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ABSTRACT 

The University of Manchester, Faculty of Engineering and Physical Sciences 

Abstract of thesis submitted by Sharareh RostamNiakanKalhori for the degree of Doctor 

of Philosophy in Informatics. 

Entitled: Integrated Supervised and Unsupervised Learning Method to Predict the 

Outcome of Tuberculosis Treatment Course 

Tuberculosis (TB) is an infectious disease which is a global public health problem with 

over 9 million new cases annually. Tuberculosis treatment, with patient supervision and 

support is an element of the global plan to stop TB designed by the World Health 

Organization in 2006. The plan requires prediction of patient treatment course 

destination. The prediction outcome can be used to determine how intensive the level of 

supplying services and supports in frame of DOTS therapy should be. No predictive 

model for the outcome has been developed yet and only limited reports of influential 

factors for considered outcome are available.  

To fill this gap, this thesis develops a machine learning approach to predict the outcome 

of tuberculosis treatment course, which includes, firstly, data of 6,450 Iranian TB 

patients under DOTS (directly observed treatment, short course ) therapy were analysed 

to initially diagnose the significant predictors by correlation analysis; secondly, these 

significant features were applied to find the best classification approach from six 

examined algorithms including decision tree, Bayesian network, logistic regression, 

multilayer perceptron, radial basis function, and support vector machine; thirdly, the 
prediction accuracy of these existing techniques was improved by proposing and 

developing a new integrated method of k-mean clustering and classification algorithms. 

Finally, a cluster-based simplified decision tree (CSDT) was developed through an 

innovative hierarchical clustering and classification algorithm. CSDT was built by k-

mean partitioning and the decision tree learning. This innovative method not only 

improves the prediction accuracy significantly but also leads to a much simpler and 

interpretative decision tree. 

The main results of this study included, firstly, finding seventeen significantly 

correlated features which were: age, sex, weight, nationality, area of residency, current 

stay in prison, low body weight, TB type, treatment category, length of disease, TB case 

type, recent TB infection, diabetic or HIV positive, and social risk factors like history of 

imprisonment, IV drug usage, and unprotected sex          ; secondly, the results 

by applying and comparing six applied supervised machine learning tools on the testing 

set revealed that decision trees gave the best prediction accuracy (74.21%) compared 

with other methods; thirdly, by using testing set, the new integrated approach to 

combine the clustering and classification approach leads to the prediction accuracy 

improvement for all applied classifiers; the most and least improvement for prediction 

accuracy were shown by logistic regression (10%) and support vector machine (4%) 

respectively. Finally, by applying the proposed and developed CSDT, cluster-based 

simplified decision trees were optioned, which reduced the size of the resulting decision 

tree and further improved the prediction accuracy. 

Data type and having normal distribution have created an opportunity for the decision 

tree to outperform other algorithms. Pre-learning by k-mean clustering to relocate the 

objects and put similar cases in the same group can improve the classification accuracy. 

The compatible feature of k-mean partitioning and decision tree to generate pure local 

regions can simplify the decision trees and make them more precise through creating 

smaller sub-trees with fewer misclassified cases. The extracted rules from these trees 

can play the role of a knowledge base for a decision support system in further studies.  
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1.1Purpose and Scope 

Creating predictive (classification) models is one of the machine learning applications 

in order to uncover novel, interesting, and useful knowledge from large volumes of data 

in many medical domains such as diagnosis, prognosis and treatment. They are 

successfully developed through applying several machine learning techniques. 

In the area of tuberculosis control, no model to predict the outcome of treatment courses 

has been developed. A predictive model should be able to define patient treatment 

destination and confirm whether or not each patient finishes a complete course of 

treatment entirely. 

Tuberculosis (TB) is a global public health concern known as a major contributor to the 

global burden of disease, with around 9 million new cases worldwide in 2005 and 2 

million deaths estimated to occur annually [Harries & Dye, 2006]. Over recent years, 

this infectious disease has been considered intensely, particularly in low- and middle-

income countries where it is being fuelled by the HIV/AIDS epidemic [Thiam et al., 

2007]. The main goals for TB control programme are case detection and treatment 

success; countries that detect 70% of all estimated TB cases and successfully treat 85% 

of detected TB cases should expect declines in incidence of 8-12% per year [Dye et al., 

1998]. The current internationally recommended control strategy for TB is named 

DOTS (directly observed treatment, short course) and involves delivery of a standard 

short course of drugs, lasting 6 months for new patients and 8 months for patients 

diagnosed with TB. The delivery includes the direct observation of therapy (DOT), 

either by health staff or by a DOT supporter known by the patients for this purpose. 

Since 1997, the World Health Organization (WHO) has made an effort to fulfil 

tuberculosis control programme targets through DOTS, introduced as a widely 
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promoted and globally implemented strategy. According to the DOTS approach, a 

major determinant of the outcome for a tuberculosis treatment is patient compliance; 

nevertheless, up to 50 percent of all patients with TB do not complete treatment and fail 

to adhere to their therapy [Cuneo& Snider, 1989]. It has been estimated that in 

industrialised countries non-completion of treatment is around 20% [Tangüis et al., 

2000] and according to the Centres for Disease Control and Prevention in the United 

States, 25% of patients fail to complete their chemotherapy [Yew, 1999]. 

Noncompliance is a significant factor leading to the persistence of tuberculosis in many 

countries and the consequences of this well recognized fact are prolonged 

infectiousness, relapse, prolonged and more expensive therapy, development of drug 

resistance, and death [Thiam et al., 2007]. It has been revealed that noncompliance is 

associated with a 10-fold increase in the incidents of poor results from treatment and 

accounted for most treatment failures and although patients who fail to respond to 

therapy or suffer a relapse due to noncompliance are a minority of those with active 

tuberculosis, they may have an inconsistent effect on tuberculosis epidemiology 

[Burman et al., 1997]. Multidrug-resistant tuberculosis (MDRTB) is another 

noncompliance consequence well known as a formidable clinical and public health 

emergency. 

1.1.1 Multidrug-Resistance Tuberculosis 

Tuberculosis (TB) can usually be treated with a course of four standard or first-line anti-

TB drugs. However, lack of drug therapy compliance, misuse or mismanagement of 

therapy which means taking the drugs in the wrong combination, taking fewer than 

prescribed, or taking insufficient doses or not at the proper time can lead to multidrug 

resistant TB (MDR-TB) [Yew, 1999]. In this condition, patient are resistance to the 
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most important anti-TB drugs, i.e. isoniazid, and rifampicin happens and takes longer to 

treat with second-line drugs which are more expensive with more side-effects. Lack of 

adherence to the course, misuse or mismanagement of these drugs can also lead to 

extensively drug-resistant TB (XDR-TB) which is highly resistant to first- and second-

line drugs where treatment options and the chances of cure are seriously restricted 

[Sampathkumar, 2008]. Compared with drug-sensitive TB cases, the treatment 

outcomes for this condition have been much less positive with the overall expected cure 

rate decreasing to 60%. The mortality rate is high, particularly for those subjects who 

have been co-infected by HIV. In addition, second-line drugs are much more expensive 

as poor patient affordability is also encountered [Yew, 1999]. For people with the 

MDR-TB condition, because of diagnostic delays, overcrowding and inadequate 

infection control, undesirable side of this difficulty might be accelerated; thus, 

prevention of MDR-TB should be of high priority, particularly in countries with limited 

resources.  

1.1.2 DOTS & ‘’STOP TB Plan’’ 

DOTS is an internationally recommended approach currently implemented to control 

tuberculosis. It is aimed at preventing the transmission of M. tuberculosis and 

associated disease and death, through using combinations of anti-TB drugs to treat 

patients with active TB carefully. Case detection and completed treatment are known as 

two major targets of DOTS. The World Health Organization (WHO) has defined five 

distinct elements for DOTS including political commitment, microscopy services, drug 

supplies, surveillance and monitoring systems and use of highly efficacious regimens, 

and direct observation of treatment. In fact, ensuring that the patient completes therapy 

to cure the disease and prevent drug resistance from developing are major purposes of 

DOTS [Davies, 2003]. 



CHAPTER 1 
 

21 
 

DOTS has played an impressive role in TB control since 1997 when it became the 

mostly widely-implemented and longest running global health intervention in health 

history. Known as a foundation strategy for TB control, it has encouraged patients to 

complete their therapy. In fact, the adoption of DOTS has been associated with reduced 

rates of treatment failure, relapse, and drug resistance [Burman et al., 1997]. Research 

demonstrates that the treatment compliance rate has increased from 25-50% with 

unsupervised treatment to 80-90% with DOTS application [Davies, 2003]. Likewise, 

according to Burman et al. (1997)  DOTS application to TB control has descending 

effect on noncompliance rates as this rate decreased significantly from 13.3% by 

applying self administration of treatment to 5.9% through directly observed therapy, 

short-course (p<0.05) [Vieira & Ribeiro, 2008]. 

Hence, noncompliance which is widely acknowledged as the main cause of the failure 

of initial therapy and relapse is common in self-administered multidrug tuberculosis 

treatment regimens. Anuwatnonthakate et al. (2008), in the study about applying DOTS 

for TB control and its outcome improvement in Thailand, has proved the positive effect 

of directly observed therapy (DOT) compared with self administration with 93% rather 

that 69% treatment completion. Furthermore, there is a significant success rate for 

patient treatment compliance where they receive DOT by health care worker (93%) 

compared with a family member (69%). It has been expressed that increasing the 

provision of DOT by healthcare workers should be considered to prevent prolonged and 

expensive therapy that is less likely to be successful than the treatment of drug-

susceptible tuberculosis.  

In response to these findings, there is increasing emphasis on both use of DOT, in 

which a health-care worker observes the ingestion of each dose of anti tuberculosis 
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therapy, and improving the DOTS performance by using a new scheme introduced by 

the World Health Organisation in 2006. 

Global Plan to Stop TB (2006–2015) focuses on intensified TB-case finding, treatment 

of latent TB infection with isoniazid, prevention of HIV infection, cotrimoxazole 

preventative therapy, and antiretroviral therapy [Harries & Dye, 2006].  The Stop TB 

Strategy consists of six main components, which are as follows: 

 Pursue high-quality DOTS expansion and enhancement 

 Address TB/HIV and MDR-TB and other special challenges 

 Contribute to health system strengthening 

 Engage all care providers 

 Empower people with TB, and communities 

 Enable and promote research 

DOTS expansion and enhancement is the foundation of both DOTS strategy and the 

other five components. It is vital to understand that the sequence and scale of 

implementation and the speed of activities building on DOTS will vary according to the 

setting and accuracy of basic DOTS implementation.  

In order to put further focus on the first component of the ‘’Stop TB Plan’’ which is to 

pursue high-quality DOTS expansion and enhancement, addressing known limitations 

and meeting new challenges, additional reinforcement of the basic components of the 

DOTS strategy is required. The following are those lines that can improve the first 

component. 

 Political commitment with increased and sustained financing 

 Case detection through quality-assured bacteriology 

 Standardized treatment, with supervision and patient support 
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 An effective drug supply and management system 

 A system for monitoring and evaluation system, and impact measurement 

For the element of supervision and patient support, it has been highlighted that health 

care services should identify and concentrate on interruption factors that halt treatment. 

Supervision, which plays a strong role in patient treatment adherence and preventing the 

development of drug resistance, must be carried out in a context-specific and patient-

sensitive manner, and is expected to ensure commitment of both providers to give 

proper care and support and patients to receive regular treatment. It has been brought to 

light that selected patient groups, for example prisoners, drug users, and some people 

with mental health disorders may need intensive support including DOT [WHO, 2006]. 

Although WHO has highlighted the necessity of improving the quality of DOTS in 

terms of supervision and patient support in the ‘’Stop TB’’ plan, there is no way to 

measure how intensive health workers` support and supervision should be for patients. 

To make this supervision more context-specific and patient–sensitive, we may require a 

tool to predict the patient destination regarding TB treatment course completion. In 

conclusion, here is a summary of the reasons why we need a predictive system capable 

of forecasting the outcome of providing DOTS therapy for each patient specifically 

based on their own particular features: 

 Non-adherence to the tuberculosis treatment course is a complex phenomenon 

and task-specific behaviour 

 DOTS has produced better results than the method of patients’ self supervision 

 DOTS is an expensive services package that result in active supervision and 

support for all patients  

 Although WHO has understood that some patients need more support but it 

hasn’t pointed out how and to what extent it should be provided 
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Having considered these parameters including the complex entity of treatment course 

non-compliance, the relative success of DOTS, WHO` emphasis on supervision and 

support in different degrees for specific groups of patients, and the impossibility of 

serving all TB patients with active supervision and support, there is requirement for a 

tool to define the level of supervision and support each patient needs based on the 

predicted outcome defined by an accurate predictive model.  

1.2 Research Objectives 

This study pursues the overall objective of developing and then improving the most 

accurate and understandable predictive model to forecast the outcome of tuberculosis 

treatment courses through combining supervised and unsupervised learning methods. 

To meet this end, the detailed tasks can be listed as follows: 

 Compare all potential methods 

 Select the most effective one  

 Develop the new combined algorithm which integrates supervised and 

unsupervised learning to improve the accuracy  

 Enhance the interpretability of  novel combined algorithm of the supervised and 

unsupervised learning method  

1.3 Main Contributions 

This thesis is the first systematic and quantitative analysis and prediction of TB based 

on the machine learning approach, which includes, firstly, a comparison of the main 

existing methods and identification of the most effective one using current techniques; 

secondly, recognition of the weaknesses of the existing methods and 

proposing/developing an innovative approach by combining the supervised and 
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unsupervised learning which will improve the accuracy and enhance the interpretability 

for knowledge discovered. The more detailed contributions are listed as follows: 

 Analysing a set of tuberculosis patient features to discover influential factors 

which effect the outcome of the tuberculosis treatment course   

 Comparing the applied classifiers to predict the outcome of the tuberculosis 

treatment course and find the most accurate and valid classification algorithm  

 Proposing the combination of clustering and classification methods to improve 

the classifier`s performance in terms of accuracy 

 Utilising the k-mean clustering method to enhance the most accurate classifier`s 

interpretability 

1.4 Overview of the Thesis 

The contributions of this thesis have been presented in the related chapter as follows: 

Chapter Two presents background study relating to the importance of the completion 

of treatment course, critical analysis to choose classification techniques and the 

algorithms of classifiers, influential factors effecting tuberculosis treatment adherence 

and also a brief literature review on applying machine learning tools to classify various 

tasks in the medical domain.  

Chapter Three is an overview of the methodology employed to meet the objectives of 

this research. This chapter includes an explanation of the choice of supervised and 

unsupervised methods, and the decision to combine them to improve the accuracy and 

comprehensibility of predictive models, as well as a detailed look at the research 

method. 
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Chapter Four defines significant factors affecting the outcome of the tuberculosis 

treatment course through patient data analysis. Applied classification models developed 

by selected classifiers are also presented in this chapter. Various criteria for comparing 

them are utilised and the results which are yielded are represented and discussed. 

Chapter Five focuses on the combination of cluster analysis to every single one of the 

developed classified models to improve their accuracy and the comparison of results 

based on different numbers of clusters and the applied algorithm of classifiers. 

Chapter Six investigates the application of hierarchical clustering and classification 

method to reduce the tree size and misclassification rate through proposing and 

developing a cluster-based simplified decision tree (CSDT).  

Chapter Seven concludes the major contributions and work fulfilled by this research. 

The significance of the result is summarised and major conclusions are drawn from the 

present work. Directions for future work are also proposed in view of how this research 

can be extended in the future.   
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2.1 Introduction 

In the first part of this chapter, the background of the prediction system for the course of 

tuberculosis treatment is discussed. The importance of the tuberculosis treatment course 

prediction, data analysis and feature selection methods, supervised and unsupervised 

learning tools, critical analysis to choose the proper techniques and evaluation 

frameworks are reviewed. Then, the literature review related to the predictive factors of 

the destination of tuberculosis treatment and a number of applied predictive systems in 

various medical areas are investigated. 

2.2 Predicting the Outcome of Tuberculosis Treatment Course  

In the former chapter, the importance of patients‟ adherence to tuberculosis therapy as a 

major determinant of tuberculosis control was illustrated. In international tuberculosis 

control approach, prediction of treatment course destination has not been the center of 

attention either in research or in practice.  

Tuberculosis prevalence rate is reported as 11.1 million cases per year with 9.4 million 

annual deaths. It is fueled by HIV and needs to be controlled particularly in African 

country [WHO, 2006]. The erratic adherence to chemotherapy and irregular medication 

intake is the most common cause of relapse and development of drug resistance disease 

known considerably as more difficult cases because of no response to the standard 

treatments by the first or even the second line drugs [Harries & Dye, 2006]. 

Directly observing TB patients was piloted in the 1950s to ensure that patients adhered 

to and completed their treatment. Patients were observed taking their anti-TB treatment 

either daily or several times a week to insure adherence and treatment completion. 

Consequently, over the last four decades the tuberculosis cure rate has reached 82% and 

this significant progress in TB treatment delivery was made when both DOTS strategy 



CHAPTER 2 
 

29 
 

was applied and the use of rifampicin (RMP) was initiated [Panjabi et al., 2007]. 

However, prolonged infectiousness, drug resistance, relapse and death are still 

difficulties experienced by up to half of TB patients who do not complete their 

treatment course [Munro et al., 2007]. Efforts to improve treatment outcomes require a 

better understanding of the particular facilitators and barriers to TB treatment adherence 

since it is known as a complex behavioral issue influenced by the interaction of a 

number of factors. The “Stop TB” strategies designed by the WHO in 2006 focused on 

making the best use of currently available tools for the diagnosis, prevention and 

treatment of TB. This plan needs the improved tools that are likely to become available 

through research. Also, influential factors, including patient-centered interventions to 

address structural barriers to treatment adherence, have been classified. In the first 

component of the “STOP TB strategy”, supervision and patient support are emphasized 

with the focus on identifying and addressing factors that may interrupt or stop treatment 

as well as supervising the treatment which helps patients to take their drugs regularly 

and completely, through direct observation of therapy (DOT). Although the WHO has 

highlighted that patient supervision and support should be carried out in a context-

specific and patient-sensitive manner, no tool has been introduced which would enable 

the level of support a patient requires to be determined from their situation. Likewise, in 

this component of the “Stop TB” strategy, it is noted that certain patient groups, such as 

prisoners, drug users, and some people suffering from mental health disorders, may 

need intensive support including DOT, but the word „intensive‟ is not defined 

specifically.  

Currently, at clinic every patient interview and educational session is carried out by 

nurses when the therapy is initiated. At the onset of the course, nurses estimate the 

patients‟ understanding of the treatment process and pursuing the therapy up to 
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completing the course based on their condition. Nurses record their own judgments in 

the nursing book in addition to telephone numbers and contact details. Furthermore, 

during follow-up, the nurses estimate the patient‟s compliance based on punctuality, 

attendance, telephone interviews and, in some instances, pill counts and home visits. 

These estimations and records are just for nursing purposes and they are not included in 

the hospital dossier, nor routinely reviewed by the treating physicians. Hence, there is a 

manual system to record the prediction of tuberculosis treatment course based on the 

nurses‟ estimation and no particular system is available to accurately define the 

treatment course destination according to patient features and conditions. A systematic 

method using all of the known influential features of TB patients to predict the outcome 

of tuberculosis treatment course, instead of nurses‟ estimation, would help DOTS to 

transform from a passive to an active system through finding patients who are at high 

risk of noncompliance of chemotherapy. In other words, based on various possible 

outcomes for the completion of a course of tuberculosis treatment which would be 

predicted by the designed system, the needed follow-up care and supervision can be 

defined. This may assist health providers and nurses to supply services at different 

levels.  

To develop accurate predictive models, correct techniques and a suitable database 

related to tuberculosis cases are essential. The database should contain patients` records 

with details of the features of their cases of TB as well as the related outcome of their 

course of treatment; thus, the difficulties associated with limited data access with 

enough records and corresponding features might be the reason for no predictive system 

being available. Potential predictors and patients` variables should be analysed to find 

the influential factors as this knowledge would lead to the development of a predictive 

model. Besides, to develop a predictive model, there are technical requirements such as 
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machine learning tools which are discussed in the next sections followed by a feature 

analysis to detect significant predictors. 

2.3 Classification and Regression 

The development of a predictive model can be categorised either by classification or 

regression tasks. In the case that the output is a continuous number, regression tasks 

should be considered whereas in the situation that the outcome is a discrete number 

(such as a predefined set of classes or categories) a classification task should be 

considered.  

For the prediction of tuberculosis treatment course completion, the defined outcome 

related to each record of a TB patient contains five potential classes: cure and competed 

treatment (as desirable outcomes), failure, quit, and death (as undesirable outcomes). 

Cure has happened where the final sputum result is smear or culture negative, the case 

of treatment completion but no available proof of negative specimen is called completed 

treatment. The aim of the WHO is to achieve 85% or more TB cases in this category. 

Another category is death which is inevitable, even in developed counties 4-8% of cases 

might have this outcome for tuberculosis treatment course application. The category of 

failure is another outcome in which the patient sputum has not converted. In cases of 

relapse, sputum becomes positive after reverting to negative. Finally, there are those 

cases of patients who quit the therapy and forgo the follow-up which are regarded as 

undesirable outcome [Davies, 2003]. Thus, the problem of predicting the outcome of a 

course of tuberculosis treatment is a classification task which maps each item of the 

training dataset including patients‟ records with their corresponded set of attributes into 

one of a predefined set of classes.  

2.4 Exploratory Data Analysis  
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Exploratory Data Analysis (EDA) is an approach for data analysis that applies a number 

of techniques to maximize insight into a dataset, uncover underlying structure, and test 

underlying assumptions [Field, 2005]. Data analysis investigates the common 

assumption about what type of model the available data follow with the more direct 

approach; it allows the dataset itself to reveal its underlying structure and producing 

model. To carry out EDA, two main techniques are available: quantitative test and 

graphical methods. There are collections of techniques that cover data analysis 

objectives; however, statistical analysis is one of those methods which perform very 

well in both quantitative tests and graphical presentations. This method provides 

numerous measurements and tests such as measures of location (mean and median), 

confidence limits for the mean, one sample t-Test, chi-square test, and skewness & 

kurtosis measures.  

2.5 Feature Selection  

For every domain in medicine, many candidate features are introduced; however, many 

of them are either to some extent or totally irrelevant or redundant to the considered 

concept. In the case of a large dataset, learning the dataset is not useful unless the 

unwanted features are removed since an irrelevant and redundant feature does not affect 

or add anything new to the target concept [Dash & Liu, 1997]. 

Assisting data visualization and data understanding, reducing the measurement and 

storage requirements, decreasing training and utilization times and challenging the curse 

of dimensionality to improve performance are some of possible benefits of feature 

selection.  

One of the main aims of feature analysis is improving the prediction performance of the 

predictors and another is providing quicker and more cost-effective predictors. Feature 
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selection attempts to choose a subset of features and reduce the size of structure without 

significantly decreasing the accuracy of the classifier developed through using the 

selected features. There are two major steps of feature analysis which are generation 

procedure and evaluation function.  

Complete, heuristic, and random are three main categories of generation procedure. In 

the complete approach, a complete search is conducted for the optimal subset based on 

the evaluation function used. In the heuristic category, the generation process of subsets 

is basically incremental either by increasing or decreasing; in this approach all of the 

remaining features yet to be picked (or rejected) are considered for selection (or 

rejected); these steps are very simple and quick because of the quadratic number of 

features in the search space. The third generation method, random, requires a smaller 

number of parameters and iteration procedure than the other two methods. Assigning 

appropriate values to these selected parameters is a significant task for obtaining good 

results.  

The evaluation function tries to measure the discriminating ability of a feature or a 

subset to distinguish the different class labels. There are five categories of evaluation 

function: distance, information (or uncertainty), dependence, consistency and classifier 

error rate [Dash & Liu, 1997]. Based on the types of generation procedure and 

evaluation function and their combination, there are thirty-two available methods [Dash 

& Liu, 1997]. Each can be applied in a suitable way and there is no single technique 

appropriate for all applications. The choice of a feature selection method depends on the 

dataset characteristics including data type, data size and noise. According to the 

method`s capability of handling different feature values (continuous, discrete, and 

nominal), dealing with binary or multiple classes, performing well for a small training 

set or large data size and finally producing an optimal subset from noisy data, the 
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feature analysis technique is selected. Table 2.1 lists the ability regarding these above 

mentioned characteristics of sixteen feature selection methods which assist in the choice 

of the appropriate technique [Dash & Liu, 1997]. The combination of heuristic for 

generation and dependence for the evaluation function is the best option where there is a 

large dataset and the feature values are a mixture of continuous, discrete and nominal 

data with multiple classes. It is possible to use dependence or correlation measures to 

qualify the ability to predict the value of one variable based on the value of another. The 

correlation between a feature and a class is the main result of applying a coefficient. 

Pearson's coefficient and Spearman's rho are two measurements of correlations 

reflecting the degree of relationship between two variables [Field, 2005]. Also, in Table 

2.1, important method in each category of feature selection is addressed. In heuristic 

generation function, there are several methods such as Relief, Rough sets, Koller & 

Sahami, decision trees and Average Correlation Coefficient. The feature selection 

process either starts from the empty set and in each iteration generates new subsets by 

adding a feature selected using some evaluation function or begins from the complete 

feature set and in every iteration new subsets is chosen by discarding a feature. Among 

these methods, average Correlation Coefficient is an easy to use and common method 

which qualifies the ability of each feature to predict the value of one variable from the 

value of another. This classical method produces the coefficient which indicates the 

degree of redundancy of the feature. In the case of too many features and assumption of 

linear relationship between feature and a class, correlation coefficient simply produces 

the list of correlated features [Guyon & Elissee, 2003]. However, other methods using 

rough set in this category of feature selection first finds a reduct and then remove all 

features not appearing in the reduct; then, it tries to rank the features based on their 

significance. This measure is based on dependence of attributes; however, the method 
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which developed based on this theory, such as PRESET, is week to handle noise in the 

dataset and is not able of finding the optimal subset. It seems PRESET also suffer the 

imperfection of Pearson and Spearman correlation coefficient [Dash&Liu, 1997; Guyon 

& Elissee, 2003]. 

 

 

 Table 2.1 list of feature selection methods and their ability to handle data characteristics 
Category 

Generation/evaluation 

function 

Important Method in 

each category 

 

Data Type 

Multiple 

Classes 

Large 

Dataset 
Noise C D Nd 

Heuristic/distance Relief N/Y Y Y N/Y Y Y 

Complete/distance branch and bound (B 

& B) 

Y Y N Y --- --- 

Heuristic/information Decision tree 

 Koller &Sahami 

N/Y Y N/Y Y Y --- 

Heuristic/dependence Average Correlation 

Coefficient/rough 

set 

Y Y Y Y Y --- 

Random/ classifier error rate Focus N N/Y N/Y Y N N 

Random/consistency LVF N Y Y Y Y Y 

     C=Continuous data, D=Discreet data,         

     Nd=Nominal data,     

     N=No, Y=Yes 

 

 

2.6 Supervised Machine Learning Techniques 

Supervised learning is applied to make predictions about future cases where current 

available instances are given with known labels (the corresponding correct outputs). 

Supervised machine learning involves trying to find the algorithms that learn from 

externally supplied instances in order to produce general hypotheses. The main goal of 

supervised learning is model development derived from the distribution of class labels 
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in terms of predictor features selected by feature analysis. Then, the resulting classifier 

is applied to allocate class labels to the testing instances where the values of the 

predictor features are identified, but the value of the class label is unknown.  

Many supervised classifiers are currently available; they have been categorized in main 

groups like logic-based methods, perceptron-based techniques, statistical learning 

algorithm and support vector machines [Alpaydin, 2004]. Pros and cons of some of the 

most applied techniques are discussed in the next section. The process of learning a set 

of rules from examples in the training set and consequently creating a classifier which is 

capable of generalizing from new-real life instances is described in Figure 2.1.  

The first step is collecting a set of data associated with the problem that needs to be 

solved. Then, the most informative attributes should be identified by experts or using 

feature selection techniques. Data preprocessing and preparation is conducted mainly 

through handling missing data, noise and the detection of outliers; it reduces the amount 

of data which results in the data mining algorithm functioning more effectively, 

particularly in the case of very large sets of data. 

After the pre-processing stages, the whole dataset is randomly divided into two parts 

named training and testing sets. The training set is two-thirds of the whole dataset which 

is used to construct the models by any classification algorithm. The testing set is the 

other third which is used to validate the developed model and to choose the optimal 

parameter configuration. After training classification algorithms by training set, models 

are developed; they are evaluated with the testing set and in the case of satisfactory 

accuracy and other criteria, the predictive model is chosen [Han & Kamber, 2006]. 
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Figure 2.1 The process of supervised machine learning for classification task, adapted 

from Kotsiantis (2007). 

 

 

 

2.6.1 Critical Analysis for Classification Algorithm Selection 

The increasing number of electronic databases containing medical data has led to an 

increasing interest in building classification models by using a variety of statistical and 

machine learning approaches. However, it is recognized that critical analysis is required 

to demonstrate what features of an algorithm make it successful on specific dataset to 

support a particular algorithm. The major criteria including accuracy, the cost of 

misclassification, the time taken to produce results, the comprehensibility of the results 

and the ease of applying the algorithm in real life are defined [King et al., 1995]. Each 
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classification algorithm presents some characteristics which may be interesting in the 

context of clinical prediction tasks.  

