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Abstract

This thesis proposes a novel set of generic andoaotrbiologically plausible VLSI
(Very Large Scale Integration) neural circuits,tablie for implementing a parallel
VLSI network that closely resembles the functioracdmall-scale neocortical network.
The proposed circuits include a cortical neurom tifferent long-term plastic synapses
and four different short-term plastic synapses.s€heircuits operate in accelerated-
time, where the time scale of neural responseppsoaimately three to four orders of
magnitude faster than the biological-time scaleth&f neuronal activities, providing
higher computational throughput in computing neudghamics. Further, a novel
biological-time cortical neuron circuit with similalynamics as of the accelerated-time
neuron is proposed to demonstrate the feasibifityigrating accelerated-time circuits
into biological-time circuits.

The fabricated accelerated-time VLSI neuron ctrésiicapable of replicating
distinct firing patterns such as regular spikingstfspiking, chattering and intrinsic
bursting, by tuning two external voltages. It requoes biologically plausible action
potentials. This neuron circuit is compact and &wmbnplementation of many neurons
in a single silicon chip. The circuit consumes extely low energy per spike (8pJ).
Incorporating this neuron circuit in a neural netkvdacilitates diverse non-linear
neuron responses, which is an important aspeaunahprocessing.

Two of the proposed long-term plastic synapseudscinclude spike-time
dependent plasticity (STDP) synapse, and dopamiodutated STDP synapse. The
short-term plastic synapses include excitatory ekepng, inhibitory facilitating,
inhibitory depressing, and excitatory facilitatisgnapses. Many neural parameters of
short- and long- term synapses can be modified pedgently using externally
controlled tuning voltages to obtain distinct syti@properties. Having diverse synaptic
dynamics in a network facilitates richer networlh&eours such as learning, memory,
stability and dynamic gain control, inherent inialégical neural network.

To prove the concept in VLSI, different combinagoof these accelerated-time
neural circuits are fabricated in three integrateduits (ICs) using a standard 0.35 um
CMOS technology. Using first two ICs, functions obrtical neuron and STDP
synapses have been experimentally verified. Thel i@, the Cortical Neural Layer
(CNL) Chip is designed and fabricated to facilitatetical network emulations. This IC
implements neural circuits with a similar compasitito the cortical layer of the
neocortex. The CNL chip comprises 120 cortical aesrand 7 560 synapses. Many of
these CNL chips can be combined together to forsixdayered VLSI neocortical
network to validate the network dynamics and tdgrar neural processing of small-
scale cortical networks.

The proposed neuromorphic systems can be usedsesudation acceleration
platform to explore the processing principles aldgical brains and also move towards
realising low power, real-time intelligent compugidevices and control systems.
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CHAPTER 1: INTRODUCTION

1.1 Motivation

Biological nervous systems perform sophisticatedicfions vital to intelligent
behaviour, such as formation of sensory perceptioijgct- and event- representations,
conscious thoughts, and motor control decision®eyTdo so with remarkably low
energy consumption. These psychophysical functemesprocessed using massively
parallel neural networks that are built with slamprecise and heterogeneous neural
elements. Impressively, even with such fuzzy uthiese systems work robustly against
noise and exhibit remarkable fault tolerance. Thegstems outperform modern
computers in intelligent decision making ability.nérefore, understanding their
fundamental processing principles will provide géwstep forward in science, and help

to formulate engineering principles of buildingatigent machines.

The Primate brain is a complex architecture produbg evolution that contains
approximately one hundred billion neurons, wherehaaeuron is connected up to tens
of thousands of other neurons. Of all the brainomrgy the neocortex is known to
perform most of the psychophysical signal procegsirlowever, among other
difficulties, limitations in performing neuron-leveecordings on animals make it
impossible to understand the underlying computatioprinciples of the cortical
networks based solely on the available recordidgsa. Therefore, there is an ongoing
research effort to understand the principles oficalrinformation processing through
simulating cortical networks in software, or takiiigone step further, implementing
brain-like circuits in electronic hardware (Arthet al., 2007; Vogelstein et al., 2007;
Schemmel et al., 2008).

Since understanding the primate brain's functitpalis a challenging
problem, a number of multidisciplinary collabor&ivresearch projects, such as
COLAMN?!, FACETS, Blue Braif, SECJ, Daisy, ALAVLSI® SyNAPSE,

* COLAMN: “A Novel Computing Architecture for Cogitie Systems based on the Laminar Microcircuitrihef Neocortex”
Web link: http://colamn.plymouth.ac.uk/colamn-paij@page_name=Homepage

2 FACETS: “Fast Analog Computing with Emergent Bient States”, Web link: http://facets.kip.uni-redlsbrg.de/
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SpiNNakef, etc., have been initiated to conquer this chgkeby researching into

different functional areas of the brain from diffat perspectives while trying to build
large scale networks in dedicated hardware. Adtéhinitiatives believe that this work
might lead to the discovery of fundamental prinegyl underlying the remarkable
computational abilities of the brain. This PhD ikgwoject has been carried out within
the COLAMN project, and aims at formulating a baset of VLSI (Very Large Scale

Integration) circuit blocks that can be used to mithe function of a neural network of
the neocortex. The thesis provides compact circnilementations of neuron level

models. Furthermore, a prototype of cortical nelagkr integrated circuit that has the
structure similar to a small cortical layer of nedex has been designed.

Mixed signal VLSI implementations have the potdmiabuilding neural systems with
similar properties to those of biological systermibese systems can be used as an
emulation platform to support the understandinghef processing principles of neural
networks and also to pave the way towards realipogntial low power real-time
intelligent computing devices and control systenmgluding the devices that can
interface with central nervous systems, or replzs of the nervous system damaged
through disease of injury (Vogelstein, 2007). Herdespite the fact that it is not fully
understood how brains process information, it wdagdworth implementing efficient,
tailor made VLSI circuits that mimic the known doal neural circuits and networks to
reproduce their dynamics. Together with constwactieedback from and to other
research disciplines, hardware implementable nencalels are more likely to emerge,
and implementation of an efficient and effectivéeliigent computing architecture (a

brain like computer) may become possible.

3 Blue Brain: “Blue Brain Project”, Web Link: httgbluebrain.epfl.ch/
4 SECO: “Self-Constructing Computing Systems”, Wétkt http://www.seco-project.eu/

®Daisy: “Project to reverse-engineer the ‘daisy aecture’ (Neocortex’s Uniform Architecture)”,
Web Link: http://daisy.ini.unizh.ch/

SALAVLSI: “Attend-to-learn and learn-to-attend witteuromorphic, analogue VLSI”,
Web Link: http://alavisi.ini.uzh.ch/

'SyNAPSE: “Systems of Neuromorphic Adaptive Plagimlable Electronics; sponsors by Defense Advaieskarch Projects
Agency (DARPA, USA)",
Web Link:http://www.darpa.mil/Our_Work/DSO/Prograt8ystems_of_Neuromorphic_Adaptive_Plastic_Scal&tétron
ics_%28SYNAPSE%29.aspx

8 SpiNNaker: “A Universal Spiking Neural Network Aritecture”,
Web Link: http://apt.cs.man.ac.uk/projects/SpiNbiak
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If an intelligent processor can be implementedardivare, it can be used to recognise
complex patterns, perform complex motor controtfgyen autonomous learning, etc. It
can also be used in applications that require itoless against noise and fault tolerance.
These potential applications make the brain-inspggstem an attractive alternative
computing model which could be appropriate for geisig systems in present and
future integrated circuit technologies. Furthermanghe long-term this line of research
may help to understand the brain, potentially legdio the discovery of drugs for a

variety of neuro-degenerative diseases such ash@r's and Parkinson's.

1.2 Neuromorphic Engineering

Neuromorphic engineering is the discipline of depaig electronic devices that mimic
the operation of biological brains. Since the penreg work of Carver Mead (Mead,
1989) on neuromorphic circuits, in the late 198Bsre has been a continuing interest in
developing neuromorphic devices. In particular CM{®$plementations of ‘silicon
neurons’ (Mahowald et al., 1991; Linares-Barranta@le 1991; Schultz et al., 1995;
Patel et al., 1997; Simoni et al., 1999; Indive®i03; Young Jun Lee et al.,, 2004;
Nakada et al., 2005; Rangan et al., 2010 and Sdtak, 2010) and ‘silicon synapses’
(Hafliger et al., 1997; Bofill-i-Petit et al., 2004ndiveri, 2006; Koickal et al., 2007;
Tanaka et al., 2007) have been a subject of onggié@velopment. Recently, a number
of systems have been proposed (Arthur et al, 200g@elstein et al., 2007; Schemmel et
al., 2008) that attempt to integrate thousandslicba neurons and synapses in a single

chip to build neural networks.

1.3 The Strategy used in Designing the Proposed VLSI Neal Circuits

Problem solving approach used in computers andwidne the primate brain solves
problems seems to be fundamentally different. Cdergorocessors are built with a set
of logic gates and memory elements as precise itoersts to perform Boolean logic
operations using the logic alphabet "0" and "1'vefthe years, the medium in which
these machines are built (VLSI technology) has ealmostly to optimise speed
processing of these Boolean logic operations. @mother hand, the brain is built with
heterogeneous neural elements that employ an imspréitizzy), slow and non-linear
processing approach. Hence mimicking neural ciscwit the brain in VLSI is a

challenging task.

12



Neural circuits perform neuronal communication ®leally by utilising electro-
chemical dynamics. The states of a neural circait be represented using analogue
electrical potentials. The neural circuits can lgabe modelled to form equivalent
electrical circuits that use basic electronic eletaeTherefore, the neural circuits could
be mimicked in mixed-signal VLSI more closely witheaningful relation, and with
efficient implementation to support the understagdiof the neural dynamics.
Furthermore, the circuits can be implemented atcébrated-time” scale, which
exploits the technological advantages of the Vigghhology while providing circuits
with high computational throughput. Most of the raicircuits proposed in this thesis
are designed to operate on “accelerated-time”. dteelerated-time circuits operate
approximately three or four orders of magnituddaeiathan the biological-time where
the time scale of neural responses is identicah \lie time scale of the neuronal

activities of the biological systems.

When building cortical networks in microelectroméchnologies, the network size that
is sufficiently large enough to observe or study ttynamics of a cortical network is a
basic requirement. In mimicking a cortical netwarkhardware, compromise has to be
made between the richness of the neural dynamatscén be included in the hardware
and the size of the VLSI network that can be bitlte cortical networks implemented
in neuromorphic research (literature review will peesented in Chapter 3) use
approximated basic neural models and in most caspsyrtant non-linear dynamics are
ignored (such as the complex, non-linear, oscijatoature of the neurons, and

facilitating and depressing or STDP neural dynajnics

The strategy of modelling the neural models usiagptoximate hardware modeis
adopted in this thesis to build the cortical nekvam VLSI hardware. The basic
properties of neural dynamics of the well estalgiisikomputational neural models are
used as a@uide to arrive at phenomenological circuit modataplementinggeneric
compactVLSI circuits withbiologically plausibleneural dynamics that closely account
for biological experimental facts. This will makegossible to construct sufficiently
large VLSI neural networks, with rich non-lineamdynics, that could be used to study
the cortical network behaviours. This strategyfasmulated based on following

principles:

13



Guide to arrive at a phenomenological circuit mod&$ the neural elements and
their dynamics are highly complex and heterogeneties computational models
do not account for all the known experimental fattstead, the computational
models approximate the neural dynamics in arrivatga simple meaningful
mathematical model that closely account for someo$eexperimental results
(Morrison et al., 2008). Furthermore, the compateatl models are derived so that
they can be presented in a compact analytical Borch/or implemented efficiently
on digital computers. This does not always traeslato efficient hardware
implementation. Hence, the established computdtiomaral models are used only

as a qualititative guide to arrive at phenomendaalgtircuit models.

