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Abstract 

Infrared (IR) spectroscopy has shown potential to quickly and non-destructively measure 
the chemical signatures of biomedical samples such as single biological cells, and tissue 
from biopsy. The size of a single cell (diameter ~10 – 50 µm) are of a similar magnitude to 
the mid-IR wavelengths of light ( ~1 – 10 µm) giving rise to Mie-type scattering. The result 
of this scattering is that chemical information is significantly distorted in the IR spectrum. 

Distortions in biomedical IR spectra are often observed as a broad oscillating baseline on 
which the absorbance spectrum is superimposed. A spectral feature commonly observed is 
the sharp decrease in intensity at approximately 1700 cm-1, next to the Amide I band 
(~1655 cm-1), which pre-2009 was called the ‘dispersion artefact’.  

The first contributing factor towards the ‘dispersion artefact’ investigated was the 
reflection signal arising from the air to sample interface entering the collection optics 
during transflection experiments. This was theoretically modelled, and then experimentally 
verified. It was shown that IR mapping could be done using reflection mode, yielding 
information from the optically dense nucleus which previously caused extinction of light in 
transmission mode. 

The most important contribution to the spectral distortions was due to resonant Mie 
scattering (RMieS) which occurs when the scattering particle is strongly absorbing such as 
biomedical samples. RMieS was shown to explain both the baselines in IR spectra, and the 
‘dispersion artefact’ and was validated using a model system of poly(methyl methacrylate) 
(PMMA) of varying sizes from 5 to 15 µm. Theoretical simulations and experimental data 
had an excellent match thus proving the theory proposed. 

With an understanding of the physics/mathematics of the spectral distortions, a correction 
algorithm was written, the RMieS extended multiplicative signal correction (RMieS-EMSC). 
This algorithm modelled the measured spectrum as superposition of a first guess (the 
reference spectrum) which was of a similar biochemical composition to the pure 
absorbance spectrum of the sample, and a scattering curve. The scattering curve was 
estimated as the linear combination of a database of a large number of scattering curves 
covering a range of feasible physical parameters. Simulated and measured data verified 
that the RMieS-EMSC increased IR spectral quality.  
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1. Introduction 

1.1. Infrared spectroscopy 

Infrared (IR) spectroscopy is a well established analytical chemistry technique used to gain 

insight into the molecular composition of samples. The approach is to transmit or reflect IR 

light (mid-IR wavelengths range from 1 to 10 μm) and observe the transmission or 

reflection profile against a non-absorbing background. The interaction of the photons with 

the sample occurs when the electromagnetic (EM) field interacts with molecular electric 

dipoles created betweens atoms that are vibrating. The molecular electric dipole is the 

result of unequal electronegitivities of the constituent atoms. The frequency of this 

vibration is characteristic and unique for different functional groups relating to unique 

frequencies of light being absorbed – this forms the premise of IR spectroscopy. IR 

spectroscopy comes under vibrational spectroscopy, which is concerned with studying the 

vibrations in molecules and giving information in terms of frequencies at which the 

vibrations occur. The most convenient way to display the information is by plotting a 

physical phenomenon (e.g. absorbance for IR spectroscopy) as a function of wavenumber 

(reciprocal wavelength) – such plots can be called vibrational spectra. Vibrations can occur 

from two or more atoms coupled, such as the carbonyl (C=O) group in amino acids1. 

The vibration of different functional groups occur at specific and characteristic frequencies 

related to the masses of the atoms involved and bond strength (analogous to the spring 

force constant in Hooke's law). The characteristic vibrational frequencies are known for the 

majority of commonly occurring chemicals1.  

During the 1940’s and onwards, a host of literature was published investigating changes on 

the fundamental vibrations of bonds such as the N-H stretch in proteins under perturbation 

by effects such as acidity of sample solution2-3. Other regions of the infrared spectrum, such 
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as the near infrared (NIR) were also used in applications such as investigating the 

orientation of the carbonyl group in protein crystals and fibres4. Fundamental questions 

such as the quantification of protein denaturation by observing hydrogen bonding changes 

in “native protein” (i.e. protein not in a higher order structure) and coiled proteins gained 

supporting evidence from IR spectroscopy5. 

Vibrational spectra from biological samples yield a chemical signature of the sample, and 

cannot provide information as detailed as for example mass spectrometry which can 

identify individual peptides/proteins6. The IR spectra measured contain convoluted peaks in 

the region of interest as many biological components such as carbohydrates and proteins 

contain vibrations in the 600 to 1800 cm-1 wavenumber range7. This limits the application 

of the technique for specific studies such as protein identification, however overall profiles 

of chemical compositions can be acquired rapidly to yield useful information. Systems 

much more complicated than pure proteins such as single biological cells, and tissues are 

being increasingly studied using vibrational spectroscopy even though specific chemical 

identification is not possible. Applications such as cancer diagnostics need not necessarily 

require specific and quantitative chemical analysis, if a “broad” picture of the present 

biochemistry can be quickly measured. This is discussed in greater detail in the following 

sections. 
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1.2. Biomedical studies using IR spectroscopy 

Figure 1.1 shows an IR spectrum from prostate tissue on a MirrIR substrate (which is 

reflective to mid-IR light). This spectrum is typical of a biological sample, containing 

chemical features from the proteins, carbohydrates, lipids and nucleic acids. Biological 

samples measured using spectroscopy range from single human cells8-14, viruses15-21, 

bacterial strains16, 20, 22-40,  to tissue41-65. 

 

Figure 1.1 IR transflection spectrum from the stroma of prostate tissue. 

 

The study of individual single biological cells has been an area of interest, for a number of 

different reasons. The change in chemistry induced within a single cell within a population 

from an external perturbation such as the addition of a cytotoxic agent has potential in 

applications such as drug screening. The particular change of chemistry within each cell and 

the population as a whole might give indications as to which drugs may be more suitable. 

Other applications of single cell study include cytology, such the study of oral cancers 

where single cells can be easily acquired from a mouth swab 7, 66-68. 

In 1998, Jamin et. al. used a synchrotron (a high brightness that can be focused onto small 

areas such as 10 x 10 µm2, used because equivalent brightness is not achievable using a 
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bench top source) coupled FTIR microscope to implement highly spatially resolved chemical 

imaging of single living cells69. This demonstrated that the distributions of important 

biochemical components of cells, such as the proteins and lipids could be observed using a 

non-destructive measurement technique. In Europe alone, there are over 10 infrared 

microspectroscopy beamlines at various Synchrotron installations showing the increased 

use and demand of the experimental setup. The advance in technology has allowed 

chemical mapping at a sub-nuclear level as demonstrated by Pijanka et. al. 12, 70-72. 

The size of single human cells (10 – 50 µm in diameter) is similar to the wavelength of the 

IR light which gives rise to Mie-type scattering73. The effect of this scattering is that the IR 

spectrum is rendered unreliable as “features” in the spectrum are due to morphology 

rather than chemistry. In chapter 4 the physics of the scattering is stated in further detail. 

There are numerous cases where conclusions related to biology are deduced from spectral 

information where the spectra are of questionable reliability. An example is a study by 

Holman et. al. on the IR spectroscopic signatures from cells during different phases of the 

cell cycle, and cell death74. 

 

Figure 1.2 Three spectra from human lung fibroblasts, image taken from 
74

. 
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Figure 1.2 shows three spectra of single human lung fibroblast cells taken from reference74. 

These spectra have already had a linear baseline subtracted from 2000 to 650 cm-1 to deal 

with the scattering features present in the spectrum. These spectra are highly distorted, 

especially in the case of the M-phase spectrum where the amide I and amide II bands are in 

an unusual ratio which is almost always observed when strong Mie scattering is present. 

Holman et. al. concluded that these line shapes were typical of cells in the respective cell 

phases stated which at the time would have been a reasonable conclusion to have drawn, 

however in later years evidence that apparent changes in chemistry may be due to 

morphology rather than actual chemistry became apparent. 

 

Figure 1.3 IR spectra of a living and dying cell, image taken from 
74

. 

 

Figure 1.3 shows another figure from the same publication by Holman et. al. in which the 

difference between a living and a dying cell are compared. It is concluded that the dying 

cell exhibits a shift of the amide I band to a lower wavenumber, from 1644 cm-1 to 1633 cm-

1. A characteristic of a dying cell is that its shape becomes more rounded, which will 

inherently change its scattering characteristics. When Mie scattering occurs, the amide I 

band in the majority of cases is shifted to a lower wavenumber due to morphology only 73, 

75. 
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Single cell IR spectroscopy is a field with great potential to quickly acquire a biochemical 

signature of cells within a population for numerous applications. The morphological 

characteristics and the wavelength of IR light make the acquisition of reliable spectra 

difficult. The usual solution for scattering related problems with sample for IR spectroscopy 

is to either dissolve the sample into liquid form, or grind the sample such that the size of 

the particles after grinding are sufficiently small not to cause scattering. Neither of these 

options are feasible for single cells, tissue samples or indeed other biological specimens 

because their IR spectrum would be affected. The secondary structure of proteins is greatly 

affected when in a liquid form, or when physically distorted by an operation such as 

grinding. These changes will be evident in the IR spectrum upon measurement, and are no 

longer representative of the original sample. Therefore it is imperative to understand the 

scattering physics occurring such that a solution can be pioneered to recover the true IR 

absorbance spectrum. 

 

1.3. Spectral distortion 

Infrared spectroscopy aims to measure the chemical signature of the sample irrelevant of 

its morphology, hence it is desired that the IR spectrum contain only chemical information. 

In practice, the “perfect” infrared spectroscopy experiment (see Figure 1.4) is impossible to 

achieve due to the nature of interaction of the electromagnetic field and the sample. 
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Figure 1.4 Infrared spectroscopic measurement of a flat and scattering sample. 

 

In an ideal IR spectroscopic measurement, the light which does not reach the detector has 

been absorbed by the sample, which is approximately true for flat samples. Flat samples 

still result in some light loss due to reflections at interfaces, e.g. the air-sample interface, 

however the magnitude of this is usually rendered negligible compared to the absorbance 

of light by the sample. Biological samples such as single cells, give rise to scattering which 

results in the deviation of photon paths such that less light reaches the detector. When 

scattering occurs, the light that does not reach the detector is still interpreted as 

absorbance even though it was not absorbed by the sample. It is this problem that is the 

focus of this thesis, and background of progress in the literature is stated next. 

 

1.3.1. Baselines 

The most prominent feature in an IR spectrum due to light scattering is the baseline upon 

which the absorption bands are superimposed. Figure 1.5 shows a spectrum from a single 

prostate cancer cell76 derived from a bone marrow metastases cell line, the so-called PC-3 

cell line. 
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Figure 1.5 IR transmission spectrum of a single PC-3 cell. 

 

Figure 1.5(a) shows the measured spectrum before any spectral pre-processing has been 

implemented. The wavenumber region of 1800 – 2500 cm-1 does not contain any 

vibrational absorption bands for biological spectra, hence the absorbance value should be 

zero. The apparent absorbance is greater than zero indicating that light has not been 

detected by the instrumentation, and this is the result of scattering. The broad baseline 

extends across the whole wavenumber range shown, where the blue points connected 

with the red line show an approximation of the curve.  

Scattering results in additional features to the measured spectrum, beyond the broad 

baselines, the peak maxima positions are shifted either up or down in wavenumber value. 

At approximately, 1700 cm-1, a sharp decrease in intensity is present which is unexpected 

when considering the general broad curve of the baseline, this effect has been name the 

‘dispersion artefact’ and its origins not clearly understood. 

Initial attempts at correcting spectra affected scattering involved placing a number of 

points along the baseline (Figure 1.5) and subtracting the resultant curve from joining the 

points together. This yields spectra which visually appear to be free from scattering effects, 

Figure 1.5(b), however still exhibit features of the scattering such as shifted peak maxima. 
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In 1991, Hartens et. al. published a method for estimating the “physical effects” present in 

spectra by assuming that the measured spectrum was a superposition of the absorption 

bands (analyte information) and a second order polynomial to account for the broad 

baselines77. This correction methodology worked well for near infrared spectra of turbid 

media, however could not account for all of the scattering variation in mid-IR spectra. The 

reason for this simply being that the scattering curves cannot be modelled as a second 

order polynomial77. 

In 2005, Mohlenhoff et. al., attributed and approximated the broad baselines as Mie-type 

scattering of the infrared light from the nuclei of biological cells73. Figure 1.6 taken from 

this publication shows the measured spectrum from an oral mucosa cell (bottom) and the 

scattering curve calculated using a dielectric sphere of 4.2 µm diameter as an 

approximation (top trace). 

 

Figure 1.6 Bottom: Spectrum from an oral mucosa cell, and modelled scattering curve using the van de Hulst 
approximation. Figure reproduced from 

73
. 

 

The scatter curve was calculated using the van de Hulst 78 approximation equation: 
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         (1)  

             (2)  

 

where Qext = the Mie scattering extinction efficiency, r = radius of scattering particle, n = 

real part of the complex refractive index and λ = wavelength of light78. 

This formula is an approximation based on Mie theory79, and describes the light loss as a 

function of wavelength for non-absorbing spherical particles illuminated by a parallel 

beam. In reality, an infrared spectroscopic measurement of a sample involves a strongly 

absorbing particle which is non-spherical and illuminated by a focused beam80-82. 

In 2008, Kohler et. al., pioneered a method for the subtraction of Mie scattering baselines 

using a physical model to estimate the scattering contributions10. The method involved 

calculating 200 possible scattering curves, Qext, based on a particle radius, r, range of 2 to 

40 µm, and a real refractive index, n, range of 1.1 to 1.5. With a database of a realistic 

range of scattering curves, the measured spectrum, ZRaw, is estimated as a linear 

combination of the curves and a reference spectrum, ZRef. The reference spectrum is used 

to stabilise the estimation of the coefficients of each curve during a least squares fitting 

step10. 
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Figure 1.7 (a) and (b) are IR spectra from single lung cancer cells. (c) and (d) are the respective corrected 
spectra using the Kohler et. al. EMSC, figure reproduced from

10
. 

 

This Mie scattering correction algorithm removed the broad oscillation baselines 

successfully, however residual scattering effects remained as can be seen in Figure 1.7(c). 

The absorbance in the wavenumber range of 2000 to 2500 cm-1 shows a line shape 

indicative of light loss from scattering, and also at approximately 1800 cm-1, there is a sharp 

decrease in intensity, the “dispersion artefact”. 

The inaccuracies in the correction algorithm were unknown, but assumed to be due to an 

oversimplified model of the physical phenomena.  
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1.4. Aims 

There are several aims for this thesis, the first is to understand the origin of all the spectral 

distortions that occur during IR spectroscopic measurement of a scattering sample. This 

understanding should involve a mathematical basis which will be used to start producing a 

solution to remove the scattering effects. With a mathematical description of the physical 

phenomena occurring, an algorithm will be constructed which removes the scattering 

effects and recovers the true absorption spectrum of the sample. In short, the major aim of 

this project is remove morphological effects from IR spectra and retain the pure chemical 

signal thus allowing the development of IR analysis of scattering samples such as single 

biological cells and tissue. 
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2. Methods 

In this section, methods including instrumentation and computational resources are 

presented that were used during this project. 

2.1. Experimental methods 

2.1.1 Infrared (IR) spectroscopy 

Infrared (IR) spectroscopy is concerned with the interaction of IR light with materials, 

namely the transmission and reflection properties. The transmission and reflection 

properties give an insight into the chemical composition of the sample as different 

molecular vibrations occur at different wavelengths of light. The basic premise of the 

technique is to take a background measurement of the IR light where when no sample is 

present, and then to either transmit or reflect the light through the sample. By taking an 

appropriate ratio, a transmission or reflection spectrum can be computed, which can then 

be transformed into an absorbance spectrum. 

2.1.2 Molecular vibrations 

When IR light is incident on a sample, absorption can occur due to transition of molecular 

vibrations to excited states, namely from ground state to the first excited state, see Figure 

2.1. When absorption occurs, the intensity of the light is reduced, because the ‘cost’ of the 

transition to an excited vibrational state is photons of a specific frequency.  
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Figure 2.1 Potential energy for a diatomic as a function of displacement (d) during vibration for an 
anharmonic oscillator. 

 

Coupled atoms in molecules vibrate in a conceptually similar manner as two masses joined 

by a spring. The frequency of vibration is specific to the atoms coupled, and the molecular 

environment in which they are contained. Factors such as the masses of atoms, bond 

strength force constants and nearby electromagnetic fields from surrounding and nearby 

atoms affect the frequency of vibration. When a vibration occurs between two atoms of 

differing electro-negativities a molecular electric dipole is created due to an uneven 

electron cloud distribution. During the vibration, the displacement of the atoms increases 

and decreases around an equilibrium position which results in a change in the electric 

dipole moment. This molecular electric dipole can interact with the EM field in the IR 

wavelength range such that energy from the field can be absorbed and promote the 

vibration to an excited state. IR spectroscopy is highly sensitive to vibrations which have a 

change in the electric dipole moment, less sensitive to vibrations which have little change 

in the electric dipole moment, and insensitive to no change in the electric dipole moment.   
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2.1.3. Fourier Transform Infrared (FTIR) method for spectroscopy 

The preferred method to measure IR spectra today is by using Fourier Transform Infrared 

(FTIR) spectroscopy which has a number of advantages. The major advantage compared to 

dispersion instruments is that every wavelength of light can be measured at the same time, 

the so-called multiplex advantage. FTIR requires the use of a Michelson interferometer so 

that the EM-field through the sample can be measured as a time-domain signal, the 

interferogram. 