Decision trees (DT), neural networks (NN), support vector machines (SVM), Bayesian 

networks (BN), K-nearest Neighbor classifiers (K-NN), Logistic Regression (LR), and 

Radial Basis functions (RBF) are some of those applied classification algorithms for 

medical datasets and examples in several studies [Wetter, 2000]. Here, we discuss a 

number of their pros and cons to find out the most suitable algorithms for current 

research and the available set of data.  

In the case of multi-dimensions and continuous features, the SVM and NN tend to 

perform well. For handling discrete/categorical features, the DT as a logic-based system 

performs better than other algorithms.  

ANNs and SVM are two methods which need a large sample size to attain their 

maximum prediction accuracy whereas the BN may only need a relatively small dataset.  

K-NN is very sensitive to irrelevant features because of the way that this algorithm 

works. In addition, the presence of irrelevant and redundant features decreases the level 

of the NN performance. In DT development, division of the instance space is orthogonal 

to the axis of one variable and parallel to all other axes; it makes the resulting regions 

into hyper-rectangles after partitioning. Thus, this classifier is unable to perform well 

where problems requiring diagonal partitioning are concerned.  

BN train very quickly because they need only a single pass on the data either to count 

frequency in the case of discrete variables or to compute the normal probability density 

function when there are continuous variables under normality assumptions. They need 

little storage space over the training and classification phases; the minimum space 

required is the room needed to store the prior and conditional probabilities. However, 



CHAPTER 2 
 

39 
 

the k-NN algorithm utilizes a large amount of storage space for the training phase, and 

its implementation space is at least as big as its training space. On the contrary, apart 

from the lazy learners, for other learning algorithms the execution space is usually much 

smaller than the training space, since the resulting classifier is usually a condensed 

abstract of the data. Lazy learning methods require zero training time since the training 

instance is simply stored. Decision trees are reputed to be a bit quicker than NNs and 

SVMs [Kotsiantis, 2007]. 

In terms of the ability to tolerate noise, kNN is known as a fine method [Kotsiantis, 

2007]; measures similar to it can be easily distorted by errors in attribute values leading 

them to misclassify a new instance according to the wrong nearest neighbors. In 

contrast to kNN, rule learners and most DTs are judged as a tool resistant to noise 

because their pruning strategies avoid overfitting the data in general and for noisy data 

in particular.  

Being very easy to interpret is another classifier characteristic that make logic-based 

algorithms like DTs preferable to other methods whereas NNs, SVMs, and k-NN are 

well known for poor understandability [Kotsiantis, 2007]. For medical interpretation, 

decision trees can help with the understanding of predictions. Although there is a wide 

interest in the application of NN, several limitations cause a number of difficulties in 

day-to–day practice. The most important critical weakness of NNs are their black box 

nature with not readily providing an explanation of their prediction; not being able to 

explicitly identify possible relationships among variables is the main reason that NNs 

are known for their poor interpretability [King et al., 1995; Lee & Abbott, 2003]. 

Furthermore, the model that results from using a neural network is not fixed since the 

iterative learning process can continue on data. These methods probably have the 

potential to complement available statistical models and to contribute to the 
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interpretation and presentation of computerized decision support systems. To predict the 

outcome of a course of tuberculosis treatment, the predictive model needs to be precise 

since, according to the destination of therapy, the level of therapy supervision and 

support is defined. The more accurate the model is, the higher the quality of health care 

provided to TB patients will be. Moreover, the supervision and support of TB patients is 

provided by health workers who are not expert enough in medicine and, also, play a 

core role in health promotion and maintenance. The resulting model needs to be as 

comprehensible as possible. 

 

 

Table 2.2 Comparison of the characteristics of supervised learning techniques, adapted 

from Kotsiantis (2007) 

 DT NN BN SVM RBF LR 

Accuracy in general ** *** * **** *** *** 

Speed of learning with respect the 

number of attributes and the number 

of instances 
*** * **** * ** *** 

Speed of classification **** **** **** **** **** **** 

Tolerance to missing values attributes ** * **** ** * ** 

Tolerance to irrelevant attributes *** * ** **** * ** 

Tolerance to redundant attributes ** ** * *** ** ** 

Tolerance to highly interdependent 

attributes  
** *** * *** ** * 

Dealing with 

discrete/binary/continuous attributes **** 

*** 

(Not 

discrete) 

*** 

(Not 

discrete) 

** 

(Not 

discrete) 

** 

(Not 

discrete) 

*** 

(Not 

discrete) 

Tolerance to noise ** ** *** ** ** *** 

Dealing with danger of overfitting ** * *** ** ** *** 

Attempts for incremental learning ** *** **** ** ** **** 

Explanation ability/transparency of 

knowledge 
**** * **** * 

* *** 

Model parameter handling *** * **** * * *** 
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Poor interpretability is well-known feature of neural networks as it is difficult to 

interpret the symbolic meaning behind the learned weights and hidden units in the 

network. However, their high tolerance of noisy data and their capability of classifying 

patterns on which they have not been trained are two advantages of neural networks. 

Besides this, they could even be used in cases where limited information of the 

relationship between attributes and classes is available. Their successful application to a 

wide range of real life data, of different types, has been well documented [Han & 

Kamber, 2006].  

In contrast of NNs with week presentation of produced output, the Bayesian network 

provide graphical diagram which represent relationships and influences among 

predictors. These qualities of BNs help experts to specify dependence and independence 

of variables through the network structure. However, they are week at handling discrete 

variables, redundant and irrelevant attributes.  

Decision tree is capable of expressing the degree of relationships between output and 

input variables; however, they are week to consider relationships among input variables. 

They are also sensitive to outliers and inflexible with respect to missing data; so that 

their performance may be dependent on quality of available dataset. DTs are good at 

coping with discrete variables with high tolerance to irrelevant attributes. 

A predictive system is required to be precise and understandable. After applying feature 

analysis to select the most relevant factors, there are no redundant features and k-NN 

has been deleted from the classification algorithm list. The large amount of spaces 

required for the training phase is another reason for not choosing K-NN for this study. 

The other six classifiers which can produce accurate and understandable classification 
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algorithm are examined in this research. In the following section, the characteristics and 

algorithm of selected classifiers are introduced.  

2.6.2 Logic Based Algorithms 

2.6.2.1 Decision Trees 

Decision tree induction is the process of learning a tree from class-labelled training 

dataset. It is a flowchart-like tree structure where the internal node, branch and leaf node 

means concepts associated with our training tuples. In this hierarchical data structure, 

the local region is identified in a sequence of recursive splits in a smaller number of 

steps by implementing a divide-and-conquer strategy. The decision tree is a 

nonparametric estimation that the input space is divided into local regions defined by a 

distance measure like the euclidean norm; using the training dataset in the region, the 

related local model is computed. In local data defining the local model should be 

identified which needs calculating of the distances from the given input to all of the 

training tuples through   . Every       defines a discriminant in the d-dimensional 

input space driving it into smaller regions; as we take a path from the root to down, 

these regions get increasingly subdivided.       is a simple function to create a tree. A 

complex function is divided into a series of simple decisions. Based on the type 

of       , various decision tree techniques are expected to be developed defining the 

shape of the discriminant and regions. Figure 2.2 represents a set of data and the 

corresponding decision tree. Oval nodes are decision nodes and rectangles are leaf 

nodes. The univariate decision node splits along one axis and successive splits are 

orthogonal to each other. After the first split,            is pure and is not split 

further. Each leaf node has an output label, which in classification cases, should be the 

class code; whereas, in a regression tree, it is a number value. A leaf node is the region 
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of input area that instances in this region have the same output. These regions have 

boundaries that are defined by the discriminants that are coded in the internal nodes on 

the path from the root to the leaf node. Due to the hierarchical placement of decisions, a 

fast localization of the region to cover an input is possible. For instance, if the decision 

is binary then every decision removes half of the cases; however, if there are b regions, 

then in the best case, the proper region can be localized in       decisions. Decision 

trees can be easily converted to a set of IF-THEN rules which are easy to assimilate 

[Alpaydin, 2004]. They are, indeed, the most widely used method of supervised 

learning. Building a decision tree doesn‟t need any specific domain knowledge or 

parameter setting which makes this tool suitable for exploratory knowledge discovery as 

it can easily cope with high dimensional data. Their representation of generated 

knowledge in a tree structure is intuitive and normally simple to understand by humans. 

Also, the learning and classification process of decision tree induction is uncomplicated 

and quick [Han& Kamber, 2006]; however, this method is not able to consider 

relationship among input variables. It has also the disadvantages of being sensitive to 

outliers and inflexible regarding to missing data. This is a threat for decision tree‟s 

performance for predicting new case [Lee&Abbott, 2003]. 

 

 

 

 

 

 

Figure 2.2 Example of data points and related decision tree, adapted from [Alpaydin, 

2004]. 
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2.6.2.2 Decision Tree Algorithm  

ID3 (Iterative Dichotomiser) was the first decision tree algorithm developed by J.Ross 

Quinlan in the late 1970s and early 1980s. Afterwards, Quinlan introduced C4.5, a 

successor of ID3, and used as a scale to which newer supervised learning algorithms are 

often compared. The constructed decision trees have a top-down recursive structure; 

using divide and-conquer strategy, training set is applied to build trees where they   

recursively partitioned into small subsets over the process of tree growing [Alpaydin, 

2004]. In more detail, the basic algorithm of decision trees contains three major 

parameters: a training data partition, an attribute-list (list of attributes describing the 

training data) and an attribute-selection-method. This method signifies a heuristic 

procedure for choosing the attribute that discriminates the given tuples in the best way 

on a class basis. In the first step, the tree starts as a single node, N, indicating the 

training tuples in A. Next, if all training set in A belongs to the same class, node N 

becomes a leaf and is labelled with that class; here is the finish point of condition.  

The attribute-selection-method defines which attribute to test at node N, by determining 

the best way to separate or partition the training set in A into each class. Afterwards, the 

node N is labelled with the splitting criterion, which serves as a test at the node. Based 

on the next steps, a tree is grown from node N for every outcome obtained from the 

splitting criterion, and tuples in A are partitioned finally. Three possible settings could 

occur based on training tuples: 

1. A is discrete-valued when the outcome of the test at node N matches the known 

values of A.  

2. A is continuous-valued and the test at node N has two possible outcomes 

corresponding to the conditions               and                

respectively.  
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3. A is discrete valued and a binary tree must grow.  

2.6.2.3 Tree Pruning  

When a decision tree is grown, noise or outliers in the training dataset can be addressed 

as various anomalies such as data overfiting. Pruning techniques resolve this by using 

statistical measures to delete the least reliable branches. Being less complex and smaller 

as well as easier to understand are the crucial features of a pruned tree. They are 

generally quicker and more accurate than un-pruned trees.  

Pruning can be done by two approaches: pre-pruning and post-pruning. In the pre-

pruning method, trees are pruned by halting their building early on through preventing 

further splits or partitions of learning tuples at a given node.  

Whereas in post-pruning, which is known as a more regular method, sub-trees are 

removed from a fully grown tree and then a leaf is replaced at a given node. The most 

frequent class among the sub-tree would be applied there as the leaf. In the experiments 

of developing C4.5 decision tree, a pessimistic pruning approach is utilized. This 

method uses error rate estimation to make decisions about sub-tree pruning [Han & 

Kamber, 2006].  

2.6.3 Perceptron-based Technique 

2.6.3.1 Multilayer Perceptron Neural Network 

The multilayer perceptron is known as an artificial neural network (ANN) structure and 

a nonparametric estimator that can be used for classification and regression. A neural 

network is a compound of linked input/output units in which every link has an 

associated weight. Adjusting the weights is the core phase of learning for predicting the 

correct class label of available input tuples. A feed-forward multilayer perceptron 
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(MLP) is a topology of the standard ANN, that a back propagation algorithm performs 

learning on [Han & Kamber, 2006]. In order to predict the class label of tuples, the back 

propagation algorithm performs learning on a multilayer feed-forward neural network 

iteratively. This network encompasses an input layer, one or more hidden layer and an 

output layer as shown in figure 2.3. Each layer consists of a number of units. The input 

layer is associated with the three variables            in the training dataset which 

concurrently feed into this layer. They pass through the input layer and, after weighting, 

feed to a second layer which is called neurolink units or the hidden layer. Afterwards, 

the output of the hidden layer units can be input to another hidden layer and so on. The 

number of hidden layers might vary and the weighted outputs of the last hidden layers 

are input to units composing the output layer to produce the network prediction for 

considered data (         .  

The network is named feed-forward because none of the weights cycles back to input 

units or other units of previous layers. Classification by back propagation is the most 

applicable neural network learning algorithm in various fields. Back propagation learns 

by iteratively analysing the training dataset and comparing the network`s predictions for 

every tuple with the actual known target value this is either a class label of the training 

tuple from classification tasks or a continuous value for prediction problems. 

 

Figure 2.3 The architecture of a Multilayer perceptron neural network with one input, hidden 

and output layer, adapted from [Han & Kamber, 2006]. 
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For every input variable, the weights are changing to minimize the mean squared error 

which is the difference between the neural network prediction and the actual target 

value. More precisely, the back propagation algorithm has three major stages as 

follows: 

 Weight initialisation in the network with small random numbers varies from, for 

example, -1.0 to 1.0, or -0.5 to 0.5 when each unit has its own related bias.  

 Propagation: the training data which feeds to the network`s input layer. For 

every input unit like  , the output    is equal and the same as its input   . That is, 

there is no change in the input layer. Afterwards, the net input and output for 

each unit in the hidden and output layers are computed; for unit   in a hidden or 

output layer, the net input     to unit for unit   in a hidden or output layer, the net 

input     to unit for unit   is:  

                                   (2.1) 

Where,     is the weight of the connection from unit i in the former layer to unit 

j,    is the output of unit i from the former layer, and    is the bias of the unit. 

Every unit in the hidden and output layers utilizes its net input and then applies 

an activation function to it; this function can be either sigmoid or logistic and    , 

the output of unit j, is computed as: 

                  
 

      
                    (2.2) 

Where    is the net input    to unit  . After calculating    for each hidden layer, 

the output layer produces a networks prediction.  

 Backpropagate the error where the error is propagated backward by updating the 

weights and biases to reflect the error of the network‟s prediction.  
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Neural networks have the critical weakness of being „„black box‟‟ syndrome in which 

their models have no coefficients that can be interpreted clearly. These models therefore 

have a limited power of identifying possible relationships among variables. Although 

several works has been done to improve this weakness of ANNs by using sensitivity 

analysis or rule extraction, still this method suffers from black box‟‟ nature 

[Lee&Abbott, 2003]. 

2.6.3.2 Radial Basis Function 

A radial basis function network (RBFN) is an artificial intelligence network in which its 

activation function is simply radial basis in a linear combination [Marsland, 2009]. This 

type of network was designed to view a problem in curve-fitting (approximation) and 

high dimensional space. The real inspiration behind the RBF technique is finding a 

multidimensional function that offers the best fit to the training tuples and then applies 

this multidimensional surface to interpolate the test data through regularization. In other 

words, the radial basis function breaks traditional interpolations into multidimensional 

space. In this category of neural networks, a set of functions that create a random basis 

for the input attributes compose the hidden units.  

Basically, the radial basis function network comprises of three distinct layers. The input 

layer is the set of input pattern (vectors). The second layer is a hidden layer and the third 

layer is the output which is network‟s response to the activation function applied to the 

input layer. The transformation process from the input layer to the hidden layer is 

nonlinear whereas it is linear from the hidden space to the output layer. Gaussian 

activation is a function which is used in the neurone structure of RBFN, meaning that 

normalising the input vectors is crucial here. In this case, every input that enters the 

neuron is assessed regarding whether it should be fired based on the distance between 
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the weights and specific input in weight space. Indeed, these nodes are the hidden layer 

connecting up some output nodes in a second layer. If weights were added from every 

hidden (RBF) neuron to a set of output nodes, the RBFN would be built.  

There are similarities between MLP and RBFN since these two supervised learning 

algorithms are good at providing a universal approximation; they can even be turned 

from one to another due to their neuron firing rules style which is based on distances 

and inner product for RBFN and MLP respectively. There are, however, some 

differences between them as the MLP applies the hidden nodes to divide the space by 

hyperplanes which are global, whereas the RBFN uses them to match functions locally. 

In contrast to the MLP, RBFN never has more than one layer of non-linear neurons and 

the given input to the perceptron is the nonlinear functions of the tuples. Interestingly, 

in an RBFN, for an input a number of the nodes will activate based on how close they 

are to the input and the combination of these activations will drive the network to decide 

how to respond properly. RBFN is significantly quicker than MLP because RBFN does 

not compute gradients for the hidden nodes. In the hidden layer of RBF, a nonlinear 

representation of the inputs can be found whereas the output layer intends to find a 

linear combination of those hidden nodes which are responsible to classification results. 

Hence, in the training process of RBFN, the RBF nodes should be positioned initially 

and afterwards the activation of these nodes to train the linear outputs should be applied 

[Marsland, 2009].  

In the process of radial basis function development, setting the centers randomly to the 

training inputs is the simplest method but this approach is prone to overfitting. That is 

why clustering is applied to learn the training patterns leading  into categories based on 

some similarity measurement and then assigning nodes to each cluster. Radial basis 

functions are slow to train and this is in contrast to preference of RBF over MLP 
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because of its fast learning achieved by combining an unsupervised method with a 

supervised one [Mehrabi et al., 2009]. 

2.6.4 Statistical Learning Algorithm  

2.6.4.1Logistic Regression  

Logistic regression is an algorithm that constructs a separating hyperplane between two 

sets of data by using the logistic function to express distance from the hyperplane as a 

probability of dichotomous class membership:   

)...( 3322110
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1
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In this equation,     symbolizes discrete or continuous predictor variables with numeric 

values; in the case of being dichotomous they are, for example, zero for a boy and one 

for a girl. The constants                  are the regression coefficients estimated from 

training data which are typically computed by using an iterative maximum likelihood 

technique. Normally, this formula‟s justification is that the log of the odds, a number 

that goes from    to + , is a linear function. Particularly by using this model, stepwise 

selection of the variables can be made and the related coefficients calculated. In 

producing the LR equation, the statistical significance of the variables used to be 

determined by the maximum-likelihood ratio. It has been highlighted that logistic 

regression provides an effective way of estimating probabilities from dichotomous 

variables.  

2.6.4.2 Bayesian Analysis 

Generally, Bayesian classifiers are statistical approaches capable of predicting class 

membership likelihoods like the probability of the training set belonging to a specific 

(2.3) 
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class.  Bayesian classification is based on Bayes theorem and this classifier is known for 

its high accuracy and speed when applied to large data collection.  

2.6.4.2.1Bayes Theorem 

The name of Bayes theorem originates from Thomas Bayes who studied probability and 

decision theory during the 18
th

 century [Han & Kamber, 2006]. Let   be a training 

dataset which is described by measurements made on a set of n attributions; H is the 

hypothesis, like the data tuple   belong to a specified class C. Bayes theorem produces 

a way to calculate the probability P(H| X) from P(H), P(X|H), and P(X) as shown in the 

following equation: 

        
          

    
                (2.4) 

When P (H|X) is the probability of H conditioned on  .  

P (X|H) is the probability of X conditioned on H.   

P (H) is the probability of H. 

P(X) is the probability of X.  

2.6.4.2.2 Simple Bayesian Classifier 

 Let A be a training dataset including tuples and their associated class labels. Every tuple 

includes an n dimensional attribute vector                ; thus n measurements 

made on the tuple from n attributes respectively    ,   ,...,    . If we have m 

classes   ,  , ...,    for tuple X, the classifier will predict that X belongs to the class 

having the most probability conditional on X. In other words, the Bayesian classifier 

predicts that tuple X  belongs to the class    if and only if   

                              for   1                              (2.5) 
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Hence, P(       ) should be maximised and the class    would be the maximum 

hypothesis according to Bayes theorem as in the following equation: 

                   P (        
            

    
                                            (2.6) 

When      is a constant for every class, we have              to be maximised. The 

        calculation might be particularly complicated in computing and hence 

expensive. In order to reduce computation burden in the         evaluation, we 

presume that the values of the attributes are conditionally independent of each other 

based on the class label of the tuple. Thus, 

       =       
 
         =         *         *...*                (2.7) 

when    refers to the value of attribute    for tuple X. It is easy to estimate the 

probabilities                               by some simple calculation from the 

training tuples. Finally, to predict the class label of X,         *       is calculated for 

every class    and the class label of tuple X is    if only if we have  

                                 for                     (2.8) 

That is, the predicted class label is the class    when       )*    ) is maximum.  

2.6.4.2.3Bayesian Networks 

The Bayesian Network, known also as belief networks and probabilistic networks, 

provide a graphical model of casual and unconditional relationship from which learning 

can be performed through specifying joint conditional probability distributions and 

allowing class conditional independencies to be defined between subsets of attributes 

[Alpaydin, 2004]. There are two essential features that define a Bayesian network: a 
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directed cyclic graph in which each node denotes a random variable, either discrete or 

continuous values, as well as a set of conditional probability tables.  

Probabilistic dependence is shown by arcs in the graphs (figure 2.4); if an arc is drawn 

from a node   to a node  , for example, then   is a parent to the immediate predecessor 

of    and   is a descendent of   ; every attribute is conditionally independent of its non-

descendent in the graph given its parents. Hence, each variable has one conditional 

distribution                  where parents     are parents of   . For instance, from 

the CPT represented in figure 2.4, we see that: 

                                                        

                                                     

Let           ) be a data tuple related to the correspondent attributes           . 

Given that every attribute is conditionally independent on its nondescendent and parents 

in the network graph, the following equation is a representation of joint probability 

distribution.  

                    
 
                                (2.9) 

when the values for                      are related to the entries in CPT for    ; 

and              ) is the probability of a specific combination of values of X. 

Probability distribution, with the probability of each class, may be the output of this 

classification process. 

The main weakness of BNs is their limitation to handle discrete variables, redundant 

and irrelevant attributes. They are not good at accuracy in general and suffer from the 

limitations of applying statistical methods in model building [Kotsiantis, 2007]. 
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Figure 2.4 A simple Bayesian network: (a) is a casual model demonstrated by a directed acyclic 

graph. (b) the conditional probability table for the values of the variables Lung Cancer(LC) 

showing each possible combination of the values of its parent nodes, Family History (FH) and 

smoker (S), adapted from [Han& Kamber, 2006].  

 

 

 

2.6.5 Support Vector Machines 

Support vector machines (SVM) are a new classification method for both linear and 

nonlinear data. SVM applies nonlinear mapping to transform the original training tuple 

into a higher dimension. Inside this new dimension, it seeks the optimal linear 

separating hyperplane which is in fact the decision boundaries separating the tuples 

based on their class labels.  

The SVM learning process takes a very long time and is known as an extremely slow 

method. However, it is highly accurate due to its capability of modelling complex 

nonlinear decision boundaries. Furthermore, it is much less prone to overfitting than 

other techniques [Han& Kamber, 2006].  
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2.6.5.1 Support Vector Machine Algorithm 

Let the dataset A be considered as      ,   ),    ,   ) , …,      ,     ), where    ) is the 

set of learning data with correspondent class label    . For a two-class related training 

dataset, for instance, every    can take either +1 or -1. This could also be generalized to 

n dimensions and the SVM duty is to find the best dividing lines that can be drawn and 

divide all of the tuples of every class from the others. For multidimensional classes the 

hyperplanes should be found as decision boundaries. This can be arranged by defining 

the maximum marginal hyperplane (MMH) since the hyperplanes with the larger 

hyperplane are more accurate at classification. Figure 2.5 depicts the role of MMH and 

hyperplanes to determine class and decision boundaries. This separating hyperplane can 

be defined as: 

 

                                                                 (2.10) 

Where w is a weight vector like                 ; n is the attribute number, b is a 

scalar and termed bias. For two input attributes like    and    the above separating 

hyperplane can be rewritten when we replace    for b: 

                                                       (2.11) 

Hence, any point that is positioned above the dividing hyperplane satisfies  

                                                          (2.12) 

And any point that would be under the dividing hyperplane should satisfy  

                                                            (2.13) 

Thus, the weights can be adjusted in order to define the margin‟s side by hyperplane 

and for a two-class data tuple: 
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                         :                            = +1                 (2.14) 

                                               (2.15) 

It means that any tuple that is placed on or above    falls into class +1 and any tuple 

that is on or below    belongs to class -1. Combining the two above equations we have: 

                                                          (2.16) 

Any training tuples that fall into    or    satisfy equation 2.16 and are named support 

vectors which are equally close to the MMH. After training the support vector machine, 

we need to use this tool to classify test tuples using the following equation:  

 

                    
 
        

                             (2.17) 

Where,    is the class label of support vector   ,  
  is a test tuple.    and    are numeric 

parameters defined by the optimization or SVM algorithm automatically, and l is the 

number of support vectors.  

In SVM, the number of support vectors defines the complexity of the learned classifiers 

compared with the dimensionality of the data. Thus, using an SVM gives less 

probability of overfitting than some other techniques. An SVM with a small number of 

support vectors can have good generalization even in the case of multidimensionality of 

the available data.  
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Figure 2.5 Maximum Margin in a support vector machine structure, adapted from 

Kotsiantis (2007). 

 

 

2.7 Unsupervised Learning 

In unsupervised learning, there is a set of training data tuples with no collection of 

labelled target data available. The aim of unsupervised learning is discovering clusters 

of close inputs in the data where the algorithm has to find similar data and the aim isn‟t 

confirming that certain data points belong to one class and others to a different class. In 

unsupervised learning all variables are treated the same way without the difference 

between dependent and independent attributions.  

2.7.1 Cluster Analysis 

The most important technique of unsupervised learning is cluster analysis which takes 

ungrouped data and applies automatic techniques in order to put them into groups. 

Cluster analysis, also called segmentation analysis or taxonomy analysis, creates groups 
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or clusters of data. Clusters are formed in such a way that objects in the same clusters 

are very similar and objects in different clusters are very distinct. 

Essentially, clustering is a type of learning by observation rather than examples. There 

are two main approaches for clustering analysis: hierarchical and nonhierarchical 

clustering. Hierarchical clustering, which is the most commonly used technique, 

organizes data in a nested sequence of groups that can be displayed in a tree-like 

structure. Another technique is K-mean clustering; it is a partitioning method, its 

function partitions data into k mutually exclusive clusters and returns the index of the 

cluster to which it has assigned each observation. Unlike hierarchical clustering, k-mean 

clustering operates on real observations rather than the average set of dissimilarity 

measures. It generates a single level of clusters. However, hierarchical clustering groups 

data over a variety of scales by creating a cluster tree. The tree is not a single set of 

clusters but rather a multilevel hierarchy, where clusters at one level are joined to 

clusters at the next level. This allows the user to decide the level or scale of clustering 

that is most appropriate for the given application. More details about clustering 

approaches are described in the next chapters.  

2.8 Model Evaluation  

A comparison framework is a critical step in deciding which specific learning algorithm 

should be chosen for the given prediction and classification task. Once the initial testing 

is judged to be satisfactory, the classifier with the duty of mapping from unlabeled 

instances to predict classes would be accessible for regular use.  

Generally, there are three estimation methodologies for classification models. These 

include: k-Fold Cross Validation, Bootstrapping & Jackknifing and Simple Split 

(Holdout) [Olson & Delen, 2008]. 
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In the cross validation method, subsets of the data collection is put aside for validating 

purposes and the remaining data are used as a training set to develop the predictive 

model. Then, the model is applied for prediction using the validation set. Through using 

the developed model the validation set is predicted. This could be regarded as a 

measurement of prediction accuracy. In the k-Fold cross validation approach, the dataset 

is divided into K subsets where each is held out in turns as the validation set.  

In bootstrapping & jackknifing properties of an estimator (such as its variance) might be 

measured through sampling from an approximating distribution; the approximating 

distribution can be either empirical or an independent and identically distributed 

population. In the case of independent distribution, a number of resamples of the 

observed dataset with the same size are created. They are constructed by random 

sampling with replacement from the original dataset.  

The simple Split (Holdout) method divides the dataset into three: two-thirds for training 

and the other third for testing randomly. This split estimation methodology partitions 

the data into two mutually exclusive subsets where the training set is used by the 

classifier and the built model is then tested on the holdout set. 

Performance metrics for predictive modelling evaluate the inducer accuracy through a 

number of approaches such as prediction accuracy by coincidence matrix (classification 

matrix or contingency table). 

2.8.1 Prediction Accuracy, Recall, Precision & F-measure 

Sensitivity, specificity and F-measure are also utilized for assessing as well as 

calculating other aggregated performance measures like area under the ROC curve. The 

coincidence matrix structures the basis of these common matrixes so that for any 

classifier, four prediction outcomes are normally possible. If the instance is positive and 

http://en.wikipedia.org/wiki/Independent_and_identically_distributed
http://en.wikipedia.org/wiki/Random_sampling_with_replacement
http://en.wikipedia.org/wiki/Random_sampling_with_replacement
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it is also classified as positive, it is calculated as a true positive; however, if it is 

classified as negative, it is termed as a false negative. On the other hand, if the instance 

is negative and it is classified as negative, it is labelled as a true negative; if it is 

classified as positive, it is counted as a false positive. Given a classifier and a set of 

instances (the test set), a two- by- two coincidence matrix can be generated indicating 

the dispositions of the set of instances [Olson & Delen, 2008].  

The prediction accuracy is the most precise measurement of classifier evaluation. 