Compact circuit implementationsThe silicon area consumed by the neural
circuitry is a critical factor that decides the nmaxm possible size of the VLSI
cortical network. Therefore, compact circuit impkmmations of basic neural

circuits are a core requirement.

Generic circuit implementationsThe generic circuit element can be tuned to
represent different types of a basic neural elerfesiron or synapse) using a set
of externally adjustable voltages. This makes ystesn flexible both in terms of
circuit implementations and when configuring VLSbriical networks for

experiments.

Biologically plausible circuit implementationsThe richer neural dynamics of
VLSI cortical neural network could resemble theldgical cortical network more

closely than other implementations that do notraest of the neural dynamics.

1.4 Thesis Structure

The thesis is divided into four parts: Introductienmd Literature Review (Chapters 1 to

Chapter 3), Core VLSI Neural Circuit Implementaso(Chapters 4 to Chapter 6),

Fabricated Neural Integrated Circuits (Chapter® Thapter 9), and Discussions and

Conclusions (Chapters 10 and Chapter 11).

Introduction & Literature Review

Following the motivation of this research and thategy used in implementing VLSI

neural circuits presented in this chapter, Partdvides a brief introduction to the

14



biological neurons, synapses and neocortical nésy@nd a literature review of their
VLSI implementations. This gives the supporting kzsaound knowledge required for
understanding the VLSI neural elements and théwaork implementations proposed in

this thesis.

Chapter 1 The initial parts of this chapter provide the mations of this PhD
research and an introduction to Neuromorphic Ereging. Then the key strategy
followed in developing neural elements and thetiwogk in VLSI is presented.

Chapter 2 The biological background of cortical neurons arekirt diversity,
synapses and their short- and long-term plastiaigs are covered in the initial sections
of the chapter. These provide insight into basigraleelements of cortical networks.
Further, this chapter also presents the biologieacription of neocortical networks,
structure of a functional column, and the layerédicsure of the neocortex. This
introduces the background knowledge on the sixrlagertical neural network
architecture of the neocortex that supports theststdnding of VLSI Cortical Neural
Network Architecture, and Cortical Neural Layer glpresented at the later part of the

thesis.

Chapter 3 This chapter presents a review of the state of ahe mixed-signal

microelectronic implementations that mimic neuratwts (neuromorphic circuits).
These include a review of VLSI neurons, synapsed aome neural network
implementations. The review of synapses includesuits that implement short- and
long-term plasticity rules. An outline of neuraltwerk implementations of digital

systems is also provided.

Core VLSI Neural Circuits

The section provides core neural circuit implemgots. These include Neuron
circuits, STDP (Spike-Time Dependent Plasticity) n&yse circuit, Dopamine
Modulated STDP Synapse circuit and Short-Term DyoaBynapse circuits. Except
the Biological-Time VLSI Neuron circuit, all the har circuits operate on a three or
four order of magnitude faster time scale (accéterime) than the biological neural
circuits. The three integrated circuit (IC) implamegions presented in Part Il uses

various combinations of these accelerated-time \fiesiral circuits.

15



Chapter 4 The circuit implementations of two VLSI cortical uren circuits that
operate on different time scales — the accelerttee and the biological-time are given
in this chapter. Both of these generic neuron discare capable of replicating many
known types of cortical neurons simply by adjustinfpw external voltages. The initial
section of the chapter provides the computationadleh used as a guide to arrive at
these neuron circuit models. The first neuron drpoesented is an accelerated-time
neuron circuit, its operation and the mathematmatel is reviewed. The circuit was
proposed in my Mphil thesis (Wijekoon, 2007). Sitigis circuit is used in all the three
fabricated ICs presented in Part Il the circuisctgtions are briefly provided. The
second neuron design presented is a redesign afctteerated-time neuron to work on
a biological-time scale. The circuit design, itseggiion and simulation results of this
Biological-Time Neuron circuit are provided. Finall merit and demerits of

implementing neural circuits in accelerated- araldgical-time scales are evaluated.

Chapter 5 The circuit implementations of two types of VLSIngpse circuits that
obey different long-term synaptic dynamics— the 8TBynapse and the dopamine
modulated STDP synapse are given in this chaptee. ifiitial section of the chapter
provides the computational model used as a guidarrige at these synapse circuit
models. The first synapse circuit presented is SA®P synapse circuit, the circuit
operation, simulation results and the mathematiwadlel of the synapse are provided.
The experimental result of this STDP circuit isegivin Chapter 8. The second synapse
circuit, the Dopamine Modulated STDP synapse dir@iipresented with its circuit
details, circuit operation, and simulation resultsgeneric synapse circuit that can be
configured to operate in either in STDP or DA-madetl STDP dynamics fabricated in
the STDP-DA Synapses Neuron IC, and the STDP seniabsicated in Cortical Neural
Layer IC will be presented in Chapter 9.

Chapter 6 The circuit implementations of four types of shtemm plastic synapses
that obey different short-term synaptic dynamidse- éxcitatory depressing, inhibitory
facilitating, inhibitory depressing, and excitatdacilitating are given in this chapter.
The initial part of the chapter introduces the catafional model and its approximated
mathematical formulation, which were used as a@tidarrive at these synapse circuit
models. The synapse circuit, operation, and sinwlatesults of each of these synapse
circuits are also presented. These synapses atedtaol in Cortical Neural Layer IC
presented in Chapter 9.

16



Fabricated Neural Integrated Circuits

This section provides a description of three Irdegpt Circuits (ICs) fabricated in
CMOS technology. These ICs use combinations of ¥@®l neural circuits presented
in Chapter 4 to Chapter 6. These chips include i€driNeuron Chip, STDP-DA
Synapses Neuron Chip and Cortical Neural Layer QDL Chip).

Chapter 7 The accelerated-time cortical neurons are fabricatea chip and the

overview, test setup, and experimental resulthefahip are presented in this chapter.
The chip contains 202 neuron cells, with variedwiirparameters (transistor sizes and
capacitances) to obtain circuit parameters forreege neuron that could be configured
to most of the neuron types, so that this neuranbmused in the next generation of
ICs. The chip experimental results prove the fumglity of the neuron circuit, and

behaviours of various neuron types with their $d¢tining variables are presented. This

neuron circuit is used in the other two IC implema¢ions.

Chapter 8 The accelerated-time neurons, STDP synapses araimilop modulated

STDP synapses are fabricated, and an overviewjicinsplementations, test setup, and
the experimental results of the chip are preseintékis chapter. The chip contains two
neuron cells, with 28 generic configurable synagseuits that can be configured to
operate either as STDP or dopamine modulated SHD&pse. As the STDP Synapse
circuit consumes less circuit area than the DopanMiodulated Synapse circuit, the
STDP synapse is used in the larger scale CNL crepgmted in Chapter 9. The chip
experimental result proves the functionality of t8@DP synapse and the results

obtained from the chips are presented.

Chapter 9 This chapter proposes a Cortical Neural Networkh&ecture that could
use many CNL chips to build a large VLSI corticaural network. This chapter
provides an overview, circuit implementations, anththematical model of the
fabricated CNL chip that contain 120 acceleratetetneurons, 2 100 STDP synapses
and 5 460 short-term plasticity synapses. Findlig, Cortical Neural Layer Board, test

setup, and the discussion and conclusions are gitviére end of this chapter.

17



Discussion and Conclusions

Chapter 10 The initial section of this chapter presents edtimeaof VLSI cortical
network size that can be built in a 0.35 pm stathdaMOS IC, a 90 nm standard
CMOS IC, a multi-chip approach, and in wafer-sdategration technology, using the
core neural circuits used in the CNL chip. Furthenefits of using a 3D integration
technology to build the cortical network are disgads Other factors that could provide
problems and limitations in implementing network ttvese neuromorphic devices are
also discussed. The later part of the chapter ptesalternative technological
approaches that could be used to mimic corticabords such as organic electronics,
novel neural devices, memristor as a synapse, aldwtures. Finally, the higher
abstractions of neural dynamics used to obtainnbrepired architectures are briefly

discussed.

Chapter 11 This chapter provides the conclusion to the thesis.

18



CHAPTER 2 : BIOLOGICAL NEURONS,
SYNAPSES AND NEOCORTICAL NETWORK

The primate brain has a very complex structure twttains, approximately one
hundred billion neurons where each neuron is cdedadp to tens of thousands of other
neurons in a highly parallel layered architectimeaddition to the structural complexity
of these networks, their neuronal responses ardimear, and heterogeneous. The main
constituents of these cortical networks are neuamtssynapses. The circuit models of
these constituents are proposed in this thesisshwtiay enable building of large-scale
parallel VLSl network that closely resembles the cnotircuits of the
neocortex. Therefore, this chapter provides af lol@scription of a biological neuron,
synapses and neocortical network as an introdutdemderstanding the circuit models
and formation of a VLSI neural network. Furtherpontant computational models of

these constituents are also listed.

2.1 Biological Neuron

A neuron typically possesses a cell body (calledego dendrite trees and an axon. The

basic structure of a neuron is shown in Figure 2.1.

Axon hallack
‘ [ Homa Aot

Dendrite

Tertnitial buattons

)

Figure 2.1 Basic structure of a neuron’

° Picture taken from http://www.swarthmore.edu/NatStieevel/Ref/HH/index.htm
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The neuron receives input signals from variousiaphtcations on the dendritic trees,

and sometimes also on the soma. These spatiotehmmoua signals are integrated onto

the membrane capacitance of the soma. Once thggatee voltage (membrane voltage)
reaches a threshold, a pulse (also called a fiewent or a spike) is generated at the
axon hillock. This spike propagates through thé¢ oéshe axon and onto adjacent cells
through synapses. Simultaneously, a calcium sighavly propagates backwards

through the dendrite (back propagation) towards thput synapses, possibly

“informing” them that the neuron has fired. Thisckapropagation influences the

dynamics of the input synapses. More details oegaion of spikes and computational

models of a neuron can be found in (Kandel e2800).

2.1.1Diversity of cortical neuron

The study of the brain reveals that cortical nearare diverse in their behaviour and
many neuron types have been identified based an dhatomy (or morphology, i.e.
structure and organisation of a neuron) and iomrldistribution and composition
within a neuron. Therefore, these neurons exhiliterént electrical behaviour,
transforming the same input signals into differéinhg patterns. Figure 2.2 shows
morphologically different neuron cells found in thenkey’s cerebral cortex. A few
examples of signalling behaviours of some of thevwkm diverse neuron cells and their

morphologies are shown in Figure 2.3.

