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Abstract 

This thesis proposes a novel set of generic and compact biologically plausible VLSI 
(Very Large Scale Integration) neural circuits, suitable for implementing a parallel 
VLSI network that closely resembles the function of a small-scale neocortical network.  
The proposed circuits include a cortical neuron, two different long-term plastic synapses 
and four different short-term plastic synapses. These circuits operate in accelerated-
time, where the time scale of neural responses is approximately three to four orders of 
magnitude faster than the biological-time scale of the neuronal activities, providing 
higher computational throughput in computing neural dynamics. Further, a novel 
biological-time cortical neuron circuit with similar dynamics as of the accelerated-time 
neuron is proposed to demonstrate the feasibility of migrating accelerated-time circuits 
into biological-time circuits. 
 The fabricated accelerated-time VLSI neuron circuit is capable of replicating 
distinct firing patterns such as regular spiking, fast spiking, chattering and intrinsic 
bursting, by tuning two external voltages. It reproduces biologically plausible action 
potentials. This neuron circuit is compact and enables implementation of many neurons 
in a single silicon chip. The circuit consumes extremely low energy per spike (8pJ). 
Incorporating this neuron circuit in a neural network facilitates diverse non-linear 
neuron responses, which is an important aspect in neural processing. 
 Two of the proposed long-term plastic synapse circuits include spike-time 
dependent plasticity (STDP) synapse, and dopamine modulated STDP synapse. The 
short-term plastic synapses include excitatory depressing, inhibitory facilitating, 
inhibitory depressing, and excitatory facilitating synapses. Many neural parameters of 
short- and long- term synapses can be modified independently using externally 
controlled tuning voltages to obtain distinct synaptic properties. Having diverse synaptic 
dynamics in a network facilitates richer network behaviours such as learning, memory, 
stability and dynamic gain control, inherent in a biological neural network. 
 To prove the concept in VLSI, different combinations of these accelerated-time 
neural circuits are fabricated in three integrated circuits (ICs) using a standard 0.35 µm 
CMOS technology. Using first two ICs, functions of cortical neuron and STDP 
synapses have been experimentally verified. The third IC, the Cortical Neural Layer 
(CNL) Chip is designed and fabricated to facilitate cortical network emulations. This IC 
implements neural circuits with a similar composition to the cortical layer of the 
neocortex. The CNL chip comprises 120 cortical neurons and 7 560 synapses. Many of 
these CNL chips can be combined together to form a six-layered VLSI neocortical 
network to validate the network dynamics and to perform neural processing of small-
scale cortical networks.  

The proposed neuromorphic systems can be used as a simulation acceleration 
platform to explore the processing principles of biological brains and also move towards 
realising low power, real-time intelligent computing devices and control systems. 
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CHAPTER 1 :  INTRODUCTION 

1.1 Motivation 

Biological nervous systems perform sophisticated functions vital to intelligent 

behaviour, such as formation of sensory perceptions, object- and event- representations, 

conscious thoughts, and motor control decisions. They do so with remarkably low 

energy consumption. These psychophysical functions are processed using massively 

parallel neural networks that are built with slow, imprecise and heterogeneous neural 

elements. Impressively, even with such fuzzy units these systems work robustly against 

noise and exhibit remarkable fault tolerance. These systems outperform modern 

computers in intelligent decision making ability. Therefore, understanding their 

fundamental processing principles will provide a huge step forward in science, and help 

to formulate engineering principles of building intelligent machines.  

The Primate brain is a complex architecture produced by evolution that contains 

approximately one hundred billion neurons, where each neuron is connected up to tens 

of thousands of other neurons. Of all the brain regions, the neocortex is known to 

perform most of the psychophysical signal processing. However, among other 

difficulties, limitations in performing neuron-level recordings on animals make it 

impossible to understand the underlying computational principles of the cortical 

networks based solely on the available recordings’ data. Therefore, there is an ongoing 

research effort to understand the principles of cortical information processing through 

simulating cortical networks in software, or taking it one step further, implementing 

brain-like circuits in electronic hardware (Arthur et al., 2007; Vogelstein et al., 2007; 

Schemmel et al., 2008). 

Since understanding the primate brain's functionality is a challenging 

problem, a number of multidisciplinary collaborative research projects, such as 

COLAMN1, FACETS2, Blue Brain3, SECO4, Daisy5, ALAVLSI 6, SyNAPSE7, 

                                                 

1 COLAMN: “A Novel Computing Architecture for Cognitive Systems based on the Laminar Microcircuitry of the Neocortex”  
Web link: http://colamn.plymouth.ac.uk/colamn-project/?page_name=Homepage 
 

2  FACETS: “Fast Analog Computing with Emergent Transient States”, Web link: http://facets.kip.uni-heidelberg.de/ 
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SpiNNaker8, etc., have been initiated to conquer this challenge by researching into 

different functional areas of the brain from different perspectives while trying to build 

large scale networks in dedicated hardware.  All these initiatives believe that this work 

might lead to the discovery of fundamental principles, underlying the remarkable 

computational abilities of the brain. This PhD thesis project has been carried out within 

the COLAMN project, and aims at formulating a basic set of VLSI (Very Large Scale 

Integration) circuit blocks that can be used to mimic the function of a neural network of 

the neocortex. The thesis provides compact circuit implementations of neuron level 

models. Furthermore, a prototype of cortical neural layer integrated circuit that has the 

structure similar to a small cortical layer of neocortex has been designed. 

Mixed signal VLSI implementations have the potential of building neural systems with 

similar properties to those of biological systems. These systems can be used as an 

emulation platform to support the understanding of the processing principles of neural 

networks and also to pave the way towards realising potential low power real-time 

intelligent computing devices and control systems, including the devices that can 

interface with central nervous systems, or replace parts of the nervous system damaged 

through disease of injury (Vogelstein, 2007). Hence, despite the fact that it is not fully 

understood how brains process information, it would be worth implementing efficient, 

tailor made VLSI circuits that mimic the known cortical neural circuits and networks to 

reproduce their dynamics.  Together with constructive feedback from and to other 

research disciplines, hardware implementable neural models are more likely to emerge, 

and implementation of an efficient and effective intelligent computing architecture (a 

brain like computer) may become possible. 

                                                                                                                                               

3 Blue Brain: “Blue Brain Project”, Web Link: http://bluebrain.epfl.ch/ 
 
4 SECO: “Self-Constructing Computing Systems”, Web Link: http://www.seco-project.eu/ 
 
5Daisy: “Project to reverse-engineer the ‘daisy architecture’ (Neocortex’s Uniform Architecture)”,  
 Web Link: http://daisy.ini.unizh.ch/ 
 
6ALAVLSI: “Attend-to-learn and learn-to-attend with neuromorphic, analogue VLSI”, 
 Web Link: http://alavlsi.ini.uzh.ch/ 
 
7SyNAPSE: “Systems of Neuromorphic Adaptive Plastic Scalable Electronics; sponsors by Defense Advanced Research Projects 

Agency (DARPA, USA)”, 
 Web Link:http://www.darpa.mil/Our_Work/DSO/Programs/Systems_of_Neuromorphic_Adaptive_Plastic_Scalable_Electron

ics_%28SYNAPSE%29.aspx 
 
8 SpiNNaker: “A Universal Spiking Neural Network Architecture”, 
 Web Link: http://apt.cs.man.ac.uk/projects/SpiNNaker/ 
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If an intelligent processor can be implemented in hardware, it can be used to recognise 

complex patterns, perform complex motor control, perform autonomous learning, etc. It 

can also be used in applications that require robustness against noise and fault tolerance. 

These potential applications make the brain-inspired system an attractive alternative 

computing model which could be appropriate for designing systems in present and 

future integrated circuit technologies. Furthermore, in the long-term this line of research 

may help to understand the brain, potentially leading to the discovery of drugs for a 

variety of neuro-degenerative diseases such as Alzheimer's and Parkinson's. 

1.2 Neuromorphic Engineering 

Neuromorphic engineering is the discipline of developing electronic devices that mimic 

the operation of biological brains. Since the pioneering work of Carver Mead (Mead, 

1989) on neuromorphic circuits, in the late 1980s, there has been a continuing interest in 

developing neuromorphic devices. In particular CMOS implementations of ‘silicon 

neurons’ (Mahowald et al., 1991; Linares-Barranco et al., 1991; Schultz et al., 1995; 

Patel et al., 1997; Simoni et al., 1999; Indiveri 2003; Young Jun Lee et al.,  2004; 

Nakada et al., 2005; Rangan et al., 2010 and Schaik et al., 2010) and ‘silicon synapses’ 

(Hafliger et al., 1997; Bofill-i-Petit et al., 2004; Indiveri, 2006; Koickal et al., 2007; 

Tanaka et al., 2007) have been a subject of on-going development. Recently, a number 

of systems have been proposed (Arthur et al, 2007; Vogelstein et al., 2007; Schemmel et 

al., 2008) that attempt to integrate thousands of silicon neurons and synapses in a single 

chip to build neural networks.   

1.3 The Strategy used in Designing the Proposed VLSI Neural Circuits  

Problem solving approach used in computers and the way the primate brain solves 

problems seems to be fundamentally different. Computer processors are built with a set 

of logic gates and memory elements as precise constituents to perform Boolean logic 

operations using the logic alphabet "0" and "1".  Over the years, the medium in which 

these machines are built (VLSI technology) has evolved mostly to optimise speed 

processing of these Boolean logic operations. On the other hand, the brain is built with 

heterogeneous neural elements that employ an imprecise (fuzzy), slow and non-linear 

processing approach. Hence mimicking neural circuits of the brain in VLSI is a 

challenging task.  
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Neural circuits perform neuronal communication electrically by utilising electro-

chemical dynamics. The states of a neural circuit can be represented using analogue 

electrical potentials. The neural circuits can easily be modelled to form equivalent 

electrical circuits that use basic electronic elements. Therefore, the neural circuits could 

be mimicked in mixed-signal VLSI more closely with meaningful relation, and with 

efficient implementation to support the understanding of the neural dynamics. 

Furthermore, the circuits can be implemented at “accelerated-time” scale, which 

exploits the technological advantages of the VLSI technology while providing circuits 

with high computational throughput. Most of the neural circuits proposed in this thesis 

are designed to operate on “accelerated-time”. The accelerated-time circuits operate 

approximately three or four orders of magnitude faster than the biological-time where 

the time scale of neural responses is identical with the time scale of the neuronal 

activities of the biological systems.  

When building cortical networks in microelectronic technologies, the network size that 

is sufficiently large enough to observe or study the dynamics of a cortical network is a 

basic requirement. In mimicking a cortical network in hardware, compromise has to be 

made between the richness of the neural dynamics that can be included in the hardware 

and the size of the VLSI network that can be built. The cortical networks implemented 

in neuromorphic research (literature review will be presented in Chapter 3) use 

approximated basic neural models and in most cases, important non-linear dynamics are 

ignored (such as the complex, non-linear, oscillatory nature of the neurons, and 

facilitating and depressing or STDP neural dynamics).  

The strategy of modelling the neural models using “approximate hardware model” is 

adopted in this thesis to build the cortical network in VLSI hardware. The basic 

properties of neural dynamics of the well established computational neural models are 

used as a guide to arrive at phenomenological circuit models, implementing generic 

compact VLSI circuits with biologically plausible neural dynamics that closely account 

for biological experimental facts. This will make it possible to construct sufficiently 

large VLSI neural networks, with rich non-linear dynamics, that could be used to study 

the cortical network behaviours.  This strategy is formulated based on following 

principles:  
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• Guide to arrive at a phenomenological circuit model: As the neural elements and 

their dynamics are highly complex and heterogeneous, the computational models 

do not account for all the known experimental facts. Instead, the computational 

models approximate the neural dynamics in arriving at a simple meaningful 

mathematical model that closely account for some set of experimental results 

(Morrison et al., 2008).  Furthermore, the computational models are derived so that 

they can be presented in a compact analytical form and /or implemented efficiently 

on digital computers. This does not always translate into efficient hardware 

implementation. Hence, the established computational neural models are used only 

as a qualititative guide to arrive at phenomenological circuit models. 

• Compact circuit implementations: The silicon area consumed by the neural 

circuitry is a critical factor that decides the maximum possible size of the VLSI 

cortical network. Therefore, compact circuit implementations of basic neural 

circuits are a core requirement. 

• Generic circuit implementations: The generic circuit element can be tuned to 

represent different types of a basic neural element (neuron or synapse) using a set 

of externally adjustable voltages. This makes the system flexible both in terms of 

circuit implementations and when configuring VLSI cortical networks for 

experiments. 

• Biologically plausible circuit implementations: The richer neural dynamics of 

VLSI cortical neural network could resemble the biological cortical network more 

closely than other implementations that do not use most of the neural dynamics. 

1.4 Thesis Structure 

The thesis is divided into four parts: Introduction and Literature Review (Chapters 1 to 

Chapter 3), Core VLSI Neural Circuit Implementations (Chapters 4 to Chapter 6), 

Fabricated Neural Integrated Circuits (Chapters 7 to Chapter 9), and Discussions and 

Conclusions (Chapters 10 and Chapter 11).   

Introduction & Literature Review 

Following the motivation of this research and the strategy used in implementing VLSI 

neural circuits presented in this chapter, Part I provides a brief introduction to the 
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biological neurons, synapses and neocortical networks, and a literature review of their 

VLSI implementations. This gives the supporting background knowledge required for 

understanding the VLSI neural elements and their network implementations proposed in 

this thesis. 

Chapter 1 The initial parts of this chapter provide the motivations of this PhD 

research and an introduction to Neuromorphic Engineering. Then the key strategy 

followed in developing neural elements and their network in VLSI is presented. 

Chapter 2 The biological background of cortical neurons and their diversity, 

synapses and their short- and long-term plasticity rules are covered in the initial sections 

of the chapter. These provide insight into basic neural elements of cortical networks.  

Further, this chapter also presents the biological description of neocortical networks, 

structure of a functional column, and the layered structure of the neocortex. This 

introduces the background knowledge on the six-layer cortical neural network 

architecture of the neocortex that supports the understanding of VLSI Cortical Neural 

Network Architecture, and Cortical Neural Layer Chip presented at the later part of the 

thesis.    

Chapter 3 This chapter presents a review of the state of the art mixed-signal 

microelectronic implementations that mimic neural circuits (neuromorphic circuits). 

These include a review of VLSI neurons, synapses and some neural network 

implementations. The review of synapses includes circuits that implement short- and 

long-term plasticity rules. An outline of neural network implementations of digital 

systems is also provided. 

Core VLSI Neural Circuits  

The section provides core neural circuit implementations. These include Neuron 

circuits, STDP (Spike-Time Dependent Plasticity) Synapse circuit, Dopamine 

Modulated STDP Synapse circuit and Short-Term Dynamic Synapse circuits. Except 

the Biological-Time VLSI Neuron circuit, all the other circuits operate on a three or 

four order of magnitude faster time scale (accelerated-time) than the biological neural 

circuits. The three integrated circuit (IC) implementations presented in Part III uses 

various combinations of these accelerated-time VLSI neural circuits.   
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Chapter 4 The circuit implementations of two VLSI cortical neuron circuits that 

operate on different time scales – the accelerated-time and the biological-time are given 

in this chapter. Both of these generic neuron circuits are capable of replicating many 

known types of cortical neurons simply by adjusting a few external voltages. The initial 

section of the chapter provides the computational model used as a guide to arrive at 

these neuron circuit models. The first neuron circuit presented is an accelerated-time 

neuron circuit, its operation and the mathematical model is reviewed. The circuit was 

proposed in my Mphil thesis (Wijekoon, 2007). Since this circuit is used in all the three 

fabricated ICs presented in Part III the circuit descriptions are briefly provided. The 

second neuron design presented is a redesign of the accelerated-time neuron to work on 

a biological-time scale. The circuit design, its operation and simulation results of this 

Biological-Time Neuron circuit are provided. Finally, merit and demerits of 

implementing neural circuits in accelerated- and biological-time scales are evaluated.   

Chapter 5 The circuit implementations of two types of VLSI synapse circuits that 

obey different long-term synaptic dynamics– the STDP synapse and the dopamine 

modulated STDP synapse are given in this chapter. The initial section of the chapter 

provides the computational model used as a guide to arrive at these synapse circuit 

models. The first synapse circuit presented is the STDP synapse circuit, the circuit 

operation, simulation results and the mathematical model of the synapse are provided. 

The experimental result of this STDP circuit is given in Chapter 8. The second synapse 

circuit, the Dopamine Modulated STDP synapse circuit is presented with its circuit 

details, circuit operation, and simulation results. A generic synapse circuit that can be 

configured to operate in either in STDP or DA-modulated STDP dynamics fabricated in 

the STDP-DA Synapses Neuron IC, and the STDP synapse fabricated in Cortical Neural 

Layer IC will be presented in Chapter 9. 

Chapter 6 The circuit implementations of four types of short-term plastic synapses 

that obey different short-term synaptic dynamics– the excitatory depressing, inhibitory 

facilitating, inhibitory depressing, and excitatory facilitating are given in this chapter. 

The initial part of the chapter introduces the computational model and its approximated 

mathematical formulation, which were used as a guide to arrive at these synapse circuit 

models. The synapse circuit, operation, and simulation results of each of these synapse 

circuits are also presented. These synapses are fabricated in Cortical Neural Layer IC 

presented in Chapter 9. 
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Fabricated Neural Integrated Circuits 

This section provides a description of three Integrated Circuits (ICs) fabricated in 

CMOS technology. These ICs use combinations of core VLSI neural circuits presented 

in Chapter 4 to Chapter 6. These chips include Cortical Neuron Chip, STDP-DA 

Synapses Neuron Chip and Cortical Neural Layer Chip (CNL Chip).  

Chapter 7 The accelerated-time cortical neurons are fabricated in a chip and the 

overview, test setup, and experimental results of the chip are presented in this chapter. 

The chip contains 202 neuron cells, with varied circuit parameters (transistor sizes and 

capacitances) to obtain circuit parameters for a generic neuron that could be configured 

to most of the neuron types, so that this neuron can be used in the next generation of 

ICs. The chip experimental results prove the functionality of the neuron circuit, and 

behaviours of various neuron types with their set of tuning variables are presented. This 

neuron circuit is used in the other two IC implementations.   

Chapter 8 The accelerated-time neurons, STDP synapses and dopamine modulated 

STDP synapses are fabricated, and an overview, circuit implementations, test setup, and 

the experimental results of the chip are presented in this chapter. The chip contains two 

neuron cells, with 28 generic configurable synapse circuits that can be configured to 

operate either as STDP or dopamine modulated STDP synapse. As the STDP Synapse 

circuit consumes less circuit area than the Dopamine Modulated Synapse circuit, the 

STDP synapse is used in the larger scale CNL chip presented in Chapter 9. The chip 

experimental result proves the functionality of the STDP synapse and the results 

obtained from the chips are presented.  

Chapter 9 This chapter proposes a Cortical Neural Network Architecture that could 

use many CNL chips to build a large VLSI cortical neural network. This chapter 

provides an overview, circuit implementations, and mathematical model of the 

fabricated CNL chip that contain 120 accelerated-time neurons, 2 100 STDP synapses 

and 5 460 short-term plasticity synapses. Finally, the Cortical Neural Layer Board, test 

setup, and the discussion and conclusions are given at the end of this chapter. 
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Discussion and Conclusions 

Chapter 10 The initial section of this chapter presents estimates of VLSI cortical 

network size that can be built in a 0.35 µm standard CMOS IC, a 90 nm standard 

CMOS IC, a multi-chip approach, and in wafer-scale integration technology, using the 

core neural circuits used in the CNL chip. Further benefits of using a 3D integration 

technology to build the cortical network are discussed. Other factors that could provide 

problems and limitations in implementing network on these neuromorphic devices are 

also discussed. The later part of the chapter presents alternative technological 

approaches that could be used to mimic cortical networks such as organic electronics, 

novel neural devices, memristor as a synapse, and cell cultures.  Finally, the higher 

abstractions of neural dynamics used to obtain brain-inspired architectures are briefly 

discussed. 

Chapter 11 This chapter provides the conclusion to the thesis.  
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CHAPTER 2 :  BIOLOGICAL NEURONS, 

SYNAPSES AND NEOCORTICAL NETWORK 

The primate brain has a very complex structure that contains, approximately one 

hundred billion neurons where each neuron is connected up to tens of thousands of other 

neurons in a highly parallel layered architecture. In addition to the structural complexity 

of these networks, their neuronal responses are non-linear, and heterogeneous. The main 

constituents of these cortical networks are neurons and synapses. The circuit models of 

these constituents are proposed in this thesis, which may enable building of large-scale 

parallel VLSI network that closely resembles the microcircuits of the 

neocortex.  Therefore, this chapter provides a brief description of a biological neuron, 

synapses and neocortical network as an introduction to understanding the circuit models 

and formation of a VLSI neural network. Further, important computational models of 

these constituents are also listed. 

2.1 Biological Neuron  

A neuron typically possesses a cell body (called soma), dendrite trees and an axon. The 

basic structure of a neuron is shown in Figure 2.1.  

 

 

 

 

 

 

 

Figure 2.1 Basic structure of a neuron. 9 

 

                                                 

9 Picture taken from http://www.swarthmore.edu/NatSci/echeeve1/Ref/HH/index.htm 
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The neuron receives input signals from various spatial locations on the dendritic trees, 

and sometimes also on the soma. These spatiotemporal input signals are integrated onto 

the membrane capacitance of the soma. Once the integrated voltage (membrane voltage) 

reaches a threshold, a pulse (also called a firing event or a spike) is generated at the 

axon hillock. This spike propagates through the rest of the axon and onto adjacent cells 

through synapses. Simultaneously, a calcium signal slowly propagates backwards 

through the dendrite (back propagation) towards the input synapses, possibly 

“informing” them that the neuron has fired. This back propagation influences the 

dynamics of the input synapses. More details of generation of spikes and computational 

models of a neuron can be found in (Kandel et al., 2000).  

2.1.1 Diversity of cortical neuron 

The study of the brain reveals that cortical neurons are diverse in their behaviour and 

many neuron types have been identified based on their anatomy (or morphology, i.e. 

structure and organisation of a neuron) and ion channel distribution and composition 

within a neuron. Therefore, these neurons exhibit different electrical behaviour, 

transforming the same input signals into different firing patterns. Figure 2.2 shows 

morphologically different neuron cells found in the monkey’s cerebral cortex.  A few 

examples of signalling behaviours of some of the known diverse neuron cells and their 

morphologies are shown in Figure 2.3.  

 

Figure 2.2  Morphological variety of cortical neurons found in monkey cerebral cortex. (A) 

Pyramidal cells. (B) Spiny stellate cells. (C) Bitufted cells. (D) Double bouquet cells. (E) Small 

basket cells. (F) Large basket cells. (G) Chandelier cells. (H) An undesignated cell, sometimes called 

a long stringy cell. (I) Neurogliaform cells. adapted from Well (2005). 
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A number of approaches to classifying neurons based on the electrophysiological 

recordings have been introduced (Connors et al., 1990; Markram et al., 2004; 

Nowak et al., 2003; Petilla Convention10; Toledo-Rodriguez et al., 2003). Many 

parameters, such as spike frequency, interspike-interval histogram, spike width, intra-

burst frequency, adaptation index etc. can be used to classify the neurons. A summary 

of the basic classification important in designing the neuron circuits presented in 

Chapter 4 is given below.  

 

 

Figure 2.3 (A) Different morphological neurons and their spike patterns, (taken from Callaway et. 

al. 2000). (B) Distinct firing patterns in model neurons with identical channel distributions but 

different dendritic morphology, taken from Sejnowski (1996). 

 

The neuronal response to a step stimulus of suprathreshold current (post-synaptic input 

current that causes action potentials) displays either spiking or bursting firing behaviour. 

                                                 

10 Petilla Convention (2005)  

Web Link: http://krasnow.gmu.edu/cng/petilla/  

 

 (A)  
(B) 
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The spiking neurons are of two types: regular spiking (RS) and fast spiking (FS) 

(Nowak et al., 2003). The RS cells exhibit an accommodation (also known as 

adaptation) property: in a response to a supra-threshold current step they fire repeatedly, 

with a decreasing frequency, until the firing rate reaches a stable value, which depends 

on the input current. The RS cell class can be further sub-divided into two sub-types, the 

weak accommodating cells are called RS1 and strong accommodating cells are called 

RS2 (Toledo-Rodriguez et al., 2003). Examples of morphological cell that behave as 

RS1 type are neocortical layer II–VI pyramidal cells. The RS2 type cells are neocortical 

layer IV–VI pyramidal cells and spiny stellate cells (Connors et al., 1990). The FS cells 

fire repetitively at high frequency with little or negligible accommodation to a sustained 

supra-threshold current injection. The action potentials of FS cells exhibit faster rise 

rate, fall rate and distinct fast after-hyperpolarisation (Connors et al., 1990). Some 

neurons with FS behaviour commonly found in the cortex are, for example, neocortical 

small basket cells, nest basket cells, bitufted cells and large basket cells (Toledo-

Rodriguez et al., 2003). The basic bursting cell types are chattering (CH) and intrinsic 

bursting (IB) (Nowak et al., 2003). The CH neurons usually display repetitive long 

clusters of spikes to a sustained supra-threshold current injection. The IB neurons 

respond to a step current injection with a cluster of three to five initial spikes followed 

by an after hyperpolarisation, and then by either single spikes or burst at more or less 

regular intervals (Toledo-Rodriguez et al., 2003). These types are observed in sub-

populations of bitufted cells, bipolar cells and Martinotti cells in the neocortex (Connors 

et al., 1990). 

Distinct firing patterns obtained from the reconstructed models of morphologically 

different neurons with identical channel distributions are given in Figure 2.3 (B) (Figure 

adopted from Sejnowski, 1996). A simple computational model that reproduces basic 

electrophysiological properties of known types of cortical neurons can be found in 

Izhikevich (2003). The model demonstrates some processing properties due to dendritic 

morphology and ion channel distribution, in addition to the neural dynamics on the cell 

body. The circuit implementation of an approximated model of this computation model 

is given in Chapter 4. 

 



 23 

2.2 Biological Synapses  

Neuron to neuron information transfer is carried out via a specialized element called a 

synapse. Synapse usually forms connections between the axon of a pre-synaptic neuron 

and a dendrite or cell body of a post-synaptic neuron. However, there exist synapses that 

directly connect dendrite to dendrite or dendrite to soma (Well, 2005). Although the 

synapses are heterogeneous between different brain areas and between different neuron 

types, synapses mainly can be classified into two types: a chemical synapse and an 

electrical synapse. The first type is mostly found in cortical networks and has complex 

synaptic dynamics which thought to be involved in learning, memory, and cortical 

plasticity (Morrison et al., 2008). Therefore, chemical synapse is a basic and important 

building block in neural computational and circuit models. Hence, the dynamics and 

circuit models of the chemical synapse are discussed in this thesis.  

The chemical synapse transmits signals to another neuron by means of chemical 

reactions. Once the pre-synaptic neuron fires, the electrical spike sent down the axon 

terminal transmits to the adjacent dendrite through the synaptic cleft by converting the 

signal into a chemical signal. I.e. when an electrical signal arrives at the synapse, the 

neurotransmitters release into the synaptic cleft, some of these neurotransmitters are 

able to reach receptors at the dendrite spine –in which the chemical signal is converted 

back to an electrical signal. Then, this signal propagates to the soma of the adjacent cell. 

The electrical signal before the synapse is called a pre-synaptic signal and after the 

synapse is called post-synaptic signal. Figure 2.4 shows a sketch of a chemical synapse. 

The post-synaptic signal can be inhibitory (post-synaptic neuron’s membrane is 

hyperpolarized) or excitatory (post-synaptic neuron’s membrane is depolarized) 

depending on the type of neurotransmitters-receptor combination that facilitates the 

signal transmission between the two cells.  During the synaptic transmission, the pre-

synaptic action potential is shaped to carry extra information pertaining to the state of 

the synapse. At a given time, amplitude, rise time and fall time of the post-synaptic 

pulse is determined by the short-term plasticity of the synapse. These dynamics could 

change the strength of synaptic connection between neurons depending on the pre-

synaptic activity. In some types of synapses, the long-term synaptic plasticity also 

contributes to this greatly. These dynamics even have the ability to form or eliminate its 

synaptic connection depending on the neural activities of the network.  These short-term 
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and the long-term dynamics of synapses are discussed below and their some 

computational models are listed.  

In addition to the aforementioned long-term synaptic dynamics, homeostatic changes of 

synapses could change the amplitudes of the synaptic response on a slow time scale of 

hours is called “synaptic scaling” as referred in Morrison et al., (2008) (Turrigiano et al. 

1994).   This can be useful to stabilise the neuronal firing rates (Morrison et al., 2008).  

 

 

Figure 2.4 Basic structure of a chemical synapse11 

2.2.1 Short-term dynamics of the synapse  

The amplitude, rise time and fall time of the post-synaptic potential due to short-term 

plasticity depends on the properties of the constituents of the synapse. In addition to 

that, the temporal pattern of the incoming spike train also determines the amplitude of 

the post-synaptic pulse. Each successive incoming spike can cause the amplitude of the 

post-synaptic pulse to be either smaller (depression) or larger (facilitation) than the 

                                                 

11 Picture modified from  

Web Link: http://www.noeticsciences.co.uk/wp-content/uploads/2009/11/Synapse-Structure.jpg 

Axon Terminal 

Neurotransmitters 

Synaptic Cleft 

Dendritic Spine 

Dendrite 
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previous one (Figure 2.5 shows facilitating and depressing dynamics). These dynamic 

temporal scales can range from 100 ms to about a second (Morrison et al., 2008) and the 

amplitude of the post-synaptic response recovers to close to normal values within less 

than a second (Markram et al., 1998; Thomson et al., 1993). Biological evidence on 

these dynamics are published in Gupta et al. (2000), Markram et al. (1998), and its 

computational models are proposed by Tsodyks et al. (2000), Abbott et al. (1997), and 

Thomson et al. (2007). The descriptions of the approximated models of these 

computational models used to implement short-term synaptic dynamics in VLSI circuits 

are given in Chapter 6. 

 

Figure 2.5 A. Short-term plasticity – effect on the membrane potential of the post-synaptic neuron 

due to pre-synaptic spike train (a) experimental results from rat cortex in slice Markram et al. 

(1998), (b) simulation results, Markram–Tsodyks model, Tsodyks et al. (2000); taken from 

(Morrison et al., 2008). 

2.2.2 Long-term dynamics of the synapse – STDP synapses 

In some synapses, the post-synaptic pulse is greatly influenced by the long-term 

plasticity dynamics, which depends on the actions of the post- synaptic neuron; i.e. if 

the post- synaptic neuron fires, the back propagating signal influence the input synapses 

to depress (reduce the strength of the synaptic transmission, and called long-term 

depression, LTD) or potentiate (increase the strength of the synaptic transmission, and 

it’s called long-term potentiation, LTP). Amount of depression or facilitation depends 

on the time difference between pre- and post- spike firings (tpre - tpost). This phenomenon 

Pre-synaptic membrane potential 

due to depression 

(a) (b) 

Pre-synaptic membrane potential 

due to facilitation Pre-synaptic spike train 
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is called spike-time dependent plasticity (STDP) and plays a critical role in synaptic 

plasticity, which is the cellular mechanism for learning and memory. Experimentally 

observed STDP curve that defines LTP and LTD relationship with respect to time 

difference between pre- and post- spike firings is diverse and depends on the synapse 

and the neuron type (Abbott and Nelson, 2000; Bi and Poo, 2001). Some basic types of 

curves that are observed during experiments are shown in Figure 2.6 (taken from Abbott 

and Nelson, 2000).  It is also observed that the dendritic distance from soma to synapse 

has effect on the shape of the STDP curve –it is shown in Figure 2.6 (taken from 

Letzkns et al., 2006). This is due to the dendritic-filtering of the back propagation signal 

(Letzkns et al., 2006; Saudargiene et al., 2005).   

