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Performance of statistical
methods for meta-analysis
when true study effects are
non-normally distributed: A
simulation study
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Abstract

Meta-analysis (MA) is a statistical methodology that combines the results of several independent studies

considered by the analyst to be ‘combinable’. The simplest approach, the fixed-effects (FE) model, assumes

the true effect to be the same in all studies, while the random-effects (RE) family of models allows the true

effect to vary across studies. However, all methods are only correct asymptotically, while some RE models

assume that the true effects are normally distributed. In practice, MA methods are frequently applied

when study numbers are small and the normality of the effect distribution unknown or unlikely. In this

article, we discuss the performance of the FE approach and seven frequentist RE MA methods:

DerSimonian–Laird, Q-based, maximum likelihood, profile likelihood, Biggerstaff–Tweedie, Sidik–

Jonkman and Follmann–Proschan. We covered numerous scenarios by varying the MA sizes (small to

moderate), the degree of heterogeneity (zero to very large) and the distribution of the effect sizes

(normal, skew-normal and ‘extremely’ non-normal). Performance was evaluated in terms of coverage

(Type I error), power (Type II error) and overall effect estimation (accuracy of point estimates and error

intervals).
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1 Introduction

Although efforts to pool results from individual studies date as far back as 1904 and the first such
attempt that assessed the effect of a therapeutic intervention was published in 1955,1 it was not until
1976 that the term ‘meta-analysis’ (MA) appeared. The progenitor of this label, an educational
researcher, defined MA as ‘the statistical analysis of a large collection of analysis results from
individual studies for the purpose of integrating the findings’.2

A primary concern for meta-analysts is the statistical heterogeneity between the studies included
in an analysis, which can be attributed to clinical and/or methodological diversity.3 Clinical
heterogeneity describes variability that arises from different populations, interventions, outcomes
and follow-up times, while methodological heterogeneity is related to differences in trial design and
quality.4 Detecting,5 quantifying,6,7 investigating causality8,9 and dealing with heterogeneity10 is not
particularly straightforward, to say the least.

If variation among the estimated effects of the individual studies is not above that expected by
chance (homogeneity not rejected) researchers usually select the fixed-effect (FE) model11 to combine
the separate estimates into a single result. However, the numerous underlying variables in medical
research studies establish homogeneity as a rare commodity and some degree of variability between
studies may be anticipated.12 When heterogeneity is identified, as is usually the case, it has been
emphasised that it should be explored in order to increase both the clinical relevance and the
scientific value of the findings.4,9 Unfortunately, this is not always possible in practice; subgroup
analysis or meta-regression using study-level variables can explain and reduce heterogeneity but
rarely are there sufficient studies to support such approaches. The best alternative is to analyse the
heterogeneous studies using a random-effects (RE) model.13 This model builds in an estimate of the
between-study variation in effect size and typically provides wider confidence intervals for the overall
effect than its FE counterpart. Nevertheless, critics argue that it may still be inappropriate to
combine heterogeneous trials: an ‘average’ MA result may not be clinically useful if the effect is
context-specific.4,14

An additional problem for both RE and FE models is that most commonly available analysis
techniques assume true study effects to be normally distributed. This assumption is deemed to be
critical14 but, within a particular analysis, not easily verified or justified11 – especially when the
number of studies is small. Consequently, MA models are open to the criticism of being unrealistic.15

Departure from normality may affect a model’s performance and since normality in real-life data
might be the exception rather than the rule,16 the question of how the available methods perform in
this situation is not a trivial concern.

Despite this, very few studies have investigated the impact of non-normal true study effects on the
performance of MA techniques. Research on the subject has been mostly restricted to limited
comparisons of newly suggested distribution free methods to widely used parametric ones, under
specific conditions (usually assuming normality). Follmann and Proschan17 proposed a
non-parametric RE permutation method that was proved to be comparable, in terms of coverage
and power, to the DerSimonian–Laird (DL) estimator, in simulations of normally distributed
effects. A non-parametric maximum likelihood approach has also been investigated, in the multi-
level generalised linear models context and compared with its parametric counterpart.18 Aitkin,19

using non-normal study effects from three multi-centre clinical trials, displayed the model’s increased
robustness against parametric model misspecification. However, an overall comparison of the widely
used DL model and more recently developed methods, using non-normally distributed true study
effects has not been performed yet.

Whether or not normality is satisfied, another important factor that affects model performance is
the number of studies included in the MA. Simulations of normally distributed effects have shown
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that the coverage levels of all MA methods are affected when the number of studies is small, for even
moderate degrees of heterogeneity. For meta-analyses of 10 studies coverage was found to be below
the nominal level by approximately 5% for the DL method and by 10% for maximum likelihood
(ML), while the least affected method was profile likelihood (PL).11 A solution to the coverage
deterioration problem of the DL model, for small numbers of studies, was later proposed by
Sidik and Jonkman (SJ).20 This model is a non-iterative variant of the DL model, based on the
t-distribution, with higher coverage probabilities than the DL method, especially for small numbers
of studies, despite not being computationally intensive. However, the power of the methods was not
investigated in any of these simulation studies.

A third factor that has been identified in simulation studies as highly relevant to model
performance is heterogeneity among the studies being meta-analysed. Coverage for all models has
been found to deteriorate when between-study variance �2 increases, especially when the number of
studies is small – 10 or below.11 Since all models calculate and use �2, an estimate of the true
between-study variance, their performance is closely linked to the accuracy of the estimate.
Generally, the larger the true between-study variance the more biased the estimate can be
(in absolute value), which leads to a drop-off in method performance.21 In addition, the �2

estimation methods are specified to use population-averaged within study variances when in
reality study-specific variances are used instead, a convenient yet high-risk choice that can lead to
a considerable bias.14 Some RE methods provide confidence intervals on the estimate of between-
study variance, but only the Biggerstaff–Tweedie22 (BT) method (a variant of the DL method) builds
error in the point estimate of �2 into the estimation of the overall effect.

2 Methods

Due to the large number of different MA methods investigated, only a brief overview of each
is provided here. Readers should refer to the original papers for full descriptions. Consider a
group of k studies with effect size estimates Yi (i ¼ 1, 2, . . . , k), whose mean effect � we wish to
estimate.

