence diversity reached 0.19, a result that was probably caused by the 

small number (3 positives and 38 negatives) of domain pairs retained after 

sequence diversity filtration. In general, small datasets are more prone to random 

predictions, as the uncertainties associated with the quality of datasets are 

expected to be greater in the case of small datasets. As expected, the AUC score 

increases when the mean sequence diversity increases, regardless of the type of 

mirrortree prediction methods used; furthermore, the highest AUC scores were 

obtained for datasets with a mean sequence diversity between 0.158 and 0.179. 

Nevertheless, datasets with these ‘optimal’ mean sequence diversity values were 

still highly conserved.  

 

    AUC (p-value) 

SDIV 

Cutoff 

Mean 

SDIV TREE_r TREE_Z UAVE_TREE_r UAVE_TREE_Z 

0.00 0.109 0.516 (6.13E-01) 0.503 (8.00E-01) 0.482 (3.22E-01) 0.488 (5.42E-01) 

0.01 0.109 0.516 (6.13E-01) 0.503 (8.00E-01) 0.482 (3.22E-01) 0.488 (5.42E-01) 

0.02 0.109 0.516 (6.13E-01) 0.503 (8.00E-01) 0.482 (3.22E-01) 0.488 (5.42E-01) 

0.03 0.109 0.516 (6.13E-01) 0.503 (8.00E-01) 0.482 (3.22E-01) 0.488 (5.42E-01) 

0.04 0.110 0.516 (6.06E-01) 0.504 (7.93E-01) 0.482 (3.16E-01) 0.487 (5.32E-01) 

0.05 0.110 0.519 (6.12E-01) 0.506 (7.91E-01) 0.487 (3.52E-01) 0.493 (6.01E-01) 

0.06 0.114 0.541 (1.99E-01) 0.530 (2.84E-01) 0.510 (8.80E-01) 0.518 (8.51E-01) 

0.07 0.118 0.553 (1.04E-01) 0.541 (1.51E-01) 0.525 (8.45E-01) 0.529 (6.74E-01) 

0.08 0.124 0.550 (1.99E-01) 0.539 (2.52E-01) 0.531 (8.45E-01) 0.540 (6.02E-01) 

0.09 0.129 0.559 (1.14E-01) 0.547 (1.72E-01) 0.535 (8.77E-01) 0.547 (5.77E-01) 

0.10 0.136 0.574 (1.21E-01) 0.564 (1.63E-01) 0.546 (8.66E-01) 0.557 (5.87E-01) 

0.11 0.143 0.609 (4.95E-03) 0.596 (1.61E-02) 0.570 (5.65E-01) 0.584 (3.86E-01) 

0.12 0.151 0.601 (1.68E-02) 0.582 (6.29E-02) 0.551 (8.81E-01) 0.561 (6.84E-01) 

0.13 0.158 0.617 (2.58E-02) 0.596 (9.11E-02) 0.552 (9.59E-01) 0.560 (7.51E-01) 

0.14 0.164 0.615 (3.26E-02) 0.597 (8.97E-02) 0.581 (2.11E-01) 0.597 (6.27E-01) 

0.15 0.172 0.608 (6.26E-02) 0.604 (1.11E-01) 0.590 (1.98E-01) 0.589 (1.25E-01) 

0.16 0.179 0.580 (3.37E-01) 0.582 (3.38E-01) 0.590 (2.14E-01) 0.581 (2.30E-01) 

0.17 0.186 0.588 (4.87E-01) 0.571 (5.09E-01) 0.587 (4.45E0-1) 0.584 (4.20E-01) 

0.18 0.194 0.579 (8.87E-01) 0.556 (8.45E-01) 0.588 (7.93E-01) 0.551 (7.98E-01) 

0.19 0.202 0.272 (3.97E-01) 0.202 (2.86E-01) 0.272 (3.97E-01) 0.281 (4.10E-01) 

 
Table 3.3. Fibrillin-1 domain-domain predictions for the TREE and 
UAVE_TREE methods, filtered based on mean all-vs.-all mean sequence 
diversity. 
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In order to verify whether the AUC scores obtained were significant, a 

two-tailed t-test was carried out to compare the mean r- and Z-score for each 

positive and negative set, and a p-value was computed (shown in Table 3.3). 

When a p-value cutoff of 0.01 was applied, only one AUC score (0.609), which 

had a p-value of 4.95E-03 for the TREE_r method, and a mean sequence 

diversity of 0.143, was found to be significant. This result indicates that the mean 

r-score for the positive set is significantly higher than it is for the negative set. 

However, the AUC scores calculated based on Z-scores (Table 3.3) for the same 

set and for the rest of the dataset, did not result in significant p-values. This 

signifies that there is no difference between the mean r-score for the positive and 

negative sets. As shown in Chapter 2, the mirrortree method is highly sensitive 

to sequence diversity. Hence, it is highly likely that such poor prediction results 

could be caused by the low sequence diversity of the dataset. Even after filtering 

out MSAs with lower sequence diversity values, the highest average sequence 

diversity value obtained for the dataset is still lower than 0.20. As these 

sequences are highly conserved, little evolutionary signals among these species 

could be extracted for comparison; consequently, this resulted in poor predictions 

as the mirrortree approach is dependant on evolutionary relationships among the 

species being tested 

  

The AUC scores for the second approach used to compute sequence 

diversity are shown in Table 3.4. This method compares the query and non-query 

sequences in the same MSA. As different sequence diversity computation 

approaches were implemented, the mean sequence diversity values in Tables 3.3 

and 3.4 were not directly comparable, and different ranges of cutoff values were 

utilized to ensure that only datasets with reasonable sizes were utilized for the 

analysis. Generally, higher sequence diversity values were obtained when 

computed using the all-vs.-all approach. For the original, non-filtered MSAs, the 

mean sequence diversity value for the query vs. non-query was computed as 

0.070 while the sequence diversity value for the all-vs.-all approach was 

determined to be 0.109. Such a trend was expected, as more sequence diversity 

values were used in the calculation when using the all-vs.-all approach. Although 

some might believe that the sequence diversity values that were obtained for the 

query vs. non-query set would better reflect the divergence of the species, and 
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that using these values to filter out low sequence diversity pairs should result in 

better predictions, similar trends were observed in Tables 3.3 and 3.4 for the all-

vs.-all and query vs. non-query results. The mean AUC values in Table 3.4 

appear to improve as the mean sequence diversity value increases. However, 

when using a p-value cutoff of 0.01, none of the mean AUC values obtained for 

this set were significant. In conclusion, regardless of the approach that was used 

to measure sequence diversity, the inherent low sequence diversity found in the 

fibrillin-1 family appears to be causing the poor predictions.  

 

    AUC (p-value) 

SDIV 

Cutoff 

Mean 

SDIV TREE_r TREE_Z UAVE_TREE_r UAVE_TREE_Z 

0.00 0.070 0.516 (6.13E-01) 0.503 (8.00E-01) 0.482 (3.22E-01) 0.488 (5.42E-01) 

0.01 0.070 0.516 (6.13E-01) 0.503 (8.00E-01) 0.482 (3.22E-01) 0.488 (5.42E-01) 

0.02 0.070 0.516 (6.13E-01) 0.503 (8.00E-01) 0.482 (3.22E-01) 0.488 (5.42E-01) 

0.03 0.071 0.523 (4.91E-01) 0.511 (6.61E-01) 0.488 (3.94E-01) 0.495 (6.52E-01) 

0.04 0.074 0.526 (4.55E-01) 0.514 (6.00E-01) 0.492 (4.00E-01) 0.497 (6.57E-01) 

0.05 0.079 0.553 (1.34E-01) 0.541 (1.93E-01) 0.527 (8.54E-01) 0.534 (6.50E-01) 

0.06 0.084 0.577 (3.90E-02) 0.562 (6.44E-02) 0.533 (8.90E-01) 0.544 (6.03E-01) 

0.07 0.091 0.578 (5.84E-02) 0.567 (9.69E-02) 0.536 (9.86E-01) 0.548 (7.00E-01) 

0.08 0.098 0.607 (1.43E-02) 0.588 (5.85E-02) 0.551 (9.10E-01) 0.555 (7.32E-01) 

0.09 0.104 0.580 (7.03E-02) 0.562 (1.71E-01) 0.554 (7.74E-01) 0.559 (6.25E-01) 

0.10 0.112 0.620 (7.59E-02) 0.609 (1.25E-01) 0.611 (1.18E-01) 0.623 (5.42E-01) 

0.11 0.120 0.584 (5.59E-01) 0.571 (6.04E-01) 0.585 (4.75E-01) 0.574 (4.81E-01) 

0.12 0.127 0.435 (6.76E-01) 0.324 (4.89E-01) 0.399 (6.06E-01) 0.455 (8.35E-01) 

 
Table 3.4. Fibrillin-1 domain-domain predictions for the TREE and 
UAVE_TREE methods, filtered based on mean query vs. non-query sequence 
diversity.  
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3.5. Summary 

Due to the fact that the majority of the mean AUC scores for fibrillin-1 domain-

domain interaction predictions do not have a significant p-value, no definitive 

conclusion could be made for the effectiveness of the mirrortree approach for domain-

domain interaction predictions. However, regardless of the approach that is used to 

determine sequence diversity, it is evident that the MSAs used for this study have very 

low sequence diversity, which is what produced non-significant prediction results. 

Although different approaches were taken to ensure the inclusion of fibrillin-1 protein 

sequences from divergent species, it was not possible to increase the mean sequence 

diversity to a satisfactory level for meaningful predictions. As shown in Table 3.1, the 

fibrillin-1 sequences included in this study were derived from divergent species such as 

human (Homo sapiens), amphibians (Xenopus tropicalis and Xenopus laevis), jellyfish 

(Podocoryna carnea) and other types of animals. However, the mean sequence diversity 

values were still determined as 0.109 and 0.070 when using the all-vs.-all and query vs. 

non-query approaches respectively. Evidently, the fibrillin-1 family is highly conserved 

throughout all species and is not suitable for evolution based analysis. In summary, 

sequence diversity appears to be a critical factor when applying the mirrortree approach 

for domain-domain interactions.  
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4. Intramolecular Protein Interaction Predictions 

Using Mutual Information and Partial 

Correlation 

 

4.1. Aim 

The purpose of this chapter was to derive a predictive methodology for 

determining intramolecular protein interactions using mutual information and partial 

correlation. The effectiveness of incorporating information from a third position to 

facilitate the prediction for two contacting positions was evaluated. To address issues 

that were caused by various types of background signals, the study examined important 

factors, such as minimum entropy required per column in a multiple sequence alignment 

(MSA), ways of handling gaps, reduced amino acid alphabet groupings and the APC 

method. The conclusion of this study provides a useful approach for determining 

putative contacting residues. 

  

4.2. Introduction 

As stated in chapter 2, interacting proteins are likely to co-evolve in order to 

compensate for the changes brought on by evolutionary pressures. The same 

coevolutionary pressure is not likely to act on the whole protein in equal measure, but 

specifically, at the residue level involved in the interaction. To maintain structural 

stability, residues in close proximity in three-dimensional structures must be able to co-

evolve; otherwise, the whole structure would become unstable and, in more critical 

regions (i.e. binding regions or active sites), even lead to a loss of function. In essence, 

in order to retain the interaction and to make up for the changes when one or more 

residues is mutated, it is presumed that other mutation(s) must occur in the 

corresponding interacting partner(s).  
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Mutual information (MI) has become a popular method for detecting 

coevolution among protein residues, and many approaches (Atchley et al., 2000; Dunn 

et al., 2008; Little and Chen, 2009; Brown and Brown, 2010) and tools (Yip et al., 

2008; Gouveia-Oliveira et al., 2009; Bremm et al., 2010) have been developed for such 

a purpose. MI measures the magnitude of co-variation between two random variables. 

The application of MI for the prediction of interacting residues starts with building a 

multiple sequence alignment (MSA), which ideally would include a large number of 

orthologous sequences. Each column in the MSA represents a random variable, and 

entropy for each column is determined to show the degree of variability in each MSA 

position. Following that, MI is calculated to quantify the co-variation between two 

positions. However, a column with 100% residue conservation will result in an entropy 

score of zero and, subsequently, a MI score of zero, too. This does not provide any 

insight toward the coevolution prediction of two residues. Hence, such columns were 

excluded from all analyses in this chapter. In general, MI scores range between 0 and 1; 

a MI score of 1 represents higher degree of coevolution between two positions, and zero 

signifies that no coevolution is found.  

 

As pointed out by several authors (Fitch and Markowitz, 1970; Fitch, 1971; 

Atchley et al., 2000), most amino acid sites are not completely independent of each 

other in terms of the (co)evolutionary pressures acting on them; rather they could 

contain signals attributable to structural and functional constraints or phylogenetic 

relationships among the species in a MSA. It is extremely important to remove these 

background signals prior to any in depth analysis, to ensure the resulting predictions 

reveal true coevolutionary signals. A recent study, carried out by Dunn et al. (2008), has 

shown a successful reduction of these biases by subtracting the average product of all 

column MI scores from each raw MI score of the same MSA. Substantial improvement 

for detecting residues that are in close proximity in folded protein structures was 

observed after the Average Product Correction (APC) method was applied. In their 

study, different interaction prediction methods were compared, and the MIp (the Mutual 

Information method employing APC) method was found to detect substantially more 

contacting pairs than other methods with similar accuracy. For instance, a homo-dimeric 

enzyme (triosphosphate isomerase) was utilized to examine the effectiveness of the 

APC approach, and several methods (Mir, OMES, McBASC and MIp) were compared. 

Indeed, a superior prediction performance was observed when using the MIp method, as 
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11 structurally contacting residue pairs were identified, while the least effective method, 

OMES, identified only 4 structurally contacting residue pairs. Furthermore, one MIp-

predicted interacting residue pair was found to be in contact across the dimerization 

interface. Although it is possible to use the MIp method for intermolecular homo-

dimerization interaction predictions, it would be rather difficult to distinguish the 

difference between dimerization and intra-subunit contacts without known structures.  

 

The correlation-based approach epitomized by mirrortree (Pazos et al., 2005) 

and its variants (Jothi et al., 2005; Noivirt et al., 2005; Sato et al., 2005; Craig and Liao, 

2007) is another commonly used measure to detect coevolution in protein sequences. 

However, this method does not work at the individual residue level. Typically, 

phylogenetic profiles for two protein families are determined, and the Pearson 

correlation coefficient is calculated based on the two profiles to assess the level of 

coevolution. However, high false positives rates have been reported to be a serious 

problem for this method (Sato et al., 2005), and our own results (Chapter 2) also 

highlight its limitations. In an attempt to improve prediction quality by addressing this 

issue, Juan and colleagues (Juan et al., 2008b) have developed a method that compares 

phylogenetic profiles from three protein families, instead of the conventional approach 

of using two. Highly specific coevolutionary signals (interactions between only two 

proteins) were determined by computing partial correlation scores, and more relaxed 

coevolution scores (interactions that form small protein complexes) were extracted from 

the ranked lists of partial correlation scores. According to Juan et al., the partial 

correlation approach gave a considerable improvement in prediction results, with 

roughly double the accuracy of other coevolution-based prediction methods. Again, this 

approach claims to factor out confounding issues in the detection of protein coevolution 

and hence promises to be of use for prediction purposes. 

 

Due to the suggested effectiveness of independent applications of both MI and 

partial correlation approaches for protein interaction predictions, for the current study, a 

strategy to combine the two methods was developed to facilitate the identification of 

intramolecular contacting positions. Following the comprehensive evaluation of the 

mirrortree approach, as described in Chapter 2 for the prediction of protein-protein 

interactions, it would be ideal to examine the above methods for intermolecular protein 

interactions (i.e. not homo-multimers and homo-dimers). However, such datasets are 
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hard to find and generate. In particular, there are considerable technical challenges in 

establishing orthology of proteins between species and in generating alignments, which 

are not required for intramolecular interactions. Therefore, since the primary aim of this 

chapter was to evaluate methods, rather than specific datasets, the same datasets used by 

Dunn et al. (2008) for evaluating the MI method were also applied for the current study 

to predict intramolecular protein interactions. Moreover, this allows any methodological 

improvements to be judged with consistency when compared to existing, published 

studies performed by Dunn and colleagues. Initially, MI scores were calculated for all 

position pairs in a protein, to assess whether the two positions in each pair were co-

evolving. Subsequently, in a similar fashion to Juan et al. (2008b), three positions were 

compared, using partial correlation coefficients to assess whether the extra information 

of the third position would improve the interaction prediction. To minimize the 

background bias, all raw MI scores were corrected using the APC method before the 

subsequent calculations. In the end, scores for MI, correlation of MIs (MI-Correlatin) 

and partial correlation of MIs (MI-Partial correlation) were all compared, to establish 

the best approach for possible future applications. Furthermore, position combinations 

with the highest significant partial correlation coefficients were also evaluated to 

determine the effectiveness of the partial correlation level approach for predicting 

clusters consisting of three contacting positions. Additionally, this study investigated 

how different gap handling approaches, minimum entropy cutoffs and reduced alphabet 

schemes would affect the prediction results. 

 

High prediction performance was achieved using a combination of MI and 

partial correlation. Of the three evaluated approaches for predicting intramolecular 

protein interactions, the MI-Partial correlation approach obtained the highest mean area 

under a ROC curve scores (AUC). The prediction performance was even further 

improved by the following: filtering highly conserved MSA regions with an entropy 

cutoff of 0.3; retaining all gaps in a MSA for the prediction; and removing the 

background signals using the APC method. The observed substantial improvement in 

prediction performance for the described methods suggests that this is indeed a useful 

approach for intramolecular interaction predictions.   
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4.3. Methods 

4.3.1. Data 

For comparison purposes, the same dataset containing 83 MSAs that was used 

previously in the study carried out by Dunn et al. (2008) was utilized for all analyses in 

this chapter. All MSAs consist of a minimum of 125 sequences, which was determined 

to be the minimum number of sequences one MSA should have in order to produce 

meaningful results (Martin et al., 2005) for residue-residue contacting predictions. In 

parallel, the corresponding tertiary structures for all proteins were taken from the 

Protein Data Bank (PDB, Rose et al., 2011). 

 

Using tertiary structures, residues were defined as contacting if there was at least 

one contact between the non-hydrogen atoms within 12 angstroms (Å). Distance cutoff 

between two potentially contacting residues was relaxed from 6Å (the cutoff used by 

Dunn et al.) to 12Å, to ensure that there were still enough columns per MSA for the 

analysis after applying the rigorous p-value filtering criteria for the correlation (p-value 

cutoff < 10-5) and the partial correlation (p-value cutoff < 10-6) part of the analysis. This 

deliberately generous cutoff also can account for medium-range and indirect effects. For 

example, substitution of a small residue for a large residue (e.g. ALA to PHE) could 

cause an effect over such a distance. Equally, a broad definition such as this provides a 

robust definition for residue pairs deemed not to be interacting. The distances were 

determined using an in-house Fortran program, CONTA (Hubbard, personal 

communication).  

 

4.3.2. Reduced Amino Acid Alphabet Schemes  

As suggested by previous studies (Pollock et al., 1999; Bacardit et al., 2009), 

properly defined reduced amino acid alphabet groupings not only simplify the 

composition of the tested proteins in order to speed up the computation but may also 

improve coevolution predictions by enriching the signals above noise. Shown in Table 

4.1, three reduced amino acid alphabet schemes were obtained from earlier studies 

(Attwood et al., 1994; Rogov and Nekrasov, 2001; Tsai and Gerstein, 2002) and 

examined in this study. They were grouped based on stereochemical properties 
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(ALPHABET_1), volumes (ALPHABET_2) and amino acid residues similarity in 

natural protein sequences (ALPHABET_3), and consist of 7, 4, and 9 substitution 

characters, respectively. 

 
ALPHABET_1 (Attwood et al., 1994)  

Amino Acids Substitution Grouping criteria 

A, I, L, M, V A Aliphatic 

G, P B Special structure 

C C Cysteine 

F, W, Y D Aromatic 

D, E E Polar negatively charged 

H, K, R F Polar positively charged 

N, Q, S, T G Polar neutral 

   

ALPHABET_2 (Tsai and Gerstein, 2002) 

Amino Acids Substitution Grouping criteria 

A, C, G, S A Volume ≤ 110 Å3 

D, N, P, T, V B 110 Å3 < Volume ≤ 140 Å3 

E, H, I, K, L, M, Q C 140 Å3 < Volume ≤ 170 Å3 

F, R, W, Y D 170 Å3 < Volume 

   

ALPHABET_3  (Rogov and Nekrasov, 2001) 

Amino Acids Substitution Grouping criteria 

E, K, Q, R A Charged 

D, N B Polar 

C C Cysteine 

A, I, L, S, T, V D Hydrophobic (non-polar) 

G, P E Special structure 

M F Methionine 

F, Y G Aromatic 

W H Large 

H I Histidine 

 
Table 4.1. Three reduced alphabet groupings generated based on their stereochemical 
properties, volumes and amino acid residues similarity in natural protein sequences.  
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4.3.3. MSA Gap Handling Options 

Gaps in MSAs can occur quite readily, and in different positions, depending on 

the multiple sequence alignment methods (which can align sequences differently and 

hence produce gaps at different positions). Similarly, gaps can confound conservations 

and coevolution metrics since there is no single “best” way to handle them. To reduce 

the complexity of the computation, many methods simply omit columns that contain 

gaps. However, it is to be expected that more distantly related orthologous sequences 

will produce more gapped MSAs, since they are less conserved. For example, when a 

MSA consisting of a large number of distantly related species is used for the analysis, 

removing all gapped columns can lead to a large portion of the MSA being removed and 

can possibly eliminate important signals. Thus, it is quite important to properly treat 

gaps in MSAs, where possible and appropriate.  

 

Three different approaches were examined to account for missing residues. 

Shown in Figure 4.1, it is an example of a small artificial MSA consisting of four 

columns (C1 to C4) and thirteen rows (R1 to R13), with three gaps denoted as dashes at 

positions C1-R1, C2-R2 and C2-R9. In the example, each column represents a residue 

position, while each row is a different orthologue to the query sequence (first row). 

Upon application of the first gap handling approach, NO_GAPPED_COLUMNS, C1 

and C2 were removed from the original MSA, resulting in only two columns, C3 and 

C4. Unlike the complete removal of gapped columns prior to the subsequent analysis in 

the NO_GAPPED_COLUMNS approach, the second gap handling method, 

NO_GAPPED_ROWS, performs the removal on a pairwise basis. Essentially, when 

two columns were compared, all gapped rows were excluded from the calculations of 

both entropy and MI scores. However, the same rows could be included for computing 

the statistics if gaps were no longer present in the same rows for a different column pair. 

For instance, R1, R2 and R9 would not be used toward the C1-C2 calculations, while 

only R1 would be excluded for the calculations for C1-C3. The last gap handling 

approach, 21_AMINO_ACID, simply assigns all gaps as the 21st amino acid, 

represented by Z; thus all columns would be retained.  
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1) Original MSA 

 C1 C2 C3 C4 

R1 - V V L 

R2 A - L L 

R3 T N L L 

R4 S V L L 

R5 S L V L 

R6 I L V L 

R7 S I V L 

R8 L M V L 

R9 N - L L 

R10 S V M L 

R11 D Q L L 

R12 I L L L 

R13 D E L L 

 

 

2) Gap handling approach I: NO_GAPPED_COLUMNS 

 C3 C4 

R1 V L 

R2 L L 

R3 L L 

R4 L L 

R5 V L 

R6 V L 

R7 V L 

R8 V L 

R9 L L 

R10 M L 

R11 L L 

R12 L L 

R13 L L 

 

 

3) Gap handling approach II: NO_GAPPED_ROWS 

 C1 C2   C1 C3   C1 C4 

R3 T N  R2 A L  R2 A L 

R4 S V  R3 T L  R3 T L 
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R5 S L  R4 S L  R4 S L 

R6 I L  R5 S V  R5 S L 

R7 S I  R6 I V  R6 I L 

R8 L M  R7 S V  R7 S L 

R10 S V  R8 L V  R8 L L 

R11 D Q  R9 N L  R9 N L 

R12 I L  R10 S M  R10 S L 

R13 D E  R11 D L  R11 D L 

    R12 I L  R12 I L 

    R13 D L  R13 D L 

 

 C2 C3   C2 C4   C3 C4 

R1 V V  R1 V L  R1 V L 

R3 N L  R3 N L  R2 L L 

R4 V L  R4 V L  R3 L L 

R5 L V  R5 L L  R4 L L 

R6 L V  R6 L L  R5 V L 

R7 I V  R7 I L  R6 V L 

R8 M V  R8 M L  R7 V L 

R10 V M  R10 V L  R8 V L 

R11 Q L  R11 Q L  R9 L L 

R12 L L  R12 L L  R10 M L 

R13 E L  R13 E L  R11 L L 

        R12 L L 

        R13 L L 

 

 

4) Gap handling approach III: 21_AMINO_ACID 
  

 C1 C2 C3 C4 

R1 Z V V L 

R2 A Z L L 

R3 T N L L 

R4 S V L L 

R5 S L V L 

R6 I L V L 

R7 S I V L 

R8 L M V L 

R9 N Z L L 
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R10 S V M L 

R11 D Q L L 

R12 I L L L 

R13 D E L L 

 

Figure 4.1. Three approaches for handling gaps in a MSA. The original MSA, 
consisting of 4 columns and 13 rows is shown in 1). Modified MSAs resulting from the 
application of gap handling method: NO_GAPPED_COLUMNS, 
NO_GAPPED_ROWS and 21_AMINO_ACID are shown in 2), 3) and 4), respectively.  
 

4.3.4. Mutual Information 

Mutual information is a measure for determining the dependency between two 

random variables. It is based on Shannon’s entropy information. In this study, a random 

variable is represented as a column in a MSA. MI determines whether the variability of 

one column is correlated to the variability of the other column. The mutual information 

statistic was calculated as follows: 

 

),()()():( YXHYHXHYXMI   

 

where H(X) and H(Y) are marginal entropy for columns X and Y, and H(X,Y) represents 

the joint entropy for both columns.  