The standard STDP curve most popular in theoretical research on STDP is the topmost 

graph in Figure 2.6 –this is the mostly observed type of STDP in neocortical synapses. 

The computational model of the standard STDP rule can be found in Morrison et al. 

(2008). A mathematical model of a STDP curve that can implement compact STDP 

circuit and its circuit implementation are given in Chapter 5.  
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Figure. 2.6. (A) different STDP curves found in synapses of different neurons (taken from Abbott 

and Nelson, 2000); (B) Model of the layer 5 pyramidal neuron showing the color coded location of 

synaptic inputs; Center, Color-coded STDP timing curves for synapses at the dendritic locations in 

the model. Right, Positive peaks of STDP timing curves (LTP) color-coded for each dendritic site 

show a shift from positive to negative spike timing with distance from soma. (taken from Letzkns et 

al., 2006) 

 

2.2.3 Long-term dynamics of the synapse - Dopamine modulated STDP 

synapses 

Apart from general form of STDP synapses discussed above, there exist synapses that 

the STDP is modulated by the extra-cellular Dopamine (DA) level. DA is a 

neuromodulator in the nervous system that regulates diverse populations of neurons. It 

originates from small groups of neurons in the mesencephalon (including the ventral 

tegmental area) and diencephalon areas of the brain. The neurons whose primary 

neurotransmitter is dopamine are called dopaminergic neurons.  The brain areas where 

these neurons are present are known to carry normal brain functions such as working 

memory, reinforcement learning, and attention (Fellous et al., 2003). Even though these 

neurons are found in few brain regions only, their projections are generally highly 

diffuse and reach large portions of the brain (Fellous et al., 2003). The burst stimulation 

(A) 

 

(B) 
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of the dopaminergic neuron releases DA globally to many DA modulated synapses. 

This increases the extracellular DA concentration at the synapses enhancing their long-

term potentiation (LTP) and/or depression (LTD) (Gurden et al., 2000; Otani et al., 

2003).  This effect of DA plays a major role, in particular, in reinforcement learning.  

The computational model of the DA modulated STDP synapse can be found in 

Izhikevich (2007) and its VLSI circuit implementation is given in Chapter 5.  

2.3 Neocortical Network 

The primate brain functions are carried out with a complex architecture that contains 

approximately hundred billion neurons where each neuron is connected to thousands or 

even tens of thousands of other neurons in a highly parallel layered architecture. Among 

these the largest network, the neocortex, confines billions of neurons to a few 

millimetres thick single folded sheet of neural tissue at the outer layer of cerebrum. The 

neocortex consists of a six-layer laminar structure and this organisation tends to be more 

homogenous throughout the neocortical tissue. About 80% of neurons in a neocortex are 

excitatory neurons, and others are inhibitory neurons (Somogyi, 1989, White, 1989; 

Peter et al., 1984). Anatomically, most of the excitatory neurons receive synaptic inputs 

from non-STDP excitatory and inhibitory depressing synapses and from excitatory 

STDP synapses. The inhibitory neurons receive inputs from inhibitory facilitating and 

excitatory depressing synapses, whereas some other inhibitory neuron types receive 

input spikes from excitatory facilitating and depressing synapses (Roth and Wennekers, 

2009). 

Most of the psychophysical signal processing of the brain is believed to be taken place 

in the neocortical brain areas (Well, 2005). Different areas of neocortex perform 

different psycho-physical functions. For example, the visual cortex, primary cortex, 

auditory cortex and in humans the ventrolateral prefrontal areas does vision, motor, 

hearing and complex language related processing respectively. However, processing of 

any psycho-physical phenomenon appears to have distributed functionality with many 

different cortical and non-cortical areas of the brain making important contributions to 

the processing of such function (Well, 2005). The experimental evidence suggests that 

neocortex could be divided up into small processing units called functional columns. 
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These functional columns seem to occupy lateral areas of a few tenths of a millimetre in 

diameter and extend down through the entire thickness of the neocortex. 

2.3.1 Structure of a functional column 

Though there is no such strict anatomical division of a functional column found in the 

neocortex, it is observed that there is a synchronised activation of neighbouring cells to 

process certain tasks. I.e. the neighbouring cells assemble together to perform certain 

tasks. Thus the hypothesis of generic functional cortical column is introduced. This 

generic functional column tends to consist of tens thousands of neurons with diverse 

behavioural properties. Each of these neurons connects to tens thousands of other 

neurons via synapses forming a column of processing unit. Between species these 

functional column only vary from 300 to 600 µm in diameter where as their brains 

differ in volume by a factor of 103. Functional columns are assumed to formed by 

cortical circuits, effectively ‘re-wiring’ their lateral connections in response to control 

signals so that at least some neurons are capable of ‘being part of’ many different 

possible functional columns (Well, 2005). The circuit of the functional column is called 

cortical microcircuit of the cortex.  

2.3.2 Neocortical Layers 

As illustrated in the Figure 2.7 six layers cortical of architecture can be initially divided 

into 3 main layers: Supragranular layers (layer I, II and III), Granular layer (layer IV) 

and Infragranular layers (layer V and VI). 

 

 

 

 

 

Figure 2.7 Cross section of a small area of neocortex showing anatomical division of six layers.12 

                                                 

12 Picture taken from http://acces.inrp.fr 
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The Supragranular layers make up of layers I, II and III; the layer I occupies dendrites 

and axons coming from neurons in the deeper layers (from layers II and III pyramidal 

cells, the principle cell type in the cortex), therefore distal synaptic connections of those 

deeper layer neurons are formed in this layer. This layer also consists of few inhibitory 

neurons. The Layer II contains a mix of small pyramidal cells and some inhibitory 

neurons. It also contains apical dendrites coming from layer VI and layer V pyramidal 

cells. Majority of cells in layer III are small pyramidal cells. However this layer 

contains almost all the cell types found in neocortex.  Layer IV, the granular layer 

contains spiny stellate cell and variety of inhibitory cells. The layer 4 receives most 

input from thalamus and is sub divided into 4 layers, labelled 4A, 4B, 4Cα, and 4Cβ. 

The Infragranular layers composed of layer V and VI. The layer V is composed of small 

number of inhibitory cells and many large pyramidal cells. Some pyramidal cell axonal 

outputs target the basal ganglia, brain stem, and spinal cord passing through the white 

matter with long axons projections. Special type of inhibitory cell, chandelier cells make 

synaptic connections only to the axons protruding from other neurons, are often found 

in layer V (Well, 2005).  Layer VI is the final layer on top of white matter. Most of the 

cells in this layer are large pyramidal cells that project their axons back to the thalamus. 

It also contains class of inhibitory neurons cells whose axonal outputs make long 

projections across all layers of the neocortex (Well, 2005).  
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CHAPTER 3 :  NEUROMORPHIC IMPLEMENTATIONS 

- NEURONS, SYNAPSES AND NETWORKS 

This chapter presents the literature review of silicon neuron, synapse and neural 

network circuits. In evaluating these circuits, in addition to biological plausibility, 

compact implementation of circuit blocks is a core requirement, particularly considering 

the feasibility of building large cortical networks.  

Some of the proposed neural circuits (e.g. Schemmel et al., (2008)) are operating at 

speeds far exceeding those of biological neural communication (“accelerated time”), 

and are intended to provide a computationally powerful simulation acceleration tool. 

This is motivated by the relative ease with which electronic circuits can operate at 

frequencies much higher than these typically observed in biological neural systems (e.g. 

typical mean firing frequencies of neurons in the cortex are in the order of 10 Hz and 

the time courses of membrane potentials have bandwidth limited to several kHz). 

Further, these circuit designs exploit the technological advantage of high speed 

optimised CMOS technologies rather than operating in non-optimised sub-threshold 

regime which is the case of “biological-time” circuit implementations. The 

technological constraints of the common communication infrastructure used for 

neuromorphic hardware, i.e. the address event representation (AER) framework 

(Boahen, 2000), as well as the desire to interface directly to sensors that operate on 

signals encountered in nature and at timescales similar to biology, lead to the situation 

that most of the silicon neural circuit proposed in the literature operate in biological 

real-time. The circuits that operate both of these time scales are outlined in this 

literature review.  

3.1 VLSI Neurons 

This section outlines the literature review of silicon neuron circuits. The latest review of 

the neuron circuits implemented by the neuromorphic research community is presented 

in Indiveri et al. 2011. Amongst the silicon neurons, several neuron models have been 

considered as a basis for circuit implementation, from integrate-and-fire (I&F) neurons 

(the I&F neurons integrate the input currents produced by the synapses and generate 

output spike trains with mean firing rates proportional to their input currents) 
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(Schemmel et al., 2010; Indiveri et al., 2006; Chicca et al., 2003; Haflinger et al., 1996), 

to non-linear conductance-based (Arthur et al, 2007; Vogelstein et al., 2007) and 

Hodgking-Huxley like (Zou et al., 2006; Farquhar et al., 2005) models. The latter are of 

particular interest, as they exhibit much richer dynamics and thus possible repertoire of 

spiking behaviours, both in the context of the network and individual responses to a 

fixed stimulus. However, these circuits use a larger number of transistors. Several other 

implementations have been proposed (Linares-Barranco et al., 1991; Patel et al., 1997; 

Young et al.,  2004; Nakada et al., 2005) that are based on mathematical models that 

capture some of the features of the neuron’s oscillatory behaviour. In evaluating these 

circuits the silicon area needed to implement the circuitry is an important consideration 

in addition to the heterogeneity of neural behaviours, as seen in biological neurons. 

Although the direct comparisons of different neuron circuits found in literature are 

difficult due to the lack of their implementation details; the transistor count is 

considered as an indication of the overall circuit area requirements.  

Table 3.1 Summary of VLSI neuron circuits  

 

Neuron model 

Approximate 

No. of 

transistors 

Spiking pattern 

 

Biological 

plausible spike 

pattern 

Reference 

Conductance-based 27-30+ Simple spike good Mahowald et al. 1991  

Integrate-and-fire 18-20 Simple spike fair Indiveri 2003 

FitzHugh-Nagumo 20 Oscillatory envelope Linares-Barranco et al. 1991 

Morris-Lecar 20 Oscillatory envelope Patel et al. 1997 

Resonate-and-Fire 20 Oscillatory pulse Nakada et al. 2005 

Hindmarsh-Rose 90 Bursting fair Young et al.  2004 

Accelerated-time  14 All main types good This thesis 

Biological-time  23 All main types good This thesis 
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3.2 VLSI Synapses 

As explained in Chapter 2, the synapse transmits incoming pre-synaptic spike onto the 

membrane of the post-synaptic neuron as a current injection, with a variable gain 

(known as synaptic weight) that determines the strength of the connection between 

neurons. In implementing a synapse in VLSI, the basic short-term dynamics: synaptic 

integration, rise- and fall- time constants of the post-synaptic potential, facilitating and 

depressing properties of the synaptic weight are of major interest.  In addition to these 

short-term dynamics, some synapses follow the long-term synaptic dynamic such as 

STDP or dopamine modulated STDP.   

Typically, in neuromorphic circuits, the synaptic weight is stored in a capacitor (other 

implementations use a digital memory element –a register or an analogue floating gate 

transistor). This weight is used to generate the post-synaptic current when a pre-synaptic 

spike arrives at the synapse. Therefore, in order to implement short-term dynamics this 

capacitor needs charging or discharging accordingly– in the context of this report, the 

circuit that does this as well as generates the post-synaptic current, is referred to as the 

short-term plastic synapse circuit. The synapse circuit that equipped with both short- 

and long- term dynamics is called STDP synapse circuit. Following sections review 

some of the short-term plastic synapse circuit and STDP synapse circuit 

implementations. However, a VLSI implementation of a DA modulated synapse has not 

been reported in literature.  

3.2.1 Short-term Plastic Synapse Circuit 

A detailed review presented by Bartolozzi et al. (2007) discusses short-term plastic 

synapse circuits published in literature –starting from the primitive Pulse Current-

Source Synapse circuit (Mead, 1989) up to the Diff-Pair Integrator Synapse circuit 

(Bartolozzi et al., 2007) by covering the following synapse circuits: Reset and 

Discharge (Lazzaro, 1994), Linear Charge-And-Discharge (Authur et al., 2004), 

Current-Mirror Integrator (Boahen, 1997) and Log-Domain Integrator (Merolla et al., 

2004). Among these implementations, the Diff-Pair Integrator Synapse circuit performs 

linear integration of input spikes with tunable gain parameters and has one 

independently tunable time-constant parameter. As pointed out in the review, the other 

synapse circuits do not provide “proper” linear integration of spikes. This may lead to a 
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loss of incoming information to the synapse. That is, if another spike arrives during the 

period in which the first spike has an effect, the second spike is ignored, hence the 

information belonging to the second spike is lost. However, if the synapse is designed 

such that the post-synaptic current is injected in the form of a current impulse (i.e. if the 

rise- and fall- time of the post- synaptic potential are not considered), the incoming 

spikes to the synapse are not lost. Above mentioned synapse circuits are implemented as 

the sub-threshold (weak-inversion) CMOS circuits and use a capacitor to store the 

weight of the synapse. However, these implementations do not consider the effects of 

dendritic processing; Basic implementations that include dendritic integration are 

presented in Elias et al. (1995) and Rasche et al. (2001). All above mentioned 

implementations do not address the facilitating or depressing short-term dynamics as 

presented in biological models (Tsodyks et al., 2000; Dayan et al., 2001; Abbott et al., 

1997). The basic Diff-Pair Integrator Synapse with both short-term depression and 

facilitation has been proposed in Liu (2003). 

The synaptic circuits proposed in this thesis include short-term depressing and 

facilitating dynamics. The post-synaptic current is injected in the form of a current 

impulse where the magnitude of the impulse represents the synaptic weight. This 

reduces the circuit area consumed by the synapse circuit.    

3.2.2 STDP Synapse Circuit  

In a cortical network, STDP synapses provide activity driven rewiring of neurons with 

weighted connections. Hence, STDP synapse plays an important role in cortical neural 

networks that perform adaptability, learning and memorising. Among the various STDP 

synapse circuits presented in the literature, the basic STDP circuits proposed by 

Hafliger et al. (1997), Bofill-i Petit et al. (2004), Indiveri (2006), Koickal et al. (2007), 

and Tanaka et.al. (2007) are discussed below. Other implementations include a bimodal 

probabilistic plasticity STDP circuit based on membrane voltage level (Fusi et al., 2000; 

Badoni et al., 2006), a model of plasticity based on intracellular calcium levels 

(Rachmuth et al., 2003), and a mixed-signal STDP implementation (Schemmel et al., 

2004).  
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STDP synapse circuit by Hafliger et al. (1997) 

This is the first known neuromorpic synapse that implements time-dependent learning 

rule. It is a weight-dependent synapse implementation (where the values of LTP and/or 

LTD influence the value of the weight –this is an important criterion for synapse 

stability). However, only the potentiation aspect of STDP is considered in this circuit; 

i.e. it performs weight updates based on single pairs of pre- and post-synaptic spikes as 

shown in Figure 3.2. The circuit operates in biological time scale and is fabricated in 2 

µm standard CMOS process. The schematic of the circuit is given in Figure 3.1. The 

circuit occupies larger silicon area and provides less functionality compared to other 

models discussed in this chapter.   

 

 

 

 

Figure 3.1 The CMOS synapse circuit of Hafliger et al. (1997); weight capacitor hold the weight, the 

corr capacitor stores the correlation signal representation. The magnitude of the weight increment 

and decrement are computed by a differential pair (upper left w50). These circuits are mirrored to 

the synaptic weight and gated by digital switches encoding the state of the correlation signal and of 

the somatic action potential. The correlation signal reset is mediated by a leakage transistor, 

decayin, which has a tonic value, but is increased dramatically when the output neuron fires; taken 

from Hafliger et al. (1997). 

 

 

 

 

 

 

 

Figure 3.2 The learning rule explained by a snapshot of the simulation variables involved at one 

synapse; taken from Hafliger et al. (1997). 



 36 

The STDP synapse circuit by Bofill-i-Petit et al. (2004) 

This STDP circuit includes weight-dependent potentiation and depression, in which the 

degree of weight-dependence is tunable.  These circuits operate in biological time scale 

and are fabricated in a standard 0.6 µm CMOS process. The I&F (Integrate and fire) 

neuron, the STDP synapse, and the short-term plastic synapse occupy 75 µm by 253 

µm, 131.3 µm by 139.7 µm, and 73.2 µm by 21.3 µm of chip area respectively. This 

implementation is relatively compact and has exponentially decaying STDP curves as 

shown in Figure 3.5 (a) and (b). The schematics details of the design are given in Figure 

3.3, Figure 3.4 and Figure 3.5 (c). 

 

 

 

 

 

 

 

 

 

Figure 3.3 (a) Leaky I&F (Integrate and fire) neuron (b). A chain of spike generation circuits (SG) 

receives a spike signal from the I&F neuron. (c) Waveform generated by the chain of SG circuits. 

(d) Schematic details of the SG circuit; taken from Bofill-i-Petit et al. (2004). 

 

Figure 3.4 The STDP circuit (a) Circuit that detects causal spike correlations, (b) the depressing 

side of the learning curve; taken from Bofill-i-Petit et al. (2004). 
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Figure 3.5 Graphs (a) and (b) are experimental STDP curves, showing the possibility of 

independent adjustment of curves; (c). Synapse output circuit: when pre-synaptic pulse, pre, is 

activated it injects a post-synaptic current proportionate to weight Vw; taken from Bofill-i-Petit et 

al. (2004). 

 

The STDP synapse circuit by Tanaka et.al., (2007) 

This implementation constructs a Hopfield-type neural network associative memory 

using a synapse circuit with STDP that has a symmetric time window. The circuit 

operates in accelerated time scale and is fabricated in the standard TSMC 0.25 µm 

CMOS technology. The STDP circuit consumes 6336 µm2 of chip area. 

 

 

 

 

 

 

Figure 3.6  (a) Spike-detection and (b) weight-update parts; where, D&I –delay-and-inversion 

circuit; T-FF –Toggle flip-flop; taken from Tanaka  et.al., (2007) 

 

The STDP circuit by Indiveri et al. (2003, 2004)   

The circuit is fabricated in standard 0.8 µm CMOS technology and the inhibitory and 

excitatory synapse measure 55 µm by 31 µm and 145 µm by 31 µm respectively, while 

the neuron circuitry occupies an area of 83 µm by 31 µm. The STDP synapse circuit 

(c) (b) (a)   
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(Figure 3.7 centre) is weight dependent implementation, and it is more compact design 

compared to other implementations. However, the shape of the STDP curves (shown in 

Figure 3.8) are less easy to relate to the curves found in biology (Abbott et al., 2000). 

The STDP synapse circuit has some degree of flexibility in adjusting the curves as seen 

in Figure 3.8. The circuit operates in biological time scale and due to the continuous 

leakage of the weight capacitor, in long time scale the weight always becomes 

significantly biased to one side (either to zero-voltage or maximum-voltage depending 

on the topology). This effect has been reduced by introducing bi-stability circuit that 

drives the synaptic weight to one of two possible states on long time scales.  

 

 

 

 

 

Figure 3.7 Synapse circuit. The bistability circuit compares the voltage Vwo to a threshold and 

drives it to one of two asymptotic values (Vhigh or Vlow ). The STDP circuit increases (or 

decreases) Vwo with every post- (pre-) synaptic spike provided the pre- (post-) synaptic spike was 

emitted shortly before. The STD circuits implement short-term synapse weight Vw with every pre-

synaptic spike, at a rate set by Vwstd. And the Vw is given to a current-mirror-integrator that 

generates a postsynaptic current and it’s injected into the neuron; taken from Indiveri et al. (2003). 

 

Figure 3.8 The STDP curve: the difference between pre- and post-synaptic spike times ∆t = tpre - 

tpost. The curves in the left plot were obtained for different values of Vtp, Vtd , while the curves in 

the right plot were obtained for different values of Vp and Vd ; taken from Indiveri et al. (2003). 
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STDP circuit by Koickal et al. (2007) 

This is a weight-independent STDP circuit, and the STDP dynamics are modelled as a 

pair of decaying exponentials. The circuit is fabricated in AMS 0.6um CMOS 

technology and operates in biological time scale. The circuit consumes a large area 

compared to Indiveri et al. (2004). 

 

Figure 3.9 Simplified schematic of the STDP learning circuit formed by two symmetrical circuit 

blocks to implement the positive and negative phases of the learning function; taken from Koickal 

et al. (2007). 

 

Among these STDP circuits, the Indiveri et al. (2003) weight dependent implementation 

of the approximated STDP circuit is a compact and simple design. The STDP circuit 

proposed in Chapter 5 is similar to the Indiveri et al. (2003) STDP circuit, however it 

operates on the accelerated-time scale.  
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3.3 VLSI Networks 

Implementation of electronic cortical neural network systems that emulate the 

organisation and the function of the cortical networks of the nervous system has been a 

continuing interest in brain research (Schemmel et al., 2010; Furber et al., 2006; 

Indiveri et al., 2007; Merolla et al., 2007; Renaud et al., 2007). The fully digital circuits, 

and the mixed-signal circuits in which computation is shared between analog and digital 

hardware elements, have been used to reproduce these networks in hardware. In this 

section, literature review of selected neural network implementations in mixed-signal 

VLSI systems is summarised. Further, some cortical neural network implementations in 

digital systems are also outlined.  

 

3.3.1  Cortical networks in mixed-signal VLSI system 

These networks exploit continuously varying analogue signals to compute low-level 

biological dynamics. The basic neural elements can be implemented in analog circuits 

with heterogeneity and imprecise (noisy) signal communication. Further, these 

implementations occupy very small integrated circuit area. Hence, mixed-signal system 

has become an attractive platform to mimic neural dynamics. But, mixed-signal circuit 

implementation has complex design flow, and circuits are less flexible to be adapted to 

perform different tasks. As low-level neural processing principles are very different to 

conventional digital processing principles, customised analogue mixed-signal circuits 

could provide efficient implementations of neural circuits. It is also possible to use both 

analogue and digital techniques to optimise the performance of the full network.  

The closeness of the VLSI cortical network dynamics to that of biological network 

depends on the types of neuron, synapse and connectivity models used in the network. 

Specially having synapse model with STDP dynamics is very crucial for cortical 

network plasticity. Large to medium size mixed-signal neural network implementations 

with STDP synapses include Schemmel et al. (2008), Giulioni et al. (2008), Indiveri et 

al. (2004, 2007). Other medium size mixed-signal neural network implementations 

without STDP synapses include Arthur et al. (2004), Merolla et al. (2007). All of these 

VLSI neural networks are discussed below briefly. Other implementations include small 

size spiking neural networks such as Renaud et al. (2007), Hasler et al. (2007), Hynna et 
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al. (2007), Binczak et al. (2006), Sorensen et al. (2004), Vogelstein et al. (2004), Le 

Masson et al. (2002), Jung et al. (2001), Liu et al. (2001) and Mahowald et al. (1991). 

Figure 3.10 illustrates implementation technologies (analog, digital and software) used 

to compute neural dynamics (taken from Renaud et al., 2007). It is seen that a few of 

these implementations are also supported with a firmware and/or software platform. 

 

Figure 3.10 Computation distribution in various spiking neural network analog-based systems; 

Where HH- Hodgkin-Huxley model; IF- Integrate-and-Fire model; FN- FitzHugh-Nagumo model; 

SHH-HH inspired models where some of the conductance functions are simplified or fitted; taken 

from Renaud et.al., 2007. 

3.3.1.1 Neural chip by Schemmel et al. (2008, 2010)  

Under the FACETS (Fast Analog Computation with Emergent Transient States) project 

funded by European Commission, Schemmel et al. (2004, 2008 & 2010) have proposed 

configurable wafer-scale hardware system to emulate cortical networks in silicon. This 

is the largest mixed analog/digital integrated circuit network that has been fabricated in 

silicon. However, it has a lesser degree of faithfulness to biology when comparing with 

other VLSI neuromorphic multi-compartment neural network implementations (as 

shown in Renaud et al. 2007). This section summarise the network implementation 

given in Schemmel et al. (2004, 2008 & 2010). 
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Neuron and synapse Model complexity 

The network uses an integrate-and-fire (I&F) neuron model that exhibits an exponential 

spike mechanism with adaptation, and current-injecting plastic synapses. On-chip 

analogue circuits are used to compute short-term synaptic depression and facilitation 

and to carry out the spike time dependent plasticity (STDP) measurements in each 

synapse. However, the weight update for STDP is performed on-chip digitally. The 

neurons operate on a typical time scale which is four to five orders13 of magnitude faster 

in comparison to biological real time. 

Network Size (No. of Neurons ≈ 450x512; No. of synapses ≈131 072x450) 

The silicon wafers of approximately 450 chips are proposed. These are not cut apart into 

separate chips but left as a whole (wafer-scale integration). The basic chip elements of 

the hardware architecture are 10 mm by 5 mm network chips, each implementing 

131 072 synapses which can be dynamically partitioned to up to 512 neurons. Such a 

wafers scale integration system has been proposed, but not fabricated. So far only a test 

containing 256 neurons has been demonstrated on a single chip. 

Connectivity 

The high bandwidth requirement for the neuronal connectivity is approached by wafer-

scale integration. Additional metal layers, deposited onto the wafer in a post-processing 

step, allows to interface and inter-link the network chips with adequate connection 

density and thus to operate large-scale networks consisting of 10 000s neurons. The 

system used digital spike routing mechanism and the communication protocols are 

specially developed for this hardware architecture. 

The quality of routing of the system reduces with the increase in homogeneous 

connectivity. Availability of large cortical network simulation results performed in this 

system is yet not clear. The average power consumption is expected to stay below 1 kW 

on a 20 cm wafer in a standard UMC 180 nm CMOS technology. 

                                                 

13 http://facets.kip.uni-heidelberg.de/public/results/2ndYear/WP7/index.html 
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3.3.1.2 Neural chip (F-LANN) by Giulioni et al. (2008)  

Giulioni et al. (2008) have implemented a 68.9 mm2 chip in standard CMOS AMS 

0.35 µm technology. This is one of the largest biological-time mixed-signal VLSI 

cortical neural network that has been fabricated in silicon that comprises of STDP 

synapses. It is also having a lesser degree of faithfulness to biology when comparing 

with other VLSI neuromorphic multi-compartment neural network implementations (as 

shown in Renaud et al., 2007) as it uses simple homogenous integrate and fire neurons. 

Following paragraph summaries the details of the network implementation given in 

Giulioni et al. (2008). 

Neuron and synapse Model complexity 

The neuron and synapse models used in this chip include the Integrate and Fire (I&F) 

neuron with spike-frequency adaptation and the bi-stable stochastic synapse with a 

STDP rule respectively. The synapse circuit model also has the “stop-learning” 

capability, which prevents the synaptic modification once the desired output of the 

network is reached.  

Network Size (No. of Neurons ≈ 128; No. of synapses ≈ 16 384) 

This reconfigurable network has 128 I&F neurons and 16 384 (128×128) bi-stable, 

STDP synapses.  These synapses can be initialized and reconfigured. The system can 

read the synaptic state, at the hardware level, without disrupting the internal network 

activity. 

Connectivity 

The fully configurable synaptic matrix supports internal connectivity, external AER 

(Address Event Representation) connectivity, or combination of both. Each synapse 

may be set individually to an excitatory or inhibitory type, and synapse’s initial weight 

can be set externally. Each neuron is connected to 128 synapses, and each synapse can 

accept input spikes from either internal or external neurons. Input spikes from external 

neurons are accepted in the form of AER events, which are addressed to the correct 

synapses using a decoder. Fixed weight inhibitory synapse circuits are used while 

excitatory synapses are plastic. 
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The neurons operate on a biological temporal scale. The size of the network can be 

increased by one order of magnitude by using multi chip network using AER 

infrastructure. Specifically, AER based PCI-AER board (Chicca et al., 2007; 

Dante et al., 2005) allows four chips to be connected together (e.g. to implement a 

recurrent network of 512 neurons with a uniform 25% connectivity) as given in Giulioni 

et al. (2008). 

3.3.1.3 Neural Chip by Indiveri et al. (2007)  

The chip is fabricated in a standard 0.35 µm CMOS technology and occupies an area of 

6.1 mm2. The basic elementary circuits of the network are designed to operate in the 

sub-threshold region to minimise the power consumption. The network operates in 

biological-time scale. It uses a simple I&F neuron model and has lesser degree of 

closeness to biology when comparing with other VLSI neuromorphic network 

implementations (as shown in Renaud et al., 2007). The details of the network 

implementation given in Indiveri et al. (2007) are summarised in this section. 

 Neuron and synapse Model complexity 

The chip uses an integrate-and-fire neuron model. Few types of synapses are used, 

namely: STDP plastic synapse, excitatory non- STDP and inhibitory non-STDP 

synapse. 

Network Size (No. of Neurons ≈ 16; No. of synapses ≈ 2 048) 

Each chip comprises an array of 16 integrate and- fire (I&F) neurons and 2048 synapse 

circuits where each neuron is connected to 128 synapses. These 128 synapses include 

120 synapse with STDP dynamics, 4 excitatory non-STDP and 4 inhibitory non-STDP 

synapses.  

Connectivity 

Since this is a simple small network it is easy to accommodate connectivity. The input 

spike patterns are provided to the synapses through the asynchronous AER interfacing 

circuits (Boahen, 2000).  

The chip is fabricated in a standard 0.35 µm CMOS technology and occupies an area of 

6.1 mm2. However, the size of the network can be increased by about one order of 

magnitude by using multi chip network infrastructure such as in Fasnacht et al. (2008).  
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3.3.1.4 Other spiking neural network implementations in mixed-signal system 

Other implementations presented in literature include: Neural Chip by Indiveri et al. 

(2004) that occupies silicon area of 16.8 mm2, with 21 IF neurons, 129 synapses, 

including 56 STDP plastic synapses fabricated in standard AMS CMOS 0.6 µm 

technology (this is the older version of the chip presented in Indiveri et al. 2007); The 

“Neurogrid” neural chip implemented by Arthur and Boahen (2006) in 10 mm2 of 

silicon area for a total of 9 216 neurons is fabricated in TSMC 0.25 µm standard CMOS 

technology. This implementation is further used in the neural Chip by Merolla and 

Boahen et al. (2007) with 8 192 neurons in each chip and expanded to 32 768 neurons in 

a network with four of the neural chips on a multi-chip board. They have demonstrated 

neuronal selectivity along position, spatial frequency and orientation properties of 

cortical network.  However, their implementations do not include STDP learning 

synapses. Other sensory processing neuromorphic device implementations include 

“Silicon Retina” by Zaghloul et al. (2004 & 2006), and “Silicon Cochlea” by Liu et al. 

(2010). 