Laver A B C D E F G H |
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Figure 2.2 Morphological variety of cortical neurans found in monkey cerebral cortex. (A)

Pyramidal cells. (B) Spiny stellate cells. (C) Bitited cells. (D) Double bouquet cells. (E) Small
basket cells. (F) Large basket cells. (G) Chandetieells. (H) An undesignated cell, sometimes called

a long stringy cell. (1) Neurogliaform cells. adapéd from Well (2005).
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A number of approaches to classifying neurons bamedhe electrophysiological
recordings have been introduced (Connors et al90;1Markram et al., 2004;
Nowak et al., 2003; Petilla ConventiSn Toledo-Rodriguez et al., 2003). Many
parameters, such as spike frequency, interspileeval histogram, spike width, intra-
burst frequency, adaptation index etc. can be ts@thssify the neurons. A summary
of the basic classification important in designitige neuron circuits presented in
Chapter 4 is given below.

Il

Pwamml Fast spiking basket cells I '
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50 ms
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* _/xé
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(A) (B)

Figure 2.3 (A) Different morphological neurons andheir spike patterns, (taken from Callaway et.
al. 2000). (B) Distinct firing patterns in model ne@rons with identical channel distributions but
different dendritic morphology, taken from Sejnowsk (1996).

The neuronal response to a step stimulus of supsdtbld current (post-synaptic input

current that causes action potentials) displayeegpiking or bursting firing behaviour.

19 petilla Convention (2005)
Web Link: http://krasnow.gmu.edu/cng/petilla/
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The spiking neurons are of two types: regular sgk{RS) and fast spiking (FS)
(Nowak et al., 2003). The RS cells exhibit an accmdation (also known as
adaptation) property: in a response to a suprattiotd current step they fire repeatedly,
with a decreasing frequency, until the firing re@aches a stable value, which depends
on the input current. The RS cell class can béé&ursub-divided into two sub-types, the
weak accommodating cells are called RS1 and stamegmmodating cells are called
RS2 (Toledo-Rodriguez et al., 2003). Examples ofphological cell that behave as
RS1 type are neocortical layer II-VI pyramidal selThe RS2 type cells are neocortical
layer IV=VI pyramidal cells and spiny stellate sglConnors et al., 1990). The FS cells
fire repetitively at high frequency with little aegligible accommodation to a sustained
supra-threshold current injection. The action ptéés of FS cells exhibit faster rise
rate, fall rate and distinct fast after-hyperpaation (Connors et al., 1990). Some
neurons with FS behaviour commonly found in thaecoare, for example, neocortical
small basket cells, nest basket cells, bituftedscahd large basket cells (Toledo-
Rodriguez et al., 2003). The basic bursting celetyare chattering (CH) and intrinsic
bursting (IB) (Nowak et al., 2003). The CH neurarsially display repetitive long
clusters of spikes to a sustained supra-threshoidemt injection. The IB neurons
respond to a step current injection with a clusfethree to five initial spikes followed
by an after hyperpolarisation, and then by eitliegle spikes or burst at more or less
regular intervals (Toledo-Rodriguez et al., 200Bjese types are observed in sub-
populations of bitufted cells, bipolar cells andriteotti cells in the neocortex (Connors
et al., 1990).

Distinct firing patterns obtained from the recoosted models of morphologically
different neurons with identical channel distrilomis are given in Figure 2.3 (B) (Figure
adopted from Sejnowski, 1996). A simple computatlamodel that reproduces basic
electrophysiological properties of known types oftical neurons can be found in
Izhikevich (2003). The model demonstrates somegasing properties due to dendritic
morphology and ion channel distribution, in additio the neural dynamics on the cell
body. The circuit implementation of an approximateddel of this computation model

is given in Chapter 4.
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2.2 Biological Synapses

Neuron to neuron information transfer is carried wa a specialized element called a
synapse. Synapse usually forms connections bettheesixon of a pre-synaptic neuron
and a dendrite or cell body of a post-synaptic oeuHowever, there exist synapses that
directly connect dendrite to dendrite or dendrdesbma (Well, 2005). Although the

synapses are heterogeneous between different dmeas and between different neuron
types, synapses mainly can be classified into typeg: a chemical synapse and an
electrical synapse. The first type is mostly foumcortical networks and has complex
synaptic dynamics which thought to be involved @éarhing, memory, and cortical

plasticity (Morrison et al., 2008). Therefore, cheah synapse is a basic and important
building block in neural computational and circoibdels. Hence, the dynamics and

circuit models of the chemical synapse are disclssthis thesis.

The chemical synapse transmits signals to anotkeeron by means of chemical
reactions. Once the pre-synaptic neuron fires,etketrical spike sent down the axon
terminal transmits to the adjacent dendrite throtighsynaptic cleft by converting the
signal into a chemical signal. l.e. when an eleatrsignal arrives at the synapse, the
neurotransmitters release into the synaptic ckdime of these neurotransmitters are
able to reach receptors at the dendrite spine hichathe chemical signal is converted
back to an electrical signal. Then, this signabpigates to the soma of the adjacent cell.
The electrical signal before the synapse is cadlegre-synaptic signal and after the
synapse is called post-synaptic signal. FiguresBaws a sketch of a chemical synapse.
The post-synaptic signal can be inhibitory (postagtic neuron’s membrane is
hyperpolarized) or excitatory (post-synaptic netsomembrane is depolarized)
depending on the type of neurotransmitters-receptonbination that facilitates the
signal transmission between the two cells. Dutimg synaptic transmission, the pre-
synaptic action potential is shaped to carry ektfarmation pertaining to the state of
the synapse. At a given time, amplitude, rise tend fall time of the post-synaptic
pulse is determined by the short-term plasticitythe#f synapse. These dynamics could
change the strength of synaptic connection betwesmons depending on the pre-
synaptic activity. In some types of synapses, thegdterm synaptic plasticity also
contributes to this greatly. These dynamics evese hiae ability to form or eliminate its

synaptic connection depending on the neural aigts/itf the network. These short-term
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and the long-term dynamics of synapses are disdutsdow and their some
computational models are listed.

In addition to the aforementioned long-term syrmagiinamics, homeostatic changes of
synapses could change the amplitudes of the synagsponse on a slow time scale of
hours is called “synaptic scaling” as referred iorkkon et al., (2008) (Turrigiano et al.
1994). This can be useful to stabilise the nealrbnng rates (Morrison et al., 2008).

Axon Terminal

Neurotransmitters

Synaptic Cleft

Dendritic Spine

Dendrite

i

Figure 2.4 Basic structure of a chemical synapse

2.2.1Short-term dynamics of the synapse

The amplitude, rise time and fall time of the psgtaptic potential due to short-term
plasticity depends on the properties of the camestits of the synapse. In addition to
that, the temporal pattern of the incoming spilkentialso determines the amplitude of
the post-synaptic pulse. Each successive inconpikg £an cause the amplitude of the
post-synaptic pulse to be either smaller (depre}siw larger (facilitation) than the

1 Picture modified from

Web Link: http://www.noeticsciences.co.uk/wp-coritaploads/2009/11/Synapse-Structure.jpg
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previous one (Figure 2.5 shows facilitating andrdsging dynamics). These dynamic
temporal scales can range from 100 ms to aboutandgMorrison et al., 2008) and the
amplitude of the post-synaptic response recoverdage to normal values within less
than a second (Markram et al., 1998; Thomson etl8P3). Biological evidence on
these dynamics are published in Gupta et al. (200@ykram et al. (1998), and its
computational models are proposed by Tsodyks €2@00), Abbott et al. (1997), and
Thomson et al. (2007). The descriptions of the a@yprated models of these
computational models used to implement short-tgmaygtic dynamics in VLSI circuits
are given in Chapter 6.

Pre-synaptic membrane potential

\[\J\,\N / due to depression \08
[~

> 0.4
E
0.4mV
- 90mV
/ 100ms Pre-synaptic membrane potential 5
Pre-synaptic spike train due to facilitation \\
> 15
£
HHHH] L 1.5mV
120mV 0 200 400 600
200ms ms
(a) (b)

Figure 2.5 A. Short-term plasticity — effect on thenembrane potential of the post-synaptic neuron
due to pre-synaptic spike train (a) experimental reults from rat cortex in slice Markram et al.
(1998), (b) simulation results, Markram—-Tsodyks modl, Tsodyks et al. (2000); taken from
(Morrison et al., 2008).

2.2.2Long-term dynamics of the synapse — STDP synapses

In some synapses, the post-synaptic pulse is greafiuenced by the long-term

plasticity dynamics, which depends on the actiohthe post- synaptic neuron; i.e. if
the post- synaptic neuron fires, the back propagatignal influence the input synapses
to depress (reduce the strength of the synaptmsmnassion, and called long-term
depression, LTD) or potentiate (increase the sthen§the synaptic transmission, and
it's called long-term potentiation, LTP). Amount dépression or facilitation depends

on the time difference between pre- and post- sfiik®s (tpre - thos). This phenomenon
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is called spike-time dependent plasticity (STDPJl atays a critical role in synaptic
plasticity, which is the cellular mechanism forrl@ag and memory. Experimentally
observed STDP curve that defines LTP and LTD mtetiip with respect to time
difference between pre- and post- spike firingdii®rse and depends on the synapse
and the neuron type (Abbott and Nelson, 2000; Bi Boo, 2001). Some basic types of
curves that are observed during experiments angrshoFigure 2.6 (taken from Abbott
and Nelson, 2000). It is also observed that theldiéc distance from soma to synapse
has effect on the shape of the STDP curve —it @vshin Figure 2.6 (taken from
Letzkns et al., 2006). This is due to the dendfitiering of the back propagation signal
(Letzkns et al., 2006; Saudargiene et al., 2005).

The standard STDP curve most popular in theoretesgarch on STDP is the topmost
graph in Figure 2.6 —this is the mostly observgabtgf STDP in neocortical synapses.
The computational model of the standard STDP rale loe found in Morrison et al.
(2008). A mathematical model of a STDP curve that anplement compact STDP

circuit and its circuit implementation are givenGhapter 5.
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Figure. 2.6. (A) different STDP curves found in syapses of different neurons (taken from Abbott
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and Nelson, 2000); (B) Model of the layer 5 pyramil neuron showing the color coded location of
synaptic inputs; Center, Color-coded STDP timing coves for synapses at the dendritic locations in
the model. Right, Positive peaks of STDP timing cwes (LTP) color-coded for each dendritic site
show a shift from positive to negative spike timingvith distance from soma. (taken from Letzkns et
al., 2006)

2.2.3Long-term dynamics of the synapse - Dopamine moduied STDP

synapses

Apart from general form of STDP synapses discusdexve, there exist synapses that
the STDP is modulated by the extra-cellular Dop@&nifpDA) level. DA is a
neuromodulator in the nervous system that reguldite=rse populations of neurons. It
originates from small groups of neurons in the mesphalon (including the ventral
tegmental area) and diencephalon areas of the.bfdie neurons whose primary
neurotransmitter is dopamine are called dopaminergurons. The brain areas where
these neurons are present are known to carry ndvraal functions such as working
memory, reinforcement learning, and attention @tedlet al., 2003). Even though these
neurons are found in few brain regions only, th@iojections are generally highly

diffuse and reach large portions of the brain @tedlet al., 2003). The burst stimulation
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of the dopaminergic neuron releases DA globallynmany DA modulated synapses.
This increases the extracellular DA concentratiptha synapses enhancing their long-
term potentiation (LTP) and/or depression (LTD) f@Gan et al., 2000; Otani et al.,

2003). This effect of DA plays a major role, inrfpaular, in reinforcement learning.