2.1 Fixed-effects

The FE model provides the simplest approach for estimating � and its error term. It can be
defined as:

Yi ¼ �i þ ei, ei � N 0, �2i
� �

ð1Þ

where, for study i: Yi is the effect size estimate, �i the true effect size and ei the random error. The true
study effects are all assumed to be equal (�i ¼ �, i ¼ 1, 2, . . . , k) and the only deviations from the
true effect are the errors ei, assumed to be independent and normally distributed with mean zero and
variance �2i . The FE estimate of the overall effect � is usually calculated as a weighted average, using
the estimates of the within study variances �2i as precision weights:11

�̂F ¼

Pk
i¼1 ŵiYiPk
i¼1 ŵi

ð2Þ

where ŵi ¼ 1=�̂21 and varð�̂FÞ ¼ 1=
Pk

i¼1 ŵi.
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2.2 Random-effects

Often the homogeneity assumption is unlikely and variation between studies in the size of the true
effect is assumed. This is known as the RE model, in which the true effects �i are typically assumed to
be normally distributed. A second error term is then incorporated into (1), to account for across
study variability, and the model becomes:11

Yi ¼ �i þ ei, ei � N 0, �2i
� �

�i ¼ �þ "i, "i � N 0, �2
� � ð3Þ

In this case, the overall effect estimate is provided by:

�̂R ¼

Pk
i¼1 ŵ

0
i � YiPk

i¼1 ŵ
0
i

ð4Þ

where ŵ0i ¼
1

�2þ�̂2
i

and Vð�̂RÞ ¼ 1=
P

ŵ0i

The RE model usually provides wider confidence intervals for the estimate of the overall effect.23

The variance parameter �2, of the between studies error term "i, is a measure of the between study
heterogeneity. Since �2 is rarely – if ever – known, it needs to be estimated.

Parametric RE meta-analysis methods differ principally in the way that �2 is estimated. The most
widely used RE method is DL13, which uses a moments based estimator of �2 based on the expected
value of Cochran’s Q-statistic:24

Qŵ ¼
Xk
i¼1

ŵi Yi � �̂ð Þ
2

ð5Þ

Qŵ follows a �2k�1 distribution under the null hypothesis of homogeneity. It should be noted that the
DL method makes no assumptions regarding the distribution of the effects.

Biggerstaff–Tweedie22 proposed a variant of the DL method which takes into account variation in the
point estimate of �2, by weighting the studies according to their relative contribution to the overall
distribution of the estimated �2. Sidik and Jonkman20 suggested a simpler DL variant which uses the t-
distribution in constructing confidence intervals for the overall effect mean, and offers improved coverage.

In a further variation, a test for heterogeneity based on Cochran’s Qŵ is initially applied.6,25.
If homogeneity is not rejected the FE model is used, otherwise a RE model is applied, by tradition
the DL model. In accordance with Brockwell and Gordon,11 we call this method Q-based (Q).

Alternatives to the DL ‘family’ of methods above also exist. These include the simple Maximum
Likelihood and the Profile Likelihood, both proposed by Hardy and Thompson.26 The simple
maximum likelihood estimates �̂ml and �̂

2
ml can be obtained from the log-likelihood function in (6).

logL �, �2
� �

¼ �
1

2

Xk
i¼1

log 2� �̂2i þ �
2

� �� �
�
1

2

Xk
i¼1

yi � �ð Þ
2

�̂2i þ �
2
, � 2 R �2 � 0 ð6Þ

The PL method calculates asymmetric confidence intervals for the estimates by taking into
account the fact that both parameters need to be estimated simultaneously. The Likelihood

412 Statistical Methods in Medical Research 21(4)

 at University of Manchester Library on July 19, 2013smm.sagepub.comDownloaded from 

http://smm.sagepub.com/


methods are iterative and can be computationally intensive, especially PL which involves a two-level
maximisation process.11

A final non-parametric RE method involves mass permutations of the effects’ signs to create a
distribution for the overall effect estimates �̂pe under the DL random-effects model and the
hypothesis that � is zero.17 Rejection (or not) of the hypothesis is decided on the position of the
observed mean estimate within the distribution.

This article compares the performance of all eight methods outlined above: fixed-effects model
(FE) model and DerSimonian & Laird (DL), Biggerstaff & Tweedie (BT), Sidik and Jonkman (SJ),
Q-based (Q), maximum-likelihood (ML), profile-likelihood (PL), permutations method on DL (PE)
random-effects models.

3 Simulations

Consider a single MA involving k studies. Using the effect size and variability estimates of each
study, we applied the MA models and estimated an overall effect size and its confidence interval for
each method. This process was repeated for 10 000 meta-analyses and the performance of the models
was assessed using three measures that will be described in more detail later: coverage, power and
confidence interval performance. The simulations, including all data generation, were programmed
in STATA v9.2 for Windows,27 the only exception being a component of BT. BT requires a Gauss–
Laguerre quadrature function for computing integrals, which we coded in MATLAB v7.6 for
Windows.28 The source code is available from the first author.

3.1 Data generation methods

Following the approach taken by Brockwell and Gordon,11 for each study i within a simulated MA
we randomly assigned an effect size estimate Yi and within-study variance estimate �̂2i . Although
Brockwell and Gordon take Yi to be a log-odds ratio, it is useful to observe that this is not a
necessary assumption, since all subsequent theory and methods apply equally to all effect metrics.
The �̂2i was assumed to be a realisation from a �21 distribution, divided by 4 and restricted to the
(0.009, 0.6) interval.11 Values that fell outside this range were redrawn to avoid obtaining a large
percentage of extremes. This resulted in a mean within-study variance estimate to 0.173.

The Yi value for each study i was generated using:

Yi ¼ �i þ ei ð7Þ

We assigned ei on the assumption that ei � Nð0, �̂2i Þ, as per the standard model. This was the one
assumption of normality that we did not vary in our simulations, as many common effect metrics,
including the log-odds ratio, standardised mean difference and risk difference, have an approximate
normal distribution.

The true study effects �i were generated to have a mean of � ¼ 0:5 and a variance �2. We ran
simulations under a variety of values for �2, using realistic values based on an analysis by Engels
et al.29 of heterogeneity of effects (odds-ratios) for 125 meta-analyses. Q-test values for each MA
were obtained from the authors and converted into H2 values. H2 is the heterogeneity measure least
affected by the number of studies in the analysis25 and it can be defined as:

H2 ¼
Qŵ

k� 1
ð8Þ
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H2 has a value of 1 in the case of homogeneity and heterogeneity is assumed to be present
when H2> 1.

The observed H2 values were compared with those obtained from simulations using various
�2 values. The very large majority of empirical H2 values were returned by values of
�2 2 ½0:01, 0:1�. We adopted values for �2 of 0.01, 0.03, 0.07 and 0.1 for the main study, with the
last three values providing continuity with Brockwell and Gordon’s11 research. Relative to these
�2 values and this particular distribution of within-study variances, we calculated the expectation of
H2 in each case to be 1.18, 1.54, 2.25 and 2.78, respectively.6 We also investigated very high
heterogeneity (�2 ¼ 0:5, E[H2]¼ 9.92) and the results are available from the authors (not
presented in this article).