 

The Shannon’s entropy information theory was applied as: 
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where )( ixp  and )( iyp  are the probability distributions of residue type i in columns X 

and Y, respectively. The joint probability distribution of residue type i and j in column X 

and Y is represented as ),( ji yxp .   
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4.3.5. Average Product Correction (APC) 

Background bias, such as phylogenetic relationships among the species used in 

multiple sequence alignments, can significantly mask coevolutionary signals and reduce 

the deducibility of correct interactions. Thus, the average product correction (APC) 

developed by Dunn et al. (2008) was adapted in an attempt to remove background bias 

and, therefore, facilitate the identification of true interacting residue pairs. The equation 

for computing the background-bias corrected mutual information, MIC, is shown below: 

 

APCRC MIMIMI   

 

where MIR is the raw MI statistic calculated using the equation in 4.3.4 and MIAPC, 

representing the background signal, is denoted as:  

 

MI

YMIXMI
MI APC

)()(
  

 

Here, the product of mean MIs for column X and column Y is divided by the overall 

mean ( MI ) to yield MIAPC. It should be noted that MI  is calculated based on all 

columns in the MSA, which also included columns X and Y. 

 

4.3.6. Correlation and Partial Correlation of Mutual 

Information 

To further improve the accuracy of interaction predictions, a partial correlation 

approach was implemented. This is the first time this type of approach has been applied 

to mutual information scores, as Juan and colleagues used it when applied to mirrortree 

whole sequence based approaches. Although each MI score quantifies the co-variability 

between two positions in a MSA, it is also intriguing to know whether similar patterns 

among these scores can be detected to help improve the predictions, as such patterns 

might be dictated or influenced by a third position. In principle, when two residues from 

a predicted interacting residue pair are found to have similar relationships with all the 

other residues in the same MSA, the likelihood of the two residues interacting is 
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potentially higher. This is intuitive when one considers real proteins, as unlike 

complementary base pairing in DNA and RNA, pairwise interaction between amino 

acids is too simplistic a general model, and typically most residues interact with more 

than one partner. As shown in Figure 4.2, the correlation between MI scores for 

positions i and j can be calculated using all the corresponding MI scores, listed in the 

same order, versus all other positions. The example shows that all MI scores for 

positions 5 (i) and 2 (j) were sorted based on a consistent third position order (i.e. 1, 3, 4 

and 6) to produce comparable MI patterns for calculating a correlation coefficient, r5,2. 

Furthermore, to calculate partial correlation of the same i and j positions based on a 

third position k of 1, ri,j (r5,2), ri,k (r5,1) and rj,k (r2,1) were first calculated following the 

correlation approach described above. Subsequently, the three r scores can be used to 

calculated a partial correlation coefficient (r5,2,1). 
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r5,2

i = 5
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MI5,3

MI5,4
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j = 1
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MI1,3

MI1,4

MI1,6

r5,1

i = 2
MI2,3

MI2,4

MI2,5

MI2,6

j = 1
MI1,3

MI1,4

MI1,5

MI1,6

r2,1

 
Figure 4.2. Example for calculating correlation and partial correlation of MI scores. 
Each square represents a MI value for two positions. A) For the correlation of MIs 
approach, only two positions (i and j) are considered. Correlation coefficient (ri,j), 
shown in yellow, can be calculated using all MIi,j values from the corresponding 
columns and rows. B) For the partial correlation of MIs approach, in addition to 
positions i and j, a third position, k, is also utilized. Partial correlation, ri,j,k, can then be 
calculated based on ri,j, ri,k and rj,k. 
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Correlation of MI scores for MSA positions i and j, ri,j, was computed using the Pearson 

correlation coefficient as follows: 

 

2

1

2

1

1

)()(

))((














n

x

jxjx

n

x

ixix

n

x

jxjxixix

ij

MIMIMIMI

MIMIMIMI
r  

 

Partial correlation of MI scores for MSA positions i and j with respect to position k, ri,j,k, 

was calculated as follows: 
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Following the same practice carried out by Juan et al., all position pairs with a p-

value equal to or larger than 10-5 (for the correlation analysis) and 10-6 (for the partial 

correlation analysis) were removed from the analysis to ensure that all correlation and 

partial correlation results were not generated by random chance. Such low p-values 

should greatly reduce the likelihood of obtaining false positive correlations obtained by 

chance.  

 

4.3.7. Partial Correlation Level 

In general, one can consider two types of intramolecular interactions. One is 

specific, where two residues interact exclusively with each other, while the other type 

involves multiple residues interacting to form clusters. Most intramolecular residue 

interactions in folded proteins are expected to fall into the latter type, as they must form 

direct contact with other residues to maintain the integrity of their 3-dimensional 

structure. The partial correlation level approach proposed by Juan et al. (2008b) has 

already demonstrated the capability of the method in determining interacting protein 

clusters, based on putative interactions predicted to occur between whole protein 

sequences. It is because of this potential that the approach is utilized here as an 

extension of the mutual information approach for detecting clustered residues.  
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Although it is possible to consider multiple levels of partial correlation, owing to 

the large computational power required, only partial correlation level 1 was 

implemented here. After removing all non-significant partial correlation results, filtered 

using a p-value of 10-6, all remaining partial correlation scores for each position i and j 

pair were ranked for each variable position, k. From each ranked list, the position 

combination with the largest significant partial correlation (1st partial correlation level) 

was extracted to form the partial correlation level list. All combinations in the partial 

correlation level list represent clusters consisting of three contacting residues. An 

illustration of the process is shown in Figure 4.3. 

 

 

 

Figure 4.3. Depiction of the process for ranking partial correlation scores to obtain 
partial correlation level 1 results. On the left side of the figure, all partial correlation 
(pc) scores with the same i and j were placed in the same list and ranked in descending 
order. Then the top combination from each ranked list was extracted and added to the 
partial correlation level 1 list. 
 

 

 

i   j   k   pc 
89  90    37    0.930 
89  90     5     0.727 
89  90    11    0.683 

:     :     :         : 

89  90    83    0.531 
89  90    27    0.529 

i   j   k   pc 
1     3     28    0.816 
1     3      5     0.802 
1     3     11    0.748 

:     :     :         : 

1     3     83    0.623 
1     3     27    0.519 

i   j   k   pc 
1     2      8     0.987 
1     2     12    0.832 
1     2     5      0.715 

:     :     :         : 

1     2     18    0.589 
1     2     92    0.416. 

… 

i   j   k   pc 
1     2      8     0.987 
1     3     28    0.816 
1     4     62    0.925  

:     :     :         : 

88   89   25    0.729 
88   90   63    0.711 
89   90   37    0.930 

:     :     :         : 

pc level 1 
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4.4. Results and Discussion 

4.4.1. Mutual Information 

4.4.1.1. Effect of the APC Method 

In order to evaluate the APC method (Dunn et al., 2008) properly, the same 

dataset, consisting of 83 MSAs with a minimum of 125 sequences each, used by Dunn 

et al., was utilized for all analyses in this study. MI scores were calculated for all 

possible position pair combinations for each MSA and, to enhance the detection of true 

coevolutionary signal, the APC method was applied to facilitate the removal of 

background signals. Dunn and colleagues have shown that, when MI scores were used 

alone, without any effort of background bias removal, the method performed relatively 

poorly and detected the least number of contacting residues. By contrast, after applying 

the APC method, an increase of up to three or four times in the number of contacting 

residues was identified, without apparently compromising the accuracy. Essentially, 

they claim that APC is an effective method for improving coevolutionary signals 

derived from protein MSAs for residues in contact. Following their method, the MI 

analysis was carried out, and the atomic distance between two positions was determined 

for each residue pair. In principle, contacting residues should have relatively higher MI 

values when compared to non-contacting residues. The effectiveness of this approach 

was evaluated using the AUC statistic, with higher AUC values signifying better 

performance in predicting putative contacting residues. 
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A) Entropy cutoff of 0 (no entropy filtering) 

 

B) Entropy cutoff of 0.3 

 

 
Figure 4.4. Box plots showing the differences of AUC scores for interaction predictions 
made based on different gap handling approaches and entropy cutoffs. The three gap 
handling approaches are NO_GAPPED_COLUMNS (G1), NO_GAPPED_ROWS (G2) 
and 21_AMINO_ACID (G3). The two entropy cutoffs are 0 (E0) and 0.3 (E0.3). 
Furthermore, the APC background signal correction method was also utilized. The 
results were grouped and plotted based on A) entropy cutoff of 0 (no entropy filtering) 
and B) entropy cutoff of 0.3.  
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In the current study, the APC method does appear to be removing background 

signals quite efficiently, as all mean AUC scores that were determined employing the 

APC approach were consistently higher than the AUC scores for the non-APC results 

for the same categories. The analysis results are shown in Figure 4.4. It should be noted 

that the whiskers in the box plot represent the interquartile range between the 25th and 

75th percentiles, and the same definition applies for all box plots shown in this chapter. 

As shown in Figure 4.4A, the mean AUC scores for G1_E0_APC, G2_E0_APC and 

G3_E0_APC are respectively 0.601, 0.584 and 0.612, while the mean AUC scores for 

the equivalent non-APC sets are 0.468 (G1_E0), 0.460 (G2_E0) and 0.484 (G3_E0). 

The differences between all equivalent APC and non-APC sets are significant, as all the 

p-values are smaller than 0.01 (calculated using t-tests). Furthermore, the same trend 

with significant AUC differences between equivalent APC and non-APC sets can also 

be found in Figure 4.4.B, where an entropy cutoff of 0.3 was applied to the same 

datasets. Moreover, AUC scores for the non-APC sets were all roughly 0.5, which 

suggests that predictions generated using this approach can be achieved by randomly 

selecting residue pairs. Indeed, APC improves the predictions to a level above random, 

as AUC scores for all APC sets in Figure 4.4 are above 0.5, with the highest score being 

0.619 for the G3_E0.3_APC set.  

 

4.4.1.2. Gap Handling Methods 

As suggested by a number of studies (Martin et al., 2005; Buslje et al., 2009), 

the minimum number of orthologous sequences required to build a MSA for meaningful 

coevolution predictions ranges from 125 to 400. With the constant improvement of 

sequencing technology, protein sequences for more and more species are readily 

becoming available. Inclusion of sequences derived from a large number of species 

should potentially reveal a more accurate and complete evolutionary history. However, 

somewhat perversely, since many orthologous sequences are possibly derived from 

distantly related species, the more that are included, the harder a MSA can be to 

accurately align, and, consequently, this results in more gapped positions. Therefore, if 

not handled properly, evolutionary signals in MSAs can be reduced or, in more extreme 

cases, even be abolished, due to improper handling of gapped columns.   
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In this study, after evaluating three gap handling methods, it is evident that 

21_AMINO_ACID is superior to the other two methods, at least for the purposes of MI, 

as illustrated in Figure 4.4. The order of the methods from the best to worst performance 

is: 21_AMINO_ACID > NO_GAPPED_COLUMNS > NO_GAPPED_ROWS. 

Independent of whether the APC was used, or which entropy cutoff was applied, the 

mean AUC score for 21_AMINO_ACID was always the highest within each group. 

This result, however, is perhaps not surprising because 21_AMINO_ACID probably 

generated MSAs with the highest sequence diversity. The sequence diversity 

experiment in the mirrortree benchmarking study (refer to Chapter 2) demonstrated that 

MSAs with higher sequence diversity tend to result in more accurate predictions. 

Moreover, unlike NO_GAPPED_COLUMNS and NO_GAPPED_ROWS, no residues 

or sequences were removed when 21_AMINO_ACID was applied, so no accidental 

removal of coevolutionary signals would have taken place. Indeed, this would also be 

the method with the most theoretical “power”, since it retained the most data. Finally, 

the least amount of improvement after applying the APC method was observed for the 

NO_GAPPED_ROWS results. One possible elucidation of this finding is that 

NO_GAPPED_ROWS tends to generate different lengths of columns for different 

position pairs and, perhaps, this inconsistency leads to the poor performance of the 

method. After applying t-tests to compare the mean AUC scores between different sets, 

NO_GAPPED_COLUMNS and NO_GAPPED_ROWS do not appear to be 

significantly different, as all p-values between sets that were treated using these two gap 

handling methods are all larger than 0.01. However, consistently, significant differences 

between NO_GAPPED_ROWS and 21_AMINO_ACID sets were observed. This 

indicates that different gap handling methods could result in significantly different 

prediction results.    

 

4.4.1.3. Entropy Filtering 

When MSA columns are highly or completely conserved, low entropy is present, 

and very little to no coevolutionary signals can be detected between these columns 

using MI. In the case of complete residue conservation, entropy for such columns is 

zero. To assess how residue conservation would affect prediction results, an entropy 

cutoff value of 0.3 was implemented as a comparison to the non-entropy-filtered MSA 
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results. This was done by removing all columns with entropy values lower than the 

cutoff.  

 

 

Figure 4.5. Box plot showing the differences of mean AUC scores for interaction 
predictions utilizing the NO_GAPPED_ROWS gap handling method and entropy 
cutoffs of 0 and 0.3. 
 

The application of the entropy cutoff of 0.3 has a positive effect on the 

predictions, since improved AUC scores were observed for all entropy-filtered sets. It 

was suggested by Dunn et al. that entropy filtering was not necessary for the APC 

approach, as the APC method alone should sufficiently remove the influence of entropy. 

They showed that the MIp values for all position pairs in a MSA remained constant, 

while the entropies varied from 0.6 to 1.6, indicating the independence of the MIp 

values and entropies. However, in this study, a small improvement was still observed 

for the APC results. Certainly, more dramatic improvements were seen in the non-APC 

sets, with the largest difference being between G2_E0 and G2_E0.3 sets, shown in 

Figure 4.5. However, the small differences between the entropy filtered and non-entropy 

filtered prediction results are not statistically significant. Nevertheless, the consistently 
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higher AUC scores for the entropy-filtered results would still suggest that the minimum 

sequence variability should be dealt with as a type of background bias or noise, which, 

when properly accounted for, can allow prediction accuracy to be improved.  

 

4.4.1.4. Alphabet Reduction 

Also investigated was the effect of different amino acid alphabet groupings on 

the predictions, based on the assumption that reduced alphabets might capture essential 

physicochemical features of the amino acids and therefore enhance coevolutionary 

signals. The best performing amino acid grouping for the non-APC results was 

ALPHABET_2, with approximately a 5.86 percent improvement from the STANDARD 

amino acid grouping (Figure 4.6A). ALPHABET_2 was also found to be significantly 

different from all the other alphabet groupings, as it is the only alphabet grouping in the 

non-APC set to have an AUC score above 0.5. 

 

In contrast to the non-APC results, ALPHABET_2, based on residue volume, 

resulted in the lowest mean AUC score (0.565) when APC was applied (Figure 4.6B). 

This finding was not unexpected, as ALPHABET_2 contained the lowest number of 

characters (4). A study carried out by Bacardit et al. (2009) generated reduced alphabet 

sets consisting of 2 to 5 characters, with the results evaluated based on the number of 

nearest neighbours of a residue and on the solvent accessibility of residues. In their 

study, the results obtained using the 5 character alphabet showed accuracies similar to 

those achieved using the standard twenty amino acid alphabet. Since the number of 

reduced alphabets defined in ALPHABET_2 is below the theoretical number of 

characters required for reasonable prediction accuracy proposed by Bacardit et al., 

important coevolutionary signals may be lost from the over simplification.  
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A) No correction 

  
B) APC 

  
 
Figure 4. 6. Box plots showing the differences of AUC scores for assessing the effect of 
the standard 20 amino acid alphabet and the three amino acid reduction alphabet 
groupings. These results were based on the 21_AMINO_ACID dataset and filtered 
using an entropy cutoff of 0.3. The APC method was also applied, and the results for the 
non-APC-treated results are shown in A), with the APC results shown in B).  
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Consistent with earlier analysis results, all AUC scores for the APC set (Figure 

4.6B) are higher than the non-APC results (Figure 4.6A). In the APC set, the standard 

twenty amino acid alphabet grouping performed the best, as the mean AUC score 

obtained for the STANDARD set was the highest (0.619) when compared to the three 

tested reduced alphabet groupings. Furthermore, all mean AUC scores in this set were 

found to be significantly different. Although no improvement was observed for the three 

reduced alphabet groupings assessed here (which were determined based on: 

stereochemical properties (ALPHABET_1), volumes (ALPHABET_2) and amino acid 

residues similarity in natural protein sequences (ALPHABET_3)), this finding does not 

necessarily suggest that no reduced alphabets should ever be applied. Instead, an 

optimal set of reduced alphabets should perhaps be generated using different features, 

such as size and charge characteristics (Pollock et al., 1999) or information theory 

(Bacardit et al., 2009), since analyses using these features have shown similar or 

slightly improved performance between their reduced alphabet and the standard twenty 

amino acid alphabet results. 

 

Because the best prediction was achieved when using: the APC, 

21_AMINO_ACID gap handling approach, entropy cutoff of 0.3 and the standard 20 

amino acid alphabet, all onward analyses presented in this chapter were completed by 

applying these specifications. 

 

4.4.2. Coevolution Detection Using Correlation and Partial 

Correlation of Mutual Information 

After MI scores are computed for all position pairs in a protein MSA, it is in 

principle relatively easy to identify contacting residue pairs, based on the assumption 

that they usually have higher MI scores than non-contacting pairs in the same protein. 

However, the predictions are not error-free, as the best mean AUC score was 

determined to be 0.619, instead of 1, in this analysis, which is far from perfect. Thus, 

two correlation-based methods were implemented to attempt to improve the predictions. 

The general principle on which this strategy is based is that truly interacting positions 

must show common mutual information with other, contacting positions, especially 

with respect to all others in the aligned protein family. MI-Correlation and MI-Partial 
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correlation, respectively, were applied to calculate the correlation and partial correlation 

statistics for comparing all MI scores. For the MI-Correlation method, when two 

positions have similar relationships with other positions in terms of MI scores, they are 

more likely to be interacting. The similarity of MI patterns can be measured by using 

the Pearson correlation coefficient. In addition to comparing only two positions for the 

correlation approach, the MI pattern of a third position can also compared to facilitate 

the prediction for the MI-Partial correlation method.  

 

The analysis results, shown in Figure 4.7, indicate that both the MI-Correlation 

and MI-Partial correlation methods have higher predictive power than the MI method, 

as the mean AUC scores for MI-Correlation (0.713) and MI-Partial correlation (0.731) 

were significantly higher than the MI AUC score (0.621), with p-values of 3.25 x 10-12 

and 1.11 x 10-16, respectively. Moreover, a small improvement was also found for the 

MI-Partial correlation method when compared to MI-Correlation. However, larger 

variations in the prediction results were also observed for the methods with higher AUC 

scores. As shown in Figure 4.7, both the MI-Correlation and MI-Partial correlation 

methods resulted in much larger standard deviation values than the MI method. 

Nevertheless, it appears that by comparing patterns of MI scores, whether between two 

or three positions, a substantial improvement in prediction performance could be 

achieved.  
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Figure 4.7. Box plot for the evaluation of intramolecular interactions generated using 
methods: MI, MI-Correlation and MI-Partial correlation. Proteins with number of 
contacting pairs <= 5 or number of non-contacting pairs <=5 were excluded from the 
mean AUC calculations. 
 

In comparison to the more substantial improvements observed for the APC-

treated results, smaller improvements were observed without the application of the APC 

method (Figure 4.8). Although the non-APC set follows the same trend as the APC set, 

the predictions generated by the non-APC methods appear to be quite random, as the 

mean AUC scores are close to 0.5. In contrast, the significantly higher mean AUC 

scores for the APC set resulted in more substantial improvements. As shown in Figure 

4.8, a 23% improvement was observed for the MI set when the APC method was 

applied. Such a difference between the equivalent non-APC and APC results was 

increased to 31% for the MI-Correlation set. Furthermore, an even larger difference of 

36% was found for the MI-Partial correlation set. Having been shown repeatedly to 

yield more accurate predictions, the APC method indeed appears to be removing 

background signals quite effectively. The results demonstrate that the background signal 
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removal step is extremely important for coevolution-based analysis. If such error is not 

removed from raw MI scores and carried forward to the correlation and partial 

correlation analyses, the level of bias is going to increase, since the MI-Correlation and 

MI-Partial correlation methods are based on MI scores.   

 

 

Figure 4. 8. Comparison of prediction improvement trends for MI, MI-correlation and 
MI-Partial correlation. Error bars are plotted to indicate standard error of the mean for 
each set.  
 

4.4.3. Residue Cluster Prediction via the Partial Correlation 

Level Approach 

Although the APC and MI-Partial correlation methods show promise, ultimately 

one would wish to be able to identify more than paired residues across an interacting 

protein interface. Instead, one would aim to find clusters or groups, which are expected 

to form the interface. To this end, the partial correlation level approach to identify 

potential clusters of interacting positions involving three residues was investigated. 

However, only partial correlation level 1 was implemented, because of the extensive 
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computational power required. This decision should lead to little impact on the 

predictions since, in theory, positions with the highest significant partial correlation 

scores should represent contacting clusters. To test the proposed theory, the highest 

significant partial correlation score was extracted from each ranked list and compared to 

the average distance of the three corresponding residues. In principle, all clusters 

extracted should be contacting, since they would all have significantly high partial 

correlations. However, similar to many existing interaction prediction methods, false 

positives would be expected, and indeed do exist. The accuracy of the method was 

measured by calculating the fraction of true contacting clusters. When the average 

atomic distance among the three residues in a cluster is 12Å or less, they are considered 

to be a true contacting cluster. If the average atomic distance among the three residues 

in a cluster is larger than 12Å, the residues of the cluster are considered to be non-

contacting. Figure 4.9 shows the average accuracy for this analysis was 0.619. This 

outcome could be explained by two possible causes. First, a large proportion of clusters 

with low partial correlation scores but significant correlation p-values were included. To 

correct for this inclusion of false positives, perhaps, another filtering step should be 

incorporated to remove clusters with low significant partial correlation scores. Or, 

conversely, these residues could be truly co-evolving, but, rather than being caused by 

structural constraints, they were the results of functional constraints. It has been 

reported by a few groups (Pritchard and Dufton, 2000; Gloor et al., 2005) that clusters 

of residues could co-evolve without being in direct contact. Furthermore, Gloor and 

colleagues also suggested that these residues tend to be near binding regions or active 

sites.  

 

Nevertheless, when only considering combinations contributed to the top 50 

highest partial correlation scores for each protein MSA, the average accuracy increased 

to 0.806 (Figure 4.9). When considering combinations with slightly lower partial 

correlation scores, the average accuracies are still quite high. The average accuracy 

scores for the top 100, 200 and 300 are 0.779, 0.743 and 0.719, respectively. Since it is 

not an easy task to separate structurally coevolving residues from false positive 

predictions or functionally coevolving residues, utilizing predictions with the highest 

partial correlation scores (i.e. the top 50 or top 100 scores for each protein MSA) 

ensures the quality of predictions, since larger partial correlation scores are often 

associated with real contacting positions.  
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Figure 4. 9. Mean accuracies for the partial correlation level analysis. Accuracies were 
determined by counting the number of position combinations with an average atomic 
distance equal to or less than 12 Å and then dividing it by the total number of position 
combinations. Error bars are plotted to indicate standard error of the mean for each set. 
 

As an example to demonstrate the effectiveness of the partial correlation and 

partial correlation level approaches in identifying contacting residues, a representative 

protein with a relatively large number of corresponding contacting residues in an 

associated protein structure was further analyzed. The prediction results for mouse 3’ 

and 5’-cyclic phosphodiesterase 2A (PDE2A_MOUSE) are discussed below in detail. 

The MSA (1MC0_noXpfam01590) utilized in this study corresponds to positions 402-

541 in the PDB structure of 1MC0. After applying gap handling option 

21_AMINO_ACID and filtering out highly conserved columns with an entropy less 

than 0.3, partial correlation scores were generated for the remaining positions, resulting 

in 1,236,699 combinations. Following that, combinations with non-significant partial 

correlation scores were removed, and 108,331 combinations were retained for the 

subsequent analysis. Subsequently, atomic distances for all remaining combinations 

were determined using CONTA.  
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In this example, all contacting positions were further categorized into “definitely 

contacting”, for positions with a separating distance less than 6Å, and “maybe 

contacting”, for positions with a separating distance less than 12Å but equal to or 

greater than 6Å. All position pairs with distance of 12Å and larger were considered “not 

contacting”. As shown in Figure 4.10 the mean partial correlation coefficient for the 

definitely contacting positions was 0.637, and the “maybe contacting” position set had 

an average partial correlation coefficient of 0.515. Both values are significantly higher 

than the mean partial correlation coefficient for the non-contacting position set (-0.199). 

The large partial correlation coefficient differences between the contacting and non-

contacting results suggest that the partial correlation approach is indeed very effective in 

distinguishing contacting and non-contacting positions. It should also be noted that the 

standard deviation for the non-contacting positions was substantially larger than 

standard deviations for definitely contacting positions. Also, this remained true, to a 

lesser extent, for the “maybe contacting” positions, showing higher variations in the 

non-contacting predictions.  

 

For analyses prior to the partial correlation method, all distances were 

determined based on only two positions, since binary interacting relationships were the 

main focus. In the partial correlation level approach, average distances were computed 

using three positions to estimate the closeness of the residues in each predicted cluster. 

After extracting combinations with the highest significant partial correlation coefficient 

from each ranked list, 767 three-residue clusters were identified.  

 

An interesting observation was recognized. The average distances for three-

residue clusters (positions i, j and k) were substantially larger than the average distances 

for two contacting positions (positions i and j), especially for the predictions with higher 

partial correlation coefficients (Figure 4.11). For the top 50 contacting results, the 

average distance calculated based on i, j and k positions was approximately double the 

average distance for i and j positions. This suggests that partial correlation level 1 

analysis mostly identifies clusters with two very close positions and a third position 

being slightly further away. As shown in the study carried out by Juan et al. (2008b), 

partial correlation level 1 might not necessarily result in the best predictions in all cases. 