Basically, it is the percentage of correct prediction (true positive + true negative) 

divided by the total number of predictions. Other parameters like sensitivity        , 

specificity          , positive predicted value         , and negative predicted 

value         can simply be calculated through the presented numbers in a 

contingency table and following formula. However, in machine learning, sensitivity is 

simply termed recall (r) and the positive predicted value is called precision. F-measure, 

another algorithm evaluator, is the harmonic means of precision and recall and the 

higher its value reveals better predictive performance. Figure 2.6 is the easy way to 

understand true positive (    , true negative (   , false positive (   , false negative 

     and consequently sensitivity and specificity. Furthermore, equation 2.18, 2.19, 

2.20, and 2.21 present how these scales are calculated. 
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Figure 2.6 A simple coincidence matrix demonstrating the TP, FP, FN, and TN which are 

applicable to calculate sensitivity, specificity, prediction accuracy, recall, and F-measure and 

drawing area under ROC curve, adapted from [Olson & Delen, 2008]. 

 

 

2.8.2 ROC Curve, Area under Curve (AUC) 

Moreover, another performance evaluation technique for classification called the ROC 

curve (Receiver Operating Curve) has been applied for visualizing, organizing and 

selecting classifiers based on their performance. They are two-dimensional graphs in 

which the true positive (TP) rate is plotted on the Y axis and the false positive (FP) rate 

is plotted on the X axis. Basically, a ROC curve, which is a depiction of a classifier‟s 

performance, is capable of both comparing classifiers and judging the fitness of a single 

classifier simply by reducing the ROC measures to a single scalar value representing the 

expected performance. 

The area under the ROC curve, abbreviated as AUC, is a portion of the area of the unit 

square. This value varies between 0 and 1.0. Perfect accuracy has a value of 1.0 and a 

classifier with an AUC of 0.5 would be a poor classifier. To calculate AUC two 
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common methods are applied; one is on the basis of the trapezoid‟s construction under 

the curve as an approximation of the area, and the other method utilizes a maximum 

likelihood estimator to fit a smooth curve to the data points. Both methods can estimate 

area and standard error to compare different classifiers. 

2.9 Influential Factors for Tuberculosis Treatment Course Non-

compliance  

Several factors play significant roles in adherence to anti-TB chemotherapy including 

the patient receiving the drugs, the doctor prescribing the drugs, the nurses and other 

healthcare staff `s supervision, the patient‟s follow-up progress and, finally, the 

selection of appropriate chemotherapy regimens and the organizing drug supplies 

programme. In spite of various interventions aimed at improving treatment completion, 

patients‟ independent adherence to drug treatment is still a vital determinant in terms of 

undesired consequences of noncompliance to treatment courses, like relapse and drug 

resistance occurrence. According to the study [Sbarbaro& Sbarbaro, 1994] methods like 

traditional health education, the consideration of cultural influences, behaviour analysis 

and emphasis on preventing physicians from misleading patients enhance the behaviour 

of TB patients, encouraging them to complete their treatment courses and get cured. 

However, it has been documented that the patient should not be solely charged with the 

task of adherence; adherence is the outcome of a process which has a long chain of 

responsibilities. Some studies put the duty of making sure that the patient has received 

the full course of treatment on the physician`s shoulders because mutual cooperation is 

required between the physician and the public health department [Sbarbaro & Sbarbaro, 

1994]. This necessity of close mutual aids among various agents including patients and 

physicians has raised awareness of adherence as a complex behavioural issue influenced 

by many factors. Because of being multifaceted and complicated, it is still difficult to 

http://www.ncbi.nlm.nih.gov/pubmed?term=
http://www.ncbi.nlm.nih.gov/pubmed?term=
http://www.ncbi.nlm.nih.gov/pubmed?term=
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identify non-adhering patients. Recently, researchers have focused on investigating 

patients` features to find effective solutions for the lack of a comprehensive and holistic 

understanding of barriers to and facilitators of treatment adherence [Thiam et al., 2007]. 

The main aim of this research is to spot cases which are at a high risk of non-

compliance. In this section more investigations are reviewed to highlight the significant 

risk factors for patient non-adherence to the treatment course. Also, the correlation 

between applied patient features in this study and the outcome of the tuberculosis 

treatment course will be investigated in the following chapters. Those significant risk 

factors create a golden opportunity to develop a predictive model which can forecast the 

prospect of applying chemotherapeutic regimens for each patient and define the level of 

supervision and support required, as the WHO has emphasised in the “Stop TB” plan. 

Munro et al. (2007) in a systematic review study of qualitative research categorized the 

influential risk factors which effect adherence to tuberculosis treatment. They listed 

those factors as follows: 

 Structural Factors such as poverty, gender, and discrimination 

 Patient Factors like motivation, knowledge, beliefs,  attitudes and interpretations 

of illness and wellness 

 Social Context 

 Health Care Service Factors 

Inside these main categories, there are several factors which have been addressed by a 

number of studies. A retrospective review [Menzies et al., 1993] investigated the factors 

associated with compliance in treatment of tuberculosis by using medical and nursing 

records of TB patients treated between 1987 and 1988. The general therapy completion 

rate was 59% among identified TB patients. Compliance with preventive therapy was 

highest whereas the rate was lowest for those cases identified through a workforce 
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screening survey (P<0.01). The length of the treatment course was shorter for those 

patients who were initially hospitalised, or had a better understanding of the treatment 

course. Their therapy lasted 6-9 months rather than 12 months. This was also the case 

for patients who returned for follow-up sessions during 4 weeks of onset of therapy 

(P<0.01). In summary, compliance can be enhanced by improving patient knowledge, 

providing closer follow-up and reducing the length of therapy, especially for those at 

lower risk of re-activation. Additional compliance enhancing interventions can be 

targeted to those patients with suboptimal compliance who can be accurately identified 

early in the course of therapy.  

Another study [Burman et al., 1997] showed that patients who had not completed their 

treatment course were more likely to have a poor outcome (32% vs. 3.3%). Furthermore 

two risk factors, alcohol abuse (OR= 3.0, CI=1.2 to 7.5, P = 0.02) and homelessness 

(OR= 3.2, CI=2.5 to 5.8, P = 0.004), were introduced.  

Tangüis et al. (2000) conducted an epidemiological study to determine the predictive 

factors of the non-completion of tuberculosis (TB) treatment among 2,201 HIV-infected 

patients where 76.2% of them were intravenous drug users (IDU). This study was 

conducted from 1987 to 1996 in Barcelona by calculating the    test for bivariate 

analysis and developing a logistic regression model which revealed living in 

neighbourhoods of a low socio-economic level (OR=1.61, CI=1.22 to 2.13), 

homelessness (OR= 3.56, CI= 2.01 to 6.31), and history of TB (OR =1.61, CI= 1.12 to 

2.33) as risk factors for quitting TB treatment. This study concluded that social and 

health factors influence non-completion of TB treatment in HIV-infected patients and 

patient support and supervision can improve treatment completion. 
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In 2006, a prospective survey [Shieh et al., 2006] aimed to predict Non-Completion of 

treatment for latent tuberculosis infection. The influence of factors like certain health 

attitudes, lifestyle, clinical and regimen association barriers were assessed by using    

and logistic regression analysis. Two independent predictors of non-completion were 

found including low risk awareness of developing active TB in the absence of LTBI 

treatment (OR=0.31, CI=0.10 to 0.50, P  0.007), and not wanting venipuncture 

(OR=0.43, CI=0.22 to 0.69, P   0.015). These two predictors accounted for 75% of 

Cases of non-completion in total. In conclusion, this study suggests that the predictors 

of latent tuberculosis treatment non-completion are identifiable from the first visit. 

Individuals, who are at a high risk of contracting TB, can be targeted to minimize 

difficulties, they could be educated about TB and diagnostic tests with improved 

specificity could be used on them. 

A longitudinal non-concurrent cohort study [Vieira & Ribeiro, 2008] to determine 

treatment noncompliance rates among patients participating in a national tuberculosis 

control programme in the city of Carapicuíba in Brazil and to recognize the variables 

related to noncompliance was carried out in 2008. There were two patient groups; the 

first cohort contained 173 patients with tuberculosis who were self administrating 

treatment and the second consisted of 187 patients with tuberculosis who were being 

treated through DOTS. Besides the results verifying a significant reduction in the 

noncompliance rate from 13.3% to 5.9% because of applying DOTS (P < 0.05), four 

following variables were found to be associated with treatment noncompliance in the 

case of self administration therapy: being an unregistered worker (relative risk (RR) = 

3.06); retreatment (RR = 2.73), alcoholism (RR= 3.10), and no investigation of contacts 

(RR = 8.94). This research emphasised the ability of DOTS to decrease the rate of non-

compliance and produce better treatment outcomes. 
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Another piece of research [Machado et al., 2009] from Brazil, investigated the risk 

factors involved with the failure to complete a course of latent tuberculosis infection 

treatment. To meet this end, household contacts of patients hospitalized with pulmonary 

TB for 6 months after they initiated treatment with isoniazid (INH) were followed. 

53.5% of household contacts completed the 6-month regimen and the risk of treatment 

non-compliance was significantly higher in household contacts with side effects to 

isoniazid treatment (RR=2.69, CI=1.80 to 3.2, P= 0.01). Furthermore, patients who had 

difficulty travelling to hospital due to transportation issues were at a higher risk of not 

completing their treatment (RR =1.8, CI=1.5 to 1.9, P =0.04). To sum up, completion 

of latent tuberculosis infection treatment was most affected by medication intolerance 

and commuting difficulties for follow-up visits.  

In 2009, a retrospective epidemiological study [Rakotonirina et al., 2009] conducted 

analysing data relating to 442 tuberculosis cases in Antananarivo to recognize the risk 

factors of treatment default. The result of this study revealed that gender is a risk factor 

since males give up treatment more than women (OR=1.81 , CI=1.13 to 3.03); also, 

patients younger than 30 years old were more likely to quit the follow-up of their 

treatment (OR=3.43 CI=1.16 to 10.15). Hence, health workers and physicians should be 

more aware and alert regarding young male TB patients presenting these characteristics 

and should adjust the methods and means for follow-up according to these risk factors. 

Finally, Yew (1999) has focused on patient characteristics which are more commonly 

associated with non-adherence like homelessness, alcohol or substance abuse, 

behavioural problems, mental retardation, and lack of social or family support. This 

study also highlighted the fact that identifying non-adherent patients is still a dynamic 

phenomenon and complex issue affected by a range of factors from patients‟ 

demographic features to qualities of the social and economic environment.  

http://www.ncbi.nlm.nih.gov/pubmed?term=
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2.10 Predictive System in the Medical Domain 

2.10.1 The Application of Classification Algorithms in Medical Areas  

The increasing number of electronic data collections containing medical data has 

resulted in growing concentration on their utilization for generating valuable knowledge 

discoveries through machine learning techniques. Building classification models via 

learning from examples is one of the most common ways to find new knowledge. This 

is done by taking each instance and assigning it to a particular class label and then 

predicting categorical class labels including discrete and nominal.  

In this section, a brief summary of applying six machine learning classifiers in medical 

areas – neural networks, decision trees, Bayesian networks, radial basis function, 

logistic regression, and support vector machines – has been given.  

2.10.1.1Classification Decision Tree to Predict Medical Outcomes 

In medical decision making where decisions must be made effectively and reliably in 

many situations such as the classification and diagnosis of disease, the decision tree 

(DT) has been introduced as a common tool. It provides high classification accuracy 

with a simple representation of produced medical knowledge. Some examples of the 

many DT applications in medicine are detailed below. 

In the area of emergency medicine, a study [Tsien et al., 1998] was conducted to 

diagnose at an early stage myocardial infarction (MI) in the patients complaining of 

chest pain in the emergency room (ER). Because of the potential ability of decision 

trees to create simple but accurate decision aids, this technique was examined. The 

classification decision tree was developed to predict the probability that a patient with 

chest pain has an MI based solely upon the data available at the time of presentation to 
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the ER. In this study, training and testing sets which came from a set of data collected in 

Edinburgh, Scotland were applied for model building and validity checking 

respectively. The results obtained showed that the decision tree performed well with 

ROC curve areas of 94.04%. This study highlights the classification trees` advantages 

and it shows accuracy as logistic regression does in this case.  

In the field of maternal health and obstetrics, decision trees were used to predict 

cesarean delivery in a historical cohort study [Sims et al., 2000] of 24,661 records of 

women who had delivered live-born singleton neonates from 1995 to 1997 in Pittsburgh 

Hospital with 78 variables. Using 16 variables significantly related to the outcome, six 

different methods of decision trees were developed. The decision tree rule-based 

method was applied to the 50% of the sample to develop the predictive training model`s 

on the basis of the risk factors found for cesarean delivery and the remaining 50% were 

used to test the model`s accuracy. Using the C4.5 decision tree, the area under the curve 

for nulliparous and parous women was 0.82 and 0.93 respectively. It has been 

concluded that decision tree models can be used to predict cesarean delivery based on 

promising model accuracy and being small enough to be intelligible to physicians; it is 

because of their ability to disclose causal dependencies among variables, handle missing 

values easily, and predict the given outcome (cesarean deliveries) despite the absence of 

categorized risk factor variables. 

In 2002, Lazarescu and colleagues [Lazarescu et al., 2002] investigated the machine 

learning application to classify glaucomatous progression into one of two possible 

classes including stable and progressive glaucoma. In this work in addition to 

introducing new influential factors for the considered outcome, stable glaucoma patients 

and progressive glaucoma patients were distinguished at the earliest possible stage of 

the disease. This allows ophthalmologists to decide whether or not the alternate 
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treatments should be followed in order to preserve as much of the patient‟s sight as 

possible. In this work, 12 predictors of glaucomatous progression were found and 

related instances were split into training and testing sets. In order to classify the 

available data, the C4.5 software was used and after 50 times, each time with applying 

different random training and testing sets, a C4.5 decision tree with an average of 15 

nodes using 7 features consistently was generated. To ensure the accuracy of the created 

decision tree, precision and recall were calculated and were 95% and 82.5% 

respectively.    

Then decision tree application was reported [Pavlopoulos et al., 2004] to differentiate 

the diagnosis of Aortic Stenosis (AS) from Mitral Regurgitation (MR) via heart sounds. 

As for the background of this study, it has been explained that since the new 

technologies are costly, large in size and complex in operation; they are not appropriate 

for use in rural areas, homecare and primary healthcare set-ups. As well, the majority of 

internal medicine and cardiology training programmes underestimate the value of 

cardiac auscultation, so junior clinicians are not effectively trained in this field. 

Therefore efficient decision support systems would be very useful for supporting 

clinicians to make better heart sound diagnosis. Thus, this study pursues a rule-based 

method development based on decision trees. To meet this end, a collection of 84 heart 

sound signals was analysed, containing 42 heart sound signals with "clear" AS systolic 

murmur and 43 with "clear" MR systolic murmur. After pre-processing the first and 

second heart sounds, a total of 100 features were defined for each heart sound. 

Afterwards, a decision tree classifier with a training set of 34 records and a test set of 50 

records was developed. The results of validity tests showed 90% classification accuracy 

when 45 correct/50 total records. The Classification accuracy of the decision trees, both 

in terms of partial classification and overall classification did not significantly change 
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after pruning the decision tree. This work demonstrated that the decision tree algorithm 

can be effectively utilized as a basis for a decision support system to help young and 

inexperienced clinicians to make better heart sound diagnosis in health centres which 

are not-highly equipped. 

2.10.1.2 Applying the Bayesian Network to Predict Medical Outcomes 

Bayesian Networks (BN) have been used to acquire expert knowledge in medical areas; 

they handle uncertainty and tackle missing data via inference techniques. Disease 

diagnosis, treatment selection, and prognosis prediction can be carried out using BNs. 

As an example, BN has been used [Reiz & Csato, 2009] to develop a system to predict 

the bypass surgical survival probability. This involved undertaking 66 medical 

examinations of 313 patients. A tree-like Bayesian Network is the optimal tool for 

classifying logical data where the most relevant cause corresponding to the survival 

chance should be selected. Results showed that BNs model with 75.71% prediction 

accuracy, performing even better than logistic regression with 63.50%.  

In terms of supporting medical decisions, online detection of Premature Ventricular 

Contraction beats (PVC) in electrocardiogram (ECG) records is another instance of BN 

application [De Oliveira et al., 2008]. PVC is a well known cardiac arrhythmia which 

can be analysed in standard ECG databases. BN with their ability to tackle uncertainty 

were applied to this task with its random character and random variables. After 

examining some topologies of static Bayesian networks, the one which was most 

suitable for the task was selected. The results produced verify that the combination of 

different ECG channels improves the performance of BN as classifiers and expresses 

the feasibility of using Bayesian networks as a tool to classify this type of signal as well.  
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2.10.1.3 Applying the Logistic Regression to Predict Medical Outcomes 

Multivariable logistic regression (LR) as a method of statistical analyses is a widely 

utilized multivariable technique for modelling dichotomous outcomes. In fact, this 

technique serves two purposes: firstly, predicting the outcome variable for new values 

of the predictor variables, and secondly, answering questions about the area under study 

as the coefficient of each independent variable clearly illustrates the relative 

contribution of that predictor to the dependent variable [Bagley et al., 2001]. The 

following highlights some of those medical applications.  

Through a retrospective cohort study [Dodek & Wiggs, 1998] a logistic regression 

model was developed to predict the outcome of post-hospital cardiac arrest along with 

assessing the validation, accuracy, sensitivity and specificity in numerous cut-off points. 

In this, available data were all from in-hospital cardiac arrests. The logistic regression 

model was created to estimate the probability of death before hospital discharge as a 

function of predictor variables including: patient and arrest descriptors, major 

underlying diagnosis, initial cardiac rhythm and time of year. Separate data collection 

was applied in order to model validation gathered from the same hospital in 1989-90. 

Optimal sensitivity and specificity for testing set have been 0.75 at a cut-off probability 

of 0.75. By using validation dataset, optimal sensitivity and specificity are 0.6 at a cut-

off probability of 0.85. 

2.10.1.4 Applying Neural Networks to Predict Medical Outcomes 

Acute coronary syndrome (ACS) is a heterogeneous condition that varies from severe, 

for which immediate medical treatment is necessary, to minor for which patients are 

advised to rest at home. Research [Green et al., 2006] has been carried out to diagnose 

ACS patients using artificial neural networks (ANN). These were trained on data from 
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634 patients with symptoms of chest pain. Only data immediately available at patient 

presentation were examined, such as electrocardiogram (ECG) data. Overall 18 

variables consisting of 4 continuous and 14 discrete were available. Feed-forward 

multilayer perceptrons (MLP) with one hidden layer and no direct input-output 

connections were considered. The ANN ensemble approach together with ECG data 

after pre-processing by principal component analysis led to the result of an area under 

the ROC curve of 80%, sensitivity of 95% and specificity of 41%. 

Another study [Garcla-Perez et al., 1998] investigated the application of neural 

networks for differential diagnosis of Alzheimer`s Disease (AD) and Vascular Dementia 

(VD). There are great difficulties in diagnosing different types of dementia and 

Alzheimer‟s and vascular dementia are often mixed up as their symptoms are very 

similar. This study applied neural network technology to assist neurologists for 

differential diagnoses of AD and VD. A three layer feed-forward neural net which was 

trained over 65 hours in order to reach the minimum average error of 0.0000002 with 

the back propagation learning algorithm. The number of neurons in the input layer was 

46 based on the number of characteristics for each subject while the output layer was 

defined by one neuron, as the differential diagnosis might only be AD or VD. To check 

the model validity through using testing set, 82.6% correctly classified rate was 

calculated. 

In 1999, an investigation [El-Solh et al., 1999] used NN technology on tuberculosis 

patients‟ information to predict active pulmonary TB. It has been pointed out that 

identifying those with contagious active TB, isolating them over the contagious period 

and treating them effectively are the crucial aspects of the TB infection control 

programme. These current approaches to TB control have faced several difficulties. 

Thus, a prediction model to identify patients with active TB can play a substantial role.  
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It can be developed through using the clinical and radiographic information of TB 

patients besides modelling techniques to enhance the physician‟s prediction ability. For 

this non-concurring prospective study, 21 distinct clinical and radiographic parameters 

of 563 TB patients were used as a training set to develop the predictive model and 119 

cases were employed to check the model`s validity. The three–layer neural network 

structure consisted of an input layer, a hidden layer and an output layer where the input 

patterns comprised three groups: demographic variables, constitutional symptoms and 

radiographic attribution. The model significantly outperformed the physicians‟ 

prediction, with calculated c-indices (6 SEM) of 0.947   0.028 and 0.61   0.045, 

respectively (p < 0.001). When it was applied to the validation group, the corresponding 

c-indices were 0.923   0.056 and 0.716   0.095 respectively. The obtained findings are 

interesting as the artificial neural network can recognize patients with active pulmonary 

TB more accurately than physicians‟ clinical assessment.  

In research [Silva et al., 2008] aimed at linking organ failure to adverse events, a neural 

network was able to develop a promising model which recognized early identification of 

organ impairment as a key issue. The importance of the final result of this research 

relates to the fact that sequential organ failure assessment (SOFA) is an expert-driven 

score that is widely used in European ICUs to quantify organ disorder and constitutes a 

complementary data-driven approach on the basis of adverse events defined from 

commonly monitored biometrics. This study investigated the impact of these events 

when predicting the risk of ICU organ failure. A large collection of data comprising 

25,215 daily records taken from 4,425 patients and 42 European ICUs was used to form 

input variables including mixed cases (i.e. age, diagnosis, admission type and admission 

from) and adverse events were defined from four bedside physiologic variables. The 

output was the organ status (normal, dysfunction or failure) of six organ systems 
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measured by the SOFA score. To develop the multilayer perceptron model, processing 

neurons were grouped into layers and connected by weighted links. The network was 

activated by feeding the input layer with the input variables and then propagating the 

activations in a feed-forward method through the weighted connections, over the entire 

network. With one hidden layer, the network output is the probability estimate of the 

rate of organ failure. To check the validity by a 5-fold cross-validation scheme, the area 

under the ROC curve (over all organs) was 64%, 69% and 74% for the dysfunction, 

normal and failure organ conditions, respectively. The ROC curve area for predicting 

renal failure was 76%. To sum up, adverse events obtained from bedside monitored data 

are important intermediate outcomes, contributing to a timely identification of organ 

dysfunction and failure during ICU length of stay. The results obtained demonstrated 

that it is possible to exploit neural networks to gain knowledge from easily obtainable 

data. 

The following table (2.3) presents a small number of common neural network 

applications in various medical areas. All the mentioned studies have been carried out 

for risk factor analysis, diagnostic and predictive problems. 
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Table 2.3 Details of multi-layer perceptron application for different classification tasks 

in various medical areas 

Application 
Learning 

Algorithm 
Network Structure 

Accuracy 

% 
References 

Skin disease diagnosis 

Back-

propagation 

 

Number of attributes:34 

Input layer: 6 neurons 

Hidden layer:1, 3 

neurons 

Output layer: 6 neurons 

90 
Chang & 

Chen, 2009 

Predict the presence of 

coronary artery disease 

Standard 

back-

propagation 

 

Subjects 1,245, 

variables: 8 

Input layer: 8 neurons 

Hidden layer:1,  

Output layer: 2 neurons 

79.3 

 

Kurt et al., 

2008 

Differentiate congestive 

heart failure and 

chronic obstructive 

pulmonary disease 

Back-

propagation 

 

Subjects : 266 

Input layer: 7 neurons 

Hidden layer:5,  

Output layer: 2 neurons 

83.9 

 

Mehrabi 

 et al., 2009 

 

Risk factor analysis for 

Salmonella 

Typhimurium 

infections 

Back-

propagation 

 

 

Variables: 18 

Hidden neuron:56 

neurons 

89.67 

 

Yang et al., 

2006 
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2.10.1.5 Applying the Radial Basis Function to Predict Medical 

Outcomes 

There is not much research about the application of radial basis functions in medical 

areas. One of the rare reports [Mehrabi et al., 2009] is about the application of radial 

basis function neural networks alongside multilayer perceptron in differentiating 

between chronic obstructive pulmonary and congestive heart failure diseases since these 

two conditions show similar symptoms. Data from 266 patients with 42 clinical 

variables was used in this investigation.  

The results showed that the radial basis function network with 6 neurons in the hidden 

layer and a threshold of 0.5174 performed well with sensitivity of 81.8%, specificity of 

88.4% and AUC of 0.924 ± 0.017. However, the neural network, with 5 neurons in the 

hidden layer and a threshold of 0.5739 was not so different with sensitivity of 83.9%, 

specificity of 86% and an area under the receiver operating characteristic curve (AUC) 

of 0.889 ± 0.02. Figure 2.7 illustrates that the radial basis function performed as well, or 

even better, than neural networks at differentiating congestive heart failure and chronic 

obstructive pulmonary disease.  
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Figure 2.7 ROC curve comparison of MLP & RBF, adapted from Mehrabi et al. (2009). 

 

 

 

 

 

2.10.1.6 Applying the Support Vector Machine to Predict Medical 

Outcomes 

The support vector machine (SVM) is established as a high performance algorithm for 

solving classification tasks in many fields such as in biomedical and medical areas. This 

has been verified by several studies, including the two discussed below.  

In the first example [Yu et al., 2010], the potential power of SVM as an approach for 

classifying individuals into groups defined by disease status has been tested for 

detecting persons with diabetes and pre-diabetes.  
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Data from individuals related to six years of cross-sectional representative samples 

which were taken from 1999 to 2004 and were analysed to develop and validate SVM 

models in two classification plans. Firstly, diagnosed or undiagnosed diabetes vs. pre-

diabetes or no diabetes and, the secondly, undiagnosed diabetes or pre-diabetes vs. no 

diabetes. The SVM models choose sets of attributes that would produce the best 

classification of individuals into the aforementioned diabetes groups. Different patients` 

features were applied to two different schemes; these included family history, age, race 

and ethnicity, weight, height, body mass index (BMI), and hypertension for the first one 

and two further variables, sex and physical activity, were incorporated for the second 

classification scheme. The area under the curve, as an accuracy measurement, showed 

83.5% and 73.2% for the first and second classification schemes respectively. This 

study has emphasised the SVM`s capability of yielding promising classification results 

using patients` characteristics in the medical domain, particularly for the detection of 

diabetic or pre-diabetic patients in certain populations. 

In another investigation [Jiang et al., 2007], the SVM was proven to be one of the most 

accurate classifiers with a good capability of fault-tolerance and generalization. This 

approach was applied to classify digital mammography, analysing 322 images of 

patients in three big categories: normal, benign and malign. The experimental results 

revealed that The SVM classifier performed by 92.94% classification accuracy. 

In summary, machine learning tools including DT, BN, LR, MLP, RBF, and SVM have 

played a crucial role in solving prediction tasks in the medical domain. Their 

application has yielded comprehensible, accurate and quick systems since every single 

one of them has specific features and outstanding capability. The similarity between 

tasks also may direct us to choose the appropriate technique to solve the problem of 

predicting the outcome of a course of tuberculosis treatment. 
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 2.11 Summary 

To sum up, not obtaining the desirable outcome from a course of tuberculosis treatment, 

which is either treatment course completion or getting cured, may lead to serious 

difficulties like multidrug-resistance TB which is increasingly common in several 

highly populated countries around the globe. DOTS needs to be actively applied in 

practice by intensive supervision and support which has not always been available due 

to the cost involved. A decision support system able to predict the course of tuberculosis 

treatment for each TB case at the onset of the therapy might be capable of defining the 

possible outcome. This can then be exploited to define the level of active support and 

supervision required for every TB case based on specific personal features. Some of 

those features have been identified from literature and some others will be revealed by 

feature analysis methods discussed in the next chapter as part of this study. There are a 

number of classification algorithms that have performed very well in terms of prediction 

accuracy in numerous medical topics; in this study the performance of six of them has 

been reviewed and the details of their application results will be presented in the 

following chapters.  
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3.1 Introduction 

This chapter discusses each stage of the research methodology, which includes data 

analysis, feature selection, supervised and unsupervised learning and their combination. 

It goes on to consider the methodology of decision tree simplification and accuracy 

improvement through proposing the cluster-based simplified decision tree (CSDT). 

Finally, an overview of the methodology is given and the chapter is summarized.  

3.2 Statistical Analysis  

Generally, at the start of developing predictive model, data analysis is carried out. One 

of the best techniques to obtain comprehensive understanding about a dataset in both 

quantitative and qualitative ways is statistical analysis. A fundamental task in statistical 

analysis is to estimate location measurements and normality parameters for a dataset. 

Statistical analysis by calculating descriptive measurements such as mean, median, 

standard deviation and normal distribution values like skewness and kurtosis provides 

insight into the underlying structure of a dataset and the resulting model.  

The usual estimate of location is mean and median, whilst the common measure of 

variation is standard deviation. The mean is the sum of the data points divided by the 

number of data points. The median is the value of the point which has half the data 

smaller than that point and half the data larger than that point. Standard deviation is 

calculated through following formula: 

            
 

      
             

                         (3.1) 

from N measurements            . 
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Mode is another descriptive statistical measurement; it is the value that occurs most 

commonly in a data collection. More than one mode may be available in the case of 

having more than one value which appears the most.  

In order to find out about how normal is the dataset, Skewness and Kurtosis and 

Kolmogorov-Smirnov are computed.  

Skewness and Kurtosis are two measurements that should be zero in a normal 

distribution. Positive values of skewness demonstrate a pile-up of scores on the left of 

the distribution; however, negative values signify a pile-up on the right side. For 

Kurtosis, positive values mean a pointy distribution whereas negative values specify a 

flat distribution. The further the value is from zero, the higher the probability that the 

data is not normally distributed. 