 

Figure 2.2 Michelson Interferometer use to measure an FTIR interferogram. 

 

Figure 2.2 shows a Michelson interferometer which comprises of an incoming beam of IR 

light (the source) and two mirrors. One of these mirrors is fixed in position while the other 

moves back and forth, such that the beam leaving the beam-splitter towards the detector 

undergoes constructive and destructive interference of all the wavelengths at the same 

time. The position of the moving mirror is continuously recorded allowing intensity at the 

detector to be recorded as a function of mirror distance. The moving mirror is moving at a 

known speed, and this signal forms a time-domain signal. 

An IR spectrum is most useful when displayed in the frequency domain, such that the x-axis 

of the spectrum is either in wavenumber (frequency) or wavelength. This is achieved by 
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performing a forwards discrete Fourier transform (DFT) on the time domain signal (the 

interferogram) using 

                     
 

  

 (3)  

where f(t) is the intensity of the interferogram as a function of time. 

An IR spectrum can be collected in a number of different geometries depending on 

whether a transmission or reflection spectrum is to be measured, this is discussed next. 

 

2.1.2. Transmission mode FTIR 

Transmission mode IR spectroscopy and specifically microspectroscopy is arguably the 

most established of the methods of collecting an IR spectrum. Most IR microscopes using 

an optical configuration similar to that shown in Figure 2.3 whereby a Cassegrain lens 

focuses the IR light onto the sample in a cone like fashion where it is transmitted through 

the sample. The sample needs to be supported by a window which ideally has 100% 

transmission for the IR light, a common material and the one used throughout this work is 

calcium fluoride (CaF2) as it has near 100% transmission in the 1000 – 4000 cm-1 

wavenumber range. 
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Figure 2.3 Schematic of transmission mode FTIR 

 

Underneath the sample and window, the transmitted light is collected by a ‘condenser lens’ 

which is similar in construct to the Cassegrain lens, which collects the cone-like transmitted 

beam and focuses it into a point where it is then passed to the detector through a series of 

mirrors. 

Transmission mode FTIR works well for samples that have optical density such that the 

absorbance values are within the Beer-Lambert regime (absorbance between 0.1 and 1.2 

are typically quoted for this). Samples which are thick, and/or very strongly absorbing may 

result in total extinction of the IR light as it passes through the sample meaning that the 

detector will not count enough photons to give a meaningful spectrum. Samples which are 

very thick however, can still be measured using FTIR by reflecting light off the surface and 

observing the reflection spectrum. 
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2.1.3. Reflection mode FTIR 

Reflection mode IR spectroscopy involves using just one Cassegrain placed above the 

sample, where half of the lens is used to focus light onto the surface of the sample, and the 

other half of the lens collects the reflected light and passes it to the detector, see Figure 

2.4. 

 

Figure 2.4 Schematic of reflection mode FTIR 

 

The advantage of reflection mode is that sample thickness (assuming homogeneity is not 

an issue) is irrelevant, meaning that samples of several millimetres thickness can be 

measured. The reflection spectrum can be transformed into an absorbance spectrum by 

performing the Kramers-Kronig transform, see chapter 3. 

A limitation of reflection mode FTIR is that the surface of the sample needs to be 

sufficiently polished to give rise to a strong signal, as reflection is an inherently weak 

phenomenon for biological samples. Surfaces giving rise to specular reflection rather than 

diffuse result in a much higher signal to noise ratio of the measured spectrum. 
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Other methods of collecting reflection involve the use of attenuated total-internal 

reflection (ATR) spectroscopy where a crystal with a high refractive index (such as 

diamond) is placed in contact with the sample surface. The angle of incidence of the 

incident light is such that it causes total-internal reflection.  ATR instrumentation has been 

adapted to perform very high spatial resolution IR imaging83-86. 

The penetration depth of light when reflected from a surface is dependent on the 

wavelength and is approximately of the order of the wavelength itself. This means that the 

surface layer (typically several micrometers) is sampled which may not be a problem if the 

sample is chemically homogenous throughout, however this may not be the case for all 

samples. 

 

2.1.4. Transflection mode FTIR 

Transflection mode IR spectroscopy as the name suggests is a combination of transmission 

and reflection mode measurements. A sample is placed on a slide which is reflective to IR 

light, throughout this work MirrIR slides (Kevley Technologies, Chesterland, Ohio, USA) 

have been used due to their reflectivity to IR but high transmission of visible light. 

Transmission to visible light allows visible microscopy to be conducted which aids in sample 

location and slide positioning. 
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Figure 2.5 Schematic of transflection mode FTIR 

 

Figure 2.5 shows a schematic of a transflection mode experiment, the incident beam 

transmits through the sample and is then reflected from the MirrIR surface before being 

transmitted back through the sample again to the collection optics. This essentially allows a 

transmission spectrum to be collected in a quasi-reflection geometry; the benefits include a 

double pass through the sample yielding a stronger absorbance signal. 

MirrIR slides are often preferentially chosen over transmission substrates as they are 

considerably cheaper to work with, and are physically less brittle meaning that sample 

preparation is rendered somewhat easier. Optically speaking, fewer configurations are 

required as no condenser lens below the sample is required and as the Cassegrain lens 

distributes and collects the IR light. 

 

2.1.5. Synchrotron coupled FTIR spectromicroscopy 

Conventional bench-top FTIR spectrometers use a ‘globar’ as their source of IR light. This 

globar source is essentially a blackbody emitter made from a suitable material which can 

undergo many heating and cooling cycles, and does not degrade quickly at high 
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temperatures. The distribution of wavelengths emitted follow Plank’s law of blackbody 

emission and the maintenance of a constant temperature is essential to maintain a stable 

wavelength distribution. 

For the majority of IR experiments involving a sample size of larger than 20 x 20 µm2, a 

globar source suffices to give adequate signal to noise. If however, smaller areas are to be 

interrogated for purposes such as sub-cellular IR imaging, then a globar source cannot 

provide a sufficiently brilliant light source87. Experiments involving an aperture of less than 

10 x 10 µm2 are often performed using a Synchrotron light source which provides a highly 

collimated light source that is several orders of magnitude more brilliant than globar 

sources87. 

 

Figure 2.6 Schematic of a synchrotron storage ring, showing photon production at bending magnet. 

 

Synchrotron coupled FTIR microscopy is essentially identical to bench-top measurements in 

which the same spectrometer and IR microscopes are used. The only difference is that the 

source of the IR light is produced externally by a Synchrotron ring, and inserted into the 

spectrometer using a set of external mirrors. A synchrotron is described most simply is a 

set of magnets with a central storage ring under vacuum in which electrons are accelerated 

to near the speed of light. A moving charge produces an EM field, the frequency of which is 

dependent on the movement of the charged particle. Figure 2.6  illustrates the concept 



36 
 

that when electrons change their path due to a magnetic field, synchrotron radiation is 

emitted in the original direction of the path. A range of photon energies are produced 

ranging IR to high energy x-rays, and are channelled using appropriate optical systems into 

various instruments. 

 

2.2. Mathematical methods 

2.2.1. Vectors and matrices 

2.2.1.1. Vectors 

Vectors are simply described as an array of numbers which can be denoted as a variable, 

such as: x = 1, 2, 3, 4, 5. Throughout this report, vectors will be denoted as bold lowercase 

letters. Vectors form a convenient way of manipulating lists of numbers, such as the 

wavenumber values of an IR spectrum. Mathematical descriptions are much simplified 

upon the use of vectors as they form concise variables to describe numerical entities. 

Numbers within vectors can be denoted with a simple system such as xi which represents 

the ith value in vector x. 

 

2.2.1.2. Matrices 

A matrix can be considered as a "block" of numbers in either a square or rectangular shape. 

Throughout this report, all matrices are row matrices meaning that each row is a vector. 

Matrices containing spectral information are constructed such that each row is the 

absorbance values of a single spectrum. The number of rows, N, corresponds to the 

number of spectra, and the number of columns, K, to the number of absorbance values, 

see Figure 2.7.  
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Figure 2.7 A spectral data matrix where each row corresponds to the absorbance values of each spectrum 

 

Matrices will be denoted with a bold, non-italicised uppercase symbol such as Y. The 

operation of a matrix transpose rearranges a matrix such that its rows are organised as 

columns and vice versa. A transpose is written as a superscript "T" to the right of the 

relevant matrix, the transpose of matrix, Y, would simply be stated as YT. 

 

2.2.2. Orthogonal vectors and the dot product 

The dot product, d, of the two vectors a and b, of length K values, can calculated using, 

             

 

 

             (4)  

Intuitively, this can be described as multiplying the elements of each vector and calculating 

the sum. Another definition of the dot product is product of the length of each vector 

multiplied by the cosine of the angle, θ, between them. Two vectors are considered to be 

orthogonal if their dot product is zero, e.g. the x and y axes on a graph which intersect at 

the origin only. 
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2.2.2. Principal component analysis (PCA) 

Principal component analysis (PCA) is a powerful tool used for many applications, ranging 

from data analysis to data compression88-90. When data, such as vibrational spectroscopy 

spectra are to be analysed in an explorative manner (i.e. with no prior knowledge of the 

samples), PCA is often the first tool employed to gain insight into any patterns within the 

data. The patterns of interest in the bio-spectroscopy community are namely finding 

similarities and differences in spectra from two or more groups91-99. The two aspects of 

interest in this thesis are data exploration and data compression. 

 

2.2.2.1. PCA for exploratory data analysis 

The concept of PCA is best explained with an example, and so a dataset comprising of 25 

spectra from two groups (totalling 50 spectra) will be used for illustration purposes. This 

data set was simulated such that there exists a clear difference between the two groups, 

the details of the construction of this data are stated in full in section 2.3.4. 

 

Figure 2.8 Simulated data comprising of two groups of 25 spectra. 
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Figure 2.8  shows the simulated data that are going to be used to illustrate the concepts of 

PCA. The data are visually similar to typical biomedical samples, exhibiting features from 

proteins, carbohydrates, lipids and nucleic acids. Due to the colour coding of the spectra it 

is immediately obvious that there are two groups of data, measured spectra from biological 

samples rarely contain this degree of variance, but PCA can be applied none the less. If a 

quantitative representation of the similarity / dissimilarity of the spectra are required, this 

cannot be easily obtained from visual assessment, and hence a numerical approach must 

be taken. In this example there are 50 spectra, each one of which is comprised of 851 

absorbance values. These can be organised in a 50x851 matrix where each row 

corresponds to an individual spectrum, this matrix hereafter will be referred to as Y. 

 

Figure 2.9 Flow chart illustrating input and outputs of principal component analysis (PCA), showing the sizes 
of the vectors and matrices involved. 

 

Figure 2.9  shows a simple flow chart illustrating the input and outputs of PCA using our 

spectral data matrix example, Y, to show matrix dimensions of each variable. In this 

example, only 10 principal components (PCs) have been acquired as this is sufficient for the 

analysis to be conducted. The first output from PCA, is the scores, T, matrix and arguably 

the most informative for unsupervised analysis. The dimensions indicate that for each 

spectrum, there are 10 associated values, each relating to a principal component, PC1, PC2 
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... PC10. Figure 2.10  shows a scatter plot where the first and second columns of the scores 

matrix are plotted against one another. 

 

Figure 2.10 PCA scores plot for simulated data. 

 

The scores plot represents each spectrum as a point in space, where spectra which are 

similar to one another are spaced closer together, and spectra which are dissimilar are 

spaced further apart. This visualisation technique allows for patterns of similarity in the 

data to be very quickly identified, and the process is unsupervised hence objective. Plots 

can also be created for any combination of the 10 PCs, and 3D-scatter plots can prove 

useful during pattern finding. The position of each point in the scores plot is defined by the 

mathematics behind principal component analysis. 

 

2.2.2.2. The PCA algorithm 

The mathematics behind PCA aim to decompose our data matrix, Y, into two simpler 

matrices which are the scores, T, and loadings, P. The first step of the algorithm, which is 

optional, but almost always performed is the mean centering of the data. This involves 

calculating the mean spectrum from our dataset of 50 spectra, and then subtracting this 
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from each individual spectrum. This results in a new matrix which now has a mean of zero, 

this data has been plotted in Figure 2.11. 

 

Figure 2.11 Mean centred data of the simulated data. 

 

Figure 2.11  highlights the key differences in our data as differences in the absorbance the 

1450 cm-1 and 1740 cm-1 peaks. The next operation PCA performs is to find a line of best fit 

through the data which minimises the sum of squares, which is the magnitude of the 

difference between the line of best fit and the data it is trying to describe. This line of best 

fit can be computed a number of different ways, giving the same answer, in this example 

the Non-Iterative Partial Least Squares (NIPALS) algorithm was employed to do this. The 

resultant best fit line is shown in Figure 2.12. 
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Figure 2.12 PC1 loadings curve for simulated data. 

 

This line of best fit is called the loading curve for principal component 1, p1. The curve 

exhibits the obvious variance shown in the mean centred data, plus additional variance at 

approximately 1500 to 1630 cm-1, which was not immediately obvious upon visual 

inspection. It is these subtle differences that a human observer cannot easily see, that 

make PCA a powerful tool. The next step is to calculate the “quantity” of this loading 

spectrum in each spectrum in our data matrix. This can be done a number of ways, either 

using a least squares fit, or by calculating the dot product of the loading and each 

spectrum. The number that is acquired from this for each spectrum is the score value for 

principal component 1, and can take a positive or negative value. Figure 2.12 shows that 

group 1 will have a negative score value as they are anti-correlated to the loading for PC 1. 

The scores plot in Figure 2.10 summaries all of these scores values concisely on a plot. 

After the loading for PC 1 has been calculated, the matrix is then deflated which is done by 

subtracting the product of the score for each spectrum and the loading. This now yields a 

matrix which no longer contains any of the variance from PC 1, which allows PC 2 to be 
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calculated in the exact same manner as described above. This procedure can be repeated 

until the desired number of principal components are obtained. 

The number of principal components “extractable” is limited to the dimensionality of the 

data, and typically varies between 4 and 20. Measured data contains noise which has by 

definition no underlying patterns, hence can give rise to an indefinite number of PCs. The 

aim of PCA is find as many PCs that can accurately describe all of the real chemical 

information in our dataset, and this is usually accomplished by PC 15. 

The relation of the original data matrix (where no mean centring has been implemented), 

Y, the scores, T, and the loadings, P is: 

       (5)  

PCA is often described as the mother of all chemometric techniques due to its simplicity 

and robustness at finding patterns in data with no prior knowledge of the data. The scores 

from PCA are routinely used for visual pattern finding, and then correlation to the loadings 

investigated to deduce what chemical features are contributing to the patterns in the data. 

The loadings from PCA exhibit useful properties which aid in data compression for a wide 

range of applications. 

 

2.2.2.3. PCA for data compression 

In the previous example, the data matrix, Y, contained 50 spectra which is relatively small 

compared to some data matrices. Matrices can range from hundreds to several thousands 

of rows and columns, e.g. IR images are routinely collected comprising of 128x128 = 16384 

spectra.  
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It is often desirable to express large matrices in a simpler way and PCA offers this by 

decomposing a matrix into principle components. PCA identifies the most important 

features of the matrix and summarises the information into a much smaller number of 

vectors as done by Kohler et. al. in the Mie scattering EMSC10 algorithm. In this work, the 

authors condensed 200 spectra of scattering curves into 6 curves which were able to 

almost fully reconstruct any of the original curves when added in the correct linear 

combination. 

 

2.2.3. Linear regression 

Linear regression, commonly performed using a least squares fitting approach is where a 

vector is modelled as a set other vectors. In the case of the Mie scattering EMSC by Kohler 

et. al.10, the raw measured spectrum, ZRaw, is modelled as the linear combination of a 

reference spectrum (such as a spectrum of Matrigel) and a number of ‘descriptive vectors’ 

which make up the baseline. Expressed algebraically, using vectors denoted as symbols 

with an arrow above them, the Mie scattering EMSC algorithm is 

                           
 

   
      (6)  

where h = multiplicative factor to describe effective optical path length of sample, c = 

constant offset baseline, m = gradient of sloping baseline, gi = weighting i of loading vector 

pi, and E = vector of un-modelled features, also known as the residual of the model. 

In this particular EMSC model using 6 loading vectors to model the scattering curves, a total 

of 9 parameters have to calculated using a least squares algorithm. Computationally 

speaking, this calculation is trivial for modern computers as the number of parameters 

required to be calculated is small.  
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2.3. Computational methods 

2.3.1. Programming language 

All of the computations presented were implemented in a commercial programming 

language called Matlab 2010a (Mathworks, Natick, MA, USA). This package was chosen due 

to its accessibility to scientists with no prior programming experience and its superb 

precision at computing linear algebra functions. Also supported in this package are 

complicated features such as Artificial Neural Network (ANN) pattern recognition. 

 

2.3.2. High throughput computing (HTC) 

In chapter 6 the resonant Mie scattering correction algorithm is implemented for infrared 

images of prostate tissue which comprise of 128x128 pixels equating to 16384 spectra. The 

time required to correct one image is approximately 4 days using a quad core Intel Xeon 

processor which makes correcting large numbers of images unfeasible. To reduce 

computation time for these images, high throughput computing was employed using a pool 

of 1500 Linux machines via the Condor computing system developed at the University of 

Wisconsin in the USA. 