Instead, the best predictions were observed for the 10th level in their analysis. Perhaps, 

one approach to improve the partial correlation level predictions is to determine results 
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based on few partial correlation levels, rather than just level 1. Similar to the trend 

shown in Figure 4.9, predictions for the highest partial correlations were more accurate, 

as the top 50 and top 100 predictions were shown to have relatively shorter average 

distances.  

 

 

Figure 4.10. Box plot showing partial correlation analysis results for 
1MC0_noXpfam01590. 
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Figure 4.11. Mean distances for the partial correlation level analysis for 
1MC0_noXpfam01590. Mean distances computed based on positions i and j are 
represented by the white bars, and other distances based on positions i, j and k are 
represented by the grey bars. The average ij and ijk distances for all 767 three-residue 
clusters were utilized for the ‘All’ category in the graph.  
 

4.5. Summary 

In this chapter, the effectiveness of using the mutual information, correlation and 

partial correlation statistics for predicting contacting positions was assessed. In addition, 

many important factors (i.e. gap, entropy and reduced alphabet) associated with MSAs 

were evaluated. To determine whether there is an association between entropy and 

prediction performance, an entropy cutoff of 0.3 was applied to remove highly 

conserved regions in a MSA prior to the prediction of contacting positions in a protein. 

Compared to the non-entropy filtered prediction results, certainly, higher mean AUC 

scores were obtained when using the entropy cutoff of 0.3. As the overall mean entropy 

for all columns in a MSA is related to the sequence diversity of the MSA (sequences 

with higher diversity would generally produce a MSA with a higher overall mean 
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entropy), similar to the sequence diversity results in Chapter 2, higher entropies improve 

interaction predictions.  

 

The best method for treating gaps in a MSA was evaluated to be the 

21_AMINO_ACID method. When using this method, no removal of gapped columns or 

rows would be made; and as a result, more columns with higher entropies were likely to 

be included for the prediction calculations, which would, consequently, increase the 

overall mean entropy. As stated above, higher entropies would result in higher 

prediction performance, so it is understandable that 21_AMINO_ACID would 

outperform the other two gap handling methods examined. None of the three reduced 

alphabet groupings (based on stereochemical properties, volumes and amino acid 

residues similarity in natural protein sequences) were observed to reach performance 

comparable to the standard twenty amino acid alphabet grouping. Few groups (Pollock 

et al., 1999; Bacardit et al., 2009) have reported successful generation of optimal 

reduced alphabet groupings, but the processes were either quite complex or required 

extensive computational power. Furthermore, a previously reported method for 

removing background signals, APC, (Dunn et al., 2008) was implemented, and its 

effectiveness was indeed observed throughout this chapter. Higher AUC scores were 

obtained for all APC predictions when compared with the predictions obtained without 

the APC step.  

 

After examining the AUC scores for the mutual information approach and the 

two correlation-based approaches, MI-Partial correlation was determined to be the most 

effective method for predicting intramolecular protein interactions. It efficiently 

identified contacting positions with the highest accuracy. As an extension to the MI-

Partial correlation approach, partial correlation level analysis was carried out by 

extracting the highest significant partial correlation combinations to determine clusters 

consisting of three contacting residues. However, this method tends to identify clusters 

consisting of two close positions and a slightly farther position. This is not surprising, 

since a third position is almost certainly going to be further away than two close ones, 

so the mean distance must go up. However, whether the mean distance should go up as 

much as it does has not been tested explicitly. In order to identify tightly packed 

clusters, the top 50 or 100 partial correlation level results should be utilized, as the 

accuracies for the top results were much higher than the overall predictions. Moreover, 
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as reported by Juan et al. (2008b), further comparisons implementing multiple partial 

correlation levels might be required to identify the optimal partial correlation level for 

the predictions. However, the computational power required to analyze large proteins 

could be significant. 

 

Finally, although it was not tested here, it is also possible that intermolecular 

interactions could be predicted by applying the same approaches described here to two 

different proteins. Essentially, MSAs of two different proteins would be concatenated 

first and position pairs (belong to different proteins) with high correlation values would 

likely be part of the binding interface between the two proteins. However, as discussed, 

there are methodological challenges to generating such datasets. One would need to 

generate two MSAs from, ideally, orthologous protein pairs. Inevitably, not all species 

will possess the domain/protein in question, leading to the reduction in size of the 

MSAs. However, if sufficient numbers of sequences are present, this approach has 

promise for selecting candidate interacting residue positions, which could be used as 

constraints or additional evidence in tandem with other experimental or computational 

approaches. This strategy might be dependent on restricting the predictions to low 

sensitivity/high precision to ensure high likelihood of good quality prediction, but this 

seems possible (see Figure 4.9). For example, docking studies could benefit by 

restricting the search space to those consistent with the MI predicted contacts.  

 

Further testing would be required for intermolecular prediction studies, for 

instance, using the Hakes+ dataset (Chapter 2). Since interacting proteins in Hakes+ are 

determined based on their 3D structures, the partial correlation values for physically 

contacting positions could be compared to the partial correlation values for non-

contacting positions. Given that, in the intramolecular analysis shown in this chapter, 

contacting positions tend to have higher partial correlation values, it is therefore 

reasonable to suggest that positions that are part of the binding interface are also likely 

to have higher partial correlation values. As a preliminary step, this would be especially 

useful for identifying putative binding regions prior to carrying out experimental 

verification methods, such as site-directed mutagenesis.  
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5. Characteristics of Functional Binding Sites for 

GPCRs in Relation to PRINTS Motifs 

 

5.1. Aim 

The main aim of this study was to characterize the following G protein-coupled 

receptor (GPCR) interactions with PRINTS (Attwood et al., 1994) motifs: ligand-

binding, G protein-coupling, oligomerization and general protein-protein interaction 

binding sites. This study was carried out for GPCR families of adrenergic, chemokine, 

interleukin-8, dopamine, histamine, muscarinic and serotonin receptors; and the bovine 

rhodopsin structure (1F88) was utilized as the template for structural mapping. If a 

correlation was found between any of the functional binding sites analyzed and GPCR 

fingerprint motifs, PRINTS fingerprints could then be used as a predictive tool to 

provide valuable functional insights, which could eventually lead to GPCR-targeted 

drug development. 

 

5.2. Introduction 

G protein-coupled receptors are the largest family of membrane proteins and are 

responsible for the majority of transmembrane signal transduction. Many GPCRs have 

been found to contribute to various types of disorders and to link to multiple forms of 

cancer (Dorsam and Gutkind, 2007). For instance, chemokine receptor type 2 (CXCR2) 

was identified to contribute to pancreatic (Matsuo et al., 2009), lung (Keane et al., 

2004), prostate (Reiland et al., 1999), ovarian (Yang et al., 2010) and melanoma (Singh 

et al., 2009) cancers. Hence, it is of great interest for the pharmaceutical community to 

characterize GPCRs. Being popular drug targets, GPCRs account for more than 60% of 

marketed drugs (Janovick et al., 2009). The general mechanism of the GPCR signal-

transduction pathway (Figure 5.1) starts with ligand binding to cause a conformational 

change in the receptor, which then leads to the coupling and activation of G proteins. 

Upon activation, G protein subunits can then interact with the target proteins to regulate 

their activities.  
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Figure 5. 1. The GPCR signaling mechanism. 1) At the resting state, the inactive GPCR 
and G protein are unbound to each other. 2) After binding to a ligand, the GPCR binds 
to a G-protein and 3) induces a conformation change in the G protein, which results in 
the transformation of guanosine diphosphate (GDP) to guanosine triphosphate (GTP). 4) 
Once the G protein is activated, the GTP-bound α subunit and βγ complex disassociate 
from the GPCR and each other. 5) Both the GTP-α and βγ complexes are then able to 
interact with the effector. 
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Owing to the tremendous difficulty of separating membrane proteins from the 

membranes to which they are attached and the restrictive conditions necessary to induce 

crystallization, it was not until the year 2000 that the first GPCR structure of bovine 

rhodopsin, 1F88 (Palczewski et al., 2000), was available. Certainly, the identification of 

1F88 is a remarkable aid in GPCR-based structural studies. More recently, in 2007, the 

first human GPCR structure, 2RH1 (Cherezov et al., 2007), was solved for the beta-2 

adrenergic receptor. Both 1F88 and 2RH1 contain the predicted general GPCR seven 

transmembrane (TM) alpha-helices, separated by three extracellular and three 

intracellular loops, with the N-terminus located in the extracellular region and C-

terminus residing in the intracellular region (Figure 5.2), although many conflicting 

features have also become apparent from comparisons of the two structures. In the 

docking study of CCR5 carried out by Li and colleagues (Li et al., 2009), the homology 

model, built based on 1F88, was found to be more comparable with experimentally 

determined results than the 2RH1 model. Attempts to map regions to 2RH1 that are 

highly specific to subfamilies other than the beta-2 adrenergic receptors not only could 

prove challenging, but may also introduce incorrect results. Nevertheless, 2RH1 should 

still provide important insights into how GPCRs function in humans. The 2RH1 (Figure 

5.2) and other GPCR structures were solved as a chimera with other proteins or 

macromolecules and, therefore, are not suitable for a study of this nature. As a result, 

the 1F88 structure of bovine rhodopsin was chosen to depict the general 7 TM regions 

in this study.  
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Figure 5.2. PDB structure 1F88 for bovine rhodopsin and 2RH1 for beta 2-adrenergic 
receptor/t4-lysozyme chimera. 
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It is widely understood that highly conserved regions in a protein are caused by 

functional or structural constraints. To identify such regions that also uniquely represent 

each protein family, a strategy utilizing fingerprints, (i.e. groups of short highly 

conserved motifs) was developed (Attwood and Findlay, 1993). More than 2000 

fingerprints have been manually created in order to provide unique diagnostic signatures 

for a range of protein families; these can be obtained from the PRINTS database 

(Attwood, 2002). Essentially, the creation of PRINTS fingerprints starts by identifying 

appropriate orthologous sequences for a protein family from a wide range of species. 

Selecting divergent species is particularly important as conserved regions in closely 

related species are not sufficiently diverse to represent a protein family. Upon the 

generation of a well-aligned and family-representative multiple sequence alignment 

(MSA), motifs can be selected and must follow 5 criteria:  

1. A motif cannot contain any gaps.  

2. A motif must be between 10 to 30 residues long.  

3. A motif can be conserved only within the family of interest in the appropriate 

hierarchical level (i.e. superfamily, family or subfamily).  

4. Maximum of one residue overlap is allowed between motifs in the same 

fingerprint.  

5. Minimum of two motifs but ideally more than three should be selected for 

reasonable diagnostic power.  

 

Unlike many other protein family databases that only provide family-level 

information, PRINTS contains fingerprint signatures at superfamily-, family- and 

subfamily-levels. This enables more detailed and refined protein analyses. For each 

hierarchical level, motifs are selected to represent the protein family at that level and to 

ensure minimum overlap with higher level motifs. As shown in Figure 5.3, family-level 

motifs are selected in such a way that little overlap with superfamily-level motifs 

occurs. Similarly, subfamily-level motifs should have little overlap with family- and 

superfamily-level motifs.      
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Figure 5.3. Determination of family fingerprint and subfamily fingerprints. Regions 
that are highly conserved for all sequences in the family are selected to represent the 
family-level fingerprint (black blocks). Subfamily-level fingerprints are determined 
from regions that are only conserved for each sub-type but not for other sub-type or 
family-level sequences. Three subfamily-level fingerprints A, B, and C are shown in 
red, green and blue blocks, respectively. 
 

In a previous study (Gaulton, 2004), it was suggested there is a correlation 

between family-level motifs and experimentally verified ligand-binding sites, and, to a 

lesser degree, between subfamily-level motifs and G protein-coupling sites. It was 

pointed out by Gaulton that, as most of the GPCR families represented by the 

fingerprints in PRINTS bind to either the same or related ligands, it is therefore possible 

that the highly conserved motifs in these fingerprints are associated with ligand-binding 

sites. In addition, many subfamily-level motifs are located in regions (i.e. intracellular 

loops) of the receptors where ligands are unlikely to bind, so subfamily-level motifs 

were evaluated to identify a possible association with G protein-coupling sites. 

However, many motifs still could not be explained by these two types of binding 

mechanism. Since many GPCRs have been found to form homo- or hetero-oligomers 

(Breitwieser, 2004; Maggio et al., 2005) and sometimes could also bind to proteins 
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other than the endogenous ligands or G-proteins (Smith et al., 1999; Cheng et al., 

2000), it is possible that these two types of bindings could also be associated with the 

unexplained motifs.  

 

Hence, to better understand important functional regions in class A rhodopsin-

like GPCRs, the current study compares sites of interaction — such as those relating to 

ligand-binding, G protein-coupling, oligomerization and general PPIs — with PRINTS 

fingerprints for seven GPCRs (i.e. adrenergic, chemokine, interleukin-8, dopamine, 

histamine, muscarinic and serotonin receptors) at the family- and subfamily-levels. A 

phylogenetic tree depicting all GPCR receptors utilized for this study is shown in Figure 

5.4. It should be noted that, although many GPCRs are clustered together within their 

own family (where a family is indicated by highlighting in a common colour), some 

subfamily-level GPCRs appear to be more closely related to other subfamily-level 

GPCRs from a different GPCR family. Nevertheless, as the aim of this study is to 

identify potential associations between different hierarchical level GPCR motifs and 

interaction sites, this should not influence the analysis results.  
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Figure 5.4. A phylogenetic tree of the GPCR families utilized for the PRINTS motif 
analysis. * Proteins with solved structures.  
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5.3. Methods 

5.3.1. Data 

In order to obtain a list of high-quality ligand-binding, G protein-coupling, 

oligomerization and PPI sites for the selected GPCR families, several resources were 

utilized, with the primary source being GPCRDB (http://www.gpcr.org/7tm/). Mutation 

data listed in this database were obtained through either MuteXt or tinyGRAP; 

furthermore, publications containing details of these mutations were also extracted. 

While the extraction of experimentally determined mutations from the literature was 

achieved in an automatic manner for the MuteXt data, the mutation data in tinyGRAP 

were extracted manually. In addition to using GPCRDB, PubMed 

(http://www.ncbi.nlm.nih.gov/pubmed) was searched with carefully selected 

combinations of keywords to obtain publications that were overlooked by GPCRDB. 

For the data used in this study, a total of 469 binding sites for 64 GPCR proteins were 

extracted manually from 290 publications obtained using the above databases. 

Publications for ligand binding, G protein-coupling, oligomerization and PPI sites are 

listed in Appendices 2, 3, 4 and 5, respectively.  

 

All sequences for this study were obtained from UniProt 

(http://www.uniprot.org/) and aligned using MUSCLE (Edgar, 2004). Following that, 

the multiple sequence alignments were displayed in CINEMA (Pettifer et al., 2004) and 

manual adjustments were made to ensure proper alignment. All family- and subfamily-

level motifs for adrenergic, chemokine, interleukin-8, dopamine, histamine, muscarinic 

and serotonin receptors were obtained from the PRINTS database 

(http://www.bioinf.manchester.ac.uk/dbbrowser/PRINTS/QuizPRINTSTX.php). 

 

5.3.2. Residue Numbering Schemes 

As different GPCRs were compared, it was important to use a universal 

numbering scheme for labelling residues from different receptors, to ensure 

compatibility of the data. Many residue numbering schemes (Ballesteros and Weinstein, 

1995; Schwartz et al., 1995; Baldwin et al., 1997) have been proposed; however, the 

methods developed by Schwartz et al. and Baldwin et al. require helices with a fixed 

http://www.gpcr.org/7tm/�
http://www.ncbi.nlm.nih.gov/pubmed�
http://www.uniprot.org/�
http://www.bioinf.manchester.ac.uk/dbbrowser/PRINTS/QuizPRINTSTX.php�
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number of residues, which is inappropriate for studying different GPCR families. 

Moreover, none of the proposed numbering schemes allow the comparison of loop and 

terminal regions. Hence, to account for large loop regions in some GPCR families, a 

modified Ballesteros and Weinstein scheme (Gaulton, 2004) was implemented.  

 

The modified residue numbering scheme assigns residues based on the most 

conserved residue in each TM helix, in which the boundary is determined according to 

the bovine rhodopsin structure, 1F88. Respectively, these residues are N55, D83, R135, 

W161, P215, P267 and P303 for each TM helix. An index number X.50 was assigned to 

each of the above residues, where X represents the helix number. The rest of the 

residues within the boundaries of each TM domain were then labelled in relation to the 

X.50 indexed residues, while the non-TM residues utilize -n or +n to indicate the 

relative distance left or right to the closest helix. The assignment for loop residues can 

be rather arbitrary, but generally each loop region was divided in the middle in order to 

be able to allocate an appropriate helix number.  

 

For instance, as shown in Figure 5.5, N55 was labelled as 1.50 and the residues 

preceding and subsequent to it were assigned 1.49 and 1.51. The last residue in the N-

terminus was denoted as 1.28(-1) because it was the first residue left of the TM1 

boundary (1.28). Since there were four residues in the loop region between TM1 and 

TM2, the two left residues were labelled according to the TM1 boundary, while the two 

right residues were numbered based on the TM2 boundary.  

 

 



 145

N55

TM 1 TM 2

D83

1
.5

0
1

.5
1

1.
4

9

2
.5

0
2.

5
1

2.
4

9

1
.6

0
1

.6
0

(+
1

)
1

.6
0(

+
2

) 2
.3

7(
-2

)

2
.3

7
2

.3
7(

-1
)

2
.6

7

1
.2

8
1

.2
8

(-
1)

1
.2

8(
-2

)1
.2

8
(-

3)

Figure 5.5. Modified Ballestros and Weinstein residue numbering scheme. A multiple 
sequence alignment for serotonin receptors is shown above, where the first and second 
transmembrane helices are boxed. Within each helix, the most conserved column is 
outlined and labelled 1.50 for helix 1 and 2.50 for helix 2. The non-helical regions are 
labelled based on the closest helix boundary. 
 

5.3.3. Random Motif Experiment 

It could be argued that, because motifs in the PRINTS database are selected 

manually, the process could be quite random and may therefore have no statistical basis. 

To examine this matter in further detail, an experiment was designed to mimic random 

selection of fingerprint motifs, and the resulting artificial motifs were then compared to 

the actual motifs obtained from PRINTS.  

 

For each tested GPCR family and subfamily, multiple sequence alignments 

(MSAs) were constructed using sequences that represent each family or subfamily. 

Afterward, MSA regions containing short sequences were randomly selected. However, 

the selection process must meet certain criteria to ensure fair comparison between the 

artificial and original data. The artificial fingerprints must have the same number and 

length of motifs as the original fingerprints. However, the order of the motifs does not 
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necessarily need to be identical, since the order of the motifs is not a defining factor for 

the selection of PRINTS motifs. Furthermore, no gaps were allowed in any of the 

selected motifs since no gaps are allowed in real fingerprint motifs. One thousand 

artificial fingerprints were generated for each selected family and subfamily. 

 

5.3.4. Surface Patch Analysis 

Most of the motifs in PRINTS are not adjacent to each other in linear sequences. 

However, when a protein sequence is folded, the initially non-neighbouring residues can 

actually be seen to be in contact in a 3-dimensional structure. Hence, a surface patch 

analysis was carried out in order to examine whether PRINTS motifs within particular 

fingerprints were likely to form contiguous patches. If such contiguous patches were 

present on the surface, they might have some functional importance, for instance, as a 

potential binding interface for other molecules. 

 

All surface residues were defined using the NACCESS program (Hubbard and 

Thornton, 1993) based on an algorithm developed by Lee and Richards (1971). 

Residues with a solvent accessibility score of ASA >= 15Å were classified as surface 

residues and displayed on structure 1F88. Afterward, the neighbouring surface patches 

were observed visually using PYMOL.  

 

5.3.5. Statistical Analysis  

As the number and length of motifs for each PRINTS fingerprint are maximized 

to ensure a unique identification of a specific GPCR family, it is possible that these 

motifs may occupy a substantial fraction of a sequence of the same family, making the 

probability of a functional binding site falling within or near a motif by chance quite 

high. It is therefore important to determine the probably of such an occurrence to ensure 

the results of the analysis carried out are indeed significant. 

 

Following the approach reported by Gaulton (2004), the significance of finding a 

given number of binding residues that fall within or near a PRINTS motif can be 

calculated as follows:  
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where p is the probability of a residue occurring as part of a PRINTS motif. The total 

length of all motifs for a PRINT fingerprint is denoted as m, and the length of a protein 
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where p(b) is the probability that a given number, b, of binding residues fall within a 

PRINTS motif by chance. The total number of binding residues obtained for a GPCR 

family or subfamily is denoted as n.  

 

Given the assumption that all binding residues are independent, the cumulative 

probability of observing b or more binding residues within a motif can be calculate as 

follows: 
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5.4. Results and Discussion 

5.4.1. Random Motif Experiment 

PRINTS motifs form fingerprints to uniquely represent each GPCR superfamily, 

family and subfamily. These fingerprints are particularly powerful in characterizing 

GPCRs, or other types of protein derived from distantly related species, as the multiple-

motif approach allows more flexible mappings than single-motif approaches. Since 

highly conserved regions are often associated with some functional roles, it would be 

intriguing to know whether these GPCR motifs actually were enriched in highly 

conserved regions, or whether they were merely the results of random motif selections. 

 

After randomly selecting motifs with similar criteria as the original motifs 1000 

times, the probability of each position in the sequence as a candidate motif residue was 

evaluated. As shown in Figure 5.6A, the superfamily-level PRINTS motif profile nearly 
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superimposes the random motif profile. This is to be expected, as it is not possible to 

choose 7 motifs randomly from the superfamily alignment, because there are only 7 

conserved regions for all GPCR sequences. 

 

As family-level sequences are more conserved than those at the superfamily 

level, the regions that could be utilized to select multiple, short, non-gapped motifs 

increase drastically. In Figure 5.6B, six regions in the family-level adrenergic receptor 

MSA were shown to be suitable for motif selection, but only four short motifs were 

selected in PRINTS. Also, the average frequency for an adrenergic residue to be 

selected by chance as part of a family motif was 0.14, which is approximately seven-

fold lower than the PRINTS frequency.  

 

For subfamily-level motif selection, the whole MSA for the α1-A adrenergic 

receptor appeared to be a long stretch of candidate motifs, rather than the more focused 

six short sequences selected by PRINTS. Since sequences belonging to the same 

subfamilies are often highly conserved (even more so than at the family level), well-

aligned MSAs without many gaps can often be produced. Hence, the selection of short 

conserved sequences can occur at almost any location, which reflects the single large 

motif-selecting region that resulted from the simulation. For adrenergic subfamily α1-A 

sequences, the average frequency for randomly selected residues to reside in the 

PRINTS-defined motif locations was determined to be 0.24. This random motif 

frequency is about four-fold lower than the PRINTS frequency.  
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C) Subfamily level: adrenergic receptor subtype α1-A 
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Figure 5.6. Frequency profiles for candidate motif residues. Blue lines represent the 
frequency of residues being selected as part of the original motifs in PRINTS. Red lines 
show the mean frequency of candidate motif residues selected randomly 1000 times. 
The profiles are shown for A) superfamily, B) family and C) subfamily.  
 

Although different fingerprints were selected by using different MSAs (which 

consisted of orthologues from different species), trends similar to the adrenergic 

example shown here were observed for other receptors as well. The overall average 

background frequencies for all seven receptors evaluated in this study were calculated 

respectively to be 0.24 and 0.26 for the family- and subfamily-level sequences. It is 

evident that PRINTS motifs did not result from random generation, as the background 

frequencies are quite low for residues at these positions to be chosen by chance. Since 

these motifs were chosen by selecting conserved regions that are unique only to each 

receptor family or subfamily, it is likely that these signature motifs are of some 

functional importance.   

 

5.4.2. Proximity between Motifs and Functional Binding Sites 

As described in Section 5.2, GPCRs act as messengers that transmit signals from 

extracellular to intracellular spaces by first binding to ligands and, subsequently, by 

coupling to G proteins to activate the signal-transduction pathway. It is therefore crucial 

to know the locations where the receptors come in contact with the endogenous ligands 
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and G proteins. Recently, many GPCRs have been shown to form homo- or hetero-

oligomers. Furthermore, protein-protein interactions other than ligand-binding and G 

protein-coupling also exist. Hence, the locations of these four functional binding sites 

and GPCR motifs obtained from PRINTS were compared to determine whether there is 

a correlation between them.  

 

After acquiring all four types of binding residues from various literature 

resources, in order to generate comparable analyses, the residues were mapped to the 

rhodopsin structure, 1F88, using a modified Ballesteros and Weinstein numbering 

scheme to obtain universal positions. Subsequently, the proximity of all binding sites to 

PRINTS motifs was determined, and the results can be found in Appendices 6, 7, 8 and 

9 for ligand-binding, G protein-coupling, oligomerization and PPIs, respectively.  

 

Table 5.1 summarizes the proximity results for ligand-binding residues by 

showing the proportions of the binding sites that reside within or near family- or 

subfamily-level motifs. The proportions of the ligand-binding sites that lie within or 

near motifs vary among different receptors. While approximately half of the ligand-

binding sites for interleukin-8 were found in both family- and subfamily-level motifs, 

only about 10 percent of the dopamine receptor ligand-binding sites were identified to 

be within family-level motifs, and no binding sites fell within the subfamily-level 

motifs.  

 

As the PRINTS motif selection process would only select non-gapped regions 

that are conserved only within the family of interest at the correct level and with a 

minimum of 10 residues in length, it is important to also consider the neighbouring 

residues of all motifs to capture functionally important residues that miss a motif 

because of the selection requirements. For example, when a gap is inserted into a highly 

conserved region in a MSA and subsequently leads to the splitting of such region into 

two regions, with one being less than 10 residues long, the selection of motifs can then 

only be made at the larger region instead of the whole region. As a result, important 

binding sites that reside in the smaller region would not be included in this study, if the 

neighbouring residues are not compared. Predictably, the proportion of residues in close 

proximity to motifs increased for all receptors when including nearby residues. A larger 

increase in the number of residues was observed near motifs when the neighbouring five 
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residues were considered instead of only three. It is not surprising to have seen such 

results, as longer motifs would have higher chance of including more functional 

residues and other types of residues as well. However, most of the additional 

neighbouring binding sites were found to be within three residues away from a motif, 

particularly for chemokine subfamily-level motifs.  