A z-score is a score from a distribution that has a mean of 0 and a standard deviation of 

1 which are new comparative values. To transform any score to a z-score easily subtract 

the mean of the distribution and then divide by the standard deviation of the distribution 

as shown in the following formula: 

Z 
Skewness = errorStdS ./0  Skewness              (3.2) 

Z 
Kurtosis = errorstdK ./0  Kurtosis                (3.3) 

Where S and K are the values of skewness and Kurtosis and their related standard errors. 

Moreover, there are two tests which determine whether the distribution of the given 

dataset is normal: the Shapiro-Wilk and the Kolmogorov-Smirnov tests are suitable for 

a sample size under 2000 and greater than 2000 respectively. Here we have utilized the 

Kolmogorov-Smirnov test since our sample size is much more than 2000 cases. These 

tests compare the scores in the sample to a normally distributed set of scores with the 

same mean and standard deviation. It leads to the conclusion that if a test is non-
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significant (P>0.05) then the distribution of the sample is not significantly different 

from a normal distribution and it is probably normal. Alternatively, in the case of a 

significant test (P<0.05), the distribution in question is significantly different from a 

normal distribution which means there is a non-normal distribution available. 

3.2.1 Kolmogorov-Smirnov Test  

The Kolmogorov-smirnov test is a nonparametric statistical test which can be used 

specially to test the normality of a distribution. The test process begins with samples 

being standardized and then compared with a standard normal distribution. Contrary to 

the t-test process, this particular test does not rely only on the location of the sample 

mean and works even for non-normal data. This test is known to be more powerful than 

χ
2 

and less sensitive than a t-test if the data is very normal.  

For a random variable X and a sample {x1, x2, ..., xn} the empirical distribution function 

of X is defined as 

 

 

where I (condition) is the indicator function,  

for two cumulative probability functions FX and FY, the test statistics are: 
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3.3 Feature Selection  

In real-world supervised learning where the underlying class probabilities are unknown 

and each record is associated with a class label, significant features are often 

unidentified. To determine the significant features, several methods were introduced in 

section 2.5. Factors such as data type, number of classes, size of dataset and noise in 

dataset are imperative in selecting the proper method.  

The considered dataset in this research is a mix of continuous, discrete and nominal data 

types with multiple classes; the number of corresponding class is five. It is a large 

dataset encompassing seventeen independent variables which are patients’ features and 

one dependent variable known as the outcome of tuberculosis treatment course for 

6,450 cases. That is, the available dataset can be written as [6,450*18]. Hence, the 

suitable feature selection approach capable of handling dataset with these characteristics 

is heuristic/dependence through correlation coefficient measures. These methods tend to 

find the relationship between every independent variable in the dataset and the given 

dependent variable as well as the associations among them. A bivariate correlation is a 

correlation between two variables including independent and dependent parameters by 

calculating the correlation coefficient either through Pearson`s product-moment or 

Spearman`s rho. In the case of availability of directional hypothesis, the one-tailed test 

is utilized. In contrary, if there is no specific prediction and hypothesis two-tailed test is 

carried out.  

3.3.1 Pearson Correlation Coefficient  

The Pearson correlation coefficient r is a scale-free measure of linear association 

between two variables x and y, and is defined as follows: An optimal subset is always 

relative to a certain evaluation function. If the variable is normally distributed, then the 
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Person correlation value is defined to find the association between a feature and a class. 

To discover the degree to which the variables are related, correlation criteria are 

applied. The Pearson coefficient is the most popular measurement of correlation which 

is designated by the letter "r" when computed in a sample [Field, 2005]. It reflects the 

degree of linear relationship between two variables ranging from +1 to -1. A perfect 

positive linear relationship between variables is shown by +1; however, -1 implies an 

entire negative linear association.  

The following formula is used to calculate the value of r  

  
   

                

         
                     (3.5) 

where there are two variables X and Y and their means       and standard deviations 

including     and    respectively. The value of r would be positive if the values of X 

and the associated Y are both above the average; this causes the value of            

    greater than 0. If the X value and the Y value were both below average, then the 

product would be two negative numbers which would also be positive. In the case of the 

X value was below average and the Y value was above average, then the product would 

be negative. 

3.3.2 Spearman`s rho  

Spearman's rank correlation coefficient or Spearman's rho denoted by the Greek letter   

(rho) is a non-parametric measure of statistical dependence assessing the relationship 

between two variables using a monotonic function. Generally, if the variable is not 

normally distributed, the Spearman correlation is applied to detect the association 

between a feature and a class. In the case of no repeated data available, a perfect 

Spearman correlation of +1 or -1 occurs if each of the variables is a perfect monotone 
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function of the other. Suppose that there are n raw scores Xi  (the independent variable), 

Yi (the dependent variable) converted to ranks xi, yi ; the differences di = xi − yi between 

the ranks of each observation on the two variables are computed. In the situation of tied 

ranks, then the value of     is calculated through following formula: 

                                  
    

 

       
                                        (3.6) 

The Spearman correlation coefficient is positive if both X and Y tends to increase. 

However, if Y tends to decrease when X increases, the Spearman correlation coefficient 

value would be negative. A Spearman correlation of zero signifies that there is no 

tendency for Y to either increase or decrease if X increases.  

3.3.3 SPSS  

SPSS (Statistical Package for Social Science) is one of the most widely applied 

computer programmes for statistical analysis; it is used by market researchers, health 

researchers, survey companies, governments and education organizations and others. 

SPSS is a comprehensive statistical package that includes, not only descriptive statistics 

like cross tabulation, frequencies, data analysis and exploration, but also bivariate 

statistics such as means, t-test, ANOVA, and correlation coefficient methods like 

Pearson correlation and Spearman-rho. This package has both user interface and 

command syntax programming facility. Furthermore, SPSS is capable of providing 

graphical plots for descriptive scales and drawing the degree of normality. These 

capabilities make SPSS a good choice to fulfil the requirements for this research with 

regards to exploratory data analysis and feature selection which are two underlining 

steps in the methodology.  
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3.4 Supervised Model Development and Selection 

In supervised learning there is a set of data known as ‘training data’ that is composed of 

a set of input data in which each record has its own related target data, which is the 

answer that the algorithm should work out. This also has been shown as a set of data 

(  ,  ), where the inputs are    , the corresponded targets are    and the   index suggests 

that we have lots of pieces of data indexed by   starting from 1 to some upper limit N 

[Hardin & Chhieng, 2007]. The training process requires enough examples in the 

training data to minimise discrepancy and produce the learning answers. Each piece of 

data consists of values for a number of attributions and supervised learning simply 

attempts to reduce the difference between the expected and observed values    .  

Here, the available dataset of TB patients in order to predict the outcome of tuberculosis 

treatment course meets the conditions associated with applying the supervised learning. 

For each patient, there is an ordered pair (x , t) and the training set containing 6,450 

cases can be written as: 

          450,6

1





N

i ] 

 
Where    is the symbol for the seventeen features and     is the associated target 

outcome for the ith TB patient. Thus, suitable and enough data is on hand since there 

are 6,450 records (N) containing seventeen features and the related real outcome. 

Supervised learning encompasses several tools and techniques and based on the criteria 

analysis discussed in section 2.6.1.1, six algorithms are selected. However, we need to 

focus on applying the algorithm for classification purpose.  

Typically, data classification is divided into a two-step process: learning step (training 

phase) and accuracy test.   
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In the first step, to describe a predetermined set of data classes or concepts, a classifier 

is developed. Actually, in the learning step, a classification algorithm constructs the 

classifier by analysing or learning from a training set which consists of database tuples 

and their associated class label. In other words, let a tuple X, (e.g. patient`s dataset) be 

represented by an i-dimensional attribute vector,                  showing i 

measurement made on the tuple from i database attributes called    ,    , ...,    

respectively. Each tuple, X, is supposed to belong to a predefined class as determined by 

another database attribute named the class label attribute. The class label attribute is 

discrete-valued and unordered; they are categorical which means each value serves as a 

category or class. The training tuples is chosen from the database under analysis. In the 

process of this step, actually, by learning a mapping or function,       , predict the 

associated class label    of a given tuple X can be made. Thus, we intend to learn a 

mapping or function that classify the data classes, mainly expressed in the form of 

classification rules, decision trees or other mathematical formula.  

In the second step, the model is applied for classification purposes by estimating the 

classifier accuracy. If we apply only the training set to check the classifier accuracy, the 

result would most likely be optimistic due to the classifier tendency to overfit the data. 

That is, during learning it may incorporate some particular anomalies of the training 

data that are not present in the general dataset. Hence, a test set is usually composed of 

test tuples and their associated class label. Obviously, this set should be chosen from the 

general dataset randomly, independent of the training samples. However, as with 

classification, an independent test should be used to estimate the model accuracy. There 

are methods to assess the predictive model accuracy by calculating an error, based on 

the difference between predictive values and real values of y estimated for each of the 

test tuples. 
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3.5 Introduction to the WEKA Environment 

According to the critical analysis discussed in section 2.6.1, six classifiers including 

decision trees, Bayesian networks, Logistic regression, Neural networks, Radial basis 

functions and Support vector machines are selected. To develop these algorithms, a 

suitable environment is required. A number of machine learning algorithms including 

the above mentioned classifiers are well known implementations in the freely available 

code package WEKA (Waikato Environment for Knowledge Analysis). This package is 

developed at the University of Waikato in New Zealand; it is available at 

http://www.cs.waikato.ac.nz/ml/weka/. The system provides a uniform interface to a 

number of different learning tasks such as classification, regression, clustering, 

associated rules and visualization. The algorithms can either be employed directly to a 

dataset or called from other JAVA code. Moreover, the environment is capable of pre-

processing and post-processing to evaluate the result of a learning scheme on any 

offered dataset.  

3.6 Un-supervised Model Development 

In unsupervised learning, there are no class labels to train the system. In order to 

conduct clustering and unite observed examples into clusters, two major criteria should 

be satisfied: 

 Every cluster should be homogeneous which means instances that belong to the 

same cluster are similar to each other. 

 Every group should differ from other clusters; that is, instances that belong to 

one cluster should be different from the instances of other groups.  

In the case of the large dataset on hand, partitioning methods can produce a more 

promising result than a hierarchical approach. K-means is the most well-known and 

http://www.cs.waikato.ac.nz/ml/weka/
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frequently applied partitioning approach with a large dataset. Thus, in the current 

research with a large dataset available, the k-means method is recommended.  

3.6.1 K-means Cluster Analysis 

K-means is a centroid-based algorithm which takes the input parameter, normally 

named k, and then partitions a set of n objects into k clusters leading to high intra-cluster 

similarity and low inter-cluster similarity. The mean value of the objects in a cluster is 

the way to determine cluster similarity which can be viewed as the cluster`s centroid or 

centre of gravity. The k-means algorithm initially selects k objects, each of which 

primarily shows a cluster mean or centre. Then, for each of the remaining objects, one 

object is assigned to the cluster with most similarity according to the distance between 

the object and the cluster mean. Next, it computes the new mean for each cluster 

iterating until the centriod function converges. Generally, the square-error criterion is 

used which is defined as follows: 

              
 

    

 
                         (3.7) 

Where E is the sum of the square error for all in the dataset; P is the mean of cluster    

instances when both P and    are multidimensional. That is, for every object in every 

cluster, the distance from the object to its cluster centre is squared and the distances are 

summed up. This method creates divided and compacted k clusters as much as possible. 

More detail about k-means clustering steps is illustrated in chapter 5.  

3.6.2 Silhouette Analysis 

After creating clusters indices by the k-means partitioning algorithm, the silhouette may 

reflect how well-separated the resulting clusters are. The silhouette is a plot where rows 

correspond to the objects of the n-by-p data matrix X and columns are associated with 
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each cluster which can be a categorical variable, numeric vector, character matrix or cell 

array. A number of approaches are available to calculate distance between points; 

squared Euclidean distance is the most used way to compute distance between objects.   

The produced silhouette plot in actual fact displays a measure of how close each point 

in one cluster is to points in the neighbouring clusters ranging from +1, indicating points 

that are very distant from neighbouring clusters, through 0, denoting points that are not 

distinctly in one cluster or another, to -1, signifying points that are probably assigned to 

the wrong cluster. Silhouette analysis is able to draw different number of clusters in 

plots which can help us to visually spot the most distinct and well separated clusters. In 

fact, the quality of clustering method performance is actually evaluated through 

silhouette analysis.  

3.7 Combination of Supervised and Un-supervised Learning Methods 

Supervised Learning methods application sometimes results in poor outcome when it 

deals with general estimation in high-dimensional space [Han& Kamber, 2006]. To 

overcome this limitation, local mapping with using more partitioned samples 

distributions is suggested. It is, in fact, the integrated supervised and unsupervised 

learning which intends to take the advantages of both methods in order to produce more 

accurate and promising results. 

Combining approaches may lead to the advantages of both supervised and unsupervised 

learning methods to build up the integrated models that could best reflect the predicted 

class. In this way, comparable cases are collected in clusters according to their 

similarities discovered among their input features. Typically, this process is conducted 

before supervised learning and feeds the supervised learning algorithms by the more 

grouped and similar records. At the next stage, the learning process proceeds with the 
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supervised learning paradigm in order to estimate the considered classes which in this 

case is the outcome of tuberculosis treatment course destination. This may affect the 

classification algorithm accuracy positively to amplify predictability; also the iteration 

times might decrease as the classification algorithm is trained from clustered data. This 

might be as a result of combined supervised and unsupervised learning algorithm ability 

to handle large bodies of data and, moreover, unsupervised learning performance in 

partitioning of the training dataset. That is, after creating partitions by clustering 

approaches, a supervised learning algorithm is applied to each partitioned dataset. Thus, 

instead of learning from the whole training dataset, combining the two learned results 

may lead to increased pace, accuracy and even comprehensibility of the produced 

predictive model. Prediction and generalization capabilities of this combined method 

may provide a basis for the strong and flexible mapping of input attributes into the 

single valued space of the tuberculosis treatment course.  

Combined supervised and unsupervised learning methods have already been used to 

find significant features and cause-and-effect relationship between factors and the target 

variable.  

In 1992, a piece of research [Pao & Sobajic, 1992] combined use of unsupervised and 

supervised learning for dynamic security assessment to estimate critical clearing time 

(CCT). CCT is highly advantageous in assessing the security and stability of electric 

power systems after exposure to large disturbances through offering significant 

information about the quality of the post-fault system behaviour. Feed-forward neural 

networks have been applied to learn the given mapping; under defined variable system, 

operating conditions and topologies it performed well. The combination of supervised 

and unsupervised learning found what arrangement of ‘raw’ features is significant to 

define CCT. Input patterns were clustered based on their similarities revealed among the 
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input features. The range of label attributes effective for the given outcome (CCT) in 

every cluster denotes which associative actions should be taken in each instance; 

according to the level of clearing time, low or high, installed systems components or 

company policy advice for preventing control schemes may vary. In the next stage, 

based on unsupervised learning results, accurate estimation of the CCT parameter was 

carried out using supervised learning. To map clustered patterns into the single valued 

space of CCT values, Functional Link Net (FLN) which is a type of network 

architecture was used. Then, the covariance analysis of clustered patterns was done and 

only highly correlated features appeared in the enhanced representation. This helped to 

find the combination of features playing an influential role in specific situations which 

should be retained for the supervised learning mode. This report also concludes that 

applying a supervised and unsupervised learning combination method helps greatly to 

cope with large datasets due to the unsupervised learning ability to find similarities 

among data. The supervised algorithm afterwards used the clustered data to synthesize 

accurately the value of CCT. 

In 2001, a twofold study [Šmuc et al., 2001] was conducted to firstly address new or 

previously unknown cause-and-effect relationships between coronary heart disease 

(CHD) factors and then validate findings against cardiologist’s classification analysis.  

To meet this end, unsupervised learning partitioned data prior to learning models by 

classification. This created different and more informative, and possibly even more 

accurate descriptions, of separate patient subgroups independently. The dataset was 

related to 239 coronary heart diseases, patients with 40 defined parameters collected 

over 1.5 years; this database was composed of patients` data who were already suffering 

from CHD or having characteristic symptoms. Cardiovascular analysis for every case 

also was available based on their exercise ECG and long term ECG tests, they classified 
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patients into five categories from 1-healthy to 5-patient in a critical stage of the disease. 

Using the WEKA (Waikato Environment for Knowledge Analysis) package, three main 

stages were conducted including first using clustering algorithm (EM-expectation 

maximization) to detect major regularities existed in the data base, second exploring the 

developed clusters and modelling their data by the decision tree algorithm C4.5, and 

finally splitting descriptors and their values using the most important basic set 

descriptor from the DT model which were closest to a root node as splitting criterion. 

Based on classification model accuracy for every cluster, final assessment of clusters 

and splitting was carried out. 

Although a combined supervised and unsupervised learning method has been already 

used to fulfil aims such as feature analysis or cause-and-effect relationship detection, 

however, it is the first time that this approach is used for prediction accuracy 

improvement and interpretability enhancement. The novel methodology steps are 

described in chapter 5 in detail. 

3.8 Using Cluster Analysis for Decision Tree Simplification and 

Accuracy Improvement  

Here, the best desirable predictive model is the most accurate and also interpretable 

option. The desired model not only can predict the outcome of tuberculosis treatment 

course precisely, but also the predicted outcomes can be easily interpreted by health 

care provider even with low level of medical knowledge. Decision trees are the most 

well known comprehensible classification algorithm. The advantage of the model 

developed by decision trees over other methods is that they can be interpreted by users 

via produced decision rules. In fact, they extract decision rules from a database which 

makes them well suited approach for medical applications [Dreiseitl et al., 2001]. 
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Numerous systems have been developed to construct decision trees from collection of 

examples. In spite of the fact that those generated decision trees may perform well and 

are efficient, they usually suffer the disadvantage of excessive complexity and are 

therefore unintelligible to users. The number of nodes and tree size are two criteria to 

measure the decision tree complexity. No matter how accurate and efficient they are, it 

is under question whether their opaque structures can be described as a knowledge 

source. That is, if the two trees employ the same kind of data and have the same 

prediction accuracy, the one with fewer leaves is usually preferred.  

Overfitting is another difficulty which occurs during learning the examples by a 

decision tree. In other words, a decision tree, or any learned hypothesis h, is said to 

overfit training data if another hypothesis h′ exists with a bigger error than h when 

tested on the training data, but a smaller error than h when tested on the entire dataset 

[Kotsiantis, 2007]. There are two general methods that decision tree induction 

algorithms can apply to avoid overfitting training data. Firstly, stop the training 

algorithm before it reaches a point at which it completely fits the training data, and 

secondly, prune the induced decision tree. Cost-complexity pruning, reduced error 

pruning, pessimistic pruning are pruning techniques. Pruning including pre-pruning or 

post-pruning are the most straightforward ways to improve decision tree 

comprehensibility and tackle overfitting [Quinlan, 1999].  

In pre-pruning of decision tree, we don’t allow a decision tree to grow to full size. 

Typically, a decision tree algorithm is able to employ post-pruning methods that 

evaluate the performance of decision trees using validation set. Any node of a decision 

tree can be removed and assigned to the most frequent class obtained from the 

corresponding training instances. Although the four above mentioned pruning 

techniques are capable of achieving significant simplification, there are still weak points 
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like accuracy improvement and testing set requirement [Quinlan, 1999]. Methods have 

always attempted to pursue the twofold goal of improving decision tree 

comprehensibility along with upholding or improving accuracy. However, how 

successful these approaches are to fulfil this twin goal is the subject of debate since 

simplification procedures that significantly increase classification accuracy are unlikely 

to be functional. Pruning has been the most common method to simplify decision trees 

either by pre-pruning (imposing a non-trivial stopping criterion on tree expansion) or 

post-pruning (deleting sub-trees after induction the tree) while their use should be 

adjusted based on the data characteristics and distribution. Their focus is mainly on tree 

simplification and not accuracy enhancement.  

The defect of available simplifying methods in accuracy improvement has led to a new 

algorithm requirement to fulfill the dual objective of comprehensibility and accuracy 

improvement. There is no report about applying any learning method like clustering to 

simplify decision trees with accuracy improvement. Developing a cluster-based 

simplified decision tree (CSDT) through applying an unsupervised learning method to 

simplify a decision tree along with accuracy improvement is a novel method that needs 

to be investigated. The partitioning entity of both the k-means clustering method and a 

classification decision tree may boost the learning algorithm performance. Normally, in 

the process of decision tree construction, by finding the feature that best divides the 

training data, the root node is selected. By creating sub-trees and dividing the training 

data into subsets of the same class, the process of partitioning the divided data 

continues. In the novel approach of CSDT development, applying the K-means 

clustering method which partitions the value of features without considering the target 

value for each record may enhance the partitioning stage at large branches of decision 

tree. Further investigation about the proposed CSDT is conducted in the chapter 6.   
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3.9 Methodology Design in Overview 

The applied methodology in this research is drawn in a schematic process in figure 3.1. 

Available dataset is addressed as               
 , when X is the multidimensional 

dataset with x variables (the predictors) and r as a vector of outcome of tuberculosis 

treatment course (target class); t is the index of records which are TB patients; thus, for 

each case of t instances, there are several variables (x) and corresponding target class(r). 

In the first phase, the dataset needs to be pre-processed by exploratory data analysis and 

feature selection through statistical analysis and bivariate correlation respectively. 

Bivariate selection is recommended since there is a large body of dataset with both 

discreet and numerous independent variables and multiclass dependent variables. To 

find the best machine learning approach, decision trees (DT), Bayesian networks (BN), 

logistic regressions (LR), multilayer perceptrons (MLP), radial basis functions (RBF) 

and support vector machines (SVM) are examined. The best model on basis accuracy 

measurements is chosen by comparison frameworks like prediction accuracy, precision, 

recall and F-measure. In fact, this step of the methodology is aimed to examine the 

given algorithms to find out the best. In the second phase, unsupervised learning is used 

to feed supervised learning by more refined instances; in other words, supervised and 

unsupervised learning approaches are combined for each algorithm distinctly. Then, it is 

examined whether or not the learning accuracy is improved and what is the most 

accurate integrated algorithm to predict the outcome of tuberculosis treatment course. 

Here, K-means clustering method is proposed because of the large dataset on hand. 

Regarding the fact that the best possible predictive model is the most accurate, quick in 

learning and comprehensible one, phase 3 is aimed to simplify a decision tree. It intends 

to increase the trees` interpretability and precision through reducing the size of the 

developed trees and increasing their prediction accuracy respectively. Hierarchical 
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clustering and classification method is proposed to simplify the huge branches of trees 

and develop CSDT. In phase 4, produced knowledge needs to be refined and managed 

leading to developing a decision support system in future work and research. Every part 

of this methodology is illustrated in the corresponding chapters in more detail. JJJJJJJJJ 
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Figure 3.1 The conceptual diagram of applied methodology in this research. 
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3.10 Summary 

In conclusion, this chapter has introduced the methodology design of the study. 

Statistical analysis and feature selection methods designed to be used in order to prepare 

necessary data related to the influential factors of tuberculosis treatment course. Next, 

they feed supervised and unsupervised learning algorithms in a combined way. Then, it 

is considered to find the most accurate classifiers among six applied algorithms and 

reveal the effect of a combination approach on classification accuracy. Furthermore, to 

simplify and improve the decision tree accuracy and comprehensibility, at the same 

time, k-means clustering approach is considered. The designed methodology is 

summarized in figure 3.1. 
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4.1 Introduction 

The importance of predicting tuberculosis treatment course for TB control has already 

been highlighted. In the previous chapter, the overview of this study`s methodology was 

described and six considered classifiers were introduced in four main categories 

including logical based algorithms, perceptron-based techniques, statistical learning 

algorithms and support vector machines. This chapter is aimed at finding the most 

accurate classifier among six examined algorithms to predict tuberculosis treatment 

course destination.  

To predict various outcomes in medical domains a number of studies have been 

conducted by applying various machines learning tools. It has led to the development of 

several imperative clinical decision support systems which are applicable to assist 

physicians and health assistances in practice. HELP which is a Knowledge-based 

hospital information system and MYCIN which is to identify micro-organisms that 

cause bacteremia and meningitis are two examples of applied clinical decision support 

system used in routine health care system [Hardin& Chhieng, 2007].   

As reviewed in the second chapter, supervised machine learning including decision tree, 

logistic regression, bayesian networks, support vector machine, radial basis functions 

and neural networks are applicable in several medical domains. However, they have not 

been tested to predict the outcome of treatment course yet.  

Classifiers have performed with varying results in different situations. The choice of 

algorithm always depends on the task at hand and the most promising results may 

emerge based on numerous factors and situations which are rarely perfect, as in the case 

of multidimensionality, outliers or missing data. In other words, no single algorithm can 

uniformly outperform other methods over all data collections. Thus, the simplest 
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solution is to estimate the accuracy of the candidate techniques on the given task and 

choose the one that appears to be most accurate [Kotsiantis, 2007].  

This chapter has been organized as follows. In section 4.2, the experimental 

methodology and setup is explained by detailing the available dataset, and applied 

classifiers. In next two sections, 4.3 and 4.4, the obtained results are reported and 

discussed. Finally the last section there is a summary.  

4.2 Material and Experimental Method 

4.2.1 Subjects and Data 

The dataset has been gathered by health practitioners, nurses, and physicians at local TB 

control centres throughout Iran in 2005. In tuberculosis control centres, health deputies 

of each province in a network system collected data related to tuberculosis patients from 

every appointment in their associated regions using ‘Stop TB’ software to register TB 

patients. They also entered their data into a database and transferred the gathered data to 

the Iranian Ministry of Health. At the Centre of Disease Prevention and Surveillance, 

the data for 30 Iranian provinces was gathered and completed. By using ‘Stop TB’ 

software, more than 35 parameters for TB patients were collected. In this study we 

chose seventeen variables as well as the outcome for every TB patient in the frame of 

DOTS application.  

After applying bivariate correlation, those independent variables which are significantly 

correlated with the target outcome (P<=0.05) are selected as predictors. The refined 

dataset consists of 6,450 cases with seventeen attributes categorized in three main 

categories such as demographical, clinical factors and social factors. The attributes are 

presented in Table 4.1 based on their related category.  
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Demographic factors encompass a number of patients` features such as age, sex, 

nationality, area of residency, as well as indicating whether or not a patient is living in 

prison during treatment.  

The second group of variables, clinical factors, is composed of five variables related to 

tuberculosis or other disease history. LBW standing for low body weight is the ratio of 

weight based on patient age by using the standard chart specified for gender, 

(male/female). For each case, LBW has been defined through checking the case’s 

weight plotted against age on the chart which is special for each gender. The categorical 

variable LBW is defined as whether the patient has low body weight (1) or not (0). 

Diabetes and HIV are two diseases that the health practitioners and doctors quizzed the 

patients on at the onset and during treatment course. 

Length of tuberculosis is calculated for every patient at the end of the treatment course 

in terms of month. Typically, the treatment course lasts six months consisting of four 

months for antibiotic therapy and two months for complementary treatment course. 

There are two kinds of treatment scheme for TB patients applied based on their status. 

In treatment category A, the typical treatment for new patient should be used normally. 

However, a patient who has been unsuccessful in the type A plan, needs to go through 

the  B scheme which is more expensive with stronger antibiotics. 

Case Type denotes the patient status in terms of being a new case, imported from other 

countries, returned and Cure after absence. Returned implies the patient is smear 

positive even after completed antibiotheic therapy. Cure after absence means that 

patient restart the treatment course again even after quitting the treatment course.   

Another attribute in clinical features is TB type which can be either pulmonary which 

affects the lung and respiratory system or other areas such as bones, genitalia, urinary, 

plover, eye, digestion, skin, ear and CNS systems.  
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Recent TB infection indicates whether or not the patient has been affected by TB as 

recently as the last six months.  

The last category of attributes is social factors which could include the following: 

Imprisonment, referring to the history of being in prison in the patient’s life. IV drug 

usage means whether the patient consumed any type of drugs intravenously. Finally, 

unprotected sex indicates whether the patient has a history of having unsafe sex. The 

data related to social factors has been classed as yes (1), No (2), or suspected (3). Since 

there is a probability that many patients who are infected with HIV, had unprotected sex 

and imprisonment history, or consume drugs are unlikely to reply honestly to these 

questions or declare these behaviours in spite of some symptoms, they have been coded 

as suspected here.  

Initially, to get the best accuracy the dataset was divided into training and testing 

datasets from two-third and another one-third respectively. Table 4.2 represents the 

number of instances in original dataset and corresponding training and testing sets based 

on multiple related classes. Completed, cured, quit, failed and dead are five target 

outcomes which place every patient in a level of treatment from the best outcome (cure) 

to the worst one (dead). Cure implies that the result of sputum has been smear negative. 