3.3.2 Outline of spiking neural network implementations in digital system 

Fully digital systems use conventional digital units such as RAMs, processors, digital 

logic, etc. to implement a neural architecture.  These are implemented in custom VLSI 

chips and/or in off-the-shelf FPGA (Field Programmable Gate Array) devices.  

Among these, the “SpiNNaker” project14 has developed a chip that comprises 20 

processing cores, each with ARM9 processor, local memory and DMA capability. 

According to the estimates, each ARM9 processor can model 1 000 Leaky I&F neurons, 

each with 1 000 inputs firing on average at 10 Hz, in biological real time.  The synaptic 

data is held in an off-chip RAM (Furber et al., 2006). The processing cores are 

connected to its local peers via a Network-on-Chip (NoC). This provides inter-chip 

communication via links between SpiNNaker chips while utilising in-chip local high 

bandwidth communication. Using this approach the architecture can be extended to 

have thousands or millions of similar processing cores to build a massive cortical 

network in silicon.  

                                                 

14 Web Link: http://intranet.cs.man.ac.uk/apt/projects/SpiNNaker/ 
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The Memory Optimized Accelerator for Spiking Neural Networks (MASPINN) project 

(Schoenauer et al., 1998 and 2000) produced a neuro-accelerator board simulating one 

million neurons in real time. However, it does not include STDP learning, different 

types of neurons and synapses, which are a key noticeable fact in biological networks.  

Other digital network implementations include the proposed Connectionist Network 

Supercomputer (CNS-1) architecture (Asanovic et al., 1993), RAPTOR2000 system 

(Porrmann et al., 2004), and systems by Agris at al. (2007) and Carrillo et al. (2008). All 

of these digital implementations of cortical network provide semi-customisation of 

homogeneous digital elements to mimic low-level heterogeneous neural elements.  

Hence this approach may not provide fully optimised mimicking of the nervous system. 

However, digital implementations use the well-optimised digital building blocks to 

design the system and in terms of programming for the different neural models, they are 

more flexible than the analogue mixed-signal implementations. 
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CHAPTER 4 :  CORTICAL NEURON CIRCUITS 

This chapter presents two cortical neuron circuit implementations that work in different 

time scales, the accelerated-time and the biological-time. These neuron circuits are 

capable of generating many types of the neuron behaviour, with diversity similar to that 

of biological neuron cells. These neuron circuits are inspired by the computational 

model proposed by Izhikevich (2003) and motivated by the desire to achieve, a single 

compact generic circuit that can easily be tuneable to a known cortical neuron type. The 

initial section provides the mathematical neuron model proposed by Izhikevich (2003).  

All three fabricated ICs presented in this thesis use the Accelerate-Time Neuron circuit. 

The circuit design of the accelerate-time neuron was proposed in the Mphil thesis 

(Wijekoon, 2007), and for the purpose of completeness of this thesis, the accelerated-

time neuron section of this chapter, present the neuron circuit, its operation, simulation 

results, and the mathematical model briefly. By extending the research done in the 

Mphil degree, in this PhD thesis the function of the neuron circuit is experimentally 

verified, and the results obtained from the fabricated neuron are given in Chapter 7 and 

Chapter 8.  

The Biological-Time Neuron circuit is proposed at the end of this chapter and the circuit 

design, operation and the simulation results are provided.   This Biological-Time 

Neuron circuit is implemented in a standard CMOS 0.35 µm technology, and the 

proposed circuit and the simulation results presented in this chapter were published in 

the Proceedings of the IEEE Biomedical Circuits and Systems Conference (Wijekoon et 

al., 2009). 

Finally, summary of these neuron circuits and the merit and demerits of designing VLSI 

neural network in accelerated- vs. biological- time scales are discussed.  

 

4.1 The Izhikevich Model of the Cortical Neuron 

The Izhikevich (2003) neuron model is a simplified version of the Hodgkin-Huxley 

neuron model and has two state variables membrane potential (V) and membrane 

recovery (U). According to the model membrane potential, V, evolves as in the equation 

set given below:  
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where, a, b, c and d are dimensionless parameters. 

 

Figure 4.1. Types of neurons reproduced using the Izhikevich (2003) neuron model and their 

correspondent parameter values; taken from Izhikevich (2003). 

Using the aforementioned simple set of formulas and resetting function various types of 

cortical neuron firing patterns can be reproduced. The reproduced firing patterns 

correspond to different a b, c and d values of parameters published by Izhikevich (2003) 

are shown in Figure 4.1.   

It should be noted that this reset mechanism is more similar to the reset in the I&F 

model than a spike generating mechanism of biological sodium/potassium channels. 

However, the rich repertoire of behaviours, including adaptation and bursting, is a result 

of the dynamics of V and U, which can be qualitatively associated with the interplay 

between faster sodium/potassium dynamics and slower calcium dynamics. A similar 

mechanism for adaptation and bursting is also presented in an exponential I&F model 

Brette and Gerstner (Brette et al, 2005). A linear I&F model can also be extended to 

enable adapting and bursting behaviours, via mechanisms such as variable thresholds in 
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Gerstner’s spike response model (Gerstner et al., 2002), and some additional dynamic 

variables such as “burst currents” proposed by Michalas and Niebur (2009).  

The Accelerated-Time Neuron circuit design implements the qualititative behaviour of 

the Izhikevich neuron model in VLSI, whereas the Biological-Time Neuron circuit 

combines the simplicity of the I&F model with the slow-fast variable interactions 

present in the Izhikevich model to obtain a large variety of spiking behaviours in a 

simple circuit.  

4.2 Accelerated-Time Neuron 

The Accelerated-Time Neuron circuit, its operation and the approximated mathematical 

model is given in this section. Its experimental results can be found in Chapter 7. More 

elaborated details of this neuron circuit, including circuit operation, phase-plane 

analysis, derivation of mathematical model, and simulation results can be found in 

Mphil thesis (Wijekoon, 2007). Some of the materials presented here were published in 

Wijekoon et al. (2008). The circuit diagram of the neuron is shown in Figure 4.2. 

 

Figure 4.2. The compact silicon cortical neuron circuit. 

4.2.1 The circuit operation 

The implemented neuron model consists of two state variables: “membrane potential” 

(V) and “slow variable” (U), that are represented by voltages across capacitors CV and 

CU respectively. The circuit comprises of three functional blocks: membrane potential 
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circuit, slow variable circuit and comparator circuit (the transistors M1 and M2 are 

shared by the membrane potential and slow variable circuits). In the membrane potential 

circuit, the capacitor CV integrates the postsynaptic input current, plus internal currents 

which depend on the state of the cell. Similarly, in the slow variable circuit the capacitor 

CU integrates the currents that non-linearly depend on U and V. The comparator detects 

the spike and generates pulses (VA and VB) that perform the after-spike reset. Various 

spiking and bursting firing patterns are obtained by tuning two voltage parameters, Vc 

and Vd, which control the reset mechanism. Figure 4.3 shows example waveform of 

voltages, V, U, VA and VB. 

 

 

Figure 4.3 Example waveforms of the membrane potential (V), slow variable (U) and the reset 

pulses (VA and VB). 

 

4.2.2 Simulation results  

A Summary of firing patterns obtained by simulation the circuit using standard 0.35 µm 

CMOS technology libraries is shown in the Figure 4.4. Experimental results obtain from 

the fabricated neuron are given in Chapter 8.  
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Figure 4.4 Spiking and bursting firing pattern behaviour to a increase in step post synaptic current 

(a) CH, (b) CH, (c) RS2, (d) RS1, (e) IB, (f) IB, (g) LTS, (h) FS, (i) FS and (j) FS for different Vc 

and Vd parameters. The plots shows responses to three increasing steps of dc-currents: 0.05µA, 0.1 

µA, and 0.15 µA except plot (b) is 0.05 µA, 0.1 µA, and 0.12 µA and plot (e) is 0.05 µA, 0.1 µA, and 

0.25 µA. 

 

4.2.3 Mathematical model of the neuron circuit 

The mathematical model of the neuron circuit is used in the Cortical Neural Layer 

(CNL) chip model discussed in Chapter 8. Hence, this section summarised the 

approximated mathematical equations of the neuron. According to the model membrane 

potential of the neuron, V, evolves as in the equation set given below. Each equation is 

corresponding to the circuit blocks discussed in the above section; i.e Equation 4.4, 
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Equation 4.5 and Equation 4.6 approximate the membrane potential circuit, slow 

variable circuit and comparator circuit dynamics respectively. 
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In the above equations, Vt, is the nMOSFET threshold voltage. The value k is Coxµ ×  of 

the nMOSFETs (µ - charge-carrier effective mobility, Cox -gate oxide capacitance per 

unit area) and CV and CU are membrane and slow variable capacitance values 

respectively.  The (W/L)Mx is the gate width to length ratio of the MOSFET Mx. I is the 

postsynaptic current and VC and D are externally tunable parameters. The α, β, γ, and the 

region ‘A’ depend on Vt , V and U as given in Figure 4.5, 

 

 

 

 

 

 

 

 

Figure 4.5 Parameter values for formulas 4.4-4.6. 
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4.3 Biological-Time Neuron 

Similar to Accelerated-Time Neuron, the Biological-Time Neuron circuit is capable of 

generating many types of the cortical neuron behaviour, with diversity similar to that of 

biological neuron cells. The four tuning parameters d, c, Uth and Vbisn are used to 

configure the circuit to operate in a known type of neural behaviours, RS, FS, LTS, CH, 

IB and TC (these patterns are briefly defined in Chapter 2). Here, when considering the 

firing patterns the supra-threshold spike activities are considered and sub-threshold 

neuronal activities are not considered. The circuit is presented in Figure 4.6.  

  

Figure 4.6 Schematic of the Biological-Time Neuron circuit 

4.3.1 The circuit operation 

The node voltages at V and U represent the state variables, membrane potential and the 

slow variable. The currents feeding into these nodes are integrated on capacitors CV and 

CU respectively. The currents are provided by two functional circuit blocks: membrane 

potential circuit (transistors M1 to M8) and slow variable circuit (transistors M9 to 

M19). The evolution of the membrane potential V is due to integration, on the capacitor 

CV, of the post-synaptic current (which is assumed to be injected into that node through 

the synapse circuit) plus an exponential leakage current (generated via M7 and M8) 

which is determined by the value of the slow variable U. The spike threshold of V is 

determined by voltage Vth, and detected by M1, M2, and an inverter. M3-M5 help to 

control the duration of the spike and the reset dynamics. Initially M3 provides a positive 

feedback to quickly exceed the membrane potential threshold. As the spike is generated, 
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the feedback current is turned off by opening M4, so that the voltage at node V does not 

actually produce a significant voltage spike. Transistor M5 limits the output spike pulse 

duration, while membrane potential V is reset to the value of Vc via M6.  

 

Figure 4.7  Waveforms of a typical CH firing pattern obtained from the circuit shown in Figure 4.6; 

top: membrane potential, V, and slow variable, U; bottom: output spikes and slow variable reset 

signal  

 

As can be seen in Figure 4.7, the slow variable voltage U evolves at a much slower rate 

than the membrane voltage. The changes to the slow variable are primarily due to two 

reset mechanisms. After the spike is generated the value of U is pulled some amount 

towards Vd via M11. Additionally, when U reaches a threshold value, determined by the 

tuneable voltage Uth, a Ureset signal is generated (M16, M17 and the inverter) and U is 

reset to ground via M12. The arrangement of M13-M15 and M18 helps to control the 

timings in the reset circuit. Initially, M18 provides a positive feedback to quickly bring 

U above the threshold value. As a result the reset signal Ureset goes high.  Since U 

evolves with very slow rates, the Ureset is generated using a slightly different topology 

than the spike generation circuit. By breaking the loop using M13 switch, the Ureset 

pulse can be generated, minimising the risk of settling on to a fixed DC value in the 

feedback loop. The Ureset signal is then used to reset U to zero via M12. Finally the 
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Ureset pulse is brought back to zero after the voltage at node U4 is brought down 

through M14-M15. In addition to the two reset mechanisms, U continuously evolves as 

two currents are integrated on capacitor CU, one is the current through M9, which 

depends on the membrane potential V (M10 is used to prevent large current flow during 

the spike), the second one is a leakage current, controlled by Vbiasn (M19). 

4.3.2 Simulation results  

The operation of the circuit and the circuit simulation results obtained using standard 

0.35µm AMS CMOS technology, are presented in this section. The SPICE simulation 

results shown in Figure 4.8 illustrate membrane potential V during various types of 

cortical neuron firing patterns (CH, RS, IB, FS, LTS and TC). The spike pattern 

classification follows methods given in Nowak et al. (2003). The output spikes are 

produced at the times of membrane potential peaks. The four tuning voltage parameter 

values corresponding to the firing patterns are provided in Table 4.1. Figure 4.9 shows 

the trajectories in the state space corresponding to these firing patters. 

As can be seen in Figure 4.8, the firing patterns obtained from the proposed circuit are 

in the same time scale as that of the biological neurons, the minimum refractory period 

is approximately 1 ms. The frequency of firing for a given step of post-synaptic 

stimulus typically ranges from below 1 Hz to 1 kHz and can be approximately 

configured to a desired frequency, simply tuning the neuron using an appropriate 

parameter set. All the waveforms in Figure 4.8 are obtained using a post-synaptic 

stimulus of 2 nA. It is observed that RS type neuron’s inter-spike frequency can be 

configured to one typical of real RS inter-spike frequencies (Nowak et al., 2003); RS1 

and RS2 sample waveforms are shown with 25 Hz and 100 Hz inter-spike frequencies. 

Similarly, the FS type neuron’s inter-spike frequency can be configured to a frequency 

in the typical FS frequency range (Nowak et al., 2003) and two selected samples (FS1 

and FS2) with different inter-spike frequencies are shown in Figure 4.8.  The proposed 

neuron circuit can also be configured to obtain accommodating (spike frequency 

adaptation) or to a non-accommodation firing pattern.  In CH type firing pattern, the 

inter-burst interval as well as number of spikes per burst can be configured easily as 

seen in CH1, CH2, and CH3 waveforms in Figure 4.8.  

The layout of the circuit is shown in Figure 4.10. It consumes 70 µm x 70 µm of silicon 

area in a 0.35 µm CMOS technology. Here, Cv and Cu poly capacitors occupy a large 
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area of the layout. If non-linear gate oxide capacitance of the MOSFET is used as a 

capacitor, the silicon area can be reduced further. 

 

Figure 4.8 Membrane potential of the neural firing behaviours obtained from the neuron circuit in 

response to a step post-synaptic stimulus of 2 nA.  
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Figure 4.9 State trajectories of CH, IB, FS, TC, LTS & RS cells when a 2 nA of postsynaptic 

current step is injected. (The plots are drawn using data obtained from SPICE simulations) 
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Table 4.1: Tuning voltages used to obtain the firing patterns shown in Figure 4.8 

 

 

 

 

 

 

 

 

Tuning Parameter/(V) Neuron 

Type Uth Vbiasn Vc Vd 

CH1 0.2 0.1 0.8 0.8 

CH2 0.2 0.2 0.1 1.7 

CH3 0.1 0.15 0.8 1.7 

FS1 0.5 0.3 0.1 1.7 

FS2 1.3 0.6 0.8 1.7 

IB1 0.1 0.1 0.5 1.7 

IB2 0.5 0.22 0.1 1.7 

LTS 0.5 0.24 0.3 1.7 

TC 2 0 0.8 0.9 

RS1 0.5 0.22 0.1 1.7 

RS2 1.3 0.22 0 2.5 



 59 

 

Figure 4.10 A layout of the proposed VLSI neuron circuit in a 0.35 µm CMOS technology. 

4.4 Discussion 

Both CMOS cortical neuron circuits replicate many known types of spiking neural 

behaviours by adjusting a few external voltages. These circuits provide a much richer 

repertoire of spiking patterns than a simple integrate and fire model, while using only 

one additional state variable. The circuits provide simple, compact and easily 

configurable universal cortical neurons, with potential applications in the development 

of massively parallel analogue VLSI neuromorphic chips that closely resemble the 

circuits of the neocortex. In addition, the Biological-Time Neuron can be used in the 

context of interfacing electronic neural circuits with biological systems. 

As seen in the literature (in Chapter 3) both accelerated and biological-time 

implementations are popular in neuromorphic circuits and both approaches have their 

own merits and de-merits.  The summary of the merits (“+”) and de-merits (“-”) of 

implementing both accelerated and biological-time VLSI devices are listed below. 
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4.4.1 Merits (+) and de-merits (-) of implementing biological-time devices:   

+ Require low communication bandwidth: Communication bandwidth between 

VLSI chips and within VLSI chip circuits is very low. This enables large 

number of neuron connections. Well established Address-Event Representation 

(AER) protocol can be used. 

+ Circuits can be easily interface with biological systems, i.e. the silicon neurons 

can be interconnected with the biological cells to form “hybrid networks” 

(LeMasson et al., 2002). 

- Experiment takes longer time duration to perform compared with accelerated-

time implementations. 

- Decay and rising timings of signals are very slow; hence advantages of standard 

CMOS technology, which is optimised for speed signals, are not fully exploited. 

- Circuits require operation in weak inversion region of transistors and large 

capacitors are required to store analogue voltage values. This consumes large-

silicon area.  

- Weak inversion region of operation can cause large mismatch effects on the 

characteristics of a circuit which resulted in more variations on the circuit’s 

characteristics. 

- Scaling of the circuit to fabricate in advanced deep-submicron technology is 

difficult for the circuit with transistors operating in sub-threshold region.    

4.4.2 Merits (+) and de-merits (-) of implementing accelerated-time devices: 

+ Real time long-duration simulations can be performed within very small time 

duration  (example: 5 year real time simulation of a cortical network can be 

observed in 48 hours if time scale is 103 times faster) or extensive parameter 

searches of an experiment are possible. 

+ Technological advantage of speed optimised CMOS technologies can be 

exploited. 

+ Less power consumption per experiment (very slow biological time experiment 

take long time to perform an experiment, hence leakages currents and refreshing 

voltage states may consume more power) 
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- As accelerated time processing is used, communication bandwidth limits the size 

of the largest connectivity matrix of a network. The conventional AER protocol 

cannot be used. However, using mixed mode circuits, significant increase of 

neuron connectivity can be obtained as demonstrated by Schemmel et al. (2008), 

using circuits that operate four orders of magnitude faster than biological-time. 

 

In the rest of this thesis, the accelerated time neuronal implementations are considered 

in designing a large cortical network, which provides higher computational throughput 

of the neuro-mimetic computing device.  Hence, extensive analysis of the biological-

time neuron is not considered in this thesis. In implementing a neural network chip, the 

rest of the neural circuits proposed in this thesis operate three orders of magnitude faster 

than the biological-time (rather than four orders as considered here). This will ease the 

implementation of communication of a network that has a larger inter neuron 

connectivity matrix. Hence, the parameter set of the accelerated-time neuron is selected 

such that the neural dynamics are three orders of magnitude faster than biological-time. 
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CHAPTER 5 :  LONG-TERM DYNAMIC SYNAPSE 

CIRCUITS 

This chapter proposes STDP (Spike-Time Dependent Plasticity) Synapse and Dopamine 

(DA) Modulated STDP Synapse circuits that operate in accelerated-time. The STDP 

plasticity rule is a crucial feature of a cortical network and is believed to be the neuronal 

mechanism for the learning and memory of a network, whereas the DA modulated 

STDP plasticity rule is believed to be the mechanism for the reinforcement learning in a 

cortical network. The plasticity rules, the STDP and the DA modulated STDP are 

explained in Section 5.1, and the computational model used to implement the DA 

Modulated Synapse circuit is given in Section 5.2. The Section 5.3 and 5.4 provide the 

circuit operation and simulation results of the STDP Synapse circuit, and the DA 

Modulated Synapse circuit respectively. To prove the concept in hardware, Integrated 

Circuits (ICs) have been fabricated in a standard 0.35 µm CMOS technology. The 

fabricated Integrated Circuit that contains both STDP Synapse circuits and DA 

Modulated Synapse circuits is called the STDP/DA-STDP Synapses Neuron (STDP/DA 

Neuron) chip presented in Chapter 8. The synapses of this chip can be configured to 

work as a DA modulated synapse or as a STDP synapse without the DA modulation. 

The STDP synapses are included in the Cortical Neural Layer (CNL) chip and its details 

are presented in Chapter 9. Linearly approximated discrete mathematical models of the 

STDP synapse circuits are presented in Section 5.3. The model could be used to 

simulate the approximate behaviour of the CNL chip in software. Some of the DA 

Modulated Synapse circuit materials presented in this chapter have been accepted for 

publication in the proceedings of IEEE International Symposium on Circuits and 

Systems (Wijekoon et al., 2011).  

5.1 STDP and DA modulated STDP 

In some synapses, synaptic weight is changed by the timing difference between pre- and 

post- synaptic activity. This plays an important role in synaptic plasticity, which is 

believed to be the mechanism for learning and memory in a biological system. In 

general, if the pre-synaptic spike proceeds post-synaptic spike of the synapse the 

synaptic weight is increased (Long-Term Potentiation, LTP), whereas if the pre-synaptic 

spike follows the post-synaptic spike the synaptic weight is decreased (Long-Term 
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Depresion, LTD).  The magnitude change in synaptic weight depends on the temporal 

difference between pre- and post- synaptic firings. The curve that provides the amount 

of synaptic weight modifications with respect to temporal differences of the pre/post 

spikes is called the STDP curve. As mentioned in Chapter 2 a variety of STDP curves 

have been observed experimentally (Abbot et al., 2000). The synapses that obey this 

STDP weight modification (STDP synapse) are mostly excitatory synapses. The Silicon 

area consumed by a synapse is a crucial factor as it could limit the size of the network 

that can be implemented in the VLSI hardware; hence the STDP curve that can be 

implemented with a small number of transistors is used.  

Some special type of synapses are believed to exist in the neocortex, in which 

the synaptic modification due to STDP is modulated by the level of extracellular 

dopamine concentration. That is, the extracellular DA level regulates the LTP and LTD 

modification on the synaptic weight (Fellous et al., 2003; Izhikevich, 2007).  These 

synapses are called dopamine modulated synapse and a computational model it is 

proposed by Izhikevich (2007) is given in next section. 

5.2 Computational Model of DA Modulated Synapse 

The DA modulated circuit is broadly based on the model presented in (Izhikevich, 

2007), describing dopamine modulated synapse, where the LTP and LTD components 

of the spike-timing-dependent plasticity (STDP) are modulated by DA present during 

the critical window of a few seconds after the post synaptic spike. According to the 

model, the strength of the synapse, s, evolves as per the following three equations 

(Izhikevich, 2007): 
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In the above equations c is the synaptic eligibility trace (ET);  δ(t) is the Dirac-delta 

function that provides a step-increase or -decrease of c depending on pre- and post- 

synaptic neuron firing times, tpre and tpost; the function STDP() describes the spike-

timing-dependent change of the ET (typically, the change has a positive value when 

post-synaptic spike follows a pre-synaptic spike within a small time interval, negative 

value when post-synaptic spike precedes the pre-synaptic one, and decays to zero for 
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larger pre- and post- synaptic spike time differences); d represents the extracellular 

concentration of DA,  DA(t) is the amount of the DA released due to the activities of the 

dopaminergic neurons. Time constants, τc = 1 s and τd = 0.2 s. Dynamics that are 

described by these equations are further explained in (Izhikevich, 2007). Figure 5.1 and 

its caption are taken from the Izhikevich (2007) well explain the dynamics of the model. 

This model addresses a solution to the distal reward/credit assignment problem using 

DA modulation of STDP; only nearly coincident spiking patterns occurring in the time 

period before the reward are reinforced by the reward, whereas uncorrelated spikes 

occurring before the reward, and correlations when no reward is present, are ignored by 

the network. The spike coincidences produce relevant changes in the slowly decaying 

eligibility traces, and the eligibility traces control changes in the synaptic strength, 

making the greatest influence when the reward signal (DA activity) is strong.  
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Figure 5.1   (a) The dynamics of each synapse is described by synapse strength s and eligibility trace 

c, which are gated by the extracellular DA d. The STDP rule that induce changes to the variable c is 

shown in (b). These changes result in modification of the synaptic strength, s, only when 

extracellular DA is present (d > 0) during the critical window of a few seconds while the eligibility 

trace c decays to zero. (c) The magnification of the region in (d) marked by *. To reinforce 

coincident firings of 2 coupled neurons, deliver a reward (step-increase of variable d) with a 

random delay (between 1 and 3 s) each time a postsynaptic firing occurs within 10 ms after a pre-

synaptic firing (marked by a rectangle in c). This rare event increases c greater than any random 

firings of the same neurons during the delayed period. (d) Consistent rewarding of each such event 

results in the gradual increase of synaptic strength, s, which increases the probability of coincident 

firings and brings even more reward. The time course of a typical unreinforced synapse (not shown 

here) looks like a random walk near 0. The inset shows the distribution of all synaptic weights in 

the network. The reinforced synapse is potentiated to the maximal allowable value 4 mV (42 out of 

50 experiments) whereas the other synapses are not.(figure and caption taken from Izhikevich, 

2007) 
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5.3 STDP Synapse Circuit 

The accelerated time STDP Synapse circuit comprises the STDP circuit and Synaptic 

Current Generator (ISYN) circuit as shown in Figure 5.2 and Figure 5.3 respectively. 

This section presents the circuit operation, simulation results and approximated 

mathematical model of the STDP Synapse circuit. The STDP synapse circuit has been 

fabricated in two ICs: the STDP/DA Neuron chip and the CNL chip. However, STDP 

circuit in STDP/DA-STDP Neuron chip uses the complementary circuit topology of the 

STDP circuit explained here (as explained in Section 5.4). The experimental results of a 

STDP Synapse circuit in the STDP/DA Neuron Chip are presented in Chapter 7.  

 

Figure 5.2 STDP circuit; a) LTD, b) LTP, (c) WSET, (d) WBUF sub-circuits. 
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Figure 5.3 Excitatory Synaptic Current Generator (ISYN) circuit  
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5.3.1 Operation of the STDP circuit 

The STDP circuit modifies the synaptic weight, w according to the STDP rule. The 

circuit comprises of 4 sub-circuits namely Long-Term Depression (LTD) circuit, Long-

Term Potentiation (LTP) circuit, Synaptic Weight Set (WSET) circuit, and Synaptic 

Weight Buffer (WBUF) circuit. The LTD and LTP circuit topologies have initially been 

proposed by Indiveri (2003) to operate in biological time scale.  However, appropriately 

sizing the transistor and capacitors and by shifting the operating point of some 

transistors, the LTD and LTP circuits are designed to operate in the accelerated time 

scale. The weight of the STDP circuit, Vwstdp is stored in the capacitor CW. Firings of 

the pre- and post- synaptic neurons induce the changes to the synaptic weight using the 

LTD and/or LTP circuits to implement the STDP rule. 

The signal Vpre is the pre-synaptic firing signal whereas the Vpost is the post-synaptic 

firing signal. The signal Vpost_bar is the inverted post-synaptic firing signal. Once the 

post-synaptic neuron fires, the gate capacitor of Md2 is charged to Vdd, the supply 

voltage, Vdd, by switching-on the transistor Md3. The gate capacitor is then 

continuously discharged with a “leakage” current, through transistors Md1 and Md2. 

The amount discharge from the gate capacitor of Md2 is approximately proportional to 

the time after the last post-synaptic neuron firing. The maximum time duration for the 

capacitor to discharge to a voltage low enough to force the gate voltage of the transistor 

Md4 to reach its cut-off region of operation is equivalent to the ‘LTD time window’. 

This is controlled by the voltage Vleakd. If a pre-synaptic spike follows the post-

synaptic firing within the LTD time window, the LTD circuit reduces the charge in the 

capacitor Cw by switching-on the current path through the transistors Md4, Md5 and 

Md6.  The voltage Vd limits the maximum current through these transistors. The LTP 

circuit has a complementary topology to the LTD circuit. Figure 5.4 shows the effect on 

ltp, ltd, Vwstdp and w to twenty pre- and post- synaptic spike pairs (shown in Figure 5.4 

(a)) - initially, pre-synaptic spike follows the post-synaptic spike and then the post-

synaptic spike follows the pre-synaptic spike. 

The WSET circuit is used to set the weight of the STDP circuit, Vwstdp to the externally 

set voltage Vwval when a pulse is provided at node Vwset. The WBUF circuit buffers 

the synaptic weight and provides it to the ISYN circuit (Figure 5.3) that generates the 

excitatory post-synaptic current. When the pre-synaptic spike arrives at the synapse, the 
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Ms6 of the ISYN is switched-on and the current through the transistors Ms5 and Ms6 

removes an amount of charge, ∆qwstdp from the capacitor Csyn. This reduces the voltage 

Vsyn to generate IEPSC. The value of ∆qwstdp is removed approximately proportional to 

the value of the buffered synaptic weight (w). The Ms4 transistor continuously charges 

Vsyn to the resting voltage of Vsyn (Vsynmax). The Vwmax can be set externally.  The 

IEPSC and Vsyn values for various synaptic weights, w are shown in Figure 5.5- this is 

obtained by providing continuous pre-synaptic spike train to Vpre while slowly varying 

w from zero to 2V. 

 

Figure 5.4 (a)  pre and post synaptic spikes; (b) ltp and (c) ltd node voltages of the STDP circuit; (d) 

LTP and LTD effects on Vwstdp and buffered synaptic weight (w). 
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Figure 5.5 Responses of ISYN circuit shown in Figure 5.3 : The synaptic weight w is  varying (as in 

(a)) while providing continours pre-synaptic spike train to the ISYN circuit (b) IEPSC and (c) Vsyn 

responses are obtained. Vsynmax = 3.3 V;Vbp= 0 V; 

 

5.3.2 Simulation results and the layout of the STDP synapse circuit 

The STDP synapse circuit is simulated in a standard 0.35um CMOS technology and 

results are presented in Figure 5.6 to Figure 5.7.  The synaptic weight capacitor (Cw ≈ 

180 fF) the gate capacitance of the MCw is used The layout of the STDP synapse circuit 

used in the Cortical Neural Layer (CNL) chip discussed in Chapter 9 is shown in Figure 

5.9. 

Figure 5.6 shows the STDP curves generated from the STDP circuit shown in Figure 

5.2.  The STDP curves can be adjusted using control voltages Vp, Vd, Vlkp and Vlkd. 

Figure 5.5 (a) and (b) shows the effect on the magnitude of weight modification (∆w) 

when Vd and the Vp are varied respectively, whereas Figure 5.6 (a) and (b) shows how 

LTP and LTD time windows can be varied by varying the voltages Vlkd and Vlkp 

respectively. It should be noted that ∆w also depends on the value of w and the plots in 

Figure 5.6 and Figure 5.7 are generated when w is at its mid value. In a practical circuit, 

the device mismatch will also affect these characteristics.  By increasing (reducing) the 

capacitance of the capacitor Cw the magnitude of synaptic modification can be reduced 

(increased).  Here these values are selected such that the continuous repetitions of 50–60 

pre/post synaptic spike pairs are needed to reach the maximum weight of the synapse 

(as in biological experiments Morrisons et al., 2008).  Typically LTP and LTD time 

(a) 

(b) 

(c) 
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windows are in the range of 20 ms to 40 ms and hence in accelerated time these are 20 

µs to 40 µs.   Shape of the STDP curve use is different to the standard STDP curve most 

commonly used in the theoretical neuroscience. However, as mentioned in Chapter 2 a 

variety of STDP curves have been observed experimentally (Abbot et al., 2000) and as 

long as the STDP curve provide a tuneable STDP plasticity rule and the circuit uses a 

small number of transistors, it should be a good candidate to use in larger VLSI cortical 

networks.    