 

A study carried out by Gaulton (2004) has shown that there is a significant 

positive correlation between ligand-binding sites and family-level motifs; in addition, a 

negative association between the same sites and subfamily-level motifs was also 

indicated. However, such a trend was not evident here. Of all the ligand-binding regions 

acquired, 38% and 30% of the binding sites were found in or near (+/- 3 residues) 

family- and subfamily-level motifs, respectively. It should be noted that Gaulton’s 

conclusion was drawn based on the analysis results of nineteen rhodopsin-like GPCR 

receptors instead of the seven families that were examined here. The author also 

indicated that ligand-binding sites for many receptor families, such as the adrenergic 

and bradykinin receptors, did not show a positive relationship with family-level motifs. 

Nevertheless, in this study, 57% of all ligand-binding sites do reside inside or within 3 

residues away from either a family- or subfamily-level motif. Using the binomial 

probability model described in Section 5.3.5, the probability of obtaining such a result 

by chance was calculated to be 2.65 x 10-5, which would suggest that the observed 

number of ligand-binding sites that fall within or near a PRINTS motif is significantly 

higher than would be predicted by random expectation.  Given that more than half of the 

binding sites were found to correlate with PRINTS motifs, it is likely that PRINTS 

motifs have functional roles.  
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Receptor In Motif In or Near Motif (+/-3) In or Near Motif (+/-5) 

  Family Subfamily Family Subfamily Family Subfamily 

Adrenergic 0.10 0.10 0.13 0.20 0.17 0.20 

Chemokine 0.37 0.66 0.46 0.71 0.47 0.73 

Interleukin-

8 0.53 0.53 0.65 0.59 0.71 0.59 

Dopamine 0.10 0.00 0.17 0.07 0.24 0.10 

Muscarinic 0.42 0.00 0.58 0.00 0.71 0.00 

Serotonin 0.21 0.21 0.30 0.24 0.36 0.33 

Average 0.29 0.25 0.38 0.30 0.44 0.33 

 

Table 5.1. Proportions of ligand-binding regions in proximity to family- and subfamily-
level motifs. 
 

Proximity of experimentally verified G protein-coupling sites to family- and 

subfamily-level motifs in the corresponding receptors was also determined, and the 

proportions of proximal sites are shown in Table 5.2. Of all the receptor families 

analyzed, four have considerably higher proportions of G protein-coupling sites that are 

in proximity to the subfamily-level motifs. While no G protein-coupling sites were 

found to be near dopamine family-level motifs, 45% of the sites were identified to be 

inside dopamine subfamily-level motifs. When taking into account three or five residues 

adjacent to subfamily-level motifs, the fraction of proximal G protein-coupling sites 

increased to 0.55 for the dopamine receptor. G protein-coupling regions for interleukin-

8 and muscarinic receptors were detected to be closer to family-level motifs than 

subfamily-level motifs, whereas the other receptors showed the opposite trend. 

Furthermore, a large percentage of G protein-coupling sites was found outside of both 

the adrenergic family- and subfamily-level motifs, albeit still relatively close to motifs.  
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Receptor In Motif In or Near Motif (+/-3) In or Near Motif (+/-5) 

 

Family 

Level 

Subfamily 

Level 

Family 

Level 

Subfamily 

Level 

Family 

Level 

Subfamily 

Level 

Adrenergic 0.18 0.29 0.32 0.47 0.32 0.58 

Chemokine 0.30 0.40 0.30 0.50 0.40 0.50 

Interleukin-

8 0.13 0.00 0.13 0.00 0.13 0.00 

Dopamine 0.00 0.45 0.00 0.55 0.00 0.55 

Muscarinic 0.25 0.22 0.33 0.22 0.33 0.22 

Serotonin 0.00 0.07 0.00 0.07 0.00 0.07 

Average 0.14 0.24 0.18 0.30 0.20 0.32 

 

Table 5.2. Proportions of G protein-coupling regions in proximity to family- and 
subfamily-level motifs. 
 

Overall, 45% of the G protein-coupling regions were found to be in proximal 

distance with either family- or subfamily-level motifs. This result is statistically 

significant, as the probability of such case to occur by chance was calculated to be 4.46 

x 10-40. Moreover, the analysis shows that 30% of the G protein-coupling sites are close 

to subfamily-level motifs and, to a much lower degree, 18% are near family-level 

motifs, based on the results for “in or near motif (+/-3)” in Table 5.2. The probability of 

obtaining the observed number of G protein-coupling sites residing in close proximity 

to subfamily-level motifs by chance was calculated as 1.13 x 10-55. Indeed, this suggests 

that there is a positive association between subfamily-level motifs and G protein-

coupling sites. 

 

Although signal transduction is the high-level function of all GPCRs, 

oligomerization has also been shown recently to occur in many GPCRs. This could 

change the way GPCR research is being conducted, as alternative locations for ligand-

binding and G protein-coupling could take place in multiple receptors. To investigate 

whether oligomerization has any association with PRINTS motifs, the analysis was 

extended to evaluate oligomerization sites. According to Table 5.3, oligomerization 

sites do not seem to have a strong correlation with either family- or subfamily-level 

motifs, as the proportion of oligomerization sites near either type of motifs are quite 
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similar. Essentially, 30% and 27% of oligomerization sites were found to be in, or 

within three residues away from, a family- or subfamily-level motif, respectively. The 

proportion of oligomerization sites varies greatly for different receptor families. In 

particular, all oligomerization sites acquired for the chemokine receptor were found near 

either family- or subfamily-level motifs: to be specific, 78% were identified in close 

proximity to family-level motifs and 44% to subfamily-level motifs. However, only one 

oligomerization site was found to be about five residues away from a family-level motif 

for the muscarinic receptor. Nevertheless, similar to the previous two comparisons, 

approximately half (47%) of the binding sites were identified to be associated with 

PRINTS motifs. The probability of finding this result by chance was calculated as 2.98 

x 10-15.   

 

Receptor In Motif In or Near Motif (+/-3) In or Near Motif (+/-5) 

  Family Subfamily Family Subfamily Family Subfamily 

Adrenergic 0.08 0.23 0.23 0.31 0.31 0.31 

Chemokine 0.44 0.22 0.78 0.44 0.78 0.44 

Dopamine 0.17 0.33 0.17 0.33 0.17 0.50 

Muscarinic 0.00 0.00 0.00 0.00 0.50 0.00 

Average 0.17 0.20 0.30 0.27 0.44 0.31 

 

Table 5.3. Proportions of oligomerization regions in proximity to family- and 
subfamily-level motifs. 
 

Consequently, in an attempt to elucidate some of the unmapped motifs from the 

previous comparison, the relationship between protein-protein interaction (PPI) sites 

and PRINTS motifs was examined. Evidently, PPI sites seem to have the strongest 

association with PRINTS motifs among all four types of binding sites, as 77% of PPI 

sites were determined to be near either a family- or subfamily-level motif, with the 

probability of finding such occurrence by chance as 2.15 x 10-39. Particularly, all 

interleukin-8 PPI sites were found to be within family-level motifs, and all serotonin 

receptor PPI sites were identified to be within three residues from subfamily-level 

motifs (Table 5.4). Moreover, 14% more PPI sites were found to be in or within 3 

residues of subfamily-level motifs when compared to family-level motifs. The 

probability of observing the obtained PPI residues near subfamily-level motifs by 
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chance was 5.85 x 10-50. This would suggest a potential preference for PPI sites to be 

near subfamily-level motifs rather than family-level motifs. 

 

Receptor In Motif In or Near Motif (+/-3) In or Near Motif (+/-5) 

 Family Subfamily Family Subfamily Family Subfamily 

Adrenergic 0.05 0.56 0.15 0.67 0.18 0.72 

Chemokine 0.24 0.47 0.29 0.53 0.35 0.53 

Interleukin-8 1.00 0.00 1.00 0.00 1.00 0.20 

Dopamine 0.46 0.13 0.54 0.13 0.54 0.17 

Muscarinic 0.00 0.50 0.00 0.50 0.00 0.63 

Serotonin 0.00 0.67 0.00 1.00 0.00 1.00 

Average 0.29 0.39 0.33 0.47 0.35 0.54 

 

Table 5.4. Proportions of protein-protein interaction regions in proximity to family- and 
subfamily-level motifs. 
 
 

As shown above, many p-values are rather low, particularly for the G protein-

coupling and PPI binding analyses. It should be noted that many functional binding sites 

that were obtained for this analysis are in blocks rather than single residues as many 

methods (i.e. chimera construction and mutation deletion) utilized to identify these 

functional sites cannot detect the precise binding locations and the sole residues that 

were involved in the binding. As a result, the true significance of the probability 

estimates through the use of binomial distribution could be over-estimated. This is 

especially evident in the G protein-coupling and PPI analyses where large binding 

regions were obtained and used for the probability estimates. In addition, residues in the 

same binding sites are not independent which could also lead to over-estimation of p-

values. To demonstrate the aforementioned constraints for using binomial distribution 

for the analysis, simulations were carried out to randomly map a set of PRINTS motifs 

and functional binding sites to a protein sequence. After reiterating the simulation for 

100000 times, the average number of overlapping residues between PRINTS motifs and 

functional binding sites were calculated. The empirical estimates of the probability 

suggest that the true p-values are less significant than the equivalent binomial estimates. 

For example, a p-value of 2.65 x 10-5 was derived from the application of binomial 

distribution to estimate the proportion of overlapping ligand binding sites and PRINTS 
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motifs. Thirty-five out of 49 residues were found to be in close proximity to either a 

family- or subfamily-level PRINTS motif in a sequence of 416 residues. After 

conducting the simulations, the probability of obtaining the same number of overlapping 

binding residues by chance was calculated to be 2.84 x 10-3 which is less significant 

than the binomial probability estimate, albeit still significant. This suggests that 

although the probability estimates derived using binomial distribution are over-

estimates of the true significance, it could still be utilized as the initial statistic to filter 

out non-significant analysis.      

 

5.4.3. Distribution of Motifs and Functional Binding Sites 

Further analysis to investigate the association between distributions of motifs 

and all four types of functional binding regions was carried out. In order to increase the 

confidence of the analysis, all binding-site data were filtered based on the number of 

references and proximity to the nearest motifs. In most cases, binding sites obtained 

from at least two papers were retained for the subsequent analysis. However, this 

restriction was not applied to the interleukin-8 receptor analysis or to the PPI part of the 

muscarinic receptor analysis, because of the lack of binding-site data with more than 

one reference. Additionally, binding regions that are more than three residues away 

from a motif were not utilized, since an additional three residues adjacent to motifs were 

found to be sufficient for obtaining most of the important binding sites. 

 

After mapping all family- and subfamily-level motifs of the seven evaluated 

receptor families onto a single schematic structure (see Figures 5.7 to 5.10), it is 

apparent that certain regions are ‘motif-enriched’. Intracellular loop 1 and the N-

terminal section of the C-terminus were found to be the predominant regions for family-

level motifs (Figure 5.7A), whereas the highest numbers of subfamily-level motifs were 

identified in the C-terminal portion of N-terminus and the third intracellular loop 

(Figure 5.7B). The distributions of family- and subfamily-level motifs are indeed quite 

different. However, there seems to be a compensating selection that occurs, as the ‘cold 

spots’ (regions where only a few fingerprint motifs were found) for family-level motifs 

are ‘hot spots’ (regions where a large number of fingerprint motifs were found) for 

subfamily-level motifs, and vice versa. For instance, the third intracellular loop was 
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identified as the predominant region for subfamily-level motifs, but it was the region in 

which the least number of family-level motifs was found. Although one might argue 

that this could be due to how GPCR motifs were generated, it is not entirely true. Since 

the PRINTS fingerprint of each receptor family is independent, family motifs are 

expected to reside in different locations. While many family-level motif hot spots were 

found to be subfamily-level cold spots, some regions were found to have similar 

numbers of family- and subfamily-level motifs.  

 

As shown in Figure 5.7, residues involved in ligand-binding were found in all 

TM, N-terminal and second extracellular loop regions. While some ligands bind to 

GPCRs to activate the signal-transduction pathway, some bind to inhibit the signaling 

cascade. To determine the specific regions of the binding interface for agonists (ligands 

for activation) and antagonists (ligands for inhibition), all ligand-binding sites were 

further annotated. Most of the regions for agonist binding were found in the 

extracellular regions, particularly the N-terminus and the second extracellular loop. In 

contrast, all antagonist binding sites were found only in TM regions. As for the regions 

that involved both agonist and antagonist binding, most were also found in TM regions, 

though not all near antagonist binding sites.  

 

As for G protein-coupling regions, they were all found to reside in intracellular 

regions, especially the N-terminal portion of the C-terminus and the second and third 

intracellular loops (Figure 5.8). Not only is the third intracellular loop involved in G 

protein-coupling, it is also highly enriched in subfamily-level motifs. A region in the C-

terminus that is also high in subfamily motifs (but to a lesser extent) was found to 

overlap G protein-coupling sites too. It appears that G protein-coupling sites are often 

found in specific intracellular regions, where subfamily-level motifs are frequently 

located. Furthermore, the C-terminal portion of G protein-coupling sites superimposes a 

family-level motif hotspot.  

 

As shown in Figure 5.9, oligomerization sites reside in TM domains 1, 4 and 6, 

which are motif-poor regions. Since most of the TM regions were selected to represent 

the GPCR superfamily, it is less likely these regions were utilized to generate family- 

and subfamily-level motifs. One family- and one subfamily-level motif hotspot were 

found flanking TM1, which were also shown to be involved in oligomerization. While 
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the family-level motif hotspot is located inside the membrane, the subfamily-level 

hotspot resides on the outside of the membrane. 

 

Since oligomerization in GPCRs is a relatively new concept, minimal data are 

currently available in comparison to the more extensively studied ligand-binding and G 

protein-coupling. A common technique to determine oligomerization sites is the use of 

chimera, which often does not identify specific binding residues. Instead, residue 

segments from putative functional regions are replaced with residues from other 

proteins. These regions are deemed to be the real functional sites if the associated 

function is abolished after the segment swapping. Owing to both the lack of available 

oligomerization data and unspecific locations of the binding interface, the association 

between motifs and oligomerization sites should be made with caution.  

 

The results of the analysis, shown in Figure 5.10, reveal PPI and G protein-

coupling regions overlapping in the third intracellular and the C-terminal regions. 

However, unlike G protein-coupling sites, PPIs do not occur in the second intracellular 

loop. Reflecting the proximity results from Table 5.4, most PPI sites were found near 

subfamily-level motifs rather than family-level motifs, and overlap all intracellular 

subfamily-level motif hotspots. However, the PPI region found near TM 7 in the C-

terminus also overlaps a family-level motif hotspot.  
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Figure 5.7. Locations of residues or regions known to be involved in ligand-binding in 
relation to A) family and B) subfamily-level fingerprints. Regions of fingerprints are 
coloured based on the number of fingerprint motifs in each region. Ligand-binding 
regions are represented by bars and coloured according to whether they are for agonist, 
antagonist, or both. 
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Figure 5.8. Locations of residues or regions known to be involved in G protein-
coupling in relation to A) family and B) subfamily-level fingerprints. Regions of 
fingerprints are coloured based on the number of fingerprint motifs in each region. G 
protein-coupling regions are represented by white bars. 
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Figure 5.9. Locations of residues or regions known to be involved in oligomerization in 
relation to A) family and B) subfamily-level fingerprints. Regions of fingerprints are 
coloured based on the number of fingerprint motifs in each region. Oligomerization 
regions are represented by pink bars. 
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Figure 5.10. Locations of residues or regions known to be involved in protein-protein 
interaction in relation to A) family and B) subfamily-level fingerprints. Regions of 
fingerprints are coloured based on the number of fingerprint motifs in each region. 
Protein-protein interaction regions are represented by cyan bars. 
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5.4.4. Surface Patch Analysis 

Many motifs were shown in the previous section to be associated with functional 

binding sites. However, motifs that reside in certain regions, such as intracellular loop 1, 

were not found to be involved in any functions analyzed. Motifs in these regions could 

still be functional but just not for the four types of interactions that were evaluated in 

this study. Alternatively, some of these motifs may reside in regions that are buried deep 

inside receptors and, therefore, would not be capable of interacting with other proteins 

or molecules. As surface residues are more likely to be involved in binding interfaces to 

other molecules, a surface patch analysis was carried out to examine the association 

between functional binding sites and motifs that reside on the surface.  

 

Solvent accessibility for all family- and subfamily-level motifs was determined, 

and the results show that all family-level motifs are accessible on the surface (Figure 

5.11). This excludes the histamine receptor, as no family-level motifs are available for 

this receptor. However, the locations of subfamily-level motifs vary for different 

receptors. All subfamily-level motifs for interleukin-8 are on the surface, compared with 

only 20% of muscarinic subfamily-level motifs are on the surface. Overall, about 65% 

of all subfamily-level motifs were found on the surface.  
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Figure 5.11. Comparison of the percentage of family- and subfamily-level motifs that 
reside on the surface of each receptor. Subfamily-level results are average values 
calculated based on all subfamily-level motifs in each receptor family. Family-level 
motifs for histamine receptor are not available in the PRINTS database.  
 

Most of the PRINTS motifs appear non-contiguous on a linear sequence, and no 

associations among them can easily be depicted. However, when they are arranged into 

three-dimensional structures, it is quite evident that they form contiguous patches. 

Illustrated as an example in Figure 5.12, there are seven motifs in the serotonin 1A 

fingerprint but only two patches were observed on the surface. Motifs 1, 2 and 3 

clustered into the first patch, and the second patch consisted of motifs 4 and 7. Two 

motifs, 5 and 6, were buried inside the structure, hence not shown on the surface. 

Although motifs 1 and 2 are adjacent to each other on the sequence, motif 3 is actually 

153 residues away from motif 1 and 136 residues away from motif 2. Moreover, motifs 

4 and 7 are 74 residues apart. To suggest a correlation in these motifs would have been 

rather difficult if they were not mapped to a three-dimensional structure. Additionally, 

both serotonin 1A surface patches were found to reside outside of the membrane. As 

they are not obstructed by the membrane, the probability of them interacting with other 

molecules is likely to be higher.  
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Figure 5.12. Visualization of the surface patches for serotonin 1A motifs. The front and 
back views of the structure are shown to illustrate two surface patches formed by motifs 
1, 2, 3, 4 and 7 for the serotonin subfamily 1A receptor. The surface portion of each 
motif is shown in a different colour. 
 

Surface clustering results similar to the example shown in Figure 5.12 were 

observed for all seven receptors examined. Most of the subfamily-level motifs clustered 

into two patches (Table 5.5). In addition to the clustering of subfamily-level motifs, 

family-level motifs form approximately four surface patches. The higher number of 

average clusters for family-level fingerprints would suggest that family-level motifs are 

probably more spread out in the sequences, whereas subfamily-level motifs reside closer 

together, albeit not necessarily adjacent to each other. 
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 Family 

Subfamily 

 (Average) 

 

Adrenergic 4 2.00 

Chemokine 2 2.27 

Interleukin-8 4 2.00 

Dopamine 4 2.20 

Histamine NA 2.25 

Muscarinic 4 1.40 

Serotonin 3 2.15 

 

Table 5.5. Number of surface motif clusters for seven GPCR receptor families. 

 

To further examine a possible connection to functional roles in motifs residing 

on the surface, the proximity of surface motif patches and all four types of binding sites 

were determined. In comparison to the earlier analysis that used all data (surface and 

non-surface), a significant increase in association between motifs and functional binding 

sites was observed. Eighty percent of the binding sites on the surface were found to 

overlap or lie within a family- or subfamily-level surface motif patch. After following 

the statistical analysis described in Section 5.3.5, and using only surface residues, the 

probability of finding 80% of the binding sites to be near a surface motif patch by 

chance was calculated as 3.71 x 10-5. Such result suggests that the association between 

the binding sites and surface motifs is unlikely to happen by chance. In particular, 98% 

of all surface binding sites for the chemokine receptor were found to be associated with 

motifs of the same receptor on the surface. Although the earlier analysis found that G 

protein-coupling and protein-protein interaction sites are generally in close proximity to 

subfamily-level motifs, rather than family-level motifs, such association is no longer 

visible when restricting the analysis to surface residues only. Rather, all binding sites 

seem to overlap family-level motifs. This could be caused by the fact that a much higher 

percentage of subfamily-level motifs are buried.  

 

Generally, ligand-binding and oligomerization regions were found to be related 

to family-level motifs, with the correlation between ligand-binding sites and family-

level motifs more prominent and oligomerization association less evident. Such 
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relationships were also observed in the surface patch analysis. Considering only surface 

residues and binding sites falling within or adjacent to a family- or subfamily-level 

motif, 61% of the ligand-binding sites were determined to be correlated with family-

level motifs. Once again, the result is significant, with a random expectation probability 

of 9.63 x 10-5. In comparison to the previous analysis, this result shows a stronger 

association between ligand-binding sites and family-level motifs. Approximately twice 

as many ligand-binding sites were found to be near family-level motifs than subfamily-

level motifs on the surface. However, according to Table 5.1, only about 8% more of 

ligand-binding sites (surface and non-surface) were found to be in close proximity to 

family-level motifs when compared to subfamily-level motifs. For the oligomerization 

regions, 30% were found to be associated with family-level motifs, while 27% were 

identified to be in or adjacent to subfamily-level motifs. Restricting the analysis to only 

surface residues for the oligomerization, binding regions showed no difference when 

compared with the results determined using all residues. It should be noted that by using 

binominal distribution to estimate the random expectation probability, the significance 

estimations for the surface patch analysis suffer the same constraints as the proximity 

analysis in 5.4.2. Nevertheless, the true probabilities should still be significant, albeit 

lower. 

 

Figure 5.13 shows an example of all four binding types analyzed in relation to 

muscarinic M3 motifs. The positive association between ligand-binding sites and 

family-level motifs is quite evident, as all four cyan patches (ligand-binding sites) 

overlap red patches (family-level motifs). Furthermore, the marginally larger percentage 

of family-level motif association with oligomerization binding regions is also reflected, 

as the small yellow patch (oligomerization sites) overlaps a large family-motif patch in 

the second extracellular loop region. As stated in earlier analyses, G protein-coupling 

and PPI sites are likely to associate with subfamily-level motifs. However, such 

association is not observed in Figure 5.13, as neither the G protein-coupling patch 

(brown) nor the PPI patch (purple) overlap the subfamily-level motif patch (green). 

Interestingly, the PPI patch does overlap a family-level motif patch. Nevertheless, 

regardless of the type of motifs (family- or subfamily-level), most of the patches for 

functional binding sites overlap a motif patch, supporting the early finding that PRINTS 

motifs are likely to be associated with functional binding sites.   
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Figure 5.13. Structural representation for the muscarinic receptor motifs in relation to 
functional binding sites. Surface patches associated with ligand-binding, G protein-
coupling, oligomerization and protein-protein interaction are shown, respectively, in 
cyan, brown, yellow and purple. Family- and M3 subfamily-level motifs are represented 
in red and green patches, respectively.  
 

5.5. Summary 

Comparisons between known functional binding sites and PRINTS fingerprints 

were carried out for seven G protein-coupled receptors to evaluate the possibility of 

utilizing fingerprints for determining important functional regions in GPCRs.  

 

Prior to comparing functional sites and GPCR fingerprint motifs, it was 

important to ensure that these motifs were not the results of random motif selections 

caused by the manual nature of the motif selection process. A background distribution 

profile for each of the fingerprints analyzed was determined by randomly selecting the 

same number of motifs in a multiple sequence alignment representative of a specific 

GPCR family or subfamily; these motifs were of the same length as the original motifs. 

This random selection of motifs for a fingerprint was repeated 1000 times for all 
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receptors analyzed at the family- and subfamily-levels. Figure 5.6 shows that when 

comparing PRINTS fingerprints to the artificial fingerprints, a seven-fold higher 

probability of a residue being selected as part of a PRINTS motif was observed for the 

family-level adrenergic receptor motifs. Similarly, but to a lesser extent, a four-fold 

probability increase was observed for a subfamily-level adrenergic receptor motif 

residue to be selected as part of a PRINTS motif.  

 

Subsequently, the associations between the four types of interaction and 

PRINTS fingerprints were analyzed. The proximity of all literature-acquired binding 

sites to PRINTS motifs was determined. Approximately 50% of the ligand-binding, G 

protein-coupling and oligomerization sites were found to be in close proximity to a 

motif, and 77% of the PPI sites were observed to be near a motif. Such a high 

proportion of binding sites found near motifs essentially suggests likely functional roles 

for these motifs. Furthermore, more detailed comparisons were carried out to determine 

whether there was an association between these binding sites and family- or subfamily-

level motifs. The results show that higher proportions of ligand-binding and 

oligomerization sites are near family-level motifs, albeit that the preference is not 

significant. However, owing to the marginally higher proportion (3%) of 

oligomerization sites found near family-level motifs than near subfamily-level motifs, it 

is not possible to infer a preference between these two types of motifs for the 

oligomerization sites. In contrast, stronger associations between functional binding sites 

and PRINTS motifs were found for the G protein-coupling and PPI sites.  

 

To deduce a more universal relationship between PRINTS motifs and functional 

binding sites, distributions of PRINTS motifs were determined and the locations of 

functional binding sites were related to these motifs. Hotspots in which family and 

subfamily-level motifs are frequently located were determined. Both G protein-coupling 

and PPI sites were found to overlap all intracellular subfamily-level motif hotspots. In 

addition, PPI sites also seem to overlap some of G protein-coupling regions. However, 

no clear association for ligand-binding and oligomerization sites could be identified 

from this analysis. Nonetheless, an interesting observation was obtained for ligand-

binding sites that are involved in activation (agonist) or inhibition (antagonist) of the 

signal transduction pathway. Essentially, most ligand-binding sites involving agonists 

were found in the N-terminus and extracelluar loop 2, while the antagonist-binding sites 
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were identified to be in TM regions. In addition, ligand-binding sites that allow for both 

the agonist and antagonist binding were also identified, and these sites were found to be 

located in TM regions. 