The computational model of the DA modulated STDRagpge can be found in

Izhikevich (2007) and its VLSI circuit implementati is given in Chapter 5.

2.3 Neocortical Network

The primate brain functions are carried out witbamplex architecture that contains
approximately hundred billion neurons where eadrom®is connected to thousands or
even tens of thousands of other neurons in a higgulgilel layered architecture. Among
these the largest network, the neocortex, confindigons of neurons to a few
millimetres thick single folded sheet of neurattie at the outer layer of cerebrum. The
neocortex consists of a six-layer laminar structurd this organisation tends to be more
homogenous throughout the neocortical tissue. ABOYE of neurons in a neocortex are
excitatory neurons, and others are inhibitory nesr@Somogyi, 1989, White, 1989;
Peter et al., 1984). Anatomically, most of the &atory neurons receive synaptic inputs
from non-STDP excitatory and inhibitory depresssynapses and from excitatory
STDP synapses. The inhibitory neurons receive syfraim inhibitory facilitating and
excitatory depressing synapses, whereas some wothiitory neuron types receive
input spikes from excitatory facilitating and degsimg synapses (Roth and Wennekers,
2009).

Most of the psychophysical signal processing ofliteen is believed to be taken place
in the neocortical brain areas (Well, 2005). Défer areas of neocortex perform
different psycho-physical functions. For exampleg tvisual cortex, primary cortex,
auditory cortex and in humans the ventrolaterafrpntéal areas does vision, motor,
hearing and complex language related processimgcasely. However, processing of
any psycho-physical phenomenon appears to havebdisd functionality with many
different cortical and non-cortical areas of thaibbrmaking important contributions to
the processing of such function (Well, 2005). Thpegimental evidence suggests that

neocortex could be divided up into small processings called functional columns.
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These functional columns seem to occupy laterasaoé a few tenths of a millimetre in
diameter and extend down through the entire thiské the neocortex.

2.3.1Structure of a functional column

Though there is no such strict anatomical divisséra functional column found in the
neocortex, it is observed that there is a synckeshactivation of neighbouring cells to
process certain tasks. l.e. the neighbouring @stemble together to perform certain
tasks. Thus the hypothesis of generic functionaticad column is introduced. This
generic functional column tends to consist of tédmsusands of neurons with diverse
behavioural properties. Each of these neurons @®ine tens thousands of other
neurons via synapses forming a column of procesamy Between species these
functional column only vary from 300 to 600 um irameter where as their brains
differ in volume by a factor of £0 Functional columns are assumed to formed by
cortical circuits, effectively ‘re-wiring’ their k@ral connections in response to control
signals so that at least some neurons are capébleiag part of many different
possible functional columns (Well, 2005). The ciraif the functional column is called

cortical microcircuit of the cortex.

2.3.2Neocortical Layers

As illustrated in the Figure 2.7 six layers corticharchitecture can be initially divided
into 3 main layers: Supragranular layers (laydt §nd Ill), Granular layer (layer 1V)
and Infragranular layers (layer V and VI).
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Ex matter
Figure 2.7 Cross section of a small area of neocer showing anatomical division of six layers?

12
Picture taken from http://acces.inrp.fr
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The Supragranular layers make up of layers I, t§ Hh the layer | occupies dendrites
and axons coming from neurons in the deeper layem layers Il and Il pyramidal
cells, the principle cell type in the cortex), thire distal synaptic connections of those
deeper layer neurons are formed in this layer. Tyisr also consists of few inhibitory
neurons. The Layer Il contains a mix of small pyidah cells and some inhibitory
neurons. It also contains apical dendrites cominomflayer VI and layer V pyramidal
cells. Majority of cells in layer Il are small pmidal cells. However this layer
contains almost all the cell types found in neamart Layer IV, the granular layer
contains spiny stellate cell and variety of intobyt cells. The layer 4 receives most
input from thalamus and is sub divided into 4 |laydabelled 4A, 4B, 4& and 4.
The Infragranular layers composed of layer V andTWe layer V is composed of small
number of inhibitory cells and many large pyramidalls. Some pyramidal cell axonal
outputs target the basal ganglia, brain stem, amhlscord passing through the white
matter with long axons projections. Special typ@nbibitory cell, chandelier cells make
synaptic connections only to the axons protrudnognf other neurons, are often found
in layer V (Well, 2005). Layer VI is the final lay on top of white matter. Most of the
cells in this layer are large pyramidal cells thatject their axons back to the thalamus.
It also contains class of inhibitory neurons cellsose axonal outputs make long

projections across all layers of the neocortex (V2€I05).
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CHAPTER 3: NEUROMORPHIC IMPLEMENTATIONS
- NEURONS, SYNAPSES AND NETWORKS

This chapter presents the literature review ofcaili neuron, synapse and neural
network circuits. In evaluating these circuits, addition to biological plausibility,
compact implementation of circuit blocks is a cargquirement, particularly considering

the feasibility of building large cortical networks

Some of the proposed neural circuits (e.g. Schenenel., (2008)) are operating at
speeds far exceeding those of biological neuralncomcation (“accelerated time”),
and are intended to provide a computationally péwesimulation acceleration tool.
This is motivated by the relative ease with whidectonic circuits can operate at
frequencies much higher than these typically olexem biological neural systems (e.g.
typical mean firing frequencies of neurons in tloetex are in the order of 10 Hz and
the time courses of membrane potentials have batkdwimited to several kHz).
Further, these circuit designs exploit the techgicll advantage of high speed
optimised CMOS technologies rather than operatmgan-optimised sub-threshold
regime which is the case of “biological-time” cifrcuimplementations. The
technological constraints of the common commuricatinfrastructure used for
neuromorphic hardware, i.e. the address event geptation (AER) framework
(Boahen, 2000), as well as the desire to interflicectly to sensors that operate on
signals encountered in nature and at timescaleasita biology, lead to the situation
that most of the silicon neural circuit proposedthe literature operate in biological
real-time. The circuits that operate both of théisee scales are outlined in this

literature review.

3.1 VLSI Neurons

This section outlines the literature review ofcgilh neuron circuits. The latest review of
the neuron circuits implemented by the neuromorpésearch community is presented
in Indiveri et al. 2011. Amongst the silicon neupseveral neuron models have been
considered as a basis for circuit implementatioomfintegrate-and-fire (I&F) neurons
(the 1&F neurons integrate the input currents poaduby the synapses and generate

output spike trains with mean firing rates propmitl to their input currents)
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(Schemmel et al., 2010; Indiveri et al., 2006; Chiet al., 2003; Haflinger et al., 1996),
to non-linear conductance-based (Arthur et al, 200@gelstein et al., 2007) and
Hodgking-Huxley like (Zou et al., 2006; Farquhamét 2005) models. The latter are of
particular interest, as they exhibit much richenayics and thus possible repertoire of
spiking behaviours, both in the context of the meiwand individual responses to a
fixed stimulus. However, these circuits use a largenber of transistors. Several other
implementations have been proposed (Linares-Baorahal., 1991; Patel et al., 1997;
Young et al., 2004; Nakada et al., 2005) thatk@ged on mathematical models that
capture some of the features of the neuron’s asoily behaviour. In evaluating these
circuits the silicon area needed to implement ih&uitry is an important consideration
in addition to the heterogeneity of neural beharspas seen in biological neurons.
Although the direct comparisons of different neumrcuits found in literature are
difficult due to the lack of their implementatioretdils; the transistor count is
considered as an indication of the overall cirenéa requirements.

Table 3.1 Summary of VLSI neuron circuits

Approximate Spiking pattern Biological

Neuron model No. of plausible spike Reference
transistors pattern

Conductance-based 27-30+ Simple spike good Mahowald et al. 1991
Integrate-and-fire 18-20 Simple spike fair Indivedio3
FitzHugh-Nagumg 20 Oscillatory envelope Linares-Barranco et al.1199
Morris-Lecar 20 Oscillatory envelope Patel et 8971
Resonate-and-Firg¢ 20 Oscillatory pulse Nakada. 0415
Hindmarsh-Rose 20 Bursting fair Young et al. 2004
Accelerated-time 14 All main types good This thesis
Biological-time 23 All main types good This thesis
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3.2VLSI Synapses

As explained in Chapter 2, the synapse transmasniring pre-synaptic spike onto the
membrane of the post-synaptic neuron as a currgattion, with a variable gain

(known as synaptic weight) that determines thengtre of the connection between
neurons. In implementing a synapse in VLSI, thadoaBort-term dynamics: synaptic
integration, rise- and fall- time constants of gust-synaptic potential, facilitating and
depressing properties of the synaptic weight arsajbr interest. In addition to these
short-term dynamics, some synapses follow the teng- synaptic dynamic such as
STDP or dopamine modulated STDP.

Typically, in neuromorphic circuits, the synaptieight is stored in a capacitor (other
implementations use a digital memory element —g&tegor an analogue floating gate
transistor). This weight is used to generate trs#-pgnaptic current when a pre-synaptic
spike arrives at the synapse. Therefore, in omé&mnplement short-term dynamics this
capacitor needs charging or discharging accordingiythe context of this report, the
circuit that does this as well as generates thégposptic current, is referred to as the
short-term plastic synapse circuit. The synapseuitithat equipped with both short-
and long- term dynamics is called STDP synapsauitir€ollowing sections review
some of the short-term plastic synapse circuit a8@DP synapse circuit
implementations. However, a VLSI implementatioradd)A modulated synapse has not

been reported in literature.

3.2.1Short-term Plastic Synapse Circuit

A detailed review presented by Bartolozzi et aDQ®) discusses short-term plastic
synapse circuits published in literature —startfrgm the primitive Pulse Current-
Source Synapse circuit (Mead, 1989) up to the Pd#ir Integrator Synapse circuit
(Bartolozzi et al., 2007) by covering the followingynapse circuits: Reset and
Discharge (Lazzaro, 1994), Linear Charge-And-Disgéa(Authur et al., 2004),
Current-Mirror Integrator (Boahen, 1997) and Logr@n Integrator (Merolla et al.,
2004). Among these implementations, the Diff-Pategirator Synapse circuit performs
linear integration of input spikes with tunable rgaparameters and has one
independently tunable time-constant parameter. d\st@d out in the review, the other

synapse circuits do not provide “proper” lineaegnation of spikes. This may lead to a
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loss of incoming information to the synapse. Tlsaifianother spike arrives during the
period in which the first spike has an effect, dezond spike is ignored, hence the
information belonging to the second spike is Ibkiwever, if the synapse is designed
such that the post-synaptic current is injectethénform of a current impulse (i.e. if the
rise- and fall- time of the post- synaptic poteintiee not considered), the incoming
spikes to the synapse are not lost. Above mentisgedpse circuits are implemented as
the sub-threshold (weak-inversion) CMOS circuitsl arse a capacitor to store the
weight of the synapse. However, these implememtstolo not consider the effects of
dendritic processing; Basic implementations thatlude dendritic integration are
presented in Elias et al. (1995) and Rasche et(28l01). All above mentioned
implementations do not address the facilitatingdepressing short-term dynamics as
presented in biological models (Tsodyks et al.,®2@ayan et al., 2001; Abbott et al.,
1997). The basic Diff-Pair Integrator Synapse withth short-term depression and
facilitation has been proposed in Liu (2003).