The Condor philosophy is that spare computational resources can be put to use for 

scientific computing. Spare resources frequently arise at institutions when computers are 

not in use, e.g. during lunch times and overnight. This approach only works for jobs that 

can be run in parallel and are independent of each other. The spectra contained within an 

infrared image are independent of one another, and signal correction of these can be 

implemented in parallel. 
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To use Condor computing, an IR image initially has to be split into a number of jobs, 

typically around 1024, resulting in 16 spectra per job. These jobs are then submitted to a 

master node which is connected to 1500 worker nodes, see Figure 2.13. 

 

Figure 2.13 Condor high throughout computing. 

 

Using the Condor system has reduced computation time for IR images from 4 days to 30 

minutes meaning that large numbers of images can be collected and processed on a daily 

basis. It is acknowledged that the first step towards efficient computation is to rewrite the 

program in a faster language such as FORTRAN or C/C++, however in the absence of the 

required expertise and an opportunity to use Condor for zero cost, high throughput 

computing was chosen preferentially. 

 

2.3.3. Artificial Neural Networks (ANNs) 

The concept of pattern recognition and machine learning involves “teaching” a computer 

via a set of algorithms to recognise data types as belonging to a particular class. In the field 

of cancer diagnostics, a simple example would be training the machine to recognise what 

cancerous epithelial cells “look” like, and doing the same for healthy epithelial cells. Once 

the machine has learnt the patterns successfully, it can be subjected to new and unknown 
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spectra upon which it makes a decision from its learning process as to which class the 

spectra belong, i.e. cancerous or healthy in this case. 

There are a host of machine learning algorithms available, for this project artificial neural 

networks (ANNs) have been chosen due to their proven success in the field of biomedical 

vibrational spectroscopy100-103, and ease of implementation in the Matlab platform. 

 

 

Figure 2.14 Schematic of a 3 layer artificial neural network. 

 

In this project three layer ANNs are used for all pattern recognition and classification 

problems. The first layer comprises of the input spectra, in this case cancerous and healthy 

spectra, which then passed to a “hidden layer” where a number of neurons which are user 

defined perform a number of operations to “learn” that the input spectra belong to the 

memberships stated. These hidden neurons act in a manner which is meant to mimic the 

functioning of neurons within the human brain, the key property being that they can act in 

a “non-linear” way. The human brain seemly learns and solves problems in a manner which 

is different from conventional learning done by a computer with great success, and it is this 

property of ANNs that is being taken advantage of. In simple terms, the ANN is given some 
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data and told which class membership each belongs to, and is then asked to find some way 

to learn the features of cancerous and healthy tissue. 

The ANN learning function used throughout this project is the conjugate gradient back-

propagation method as this was found to have the highest classification accuracy of those 

available in the Matlab platform.  

 

2.3.4 Simulated spectra 

Later in this thesis a set of spectra are required to test the scattering correction presented. 

Measured spectra from biological samples would seem ideal for testing purposes, however 

as the pure absorbance spectrum is unknown there is nothing to compare results to, hence 

the need for some known standard. 

An absorption band in an infrared spectrum can be approximated as a Gaussian lineshape, 

and a spectrum approximated as merely a summation of Gaussians centred at various peak 

positions. Stated below is the equation of a Gaussian: 

               
        

 

       (7)  

Where ṽ0 = peak maximum position, A = amplitude of Gaussian and c = width parameter. 

The spectrum, S, is the sum of a number of Gaussians with various peak positions, heights 

and width, this can be expressed as: 

 
               

         
 

   
  

 

  
(8)  

Where S(ṽ) = absorbance at wavenumber ṽ, Ai = amplitude of peak i, ṽ0i = peak position of 

peak i, and ci = width parameter of peak i. 
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The starting point to construct spectra similar in appearance to those of biomedical 

samples was the use of a spectrum of Matrigel which is an artificial extracellular matrix 

comprising of proteins, lipids, carbohydrates and other growth factors, its IR spectrum is 

shown in Figure 2.15. 

 

Figure 2.15 IR absorbance spectrum of a thin film of Matrigel measured in transmission mode. 

 

The Matrigel spectrum was used as a guideline for creating a database of peak positions, 

heights and widths. An additional peak was also added at 1740 cm-1 which is invariably 

present in biological spectra, assigned to the C=O bond in lipids. The wavenumber range of 

the spectra simulated was 800 to 2500 cm-1 at a resolution of 2 cm-1, as this is typically the 

region of interest for biological IR data. 

Two data sets (group 1 and group 2) were created comprising of 25 spectra all based on the 

Matrigel peak database. A random number generator was used to vary the positions (± 1 

cm-1), heights (± 20%) and widths (± 2.5%) of peaks within each spectrum. The second data 

set was subject to the same random variation as the first but was intentionally given a 
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higher absorbance by 0.1 at the 1300 cm-1 and 1740 cm-1 peaks so that the two groups 

would appear different when analysed using PCA, see Figure 2.10). 

2.4 Summary 

This chapter has stated the methods & resources used to investigate the scattering of 

infrared light during FTIR measurements of biological samples. The instrumentation used to 

measure FTIR data has been discussed, followed by a description of elementary 

mathematics used to describe the scattering of the light. Finally, computational resources 

have been discussed that were used as the platform to create a correction algorithm for 

the scattering. 
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3. Reflection contributions to spectral distortions 

In this chapter the contribution first investigated towards spectral distortions is presented, 

and is related to the reflection of IR light from the sample surface. A brief outline of the 

physics of reflection is stated followed by the experiments conducted and results deduced. 

 

3.1. Reflection 

The percentage of reflection of light from a surface is defined by the real part of the 

complex refractive index (hereafter called the real refractive index), n, the wavelength of 

light and the angle of incidence, θi. The phenomenon of refraction occurs due to the 

slowing down of light in a medium, as can commonly be seen by observing a straw in a 

glass of water which seemingly appears to be bent in shape upon entry into the medium. 

The real refractive index is defined as the speed of light in a vacuum divided by its speed in 

the material104.  

The real refractive index of air can be approximated to a value of 1, its actual value is 

negligibly larger than 1, which simplifies some calculations. The reflection and transmission 

factors of light going from one medium to another, such as air to water can be calculated 

using the Fresnel equations104. 

 

3.1.1 Fresnel equations 

An incident beam of light approaching a surface at angle θi, is partially reflected at the 

surface at angle, θr, and partially transmitted into the sample at angle θt, as Figure 3.1 

illustrates. The real refractive indices of air and the medium are denoted n1 and n2 

respectively104. 



52 
 

 

Figure 3.1 Reflection and transmission of light at a surface. 

 

The reflectivity for s-polarised (Rs) and p-polarised (Rp) can be calculated using the following 

relations: 

 

     
          

          
 

 

   
                   

                   
 

 

 (9)  

 

     
          

          
 

 

   
                   

                   
 

 

 (10)  

 

When photons are at near normal incidence, the polarisation becomes negligible and the 

equation can be simplified to give a general term for the reflection, R. In the interest of 

simplification, it will be assumed that light from the microscope optics is incident upon the 

sample at normal incidence. This is not the case in reality and there is a large range of 

angles of the light as it is focused on the sample in a cone-like manner, however near 

normal incidence approximation suffices in due computations. 
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 (11)  

In theory, the factor of reflected and transmitted photons should sum to equal one, 

ignoring diffraction and absorption processes. This allows an expression for transmission to 

be calculated: 

       
     

       
 
 (12)  

 

Equations (11) and (12) allow the reflection and transmission factors for an incident beam 

of photons to be calculated knowing only the real refractive indices of the two concerned 

materials at a near normal incidence. This will aid in the understanding of line shape 

distortions caused in IR spectra explained later. 

 

3.1.1. Imaginary refractive index 

The imaginary refractive index, k, commonly referred to as the absorptive index governs a 

material’s absorption properties as a function of wavelength. In IR spectroscopy, 

absorption bands are present as Voigt profiles (convolution of a Lorentzian and Gaussian 

line shapes) with peak maximum at a specific wavenumber. The position and relative 

heights of these peaks is determined by the imaginary refractive index, if one were to 

compute an infrared spectrum with corresponding data of the k spectrum, the two would 

appear very similar in shape. 

The relation of k with the absorption coefficient, α is 

         (13)  
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The absorption spectrum measured is simply this absorption coefficient at each 

wavenumber, multiplied by the effective optical path length traversed by the IR light. 

      (14)  

where l = the path length. 

 

3.1.2. Relation of the real and imaginary refractive index 

The real and imaginary refractive index are not independent variables, they coexist and are 

related to one another as graphically depicted in Figure 3.2. 

 

Figure 3.2 Plot showing the variation of the n and k spectra for a Lorentzian band shape. 

 

In Figure 3.2 the k spectrum was computed using the equation of a Lorentzian line shape to 

create a theoretical peak for illustration purposes. The n spectrum of k is shown by the red 

trace, and was computed using the Kramers-Kronig transformation1: 

          
 

 
   

     

      
  

 

 

 (15)  

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

900950100010501100

Real component, n

Imaginary component, k

Wavenumber / cm -1



55 
 

where n∞ is the real refractive index at infinity, P is the Cauchy principal of improper 

integrals, required in this case due to the singularity created due to a division by zero. s is 

the subject of integration. 

An inverse transform also exists where k can be computed from n: 

       
   

 
    

    

      
  

 

 

 (16)  

The Kramers-Kronig relations provide a powerful tool for allowing the computation of n and 

k given only the other. The shape of a the real refractive index spectrum in Figure 3.2 looks 

similar to the shape of a first derivative of an absorption band, however the values are not 

the same. The significance of n is that it defines the reflection properties of a material but it 

is not constant across a spectrum; at an absorption band, it undergoes a sharp change in 

value (a phenomenon called anomalous dispersion). 

 

3.2 Reflection contributions 

During an IR spectroscopy measurement, the incident light will be reflected according to 

the mathematics of the Fresnel equations. Transmission and transflection experiments 

involve illumination of the sample from an upwards direction thus resulting in a reflected 

signal towards to optics of the beam origin, see Figure 3.3. 

 

Figure 3.3 Schematic showing the signals involved during a transflection IR experiment
105

. 
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Figure 3.3 shows a schematic of a transflection experiment including the paths and origins 

of the transmission and reflection signals. In a transflection experiment, both the reflected, 

R, and transmitted signal, T, are collected105. Hereafter, this transflection signal will be 

denoted as ITf. 

          (17)  

This equation suggests that the transmission signal of samples with low optical density will 

be dominant making the effect of the reflection signal negligible. However when the 

transmission signal becomes weaker, tending towards zero the reflection signal will have a 

greater influence in the transflection signal. The transmission signal will vary with optical 

density of the sample, however the reflection signal arises from the surface of the sample 

and is ever present irrelevant of the sample thickness / optical density. 

To demonstrate the line shapes possible from different weightings of the transmission and 

reflection signals in a transflection signal, a Lorentzian peak was computed, and a Kramers-

Kronig transformation computed to acquire a theoretical reflection signal, as Figure 3.4 

shows. 

 

Figure 3.4 A Lorentzian peak and corresponding reflection spectrum. 
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By adding together these theoretical transmission and reflection profiles in different 

weightings, a series of interesting line shapes can be observed. Although somewhat 

numerically arbitrary, the line shapes produced serve a useful purpose in that they reveal a 

contribution to the ‘dispersion artefact’ line shape105. 

 

Figure 3.5 Resultant line shapes from different weightings of reflection and transmission signals for a 
theoretical peak. 

 

Figure 3.5 shows the resultant line shapes produced when a transmission and reflection 

signal are added in different weightings. The magnitude of the reflection signal is kept 

constant in each plot as its magnitude in experiments should remain the same regardless of 

the transmission component. The magnitude of the transmission component is reduced 

from 100% to 0% to simulate the effect of an increasing optical density / sample thickness, 

finally reaching extinction at 0%. It can be seen that when the transmission signal is 100%, 
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the reflection signal is not observable in the spectrum. As the transmission signal is 

reduced, the reflection signal becomes increasingly evident, and the derivative-like line 

shape of the ‘dispersion artefact’ becomes ever more prominent until a pure reflection 

signal is observed105. 

 

3.3. Measurement of reflection contributions 

The contribution of the reflection signal during transflection experiments was confirmed by 

using a sample comprising of prostate cancer cells (PC-3 cell line) cultured onto a 

transmission window, calcium Fluoride in this case. Using a high brightness source at the 

SOLEIL synchrotron, a number of experiments were conducted to measure the reflection 

contributions during IR spectroscopic measurements. 

In the previous section it was stated that during a transflection experiment, the 

contribution of the transmission signal is of a greater magnitude than that of the surface 

reflection. By measuring a cell on a transmission window, the transmission component can 

be assumed to be of zero magnitude during a transflection experiment, meaning that the 

only signal measured was that of the surface reflection. Using an aperture size of 10 x 10 

µm2 and spacing of 10 µm, a line map was taken across a PC-3 cell to measure the 

reflection contributions from different areas of sample, including cytoplasm and the 

nucleus. 
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Figure 3.6 Left: Optical image of PC-3 cell on a CaF2 substrate. Right: Spectra of the cell at the points indicated 
in (a) expressed as absorbance

105
. 

 

Figure 3.6 shows a PC-3 cell on a CaF2 slide with reflection spectra from points along a line 

map. It is immediately evident that even though this cell is placed on a transmission slide, 

measurement in transflection mode results in a signal containing biochemical information. 

These spectra are surface reflection spectra and can be clearly seen as the transmission 

signal is passing through the sample and not being collected by the collection options. The 

characteristic derivative-like line shapes are immediately obvious, especially at the position 

of the amide I band which is usually at approximately 1655 cm-1. This line shape is similar to 

the ‘dispersion artefact’ frequently observed during transflection experiments of single 

cells, and tissue. 

Spectrum (a) closely resembles an inverted IR biomedical sample with the amide I and II 

bands in approximately the correct relative magnitudes. Spectrum (c), positioned at the 

nucleus looks significantly more distorted due to the combination of a reflection signal and 

Mie scattering effects. The nucleus had previously been considered as a “black hole” which 

was too dense to pass light through making spectroscopy difficult 73. This experiment has 

shown that using a refection based methodology, a signal can be acquired. The penetration 
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depth of the electromagnetic field incident upon a surface is approximately that of the 

wavelength of the field, meaning that at a wavenumber of 1240 cm-1, corresponding to 

DNA bands, a depth of ~8 µm is penetrated. 

The reflection, rather than being an unwanted contamination of IR experiments could be 

used to calculate the absorption spectrum using the Kramers-Kronig transform, which 

would be particularly convenient for thick samples where light cannot be passed through. 

 

Figure 3.7 (a) Map of a PC-3 cell on CaF2 based on the integrated band at 1240 cm
-1

 shown in (b). Note that 
blue indicates highest reflectance, red the lowest

105
. 

 

Figure 3.7 shows an IR mapping image using a 10 x 10 µm2 aperture, and a 10 µm step size 

using a synchrotron source. A “chemical map” of the 1240 cm-1 peak attributed to DNA 

phosphate groups has been produced. This image shows the nucleus contains a greater 

signal from these DNA bands than the cytoplasm as would be expected. The colour scheme 

is negative due to the processing of the reflection spectra not being in conventional 

absorption; blue represents greater intensity and red lower. 

 

3.4. Conclusion 

In this chapter a theoretical simulation of the reflection contributions in transflection 

experiments has been demonstrated, showing that derivative-like line shapes can occur 
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when the transmission signal becomes weak. The transmission signal during a transflection 

experiment can become weak when the sample thickness is great, and when the optical 

density of the material is high resulting in the extinction of the light. 

The reflection contributions were validated by measuring the transflection signal of a single 

biological cell on a transmission window, where the transmission component collected was 

zero. This confirmed that the collection optics do indeed collect the reflection signal, and 

that this is a contribution factor to the so called ‘dispersion artefact’105. 

During a transmission experiment, the reflection signal is not collected by the optics, 

however a loss of light will have occurred before the light propagates through the sample. 

The ‘dispersion artefact’ is often present in transmission experiments when the reflection 

signal could not be playing a major role. This can be explained due to scattering and is the 

subject of the following chapters. 
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4. Resonant Mie Scattering (RMieS) 

In this chapter an introduction into light scattering and namely, Mie scattering is presented. 

Experiments to observe the effects of Mie scattering during infrared spectroscopic 

measurements are presented using a model system of known size polymer micro-spheres. 

Experimental results are compared with theoretical simulations to show high agreement106. 

 

4.1. Mie scattering 

In 1908 Gustav Mie wrote his paper on the subject of light scattering from turbid media, 

such as milk which is an emulsion of water, lipids and proteins79. When light is incident 

upon a scattering particle, its path can be deviated which has major implications for IR 

spectroscopy. The usual aim of an IR spectroscopic measurement is to measure the 

absorption properties of the sample relative to a background of zero absorption. In an ideal 

experiment, any IR light that does not reach the detector has been absorbed by the 

sample. However due to the nature of biomedical samples, namely single cells and tissue 

the morphology is far from the ideal “flat surface”, see Figure 1.4. 

 

Figure 1.4 shows an ideal IR measurement where light not reaching the detector was 

absorbed by the sample, thus meaning that the computed absorbance spectrum (negative 

base 10 logarithm of the transmission profile) is representative of only sample chemistry. 

Figure 1.4(b) illustrates the concept of scattering when the IR light is incident on a particle, 

e.g. a single cell resulting in deviation of photon paths outside of the detector. These 

photons are not detected by the detector but are still considered to have been absorbed 

upon the computation of the absorbance profile, but this is not the case as they were 

simply lost to the system. This phenomenon results in additional features in the 
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absorbance spectrum that are not related to the chemistry of the sample, but rather the 

morphology. 