 

Some residues appear to be non-contiguous in a linear sequence yet actually 

cluster together when folded into a 3-dimensional structure. Motifs that form patches, 

especially the ones on the surface, could signify possible functional importance. Also, 

binding sites that were shown not to be in close proximity to a motif on the linear 

sequence could actually be in contact with a motif when shown in a structure. Hence, it 

was essential to carry out a surface patch analysis for all motifs and binding sites. A 

considerably high fraction of binding sites were found to be overlapping motif patches 

on the surface, confirming the suggestion of surface motifs being associated with 

important functional sites. In particular, considerably more ligand-binding sites were 

found to be near family-level motifs rather than subfamily-level motifs. Compared to 

the results from the analysis utilizing all residues (surface and non-surface), this 

association is more prominent, as a large difference in the proportion of ligand-binding 

sites found overlapping family- and subfamily-level motifs was observed. However, 

because a large fraction of subfamily-level motifs were not on the surface, no 

relationship between motifs and functional sites (G protein-coupling and PPI) thought to 

be associated with subfamily-level motifs could be derived. As for oligomerization 

regions, it is apparent that neither family- nor subfamily-level motifs have a strong 

association with this function. Common locations for oligomerization sites were found 

to be in TM regions, which are family- and subfamily-level motif-poor regions. Thus, it 

is unlikely that a meaningful inference could be made utilizing data found in these 

regions. Additionally, since considerably less oligomerization data is available when 

compared to other types of binding sites, it is possible that there is simply not enough 

data for the analysis to reveal a clear relationship between the acquired binding sites and 

motifs. 

 

Taken as a whole, using motifs to study functional binding sites in GPCRs could 

definitely provide useful insights in ligand-binding, G protein-coupling and PPI. Also, 

once more oligomerization data become available, a more meaningful association 

between this function role and PRINTS motifs can be made. However, certain analysis 

results for different receptors could vary quite significantly. It is therefore important to 
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utilize PRINTS motifs in conjunction with other methods, such as site-directed 

mutagenesis, to ensure the accuracy of the results and to facilitate the identification of 

putative functional binding sites. 
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6. Conclusions   

 

Proteins are vital parts of organisms because they account for more than half of 

the dry weight of most cells, and participate in nearly all processes within cells. 

However, in order to perform biological functions, proteins must interact with other 

proteins or macromolecules. To fully understand basic cellular organization and 

function, it is therefore essential to detect and predict protein-protein interactions (PPIs). 

Due to the explosion of sequencing projects over the past ten years, a vast number of 

protein sequences are now available. Although many experimental and computational 

methods have been developed to study these proteins, the full characterization of all 

protein data still remains incomplete. Hence, to help provide a better understanding of 

cellular functions, various bioinformatic approaches were examined and utilized for PPI 

predictions. This was achieved in four separate studies: 1) benchmarking of mirrortree 

based computational protein-protein interaction methods (Chapter 2), 2) domain-domain 

interactions of the fibrillin-1 family (Chapter 3), 3) intramolecular interaction 

predictions via mutual information and partial correlation (Chapter 4), and 4) 

characterizing functional binding sites for GPCRs in relation to PRINTS motifs 

(Chapter 5).  

 

A comprehensive benchmarking study was carried out to examine the popular 

mirrortree approach for PPI predictions. As it has been reported that much of the PPI 

data generated using high throughput experimental techniques do not overlap, it was 

important to obtain multiple sets of positive and negative data to ensure an unbiased 

study. Furthermore, separate prokaryotic and eukaryotic datasets were generated, and 

various approaches were used to explore any potential bias caused by these two 

different cell types. The results have shown that datasets generated based on different 

approaches can lead to very different prediction performance. Moreover, Tan+, the 

positive dataset that was generated based on multiple experimental evidence performed 

better than Hakes+, the structure-based positive dataset. Such a finding is in agreement 

with an earlier study (Yeang and Haussler, 2007), which found that coevolving residue 

pairs are generally closer in 3-dimensional space, but physically contacting residues are 

not necessarily coevolving. Similar to positive datasets, different negative datasets 
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performed quite differently. It has been observed that higher sequence diversity 

produces better predictions. This trend was observed in the prediction results based on 

the data generated by different orthologue selection methods. For instance, the two top-

hit BLAST based orthologue selection methods, BLAST-SwissProt and BLAST-

Proteomes, generated MSAs with higher sequence diversity, and therefore resulted in 

better prediction performance. To further verify the association between sequence 

diversity and prediction performance, a sequence diversity experiment was 

systematically carried out in order to estimate the prediction performance of selected 

datasets with increasing and decreasing sequence diversity. Predictably, the increasing 

diversity test set was found to be able to distinguish between the positive and negative 

data better than the decreasing diversity test set. Furthermore, none of the five different 

distance methods evaluated appeared to be superior to the others. However, the 

additional speciation signal removal step substantially increased the predictive power of 

the TREE method. In particular, the two RNA-based speciation signal removal methods 

(RNA_TREE1 and RNA_TREE2) performed better than the non-RNA-based method 

(UAVE_TREE), with RNA_TREE1 being slightly more effective. Since RNA_TREE1 

requires the identification of proteins that reflect the same evolutionary history as the 

equivalent small subunit rRNA tree, it is important to use complete proteomes to ensure 

that the proteins obtained are the most similar to the RNA. While it is necessary to use 

complete proteomes for the RNA_TREE1 method, RNA_TREE2 only requires the 

corresponding rRNA sequences, and hence can be used as an alternative method if 

complete proteomes are not available. In an attempt to further improve predictive 

power, an entropy reduction step was implemented to remove highly variable MSA 

columns prior to the computation for PPI predictions. However, no consistent trend was 

found to signify that restricting MSAs to more conserved regions can improve the 

prediction of PPIs.  

 

Utilizing a multi-domain protein (fibrillin-1) family as the test set, mirrortree 

was extended from a full sequence-based PPI prediction method to identify domain-

domain interactions. Each of the 56 domains was extracted from the fibrillin-1 MSA 

and treated as an independent MSA for the analysis. The TREE and UAVE_TREE 

methods were then applied to predict domain-domain interactions. As a result, ‘close to 

random’ (AUC = 0.5) and non-significant AUC scores were obtained for both methods. 

According to the benchmarking study (Chapter 2), there is a positive association 
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between sequence diversity and prediction performance. This perhaps explains the poor 

prediction results obtained for the fibrillin-1 study, as the MSAs used for the study have 

very low sequence diversity. Due to the high conservation of fibrilliln-1 orthologues, 

coevolution based approaches are not suitable to be used on this protein family for 

protein interaction predictions.  

 

Once a pair of proteins is predicted to be interacting (e.g. using the mirrortree 

approach), contacting positions within the protein can then be identified using a residue-

based approach based on Shannon’s information theory. The mutual information (MI) 

statistic was utilized to measure the likelihood of two proteins contacting. As highly 

conserved regions in a MSA cannot be used to compute MI scores, an entropy cutoff of 

0.3 was used to remove such regions. The predictions obtained after applying the 

entropy cutoff were more accurate than the predictions acquired without the use of any 

entropy cutoff, suggesting that higher sequence diversity leads to better predictions. 

However, MSAs consist of highly divergent sequences often contain a large number of 

gaps so that functionally conserved residues can be properly aligned. As such, different 

gap handling approaches were examined, with the best method appearing to be 

21_AMINO_ACID, which treats any gap as an artificial 21st amino acid. Different from 

the other two methods, the 21_AMINO_ACID method retains all residues for the 

calculation of MI scores; hence the overall entropy is not reduced, and no important 

functional residues are accidentally removed. Furthermore, different reduced alphabet 

groupings were examined and compared to the original 20 amino acid alphabet, which 

was found to be the best performing alphabet grouping. As all coevolution based studies 

use MSAs, it is inevitable that they all suffer from the phylogenetic bias. In an attempt 

to remove such background bias, a speciation signal correction method, APC, was 

implemented. Higher AUC scores were obtained after the application of APC, 

indicating the effectiveness of this method. To further improve the prediction of 

intramolecular protein interactions with additional information from a third position, the 

partial correlation coefficient score was computed for each position pair. This approach 

appears to be highly effective, as contacting positions were detected with high accuracy. 

Furthermore, clusters consisting of three residues were predicted by extracting the 

position combinations with the highest partial correlation coefficients. Clusters 

identified using this approach often consist of two close positions, with the third 

position slightly farther away.    



 176

Lastly, the characteristics of four types of interactions in G protein-coupled 

receptors (GPCRs) were determined in relation to PRINTS fingerprints. Prior to 

comparing the GPCR binding sites and the PRINTS fingerprints, it was important to 

ensure the significance of PRINTS fingerprints. To do this, a randomization experiment 

was carried out to determine the background motif distribution for each fingerprint 

analyzed in the study. This was achieved by randomly selecting motifs using similar 

criteria as the PRINTS motifs. The background motif distribution was determined after 

1000 iterations. The probability of a residue being selected as part of a PRINTS 

fingerprint motif was estimated to be 7 times higher than an artificial motif residue at 

the same position for family-level motifs. To a lesser extent, the same trend was 

observed for subfamily-level motifs, as subfamily PRINTS motif residues were 4 times 

more likely to reside in their locations when compared to the artificial motif residues. 

This suggests that it is unlikely that PRINTS motifs were generated by random chance. 

As all PRINTS motifs in a fingerprint were selected from highly conserved regions that 

uniquely represent the corresponding family or subfamily, it is likely that these 

conserved regions have some functional roles. Furthermore, to determine whether there 

is an association between PRINTS motifs and functionally important sites, binding sites 

for ligand-binding, G protein-coupling, oligomerization and general PPI were examined 

and compared to the corresponding PRINTS fingerprint motifs at family- and 

subfamily-level. More than half of all four types of binding sites were found to be in 

close proximity to PRINTS motifs, and higher proportions of ligand-binding sites were 

found to be near family-level motifs. Although the same trend was also observed for 

oligomerization sites, the difference between family-level motif and subfamily-level 

motif association was fairly small. As for the G protein-coupling and PPI sites, they 

appear to have stronger associations with subfamily-level motifs than they do to family-

level motifs. In order to identify a more universal relationship between the PRINTS 

motifs and the four functional sites, PRINTS motif distribution was determined and 

compared to functional binding sites. Several PRINTS motif hotspots were identified. 

While G protein-coupling and PPI sites were found to overlap all intracellular hotspots, 

no apparent association between ligand-binding and oligomerization sites was 

identified. Additionally, all PPI sites overlap some of the G protein-coupling sites. 

Finally, a surface patch analysis was carried out to determine whether motifs cluster 

together and form patches on the surface of a structure, and if so, what the relationship 

between these surface patches and their functional binding sites is. Indeed, many of the 



 177

non-adjacent motifs in linear sequence cluster together when folded in a 3-dimensional 

structure, and approximately 80% of functional binding sites were found to overlap a 

motif patch on the surface. Consistent with an earlier observation, a positive association 

between ligand-binding sites and family-level motifs was observed. Such an association 

is even more prominent than in linear sequences.   

 

A recent study (Wu et al., 2010) has reported the completion of several crystal 

structures consisting of the CXCR4 chemokine GPCR and two of its antagonists. As 

this is the first time a reported GPCR structure was activated by its indigenous 

antagonist, valuable knowledge can be gained by studying these structures. Although 

the CXCR4 structures do have the common seven transmembrane helices as all the 

other GPCRs, certain regions in CXCR4 differ quite substantially from other known 

GPCR structures. This makes homology modeling quite challenging. As a possible 

future project, using the methods studied in this thesis and the structures of the newly 

solved CXCR4 GPCR, various types of GPCR features can be examined to gain 

insights into cancer metastasis and HIV infection. As an initial step, mirrortree can be 

utilized to identify additional binding PPI partners for CXCR4. It should be noted that, 

as suggested by various studies (Pazos et al., 1997; Yeang and Haussler, 2007; Burger 

and van Nimwegen, 2008), coevolving partners are generally closer in 3-dimensional 

space, but physically contacting partners are not necessarily coevolving. Therefore, it is 

inevitable that some true interactions will not be identified by the mirrortree approach. 

Nevertheless, the mirrortree approach still can be utilized for intermolecular 

interactions where solved crystal structures are not available.   Since sequence diversity 

appears to be a crucial factor for coevolution based methods, it is important to obtain a 

large number of CXCR4 proteins from a wide range of proteomes. In the most recent 

UniProt release (UniProtKB Release 2011_07), CXCR4 sequences were available for 

152 species. Such a large number of available CXCR4 sequences exceeds the 

suggestion from Martin et al. (2005) that a minimum of 125 sequences be used in order 

to attain meaningful results for residue-residue contacting predictions. Once putative 

interacting partners are identified, mutual information based methods can be applied to 

further determine the exact interaction interface. Although it was not examined in this 

thesis, it may also be possible to use mutual information for identifying interacting 

partners. Since contacting residues generally have higher MI statistics, it is reasonable 

to assume that interacting protein pairs will also have higher average MI scores than 
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non-interacting protein pairs. If this assumption remains valid after being tested on a 

number of known interactions, this could potentially be used as a supplementary 

approach to mirrortree for identifying physically contacting interacting partners. As 

shown in the GPCR study in Chapter 5, PRINTS motifs appear to have a strong 

association with different GPCR functions. It would be interesting to see whether the 

trends observed based on the rhodopsin structure still remain valid on the CXCR4 

structures. In addition, the MI analysis can be combined with subfamily PRINTS motifs 

to identify potential PPI binding sites for CXCR4. Although due to the low sequence 

diversity of the test MSAs, the fibrillin-1 analysis in Chapter 3 did not result in a 

definitive conclusion that mirrortree is useful for predicting domain-domain 

interactions, domain-domain interactions can be examined again using the large number 

of available CXCR4 sequences. As family-level PRINTS motifs have been shown to be 

associated with ligand-binding in GPCR, family-level PRINTS motifs can be combined 

with mirrortree to predict GPCR protein ligand specifications. Essentially, each family-

level motif for CXCR4 can be used as a separate MSA, and compared with the MSA of 

a potential ligand. Certainly, as a possible future project, the CXCR4 chemokine GPCR 

can be used to further examine and integrate the methods presented in this thesis and, 

potentially, the analysis can also be extended to other GPCR proteins for interaction 

predictions.  
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Appendix 1. Benchmarking Study Data 

 
List of benchmarking study proteins for various datasets.  
 
Pazos+ (Validation method: DIP database) 

ACKA_ECOLI ATP6_ECOLI ATPA_ECOLI ATPB_ECOLI ATPD_ECOLI ATPE_ECOLI 

ATPF_ECOLI ATPG_ECOLI ATPL_ECOLI BGLG_ECOLI BIOF_ECOLI CARA_ECOLI 

CARB_ECOLI CCME_ECOLI CCMF_ECOLI CCMH_ECOLI CH10_ECOLI CH60_ECOLI 

CHEA_ECOLI CHER_ECOLI CHEY_ECOLI CLPA_ECOLI CLPP_ECOLI CLPS_ECOLI 

CLPX_ECOLI CRP_ECOLI CYSD_ECOLI CYSN_ECOLI CYTR_ECOLI DADA_ECOLI 

DHSA_ECOLI DHSB_ECOLI DHSC_ECOLI DLDH_ECOLI DNAA_ECOLI DNAB_ECOLI 

DNAC_ECOLI DNAJ_ECOLI DNAK_ECOLI DSBC_ECOLI DSBD_ECOLI ENO_ECOLI 

ENVZ_ECOLI ERA_ECOLI EX1_ECOLI EXBB_ECOLI EXBD_ECOLI FER_ECOLI 

FIS_ECOLI FLIF_ECOLI FLIG_ECOLI FLIM_ECOLI FLIN_ECOLI FTNA_ECOLI 

FTSA_ECOLI FTSQ_ECOLI FTSZ_ECOLI G3P1_ECOLI GATY_ECOLI GLF_ECOLI 

GLNB_ECOLI GLPK_ECOLI GRPE_ECOLI GYRA_ECOLI HSCA_ECOLI HSCB_ECOLI 

HSLU_ECOLI HSLV_ECOLI IHFA_ECOLI IHFB_ECOLI ILVI_ECOLI ISCS_ECOLI 

LEU1_ECOLI LEXA_ECOLI LIPA_ECOLI LOLD_ECOLI MALE_ECOLI MALG_ECOLI 

MAZG_ECOLI MCP2_ECOLI METE_ECOLI METF_ECOLI METK_ECOLI MINC_ECOLI 

MIND_ECOLI MOBA_ECOLI MOBB_ECOLI MOEA_ECOLI MOG_ECOLI MUTL_ECOLI 

MUTS_ECOLI NADA_ECOLI NADB_ECOLI NAGD_ECOLI NIFU_ECOLI NTRB_ECOLI 

NUSA_ECOLI NUSB_ECOLI NUSG_ECOLI OMPR_ECOLI OXAA_ECOLI PABA_ECOLI 

PABB_ECOLI PAL_ECOLI PNP_ECOLI PNTA_ECOLI PNTB_ECOLI PRIM_ECOLI 

PSTB_ECOLI PT1_ECOLI PTA_ECOLI PTGA_ECOLI PTHP_ECOLI PUR7_ECOLI 

PYRB_ECOLI RECA_ECOLI RECF_ECOLI RECO_ECOLI RECR_ECOLI RHO_ECOLI 

RIR1_ECOLI RIR2_ECOLI RL34_ECOLI RL7_ECOLI RL9_ECOLI RNE_ECOLI 

RP32_ECOLI RPOA_ECOLI RPOB_ECOLI RPOC_ECOLI RPOD_ECOLI RPOZ_ECOLI 

RS10_ECOLI RS2_ECOLI RUVA_ECOLI RUVB_ECOLI SBCC_ECOLI SBCD_ECOLI 

SECA_ECOLI SECB_ECOLI SECE_ECOLI SECG_ECOLI SECY_ECOLI SPEA_ECOLI 

SSB_ECOLI SSPB_ECOLI SUCC_ECOLI SUCD_ECOLI SYFA_ECOLI SYFB_ECOLI 

SYGB_ECOLI SYT_ECOLI TATB_ECOLI TATC_ECOLI TDH_ECOLI THID_ECOLI 

THIG_ECOLI THIO_ECOLI TOLB_ECOLI TRPA_ECOLI TRPB_ECOLI TRXB_ECOLI 

UPP_ECOLI UVRD_ECOLI         

      

Pazos- (Validation method: random selection of two proteins from the Pazos+ set) 
ACKA_ECOLI ACRA_ECOLI ACRB_ECOLI AES_ECOLI ARCB_ECOLI ATP6_ECOLI 

ATPA_ECOLI ATPD_ECOLI ATPE_ECOLI ATPF_ECOLI ATPG_ECOLI ATPL_ECOLI 

BARA_ECOLI BGLG_ECOLI BIOF_ECOLI BTUB_ECOLI BTUC_ECOLI CARA_ECOLI 

CARB_ECOLI CCME_ECOLI CCMF_ECOLI CCMH_ECOLI CH10_ECOLI CH60_ECOLI 

CHEA_ECOLI CHER_ECOLI CLPA_ECOLI CLPP_ECOLI CLPS_ECOLI CLPX_ECOLI 

CRP_ECOLI CYSD_ECOLI DADA_ECOLI DBHA_ECOLI DBHB_ECOLI DHSA_ECOLI 

DHSB_ECOLI DHSC_ECOLI DLDH_ECOLI DNAA_ECOLI DNAC_ECOLI DNAJ_ECOLI 

DNAK_ECOLI DSBD_ECOLI EFTS_ECOLI ENO_ECOLI ENVZ_ECOLI ERA_ECOLI 

EX1_ECOLI EXBB_ECOLI EXBD_ECOLI FER_ECOLI FHUA_ECOLI FIS_ECOLI 

FLIF_ECOLI FLIN_ECOLI FTNA_ECOLI FTSA_ECOLI FTSZ_ECOLI GALU_ECOLI 

GATY_ECOLI GCVA_ECOLI GLNB_ECOLI GLPK_ECOLI GRPE_ECOLI GYRA_ECOLI 

HSLU_ECOLI HSLV_ECOLI IHFB_ECOLI ILVI_ECOLI ISCS_ECOLI LEU1_ECOLI 

LEXA_ECOLI LOLD_ECOLI MALE_ECOLI MALF_ECOLI MALG_ECOLI MALY_ECOLI 

MAZG_ECOLI METE_ECOLI METF_ECOLI METK_ECOLI MINC_ECOLI MIND_ECOLI 

MOAE_ECOLI MOBA_ECOLI MOEA_ECOLI MOEB_ECOLI MOG_ECOLI MUTL_ECOLI 

MUTS_ECOLI NADB_ECOLI NIFU_ECOLI NTRB_ECOLI NUSA_ECOLI NUSB_ECOLI 
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NUSG_ECOLI OMPA_ECOLI OMPR_ECOLI OXAA_ECOLI PABA_ECOLI PABB_ECOLI 

PNP_ECOLI PNTA_ECOLI PNTB_ECOLI PRIM_ECOLI PSTB_ECOLI PT1_ECOLI 

PTA_ECOLI PTGA_ECOLI PTHP_ECOLI PUR7_ECOLI PYRB_ECOLI RECA_ECOLI 

RECF_ECOLI RECO_ECOLI RECR_ECOLI RHO_ECOLI RIR1_ECOLI RIR2_ECOLI 

RIR3_ECOLI RL34_ECOLI RL7_ECOLI RL9_ECOLI RNE_ECOLI RP32_ECOLI 

RPOA_ECOLI RPOB_ECOLI RPOC_ECOLI RPOE_ECOLI RPOZ_ECOLI RS10_ECOLI 

RS20_ECOLI RS2_ECOLI RUVB_ECOLI SBCC_ECOLI SBCD_ECOLI SECB_ECOLI 

SECE_ECOLI SECG_ECOLI SECY_ECOLI SOPA_ECOLI SPEA_ECOLI SSB_ECOLI 

SUCC_ECOLI SUCD_ECOLI SYFA_ECOLI SYFB_ECOLI SYGB_ECOLI TDH_ECOLI 

THID_ECOLI THIG_ECOLI TOLQ_ECOLI TRPA_ECOLI TRPB_ECOLI UPP_ECOLI 

YBGF_ECOLI           

      

Tan+ (Validation method: minimum three experimental results) 
ADA2_YEAST AP1B1_YEAST AP1G1_YEAST AP1M1_YEAST ARO1_YEAST ARPC1_YEAST 

ARPC3_YEAST ARX1_YEAST ATPG_YEAST ATPO_YEAST BRX1_YEAST CALM_YEAST 

CARB_YEAST CDC11_YEAST CDC12_YEAST CDC28_YEAST CDC53_YEAST CG23_YEAST 

CKS1_YEAST COAC_YEAST CSK22_YEAST CSK2B_YEAST CSK2C_YEAST DIP2_YEAST 

DRS1_YEAST EI2BA_YEAST EI2BB_YEAST EI2BD_YEAST ERB1_YEAST FAS1_YEAST 

FAS2_YEAST FBRL_YEAST GAL83_YEAST GCN5_YEAST HAS1_YEAST IF32_YEAST 

IF34_YEAST IF38_YEAST IF4E_YEAST IF4F1_YEAST KAPB_YEAST KAPR_YEAST 

LSM2_YEAST LSM7_YEAST MYO2_YEAST NOG1_YEAST NOP12_YEAST NOP4_YEAST 

NOP58_YEAST NUG1_YEAST ODO1_YEAST ODO2_YEAST ODP2_YEAST ODPA_YEAST 

ODPB_YEAST ODPX_YEAST PRI1_YEAST PRI2_YEAST PRP3_YEAST PRP4_YEAST 

PRS10_YEAST PRS6A_YEAST PRS6B_YEAST PSB3_YEAST PSB7_YEAST PSDA_YEAST 

PUF6_YEAST PYC1_YEAST PYC2_YEAST RFC2_YEAST RFC3_YEAST RFC4_YEAST 

RFC5_YEAST RLP24_YEAST RPA1_YEAST RPA2_YEAST RPB1_YEAST RPB3_YEAST 

RPB5_YEAST RPB6_YEAST RPC19_YEAST RPC1_YEAST RPC2_YEAST RPC5_YEAST 

RPN10_YEAST RPN11_YEAST RPN12_YEAST RPN3_YEAST RPN7_YEAST RPN8_YEAST 

RRP1_YEAST RRP41_YEAST RRP45_YEAST RT05_YEAST RT09_YEAST SEC13_YEAST 

SIK1_YEAST SIP2_YEAST SKP1_YEAST SNF1_YEAST SNF4_YEAST SPT5_YEAST 

SUI1_YEAST SYFA_YEAST SYFB_YEAST TPS1_YEAST TPS2_YEAST TRPE_YEAST 

TRPG_YEAST UTP13_YEAST VA0D_YEAST VATA_YEAST VATB_YEAST VATD_YEAST 

VATE_YEAST VATF_YEAST VPH1_YEAST WEB1_YEAST YCF9_YEAST YEV6_YEAST 

YG3J_YEAST YL409_YEAST YNL0_YEAST YNN2_YEAST     

      

Hakes+ (Validation method: crystal structures from the PQS database) 
6PGD1_YEAST ACE2_YEAST ACS2_YEAST ACT_YEAST AP1B1_YEAST AP1G1_YEAST 