Dead implies that the patient has died during the process of treatment because of 

tuberculosis or a related reason.  
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  Table 4.1 Patients` attributes used for experiments and their range of values 

variable Categories of values 

Demographic Characteristics 

Gender Male(1) /Female(2) 

Age (Continuous var.) 0.05-99 

Weight (Continuous var.) 4-110 

Nationality Iranian(1), Central Asians(2), Iraqi(3), Pakistani(4), 

Afghani(5) 

Area of residence Abroad(1), Mobile(2), Rural(3), Urban(4) 

current stay in prison No(1) /Yes(2) 

Clinical Features 

Case type new(1), Imported(2), Cure after absence(3), returned(4) 

Treatment categories A(1)/ B(2) 

TB type Pulmonary(1)/extra-pulmonary(2) 

Recent Tb infection No(1)/yes(2) 

Diabetes No(1)/yes(2) 

HIV No(1)/Suspected(2)/yes(3) 

Length (Month) (Continuous var.) 0.03-90.77 

Low Body Weight(LBW) No(1)/yes(2) 

Social Risk Factors 

Imprisonment No(1)/Suspected(2)/yes(3) 

IV drug using No(1)/Suspected(2)/yes(3) 

Risky sex No(1)/Suspected(2)/yes(3) 

 

 

 

Table 4.2 The outcomes for Tuberculosis patients for Training and Testing sets with 

their related codes in the dataset 

 Cured (1) Complete (2) Quit (3) Failed (4) Dead (5) Total 

Training Set 1510 1274 790 462 479 4515 

Testing Set 572 841 179 207 136 1935 

Initial dataset 2082 2115 969 669 615 6450 
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4.2.2 Applied Classifiers 

Decision trees, Logistic regression, Bayesian Networks, Multilayer Perceptrons (MLP), 

Radial Basis Functions (RBF) and support vector machines are the classifiers examined 

on the available dataset. Using the WEKA package, the dataset was split into training 

(two-third) and testing (the other one-third) datasets each containing seventeen 

significantly correlated attributes and the outcome variables for every record without 

any missing data. The Six above named classifiers were applied to the training dataset 

to estimate the relationship among the attributes and to build predictive models. 

Afterwards, the testing dataset which was not used to model development was utilized 

to calculate the predicted classes and compare the predicted values with the real ones 

available in the testing dataset. This was also done to check model fitness by comparing 

the predicted classes by applying the training set to the built model with the real value 

of the corresponding outcomes variable. However, due to the fact that testing data was 

not applied to model building, their application to check the accuracy was much more 

critical to judge the model quality. That is, the training accuracy percentage and 

prediction accuracy percentage are measurements to check the model fitness and model 

accuracy respectively. Recall, Precision, F-measure and ROC area are other criteria 

used to assess the model`s validity. This process has been carried out for all six 

classifiers in an identical way. The process of developing the predictive models and 

their validation is drawn in figure 4.1.   
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Figure 4.1 Schematic presentation of applied methodology of this chapter including six 

model development and validation process. 

 

 

 

 

 

4.3 Experimental Results 

Results of statistical analysis for exploratory data analysis, feature analysis as well as 

accuracy of six considered classifiers are addressed in the following sections, Tables 

(4.3 to 4.16) and Figures (4.2 to 4.11).  

4.3.1 Statistical Analysis  

To reveal possible errors in the data or outliers, a better understanding of the features of 

the dataset was obtained. This was done through applying parametric or non-parametric 

statistical tests and observing the skewness, kurtosis and the normality of distribution. 

Dataset exploration was conducted by using statistical software, SPSS 14. Table 4.3, 

DT BN LR MLP RBF SVM 

Checking Model 

Accuracy& Validity 

DT BN LR MLP RBF SVM 
Whole 

database 

[6,450*18] 

Training set 

[4,515*18] 

Testing set 

[1,935*18] 

Data Learning & 

Model Building 

Checking Model 

Accuracy& Validity 
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4.4, and 4.5 show statistical criteria such as mean, median and standard deviation values 

for three continuous variables including age, weight, and length of disease. In addition, 

skewness and Kurtosis, their related standard error as well as their normal values of 
Z 

Skewness and 
Z 

Kurtosis have been listed in above mentioned tables. 
Z 

Skewness and 
Z 

Kurtosis are two parameters for checking the normality which are defined as follows: 

Z_skew=skew/Standard_Error(skew) 

Z_kurtosis = kurtosis / Standard_Error(kurtosis) 

 

 

 

 

Table 4.3 Descriptive statistical analysis for demographical attributions   

  Sex age weight nationality Area prison 

N Valid 6450 6450 6450 6450 6450 6450 

  Missing 0 0 0 0 0 0 

Mean ------ 46.65 52.07 ------ ------ ------ 

Median ------ 46.00 51.00 ------ ------ ------ 

Std. Deviation ------ 20.92 12.73 ------ ------ ------ 

Minimum 1 0.05 4 1 1 1 

Maximum 2 99 110 5 4 2 

Skewness .093 .042 .181 1.674 -1.414 3.475 

Std. Error of Skewness .030 .030 .030 .030 .030 .030 

z 
Skewness 3.1 1.4 6.03 55.8 -4.71 11.58 

Kurtosis -1.992 -1.136 1.597 .813 2.723 10.080 

Std. Error of Kurtosis .061 .061 .061 .061 .061 .061 

z 
Kurtosis -32.65 -18.62 -26.18 13.55 44.63 165.24 
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Table 4.4 Descriptive statistical analysis for clinical attributions  

  
LBW Tcat TBtype 

Case 

Type 
Length 

RTB 

infection 
Diabetes HIV 

Valid 6450 6450 6450 6450 6450 6450 6450 6450 

 Missing 0 0 0 0 0 0 0 0 

Mean ------ ------ ------ ------ 11.33 ------ ------ ------ 

Median ------ ------ ------ ------ 8.9700 ------ ------ ------ 

Std. Deviation ------ ------ ------ ------ 8.29 ------ ------ ------ 

Minimum 1 1 1 1 0.03 1 1 1 

Maximum 2 2 2 4 90.77 2 2 3 

Skewness 3.701 3.274 .644 3.185 2.943 2.355 3.666 2.118 

Skewness Std. 

Error 

.030 .030 .030 .030 .030 .030 .030 .030 

z 
Skewness 123.36 109 21.46 106.16 98.1 7.85 188.86 70 

Kurtosis 11.698 8.723 -1.586 8.782 12.333 3.548 30.108 2.618 

Std. Error  

 Kurtosis 

.061 .061 .061 .061 .061 .061 .061 .061 

z 
Kurtosis 197.77 143 26.43 143.96 202.13 58.16 501.8 42.91 

 

 

 

 

Table 4.5 Descriptive statistical analysis for social attributions  

 Imprisonment IV drug Using Risky Sex 

N Valid 6450 6450 6450 

  Missing 0 0 0 

Minimum 1 1 1 

Maximum 3 3 3 

Skewness 2.245 3.728 4.589 

Skewness Std. Error .030 .030 .030 

z 
Skewness 74.83 124.26 152.96 

Kurtosis 3.972 12.899 21.799 

Std. Error Kurtosis .061 .061 .061 

z 
Kurtosis 65.11 211.45 357.36 
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It has been documented that an absolute value of 
Z 

Skewness and 
Z 

Kurtosis greater than 

1.96 is significant at P<0.05; values above 2.58 are significant at P<0.01 and an 

absolute value bigger than 3.29 is significant as P<0.001 [Field, 2005]. Thus, it seems 

that for many of the variables (whit 
Z 

Skewness and 
Z 

Kurtosis represented in Tables 4.3, 

4.4, and 4.5), the skewness and kurtosis are highly significant as P<0.01. However, due 

to the large sample size, [6,450*17], we have a small standard error for both skewness 

and kurtosis and consequently the values of 
Z 

skewness and 
Z 

kurtosis may occur 

through even small deviations from normal distribution. As Table 4.3, 4.4, and 4.5 

demonstrate, apart from skewness for age, almost the values of other variables` 

skewness and kurtosis are significant (P<0.05).  

Having presented the result of the Kolmogorov-Smirnov test for this study`s dataset in 

table 4.6, all considered attributions and the outcome of tuberculosis treatment course 

are not normally distributed D (6450) = 0.235, P<0.001.  
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Table 4.6 Kolmogorov-Smirnov test of normality for dependent and independent 

variables used in this study 

 List of Variables Kolmogorov-Smirnov(a) 

  Statistic df Sig. 

Outcome .235 6450 .000 

LBW .540 6450 .000 

Sex .353 6450 .000 

Age .087 6450 .000 

Weight .059 6450 .000 

Nationality .499 6450 .000 

Area .384 6450 .000 

Prison .539 6450 .000 

Treatment category .537 6450 .000 

TB type .420 6450 .000 

Case Type .519 6450 .000 

Length .193 6450 .000 

Recent TB infection .524 6450 .000 

Diabetes .539 6450 .000 

HIV .509 6450 .000 

Imprisonment .490 6450 .000 

IV drug Using .530 6450 .000 

Risky Sex .534 6450 .000 

 

 

 

 

However, in some circumstances, this test can produce misleading results particularly in 

the case of testing a large sample size which can easily lead to a significant result; 

hence, many statisticians asses graphical plots as well as this test to get the best results. 

Here, as we have a large sample size which normally causes a small standard error for 

skewness and kurtosis assessment and a significant Kolmogorov-Smirnov test, we need 

to have  a look at the shape of attribute`s distribution visually rather than just trust the 
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skewness and Kurtosis calculation or Kolmogorov-Smirnov test. Having looked at 

Figures 4.2, 4.3, and 4.4 we can find that many of the attribute distribution are 

negatively or positively skewed apart from variables like sex, age , TB Type and weight 

which seem more normally distributed. This helps to make a decision regarding which 

bivariate correlation should be chosen for each variable specifically, either the Pearson 

correlation coefficient for normally distributed variables or Spearman`s correlation 

coefficient for non-normally distributed data known as non-parametric statistics. Having 

analysed the shape of considered variables in Figure 4.3, 4.4, and 4.5, it seems that the 

four first histograms related to sex, age, weight, and TB type have roughly normal 

distributions. However, as confirmed by the significant skewness and kurtosis as well as 

the result obtained from Kolmogorov-Smirnov test, other left variables are non-

normally distributed verified by non-normal histograms in Figure 4.3, 4.4, and 4.5.  
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Figure 4.2 Histograms of the six variables in demographic category including six, age, weight, nationality, area, and prison. 
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Figure 4.3 Histograms of the eight variables in clinical category including LBW, CaseType, TBtype, Tcat, Length, RTBinfection, Diabetes, 

and HIV. 
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Figure 4.4 Histograms of the three variables in social category including imprisonment, IV drug using, and risky sex.
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4.3.2 Results of Features Analysis  

A bivariate correlation which is a heuristic/dependence method of feature analysis 

defines correlation between two variables including independent variable in the dataset 

and given dependent variable. The Pearson product-moment or Spearman`s rho are two 

approaches to calculate a correlation coefficient in normal and non-normal distributed 

variables respectively. Because of the availability of directional hypothesis, here the 

one-tailed test has been applied.  

For four of the independent variables, sex, age, TB Type and weight their histograms, 

shown in Figures 4.2 and 4.3 seem relatively normal. Pearson’s correlation coefficient 

has been used whereas for the other thirteen independent variables which have both 

significant skewness and kurtosis and non-normal distributed histograms, shown in 

Figures 4.2, 4.3, and 4.4, Spearman`s correlation coefficients for nonparametric 

correlation have been employed. The results of these applications have been shown in 

Tables 4.7, 4.8, 4.9 and 4.10.  

Table 4.7 represents Pearson`s correlation coefficients for four of the given variables 

along with both the significance value of the correlation and the sample size (N) on 

which it is based.  

Results show that variables including sex, age, weight, and TB type have a significant 

relationship with the outcome of tuberculosis course according to the significant values 

of the Pearson correlation coefficient; this conclusion also is drawn because of degree of 

freedom’s values which are listed in the Tables (4.7-4.10); the low values of p-value 

which are still significantly related to the given outcome are justified with the higher 

values of degree of freedom (P<.0001). 
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There is a negative association between sex and outcome of the tuberculosis treatment 

course implying that males are more likely to not be cured and complete the treatment 

course rather than females (rho = -.082, P<.0001, CI = -.055 to -.099 ).  

Outcome of tuberculosis treatment course appears to be positively related to the patient 

age (rho =.158, P<.0001, CI=.954 to .342) indicating that as they get old, there is more 

probability to get a worse result from the treatment course like failing or even a dead 

outcome.  

Patient weight has emerged negatively with the study showing that the more under-

weight the patients are, the more they are at the risk of a non-desirable outcome. This 

could be as minor as quitting the treatment or failing at the course or as serious as death 

(rho =-.056, P<.0001, CI =-.012 to -.087).  

The last parameter in Table 4.7 illustrates that the type of tuberculosis is significantly 

associated with the outcome of a tuberculosis course and cases with extra-pulmonary 

TB are more likely at the risk of non-desirable outcomes such as quitting, failing or 

death (rho =-.066, P<.0001, CI = -.033 to -.095 ). 

 In Table 4.8, the relationship between the outcome of tuberculosis and those 

demographic features which are non-normally distributed has been analysed using 

Spearman`s correlation coefficient. The table displays that there is a significant 

association between nationality and outcome of tuberculosis showing that immigrants 

from Iraq, Pakistan  and Afghanistan are 0.127 more likely to quit, fail or die on the 

treatment course  (rho = .127,P<.0001,CI = .087 to .221 ). It implies nationality is a 

crucial risk factor for tuberculosis treatment non-compliance. Furthermore, TB patients 

who are living abroad as well as mobile cases are -0.027% more likely to have an 

undesirable outcome compared with those who are living in urban and rural area; it is 
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because area of residency and the given outcome are negatively related (rho = -.027, 

P<.0001, CI=-.013 to -0.341).   

The last variable in Table 4.8 is related to being in prison at the time of treatment; it 

reveals that prison residency and desirable treatment outcome are significantly 

correlated (rho =-.026, P<.0001, CI =-.0121 to -.0321). This might be due to the high 

level of supervision and support provided to those TB patients who are living in prison.  

In Table 4.9, non-normally distributed clinical features have been assessed in terms of 

their association with the outcome of the tuberculosis treatment course using 

Spearman`s correlation coefficient.  

There is a positive relationship between case type and the given outcome (rho =0.048) 

denoting that as the case moves from being a new TB patient to an imported, returned 

and cure after absence, the outcome of tuberculosis treatment course changes from cure 

and completion to quitting, returning or even death. It seems that new cases are safer 

from undesirable outcomes than returned patients. 

The normal length of treatment course varies from 6-12 months. The result presented in 

Table 4.9 shows that there is a positive correlation between length of disease and the 

considered outcomes; the more time TB patients have this infectious disease, there is a 

0.073 times more likely chance of non-desirable effects like quitting, failing or death. 

This verifies the importance of patient supervision, support and encouragement to not 

quit treatment which protects them from developing multi-drug TB which is the 

consequence of long lasting disease. Furthermore, the hypothesis of having been 

recently infected by TB has a positive effect on inappropriate outcome like quitting, 

failing or death (rho = .251, P<0.001, CI = .195 to .342).  
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Diabetes and HIV are two clinical condition which have been asked about by patients 

and those cases who are declared that they have these two disease are positively prone 

to have a worse result of treatment course completion, to either quit the therapy or fail 

in getting cured properly (rho diabetes=.029, P<0.001 & rho HIV=.045, P<0.05).  

Obtained results for treatment category ‘Tcat’ demonstrate that if the patient treatment 

category changes from A to B which lasts longer with stronger antibiotics, there is a 

0.022 higher chance that they will quit or fail the treatment course. In fact, if the length 

of disease lasts longer, the category of treatment might be changed to B with both 

leading to worse outcome clearly.  

The result for Low Body Weight ‘LBW’ also might point out the weight attribute 

finding. LBW is based on the weight of patients according to their age and gender. The 

hypothesis is that ‘more probability that patient has LBW, more likely an improper 

outcome (quit, fail, or dead) might occur (rho = .130, P<0.001, CI=.987 to .230). 

Table 4.10 also relates correlation of outcome of tuberculosis treatment course and 

social factors such as imprisonment, Intravenous drug usage (IV drug using), and 

unprotected sex which have a non-normal distribution (shown in figure 4.4). Using 

Spearman`s correlation coefficient, it is revealed that all three parameters are positively 

associated with the outcome of a tuberculosis treatment course; that is, the higher the 

probability of an imprisonment history in his/her life, consuming drugs intravenously, 

or having unprotected sex increases the likelihood of undesirable outcome during a TB 

treatment course such as quitting, failing or dying with rho = 0.157, 0.0172, and 0.16 

respectively (P<0.000). 

These presented results show the significant effect of seventeen inputs which were 

selected 35 assessed factors collected in 2005 in Iran from TB registered patients. We 
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will use these significant correlated attributions in the next stage experimental analysis. 

Consequently, we will develop and validate predictive models for outcome of 

tuberculosis treatment course and attempt to improve their accuracy and 

comprehensibility in the next chapters.  

 

 

 

Table 4.7 pearson`s correlation coefficients for four relatively normally-distributed 

variables for the outcome of tuberculosis treatment course 

Attribution and type of  Bivariate correlation by Pearson 

Correlation 

Outcome (tuberculosis treatment 

course) 

 

Sex 

 

 

Pearson Correlation -.082(**) 

Sig. (1-tailed) .000 

Degree of freedom 35 

N 6,450 

 

Age 

 

 

Pearson Correlation .158(**) 

Sig. (1-tailed) .000 

Degree of freedom 28 

N 6,450 

 

Weight 

 

 

Pearson Correlation -.056(**) 

Sig. (1-tailed) .000 

Degree of freedom 36 

N 6,450 

 

TB type 

 

Pearson Correlation .066(**) 

Sig. (1-tailed) .000 

Degree of freedom 26 

N 6450 

           **Highly correlated (p<0.001) 
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Table 4.8 Spearman's correlation coefficients for three non-normal distributed variables 

for the outcome of tuberculosis treatment course 

Attribution and type of Bivariate correlation by 

Spearman's rho 

Outcome (tuberculosis treatment 

course) 

 

Nationality 

 

 

Correlation Coefficient .127(**) 

Sig. (1-tailed) .000 

Degree of freedom 19 

N 6450 

 

Area 

 

 

Correlation Coefficient -.027(*) 

Sig. (1-tailed) .017 

Degree of freedom 38 

N 6450 

 

Prison 

 

 

Correlation Coefficient -.026(*) 

Sig. (1-tailed) .020 

Degree of freedom 36 

N 6450 

           **Highly correlated (p<0.001) 
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Table 4.9 Spearman's correlation coefficients for seven non-normal distributed variables 

for the outcome of tuberculosis treatment course 

Attribution and type of Bivariate correlation by 

Spearman's rho 

Outcome (tuberculosis treatment 

course) 

Case Type 

  

  

Correlation Coefficient .048 

Sig. (1-tailed) .000 

Degree of freedom 41 

N 6450 

Length 

  

  

Correlation Coefficient .073(**) 

Sig. (1-tailed) .000 

Degree of freedom 38 

N 6450 

Recent TB infection 

  

  

Correlation Coefficient .251(**) 

Sig. (1-tailed) .000 

Degree of freedom 29 

N 6450 

Diabetes 

  

  

Correlation Coefficient .029(*) 

Sig. (1-tailed) .010 

Degree of freedom 40 

N 6450 

HIV 

  

  

Correlation Coefficient .014(*) 

Sig. (1-tailed) .045 

Degree of freedom 41 

N 6450 

Treatment 

Category  

  

Correlation Coefficient .022(*) 

Sig. (1-tailed) .041 

Degree of freedom 40 

N 6450 

LBW 

  

  

Correlation Coefficient .130(**) 

Sig. (1-tailed) .000 

Degree of freedom 31 

N 6450 

       **Highly correlated (p<0.001) 
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Table 4.10 Spearman's correlation coefficients for three non-normal distributed 

variables for the outcome of tuberculosis treatment course 

Attribution and type of Bivariate correlation by 

Spearman's rho 

Outcome (tuberculosis treatment 

course) 

 

Imprisonment 

 

 

Correlation Coefficient .157(**) 

Sig. (1-tailed)  .000 

Degree of freedom 32 

N 6450 

IV drug Using 

 

 

Correlation Coefficient .172(**) 

Sig. (1-tailed) .000 

Degree of freedom 34 

N 6450 

Risky Sex 

 

 

Correlation Coefficient .160(**) 

Sig. (1-tailed) .000 

Degree of freedom 33 

N 6450 

              **Highly correlated (p<0.001) 

 

 

 

4.3.3 Results of Classifiers Application 

Table 4.11 shows the result of applying three types of decision tree including C4.5, Rep 

Tree and FT tree. C4.5 has been able to build a model with greatest accuracy since the 

prediction accuracy obtained by applying the model to the testing set is 74.21%. This 

accuracy is slightly better than Rep Tree with 71.62% and much more accurate than Rep 

Tree with 67.59%. This is confirmed by comparing other criteria such as recall, 

Precision, F-measure and ROC Area. C4.5 has performed better than the other tested 

algorithms using all measurements. The values of model fitness also show the C4.5 
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superiority where the training accuracy is 84.45% for C4.5 which is greater than 73.48 

and 79.02 for Rep Tree and FTree respectively.  

Results from various Bayesian networks application have been represented in Table 

4.12 denoting that the best performance is obtained from Bayesian Network with 

62.06% prediction accuracy. This algorithm predicts the outcome of treatment course 

completion much better than Navie Bayes which is known as an algorithm typically 

with promising results. However in this case it performs worse than a Bayesian net with 

54.52% model accuracy.  

Model accuracy obtained from other classifiers such as Logistic Regression, Multi layer 

perceptron neural networks, Radial Basis Functions, and support vector machines 

(shown in Tables 4.13 to 4.16) are 57.88, 57.31, 53.74 and 51.36 respectively. This, 

besides, is happened for ROC area that the percentage of ROC area do not address a 

great deal of differences among those applied classifiers when they are 0.82% , 0.81%, 

0.79%, and 0.76%  for LR, MLP, RBF, SVM respectively. 

 Comparing training accuracy percentage, likewise, it is understandable that there is no 

big gap between these four classifiers` performance in terms of model fitness. The 

values of training accuracy for logistic regression, multilayer perceptron neural 

networks, radial basis functions, and support vector machines are 56.5%, 64.93%, 

50.65%, and 53.04% respectively.  

Hence, comparing all six classifiers` performance can be conducted simply as shown in 

Figure 4.5 and 4.6; decision trees (C4.5) has the best performance with 74.21% 

prediction accuracy compared with other methods like Bayesian nets (62.06) or logistic 

regression (57.88), MLP (57.31), RBF (53.74) or SVM (51.36). The developed SVM is 

polykernel support vector machine. Six optimal values for the kernel parameters are 

selected which include C =1.0, L= 0.0010, P= 1.0E-12, N=0, V= -1, W=1.  
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The goodness of fit for the logistic regression model was 12.132, p-value <= 0.001.  

It is the same story for the model fitness assessment by evaluating training accuracy 

which gives 84.45 for a C4.5 decision tree; this is considerably more for Bayesian nets 

(58.56), logistic regression (56.5), MLP (64.93), RBF (50.65) and SVM (53.04). 

Comparing the Roc curve area reveals that the area under curve for C4.5 has the most 

value both for model fitness and model accuracy with 0.960, 0.963 respectively. This 

measurement is less for Bayesian nets (0.85), logistic regression (0.82), MLP (0.81), 

RBF (0.79) and SVM (0.76) in terms of model accuracy.  

Results of comparing values for recall, precision and F-measure which are, in fact, 

sensitivity and specificity evaluation of the developed models for both model fitness 

and model accuracy are presented in Tables 4.11 to 4.16 verifying the superior 

performance of a C4.5 decision tree in this classification task as well.  

Figure 4.7 to 4.11 give the comparative Roc curves based on the given outcome of 

tuberculosis treatment including cure, complete, quit, failed or dead. Each figure shows 

the Roc curves for the six considered models based on considered outcome. The X axis 

is the number of false positive cases and the Y axis is the true positive rate plotting to 

draw the Roc curve for each classifier`s accuracy. For the outcome ‘’cure’’, C4.5 has 

outperformed the other classifiers with an area under curve of 0.958. Similarly, the most 

accurate result for outcomes ‘completed’ and ‘quit’ are from C4.5 with 0.966 and 0.956 

respectively. C4.5 has also performed best for the outcome ‘failed’ and ‘dead’ by 

classifying 0.986 and 0.963 of cases correctly. Overall, the results for area under curve 

reveal the excellent performance of the C4.5 decision tree classification algorithm. 
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Table 4.11Comparison on model fitness and model accuracy of three various decision trees 

Classifier  Model Fitness Model Accuracy 

Decision Tree TA* 

% 

Recall Precision F-measure ROC 

area 

PA** 

% 

Recall Precision F-measure ROC 

Area 

C4.5 

 

84.45 0.845 0.845 0.843 0.96 74.21 0.742 0.753 0.746 0.963 

Rep Tree 

 

73.48 0.735 0.734 0.731 0.91 71.62 0.716 0.726 0.719 0.884 

FT tree 

 

79.02 0.79 0.79 0.789 0.91 67.59 0.676 0.696 0.684 0.83 

                                                     *Training Accuracy    

                                                  * *prediction Accuracy Percentage 
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Table 4.12 Comparison on model fitness and model accuracy of five various Bayesian networks 

Classifier  Model Fitness Model Accuracy 

Bayesian 

Network 

TA* 

% 

Recall Precision F-measure ROC Area PA** 

% 

Recall Precision F-measure ROC Area 

Bayesian 

Net 
58.56 0.586 0.591 0.579 0.83 61.70 0.621 0.659 0.621 0.85 

Navie Bayes 49.78 0.498 0.494 0.476 0.78 54.52 0.545 0.548 0.539 0.80 

Navie Bayes 

simple 
49.72 0.49 0.494 0.47 0.78 54.72 0.547 0.55 0.541 0.80 

Naïve Bayes 

Updated 
49.78 0.498 0.494 0.476 0.78 54.52 0.545 0.548 0.539 0.80 

                                               *Training Accuracy    

                                              * *prediction Accuracy Percentage 
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                                   Table 4.13 Model fitness and model accuracy of logistic regression  

Classifier Model Fitness Model Accuracy 

LR 

 

 

TA* Recall precision F-measure ROC Area PA** Recall Precision F-measure ROC Area 

56.5 0.566 0.574 0.553 0.81 57.82 0.579 0.628 0.578 0.82 

                                                  *Training Accuracy    

                                                 * *prediction Accuracy Percentage 

 

 

 

 

 

 

 

 

 

 

                                   Table 4.14 Model fitness and model accuracy of multilayer perceptron (MLP) neural network  

 

Classifier Model Fitness Model Accuracy 

MLP 

 

  

TA* Recall Precision F-measure ROC area PA** Recall Precision F-measure ROC Area 

64.93 0.649 0.68 0.644 0.86 57.82 0.573 0.677 0.57 0.81 

                                                   *Training Accuracy    

                                                 * *prediction Accuracy Percentage 
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Table 4.15 Model fitness and model accuracy of radial basis function 

Classifier Model Fitness Model Accuracy 

RBF 

 

 

TA* Recall Precision F-measure ROC Area PA** Recall Precision F-measure ROC Area 

50.65 0.507 0.503 0.491 0.77 53.74 0.537 0.554 0.536 0.79 

                                                    *Training Accuracy    

                                                 * *prediction Accuracy Percentage 

                         

 

 

 

                                                                                  Table 4.16 Model fitness and model accuracy of support vector machine  

Classifier Model Fitness Model Accuracy 

SVM 

TA* Recall Precision F-measure ROC Area PA** Recall Precision F-measure 
ROC Area 

53.04 0.53 0.555 0.503 0.76 57.47 0.514 0.621 0.50 0.76 

                                                        *Training Accuracy    

                                                 * *prediction Accuracy Percentage 
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Figure 4.5 Comparisons of prediction accuracy percentage for six machine Learning   

tools. 
 

 

 

 

 

 

 

 Figure 4.6 Comparisons of F-measure for six machine Learning tools. 
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Figure 4.7 Comparison Roc Curve Area for outcome (completed) for six classifiers. 

 

 

 

 
Figure 4.8 Comparison Roc Curve Area for outcome (cured) for six classifiers. 
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Figure 4.9 Comparison Roc Curve Area for outcome (quit) for six classifiers.  

 

 

Figure 4.10 Comparison Roc Curve Area for outcome (failed) for six classifiers.  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

C4.5 LR BN RBF MLP SVM

False Positive
Outcome(Quit)

T
ru

e
P

o
si

ti
v

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

LR C4.5 BN RBF MLP SVM

T
ru

e
P

o
si

ti
v
e

False Positive
Outcome(Failed)



CHAPTER 4  
 

134 

 

 

Figure 4.11 Comparison Roc Curve Area for outcome (dead) for six classifiers  
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4.4 Discussion 

Findings presented in tables 4.7 to 4.10 reveal that this study identified seventeen 

influential factors effecting tuberculosis treatment course destination. Having reviewed 

several investigations, the influential factors on the target outcome are introduced in 

section 2.9. Although other work has already verified nationality, age, imprisonment, 

and TB case as influential factors for TB treatment course non-compliance, patient’s 

weight is a new effective attribute (OR = -0.056, P ≤ 0.0001). Opposite of the reviewed 

studies, males are known as the high risk gender. This study strongly confirmed the role 

of nationality and imprisonment since, like the previous studies, immigrant people who 

are mainly Afghani and Pakistani in Iran are prone to failure; as the WHO indicates 

imprisonment as risk factor, prisoners has been indicated as high risk cases. This study 

introduce several new factors like diabetes, low body weight, HIV, recent TB infection, 

unprotected sex, TB type as well as treatment category A or B; however, it hasn’t 

applied variables like homelessness and alcohol abuse which have been already known 

to be influential factors on treatment course non-compliance. It may be because of the 

Iranian laws related to alcohol consumption or the weakness of data collection of not 

paying attention to some recognized influential factors.  