The synaptic circuits proposed in this thesis idelushort-term depressing and
facilitating dynamics. The post-synaptic currentinfected in the form of a current
impulse where the magnitude of the impulse reptsséme synaptic weight. This
reduces the circuit area consumed by the synapsetci

3.2.2STDP Synapse Circuit

In a cortical network, STDP synapses provide agtiglriven rewiring of neurons with

weighted connections. Hence, STDP synapse playsaortant role in cortical neural

networks that perform adaptability, learning andmoasing. Among the various STDP
synapse circuits presented in the literature, theicb STDP circuits proposed by
Hafliger et al. (1997), Bofill-i Petit et al. (20p4indiveri (2006), Koickal et al. (2007),

and Tanaka et.al. (2007) are discussed below. @tiementations include a bimodal
probabilistic plasticity STDP circuit based on mearte voltage level (Fusi et al., 2000;
Badoni et al., 2006), a model of plasticity based intracellular calcium levels

(Rachmuth et al., 2003), and a mixed-signal STDPplementation (Schemmel et al.,
2004).
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STDP synapse circuit by Hafliger et al. (1997)

This is the first known neuromorpic synapse thagtlements time-dependent learning
rule. It is a weight-dependent synapse implemeamativhere the values of LTP and/or
LTD influence the value of the weight —this is anportant criterion for synapse
stability). However, only the potentiation aspetiSTIDP is considered in this circuit;
I.e. it performs weight updates based on singlespaipre- and post-synaptic spikes as
shown in Figure 3.2. The circuit operates in biatagtime scale and is fabricated in 2
pum standard CMOS process. The schematic of theitiscgiven in Figure 3.1. The
circuit occupies larger silicon area and providess|functionality compared to other

models discussed in this chapter.

Figure 3.1 The CMOS synapse circuit of Hafliger eal. (1997); weight capacitor hold the weight, the
corr capacitor stores the correlation signal representaon. The magnitude of the weight increment
and decrement are computed by a differential pairpper left w50). These circuits are mirrored to
the synaptic weight and gated by digital switchesneoding the state of the correlation signal and of
the somatic action potential. The correlation signreset is mediated by a leakage transistor,
decayin, which has a tonic value, but is increasettamatically when the output neuron fires; taken
from Hafliger et al. (1997).
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Figure 3.2 The learning rule explained by a snapsh®f the simulation variables involved at one

synapse; taken from Hafliger et al. (1997).
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The STDP synapse circuit by Bofill-i-Petit et al. 2004)

This STDP circuit includes weight-dependent potgidn and depression, in which the
degree of weight-dependence is tunable. Theseitsroperate in biological time scale
and are fabricated in a standard 0.6 um CMOS psodd®e I&F (Integrate and fire)

neuron, the STDP synapse, and the short-term plagtiapse occupy 75 um by 253
pm, 131.3 um by 139.7 um, and 73.2 um by 21.3 prohgd area respectively. This
implementation is relatively compact and has exptaky decaying STDP curves as
shown in Figure 3.5 (a) and (b). The schematicaildedf the design are given in Figure
3.3, Figure 3.4 and Figure 3.5 (c).
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Figure 3.3 (a) Leaky I&F (Integrate and fire) neuron (b). A chain of spike generation circuits (SG)
receives a spike signal from the 1&F neuron. (c) Wiaeform generated by the chain of SG circuits.

(d) Schematic details of the SG circuit; taken fronBofill-i-Petit et al. (2004).
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Figure 3.4 The STDP circuit (a) Circuit that detecs causal spike correlations, (b) the depressing

side of the learning curve; taken from Bofill-i-Pett et al. (2004).
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Figure 3.5 Graphs (a) and (b) are experimental STDRurves, showing the possibility of
independent adjustment of curves; (c). Synapse oulpcircuit: when pre-synaptic pulse,pre, is
activated it injects a post-synaptic current propotionate to weightVw; taken from Bofill-i-Petit et
al. (2004).

The STDP synapse circuit by Tanaka et.al., (2007)

This implementation constructs a Hopfield-type akuretwork associative memory
using a synapse circuit with STDP that has a symeméme window. The circuit
operates in accelerated time scale and is fabdcatehe standard TSMC 0.25m
CMOS technology. The STDP circuit consumes 63386 gfrchip area.
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Figure 3.6 (a) Spike-detection and (b) weight-upde parts; where, D&| —delay-and-inversion
circuit; T-FF —Toggle flip-flop; taken from Tanaka et.al., (2007)

The STDP circuit by Indiveri et al. (2003, 2004)

The circuit is fabricated in standard By CMOS technology and the inhibitory and
excitatory synapse measure 55 um by8land 145 pm by 3{im respectively, while

the neuron circuitry occupies an area of 88 by 31um. The STDP synapse circuit
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(Figure 3.7 centre) is weight dependent implemeéntatind it is more compact design
compared to other implementations. However, theaslod the STDP curves (shown in
Figure 3.8) are less easy to relate to the curvesd in biology (Abbott et al., 2000).
The STDP synapse circuit has some degree of flayxim adjusting the curves as seen
in Figure 3.8. The circuit operates in biologicah¢ scale and due to the continuous
leakage of the weight capacitor, in long time scHie weight always becomes
significantly biased to one side (either to zerttage or maximum-voltage depending
on the topology). This effect has been reducedniypducing bi-stability circuit that
drives the synaptic weight to one of two possiltd¢es on long time scales.
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Figure 3.7 Synapse circuit. The bistability circuitcompares the voltag&/wo to a threshold and
drives it to one of two asymptotic values\(high or Vlow ). The STDP circuit increases (or
decreases)wo with every post- (pre-) synaptic spike provided tk pre- (post-) synaptic spike was
emitted shortly before. The STD circuits implementshort-term synapse weightw with every pre-

synaptic spike, at a rate set bywstd And the Vw is given to a current-mirror-integrator that

generates a postsynaptic current and it’s injecteéhto the neuron; taken from Indiveri et al. (2003).
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Figure 3.8 The STDP curve: the difference betweerr@g- and post-synaptic spike timeat = tpre -
tpost The curves in the left plot were obtained for diierent values ofVtp, Vtd , while the curves in

the right plot were obtained for different values d Vp and VVd ; taken from Indiveri et al. (2003).
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STDP circuit by Koickal et al. (2007)

This is a weight-independent STDP circuit, and 31®P dynamics are modelled as a
pair of decaying exponentials. The circuit is fabhted in AMS 0.6um CMOS
technology and operates in biological time scalee Tircuit consumes a large area
compared to Indiveri et al. (2004).
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Figure 3.9 Simplified schematic of the STDP learnig circuit formed by two symmetrical circuit

blocks to implement the positive and negative phasef the learning function; taken from Koickal
et al. (2007).

Among these STDP circuits, the Indiveri et al. (2D@eight dependent implementation
of the approximated STDP circuit is a compact angpke design. The STDP circuit
proposed in Chapter 5 is similar to the Indiverakt(2003) STDP circuit, however it
operates on the accelerated-time scale.
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3.3 VLSI Networks

Implementation of electronic cortical neural netkosystems that emulate the
organisation and the function of the cortical nekgoof the nervous system has been a
continuing interest in brain research (Schemmehlet 2010; Furber et al., 2006;
Indiveri et al., 2007; Merolla et al., 2007; Renadl., 2007). The fully digital circuits,
and the mixed-signal circuits in which computatisishared between analog and digital
hardware elements, have been used to reproduce tiedworks in hardware. In this
section, literature review of selected neural nekwimplementations in mixed-signal
VLSI systems is summarised. Further, some cortiealral network implementations in

digital systems are also outlined.

3.3.1 Cortical networks in mixed-signal VLSI system

These networks exploit continuously varying ana®gignals to compute low-level
biological dynamics. The basic neural elementslmammplemented in analog circuits
with heterogeneity and imprecise (noisy) signal oumication. Further, these
implementations occupy very small integrated ciremea. Hence, mixed-signal system
has become an attractive platform to mimic neuyaladhics. But, mixed-signal circuit
implementation has complex design flow, and cisaite less flexible to be adapted to
perform different tasks. As low-level neural pragieg principles are very different to
conventional digital processing principles, custesdi analogue mixed-signal circuits
could provide efficient implementations of neuratuits. It is also possible to use both
analogue and digital techniques to optimise théopmance of the full network.

The closeness of the VLSI cortical network dynantmsthat of biological network
depends on the types of neuron, synapse and contyentodels used in the network.
Specially having synapse model with STDP dynamgsvery crucial for cortical
network plasticity. Large to medium size mixed-signeural network implementations
with STDP synapses include Schemmel et al. (20BR)joni et al. (2008), Indiveri et
al. (2004, 2007). Other medium size mixed-signalrak network implementations
without STDP synapses include Arthur et al. (2004¢rolla et al. (2007). All of these
VLSI neural networks are discussed below brieflthéd implementations include small

size spiking neural networks such as Renaud €@0.7), Hasler et al. (2007), Hynna et
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al. (2007), Binczak et al. (2006), Sorensen e{2004), Vogelstein et al. (2004), Le
Masson et al. (2002), Jung et al. (2001), Liu e(2001) and Mahowald et al. (1991).
Figure 3.10 illustrates implementation technolod@salog, digital and software) used
to compute neural dynamics (taken from Renaud.eR@0D7). It is seen that a few of

these implementations are also supported withmanfare and/or software platform.
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Figure 3.10 Computation distribution in various spking neural network analog-based systems;
Where HH- Hodgkin-Huxley model; IF- Integrate-and-Fire model; FN- FitzHugh-Nagumo model;
SHH-HH inspired models where some of the conductaedunctions are simplified or fitted; taken

from Renaud et.al., 2007.
3.3.1.1Neural chip by Schemmel et al. (2008, 2010)

Under the FACETS (Fast Analog Computation with Egeeat Transient States) project
funded by European Commission, Schemmel et al.42P008 & 2010) have proposed
configurable wafer-scale hardware system to emwattcal networks in silicon. This
is the largest mixed analog/digital integrated wiroetwork that has been fabricated in
silicon. However, it has a lesser degree of faltigas to biology when comparing with
other VLSI neuromorphic multi-compartment neuraltwegk implementations (as
shown in Renaud et al. 2007). This section summahge network implementation
given in Schemmel et al. (2004, 2008 & 2010).
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Neuron and synapse Model complexity

The network uses an integrate-and-fire (I&F) neurmdel that exhibits an exponential
spike mechanism with adaptation, and current-imgctplastic synapses. On-chip
analogue circuits are used to compute short-temapic depression and facilitation
and to carry out the spike time dependent plagtic®TDP) measurements in each
synapse. However, the weight update for STDP isopaed on-chip digitally. The
neurons operate on a typical time scale whichus fo five order§’ of magnitude faster

in comparison to biological real time.