 

Figure 5.6 (a) LTD and (b) LTP curves generated for various values of Vd, and Vp respectively. 

 

(b)

(a)



 71 

 

Figure 5.7 (a) LTD and (b) LTP curves generated for various values of Vlkd, and Vlkp respectively. 

The mismatch effect of the circuit has been simulated using 1000 Monte Carlo iterations 

and Figure 5.8 shows the mean curve and the standard deviation of a typical synaptic 

weight trace to stimulus of 20 pairs of pre- and post- synaptic spikes shown in Figure 

5.4(a), i.e. synaptic weight response to twenty pre- post- synaptic spike pairs- initially 

the pre-synaptic spike follows the post-synaptic spike, and then the post-synaptic spike 

follows the pre-synaptic spike. Here, the mismatch models of the AMS 0.35 µm 

standard CMOS technology are used. It is seen from Figure 5.8 that the variability due 

to the mismatch is within the operational region of the STDP circuit. Variability is an 

inherent property of a biological system. Hence, as long as the curves follow the STDP 
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rule and are within the operating range of the synaptic weight this variability could 

possibly be exploited as an advantage in a VLSI cortical network, analogous to the 

variability of the biological synaptic weights. 

 

 

Figure 5.8 Mismatch analysis of the STDP curve (a)  Synaptic weight trace showing mean (blue 

plot) and the standard deviation(red plot) b) Variation of signal ltp and (c) ltd. 
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Figure 5.9 Layout of the (a) STDP Synapse circuit and (b) STDP circuit 

As a capacitor is used to store the synaptic weight, most common problem of this type 

of STDP circuit implementation is the continuous leakage of the synaptic weight. The 

leakage time constant of the synaptic weight is approximately 41 ms (in accelerated 

time). This value depends on the value of the weight and average value is taken. As this 

circuit operates in 103 faster accelerated-time the leakage problem has been reduced.  

5.3.3 Mathematical model of the STDP synapse circuit 

Approximated mathematical model of the STDP circuit is given below.   

Synaptic weight, w 

The weight of the synapse, w is evolving as in equation 5.4. 

/ /( ). ( ) (5.4)pre post pre post
l

w
w STDP t t tδ

τ
= − + ∆ −&  

Where τl ≈  41 ms (an approximated time constant of the leakage of weight, w due to the 

leakage of Vwstdp node in the circuit shown in Figure 5.2); ∆tpre/post=tpost - tpre. 
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STDP curve, STDP(τ) 

As seen in Chapter 5, the STDP curve can be approximated to a piecewise linear curve 

as given in equation 5.5. 
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Where, ∆wp and ∆wd can be set to a value between 0 V to 1.2 V. tlin is the start time of 

the linear region of the STDP curve, default value is 20 µs. twp and twd are time windows 

of long-term potentiation and long-term depression respectively. These can be adjusted 

to any value between 1 µs and 70 µs ( tlin  ≤  twp,twd). 

Vsyn and IEPSC of the ISYN circuit 

An intermediate state variable Vsyn is used to generate the post synaptic current, IEPSC. 

The ISYN circuits (Figure 5.3) in the CNL chip the voltage Vsynmax is connected to the 

supply voltage Vdd. The voltage Vsyn depends on the amount charge and/or discharge 

on to the capacitor Csyn. The diode connected transistor Ms4 is in saturation if the Vsyn 

is below its resting voltage (Vdd-vt). The Ms5 is assumed to be in saturation as the 

transistor Ms4 pulls the voltage Vsyn to (Vdd-vt) at a higher rate whenever Vsyn voltage 

is reduced. In the practical implementation, the Vsyn reduction due to a pre-synaptic 

spike occurs within 3 ns duration. However in the equation 5.6, the total reduction of 

Vsyn due to the pre-synaptic spike is considered as an instantaneous reduction at the 

arrival time of the pre-synaptic spike.  Therefore, the magnitude of the drain current of 

the Ms5 transistor, IMs5= 2( )d t preK w v t− ∆  considered as a rate of reduction in Vsyn 

voltage (V/s). Approximated vales of state Vsyn and IEPSC are given below. 

 

2 2( ) ( ) ( ) (5.6)syn c syn t d t pre preV K Vdd V V K w V t t tδ= − − − − ∆ −&  
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; Csyn≈ 20 fF ; VMs2gs is the gate to source voltage of the 

transistor Ms2, which is equal to (Va-Vsyn). The CMOS process parameters Cox, Vt, µn, 

and µp are gate oxide capacitance per unit area, threshold voltage of transistor, charge-

carrier effective mobility of nMOSFET, and pMOSFET respectively. From AMS 

standard 0.35 µm CMOS technology process parameters µn, µp, Cox, and  vt  value are 

370 cm2/VS, 126 cm2/VS, 4.54 fF/µm2, and  Vt,=0.5 V respectively. The user can scale 

the IEPSC current for a given value of w, using externally controllable voltage Vbp (as 

shown in Figure 6.17 in Appendix A). This controllable voltage could also be used to 

limit the maximum IEPSC. 
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5.4 Dopamine Modulated Synapse Circuit  

The DA STDP Synapse Circuit approximately implements the dynamics of the 

dopamine modulated synapse model proposed by Izhikevich (2007).  The DA 

Modulated Synapse circuit comprises of three sub-circuits: the Eligibility-Trace (ET) 

circuit, the Synaptic Strength circuit and the Synaptic Current Generator circuit; the 

circuit schematics are shown in Figure 5.10 and Figure 5.11. The DA modulated 

synapses receive DA signal from the common DA Generator Circuit shown in 

Figure 5.12.  

5.4.1 Operation of the DA Modulated Synapse Circuit  

The Eligibility-Trace circuit of the DA Modulated Synapse generates the ‘eligibility 

traces’ (ET) according to the STDP rule where the eligibility potentiates or depresses 

depending on the sequence of pre-/post- synaptic spiking activity. The Synaptic 

Strength circuit ensures strengthening or weakening of the synaptic strength (synaptic 

weight) depending on the eligibility trace and the reward which is signalled by DA. DA 

Generator circuit provides the DA signal such that its amplitude represents the 

rewarding status of the network. Finally, the Synaptic Current Generator circuit 

generates an excitatory post-synaptic current approximately proportional to square of 

the synaptic strength. Detailed description of each sub-circuit is given below. 

 

Elegibility-Trace Circuit 

The Eligibility-Trace circuit is shown in Figure 5.10 and it generates potentiating and 

depressing parts of the ET separately using two sub-circuits: Long-Term Eligibility 

Potentiation (LTEP) circuit and Long-Term Eligibility Depression (LTED) circuit. The 

design of these circuits are similar to the STDP Synapse circuit proposed in Section 5.3 

of this chapter, however complementary topology of the STDP circuit is used here. The 

capacitors Cwp and Cwd store the potentiation (Vetp) and depression (Vetd) information 

of the ET respectively. Firings of the pre- and post- synaptic neurons induce changes to 

the Vetp and Vetd, implementing the STDP rule. If the DA is present, these synaptic 

changes will result in modification of the synaptic strength, S, (produced in the Synaptic 
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Strength circuit) during the critical window of a few milliseconds (equivalent to a few 

seconds in biological time) before the Vetp and Vetd decay to zero. 

 

Figure 5.10 Eligibility-Trace circuit: (a). LTEP ci rcuit; (b). LTED circuit 

 

The signal Vpre_bar is the inverted pre-synaptic firing signal (Vpre) where as the signal 

Vpost is the post-synaptic firing signal.  Once the pre-synaptic neuron fires, the 

capacitor Cltp is charged to Vdd by switching-on the transistor M3p. The capacitor is 

then continuously discharged with a “leakage” current, through transistors M1p and 

M2p. The amount of charge removed from Cltp is approximately proportional to the 

time after the last pre-synaptic neuron firing. The maximum time duration for the 

capacitor to discharge to a voltage low enough to force the gate voltage of the transistor 

M4p to reach its cut-off region of operation is equivalent to the ‘LTP time window’. 

This is controlled by the voltage Vlkp. If a post-synaptic spike follows the pre-synaptic 

firing within the LTP time window, the LTEP circuit increases the charge in the 

capacitor Cwp by switching-on the current path through the transistors M6p, M5p and 

M4p.  The voltage Vp limits the maximum current through these transistors. The Vetp 

decays to Vdd through M7p-M8p. The speed of decay is controlled by the voltage 

Vlkwp. 

 The LTED circuit has a complementary topology to the LTEP circuit. Both outputs 

signals of the ET circuit, ETp and ETd, are provided to the Synaptic Strength circuit to 
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produce the synaptic strength change. When the pre-synaptic neuron fires, the synaptic 

strength, S, regulates the amount of post-synaptic current (PSC) injected to the post-

synaptic membrane.  

Synaptic Strength Circuit 

The Synaptic Strength circuit is shown in Figure 5.11, and it receives the 

eligibility-trace signals the ETp and ETd from the ET circuit, and the DA pulse signal, 

Vda, and its inverted signal, Vda_bar, from the DA Generator circuit. The circuit parts 

for the synaptic strength potentiation and depression, shown in Figure 5.11 (a), are 

complementary. When considering the potentiation part of the circuit, during the time 

Vda_bar is at logic low, the potential divider (transistors M1p, M3p-M4p) creates a 

potential at Vsp proportional to the Vetp voltage. The pulse width of the Vda_bar signal 

is proportional to the amount of DA. Hence, the amplitude and the width of the signal 

Vsp of the Synaptic Strength circuit carries the Vetp and DA level information 

respectively. The M6p transistor can operate either in the sub-threshold or in the linear 

range depending on the externally controlled voltage, Vsmp. If the transistor M6p (M6d) 

is biased to operate in the sub-threshold region, the charge through the M6p and M7p 

(M6d and M7d) is proportional to the product of the DA level and the exponential of the 

eligibility traces, Vetp (Vetd). Hence in this case, the net charge increase at the 

capacitor, Cs is proportional to the product of the DA-level and e(Vetp-Vetd).  

If the transistor is biased to operate in the linear region, then the charge through the 

M6p and M7p transistors (charging the capacitor Cs) is proportional to the product of 

the DA level and the Vetd voltage. The depression circuit M1d-M7d works in the same 

way to discharge the capacitor MCs. Hence the net charge increase at the capacitor, 

MCs which stores the synaptic strength, is proportional to the product of the DA-level 

and the Vetp-Vetd voltage difference. 

 

Once the pre-synaptic neuron fires, the synaptic output circuit creates a post-synaptic 

current (PSC) as a function of the synaptic strength, S. The externally controlled Vbp 

voltage limits the PSC current flow to the membrane of the post-synaptic neuron.  
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Figure 5.11 (a) Synaptic Strength circuit, (b) Synaptic Current Generator circuit. 

DA Generator Circuit 

The DA Generator circuit is shown in Figure 5.12 and it provides the DA pulse signal 

(Vda) to the DA Modulated Synapses circuit in order to update the strengths of the 

synapses. The level of extracellular DA (which is represented by the voltage Veda) is 

increased by a burst of spikes provided at the gate of the M1 transistor. This burst of 

spikes is assumed to be provided from a bursting neuron output as a consequence of the 

reward prediction clue or reward-triggering action. After the burst, the DA level decays 

towards Vdd through the transistor M3. The time constant of the decay can be controlled 

using the voltage Vlkda. The DA level is buffered to the node, Vdab using the source 

follower (M4 and M5) and is provided to the transmission gate TR1. The transmission 

gate is switched periodically using an externally controlled clock signal, Vda_clk. When 

the TR1 is ‘ON’ the parasitic capacitance at the node Vdat is charged to the voltage at 

node Vdab, and the transistors M9 and the M10 are switched ‘OFF’ and ‘ON’ 

(b) 

(a) 
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respectively. This creates the rising edge of the DA pulse (Vda). Then the parasitic 

capacitor is discharged through the transistors M6 and M7. The speed, at which this 

capacitor is discharged, is controlled by the voltage Vlk. If the Vlk is kept at a fixed 

voltage, the time taken to discharge the capacitor such that the transistors M9 and the 

M10 are switched ‘ON’ and ‘OFF’ respectively, is approximately proportional to the 

level of DA (Veda).  Therefore, the pulse width of the Vda signal is proportional to the 

DA level. The buffer at the output is used to provide faster rise and fall times for the 

Vda signal.  

 

Figure 5.12 DA Generator Circuit of DA modulated synapses. 

 

5.4.2 Simulation results 

The DA Modulated circuit is simulated in a standard 0.35 µm CMOS technology and 

results are presented in Figure 5.13 to Figure 5.17.  This synapse is designed and 

fabricated such that it can be configured to work as a DA modulated synapse or as a 

STDP synapse without the DA modulation. The Figure 5.18 shows the layout of the 

configurable STDP/DA-STDP Synapse circuit.  

Figure 5.13 and Figure 5.14 show the STDP curves generated from the Eligibility Trace 

circuit shown in Figure 5.10.  The STDP curves can be adjusted using control voltages 

Vp, Vd, Vlkp, and Vlkd. Figure 5.13 (a) and (b) shows the effect on the magnitude of 

changes to the voltage Vetp (∆Vetp) and the Vetd (∆Vetd) when Vp and the Vd is varied 

respectively. Figure 5.13 (a) and (b) shows how LTP and LTD time windows can be 
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varied by varying the voltages Vlkp and Vlkd respectively. It should be noted that ∆Vetp 

and ∆Vetd also depend on the value of Vetp and Vetd respectively; the plots in Figure 

5.13 and Figure 5.14 are generated when the Vetp and Vetd are at their mid values. 

 

 

Figure 5.13  STDP curves generated using the ET circuit; Plots show the changes to the Vetp and 

Vetd as a function of a time interval between pre- and post-synaptic spike; ∆Vetp curves with 

variation of control voltages (a) Vp, and (b) Vlkp. 

 

Characteristics of the Synaptic Strength Circuit (Figure 5.11) are shown in Figure 5.15. 

The amount of change in strength (∆S) is plotted as a function of Vetp/Vetd value and 

Vdap pulse width for a single update of strength. The frequency of update can be set by 

changing the DA clock frequency (using the Vda_clk). Further, the amount of increase 

(a)

(b)
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or decrease in S per single update, for various Vetp and Vetd values can be changed 

independently by tuning Vsmp and Vsmd values respectively. The amount of change in 

S also depends on the actual value of S, the plots are shown for a mid-value of S= 1V. 

The Figure 5.15 shows that the change in synaptic strength is dependent both on the 

eligibility trace value and DA level, similar to the product in Equation 5.2.   

 

 

 

 

 Figure 5.14  STDP curves generated using ET circuit; Plots show the changes to the Vetp and Vetd 

as a function of a time interval between pre- and post-synaptic spike; ∆Vetd curves with variation of 

control voltages (c) Vd and (d) Vlkd. 

(a)

(b)
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Figure 5.15  Changes in synaptic strength S for different (a) Vetd and Vda pulse widths, (b) Vetp 

and Vda pulse widths. 

Figure 5.16 shows the waveforms of the responses of Vda, synaptic strength (S), the 

internal voltages of the Synaptic Strength circuit, Vsd, Vsp to a given sinusoidal inputs 

of Vdea, ETp and ETd.  Periodically, high amplitude eligibility potentiation input is 

provided to the Synaptic Strength circuit than that of the eligibility depression input, 

while slowly varying the DA (Veda) level provided to the DA Generator circuit. It is 

seen that the strength of the synapse is increased when higher Vetp value and the DA 

pulse (Vda) are present. It is seen that the DA pulses are generated by the DA Generator 

circuit when the Veda is at a higher value (i.e. where the eDA node voltage of the DA 

Generator circuit is at a lower value). 
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Figure 5.16  Responses of the Synaptic Strength circuit; (a) Top to bottom graphs: Veda, Vwp and 

Vwd  sinusoidal inputs provided to the DA Generator circuit and the Strength circuit; (b) Top to 

bottom graphs: Vda pulses, synaptic strength S and internal voltages of the Synaptic Strength 

circuit, Vsd and Vsp responses the sinusoidal inputs given in (a). 

 

 

 

 

 

 

 

 

 

Figure 5.17 Variation of the DA pulse width with respect to the DA level (Veda) generated from the 

DA generator circuit shown in Figure 5.12; four graphs correspond to four process corners: Worst 

Speed (WS), Worst Power (WP), Worst Zero (WZ) and Worst One (WO). 
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The DA Generator circuit generates the Vdap pulse widths proportional to the DA level. 

The variation of the Vdap pulse width with respect to the DA level (Veda) is shown in 

Figure 5.17 for the four worst case process corners: worst speed (WS), worst power 

(WP), worst zero (WZ) and worst one (WO).  This illustrates that the DA generator 

circuit produces at least 0.3 µs pulse width difference for the maximum and minimum 

DA levels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18 Changes to Vetp, Vetd and synaptic strength S when post-synaptic spike (Vpost) follows 

pre-synaptic spike (Vpre) and pre-synaptic spike follows post-synaptic spike. 

 

Figure 5.18 shows the effect on Vetp, Vetd, and  S when pre-synaptic spike follows the 

post-synaptic spike and the post-synaptic spike follows the pre-synaptic spike, while 

bursting (repeating four spike with higher inter burst frequency) spike train of DA pulse 

signal is given to the DA Generator circuit to increase the DA level of the synapse. 
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Figure 5.19 Layout of the (a) Synaptic Strength circuit, (b ) STDP circuit, and (c) DA Generator 

circuit. 

 

5.5 Discussion and Conclusion 

Circuit implementations of a STDP synapse and a Dopamine modulated STDP synapse 

are presented in this chapter. The dopamine-modulated synapse circuit implements a 

model similar to the one proposed in Izhikevich (2007), where eligibility traces are used 

to provide the dynamics required to facilitate the learning of synaptic strength based on 

spike-time-dependent plasticity rule and a distal reward signal. The circuit has 

applications in VLSI implementations of biologically-plausible neural networks. 

To prove the concept in hardware the STDP/DA Neuron chip and the CNL chip have 

been fabricated in a standard 0.35 µm CMOS technology. The STDP/DA Neuron chip 

contains 28 STDP and DA modulated STDP synapses with a DA generator circuit, and 

two cortical neuron circuits. The size of the synapse cell layout is 26 µm x 50 µm and 

(a) (b) 

(c) 
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these synapses can be configured to work as DA modulated synapse or as a STDP 

synapse without the DA modulation. The experimental results obtained from the chip 

are given in Chapter 8. The configurable synapse circuit typically consumes between 2 

µW and 5 µW power at Vpre and Vpost synaptic spike rates of 200 kHz (i.e high neural 

activity level), but it could be as high as 40 µW, depending on the synapse state, 

parameters and spike rates. The DA Generator circuit, which is shared by many 

synapses, consumes up to 600 µW of power (worst case). 

 

Figure 5.20 Leakage of the synaptic weight of the STDP circuit: in Spice circuit simulation (red 

curve) and 41s time constant decay plot (blue curve). 

As a capacitor is used to store the synaptic weight, most common problem of the STDP 

circuit implementation is the continuing leakage of the synaptic weight. However, in 

DA modulation synapse this effect is used to an advantage as the eligibility leakage is a 

requirement (as per in Equation 5.1). In the STDP synapses, this influences the 

dynamics of longer time simulations, however, as the circuits operate in 103 faster time 

scale this effect is less detrimental than in biological real time VLSI synapse 

implementations (Indiveri, 2003). The leakage of the synaptic weight is equivalent to 

approximately 40 seconds time constant in biological time. Figure 5.20 shows the 

weight change due to leakage of the capacitor in equivalent biological time scale. 
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Although this value depends on the value of the weight, highest weight leakage value, 

corresponding to highest synaptic weight, is taken for the purpose of arriving at the 

highest leakage. The leakage effect can be minimised by providing a regular artificial 

spike pair (pre- and post- synaptic spikes) to compensate the leakage.  

It is seen that the circuit variability due to the mismatch is within the operational region. 

All the curves obtained from the Monte Carlo simulation follow the STDP rule and are 

within the operating range of the synaptic weight. This variability could possibly be 

exploited as an inherent property of a VLSI cortical network that is analogous to the 

variability of the synaptic weights in biological systems.  
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CHAPTER 6 :  SHORT-TERM DYNAMIC SYNAPSE 

CIRCUITS 

The chapter propose inhibitory and excitatory synapse circuits that have either 

facilitating or depressing short-term synaptic dynamics. In arriving at these synapse 

circuits, the basic properties of short-term dynamics of the computational neural model 

by Abbott et al. (1997) is used as a guide to arrive at a phenomenological model that 

implements compact VLSI circuit with suitable plasticity rules. Hence, the initial 

section introduces the computational neural model by Abbott et al. (1997). Simplified 

mathematical formulation of facilitating or depressing dynamics used in the synapse 

circuit models are given in Section 6.2, which is the approximated dynamics used for 

implementing short-term dynamics of the proposed synapse circuits. 

These synapse circuits have been implemented in a standard 0.35 µm CMOS 

technology. The circuit operation and the simulation results of these circuits are 

presented in this chapter. In practical implementation, these short-term dynamic 

plasticity rules can be switched off or switched on, by biasing using appropriate 

voltages, as discussed in the circuit operation Section 6.3.  

The neurons that excite other neurons are called excitatory neurons, and these neurons 

are equipped with excitatory synapses. Similarly, the inhibitory neurons inhibit 

connected neurons using inhibitory synapses.  Having inhibitory and excitatory neurons 

in a network can provide stable network activities. The synaptic facilitation and 

depression of synapses in a network provide a dynamic gain-control mechanism. A 

single neuron in the cortex receives approximately 10 000 synaptic inputs, where each 

input could have a wide variety of different spike rates ranging from less than 1 Hz to 

more than 200 Hz (Abbott et al., 1997). Hence, the information carried by a slowly 

firing input synapse may be ignored by random fluctuations in the activity of a synapse 

firing at high rates. This is avoided by having depressing synapses that effectively 

decrease the gain of high-rate firing as compared with slowly firing inputs (Abbott et 

al., 1997).  Further, the continuously firing facilitating synapse on a network could 

become dominant over the other rest of the inputs to the neuron (e.g. continuous spike 

train to an inhibitory facilitating synapse could be silence the activities of the post-

synaptic neuron). Though these dynamics are important properties to have in a cortical 
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network, none of the network implementations discussed in Chapter 3 includes the 

depressing and facilitating synapses. 

In addition to the other circuits, the four types of synapses presented in this Chapter are 

used in the fabricated CNL IC presented in Chapter 9. The operations of these four 

types of synapses are similar and the mathematical model of one of the VLSI short-term 

synapse circuit is presented in Appendix A. 

6.1 The Abbott Model of the Short-Term Synaptic Plasticity 

In the Abbott et al. (1997) model, the product of the maximum conductance (sg ), 

fraction of open post-synaptic channels (Ps), and fraction of pre-synaptic sites that are 

releasing a neurotransmitter (Prel) is used to obtain the synaptic conduction (gs) as 

shown in equation 6.1. The factor Prel incorporates the facilitating or depressing effect 

on the short-term dynamics. The facilitating synapse can be modelled as the pre-

synaptic process that alters the Prel shown in equation 6.2. The fF controls the degree of 

the facilitation (0 ≤ fF ≤ 1). Similarly, depression is modelled as shown in equation 6.3 

and the fD controls the degree of depression (0 ≤ fD ≤ 1). The Prel decays exponentially 

with a time constant τP, aiming at the ‘resting’ level P0. 

(6.1)s s s relg g P P=  

0

 for facilitating synapse
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Where tpre is the arrival time of the pre-synaptic spike; ( )tδ  is the Dirac-delta function; 

fF and fD controls the degree of facilitation and depression (with 0 ≤fF, fD ≤ 1) 

respectively.  

Other important computational models of short-term dynamics include Thomson et al. 

(2007) that uses a similar approach as of Abbott et al. (1997), and Tsodyks et al. (2000). 

The Tsodyks et al. (2000) proposed detail mathematical model that model the interplay 
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between recovered, active, and inactive states of synaptic resources to closely fit the 

experimental data of synaptic plasticity and depression. However, the model proposed 

in Abbott et al. (1997) is a very descriptive simple set of mathematical equations that 

can be used abstract the qualititative behaviour of the depression and facilitation 

dynamics to design a silicon area efficient synapse circuits.  

6.2 A Simplified Model of Short-Term Dynamics 

Abbortt et al. (1997) short-term dynamic synapse model (facilitating and depressing 

dynamics) has been simplified to provide a model that is implemented in hardware. In 

order to understand the circuits and their mathematical formulations better, these 

generic facilitation and depression parameters used in the circuit description are 

elaborated here. The pictorial representations of these parameters are given in Figure 

6.1. In the circuit implementations, the synaptic weight change are considered instead of 

referring to the synaptic conductance as in the case of Abbott’s model (It is the 

parameter that regulates the post-synaptic current injection). Hence, sg and s s ralg P P are 

resting weight (wrd or wrf) and the instantaneous weight (w) of the synapse, 

respectively. The amount of spike-induced facilitation ( (1- ) ( - )s s F rel preg P f P t tδ ) or 

depression ( (1- ) ( - )s s D rel preg P f P t tδ ) is qualititatively modelled with the weight 

dependent wf∆  (degree of facilitation) and wd∆  (degree of depression) respectively. 

Here, the Ps of the Abbott’s model that generates the shape of the post-synaptic 

conduction is not considered as the post-synaptic current injection is implemented 

simply as a short current spike of a few nanoseconds of duration and the location of the 

synapse on the dendritic tree is not modelled (however, some morphological effect of 

the dendritic trees are considered in designing the neuron circuit presented in Chapter 

4).  Furthermore, rather than decaying the weight to the resting weight exponentially, a 

linearly decaying is used. The dynamic gain-control mechanism implemented on 

hardware consider only the facilitating and depressing effects in the similar range of 

magnitude and time as that of the computational model, and although they may be 

important, the finer details are not modelled to reduce the transistor count of the 

implemented circuit. The generic discrete mathematical equations of facilitating and 

depressing dynamics are given in equations 6.4 and 6.5 respectively. 

Weight (w) of the facilitating synapse, wf   evolves as follows, 
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Where, t∆ is the time step, wrf is the resting weight of the facilitating synapse, wf∆ is 

the degree of facilitation, andw fα∆  the step decay, providing recovery towards the 

resting weight, wrf; these can be set externally. wfmax is the maximum value of the 

facilitated weight. 

Weight (w) of the depressing synapse, wd evolves as given below, 

{ }
{ }
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( ) (6.5)

min ( ) , otherwise

d d
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d d
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+ ∆

 

Where, wrd is the resting weight of the depressing synapse, wd∆ is the degree of 

depression, and w dα∆  the step decay, aiming the resting weight, wrd; these can be set 

externally. wdmin is the minimum value of the depressed weight. 

 

Figure 6.1 (a) Facilitation, (b) Depression dynamics of the synapse to the pre-synaptic spike train 

shown in (c). 
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6.3 Synapse Circuits and Their Operations 

This section provides circuits of the proposed Excitatory Depressing Synapse (EDS) 

circuit, Inhibitory Facilitating Synapse (IFS) circuit, Inhibitory Depressing Synapse 

(IDS) circuit, and Excitatory Facilitating Synapse (EFS) circuits and their operation. In 

obtaining a different combination of excitatory or inhibitory, and facilitation or 

depression dynamics, same basic circuits and their complementary circuits are used with 

different source follower circuits. Therefore, the EDS circuit is presented in detail and 

other synapse circuits and their implementations are summarised. 

Approximate mathematical equations of the EDS circuit are given in Appendix A. 

6.3.1 Excitatory Depressing Synapse (EDS) – Circuit  

The EDS circuit is shown in Figure 6.2. The circuit comprises of Excitatory Weight 

Depressing circuit and Excitatory Synaptic Current Generator circuit as shown in Figure 

6.2 (a) and (b) respectively.  

 

Figure 6.2  Excitatory Depressing Synapse circuit; (a) Excitatory Weight Depressing circuit, (b) 

Excitatory Synaptic Current Generator (EX-ISYN) cir cuit.  
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6.3.1.1 Operation of the EDS circuit 

The circuit in Figure 6.2 (a) mimics the short-term depression dynamics of a synapse 

and produces depressing synaptic weight to the EX-ISYN circuit to generate the 

synaptic current, when a pre-synaptic spike (Pre) arrives.  The depressing weight of the 

synapse, w (i.e. wd in equation 6.5), is represented by the voltage at the node Vw with 

reference to Vdd. It can have a value between the resting weight of the synapse (wrd), 

and the zero voltage (wdmin) depending on the short-term neural activity of the pre-

synaptic neuron. The Vw follows the voltage across the capacitor Cw with an off-set 

(Voffsp2) as the source follower circuit (transistors M8-M9) buffers the voltage across 

the capacitor on the node Vw. 

The pre-synaptic spike is signalled by a short pulse on the Pre input signal, and its 

inverted signal is Pre-bar. Once the pre-synaptic neuron fires, finite charge, ∆q is added 

to the capacitor Cw through the transistors M4 and M5. Consequently, the weight w is 

depressed. The externally controllable gate voltage, V∆wp controls the amount of ∆q 

charge added to the capacitor (i.e. the degree of depressing of the synapse). Depending 

on the chosen operating range of V∆wp, the amount of charge added can also depend on 

the weight of the synapse (when the transistor M5 is in the linear region).  The current 

mirror circuit (transistors M1, M2 and M6) continuously discharges the capacitor 

towards the voltage Vwrp_buf. The source follower circuit (transistors M3 and M7) 

buffers the voltage Vwrp onto the Vwrp_buf node. So that Vwrp_buf = Vwrp+Voffsp1. 

Hence, the resting weight (wrd) can be set by the externally controlled bias voltage 

Vwrp (as the wrd = Vdd - wrp - Voffsp1- Voffsp2). Due to the source follower circuit, 

the externally provided voltage node wrd draws negligible current. Therefore, the 

synapses that have the same resting weight can be easily provided to with a common 

reference voltage. The rate of discharge towards the w to resting weight (i.e. the degree 

of recovery of the depressing synapse) is controlled by the gate voltage of transistor M1, 

Vαp. By biasing the voltage V∆wp to the supply voltage Vdd, the depressing synaptic 

dynamics can be switched off completely, and the synapse can be use as a simple 

weight dependent excitatory synapse.  

When the pre-synaptic spike arrives at the gate of transistor Ms3 of the EX-ISYN circuit 

shown in Figure 6.2 (b), the circuit generates an excitatory post-synaptic current (iEPSC) 

approximately proportional to the square of the synaptic weight. The iEPSC current for a 
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given value of w, can be scaled using externally controllable voltage Vbp, as shown in 

Figure 6.17 in Appendix A. The Vbp could also be used to limit the maximum iEPSC, 

depending on the operational region of the Ms1 transistor (higher tuning values of Vbp 

as seen in Figure 6.17(a) in Appendix A). 

In summary, to configure the short-term dynamics of the excitatory depressing synapse 

V∆wp (controls the degree of depressing of the synapse), Vwrp (sets the resting weight 

of the synapse), Vαp (controls the degree of recovery of the depressing synapse) and 

Vbp (scale the value of the iEPSC or set the maximum cut-off value for iEPSC) can be set 

externally. The Vbiasp and VLSp are used to bias the source follower circuits.   

