
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 1

ILC-Based Minimum Entropy Filter Design and
Implementation for Non-Gaussian Stochastic Systems

Puya Afshar, Member, IEEE, Fuwen Yang, Senior Member, IEEE, and Hong Wang, Senior Member, IEEE

Abstract—Anew filtering approach based on the idea of iterative
learning control (ILC) is proposed for linear and non-Gaussian sto-
chastic systems. The objective of filtering is to estimate the states of
linear systems with non-Gaussian random disturbances so that the
entropy of output error is made to monotonically decrease along
the progress of batches of process operation. The term Batch is re-
ferred to a period of time when the process repeats itself. During a
batch, the filter gain is kept fixed and state estimation is performed.
Between any two adjacent batches, the filter gain is updated so
that the entropy of closed-loop output error is reduced for the next
batch. Analysis is carried out to explicitly determine the learning
rates which lead to convergence of the overall algorithm. Experi-
ments have been implemented on a laboratory-based process test
rig to demonstrate the effectiveness of proposed filtering method.

Index Terms—Iterative learning control (ILC), minimum en-
tropy filtering, non-Gaussian linear systems, process control rig.

I. INTRODUCTION

S TATE estimation is an important aspect of many research
areas where a knowledge about the internal dynamical be-

havior of the system is required while it is not possible to di-
rectly measure them. The main purpose of estimating the states
in control engineering is to perform an accurate state-feedback
control when at least one of the system states are not measur-
able [1]. Perhaps the most significant progress in the theory of
state estimation was made when Kalman filtering was intro-
duced in 1960’s, where the variance of estimation error is mini-
mized provided that the system is known, linear and is subjected
to Gaussian white noises [2]. Since then, the idea of filtering
has been widely extended and applied in many engineering and
information systems, such as signal processing, communica-
tion, and control engineering [3]. Different filtering ideas are
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different in terms of the assumptions made for the system dy-
namics (e.g., linear or nonlinear), noise structure (e.g., addi-
tive, multiplicative), or the methods used to solve the filtering
problem. For instance, the idea of robust filtering has been de-
veloped for linear time varying systems [4], or for uncertain sys-
tems [5],[6]. Extended Kalman filters (EKF) were also devel-
oped to deal with state estimation in systems with complex non-
linearities [7]–[11], or systems with multiplicative noises [12].
Apart from the above basic assumptions made for the system
or noise structure and also the methods used to solve the fil-
tering problem (e.g., game-theoretic methods [6], linear matrix
inequality (LMI) [13], [14], and the Riccati equation approach
[15]), all above mentioned works share the assumption on the
statistical characteristics of the noise. That is, regardless of the
noisemodel, they assumeGaussian noises corrupting the system
dynamics. This leads to a probabilistic state estimation by use
of mean and variance to describe the distribution of the states.
However, there are the following two main issues that limit the
application of mean and variance as the only statistical proper-
ties to describe the state distribution.
• It is known that even for a nonlinear system with Gaussian
inputs, the system output can be a non-Gaussian variable
with a multiple-peak and asymmetric probability density
function (PDF) (see, e.g., [16] and [17]).

• If the stochastic inputs are non-Gaussian, the above case
holds and state distributions cannot be precisely character-
ized by using only mean and variances [18]. In these cases,
the general measure PDF must be considered.

The case of non-Gaussian noises has led to the develop-
ment of stochastic distribution control (SDC) based on which a
number of applications, namely PDF tracking control [18]–[20],
fault diagnosis of general stochastic systems [21], [22] have
been developed. Also, as a general measure of uncertainty,
entropy (which is originated in information theory and com-
munication) has been applied to the control of non-Gaussian
stochastic systems [4], [23].
The filtering problem has also been solved for non-Gaussian

stochastic systems. For instance, minimum entropy filtering is
studied where an instantaneous cost function of the hybrid en-
tropy for the stochastic estimation error is concerned and an
LMI approach is used to determine the filter gains [24]. Also,
a robust filter with error squared constraint has been developed
where the estimation is performed based on the current obser-
vation and known deterministic input signals. A time-varying
LMI approach is used to derive an upper bound of the state es-
timation error square and optimal bound is obtained by solving
a convex optimization problem via semi-definite programming
(SDP) approach [25].
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Fig. 1. ILC-based filter design scheme.