The use of a �21 distribution to generate within-study variances results in a predominance of
smaller variances and essentially simulates meta-analyses dominated by larger studies. However,
meta-analyses encountered in practice vary widely in this respect. Therefore, to represent alternative
within-study variance distributions we also generated variances based on (a) a normal distribution
and (b) a �21 ‘tail’ distribution (whereby the �21 distribution is rotated around its mean), to represent
meta-analyses dominated by smaller studies. In both the cases, we again restricted the distributions
to the interval (0.009, 0.6) and rescaled to the same final mean of 0.173. For the normal, we used
N(9.1724, 0.036) to minimise truncation. Varying the within-study variance distribution, at the same
level of heterogeneity, had a very small effect on the results and therefore, we only present results for
the �21 distribution.

We next simulated various forms of underlying distribution in the effects �i: unimodal (both
normal and skew-normal), bimodal, uniform, beta, ‘double-spike’ and zero between-study variance.

For unimodal distributions, each true effect �i was drawn from a unimodal distribution of
positive skewness sk and kurtosis ku: �i �Mku

sk ð�, �
2Þ. Ramberg’s30 method was selected to

simulate this distribution as this method can simulate distributions with wider ranges of
skewness and kurtosis values than the alternatives.31,32 We investigated 25 different unimodal
distributions based on different combinations of (positive) skew and kurtosis, ranging from
skew¼ 0 and kurtosis¼ 3 for the normal distribution to the extreme case where skew¼ 2 and
kurtosis¼ 15. Such asymmetry may not be uncommon in practice: Micceri16 examined 440 ability
and psychometric scale score distributions, many of which were as asymmetric as the most
extreme of our generated distributions. The method has been implemented in a STATA module
and is available for download from the Statistical Software Components (SSC) archive under the
name sknor.

Bimodal distributions were simulated by combining two unimodal distributions. A bimodally
distributed variable �i was generated using:

�i �
Mku1

sk1
ð�1, �

2
1Þ, p

Mku2
sk2
ð�2, �

2
2Þ, ð1� pÞ

(
ð9Þ

Each �i was randomly drawn from one of the two distributions, according to probability p. The
desired conditions for the bimodal – mean � ¼ 0:5 and variance �2 fixed to one of the four values
previously designated – can be achieved using many different pairs of unimodal distributions.
To reduce the options, we restricted examination to pairs of normal distributions of equal
probability (p¼ 0.5). Three pairs were simulated: �21 ¼ �

2
2 ¼ 0:1; �21 ¼ �

2
2 ¼ 0:5; and �21 ¼ �

2
2 ¼ 0:9.

Results are presented for the first scenario only, which represents the greatest degree of bimodality.
The method is available for download from the SSC archive under the name skbim.
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Finally, we simulated three extreme distributions: uniform, ‘U shaped’ beta and ‘double spike’.
All three were adjusted to have mean � ¼ 0:5 and the desired variance �2. ‘Double spike’ was
designed to simulate a situation where study effects can take one of two ‘Fixed Effect’ values, a
plausible scenario when two alternate experimental designs exist for testing an intervention. It can be
thought of as a special case of the bimodal when the within study variances of the unimodal
distributions are zero (�21 ¼ �

2
2 ¼ 0).

Using the methods described in this section, we created datasets of 10 000 size k meta-analyses.
The number of studies k varies across datasets from 2 to 35. Each study’s effect size and variance
were randomly selected according to the methods above, avoiding systematic repetition either within
or across meta-analyses. Since the number of simulated datasets was very large (16 014 in total), we
only present results for a representative selection. Full results pertaining to all the distributional
assumptions are available from the authors.

3.2 Measures of performance

Performance of the MA methods on the simulated datasets is quantified using three measures.

3.2.1 Coverage probability
For each simulated MA case, we calculated confidence intervals for the overall effect estimate �̂,
for all the methods. The coverage probability is the proportion of confidence intervals that
contain � in a sample of 10 000 meta-analyses. This probability should be close to 0.95 for
95% confidence intervals, but it can only be explored through simulations since the
distributions of the confidence intervals of the methods are unknown. The arbitrarily selected
value of � does not bear any impact on the process of calculating the coverage probability, for
any of the methods.

3.2.2 Power probability
A power comparison of the various models is important if we are to evaluate their performance
in every respect.33 Overton34 compared the FE to the RE model using both Type I error rates
and power probabilities. He concluded that in many cases the RE model over-performed in
terms of the Type I error but provided extremely wide confidence intervals, understating the
information actually gained from the MA and inflating Type II error rates. Follmann and
Proschan17 performed a power analysis for the permutation method but only relative to a
t-test. We proceeded with an overall power comparison of the methods, on an absolute
basis for �.

Although for most of the methods a power probability could be computed for each MA case, we
decided to calculate power in a manner similar to coverage for consistency. In each set of 10 000
meta-analyses, power was denoted as the proportion of confidence intervals that did not include
zero. This approach was applied to all methods.

We computed power for a range of non-zero mean true effect sizes. To produce results
directly comparable across the different distribution shapes and degrees of between-study
variance, we examined power relative to centile values, rather than absolute values. For example,
we calculated the power to detect a true mean effect equivalent to the 25th percentile of the
population distribution of effect sizes. We produced results for a range of centiles and found
the pattern of results to be essentially the same in all cases, therefore we report only on the 25th
centile here, as this gave a good spread of power relative to sample size.
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3.2.3 Overall effect estimation (point and error interval estimation)
The ability of each method to return an accurate point estimate of the true overall effect (� ¼ 0:5)
under each set of conditions was examined by computing mean overall effect estimates for each
sample of 10 000 meta-analyses.

We assessed performance with respect to estimation of the error interval (95% confidence
interval) around the point estimates by computing the median, across each 10 000 sample, of:

PCI ¼
upperCIð�̂Þ � lowerCIð�̂Þ

3:92
ffiffiffiffiffiffiffi
var
p ð10Þ

where var ¼ ð
Pk

i¼1
1

�2þ�̂2
i

Þ
�1and upperCIð�̂Þ, lowerCIð�̂Þ are the upper and lower bounds of the 95%

confidence interval for the estimated effect.

Thus, performance is measured as a percentage of over or under-estimation in the derived
confidence interval compared to the interval based on the true between-study variance. This
approach differs from that of other authors, who typically have assessed variance performance in
terms of the accuracy with which �̂2 is estimated.21 We had several reasons for preferring to focus on
the estimated confidence interval around the overall effect. The between-variance estimate for the PL
and ML methods is the same but PL ‘amends’ its computed confidence intervals to take the
uncertainty of �̂2 into account. Also, between-variance estimates for PL and PE methods can be
misleading since the methods provide asymmetric confidence intervals. Finally, the confidence
interval has more direct bearing on how the results of any particular meta-analytic study are
interpreted.

4 Results

Necessarily, we cannot present detailed results for all of the combinations of method, effect
distribution, study numbers and heterogeneity (H2) that we investigated. In tables and figures, we
have therefore omitted certain results.