6.3.2 Inhibitory Facilitating Synapse (IFS) – Circuit 

The IFS circuit comprises of Inhibitory Weight Facilitating circuit and Inhibitory 

Synaptic Current Generator (IN-ISYN) circuit as shown in Figure 6.3 (a) and (b) 

respectively.  

 

 

 

Figure 6.3 Inhibitory Facilitating Synapse circuit; (a) Inhibitory Weight Facilitating, (b) Inhibitory  

Synaptic Current Generator (IN-ISYN) circuit.  
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6.3.2.1 Operation of the IFS circuit 

The circuit in the Figure 6.3 (a) is designed by adding two n-type source follower 

circuits as an output level-shifter to the output of the Figure 6.2 (a) instead of the p-type 

output source follower circuit (the dotted box in Figure 6.3(a); the circuit description is 

given in Section 6.3.1.1). However, the Vw output of the IF circuit is treated as a non-

inverted synaptic weight (referenced to zero voltage) rather than inverted (referenced to 

Vdd voltage as in the EDS circuit). Consequently, depressing dynamics of Figure 6.2 (a) 

in the EDS circuit become facilitating dynamics. The two NMOS source follower 

circuits (M8-M9 and M10-M11) are used to shift the output voltage, Vw, to a lower 

voltage range to generate the required inhibitory current value. The shifted voltage is 

then given to the gate of transistor Ms2 of the IN-ISYN circuit to generate inhibitory 

post-synaptic current.  

When the pre-synaptic spike arrives at the gate of transistor Ms1 of the IN-ISYN circuit 

shown in Figure 6.3 (b), the circuit generates an inhibitory post-synaptic current 

approximately proportional to the square of the synaptic weight, w. The external control 

biasing voltage Vbn can be used to scale the inhibitory post-synaptic current or to limit 

the maximum current value of the inhibitory post-synaptic current. 

In summary, V∆wp (controls the degree of facilitating of the synapse), Vwrp (sets the 

resting weight of the synapse), Vαp (controls the degree of recovery of the facilitating 

synapse) and Vbn (scale the value of the iIPSC or sets maximum cut-off value for i IPSC) 

can be set externally. The Vbiasp and VLSn are used to bias the source follower circuits.   

6.3.3 Inhibitory Depressing Synapse (IDS) – Circuit   

The IDS circuit is shown in Figure 6.4, it comprises of Inhibitory Weight Depressing 

circuit and Inhibitory Synaptic Current Generator (IN-ISYN) circuit as shown in Figure 

6.4 (a) and (b) respectively.  



 97 

 

 

 

Figure 6.4 Inhibitory Depressing Synapse circuit; (a) Inhibitory Weight Depressing, (b) Inhibitory 

Synaptic Current Generator (IN-ISYN).  

6.3.3.1 Operation of the IDS circuit 

The circuit shown in Figure 6.4 is the complementary circuit of the EDS circuit. Hence 

the circuit shown in Figure 6.4 (a) mimics the approximated synaptic weight dynamics 

of a short-term depressing synapse, functionally same as the circuit shown in Figure 6.2 

(a) of the EDS circuit. However, as these two circuits are complementary, the circuit 

shown in Figure 6.4 (a) produces a non-inverted synaptic weight output in contrast to an 

inverted in circuit in Figure 6.2 (a). This non-inverted output from ID circuit is provided 

to the IN-ISYN circuit to generate an inhibitory post-synaptic current. Usage of 

complementary circuit to generate a non-inverted synaptic weight minimises the power 

and the number of transistors used in the inhibitory depressing synapse than using the 

circuit shown in Figure 6.2 (a) with an analogue inverter circuit.  

The IN-ISYN circuits operation is given in IFS Section 6.3.2.1 

Similar to EDS circuit the short-term dynamics of the inhibitory depressing synapse are 

configured using control voltages V∆wn (controls the degree of depressing of the 

synapse), Vαn (controls the degree of recovery of the depressing synapse), Vwrn (sets 

the resting weight of the synapse), and Vbn (scales the value of the i IPSC or set the 

maximum cut-off value for i IPSC) can be set externally. The Vbiasn is a fixed biasing 
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voltage used for the source follower (M3 and M7 transistor) circuit. The VLSn is used to 

bias the source follower (M8 and M9 transistor) circuit.   

6.3.3.2 Additional IDS circuit implementation – Somatic IDS 

In the circuit implementation discussed in Chapter 9 additional IDS circuit called 

“somatic IDS” has been implemented as shown in Figure 6.5. This synapse circuit is 

used to provide a high depressed weight to the same bias voltage value that sets the 

resting weight of the synapse and consequently the higher inhibitory post-synaptic 

current. This can be considered to model an inhibitory depressing synapse that connects 

directly to cell body (soma) since such synapses produce higher inhibition to the same 

input spike train than distal inhibitory depressing synapses. In using this circuit 

arrangement, the same tuning parameters (including the bias voltage that set the resting 

weight value) used for IDS circuit described above can be used, so that the there is no 

requirement for extra external bias voltages.   

 

 

 

Figure 6.5 Somatic Inhibitory Depressing Synapse circuit; (a) Somatic Inhibitory Weight 

Depressing, (b) Inhibitory Synaptic Current Generator (IN-ISYN).  

 

The Somatic IDS circuit is same as the circuit shown in Figure 6.4 (a) without output 

source follower circuit (M8-M9). As there is no level-shifting to reduce the weight of 
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the synapse, w, Somatic-IDS has higher weight and hence provides high inhibitory post-

synaptic current when a pre-synaptic spike fires. Somatic IDS equations for synaptic 

weights and inhibitory post-synaptic current equations are the same as the equations for 

IDS except that the Voffsn2 is not subtracted from wrd and Vw (wd) as in the IDS 

equations. 

6.3.4 Excitatory Facilitating Synapse (EFS) – Circuit  

The EFS circuit comprises of Excitatory Weight Facilitating circuit and Excitatory 

Synaptic Current Generator (EX-ISYN) circuit as shown in Figure 6.6 (a) and (b) 

respectively.  

 

Figure 6.6 Excitatory Facilitating Synapse circuit; (a) Excitatory Weight Facilitating circuit, (b) 

Excitatory Synaptic Current Generator (EX-ISYN) cir cuit.  

6.3.4.1 Operation of the EFS circuit 

The circuit shown in Figure 6.6 (a) essentially the same as the circuit shown in 

Figure 6.4 (a) circuit, however it uses two pMOSFET source follower circuits (M8-M11 

and M10-M11) as an output level-shifter instead of having single nMOSFET source 

follower.  

Similar to IDS circuit the short-term dynamics of the EFS are configured using control 

voltages: V∆wn (controls the degree of facilitation of the synapse), Vαn (controls the 

degree of recovery of the synapse), Vwrn (sets the resting weight of the synapse), and 
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Vbp (scale the value of the iEPSC or set the maximum cut-off value for iEPSC) can be set 

externally. The Vbiasn and VLSp are used to bias the source follower circuits.   
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6.4 Simulation Results of the Synapse Circuits  

This section provides simulation results of the proposed Excitatory Depressing Synapse 

(EDS) circuit, Inhibitory Facilitating Synapse (IFS) circuit, Inhibitory Depressing 

Synapse (IDS) circuit, and Excitatory Facilitating Synapse (EFS) circuits. These 

synapses are simulated in standard 0.35 µm CMOS technology.  

6.4.1 Excitatory Depressing Synapse - Simulation Results  

The simulation results of Excitatory Weight Depressing circuit are given in Figure 6.7 

and 6.8.  

In order to demonstrate the weight depression, the behaviour of the circuit for different 

values of the main tuning parameters that configure the short-term dynamics of the 

excitatory depressing synapse, is simulated. An input pre-synaptic spikes (Pre) signal 

consisting of a 4 ms burst of spikes at 10 kHz rate, followed by no spike activity is used.  

Figure 6.7 (a) shows the variation of Vw (depressed weight wd = Vdd - Vw) for seven 

values of V∆wp starting from 2.3 V (higher degree of depression) to 3 V (low degree of 

depression).  It is observed from the seven graphs that the variable degree of depression 

can be obtained by controlling the voltage V∆wp appropriately. The mid range of the 

parameter are plotted here however, it is also possible configure the circuit to fully 

depress for a single pre-synaptic spike if lower V∆wp value is used. Similarly, Figure 

6.7 (b) shows the variation of Vw for different values of Vαp starting from 2.74 to 

2.78 V.  It is observed that higher to lower linear degree of recovery can be obtained by 

controlling the narrow range of voltage Vαp appropriately. Figure 6.7 (c) shows the 

variation of Vw for six mid range values of Vwrp starting from 1.6 V (corresponds to 

lower resting weight) to 0.6 V (corresponds to higher resting weight). Hence, it is 

observed from the graphs that higher to lower resting weight can be obtained by 

controlling the voltage Vrwp appropriately.  

The circuit has been simulated to observe the weight depression of the EDS circuit 

resulting from different pre-synaptic input frequencies. The Vw for pre-synaptic input 

spike trains with different inter-spike intervals (ISI) starting from 10 µs to 300 µs are 

shown in Figure 6.8. It is seen that the lower ISI (i.e. high frequency pre-synaptic input) 

produces higher and quicker depression than the higher ISI. 
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Figure 6.7 Simulated EDS circuit dynamics; Variation of Vw to a different values of control 

voltages a) degree of depression V∆wp (labelled as VXD), b) degree of recovery Vαp (labelled as 

TDecP), and c) resting weight of the synapse Vwrp (labelled as WXD) the pre-synaptic input is a 4 

ms burst of 10 kHz spikes followed by a silent period; instantaneous synaptic weight is wd=Vdd-Vw, 

Vdd=3.3 V. 

 

Figure 6.8 The response (Vw) of EDS circuit to 4 ms pre-synaptic input spike train with different 

inter-spike intervals (period) followed by a 4 ms of silent period. 
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6.4.2 Inhibitory Facilitating Synapse - Simulation Results  

The simulation results of the Inhibitory Weight Facilitating circuit are shown in Figure 

6.9 to 6.10.  

Similar to EDS circuit, in order to demonstrate the effect on the faciliting weight (w), 

different values of the main tuning parameters that configure the short-term dynamics of 

the IFS V∆wp (controls the degree of facilitation), Vαp (controls degree of recovery), 

and Vwrp (sets the resting weight of the synapse) are simulated. An input pre-synaptic 

spikes (Pre) signal consisting of a 4 ms burst of spikes at 10 kHz rate, followed by no 

spike activity is used. 

Figure 6.9 (a) shows the variation of Vw (w) for eight values of V∆wp starting from 2.3 

V (lower degree of facilitation) to 3 V (higher degree of facilitation). It is also possible 

configure the circuit to fully facilitate from a couple of pre-synaptic spikes if a higher 

V∆wp value is used. Similarly, Figure 6.9 (b) shows the variation of Vw for different 

values of Vαp starting from 2.74 V (higher degree of recovery) to 2.77 V (low degree of 

recovery).  Figure 6.9 (c) shows the variation of Vw for six mid range values of Vwrp 

starting from 1.6 V (corresponds to higher resting weight) to 0.6 V (corresponds to 

lower resting weight).  

The circuit has been simulated to observe the facilitation effect of the IFS circuit to 

different pre-synaptic input frequencies. The Vw for pre-synaptic input spike trains with 

different inter-spike intervals (ISI) starting from 10 µs to 300 µs are shown in Figure 

6.10 It is seen that the lower ISI (high frequency pre-synaptic input) produces higher 

and quicker depression than for the higher ISI. 
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Figure 6.9 IFS dynamics; Variation of weight of the synapse (Vw) to a different values of control 

voltages a) degree of facilitation (V∆wp) (labelled as VXD) , b) degree of recovery (Vαp) (labelled as 

TDecP), and c) resting weight (Vwrp) (labelled as WXD) when a pre-synaptic input of 4 ms of 10 

kHz spikes followed by a silent period is provided. 

 

 

Figure 6.10 Responses Vw of IFS circuit to 4 ms pre-synaptic input spike train with different inter-

spike intervals (period) followed by a 4 ms of silent period. 
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6.4.3 Inhibitory Depressing Synapse - Simulation Results  

The IDS circuit has been simulated and the simulation results are shown in Figure 6.11 

to 6.13.  

The effect on the depressed weight, w for different values of the main tuning parameters 

that configure the short-term dynamics of the inhibitory depressing synapse are 

simulated and the results are shown in Figure 6.11.  

 Figure 6.11 (a) shows the variation of synaptic weight (Vw) for six values of mid-range 

V∆wn voltages starting from 1 V (corresponds to higher degree of depression) to 0.53 V 

(corresponds to low degree of depression).  

 It is observed from the six graphs that higher to lower degree of depression can be 

obtained by controlling the voltage V∆wn appropriately. However, it is also possible 

configure the circuit to fully depress for a single pre-synaptic spikes if higher V∆wn 

value is used. Figure 6.11 (b) shows the variation of synaptic weight for different values 

of Vαn starting from 0.415 V (corresponds to low degree of recovery) to 0.44 V 

(corresponds to high degree of recovery).  Figure 6.11 (c) shows the variation of 

synaptic weight for five mid range values of Vwrn starting from 2.1 V (corresponds to 

lower resting weight) to 3.2 V (corresponds to higher resting weight).  

Figure 6.12 shows IDS’s inhibition with depressing effect on the neural activity of a 

neuron when the IDS synaptic current plus a 0.1 µA continuous synaptic current 

stimulus are given to a post-synaptic neuron which is configured to RS type.  The pre-

synaptic input to the IDS is a repetition of the stimulus that has a 10 kHz spike train for 

4 ms followed by a silent period of 4 ms.  It is seen that the effect of continuous input 

spike train on the inhibitory depressing synapse could become less significant on the 

post-synaptic activities thereby other synaptic input sources responses are not silence 

due to the continues spiking activity of the inhibitory depressing synapse (In a network, 

this leads to dynamic gain-control mechanism depending on the input pattern of the 

synapses).   

The circuit has been simulated to observe the weight depression of the IDS circuit to 

different pre-synaptic input frequencies. The depressing synaptic weight change for pre-

synaptic input spike trains with different inter-spike intervals (ISI) starting from 10 µs 
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to 300 µs are shown in Figure 6.13. It is seen that the lower ISI (high frequency pre-

synaptic input) produces higher and quicker depression than for the higher ISI. 

 

Figure 6.11 IDS dynamics; Variation of synaptic strength, w (Vw) to a different values of a) degree 

of depression control voltage, V∆wn (labelled as VID) b) degree of recovery control voltage, Vαn 

(labelled as TDecN), and c) Vwrn (labelled as VWdep) resting voltage control voltage when a pre-

synaptic input of 4 ms of 10 kHz spike train followed by a 4 ms of silent period is provided. 
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Figure 6.12 IDS synapse inhibiting RS neural activity; a) Synaptic weight, w generated to a pre-

synaptic input of a repetition of the stimulus that has a 10 kHz spike train for 4 ms followed by a 

silent period of 4 ms, b). Neuron’s RS spike activity has depressing inhibition effect due to 

depressing synapse, the neuron is configured to RS and an extra stimulus of 0.1 µA of constant pre-

synaptic current is given.  

 

Figure 6.13 Distal-IDS’s w responses to 4 ms pre-synaptic input spike train with different inter-

spike intervals (period) followed by a 4 ms of silent period. 

 

6.4.4 Excitatory Facilitating Synapse - Simulation Results 

EFS circuits simulation results are shown in Figure 6.14 to 6.16.  

The effects on the facilitating weight, w (Vdd-Vw) for different values of the main 

tuning parameters that configure the short-term dynamics of the excitatory facilitating 

synapse are simulated and the results are shown in Figure 6.17.  

Figure 6.14 (a) shows the variation of Vw for six values of mid-range V∆wn voltages 

starting from 1 V (corresponds to higher degree of facilitation) to 0.5 V (corresponds to 

b) 

a) 
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low degree of facilitation).  However, it is also possible configure the circuit to fully 

facilitate from a single pre-synaptic spikes if higher V∆wn value is used. Figure 6.14 (b) 

shows the variation of Vw for different values of Vαn starting from 0.42 V (corresponds 

to low degree of recovery) to 0.45 V (corresponds to high degree of recovery).  

Figure 6.14 (c) shows the variation of Vw for five mid range values of Vwrn starting 

from 1.8 V (corresponds to higher resting weight) to 3 V (corresponds to lower resting 

weight).  

Figure 6.15 shows EFS’s excitation with facilitation effect on the neural activity of a 

neuron when the EFS’s synaptic current is given to a post-synaptic neuron which is 

configured to RS type.  The pre-synaptic input to the EFS is a repetition of the stimulus 

that has a 10 kHz spike train for 4 ms followed by a silent period of 4 ms.  It is seen that 

the effect of continues input spike train on the excitatory facilitating synapse could 

become more significant on the post-synaptic activities thereby other synaptic input 

sources responses could be ignored due to continues spiking activity of the inhibitory 

facilitating synapse. 

The circuit has been simulated to observe the weight facilitation of the EFS circuit to 

different pre-synaptic input frequencies. The facilitating synaptic weight change for pre-

synaptic input spike trains with different inter-spike intervals (ISI) starting from 10 µs 

to 300 µs are shown in Figure 6.16. It is seen that the lower ISI (high frequency pre-

synaptic input) demonstrate higher and quicker facilitation than for higher ISI. 
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Figure 6.14 EFS dynamics; Variation , Vw (=Vdd-Vw) to a different values of a) degree of 

facilitating  control voltage, V∆wn (labelled as VID) b) degree of recovery control voltage, Vαn 

(labelled as TDecN),  and c) Vwrn (labelled as VWdep) resting voltage control voltage when a pre-

synaptic input of 4 ms of 10 kHz spikes followed by a 4 ms of silent period is provided. 

 

Figure 6.15 EFS synapses post-synaptic neural activity; a). Neuron’s spike activity generated from 

a facilitating synaptic strength, w shown in b); b) Synaptic strength, w generated to a pre-synaptic 

input of a repetition of the stimulus that has a 10 kHz spike train for 4 ms followed by a silent 

period of 4 ms. 
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Figure 

6.16 EFS’s Vw responses to 4 ms pre-synaptic input spikes with different inter-spike intervals 

(period) followed by a 4 ms of silent period. 

6.5 Discussion and Conclusion 

Compact implementations of the Excitatory Depression, Inhibitory Facilitating, 

Inhibitory Depression and Excitatory Facilitating synapse circuits are proposed in this 

chapter.  These synapse circuits have been fabricated in the Cortical Neural Layer 

(CNL) chip, and the detailed implementation description can be found in Chapter 9. The 

mathematical models of these synapses are formulated to be used in the simple 

approximated mathematical model of the CNL chip discussed in Chapter 9. 

The presented circuits demonstrate depressing and facilitating dynamics qualititatively 

similar to the computational model proposed by Abbott et al. (1997), while making 

approximation to achieve compact circuit implementations.  

Each synapse circuit has four tunable parameters and two or three biasing voltages. 

Tunable parameters include control voltages of the degree of facilitation or depression, 

the degree of decay, the resting weight and the post-synaptic current scaling/limiting 

voltage (Vbn or Vbp). The simulation results of facilitation and depression effect for 

these tunable variables have been presented. The degree of depression or facilitation of 

a synapse can be controlled using the bias voltage V∆wp or V∆wn. However, this can be 

weight dependent depending on the operational range of the weight (If the transistor M5 

of the respective circuit is in the linear region of operation).  

In different biological synapses short-term dynamic effect have been observed in time 

scale ranges from 100 ms to 1 s (Morrison et al.; 2008) possibly due to the exponential 

decay. However, it is observed that the linear degree of recovery range is in the slower 

end of the biological synapse’s recovery time range, and it can only be controlled within 
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a narrow range (≈ 0 to 30 mV) of the control voltage. Therefore, these synapses 

represent sub-set of the synapses from the highly heterogeneous synapses. 

Although the degree of depression or facilitation and the decay can be tuned 

individually for different synapses, in a practical implementation, several same types of 

synapse circuits in a group might share same tuning parameter. Hence, the variability, 

mismatch and the supply voltage drop could cause the range of curves to be available 

within the same type of synapse. Biological neural responses are also highly 

heterogeneous and have considerable variability across the same type of neural 

elements, and the network dynamics are possibly exploiting these properties.  

It is also possible to switch off depressing and/or facilitating dynamics of synapses 

completely (by biasing the voltage V∆wp to the supply voltage Vdd or voltage V∆wn to 

the analogue ground). If depressing/facilitating dynamic is switched off the synapse 

becomes a generic weight dependent excitatory or inhibitory synapse. 

The excitatory and inhibitory synapses are designed with simple three transistor circuits 

(Synaptic Current Generator circuits IN-ISYN or EX-ISYN) that source or sink weight 

dependent current to or from the membrane of the neuron, depending on the synapse 

type.  The amount of current source or sink can be approximately proportional to the 

square of the weight of the synapse. However, this simple three transistor circuit can 

operate such that post-synaptic current is proportional to the post-synaptic neuron’s 

membrane voltage and the synaptic weight, if the weight connected transistor of the 

Synaptic Current Generator circuits is in the linear range of operation.  

The rise- and fall- time of the post-synaptic potentials are not modelled by these circuits 

as the width of the current pulse is only a few nanoseconds (shaping of the 

corresponding post synaptic potential pulse adds extra circuitry. The tuning of the rise- 

and fall-time has a negligible effect on membrane integration as the time scales are so 

small). Further, effect of the rise- and fall-time can be neglected as the dendritic location 

of the synapse is not considered in modelling the neural circuits. However, the dendritic 

delays can be incorporated by introducing a delay to the pre-synaptic spike during the 

off-chip spike routing. Neuron circuits designed in Chapter 4 account for some dendritic 

morphological effects on the spike response, although the full non-linear filtering due to 

exact location of the synapse has not been considered. The dendritic dynamics also 

could be introduced by modelling the detailed dendritic compartment model (Elias et 
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al., 1995; Rasche et al., 2001); however, this will consume larger silicon area and hence 

limit the size of the network considerably.  
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CHAPTER 7 :  CORTICAL NEURON CHIP 

This chapter presents a Cortical Neuron Chip that contains the Accelerated-Time 

Cortical Neuron circuits (Chapter 4). The purpose of the chip was to experimentally 

verify the spiking behaviour of a single cell. The neuron circuit has been used in other 

ICs presented in this thesis.  

Neuron is a key element in neural processing, and cortical network consists of many 

types of neurons. These neuron types exhibit distinct nonlinear neural responses to the 

same set of input stimulus. Therefore, having different types of neurons is an important 

aspect in neural processing.  In implementing a VLSI neural network incorporating the 

diverse neuron responses similar to the biological neuron responses are of the essence to 

produce brain like computation.   

The initial sections of this chapter present an overview of the chip and the test setup.  

The experimental results presented at the end of the chapter confirm that the neuron 

circuit is capable of generating many types of the cortical neuron behaviour, with 

diversity similar to that of biological neuron cells. Some of the experimental results 

presented in this chapter have been published in the Journal of Neural Networks 

(Wijekoon et al., 2008b), and the Proceedings of the IEEE International Symposium on 

Circuits and Systems (Wijekoon et al., 2008a). 

7.1 Chip Overview 

A prototype test integrated circuit, the Cortical Neuron chip that contains 202 neuron 

cells, with varied circuit parameters (transistor sizes and capacitances) was fabricated in 

a 0.35 µm CMOS technology. These neuron circuits were used to obtain the best 

combinations of neuron circuit parameters that are capable of reproducing most of the 

firing patterns of neurons using two tuning parameters (see Chapter 4 for more details of 

the neuron circuit). The size of the cell that reproduces most of the firing patterns is 40 

µm by 70 µm. The size of the chip is approximately 3 mm by 2 mm, and it has 84 pins.  

A photograph showing the chip layout, as well as individual cells is shown in 

Figure 7.1. The cells are individually accessible and do not form any network. In 

addition to the neuron cells, the chip contains multiplexers, buffers and simple synaptic 

circuitry to generate excitatory and inhibitory postsynaptic currents. The different 
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neurons are provided with three different types of output buffers to feed the membrane 

potential signal to the output pads, these types include single stage buffering with two 

nMOSFETs, double stage buffering with two nMOSFETs and operational amplifier 

(OpAmp) buffering. The circuit also contains a multiplexing unit that selects one neuron 

at a time. Some cells are designed with an additional external membrane potential 

resetting circuit using a single transistor. More circuit design details of this chip are 

presented in Wijekoon (2007).   

 

Figure 7.1 Photograph of the fabricated device: (a) chip with 202 neurons having different circuit 

parameters; (b) six different neuron cells; (c) a single neuron including an output buffer and 

control circuit. 

 

7.2 Test Setup 

The test setup used to record the experimental results presented in Section 7.3 is shown 

in Figure 7.2. The test setup includes the chip, the Address Generator Circuit, the 

 70µm 

 40µm 
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 (b)  

(a)  
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Programmable Digital Pulse Generator, the Programmable Voltage Supplies, and an 

Oscilloscope. The synaptic input is supplied using the Digital Pulse Generator, and an 

internal circuit converts this pulse to a synaptic current. The spike rate of the pre-

synaptic signal can be programmed on the Digital Pulse Generator. The biasing 

parameters are set using Programmable Voltage Supplies. The neuron cells are 

individually accessible using the test address and do not form any network. The test 

address is generated using the Address Generator circuit that includes seven digital 

switches to provide the seven bits address manually.  The spike output of the selected 

neuron can be observed using a digitising oscilloscope. The results presented in the next 

section are recorded from an on-chip OpAmp buffered output of a neuron.  

 

 

 

Figure 7.2 Test setup of the Cortical Neuron circuit. 

 

7.3 Experimental Results 

The experimental results presented in this section are recorded from a single Cortical 

Neuron circuit that is capable of reproducing most of the firing patterns of neurons, 

using two tuning parameters (Vc and Vd). The Cortical Neuron circuit is shown in 
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Figure 4.2 of Chapter 4. The transistor sizes, capacitances of the circuit and biasing 

voltages used to obtain the results are: (W/L)M1= (2.3/1), (W/L)M2= (2.3/1), 

(W/L)M3= (2.3/1), (W/L)M4= (1.3/22), (W/L)M5= (5.3/1), (W/L)M6= (1.3/18), 

(W/L)M7  = (1.3/14), (W/L)M8= (1.3/1), Cv=0.1 pF,  Cu=1pF, Vth =1.70 V, Vdd = 3.3 

V, and Vbias = 0.6 V. Where (W/L)Mi is the Width to Length ratio of the transistor Mi 

and lengths are in µm.  

Different responses of the circuit to a postsynaptic input current step of 0.1 µA are 

shown in Figure 7.4 to Figure 7.9 and their respective parameters of the tuning voltages 

Vc and Vd are provided in Figure 7.3. The circuit operates approximately 103 to 104 

times faster than the biological real-time, depending on the selected area of the 

parameter space of Vc and Vd. For comparison purposes, the scaled time domain is 

considered in order to adopt biological classifications methods given in Nowak et al. 

(2003).  The circuit mimics various types of cortical neuron firing patterns: fast spiking 

(FS), regular spiking (RS), low-threshold spiking (LTS), intrinsic bursting (IB) and 

chattering (CH). Brief definitions of each of these firing patterns are presented in 

Chapter 2. The FS firing patterns recorded from the circuit are shown in Figure 7.4 and 

Figure 7.5. The RS, LTS, IB and CH firing patterns recorded are shown in Figure 7.6, 

Figure 7.7, Figure 7.8 and Figure 7.9 respectively.  

The adaptation index measures the accommodation of the firing pattern, i.e. the 

progressive decrease in firing frequency despite the maintained depolarization. The 

adaptation index is calculated as 100×(1-Fad/F1), where F1 corresponds to the firing rate 

of the first inter-spike interval, and Fad is the adapted firing rate (Nowak et al., 2003). 

The approximate values of delay between the start of the supra-threshold current 

injection and the first spike of the spike train, adaptation index and frequency of spiking 

values for each of RS, LTS and FS type firing patterns are provided in Table 7.1.  
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Figure 7.3 Parameters Vc and Vd that were used to obtain the cortical neuron firing patterns given 

in Figure 7.4 to Figure  7.9. 

 

As seen in Figure 7.3 and Figure 7.4, the FS1, FS2, FS3 and the rest of the firing 

patterns where Vd=0 and 0.36 V<Vc<0.5 V behave as a FS type and their frequency of 

spiking lies in between 200 kHz and 800 kHz. It can be seen that all the firing patterns 

across Vd=0 V are weak-accommodating resulting in either RS1 or FS type firing 

patterns. The FS4 type neuron continues its spiking even after the supra-threshold 

current is removed, however, it shuts down if the inhibitory postsynaptic current is 

provided. In Figure 7.3, the approximate parameter space area where 0.2 V<Vd<3.25 V 

and Vc<0.4 V results in the RS neuron type and when Vc increases from 0 to 0.4 V, the 

frequency of spiking and adaptation index values increase. The parameter space area 

where 0.2 V<Vd<3.25 V and 0.45 V<Vc<0.56 V results in IB type firing, and different 

IB firing patterns can be obtained by varying Vd and Vc appropriately. Similarly, the 

area where 0.2 V<Vd<3.25 V and 0.56 V<Vc<0.65 V produces CH behaviour, and 
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various numbers of spikes in a burst and inter-bursting frequencies can be obtained by 

varying Vd and Vc. In the same Vd region, when Vc is greater than 0.65 V the cell 

produces a delayed FS firing pattern with higher firing frequency. Variations of firing 

patterns of the selected RS, IB, CH, and FS cell types with the variation of Vc across 

Vd=1.9 V illustrate the sensitivity of the firing patterns and their properties to the tuning 

variable Vc (Wijekoon et al., 2008a). 
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Table 7.1:  Neural properties of RS, LTS and FS firing patterns provided in Figure 7.5 

to Figure 7.7 

 

Label 

Delay15 

 (≈ in µs) 

Adaptation Index 

(≈ in %) 

Frequency of spiking 

(≈ in kHz) 

 

Type 

FS1 4 21 220 FS 

FS2 3 22 280 FS 

FS3 1 4 400 FS 

FS4 <1 2 1000 - 

FS5 14 22 5500 FS 

FS6 16 35 6300 FS 

RS1-1 17 0 50 RS-1 

RS1-2 13 13 70 RS-1 

RS1-3 12 24 130 RS-1 

RS1-4 16 22 51 RS-1 

RS2-1 15 35 65 RS-2 

RS2-2 14 44 90 RS-2 

RS2-3 14 72 190 RS2 

LTS1 9 72 300 LTS 

LTS2 8 65 480 LTS 

 

                                                 

15Delay between the start of the supra-threshold stimuli and the initial spike 
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Figure 7.4 Experimental waveforms of FS cells. Each plot shows voltage response of the fabricated 

circuit to a 0.1 µA step current. Parameters Vc and Vd of each response are provided in Figure 7. 3. 

 

 

 

 

 

 

Figure 7.5 Experimental waveforms of vary fast spiking cells. Each plot shows voltage response of 

the fabricated circuit to a 0.1 µA step current. Parameters Vc and Vd of each response are provided 

in Figure 7. 3. 
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Figure 7.6 Experimental waveforms of RS1 and RS2 cells. Each plot shows voltage response of the 

fabricated circuit to a 0.1 µA step current. Parameters Vc and Vd of each response are provided in 

Figure 7.3.  
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Figure 7.7 Experimental waveforms of LTS cells. Each plot shows voltage response of the 

fabricated circuit to a 0.1 µA step current. Parameters Vc and Vd of each response are provided in 

Figure 7.3.  