The above mentioned works have provided the preliminary
results for designing the filters for non-Gaussian stochastic sys-
tems. The idea of iterative learning has been already applied
to SDC for non-Gaussian systems [26]–[30] and also to min-
imum entropy control of non-Gaussian systems [28],[31]–[33].
In this paper, a novel filtering method for linear, non-Gaussian
stochastic systems is proposed which is based on the idea of it-
erative learning control (ILC). The developed technique is also
applied to a laboratory-based process control test rig. In ad-
dition, necessary conditions for convergence of the algorithm
have been developed. Compared to previous works on filtering
for non-Gaussian systems, it is shown in this paper that the ILC-
based filter design can be solved and applied to practical systems
efficiently. This paper is organized as follows. In Section II,
the problem of ILC-based minimum entropy filtering is defined.
Section III presents the ILC-based solution for filtering problem
and also provides a set of necessary conditions for the con-
vergence of the algorithm. In Section IV, the experimental re-
sults from a process control test rig are proposed to demonstrate
the effectiveness of method. Concluding remarks are made in
Section V.

II. MINIMUM ENTROPY FILTERING PROBLEM

The objective, as mentioned in Section I, is to employ the idea
of ILC to state estimation problem so that the entropy of closed
loop output error becomes monotonically decreasing along with
the progress of batches. To achieve this, the estimation horizon
is divided into identical intervals (batches) specified as

, where is con-
sidered as the batch length, duringwhich the filter gains are fixed
and is the time period known as between adjacent batches.
Within each batch, i.e., ,
a fixed-gain filter is used to perform the state estimation. Be-
tween adjacent batches, i.e., during the time specified by

the filter gains are updated so that the
entropy of the output error takes a smaller value within the fol-
lowing batch. During while the optimization takes place,

the filter gains remain fixed on their previous values. This en-
ables tuning to be focused on the filter gain. The above design
approach is illustrated in Fig. 1.
Consider a linear systemwith states, inputs, outputs,

and the following state-space model in which each output is
defined as , :

(1)

(2)

where , are the state vector and
the control signal measured at the time sample within the

batch, respectively. In addition, and are non-
Gaussian, yet bounded scalar additive noises. The objective is
to design a filter to estimate the system states by minimizing the
entropy of output error. Firstly, the filter dynamics is expressed
as follows:

(3)

(4)

(5)

where is the filter gain to be designed so that
the entropy of output error is minimized batch by batch. For
this purpose, the -order Renyi’s entropy is chosen. Based on
Renyi’s entropy measure, the entropy of the output error can be
written as follows:

(6)

where is the probability density function (PDF) of the
output error, mathematically defined as

(7)
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Fig. 2. Overall scheme of the minimum entropy filter design.

where represents the probability of
output error lying in interval when filtering gain
is applied. The PDF is estimated by kernel density estimation
(KDE) denoted by

(8)

where is a Gaussian Kernel function and is a bin width
[34]. This way, the entropy of output error can be rewritten as
follows:

(9)
It is desired to determine the filter gain in (4) so that en-

tropy calculated in (9) is minimized batch by batch. The key idea
to ILC-based estimation is to divide the estimation time (i.e.,
batches). Within each batch, the filter gain is kept fixed and the
estimation is carried out. Then the filter gain is updated between
batches so that output error entropy takes less value within the
following batch. This way, the filtering problem can be solved
in a time-space domain where the estimation performance is im-
proved batch-by-batch. Fig. 2 illustrates the proposed idea.
The proposed technique is fundamentally different and hence

non-comparable to commonly-used filtering algorithms such as
Kalman filtering. The reason for this is that the present algo-
rithm assumes presence of non-Gaussian noises which prevent
characterizing the output error by its mean/variance due to their
unsymmetrical PDF shapes. The proposed filter estimates the
unmeasurable system states by batch-by-batch reduction of the

output error uncertainty (or randomness). However, since the
noises are non-Gaussian, the output error’s uncertainty is char-
acterized by its entropy which directly depends on the overall
probability density shape of the measurable output error. In-
deed, if the noises are assumed Gaussian, the entropy is col-
lapsed to output error’s variance (i.e., the common formulation
of the uncertainty) to which well-established techniques such as
Kalman filtering could be effectively applied. In other words,
the proposed algorithm can be considered as a generalization to
standard filtering techniques when noises are non-Gaussian.
It is also worthwhile to mention that the concept of min-

imum-entropy estimation proposed in this paper is essentially
different than minimum-entropy control/estimation approaches
commonly used in information theory literature such as [35] and
[36]. To be more specific, the original definition of the entropy
used in control for linear time invariant systems at
is defined in terms of the closed loop transfer function as fol-
lows:

(10)
In the above definition, the transfer function is supposed to be
strictly proper satisfying , denotes that the adjoint
of and is finite. This interpretation of entropy measure as-
sociates to the mutual information maximization, as the entropy
refers to the average information content of a signal in the con-
text of information theory [35], [36]. As opposed to the interpre-
tation based on information theory, in this paper the entropy is
studied from a probabilistic point of view and is used to quantify
the uncertainty and/or randomness of a general stochastic con-
trol system. Therefore, the knowledge base and the view point
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of the filtering method proposed in this paper is essentially dif-
ferent than other entropy-based filtering methods based on mu-
tual information principle. In Section III, an ILC-based tuning
law is proposed to solve the introduced filtering problem.

III. ILC-BASED SOLUTION AND CONVERGENCE ANALYSIS

In this section, the ILC-based solution to the problem intro-
duced in Section II is proposed. Here, a gradient descent algo-
rithm is used between batches.

A. ILC-Based Filter Tuning

Considering the batch’s entropy as cost function (i.e.,
), the following gain update law can be considered:

(11)

where is the filter gain within the batch and is a pre-
specified learning rate. Using the well known chain rule, the
gradient term can be further formulated as follows:

(12)

Using (3)–(5), the partial differential term in (12) can be
written as follows:

(13)

By employing the dynamic state evolution equation of the
filter (4) and pre-multiplying it by , the following forward dif-
ferential equation can be determined:

(14)

By continuing the substitution of differential terms with their
equivalents in previous samples, the following dynamics can be
achieved from (14), shown in (15) at the bottom of the page.
Therefore, the filter gain is updated by ILC-based laws (11),

(12), and (15).

B. Analysis on Convergence

As the filter gain tuning rule incorporates the learning rate
, analysis should be carried on to ensure the convergence of
ILC-based tuning laws by a proper choice of the learning rate.
The result of such analysis should give a range of acceptable
learning rates which result in decrease of the squared sum of
output error in a batch-by-batch manner. This means that one
needs to find out a range for -s so that the convergence con-
dition is satisfied. Under known errors , the following
conditional expectation needs to be satisfied for convergence:

(16)

Performing the analysis after the end of th batch would
mean that error signals are known and would have no effect on
the analysis. As such, here the analysis is focused on the values
corresponding to the batch. Using the filter error dynamics,
the following can be expressed:

(17)

In a similar way, it can be formulated that

(18)

Also, from the state evolution equation of the filter, the fol-
lowing dynamics can be written:

(19)

Furthermore, from the ILC-based update law, it can be seen
that

(20)

Substituting (19) and (20) into (17), and using (16) and (18) can
be written as shown in (21) at the bottom of the next page.

(15)
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It can be shown that in order for the ILC-based tuning conver-
gence condition to hold, the following second order inequality
with respect to learning rate must be satisfied

(22)

In (22), the constant parameters , , and are defined as fol-
lows:

(23)

and

(24)

and also

(25)

Solving (22) for , the following values are determined:

(26)

(27)

Therefore, in order to satisfy the convergence condition at the
end of each batch, the learning rate should be selected so that

(28)

In Section IV, the experimental results from the implementa-
tion of proposed method on a laboratory-based process is pro-
posed.

IV. EXPERIMENTAL RESULTS

In this section, the details of the experimental results per-
formed on the laboratory-based process control test rig located
at the University of Manchester are presented. The objective is
to design an ILC-based filter for online estimation of the process
control unit (PCU) so that the entropy of the output error is min-
imized batch-by batch. Therefore, it is required to formulate the
filtering and estimation problem. Also, it is required to deter-
mine the dynamical model of the considered system to provide
the filer with the approximated system matrices. First, a brief
overview of the process is given as follows.