ARP2_YEAST ARP3_YEAST BDF1_YEAST BFR2_YEAST BMH2_YEAST BRE1_YEAST 

BRO1_YEAST BRX1_YEAST BUR1_YEAST C1TC_YEAST C1TM_YEAST CAPZA_YEAST 

CBF5_YEAST CBS_YEAST CCR4_YEAST CDC16_YEAST CDC31_YEAST CDC53_YEAST 

CDC6_YEAST CDC7_YEAST CDH1_YEAST CFT2_YEAST CG22_YEAST CHD1_YEAST 

CNS1_YEAST COAC_YEAST COFI_YEAST COPB2_YEAST COPB_YEAST CORO_YEAST 

CSK21_YEAST CSK22_YEAST CSK2B_YEAST DBP10_YEAST DBP4_YEAST DBP8_YEAST 

DED1_YEAST DLDH_YEAST DPH1_YEAST DPOA_YEAST DPOE_YEAST DRS1_YEAST 

DUN1_YEAST DUR1_YEAST EAF3_YEAST EF1A_YEAST EF1G1_YEAST EF1G2_YEAST 

EFTU_YEAST EI2BA_YEAST EMP24_YEAST EPL1_YEAST ERF2_YEAST ERG25_YEAST 

ERG27_YEAST ERV25_YEAST ESA1_YEAST FIP1_YEAST FRDA_YEAST GAL1_YEAST 

GAR1_YEAST GAT1_YEAST GCN20_YEAST GCN2_YEAST GCN5_YEAST GDI1_YEAST 

GET3_YEAST GFA1_YEAST GLYC_YEAST H2A2_YEAST H3_YEAST H4_YEAST 

HAS1_YEAST HAT2_YEAST HDA1_YEAST HEMH_YEAST HRR25_YEAST HS104_YEAST 

HSC82_YEAST HSP71_YEAST HSP77_YEAST HSP7F_YEAST HSP82_YEAST IDH2_YEAST 

IF2A_YEAST IF2G_YEAST IF4A_YEAST IF4E_YEAST IF5_YEAST IF6_YEAST 

IMA1_YEAST IMDH4_YEAST IST3_YEAST ISW1_YEAST KIN28_YEAST KKK1_YEAST 

KOK0_YEAST KPR3_YEAST LAH1_YEAST LCB1_YEAST LSM5_YEAST MAK5_YEAST 
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MBF1_YEAST MCM6_YEAST MDHM_YEAST MDJ1_YEAST METL_YEAST MIA40_YEAST 

MMS2_YEAST MOT1_YEAST MPG1_YEAST MPIP_YEAST MRT4_YEAST MSH2_YEAST 

MSH5_YEAST MSH6_YEAST MTR4_YEAST MYO1_YEAST NCB5R_YEAST NCS1_YEAST 

NDC80_YEAST NHP2_YEAST NOG1_YEAST NOG2_YEAST NOP12_YEAST NOP14_YEAST 

NOP4_YEAST NOP58_YEAST NUF2_YEAST NUG1_YEAST ODO1_YEAST ODPB_YEAST 

OTC_YEAST PABP_YEAST PCNA_YEAST PFS2_YEAST PHR_YEAST PHSG_YEAST 

PIK1_YEAST POB3_YEAST PP11_YEAST PP12_YEAST PP2A1_YEAST PP2A2_YEAST 

PRP45_YEAST PRP4_YEAST PRS10_YEAST PRS7_YEAST PRS8_YEAST PSA1_YEAST 

PSA2_YEAST PSA4_YEAST PSA5_YEAST PSA6_YEAST PSA7_YEAST PSB2_YEAST 

PSB3_YEAST PSB4_YEAST PSB6_YEAST PSB7_YEAST PSF2_YEAST PUB1_YEAST 

PUR2_YEAST PURA_YEAST PWP1_YEAST PYR1_YEAST RAD16_YEAST RAD50_YEAST 

RAD51_YEAST RFC2_YEAST RFC3_YEAST RFC4_YEAST RFC5_YEAST RIR1_YEAST 

RIX7_YEAST RL10_YEAST RL13A_YEAST RL23_YEAST RL28_YEAST RL30_YEAST 

RL7A_YEAST RL8B_YEAST RLA0_YEAST RLP24_YEAST RM08_YEAST RM09_YEAST 

RNA14_YEAST ROK1_YEAST RPB10_YEAST RPB2_YEAST RPB3_YEAST RPB5_YEAST 

RPC19_YEAST RPC2_YEAST RPF1_YEAST RPN11_YEAST RPN6_YEAST RRP44_YEAST 

RRP45_YEAST RRP4_YEAST RS0A_YEAST RS3B_YEAST RS5_YEAST RSMB_YEAST 

RT04_YEAST RT05_YEAST RT09_YEAST RT16_YEAST RU2A_YEAST RUVB1_YEAST 

SAP1_YEAST SAR1_YEAST SEC4_YEAST SEN1_YEAST SEN2_YEAST SERA_YEAST 

SGN1_YEAST SKI2_YEAST SLT2_YEAST SMC3_YEAST SMT3_YEAST SNU13_YEAST 

SODC_YEAST SOF1_YEAST SPB1_YEAST SPT16_YEAST SSU72_YEAST STH1_YEAST 

STI1_YEAST SUB2_YEAST SWD2_YEAST SYDM_YEAST SYFA_YEAST SYFB_YEAST 

SYIC_YEAST SYNC_YEAST SYV_YEAST TBA1_YEAST TBB_YEAST TBP6_YEAST 

TBP_YEAST TCPB_YEAST TCPD_YEAST TCPE_YEAST TCPQ_YEAST TCTP_YEAST 

TF2B_YEAST TFB3_YEAST TIM13_YEAST TOP2_YEAST TRX1_YEAST TWF1_YEAST 

UBA1_YEAST UBC12_YEAST UBC13_YEAST UBC2_YEAST UBP15_YEAST UBP8_YEAST 

UFD4_YEAST UGPA1_YEAST ULA1_YEAST URA7_YEAST UTP15_YEAST UTP4_YEAST 

UTP7_YEAST VATB_YEAST VATD_YEAST VATG_YEAST VPS1_YEAST VPS4_YEAST 

WEB1_YEAST YAK1_YEAST YB09_YEAST YBE7_YEAST YCW2_YEAST YD036_YEAST 

YEM6_YEAST YEQ8_YEAST YGA4_YEAST YGJ9_YEAST YM71_YEAST YNL0_YEAST 

YP247_YEAST YPT1_YEAST YSH1_YEAST YTH1_YEAST YTM1_YEAST ZUO1_YEAST 

      

Tan- (Validation method: one protein found in the mitochondrial membrane and 
the other protein found in the nuclear membrane) 

ADT2_YEAST ADT3_YEAST AQY1_YEAST ATPB_YEAST ATPG_YEAST CACM_YEAST 

COAC_YEAST COQ1_YEAST COQ2_YEAST CSE1_YEAST DHSB_YEAST FET3_YEAST 

HEMH_YEAST HYM1_YEAST IMB3_YEAST KAD2_YEAST MDJ1_YEAST MPCP_YEAST 

OAC1_YEAST OMA1_YEAST PLSC_YEAST PRS10_YEAST PRS6A_YEAST PRS6B_YEAST 

PRS7_YEAST PSA3_YEAST PSB2_YEAST PSB3_YEAST PSB5_YEAST PSD1_YEAST 

RL35_YEAST RPN10_YEAST RPN12_YEAST RPN1_YEAST RPN3_YEAST RPN5_YEAST 

RPN7_YEAST RPN8_YEAST UQCR2_YEAST       

      

GFP- (Validation method: random selection of two proteins from two non-adjacent 
cellular compartments from the Yeast GFP Localization database) 

ACS2_YEAST AGE2_YEAST AIP1_YEAST ALG13_YEAST ALG1_YEAST ARL3_YEAST 

ATC6_YEAST ATC7_YEAST ATPA_YEAST AZF1_YEAST BAS1_YEAST BCS1_YEAST 

BFR2_YEAST BRE1_YEAST BUD31_YEAST BZZ1_YEAST CAPZA_YEAST CAPZB_YEAST 

CASP_YEAST CBPY_YEAST CORO_YEAST COX10_YEAST CYB5_YEAST DBP4_YEAST 

DID4_YEAST DLDH_YEAST DYL1_YEAST ELF1_YEAST ERD2_YEAST ERG24_YEAST 

ERG27_YEAST ERP1_YEAST ERV25_YEAST ETFA_YEAST FAB1_YEAST FAT1_YEAST 

FIMB_YEAST FKH2_YEAST GAR1_YEAST GATH_YEAST GCN5_YEAST GPI11_YEAST 

H2A2_YEAST HLJ1_YEAST IDH1_YEAST IPL1_YEAST ISW1_YEAST KAPB_YEAST 

KIN28_YEAST KKK1_YEAST LCB1_YEAST LHS1_YEAST LONM_YEAST MCES_YEAST 

MCX1_YEAST MOT1_YEAST MPD1_YEAST MPS1_YEAST MRS3_YEAST MSH6_YEAST 



 211

MSP1_YEAST MVP1_YEAST MYO1_YEAST MYO5_YEAST NCL1_YEAST NHP2_YEAST 

NOP10_YEAST NOP12_YEAST NTG2_YEAST NUF2_YEAST ODP2_YEAST ODPB_YEAST 

ORM1_YEAST PCNA_YEAST PEX1_YEAST PEX6_YEAST PRK1_YEAST PRP5_YEAST 

PRS8_YEAST PSA2_YEAST PSB6_YEAST PUS1_YEAST PUS3_YEAST PUT2_YEAST 

QRI7_YEAST RM02_YEAST RM08_YEAST RPC19_YEAST RPC2_YEAST RSMB_YEAST 

RUVB1_YEAST SCP1_YEAST SCY1_YEAST SEN1_YEAST SMC4_YEAST SNC2_YEAST 

SNF2_YEAST SNX3_YEAST SODM_YEAST SSN8_YEAST STE6_YEAST STH1_YEAST 

SUCA_YEAST SYDM_YEAST SYEM_YEAST TAL1_YEAST TIM16_YEAST TWF1_YEAST 

UBC6_YEAST UTP13_YEAST UTP4_YEAST VA0D_YEAST VAC8_YEAST VATB_YEAST 

VATD_YEAST VATE_YEAST VATG_YEAST VATL1_YEAST VPH1_YEAST VPS27_YEAST 

VPS34_YEAST VPS4_YEAST VPS60_YEAST WEB1_YEAST XRN2_YEAST YB09_YEAST 

YB91_YEAST YBY9_YEAST YCFI_YEAST YG5F_YEAST YHA2_YEAST YIS4_YEAST 

YO246_YEAST YO7T_YEAST ZRC1_YEAST       
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Appendix 2. Papers for Ligand-Binding Sites 

  
Adrenergic receptor 
Reference 
# Reference Protein (PID) Method(s) 
1 (Cavalli et al., 1996) ADA1B_HUMAN(P35368) mutation 

2 (Chen et al., 1999) ADA1B_MESAU(P18841) mutation 

3 (Chung et al., 1988) ADRB2_HUMAN(P07550) mutation 

4 (Dohlman et al., 1988) ADRB2_HUMAN(P07550) affinity labelling 

5 (Fraser et al., 1988) ADRB2_HUMAN(P07550) mutation 

6 (Fraser, 1989a) ADRB2_HUMAN(P07550) mutation 

7 (Gouldson et al., 1997) ADRB2_HUMAN(P07550) mutation/CMA 

8 (Green et al., 1993) ADRB2_HUMAN(P07550) natural SNP 

9 (Hamaguchi et al., 1996) ADA1A_HUMAN(P35348) mutation 

10 (Hieble et al., 1998) ADA2A_HUMAN(P08913) mutation 

11 
(Hwa et al., 1996) 

ADA1A_RAT(P43140), 
ADA1B_MESAU(P18841) mutation 

12 (Isogaya et al., 1998) ADRB2_HUMAN(P07550) mutation/chimera 

13 (Kikkawa et al., 1998) 
ADRB2_HUMAN(P07550), 
ADRB1_HUMAN(P08588) mutation/chimera 

14 (Lei et al., 2005) ADA1A_HUMAN(P35348) SNP 

15 (Liapakis et al., 2000) ADRB2_HUMAN(P07550) mutation+ligand analogues 

16 (Marjamaki et al., 1998) ADA2A_HUMAN(P08913) 
mutation/substituted cysteine 
accessibility 

17 (Pauwels and Colpaert, 2000) ADA2A_HUMAN(P08913) 
mutation/substituted cysteine 
accessibility 

18 (Peltonen et al., 2003) ADA2A_HUMAN(P08913) 
mutation/substituted cysteine 
accessibility 

19 
(Perez et al., 1998) 

ADA1B_MESAU(P18841), 
ADA1A_RAT(P43140) mutation 

20 (Porter et al., 1996) ADA1B_MESAU(P18841) mutation 

21 (Porter et al., 1998) ADA1B_MESAU(P18841) mutation 

22 (Porter and Perez, 1999) ADA1B_MESAU(P18841) mutation 

23 (Rudling et al., 1999) ADA2A_HUMAN(P08913) 
mutation/substituted cysteine 
accessibility 

24 (Sato et al., 1999) ADRB2_HUMAN(P07550) mutation+ligand analogues 

25 (Strader et al., 1987) ADRB2_MESAU(P04274) mutation/ligand analogues 

26 (Strader et al., 1988) ADRB2_MESAU(P04274) mutation/ligand analogues 

27 (Strader et al., 1989) ADRB2_HUMAN(P07550) mutation 

28 (Strader and Dixon, 1991) ADRB2_MESAU(P04274) mutation/ligand analogues 

29 (Sugimoto et al., 2002) ADRB1_HUMAN(P08588) mutation 

30 (Suryanarayana et al., 1991) ADA2A_HUMAN(P08913) mutation 

31 
(Suryanarayana and Kobilka, 
1993) ADRB2_HUMAN(P07550) 

mutation/CMA 
(computational) 

32 (Wang et al., 1991) ADA2A_HUMAN(P08913) 
mutation/substituted cysteine 
accessibility 

33 (Waugh et al., 2000) ADA1A_RAT(P43140) mutation 

34 (Waugh et al., 2001) ADA1A_RAT(P43140) mutation 

35 (Wieland et al., 1996) ADRB2_HUMAN(P07550) mutation/modelling 

36 (Wong et al., 1988) ADRB1_MELGA(P07700) affinity labelling 
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37 (Zuscik et al., 1998) ADRB2_HUMAN(P07550) mutation 

38 (Zuurmond et al., 1999) ADRB2_HUMAN(P07550) mutation/modelling 

Chemokine receptor 
Reference 
# Reference Protein (PID) Method(s) 
39 (Ai and Liao, 2002) CCR6_HUMAN(P51684) mutation 

40 (Berkhout et al., 2003) CCR2_HUMAN(P41597) mutation 

41 (Blanpain et al., 1999) CCR5_HUMAN(P51681) mutation/deletion 

42 (Blanpain et al., 2003) CCR5_HUMAN(P51681) mutation/chimera 

43 (Blanpain et al., 2000) CCR5_HUMAN(P51681) mutation 

44 (Brelot et al., 2000) CXCR4_HUMAN(P61073) mutation 

45 (Chen et al., 2006) CX3C1_HUMAN(P49238) 
mutation/surface plasmon 
resonance 

46 (Colvin et al., 2006) CXCR3_HUMAN(P49682) mutation/chimera 

47 (de Mendonca et al., 2005) CCR1_HUMAN(P32246) mutation 

48 (Doranz et al., 1999) CXCR4_HUMAN(P61073) chimera 

49 (Dragic et al., 1998) CCR5_HUMAN(P51681) mutation/deletion/chimera 

50 (Dragic et al., 2000) CCR5_HUMAN(P51681) mutation 

51 (Farzan et al., 2002) CXCR4_HUMAN(P61073) mutation 

52 (Fong et al., 2002) CX3C1_HUMAN(P49238) 
mutation/surface plasmon 
resonance 

53 (Gerlach et al., 2001) CXCR4_HUMAN(P61073) mutation 

54 (Govaerts et al., 2001) CCR5_HUMAN(P51681) mutation 

55 (Gutierrez et al., 2004) CCR8_MOUSE(P56484) mutation 

56 (Hatse et al., 2001) CXCR4_HUMAN(P61073) mutation 

57 (Howard et al., 1999) CCR5_HUMAN(P51681) mutation/deletion 

58 (Mirzadegan et al., 2000) CCR2_HUMAN(P41597) mutation 

59 (Monteclaro and Charo, 1996) CCR2_HUMAN(P41597) mutation/chimera 

60 (Monteclaro and Charo, 1997) CCR2_HUMAN(P41597) mutation/chimera 

61 (Preobrazhensky et al., 2000) CCR2_HUMAN(P41597) mutation/chimera 

62 (Samson et al., 1997) 
CCR2_HUMAN(P41597), 
CCR5_HUMAN(P51681) mutation/chimera 

63 (Wu et al., 1997) CCR5_HUMAN(P51681) mutation/chimera 

64 (Xanthou et al., 2003) CXCR3_HUMAN(P49682) mutation/chimera 

65 (Youn et al., 2001) CCR5_HUMAN(P51681) mutation 

66 (Zhou et al., 2001) CXCR4_HUMAN(P61073) mutation 

67 (Zoffmann et al., 2002) CCR1_HUMAN(P32246) mutation 

    

Interleukin-8 receptor 
Reference 
# Reference Protein (PID) Method(s) 
68 (Hebert et al., 1993) CXCR1_HUMAN(P25024) mutation 

69 (Katancik et al., 2000) CXCR2_HUMAN(P25025) mutation 

70 (Leong et al., 1994) CXCR1_HUMAN(P25024) mutation 

71 (Luo et al., 1997) CXCR2_HUMAN(P25025) mutation/modelling 

72 (Skelton et al., 1999) CXCR1_HUMAN(P25024) NMR 

    

Dopamine receptor 
Reference Reference Protein (PID) Method(s) 
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# 
73 (Alberts et al., 1998) DRD3_HUMAN(P35462) mutation 

74 (Boeckler et al., 2005) DRD2_HUMAN(P14416) mutation/modelling 

75 (Cho et al., 1995) DRD2_HUMAN(P14416) mutation/modelling 

76 (Cho et al., 1996) DRD1_HUMAN(P21728) mutation 

77 (Coley et al., 2000) DRD2_RAT(P61169) mutation 

78 (Cox et al., 1992) DRD2_RAT(P61169) mutation 

79 (Cravchik and Gejman, 1999) DRD5_HUMAN(P21918) nature SNP 

80 (Daniell et al., 1994) DRD2_RAT(P61169) mutation 

81 (Fu et al., 1996) DRD2_HUMAN(P14416) mutation/modelling 

82 (Javitch et al., 1995) DRD2_HUMAN(P14416) mutation 

83 (Javitch et al., 1996) DRD2_HUMAN(P14416) 
mutation/predicted 3D 
structure/modelling 

84 (Javitch et al., 1998) DRD2_HUMAN(P14416) 
mutation/predicted 3D 
structure/modelling 

85 (Javitch et al., 1999) DRD2_HUMAN(P14416) mutation 

86 (Javitch et al., 2000) DRD2_HUMAN(P14416) mutation 

87 (Jeanneteau et al., 2004) DRD3_RAT(P19020) deletion 

88 (Jensen et al., 1995) DRD1_HUMAN(P21728) mutation 

89 (Kalani et al., 2004) DRD2_HUMAN(P14416) 
mutation/predicted 3D 
structure/modelling 

90 (Lee et al., 2000a) DRD2_HUMAN(P14416) 
mutation/predicted 3D 
structure 

91 (Lundstrom et al., 1998) DRD3_HUMAN(P35462) mutation 

92 (Mansour et al., 1992) DRD2_HUMAN(P14416) 
mutation/predicted 3D 
structure 

93 (Neve et al., 1991) DRD2_RAT(P61169) mutation 

94 (Neve et al., 2001) DRD2_RAT(P61169) mutation 

95 (Pollock et al., 1992) DRD1_HUMAN(P21728) mutation 

96 (Sartania and Strange, 1999) DRD3_HUMAN(P35462) mutation 

97 (Schetz et al., 2000) DRD4_RAT(P30729) mutation 

98 (Simpson et al., 1999) 
DRD2_HUMAN(P14416), 
DRD4_HUMAN(P21917) 

mutation/predicted 3D 
structure 

99 (Tomic et al., 1993) DRD1_HUMAN(P21728) mutation 

100 (Wilcox et al., 2000) DRD2_RAT(P61169) mutation 

101 (Woodward et al., 1994) DRD2_RAT(P61169) mutation 

102 (Woodward et al., 1996) DRD2_RAT(P61169) mutation 

    

Histamine receptor 
Reference 
# Reference Protein (PID) Method(s) 
103 (Gantz et al., 1992) HRH2_CANFA(P17124) mutation 

104 (Leurs et al., 1994) HRH1_CAVPO(P31389) mutation 

105 (Leurs et al., 1995) HRH1_CAVPO(P31389) mutation 

106 (Ligneau et al., 2000) HRH3_RAT(Q9QYN8) mutation 

107 (Moguilevsky et al., 1995) HRH1_HUMAN(P35367) mutation 

108 (Nonaka et al., 1998) HRH1_HUMAN(P35367) mutation 

109 (Ohta et al., 1994) HRH1_HUMAN(P35367) mutation 

110 (Shin et al., 2002) HRH4_HUMAN(Q9H3N8) mutation 

111 (Wieland et al., 1999) HRH1_CAVPO(P31389) mutation 
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Muscarinic receptor 
Reference 
# Reference Protein (PID) Method(s) 
112 (Allman et al., 2000) ACM1_RAT(P08482) mutation 

113 (Bluml et al., 1994a) ACM3_RAT(P08483) mutation 

114 (Fraser et al., 1989b) ACM1_RAT(P08482) mutation/affinity labelling 

115 (Heitz et al., 1999) ACM2_HUMAN(P08172) mutation 

116 (Huang et al., 1999a) ACM1_HUMAN(P11229) mutation 

117 (Kurtenbach et al., 1990) ACM1_RAT(P08482) mutation/affinity labelling 

118 (Leppik et al., 1994) ACM2_HUMAN(P08172) mutation 

119 (Lu and Hulme, 1999) ACM1_RAT(P08482) mutation/affinity labelling 

120 (Lu et al., 2001) ACM1_RAT(P08482) mutation 

121 (Matsui et al., 1995) ACM1_RAT(P08482) mutation 

122 (Mosser et al., 2002) ACM2_RAT(P10980) mutation 

123 (Page et al., 1995) ACM1_RAT(P08482) mutation/affinity labelling 

124 (Savarese et al., 1992) ACM1_RAT(P08482) mutation 

125 (Spalding et al., 1994) ACM1_RAT(P08482) mutation/affinity labelling 

126 (Spalding et al., 1995) ACM1_RAT(P08482) mutation/affinity labelling 

127 (Vogel et al., 1997) ACM2_PIG(P06199) mutation 

128 (Vogel et al., 1999) 
ACM2_PIG(P06199), 
ACM2_RAT(P10980) mutation 

129 (Ward et al., 1999) ACM1_RAT(P08482) mutation 

130 (Wess et al., 1991) ACM3_RAT(P08483) mutation 

131 (Wess et al., 1992) ACM3_RAT(P08483) mutation 

132 (Wess et al., 1993) ACM3_RAT(P08483) mutation 

133 (Wess et al., 1995) ACM3_RAT(P08483) mutation 

    

Serotonin receptor 
Reference 
# Reference Protein (PID) Method(s) 
134 (Almaula et al., 1996a) 5HT2A_HUMAN(P28223) mutation 

135 (Almaula et al., 1996b) 5HT2C_HUMAN(P28223) mutation 

136 (Boess et al., 1997) 5HT6R_RAT(P31388) mutation 

137 (Boess et al., 1998) 5HT6R_RAT(P31388) mutation 

138 (Chanda et al., 1993) 5HT1A_HUMAN(P08908) mutation 

139 (Choudhary et al., 1993) 5HT2A_HUMAN(P28223) mutation 

140 (Choudhary et al., 1995) 5HT2A_HUMAN(P28223) mutation 

141 (Del Tredici et al., 2004) 5HT1A_HUMAN(P08908) natural SNP 

142 (Glennon et al., 1996) 5HT1B_HUMAN(P28222) mutation 

143 (Granas and Larhammar, 1999) 5HT1B_HUMAN(P28222) mutation 

144 (Granas et al., 1998) 5HT1B_HUMAN(P28222) mutation 

145 (Granas et al., 2001) 5HT1B_HUMAN(P28222) mutation 

146 (Guan et al., 1992) 5HT1A_HUMAN(P08908) mutation 

147 (Herrick-Davis et al., 2005) 5HT2C_HUMAN(P28335) mutation 

148 (Ho et al., 1992) 5HT1A_HUMAN(P08908) mutation 

149 (Johnson et al., 1994) 5HT2A_RAT(P14842) mutation 

150 (Johnson et al., 1997) 5HT2A_RAT(P14842) mutation 

151 (Kao et al., 1992) 5HT2A_HUMAN(P28223) mutation 
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152 (Kohen et al., 2001) 5HT6R_MOUSE(Q9R1C8) mutation 

153 (Kristiansen et al., 2000) 5HT2A_HUMAN(P28223) mutation 

154 (Kuipers et al., 1997) 5HT1A_HUMAN(P08908) mutation 

155 (Manivet et al., 2002) 
5HT2B_HUMAN(P41595), 
5HT2B_RAT(P30994) mutation 

156 (Mialet et al., 2000) 5HT4R_HUMAN(Q13639) mutation 

157 (Obosi et al., 1997) 5HT7R_MOUSE(P32304) mutation/deletion 

158 (Oksenberg et al., 1992) 5HT1B_HUMAN(P28222) mutation 

159 (Parker et al., 1993) 5HT1B_HUMAN(P28222) mutation 

160 (Roth et al., 1993) 5HT2A_HUMAN(P28223) mutation 

161 (Roth et al., 1997) 5HT2A_HUMAN(P28223) mutation 

162 (Shapiro et al., 2000) 5HT2A_RAT(P14842) mutation 

163 (Wang et al., 1993) 5HT2A_HUMAN(P28223) mutation 
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Appendix 3. Papers for G Protein-Coupling Sites 

  
Adrenergic receptor 
Reference 
# Reference Protein (PID) Method(s) 
164 (Cotecchia et al., 1990) ADA1B_MESAU(P18841) mutation/chimera 