 

 

 

 

 

 

 

Figure 7.8 Experimental waveforms of IB cells. Each plot shows voltage response of the fabricated 

circuit to a 0.1 µA step current. Parameters Vc and Vd of each response are provided in Figure 7. 3. 
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Figure 7.9 Experimental waveforms of CH cells. Each plot shows voltage response of the fabricated 

circuit to a 0.1 µA step current. Parameters Vc and Vd of each response are provided in Figure 7. 3. 

 

The power consumption of the circuit is approximately proportional to the average 

spiking frequency. As shown in Figure 7.10 when the postsynaptic current is less than 

0.1 µA,  the power consumption of a circuit can vary between 0.1-65 µW. The energy 

per spike provides a figure of merit that allows a fair comparison of power consumption 

with respect to the circuit’s computational performance. In the circuit the energy 

consumption per spike is 8.5-9.0 pJ (value obtained via post-layout simulations). For 

comparison, the I&F circuit described in (Indiveri, 2003) consumes 3-15 nJ/spike. The 

high energy efficiency of implementation is a result of the higher operating frequency, 

biasing with low dc currents, and the circuit topology that minimizes the current paths 

that do not directly contribute to the implementation of the circuit dynamics (i.e. 

charging and discharging of Cu and Cv) . However, it has to be remembered that a 

complete neural system will need to include synapse models and spike communication 

mechanisms, which are likely to dominate the energy requirements. It can be also noted, 
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for comparisons, that a simulation of the Izhikevich neuron (Izhikevich, 2003) on a 

conventional digital hardware platform consumes somewhere in the range of 1 µJ per 

spike.  

 

Figure 7.10 Average steady state power consumption with the variation of postsynaptic current for 

different firing patterns. 

7.4 Conclusion 

This CMOS Cortical Neuron circuit replicates many known types of spiking neural 

behaviours by adjusting two external voltages. The Cortical Neuron circuit provides a 

much richer repertoire of spiking patterns than a simple integrate and fire model. The 

circuit provides simple, compact and easily configurable universal cortical neurons, 

with potential applications in the development of large VLSI neuromorphic chips that 

closely resemble the circuits of the neocortex. Hence this neuron circuit is used in other 

IC implementations presented in this thesis.   

In order to use this circuit in the other ICs neuron time acceleration should be same with 

all the types of firing patterns. Table 7.2 matches the biological neuron types with the 

corresponding set of VLSI neuron types obtained from the parameter space given in 

Figure 7.3 that has three orders of magnitude faster timing. The biological neurons spike 

timings are adopted from Nowak et al. (2003). Any FS neuron types that have less than 

0.5 V Vc voltage values could be used as the faster FS type (to get the frequencies of 

VLSI neuron firing patterns see Table 7.1).  Any RS and IB type given in the 
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experimental result matched with the required magnitude increase in time. Although the 

CH type matched with the required time scaling, some CH type VLSI neuron 

configuration have the refractory period less than 1 µs.  

 

Table 7.2. Three orders of magnitude accelerated time VLSI neuron to biological time 

neuron type mapping ; ISI - inter-spike interval, Inter burst - frequency or ISI between 

two burst of spikes, Burst - frequency or ISI between two spikes in a bursts of spikes. 

 

IB CH 

Description FS RS 

Burst 
Inter 

burst 
Burst Inter burst 

Max 330 100 500 130 1000 100 

Avg 130 45 400 40 500 70 

 

Frequency 

(Hz) 
Min 66 20 130 20 200 40 

Min 3 10 2 7.5 1 10 

Avg 7.5 22 2.5 24 2 14 B
io

lo
gi

ca
l N

eu
ro

ns
 

 

ISI 

(ms) 
Max 15 50 7.5 50 5 25 

VLSI neuron 
Vc< 0.5 

FS 

All 

RS 
All IB 

 

All CH but refractory period 

is low 

 

 

Therefore, overall all the VLSI neuron firing patterns can be mapped with three orders 

of magnitude faster time scaling as given in Table 7.2. However, some CH neurons' 

inter burst spikes could be ignored, if maximum network routing delay is set to the 

refractory period of the neuron (spike routing delays are discussed in Chapter 9.6). 
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CHAPTER 8 :  STDP-DA SYNAPSES NEURON CHIP 

This chapter presents the STDP-DA Synapses Neuron prototype chip. The chip 

accommodates accelerated time STDP Synapse circuit, the Dopamine Modulated STDP 

Synapse circuit (Chapter 5) and the Cortical Neuron circuit (Chapter 4) to verify the 

functionality of these circuits experimentally. Mainly, this chip tests the STDP Synapse 

circuit together with the Neuron circuit so that these neural elements can be 

accommodated in the CNL chip presented in Chapter 9.  

The STDP plasticity rule is an important feature of a cortical network for the learning 

and memory formation of a network. Recently developed DA modulated STDP 

plasticity rule (Izhikevich, 2007) is also known to perform learning, in particular, 

reinforcement learning in a neural network. Hence, encompassing these two promising 

rules in a VLSI circuit could have the potential for the formation of learning and 

memory in a VLSI based cortical network. 

The initial sections of this chapter present an overview of the chip, and the neural and 

auxiliary circuit implementations. This is followed by the chip test setup and the 

experimental results sections. Some of the materials discussed in this chapter have been 

accepted for publication in the Proceedings of the IEEE International Symposium on 

Circuits and Systems, ISCAS (Wijekoon et al., 2011). 

8.1 Chip Overview 

The prototype test integrated circuit, contains twenty eight STDP /DA-STDP synapses 

with a global DA generator circuit, and two cortical neuron circuits, fabricated in a 

standard 0.35µm CMOS technology. The STDP /DA-STDP synapse can be configured 

to work as a STDP synapse or as a DA-modulated STDP synapse and the size of the 

synapse cell layout is 26 µm by 50 µm. The area of the chip is 1.8 mm by 1.8 mm with 

44 pins. Figure 8.1 shows the layouts of the chip and the photographs of the fabricated 

chip.  Although the actual circuit area is approximately 0.5 mm by 0.8 mm, a large chip 

area is used to accommodate 44 pins needed by the circuits.  This prototype chip is 

fabricated to test the functionality of the STDP Synapse circuit and DA-Modulated 

STDP Synapse circuit along with the Neuron Circuit. Accordingly, some of the internal 

states of all the synapses can be observed externally and at any given time, the internal 
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states of two synapses can be observed along with the inverted spike outputs of both 

neurons. The STDP or Eligibility traces functionality of the synapse can be tested and 

calibrated. However, due to the pin constrains of the test chip, internal states of DA 

Generator circuit and the DA pulse (Vda) signals are not provided to any pins of the 

chip, and hence these signals cannot be observed externally. More details of the 

configurations and functions are presented in the next section.   

 

         

 

Figure 8.1 STDP-DA Synapse Neuron chip  (a) layout of a 14 Synapse circuit, (b) STDP  chip 

layout, (c) picture of the packaged  chip, (d) picture of a fabricated chip. 
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8.2 Circuit Implementations  

This section provides the circuit implementation details of the core neural circuit 

elements of the STDP-DA Synapses Neuron chip and their composition, the auxiliary 

circuit details and their configurations. The core neural circuits include Synapses, 

Neurons and Dopamine Generator circuits. The pre-synaptic inputs and spike outputs 

are made accessible to an off-chip device preferably an FPGA. If necessary, a small 

network can be formed by configuring the connections of the network using this off-

chip device. Therefore, the auxiliary circuits include the periphery circuit used to route 

these inputs and outputs to the bond pads (pins of the chip). The chip also employs a 

Synapse Debugging circuit to test the functionality and to calibrate synapses.  

8.2.1 Neural Circuits 

All the 28 DA Modulated synapses of the STDP-DA Synapses Neuron chip share a 

single Dopamine Generator circuit. The extracellular DA level (eDA) can be provided 

as an analogue voltage through a dedicated chip pin.  Figure 8.2 shows the synapses and 

neurons composition of the STDP-DA Synapse Neuron Chip and Figure 8.3 shows the 

arrangement of the neural circuit elements using block diagrams.  

14 STDP or 14 DA-
modulated STDP

synapses 

spike out of 
the neuron A

14 STDP or 14 DA-
modulated STDP

synapses 

spike out of 
the neuron B

A B

Extra cellular 

Dopamine, eDA

 

 

Figure 8.2 Schematic of the synapse and neuron composition of the STDP-DA Synapses Neuron chip. 
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  Figure 8.3 Synapse and Neuron composition in STDP-DA Synapses Neuron Chip: block diagrams 

of the neural circuit arrangement. 

8.2.1.1 Synapse Circuit 

The 28 synapses can be configured to work in a DA-modulated STDP mode or in a 

basic STDP mode. Each synapse comprises of an Eligibility Trace (ET) circuit, a 

Synaptic Strength circuit and a Post-Synaptic Current Generator circuit.  

The ET circuit and the Synaptic Strength circuit are shown in Figure 5.10 and Figure 

5.11 respectively. The ET “leakage” circuit parts of the ET circuit, and the Vstdp_en 

transmission gate used to configure the type of the synapse are shown in Figure 8.4. The 

Vstdp_en can be provided externally. In the usual mode of operation, the DA-modulated 

synapse mode, the Vstdp_en flag is set to logic low (0 V) and the voltages Vlkwd and 

Vlkwp are provided with appropriate analogue values that suit the synapses to operate as 

the DA modulated STDP synapses.  

In order to work as an STDP synapse, the signals Vstdp_en flag, and voltages Vlkwd and 

Vlkwp are set such that the ET circuit is modified to work as STDP circuit. This is done 

by switching off the additional circuits of the ET circuits and by combining the ETp and 
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ETd nodes of the ET circuit to act as the synaptic weight node, which is connected to 

the Post Synaptic Current Generator circuit. The Post-Synaptic Current Generator 

circuit is shown in Figure 8.5. 

By setting the Vstdp_en flag to logic high, the transmission gate shown in Figure 8.4 (b) 

connects the ETp node of the ET circuit to the ETd node. This forms a common synaptic 

weight node, Vwstdp (complementary topology of the STDP circuit shown in Figure 

5.2).  Simultaneously, the M2 transistor of the Post-Synaptic Current Generator circuit 

shown in Figure 8.5 is switched on and M4 is switched off. Consequently, the weight of 

the STDP circuit is buffered to the Vw node of the Synaptic Current Generator circuit 

rather than to the strength, S, of the DA-Modulated Synapse circuit (the transistors M1-

M3 when M2 is switched on and the transistors M1, M4 and M5 when M4 is switched 

on form source follower circuits). The isolation of the additional “leakage” circuits 

(Transistors M8p -M7p and M8d-M7d of the ET circuit) is achieved by supplying the 

supply voltage (Vdd) to the Vlkwp and 0 V(gnd) to the Vlkwd, so that the ET circuit 

becomes the STDP circuit.  

 

Figure 8.4 Eligibility trace “leakage” circuit part s of the ET circuit shown on (a) and (c) ;The 

Transmission Gate use to connect ETp node to ETd node is shown in (b). 
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Figure 8.5 Post-Synaptic Current Generator circuit in STDP-DA Synapses Neuron chip. 

8.2.1.2 Neuron Circuit 

The accelerated time neuron (Chapter 4) is used in this chip. The tuning voltages Vc and 

Vd are used to configure the neuron to a given type of spiking behaviour. As the limited 

numbers of pins are available on the chip, the two neurons in the chip use a common Vd 

chip pin (Figure 8.3). It is also seen in Chapter 4 that the basic neuron types can be 

obtained for different values of Vc, while Vd is at a constant voltage (e.g. at Vd = 1.9 V 

for different values of Vc most of the neuron types can be obtained; see parameter space 

Figure 7.3 of Chapter 7). Therefore, this does not severely limit the number of possible 

spiking patterns.   Neuron outputs are buffered using inverted buffer circuits, and the 

inverted spike outputs are provided to the chip pins. Therefore, these outputs can be 

read directly by an external device.  

 

8.2.1.3 Dopamine Generation Circuit 

A Dopamine Generator circuit is used to generate a DA signal for all the synapses 

globally, and the level of the DA can be controlled by the external supply voltage, eDA. 

Here, the eDA voltage with referenced to Vdd is considered as the DA level.  The DA 

Generator circuit implemented in the chip is given in Figure 8.6.  

The decay of the DA level and the DA injection using a burst of spikes are not 

implemented as in the Dopamine Generator circuit presented in Figure 5.13 of Chapter 
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5.  This DA level needs to decay with time constant of 0.2 ms (in accelerated time) and 

the level should be able to be increased using a burst of input spikes (i.e. digital pulses) 

that result in the injection of dopamine as a reward signal. In order to reduce the pin 

requirements of the chip, the capacitor/transistor circuit that does this is implemented 

off chip. The operation of the DA Generator circuit is described in Chapter 5. 

The Clock signal (Vda_clk) of the DA Generator circuit that generates the Vda pulses 

also needs to be provided by an off-chip device.  The width of the pulse can be tuned 

using the leakage voltage, Vlk.  Aforementioned, the internal states of DA Generator 

circuit and the DA pulse (Vda) output signals are not accessible to the off-chip pins due 

to the pin constrains and hence these signals cannot be observed externally. However, 

the ways that could verifying its function is discussed in Section 8.5.   

 

 

Figure 8.6 DA Generator circuit in the STDP-DA Synapses Neuron chip. 

 

8.2.2 Auxiliary Circuits 

The core neural elements discussed above need to be configured as a network, in which 

their characteristics can be set using the tuning parameters, and their functionality can 

be measured externally. These functions are facilitated by auxiliary circuits fabricated 

on the chip. Some of the auxiliary circuits discussed in this section include the 
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Pre-synaptic addressing and Spike Generation circuits, the Synaptic weight pre-setting 

circuit, and a circuit for observing & debugging of synapses. 

 

8.2.2.1 Pre-synaptic addressing and the Spike Generation circuit 

The pre-synaptic input (Pre) of each synapse is connected to the output of the Spike 

Generator circuit. Figure 8.7 (a) shows the Spike Generator circuit and on the chip this 

circuit is physically located next to the synapse layout to provide non-attenuated spikes. 

Using a five bit pre-synaptic address, the Spike Generator circuit for a target synapse 

can be activated to generate a pre-synaptic spike.  

When a synapse is addressed, the incoming address is decoded, which enables the Spike 

Generator circuit of the target synapse. Once the address decoder enables the Spike 

Generator, a 5 ns Pre pulse is sent to the target synapse. The Spike Generator circuit 

consists of a Four Input NAND gate, a Delay (DLY) circuit, an Inverter and a NOR 

gate. Figure 8.7 (b) shows the input, intermediate, and output signals of the Spike 

Generator circuit when the Spike generator circuit is enabled twice.   

 

 

 

Figure 8.7 Spike Generator (a) circuit (b) intermediate signals. 

(a) 

(b) 
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8.2.2.2 Synaptic weight pre-setting 

For basic STDP synapse mode weight of the synapse can be set of reset by providing 

appropriate voltages to VlkWd and VlkWp at the network configuration stage (i.e. before 

the network emulation). For the DA modulated STDP mode of operation the eligibility 

traces (voltage across the capacitors Cwp and Cwd ) can also be set or reset using the 

bias voltages VlkWd and VlkWp and the STDP_En switch at the network configuration 

stage. The leakage circuit for the eligibility traces and the transmission gate are shown 

in the Figure 8.4.   

8.2.2.3 Observing and debugging of synapses 

As seen in Figure 8.3 the internal states of the synapses can be observed externally.  

These include Vetp, Vetd, and S for the synapses of the neuron A, and the Vetp, Vetd, S, 

ltp, and ltd for the synapses of the neuron B. At any given time, all these internal states 

of a synapse from Neuron A and a synapse from Neuron B can be observed. A four bit 

test address is used to select observable internal states for a particular synapse. The 

address is provided to the 32:1 multiplexer, using the dedicated test address bus of the 

chip. Depending on the test address, the multiplexer switches the outputs to observe the 

state of the targeted synapse.  

For STDP functionality, both synapse types require the output of the targeted neuron 

(i.e. the post-synaptic neuron’s spike) as an input. The post-synaptic signal can be 

provided either with the output of the targeted neuron or with an artificial external post-

synaptic signal, which can be used in order to debug the synapse circuits.  

 

8.3 Test Setup 

The test setup includes the STDP-DA Synapses Neuron chip, a computer (Host PC), a 

Digital to Analogue Converter (DAC) and an Oscilloscope (Figure 8.8). This setup can 

be used to verify the function of the synapses and neurons. The DAC is used to supply 

the tuning parameter voltages that set the characteristics of the synapses and the neuron 

types. These bias voltages can initially be programmed using the Host PC. The FPGA is 
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used to configure the chip, implement the connectivity of the neural network and to 

facilitate spike routing (a Xilinx Spartan 3 FPGA16  is used here).  

Perhaps it is impossible to build a network that demonstrates truly useful network 

behaviour using only two neurons. However, the setup can be used to build two neuron 

networks or to have many virtual neurons along with the two neurons. In addition to the 

post-synaptic spikes of the two neurons, spikes can be generated on the FPGA (as 

spikes from a virtual neuron) using a set of rules or by reading an input file from the 

computer.  Therefore, pre-synaptic spike can be provided to the chip using the FPGA 

either depending on the spike event received from the two neurons or by using spikes 

from a virtual neuron. Furthermore, the required observable outputs can also be set 

using the FPGA, by sending a five bit test address to the test address bus of the CNL 

chip.  Once network emulation starts, the observable internal state of the synapses, 

neurons spike activities and pre-synaptic addresses can be fed to a digitising 

oscilloscope to observe and record the waveforms. Simultaneously, the network spike 

activities can be recorded on to the FPGA board memory.  

 

                                                 

16 Xilinx Spartan 3 Web link:  http://www.xilinx.com/support/documentation/spartan-3.htm 
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Figure 8.8 Test setup of the STDP-DA Synapses Neuron circuit. 
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8.4  Experimental Results 

This section provides experimental results obtained from the chip that verify the STDP 

functionality and the cortical neuron functionality. 

8.4.1 STDP Synapse 

Initially, the LTP time window and the LTD time window can be adjusted using Vleakp 

and Vleakd respectively (As explained in Section 5.3).  Figure 8.9 shows measurements 

of the time windows after setting it to 50 µs. The signal ltp reaches the maximum 

voltage when pre-synaptic spike (Pre) fires and the ltd reaches its minimum when a 

post-synaptic spike (Post) arrives. As the ltp and ltd signals are provided to the chip pins 

after the NMOS source follower buffer stage, hence 0 V to 0.6 V an approximate 

voltage range of the output waveforms could not be observed. The lower waveform part 

of the ltd signal is distorted as shown in Figure 8. The slop in the charging phase of the 

ltd  is due to the input capacitance of the source follower circuit.  

Figure 8.10 shows the long-term plasticity effect on synaptic weight (w),  for many pre- 

and post-synaptic spike pairings. Figure 8.11 provides synaptic weight change when 

post-synaptic spike follows the pre-synaptic spike for 10 occurrences within 

approximately 1 ms (accelerated time) duration and when post-synaptic spike precedes 

the pre-synaptic spike for 10 occurrences within 1 ms duration. It is seen that when Pre 

follows Post the synaptic weight is potentiated, whereas Post precedes Pre, the synaptic 

weight is depressed, implementing STDP rule in the synapse. 
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Figure 8.9 The ltp and ltd signals showing the history of the pre- and post-synaptic firing timing 

respectively, (a) LTP time window measurement (b) LTD time window measurements; their are set 

to 50 µs using the tuning voltages of the synapse, Vlkp and Vlkd. 
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Post 

 

 

Figure 8.10 The weight of the synapse variation for different pre- and post- synaptic firing 

sequences; enlarge waveforms clearly showing the long-term potentiation and depression due to the 

spike sequence are shown in Figure 8.11.  
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Figure 8.11 STDP synapse weight variations (a) depressing and potentiation synaptic weight due to 

the Pre and Post firing sequence,  (b) weight depressing when Pre follows post, (c) weight 

potentiating when Pre precede. Note: here inverted weight is recorded. 
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8.4.2 Neurons 

By providing the same continuous pre-synaptic spikes to many synapses, synaptic 

currents are injected to a neuron regularly. For the same synaptic current injection, the 

neuron's tuning parameters Vc and Vd are set to different firing patterns, CH, RS and IB 

types. These firing patterns (inverted) are shown in Figure 8.12.  

 

Figure 8.12 Different firing patterns obtained for the same pre-synaptic stimulus. Here inverted 

spike output of the neuron is recorded. 

Power consumption  

The synapse circuit typically consumes between 2 µW and 5 µW power at Pre and Post 

synaptic spike rates of 200 kHz (i.e high neural activity level), but it could be as high as 

40 µW, depending on the synapse state, parameters and spike rates. The DA generator 

circuit, which is shared by many synapses, consumes up to 600 µW of power (worst 

case). 

8.5 Discussion and Conclusion 

8.5.1 Discussion 

Noise of the observable signals 

The results presented in this chapter are taken from a manually wired circuit board and 

as seen in Figure 8.10 and Figure 8.11 observable waveforms are noisy. This could be 

reduced by rebuilding the test setup with a printed circuit board (PCB) that includes 

high frequency filtering using capacitor banks and by properly shielding and reducing 
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the length of the wires of the observable analogue signals.  Specially, slowly varying, 

narrow voltage swing observable signals such as synaptic strength signals are noisier to 

observe. 

DA-Modulated Synapse circuit 

In order to test the DA-Modulated STDP Synapse circuit Vetp, Vetd, and S can be 

observed externally however any internal signal related to the DA signal cannot be 

observed. The noise in the system makes it difficult to observe S which is a slow 

varying signal. Under these conditions, DA-modulated synapse can be verified by using 

the synapses in a large network and observing the reinforcement learning in the 

network. Once the CNL chip is ready the STDP-DA Synapses Neuron PCB can be 

connected together to test the DA-Modulated Synapse functionality. Once the DA-

modulated chip functionality is verified, this board can be use in the Cortical Neural 

Network Architecture proposed in Chapter 9 along with the CNL chips to facilitate 

reinforcement learning in a large network. 

Network Connectivity capacity of the Chip  

The two neurons along with the DA-modulated synapses can be use in a network (e.g. 

with the CNL chip discuss in Chapter 9) initially to test the DA-modulated synapse 

functionality and then to facilitate the reinforcement learning dynamics on a large VLSI 

network. However, there is a limitation to which these DA-modulated synapses can be 

connected.  

The pre-synaptic addressing is provided to the chip using the five bit addresses bus of 

the chip. At any given time only one synapse can be addressed, and each pre-synaptic 

routing consumes two clock cycles.  

Therefore, assuming that the FPGA device facilitates the spike routing for the network 

and its clock frequency is 100 MHz,  if all the incoming spikes are from fast neurons 

and are continuously firing at the spike frequency of 200 kHz, and each incoming spike 

is routed to a maximum of two synapses (K =2), then the maximum number of spikes 

that can be routed within the refractory period of the neuron (1 µs) is approximately 

125.  I.e if each incoming spike connect only to two synapses (simple connectivity) then 

125 neurons (at high spike activity level) can be connected to the chip in order to form a 

network. The equations used to calculate this figure are given below. 
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Average spiking rate of all the neurons                     = 0.2 MHz  

Average spike rate of N neurons                               = 0.2 x N MHz  

Number of synapses addressed per incoming spike  = K 

Clock rate of the FPGA                          = CLK FPGA 

Number of cycles for pre-spike addressing              = CYC 

Number of spikes can be served                               = CLKFPGA/ (200 000 x K x CYC) 

 

8.5.2 Conclusion 

It is verified from the experimental results that the SDTP Synapse circuit and the 

Synapse circuits along with the neuron operate as expected. Therefore, these circuits are 

used in the CNL chip presented in Chapter 9. the  DA-Modulated Synapse functionality 

need to be tested by demonstrating reinforcement learning in a network, which require 

sufficiently large VLSI network. The CNL board (Chapter 9) can be used to test the 

reinforcement feature of the Chip.   
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CHAPTER 9 :  VLSI CORTICAL NEURAL NETWORK 

AND CORTICAL NEURAL LAYER CHIP 

A prototype microelectronic Cortical Neural Layer (CNL) integrated circuit that could 

closely represent the neuron and synapse type composition of a layer of the neocortex is 

fabricated using elementary circuits proposed in Chapters 4 to Chapters 6. This chip 

incorporates more biologically plausible heterogeneous neural elements than the other 

similar size VLSI neural network implementations found in literature. In order to realise 

a larger cortical network in microelectronic hardware, a VLSI Cortical Neural Network 

(VCNN) architecture that combines many CNL chips together is proposed. The next 

section presents an overview of the VCNN architecture, and Section 9.5 provides details 

of CNL board used in the VCNN architecture.  The CNL chip overview, circuit 

implementations, and model are presented in the rest of the chapter. In analysing the 

feasibility of building a large neural network in VLSI, estimation of the network size 

that can possibly be implemented using similar composition of neural elements as of 

CNL chip, in a wafer-scale integration is provided in Chapter 10.  

Performing neuron-level recordings on animals is very limited both in the number of 

observable neuronal activities and in experimental time the neural tissue can be kept 

alive. The proposed architectures could provide a neural accelerator platform that can 

test some computational and neurobiological models of network. These platforms can 

also perform extensive parameter searches of an experiment as it works in three orders 

of magnitude faster than biology. These experiments could help to improve the 

understanding of the underlying principles of cortical processing.  

9.1 VLSI Cortical Neural Network Architecture (VCNN) - Overview 

Neocortical neural tissue is composed of anatomically repeating six-layered neural 

network. Each layer is composed of neurons that may receive spikes through synapses 

from neurons in the same layer, from the other layers, from external cortical or sensory 

afferents, or any combination of these. The composition of neurons and synapses in a 

layer is highly heterogeneous and different layers are composed of a variety of neuron 

and synapse type combination (for more details see Chapter 2).   
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The proposed VCNN architecture combines six CNL boards together to build a six-

layered VLSI cortical network that could closely resemble a small scale network of the 

neocortex. A CNL board comprises of a CNL chip, and a dedicated FPGA device.  The 

CNL Chip implements generic neural layers. Each chip can be pre configured to 

represent a layer of the cortical network by configuring neuron and synapse type 

composition appropriately (more details of the CNL chip are given in Section 9.3). The 

FPGA is used to pre configure the CNL chip and to observe the spike activities of the 

network. Most importantly, the network connectivity configuration and spike routing 

within the CNL chip and between CNL boards are facilitated by the FPGA (more detail 

of CNL board is given in Section 9.5). Therefore, the spike routing of the VCNN 

architecture is carried out using the six distributed routers (each implemented in the 

FPGA of a CNL board), and according to the connectivity matrix of a given network, 

the router's lookup tables (LUTs) of the routers that define the inter neuron connectivity, 

can be pre configured.   

This small six-layered VLSI cortical network comprises of 720 cortical neurons of 

different cortical neuron types and 45 360 short- and long- term plastic synapses. This 

architecture operates three orders of magnitude faster than the biological real time. 

9.1.1 System Implementation of VCNN Architecture  

This section discusses the VCNN architecture briefly. Figure 9.1 shows a VCNN 

architecture setup that includes six CNL boards, computer (Host PC), Digital to 

Analogue Converter (DAC) and Oscilloscope. Initially, using the Host PC the FPGAs 

are programmed to implement the connectivity of a given network to facilitate spike 

routing. The DAC PCI card is used to supply the tuning parameter voltages that set the 

characteristics and weights of the synapses and the neuron types. These voltages can 

initially be programmed using the PC. The network connectivity and the tuning 

parameter voltages define the network on the VCNN architecture. The network 

emulation can start after configuring the network and the internal synaptic activities of 

the network can be recorded using the digitising oscilloscope. The spike activities can 

be recorded in the FPGA memory and could be acquired on to the PC using the USB 

interface while or/and after running the emulation of the network. The spike data can be 

processed within the PC to analyse the network activities.  
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Figure 9.1 VCNN Architecture with six CNL boards. 

 

Though the integration of six CNL boards is considered in the basic VCNN architecture, 

in practice, a few tens of CNL boards chips could be assembled to form an architecture 

where each cortical layer can be configured using many CNL boards, so that a larger six 

layer VLSI network can be constructed.  

 

9.2 Cortical Neural Layer (CNL) Chip – Overview 

The CNL Chip containing 120 cortical neurons, and 7 560 synapses has been fabricated 

in a standard 0.35 µm CMOS technology. The chip comprises generic neuron and 

synapse circuits with configurable neuronal connections. The neurons of the chip can be 

configured to different known types of neurons (discussed in Chapter 4). The chip is 

also equipped with different short-term and long term dynamics synapse circuits that 

include inhibitory, excitatory, facilitating and depressing and STDP dynamics 

(discussed in Chapter 5 and Chapter 6). The size of the chip is 24 mm2 (6.78 mm by 

3.58 mm), and it has 180 pins. Figure 9.2 and Figure 9.3 show the layout of the chip and 

a photograph of the fabricated chip respectively. Most of the neurons’ outputs are 

available in parallel from the chip pins. Some neurons’ outputs are accessible serially 

CNL Boards 
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and a few of the neurons are internally wired. The pre-synaptic spike inputs can be 

provided externally by addressing the synapses using the address bus of the chip.  The 

internal states of the selected synapses can be calibrated and/or observed externally.  

More descriptions of the fabricated circuits are given in next section. 

 

 

 

 

 

Figure 9.2 (a) Layout of the CNL Chip: 7 560 synapses, and 120 neurons and auxiliary circuits. 

 

 

 

 

 

 

 

Figure 9.3 Picture of the fabricated Cortical Neural Layer Chip. 

 

 

 

Column and Row Address Decoder  Eight OpAmp circuit 

7 650 Synapses circuits 120 Neuron circuits Serial Spike Out circuit  
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9.3 Neural element composition on the chip 

The CNL chip can be configured to have a heterogeneous neuron and synapse type 

combination, such that it could closely represent the neuron and synapse type 

composition of the cortical layer of the neocortex. The neural elements occupy on the 

chip in two separate blocks: Block-A and Block-B. 

9.3.1 The analogy to the neocortex 

About 80% of the neurons in a cortical network the neocortex are excitatory neurons, 

and others are inhibitory neurons (Somogyi et al., 1989; White, 1989; Peter et al., 1984). 

Anatomically, these two types of neurons are equipped with different types of input and 

output synapse combination. By considering this, the CNL chip is designed to represent 

the excitatory and inhibitory neurons in the Block-A and Block-B neurons respectively. 

Figure 9.4 shows the neuron and synapse composition of the CNL chip, considering the 

inhibitory and excitatory representation of the blocks. 

The output spike from an excitatory neuron excites the membrane potentials of post-

synaptic neurons using excitatory synapses. Anatomically, most of these neurons 

receive synaptic inputs from non-STDP excitatory and inhibitory depressing synapses 

and from excitatory STDP synapses (Roth et al., 2009). Therefore, if the output of a 

Block-A neuron is connected to excitatory synapses, then the Block-A neuron closely 

represents an excitatory neuron of a cortical network. 