As mentioned before, choosing a ‘best model’ for a considered classification problem 

depends on factors such as model’s discriminatory and interpretability. In this study we 

test the same dataset on all selected classifiers and determining the classification 

performance to discover the most accurate algorithm has been the main focus of this 

chapter. Furthermore, the model interpretability does matter as the variables applied in 

the dataset are human interpretable in the real world.  
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Of the six investigated methods, decision trees have achieved the best performance in 

terms of both accuracy and interpretability while other classifiers have given relatively 

close results in the lower rank.  

According to previous studies, the technique with the best classification performance 

might behave differently from another one and there is no single best method for every 

circumstance. Decision trees that classify instances by sorting them based on feature 

values have performed variously in different investigations. Here, we review briefly the 

decision trees performance in terms of accuracy in several other studies and associated 

emerging condition, rather then, just this study`s parameters which may have caused 

decision trees outperformance rather than other classifiers. 

In a piece of research [Bradley, 1997], C4.5 was compared with other classifiers by 

using six various real world data collections. Table 4.17 presents the main features of 

the applied data and the obtained results for three of the utilized classifiers. Results 

show that C4.5 performs variously in different conditions. It has been reported that there 

is an association between the performance of applied tools and following issues 

including the type of problem we are analysing, the type of input data either discrete or 

continuous, and finally emerging overlapping in outcome classes. Having looked at the 

result presented in Table 4.17, it is concluded that BN and MLP perform better than a 

decision tree (C4.5) in terms of overall accuracy in the case of continuous input with 

overlapping classes. Likewise, the models used by BN and MLP are specifically well 

suited to the type of problems in which their related data are mainly images and 

continuous values with noise and residuals.  
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Table 4.17 Comparison of produced results from 6 major dataset tested by three 

classifiers, adopted from [Bradley, 1997] 

Data 

Collection 

[examples 

*features] 

Data 

type 

outcome 

class 

number 

Classifier accuracy Area under curve 

C4.5 MLP BN C4.5 
ML

P 
BN 

Cervical cell [117*6] images 

2 

Normal/ 

malignan

t 

89.2 91.7 89.2 92.1 98.6 96.7 

Post 

operating 

bleeding 
[134*4] 

continuous 

values 

2 

Normal/ 

excessive 

71.7 78.3 79.1 48.7 66.7 73.3 

Breast 

cancer 

diagnosis 

[683*9] 

+noise& 

residual 
continuous 

values 

2 

Normal/ 

malignan

t 

90.7 93.5 94.2 93.7 96.5 98.2 

Pima Indian 

diabetes 

[768*8] 

+noise& 

residual 

continuous 

values 

2 

yes/no 
71.7 78.4 75. 80.2 85.3 76.3 

Cleveland 

data (heart 

disease 

diagnosis) 

[297*14] 

(removed 

missing 

values) 

continuous 

values 

2 

yes/no 
77.5 81.3 86. 84.2 85.9 90.8 

Hungarian 

data (heart 

disease 

diagnosis) 

[261*58] 

(removed 

missing 

values) 

continuous 

values 

2 

yes/no 
73 75.5 79. 79.2 84.7 83.8 

 

 

 

 

In another report [Dreiseitl et al., 2001] C4.5 performed at a lower level of accuracy 

than other employed techniques including k-nearest neighbour (KKN), logistic 

regression, artificial neural networks (ANN) and support vector machine (SVM). The 

task was classification of pigmented skin lesions with three possible outcome classes. 

The input data was a 1619 PLS images and six other clinical data items recorded for 

every diagnosed case. Results showed that the top three methods were logistic 

regression, ANN and SVM producing identical results and, in contrary, along with 
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KNN, decision tree performance was considerably weak in comparison. It has been 

concluded that a decision tree is not ideally suited for the classification of PSL images 

since almost all the variables in the dataset are continuous related to images. Although 

in this task a decision tree`s superiority about human interpretability has been 

emphasized, it has been noted that C4.5 is not properly applicable due to machine 

generated input variables (from the vision segmentation system) with no direct 

correspondence to visible features of the lesion.  

However, in the case of discrete data, C4.5 not only performs as accurately as other 

classifiers such as MLP and logistic regression, but also outperforms others such as 

radial basis functions. In work [Kurt et al., 2008] to predict the occurrence of coronary 

artery disease (CAD), five classification methods, regression (LR), classification and 

regression tree (CART), multi-layer perceptrons (MLP), radial basis functions (RBF) 

and self-organizing feature maps (SOFM) were applied and compared. The dataset was 

composed of 1,245 subjects and applied independent variables were mainly discrete. 

The area under curves (AUC), as shown in Figure 4.12, compared the performance of 

classifiers including MLP, LR, CART, RBF and SOFM. The author categorized applied 

techniques based on their performance in two groups; the first group, including MLP, 

CART, LR and RBF, performed very similarly and the second group included only 

SOFM which performed poorly. 
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Figure 4.12 the ROC curves for five classification techniques performed similarly to 

predict coronary artery disease, adopted from [Kurt et al., 2008]. 

 

 

 

 

 

Likewise, classification and regression tree (CART) performed as well as other 

techniques like multilayer perceptrons, and logistic regression to predict cardiovascular 

risk where there were n-categorical variables transformed for the model into n-1 binary 

variables. Results (figure 4.13) show that the applied algorithms performed almost 

identically since the areas under the curve were 0.78, 0.78, and 0.76 with 95% 

confidence interval for logistic regression, MLP, and CART respectively. This similar 

performance from these classifiers may be because binary variables which are 

compatible with decision trees algorithms [Colombet et al., 2000].  
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Figure 4.13 Roc Curve comparisons for CART decision tree, MLP neural network and 

logistic regression to predict cardiovascular risk, adopted from [Colombet et al., 2000]. 

 

 

 

 

We have mentioned some examples related to decision tree performance in which they 

have behaved with different level of success. They were either worse or similar to other 

algorithms because of reasons such as data and available variables characteristics and 

number of outcome classes. However, there are several studies that report decision trees 

outperformance; having investigated the condition of applied parameters in this research 

may shed light on the reasons behind decision trees superiority.  

In 1995, King and colleagues carried out a project called Statlog which was aimed at 

finding the answer to the question why certain algorithms perform better on particular 

datasets. Using twelve datasets related to image analysis, medicine, engineering and 

finance, several tentative conclusions were drawn which pointed out that finding the 

best algorithm for a specific dataset depends essentially on features of the dataset. In 
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addition to the effect of data characteristics, on the other hand, algorithms also vary in 

terms of the ways that they deal with different types of data and the task in hand. Also, 

King and colleagues compared three categories of classifiers including symbolic, 

statistics and neural network learning techniques. In fact, StatLog aimed to find out why 

certain algorithms perform better on particular datasets. Symbolic learning mainly 

consists of decision tree algorithms like C4.5 and CART whereas there were Naïve 

Bayes, K-nearest neighbour, Bayesian networks and logistic regression in the statistical 

package. The last category was made up of back propagation and radial basis function 

algorithms. All aforementioned algorithms were tested on twelve large real-world 

datasets including five from image analysis, three from medication and two each from 

engineering and finance. Table 4.18 shows the obtained result from all available 

datasets using five classifiers as well as a very short explanation about the applied data 

features. Comparing the produced results for testing accuracy of the chosen algorithms, 

C4.5 outperformed the other four algorithms for six datasets with a high level of 

accuracy (more than 94%) in three cases. As stated before, in this study seventeen 

features have been employed and compared the result obtained by those algorithms, 

C4.5 or other symbolic learning algorithm also did very well for three of datasets 

including shuttle, segment and credit in terms of accuracy with 99.96, 96.0, and 94.3 

percentage of  accuracy respectively [King et al., 2005].  

 

  



CHAPTER 4  
 

142 

 

 

 

Table 4.18 Brief definition of 12 real world data collection applied in Statlog project and the obtained testing accuracy for various 

algorithms, gathered from [King et al., 1995] 

Data collection 
Train 

No. 

Test 

No. 

Attribute 

No. 
Classes Skew Kurtosis 

Back 

propagation 
RBF 

Logistic 

Regression 
C4.5 

Bayesian 

network 

Handwritten digit 9000 9000 16 10 0.856 5.1256 92.0 91.7 91.4 85.1 76.7 

Karhunen Loere digits 9000 9000 40 10 0.18 2.92 95.1 94.5 94.9 82.0 77.7 

Vehicle Silhoutte 752 94 18 4 0.828 5.180 79.3 69.3 80.9 73.4 44.2 

Satellite image 4435 2000 36 6 0.731 4.1737 86.1 87.9 83.1 84.9 69.3 

Segment data 2079 231 11 7 2.95 24.48 ---- ---- 89.1 96.0 73.5 

Credit risk data 6230 2670 16 2 1.208 4.404 88.2 87.5 87.3 94.3 85.0 

Belgian data 1250 1250 21 2 0.433 2.6581 ---- ---- 99.3 95.5 93.8 

Shuttle control data 43500 14500 97 7 4.43 160.310 95.10 ---- 96.17 99.96 95.45 

Diabetes data 704 64 8 2 1.058 5.827 ---- ---- 77.73 73.05 93.8 

Heart disease 240 30 13 2 0.956 3.649 0.57 0.78 0.39 0.78 0.37 

Head injury 800 100 6 3 1.007 5.0408 21.5 63.1 18.0 82.0 25.0 

German 900 100 20 2 1.698 7.794 ---- ---- 0.49 0.64 0.60 
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For segment data, the values of skewness (2.9580) and kurtosis (24.4813) show that the 

attributes are much further from normality compared with a dataset like the Vehicle 

dataset; here, logistic regression outperformed the other algorithms. This high level of 

skewness and kurtosis emerged to outfit symbolic learning well and C4.5 was one of the   

top seven algorithms.  

Using the credit risk dataset with many irrelevant attributes and eight categorical 

variables, most symbolic algorithms including C4.5 with 94.3% accuracy outperformed 

through producing the most simple and efficient rules. Neural networks achieved close 

level of accuracy with less comprehensibility results. Statistical discriminants failed to 

discover the simple rules even with low level accuracy.  

Furthermore, the Shuttle control dataset with 58,000 examples and numerical attributes 

was again far from normal distribution since the values of skewness and kurtosis were 

4.43 and 160.31 respectively. Symbolic algorithms generally achieved accuracy close to 

100% on the test set. Having analysed the developed decision tree of this dataset, it was 

revealed that only a few attributes are required to classify the data; for instance, a tree 

with five leaves applying two attributes would perfectly classify two classes indicating 

that attributes selected in this dataset are very well suited to the symbolic algorithms. It 

seems that decision trees are capable of finding the perfect rule with some tuning of the 

pruning parameter, but it is not the same in every situation since it is occasionally 

necessary to override the splitting criterion according to [Gordon & Olshen, 1978]. This 

study has emphasized that the best algorithm performance depends significantly on the 

investigated dataset. Therefore, it suggests a set of dataset descriptors to help to decide 

which algorithm is well suited to specific datasets. As an example, datasets with 

extreme distributions (skew> 1 and kurtosis> 7) and with many binary/categorical 
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attributes (>38%) tend to favour symbolic learning algorithms like CART and C4.5 

decision trees [King et al., 1995].  

Another study [Delen et al., 2005] has suggested that data cleansing and preparation 

strategies may have an effect on the decision tree`s accuracy. The SEER Breast cancer 

dataset related to the breast cancer cases of 1973-2000 was applied and after a long 

process of cleaning it consisted of 202,932 records and 16 variables associated to socio-

demographic and cancer specific information concerning cancer occurrence. The 

generated results showed the C5 decision tree as the best predictor with 93.6% accuracy 

on the holdout sample, a best ever result of research conducted in this area. Artificial 

neural networks and logistic regression placed in the second and third positions with 

91.2% and 89.2% respectively. It has been reported that medical databases may consist 

of a large amount of heterogeneous data, which complicates the use of classifiers tools 

and techniques. Additionally, in the case of large databases, missing values in the 

database must be tackled, prior to the use of the decision tree. Further, medical 

databases may contain data that is redundant, incomplete, imprecise or inconsistent with 

noise related to data collection affecting decision trees application. All of the above may 

create problems for learning by decision trees or even other classification algorithms. 

That is, the results of decision trees application are directly affected by the quantity and 

quality of the data and through improving the collection of the data, decision trees can 

yield even greater results and benefits. Here we discuss our results concerning decision 

tree performance based on above mentioned critical analysis.  

Due to the fact that our available dataset is a large volume of data with 

multidimensional structure [6,450*18], normally it is expected that SVMs, neural 

networks and decision tree outperform others [Kotsiantis, 2007]. However, the dataset 

is mainly composed of fourteen discrete variables and three continuous attributions 
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(age, weight, and length of disease); in this case, the decision tree has produced the 

most promising result due to its double ability to tackle both continuous and 

discrete/categorical features which is superior to other aforementioned techniques that 

are good at handling only continuous variables. Thus, not having any images in the 

available dataset has caused DT outperformance. 

BNs perform well when the input variables are conditionally independent of the class, 

as was true for two medical datasets used by King et al. (1995). In the case of emerging 

relationship among attributions, they don’t perform well to manage learning properly. 

Tables 4.7 to 4.10 present the significant relationship between seventeen predictors and 

outcome class which may cause the weak performance of Bayesian networks. 

Discriminant algorithms like logistic regression also fail on this type of data with high 

correlation between the attributes [King et al., 1995]. In this study, there are many 

correlations among variables, like weight and nationality (r = -0.052, P<0.001), LBW 

and Sex (r=-0.047, P<0.001), Imprisonment and Sex (r = -0.156, P<0.001), prison and 

weight (r=0.065, P<0.001), length and nationality(r =0.099, P<0.001). Those 

correlations in addition to applying fourteen discrete inputs might cause weaker results 

from BN and LR rather than DT.  

As mentioned earlier, Delen et al. (2005) emphasized that removing missing values, 

outliers and irrelevant and redundant features has a positive effect on decision trees 

accuracy and a decision tree is more capable of handling redundant features than BN. 

Also, DT is good at coping with irrelevant data. This might be the case in this particular 

study since here there are some variables with very low correlation coefficient that 

decision tree has not used them very much to build the model and not at all as the main 

root nodes. For example, as shown in Table 4.8 and 4.9, area (-0.027), prison (-0.026), 

diabetes (0.029) have low correlation coefficient, where these values for recent TB 
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infection (rtbinf), imprisonment, IV drug using, sex are 0.25, 0.151, 0.172, 0.16 

respectively. Some of the defined parameters by decision tree have been presented in 

Figure 4.14; it is the first page of constructed decision tree which is developed in this 

part of study. As can be seen the variables with high correlation coefficient such as 

recent TB infection (rtbinf), length, imprisonment and treatment category (Tcat) have 

played a major role as root and main nodes whereas the variables with small correlation 

coefficient have been recognised as less important factors and placed as very sub-nodes 

close to leaves which can  even be pruned. Decision tree`s ability to utilize significant 

input factors on the basis of their degree of contribution to estimate outcome of 

tuberculosis treatment course (presented in Tables 4.7 to 4.10) create a better predictive 

model than classifiers such as MLP, RBF and SVM which use every input uniformly by 

weightening which affects the results transparency [Kukar et al., 1992]. 

In all built decision trees in this study, either in this chapter or in chapter 6, length has 

been chosen as a root node which is, in fact, a very determining attribute if we consider 

it from medical point of view. Interestingly decision trees initiate partitioning the 

dataset at root node as either length <=6.07 or length > 6.07, almost shown in figure 

4.14. In the process of DOTS therapy, firstly, patient must take four antibiotics 

(isoniazid, rifampicin, pyrazinmide, and ethambutol) for two months and then carry on 

with only isoniazid and rifampicin for further four-months. This is called six month 

DOTS therapy which is currently the core treatment plan carried out throughout the 

world. This schedule is for new TB cases; however, TB patients who have been already 

diagnosed should take the 8-months programme. In other words, if patient’s length of 

disease is 6 month or less s/he is a new case whereas therapy duration of more than 6 

months implies a relapse TB case who has possibly failed or quit. Hence, dividing 

patients initially as either under or over six months by a decision tree is a meaningful 
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partition from a medical point of view. Clearly, this highlights DT ability to divide 

cases in the meaningful partition and find the underlining relationships among input-

output space intelligently. 

As explained before, King et al. (1995) reported that the highest values for Kurtosis 

(>7) and skew (>1) denote that they are the furthest from normality and decision tree 

like other symbolic methods are basically nonparametric; that is, this methods do not 

make any assumption about the underlying distributions. Therefore, they tackle robustly 

distributions with large kurtosis and skew. In this research`s dataset, the average values 

of skew and kurtosis are 2.169 and 7.469 respectively; this is shown in Tables 4.3 to 4.5 

in more detail for each variable distinctly leading to significant skewness and  kurtosis 

(P<0.05) and non-normal distribution. Hence, the only available nonparametric 

symbolic learning algorithm in the current study is the decision tree which performed 

well at partitioning the input space. In actuality, High skew (>1) or kurtosis (>7) along 

with the presence of binary/categorical variables, using relevant and correlated 

predictors without any missed instances or noised data have decision trees to predict 

more accurately than other algorithms. 
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Len <= 6.07 

|   Imprisonment = No 

|   |   Rtbinf = No 

|   |   |   AGE <= 52 

|   |   |   |   LBW = No 

|   |   |   |   |   AGE <= 20 

|   |   |   |   |   |   Weig <= 53.5 

|   |   |   |   |   |   |   Nat = Iran 

|   |   |   |   |   |   |   |   Weig <= 42.5 

|   |   |   |   |   |   |   |   |   Len <= 1.9: cured (2.0) 

|   |   |   |   |   |   |   |   |   Len > 1.9: dead (9.0) 

|   |   |   |   |   |   |   |   Weig > 42.5: cured (8.0/1.0) 

|   |   |   |   |   |   |   Nat = Afghani 

|   |   |   |   |   |   |   |   Len <= 4.73: cured (8.0/2.0) 

|   |   |   |   |   |   |   |   Len > 4.73: quit (5.0/1.0) 

|   |   |   |   |   |   |   Nat = CnAs: cured (1.0) 

|   |   |   |   |   |   |   Nat = iraq: cured (0.0) 

|   |   |   |   |   |   |   Nat = pakist: cured (0.0) 

|   |   |   |   |   |   Weig > 53.5 

|   |   |   |   |   |   |   AGE <= 19: cured (3.0) 

|   |   |   |   |   |   |   AGE > 19: complet (5.0/1.0) 

|   |   |   |   |   AGE > 20 

|   |   |   |   |   |   HIV = No 

|   |   |   |   |   |   |   Ivdrg = No 

|   |   |   |   |   |   |   |   Castp = new 

|   |   |   |   |   |   |   |   |   Area = rural 

|   |   |   |   |   |   |   |   |   |   Nat = Iran: dead (11.0/1.0) 

|   |   |   |   |   |   |   |   |   |   Nat = afghani: quit (11.0) 

|   |   |   |   |   |   |   |   |   |   Nat = CnAs: quit (0.0) 

|   |   |   |   |   |   |   |   |   |   Nat = iraq: quit (0.0) 

|   |   |   |   |   |   |   |   |   |   Nat = pakist: dead (1.0) 

|   |   |   |   |   |   |   |   |   Area = urban 

|   |   |   |   |   |   |   |   |   |   Pris = No 

|   |   |   |   |   |   |   |   |   |   |   Nat = Iran 

|   |   |   |   |   |   |   |   |   |   |   |   SEX = female 

|   |   |   |   |   |   |   |   |   |   |   |   |   Weig <= 36: dead (2.0) 

|   |   |   |   |   |   |   |   |   |   |   |   |   Weig > 36 

|   |   |   |   |   |   |   |   |   |   |   |   |   |   Len <= 2.2 

|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   AGE <= 27: cured (2.0) 

|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   AGE > 27: quit (2.0) 

|   |   |   |   |   |   |   |   |   |   |   |   |   |   Len > 2.2: quit (11.0/1.0) 

|   |   |   |   |   |   |   |   |   |   |   |   SEX = male 

|   |   |   |   |   |   |   |   |   |   |   |   |   AGE <= 37 

|   |   |   |   |   |   |   |   |   |   |   |   |   |   Weig <= 52 

|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   Len <= 4.23 

|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   Weig <= 45.5: cured (2.0/1.0) 

|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   Weig > 45.5: dead (3.0) 

|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   Len > 4.23: quit (4.0) 

|   |   |   |   |   |   |   |   |   |   |   |   |   |   Weig > 52: quit (9.0) 

 

Figure 4.14 First page of developed decision tree with root node length <= 6.07 as right 

side, len in the first line means length of disease.  
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Apart from DT, regarding to the rank of other employed classifiers which are 

represented in figures 4.5 and 4.6, BN has outperformed other four classifiers.  LR, 

MLP, RBF AND SVM have performed relatively similar with prediction accuracy 

percentage ranging from 53.74% to 57.82%. Tu (1996) reviewed a number of studies 

comparing neural networks and logistic regression performance concluding that 

regression models usually have close predictive performance in testing datasets; it is the 

case here that LR and MLP performed very similarly with identical prediction accuracy 

(57.82%). RBF is actually a type of neural network and it might be a postulation that 

based on their algorithm similarities and data type entity the results are comparable. 

Logic-based algorithms are considered very easy to understand and their 

comprehensibility of structure has received much attention, whereas neural networks 

and SVMs have very extremely poor interpretability and remained a ‘black box’ model 

[Lim et al., 2000; Tsien et al., 1998; Kotsiantis, 2007]. In fact, the main objective of this 

study is creating a system for which the user may vary from a physician to a health 

practitioner with a lower level of medical knowledge playing the role of TB patient’s 

supervision and support. Hence, a decision tree with a flowchart-type structure is 

superior to other methods such as logistic regression, neural networks, and support 

vector machines which are less likely to be acceptable in general use based on their less 

understandable results. Produced results of decision trees can be simply interpretable 

and applicable; their rules can be understood either by doctors or health practitioners 

who implement DOTS in rural areas and make decisions alone; this suggests preference 

of decision trees even if performance is not as high as other methods. Even Bayesian 

network application in practice, needs some knowledge like probabilistic explanations 

in diagnosing disease and their related factors which may not be available through the 

health staff at low organizational level. For example in Iran, Behvarzes are health 
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workers who have limited medical knowledge but have a core role in health promotion 

and maintenance; based on my experience and knowledge, they can easily handle 

decision tree-based system application.  

4.5 Summary 

An available large set of data related to tuberculosis patients has created an excellent 

opportunity to generate predictive models which may lead to a system capable of 

defining which specific patient needs what level of supervision and support since it is 

not possible to give every single one of them full supervision. Covariance analysis for 

seventeen applied variables reveals that they are influential factors impacting outcome 

of tuberculosis treatment course. Based on the fact that there is no single learning 

algorithm which can uniformly outperform other algorithms over all datasets, six 

classifiers from different algorithm categories have been chosen. Using those factors 

and 6,450 records of TB patients to be tested by six classifiers, decision trees have 

outperformed the other methods in estimating the outcome of tuberculosis treatment 

course shown by five prediction comparison criteria. This outperformance is mainly 

attributed to the data characteristics. For example, the DT has tackled its non-normal 

distribution with high value of skew or kurtosis, possessing fourteen discrete/categorical 

variables with some relationship among their variables and different level of correlation 

coefficient. However, the degree of accuracy of developed models may need 

improvement since the most accurate tool has performed with only 74.21%. It seems 

that this level of accuracy is still not satisfactory and needs to be improved by a 

clustering-based combination algorithm which is discussed in the next chapter.  

 

 



CHAPTER 5 
 

151 
 

 

 

 

 

Chapter 5 

Combined Use of Supervised & 

Unsupervised Learning for 

Tuberculosis Treatment Course 

Prediction 

 

 

 

 

 

 

 

 

 



CHAPTER 5 
 

152 
 

5.1 Introduction 

In this chapter in order to generate a more precise and accurate system, it is suggested 

that we combine classification techniques as supervised and clustering methods as 

unsupervised learning algorithms. Supervised and unsupervised learning combination 

has already been used in a few studies that have been conducted to estimate a given 

outcome [Pao & Sobajic, 1992; Boudour & Hellal, 2005], to address cause-and-effect 

relationship [Šmuc et al. 2001] other than accuracy improvement. As illustrated in 

chapter 4, fitting the whole dataset to develop one model has led to complication and 

inaccuracy. In the best case scenario, a decision tree has been found as the most 

accurate algorithm to deal with the available dataset in respect of prediction accuracy of 

74.21%. It might be because of the fact that mapping a big volume of patient data with 

various conditions at once to fit a model may create a problem. Here, applying the 

“divide and concur” concept might be useful. Based on this idea through recursively 

breaking down, a problem is divided into two or more sub-problems of the same or 

associated categories until the problem becomes straightforward enough to be solved 

directly. Afterwards, the obtained solutions to sub-problems are combined to give the 

main solution to the original problem. Thus, this concept may generate the idea of 

combination approach of supervised and unsupervised learning. This allows 

segmentation of the different patients/conditions and should then find the right (i.e., 

simpler and more accurate) classification model for each segment of the 

patients/conditions.  

The K-means clustering algorithm is able to divide the whole dataset into segments 

based on the number of clusters, K, defined initially. Here we have chosen K = 2, 3 and 

4; since every developed cluster should be used to fit a classification model through a 

classification algorithm, the high number of K creates further complexity which is out 
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of this research feasibility. For example, for K=4, there would be 4 models mapped by 4 

related clusters (training sets) in which they should be tested by 4 testing sets for each 

of six classifiers. In this research, by defining K=2, 3, and 4 there are 9 models fitted by 

9 developed clusters for every classification algorithm. In total, for six classifiers we 

have got 36 models which need to be validated by their associated testing set. Hence, 

we have started from the simplest number which is two. To find out the best performing 

cluster number an optimization methodology is suggested.  

Through combining unsupervised learning such as the k-means clustering approach 

with six applied classifiers including decision trees (DT), Bayesian Network (BN), 

logistic regression (LR), multilayer perceptrons (MLP), radial basis functions (RBF), 

and support vector machines (SVM), this chapter aims to improve the prediction 

accuracy percentage. Details of classification estimation from each of the above 

mentioned classification tools and their comparison by various measurements was 

illustrated in chapter 4. This chapter is aimed at improving these measurements through 

k-means clustering application prior to the classification process in order to decrease the 

number of misclassified cases. Furthermore, this part of the study is aimed at evaluating 

the effect of supervised and unsupervised learning combination on the accuracy of the 

six developed models to predict the outcome of a tuberculosis treatment course. This 

aim can be considered in more detail as follows: 

 Determine which of the examined cluster number is most optimized for the 

given classification task. Here we have examined 2, 3, and 4 partitions 

 Which classification algorithm performs best with cluster-based input-output 

mapping 

 How effectively has combined unsupervised and supervised learning algorithm 

performed to improve the prediction accuracy 
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In order to respond to these questions, firstly the experimental methodology for this part 

of the research is explained. Secondly, the obtained findings are presented and 

discussed, followed a summary conclusion of the chapter.  

5.2 Experimental Methodology  

The available dataset which was initially applied to estimate the outcome of a 

tuberculosis treatment course by six classification algorithms was used to assess their 

prediction and training accuracy via clustering method; the steps of approach are  

illustrated in the next three sections in more detail.  

5.2.1 Unsupervised Learning by Clustering Method 

It is denoted in tables 4.1 and 4.2 that there are 17 variables as independent inputs and 

the outcome of a tuberculosis treatment course as a dependent variable with five classes. 

Let us represent these seventeen input variables as                      , and 

the correspondent target outputs of the outcome of tuberculosis treatment course as 

                     when  

             
  

Where t indexes different examples in the dataset where here the whole dataset is 6,450; 

however, based on the fact that the dataset was divided with two-thirds for training and 

the other third for estimating performance, we will have two datasets including R and T 

denoting training and testing datasets respectively as follows: 

             
 , N = 4,515 

             
 , N = 1,935         

Where t represent the pair of numbers of an input    and the corresponding target 

output   ; R and T consist of 4,515 and 1,935 pairs of examples for the training and 
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testing set respectively. In order to apply a clustering learning algorithm for both 

training and testing set,    is removed from the dataset at the beginning of clustering 

learning. 

Because of the partitioning method capacity to handle a large volume of data compared 

with hierarchical clustering method and the large body of dataset available in this study 

the k-means clustering method has been examined here. The K-means clustering 

method is a centroid-based technique employed to group a dataset into K partitions 

(         ) through the following stages:  

First, it randomly chooses K of the object; every one of which initially represents a 

cluster mean or centre for every remaining objects, an object is assigned to the cluster 

based on its similarity with one of the embedded clusters. Actually, the distance 

between the object and the cluster mean defines whether this object should be added to 

this cluster or not. That is, every object is distributed to a cluster on the basis of the 

cluster centres whichever is nearest. This distribution forms silhouettes. Then, the 

cluster centres are updated i.e the mean value of each cluster is calculated according to 

the current objects in the cluster. Again, by considering the new cluster centres, the 

objects are redistributed to the cluster according to which cluster is the nearest leading 

to new silhouettes. This iteration process is carried on until the time that no iterative 

relocation would occur to any further extent and consequently no redistribution of the 

objects in any cluster will occur and so the process terminates. Here,            the 

iteration process is carried out 10 times and when the same index for a given object was 

yielded repeatedly, those indexes determined to which cluster the object belongs. 