We investigated models using three different within-study variance distributions, but we only
report results for the �21 distribution since differences were small. We examined a range of skewed
study effect distributions but restrict our reporting to ‘moderate’ non-normality (skew¼ 1,
kurtosis¼ 4) and severe non-normality (skew¼ 2, kurtosis¼ 9): results for the latter were similar
to those for distributions with even higher levels of skew and/or kurtosis. We do not report on the
extreme beta distribution, as results were all very close to those for the bimodal distribution. We also
omit results for H2

¼ 2025 from the tables, since the main findings are adequately represented by the
results for the remaining H2 values.

The tables report mean results for meta-analyses of size 2–5 studies, 6–15, 16–25 and 26+ studies.
Inspection of results indicated that this division captured all the main differences.

4.1 Coverage

4.1.1 Zero between-study variance

When between-study variance was zero, the FE and Q models gave 95% coverage at all study
numbers. Most other models gave slightly inflated coverage, though rarely exceeding 96%. PL
was the poorest performing model, returning an average coverage of 98% for small meta-
analyses (k� 5) and 97% for larger numbers of studies (Table 1 and Figure 1).
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Table 1. Coverage performance by degree of heterogeneity, between-study effect distribution, and MA size,

assuming �2
1-based within-study variances

H2

�i distribution

(skew, kurtosis)