The output spikes from an inhibitory neuron inhibit the membrane potentials of the 

post-synaptic neurons using inhibitory synapses. It is also known that, some of the 

inhibitory neurons receive inputs from inhibitory facilitating and excitatory depressing 

synapses, whereas some other inhibitory neuron types receive input spikes from 

excitatory facilitating and depressing synapses (Roth et al., 2009).  Therefore, by 

choosing an appropriate input and output synapses combination the Block-B neurons 

can be configured to represent either of these two types of the inhibitory neurons.  

Although the Block-A and Block-B neurons are equipped with a specific type of 

synaptic inputs to represent closely the anatomy of the excitatory and the inhibitory 

cortical neurons respectively, it is the selection of output synapse type that purely 

determines the excitation or inhibition effect on the membrane potential of the post-

synaptic neuron (i.e. excitatory or inhibitory functionality of a neuron). Hence, 
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irrespective of the location of the neurons in Block-A or Block-B, the user has the 

freedom to configure any of these neurons to work as excitatory or inhibitory neurons, 

by projecting the neuron output to appropriate synapses.  

 

 

  

Figure 9.4 Description of a generic layer of VLSI cortical network model; 100 excitatory neurons 

and 20 inhibitory neurons with various types of input synapses.  

 

9.3.2 The neural circuit composition on the chip 

The Block-A consists of 100 neurons and 6 300 synapses. Each of the neurons in this 

block receives inputs from 43 excitatory depressing synapses (21 STDP and 22 Non-

STDP excitatory depressing synapses) and 20 inhibitory depressing non-STDP synapses 

(3 somatic and 17 distal inhibitory synapses). The Block-B consists of 20 neurons and 

1 260 synapses. Each of the Block-B neurons receives inputs from 63 non-STDP 

synapses. The 63 synapses comprise an equal number of excitatory facilitating, 

inhibitory facilitating, and excitatory depressing synapses.  Layout of the Cortical 

Neural Layer Chip showing the physical location of the synapses is shown in 

Figure 9.5.  

 

(a). Block-A  (b). Block-B  
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Figure 9.5 Layout of the Cortical Neural Layer Chip. 

 

9.4 Circuit Implementations 

The circuit implementation details of the CNL chip are given in this section. These 

include core neural circuits and auxiliary circuits of the chip. The auxiliary circuits 

provide circuits to configure and debug the neural elements and to interface the inputs 

and output responses of these neural elements with other microelectronic devices. The 

pre-synaptic inputs and spike outputs are accessible by an off-chip device (Xilinx 

Virtex 5 FPGA17) and the network connections are configurable using this off-chip 

device. The CNL chip composition of the neural circuits and its auxiliary circuits that 

include network configuration details and observable outputs are discussed in this 

section. 

9.4.1 Neural Circuits 

As mentioned above, the neural circuits uses in the CNL chip include Accelerated Time 

Cortical Neuron circuit (see Chapter 4), STDP Synapse Circuit (see Chapter 5) and four 

types of Short-Term Dynamic Synapse circuits (XD, IF, ID, and XF Synapse circuits; 

see Chapter 6 ). Each of these synapse circuit on the CNL chip include Spike Generator 

                                                 

17 Xilinx Virtex 5 FPGA Web Link: http://www.xilinx.com/products/virtex5/ 
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circuit (SG circuit; discussed in Section 9.4.2.1) in addition to their basic circuits 

described in their respective Chapters. Synapse circuit receives pre-synaptic inputs from 

this Spike Generator circuit. Each Spike Generator circuit has two inputs (row and 

column address enable) and once these are enabled using pre-synaptic address, a spike 

is generated to its connected Synapse circuit.  

The same type synapse circuits in a block share the same set of tuning voltages; e.g. all 

the XD Synapse circuits in Block-A share one set of biasing voltages to set the 

parameters: the V∆wp (controls the degree of depressing of the synapse), Vαp (controls 

the degree of recovery of the depressing synapse) and Vbp (sets maximum cut-off value 

of EPSC) except the Vwrp of the synapse. The method used to set the parameter Vwrp 

of the synapses that set the resting weights is discussed in Section 9.4.2.2. The XD 

Synapse circuits in Block-B shares deferent set of voltages of the same parameter set.  

Neural Circuits in a Block-A Neuron Unit 

Each of the Block-A Cortical Neuron circuit receives inputs from 20 Inhibitory 

Depressing Synapse circuits, 21 Excitatory STDP synapse circuits and from 22 

Excitatory Depressing Synapse circuits that form a Block-A Neuron Unit as shown in 

Figure 9.6. One hundreds of these common Neuron Units are generated to form the 

Block-A of the CNL chip. 

 

 

Figure 9.6 Block-A Neuron Unit and its input synapses.  

 



 152 

Neural Circuits in a Block-B Neuron Unit 

Each of the Block-B Cortical Neuron circuit receives inputs from three types of Short-

Term Dynamic Synapse circuits. As shown in Figure 9.7, they are 21 Excitatory 

Facilitating Synapse circuits, 21 Inhibitory Facilitating Synapse circuits, and 21 

Excitatory Depressing Synapse circuits. The Block-B neurons use the same Excitatory 

Depressing Synapse Circuits as in the Block-A neurons. A common structure of a 

Neuron Unit that comprises a Cortical Neuron circuit and its Short-Term Dynamic 

Synapse circuits that provide inputs is constructed and 20 of these Neuron Units are 

generated to form the Block-B of the CNL chip. 

 

 

 

 

Figure 9.7 Block-B Neuron Unit and its input synapses.  

9.4.2 Auxiliary Circuits 

The core circuits of the CNLC are used as primitives when emulating a cortical 

network. The network configurations are set using an external device. Hence the 

auxiliary circuits of the CNLC facilitate interfacing neural signals to the external 

devices and the configurations and debugging circuits of the core circuits. The 

supplementary circuits include, Pre-Synaptic Spike Decoder, Neural circuit 

Configuration circuits, Post-Synaptic Spike Output circuit, and Debugging circuits. The 

pre-synaptic spike decoder circuit decodes the externally provided synaptic address 
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(Pre_spike address) to generate pre-synaptic spike (Pre) signal to the desired synapse/s. 

The neurons’ outputs are available to the external device with the help of the post-

synaptic spike output circuits. Further, the synapses and neurons are configured using 

bias voltages and some resistor divider circuits. The CNL chip also supports on-chip 

neural connectivity. The debugging circuit allows some of the internal voltages of a few 

synapses to be observed externally as well as to set the characteristic of the synapses. 

The following sections explain the operation of Pre-Synaptic Spike Decoder, Neural 

circuit Configuration circuits, Post-Synaptic Spike Output circuit, and Debugging 

circuits.   

 

9.4.2.1 Pre-Synaptic Spike Decoder (PSSD) Circuit 

As the neural network connections are configured off the chip, the Pre-Synaptic Spike 

Decoder (PSSD) circuit is used to route the input spikes to the intended synapses, 

decoding the incoming Pre_spike addresses. A synapse address is made up of the row 

and column numbers corresponding to the place the synapse occupies on the chip. 

Hence, the column number represents its post-synaptic neuron’s address. The PSSD is 

comprised of Column Address Decoder circuit and Row Address Decoder circuit that 

share a common address bus (Addr <1:14>). At a given time, these decoders can select 

one or many synapses depending on the Pre_spike input. Figure 9.8 shows the block 

diagrams of these decoders. A crossbar grid layout that has 120 columns and 64 rows of 

metal conductors is formed by the output terminals of these decoders. At each cross 

point, a two input NAND gate receives the incoming column (Cb_c) and row (Cb_r) 

outputs of the decoders. The output of the NAND gate at a cross point is given to a 

Spike Generator (SG) circuit (except on the row 0, as addressing row 0 along with a 

column address is used to reset a neuron or group of neurons). Furthermore, the first 

100 SG circuits in the row 43 are used to generate external post-synaptic spikes (Post 

signals) to debug the STDP circuits. Figure 9.9 (a) shows the SG circuit. The SG circuit 

is constructed using a Delay circuit, Inverter, NOR and NAND gate. The layout of the 

SG circuit is located close to its synapse layout to provide non-attenuated pre-synaptic 

spikes. When the decoders enable a SG circuit, the circuit generates approximately 5 ns 

Pre pulse to its synapse. Figure 9.9 (b) shows the input, output and intermediate signals 

of the SG circuit. 



 154 

As mentioned above, the PSSD circuit can address a SG or a group of SG circuits 

simultaneously using a Pre_spike address. The Pre_spike address is defined with the 

doubled size of the synaptic address. It includes synaptic address bits and their 

corresponding “don’t care” address bits. If a “don’t care” address bit is set to logic one 

then its corresponding synaptic address bit is ignored. Hence, two synaptic addresses 

that match excluding the ignored bit’s (ignored bit is at "don’t care") are addressed 

simultaneously.  Similarly, many “don’t care” address bits can be set with logic one to 

send pre-synaptic spikes to a larger group of synapses simultaneously. The Don’t Care 

Addressing (DCA) circuit is used to provide the addressing and Figure 9.10 shows the 

circuit of one bit DCA element of the PSSD circuit and its truth table. The outputs of the 

DCA (DCA<0:6> or DCA<0:5>) are given to the address de-multiplexer circuit 

(DEMUX7 or DEMUX6) to generate the crossbar signals. 

Address a synapse or a group of synapses 

An external device, preferably an FPGA, provides the Pre_spike address to the address 

bus of the CNL chip in three stages. Firstly, the Data Flip-Flops (DFF) of the Column 

Address Decoder circuit latch the column address of the Pre_spike by providing a pulse 

to the strobe signal, Stb1_c after providing the column address onto the address bus. 

Secondly, both Stb_r and Stb_c2 signals of the PSSD are given a short pulse soon after 

the row address of the Pre_spike address is given to the bus. This starts decoding the 

column and row numbers of the address using Column Address Decoder circuit and 

Row Address Decoder circuit respectively. Finally, the decoded addresses are sent to 

the crossbar simultaneously to enable the intended SG circuit/s by providing a pulse to 

the Stb. Figure 9.11 shows the timing diagram of the Pre_spike addressing. 
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Figure 9.8 Block diagram of the Pre-Synaptic Spike Decoder (PSSD) circuit. 

 

 

Figure 9.9 (a) Spike Generator (SG) circuit and (b) its timing diagram of the SG circuit. 

 

 

 

 

 

(b) 
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Figure 9.10 (a) Don’t Care Addressing (DCA) circuit, and (b) its truth table; Array of DCA circuits 

is used in Row Address Decoder and Column Address Decoder circuits of the PSSD circuit. 

 

 

Figure 9.11 Timing diagram of the PSSD shown in Figure 9.8. 

 

9.4.2.2 Neural Circuit Configuration Circuits 

The neural circuit configurations include configuration of resting weight of the 

synapses, groupings of neurons and on-chip neuron projections (i.e. internal network 

connections). Brief descriptions of these are given below.   

Input 
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Configuration of Resting Weight of the Synapses 

In this section, synaptic weight, W is referred to the voltage that sets the resting weight 

control voltage of a non-STDP synapse (Vwrp or Vwrn). The non-STDP synapses 

require setting their synaptic resting weights when mapping a cortical network on the 

chip. These synapses include 5 356 synapses, which belong to seven groups. The XD 

and ID synapses of Block-A and XD, IF and XF synapses of Block-B receive their pre-

synaptic inputs from an off-chip device. Hence, these synapses are called externally 

connected non-STDP synapses. The synapses of the other two groups (XD-i and XD-e) 

are used to route spikes internally- they are called internally connected synapses. The 

synaptic weight configurations of these two types are given below.  

Resting weight configuration of the externally connected non-STDP synapses 

Synaptic weights of the synapses of a group can have linearly distributed weights along 

a column. However, along a row the weights remain constant. The circuit shown in 

Figure 9.12 is used to provide the linearly distributed weights. The externally provided 

voltages WB and WA are used to set the linear distribution as seen in Figure 9.12 (b).  

The nominal resistance of the resistor R is equal to 6.425 kΩ. The Poly-2 resistors are 

used in the resistor divider to achieve a higher resistance in a compact design.  Once the 

two ends of the distribution are set, the weight of the ith synapse ( iW ) can be obtained 

from the following equation.  

( )21

1
( ) for1 20

2 (9.1)
; / 20

i A

B B A

W W w i i

W W w W W

= + ∆ × − ≤ ≤

= ∆ = −
 

Where, WA and WB are externally set voltages; For ID synapses group, 21W is irrelevant 

as it has only 20 synapses.  
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Figure 9.12 (a) The Resistor divider circuit is used by each of the XD, ID, XD, IF and XF synapse 

group, R = 6.425 kΩ, (b) the generated weight distribution line. 

Resting weight configuration of the internally connected synapses 

The XD-i synapses that connect Block-B neurons to Block-A have a linear weight 

distribution along the row (the chip has 64 synapses such that occupy on the row one of 

the CNL chip). The resistor divider circuit used by XD-i is given in Figure 9.13. The 

weight of the jth synapse ( jW ) in the XD-i group can be calculated using the equation 

given below.  

for 1 32
(9.2)

( 32) for 33 64
C

j
C

W w j j
W

W w j j

+ ∆ × ≤ ≤
=  + ∆ × − ≤ ≤

 

Where, ( ) / 32D Cw W W∆ = −  and WC and WD are externally set voltages;  

 

Figure 9.13 Resistor divider circuit used by XD-i synapse type in Block-A to receive a linear weight 

distribution across the column: R = 4.25 kΩ. 
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Further, all the XD-e SYNAPSES (32 synapses on row one of the CNLC) that connect 

Block-A to Block-A neurons can only have the same weight value that can be set 

externally. 

Groupings of neurons 

Neuron circuit can be configured to different cortical neuron types (RS, CH, IB, etc.) by 

tuning the parameters (Vc and Vd) of a neuron appropriately as given in Chapter 4. 

Independent configuration of 120 neurons requires extra circuits and consumes extra 

chip area. Neurons in a cortical network are composed of larger groups of the same 

neuron type. Hence, 120 neurons are grouped into 13 groups where each group can be 

configured to a given neuron type independently. These groups are made up of different 

numbers of neurons so that a group that contains the closest number of neuron to a 

required number in a type can be constructed by combining many groups. Table 9.1 

shows the number of neurons in a group and their addresses.   

 

Table 9.1: Independently configurable groupings of neurons in Block-A and Block-B 

Block-A Block-B 

Group size No. of groups Addresses of the neurons Group size No. of groups Addresses of the neurons 

15 to 34 

40 to 59 20 3 

65 to 84 

8 1 108 to 115 

00 to 09 

10 2 

90 to 99 

6 1 116 to 121 

10 to 14  

35 to 39 

4 1 122 to 125 

60 to 64 

5 4 

85 to 89 

 

2 1 126 to 127 
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On-chip neuron projections 

Though most of the network connections are configured off-chip, 1.2% synapses are 

hard wired internally to test the prototype with internal and external connections. 

Eventually, this could provide more options to configure network connections. The 

outputs of 16 neurons out of 120 are connected internally. The hard wired connections 

are of two types, and they are given below. These connections can be switched -off or -

on depending on the network specifications. 

Block-A to Block-A neuron projections  

Outputs of eight Block-A neurons (with addresses 16 to 19 and 66 to 69) project 

internally to thirty two other neurons in Block-A via excitatory depressing synapses 

(XD-e). As given in Table 9.2, each output projects to four consecutive neurons. These 

synapses can have equal weights that can be set externally. 

Block-B to Block-A neuron projections  

Outputs of eight Block-B neurons (with addresses 100 to 107) project internally to sixty 

four neurons in Block-A, via XD-i synapses. As given in Table 9.2, each output projects 

to eight Block-A neurons. These synapses’ weight can have a linear distribution as 

discussed in Section 9.4.2.2. 
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Table 9.2: Hardwired projections of neurons 

Neuron projections  

Block-A to Block-A 

Neuron projections 

 Block-B to Block-A  
No. 

From neuron To neurons From neuron To neurons 

1 16 0 to 3 100 18 to 25 

2 17 4 to 7 101 26 to 33 

3 18 8 to 11 102 34 to 41 

4 19 12 to 15 103 42 to 49 

5 66 50 to 53 104 68 to 75 

6 67 54 to 57 105 76 to 83 

7 68 58 to 61 106 84 to 91 

8 69 62 to 65 107 92 to 99 

 

9.4.2.3 Post-Synaptic Spike Out circuit 

The spike outputs of 104 neurons in the CNL chip are sent to an off-chip device, 

whereas the other 16 neurons’ outputs connect internally. 84 of the 104 outputs send to 

output chip pins directly, through the output buffer circuits. These can be read by an off-

chip device in parallel. These neurons include the neurons with addresses 0 to 15, 20 to 

54, 79 to 99, and 108 to 119. The rest of the twenty outputs and two parallel connected 

outputs are sent serially. The two signals that outputs through both parallel and serial 

ports are use to debug the Serial Spike Out circuit. Description of the Serial Spike Out 

circuit that is used to interface output of the twenty two neurons is given below. 

Serial Spike Out (SSO) Circuit 

The twenty two neurons that can read their outputs using SSO circuit include the neuron 

addresses 55 to 65 and 70 to 80.  The SSO circuit has three terminals, Out_bit, Clk and 

Se.  Spike read-out operation of the SSO circuit is explained below. 
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Spike Read-Out from SSO Circuit  

An external device can read the neurons’ outputs serially from the Out_bit terminal 

providing a suitable clock (Clk) and scan-enable (Se) signal to the SSO circuit. The SSO 

circuit comprises of 22 bits Parallel Input Serial Output (PISO) shift register, 22 

Set/Reset Latch (SRL) and Reset Pulse Generator circuits as shown in Figure 9.14. 

When a neuron fires, SRL is set and latched until the Data Flip Flop (DFF) on the PISO 

shift register updates with the SRL state within the refractory period of the neuron. The 

SSO circuit works synchronously with the rising edge of the clock and has two phases; 

the spikes update phase (Se = ’0’) and the serial scan phase (Se = ’1’). At the spikes 

update phase, the PISO shift register updates with the spike data received from SRLs, 

whereas in the scan phase the external device can read the twenty two spikes serially. 

Soon after the scan phase is started, the SRLs are reset using the Reset Pulse Generator 

circuit. The Reset Pulse Generator circuit generates a reset pulse at the rising edge of the 

Se signal. The circuit comprises of Buffer, Delay circuit, Inverter, and AND gate as 

shown in Figure 9.15.  

The 25 MHz clock and repetitive scan-enable signals as shown in the timing diagram in 

Figure 9.16 can be used to read the spikes periodically.  It is also possible to use a 

higher clock rate than 25 MHz. However, the scan phase requires 21 clock cycles, and 

for the rest of the time the device should be put into the update phase. The update phase 

should last for at least one clock cycle within 1 µs so as not to lose any spikes.  
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Figure 9.14 Block diagram of the serial spike out unit.  

 

 

Figure 9.15 Reset Pulse Generator circuit. 

 

Figure 9.16 Timing diagram to obtain 22 neurons’ spike output data from SSO circuit serially. 
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9.4.2.4     The debugging circuits 

The debugging circuits are used to test the synaptic states for different bias voltages and 

parameters as well as to observe their states while emulating a cortical network.  

The testing of a STDP synapse may include observing the synaptic dynamics with an 

externally provided post-synaptic signal (Post) rather than using the output of the 

post-synaptic neuron. It is also possible to reset the weight of the STDP synapse. The 

observable internal signals of a STDP synapse include ltp, ltd, Wstdp, w, and Vsyn (see 

Chapter 5). For non-STDP synapses the facilitating or depressing weight signals (Vw) 

can be observed off the chip. These signals can be used to obtain the on-chip 

characteristics of the synapses by sweeping the parameters of the synapses, and to 

facilitate the testing circuits if required. 

Due to the limitation of the chip area and the output pins, the signals of only a few 

selected synapses of only eight neurons from each Block can be observed off the chip. 

The observable synapses associated with the Block-A and Block-B neurons are the 

neurons with the addresses 50 to 57 and 112 to 119, respectively. Further, internal 

signals of each synapse from each main synapse type are observable. That is, from each 

of ID/IDS, STDP and XD types in the Block-A neuron, and from each of IF and XF/XD 

types of the Block-B neuron.  The addresses of these synapses that belong to each 

neuron can be obtained from Table 9.3. The cross marks in Table 9.3 indicate the 

synapses and their observable synaptic signals for a given neuron address. 

Each of the observable signals is initially buffered using a source follower circuit (a two 

transistor NMOS or PMOS circuit). Then the eight inputs from similar synapses of eight 

neurons of a block are multiplexed using an 8:1 multiplexer. Finally, the multiplexed 

output is given to an OpAmp before providing the output to the chip pins.  The OpAmp 

circuit works in a unity gain voltage follower configuration. 

To observe the signal/s of a synapse, the test address (Tadd<0:2>) of the synapse’s 

neuron should be sent to the address of the 8:1 multiplexer. This is done using the 

common address bus (Addr). Similar to pre-synaptic addressing, the three test address 

bits along with the two flags, the Post_sel and Wrst are also provided to the address bus, 

followed by a pulse to the Strobe signal, Stb_t. This latches the bits on to five DFFs 

(Data Flip Flops). The three DFFs that latch the address bits are connected to the 

address of the 8:1 multiplexer. Hence the address to switch the output signals is 
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decoded.  Once a test address is provided, all the synaptic signals of the Block-A and 

Block-B neurons belonging to the test Address can be observed simultaneously. The test 

addresses corresponding to the neurons addresses can be obtained from Table 9.3.  

Setting the Post_sel flags (Tadd<3>) switches the Post signal of the STDP synapses to 

an externally provided Post signal (the external Post signal is provided using the row 43 

address in a similar way as the Pre signal is provided) rather than to its post-synaptic 

neuron’s output, to facilitate debugging and the measurements of the STDP circuit. The 

Flag Wrst (Tadd<4>) is used to reset the STDP weight to zero.  
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Table 9.3: Observable signals of synapses, their address and respective test address 

Block-A Neurons 

Test Address 

(Tadd<0:2>) 
0 1 2 3 4 5 6 7 

Synapse 

Type 

Synapse 

Row  
Neuron (col) 

Test Signal 
50 51 52 53 54 55 56 57 

Output 

Buffer 

Type 

Output 

OpAmp 

Label 

ID 63 Vw x x x x     

IDS 44 TVwID     x x x x 

PMOS Vw1 

ltp x x x x x x x x PMOS Ltp 

ltd x x x x x x x x NMOS Ltd 

Wstdp x x x x x x x x PMOS Wstdp 

w    x x    

 

STDP 

 

42 

Vsyn x x x   x x x 

NMOS Vsyn_w 

XD 21 Vw x x x x x x x x NMOS Vw2 

Block-B Neurons 

Test Address 

(Tadd<0:2>) 
0 1 2 3 4 5 6 7 

Synapse 

Type 

Synapse 

Row 
Neuron (col) 

Test Signal 
112 113 114 115 116 117 118 119 

Output 

Buffer 

Type 

Output 

Signal 

Label 

IF 63 Vw x x x x x x x x PMOS Vw3 

XF 42 Vw x x x x x x   

XD 21 Vw       x x 

NMOS Vw4 

 

9.5 CNL Chip- Model  

An approximate mathematical model of the CNL chip is formulated to simulate 

approximated network behaviour of the chip. Figure 9.17 shows the block diagram of 



 167 

the mathematical simulation setup of the CNL chip. The model has been implemented 

in MatLAB18. The Simulation Core uses mathematical models of neuron and synapses. 

It comprises of the same number of neurons and synapses and with the same structure as 

that of the CNL chip. The mathematical model of the neuron is given in Chapter 4 and 

the synapse mathematical models are given in Chapter 5 and Chapter 6. The pre-

synaptic inputs to the Simulation Core are provided using the matrix PreSpike [63 

x120]. The spike outputs from the neurons are continuously updated on to a matrix Fire 

[120x1].   The parameter matrix, Para [60x1] is used to tune the characteristic of the 

synapses and the neuron types. The user can set this matrix according to the 

characteristic of neural elements of a given network. The incoming spikes from the 

neurons of the Simulation Core are routed to the synapses of the Simulation Core using 

the Route Spikes function. The Route Spikes function uses the Connectivity Matrix map 

that defines the network connectivity of a given network. Hence, before simulating a 

network, the user needs to set up the Connectivity Matrix and the Parameter Matrix that 

define the given network. 

 

 

 

Figure 9.17 Cortical Neural Layer Simulation Core. 

                                                 

18 MATLAB Web Link: http://www.mathworks.co.uk/ 
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Some simple models so far tested by the users include Synfire Chains (Grossberg, 

1969). Winner-take-all network (Redgrave et al., 1999), and AND, OR and XOR gates 

(Agmon-Snit et al., 1998). 

9.6 The CNL Board  

The CNL board consists of the CNL chip board and a Xilinx Vertex 5 FPGA board 

(Xilinx 16; Opal Kelly19). Figure 9.18 shows the block diagram of the CNL board.  The 

180 pin CNL Chip is bonded on to a printed circuit board (PCB), and an FPGA board is 

connected onto the PCB to form the CNL board. The analogue biasing voltages that 

tune the parameters of the CNL chip are routed to connectors on the board. The tuning 

parameters can be provided using externally programmable voltage supplies to pre 

configure the characteristics of the synapses and neuron types on the VLSI cortical 

neural layer. The eight analogue output pins of the CNL chip are used to observe the 

internal states of the synapses are also wired onto connectors on the board. All the 

digital input and output pins of the CNL chip are connected to the FPGA directly.  

These include 14 bits address bus, 5 bits strobe signals, 84 bits parallel spike outputs of 

84 neurons and 3 bits to access serial spike outputs of 22 neurons.  The address bus 

including strobe signals are used to send pre-synaptic spikes to the synapses, to select 

observable internal states of the synapse and to test the STDP synapses (see Section 

9.4.2.1 and Section 9.4.2.4 for more details). At a given time pre-synaptic spikes can be 

sent to one or many synapses that allow dense network connectivity with reduced 

latency.   

                                                 

19Opal Kelly Xilinx Virtex 5 FPGA board Web Link: http://www.opalkelly.com/products/xem5010/ 



 169 

FPGA

(Xilinx V5)
CNL Chip

CNL Board

 

USB interface

 

 

Address bus

Spike_outs

Biasing inputs

 

 

Observables

Spike Routing to the Adjacent CNL Board A
(47 I/O pins )

Analogue 
Biasing 

Voltages

Observables

USB 
Interface to 
the PC

 

Strobe signals

Clk

Se

Out_bit

14 bits

5 bits

84 bits
8 signals

60 Voltages

Spike Routing to the Adjacent CNL Board B
(47 I/O pins )  

 

 

Figure 9.18 Cortical Neural Layer Board. (a) Block diagram (b) Actual Board (work-in-progress  

CNL board, this work is continuing under EPSRC funding ) 
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9.6.1 Operation of the CNL board 

In emulating a network in the CNL board, the network needs to be configured. This 

requires pre configuring the network connectivity and presetting of the tuning 

parameters of the network. The Routing Module that performs the spike routing and the 

LUT that defines the connectivity of a given network, are implemented on the FPGA. 

The LUT needs pre configuring according to the connectivity matrix of the network. 

The tuning parameters that set the properties of the neural elements need to be supplied 

by the programmable voltage suppliers. These configurations define a network on the 

CNL board. Furthermore, required observable outputs can also be set using the address 

bus of the CNL chip.  

The CNL spike outputs that include both parallel and serial spike outputs are connected 

to the input channels of the FPGA. Once a neuron fires, the input stage of the FPGA 

detects an arrival of a spike on its input channel. This generates an address event that 

triggers the request to perform routing of spikes. The FPGA Routing Module accepts an 

incoming request and performs the routing of the spike to its connected synapses by 

generating the pre-synaptic spike address to the CNL chip. Once the request is served 

(routing is performed) the request is acknowledged and the next incoming request on 

the queue is performed by the Routing Module. In performing these routing operations, 

the predefined network connectivity table, the LUT, is used to obtain the connected 

synapse addresses of a neuron. Simultaneously, these spike activities can be recorded on 

the memory and read by the PC using the USB interface to analyse the spikes. Figure 

9.19 shows the test setup of the CNL board. 
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Figure 9.19 Cortical Neural Layer Board. 

9.7 Discussion and Conclusions 

The fabricated generic neural layer prototype IC assembles the basic neural elements 

with diverse properties and composition as of the neural layer of the neocortex in a 

small scale. A VLSI Cortical Neural Network architecture that combines many CNL 

chips to build a small scale cortical network is proposed, and it could provide a platform 

to study the network behaviours and learning. Approximated mathematical model of the 

CNL chip is formulated to simulate the approximated behaviour of a network in 

software. This helps to understand and possibly to reduce the network mapping 

problems before configuring the network on the CNL ICs.   In addition to the 

configurations of neural dynamics of neurons and synapses discussed above, the delays 

of signal propagation due to the location of the synapse on the dendrite can be modelled 

on the FPGA using delay blocks.  

Mapping cortical network on to the CNL chip  

The CNL chip is equipped with many configuration options such as on chip and off chip 

network connections, different types of synapse and neuron configuration, etc. On the 

other hand, it also has limitations such as characteristics of synapse or neurons are set in 

groups, synapse can only have fixed linear pattern of weight distribution configuration, 

etc. These require an extra effort in mapping a given network on to the CNL chip. 
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Therefore, automating the network mapping task will ease the usability of the CNL 

chip. This could be done by formulating a generic algorithm that implements most 

obvious problems of resource mappings using a rule set, and complex and non-trivial 

resource mappings using the trial and error method. In arriving at optimised mapping 

parameter set using trial and error techniques require performance figures of network 

mapping in order to judge the performance of mapping. The performance figures may 

depend on many factors such as the network specifications, the expected behaviour of 

the network, etc. Example of performance figures could be the percentage of 

connections mapped, percentage of neuron types satisfied, percentage of STDP 

synapses used, the spike routing time, closeness of the output results of the network, etc. 

Many performance figures need to be considered in arriving at optimised mapping 

parameter set and these figures could have weightings depending on the level of 

significance on the network performance. Hence the approach like the Balance 

Scorecard20 could be used. For example, in a network percentage of STDP synapse 

mapped on to the chip could be more important than a percentage of excitatory 

depression synapses mapped, depending on the network behaviour (e.g. STDP learning) 

tested on the chip which requires higher weight to the earlier factor than later.   

 

Cortical Network Connectivity and Spike Routing Latency  

The fact that a spike from a neuron takes time to reach its connected synapses is referred 

here as the spike routing latency. The network connections are implemented external to 

the CNL chip, and the time taken to route a spike needs to be within the acceptable 

range. The timing delay of the spike outputs of the CNL chip to reach the FPGA is short 

as the spikes are recorded in parallel. However, depending on the network 

configuration, the spike congestion due to higher network activity could slow down the 

spike routing from the FPGA to the synapses. If the activity level of the network is 

higher than the spike routing speed of the router on the FPGA, there is a chance that 

incoming spikes will be queued on the FPGA memory, resulting in longer spike routing 

latency. This problem could increase further if many CNL chips are connected together 

as it increases the number of spikes to be routed. In reducing the FPGA routing load, the 

                                                 

20 Balance Scorecard  Web Link: 
http://www.balancedscorecard.org/BSCResources/AbouttheBalancedScorecard/tabid/55/Default.aspx 
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CNL chip use the "don't care" addressing of the synapses that allows simultaneously 

addressing of many synapses using one cycle of addressing (discussed in 9.3.2.1). The 

chip also implements neuron to synapses fixed connections that reduce the external 

spike routing load. These internal connections facilitate one neuron to many synapse 

projections (discussed in 9.3.2.5). The spike routing latency of internal connections is 

significantly lower than the external routing latency. 