Related silhouettes for each            have been represented in figure 5.2, 5.3, and 

5.4 respectively.  
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Now, the training and testing datasets was divided into K clusters separately in the 

MATLAB environment. After adding the target output    for each cluster we have 9 

cluster-based training sets and 9 cluster-based testing sets where           . We 

denote training sets as   
  and testing sets as   

  where i is the      cluster-based training 

or testing set and K is the number of partitions produced by K-means clustering varying 

from 2 to 4 in this study. Table 5.1 shows the number of cases in each cluster based on 

the partition number K and training or testing datasets separately.  

5.2.2 Supervised Learning by Classification Methods 

Applying each    
   to train each considered classifier including decision trees (DT), 

bayesian networks (BN), logistic regression (LR), neural networks (NN), radial basis 

functions (RBF), and support vector machines (SVM), the correspondent models are 

built distinctly.  

To learn these datasets, the WEKA package, illustrated in Figure 3.5 is utilized. For 

every partition number K, we have a corresponding number of constructed models 

named     
  ; indicating the     constructed model trained by the      cluster-based 

training set and K is the number of partitions constructed by the K-means clustering 

approach          .  

5.2.3 Combination & Comparison Stage 

To check the validity and generalization ability of this mapping from   
  to   

  , every 

one of the developed models are checked by the corresponding testing data    
  to which 

they haven‟t been applied in model development. Now, by this application for 

every    
 , we are going to calculate   

  where y is the class label of outcome of a 

tuberculosis treatment course. It is defined by the corresponding model parameters, i is 
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the index of patient records    in the testing set in every cluster K, partitioned by the K-

means clustering method. Then, for every K, including 2, 3, and 4 partitions, the 

correspondents    
  are put together to make up the whole yielded  y as the classification 

label for the whole testing set together. For example, for K =2, we have two series of  

  
  on which i in the first series comprises the calculated classification label of a 

tuberculosis treatment course for the     to the        patient and for the second series 

includes the second cluster from the       to the         cases. These series of   
  

converged to compose    which are obtained based on both clustering and classification 

methods. 

Having compared these produced    and the corresponding     for each    by using 

accuracy comparison measurement such as prediction accuracy, the impact of clustering 

and classification methods combination has been revealed. To calculate the prediction 

accuracy, confusion matrices are developed for    yielded from each partition 

number          .  

The process of  calculation based on           has also been conducted by using 

training set   
   leading to training accuracy calculation which shows the degree of  

model fitness. However, for judgment of a model, the importance of model accuracy 

addressed by a measurement like prediction accuracy is the subject of high interest.  

At the final stage, yielded prediction and training accuracy for two, three, and four-

clustered based models are compared; these results compared six classification 

algorithms to find out which outperforms others. The combination stage including 

confusion matrix construction and comparison process are carried out in WEKA and 

SPSS (statistical software) environment.  
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Prediction Accuracy Assessment for k = {2, 3, 4} 

            
        

            
        

 

            
        

 

   

   

    

Figure 5.1 Schematic processes of supervised & unsupervised learning 

combination and evaluation. 
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5.3 Experimental Results 

The results of this part of study can be categorized in two main sections including the 

first group of findings which are obtained from different numbers of cluster  ,    

        and the second category of results which are related to different classification 

algorithms comparison.  

5.3.1 Silhouette Analysis 

The returned silhouette for           are displayed in Figure 5.2, 5.3, and 5.4 

respectively. Having compared the drawn silhouette plots, the silhouette values related 

to three numbers of  clusters (K=3) is slightly more well-separated than others; 

furthermore, in figure 5.4, clusters contain negative silhouette values indicating that 

those four clusters are not well separated. This is not the case for Figure 5.2 and 5.3 

which don‟t have any negative points. 

5.3.2 Predictive Accuracy Comparison Based on Cluster Number 

The number of objects in each cluster has been represented in Table 5.1 based on 

training and testing sets. Using the   
  as training and   

  as testing sets, nine models 

are built with the training and prediction accuracy shown in table 5.2, 5.3, 5.4, 5.5, 5.6, 

5.7. Obviously, the models yielded from 3-cluster based datasets outperform others 

since the training accuracy values are 91.66, 84.88, and 90.67 for training accuracy of 

two, three, and four-cluster based models respectively. The percentages of prediction 

accuracy also verifies the 3-cluster performance with 80.26, 82.92, and 87.28 which are 

higher than other models, particularly those constructed by 4-cluster sets.  
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Table 5.1 Applying k-means clustering method to cluster the training and testing set 

after removing outcome parameter 

Data 

2-cluster 3-cluster 4-cluster 

C1 C2 C1 C2 C3 C1 C2 C3 C4 

Training 

Set 

 

2255 2260 1560 1707 1248 1309 1227 940 1039 

Total 

4515 4515 4515 

2-cluster 3-cluster 4-cluster 

Testing 

Set 

C1 C2 C1 C2 C3 C1 C2 C3 C4 

966 969 669 732 534 561 526 403 445 

Total 1935 1935 1935 

                

 

 

 

 

Figure 5.2 The silhouette plot for two partition number clustered by k-means.   
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Figure 5.3 The silhouette plot for three partition number clustered by k-means.   

 

 

 

 

Figure 5.4 The silhouette plot for four partition number clustered by k-means.   
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Table 5.2 Comparison of prediction accuracy percentage for 2, 3, and 4 cluster-based 

Decision Trees 

 Model Fitness Model Accuracy 

Number of Cluster Training Accuracy prediction Accuracy 

2-cluster 
Cluster1 84.70 80.74 

Cluster2 85.53 73.78 

3-cluster 

Cluster1 91.66 80.26 

Cluster2 84.88 82.92 

Cluster3 90.67 87.28 

4-cluster 

Cluster1 87.31 61.31 

Cluster2 85.33 53.61 

Cluster3 83.72 43.67 

Cluster4 80.4 49.88 

 

 

 

 

 

 

Table 5.3 Comparison of prediction accuracy percentage for 2, 3, and 4 cluster-based 

Bayesian Network 

 Model Fitness Model Accuracy 

Number of Cluster Training Accuracy prediction Accuracy 

2-cluster 
Cluster1 54.01 52.48 

Cluster2 56.37 56.86 

3-cluster 

Cluster1 63.71 55.00 

Cluster2 62.09 70.21 

Cluster3 66.47 64.67 

4-cluster 

Cluster1 59.28 52.76 

Cluster2 53.38 52.85 

Cluster3 56.91 49.87 

Cluster4 54.28 53.25 
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Table 5.4 Comparison of prediction accuracy percentage for 2, 3, and 4 cluster-based 

Logistic Regression 

 Model Fitness Model Accuracy 

Number of Cluster Training Accuracy prediction Accuracy 

2-cluster 
Cluster1 52.5 55.79 

Cluster2 61.28 62.02 

3-cluster 

Cluster1 68.65 74.14 

Cluster2 56.18 61.33 

Cluster3 71.21 70.65 

4-cluster 

Cluster1 57.83 52.40 

Cluster2 60.14 56.32 

Cluster3 64.14 56.65 

Cluster4 54.76 52.58 

 

 

 

 

 

Table 5.5 Comparison of prediction accuracy percentage for 2, 3, and 4 cluster-based 

Multilayer Perceptron Neural Network 

 Model Fitness Model Accuracy 

Number of Cluster Training Accuracy prediction Accuracy 

2-cluster 
Cluster1 65.72 59.10 

Cluster2 72.78 60.78 

3-cluster 

Cluster1 76.73 63.22 

Cluster2 70.47 60.00 

Cluster3 78.26 85.23 

4-cluster 

Cluster1 72.65 52.58 

Cluster2 68.94 48.47 

Cluster3 77.34 43.42 

Cluster4 69.10 48.98 
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Table 5.6 Comparison of prediction accuracy percentage for 2, 3, and 4 cluster-based 

Radial Basis Function 

 Model Fitness Model Accuracy 

Number of Cluster Training Accuracy prediction Accuracy 

2-cluster 
Cluster1 48.55 46.16 

Cluster2 55.88 55.72 

3-cluster 

Cluster1 63.52 54.55 

Cluster2 51.08 53.68 

Cluster3 56.93 53.27 

4-cluster 

Cluster1 56.91 43.13 

Cluster2 51.50 43.53 

Cluster3 58.61 40.94 

Cluster4 46.19 46.96 

 

 

 

 

 

 

 

Table 5.7 Comparison of prediction accuracy percentage for 2, 3, and 4 cluster-based 

Support Vector Machine 

 Model Fitness Model Accuracy 

Number of Cluster Training Accuracy prediction Accuracy 

2-cluster 
Cluster1 49.40 56.21 

Cluster2 60.97 62.64 

3-cluster 

Cluster1 69.93 67.86 

Cluster2 51.84 63.52 

Cluster3 68.00 74.20 

4-cluster 

Cluster1 56.22 56.22 

Cluster2 56.15 56.46 

Cluster3 61.48 53.10 

Cluster4 53.60 51.46 
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5.3.3 Predictive Accuracy Comparison Based on Classifiers 

To assess how the six considered classifiers have worked in the combination of 

supervised and unsupervised learning, a confusion matrix is developed for each 

classifier and for every partition number separately. This step leads us to calculate 

model fitness and accuracy. Thus, there are 36 confusion matrices produced for six 

tools and three K; we have presented three matrices as an example for all three partition 

numbers: two, three, and four, executed for the decision tree. As shown in tables 5.8, 

5.9, and 5.10 here the confusion matrix represents the number of cases which have been 

predicted correctly by the given classifier application (decision trees) and the outcome 

of tuberculosis treatment course in reality. The model fitness and accuracy for each 

classification algorithm application is shown in Figures 5.5, 5.6, 5.7, 5.8, 5.9, and 5.10 

for two, three, and four partitioning number comparatively. The 3-cluster based models 

have been the best in all cases where, the model accuracy has been 80% for 3-cluster 

based model partitioning decision tree whereas this value has been 75% and 48% for 

two and four clusters respectively. This is the same for Bayesian networks, signified in 

Figure 5.6, where the model accuracy is 65.43 for K=3 which is greater than 60% and 

57.3% for two and four clusters. 

Likewise, as shown in figure 5.7 for logistic regression the prediction accuracy is 

calculated as 67.60% which is 15% and 18% more than the results for two and four 

clusters respectively.  

Produced results by MLP confirm the 3-cluster outperformance when the prediction 

accuracy obtained from 3-cluster based model is 64.80 which is %4 and 6.5% for two 

and four cluster-based learning results. This is shown in figure 5.8.  
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For radial basis functions, 3-cluster based learning has given the best result for 

prediction accuracy (presented in Figure 5.9) with 55.80% compared with 49% and 

43% for two and four cluster number respectively.  

The last example of three-cluster base learning superiority with 63.11% rather than the 

partition number two with 56% and four with 50% has been obtained by support vector 

machine performance.  

Comparisons among two, three, and four cluster-based learning results by six 

classification algorithms have confirmed that three-cluster is the best partition number; 

after 3 clusters, two and then four clusters have produced the best results respectively.  

5.3.4 Prediction Accuracy Comparison Before and After Clustering 

After applying combined clustering and classification method for six considered 

classification methods, there is the opportunity to compare prediction accuracy before 

and after this method application. Figures 5.11 and 5.12 demonstrate the prediction 

accuracy percentage and F-measure values for decision trees (DT), Bayesian net (BN), 

logistic regression (LR), multilayer perceptron (MLP), radial basis functions (RBF) and 

support vector machines (SVM) comparatively. The improvement in these two 

measurements is clear; where for DT, BN, LR, MLP, RBF, and SVM, the prediction 

accuracy improvement are reported as 7%, 5%, 10%, 7%, 3.5%, and 4.8% respectively. 

This improvement for all employed classifiers through combination method by F-

measure values improvement is verified with improvement of 0.11, 0.08, 0.10, 0.11, 

0.09, and 0.20 for DT, BN, LR, MLP, RBF and SVM respectively. Figure 5.12 also 

shows findings.  
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Table 5.8 Confusion matrix for Decision Tree, C4.5, model accuracy for whole 2 

clusters, cluster1+cluster2 

Predicted 

Outcome 

 

Outcome in Reality 

 Total 

Prediction 

Accuracy 

(%) 
 Cured Complete Quit Failed Dead 

Cured 622 85 33 15 17 772 0.80 

Complete 41 354 15 7 7 424 0.83 

Quit 55 27 231 18 13 344 0.67 

Failed 16 15 21 168 6 226 0.74 

Dead 24 7 14 4 120 169 0.71 

Total 758 488 314 212 163 1935 0.75 

 

 

 

 

 

 

Table 5.9 Confusion matrix for Decision Tree, C4.5, model accuracy for whole 3 

clusters, cluster1+cluster2+cluster3 

Predicted 

Outcome 
Outcome in Reality 

Total 
Prediction 

Accuracy (%) 
 Cured Complete Quit Failed Dead 

Cured 695 59 19 10 16 799 0.869 

Complete 37 368 7 8 1 421 0.874 

Quit 37 9 275 20 7 348 0.79 

Failed 11 6 12 149 5 183 0.81 

Dead 18 6 28 8 124 184 0.67 

Total 798 448 341 195 153 1935 0.80 
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Table 5.10 Confusion matrix for Decision Tree, C4.5, model accuracy for whole 4 

clusters, cluster1+cluster2+cluster3+cluster4 

Predicted 

Outcome 
Outcome in Reality 

Total 
Prediction 

Accuracy (%) 
 Cured Complete Quit Failed Dead 

Cured 394 82 42 26 26 570 0.69 

Complete 211 352 29 24 9 625 0.563 

Quit 93 46 107 42 31 319 0.33 

Failed 43 34 44 88 10 219 0.40 

Dead 50 12 35 21 84 202 0.41 

Total 791 526 257 201 160 1935 0.48 

 

 

 

 

 

 

Figure 5.5 Decision Tree prediction accuracy percent (%). 
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Figure 5.6 Bayesian Network prediction accuracy percent (%). 

 

 

 

 

 

Figure 5.7 Logistic Regression prediction accuracy percent (%). 
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Figure 5.8 Multi Layer Perceptron (Neural Network) prediction accuracy percent (%). 

 

 

 

 

 

 

 

Figure 5.9 Radial Basis Network prediction accuracy percent (%). 
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Figure 5.10 Support Vector Machine prediction accuracy percent (%). 

 

 

 

 

 

Figure 5.11 Comparison of six machine learning tools Prediction accuracy percentage 

for model accuracy before and after clustering. 
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Figure 5.12 Comparison of six machine learning tools F-measure for model accuracy 

before and after clustering. 

 

 

 

 

5.4 Discussion 

Applying the integrated supervised and unsupervised learning method increased the 

perdition accuracy for six classifiers. Table 5.11 presents the prediction model accuracy 

and F-measure as two measurements of accuracy improvement for six classifiers. There 

are accuracy improvements (4-10%) for six classifiers.  

Table 5.11 Summary of accuracy improvement for six classifiers presented by changes 

in Prediction Model Accuracy and F-measure 

Classifiers 
 Prediction Model Accuracy F-measure 

Before Clustering After Clustering Before Clustering After Clustering 

DT 74.21 80.4 0.746 0.837 

BN 61.7 65.43 0.621 0.701 

LR 57.82 67.6 0.578 0.688 

MLP 57.82 64.8 0.570 0.683 

RBFN 53.74 57 0.536 0.620 

SVM 57.47 63.116 0.500 0.700 
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The supervised and unsupervised combination approach has already been employed for 

other purposes; however, here we have examined this approach in a new application to 

improve prediction accuracy. The common point about the combined approach is that in 

all of them the unsupervised learning phase is conducted prior to supervised learning. It 

makes the supervised learning algorithms use clustered data to produce more accurate 

results. However, in this study which uses this method for the purpose of prediction 

improvement, the combination stage is carried out through merging the predicted 

outcome of each cluster from the testing set and putting it together to make up the 

whole predicted outcomes. Classification is basically a type of clustering which 

identifies similarities among inputs that belong to the same class. Furthermore, when 

the clustering algorithm exploits similarities between inputs in order to segment those 

similar inputs together, this might perform classification automatically [Marsland, 

2009]. Using the k-means clustering algorithm to produce a well-segmented input 

space, based on the number of partitions, two, three, and four clusters are generated. 

Due to using an iterative technique in the k-means algorithm and moving the objects` 

location, there is new partitioning and topology. This changes the location of objects 

from one group to another. We intend to locate similar objects in the same cluster as 

„close‟ as possible whereas objects of different clusters should be as „far apart‟ as 

possible. 

Having compared the silhouette values and their corresponding plots for different 

number of partitions (K=2, 3, and 4) in Section 5.3.2 and Figure 5.2, 5.3 and 5.4, it is 

obvious that K=3 has returned the most well-separated clusters with greater mean 

silhouette values and no negative silhouette values. Thus, we focus on the clusters 

where K=3. To describe each cluster, we calculate the mode for each variable in the 

boundary of every cluster. Here, mode is the most occurring values for each variable in 
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each cluster`s boundary. We have investigated the mode of each attributes values before 

and after clustering. Table 5.11 presents the mode measurement which is the most 

frequent values of variables in the training set. Having compared the mode before and 

after clustering in the training set and    
 ,   

    
 , it is revealed that by using clustering, 

proper segmentation has been conducted. Apparently, the majority of variables` modes 

have been altered before and after clustering due to the change in object locations which 

have been updated in the process of partitioning; this may result in developing groups of 

patients with new members since clustering aims to put similar cases in a cluster. 

According to the k-means clustering requirement that each object must belong to 

exactly one group, similar cases are placed in one cluster. Developed groups may 

increase the model`s accuracy since similar patients/condition might be placed in the 

same sector and mapping these consistence segments might lead to more accuracy and 

precision. 

From Table 5.11, the values of mode in the training set (before clustering) are different 

from the mode values of each attribute in clusters. For example, the most frequent value 

for TB type is pulmonary before clustering; however, applying clustering makes change 

where the mode of TB type in    
  is different as extra-pulmonary. That is, it has been 

changed after clustering into three splits where TB type is pulmonary for two of them 

and extra-pulmonary for another. It seems clustering has been strong enough to divide 

cases and put similar conditions together. 
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Table 5.12 The value of mode measurement for the variable of training sets before and 

after partitioning, K=3  

 

 

Input factors 

Before 

partitioning 

After partitioning  

The most 

frequent value 

(mode) of input 

factors in 

training set 

The most 

frequent value 

(mode) of 

input factors in 

cluster   
  

The most 

frequent value 

(mode) of 

input factors 

in cluster    
  

The most 

frequent value 

(mode) of 

input factors 

in cluster    
  

Gender Male Male Female Male 

Age 70 25 70 50 

Weight 50 50 50 60 

Nationality Iranian Iranian Afghani Iranian 

Area of residence Urban Rural Urban Urban 

current stay in prison No No No No 

Case type new new returned new 

Treatment categories A A B A 

TB type Pulmonary Pulmonary Extra-

Pulmonary 

Pulmonary 

Recent TB infection No No yes No 

Diabetes No No No No 

HIV No No No suspected 

Length (Month) 7.07 6.03 19 28.5 

Low Body 

Weight(LBW) 

No No No yes 

Imprisonment No No No suspected 

IV drug using No No No suspected 

Risky sex No No No suspected 
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Furthermore, there are connections among values of variables from a medical point of 

view. To be precise, by clustering and changing the object`s partition, the most common 

values of variables in each cluster have been arranged in a meaningful way. For 

instance, in the first cluster, the most repetitive cases are young new cases with a short 

length of TB who are under good supervision in rural areas. In cluster 2, there are those 

cases who are old females from Afghanistan living in urban regions under treatment 

type 2 who are returned cases having had the disease for about 19 months. Here, being 

immigrants, long term infection, returned, extra-pulmonary cases and treatment 

category B are really associated in medical knowledge terms. In the third cluster, the 

most repetitive conditions are related to middle-aged Iranian men, who have pulmonary 

TB and live in urban regions and are suspected to have had unprotected sex, consume 

drugs or be HIV positive. Typically those people who have these features are involved 

with TB for longer durations resulting in the outcome of them quitting treatment which 

is the case here as well. Due to the high association of HIV, IV drugs, unprotected sex 

as social related risk factors, it is fairly obvious that partitioning these cases together is a 

success for the k-means algorithm leading to improve classification accuracy.  

Obviously, this integration stage of clustering and classification may improve the 

prediction accuracy of classifiers performance through strengthening local mappings 

instead of a general approximation approach which was addressed in the previous 

chapter.  

Three clusters have achieved the best results. However, we have applied a number of 

clusters: two, three and four. Furthermore, two clusters has performed better than two 

clusters; thus, it looks as if no strong conclusion can be drawn with regards to an 

optimized cluster number and further optimizing investigation might be required.  
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Combined supervised and unsupervised learning method has affected all classifiers` 

accuracy positively. Each classification algorithm has been fed clustered sets; In other 

words, in the process of input-output mapping, here, similar objects in a clusters have 

been applied to produce the given output and model development. Apparently, more 

consistent objects in separated segments might result in fewer misclassified prediction 

than any of the applied classification algorithms. 

5.5 Summary 

According to the result of chapter 4, decision trees outperformed other classifiers; 

however, they still needed accuracy improvement which was fulfilled through applying 

the approach of k-means clustering and classification techniques combination. Having 

compared the results of prediction accuracy before and after clustering, there is an 

improvement in model accuracy. Creating partitions by the k-means clustering 

algorithm and carrying out the local learning returns promising results, mainly for the 3-

cluster-based model with meaningful results from a medical point of view. Further 

investigation for more clustering number might be required. Although the produced 

decision tree is improved in accuracy, it is too large to be easily understandable. In fact, 

a large number of branches in a decision tree damages comprehensibility and accuracy. 

In the next chapter, we apply a cluster-based method to develop smaller and more 

accurate decision trees. Combination of smaller trees might lead to development of a 

novel algorithm producing more understandable and accurate decision trees. This could 

be used to predict the outcome of a tuberculosis treatment course which is usable even 

by staff at a low level of the health system.  

   

 



CHAPTER 6 

178 
 

 

 

 

Chapter 6 

Decision Tree Accuracy Improvement 

& Simplification using Unsupervised 

& Supervised Learning Approaches 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 6 

179 
 

6.1 Introduction 

In the previous chapter we attempted to improve the accuracy of the decision tree 

through developing the clustering-based decision tree. This accuracy improvement is 

expected to enhance the tree`s simplicity and interpretability. Simplicity is a prominent 

feature of the decision tree and this algorithm has been always at the centre of attention 

due to its scalability, interpretability and comprehensibility [Lim et al., 2000]. 

Interpretability refers to the level of understanding and insight that is provided by the 

classifier or predictor for which decision tree are famous [Han & Kamber, 2006].  

The level of comprehensibility typically diminishes with increase in tree size and 

complexity. In fact, in the case of having two trees employing the same kind of test and 

yielding the same prediction accuracy, the one with fewer leaves is generally preferred 

[Lim et al., 2000]. Typically, developed decision trees suffer from the weakness of 

excessive complexity and therefore are incomprehensible to experts [Quinlan, 1999]. 

That is, the induced decision trees may often not be very clear which prevents them 

from concisely illuminating classification behaviour.  Consequently, they are not able of 

satisfying the needs of domain expert or even novice users [Breslow & Aha, 1997].  

The developed cluster-based decision trees are still fairly complicated with 509 numbers 

of tree size and 888 numbers of nodes; it needs to be more simplified and 

understandable. In this chapter, we intend to simplify the cluster-based decision tree as 

well as improve its accuracy. First the novel methodology of developing cluster-based 

simplified decision tree (CSDT) is illustrated. This is done through applying 

hierarchical clustering and classification learning. Then, the new method is applied to 

the available dataset in the experimental methodology and the results are recorded. The 
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following discussion investigates the results obtained in this chapter by comparing them 

with previous research. A summary concludes the findings and the chapter.  

6.2 Cluster-based Simplified Decision Tree to Predict the Outcome of 

Tuberculosis Treatment Course 

In order to construct a cluster-based simplified decision tree (CSDT) three main stages 

are required. These are explained in the following sections.  

6.2.1 Branches Selection 

Suppose there is a dataset where  j clusters (  
 
  are developed by k-means clustering 

producing   
 
 where i is ith number of j partitions; in fact,  j is the cluster number which 

can be set at 2 as a minimum, to create at least 2 clusters. Using the corresponding cases 

in each cluster, they are learned by a decision tree algorithm to produce      
    where n 

is the nth decision tree induced from the ith number of clusters. Every    
  has several 

branches which are called    
  where m and n imply the mth branch from the nth 

corresponding tree. As the aim of this chapter is both the tree size reduction and 

accuracy improvement, it is required to select large branches of the initial decision trees 

with more misclassification cases which can display, at the end, the effect of learning 

method sensibly. That is, the main criteria for selecting a set of    
  from     

  are for 

them to be both large in size and contain more misclassification cases. However, 

branches with accurately classified cases have been ignored, even if they are large in 

size. 
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6.2.2 Branches Training by Hierarchical Clustering & Classification 

Approach 

In this step, the hierarchical clustering and classification methods are applied to the 

selected branches. Thus, firstly, the selected branches are segmented by using the K-

means clustering algorithm and corresponding cases of every    
  are partitioned into K 

clusters. Thus, there is   
  where p and m signify the number of the pth partition from 

the mth branch. Using the related cases of each    
 
   , a C4.5 decision tree was induced 

and there would be       
 

 where l is the lth number of learned sub-decision trees and p 

is the related cluster in which its data are used to map and develop the lth sub-trees. By 

composing these sub-trees (      
   instead of the original large branches (   

  , there 

would be, in fact, branches (    ) with new structure in terms of size and misclassified 

cases. The new branches would make up the new trees which would be more precise as 

well as smaller in size. These trees can be referred to as      
  where n is the tree 

number related to the corresponding cluster. Each one of the      
  , is compared with 

the corresponding     
  to find the effect of partitioning and sub-tree development on 

decision tree misclassification and size reduction.  

6.2.3 Evaluating the Accuracy and Simplicity of Cluster-based 

Decision Trees and CSDT 

In order to find if higher accuracy and simplification has been achieved by CSDT, the 

change of tree size, node number and misclassification rate before and after applying 

hierarchical clustering and classification algorithms are evaluated; in fact, tree size and 

node number assessment are considered to estimate the alteration on decision tree 

interpretability; the change in misclassification rate is measured as decision trees 
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precision icon. Tree size signifies the total number of nodes, including decision nodes 

and leaf nodes, whereas a “node number” only indicates the number of decision nodes. 

Misclassification rate is another measurement which is the number of misclassified 

predictions per selected cases in corresponding branches. 

 Moreover, to calculate the effect size, a T-test is applied to check if the generated 

change is significant and has not occurred by chance. This effect size (r) which is an 

objective and standardized measure of the magnitude of observed effect (Field, 2005) is 

carried out by the following formula converting a t-value into an  r-value: 

                                    
  

     
                                    (6.1) 

Where t is the value of T-test and df stands for degree of freedom. The value of t-test 

can be calculated by equation 6.2: 

                               
     

     
                                          (6.2) 

Where (  ) is the mean of the given sample,    is the population mean, SD is standard 

error and N is the sample number. The value of effect size (r) is calculated for node 

number, tree size and misclassification number separately.  

The systematic process of hieratical clustering and classification which improves the 

accuracy of decision trees and simplified them is presented in Figure 6.1.  
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Figure 6.1 the process of hierarchical clustering & classification learning, from cluster-

based decision trees to cluster-based simplified decision trees (CSDT). 
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6.3 Experiment Design  

As discussed earlier, available data used to construct a pruned C4.5 decision tree; gave 

74.21% prediction accuracy. Accuracy of the decision tree and the other employed 

classifiers were improved through integrated clustering and classification methods. 

Although generated cluster-based decision trees are more accurate and automatically 

pruned, they are still large with 312, 470, and 332 tree sizes for the first, second and 

third tree respectively; basically, there are 3 pruned trees (   
   induced from three 

clusters partitioned by the k-means algorithm. The reason for using three clusters, k=3, 

is that the earlier results were more precise than for 2 or 4 cluster-based decision trees. 

Looking at the big branches containing many leaves and high misclassification rates, 3, 

5, and 4 branches were chosen in the three mentioned cluster-based trees. The criteria is 

to find the branches (   
   which have the most misclassification cases and are large 

from the top of the bottom to the down where it reaches the tree`s leaves. Three 

branches were chosen for the first tree labelled:    
      

      
 , five for the second tree: 

   
      

        
  and four branches for the third tree:    

      
       

  . The trees are 

shown in Figures 6.2, 6.3, and 6.4 respectively. Table 6.1 compares the tree size, 

misclassification number for each of the cluster-base trees and their entire branches, 

which are the target for this experiment. Through selected branches cross the first, 

second and third trees, 46%, 38%, and 50% of tree sizes are considered respectively. 

These branches contain 68%, 47%, and 60% of the misclassified cases of the entire tree. 

With regards to the number of cases which are selected through these branches in each 

cluster-based tree, the details are as follows: for the first tree there are 979/1560 which 

is 63%. That is, 979 cases are selected from the 1560 objects in cluster one, which is 

already developed in 5.2.1. This portion is 885/1707=52% and 622/1248=50% for the 
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chosen branches from the second and third trees respectively. These trees are learned 

from the corresponding clusters. 

Thus, it seems these long 3, 5, and 4 branches shown in Figures 6.2, 6.3, and 6.4 for the 

three cluster-based decision trees are well selected to contain the maximum object 

number, misclassification rate and tree size. Further details about each    
 
 size, node 

number, misclassification rate as well as scattered objects throughout the branches are 

demonstrated in table 6.2.  