 

Figure 4.1 IR transmission spectrum of a single PC-3 cell. 

 

Figure 4.1 shows a spectrum of a single PC-3 cell which exhibits the characteristic effects of 

scattering. These effects include the broad baseline upon which the spectral features are 

superimposed, and the shifting of peaks, illustrated in this case by the amide I peak at 1641 

cm-1, which is shifted to a lower wavenumber from its characteristic frequency of 1655 cm-

1. When spectra exhibit scattering features, the true biochemistry of the sample is 

distorted, and further analysis becomes difficult. 

The mathematics governing the quantity of photons lost to the system at each wavelength 

due to the scattering particle are vastly complicated, and hence a number of initial 

simplifications must be made in order to understand the underlying physics. In 1957, van 

de Hulst published an approximation equation for the efficiency with which each 

wavelength of light is scattered (the Mie scattering efficiency, Q) given the real refractive 

index and radius of the particle (assumed to be a dielectric sphere in this case). 
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         (18)  

where 

              (19)  

 

Where d = diameter of the scattering particle, and n = the ratio of the real refractive indices 

of the particle to the surrounding medium. In the case of IR measurements of biological 

samples, the surrounding medium has a real refractive index of approximately 1 meaning 

that n can simply be assumed to be the particle refractive index. These equations are the 

starting point to aid in understanding the fundamental principles behind the scattering 

effects in IR spectra of single cells and tissue. 

 

4.2 Synchrotron FTIR measurements of isolated poly(methyl 

methacrylate) (PMMA) microspheres 

 

As a model to gain insight into the characteristics of IR light incident upon a scattering 

particle a simple model involving microspheres of PMMA of various sizes were employed. 

Due to the homogenous chemistry, and spherical shape, a much simpler model is obtained 

compared to a single biological cell which has inhomogeneous chemistry and non-spherical 

shape making the underlying mathematics more complicated106. 
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4.2.1 Sample preparation 

The PMMA spheres in suspension (Microspheres-Nanospheres, Cold Springs, NY, USA) were 

obtained in three different sizes, 5.5, 10.8, 15.7 µm in diameter. The spheres were re-

suspended in deionised water twice to reduce any chance of salt formation after 

deposition. For each sphere size, 5 µL of suspension was separately re-suspended in 100 µL 

of deionised water to reduce the density of the spheres on the slide thus increasing the 

possibility of depositing isolated spheres. 20 µL of each sphere/water suspension was 

deposited onto 0.5 mm thick CaF2 slides (Photox Optical Systems, Sheffield, UK) and 

allowed to air-dry for several hours. The PMMA reference material was supplied as a 

powder by Polymer Laboratories UK. A solution of PMMA in toluene was prepared and 

similarly deposited on to a CaF2 slide and allowed to dry forming a thin PMMA film. The film 

thickness was not specifically determined but was sufficient to give a maximum absorbance 

value close to 1. The film was visibly transparent with no evidence of physical 

inhomogeneity.  

Spectra of the isolated PMMA spheres were measured using a synchrotron source at the 

SOLEIL SMIS beamline107. A synchrotron source was required due to small sample sizes, in 

particular the 5.5 µm spheres which would be difficult to measure using a conventional 

bench top source. The spectra were recorded at 4 cm-1 resolution, and the number of co-

added scans were selected depending on the sample experiment performed. The FTIR 

microscope used was a Nicolet Continuum XL coupled to a Nicolet Nexus spectrometer. 

 

4.2.2. Infrared spectra of PMMA 

The IR absorbance spectrum (measured in transmission mode) of a thin PMMA film on a 

CaF2 window is shown in Figure 4.2(a). The spectrum shows that a number of strong 

absorption bands on a flat baseline and is consistent with published spectra of PMMA, see 
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table 1 106. The most prominent bands observed are the CH2/CH3 stretching modes at 2991 

cm-1, 2950 cm-1 and 2843 cm-1, C=O (1731 cm-1), the asymmetric C-C-O stretch (1276 cm-1 

and 1240 cm-1), and the asymmetric C-O-C stretch (1193 cm-1 and 1150 cm-1). All the 

observed bands are within 5 cm-1 of published reference data, and given possible 

differences in the exact molecular weight of the polymer and tacticity, this variation is to be 

expected. The large isolated carbonyl (C=O) band at 1731 cm-1 serves as a crude model of 

the amide I band present in cells and is uncomplicated by the presence of an amide II 

band106. 

Figure 4.2b(i) shows an optical image of 5.5 µm PMMA spheres on a CaF2 window. On this 

area of the surface, the spheres are reasonably close packed. Figure 4.2b(ii) shows the 

infrared spectrum of a single sphere incorporated into a close packed layer of spheres 

imaged with a 6 x 6 µm2 aperture. In this figure, and subsequent figures, the axis is labelled 

‘apparent absorbance’ presenting log10( I0 / <I>) where <I> is the average transmitted 

intensity reaching the detector which includes light scattering from and going round the 

sphere. The spectrum shows a slope in the baseline with some low amplitude oscillations 

similar to those of the PMMA film on CaF2, but the shape of the carbonyl band has become 

noticeably asymmetric and the band position has shifted to a lower wavenumber, to 1725 

cm-1 (~- 6 cm-1). One can notice the appearance of noise in spectrum below ~1100 cm-1, 

which is due to diffraction limitation when using a small aperture. 
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Figure 4.2 (a) The infrared transmission spectrum of a thin film of PMMA deposition on CaF2; (b)(i) an optical 
image of 5.5 µm diameter PMMA microspheres deposited on CaF2, and (b)(ii) the infrared transmission 
spectrum taken from a region where the PMMA spheres are close packed as indicated by the red box in (i). 

 

Table 1. Assignments of vibrational bands observed in spectra of PMMA in a KBr Pellet, a PMMA film on a 
CaF2 plate, a close packed (CP) layer of 5.5 µm PMMA spheres, (I) 5.5 µm, 10.8 µm and 15.7 µm PMMA 
spheres on CaF2. All numbers are wavenumber (reciprocal wavelength) values and have units of cm

-1
.  
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Figure 4.3 The optical images (i) and the infrared transmission spectra of (ii) isolated (a) 5.5 µm, (b) 10.8 µm, 
(c) 15.7 µm diameter PMMA microspheres deposited on CaF2. 

 

Figure 4.3a(i) shows an optical image of an isolated 5.5 µm PMMA sphere on the sample, 

illuminated by light from the 6 x 6 µm2 aperture. Isolated spheres were selected since in 

single cell cytology it is isolated cells rather than clumps of cells that are preferentially 

analysed. Figure 4.3a(ii) shows the infrared spectrum obtained from the sphere and repeat 
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measurements on several spheres show that it is representative of isolated single spheres 

of this size. 

It is immediately obvious that despite having the same chemical composition, the spectrum 

does not resemble the absorbance spectrum of the PMMA film shown in Figure 4.2(a), or 

indeed the absorbance spectrum of the same spheres in a closely packed layer, Figure 

4.3b(ii). The spectrum of the isolated sphere clearly shows strong Mie scattering, indicated 

by the pronounced oscillation of the baseline. In addition, the presence of the very strong 

dispersion artefact is clearly indicated by the first derivative-like line shape in the region of 

the carbonyl stretching mode which gives rise to a positive peak at 1707 cm-1 (instead of 

1731 cm-1). Note that the derivative-like line shape of the dispersion artefact has shifted 

the position of the positive maximum of this band by 24 cm-1 and has significantly reduced 

the apparent relative peak intensity. It is also evident that the dispersion artefact is not 

limited to the carbonyl band but is influencing, albeit to a lesser extent, weaker bands, 

perhaps also due to the presence of neighbouring peaks, does not mean that bands are 

unaffected. There are some changes in intensity in the CH stretching region and, as 

indicated in table 1, band positions have moved significantly. In contrast to the carbonyl 

band, however, all of the prominent CH stretching bands have moved to a higher 

wavenumber. This is an important point which is discussed later. 

Figure 4.3b(i) shows the optical image of an isolated 10.8 µm diameter PMMA sphere 

illuminated by a 12 x 12 µm2 aperture. Figure 4.3b(ii) shows the IR spectrum of the sphere 

and again several measurements show that it is typical of isolated spheres of that size. The 

spectrum is strikingly different from either the PMMA film or the 5.5 µm diameter isolated 

sphere. The strong oscillation in the baseline is still evident but the amplitude and period of 

oscillation have changed. In addition to the broad oscillations due to Mie scattering, a 

higher frequency oscillation in the baseline is observed which is more likely to be due to an 
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interference fringing effect and will not be considered further. Importantly, the dispersion 

artefact, previously present by a negative excursion on the high frequency side of the 

carbonyl band in Figure 4.3a(ii), has become a positive excursion giving rise to an apparent 

peak at 1729 cm-1. In addition to the carbonyl band there are significant changes in 

intensity and position of the lower frequency bands as can be seen in table 1. 

Figure 4.3c(i) shows the optical image of an isolated 15.7 µm diameter PMMA sphere 

illuminated by a 16 x 16 µm2 aperture. Figure 4.3c(ii) shows the IR spectrum of the sphere 

and yet again it is strikingly different from the spectra of the other spheres and the PMMA 

film. Although the CH stretching region looks relatively undistorted, the carbonyl band is 

now split into two strong bands of similar intensity at 1754 cm-1 and 1708 cm-1, as shown in 

table 1. 

It is clear from Figure 4.2 and Figure 4.3  that despite having identical chemical 

composition, the PMMA spheres give rise to IR spectra that are dramatically different with 

apparent intensity, position, and numbers of peaks all varying. This variation is due 

exclusively to the different physical size of the spheres. Both strong Mie scattering and 

strong dispersion artefacts are evident in all the spectra of the isolated spheres. 

 

4.3. Computational modelling of scattering extinction 

If the same pure absorption spectrum is to be recovered from the above spectra, it is 

essential to understand the phenomenon that is causing the spectral distortions. From eqn. 

18, the scattering efficiency Q, is dependent on both wavenumber and sphere diameter, 

and this leads to a pseudo-periodic oscillation of Q for a given refractive index of the sphere 

and a given sphere diameter. Knowing the size of the sphere, the scattering can be 

modelled by comparison with the experimental data.  
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Figure 4.4 Infrared spectra of isolated PMMA spheres fitted with a single Mie scattering curve calculated 
using the van de Hulst equations: (a) 5.5 µm, n = 1.26, (b) 7.0 µm, n = 1.3, (c) 10.8 µm, n = 1.25, (d) 15.7 µm, n 
= 1.24. 

Figure 4.4 shows spectra from four different size spheres with best fit scattering efficiency 

Q curve on the same plot. A 7 µm diameter PMMA sphere was found amongst the 

distribution of the 5.5 µm spheres and an IR spectrum was measured to enable modelling 

of another sphere size in addition to the previous three sizes. Q is a function of 

wavenumber, sphere diameter (d) and real refractive index ratio (n1/n2). When fitting the 

data, the value of d for each sphere, which is known, is kept constant, as is n2, the 

refractive index of air taken as 1. The parameter n1 is calculated using 

 

                  (20)  

 

Where a and b are constants that are varied to fit the data. Note that ideally, n1 should be 

the same for all the spheres, but due to the non-ideal experimental geometry, adjustment 

of these parameters is necessary. 
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The experiment is not perfect since the approximation equation for Mie scattering is for a 

sphere illuminated evenly by a parallel beam, whereas in this situation the sphere is on a 

surface and is illuminated by a beam focused using a high numerical aperture. However, 

the trend in the fitted data is clear to see. As the size of the sphere gets larger, the 

periodicity of Q decreases. 

Although the broad oscillations in the baselines are essentially accounted for, the 

dispersion artefacts are still present and it is very difficult to reconcile the spectra as being 

derived from the same chemical compound even if the spectra were corrected for Mie 

scattering. 

The problem is that Mie scattering is strongly dependent on the refractive index, n. If the 

dielectric sphere is a non-absorbing medium, as described in the original Mie theory, it is 

reasonable to assume a fixed constant value of n as a function of wavenumber. However, 

at an absorption resonance the real and imaginary parts of the refractive index are linked 

by the Kramers-Kronig relation.  

Given the wavenumber dependent variation of the real refractive index n of a Material in 

the region of an absorption band, the scattering efficiency Q will change rapidly also. Figure 

4.5(a) shows the variation of the scattering efficiency curves as calculated from eqn 18, 

over a small range of n (0.01 increment, for a 5.5 µm diameter sphere). Figure 4.5(b) shows 

the region 1820-1640 cm-1 expanded for clarity. Superimposed upon these curves is an 

indication of how Q would vary due to the change of value of n at an absorption band, 

indicated by the black dotted line. 
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Figure 4.5 (a) Plot of the scattering efficiency, Q, as a function of wavenumber for a 5.5 µm diameter PMMA 
sphere in the region of 4000 - 1000 cm

-1
 for five fixed values of n. (b) Expanded view of the curves between 

1820 and 1640 cm
-1

. The filled dots on the line show qualitatively the change in n at an absorption band, 
centred at 1730 cm

-1
. Due to the order of the scattering curves this would result in derivative-like line shapes 

as observed for the spectrum of an isolated 5.5 µm diameter sphere. 

 

As can be seen, on the high wavenumber side of an absorption band at 1730 cm-1 there is a 

pronounced reduction in the scattering efficiency followed by a slightly less pronounced 

increase after 1730 cm-1, similar to the behaviour observed experimentally. It would appear 

therefore that the dispersion artefact is simply due to the rapidly changing scattering 

efficiency at the absorption band, i.e. it is due to resonant Mie scattering. 

Figure 4.6(a) shows a series of Mie scattering curves for a 10.8 µm diameter PMMA sphere. 

Due to the increase in size of the sphere, the period of oscillation in the scattering 
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efficiency is now shorter. As a result, the gradients of the curves at 1730 cm-1 have changed 

direction compared with those of the 5.5 µm diameter sphere. Figure 4.6(b) shows the 

expanded region around the absorption band. A superposition of the variation in n at the 

absorption band now gives rise to a positive increase in Q on the high wavenumber side of 

1730 cm-1 with a reduction on the low wavenumber side. This qualitatively accounts for the 

behaviour observed in Figure 4.6(b). The equivalent curves for the 15.7 µm diameter 

sphere, not shown, indicate that the carbonyl band occurs at the turning points of the 

curves (where the sign of the gradient changes) thus is it easy to envisage how a single 

band could be split as the sequence of the scattering curve reverses at the turning point. 

 

Figure 4.6 (a) Plot of the scattering efficiency, Q, as a function of wavenumber for a 10.8 µm PMMA sphere in 
the region 4000 - 1000 cm

-1
 for five fixed values of n. (b) Expanded view of the curves between 1820 and 1640 

cm
-1

. The filled dots on the line show qualitatively the change in n at an absorption band centred at 1730 cm
-

1
. Note that because the slope of the scattering curves is positive rather than negative as for the 5.5 µm 

diameter sphere, the order of the curves is reversed. This would again result in a derivative-like line shape 
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but in this case there is an increase in Q on the high wavenumber side of the 1730 cm
-1

 band just as observed 
for the spectrum of an isolated 10.8 µm diameter sphere. 

 

The idea of the resonant Mie scattering causing the dispersion artefact can be tested in 

more depth. From the spectrum of the PMMA film shown in Figure 4.2(a), it is possible to 

apply the Kramers-Kronig transformation and thus obtain the variation in the real refractive 

index, nPMMA as a function of wavenumber as shown in Figure 4.7. 

 

Figure 4.7 The variation of nPMMA - n∞ as a function of wavenumber calculated using the Kramers-Kronig 
transformation of the spectrum of PMMA. 

 

This variable value of nPMMA can be fed into the approximate Mie scattering eqn. 18 to 

produce a scattering efficiency curve that simulates resonant Mie scattering across the 

entire measured spectral range. This was done by finding the best nominal fit value of n∞ + 

mnPMMA. The results of such simulations for each of the four sphere sizes are shown in 

Figure 4.8(a-d). The top curve in each case is the simulated scattering efficiency and the 

bottom curve is the actual measured infrared spectrum. As can be seen there is remarkably 

good agreement between the theoretical and experimental curves. It should be noted, 
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however, that in order to get the best fit to the experimental data it was not possible to 

use either the same fixed value of n∞ or a fixed fraction m of nPMMA for all sphere sizes. 

 

Figure 4.8 Theoretical resonant Mie scattering curves (upper trace, offset for clarity) and experimental 
spectra (lower trace) of 5.5, 7.0, 10.8 and 15.7 m diameter PMMA spheres. The refractive index values used 
for the simulated data are: 5.5 µm, n = 1.26 + 0.4 x nPMMA; 7.0 µm, n = 1.28 + 0.6 x nPMMA; 10.8 µm, n = 1.29 + 
0.4 x nPMMA; 5.5 µm, n = 1.26 + 0.4 x nPMMA. 

 

4.4 Discussion 

It is clear from the IR spectra presented in this chapter that the size, morphology and 

packing of chemically identical particles dramatically affect the spectra. This phenomenon  

is frequently observed in the spectra of physically inhomogeneous materials where the 

length-scale of the inhomogeneities are of the order of the wavelength of the source 

radiation. In the field of bio-spectroscopy, this will apply equally to biological cells in the 

same way as for PMMA spheres, and thus it is essential to separate these physical effects 

from the pure chemical effects that one ultimately needs to recover. Clearly, the 

confluence of cells is an issue since close packed cells (highly confluent) are likely to give 

rise to a lower degree of scattering compared with an isolated cell and the difference is 
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quite dramatic. Previously, Mie scattering and the dispersion artefact have been treated as 

two separate phenomena. Methodologies have been developed to correct for the former 

but the latter has been largely ignored. The fact that both the oscillations in the baseline 

and the dispersion artefact increased dramatically for the isolated 5.5 µm sphere compared 

with close packed spheres of the same size strongly suggest the theory of a common origin. 