Spike routing delay shorter than the refractory period of the neuron (1 µs in accelerated 

time) is required to provide integration of post-synaptic currents on to the membrane of 

the post-synaptic neuron properly. The calculation of number of spikes (at full load) that 

can be routed within the refractory period of the neuron is provided below.  

 

Assuming that all the neurons are fast spiking neuron type and spike continuously at 

200 MHz (200 Hz in biological time), i.e. at full load, where all the neurons are spiking 

approximately at their highest spike rate: 

 

Average spiking rate of all the neurons                     = 0.2 MHz  

Average spike rate of N neurons                                = N x0.2 MHz  

Clock Speed of the FPGA                           = CLKFPGA 

Number of cycles per pre-synaptic spike addressing = CYC 

Number of input neurons that can be served  

     within the refractory period = CLKFPGA/ (200 000 CYC) 

  

If FPGA clock rate is 100 MHz and spike addressing takes two clock cycles, assuming 

one pre-synaptic addressing per spike is needed to define the connectivity of the 

network (i.e. all the synapse groups can be selected using the "don't care" bits address 

patterns), and not considering the serial reading delays of the serially read spikes. 

250 fast spiking, 200 Hz (biological time) continuously firing neurons can be served by 

the router.  This is sufficient to combine six CNL boards to form a VCNN architecture, 

where one third from the full network connectivity (total number of neurons 720) could 

be satisfied even with the full load activity level. The full load activity level is highly 
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unlikely as cortical network comprises of RS, IB and CH firing patters, FS neurons 

could not fire continuously for a longer period, and the activity levels of the networks 

are believed to be well below 10%.  

Importance of the STDP synapse and its memory retention, 

The STDP synapse implementation proposed in this thesis lack the long-term memory 

retention but provides a compact circuit implementation.  Other approaches of 

implementing STDP synapses that retain memory for a long period include use of 

floating gate transistor synapses (Hasler et al., 1999) and digital memory synapses 

(Schemmel et al., 2008) but these implementations require larger silicon area. The 

memristor nano-scale device operates similar to a STDP synapse and can keep the 

memory for a long period. The emerging VLSI technologies that incorporate fabrication 

of memristor device could make easier to fabricate massively parallel large cortical 

neural networks in hardware.  

Experimenting cortical network models 

The proposed network architectures can be used to configure small neural network 

models and the scaled down versions of a large scale network models (Redgrave et al., 

1999; Riesenhuber et al., 1999; Grossberg, 1969; Agmon-Snit et al., 1998 Traub et al., 

2005; Häusler et al., 2006; Goldberg et al., 2004; Basalyga et al, 2010; Stein et al., 

2008). The Matlab model of the CNL chip has been provided to computational 

neuroscientists in the COLAMN project (Institute of Computational Neuroscience, 

Plymouth), and to postgraduate students in the School of Electronic and Electrical 

Engineering and the School of Life Science in the University of Manchester to test 

models in numerical simulation before implementing them on to the hardware.  

Finally, the results obtained using the hardware model could be benchmarked with the 

computational models and then with the biological recordings. This will provide insight 

into the closeness of the neural dynamics of the circuit implementations. Further, these 

could help to predict some biological behaviours of the network by observing the 

dynamics of the hardware implemented models.   
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CHAPTER 10 :  MIMICKING CORTICAL NEURAL 

NETWORK IN HARDWARE –A DISCUSSION 

This chapter discusses the feasibility of implementing larger cortical neural network 

architectures in hardware.  The complex non-linear nature of neural response, 

heterogeneity of the neural elements, the complexity of neuron connectivity and the 

practical limitation of maximum silicon area of a chip, limit the maximum size of a 

cortical network in silicon. Implementations of complex non-linear computational 

models consume larger silicon area of a chip. Therefore, there is a trade-off between the 

extent to which the VLSI circuit element can be made biologically plausible and the size 

of the cortical network that can be implemented in VLSI.  

Continuing the effort of implementing larger cortical network in hardware, the initial 

section of this chapter provides estimations of VLSI cortical network sizes that can 

possibly be built utilising the latest technologies.  This includes VLSI cortical network 

size estimates in a large chip fabricated in CMOS technology 90 nm, in multi-chip 

approach, and in wafer-scale integration technology that uses the accelerated-time core 

VLSI neural circuits used in CNL chip. Here, the estimate only down to the 90 nm 

CMOS technology is used as the design of analogue mixed signal circuits in the 

technologies that have smaller feature sizes is challenging, and the network size 

estimations may be not realistic. Further benefit of using 3D integration technology to 

build the cortical network is also discussed. Although a network could be implemented 

in these estimated sizes, other factors that could provide problems and limitations are 

also discussed. The later part of the chapter presents alternative approaches that could 

be used to mimic cortical networks. Finally, the higher abstractions of neural dynamics 

used to obtain brain-inspired computing models are outlined. 

10.1 Estimates of VLSI Cortical Network Size 

The proposed cortical networks include richer neural dynamics than the other VLSI 

network implementations found in the literature. This section analyses the feasibility of 

implementing larger scale cortical neural network in VLSI using the accelerated time 

neuron and synapse circuits proposed in Chapter 4 to Chapter 6. The CNL chip has been 

fabricated in a standard 0.35 µm CMOS technology, and includes 120 neurons and 
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7 560 synapses. The CNL chip uses generic neural elements that can be configured to a 

variety of neuron and synapse types of a cortical network layer.  Further, a VLSI 

Cortical Neural Network architecture that accommodates multi-chips to build a larger 

network that comprises 2 400 neurons and 151 200 synapses has been proposed in 

Chapter 9. By continuing this analysis, this section provides possible size estimations of 

the VLSI cortical network implementations in 120 mm2 chip area, (corresponding to a 

relatively large die size, which can nevertheless be fabricated with a good yield on a 

modern standard CMOS 90 nm process technology ), multi-chip integration and wafer-

scale integration. Further, the advantages of using 3D-VLSI integration are also briefly 

discussed.   

Using a straightforward area scaling from the implemented CNL chip, it is estimated 

that the 120 mm2 VLSI chip in 0.35 µm technology can accommodate up to 600 

neurons and 38 000 synapses. Migration of 0.35 µm technology analogue circuits into 

90 nm technology require redesigning the analogue neural circuits proposed in 

Chapter 4 to Chapter 6. Redesigning these circuits requires taking into account high 

sub-threshold leakages and mismatch problems that are inherent in deep sub-micron 

circuit implementations. Here, a conservative area scaling factor is used to estimate the 

equivalent silicon area consumption in deep sub-micron implementation, and it is 

estimated that in a 90 nm CMOS technology, 120 mm2 chip can accommodate 

approximately 5 000 neurons and 300 000 synapses.   The multi-chip approach that uses 

twenty 120 mm2 VLSI chips in 90 nm technology could accommodate 100 000 neurons 

and 6 million synapses. A hypothetical deep submicron wafer-scale integration of a 

system on a 12” wafer can accommodate approximately 2.8 million neurons and 180 

million synapses (This assumes very low scaling factor include additional penalty for 

increased routing).  These network size estimation calculations are provided in 

Appendix B. The largest network of wafer-scale and multi-chip integration requires 

high bandwidth communication architecture (GHz range) to communicate between 

neurons. Brain has evolved in three-dimensional space, where close by neurons have 

been connected to each other via synapses with remarkably dense connectivity patterns 

to form a 3-dimensional cortical network. Though the VLSI networks can be 

implemented on a large scale the complexity of inter-neuron connectivity limits the 

network models that can be configured to be emulated by these microelectronic devices. 

Therefore, the larger networks require the use of digital technology to route spikes 
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between distal parts of the network in order to reduce the inter-neuron communication 

problem. Architectures like Network on Chip (Plana et al., 2007) could be used to 

facilitate the multi-chip communication requirements. The larger wafer-scale integration 

network proposed by Schemmel et al. (2008, 2009) uses hierarchical digital 

communication architecture to support the high bandwidth of inter-neuron 

communication.  

On the other hand, the 3D-VLSI techniques are becoming available that stack many 

layers of silicon circuits to form a three dimensional (3D) chip21. These technologies 

can be used to reduce the inter neuron connectivity constraint. The size of the network 

that can be implemented in a chip can be increased several times due to the increase in 

silicon area. The VLSI 3-D integration technologies are at their early stage, though they 

provide higher density of wiring and fast signal propagation. Currently, these 

technologies cannot provide the full random 3-dimensional connectivity such as that of 

neurons in the neural tissue, although the density of connectivity between circuit 

elements has been improved greatly.  Since the circuit is very densely packed, power 

dissipation may impose a limit on the size of the network that could be implemented 

using these technologies. 

10.2 Limitations of VLSI Cortical Network  

Although the efforts are made to propose larger VLSI cortical networks, they can only 

be built with relatively basic models, limited in size, and with reduced flexibility. 

Further, the contemporary science also lacks the full understanding of the cortical 

network dynamics.  Therefore, cortical network experiments in larger implementation of 

VLSI cortical network could encounter the following difficulties:  

 

- Calibrating the VLSI cortical network  

Hardware neural network model is built with approximations and with reduced 

flexibility. On the other hand, biological neural responses are highly heterogeneous. 

Hence, the optimal configuration that should be used in an experiment is non trivial and 

in most of the cases, setting-up the initial conditions and calibrating all the neural 

                                                 

213D-IC Alliance  http://www.3d-ic.org/    
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elements to an optimal set of parameters that suits the given network model may not be 

trivial. Comparing VLSI network results and biological network results in order to 

calibrate the neural elements is also not straightforward due to the highly non-linear 

nature of the relation between the characteristics of the neural elements and the 

dynamics of the network. 

 

- Mapping a cortical network model onto the hardware 

Mapping larger cortical network models onto the hardware may require approximations, 

simplifications, and scale reductions. It is not a straight forward task to find the best 

mapping that satisfies the hardware constrains. The necessary modifications may not be 

valid and due to the non-linear dynamics it may not be possible to find the best 

approximated, or/and scaled network model that could be mapped to the hardware. 

As the neural elements are heterogeneous and complex in their connectivity, the 

unavailability of standard method of classifying neural elements and simplifying 

connectivity patterns makes the approximating and/or reducing the network size a 

challenging task.  

There are attempts by the neuroscience community to standardise the neural 

classification methods (e.g. Pettila convention22, see Markram, (2006)). The 

standardising of the neural classification methods is difficult due to the unavailability of 

the pool of known data and as some types of neurons and synapses are yet to be found.  

Recently pooling of known neuron and synapse data have been begun (e.g. 

Neuromorpho.org23) and data is publicly available, which might help to formulate 

universal classification methods for the neural elements once a sufficiently large data set 

is accumulated. Methods of simplifying network connectivity need better understanding 

of the cortical network dynamics, and these could evolve hand in hand with the 

evolution of the hardware emulating platforms.   

                                                 

22 Petilla Convention (2005)  

Web Link: http://krasnow.gmu.edu/cng/petilla/  

 
23 Neuromorpho.org 

Web Link: http://neuromorpho.org/neuroMorpho/index.jsp 
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- Variability and noise of the hardware  

Though it seems possible to compensate for the variability and noise of the hardware by 

properly configuring the cortical network, computational principles that facilitate fault 

tolerance in a network are yet unknown. Therefore, at this stage the variability and noise 

in VLSI hardware could not be properly analysed to obtain the desired cortical network 

dynamics. However, by emulating different cortical networks on hardware the effect of 

the variability and noise on cortical network dynamics could be studied.  

 

- Acquiring and processing of data 

There is a limit to which the VLSI network data could be observed. Access to all the 

internal variable of the neural elements may not be available due to the hardware 

constrains and the chips usually provide only the spike outputs of the neurons rather 

than instantaneous status of the state variables of all neurons and synapse. Even so, 

these data may reach a very larger volume, which requires high computing power to 

analyse.  

 

- Benchmarking of VLSI hardware results with the biological recordings  

The procedure for validating the closeness of the network results against the result of 

computational models and then against the biological data is not obvious and there is no 

standard method for doing so this is true even for validating computational models 

against the biological data. However, it can be hoped that the standard method for 

benchmarking hardware neural accelerator platforms become available with the 

evolution of the hardware neural accelerator platforms.     

 

- Lack of availability of promising cortical network models 

Most of the known cortical network models address the cortical networks of early 

sensory processing stages. These preliminary stages of sensory processing perform 

simple feature detections and do not perform promising cognitive processing. For 

example, the most researched area of the neocortex is the area V1 which belongs to the 
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visual cortex; area V1 performs preliminary stages of visual processing that include 

directional selectivity, orientation selectivity, binocular disparity, etc. The intelligent 

complex processing is believed to be done in higher cortical areas of the brain and how 

the information is processed is still a mystery in Neuroscience.    

Furthermore, due to the limitations of acquiring data from biological systems, the 

available models represent a small part of the cortical networks, with many assumptions 

and approximations. These network models provide only simple oscillation or wave 

propagation behaviours and do not demonstrate useful intelligent information 

processing phenomena (Traub et al., 2005; Häusler et al., 2006; Goldberg et al., 2004; 

Basalyga et al, 2010; Stein et al., 2008). However, experimenting with different 

hypothetical network models may help to improve the understanding of the cortical 

network dynamics.  

 

10.3 Alternative Approaches 

This section discusses some alternative approaches to mimicking the cortical networks 

in hardware platforms. These include the need for alternative IC fabrication 

technologies, the utilisation of a memristor device as a synapse, and an approach based 

on cell cultures. Finally, the scientific approach that can be used to develop brain-

inspired computing models at a higher abstraction of neural network dynamics is 

outlined.  

10.3.1 Alternative IC fabrication technologies  

As discussed in Chapter 1, there is a need for a VLSI technology that can mimic cortical 

neural network architecture optimally. The circuit should be able to accommodate cells 

with 3-D connections, while the requirements on the speed, preciseness and the 

minimum feature size can be more relaxed.  The possible alternative approach that 

could provide these properties includes 3D VLSI technologies, such as Plastic (or 

organic) VLSI that uses organic materials to build 3D or 2D circuit elements. Further, 

invention of a dedicated neural element as a device rather than constructing these using 

transistors would reduce the complexity of large scale network implementations 

(Linares-Barranco et al., 2009; Yajie et al., 2007).  
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10.3.2 Memristor as a synapse 

A fabrication of the memristor devices is an emerging technology that could 

substitute the STDP synaptic circuit with a nano-scale device (Linares-Barranco et al., 

2009). The memristor theory was first formulated by Chua (1971). The memristor is a 

two dimensional circuit element that has the characteristic of resistance change due to 

the history of its current flow and the potential difference across the terminals that can 

be described as a functional relationship between charge and magnetic flux. This 

characteristic can be used to implement STDP rule with non leaky long-term memory 

retention while occupying only a few square nanometres of chip area. For comparison, 

the proposed STDP circuit (Chapter 5) occupies six orders of magnitude larger circuit 

area while not providing adequate long-term memory retention. The memristor 

technologies are being developed (e.g. Hewlett-Packard lab) at many research institutes 

and are not yet available as a generic technology to implement circuits. Once these 

devices are available, replacing the STDP circuits of CNL with memristors would make 

a large-scale massively parallel cortical network in hardware more feasible, as some of 

the area constrains in implementing cortical network in VLSI technologies would be 

relaxed. 

10.3.3 Cell culture 

Another approach includes culturing of biological neural networks to study the network 

behaviours (Wagenaar et al., 2006; Stegenga et al., 2008). This uses biological neural 

tissues taken from animal brains, cultured on top of multi-electrode arrays that allow 

communication to and from the cultured neural network. These networks are typically 

flat single layer sheets, which are limited to networks with two-dimensional 

connectivity.  

10.3.4 Higher abstractions of neural dynamics 

Although this thesis uses neural level abstraction to build and understand biological 

systems, it is an open question, which level of abstraction neural circuits should be 

modelled to yield a practical computational architecture. The “bottom-up” approach that 

links the neuron-level activities to higher-level actions such as decision making, storing 
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memories, experiencing the world, emotions, etc. as well as its opposite “top-down” 

approach is popular in brain science as a way to reverse engineer the brain. 

Most of the models that abstract higher level neural network dynamics are efficient and 

cost-effective to implement in hardware, though they tend to deviate away from the 

biological plausibility. On the other hand, as presented in this thesis, neural level 

abstraction of circuits requires higher computational power to simulate or emulate small 

neural network, though, in comparison, it is more biologically plausible. It should be 

also noted that whether biologically plausible or not, if the brain-inspired system could 

perform intelligent processing, it would be an excellent achievement. 

Some of the higher level abstracted models of cortical processing presented in the 

literature include Kalman filter neural model (Rao et al., 1996), the Bayesian neural 

model (Lee et al., 2003), Factor graphs (Bishop, 2006), LaminART model (Grossberg, 

2007) and LISSOM Model (Miikkulainen et al., 2005). These models demonstrate some 

basic functions such as autonomous following of an object, predicting future 

probabilities of an action, object recognition, etc. These models are not capable of 

performing sophisticated intelligent functions as in biological systems but are capable of 

far more complex functionalities than the neuron-level models. 

Once the underlying principles of brain computation are known, the abstract models 

implemented in hardware could be more efficient and cost effective. 
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CHAPTER 11 :  CONCLUSION 

Generic compact VLSI implementations of neural circuit elements that can be used to 

mimic the functions of a cortical network have been designed and fabricated in a 

standard 0.35µm CMOS technology. The VLSI network can be used as an emulation 

platform to research into the potential capabilities of a cortical network in performing 

real-world psychophysical tasks. The accelerated-time network implementation saves 

time in performing an experiment (e.g. hours of biological network simulation could be 

performed in seconds), providing considerable savings in the case where parameter 

sweeps are an essential part of the experiment. The key contributions of this thesis 

include: 

• implementation of silicon cortical neuron with the lowest reported energy 

consumption per spike, in a generic and compact form; 

• mixed signal VLSI implementations of the Izhikevich neuron, first time in the 

neuromorphic research, both in accelerated time and biological time 

implementations; 

• first hardware implementation of the dopamine modulated synapse; 

• implementation of novel, compact, short-term plastic VLSI synapse circuits;  

• implementation of the configurable mixed signal VLSI cortical network 

integrated circuit with the most diverse neural dynamics that include diverse 

nonlinear neuronal responses and most of the short- and long- term plastic 

synapse types. 

The accelerated-time VLSI neural circuits designed and fabricated include a compact 

cortical neuron circuit, two different long-term plastic synapse circuits and four 

different short-term plastic synapse circuits. Further, a biological-time cortical neuron 

circuit with similar dynamics as of the accelerated-time neuron is designed to 

demonstrate the feasibility of migrating accelerated time circuits into a biological-time 

domain implementations, which could be used to build biological time cortical network 

that has applications such as the real- time, sensory signal processing. 

The neuron circuit is capable of replicating many known types of cortical neurons, 

simply by tuning two external voltages. The neuron reproduces biologically plausible 
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action potentials. The spiking and bursting firing patterns observed in cortical neurons 

such as regular spiking, fast spiking, chattering and intrinsically bursting and other 

complex activity patterns can easily be reproduced. The circuit uses only 14 transistors 

and is extremely compact. It consumes about 8pJ per spike and hence consumes low 

energy per experiment. Therefore, this circuit is an attractive candidate for building a 

massively parallel VLSI cortical neural network that incorporates diverse nonlinear 

neural responses, which seems essential for producing brain like computation. 

The STDP and the Dopamine Modulated STDP synapse circuits that demonstrate long-

term plasticity dynamics have been designed and fabricated in hardware. The STDP 

dynamics of the STDP circuit follows an approximated STDP curve to arrive at 

compact design. STDP synapse’s amount of weight change due to LTP and LTD and 

the time windows of the LTP and LTD can be configured independently. This circuit 

can be incorporated in a cortical network to facilitate the learning and memory of a 

network. However, as the circuit holds the synaptic weight using a capacitor the 

operational time of an experiment is limited. The dopamine modulated synapse circuit is 

implemented based on the computational model proposed by Izhikevich (2007). This 

circuit has been designed by extending the STDP synapse circuit to facilitate regulation 

of eligibility traces based on the dopamine concentration. The changes in an eligibility 

trace due to LTEP or LTED, and the time windows of the LTEP or LTED can be 

configured independently, and the dopamine concentration can be generated globally 

using an external voltage bias or using a burst of spikes. This circuit can be used to 

provide the reinforcement learning in a VLSI cortical network. In the case of DA 

modulated synapse, the use of capacitors to hold the memory traces does not directly 

limit the operational time of an experiment. These long term synapse circuits can only 

be used in small-scale cortical network implementations.  

Excitatory depressing, inhibitory facilitating, inhibitory depressing, and excitatory 

facilitating synapse circuits that demonstrate short-term plasticity dynamics have been 

designed and fabricated in VLSI hardware.  The strength of depression or facilitation 

and the time constant of the recovery can be configured independently using externally 

controlled tuning voltages. The post-synaptic current can be scaled using an externally 

adjustable bias voltage. Accommodating inhibitory and excitatory synapses in a 

network provides stable network activities with rich network dynamics. Incorporating 
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facilitation and depression of the synapse circuits in a VLSI neural network provides 

dynamic gain-control inherent in the biological cortical networks.   

To prove the concept in VLSI, different combinations of these accelerated-time neural 

circuits have been fabricated in a standard 0.35 µm CMOS technology. These include 

the Cortical Neuron Chip, STDP-DA Synapses Neuron Chip, and Cortical Neural Layer 

Chip (CNL chip). The former two ICs are designed to test the function of the basic 

neural elements, and the CNL chip is designed to facilitate cortical network emulations. 

The Cortical Neuron Chip has been fabricated with 202 cortical neurons, and the neuron 

function is experimentally verified. The STDP-DA Synapses Neuron Chip has been 

fabricated with two cortical neurons and 28 STDP/Dopamine modulated synapses to 

test the functionality of long-term dynamics synapses.  These two fabricated chips have 

been tested, and the functions of cortical neuron and STDP synapse have been 

experimentally verified.  The CNL chip that has the neural circuit composition similar 

to the cortical layer of the neocortex has been designed with 120 cortical neurons and 

7650 synapses, and its design and implementation details have been provided. Further, 

the approximated mathematical models of the chip elements have been formulated to 

build a chip simulation platform that could test an approximated behaviour of the 

cortical network implemented on the CNL chip in software.  

A Cortical Neural Network Architecture that utilises several CNL chips to build a 

cortical network of neocortex has been proposed. Finally, estimations of VLSI cortical 

network sizes that could possibly be built in the latest silicon technologies have been 

provided. The estimations suggest that a wafer-scale integration of a system on a 12” 

wafer in 90 nm technology could accommodate approximately 2.8 million neurons and 

180 million synapses, if the composition of the basic circuit blocks is similar to the 

CNL chip. The largest network of the wafer-scale integration requires a high-bandwidth 

communication architecture to communicate between neurons. At full load, the largest 

fraction of the power consumption of the system would be consumed by the 

communication architecture (most likely to be in kilowatts range).  Therefore, design of 

the communication architecture needs a great attention. The limitations in configuring 

cortical networks in large neuromorphic hardware have been discussed. 

Building a large-scale network in VLSI that mimics the full cortical network of a 

primate brain requires novel compact synapse devices with long memory retention and 
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low power, and a dense synaptic wiring mechanism. In order to accommodate a larger 

network in a portable integrated circuit, the size of the synapse circuit should be on the 

nanometre scale or even smaller. In order for the power consumption not to exceed 

kilowatts of power, the synapse device should only consume a few pico Joules of 

energy per synaptic transfer operation. Integrating these devices in a 3D integrated 

technology reduces the dense inter-neuron connectivity problem. As the precision of a 

synaptic transmission in a neural network is not critical, attention on accuracy of the 

process parameters of the nanometre technology, where the synaptic devices are 

fabricated, can be relaxed. Investigating into a nanometre synapse device in 3D VLSI 

technology that satisfies the above criteria would be a promising research direction in 

implementing the next generation of neuromorphic devices. 

Although the neuromorphic devices are at an early stage of evolution, these systems can 

be used as an emulation platform to support understanding of the processing principles 

of the cortical network. However, the lack of promising cortical network models makes 

it difficult to utilise the ability of neuromorphic hardware in intelligent processing tasks. 

This VLSI cortical network design exercise has emphasised the physical hardware 

constraints that computational models should take into account in formulating 

computational models of cortical networks. Finally, the design and implementation 

exercises and experiments in VLSI cortical network help to develop intuitive 

understanding of the models and behaviours which will pave the way towards 

developing future technologies that could build low-power real-time intelligent control 

systems for real-life applications, including the nature-inspired intelligent computing 

machines.  
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APPENDIX A:  Short-Term Dynamic Synapse Equations 

Approximated mathematical equations of the EDS circuit are derived below. Since, IFS, 

IDS, and EFS circuits have the same circuit topology as of the EDS, the equations for 

IFS, IDS and EFS circuits can be derived in the same way. 

 

Excitatory Depressing Synapse (EDS) Model 

Recovery of w per time step, ∆wαd / ∆t 

Considering the current mirror circuit (transistors M1, M2 and M6) of the EDS circuit, 

the rate of recovery of the depressing synapse,    ∆wαd / ∆t = β/Cw x IdM1 

Where, IdM1 is the drain current through the M1 transistor and the β is the current gain of 

the current mirror. Cw is the capacitance of the capacitor Cw. ∆t is time-step of the 

simulation. Assuming transistor M1 operate in saturation region,         

2(2.8 ) (6.6)d r pw k Vα α∆ = −  

Where 
12r p ox

Mw
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C L
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is a constant, 
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 
 
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is width to length ratio of the 

transistor M1; CMOS process Parameters Cox, µp, and  Vt  are  gate oxide capacitance per 

unit area, charge-carrier effective mobility of pMOSFET, and threshold voltage of 

pMOSFET transistor respectively.  

Depression of w per pre-synaptic spike, ∆wd                     

Amount of depression per pre-synaptic spike,         ∆wd  = ∆qc/Cw  

Amount charge added to the capacitor Cw per spike,
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By considering the drain current of M5, idM5 amount of depression approximately, 
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Where
5

sw
d p ox

Mw

t W
k C

C L
µ =  

 
, 

5M

W

L
 
 
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is width to length ratio of the transistor M5; idM5 

is the drain current through the M5 transistor (Figure 6.2 (a)) during the pre-synaptic 

spike pulse duration, tsw (≈ 3 ns), Voffsp2 is off-set of the M8-M9 source follower 

(Shown in Figure 6.2 (a) and this value can be changed using VLSp; the default value of 

the offset can be assumed as 0.4V).  

Excitatory Wight Depressing (ED) circuit’s output voltage, Vw 

Approximated discrete mathematical model of the EDS circuit’s output voltage w(t) 

evolves same as the mathematical model equation given in equation 6.5. This can be 

rewritten with the circuit parameters. 

{ }
{ }

min fi pre-neuron firesmax ( ) ,
( ) (6.5)

min ( ) , otherwise

d d

d

d d

w t w w
w t t

w t w wrα

− ∆+ ∆ = 
+ ∆

 

Where, ∆wαd and ∆wd are given from the equation 6.6 and 6.7 respectively. The 

externally control tuning voltages, Vαp and V∆wd sets the degree of the decay and the 

depression respectively; The design parameter, 
1Mw

W

C L

β  
 
 

used in the circuit 

implementation of Chapter 9 is 1.5; µp, Cox, and  Vt  value from AMS standard 0.35 µm 

CMOS technology process parameters is 126 cm2/VS, 4.54 fF/µm2 and  Vt,=0.5 V 

respectively. wdmin = 0, and wrd = (3.3-Vwrd-Voffsp1-Voffsp2), wrd is the resting of the 

synapse.   The biasing voltage Vwrp is used to set the wrd of the circuit. The voltages 

Voffsp1, and Voffsp2 is off-set of the M3-M7 and M8-M9 source follower (shown in 

Figure 6.2 (a) and these offset can be assumed as 0.4V) respectively.  

 

EX-Isyn circuit’s excitatory post-synaptic current (EPSC), iEPSC 

The amount of post-synaptic current injection, iEPSC, caused by a pre-synaptic spike 

depends on the synaptic strength, w. However, user can scale the iEPSC current for a 

given value of w using externally controllable voltage Vbp, as shown in Figure 6.17. 

This controllable voltage could also be used to limit the maximum iEPSC, depending on 

the operational region of the Ms1 transistor (for the higher tuning values of Vbp as seen 

in Figure 6.17(a)). Each post-synaptic current injection lasts for a period of a few 

nanoseconds (Pre-Gen circuit used in the CNL chip in Chapter 9 use approximately 3 ns 
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pulse). The excitatory post-synaptic current can be obtained/modelled as per the graph 

shown in Figure 6.17(a)). 

 

 

 

Figure 6.17: Excitatory Synaptic Current Generator (EX-ISYN) circuit’s iEPSC values for different 

Vbp and synaptic weight, w: (a) in a 2D plot, (b) in a 3D plot; (c) the EX-ISYN circuit.  
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APPENDIX B:  Estimation of Cortical Network Size in VLSI 

Current CNL Chip (120 neurons unit)  

The CNL chip is fabricated in 0.35µm CMOS technology: 

Total number of neurons               = 120 

Number of excitatory neurons per unit 100 

Number of inhibitory neurons per unit 20 

Total number of synapses per unit              = 7 560 

Number of STDP/DA-STDP synapses  = 2 100 

Number of Non-STDP synapses            = 5 460 

Area of the 120 neurons unit in 0.35µm CMOS technology             = 24 mm2   

 

Approximate number of neurons and synapses in 120 mm2 chip  

120 mm2 chip in 0.35µm CMOS technology: 

 Number of neurons   = 120/24 x 120     ≈ 600 

 Number of synapses  = 120/24 x 7 560  ≈ 37 800 

 

Using sub-micron technology (90 nm) 120 mm2 chip 

In 90nm technology; assuming effective technological migration scaling factor 8* (theoretical 

area multiplication factor 15):    Number of neurons   = 600 x 8           ≈  5 000 

 Number of synapses = 37 800 x 8       ≈  300 000 

* Even though the theoretical area multiplication factor is 15, analogue circuit cannot be scales 

in the same factor. However, since spike routing to pre-synapses and the auxiliary circuit use 

digital circuit elements these can be scaled with higher scaling factor than the pure analogue 

circuit scaling factor. 

 

Using multi-chip sub-micron technology (using 90 nm, 120 mm2 chips) 

If twenty 120 mm2 90 nm chips are used to form multi-chip network, the size of the network 

could be: Number of neurons   = 5 000 x 20           ≈  100 000 



 200 

 Number of synapses = 300 000 x 20       ≈  6 000 000 

 

Size of the network with hypothetical wafer scale integration  

Wafer scale integration size of the network, if wafer diameter is 12” (30 cm); (wafer area 730 

cm2)  

Assuming extra overhead of 25 cm2 area 

 Number of neurons        = 600 x 8 x705/120 x100 ≈ 2 800 000 

 Number of synapses      = 37 800 x 8 x 705/120 x100 ≈ 180 000 000 

 