165 (Eason and Liggett, 1995) ADA2A_HUMAN(P08913) deletion/chimera 

166 (Eason and Liggett, 1996) ADA2A_HUMAN(P08913) mutation/deletion/chimera 

167 (Greasley et al., 2001) ADA1B_MESAU(P18841) mutation/chimera 

168 (Hawes et al., 1994) ADA1B_HUMAN(P35368) mutation/peptide 

169 (Liggett et al., 1991) ADRB2_HUMAN(P07550) deletion/chimera 

170 (Moro et al., 1993) ADRB2_MESAU(P04274) mutation 

171 (Nasman et al., 1997) ADA2A_MOUSE(Q01338) chimera 

172 (O'Dowd et al., 1988) ADRB2_HUMAN(P07550) deletion/chimera 

173 (Valiquette et al., 1993) ADRB2_HUMAN(P07550) mutation 

174 (Wade et al., 1999) ADA2A_HUMAN(P08913) mutation/chimera 

175 (Wong et al., 1990) 
ADRB1_MELGA(P07700/P11
229) chimera 

176 (Wurch et al., 2003) ADA1B_HUMAN(P35368) mutation/peptide 

    

Chemokine receptor 
Reference 
# Reference Protein (PID) Method(s) 
177 (Arai et al., 1997) CCR2_HUMAN(P41597) deletion 

178 (Auger et al., 2002) CCR3_HUMAN(P51677) mutation 

179 (Brelot et al., 2000) CXCR4_HUMAN(P61073) deletion 

180 (Gosling et al., 1997) CCR5_HUMAN(P51681) mutation/deletion 

181 (Kraft et al., 2001) CCR5_HUMAN(P51681) mutation/deletion 

    

Interleukin-8 receptor 
Reference 
# Reference Protein (PID) Method(s) 
182 (Ben-Baruch et al., 1995) CXCR2_HUMAN(P25025) deletion 

183 (Damaj et al., 1996) CXCR1_HUMAN(P25024) mutation 

184 (Xie et al., 1997) CXCR2_HUMAN(P25025) mutation 

    

Dopamine receptor 
Reference 
# Reference Protein (PID) Method(s) 
185 (Chaar et al., 2001) DRD1_HUMAN(P21728) deletion 

186 (Filteau et al., 1999) 
DRD2_HUMAN(P14416), 
DRD3_HUMAN(P35462) chimera/peptide 

187 (Ilani et al., 2002) 
DRD2_MOUSE(P61168), 
DRD3_MOUSE(P30728) chimera 

188 (Malek et al., 1993) DRD2_HUMAN(P14416) chimera/peptide 

189 (Woodward et al., 1996) DRD2_RAT(P61169) mutation 
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Histamine receptor 
Reference 
# Reference Protein (PID) Method(s) 

NA 

    

Muscarinic receptor 
Reference 
# Reference Protein (PID) Method(s) 
190 (Blin et al., 1995) ACM3_RAT(P08483) mutation/chimera 

191 (Bluml et al., 1994b) ACM3_RAT(P08483) mutation/chimera 

192 (Bluml et al., 1994c) ACM3_RAT(P08483) chimera/insertion 

193 (Burstein et al., 1995) ACM5_HUMAN(P08912) mutation 

194 (Burstein et al., 1996) ACM5_HUMAN(P08912) mutation 

195 (Burstein et al., 1998) ACM5_HUMAN(P08912) mutation 

196 (Duerson et al., 1993) ACM3_HUMAN(P20309) mutation 

197 (Fraser et al., 1989b) ACM1_RAT(P08482) mutation 

198 (Hawes et al., 1994) 
ACM1_HUMAN(P11229), 
ACM2_HUMAN(P08172) mutation/chimera/peptide 

199 (Hill-Eubanks et al., 1996) ACM5_HUMAN(P08912) mutation 

200 (Huang et al., 1999b) ACM1_HUMAN(P11229) mutation 

201 (Kostenis et al., 1997a) ACM2_HUMAN(P08172) mutation/chimera/peptide 

202 (Kostenis et al., 1997b) ACM3_RAT(P08483) mutation/chimera/insertion 

203 (Liu et al., 1995) ACM2_HUMAN(P08172) mutation/chimera/peptide 

204 (Liu et al., 1996) ACM2_HUMAN(P08172) deletion 

205 (Moro et al., 1993) ACM1_HUMAN(P11229) mutation 

206 (Wess et al., 1995) ACM3_RAT(P08483) mutation/chimera 

207 (Wu et al., 2000) ACM3_RAT(P08483) mutation 

    

Serotonin receptor 
Reference 
# Reference Protein (PID) Method(s) 
208 (Albert et al., 1998) 5HT1A_HUMAN(P08908) mutation 

209 (Kushwaha and Albert, 2005) 5HT1A_RAT(P19327) mutation 

210 (Kushwaha et al., 2006) 5HT1A_RAT(P19327) mutation 

211 (Lembo et al., 1997) 
5HT1A_HUMAN(P08908), 
5HT1A_RAT(P19327) mutation 

212 (Malmberg and Strange, 2000) 5HT1A_HUMAN(P08908) mutation 

213 (Obosi et al., 1997) 5HT7R_MOUSE(P32304) mutation 

214 (Oksenberg et al., 1995) 5HT2A_HUMAN(P28223) chimera 

215 (Papoucheva et al., 2004) 5HT1A_MOUSE(Q64264) mutation 

216 (Price et al., 2001) 5HT2C_HUMAN(P28335) RNA editing 
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Appendix 4. Papers for Oligomerization Sites 

 
Adrenergic receptor 
Reference 
# Reference Protein (PID) Method(s) 

217 (Carrillo et al., 2003) ADA1B_MESAU(P18841) 

co-
immunoprecipitation+TR-
FRET 

218 (Carrillo et al., 2004) ADA1B_MESAU(P18841) 

mutation/co-
immunoprecipitation+TR-
FRET 

219 (Hebert et al., 1996) ADRB2_HUMAN(P07550) immoprecipitation 

220 (Lopez-Gimenez et al., 2007) ADA1B_MESAU(P18841) 

mutation/co-
immunoprecipitation+TR-
FRET 

221 (Stanasila et al., 2003) ADA1B_MESAU(P18841) 

co-
immunoprecipitation+TR-
FRET 

222 (Xu et al., 2003) 
ADA2A_HUMAN(P08913), 
ADRB1_HUMAN(P08588) co-immunoprecipitation 

    

Chemokine receptor 
Reference 
# Reference Protein (PID) Method(s) 

223 (de Juan et al., 2005) CCR5_HUMAN(P51681) 
mutation+FRET/co-
immunoprecipitation+FRET 

224 (Gouldson et al., 2001) CXCR4_HUMAN(P61073) CMA 

225 (Hernanz-Falcon et al., 2004) CCR5_HUMAN(P51681) 
mutation+FRET/co-
immunoprecipitation+FRET 

    

Interleukin-8 receptor 
Reference 
# Reference Protein (PID) Method(s) 

NA 

    

Dopamine receptor 
Reference 
# Reference Protein (PID) Method(s) 

226 (Canals et al., 2003) DRD2_HUMAN(P14416) 

pull-down+mass 
spectrometry/FRET+BRET/c
ross-linking 

227 (Ciruela et al., 2004) DRD2_HUMAN(P14416) 
pull-down+mass 
spectrometry/FRET+BRET 

228 (Guo et al., 2003) DRD2_HUMAN(P14416) mutation/immunoblot 

229 (Lee et al., 2002) DRD2_HUMAN(P14416) immunoblot 

230 (Ng et al., 1996) DRD2_HUMAN(P14416) FRET+BRET/cross-linking 

231 (Woods et al., 2005) DRD1_HUMAN(P21728) unknown 

    

Histamine receptor 
Reference 
# Reference Protein (PID) Method(s) 

232 (Carrillo et al., 2003) HRH1_HUMAN(P35367) 
co-
immunoprecipitation+TR-
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FRET 

    

Muscarinic receptor 
Reference 
# Reference Protein (PID) Method(s) 
233 (Zeng and Wess, 1999) ACM3_RAT(P08483) mutation 

    

Serotonin receptor 
Reference 
# Reference Protein (PID) Method(s) 

NA 
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Appendix 5. Papers for Protein-Protein 

Interaction Sites 

 
Adrenergic receptor 
Reference 
# Reference Protein (PID) Method(s) 
234 (Cao et al., 1999) ADRB2_HUMAN(P07550) mutation 

235 (DeGraff et al., 2002) ADA2B_HUMAN(P18089) mutation/deletion 

236 (Diviani et al., 2003) ADA1B_MESAU(P18841) deletion 

237 (Hall et al., 1998) ADRB2_HUMAN(P07550) mutation 

238 (He et al., 2004) ADRB1_HUMAN(P08588) 
mutation/peptide array/Y2H 
+ co-immunoprecipitation 

239 (He et al., 2006) ADRB1_HUMAN(P08588) 
mutation/peptide array/Y2H 
+ co-immunoprecipitation 

240 (Hu et al., 2000) ADRB1_HUMAN(P08588) 
mutation/peptide array/Y2H 
+ co-immunoprecipitation 

241 (Hu et al., 2003) ADRB1_HUMAN(P08588) 
mutation/peptide array/Y2H 
+ co-immunoprecipitation 

242 (Javitch et al., 1997) ADRB2_HUMAN(P07550) mutation 

243 (Klein et al., 1997) ADRB2_MOUSE(P18762) 
Y2H + co-
immunoprecipitation 

244 (Marion et al., 2006) ADRB2_HUMAN(P07550) mutation 

245 (Pak et al., 2002) ADRB1_HUMAN(P08588) 
mutation/peptide array/Y2H 
+ co-immunoprecipitation 

246 (Wang and Limbird, 2002) ADA2A_PIG(P18871) deletion 

247 (Xu et al., 2001) ADRB1_HUMAN(P08588) 
mutation/peptide array/Y2H 
+ co-immunoprecipitation 

248 (Zhang et al., 2004) 

ADA1A_HUMAN(P35348), 
ADA1B_HUMAN(P35368), 
ADA1D_HUMAN(P25100) Y2H 

    

Chemokine receptor 
Reference 
# Reference Protein (PID) Method(s) 
249 (Bieniasz et al., 1997) CCR5_HUMAN(P51681) mutation/chimera 

250 (Blanpain et al., 1999) CCR5_HUMAN(P51681) mutation/chimera/expression 

251 (Brelot et al., 1997) CXCR4_HUMAN(P61073) mutation/chimera/deletion 

252 (Brelot et al., 1999) CXCR4_HUMAN(P61073) mutation/chimera/deletion 

253 (Brelot et al., 2000) CXCR4_HUMAN(P61073) mutation/chimera/deletion 

254 (Chabot et al., 1999) CXCR4_HUMAN(P61073) mutation/chimera/deletion 

255 (Cheng et al., 2000) CXCR4_HUMAN(P61073) 

pull-down 
assay/deletion/cross-linking 
assay 

256 (Doranz et al., 1997) CCR5_HUMAN(P51681) mutation/chimera/expression 

257 (Dragic et al., 1998) CCR5_HUMAN(P51681) mutation/chimera/expression 

258 (Farzan et al., 1998) CCR5_HUMAN(P51681) mutation/chimera/expression 

259 (Cormier et al., 2000) CCR5_HUMAN(P51681) mutation/chimera/expression 

260 (Hill et al., 1998) CCR5_HUMAN(P51681) mutation/chimera/expression 

261 (Huttenrauch et al., 2002) CCR5_HUMAN(P51681) 
mutation/Y2H/pull-down 
assay 
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262 (Ko et al., 2004) 
CCR1_HUMAN(P32246), 
CCR5_HUMAN(P51681) 

mutation/Y2H/pull-down 
assay 

263 (Kraft et al., 2001) CCR5_HUMAN(P51681) 
mutation/Y2H/pull-down 
assay 

264 (Kuhmann et al., 1997) CCR5_HUMAN(P51681) mutation/chimera/expression 

265 (Lee et al., 2004) CCR1_HUMAN(P32246) Y2H 

266 (Lin et al., 2003) CXCR4_HUMAN(P61073) mutation/chimera/deletion 

267 (Lu et al., 1997) 
CCR5_HUMAN(P51681), 
CXCR4_HUMAN(P61073) mutation/chimera/expression 

268 
(Papin and Subramaniam, 
2004) CXCR5_MOUSE(Q04683) Y2H 

269 (Rabut et al., 1998) CCR5_HUMAN(P51681) mutation/chimera/expression 

270 (Rey et al., 2002) 
CCR5_HUMAN(P51681), 
CXCR4_HUMAN(P61073) 

mutation/Y2H/pull-down 
assay/deletion 

271 (Ross et al., 1998) CCR5_HUMAN(P51681) mutation/chimera/expression 

272 (Siciliano et al., 1999) CCR5_HUMAN(P51681) mutation/chimera 

273 (Wu et al., 1997) CCR5_HUMAN(P51681) mutation/chimera/expression 

    

Interleukin-8 receptor 
Reference 
# Reference Protein (PID) Method(s) 

274 (Fan et al., 2001a) CXCR2_HUMAN(P25025) 
mutation/GST pull-down 
assay 

275 (Fan et al., 2001b) CXCR2_HUMAN(P25025) 
mutation/GST pull-down 
assay 

276 (Fan et al., 2002) CXCR2_HUMAN(P25025) mutation 

    

Dopamine receptor 
Reference 
# Reference Protein (PID) Method(s) 
277 (Bermak et al., 2001) DRD1_RAT(P18901) mutation 

278 (Bofill-Cardona et al., 2000) DRD2_HUMAN(P14416) 
mass spectrometry/co-
immunoprecipitation 

279 (Jeanneteau et al., 2004) 
DRD2_RAT(P61169), 
DRD3_RAT(P19020) mutation/deletion 

280 (Lee et al., 2002) DRD1_RAT(P18901) co-immunoprecipitation 

281 (Li et al., 2000) DRD2_HUMAN(P14416) Y2H+mutation 

282 (Liu et al., 2000) DRD5_HUMAN(P25115) co-immunoprecipitation 

283 (Liu et al., 2007) DRD2_RAT(P61169) mutation 

284 (Woods et al., 2008) DRD2_HUMAN(P14416) 
mass spectrometry/co-
immunoprecipitation 

    

Histamine receptor 
Reference 
# Reference Protein (PID) Method(s) 

NA 

    

Muscarinic receptor 
Reference 
# Reference Protein (PID) Method(s) 
285 (Lee et al., 2000b) ACM2_HUMAN(P08172) mutation/deletion 

286 (Lucas et al., 2006) ACM1_HUMAN(P11229) mutation 

287 (Wu et al., 1997) ACM3_RAT(P08483) immunoblotting 
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Serotonin receptor 
Reference 
# Reference Protein (PID) Method(s) 
288 (Becamel et al., 2001) 5HT2C_HUMAN(P28335) mutation 

289 (Gelber et al., 1999) 5HT2A_RAT(P14842) mutation 

290 (Parker et al., 2003) 5HT2C_RAT(P08909) recombinant peptides 
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Appendix 6. Proximity to Family- and Subfamily- 

Level Motifs for Ligand-Binding Sites 

 
Publications for the ligand-binding regions listed below can be found in Appendix 2. 
All positions were determined based on bovine rhodopsin structure 1F88. 
 
Since accessibility was determined according to 1F88, positions not mapped to 1F88 
sequence in the same MSA were denoted as NON_STRUCTURE_RES.  
 
Proximity scores: 
0 = in motif; -1 = one residue left to motif; +1 = one residue right to motif; -3 = within 
three residues left to motif; +3 = within three residues right to motif; -5 = within five 
residues left to motif; +5 = within five residues right to motif 
 
Adrenergic receptor 

Reference # Position(s) Accessibility 
Proximity to 
family motifs 

Proximity 
to 

subfamily 
motifs 

3, 25, 32 2.50 BURIED     

29 2.56 ACCESSIBLE -3   

10 2.61 BURIED 0   

29 2.63 ACCESSIBLE 0   

4, 9 2.64 BURIED 0   

1, 20, 25, 26, 28, 32 3.32 ACCESSIBLE     

37 3.35 BURIED     

5, 32 3.49 ACCESSIBLE     

8 4.56 BURIED     

33 4.62 ACCESSIBLE     

14 4.62(+3) BURIED     

6 5.34(-5) ACCESSIBLE     

6 5.34(-4) ACCESSIBLE     

1 5.38 BURIED     

11, 16, 19 5.39 BURIED   +3 

33 5.41 ACCESSIBLE     

1, 15, 16, 17, 19, 23, 24 5.42 ACCESSIBLE     

15, 16, 18, 24, 27 5.43 ACCESSIBLE     
15, 16, 17, 18, 19, 24, 
27, 32 5.46 BURIED     

14 5.54 ACCESSIBLE -5   

2 6.51 ACCESSIBLE     

11, 35, 38 6.55 BURIED   -1 

12, 13, 29, 34 7.35 BURIED   0 

12, 21, 22 7.36 ACCESSIBLE   0 

14 7.38 ACCESSIBLE     
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7, 30, 31, 34 7.39 ACCESSIBLE   +3 

36 7.40 ACCESSIBLE   0 

1 7.43 ACCESSIBLE     

25 7.45 ACCESSIBLE     

10, 27 7.46 BURIED     

     

Chemokine receptor 

Reference # Position(s) Accessibility 
Proximity to 
family motifs 

Proximity 
to 

subfamily 
motifs 

46, 64 
1.28(-48)-1.28(-
38) 

NON_STRUCTURE_R
ES   0 

46, 59, 62, 64 1.28(-37) 
NON_STRUCTURE_R
ES   0, -1 

46, 59, 60, 62, 64 
1.28(-36)-1.28(-
33) 

NON_STRUCTURE_R
ES   0 

44, 59, 60, 62, 64 
1.28(-32)-1.28(-
25) 

PARTIALLY_ACCES
SIBLE   -5, 0, -1 

41, 59, 60, 62, 64 1.28(-24) ACCESSIBLE   -5, 0, +3 

41, 59, 60, 62, 64 1.28(-23) ACCESSIBLE   +5, 0, -3 

41, 46, 59, 60, 62, 64 1.28(-22) BURIED   +5, -5, 0, -3 

41, 59, 60, 62, 64 1.28(-21) ACCESSIBLE   -5, 0, -1 
41, 44, 46, 59, 60, 62, 
64 1.28(-20) ACCESSIBLE   0, -3 

41, 44, 59, 60, 62, 64 1.28(-19) ACCESSIBLE   +1, 0, -3 

41, 59, 60, 62, 64 
1.28(-18)-1.28(-
17) ACCESSIBLE   0, +3 

41, 59, 60, 62, 64 1.28(-16) ACCESSIBLE   +5, 0 
41, 49, 55, 59, 60, 62, 
64 1.28(-15) ACCESSIBLE   +5, 0 
41, 55, 57, 59, 60, 61, 
62, 64, 66 1.28(-14) ACCESSIBLE   -5, 0 
41, 44, 45, 51, 52, 59, 
60, 62, 64, 66 1.28(-13) ACCESSIBLE   -5, 0 

59, 60, 61, 62, 64 1.28(-12) ACCESSIBLE   +1, 0, -3 

59, 60, 62, 64 1.28(-11)-1.28(-9) 
PARTIALLY_ACCES
SIBLE -3 0, +3 

41, 59, 60, 62, 64 1.28(-8) ACCESSIBLE -3 +5, 0 

59, 60, 62, 64 1.28(-7) ACCESSIBLE -1 0 

39, 57, 59, 60, 62, 64 1.28(-6) ACCESSIBLE 0 +1, 0 

48, 59, 60, 62, 64 1.28(-5) BURIED 0 -5, 0, +3 

48, 59, 60, 62, 64 1.28(-4) ACCESSIBLE 0 0, +3, -3 

48, 59, 62, 64 1.28(-3) ACCESSIBLE 0 +5, 0, -3 

45, 48, 59, 62, 64 1.28(-2) ACCESSIBLE 0 +5, 0, -1 

48, 59, 62, 64 1.28(-1)-1.30 ACCESSIBLE 0 0 

43, 48, 62, 64 1.31 ACCESSIBLE 0 +5, 0 

48, 62, 64 1.32 BURIED 0 +5, 0 

48, 49, 50 1.33 ACCESSIBLE 0 0 

50 1.35 ACCESSIBLE 0   

47, 50 1.39 BURIED 0   

50 2.56 ACCESSIBLE 0   

54 2.58 BURIED 0   
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42 2.59 ACCESSIBLE 0   

50 2.6 ACCESSIBLE 0   

64 2.62 ACCESSIBLE 0   

44, 46, 64 2.63 ACCESSIBLE 0 -3 

64 2.64-3.24 
PARTIALLY_ACCES
SIBLE +1, -5   

39, 64 3.25 BURIED -5   

64 3.26 ACCESSIBLE -3   

42 3.28 BURIED -1   

40, 47, 50 3.32 ACCESSIBLE 0   

40, 42 3.33 ACCESSIBLE 0   

42 3.36 ACCESSIBLE 0   

53, 56 4.60 ACCESSIBLE     

62, 63, 64 4.62(+2) ACCESSIBLE   0 

42, 62, 63, 64 4.62(+3) BURIED   0 

62, 63, 64 4.62(+4)-4.62(+6) 
PARTIALLY_ACCES
SIBLE   +1, 0 

42, 62, 63, 64 4.62(+7) BURIED   +5, 0 

62, 63, 64, 67 4.62(+8) BURIED   +5, 0 

46, 62, 63, 64, 67 4.62(+9) BURIED   0 

62, 63, 64, 67 
4.62(+10)-5.32(-
13) 

PARTIALLY_ACCES
SIBLE   0, -3 

39, 62, 63, 64, 67 5.32(-12) ACCESSIBLE   0, +3, -1 

44, 62, 63, 64, 67 5.32(-11) BURIED   +5, 0 

62, 63, 64, 67 5.32(-10)-5.32(-4) 
PARTIALLY_ACCES
SIBLE   +5, 0, -3 

62, 63, 67 5.32(-3)-5.33 ACCESSIBLE   0 

62, 63 5.34 
NON_STRUCTURE_R
ES   0, +3 

42, 46, 49, 62, 63, 64 5.35 BURIED   +5, 0 

49, 62, 63 5.36 ACCESSIBLE   +5, 0 

62, 63 5.37-5.42 
PARTIALLY_ACCES
SIBLE   0 

45, 46, 53, 56, 64 6.58 BURIED     

64 6.59-6.61(+2) ACCESSIBLE     

64, 66 6.61(+3) ACCESSIBLE   -3 

64 7.22(-2)-7.24 ACCESSIBLE   -3 

39, 60, 64 7.25 
NON_STRUCTURE_R
ES   -1 

64 7.26-7.31 
NON_STRUCTURE_R
ES 0 0 

42, 58, 64 7.32 ACCESSIBLE 0 0 

64 7.33 ACCESSIBLE 0 0 

40, 44, 47, 50, 58 7.39 ACCESSIBLE 0 +5 

40 7.40 ACCESSIBLE 0   

65 7.43 ACCESSIBLE 0   

     

Interleukin-8 receptor 

Reference # Position(s) Accessibility 
Proximity to 
family motifs 

Proximity 
to 

subfamily 
motifs 
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69, 71 1.28(-37) 
NON_STRUCTURE_R
ES   0 

69 1.28(-35) 
NON_STRUCTURE_R
ES   0 

69 1.28(-32) ACCESSIBLE   0 

68 1.28(-24) ACCESSIBLE   0 

72 1.28(-14) ACCESSIBLE -5 -3 

72 1.28(-11) ACCESSIBLE -3 0 

72 1.28(-10) BURIED -1 0 

72 1.28(-9) ACCESSIBLE 0 0 

72 1.28(-8) ACCESSIBLE 0 0 

72 1.28(-6) ACCESSIBLE 0 0 

69 2.64 BURIED     

69 3.26 ACCESSIBLE 0   

70 5.35 BURIED 0   

70 5.39 BURIED 0   

70 6.58 BURIED 0   

68 7.23 
NON_STRUCTURE_R
ES 0   

68 7.28 
NON_STRUCTURE_R
ES 0   

     

Dopamine receptor 

Reference # Position(s) Accessibility 
Proximity to 
family motifs 

Proximity 
to 

subfamily 
motifs 

85, 93, 99 2.50 BURIED     

97, 98 2.61 BURIED 0   

89, 98 3.28 BURIED     

97 3.29 BURIED     

74, 89, 90, 92 3.32 ACCESSIBLE     

82 3.33 ACCESSIBLE     

99 3.35 BURIED     

73, 74, 83, 89, 99 3.36 ACCESSIBLE     

94 3.39 ACCESSIBLE     

94 3.42 BURIED     

86 4.50 ACCESSIBLE     

86 4.60 ACCESSIBLE     

86 4.62 ACCESSIBLE     

82, 89, 98 5.38 BURIED     

77, 78, 95, 96, 100, 102 5.42 ACCESSIBLE     
77, 78, 90, 95, 99, 100, 
102 5.43 ACCESSIBLE     
77, 82, 89, 90, 92, 95, 
99, 100, 102 5.46 BURIED     

82 5.47 ACCESSIBLE     

82 5.50 BURIED     

74, 84, 89 6.48 ACCESSIBLE     

75, 76 6.49 ACCESSIBLE     

74, 75, 84 6.51 ACCESSIBLE     
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74, 84, 91, 101 6.55 BURIED   -5, -3 

91 7.39 ACCESSIBLE 0 +3 

74, 80, 81 7.43 ACCESSIBLE +3   

79, 81 7.45 ACCESSIBLE +5   

78, 81, 94 7.46 BURIED +5   

87 7.65-7.67 ACCESSIBLE 0   

88 7.69(+1) ACCESSIBLE +1 -5 

     

Histamine receptor 

Reference # Position(s) Accessibility 
Proximity to 
family motifs 

Proximity 
to 

subfamily 
motifs 

108, 109, 110 3.32 ACCESSIBLE     

106 3.40 BURIED     

111 4.56 BURIED   0 

105, 111 5.39 BURIED   0 

103, 107 5.42 ACCESSIBLE   0 

103, 104, 107, 109, 110 5.46 BURIED   0 

111 6.52 ACCESSIBLE   -3 

111 6.55 BURIED   0 

     

Muscarinic receptor 

Reference # Position(s) Accessibility 
Proximity to 
family motifs 

Proximity 
to 

subfamily 
motifs 

128 2.50 BURIED     

114, 128 3.26 ACCESSIBLE     

115, 119, 121 3.28 BURIED -5   

119 3.29 BURIED -5   
114, 115, 117, 119, 122, 
123, 125, 126, 128 3.32 ACCESSIBLE -1   

119, 130 3.33 ACCESSIBLE 0   

119 3.36 ACCESSIBLE 0   

119 3.37 ACCESSIBLE 0   

119 3.40 BURIED 0   

119 3.46 BURIED +5   

120, 132 4.5 ACCESSIBLE     

120 4.53 BURIED     

120 4.56 BURIED     

120 4.57 BURIED -5   

120, 132 4.59 ACCESSIBLE -3   

120 4.61 ACCESSIBLE -1   

120 4.62 ACCESSIBLE 0   

120 4.62(+2) ACCESSIBLE 0   

118 
4.62(+12)-
4.62(+15) 

PARTIALLY_ACCES
SIBLE +3   

112 5.38 BURIED 0   
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112, 115, 130 5.39 BURIED 0   

112, 115, 116, 130, 131 5.42 ACCESSIBLE 0   

112 5.46 BURIED +3   

132 5.50 BURIED     

115, 132 6.48 ACCESSIBLE     
115, 122, 127, 129, 130, 
131 6.51 ACCESSIBLE     

113, 115, 116, 129, 133 6.52 ACCESSIBLE     

121 7.35 BURIED 0   

120, 121, 130 7.39 ACCESSIBLE 0   

120, 124 7.42 BURIED 0   

120, 130 7.43 ACCESSIBLE 0   

     

Serotonin receptor 

Reference # Position(s) Accessibility 
Proximity_to 
family motifs 

Proximity 
to 

subfamily 
motifs 

141 1.46 BURIED     

148, 155, 156, 163 2.50 BURIED     

160 2.64 BURIED     
137, 148, 152, 153, 155, 
156, 163 3.32 ACCESSIBLE     

134, 147, 155 3.36 ACCESSIBLE     

163 3.49 ACCESSIBLE     

161 4.50 ACCESSIBLE     

156 4.53 BURIED   -5 

145 4.61 ACCESSIBLE     

144, 148 5.42 ACCESSIBLE 0   

148, 150, 156, 162 5.43 ACCESSIBLE 0 +5 

134, 135, 136, 149, 151 5.46 BURIED 0 0 

162 5.47 ACCESSIBLE 0   

162 5.48 ACCESSIBLE +1   

155 5.49 ACCESSIBLE +3   

155 5.52 ACCESSIBLE +5   

157 5.59-5.61(+1) 
PARTIALLY_ACCES
SIBLE   0 

157 5.61(+2) ACCESSIBLE   0 

157 5.61(+3)-5.61(+4) ACCESSIBLE   0 

157 5.61(+5) ACCESSIBLE   0 

157 5.61(+6) ACCESSIBLE   0 

157 5.61(+7)-5.61(+10) 
NON_STRUCTURE_R
ES   0 

143, 155, 161 6.48 ACCESSIBLE -3   

139, 140, 156, 160 6.51 ACCESSIBLE 0   
139, 140, 144, 145, 155, 
156, 160, 161 6.52 ACCESSIBLE 0   

144, 155, 156 6.55 BURIED 0 -3 

141 7.34 ACCESSIBLE     

143 7.36 ACCESSIBLE     
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142, 146, 154, 158, 159 7.39 ACCESSIBLE     

161 7.40 ACCESSIBLE     

156, 161 7.43 ACCESSIBLE   +5 

138 7.46 BURIED     

155 7.49 ACCESSIBLE -5   
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Appendix 7. Proximity to Family- and Subfamily- 

Level Motifs for G Protein-Coupling Sites 

 
Publications for the G protein-coupling regions listed below can be found in Appendix 
3. All positions were determined based on bovine rhodopsin structure 1F88. 
 