Number of studies

2–5 6–15

FE DL BT SJ Q ML PL PE FE DL BT SJ Q ML PL PE

1 None 0.95 0.96 0.96 0.95 0.95 0.95 0.98 – 0.95 0.96 0.96 0.95 0.95 0.96 0.97 0.95

1.18 Normal (0,3) 0.91 0.94 0.94 0.94 0.92 0.92 0.97 – 0.90 0.94 0.94 0.94 0.91 0.93 0.95 0.95

1.18 Skew-normal (1,4) 0.91 0.94 0.94 0.94 0.92 0.93 0.97 – 0.90 0.94 0.94 0.94 0.91 0.93 0.96 0.95

1.18 Skew-normal (2,9) 0.91 0.95 0.94 0.94 0.92 0.93 0.97 – 0.90 0.94 0.95 0.94 0.92 0.93 0.96 0.95

1.18 Uniform 0.91 0.94 0.94 0.94 0.92 0.92 0.97 – 0.90 0.94 0.94 0.93 0.91 0.92 0.95 0.95

1.18 Bimodal 0.91 0.94 0.94 0.94 0.92 0.92 0.97 – 0.90 0.94 0.94 0.94 0.91 0.92 0.95 0.95

1.18 D-spike 0.91 0.94 0.94 0.94 0.92 0.92 0.97 – 0.90 0.94 0.94 0.94 0.91 0.92 0.95 0.95

1.54 Normal (0,3) 0.85 0.91 0.91 0.94 0.87 0.88 0.95 – 0.82 0.92 0.92 0.93 0.87 0.90 0.94 0.95

1.54 Skew-normal (1,4) 0.85 0.91 0.91 0.93 0.88 0.89 0.95 – 0.82 0.92 0.92 0.93 0.87 0.90 0.94 0.95

1.54 Skew-normal (2,9) 0.86 0.92 0.92 0.94 0.89 0.89 0.96 – 0.83 0.92 0.92 0.93 0.88 0.91 0.94 0.95

1.54 Uniform 0.84 0.90 0.90 0.93 0.86 0.87 0.95 – 0.81 0.91 0.91 0.92 0.86 0.89 0.94 0.95

1.54 Bimodal 0.84 0.90 0.90 0.93 0.86 0.87 0.95 – 0.81 0.91 0.91 0.92 0.85 0.88 0.93 0.95

1.54 D-spike 0.84 0.90 0.90 0.93 0.86 0.87 0.95 – 0.81 0.90 0.90 0.91 0.85 0.88 0.92 0.95

2.78 Normal (0,3) 0.71 0.87 0.85 0.92 0.80 0.81 0.91 – 0.64 0.90 0.90 0.92 0.85 0.87 0.92 0.95

2.78 Skew-normal (1,4) 0.71 0.86 0.85 0.92 0.80 0.81 0.91 – 0.64 0.90 0.89 0.92 0.85 0.87 0.92 0.95

2.78 Skew-normal (2,9) 0.74 0.88 0.87 0.93 0.82 0.83 0.92 – 0.67 0.89 0.89 0.92 0.84 0.86 0.91 0.95

2.78 Uniform 0.68 0.85 0.83 0.92 0.78 0.79 0.90 – 0.62 0.89 0.89 0.92 0.84 0.87 0.92 0.95

2.78 Bimodal 0.66 0.83 0.81 0.91 0.75 0.76 0.89 – 0.61 0.88 0.88 0.91 0.83 0.85 0.91 0.95

2.78 D-spike 0.65 0.81 0.79 0.90 0.73 0.74 0.88 – 0.60 0.87 0.87 0.91 0.81 0.84 0.90 0.95

16–25 26+

1 None 0.95 0.96 0.96 0.95 0.95 0.96 0.97 0.95 0.95 0.96 0.96 0.95 0.95 0.96 0.97 0.95

1.18 Normal (0,3) 0.90 0.94 0.94 0.94 0.91 0.93 0.95 0.95 0.90 0.94 0.94 0.94 0.91 0.93 0.95 0.95

1.18 Skew-normal (1,4) 0.90 0.94 0.94 0.94 0.91 0.93 0.95 0.95 0.90 0.94 0.94 0.94 0.91 0.93 0.95 0.95

1.18 Skew-normal (2,9) 0.90 0.94 0.94 0.94 0.92 0.93 0.95 0.95 0.90 0.94 0.94 0.94 0.92 0.94 0.95 0.95

1.18 Uniform 0.90 0.94 0.94 0.94 0.91 0.93 0.95 0.95 0.90 0.94 0.94 0.94 0.91 0.93 0.95 0.95

1.18 Bimodal 0.90 0.94 0.94 0.94 0.91 0.93 0.95 0.95 0.90 0.94 0.94 0.94 0.91 0.93 0.95 0.95

1.18 D-spike 0.90 0.94 0.94 0.94 0.91 0.93 0.95 0.95 0.90 0.94 0.94 0.94 0.91 0.93 0.95 0.95

1.54 Normal (0,3) 0.81 0.92 0.92 0.93 0.88 0.91 0.94 0.95 0.80 0.93 0.93 0.93 0.89 0.92 0.94 0.95

1.54 Skew-normal (1,4) 0.81 0.92 0.92 0.93 0.88 0.91 0.94 0.95 0.81 0.93 0.93 0.93 0.89 0.92 0.94 0.95

1.54 Skew-normal (2,9) 0.82 0.93 0.93 0.93 0.89 0.91 0.94 0.95 0.81 0.93 0.93 0.93 0.90 0.92 0.94 0.94

1.54 Uniform 0.80 0.92 0.92 0.93 0.87 0.91 0.94 0.95 0.80 0.93 0.93 0.93 0.88 0.92 0.94 0.95

1.54 Bimodal 0.80 0.92 0.92 0.93 0.87 0.91 0.93 0.95 0.80 0.92 0.92 0.93 0.88 0.92 0.94 0.95

1.54 D-spike 0.80 0.91 0.92 0.92 0.86 0.90 0.93 0.95 0.80 0.92 0.92 0.93 0.88 0.92 0.94 0.95

2.78 Normal (0,3) 0.62 0.92 0.92 0.94 0.90 0.91 0.93 0.95 0.61 0.93 0.93 0.94 0.92 0.93 0.94 0.95

2.78 Skew-normal (1,4) 0.62 0.92 0.91 0.93 0.89 0.90 0.93 0.94 0.61 0.93 0.93 0.94 0.92 0.92 0.94 0.94

2.78 Skew-normal (2,9) 0.63 0.91 0.91 0.92 0.88 0.89 0.92 0.94 0.62 0.92 0.92 0.93 0.90 0.91 0.93 0.94

2.78 Uniform 0.61 0.92 0.92 0.94 0.90 0.91 0.93 0.95 0.60 0.93 0.93 0.94 0.92 0.92 0.94 0.95

2.78 Bimodal 0.60 0.92 0.91 0.93 0.90 0.91 0.93 0.95 0.59 0.93 0.93 0.94 0.92 0.92 0.94 0.95

2.78 D-spike 0.60 0.92 0.91 0.93 0.90 0.91 0.93 0.95 0.59 0.93 0.92 0.94 0.92 0.92 0.94 0.95
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4.1.2 Non-zero between-study variance

The introduction of between-study variation changed the results considerably.
Normally distributed study effects. With a small amount of between-study heterogeneity

(H2
¼ 1.18), FE and Q gave the lowest coverage (p� 0.92) at all study sizes. ML performed

slightly better with coverage up to 0.93 for large meta-analyses, while coverage for DL, BT and
SJ was consistently 0.94. PL and PE were the best performers at most study sizes, returning a
coverage of 0.95 for all but the lowest numbers of studies.

When a larger amount of between study variation was introduced, FE coverage performance
became very poor (p� 0.85), increasingly so as heterogeneity or study numbers increased. Q and ML
provided coverage that rarely exceeded 0.91, while coverage using DL was only slightly better.
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Figure 1. Coverage at H2¼ 1.18, 1.54 and 2.78 for eight MA methods, under assumptions of �2
1 based within-study

variances and normal and highly skewed between-study variance distributions.
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BT performed at a similar level to DL. PE was the best performer, yielding 95% coverage at all
study numbers and levels of H2. PL and SJ performed at a level somewhere between DL and PE.

Skew-normal effects. At all levels of skew in the effects distribution, the coverage of PE remained
close to 95%. The impact on other methods was also mostly minor, with changes of at most 1% or
2% relative to the findings using normally distributed effects, for all degrees of heterogeneity
and size of MA. As before, PE consistently gave the best coverage, followed by PL/SJ and then
DL/BT.

‘Extreme’ non-normal effects. Results for the extreme distributions closely mirrored those for the
normal and skewed distributions. PE consistently provided accurate coverage while the remaining
methods lost coverage – to varying degrees – as heterogeneity increased. Remarkably, the pattern of
results with each method was very much the same regardless of whether the extreme distribution was
uniform, bimodal, ‘double-spiked’ or ‘U-shaped’ (not shown in table). Among the ‘extreme’
distributions, coverage was best with the uniform distribution and poorest with the ‘double-
spike’, although the difference rarely exceeded 2%. Our expectation was that FE would perform
much better with the ‘double-spike’ than with other non-normal distributions, but this turned out
not to be the case.

Use of within-study variances based on the �21-tail and normal distributions made very little
difference to the results: at all levels of H2 and study numbers, coverage values only occasionally
deviated by more than 1% from those obtained using �21 distributed variances.

4.2 Power

Under the assumption of �21 distributed within-study variances, FE demonstrated the highest level of
power across the board. However, this result was a function of the fact that this method had such
poor coverage: the considerably inflated risk of false positives with this method (under most
conditions) necessarily resulted in an ‘apparent’ smaller number of false negatives. To a much
smaller degree, this factor also affected the other methods, for example the Q and ML methods
also tended to have higher power but lower coverage. Power for BT was similar, though in some
cases a little lower, than that for DL. Purely in terms of power, ML consistently outperformed DL
and BT, which in turn outperformed PL, SJ and PE. PE had the lowest power across all scenarios
(Table 2 and Figure 2).

Skewness in the effects distribution acted to reduce the power of all methods when study numbers
were small (k� 5), but acted to increase power when both study numbers and heterogeneity were
high, and on the whole power was better with the extreme distributions than with skew.

Power when using �21-tail and normal distributions for the within-study variances was lower than
for the �21 distribution, although the power performance of the methods relative to one another
remained much the same.

4.3 Overall effect estimation – point estimates

Using a �21 distribution for the within-study variances and a ‘true’ overall effect size in
the simulations of 0.5, all methods returned a mean overall effect correct to within 0.01
(i.e. 0.49–0.51), for all types of effects distribution and numbers of studies. Median effect sizes
were also correct to the same degree, except when skew was present in the distribution of effects
and H2 was 2.25 or above, but even in this case the median never dipped below 0.47.

The degrees of bias on the mean and median estimates of effect were of a similar small order using
alternative distributions for the within-study variances.
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Table 2. Power (at the 25th percentile) by degree of heterogeneity, between-study effect distribution and MA size,

assuming �2
1 based within-study variances

H2

�i distribution

(skew, kurtosis)