Modelling the Mie scattering curves of varying refractive index explains the experimental 

data. In theory, given the constant chemical composition of the PMMA it should have been 

possible to obtain these fits using exactly the same values of n∞ and m but this was not the 

case and slight adjustments to the parameters had to be made. This may be due to the fact 

that the approximate Mie scattering equation assumes a non-absorbing dielectric sphere 

uniformly illuminated with a parallel beam, none of which strictly applies in this case. 

However, the excellent qualitative agreement between the model curves and the 

experimental curves demonstrate the principal that resonant Mie scattering is the main 

cause of the dispersion artefact. Importantly, this resonant Mie scattering can give rise to 

either a ‘positive’ or ‘negative’ dispersion artefact which also accounts for the observation 

that band positions can be red- or blue-shifted depending on whether the absorption band 

coincides with a negative or positive gradient of the Mie scattering efficiency curve. This 

explains why in the spectrum of the 5.5 µm diameter sphere the CH stretching vibrations 

are blue-shifted whereas the carbonyl band red-shifted compared with the thin film 

spectrum. This is significant since it distinguishes the effect from the reflective dispersion 

artefact that may be present in transflection spectra but will follow the Kramers-Kronig 

dispersion and will not ‘invert’ as observed here108. 

In IR spectra of single human biological cells, a decrease in the absorption intensity is 

generally seen on the high wavenumber side of the amide I band. Given the data presented 

in this paper it can be postulated that it is the smaller components of the cell, i.e. nuclei (5 
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– 6 µm diameter) rather than whole cells (15 – 25 µm diameter), that are responsible for 

the resonant Mie scattering, in agreement with recent experimental data from isolated cell 

nuclei12. This does not rule out the possibility that, depending on morphology, scattering 

from the edge of cells may make a significant contribution to the ‘dispersion artefact’ but 

as yet this is still being modelled and will be the subject of a future publication. 

In general, arrays of biological cells and indeed single cells are far more complex than the 

PMMA microspheres studied here, in that they are not rigid microspheres of uniform size 

and density. Both Rayleigh and Mie scattering may contribute to the spectra and thus the 

system is far more complex. Nevertheless, the simple model system demonstrates that 

consideration of the resonance effects of the real component of the refractive index and its 

contribution to the scattering process can account for the spectral distortion of the 

absorption band in physically inhomogeneous materials such as single cells and collections 

of cells106. 
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5. Signal correction for RMieS 

In the previous two chapters the theory behind the distortions in infrared spectra of highly 

scattering spectra was stated and verified experimentally. In this chapter, the newly 

understood theory has been used to begin to implement a correction algorithm to remove 

the scattering effects and recover the pure absorption spectrum of the sample. 

5.1. Mie scattering EMSC 

As stated earlier, Kohler et. al.10 published an algorithm for correcting non-resonant Mie 

scattering using a model based system where the raw measured spectrum (ZRaw) is 

modelled as the linear combination of a first guess (reference) spectrum (ZRef), a constant 

offset baseline, a sloping baseline and a number of scattering curves, Q. Stated as simply as 

possible, this model assumes that ZRaw is a superposition of the pure absorbance spectrum 

(ZPure) plus a scatter spectrum (ZScatter), expressed mathematically as (variables accented by 

arrows denote vectors): 

                         (21)  

The ZScatter spectrum comprises of the constant and sloping baselines, as well as the 

variations due to Mie scattering. The mathematics describing the loss of light due to Mie 

scattering describe situations involving spherical particles, however, biological samples are 

non-spherical, having considerably more complicated shapes. It is therefore assumed that 

by summing together a number of scattering curves of different diameter spherical 

particles (ZSc1, ZSc2 ... ZScn), the scattering curve of a non-spherical shape can be reasonably 

well approximated: 

                                       (22)  

 



80 
 

 
                       

 

 
(23)  

The algorithm by Kohler et. al.10 was for the case of non-resonant Mie scattering which 

successfully removed the broad oscillating baselines from spectra, but often scattering 

effects remained such as the ‘dispersion artefact’. In earlier chapters, it was shown that the 

‘dispersion artefact’ and baselines derived from the same phenomenon of resonant Mie 

scattering (RMieS). With an understanding of the theory, a preliminary correction algorithm 

is presented. 

 

5.2 Resonant Mie Scattering EMSC (RMieS-EMSC) 

Samples measured using IR spectroscopy are strong absorbers, meaning that they have a 

non-constant real refractive index. It is this changing of the refractive index at an 

absorption band coupled with a non-flat sample surface which give rise to resonant Mie 

scattering. For the purposes of creating a preliminary correction algorithm for RMieS, a 

number of assumptions have been made. It is assumed that the measured spectrum is the 

superposition of the pure absorbance spectrum of interest and a resonant Mie scattering 

curve. This assumption is not the correct mathematical handling of absorbance spectrum 

and the scatter spectrum, however, in the interest of producing a preliminary correction 

algorithm it has been used. 

Kohler et. al.10 constructed 200 Mie scattering efficiency, Q, curves covering a range of 

possible average refractive index and particle diameter permutations. To correct for RMieS, 

a different set of Q curves need to be constructed taking into consideration the changing 

refractive index of the samples. The starting point to create a database of Q curves of an 

absorbing biomedical sample, a spectrum of Matrigel has been used, and a Kramers-Kronig 

transformation applied to calculate the nKK spectrum, see Figure 5.1. 
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Figure 5.1 (a) Infrared transmission spectrum of Matrigel normalised to maximum absorbance of 0.25. (b) 
Kramers-Kronig transform of Matrigel from (a). 

 

The exact magnitude of the k spectrum is unknown, and in Figure 5.1(a), our reference 

spectrum, ZRef, is an absorbance spectrum of Matrigel that has arbitrarily been normalised 

to maximum absorbance of 0.25. The k spectrum is essentially proportional to the 

absorbance spectrum: 

           
 (24)  

For further convenience, a slight modification to the Kramers-Kronig has been chosen, the 

2/π factor before the integral has been omitted and the additive average real refractive 

index also omitted. Instead of looking at an exact relation (using an equals sign), instead 

the proportional relation is of interest, the new equation giving nKK is 

            
     

      
  

 

 

 (25)  

The average refractive index of each sample is again unknown as is the imaginary refractive 

index. The nKK spectrum is arbitrarily normalised so that its minimum value is -1, the reason 

for this is explained later. To construct a refractive index for insertion into eqn. (18), two 
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terms, a and b need to be defined as the average refractive index and an amplification 

factor for nKK respectively75. 

          (26)  

The parameter b is required as the ZRef used is not the correct input for the Kramers-Kronig 

transform. It is, however, directly proportional and so a scaling parameter can be used to 

compensate. The refractive index cannot go below a value of 1, and this ensured by 

carefully controlling the value of b, if an average refractive index a = 1.3 is used (typical for 

biological samples), then b can range from 0 to 0.3, resulting in the minimum value being 1. 

The particle diameter d is the last parameter which needs to be varied to cover many 

scattering possibilities giving a total of three parameters: a, b and d. 

For each parameter, 10 equidistant values were used between the ranges: 

a:   1.1   to   1.5 

b:   0   to   (a-1) 

d:   2   to   20 µm 

This results in 1000 permutations thus giving a database containing many scattering curves 

of a range of feasible physical parameters that biological samples can take. The same 

approach as Kohler et. al.10, this database of 1000 scattering curves is compressed using 

principal component analysis (PCA), resulting in a small number of curves (7 loadings 

spectra in this case) that can describe 99.9% of the original database. The total number of 

‘descriptive vectors’ in the linear EMSC model is now ten, consisting of seven loadings, the 

reference spectrum, plus the constant and sloping baselines. All the model parameters are 

estimated simultaneously by multiple linear regression, solved by least squares 
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estimation75. As in the previous Mie scattering-EMSC, the parameter estimation is stable 

due to the orthogonality of the loadings10. 

The remainder of the algorithm is exactly the same as the previously published Mie 

scattering-EMSC except that seven loadings are now used from the matrix of 103 RMieS Q 

curves: 

                           

 

   

     (27)  

Once the 10 parameters have been computed using a least squares algorithm, an 

estimation of the scattering spectrum is acquired. The measured spectrum, ZRaw, minus the 

estimated scatter spectrum should theoretically yield an estimated corrected spectrum, 

ZCorr. 

        
                    

 
    

 
 (28)  

 

5.3. Testing the RMieS-EMSC 

5.3.1 Creation of simulated RMieS affected spectra 

Earlier it was stated that our model for spectra affected by RMieS was the linear addition of 

the pure absorbance spectrum and the RMieS spectrum, Q. Using the 50 simulated spectra 

described earlier in section 2.3.4, a set of spectra affected by RMieS was be constructed. 

This data set was constructed by superimposing each spectrum onto a unique RMieS curve 

comprising of curves from scattering particles of 10 different sizes, to simulate the multiple 

scattering centres in single cells and tissue such as nucleoli and mitochondrion.  

The first step was to take each spectrum and compute its nKK spectrum using the Kramers-

Kronig transform, then using a random number generator to create an average refractive 
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index between 1.3 and 1.4 was calculated and added to nKK. For each spectrum 10 

diameters for the theoretical scattering centres were calculated between the range of 2 µm 

to 6 µm. 

 

Figure 5.2 (a) The 50 simulated 'pure absorbance' after the superposition of 10 unique artificial Mie scattering 
curves. (b) PCA scores plot for the total data set of the 2nd derivative and normalisation of spectra from (a). 

 

The first and most fundamental check was to see if the RMieS-EMSC algorithm could 

correct each spectrum given the perfect conditions to do so, i.e. the pure absorbance 

spectrum used as the reference spectrum for the calculation of the refractive index. If the 

mathematics of the algorithm are correct, then a subtraction of the corrected spectra from 

the original pure absorbance spectra should be zero as the algorithm should remove the 

scattering perfectly. 
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Figure 5.3 Difference spectra: Pure absorbance spectra - corrected spectra. 

 

Figure 5.3 shows the difference spectrum between the pure absorbance spectra and the 

corrected spectra. The scaling of the absorbance axis shows that the magnitude of the 

differences is 10-3, which is three orders of magnitude smaller than the pure absorbance 

spectra. This remaining difference is negligible and can be considered to be essentially zero. 

The origin of this difference can be explained by considering the fact that 1000 scattering 

curves were calculated and compressed using PCA. The exact scattering curve that was 

added to each spectrum was not covered exactly by the 1000 curves computed, however 

the approximation has given excellent results. 

 

5.3.2. Using a non ideal reference spectrum 

To simulate the case of a non ideal reference spectrum, the mean spectrum of the data set 

was used as the reference. This experiment simulates a real life case more effectively, as an 
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arbitrary spectrum such as Matrigel would be used when correcting single cell data and the 

outcome on the corrected spectra from this need to be understood. 

 

Figure 5.4 Blue trace is the mean spectrum for group 1, green trace is the mean spectrum group 2, and the 
red spectrum is mean spectrum for the whole data set. 

 

Figure 5.4 shows that the mean spectrum of the data (red trace) will not act as an ideal 

spectrum for any of the spectra to be corrected as would be the case in real life. This will 

inevitably have effects on the quality of the corrected spectra. Below is a figure showing 

the difference between the pure absorbance and corrected spectrum for each sample, 

group 1 is blue and group 2 is red. 
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Figure 5.5 Difference between the pure and corrected spectra using a non-ideal reference spectrum. 

 

Figure 5.5 shows that the difference between the pure and corrected spectra is more 

significant than before as indicated by the absorbance values. It is simple to understand 

how the previous algorithm corrected the spectra almost perfectly as the pure absorbance 

spectra were used as the reference and mathematically speaking, the conditions were 

optimum. In this case, the reference spectrum was not ideal hence there is a difference 

between the pure and corrected spectra. 

This problem will occur when correcting spectra measured from single cells and tissue 

using an arbitrary reference spectrum such as Matrigel. What is important at this stage is to 

determine the extent to which the spectra have been distorted, and this will be done by 

using PCA to analyse the corrected data. 
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Figure 5.6 (a) PCA scores plot of the corrected spectra. (b) Scores plot of the non-ideal corrected data 
projected onto the loadings from the pure absorbance spectra PCA. (c) A plot showing the shift of the non-
ideal reference corrected spectra from their correct pure absorbance positions. 

 

Figure 5.6(a) shows the PCA scores plot of the pure absorbance spectra, ideally, our 

corrected spectra should have the same scores plot after PCA indicating that the spectra 

are identical and the correction accurate. To gain an insight into the effects of the 

distortion, the corrected spectra have been projected into the subspace produced from the 

PCA of the pure spectra. This essentially allows a visualisation of the scores plot of the 

corrected spectra to be produced but from the same mathematical ‘point of view’ as the 

pure spectra see Figure 5.6(b). This allows the position of the point in each plot to be 

compared to check similarity. Figure 5.6(a) shows a red point which is the mean spectrum 

of the pure absorbance spectra data set – by definition the mean of the data should be at 
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origin of the plot as it exhibits zero variance from the mean of the data set. Figure 5.6(b) 

shows that each spectrum has moved closer to the origin as indicated by the axis scaling 

and limits. This suggests that the corrected spectra bear similarity to the mean spectrum 

which was also the reference spectrum used75. 

Figure 5.6(c) shows arrows indicating the movement of each spectrum in the subspace 

visually illustrating the change in the spectra towards to the reference spectrum. An 

important feature of this movement is that there are still two clear groups of data, and 

each spectrum is approximately in the same position relative to the others. This result 

would be acceptable if the desired result was to check if there existed two groups of data 

within a dataset. This could be used successfully for classification exercises where each 

spectrum needs to be given a discrete class, i.e. cancer or non-cancer. If the corrected 

spectrum exhibits its own true chemistry sufficiently, then this may well serve an 

acceptable method for signal correction. 

If possible, it is always desirable to recover the true pure absorbance signal representing 

the chemistry of the sample, and to this end, an iterative method of improving the spectral 

quality is stated in the next section. 

 

5.3.3. Iterative RMieS-EMSC 

In order to improve the spectral correction process even further, the reference spectra 

going into the RMieS-EMSC model may be optimised for a given purpose. This is achieved 

here by iteratively improving the reference spectrum, by letting the original, non-ideal 

reference spectrum (the mean of the input spectra) be replaced by the corrected spectrum 

from the previous iteration for each corresponding raw spectrum again using the new 

reference. This iterative approach is depicted schematically in Figure 5.7. 



90 
 

 

Figure 5.7 Flow chart illustrating the iterative procedure implemented to use the corrected spectrum as the 
new reference spectrum and running the algorithm once more. 

 

Figure 5.8 shows the effect of increasing iterations on the accuracy of the correction, 

calculated by the projecting the corrected spectra onto the loadings from the pure 

absorbance spectra as stated earlier. Using this iterative approach, the corrected spectra 

move towards their pure absorbance spectra in score space with increasing numbers of 

iterations, indicating an improvement in the quality of the correction. 
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Figure 5.8 Scores plot showing the scores shift of the iteratively corrected spectra from iteration 1 to 2, 2 to 3, 
3 to 4 and 4 to 10. Arrows show that each spectrum is moving towards its true absorbance spectrum position. 
All spectra were projected onto the loadings from the pure absorbance spectra. 

 

For this particular data, convergence is reached after 8 iterations before the corrected 

spectra have stopped moving towards their pure absorbance positions; however, there is 

significant improvement upon the first iteration. This is illustrated further in Figure 5.9 

which shows the sum of Pythagorean distances of the PCA scores plot of the corrected 

spectra, projected onto the original pure absorbance spectra subspace, as a function of 

iteration number75. 
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Figure 5.9 Plot of sum the Pythagorean distances of PCA scores away from the score positions for the pure 
absorbance spectrum (measured on a common subspace) against iteration number. The first point on the 
plot is for the previous Mie scattering-EMSC. 

 

For comparison, the data point for the previous Mie Scattering-EMSC is also shown. As can 

be seen, using the RMieS-EMSC algorithm produced a significant improvement which 

continues with each iteration, in this case up to 8 iterations. The number of iterations 

required will of course depend on the data set. Although the sum of Pythagorean distances 

give a measure of how well the correction algorithm works, it is useful to consider other 

qualitative measures. Figure 5.10(a) shows the Amide I band for the original uncorrected 

simulated scatter data. The original position of the peak was set to 1655 ± 1 cm-1 indicated 

by the leftmost vertical line. The actual peak positions of the simulated scattering data 

range from 1635.9 to 1647.0 cm-1 with a mean of 1642.3 cm-1. Thus it is clear that the 

significant shift in peak wavenumber is induced by the RMieS. The existing Mie scattering-

EMSC correction significantly improves the overall data and brings down the sum of the 

Pythagorean distances (from the pure absorbance spectra) from a value of 95 to 22, but 

little impact on the Amide I peak position as can be seen in Figure 5.10(b). 
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Figure 5.10 The Amide I band shown for (a) the uncorrected, (b) previous Mie scattering-EMSC and (c) RMieS-
EMSC corrected spectra. 