Network Size (No. of Neurons: 450x512; No. of synapsesl31 072x450)

The silicon wafers of approximately 450 chips am@ppsed. These are not cut apart into
separate chips but left as a whole (wafer-scakgnation). The basic chip elements of
the hardware architecture are 10 mm by 5 mm netvabiks, each implementing

131 072 synapses which can be dynamically pargtioto up to 512 neurons. Such a
wafers scale integration system has been propbsiadot fabricated. So far only a test

containing 256 neurons has been demonstrated ingla ship.

Connectivity

The high bandwidth requirement for the neuronalneativity is approached by wafer-
scale integration. Additional metal layers, depasibnto the wafer in a post-processing
step, allows to interface and inter-link the netkvahips with adequate connection
density and thus to operate large-scale networksisting of 10 000s neurons. The
system used digital spike routing mechanism andcthramunication protocols are

specially developed for this hardware architecture.

The quality of routing of the system reduces witte tincrease in homogeneous
connectivity. Availability of large cortical netwoisimulation results performed in this
system is yet not clear. The average power consamis expected to stay below 1 kW
on a 20 cm wafer in a standard UMC 180 nm CMOSrtelcyy.

13 http://facets.kip.uni-heidelberg.de/public/restitsl Y ear/WP 7/index.html
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3.3.1.2Neural chip (F-LANN) by Giulioni et al. (2008)

Giulioni et al. (2008) have implemented a 68.9 Trohip in standard CMOS AMS
0.35um technology. This is one of the largest biologitale mixed-signal VLSI
cortical neural network that has been fabricatediiiton that comprises of STDP
synapses. It is also having a lesser degree dffdiéness to biology when comparing
with other VLSI neuromorphic multi-compartment naunetwork implementations (as
shown in Renaud et al., 2007) as it uses simpledgemous integrate and fire neurons.
Following paragraph summaries the details of thievokk implementation given in
Giulioni et al. (2008).

Neuron and synapse Model complexity

The neuron and synapse models used in this chipdadhe Integrate and Fire (I&F)
neuron with spike-frequency adaptation and thetdide stochastic synapse with a
STDP rule respectively. The synapse circuit modsb ehas the “stop-learning”
capability, which prevents the synaptic modificationce the desired output of the

network is reached.

Network Size (No. of Neurons: 128; No. of synapses 16 384)

This reconfigurable network has 128 I&F neurons a48d384 (128x128) bi-stable,
STDP synapses. These synapses can be initialimbdegonfigured. The system can
read the synaptic state, at the hardware levehouwtt disrupting the internal network
activity.

Connectivity

The fully configurable synaptic matrix supportseimal connectivity, external AER
(Address Event Representation) connectivity, or lwoation of both. Each synapse
may be set individually to an excitatory or inhdsit type, and synapse’s initial weight
can be set externally. Each neuron is connectd@8osynapses, and each synapse can
accept input spikes from either internal or extemaurons. Input spikes from external
neurons are accepted in the form of AER eventschviare addressed to the correct
synapses using a decoder. Fixed weight inhibitgnyapse circuits are used while
excitatory synapses are plastic.
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The neurons operate on a biological temporal sddie. size of the network can be
increased by one order of magnitude by using mcitip network using AER
infrastructure. Specifically, AER based PCI-AER tba(Chicca et al., 2007,
Dante et al., 2005) allows four chips to be coneedbgether (e.g. to implement a
recurrent network of 512 neurons with a uniform 2&8fanectivity) as given in Giulioni
et al. (2008).

3.3.1.3Neural Chip by Indiveri et al. (2007)

The chip is fabricated in a standard 036 CMOS technology and occupies an area of
6.1 mnf. The basic elementary circuits of the network @esigned to operate in the
sub-threshold region to minimise the power consionptThe network operates in
biological-time scale. It uses a simple 1&F neummodel and has lesser degree of
closeness to biology when comparing with other VUSturomorphic network
implementations (as shown in Renaud et al., 200he details of the network

implementation given in Indiveri et al. (2007) atenmarised in this section.

Neuron and synapse Model complexity

The chip uses an integrate-and-fire neuron modelv Eypes of synapses are used,
namely: STDP plastic synapse, excitatory non- ST&M inhibitory non-STDP

synapse.

Network Size (No. of Neurons: 16; No. of synapses 2 048)

Each chip comprises an array of 16 integrate angl{li&F) neurons and 2048 synapse
circuits where each neuron is connected to 128msg® These 128 synapses include
120 synapse with STDP dynamics, 4 excitatory nob¥Sand 4 inhibitory non-STDP

synapses.

Connectivity

Since this is a simple small network it is easyaéeommodate connectivity. The input
spike patterns are provided to the synapses thrthaglasynchronous AER interfacing
circuits (Boahen, 2000).

The chip is fabricated in a standard 038 CMOS technology and occupies an area of
6.1 mnf. However, the size of the network can be incredsedbout one order of

magnitude by using multi chip network infrastruetsuch as in Fasnacht et al. (2008).
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3.3.1.40ther spiking neural network implementations in mixed-signal system

Other implementations presented in literature ideluNeural Chip by Indiveri et al.
(2004) that occupies silicon area of 16.8 with 21 IF neurons, 129 synapses,
including 56 STDP plastic synapses fabricated endard AMS CMOS 0.6um
technology (this is the older version of the chipgented in Indiveri et al. 2007); The
“Neurogrid” neural chip implemented by Arthur and Boahen (208610 mnf of
silicon area for a total of 9 216 neurons is faded in TSMC 0.2%um standard CMOS
technology. This implementation is further usedthe neural Chip by Merolla and
Boahen et al. (2007) with 8 192 neurons in each ahd expanded to 32 768 neurons in
a network with four of the neural chips on a mahip board. They have demonstrated
neuronal selectivity along position, spatial fregeye and orientation properties of
cortical network. However, their implementations dot include STDP learning
synapses. Other sensory processing neuromorphicedeémplementations include
“Silicon Retina” by Zaghloul et al. (2002 2006), and “Silicon Cochlea” by Liu et al.
(2010).

3.3.20utline of spiking neural network implementations n digital system

Fully digital systems use conventional digital srstuich as RAMs, processors, digital
logic, etc. to implement a neural architecture.eSéhare implemented in custom VLSI
chips and/or in off-the-shelf FPGA (Field ProgranmeaGate Array) devices.

Among these, the “SpiNNaker” projétthas developed a chip that comprises 20
processing cores, each with ARM9 processor, locamory and DMA capability.
According to the estimates, each ARM9 processomuaaiel 1 000 Leaky I&F neurons,
each with 1 000 inputs firing on average at 10 iHAiological real time. The synaptic
data is held in an off-chip RAM (Furber et al., BDOThe processing cores are
connected to its local peers via a Network-on-CiiNjeC). This provides inter-chip
communication via links between SpiNNaker chips levhitilising in-chip local high
bandwidth communication. Using this approach thehiggcture can be extended to
have thousands or millions of similar processingesoto build a massive cortical

network in silicon.

“Web Link: http://intranet.cs.man.ac.uk/apt/pra8piNNaker/
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The Memory Optimized Accelerator for Spiking Neukidtworks (MASPINN) project
(Schoenauer et al., 1998 and 2000) produced a +a@arderator board simulating one
million neurons in real time. However, it does motlude STDP learning, different

types of neurons and synapses, which are a kegeadiie fact in biological networks.

Other digital network implementations include thepgosed Connectionist Network
Supercomputer (CNS-1) architecture (Asanovic et H93), RAPTOR2000 system
(Porrmann et al., 2004), and systems by Agris.gaD7) and Carrillo et al. (2008). All

of these digital implementations of cortical netilwgrovide semi-customisation of
homogeneous digital elements to mimic low-levelehegeneous neural elements.
Hence this approach may not provide fully optimisa@dicking of the nervous system.
However, digital implementations use the well-opsed digital building blocks to

design the system and in terms of programmingHerdifferent neural models, they are

more flexible than the analogue mixed-signal immamations.
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CHAPTER 4 : CORTICAL NEURON CIRCUITS

This chapter presents two cortical neuron cirquplementations that work in different
time scales, the acceleratihe and the biological-time. These neuron circuite
capable of generating many types of the neuronvbetna with diversity similar to that
of biological neuron cells. These neuron circuite @aspired by the computational
model proposed by Izhikevich (2003) and motivatgdhe desire to achieve, a single
compact generic circuit that can easily be tunetabbeknown cortical neuron type. The
initial section provides the mathematical neurordedgroposed by Izhikevich (2003).

All three fabricated ICs presented in this thesis the Accelerate-Time Neuron circuit.
The circuit design of the accelerate-time neurors \weoposed in the Mphil thesis

(Wijekoon, 2007), and for the purpose of complessnef this thesis, the accelerated-
time neuron section of this chapter, present thearecircuit, its operation, simulation

results, and the mathematical model briefly. Byeaging the research done in the
Mphil degree, in this PhD thesis the function oé theuron circuit is experimentally

verified, and the results obtained from the faliledaneuron are given in Chapter 7 and
Chapter 8.

The Biological-Time Neuron circuit is proposed la¢ £nd of this chapter and the circuit
design, operation and the simulation results amviged. This Biological-Time
Neuron circuit is implemented in a standard CMOS50um technology, and the
proposed circuit and the simulation results pre=egm this chapter were published in
the Proceedings of the IEEE Biomedical Circuits &ydtems Conference (Wijekoon et
al., 2009).

Finally, summary of these neuron circuits and tleginand demerits of designing VLSI

neural network in accelerated- vs. biological- tiscales are discussed.

4.1 The Izhikevich Model of the Cortical Neuron

The Izhikevich (2003) neuron model is a simplifieersion of the Hodgkin-Huxley
neuron model and has two state variables membratengal §) and membrane
recovery ). According to the model membrane potend&glevolves as in the equation

set given below:
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U =a(bV-U) | (4.2)
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Figure 4.1. Types of neurons reproduced using thelhikevich (2003) neuron model and their
correspondent parameter values; taken from Izhikewih (2003).
Using the aforementioned simple set of formulas r@setting function various types of
cortical neuron firing patterns can be reproduc&de reproduced firing patterns
correspond to differentla, candd values of parameters published by Izhikevich (2003

are shown in Figure 4.1.

It should be noted that this reset mechanism isensamilar to the reset in the I&F
model than a spike generating mechanism of biockbgsodium/potassium channels.
However, the rich repertoire of behaviours, inchgdadaptation and bursting, is a result
of the dynamics o¥ andU, which can be qualitatively associated with theriplay
between faster sodium/potassium dynamics and sloaeium dynamics. A similar
mechanism for adaptation and bursting is also ptedein an exponential I&F model
Brette and Gerstner (Brette et al, 2005). A lin&df model can also be extended to

enable adapting and bursting behaviours, via mestmensuch as variable thresholds in
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Gerstner’s spike response model (Gerstner et @2)2 and some additional dynamic
variables such as “burst currents” proposed by Blefhand Niebur (2009).