Number of studies

2–5 6–15

FE DL BT SJ Q ML PL PE FE DL BT SJ Q ML PL PE

1 None 0.36 0.29 0.29 0.20 0.35 0.34 0.20 – 0.75 0.67 0.67 0.62 0.73 0.72 0.63 0.51

1.18 Normal (0,3) 0.39 0.29 0.30 0.19 0.36 0.35 0.21 – 0.75 0.65 0.64 0.58 0.71 0.69 0.60 0.48

1.18 Skew-normal (1,4) 0.38 0.28 0.28 0.18 0.35 0.34 0.20 – 0.76 0.65 0.64 0.59 0.72 0.69 0.60 0.49

1.18 Skew-normal (2,9) 0.37 0.28 0.28 0.18 0.35 0.34 0.20 – 0.75 0.65 0.64 0.59 0.71 0.69 0.60 0.49

1.18 Uniform 0.38 0.28 0.29 0.19 0.35 0.34 0.21 – 0.75 0.65 0.64 0.58 0.71 0.69 0.60 0.48

1.18 Bimodal 0.38 0.29 0.29 0.19 0.36 0.35 0.21 – 0.75 0.65 0.64 0.58 0.71 0.69 0.60 0.48

1.18 D-spike 0.38 0.29 0.29 0.18 0.35 0.35 0.21 – 0.75 0.64 0.64 0.58 0.71 0.69 0.60 0.48

1.54 Normal (0,3) 0.45 0.32 0.33 0.19 0.40 0.39 0.24 – 0.79 0.65 0.64 0.57 0.71 0.69 0.60 0.48

1.54 Skew-normal (1,4) 0.43 0.30 0.31 0.18 0.38 0.37 0.23 – 0.79 0.65 0.64 0.57 0.71 0.70 0.60 0.49

1.54 Skew-normal (2,9) 0.41 0.28 0.29 0.17 0.35 0.35 0.21 – 0.77 0.63 0.62 0.55 0.69 0.68 0.58 0.48

1.54 Uniform 0.44 0.31 0.32 0.18 0.38 0.38 0.23 – 0.78 0.64 0.63 0.57 0.70 0.69 0.60 0.48

1.54 Bimodal 0.46 0.33 0.33 0.19 0.40 0.39 0.25 – 0.80 0.67 0.66 0.59 0.73 0.71 0.62 0.50

1.54 D-spike 0.45 0.32 0.33 0.19 0.39 0.39 0.24 – 0.80 0.67 0.65 0.59 0.72 0.71 0.62 0.50

2.78 Normal (0,3) 0.55 0.35 0.36 0.19 0.43 0.43 0.28 – 0.83 0.64 0.61 0.55 0.67 0.68 0.59 0.48

2.78 Skew-normal (1,4) 0.52 0.32 0.32 0.16 0.39 0.40 0.25 – 0.83 0.63 0.60 0.54 0.67 0.68 0.59 0.49

2.78 Skew-normal (2,9) 0.49 0.30 0.30 0.15 0.37 0.38 0.22 – 0.82 0.63 0.60 0.53 0.67 0.68 0.59 0.50

2.78 Uniform 0.56 0.36 0.37 0.19 0.43 0.44 0.29 – 0.85 0.66 0.63 0.57 0.69 0.70 0.62 0.50

2.78 Bimodal 0.56 0.36 0.36 0.19 0.42 0.43 0.29 – 0.86 0.67 0.64 0.58 0.70 0.71 0.63 0.52

2.78 D-spike 0.55 0.34 0.34 0.18 0.40 0.42 0.28 – 0.85 0.67 0.63 0.57 0.69 0.70 0.62 0.51

16–25 26+

1 None 0.96 0.92 0.92 0.91 0.95 0.94 0.91 0.88 0.99 0.99 0.99 0.98 0.99 0.99 0.98 0.98

1.18 Normal (0,3) 0.95 0.90 0.90 0.88 0.93 0.92 0.88 0.86 0.99 0.98 0.98 0.97 0.98 0.98 0.97 0.97

1.18 Skew-normal (1,4) 0.95 0.90 0.91 0.88 0.93 0.92 0.89 0.86 0.99 0.98 0.98 0.97 0.99 0.98 0.98 0.97

1.18 Skew-normal (2,9) 0.95 0.91 0.91 0.89 0.93 0.93 0.89 0.87 0.99 0.98 0.98 0.98 0.99 0.99 0.98 0.97

1.18 Uniform 0.95 0.90 0.90 0.88 0.93 0.92 0.88 0.86 0.99 0.98 0.98 0.97 0.99 0.98 0.97 0.97

1.18 Bimodal 0.95 0.90 0.90 0.88 0.93 0.92 0.88 0.86 0.99 0.98 0.98 0.97 0.98 0.98 0.97 0.97

1.18 D-spike 0.95 0.90 0.90 0.88 0.93 0.92 0.88 0.86 0.99 0.98 0.98 0.97 0.98 0.98 0.97 0.97

1.54 Normal (0,3) 0.95 0.90 0.89 0.87 0.91 0.91 0.88 0.85 0.99 0.97 0.97 0.97 0.98 0.98 0.97 0.96

1.54 Skew-normal (1,4) 0.96 0.91 0.91 0.88 0.92 0.92 0.89 0.86 0.99 0.98 0.98 0.97 0.98 0.98 0.97 0.97

1.54 Skew-normal (2,9) 0.95 0.89 0.89 0.86 0.91 0.91 0.87 0.85 0.99 0.98 0.98 0.97 0.98 0.98 0.97 0.97

1.54 Uniform 0.95 0.89 0.89 0.87 0.91 0.91 0.88 0.85 0.99 0.98 0.98 0.97 0.98 0.98 0.97 0.97

1.54 Bimodal 0.96 0.91 0.91 0.89 0.93 0.92 0.90 0.87 0.99 0.98 0.98 0.98 0.99 0.99 0.98 0.98

1.54 D-spike 0.96 0.91 0.91 0.89 0.93 0.93 0.90 0.87 0.99 0.98 0.98 0.98 0.99 0.99 0.98 0.98

2.78 Normal (0,3) 0.96 0.87 0.86 0.84 0.88 0.88 0.86 0.83 0.99 0.96 0.96 0.96 0.96 0.97 0.96 0.96

2.78 Skew-normal (1,4) 0.97 0.90 0.89 0.87 0.90 0.91 0.88 0.86 0.99 0.98 0.98 0.97 0.98 0.98 0.97 0.97

2.78 Skew-normal (2,9) 0.97 0.90 0.89 0.87 0.91 0.92 0.89 0.87 1.00 0.98 0.98 0.97 0.98 0.98 0.98 0.97

2.78 Uniform 0.97 0.91 0.90 0.88 0.91 0.92 0.89 0.87 0.99 0.98 0.98 0.97 0.98 0.98 0.98 0.97

2.78 Bimodal 0.98 0.92 0.91 0.90 0.92 0.93 0.91 0.89 1.00 0.99 0.99 0.98 0.99 0.99 0.98 0.98

2.78 D-spike 0.98 0.92 0.91 0.90 0.92 0.93 0.91 0.89 1.00 0.99 0.99 0.98 0.99 0.99 0.98 0.98
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4.4 Overall effect estimation – error intervals

In the case of �21 based within-study variances – for all types of effects distribution bar ‘double-spike’
– all the methods except PL, SJ and PE produced confidence intervals around the overall effect
estimate that were biased downwards. Underestimation of the confidence interval was particularly
severe using FE and, in most cases, Q. ML also performed very badly under conditions of small to
moderate study numbers (k� 15) and moderate to high heterogeneity (H2