 

The peak position of the previous Mie scattering EMSC corrected spectra range from 

1636.8 to 1647.1 cm-1 with a mean of 1642.7 cm-1. It is only when the RMieS-EMSC 

correction is performed that a band position close to the correct wavenumber value is 

obtained. Figure 5.10(c) shows that the Amide I bands are now closely aligned, ranging 

from 1653.0 to 1656.4 cm-1 with a mean of 1654.5 cm-1.  

 

5.4 Conclusion 

In this chapter, a correction algorithm to remove the distortion caused by resonant Mie 

scattering (RMieS) has been presented and tested. It was shown that using the true 

absorbance spectrum as the reference spectrum for each correction, every scattered 

spectrum can be corrected essentially perfectly. This result is non-trivial as it illustrates the 

concept of compressing 1000 Mie scattering curves into a small number of principal 

component loading spectra and using these in a least squares fitting algorithm to estimate 

the scattering contributions with no prior information about size and refractive index75. 
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The second and more interesting test was the correction of the spectra using a non-ideal 

reference spectrum which was non-ideally suited to any spectrum as would be the case in 

real life as the true spectrum is unknown. This method yielded corrected spectra that still 

separated the test data set into two groups as they should when analysed with PCA. 

Using the iterative correction process whereby the corrected spectrum becomes the new 

reference spectrum it has been shown that the new spectrum resembles its true pure 

absorbance spectrum even further. The limitation of this method is that convergence is 

reached before each spectrum is corrected perfectly; however each corrected spectrum is 

a significantly better representation of its true spectrum compared with that before the 

correction75. 
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6. Validation of the RMieS-EMSC 

In chapter 5 the resonant Mie scattering EMSC algorithm was presented and tested using 

simulated data. Two key questions surround the outcome of the algorithm, namely the 

effect of the choice of reference / first guess spectrum used, and the number of iterations 

required to be computed. A schematic of the algorithm showing the user defined inputs is 

shown in Figure 6.1. 

 

Figure 6.1 A simplified schematic diagram of the correction procedure. The user defined inputs are the choice 
of reference spectrum and the number of iterations used. 

 

Results in chapter 5 showed that after one iteration of the RMieS-EMSC algorithm, 

corrected spectra contain some degree of similarity to the reference spectrum, however 

with increasing iterations, this influence is increasingly diluted. This chapter aims to 

investigate the effect of using an arbitrary reference spectrum, and the number of 

iterations required before the corrected spectra can be used in further data analysis. 
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6.1 Simulated data & classification 

6.1.1. Simulation of data 

A dataset was simulated to contain four different groups of data, consisting of 100 spectra, 

making the total data set of 400 spectra. The data were constructed in a similar manner to 

that documented in section 2.3.4, and Figure 6.2(a) and (b) show the pure absorbance 

spectra and the corresponding PCA scores plot respectively. 

 

Figure 6.2 Simulated data of 4 groups containing 100 spectra each: (a) The absorbance spectra; (b) The PCA 
scores plot for the data. 

 

Using these pure absorbance spectra and the same method outlined in section 5.3.1, 

resonant Mie scattering curves were created for each spectrum and added to the pure 

absorbance spectra to create simulated scattered spectra. The resultant spectra are shown 

in Figure 6.2(a), and the corresponding PCA scores plot shown in Figure 6.2(b). 
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Figure 6.3 (a) Simulated scattered spectra based on Figure 6.2. (b) PCA scores plot of spectra from (a). 

 

 

It is clear that after the additon of the RMieS curves, the spectra no longer seperate into 

four clusters as was previously seen. These spectra were corrected using the RMieS-EMSC 

algorithm, using a spectrum of Matrigel as the reference / first guess spectrum. A total of 

25 iterations were computed, and the corrected spectra after each iteration were saved for 

later analysis. At this point, there are two ideas that can be investigated: 

1. How well do the spectra cluster into their 4 groups after each iteration. 

2. Using an artificial neural network (ANN) pattern recognition method, how well do 

the spectra classify into their correct group using half of the data to train, and the 

other half as a blind test. 

 

6.1.2. Clustering accuracy of simulated data 

Hierarchical cluster analysis (HCA) was used to investigate the ability to objectively cluster 

the data into four groups with zero prior knowledge of the data itself. The raw scattered 

data before any correction gave a 25% accuracy when objectively clustered using HCA, as is 
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to be expected as there is a 1 in 4 chance of correct assignment as no patterns can be 

found in the data. 

 

Figure 6.4 Plot showing HCA classification accuracy against RMieS-EMSC iteration number. 

 

Figure 6.4 shows the percentage accuracy with which each spectrum was assigned to the 

correct class at different numbers of iterations of the RMieS-EMSC. After just one iteration, 

the classification accuracy increases from 25% for uncorrected spectra, to 80%. Subsequent 

iterations give further improvement on the classification accuracy, with 100% accuracy 

having been reached after 5 iterations. 

 

6.1.3. ANN classification accuracy 

An ANN model was built using the pure absorbance spectra in Figure 6.2. The RMieS-EMSC 

corrected data for each iteration was then subjected to the ANN model and the group 

classification results noted. This model was trained using the pure absorbance spectra, and 

subjecting the corrected spectra to the model after each iteration gives an indication into 

how accurate the RMieS-EMSC algorithm has corrected the data, i.e. do the corrected data 

resemble the pure absorbance spectra with which the model has been built. 

  5  10  15  20  25
  0

 20

 40

 60

 80

100

Iteration Number

A
c
c
u

ra
c
y
 (

%
)

 

 

HCA - Objective clustering



99 
 

 

 

Figure 6.5 Classification % accuracy of an ANN model trained using the pure absorbance spectra subjected to 
corrected data from various iterations. 

 

Figure 6.5 shows the classification accuracy of the RMieS-EMSC corrected data after each 

iteration, up to 25 iterations. The results show that the classification accuracy increases as 

the number of iterations increases with a plateau at approximately 25 iterations reaching 

86% accuracy. This result shows that the corrected data represent the chemistry of the 

pure absorbance spectra more accurately with increasing iterations, however the plateau 

at 25 iterations show that spectral improvement stops before 100% accuracy. The 

significance of this result is discussed in greater detail later. 

The situation where a classification model is built e.g. for tissue imaging where different 

tissue components needs to be classified, it is unlikely that training will be done using 

scatter-free pure absorbance spectra. The spectra used for training will most likely have to 

corrected for the effects of scattering themselves. To test the effects on classification of 

using data that has also been corrected, the data for each 25 iterations above has been 

used again. As a secondary test, after each iteration, half of the spectra in each group (50 

spectra) were used to construct a four class ANN pattern recognition model (200 training 
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spectra in total). The remaining half of the spectra were then used as a blind test and 

subjected to the ANN model. The correct class assignments are again known, allowing the 

accuracy of the classification to be checked with each iteration number. 

 

Figure 6.6 Classification % accuracy for model built using spectra from same iteration as those blind tested. 

 

Figure 6.6 shows the result of the classification when the training spectra come from the 

same iteration number. The classification accuracy is close to 100% after just 1 iteration 

which is considerably better than the previous ANN model built using the pure absorbance 

spectra. This suggests that in each iteration, the influence of the reference spectrum on the 

data is of a ‘similar effect’ in all the spectra explaining the very high classification accuracy. 

This is an encouraging result showing that if real measured datasets are corrected using the 

same reference spectrum, and the same number of iterations as standard, then the effects 

of the RMieS-EMSC algorithm are more beneficial to the spectral quality than harmful. In 

the next section, further evidence of this idea is demonstrated using real measured data 

from the IR imaging of prostate tissue. 
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6.2. FTIR imaging of prostate tissue 

FTIR imaging has shown potential in rapidly acquiring maps of the distributions of 

functional groups (sometimes called chemi-maps) within biopsies for diagnostic purposes. 

It has been shown that the major components of tissue have different FTIR spectral 

signatures which can be used to build predictive models such that new biopsy tissue can be 

imaged and classified to produce false colour images109. Using a Varian 670-FTIR 

spectrometer coupled to a Varian 620-FTIR imaging microscope (Varian Inc, - now Agilent 

Technologies, Santa Clara, CA) equipped with a 128×128 pixel liquid nitrogen-cooled 

Mercury-Cadmium-Telluride (MCT) focal planar array detector, FTIR images of prostate 

tissue were measured. Spectra were collected in the 850-4000 cm-1 range, at a resolution of 

4 cm-1, co-adding 64 scans for sample spectra, and 128 scans for the background spectra. 
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Figure 6.7 (a) and (c) are heatmap representations of the total absorbance from the FTIR images of prostate 
tissue from patient 1 and 2 respectively. (b) and (d) are serial sections which have been stained using the 
antibody anti-pancytokeratin; images have been thresholded so that green is epithelium, red is stroma, and 
blue is unclassed.   

 

Figure 6.7(a) and (c) show the total absorbance intensity of FTIR images of benign prostate 

tissue from patient 1 and patient 2 (the colour scale is heat map style). Figure 6.7(b) and (d) 

show fluorescence images of the corresponding serial sections of tissue which have been 

stained using the antibody anti-pancytokeratin. This stain is fluorescence tagged and binds 

specifically to epithelial cells in the prostate tissue. By applying a thresholding method 

where bright pixels are epithelial (coloured as green) and dark pixels are stroma (red pixels) 
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a simpler representation of the prostate tissue can be acquired. The black areas in the 

thresholded fluorescence images indicate regions where there was essentially zero 

fluorescence meaning that no tissue was present due to lumen of a gland. The translation 

to the green and red colour system for the pixels gives as unequivocal and objective 

assignment of membership to either epithelial or stroma class. 

Previously, it has been assumed that infrared spectra from microtomed tissue sections do 

not suffer from RMieS type distortion. It is clear however, that this is not the case. Figure 

6.8 shows the raw spectra from the point marked with a white cross in Figure 6.7(a). 

 

Figure 6.8 (a) Spectrum taken from edge of a gland in prostate tissue from area marked with white cross in 
Figure 6.7. (b) Corrected spectrum using the RMieS-EMSC. 
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Figure 6.8(a) shows a spectrum from the edge of a gland within prostate tissue, it is on the 

interface between the tissue and the slide on which the tissue is supported (spectrum 

taken from area marked with a white cross in Figure 6.7(a)). The morphology of the tissue 

at this point is not a flat surface, but rather an irregular curved surface which causes 

resonant Mie scattering. Figure 6.8(b) shows the same spectrum after the RMieS-EMSC 

algorithm has been applied using 20 iterations. 

To investigate the influence of different reference spectra when using the RMieS-EMSC, the 

spectrum from Figure 6.8(a) was corrected using three different reference spectra which 

are shown in Figure 6.9. 

 

Figure 6.9 Three different reference spectra used as inputs for the RMieS-EMSC. 

 

These three reference spectra were chosen as they are measured from different biological 

samples, and using different measurement techniques such as ATR. The spectrum from 

Figure 6.8(a) was corrected using each of these spectra in the RMieS-EMSC algorithm for a 
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total of 2000 iterations so that at each iteration, the resultant corrected spectra could be 

examined, Figure 6.10 shows the results. 

 

Figure 6.10 Corrected spectra of spectrum Figure 6.8(a) corrected using the 3 different reference spectra in 
Figure 6.9, for (a) 1; (b) 20; (c) 100; (d) 2000 iterations of the RMieS-EMSC. 

 

Figure 6.10(a) shows that after one iteration of the RMieS-EMSC, the corrected spectra 

using the three different reference spectra give different looking spectra which still contain 

residual scattering features. After 20 iterations it can be seen that all three corrected 

spectra are now more similar to each other, with some differences still present in the 2800 

to 3200 cm-1 wavenumber region. Further iterations produce increasingly similar corrected 

spectra showing that the corrected spectra are converging towards a common corrected 

spectrum. After 2000 iterations, the three corrected spectra are essentially identical 

showing that if enough iterations are used, then convergence can be reached. Although 
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2000 iterations is not computationally feasible, this exercise has shown that using three 

very different reference spectra, the same corrected spectrum can be obtained. 

 

6.2.1. Classification of FTIR images from prostate tissue 

Figure 6.7 showed the FTIR images from two different patients, both images contain 

regions of epithelial cells, and stroma (everything except the epithelium). The thresholded 

fluorescence images give us the correct assignment of the pixels from the infrared image 

which can be used to make a simple database of the two classes: epithelial and stroma 

spectra. Both images have been corrected using the RMieS-EMSC algorithm with Matrigel 

being the reference spectrum, and 30 iterations (results from all iterations were saved). 

This database can be used to build an ANN model for a two class problem, in this case the 

spectra from patient 1 have been used. Using just patient 1 to build the model allows 

patient 2 to be used as a completely blind test which can be subjected to the ANN model. 

The ANN model receives each of the 16384 spectra from the image of patient 2 individually 

then assigns them to either epithelium (green), stroma (red) or unclassed (blue) class 

membership. Figure 6.11 shows the classification results of the FTIR image from patient 2 

for a number of different iterations. 
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Figure 6.11 The classification of patient 2 using patient 1 as the training data after (a) 5, (b) 10, (c) 20 and (d) 
30 iterations of the RMieS-EMSC algorithm. Training was done using spectra from the same iteration number. 

 

Figure 6.11(a) shows the classification results of the FTIR image of patient 2 after 5 

iterations, using an ANN model built from the FTIR image from patient 1 after 5 iterations. 

(b), (c), and (d) show the equivalent results for iterations 10, 20 and 30 respectively, it 

should be noted that the FTIR image for patient 1 that was used for model building had the 

same number of iterations each time for consistency. 

The results show qualitatively that the classification accuracy improves with increasing 

iterations as the FTIR spectra are converging towards their pure absorbance spectrum. The 
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result of iteration 5 shows that the larger glands are still clearly defined and have been 

classified with a high accuracy. 

 

6.3 Conclusion 

In this chapter, spectra corrected using the RMieS-EMSC algorithm have been tested to see 

if they are of sufficient quality for real life applications. The major application investigated 

here is that of classification where an unknown spectrum is assigned to a class based on a 

computer pattern recognition model (artificial neural networks in this case). Using both 

simulated data and real measured data from prostate tissue it was shown that even though 

the corrected spectra are not 100% accurate in terms of representing the pure absorbance 

spectrum, they are sufficiently accurate that they can be used for classification purposes. 

The results from the simulated data showed that if training data which has been corrected 

using the same reference spectrum and number of iterations as the blind data to be 

classified, then very high accuracy can be obtained even when the corrected spectra are 

not identical to their pure absorbance spectra. This shows that the pure absorption signal 

has been sufficiently recovered that the model can recognise which class each spectrum 

belongs to. 

The results from the prostate tissue images show that using the RMieS-EMSC algorithm 

produces corrected spectra which can be used for building classification models, and are 

able to classify completely blind data with high accuracy. This data was not simulated, but 

real measured data providing further evidence that spectra may not need to be corrected 

100%, but sufficiently so that the pure absorbance signal is greater than the distortion 

caused by the initial scattering. 
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7. Conclusion and future prospects 

In this chapter, concluding remarks are presented for the results of the experiments and 

computations presented in this project. Following this, potential progression for the work 

in the future is presented. 

 

7.1. Spectral distortion 

In chapter 3, the reflection contributions to spectral distortions were theorised and 

validated with experiments. It was shown that in transflection experiments, if the 

transmission signal is weak compared to the magnitude of the reflection signal, then the 

measured spectrum will appear to be distorted. Instead of regular absorption band shapes, 

derivative-like shapes become prominent. These reflection contributions were not the only 

cause of spectral distortions as chapter 4 presented. 

Chapter 4 showed that the broad oscillations in spectra and the ‘dispersion artefact’ were 

from the same phenomenon of resonant Mie scattering. Strongly absorbing samples such 

as those routinely measured in the field of biomedical spectroscopy have a changing 

refractive index at absorption bands. This change of refractive index produced the 

derivative-like line shapes of the ‘dispersion artefact’ and hence this effect was 

subsequently named resonant Mie scattering (RMieS). Experiments involving a model 

system of PMMA micro-spheres showed that theoretical calculations of scattering curves 

and measured data had excellent agreement thus validating the theory. 

The mathematics used to describe the scattering curves was an adaptation of van de 

Hulst’s approximation78. Although giving a good agreement with measured data, this 

approximation equation has limited applicability as it approximates the scattering 

efficiency for spherical dielectric particles which are illuminated by a homogenous parallel 
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beam of light. The configuration for FTIR spectroscopic measurements of biomedical 

samples is in general a focused illumination onto non-spherical particles which are strongly 

absorbing. At present there is no simple analytical mathematical description for this optical 

configuration meaning that approximations had to be made. 

Recent work from the lab of Prof. Bhargava has started to give rigorous mathematical 

description of mid-IR spectroscopy experiments describing the propagation of the EM field 

through the microscope and optics80-81. Transflection and transmission experiments are 

described as well as the influence of substrates. This rigorous mathematical description will 

pave the way towards being able to describe the EM field incidence upon the scattering 

sample which will be a step towards modelling the physics of the scattering more 

accurately instead assuming a parallel beam. 

 

7.2 The RMieS-EMSC algorithm 

 The RMieS-EMSC algorithm presented in this project has been shown to work with high 

accuracy assuming that the measured spectrum is comprised of the superposition of the 

pure absorbance spectrum and an RMieS curve. The accuracy of the algorithm was 

demonstrated with simulated data where the known results were available for comparison 

against the corrected data. The assumption of a superposition relationship between the 

pure absorbance spectrum and the scattering curve is a simplification of the real situation, 

and it is one of the first aspects of the correction algorithm that could be optimised. The 

formulation of an analytical description of measured spectrum in terms of the pure 

absorbance spectrum and the scattering is far from trivial as the mathematics is 

complicated. 