The Accelerated-Time Neuron circuit design implemehésqualititative behaviour of
the lzhikevich neuron model in VLSI, whereas thel8gical-Time Neuron circuit
combines the simplicity of the I&F model with théow-fast variable interactions
present in the Izhikevich model to obtain a largeiety of spiking behaviours in a

simple circuit.

4.2 Accelerated-Time Neuron

The Accelerated-Time Neuron circuit, its operatiod #me approximated mathematical
model is given in this section. Its experimentautes can be found in Chapter 7. More
elaborated details of this neuron circuit, inclggdicircuit operation, phase-plane

analysis, derivation of mathematical model, andusation results can be found in

Mphil thesis (Wijekoon, 2007). Some of the materigtesented here were published in
Wijekoon et al. (2008). The circuit diagram of treuron is shown in Figure 4.2.
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Figure 4.2. The compact silicon cortical neuron ciuit.
4.2.1The circuit operation

The implemented neuron model consists of two state@ables: “membrane potential”
(V) and “slow variable” (), that are represented by voltages across capa¢ijoand

Cy respectively. The circuit comprises of three fumail blocks: membrane potential
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circuit, slow variable circuit and comparator citc(the transistors M1 and M2 are
shared by the membrane potential and slow var@taits). In the membrane potential
circuit, the capacitor integrates the postsynaptic input current, plusrival currents
which depend on the state of the cell. Similamythie slow variable circuit the capacitor
Cy integrates the currents that non-linearly depemtd @andV. The comparator detects
the spike and generates puls&gs &ndVg) that perform the after-spike reset. Various
spiking and bursting firing patterns are obtaingdiuming two voltage parameteige
and Vd, which control the reset mechanism. Figure 4.3nshexample waveform of

voltages)V, U, Va andVs.

| ——Membrane Potential

Voltage/y)

Yoltage/(v)

=]
o
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Voltage/(y)

1.8E-05 2.0E-05 2.2E-05 2.4E-05 2.BE-05 2.8E-05 3.0E-05 32E-C
Time/sec)

Figure 4.3 Example waveforms of the membrane poteiatl (V), slow variable U) and the reset
pulses A and VB).

4.2.2Simulation results

A Summary of firing patterns obtained by simulattbe circuit using standard 0.35 pm
CMOS technology libraries is shown in the Figuré. £xperimental results obtain from

the fabricated neuron are given in Chapter 8.
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Figure 4.4 Spiking and bursting firing pattern behaviour to a increase in step post synaptic current
(a) CH, (b) CH, (c) RS2, (d) RS1, (e) 1B, (f) IB,d) LTS, (h) FS, (i) FS and (j) FS for differentVc
and Vd parameters. The plots shows responses to three irasing steps of dc-currents: 0.05pA, 0.1
MA, and 0.15 pA except plot (b) is 0.05 pA, 0.1 pAand 0.12 pA and plot (e) is 0.05 pA, 0.1 pA, and
0.25 pA.

4.2 .3Mathematical model of the neuron circuit

The mathematical model of the neuron circuit is usedhe Cortical Neural Layer
(CNL) chip model discussed in Chapter 8. Hences tbection summarised the
approximated mathematical equations of the neukooording to the model membrane
potential of the neuron/, evolves as in the equation set given below. Eaphation is
corresponding to the circuit blocks discussed & dbove section; i.e Equation 4.4,
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Equation 4.5 and Equation 4.6 approximate the memsbgaotential circuit, slow

variable circuit and comparator circuit dynamicspectively.

é{a[é(%’jm(v—\oz }—ﬂ[—;(%ﬁm(u—\m}ﬁ} when V= U-V

V= 4.4
k W 1 I . . . AT
a{(tjm((u ‘Vt)V‘E VZJJT(} otherwise (i.e.region'A)

J _E LW (L) (W vy |-y YW _\/\2

U_CVHZ( ) @), } V{z(LjMﬁ(U v }} ‘ @5)

If V>V, then {V - ‘ (4.6)
U-uU+D

In the above equation¥; is the nMOSFET threshold voltage. The value 1/ xCox of

the nMOSFETSs| - charge-carrier effective mobilit{;ox -gate oxide capacitance per
unit area) andCy and Cy are membrane and slow variable capacitance values
respectively. The (W/ky is the gate width to length ratio of the MOSFET. Mis the
postsynaptic current angandD are externally tunable parameters. Thg, y, and the

region ‘A’ depend on;, V andU as given in Figure 4.5,

A N
> a=1
3 a p=1
[} a=0 =1
3 1 '
S v, T
E a=0 a=1
n -
ﬁ:o ﬁ_l
y=0 y=0
(0,0) Vi

Membrane Voltage, V/ (\

Figure 4.5 Parameter values for formulas 4.4-4.6.
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4.3 Biological-Time Neuron

Similar to Accelerated-Time Neuron, the Biologidatne Neuron circuit is capable of
generating many types of the cortical neuron behaywith diversity similar to that of
biological neuron cells. The four tuning parametérg, Uth and Vbisn are used to
configure the circuit to operate in a known typenetiral behaviours, RS, FS, LTS, CH,
IB and TC (these patterns are briefly defined ira@kr 2). Here, when considering the
firing patterns the supra-threshold spike actisitere considered and sub-threshold

neuronal activities are not considered. The cinsugresented in Figure 4.6.

Spike 7
P! —+>o—«:> Spike Ureset
Vdd Vdd Vdd Vdd Vdd
T I vd vd -
Vbiasp Vbiasp
o—| ™2 w5 | o—d|  wm17
= M9 JL
4 [:M3 w2 Spike :] F
V1 V2 ~J\> Mﬂ:] M18 Ureset U1
JL Spike H [: M10
Spike H [:M4 M13 :[
U4 |
‘ | ™18
v U
M1:]} JL M7 }7 M14 }—Cl Ureset
Cv —— Spike /3 Cu—— Vbiasn Ureset 1 um
M6 M19:] F—o :] = v
— W y me M15
Post-synaptic ¢ M12
current  —— = = . L L

Figure 4.6 Schematic of the Biological-Time Neuronircuit
4.3.1The circuit operation

The node voltages & andU represent the state variables, membrane potemtcathe
slow variable. The currents feeding into these sate integrated on capacitorg &d
Cy respectively. The currents are provided by twocfiomal circuit blocks: membrane
potential circuit (transistors M1 to M8) and slowariable circuit (transistors M9 to
M19). The evolution of the membrane potentfak due to integration, on the capacitor
Cv, of the post-synaptic current (which is assumebetanjected into that node through
the synapse circuit) plus an exponential leakageent (generated via M7 and M8)
which is determined by the value of the slow vdddb. The spike threshold of is
determined by voltag¥th, and detected by M1, M2, and an inverter. M3-M¥pHe
control the duration of the spike and the resetdyigs. Initially M3 provides a positive

feedback to quickly exceed the membrane potettiashold. As the spike is generated,
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the feedback current is turned off by opening Mytteat the voltage at nodédoes not
actually produce a significant voltage spike. Tistas M5 limits the output spike pulse

duration, while membrane potentiais reset to the value dfcvia M6.

Membrane Vofiags, V. Siow variable, U

Waltage/(V)

Urasef

WVoltagef(v)
- in
T T

o
n
T

o

| 1 1
0 005 o1 015

Timel{Sec)

Figure 4.7 Waveforms of a typical CH firing pattem obtained from the circuit shown in Figure 4.6;
top: membrane potential,V, and slow variable,U; bottom: output spikes and slow variable reset

signal

As can be seen in Figure 4.7, the slow variabléagelU evolves at a much slower rate
than the membrane voltage. The changes to the \sioable are primarily due to two
reset mechanisms. After the spike is generatedrahee ofU is pulled some amount
towardsVy via M11. Additionally, wherU reaches a threshold value, determined by the
tuneable voltag®y,, aUresetsignal is generated (M16, M17 and the inverteg @dns
reset to ground via M12. The arrangement of M13-Mh8 M18 helps to control the
timings in the reset circuit. Initially, M18 prowed a positive feedback to quickly bring
U above the threshold value. As a result the rageakUresetgoes high. Sincé
evolves with very slow rates, théresetis generated using a slightly different topology
than the spike generation circuit. By breaking lib&p using M13 switch, th&reset
pulse can be generated, minimising the risk ofisgton to a fixed DC value in the

feedback loop. Th&resetsignal is then used to reddtto zero via M12. Finally the
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Ureset pulse is brought back to zero after the voltagenade U4 is brought down
through M14-M151In addition to the two reset mechanisidsgontinuously evolves as
two currents are integrated on capacitq, Gne is the current through M9, which
depends on the membrane poter¥igM10 is used to prevent large current flow during

the spike), the second one is a leakage currentraited byVbiasn(M19).
4.3.2Simulation results

The operation of the circuit and the circuit sintigia results obtained using standard
0.35um AMS CMOS technology, are presented in tbign. The SPICE simulation
results shown in Figure 4.8 illustrate membraneepimdl V during various types of
cortical neuron firing patterns (CH, RS, IB, FS,3Tand TC). The spike pattern
classification follows methods given in Nowak et €2003). The output spikes are
produced at the times of membrane potential pektks.four tuning voltage parameter
values corresponding to the firing patterns arevigiel in Table 4.1. Figure 4.9 shows
the trajectories in the state space corresponditigese firing patters.

As can be seen in Figure 4.8, the firing pattefnsioed from the proposed circuit are
in the same time scale as that of the biologicaroes, the minimum refractory period
is approximately 1 ms. The frequency of firing fargiven step of post-synaptic
stimulus typically ranges from below 1 Hz to 1 kkdmd can be approximately
configured to a desired frequency, simply tuning timeuron using an appropriate
parameter set. All the waveforms in Figure 4.8 abtained using a post-synaptic
stimulus of 2 nA. It is observed that RS type nalganter-spike frequency can be
configured to one typical of real RS inter-spikeguencies (Nowak et al., 2003); RS1
and RS2 sample waveforms are shown with 25 Hz &dHEz inter-spike frequencies.
Similarly, the FS type neuron’s inter-spike fregeyisan be configured to a frequency
in the typical FS frequency range (Nowak et alQ30and two selected samples (FS1
and FS2) with different inter-spike frequencies stnewn in Figure 4.8. The proposed
neuron circuit can also be configured to obtainoaumodating (spike frequency
adaptation) or to a non-accommodation firing pattein CH type firing pattern, the
inter-burst interval as well as number of spikes Imgrst can be configured easily as
seen in CH1, CH2, and CH3 waveforms in Figure 4.8.