Since accessibility was determined according to 1F88, positions not mapped to 1F88 
sequence in the same MSA were denoted as NON_STRUCTURE_RES.  
 
Proximity scores: 
0 = in motif; -1 = one residue left to motif; +1 = one residue right to motif; -3 = within 
three residues left to motif; +3 = within three residues right to motif; -5 = within five 
residues left to motif; +5 = within five residues right to motif 
 

Adrenergic receptor 

Reference # Position(s) Accessibility 
Proximity to 
family motifs 

Proximity 
to 

subfamily 
motifs 

171 3.49-3.51 
PARTIALLY_ACCES
SIBLE     

166, 171 3.52-3.55(+2) ACCESSIBLE -3   

166, 167, 170, 171 3.55(+3) ACCESSIBLE -3   

166, 171 3.55(+4)-4.41 ACCESSIBLE 0   

171 4.42 BURIED +1   

169 5.55-5.60 ACCESSIBLE 0   

165, 166, 168, 169 5.61-5.61(+2) 
PARTIALLY_ACCES
SIBLE 0   

165, 166, 168, 169 5.61(+3)-5.61(+4) ACCESSIBLE 0   

165, 166, 168, 169, 175 5.61(+5)-5.61(+10) ACCESSIBLE 0 -3 

165, 166, 168, 169, 175 
5.61(+11)-
5.61(+13) 

NON_STRUCTURE_R
ES   0 

166, 168, 169, 175 
5.61(+14)-
5.61(+16) 

NON_STRUCTURE_R
ES   0 

166, 168 5.61(+17) 
NON_STRUCTURE_R
ES   0 

168 
5.61(+18)-
5.61(+26) 

NON_STRUCTURE_R
ES     

168 
5.61(+27)-
5.61(+28) 

NON_STRUCTURE_R
ES     

164, 167, 168 5.61(+29) 
NON_STRUCTURE_R
ES   -5 

164, 168 
5.61(+30)-
5.61(+32) 

NON_STRUCTURE_R
ES   -3 

164, 167, 168 5.61(+33) 
NON_STRUCTURE_R
ES   -1 

164, 168 5.61(+34) 
NON_STRUCTURE_R
ES   0 

168 
5.61(+35)-6.28(-
33) 

NON_STRUCTURE_R
ES   0 

168 6.28(-32)-6.28(-7) ACCESSIBLE   0 

166, 168, 174 6.28(-6) ACCESSIBLE   +5 
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166, 168 6.28(-5) ACCESSIBLE     

166, 168, 174 6.28(-4) ACCESSIBLE     

166, 168, 169 6.28(-3) ACCESSIBLE   0 

166, 168, 169, 174 6.28(-2) ACCESSIBLE   0 

166, 168, 169 6.28(-1)-6.28 ACCESSIBLE   0 

166, 168, 169, 172 6.29-6.30 ACCESSIBLE   0 
164, 166, 168, 169, 172, 
174 6.31 ACCESSIBLE   +1 

166, 168, 169, 172, 174 6.32 ACCESSIBLE   +3 

168, 169, 172 6.33 ACCESSIBLE   +3 

164, 168, 169, 172, 176 6.34 BURIED   +5 

168, 169, 172 6.35 ACCESSIBLE   +5 

168 6.36 BURIED     

169, 172 7.54-7.57 
PARTIALLY_ACCES
SIBLE -3   

164 7.58 ACCESSIBLE -1   

164, 169 7.59-7.67 
PARTIALLY_ACCES
SIBLE 0 -3 

164 7.68-7.69(+1) ACCESSIBLE 0   

173 7.69(+9) ACCESSIBLE   0 

     

Chemokine receptor 

Reference # Position(s) Accessibility 
Proximity to 
family motifs 

Proximity 
to 

subfamily 
motifs 

180 3.49 ACCESSIBLE     

180 3.5 BURIED     

180 3.51 ACCESSIBLE -5   

180 3.55(+4) ACCESSIBLE 0   

178 5.61(+2)-5.61(+4) ACCESSIBLE   0 

178, 179 5.61(+5)-6.28(-6) ACCESSIBLE   0 

178 6.28(-5)-6.35 
PARTIALLY_ACCES
SIBLE   0 

181 7.64 ACCESSIBLE 0   

180, 181 7.65-7.69(+7) ACCESSIBLE 0 -3 

180 7.69(+8)-7.69(+39) ACCESSIBLE   0 

     

Interleukin-8 receptor 

Reference # Position(s) Accessibility 
Proximity to 
family motifs 

Proximity 
to 

subfamily 
motifs 

183 3.51 ACCESSIBLE     

183 3.52 ACCESSIBLE     

183 3.54 ACCESSIBLE     

183 3.55 ACCESSIBLE     

184 4.38 ACCESSIBLE     

184 4.39 ACCESSIBLE     

183 6.34 BURIED     
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182 7.56-7.63 
PARTIALLY_ACCES
SIBLE 0   

     

Dopamine receptor 

Reference # Position(s) Accessibility 
Proximity to 
family motifs 

Proximity 
to 

subfamily 
motifs 

189 5.46 BURIED     

188 5.57 ACCESSIBLE     

187, 188 5.58 ACCESSIBLE     

187, 188 5.59-5.61(+14) 
PARTIALLY_ACCES
SIBLE   0 

187 
5.61(+15)-6.28(-
11) 

NON_STRUCTURE_R
ES   0 

186, 187 6.28(-10)-6.28(-7) ACCESSIBLE   0 

186, 187, 188 6.28(-6)-6.29 ACCESSIBLE   0 

187, 188 6.30-6.35 
PARTIALLY_ACCES
SIBLE   +3 

187, 188 6.36 BURIED     

188 6.37-6.39 
PARTIALLY_ACCES
SIBLE     

185 7.69(+6)-7.69(+33) ACCESSIBLE   0 

     

Muscarinic receptor 

Reference # Position(s) Accessibility 
Proximity to 
family motifs 

Proximity 
to 

subfamily 
motifs 

197 2.5 BURIED     

197, 202 3.49 ACCESSIBLE -3   

202 3.50-3.52 
PARTIALLY_ACCES
SIBLE 0   

190, 202 3.53 ACCESSIBLE 0   

202 3.54-3.55 ACCESSIBLE 0   

190, 202 3.55(+1) ACCESSIBLE 0   

202 3.55(+2) ACCESSIBLE 0   

202, 205 3.55(+3) ACCESSIBLE 0   

202 3.55(+4)-4.38(-5) ACCESSIBLE 0   

190, 202 4.38(-4) ACCESSIBLE 0   

202 4.38(-3)-4.40 ACCESSIBLE 0   

190, 202 4.41 ACCESSIBLE +3   

192, 198, 202 5.6 ACCESSIBLE     

191, 198, 202 5.61 BURIED     
190, 191, 194, 195, 198, 
199, 202, 206 5.61(+1) ACCESSIBLE     

198, 202 5.61(+2) ACCESSIBLE     

196, 198, 202 5.61(+3) ACCESSIBLE     

198, 199, 202 5.61(+4) ACCESSIBLE     

198, 202 5.61(+5)-5.61(+6) ACCESSIBLE     

194, 195, 198, 202 5.61(+7) 
NON_STRUCTURE_R
ES     
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198, 202 5.61(+8)-5.61(+19) 
NON_STRUCTURE_R
ES   0 

198 
5.61(+20)-
5.61(+58) 

NON_STRUCTURE_R
ES   -5, 0 

198, 207 5.61(+59) 
NON_STRUCTURE_R
ES   -5, 0 

198 5.61(+60) 
NON_STRUCTURE_R
ES   0, -3 

198, 207 5.61(+61) 
NON_STRUCTURE_R
ES   0, -3 

198 
5.61(+62)-
5.61(+70) 

NON_STRUCTURE_R
ES   0, -3 

198, 207 
5.61(+71)-
5.61(+76) 

NON_STRUCTURE_R
ES   +5, 0, +3 

198 5.61(+77)-6.31 ACCESSIBLE   0 

198 6.32 ACCESSIBLE     
190, 195, 198, 199, 201, 
202, 203 6.33 ACCESSIBLE     
190, 193, 195, 198, 199, 
201, 202, 203 6.34 BURIED     

198 6.35 ACCESSIBLE     

190, 201, 202, 203 6.37 BURIED     

190, 202, 203 6.38 ACCESSIBLE     

204 6.39 ACCESSIBLE     

200 6.59 ACCESSIBLE -1   

     

Serotonin receptor 

Reference # Position(s) Accessibility 
Proximity to 
family motifs 

Proximity 
to 

subfamily 
motifs 

216 3.54 ACCESSIBLE     

216 3.55(+1) ACCESSIBLE     

216 3.55(+4) ACCESSIBLE     

210 3.55(+5)-4.38(-1) ACCESSIBLE     

208, 209, 211 4.38 ACCESSIBLE     

210 4.39-4.41 ACCESSIBLE     

214 5.59-6.29 
PARTIALLY_ACCES
SIBLE   0 

213, 214 6.3 ACCESSIBLE     

214 6.31 ACCESSIBLE     

214 6.32 ACCESSIBLE     

212, 214 6.33 ACCESSIBLE     

212, 214 6.34 BURIED     

214 6.35-6.36 
PARTIALLY_ACCES
SIBLE     

215 7.69(+1) ACCESSIBLE     

215 7.69(+4) ACCESSIBLE     
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Appendix 8. Proximity to Family- and Subfamily- 

Level Motifs for Oligomerization Sites 

 
Publications for the oligomerization regions listed below can be found in Appendix 4. 
All positions were determined based on bovine rhodopsin structure 1F88. 
 
Since accessibility was determined according to 1F88, positions not mapped to 1F88 
sequence in the same MSA were denoted as NON_STRUCTURE_RES.  
 
Proximity scores: 
0 = in motif; -1 = one residue left to motif; +1 = one residue right to motif; -3 = within 
three residues left to motif; +3 = within three residues right to motif; -5 = within five 
residues left to motif; +5 = within five residues right to motif 
 

Adrenergic receptor 

Reference # Position(s) Accessibility 
Proximity to 
family motifs 

Proximity 
to 

subfamily 
motifs 

222 1.28(-39) 
NON_STRUCTURE_R
ES   0 

222 1.28(-19) ACCESSIBLE   0 

222 1.28(-15) ACCESSIBLE   0 

217, 218, 221 1.32-1.58 
PARTIALLY_ACCES
SIBLE   +1 

217 3.55(+3) ACCESSIBLE -3   

218 4.42-4.45 
PARTIALLY_ACCES
SIBLE +1   

218, 220 4.46 ACCESSIBLE +5   

218, 220 4.47 ACCESSIBLE     

218 4.48-4.62 
PARTIALLY_ACCES
SIBLE     

219 6.38 ACCESSIBLE     

219 6.42 ACCESSIBLE     

219 6.46 ACCESSIBLE     

221 7.34-7.67 
PARTIALLY_ACCES
SIBLE 0   

     

Chemokine receptor 

Reference # Position(s) Accessibility 
Proximity to 
family motifs 

Proximity 
to 

subfamily 
motifs 

223 1.33-1.53 
PARTIALLY_ACCES
SIBLE -5, 0   

223, 225 1.54 ACCESSIBLE -3   

223 1.55-1.60 
PARTIALLY_ACCES
SIBLE 0   

224 2.46-2.65 
PARTIALLY_ACCES
SIBLE +5, 0 +1, -1 
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223 4.39-4.46 
PARTIALLY_ACCES
SIBLE 0   

223, 225 4.47 ACCESSIBLE +1   

223 4.48-4.62(+1) 
PARTIALLY_ACCES
SIBLE +3 -1 

224 5.40-5.59 
PARTIALLY_ACCES
SIBLE   -5, 0 

224 6.37-6.57 
PARTIALLY_ACCES
SIBLE   0 

     

Dopamine receptor 

Reference # Position(s) Accessibility 
Proximity to 
family motifs 

Proximity 
to 

subfamily 
motifs 

229 4.42-4.57 
PARTIALLY_ACCES
SIBLE     

228, 229 4.58 ACCESSIBLE     

229 4.60-4.62(+3) 
PARTIALLY_ACCES
SIBLE     

226 5.36-5.59 
PARTIALLY_ACCES
SIBLE     

226 5.60-5.61(+4) 
PARTIALLY_ACCES
SIBLE     

226, 227 5.61(+5)-5.61(+10) ACCESSIBLE     

226 5.61(+11)-6.35 
PARTIALLY_ACCES
SIBLE   0 

226, 230 6.36-6.59 
PARTIALLY_ACCES
SIBLE   0 

226 6.60-7.32 ACCESSIBLE 0 0 

230 7.33-7.56 
PARTIALLY_ACCES
SIBLE 0 0 

231 7.69(+51) 
NON_STRUCTURE_R
ES   +5 

231 
7.69(+58)-
7.69(+59) 

NON_STRUCTURE_R
ES   -5 

     

Histamine receptor 

Reference # Position(s) Accessibility 
Proximity to 
family motifs 

Proximity 
to 

subfamily 
motifs 

232 3.55(+3) ACCESSIBLE     

     

Muscarinic receptor 

Reference # Position(s) Accessibility 
Proximity to 
family motifs 

Proximity 
to 

subfamily 
motifs 

233 3.25 BURIED     

233 5.34(-12) ACCESSIBLE -5   
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Appendix 9. Proximity to Family- and Subfamily- 

Level Motifs for Protein-Protein Interaction Sites 

 
Publications for the protein-protein interaction regions listed below can be found in 
Appendix 5. All positions were determined based on bovine rhodopsin structure 1F88. 
 
Since accessibility was determined according to 1F88, positions not mapped to 1F88 
sequence in the same MSA were denoted as NON_STRUCTURE_RES.  
 
Proximity scores: 
0 = in motif; -1 = one residue left to motif; +1 = one residue right to motif; -3 = within 
three residues left to motif; +3 = within three residues right to motif; -5 = within five 
residues left to motif; +5 = within five residues right to motif 
 
Adrenergic receptor 

Reference # Position(s) Accessibility 
Proximity to 
family motifs 

Proximity 
to 

subfamily 
motifs 

244 3.49-3.55(+3) 
PARTIALLY_ACCES
SIBLE -3   

235, 246 5.61-5.61(+6) 
PARTIALLY_ACCES
SIBLE 0   

235, 246 5.61(+7) ACCESSIBLE +3   

235, 246 5.61(+8)-5.61(+9) 
NON_STRUCTURE_R
ES +3 -5 

235, 246 5.61(+10) 
NON_STRUCTURE_R
ES +5 -3 

235, 246 5.61(+11) 
NON_STRUCTURE_R
ES   -3 

235, 246 
5.61(+12)-
5.61(+13) 

NON_STRUCTURE_R
ES   0 

235 
5.61(+14)-
5.61(+20) 

NON_STRUCTURE_R
ES     

246 
5.61(+77)-6.28(-
21) 

NON_STRUCTURE_R
ES   0 

235, 246 6.28(-20)-6.28(-8) ACCESSIBLE   0 

235, 246 6.28(-7) ACCESSIBLE   0 

235, 246 6.28(-6) ACCESSIBLE   0 

235, 246 6.28(-5) ACCESSIBLE   0 

235, 246 6.28(-4) ACCESSIBLE   +1 

235, 246 6.28(-3)-6.28 ACCESSIBLE   +3 

235, 246 6.29 ACCESSIBLE     

235, 246 6.3 ACCESSIBLE     

235, 246 6.31 ACCESSIBLE     

235, 246 6.32 ACCESSIBLE     

246 6.33-6.38 
PARTIALLY_ACCES
SIBLE     

242 6.47 BURIED     

248 7.49-7.56 
PARTIALLY_ACCES
SIBLE -3   

1997, 243, 248 7.57-7.69(+8) PARTIALLY_ACCES 0 0 
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SIBLE 

1997, 236, 243, 248 7.69(+9) ACCESSIBLE   -5, 0, +3 

1997, 236, 243, 248 
7.69(+10)-
7.69(+16) ACCESSIBLE   0, -1 

1997, 243, 248 
7.69(+17)-
7.69(+56) ACCESSIBLE   0, -3 

1997, 243, 248 
7.69(+57)-
7.69(+73) 

NON_STRUCTURE_R
ES   +1, +5, 0 

1997, 237, 243, 248 7.69(+74) 
NON_STRUCTURE_R
ES   +5, 0 

234, 237, 243, 248 7.69(+75) 
NON_STRUCTURE_R
ES   +5, -5, 0 

Klen et al, 1997, 248 7.69(+76) 
NON_STRUCTURE_R
ES   -5, 0 

Klen et al, 1997, 237, 
248 7.69(+77) 

NON_STRUCTURE_R
ES   0, -3 

248 
7.69(+78)-
7.69(+82) 

NON_STRUCTURE_R
ES   +1, 0 

238, 239, 240, 247, 248 7.69(+83) 
NON_STRUCTURE_R
ES   0 

238, 239, 240, 241, 245, 
247, 248 7.69(+84) 

NON_STRUCTURE_R
ES   0 

239, 248 7.69(+85) 
NON_STRUCTURE_R
ES   +1, 0 

238, 239, 240, 245, 247, 
248 7.69(+86) 

NON_STRUCTURE_R
ES   0, +3 

248 
7.69(+87)-
7.69(+124) 

NON_STRUCTURE_R
ES   -5, 0, +3 

248 
7.69(+125)-
7.69(+154) 

NON_STRUCTURE_R
ES   0, +3 

248 7.69(+155) 
NON_STRUCTURE_R
ES   +5 

     
Chemokine receptor 

Reference # Position(s) Accessibility 
Proximity to 
family motifs 

Proximity 
to 

subfamily 
motifs 

261 3.49 ACCESSIBLE     

261 3.50 BURIED     

261 3.51 ACCESSIBLE -5   

255 5.60-6.36 
PARTIALLY_ACCES
SIBLE   0 

268 7.44-7.56 
PARTIALLY_ACCES
SIBLE 0   

262, 268 7.57 ACCESSIBLE 0   

262, 265, 268, 270 7.58 ACCESSIBLE 0   

262, 265, 268, 270 7.59-7.69 
PARTIALLY_ACCES
SIBLE 0 -5, 0 

255, 262, 265, 268, 270 7.69(+1)-7.69(+22) ACCESSIBLE +1 0 
255, 261, 262, 263, 265, 
268, 270 7.69(+23) 

NON_STRUCTURE_R
ES   +1, 0 

255, 261, 262, 263, 265, 
268, 270 7.69(+24) 

NON_STRUCTURE_R
ES   +1, 0, +3 

255, 262, 265, 268, 270 
7.69(+25)-
7.69(+28) 

NON_STRUCTURE_R
ES   0, +3 

255, 261, 262, 263, 265, 
268, 270 7.69(+29) 

NON_STRUCTURE_R
ES   0 

255, 262, 265, 268, 270 
7.69(+30)-
7.69(+35) 

NON_STRUCTURE_R
ES   0 

261, 262, 263, 265, 268, 
270 7.69(+36) 

NON_STRUCTURE_R
ES   +3 
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262, 265, 270 
7.69(+37)-
7.69(+39) 

NON_STRUCTURE_R
ES     

262, 265 
7.69(+40)-
7.69(+41) 

NON_STRUCTURE_R
ES     

     
Interleukin-8 receptor 

Reference # Position(s) Accessibility 
Proximity to 
family motifs 

Proximity 
to 

subfamily 
motifs 

274 7.59-7.63 
PARTIALLY_ACCES
SIBLE 0   

274, 275 7.64 ACCESSIBLE 0   

275 7.65 ACCESSIBLE 0   

275, 276 7.66-7.68 ACCESSIBLE 0   

276 7.69-7.69(+5) ACCESSIBLE 0 -5 

     
Dopamine receptor 

Reference # Position(s) Accessibility 
Proximity to 
family motifs 

Proximity 
to 

subfamily 
motifs 

278 5.57-5.58 ACCESSIBLE     

278, 283 5.59 ACCESSIBLE     

278, 283 5.6 ACCESSIBLE     

278, 283 5.61 BURIED     

278 5.61(+1)-5.61(+2) ACCESSIBLE     

278, 284 5.61(+3)-5.61(+12) ACCESSIBLE     

278 
5.61(+13)-
5.61(+14) 

NON_STRUCTURE_R
ES     

281 6.28(-12) 
NON_STRUCTURE_R
ES   +5 

282 7.55 ACCESSIBLE 0   

277, 282 7.56 ACCESSIBLE 0   

282 7.57-7.58 ACCESSIBLE 0   

279, 282 7.59 ACCESSIBLE 0   

277, 279, 282 7.6 BURIED 0   

279, 282 7.61 ACCESSIBLE 0   

282 7.62-7.63 
PARTIALLY_ACCES
SIBLE 0   

277, 282 7.64 ACCESSIBLE 0   

282 7.65 ACCESSIBLE 0   

279, 282 7.66 ACCESSIBLE 0   

282 7.67-7.69 ACCESSIBLE 0   

279, 282 7.69(+1) ACCESSIBLE +1   

282 7.69(+2)-7.69(+40) ACCESSIBLE +3 0 

280, 282 
7.69(+41)-
7.69(+70) 

NON_STRUCTURE_R
ES   0 

280, 282 
7.69(+71)-
7.69(+100) 

NON_STRUCTURE_R
ES   0 

282 
7.69(+101)-
7.69(+103) 

NON_STRUCTURE_R
ES     

     
Muscarinic receptor 
Reference # Position(s) Accessibility Proximity to Proximity 



 240

family motifs to 
subfamily 

motifs 

287 
5.61(+55)-
5.61(+115) 

NON_STRUCTURE_R
ES   0 

285 6.28(-73) 
NON_STRUCTURE_R
ES   0 

285 
6.28(-71)-6.28(-
69) 

NON_STRUCTURE_R
ES   0, -3 

287 6.28(-58)-6.28(-5) ACCESSIBLE   0 

286, 287 6.28(-4)-6.28 ACCESSIBLE   +5 

287 6.29 ACCESSIBLE     

286, 287 6.3 ACCESSIBLE     

287 6.31-6.42 
PARTIALLY_ACCES
SIBLE     

     
Serotonin receptor 

Reference # Position(s) Accessibility 
Proximity to 
family motifs 

Proximity 
to 

subfamily 
motifs 

289 5.59-6.36 
PARTIALLY_ACCES
SIBLE   0 

288, 290 7.69(+72) 
NON_STRUCTURE_R
ES   0 

288 7.69(+74) 
NON_STRUCTURE_R
ES   +3 

 
 

 

 