111 
 

The influence of the reference spectrum and the number of iterations used in the RMieS-

EMSC was investigated and results showed that the influence of the reference spectrum 

decreased with increasing numbers of iterations. Further testing using real data from FTIR 

images from prostate tissue demonstrated that by using the RMieS-EMSC, the chemical 

signal of the corrected spectra classified using an artificial neural network model into the 

correct tissue component classes. This demonstrates that even if the pure absorbance 

spectrum is not recovered 100%, the corrected spectra may be sufficiently accurate for 

classification applications such as disease diagnostics from biopsies. 

 

7.3 Future work 

7.3.1. Theory 

Many parts of this project can be optimised, starting with the correct mathematical 

description of the light loss due to scattering from biological samples illuminated by a 

focused beam. Using this theory, the measured spectrum’s composition needs to be 

understood in terms of its pure absorbance spectrum and the scattering contribution. If 

this can be described as some form of linear addition of two components, then the RMieS-

EMSC algorithm can be easily developed to incorporate this new theory. If the combination 

of the pure absorbance spectrum and the scattering contribution is non-linear, then 

alternative methods for signal correction will need to be pioneered.  

The effects of diffraction have also not been considered in this thesis, which have effects on 

FTIR spectra from single point and imaging data. As an example, during an FTIR imaging 

measurement using a focal plane array detector, the transmission profile of an element 

may not be representative of the absorbance properties of the corresponding spatial area 

of the sample. Light that was not “transmitted” may have traversed a different path due to 
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scattering and distorted the spectra in adjacent elements. The converse is also possible, 

that light measured by an element may be due to scattered from a distance area of the 

sample. The RMieS-EMSC does not take this into consideration when correcting FTIR 

spectra as many additional input parameters would need to be inserted into the algorithm. 

The effects of diffraction are wavelength dependant introducing another level of 

complexity in conjunction to the scattering which is also wavelength dependant. 

As mentioned earlier, encouraging work by the Bhargava group is starting to give a 

mathematically rigorous analytical description of the propagation of the EM field through 

infrared microscopes. 

 

7.3.2. Experimental 

In this project, the final outcome has been the production of a signal correction algorithm, 

the RMieS-EMSC, to mathematically / computationally deal with the problem of the spectra 

distortion. If an experimental solution could be found, then this would negate the need for 

complicated computational algorithms. One such experimental idea is the use of an 

integrating sphere which in principal could collect all light and return it to the detector. If 

all transmitted and scattered light could be returned to the detector, then the effects of 

scattering in the IR spectrum would no longer be noticeable. This idea however is 

technically difficult, as there is no simple optical setup with which one can perform light 

microscopy for finding single cells on a slide while placing the entire sample inside an 

integrating sphere. 
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7.4 Impact on infrared spectroscopy 

The field of biomedical infrared spectroscopy faced a challenge when trying to measure 

spectra from single cells and tissue due spectral distortion. Single cell data especially was 

strongly affected, with spectra often rendered completely unreliable due to unexplained 

line shapes such as the ‘dispersion artefact’. This project has demonstrated with theoretical 

arguments supported by experimental data that these previously unexplained line shapes 

are due to reflection contributions and resonant Mie scattering occurring during 

measurements. With an understanding of the theory, the first algorithm to correct for 

resonant Mie scattering was presented with an encouraging reception from peers within 

the field. Even in imaging of tissue data, previously spectra from the edges of glands were 

filtered out due to the ‘anomalous’ nature of the data109. The edges of glands are thought 

to be of interest in biology as this is where interesting biochemical changes may occur. The 

RMieS-EMSC offers the opportunity to include these spectra from the edges of tissues and 

areas of non-flat morphology. 

 

  



114 
 

8. References 

1. Griffiths, P. R.; de Haseth, J. A., Fourier-Transform Infrared Spectrometry. Science 
2007, 222, (4621). 
2. Buswell, A. M.; Downing, J. R.; Rodebush, W. H., Infrared Absorption Studies. XI. 
NH-N and NH-O Bonds. J Am Chem Soc 1940, 62, (10), 2759-2765. 
3. Sutherland, G. B. B. M., Application of Infrared Spectroscopy to Biological 
Problems. Rev Mod Phys 1959, 31, (1), 118-122. 
4. Bath, J. D.; Ellis, J. W., Some Features and Implications of the Near Infrared 
Absorption Spectra of Various Proteins: Gelatin, Silk Fibroin, and Zinc Insulinate. The 
Journal of Physical Chemistry 1941, 45, (2), 204-209. 
5. Uzman, L. L.; Blout, E. R., Infra-Red Spectra of Films of Native and Denatured 
Pepsin. Nature 1950, 166, (4229), 862-863. 
6. Choudhary, C.; Mann, M., Decoding signalling networks by mass spectrometry-
based proteomics. Nat Rev Mol Cell Bio 2010, 11, (6), 427-439. 
7. Diem, M.; Romeo, M.; Boydston-White, S.; Miljkovic, M.; Matthaus, C., A decade of 
vibrational micro-spectroscopy of human cells and tissue (1994-2004). Analyst 2004, 129, 
(10), 880-885. 
8. Huang, W. E.; Griffiths, R. I.; Thompson, I. P.; Bailey, M. J.; Whiteley, A. S., Raman 
microscopic analysis of single microbial cells. Anal Chem 2004, 76, (15), 4452-4458. 
9. Hughes, C.; Liew, M.; Sachdeva, A.; Bassan, P.; Dumas, P.; Hart, C. A.; Brown, M. D.; 
Clarke, N. W.; Gardner, P., SR-FTIR spectroscopy of renal epithelial carcinoma side 
population cells displaying stem cell-like characteristics. Analyst 2010, 135, (12), 3133-
3141. 
10. Kohler, A.; Sule-Suso, J.; Sockalingum, G. D.; Tobin, M.; Bahrami, F.; Yang, Y.; 
Pijanka, J.; Dumas, P.; Cotte, M.; van Pittius, D. G.; Parkes, G.; Martens, H., Estimating and 
correcting Mie scattering in synchrotron-based microscopic Fourier transform infrared 
spectra by extended multiplicative signal correction. Appl Spectrosc 2008, 62, (3), 259-266. 
11. Maquelin, K.; Kirschner, C.; Choo-Smith, L. P.; van den Braak, N.; Endtz, H. P.; 
Naumann, D.; Puppels, G. J., Identification of medically relevant microorganisms by 
vibrational spectroscopy. J Microbiol Meth 2002, 51, (3), 255-271. 
12. Pijanka, J. K.; Kohler, A.; Yang, Y.; Dumas, P.; Chio-Srichan, S.; Manfait, M.; 
Sockalingum, G. D.; Sule-Suso, J., Spectroscopic signatures of single, isolated cancer cell 
nuclei using synchrotron infrared microscopy. Analyst 2009, 134, (6), 1176-1181. 
13. Romeo, M.; Diem, M., Correction of dispersive line shape artifact observed in 
diffuse reflection infrared spectroscopy and absorption/reflection (transflection) infrared 
micro-spectroscopy. Vib Spectrosc 2005, 38, (1-2), 129-132. 
14. Romeo, M. J.; Diem, M., Infrared spectral imaging of lymph nodes: Strategies for 
analysis and artifact reduction. Vib Spectrosc 2005, 38, (1-2), 115-119. 
15. Ackermann, K. R.; Koster, J.; Schlucker, S., Polarized Raman microspectroscopy on 
intact human hair. J Biophotonics 2008, 1, (5), 419-424. 
16. Agh-Atabay, N. M.; Dulger, B.; Gucin, F., Structural characterization and 
antimicrobial activity of 1,3-bis(2-benzimidazyl)-2-thiapropane ligand and its Pd(II) and 
Zn(II) halide complexes. Eur J Med Chem 2005, 40, (11), 1096-1102. 
17. Beer, M., Infrared Studies of the Structure of Protein in Tobacco Mosaic Virus. 
Biochim Biophys Acta 1958, 29, (2), 423-423. 
18. Benedict, A. A., The Study of Virus Preparations by Infrared Spectroscopy. Annals of 
the New York Academy of Sciences 1957, 69, (1), 158-170. 
19. Benedict, A. A.; Pollard, M.; Engley, F. B., Infrared Absorption Studies of Virus 
Preparations. Tex Rep Biol Med 1954, 12, (1), 21-29. 



115 
 

20. Dovbeshko, G.; Repnytska, O.; Pererva, T.; Miruta, A.; Kosenkov, D., Vibrational 
spectroscopy and principal component analysis for conformational study of virus nucleic 
acids. Xvi International Conference on Spectroscopy of Molecules and Crystals 2004, 5507, 
309-316 
420. 
21. Erukhimovitch, V.; Mukmanov, I.; Talyshinsky, M.; Souprun, Y.; Huleihel, M., The 
use of FTIR microscopy for evaluation of herpes viruses infection development kinetics. 
Spectrochim Acta A 2004, 60, (10), 2355-2361. 
22. Aghatabay, N. M.; Bas, A.; Kircali, A.; Sen, G.; Yazicioglu, M. B.; Gucin, F.; Dulger, B., 
Synthesis, Raman, FT-IR, NMR spectroscopic characterization, antimicrobial activity, 
cytotoxicity and DNA binding of new mixed aza-oxo-thia macrocyclic compounds. Eur J Med 
Chem 2009, 44, (11), 4681-4689. 
23. Aghatabay, N. M.; Mahmiani, Y.; Cevik, H.; Dulger, B., Synthesis, Raman, FT-IR, NMR 
spectroscopic data and antimicrobial activity of mixed aza-oxo-thia macrocyclic 
compounds. Eur J Med Chem 2009, 44, (1), 365-372. 
24. Aghatabay, N. M.; Mahmiani, Y.; Cevik, H.; Gucin, F.; Dulger, B., Synthesis, FT-
Raman, FT-IR, NMR spectroscopic characterization and antimicrobial activity of new mixed 
aza-oxo-thia macrocyclic compounds. Struct Chem 2008, 19, (5), 833-842. 
25. Aghatabay, N. M.; Somer, M.; Senel, M.; Dulger, B.; Gucin, F., Raman, FT-IR, NMR 
spectroscopic data and antimicrobial activity of bis[mu(2)-(benzimidazol-2-yl)-2-
ethanethiolato-N,S,S-chloro-palladium(II)] dimer, [(mu(2)-
CH2CH2NHNCC6H4)PdCl](2)center dot C2H5OH complex. Eur J Med Chem 2007, 42, (8), 
1069-1075. 
26. Agirre, A.; Flach, C.; Goni, F. M.; Mendelsohn, R.; Valpuesta, J. M.; Wu, F. J.; Nieva, 
J. L., Interactions of the HIV-1 fusion peptide with large unilamellar vesicles and 
monolayers. A cryo-TEM and spectroscopic study. Bba-Biomembranes 2000, 1467, (1), 153-
164. 
27. Ahmed, M. K.; Amiama, F.; Sealy, E. A., Unique spectral features of DNA infrared 
bands of some microorganisms. Spectrosc-Int J 2009, 23, (5-6), 291-297. 
28. Al-Holy, M. A.; Lin, M. S.; Al-Qadiri, H.; Cavinato, A. G.; Rasco, B. A., Classification of 
foodborne pathogens by Fourier transform infrared spectroscopy and pattern recognition 
techniques. J Rapid Meth Aut Mic 2006, 14, (2), 189-200. 
29. Al-Qadiri, H. M.; Al-Alami, N. I.; Al-Holy, M. A.; Rasco, B. A., Using Fourier transform 
infrared (FT-IR) absorbance spectroscopy and multivariate analysis to study the effect of 
chlorine-induced bacterial injury in water. J Agr Food Chem 2008, 56, (19), 8992-8997. 
30. Al-Qadiri, H. M.; Al-Holy, M. A.; Lin, M. S.; Alami, N. I.; Cavinato, A. G.; Rasco, B. A., 
Rapid detection and identification of Pseudomonas aeruginosa and Escherichia coli as pure 
and mixed cultures in bottled drinking water using Fourier transform infrared spectroscopy 
and multivariate analysis. J Agr Food Chem 2006, 54, (16), 5749-5754. 
31. Al-Qadiri, H. M.; Lin, M. S.; Cavinato, A. G.; Rasco, B. A., Fourier transform infrared 
spectroscopy, detection and identification of Escherichia coli O157 : H7 and Alicyclobacillus 
strains in apple juice. Int J Food Microbiol 2006, 111, (1), 73-80. 
32. Arp, Z.; Autrey, D.; Laane, J.; Overman, S. A.; Thomas, G. J., Structural studies of 
viruses by Raman spectroscopy part LXXI - Tyrosine Raman signatures of the filamentous 
virus Ff are diagnostic of non-hydrogen-bonded phenoxyls: Demonstration by Raman and 
infrared spectroscopy of p-cresol vapor. Biochemistry-Us 2001, 40, (8), 2522-2529. 
33. Batard, E.; Jamme, F.; Boutoille, D.; Jacqueline, C.; Caillon, J.; Potel, G.; Dumas, P., 
Fourier Transform Infrared Microspectroscopy of Endocarditis Vegetation. Appl Spectrosc 
2010, 64, (8), 901-906. 
34. Becker, K.; Al Laham, N.; Fegeler, W.; Proctor, R. A.; Peters, G.; von Eiff, C., Fourier-
Transform infrared spectroscopic analysis is a powerful tool for studying the dynamic 



116 
 

changes in Staphylococcus aureus small-colony variants. J Clin Microbiol 2006, 44, (9), 
3274-3278. 
35. Beekes, M.; Lasch, P.; Naumann, D., Analytical applications of Fourier transform-
infrared (FT-IR) spectroscopy in microbiology and prion research. Vet Microbiol 2007, 123, 
(4), 305-319. 
36. Borawska, M. H.; Koczon, P.; Piekut, J.; Swislocka, R.; Lewandowski, W., Vibrational 
spectra and antimicrobial activity of selected bivalent cation benzoates. J Mol Struct 2009, 
919, (1-3), 284-289. 
37. Bosch, A.; Minan, A.; Vescina, C.; Degrossi, J.; Gatti, B.; Montanaro, P.; Messina, M.; 
Franco, M.; Vay, C.; Schmitt, J.; Naumann, D.; Yantorno, O., Fourier transform infrared 
spectroscopy for rapid identification of nonfermenting gram-negative bacteria isolated 
from sputum samples from cystic fibrosis patients. J Clin Microbiol 2008, 46, (8), 2535-
2546. 
38. Erukhimovitch, V.; Talyshinsky, M.; Souprun, Y.; Huleihel, M., Spectroscopic 
characterization of human and mouse primary cells, cell lines and malignant cells. 
Photochem Photobiol 2002, 76, (4), 446-451. 
39. Forrester, J. B.; Valentine, N. B.; Su, Y. F.; Johnson, T. J., Chemometric analysis of 
multiple species of Bacillus bacterial endospores using infrared spectroscopy: 
Discrimination to the strain level. Anal Chim Acta 2009, 651, (1), 24-30. 
40. Hassan, M.; Klaunberg, B. A., Biomedical applications of fluorescence imaging in 
vivo. Comparative Med 2004, 54, (6), 635-644. 
41. Kwak, J. T.; Hewitt, S. M.; Sinha, S.; Bhargava, R., Multimodal microscopy for 
automated histologic analysis of prostate cancer. BMC Cancer 2011, 11, (1), 62. 
42. Akbari, H.; Uto, K.; Kosugi, Y.; Kojima, K.; Tanaka, N., Cancer detection using 
infrared hyperspectral imaging. Cancer Sci 2011. 
43. Wang, X.; Qi, Z.; Liu, X.; Wang, S.; Li, C.; Liu, G.; Xiong, Y.; Li, T.; Tao, J.; Tian, Y., The 
comparison of hair from gastric cancer patients and from healthy persons studied by 
infrared microspectroscopy and imaging using synchrotron radiation. Cancer Epidemiol 
2010, 34, (4), 453-6. 
44. Travo, A.; Piot, O.; Wolthuis, R.; Gobinet, C.; Manfait, M.; Bara, J.; Forgue-Lafitte, 
M. E.; Jeannesson, P., IR spectral imaging of secreted mucus: a promising new tool for the 
histopathological recognition of human colonic adenocarcinomas. Histopathology 2010, 56, 
(7), 921-31. 
45. Pezzei, C.; Pallua, J. D.; Schaefer, G.; Seifarth, C.; Huck-Pezzei, V.; Bittner, L. K.; 
Klocker, H.; Bartsch, G.; Bonn, G. K.; Huck, C. W., Characterization of normal and malignant 
prostate tissue by Fourier transform infrared microspectroscopy. Mol Biosyst 2010, 6, (11), 
2287-95. 
46. Beljebbar, A.; Dukic, S.; Amharref, N.; Manfait, M., Screening of 
biochemical/histological changes associated to C6 glioma tumor development by FTIR/PCA 
imaging. Analyst 2010, 135, (5), 1090-7. 
47. Untereiner, V.; Piot, O.; Diebold, M. D.; Bouche, O.; Scaglia, E.; Manfait, M., Optical 
diagnosis of peritoneal metastases by infrared microscopic imaging. Anal Bioanal Chem 
2009, 393, (6-7), 1619-27. 
48. Petter, C. H.; Heigl, N.; Rainer, M.; Bakry, R.; Pallua, J.; Bonn, G. K.; Huck, C. W., 
Development and application of Fourier-transform infrared chemical imaging of tumour in 
human tissue. Curr Med Chem 2009, 16, (3), 318-26. 
49. Mackanos, M. A.; Contag, C. H., FTIR microspectroscopy for improved prostate 
cancer diagnosis. Trends Biotechnol 2009, 27, (12), 661-3. 
50. Ly, E.; Piot, O.; Durlach, A.; Bernard, P.; Manfait, M., Differential diagnosis of 
cutaneous carcinomas by infrared spectral micro-imaging combined with pattern 
recognition. Analyst 2009, 134, (6), 1208-14. 