� 1.54), producing
confidence intervals as narrow as 70% of the correct interval. DL and BT produced intervals that
were usually within 5% of the actual interval, except in cases of very small study numbers or very
high skew. In contrast, PL, SJ and PE tended to overestimate the confidence interval. The
overestimation using PE was very severe for k� 15 – usually two to three times the width of the
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Figure 2. Power at H2¼ 1.18, 1.54 and 2.78 for eight MA methods, under assumptions of �2
1 based within-study

variances and normal and highly skewed between-study variance distributions.
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Table 3. Confidence Interval performance by degree of heterogeneity, between-study effect distribution and MA

size, assuming �2
1 based within-study variances

H2
�i distribution

(skew, kurtosis)

Number of studies

2–0035 6–15

FE DL BT SJ Q ML PL PE FE DL BT SJ Q ML PL PE

1 None 1.00 1.00 1.00 2.25 1.00 1.00 1.28 – 1.00 1.00 1.00 1.12 1.00 1.00 1.12 2.62

1.18 Normal (0,3) 0.90 0.96 0.95 2.07 0.91 0.92 1.16 – 0.86 0.95 0.95 1.08 0.87 0.90 1.05 2.52

1.18 Skew-normal (1,4) 0.91 0.96 0.95 2.10 0.91 0.92 1.16 – 0.86 0.95 0.95 1.08 0.87 0.90 1.04 2.56

1.18 Skew-normal (2,9) 0.90 0.96 0.95 2.11 0.91 0.92 1.16 – 0.86 0.95 0.94 1.07 0.87 0.90 1.04 2.54

1.18 Uniform 0.91 0.96 0.95 2.10 0.91 0.92 1.16 – 0.86 0.95 0.95 1.08 0.87 0.90 1.05 2.53

1.18 Bimodal 0.90 0.96 0.95 2.09 0.91 0.92 1.16 – 0.86 0.95 0.95 1.08 0.87 0.91 1.05 2.54

1.18 D-spike 1.00 1.00 1.00 2.36 1.00 1.00 1.31 – 1.00 1.07 1.06 1.25 1.00 1.00 1.22 2.94

1.54 Normal (0,3) 0.78 0.91 0.89 2.03 0.81 0.84 1.07 – 0.72 0.94 0.93 1.08 0.77 0.86 1.02 2.43

1.54 Skew-normal (1,4) 0.78 0.91 0.89 2.05 0.81 0.84 1.06 – 0.72 0.94 0.93 1.08 0.77 0.85 1.01 2.46

1.54 Skew-normal (2,9) 0.78 0.90 0.89 1.99 0.81 0.83 1.05 – 0.72 0.92 0.91 1.05 0.76 0.83 0.99 2.43

1.54 Uniform 0.79 0.91 0.90 2.03 0.82 0.84 1.07 – 0.72 0.95 0.94 1.09 0.77 0.86 1.03 2.49

1.54 Bimodal 0.78 0.91 0.90 2.04 0.82 0.84 1.07 – 0.72 0.95 0.94 1.09 0.77 0.87 1.03 2.55

1.54 D-spike 1.00 1.06 1.02 2.62 1.00 1.00 1.39 – 1.00 1.30 1.28 1.49 1.00 1.14 1.41 3.48

2.78 Normal (0,3) 0.59 0.85 0.82 2.05 0.69 0.73 0.98 – 0.53 0.94 0.96 1.09 0.88 0.87 1.01 2.16

2.78 Skew-normal (1,4) 0.59 0.84 0.81 2.00 0.69 0.72 0.96 – 0.53 0.93 0.94 1.08 0.86 0.86 1.00 2.22

2.78 Skew-normal (2,9) 0.59 0.81 0.78 1.89 0.68 0.70 0.93 – 0.53 0.88 0.89 1.03 0.80 0.81 0.95 2.20

2.78 Uniform 0.59 0.86 0.84 2.10 0.70 0.74 0.99 – 0.53 0.96 0.98 1.10 0.91 0.89 1.03 2.29

2.78 Bimodal 0.59 0.87 0.84 2.08 0.70 0.74 0.99 – 0.53 0.97 1.00 1.11 0.93 0.90 1.03 2.45

2.78 D-spike 1.00 1.36 1.27 3.36 1.00 1.07 1.65 – 1.00 1.80 1.83 2.06 1.72 1.67 1.92 4.65

16–25 26+

1 None 1.00 1.00 1.00 1.05 1.00 1.00 1.08 1.43 1.00 1.00 1.00 1.03 1.00 1.00 1.08 1.24

1.18 Normal (0,3) 0.85 0.97 0.96 1.03 0.86 0.91 1.03 1.40 0.85 0.98 0.98 1.02 0.86 0.93 1.02 1.23

1.18 Skew-normal (1,4) 0.85 0.97 0.96 1.03 0.86 0.91 1.03 1.41 0.85 0.98 0.98 1.02 0.86 0.93 1.02 1.23

1.18 Skew-normal (2,9) 0.85 0.96 0.96 1.02 0.86 0.91 1.02 1.40 0.85 0.97 0.97 1.01 0.86 0.92 1.01 1.22

1.18 Uniform 0.85 0.97 0.97 1.03 0.86 0.91 1.03 1.41 0.85 0.98 0.98 1.02 0.86 0.94 1.03 1.23

1.18 Bimodal 0.85 0.97 0.97 1.03 0.86 0.92 1.04 1.42 0.85 0.98 0.98 1.02 0.86 0.94 1.03 1.23

1.18 D-spike 1.00 1.13 1.13 1.20 1.00 1.05 1.21 1.66 1.00 1.15 1.15 1.20 1.00 1.10 1.21 1.45

1.54 Normal (0,3) 0.71 0.97 0.98 1.03 0.77 0.92 1.02 1.37 0.71 0.98 0.98 1.02 0.86 0.95 1.01 1.20

1.54 Skew-normal (1,4) 0.71 0.97 0.97 1.03 0.77 0.91 1.01 1.37 0.71 0.98 0.98 1.02 0.85 0.94 1.01 1.20

1.54 Skew-normal (2,9) 0.71 0.95 0.95 1.01 0.76 0.89 0.99 1.36 0.71 0.96 0.96 1.00 0.78 0.92 0.99 1.19

1.54 Uniform 0.71 0.98 0.98 1.03 0.77 0.93 1.03 1.39 0.71 0.99 0.99 1.02 0.89 0.96 1.02 1.21

1.54 Bimodal 0.71 0.98 0.99 1.04 0.78 0.94 1.03 1.40 0.71 0.99 0.99 1.02 0.89 0.96 1.02 1.22

1.54 D-spike 1.00 1.37 1.37 1.45 1.00 1.31 1.44 1.98 1.00 1.39 1.39 1.44 1.23 1.35 1.43 1.72

2.78 Normal (0,3) 0.53 0.97 0.98 1.03 0.97 0.94 1.01 1.26 0.52 0.98 0.98 1.02 0.98 0.96 1.01 1.12

2.78 Skew-normal (1,4) 0.53 0.96 0.97 1.03 0.96 0.93 1.00 1.28 0.52 0.97 0.97 1.02 0.97 0.96 1.00 1.14

2.78 Skew-normal (2,9) 0.53 0.92 0.93 1.00 0.92 0.90 0.97 1.27 0.52 0.94 0.95 0.99 0.94 0.93 0.97 1.13

2.78 Uniform 0.53 0.98 1.00 1.04 0.98 0.95 1.02 1.29 0.52 0.99 1.00 1.03 0.99 0.97 1.01 1.14

2.78 Bimodal 0.53 0.99 1.00 1.05 0.99 0.96 1.02 1.32 0.52 0.99 1.00 1.03 0.99 0.97 1.01 1.15

2.78 D-spike 1.00 1.87 1.90 1.98 1.87 1.82 1.94 2.52 1.00 1.89 1.90 1.96 1.89 1.85 1.94 2.20

422 Statistical Methods in Medical Research 21(4)

 at University of Manchester Library on July 19, 2013smm.sagepub.comDownloaded from 

http://smm.sagepub.com/


correct interval – and still quite severe even for the largest meta-analyses. SJ also overestimated the
confidence interval by a factor of two or more when k� 15, though the method’s performance
improved considerably as the number of studies increased. PL produced intervals nearly always
correct to within 5% for all but the smallest meta-analyses. However, PL overestimated the
confidence intervals by a considerable margin, 16% or more, in small studies with low
heterogeneity. The one exception to all the above was the ‘double-spike’ effects distribution, for
which only FE consistently produced accurate confidence interval estimates (Table 3 and Figure 3).

Results were very much the same when we used alternative distributions for the within-study
variances, though with generally smaller biases on the confidence interval estimates.
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Figure 3. Confidence interval performance at H2¼ 1.18, 1.54 and 2.78 for eight MA methods, under assumptions of

�2
1 based within-study variances and normal and highly skewed between-study variance distributions.
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5 Conclusions

The present investigation has compared eight different frequentist MA methods in terms of
coverage, power and effect size estimation (point estimates and error intervals). We found some