A. Process Description

The overview PCU is shown in Fig. 3. In the designed ex-
periment, at each batch of the process, the water is pumped out
of the sump and depending on its temperature it is diverted ei-
ther through the cooling system or the main pipe by the manual/
solenoidal diverting valve. The diverting valve causes the mea-
surement noise . The flow of the water is measured by the
turbine flowmeter before being sent to the main processing tank
where it is heated, stirred, and sent back to the sump by ei-
ther manual or the solenoidal drainage valve which impose the
process noise . The tank level is considered as the unmea-
surable system state as the system is not equipped with a level
meter.
The main control loops include the water flow and the

processing tank temperature. However, for simplicity, only the
water flow control loop is considered in this paper. The control

(21)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Fig. 3. Process control test rig at the University of Manchester.

Fig. 4. Test input and output sequences. (a) Input sequence applied to the pump. (b) The recorded flow from the PCU system.

system has been recently upgraded at the Control System
Centre (CSC) to facilitate control and monitoring via MATLAB
or LabVIEW [33], [37]. The aim is to design a filter to estimate
an unmeasurable system state (in this case, tank level) by using
the available information so that the entropy of the output error
is minimized batch-by-batch.

B. Offline System Identification

In order to implement the filter, a dynamic model of the
process in state-space form is required. Assuming a black-box
linear state-space model, a series of experiments were set to
collect a sequence of input and output signals suitable for
system identification. The selected input/output sequences are
shown in Fig. 4(a) and (b), respectively.
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Fig. 5. Monotonic decrease of output entropy by choosing .

Fig. 6. PDF of the output error at the first batch and .

By setting the system sampling time to 0.0119 s, 19290
samples are collected which are persistently exciting of degree
50 and satisfy the D-optimality criterion [38]. Without the
valves operating, the identification task could be performed by
assuming Gaussian noises. It can be argued that the assump-
tion of Gaussian noises for system identification can result
in inaccurate model as the actual filtering noises are assumed
non-Gaussian. In fact, this cannot be considered as a disadvan-
tage, as it will be shown that in spite of such restriction in the
statistics of model, the minimum entropy filter can effectively
estimate the flow signal and result in negligible estimation
error as well as minimized entropy. Furthermore, preliminary
data analysis suggested a relative skewness in the flow signal
which is caused by the flow meter inaccuracy in reading flows
as small as 0.4 lpm. Also, no significant nonlinearity or time
delay could be highlighted in system dynamics. Experiment
confirms that the data is best represented by a 2-state system.
It can be shown that the other state can represent the potential

Fig. 7. Historical changes of the output error PDF when is chosen.

Fig. 8. Batch-by-batch decrease of the output error MSE when is chosen.

energy level caused by the height difference of the pump and
processing tank and also the fluid level in the processing tank.
Using the N4SID algorithm, after 200 iterations, the following
parameters are obtained:

and

It must be noted that the obtained initial values correspond
to the de-trended signal values and must be re-scaled so that
the actual values (i.e., process flow and tank level) are obtained.
After the convergence of N4SID, the model shows to fit to 87%
of the validation data; however, the T-test expressed by
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Fig. 9. Estimated and measured flow signals by choosing within the last
batch .

Fig. 10. Convergence of the filter gains when is chosen.

as follows, confirms that matrices and are not statistically
significant, as shown in the equation at the bottom of the page.
Further analysis on the model residuals as well as the pa-

rameter uncertainty test, collectively confirm the validity of
the model obtained by N4SID. After the approximate model
is obtained, the ILC-based minimum entropy estimation is
performed.

C. Minimum Entropy State Estimation

Here, as mentioned in Section III, given an initial value for
filter gain, the ILC-based tuning laws (11), (12), and (15) are

Fig. 11. Strictly decreasing entropy performance by choosing .

Fig. 12. PDF of the output error at the first batch and under .

applied to tune the filter batch by batch. Also, as formulated
in Section III-B, the learning rate must be chosen so that
(28) is satisfied. Based on the value of the learning rate chosen,
three modes can be observed, namely, slow convergence, fast
convergence and divergence. If the learning rate is chosen too
small, the convergence will be slow and more batches are re-
quired in order that the algorithm converges. On the other hand,
if the learning rate is chosen very close to the boundary of con-
vergence, the convergence will be fast and less batches are re-
quired to achieve the desired performance. Obviously, learning
rates outside the convergence interval result in divergence of
the ILC-based tuning. In this test, 60 batches are chosen and
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Fig. 13. MSE of the output error under .