The cases related to these selected 12 branches (   
   are applied to develop 36 clusters 

(  
 ) where K=3. Then, these clusters are applied to use a decision tree algorithm to 

develop 36 sub-decision trees (     
  . If we use these sub-trees instead of the selected 

branches    
  , we are going to have new branches    

   which compose the decision 

tree (CSDTn) with a revised structure in terms of size and accuracy. The process of 

clustering is implemented in MATLAB R2007a environment; the WEKA package was 

used to generate decision trees as a classification tool.  

 

 

 

 

Table 6.1 The number of tree size and misclassification number for cluster-based trees 

   
  and     

  for each    
  

Criteria 

Cluster-Based trees Sum of all selected branches 

   
     

     
     

     
     

  

Tree Size 312 470 332 144 179 167 

Misclassification No.  130 258 116 89 121 69 
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Table 6.2 The characteristics of the selected branches from three clustered decision tree 

before integrated learning approach 

Tree No. 
Branch 

No. 

Number of objects 

(cases) in selected 

branches 

Tree Size Node No. Misclassification rate 

    
 

 

   
 

 160 30 12 21/160= 0.13125 

    
 

 700 80 35 52/700= 0.0742 

    
 

 119 34 13 16/119= 0.1344 

Total1 979 144 80 89/979= 0.0909 

    
 

 

   
 

 54 29 10 12/54= 0.222 

    
 

 94 46 20 18/94= 0.191 

    
 

 62 24 10 14/62= 0.225 

    
 

 357 58 26 41/357= 0.114 

    
 

 318 51 25 36/318= 0.113 

Total2 885 179 91 121/885 = 0.136 

 

 

    
 

 

   
 

 241 32 14 34/241 = 0.141 

   
 

 240 64 23 15/240 = 0.062 

   
 

 87 41 20 9/87= 0.103 

   
 

 54 30 11 11/54 = 0.203 

Total3 622 167 68 69/622= 0.110 
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 Figure 6.2 The sample of selected branches for the first tree to improve the accuracy and simplicity 
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Figure 6.3 The sample of selected branches for the second tree to improve the accuracy and simplicity 
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 Figure 6.4 The third cluster-based Decision Tree and four spotted branches. 
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6.4 Experimental Results 

After developing       
  by k-means clustering and then, three sub-trees construction for 

each branch, there are new values of tree size and misclassification rate, and object 

numbers for each     
 
 demonstrated in Table 6.3, 6.4, and 6.5. The value of 

misclassification rate is calculated through using training sample. 

Sum of the considered criteria for the selected branches of every tree are presented in 

Table 6.6 where there are reductions in both size and misclassification rate. 

For      
     

     
 , the tree size is reduced from 144 to 110. It is also verified by 

reduction in node number from 80 to 50. There is 1% drop in misclassification rate 

yielded from 10 less misclassification number for the corresponding cases of the three 

chosen branches. 

In       
     

     
     

      
  tree size and subsequently node number have 40 and 37 

numbers fewer than the original five related branches in the original tree after 

hierarchical clustering and classification process. The misclassification rate becomes 

0.108 after learning which contains 2.8% fewer misclassified cases than before the 

learning process.  

Results for     
     

     
     

  verify the effect of learning on the tree size and 

misclassification  rate where there are 55, 18, and 3% decline  in tree size, node number 

and misclassification rate respectively. Figure 6.5, 6.6, and 6.7 show the reduction in 

size and misclassification number before and after learning for     
 
of    

     
     

  

comparatively.  

The results demonstrated in Table 6.7 disclose the overall decrease obtained for each 

tree by applying this novel methodology. This comparison reveals the positive effect of 
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hierarchical clustering and classification learning on a given tree`s overall accuracy and 

simplicity. By comparison of cluster-based decision trees and CSDT, tree size reduced 

34, 40, and 55 numbers for the first, second and third tree respectively. The rate of 

misclassification for trees before and after applying hierarchical learning decreased by 

0.7% (first tree), 1.5% (second tree), and 1.6% (third tree). 

Figure 6.8 and 6.9 focus on the reduction of tree size and misclassification rate for the 

three given trees before and after the methodology application. This is done by 

comparing the criteria for    
 
 and CSDT. The most decreased values for tree size (40) 

and misclassification rate (3%) occurred in the second and third trees identically. 

Results of assessing the effect size (r) for trees simplification and their accuracy 

improvement verify above mentioned findings. It is revealed that the values of effect 

size, r, for tree size is 0.864 (t (11) = 6,            , for node number is 0.876 (t (11) 

=5,            and for misclassification rate is 0.727 (t (11) = 4,    

         (presented in Table 6.10); where t is the value of t-test and 11 shows the 

degree of freedom. That is, the size of tree, number of nodes and misclassification rates 

are significantly less than their corresponding values before learning. This conclusion is 

due to the effect sizes values of r which are bigger than 0.50. This indicates that there is 

a large effect which accounts for 25% of variance [Field, 2005].Tables 6.8, 6.9 and 6.10 

show the value of t-test, r and the related parameters in calculation process in more 

detail. 
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Table 6.3 Tree sizes, node number and misclassification rate produced after learning 

process by clustering in branches of first decision tree and classification decision tree 

for every partition       
  

Branches and related 

clusters 

Number of objects 

(cases) in partitioned 

branches after clustering 

Tree Size 
Node 

Number 
Misclassification 

   
  

       
  57 3 1 6/57=0.105 

      
  41 5 2 4/41=0.097 

      
  62 10 4 7/62=0.112 

    
  160 18 7 17/160=0.106 

   
  

      
  224 11 5 18/224=0.080 

      
  213 19 9 11/213=0.051 

      
  263 

39 19 
19/263=0.072 

    
  700 69 33 48/700=0.068 

   
  

      
  39 9 4 5/39=0.128 

      
  32 9 4 4/32=0.125 

      
  48 5 2 5/48=0.104 

    
  119 23 10 14/119=0.117 

SUM1 979 110 50 79/979=0.080 

 

 

 

 

 

 

 

 

 

 



CHAPTER 6 

193 
 

Table 6.4 Tree sizes, node number and misclassification rate produced after learning 

process by clustering in branches of second decision tree and classification decision tree 

for every partition       
  

Branches and related 

clusters 

Number of objects (cases) 

in partitioned branches 

after clustering 

Tree Size 
Node 

Number 
Misclassification 

   
  

       
  24 11 5 2/24=0.083 

      
  7 3 1 2/7=0.258 

      
  23 3 1 4/23=0.173 

    
  54 17 7 8/54=0.148 

   
  

      
  34 19 9 3/34=0.088 

      
  31 3 1 5/31=0.161 

      
  29 9 1 2/29=0.068 

    
  94 31 11 10/94=0.106 

   
  

      
  21 13 6 2/26=0.076 

      
  26 1 0 6/21=0.258 

      
  15 5 2 3/15=0.2 

    
  62 19 8 11/62=0.177 

   
  

      
  104 19 9 19/104=0.182 

      
  107 5 2 12/107=0.112 

      
  145 15 7 5/145=0.034 

    
  357 39 18 36/357=0.100 

   
  

      
  94 11 5 9/94=0.095 

      
  113 17 8 10/113=0.088 

      
  111 5 2 12/111=0.108 

    
  318 33 10 31/318=0.097 

SUM2 885 139 54 96/885=0.108 
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Table 6.5 Tree sizes, node number and misclassification rate produced after learning 

process by clustering in branches of third decision tree and classification decision tree 

for every partition       
  

Branches and related 

clusters 

Number of objects 

(cases) in partitioned 

branches after clustering 

Tree Size 
Node 

Number 
Misclassification 

   
  

       
  85 3 1 15/85= 0.176 

      
  69 17 8 3/69 = 0.043 

      
  87 1 0 11/87 = 0.126 

    
  241 21 9 29/241 = 0.120 

   
  

       
  59 21 10 3/59 = 0.050 

      
  95 1 0 4/95 = 0.042 

      
  86 13 6 4/86 = 0.046 

    
  240 35 16 11/240 = 0.045 

   
  

       
  24 13 6 0/24 = 0.000 

      
  35 13 6 3/35 = 0.085 

      
  28 9 4 3/28 = 0.107 

    
  87 35 16 6/87 = 0.068 

   
  

      
  14 5 2 2/14 = 0.142 

      
  19 7 3 1/19 = 0.052 

      
  21 9 4 1/21 = 0.047 

    
  54 21 9 4/54 = 0.074 

SUM3 622 112 50 50/622 = 0.080 
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Table 6.6 Comparing three sum of branches size and misclassification rate in three 

clustered–based trees before and after learning by k-mean clustering and decision tree 

algorithm, the change of overall accuracy before and after learning presented in 

misclassification rate measurement 

Sum of Branches Measurements Before Learning After Learning 

    
 in    

  

Tree Size 144 110 

Node Number 80 50 

Misclassification 89/979= 0.090 79/979= 0.080 

    
 in     

  

Tree Size 179 139 

Node Number 91 54 

Misclassification 121/885= 0.136 96/885= 0.108 

    
 in    

  

Tree Size 167 112 

Node Number 68 50 

Misclassification 69/622= 0.110 50/622= 0.080 
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Figure 6.5 Comparing the sum of three selected branches of first tree characteristics 

before and after learning method application; the change of overall accuracy before and 

after learning presented in the measurement of misclassification number. 

 

 

 

 

 

 

Figure 6.6 Comparing the sum of five selected branches of second tree characteristics 

before and after learning method application; the change of overall accuracy before and 

after learning presented in the measurement of misclassification rate. 
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Figure 6.7 Comparing the sum of four selected branches of third tree characteristics 

before and after learning method application; the change of overall accuracy before and 

after learning presented in the measurement of misclassification rate. 

 

 

 

 

 

 

 

Table 6.7 Comparing the size and misclassification rate of three cluster-based decision 

tree       before and after integrated learning; the change of overall accuracy before 

and after learning presented in misclassification rate measurement 

Trees Measurements Before Learning After Learning 

CSDT1 

Tree Size 312 278 

Misclassification rate 0.083 0.076 

CSDT2 

Tree Size 470 430 

Misclassification rate  0.151 0.136 

CSDT3 

Tree Size 332 277 

Misclassification rate 0.093 0.077 
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Figure 6.8 Comparing the tree size for CSDT1, CSDT2, and CSDT3 before and after 

applying the hierarchical clustering &classification approach. 

 

 

 

 

 

Figure 6.9 Comparing the misclassification rate for CSDT1, CSDT2, and CSDT3 before 

and after learning method application; the change of overall accuracy before and after 

learning presented in the misclassification rate measurement. 
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Table 6.8 The paired samples statistics for tree size, node number and misclassification 

rate before and after hierarchical clustering &classification approach 

  
Mean N Std. Deviation 

Std. Error 

Mean 

Pair 1 

  

Tree size Before 43.2500 12 17.07803 4.93000 

Tree size After 28.4167 12 15.42406 4.45254 

Pair 2 

  

Node no. Before 18.2500 12 7.91001 2.28342 

Node no. after 12.7500 12 7.42386 2.14308 

Pair 3 

  

Misclassification  Rate Before .1407 12 .05508 .01590 

Misclassification  Rate After .0975 12 .03696 .01067 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.9 The paired samples correlations for tree size, node number and 

misclassification rate before and after hierarchical clustering &classification approach 

  N Correlation Sig. 

Pair 1 Tree size Before & 

Tree size After 
12 0.864 0.000 

Pair 2 Node no. Before & 

Node no. after 
12 0.876 0.000 

Pair 3 Misclassification Rate Before 

&Misclassification Rate After 
12 0.727 0.007 
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Table 6.10 Paired Samples Test for three pairs of tree size, node number and 

misclassification rate before and after hierarchical clustering &classification approach 

  

  

  

Paired Differences 
 

t 

 

df 

Sig. 

(2-tailed) 

Mean 
Std. 

Deviation 

Std. 

Error 

Mean 

Confidence 

Interval of the 

Difference 

     

      
Lower Upper 

     

Pair 

1 

Tree size Before – 

Tree size After 
14.83 8.63 2.49 9.34 20.31 6.00 11 .000 

Pair 

2 

Node no. Before – 

Node no. after 
5.50 3.84 1.11 3.05 7.94 5.00 11 .000 

Pair 

3 

Misclassification- 

Rate Before 

Misclassification- 

Rate After 

.043 .037 .010 .019 .067 4.00 11 .002 

 

 

 

6.4.1 Sample of Extracted Rules 

Each leaf of a decision tree produces a rule in the following structure: 

IF           . . .      THEN class a 

Where the     are conditions of the rule and a is the corresponding class of the leaf. The 

produced decision trees can be merely rewrite as the collection of rules. Here, some of 

the produced rules are listed as follows: 

IF Length >6.13and nationality= Iranian and recent TB infection= yes and treatment 

category group =1 and HIV= positive THEN class= failed 

IF length <6.13 and age<=21 and weight >37 and case Type=new class= quit 

IF length >6.13 and nationality =Iranian and recent TB infection =No and IV drug 

using=no and LBW=no and TB type= non-pulmonary THEN class=complete 
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IF length <=5.97 and imprisonment=no and HIV=no and age<24 and LBW=no and IV 

drug using=no THEN class=cured 

IF length >5.97 and age>50 and lbw=yes and area=urban and nationality =Afghani and 

TB type = extra-pulmonary THEN class=dead 

IF length <5.97 and age <22 and LBW =no and nationality =Iranian and Diabetes =no 

and TB type=pulmonary and recent TB infection=no THEN class = cured 

IF length >6.13 and gender=male and risky sex=suspected and HIV=positive and IV 

drug using =yes and treatment category =A and case type=returned THEN class failed 

 IF Length>5.97 and area of residency=rural and gender=female and 

nationality=Afghani and case type = imported THEN class quit 

IF length <5.97 and LBW=no and area of residency = mobile and gender = female and 

current stay in prison = no and age <35 THEN class cured 

6.5 Discussion 

Decision trees, according to a few studies [Kurt et al., 2008; Colombet et al., 2000; 

Tsien et al., 1998] has been able of performing as accurately as other algorithms or even 

more accurately than others [King et al., 1995; Delen et al., 2005]. However, in some 

reports, the accurate trees might be along with more leaves and complexity [Lim et al. 

2000]. Tree comprehensibility improvement by simplification is typically carried out by 

pruning illustrated in [Breslow & Aha, 1997; Quinlan, 1999].  

Simplification is an approximately accurate concept which might be more beneficial 

than an absolutely precise description defined with a lot of detail. This postulation is 

generally noted in reports of decision tree simplification since smaller and simpler trees 

trade accuracy mainly by pruning approaches [Bohance & Bratko, 1994]. This is shown 

in figure 6.10 presenting two typical stages of pruning. In these steps, a pruned tree is 

produced where the smallest tree (T*) has the accuracy a(T*) which is not less than the 
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original tree accuracy a(T0). This is the ultimate optimal pruned tree where the process 

of pruning has increased the trees accuracy; however, in real world it doesn‟t happened 

very often and the accuracy is either decreased or ideally remains unchanged [Bohance 

& Bratko, 1994]. 

Apart from the pruning limitation to improve the tree accuracy, they also modify the 

tree structure either by stopping tree expansion and removing sub-trees after induction 

or incrementally resizing the tree to control its size; that is, they focus mainly on tree 

structure simply by evaluating the significance of the role of the given part on tree 

performance. However, integrated clustering and classification learning are essentially 

focused on both tree structure and objects which are derived from tree induction. In 

other words, to resize and simplify the tree structure this approach exploits the capacity 

of k-means clustering and benefit from a decision tree`s characteristic to generate sub-

trees with improved mutually comprehensibility and precision.  

 

 

 

Figure 6.10 A two-stage approach to represent concepts by a pruned tree in an ideal 

form in which the accuracy has been improved along with tree simplification; obtained 

from [Bohance& Bratko, 1994]. 
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In the process of integrated unsupervised and supervised learning, the cases 

corresponding to each selected branches are relocated through iteration process; these 

repositions are induced through applying k-means partitioning algorithm. This is 

repeated until similar cases are placed in the identical partition. Thus, using the k-means 

algorithm (k=3) for each of the 12 chosen branches from three trees, 36 partitions were 

created with similar objects within every cluster and dissimilar to the objects in other 

clusters. This makes the duty of the applied classification algorithm (decision tree) in 

the next step more straightforward to distinguish similar groups or classes of objects 

within a partition.  

The applied classification algorithm is C4.5; the tree is constructed in a top-down 

recursive divide-and-conquer manner. This top-down approach, here, starts running on 

the partitioned objects obtained by k-means clustering (  
 
) and their associated class 

labels. That is, using the C4.5 algorithm, each   
 
 is recursively partitioned into smaller 

subsets as the sub-trees are being built. Generally, the algorithm of C4.5 imports three 

inputs to generate a decision tree including:  

 The Data partition ( D ) which is a set of training cases. 

 The attribute–list and the associated class labels  

 The attribute-selection-method specifies a heuristic procedure for selecting the 

attribute that „best‟ discriminate the given tuples according to the given class 

This process employs an attribute selection measures such as information gain or Gini 

index. In the process of tree growing, the splitting criterion is determined by attribute-

selection-method clearing which attribute to test at node N by defining the „best‟ way to 

partition the tuple in D into individual classes. Moreover, the splitting criterion 
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describes which branches to grow from node N regarding the outcome of the chosen 

test. Ideally, the main aim of the splitting criterion is creating a pure partition through a 

correct splitting attribute, point and subsets; the pure partition is generated where all of 

the classes in it belong to the same class. The splitting criterion is the point that 

clustering effects the decision tree learning procedure when it has already partitioned 

the given cases based on their attribute and placed similar objects in the same group; 

afterwards, the splitting criterion produces much purer local regions with lower distance 

measures like euclidean norm. In fact, clustered tuples with as many similar cases in a 

partition as possible influences the splitting criterion to stop the tree growing. To be 

exact, when a clustered tuple is learned instead of D, the process of local region 

identification in a sequence of recursive splits is accomplished in a smaller number of 

steps with lower nodes and a smaller tree size production. Improving to the splitting 

criterion to detect the best splitting attribute and their corresponding splitting points is 

carried out easily since these selections are from cluster objects with more consistency 

and similarity. 

Having looked at the produced sub-trees, there are reductions in the number of applied 

attributes in the root nodes with many repetitive application of attributes which have 

been found to be highly correlated with the outcome of the tuberculosis treatment 

course. For instance, the root node in 33% of 36 developed sub-trees is length and in 

just under 20% is TB type. Likewise, in the structure of developed sub-trees, 10 

attributes have been used whereas very large trees before this integrated learning 

application have been composed of many sub-nodes from all 17 attributions. Six out of 

ten variables in sub-trees are weight, age, sex, TB type, length, and recent Tb infection 

with 27, 21, 20, 14, 41, and 5 times playing the role of node in the 36 developed sub-

trees respectively; actually, these exact attributes contribute as a node of sub-trees in 
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83% of cases. They are highly correlated variables to the outcome of the Tb treatment 

course signified with two asterisks in tables 4.7 to 4.10. In addition to the promising 

results shown in figure 6.10 and 6.11 in decreasing tree size and misclassification for 

three considered trees, the performance of the new algorithm, made up of unsupervised 

and supervised learning to select the best splitting attributes in sub-trees is a 

considerable achievement.  

6.6 Summary 

This chapter introduced an innovative approach to improve a decision tree`s 

comprehensibility and precision through the new integrated unsupervised and 

supervised algorithm. The applied hierarchical clustering & classification approach 

firstly divided the data related to the selected branches of cluster-base trees and then 

learns them by the C4.5 decision tree algorithm; this has yielded smaller and more 

accurate trees with reducing tree size and fewer misclassified cases. Produced sub-trees 

use more number of significantly correlated attributes with the outcome of Tb treatment 

course in their small and precise structures. This can be a significant step to improve 

decision trees` application since they usually produce more nodes and leaves when they 

are at the top accuracy; in other words, the high level of accuracy damages the best 

feature of decision trees which is their comprehensibility. The novel method of 

developing cluster based simplified decision tree (CSDT) removes this imperfection and 

improves both accuracy and simplicity of a decision tree. In conclusion, this chapter has 

introduced a new method to improve both DTs` comprehensibility and precision 

concurrently through the integration of the supervised and unsupervised learning 

methods.  
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The thesis is concluded by firstly reviewing and discussing the significance of our 

contributions and then suggesting the directions toward further research in the area of 

predicting the course of tuberculosis treatment. The contributions of this research are 

highlighted as follows. 

7.1 Conclusions 

The conclusion of this study mainly consists of two aspects. Firstly, predicting the 

outcomes for TB patients under DOTS therapy and secondly proposing the integration 

algorithms to improve the accuracy and comprehensibility of a tuberculosis treatment 

course. 

A number of systems have been widely used in a variety of medical situation like 

disease diagnosis or treatment prognosis, presence of disease prediction, differentiating 

two conditions, and risk factor analysis. The analysis of existing work, pointed out that 

tuberculosis treatment course prediction is still at a very early stage as only a limited 

number of reports reveal the influential risk factors on the outcome of a tuberculosis 

treatment course. However, to the best of our knowledge, no systematic method even in 

prototype form, for the given outcome is available; the system would be applied to 

support the level of patient’s supervision and support dynamically and effectively. 

Aspects like the high burden of tuberculosis (nine million new cases and two million 

new death per annum), five different possible outcomes for TB patients under DOTS 

therapy, as well as the requirement of defining the level of supervision and support for 

each specific patient based on possible outcome of treatment course to improve DOTS 

and shift it from passive to active services are those major reasons behind developing a 

predictive decision support system for the tuberculosis treatment course postulation. 

The World Health Organization has designed a global plan named “Stop TB”, a key 
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element of which is treatment with patient supervision and support. This plan requires 

prediction of patient treatment course destination, to determine how intensive the level 

of supplying services and support in DOTS therapy should be. As there is no predictive 

tool, which can be used to predict the outcome of DOTS therapy nor applied, to decide 

the level of supervision and support to TB patients. There is a rather urgent demand for 

a solution to this problem. For this purpose, this study has developed a more precise and 

understandable model to predict the given outcome.  

Using feature analysis methods, data of 6,450 Iranian TB patients under DOTS therapy 

were analysed to initially diagnose the significant predictors. Then, they were applied to 

find the best classification tool from six examined algorithms including decision trees 

(DT), Bayesian networks (BN), logistic regression (LR), multilayer perceptron (MLP), 

radial basis function (RBF) and support vector machine (SVM).  

The first results of this research were finding seventeen significantly correlated features, 

which were: age, sex, weight, nationality, area of residency, current stay in prison, low 

body weight, Tb type, treatment category, length of disease, TB case type, recent TB 

infection, being affected by diabetes or HIV, and social risk factors like history of 

imprisonment, IV drug using, and risky sex          . Although former research has 

already verified nationality, age, imprisonment, and TB case type as influential factors 

for the non-compliance of TB treatment course, patient’s weight is a new effective 

attribute (OR=-0.056, P ≤ 0.0001). Males are known as a high risk gender. This study 

strongly confirmed the role of nationality and imprisonment; Afghani and Pakistani 

nationals who are living in Iran were more prone to failure in treatment course 

compliance. Furthermore, diabetes, low body weight, HIV, recent TB infection, risky 

sex, TB type as well as treatment category A or B are newly diagnosed factors affecting 

outcome of DOTS therapy.  
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Using these influential factors and their related patient examples to do classification 

task using supervised machine learning tools revealed that decision trees outperformed 

others with the best prediction accuracy (74.21%) whereas the other methods such as 

BN, LR, MLP, RBF, or even SVM produced 62.06, 57.88, 57.31, 53.74, and 51.36 

percentages of prediction accuracy respectively. 

Due to the large volume of data with multidimensional structure, it was expected that 

SVMs, neural networks, and decision trees would outperform others. However, the 

available dataset is composed of fourteen discrete variables and three continuous 

attributes. In this investigation, decision trees produced the most promising result. This 

was due to its dual ability to tackle both continuous and discrete/categorical features, in 

comparing with other applied techniques which are only good at handling continuous 

variables. Data type and how normal is the distribution effect prediction accuracy of the 

classifiers; fourteen available discrete predictors with average value of skew (2.169) and 

kurtosis (7.469) have enabled decision trees to outperform other algorithms. 

Next, the prediction accuracy of the applied classification technique was improved by 

using the integrated method of k-mean clustering approach and each of the above 

mentioned classification tools. Using two, three and four partitions, the combination 

method was examined. Results of the next part of the study which was pre-learning by a 

k-mean partitioning algorithm, combined with the classification approach improved 

prediction accuracy of all applied classifiers between 4 to 10% with partition number of 

three (K=3). The most and least improvement for prediction accuracy were for logistic 

regression and support vector machines respectively. Pre-learning by k-mean clustering 

to relocate the objects and placing similar cases in the same group may improve the 

classification accuracy.  



CHAPTER 7 
 

210 
 

Although the proposed novel methodology of the combination of k-mean clustering and 

classification algorithm has improved the accuracy of decision trees with a higher level 

of accuracy than other tools, the constructed trees are huge with poor comprehensibility. 

To simplify the identified trees and further improve their prediction accuracy, a novel 

method of hierarchical clustering and classification algorithm is proposed, which leads 

to the new CSDT methods. In this process, twelve branches from three cluster-based 

trees were built by learning from the first, second and third clusters. After partitioning 

objected in the selected branches by k-means and re-learning them by a decision tree 

algorithm, more accurate and much simpler sub-trees were generated. Simplicity of 

three cluster-based decision trees were improved where there are reduction for trees size 

by 34, 40, and 55 number of nodes for the first, second and third tree respectively. Also, 

misclassification rate percentage of three –cluster- based trees are increased by 0.7%, 

1.5%, and 1.6% for the first, second and third tree respectively. Replacing these sub-

trees instead of those selected branches created more accurate and simplified trees. This 

process may lead to achieving the main aim of this study. That is, to develop the most 

accurate and understandable model to predict the outcome of tuberculosis treatment 

course at the onset of anti-biotic therapy. The compatible feature of k-mean partitioning 

and decision trees to generate pure local regions can simplify and improve accuracy of 

the decision trees through creating smaller sub-trees with fewer misclassified cases. The 

extracted rules from these trees can play the role of a knowledge-base for a decision 

support system in further studies.  

7.2 Future Work 

Although the project fulfils the aims of study to develop highly accurate predictive 

model for the outcome of tuberculosis treatment course and the system prototypes now 

has basic functionality, a number of further developments and improvements could be 
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made. This is to create a clinical decision support system in order to define the level of 

supervision and support based on the patient status specifically. It enhances the 

efficiency of DOTS as the international TB control service around the globe and 

converts it from a passive to active health care service. The suggestions for further 

enhancements and possible directions for future research are specified as follows:  

Firstly, other influential circumstances could be included in future studies. These 

include structural factors (poverty and discrimination), environmental factors, health 

care system, management factors as well as other patient related factors which were not 

considered in this study but still are related to the outcome of tuberculosis treatment 

course. Thus, considering more comprehensive features can be the subject of further 

investigation.  

Furthermore, in health care system, based on the condition which is defined by 

predictive system, there is requirement of listing the services that nurses and physician 

should provide to TB patients. This may add an agenda to the predictive system which 

assists the staff to carry out the patient supervision in more defined framework. That is, 

the agenda instructs health staff to know how to deal with different TB patients with 

various destination of taking DOTS therapy. As an example, the number of patient 

visits based on the predicted status is one of those issues needs to be defined; obviously, 

TB patients who are going to be failed in completing DOTS therapy need more visits 

rather than those cases who have the cure class for predicting in treatment course 

completion. 

Moreover, in this study two, three and four clusters are examined to improve the 

classifier`s accuracy by k-mean clustering method. Applying more clusters or ideally 

finding the optimized number can be the subject for further study. Also, only three 
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clusters have been examined to develop the cluster-based simplified decision tree 

(CSDT) and improve the accuracy of the selected branches and the entire trees. It may 

be examined with more clusters and produce more promising results.   

Due to time and resource limitation, there is only one database related to TB patient and 

we used one-thirds of this dataset for testing the validity of built models. In the case of 

further dataset availability, the level of generalisation and model accuracy can be 

defined more precisely. 

Finally, there is a need to develop software based on the proposed method, then users 

can use this software to achieve potential benefits from the proposed methods. In fact, 

the prototype which is designed to predict the outcome of tuberculosis treatment course 

based on the real world database of TB patient needs to be implemented to develop a 

proper clinical decision support system (CDSS). These computer systems are designed 

to impact clinician`s decision making about individual patients at the point that these 

decisions are made. CDSS have the potential to change the way health care is provided 

such as supervising TB patient actively based on their status which is defined by 

predictive models. This needs guidelines and plans to define the set of cares that the 

health organizations such as the World Health Organization work on in depth. The 

system works based on the produced rules which are interpretable and understandable in 

medical point of view; further study about their interpretability might be carried out by 

physicians and medical staff who are expert in the TB patient’s condition and their 

corresponding outcome of treatment in real world. They can consider each rule to 

recognize how meaningful they are in medical point of view. 
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Looking at the misclassified cases which are presented in trees` leaf, many of them are 

not meaningful in medicine and should not be considered as a true condition. This 

confirms the models performance even when it has misclassified a patient’s condition.  

The innovated technique can be further evaluated through application in other field with 

different databases. These new methodology might work in other areas like business 

which has classification task with a big database available. However, not availability of 

big body of data with different characteristics of database might cause difficulty with 

this new innovative system.  
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