117 
 

51. Ly, E.; Piot, O.; Wolthuis, R.; Durlach, A.; Bernard, P.; Manfait, M., Combination of 
FTIR spectral imaging and chemometrics for tumour detection from paraffin-embedded 
biopsies. Analyst 2008, 133, (2), 197-205. 
52. Krafft, C.; Kirsch, M.; Beleites, C.; Schackert, G.; Salzer, R., Methodology for fiber-
optic Raman mapping and FTIR imaging of metastases in mouse brains. Anal Bioanal Chem 
2007, 389, (4), 1133-42. 
53. Einenkel, J.; Steller, W.; Braumann, U. D.; Horn, L. C.; Krafft, C., Unrealistic 
expectations for IR microspectroscopic imaging. Nat Biotechnol 2007, 25, (1), 29-31; author 
reply 31-3. 
54. Chew, S. F.; Wood, B. R.; Kanaan, C.; Browning, J.; MacGregor, D.; Davis, I. D.; 
Cebon, J.; Tait, B. D.; McNaughton, D., Fourier transform infrared imaging as a method for 
detection of HLA class I expression in melanoma without the use of antibody. Tissue 
Antigens 2007, 69 Suppl 1, 252-8. 
55. Bhargava, R., Towards a practical Fourier transform infrared chemical imaging 
protocol for cancer histopathology. Anal Bioanal Chem 2007, 389, (4), 1155-69. 
56. Steller, W.; Einenkel, J.; Horn, L. C.; Braumann, U. D.; Binder, H.; Salzer, R.; Krafft, 
C., Delimitation of squamous cell cervical carcinoma using infrared microspectroscopic 
imaging. Anal Bioanal Chem 2006, 384, (1), 145-54. 
57. Petibois, C.; Deleris, G., Chemical mapping of tumor progression by FT-IR imaging: 
towards molecular histopathology. Trends Biotechnol 2006, 24, (10), 455-62. 
58. Krafft, C.; Shapoval, L.; Sobottka, S. B.; Schackert, G.; Salzer, R., Identification of 
primary tumors of brain metastases by infrared spectroscopic imaging and linear 
discriminant analysis. Technol Cancer Res Treat 2006, 5, (3), 291-8. 
59. Krafft, C.; Shapoval, L.; Sobottka, S. B.; Geiger, K. D.; Schackert, G.; Salzer, R., 
Identification of primary tumors of brain metastases by SIMCA classification of IR 
spectroscopic images. Biochim Biophys Acta 2006, 1758, (7), 883-91. 
60. Bhargava, R.; Fernandez, D. C.; Hewitt, S. M.; Levin, I. W., High throughput 
assessment of cells and tissues: Bayesian classification of spectral metrics from infrared 
vibrational spectroscopic imaging data. Biochim Biophys Acta 2006, 1758, (7), 830-45. 
61. Bambery, K. R.; Schultke, E.; Wood, B. R.; Rigley MacDonald, S. T.; Ataelmannan, K.; 
Griebel, R. W.; Juurlink, B. H.; McNaughton, D., A Fourier transform infrared 
microspectroscopic imaging investigation into an animal model exhibiting glioblastoma 
multiforme. Biochim Biophys Acta 2006, 1758, (7), 900-7. 
62. Amharref, N.; Beljebbar, A.; Dukic, S.; Venteo, L.; Schneider, L.; Pluot, M.; Vistelle, 
R.; Manfait, M., Brain tissue characterisation by infrared imaging in a rat glioma model. 
Biochim Biophys Acta 2006, 1758, (7), 892-9. 
63. Lasch, P.; Haensch, W.; Naumann, D.; Diem, M., Imaging of colorectal 
adenocarcinoma using FT-IR microspectroscopy and cluster analysis. Biochim Biophys Acta 
2004, 1688, (2), 176-86. 
64. Gazi, E.; Dwyer, J.; Lockyer, N.; Gardner, P.; Vickerman, J. C.; Miyan, J.; Hart, C. A.; 
Brown, M.; Shanks, J. H.; Clarke, N., The combined application of FTIR microspectroscopy 
and ToF-SIMS imaging in the study of prostate cancer. Faraday Discuss 2004, 126, 41-59; 
discussion 77-92. 
65. Gazi, E.; Dwyer, J.; Gardner, P.; Ghanbari-Siahkali, A.; Wade, A. P.; Miyan, J.; 
Lockyer, N. P.; Vickerman, J. C.; Clarke, N. W.; Shanks, J. H.; Scott, L. J.; Hart, C. A.; Brown, 
M., Applications of Fourier transform infrared microspectroscopy in studies of benign 
prostate and prostate cancer. A pilot study. J Pathol 2003, 201, (1), 99-108. 
66. Papamarkakis, K.; Bird, B.; Schubert, J. M.; Miljkovic, M.; Wein, R.; Bedrossian, K.; 
Laver, N.; Diem, M., Cytopathology by optical methods: spectral cytopathology of the oral 
mucosa. Lab Invest 2010, 90, (4), 589-598. 



118 
 

67. Diem, T. L. T.; Ngoc, H. L.; Canh, H. N.; Danh, P. T.; Kesara, N. B., Pharmacokinetics 
of a Five-day Oral Dihydroartemisinin Monotherapy Regimen in Patients with 
Uncomplicated Falciparum Malaria. Drug Metab Pharmacok 2008, 23, (3), 158-164. 
68. Romeo, M.; Mohlenhoff, B.; Diem, M., Infrared micro-spectroscopy of human cells: 
Causes for the spectral variance of oral mucosa (buccal) cells. Vib Spectrosc 2006, 42, (1), 9-
14. 
69. Jamin, N.; Dumas, P.; Moncuit, J.; Fridman, W. H.; Teillaud, J. L.; Carr, G. L.; 
Williams, G. P., Highly resolved chemical imaging of living cells by using synchrotron 
infrared microspectrometry. P Natl Acad Sci USA 1998, 95, (9), 4837-4840. 
70. Gazi, E.; Gardner, P.; Lockyer, N. P.; Hart, C. A.; Brown, M. D.; Clarke, N. W., Direct 
evidence of lipid translocation between adipocytes and prostate cancer cells with imaging 
FTIR microspectroscopy. J Lipid Res 2007, 48, (8), 1846-1856. 
71. Gazi, E.; Dwyer, J.; Lockyer, N. P.; Miyan, J.; Gardner, P.; Hart, C. A.; Brown, M. D.; 
Clarke, N. W., A study of cytokinetic and motile prostate cancer cells using synchrotron-
based FTIR micro spectroscopic imaging. Vib Spectrosc 2005, 38, (1-2), 193-201. 
72. Gazi, E.; Dwyer, J.; Lockyer, N. P.; Miyan, J.; Gardner, P.; Hart, C.; Brown, M.; Clarke, 
N. W., Fixation protocols for subcellular imaging by synchrotron-based Fourier transform 
infrared microspectroscopy. Biopolymers 2005, 77, (1), 18-30. 
73. Mohlenhoff, B.; Romeo, M.; Diem, M.; Woody, B. R., Mie-type scattering and non-
Beer-Lambert absorption behavior of human cells in infrared microspectroscopy. Biophys J 
2005, 88, (5), 3635-3640. 
74. Holman, H. N.; Martin, M. C.; Blakely, E. A.; Bjornstad, K.; McKinney, W. R., IR 
spectroscopic characteristics of cell cycle and cell death probed by synchrotron radiation 
based fourier transform IR spectromicroscopy. Biopolymers 2000, 57, (6), 329-335. 
75. Bassan, P.; Kohler, A.; Martens, H.; Lee, J.; Byrne, H. J.; Dumas, P.; Gazi, E.; Brown, 
M.; Clarke, N.; Gardner, P., Resonant Mie Scattering (RMieS) correction of infrared spectra 
from highly scattering biological samples. Analyst 2010, 135, (2), 268-277. 
76. Bassan, P.; Kohler, A.; Martens, H.; Lee, J.; Jackson, E.; Lockyer, N.; Dumas, P.; 
Brown, M.; Clarke, N.; Gardner, P., RMieS-EMSC correction for infrared spectra of biological 
cells: Extension using full Mie theory and GPU computing. J Biophotonics 2010, 3, (8-9), 
609-620. 
77. Martens, H.; Stark, E., Extended Multiplicative Signal Correction and Spectral 
Interference Subtraction - New Preprocessing Methods for near-Infrared Spectroscopy. J 
Pharmaceut Biomed 1991, 9, (8), 625-635. 
78. Hulst, H. C. v. d., Light scattering by small particles. Wiley: New York, 1957. 
79. Mie, G., Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. 
Annalen der Physik 1908, 330, (3), 377-445. 
80. Davis, B. J.; Carney, P. S.; Bhargava, R., Theory of Mid-infrared Absorption 
Microspectroscopy: II. Heterogeneous Samples. Anal Chem 2010, 82, (9), 3487-3499. 
81. Davis, B. J.; Carney, P. S.; Bhargava, R., Theory of Midinfrared Absorption 
Microspectroscopy: I. Homogeneous Samples. Anal Chem 2010, 82, (9), 3474-3486. 
82. Lee, J.; Gazi, E.; Dwyer, J.; Brown, M. D.; Clarke, N. W.; Nicholson, J. M.; Gardner, P., 
Optical artefacts in transflection mode FTIR microspectroscopic images of single cells on a 
biological support: the effect of back-scattering into collection optics. Analyst 2007, 132, 
(8), 750-755. 
83. Mader, K. T.; Tetteh, J.; McAuley, W. J.; Lane, M. E.; Hadgraft, J.; Andanson, J. M.; 
Kazarian, S. G., Investigation of skin permeation using ATR-FTIR spectroscopic imaging and 
multivariate target factor analysis. J Pharm Pharmacol 2010, 62, (10), 1279-1280. 
84. Kazarian, S. G.; Chan, K. L. A., Micro- and Macro-Attenuated Total Reflection 
Fourier Transform Infrared Spectroscopic Imaging. Appl Spectrosc 2010, 64, (5), 135a-152a. 



119 
 

85. Palombo, F.; Cremers, S. G.; Weinberg, P. D.; Kazarian, S. G., Application of Fourier 
transform infrared spectroscopic imaging to the study of effects of age and dietary L-
arginine on aortic lesion composition in cholesterol-fed rabbits. J R Soc Interface 2009, 6, 
(37), 669-80. 
86. Andanson, J. M.; Chan, K. L.; Kazarian, S. G., High-throughput spectroscopic imaging 
applied to permeation through the skin. Appl Spectrosc 2009, 63, (5), 512-7. 
87. Miller, L. M.; Dumas, P., Chemical imaging of biological tissue with synchrotron 
infrared light. Bba-Biomembranes 2006, 1758, (7), 846-857. 
88. Guo, S. L.; Li, P. L.; Fang, F.; Huang, H.; Cheng, C. G., [FTIR spectra-principal 
component analysis of phenetic relationships of Huperzia serrata and its closely related 
species]. Guang Pu Xue Yu Guang Pu Fen Xi 2005, 25, (5), 693-7. 
89. Kohler, A.; Bertrand, D.; Martens, H.; Hannesson, K.; Kirschner, C.; Ofstad, R., 
Multivariate image analysis of a set of FTIR microspectroscopy images of aged bovine 
muscle tissue combining image and design information. Anal Bioanal Chem 2007, 389, (4), 
1143-53. 
90. Kohler, A.; Host, V.; Ofstad, R., Image analysis of particle dispersions in microscopy 
images of cryo-sectioned sausages. Scanning 2001, 23, (3), 165-174. 
91. Boydston-White, S.; Romeo, M.; Chernenko, T.; Regina, A.; Miljkovic, M.; Diem, M., 
Cell-cycle-dependent variations in FTIR micro-spectra of single proliferating HeLa cells: 
principal component and artificial neural network analysis. Biochim Biophys Acta 2006, 
1758, (7), 908-14. 
92. Griffiths, P. R.; Yang, H. S.; Li, Q. B.; Ling, X. F.; Wang, J. S.; Yang, L. M.; Xu, Y. Z.; 
Weng, S. F.; Wu, J. G., Discrimination of normal and malignant gastric tissues with FTIR 
spectroscopy and principal component analysis. Guang Pu Xue Yu Guang Pu Fen Xi 2004, 
24, (9), 1025-7. 
93. Kohler, A.; Host, V.; Enersen, G.; Ofstad, R., Identification of fat, protein matrix, and 
water/starch on microscopy images of sausages by a principal component analysis-based 
segmentation scheme. Scanning 2003, 25, (3), 109-115. 
94. Navas, N.; Romero-Pastor, J.; Manzano, E.; Cardell, C., Benefits of applying 
combined diffuse reflectance FTIR spectroscopy and principal component analysis for the 
study of blue tempera historical painting. Anal Chim Acta 2008, 630, (2), 141-9. 
95. Wang, J. J.; Qiu, Q. Y.; Liu, W., [Quality assessment of tobacco flavor by 
classification of principal component analysis-mahalanobis distance combined with FTIR-
ATR fingerprint]. Guang Pu Xue Yu Guang Pu Fen Xi 2007, 27, (5), 895-8. 
96. Yu, P., Applications of hierarchical cluster analysis (CLA) and principal component 
analysis (PCA) in feed structure and feed molecular chemistry research, using synchrotron-
based Fourier transform infrared (FTIR) microspectroscopy. J Agric Food Chem 2005, 53, 
(18), 7115-27. 
97. Zhang, Z. F.; Liu, Y.; Zhang, H., [FTIR spectra-principal component analysis of 
Erigeron breviscapus and Erigeron multiradiatus from different areas]. Guang Pu Xue Yu 
Guang Pu Fen Xi 2009, 29, (12), 3263-6. 
98. Zhang, Z. X.; Liu, P.; Kang, H. J.; Liao, C. C.; Chen, Z. L.; Xu, G. D., [A study of the 
diversity of different geographical populations of Emmenopterys henryi using FTIR based 
on principal component analysis and cluster analysis]. Guang Pu Xue Yu Guang Pu Fen Xi 
2008, 28, (9), 2081-6. 
99. Zuo, K.; Li, D. T.; Guo, S. L.; Chen, J. H., [FTIR spectra-principal component analysis 
of roots of Polygonum cuspidatum from different areas]. Guang Pu Xue Yu Guang Pu Fen Xi 
2007, 27, (10), 1989-92. 
100. Lasch, P.; Beyer, W.; Nattermann, H.; Stammler, M.; Siegbrecht, E.; Grunow, R.; 
Naumann, D., Identification of Bacillus anthracis by Using Matrix-Assisted Laser Desorption 



120 
 

Ionization-Time of Flight Mass Spectrometry and Artificial Neural Networks. Appl Environ 
Microb 2009, 75, (22), 7229-7242. 
101. Khanmohammadi, M.; Garmarudi, A. B.; Ghasemi, K., Back-propagation artificial 
neural network and attenuated total reflectance-Fourier transform infrared spectroscopy 
for diagnosis of basal cell carcinoma by blood sample analysis. J Chemometr 2009, 23, (9-
10), 538-544. 
102. Lasch, P.; Diem, M.; Hansch, W.; Naumann, D., Artificial neural networks as 
supervised techniques for FT-IR microspectroscopic imaging. J Chemometr 2006, 20, (5), 
209-220. 
103. Schmitt, J.; Beekes, M.; Brauer, A.; Udelhoven, T.; Lasch, P.; Naumann, D., 
Identification of scrapie infection from blood serum by Fourier transform infrared 
spectroscopy. Anal Chem 2002, 74, (15), 3865-3868. 
104. Hecht, E., Optics. Pearson Education; 4 edition: Addison-Wesley series in physics, 
1974. 
105. Bassan, P.; Byrne, H. J.; Lee, J.; Bonnier, F.; Clarke, C.; Dumas, P.; Gazi, E.; Brown, M. 
D.; Clarke, N. W.; Gardner, P., Reflection contributions to the dispersion artefact in FTIR 
spectra of single biological cells (vol 134, pg 1171, 2009). Analyst 2009, 134, (12), 2484-
2484. 
106. Bassan, P.; Byrne, H. J.; Bonnier, F.; Lee, J.; Dumas, P.; Gardner, P., Resonant Mie 
scattering in infrared spectroscopy of biological materials - understanding the 'dispersion 
artefact'. Analyst 2009, 134, (8), 1586-1593. 
107. Dumas, P.; Polack, F.; Lagarde, B.; Chubar, O.; Giorgetta, J. L.; Lefrancois, S., 
Synchrotron infrared microscopy at the French Synchrotron Facility SOLEIL. Infrared Phys 
Techn 2006, 49, (1-2), 152-160. 
108. Bird, B.; Miljkovic, M.; Diem, M., Two step resonant Mie scattering correction of 
infrared micro-spectral data: human lymph node tissue. J Biophotonics 2010, 3, (8-9), 597-
608. 
109. Fernandez, D. C.; Bhargava, R.; Hewitt, S. M.; Levin, I. W., Infrared spectroscopic 
imaging for histopathologic recognition. Nat Biotechnol 2005, 23, (4), 469-474. 
 
 