Fig. 14. Estimation tracking performance by choosing .

the performance is demonstrated for slowly converging and fast
converging learning rates.
1) Slowly-Converging Algorithm: In this first example, the

learning rate is chosen . By choosing such
learning rate, the output error entropy is reduced batch by batch,
as shown in Fig. 5.
As the entropy signal takes smaller values, the PDF of the

output error must become more narrowly-shaped around zero,
meaning that the output error is becoming more unbiased and
closer to a Gaussian shaped distribution. Fig. 6 confirms the
gradual change in the shape of output PDF from the first
to the last batch.
The historical changes of the output error can be more closely

monitored by investigating the 3-D shape of the PDF along
with the batches. Fig. 7 illustrates the historical variations of
the output error PDF under learning rate .
The chosen filter must also improve the tracking performance

of the estimation which can be checked by examining the MSE

Fig. 15. Gains of the filter when is chosen.

of the closed-loop output error. Fig. 8 confirms that the drift be-
tween the measured and estimated output is strictly decreasing
when learning rate was chosen.
This can also be shown by comparing the estimated output

with the measured output (water flow signal) which is shown in
Fig. 9. It is also worthwhile to check the convergence of the filter
gain parameters as the batches progress. Fig. 10 shows such
changes by running a slowly-converging algorithm. The figures
collectively suggest an slowly-converging algorithm which is
due to the selection of the learning rate. In Section V, a learning
rate leading to a faster-converging algorithm is chosen and the
same graphs are proposed to check the performance.
2) Fast-Converging Algorithm: In this section, the learning

rate is made 100 times bigger (i.e., . First, the
entropy minimization performance is examined. Fig. 11 shows
the decrease in the output error entropy when a fast-converging
algorithm (i.e., learning rate ) was chosen. Compared to the
slowly-converging algorithm (see Fig. 5), the fast converging
algorithm can find the local minimum in fewer iterations

. Fig. 12 compares the initial and final
shapes of the output error PDF when a fast-converging algo-
rithm is chosen. Choosing a fast-converging learning rate also
helps to achieve better locally optimum points. As Fig. 13
shows, choosing results in a smaller values for MSE which
suggests that the output tracking performance should have
been improved. However, it shows a gradual increase in the
MSE which suggests that the selected learning rate is close to
the boundary of convergence. Although the algorithms can be
technically considered as diverging, as the slope of divergence
is very small, the other performance criteria can be effectively
verified. Similar to the slow-converging filter, comparing the
estimated and measured output signals can help to validate the
effectiveness of the filter performance. As shown in Fig. 14, the
output has been tracked effectively, although comparing these
signals, the close-to-divergence performance cannot be visual-
ized. Although not converging to a local minimum value, the
filter gains also show a faster response which reflects the choice
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of learning rate close to the convergence boundary. Fig. 15
shows changes in the filter gains by running a fast-converging
algorithm.

V. CONCLUSION

A new filtering method is proposed for linear stochastic sys-
tems with non-Gaussian noises. A minimum entropy criterion is
chosen to determine the filter gain which is updated by gradient-
based ILC tuning laws. Due to the presence of non-Gaussian
noises, the uncertainty/randomness cannot be sufficiently for-
mulated if only mean and standard deviation of the output error
are used to characterize them. Therefore, the proposed algo-
rithm is fundamentally different and hence non-comparable to
commonly-used filtering algorithms such as Kalman filtering.
As the filter gain is determined in an iterative fashion, conver-
gence analysis must be performed to guarantee the stability of
the algorithm. For this purpose, the learning rate corresponding
to the ILC law is explicitly obtained so that the algorithm is con-
vergent. As the problem is not necessarily a convex optimization
problem, the solution is only guaranteed to be locally optimal.
The proposed method incorporates less complexity compared to
the other non-Gaussian filtering methods and can be easily im-
plemented in practical applications. Future work will comprise
adopting different estimation criteria to assess the efficiency of
entropy minimization as well as extension of the case to non-
linear systems.
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