differences in performance between methods, but we also found that for any particular method,
results were highly consistent across different underlying effect size distributions, ranging from
normal, through extreme skewness and kurtosis, to uniform, bimodal and ‘U-shaped’
distributions. Only the ‘double-spike’ distribution deviated from this pattern, and only in respect
to the confidence intervals returned by this method. This is an important finding that can give
researchers confidence that, whichever method they adopt, results are highly robust against even
very severe violations of the assumption of normally distributed effect sizes.

We also found that results were robust against different assumptions about the distribution of the
study-specific variances around the effect estimates. At any given level of heterogeneity, coverage
was quite unaffected and error interval estimation only marginally altered, by the shape of the
distribution (either high positive, zero or high negative skew), although high negative skew did
reduce the power of all methods. In addition, while our simulations made assumptions about
distribution shapes, these were not tied to any specific effect metric, such as the log-odds ratio,
risk difference or standardised mean difference. Thus, our results apply regardless of the particular
effect metric in use.

Selection of an optimum method for any application depends upon balancing the factors of
number of studies, coverage, power and effect estimation. If it is reasonable to assume that the
effect size does not vary between studies, the FE, Q and ML methods all provide accurate coverage
coupled with good power and confidence interval estimation. In this situation, the other methods
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generally provide overly high coverage, and correspondingly lower power, particularly with small
samples.

However, for most MA applications, zero between-study variance is likely to be the exception
rather than the norm, and the presence of even a small amount of between-study variance alters the
picture considerably. FE, Q and ML quickly lose coverage as heterogeneity increases. DL rapidly
goes from providing a coverage that is slightly high, to one that is overly low. These methods still
return accurate point estimates of the overall effect, but the error intervals are often considerably
underestimated, although less so for DL than for other methods. In the presence of heterogeneity,
PL provides the most accurate coverage, though confidence intervals tend to be overly wide. PE
provides exact coverage, regardless of study numbers, but the method is let down by highly inflated
confidence intervals. It is also of interest to note that BT and SJ, despite having been expressly
developed to address the limitations of other methods in the estimation of between-study variance,
were frequently outperformed by those methods.

The situation of very small study numbers – five or fewer – needs special consideration. In this
situation, results are much more sensitive to both choice of method and degree of heterogeneity.
While the inaccuracy associated with the use of Q or ML – or even FE under a false assumption of a
common effect size – may be tolerably small for a large MA, for a small analysis it is far less so. The
only truly acceptable methods in this situation are DL and PL. Furthermore, DL only outperforms
PL when heterogeneity is low and PL itself struggles to provide coverage much better than 90%
when heterogeneity is high.

In the presence of between-study variation, if priority is given to maintaining an accurate Type I
error rate then PE is the best method. Usually, however, researchers are as much – if not more –
concerned with obtaining an accurate estimate of overall effect size and the associated error interval,
as they are with simply testing for statistical significance. In this case, in most situations PL provides
the best combination of effect (point and error) estimation and coverage. However, there are some
exceptions to this, particularly when heterogeneity is low, where DL performs better. On the basis of
our detailed results, Figure 4 presents our recommendations for which method provides the best
overall mix of coverage and error estimation under each combination of heterogeneity and study
numbers. For meta-analyses with 10 or more studies PL would be our preferred method when
H2
� 1.15, and DL when H2< 1.15; but the threshold H2 value increases as the number of studies

in the analysis declines below 10.
For completeness, it is also worth considering how easy it is to successfully implement each

model. FE, DL, SJ and Q are simple non-iterative methods, easily programmed and able to
provide an overall effect estimate in all cases. PE is also non-iterative but a rather complex and
computationally intensive method and cannot be applied to meta-analyses of fewer than six studies.
ML and PL are iterative, not overly complex, but computationally intensive and not always
successful in providing an overall effect estimate. In our simulations, convergence was
unsuccessful for up to 3% of the cases for ML and 1% for PL but results may depend on the
specified algorithm parameters. BT is the most complex method since it involves Gauss–Laguerre
quadrature integration, and the method failed for up to 12% of the simulated meta-analyses (the
effect is greater for high heterogeneity and low study numbers). This is due to the fact that the
method depends on the estimate of the variance of Cochran’s Q which, according to our simulations,
is not always positive.

Most statistical software packages offer FE andDLas analysis options, but not PLor othermethods.
Since even specialistMA software packages likeRevMan35 lack other alternatives and the results of this
study clearly demonstrate that DL is often not the most optimum RE method, we have created
MetaEasy,36 a Microsoft Excel add-in that implements all the MA methods described in this article.
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Most methods have also been implemented in a STATAmodule, available for download from the SSC
archive under the name metaan.37
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