The layout of the circuit is shown in Figure 4.1tCconsumes 70 um x 70 um of silicon

area in a 0.35 um CMOS technology. Here, Cv ang@wy capacitors occupy a large
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area of the layout. If non-linear gate oxide cafamue of the MOSFET is used as a
capacitor, the silicon area can be reduced further.
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Figure 4.8 Membrane potential of the neural firingbehaviours obtained from the neuron circuit in

response to a step post-synaptic stimulus of 2 nA.
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Table 4.1: Tuning voltages used to obtain the firig patterns shown in Figure 4.8

Neuron Tuning Parameter/(V)

Type Uth Vbiasn Ve vd

CH1 0.2 0.1 0.8 0.8
CH2 0.2 0.2 0.1 1.7
CH3 0.1 0.15 0.8 1.7
FS1 0.5 0.3 0.1 1.7
FS2 1.3 0.6 0.8 1.7
IB1 0.1 0.1 0.5 1.7
IB2 0.5 0.22 0.1 1.7
LTS 0.5 0.24 0.3 1.7
TC 2 0 0.8 0.9

RS1 0.5 0.22 0.1 1.7
RS2 1.3 0.22 0 2.5
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Figure 4.10 A layout of the proposed VLSI neuron ccuit in a 0.35 um CMOS technology.

4.4 Discussion

Both CMOS cortical neuron circuits replicate manyown types of spiking neural

behaviours by adjusting a few external voltagessEhcircuits provide a much richer
repertoire of spiking patterns than a simple indégrand fire model, while using only
one additional state variable. The circuits providienple, compact and easily
configurable universal cortical neurons, with poinapplications in the development
of massively parallel analogue VLSI neuromorphigpshthat closely resemble the
circuits of the neocortex. In addition, the Biologit Time Neuron can be used in the

context of interfacing electronic neural circuitgwbiological systems

As seen in the literature (in Chapter 3) both ame#éd and biological-time
implementations are popular in neuromorphic ciscaihd both approaches have their
own merits and de-merits. The summary of the m€fit”) and de-merits (“-") of

implementing both accelerated and biological-timeSYdevices are listed below.
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4.4.1Merits (+) and de-merits (-) of implementing biologcal-time devices:

+ Require low communication bandwidth: Communicatimandwidth between
VLSI chips and within VLSI chip circuits is very wo This enables large
number of neuron connections. Well established AshEvent Representation
(AER) protocol can be used.

+ Circuits can be easily interface with biologicab®ms, i.e. the silicon neurons
can be interconnected with the biological cellsfeom “hybrid networks”
(LeMasson et al., 2002).

- Experiment takes longer time duration to perforrmpared with accelerated-
time implementations.

- Decay and rising timings of signals are very slbemnce advantages of standard
CMOS technology, which is optimised for speed digjnare not fully exploited.

- Circuits require operation in weak inversion regioh transistors and large
capacitors are required to store analogue voltadges. This consumes large-
silicon area.

- Weak inversion region of operation can cause langematch effects on the
characteristics of a circuit which resulted in meagiations on the circuit’'s
characteristics.

- Scaling of the circuit to fabricate in advanced mleabmicron technology is

difficult for the circuit with transistors operagnn sub-threshold region.

4.4.2Merits (+) and de-merits (-) of implementing accelated-time devices:

+ Real time long-duration simulations can be perfamagthin very small time
duration (example: 5 year real time simulationaotortical network can be
observed in 48 hours if time scale is® Xlines faster) or extensive parameter
searches of an experiment are possible.

+ Technological advantage of speed optimised CMOSn@ogies can be
exploited.

+ Less power consumption per experiment (very slosloigical time experiment
take long time to perform an experiment, hencedgak currents and refreshing

voltage states may consume more power)
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- As accelerated time processing is used, commuarcatindwidth limits the size
of the largest connectivity matrix of a network.eTéonventional AER protocol
cannot be used. However, using mixed mode circgitmificant increase of
neuron connectivity can be obtained as demonsttategschemmel et al. (2008),

using circuits that operate four orders of magrettakster than biological-time.

In the rest of this thesis, the accelerated tim&areal implementations are considered
in designing a large cortical network, which prasdhigher computational throughput
of the neuro-mimetic computing device. Hence, esitee analysis of the biological-
time neuron is not considered in this thesis. Iplamenting a neural network chip, the
rest of the neural circuits proposed in this thegisrate three orders of magnitude faster
than the biological-time (rather than four ordesscansidered here). This will ease the
implementation of communication of a network thaasha larger inter neuron
connectivity matrix. Hence, the parameter set efdabcelerated-time neuron is selected

such that the neural dynamics are three ordersaghitude faster than biological-time.
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CHAPTER 5: LONG-TERM DYNAMIC SYNAPSE
CIRCUITS

This chapter proposes STDP (Spike-Time DependexstiPity) Synapse and Dopamine
(DA) Modulated STDP Synapse circuits that operateaccelerated-time. The STDP
plasticity rule is a crucial feature of a cortiogtwork and is believed to be the neuronal
mechanism for the learning and memory of a netwearkereas the DA modulated
STDP plasticity rule is believed to be the mechanisr the reinforcement learning in a
cortical network. The plasticity rules, the STDPdatne DA modulated STDP are
explained in Section 5.1, and the computational ehaged to implement the DA
Modulated Synapse circuit is given in Section FRe Section 5.3 and 5.4 provide the
circuit operation and simulation results of the $TSynapse circuit, and the DA
Modulated Synapse circuit respectively. To prove tbncept in hardware, Integrated
Circuits (ICs) have been fabricated in a standaBb um CMOS technology. The
fabricated Integrated Circuit that contains bothD®8T Synapse circuits and DA
Modulated Synapse circuits is called the STDP/DABTSynapses NeuroSTDP/DA
Neuron chip presented in Chapter 8. The synapses ofcthis can be configured to
work as a DA modulated synapse or as a STDP synajiseut the DA modulation.
The STDP synapses are included in the Cortical déwaryer (CNL) chip and its details
are presented in Chapter 9. Linearly approximaisdrete mathematical models of the
STDP synapse circuits are presented in Section Hh8. model could be used to
simulate the approximate behaviour of the CNL cimpsoftware. Some of the DA
Modulated Synapse circuit materials presented is ¢hapter have been accepted for
publication in the proceedings of IEEE Internatioisymposium on Circuits and
Systems (Wijekoon et al., 2011).

5.1 STDP and DA modulated STDP

In some synapses, synaptic weight is changed bijyriieg difference between pre- and
post- synaptic activity. This plays an importanterin synaptic plasticity, which is
believed to be the mechanism for learning and mgnmora biological system. In
general, if the pre-synaptic spike proceeds pastystic spike of the synapse the
synaptic weight is increased (Long-Term Potentigtlol'P), whereas if the pre-synaptic

spike follows the post-synaptic spike the synaptmight is decreased (Long-Term
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Depresion, LTD). The magnitude change in synapgaght depends on the temporal
difference between pre- and post- synaptic firingge curve that provides the amount
of synaptic weight modifications with respect tonfeoral differences of the pre/post
spikes is called the STDP curve. As mentioned iapdér 2 a variety of STDP curves
have been observed experimentally (Abbot et alo020The synapses that obey this
STDP weight modification (STDP synapse) are mostigitatory synapses. The Silicon
area consumed by a synapse is a crucial factdrcaslid limit the size of the network

that can be implemented in the VLSI hardware; hethee STDP curve that can be

implemented with a small number of transistorssiedi

Some special type of synapses are believed to iexibie neocortex, in which
the synaptic modification due to STDP is modulatad the level of extracellular
dopamine concentration. That is, the extracellDlarlevel regulates the LTP and LTD
modification on the synaptic weight (Fellous et &003; Izhikevich, 2007). These
synapses are called dopamine modulated synapsea araiputational model it is

proposed by Izhikevich (2007) is given in next s@tt
5.2 Computational Model of DA Modulated Synapse

The DA modulated circuit is broadly based on thedelgoresented in (Izhikevich,
2007), describing dopamine modulated synapse, wiheré TP and LTD components
of the spike-timing-dependent plasticity (STDP) aredulated by DA present during
the critical window of a few seconds after the psgtaptic spike. According to the
model, the strength of the synapse.evolves as per the following three equations
(Izhikevich, 2007):

¢=-c/r,+ STDRT)O( t }o pos) (5.1
$=cd (5.2)
d=-d/r, + DAY (5.3)

In the above equationsis the synaptic eligibility trace (ET)p(t) is the Dirac-delta
function that provides a step-increase or -decrefse depending on pre- and post-
synaptic neuron firing timedye and tyos; the functionSTDR) describes the spike-
timing-dependent change of the ET (typically, thermge has a positive value when
post-synaptic spike follows a pre-synaptic spikéhimi a small time interval, negative

value when post-synaptic spike precedes the praptynone, and decays to zero for
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larger pre- and post- synaptic spike time diffeem)cd represents the extracellular
concentration of DA,DA(t) is the amount of the DA released due to the ds/of the

dopaminergic neurons. Time constanis= 1 s andry = 0.2 s. Dynamics that are
described by these equations are further explaméidhikevich, 2007). Figure 5.1 and
its caption are taken from the Izhikevich (2007)legplain the dynamics of the model.

This model addresses a solution to the distal réleaedit assignment problem using
DA modulation of STDP; only nearly coincident spi§gipatterns occurring in the time
period before the reward are reinforced by the rdwahereas uncorrelated spikes
occurring before the reward, and correlations whemeward is present, are ignored by
the network. The spike coincidences produce releghanges in the slowly decaying
eligibility traces, and the eligibility traces cooit changes in the synaptic strength,

making the greatest influence when the reward i@ activity) is strong.
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Figure 5.1 (a) The dynamics of each synapse issdebed by synapse strength s and eligibility trace
¢, which are gated by the extracellular DA d. The BDP rule that induce changes to the variable c is
shown in (b). These changes result in modificatioof the synaptic strength, s, only when
extracellular DA is present (d > 0) during the criical window of a few seconds while the eligibility

trace c decays to zero. (c) The magnification of éhregion in (d) marked by *. To reinforce
coincident firings of 2 coupled neurons, deliver aeward (step-increase of variable d) with a
random delay (between 1 and 3 s) each time a postsytic firing occurs within 10 ms after a pre-
synaptic firing (marked by a rectangle in c). Thisrare event increases c greater than any random
firings of the same neurons during the delayed peod. (d) Consistent rewarding of each such event
results in the gradual increase of synaptic strenggt s, which increases the probability of coincident
firings and brings even more reward. The time cours of a typical unreinforced synapse (not shown
here) looks like a random walk near 0. The inset siws the distribution of all synaptic weights in
the network. The reinforced synapse is potentiatetb the maximal allowable value 4 mV (42 out of
50 experiments) whereas the other synapses are rfigure and caption taken from Izhikevich,
2007)
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5.3 STDP Synapse Circuit

The accelerated time STDP Synapse circuit comptlsesSTDP circuit and Synaptic
Current Generator (ISYN) circuit as shown in Figbt8 and Figure 5.3 respectively.
This section presents the circuit operation, sitta results and approximated
mathematical model of the STDP Synapse circuit. SMBP synapse circuit has been
fabricated in two ICs: the STDP/DA Neuron chip @hd CNL chip. However, STDP
circuit in STDP/DA-STDP Neuron chip uses the compaatary circuit topology of the
STDP circuit explained here (as explained in Sachidl). The experimental results of a
STDP Synapse circuit in the STDP/DA Neuron Chipmesented in Chapter 7.
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Figure 5.2 STDP circuit; a) LTD, b) LTP, (c) WSET, (d) WBUF sub-circuits.
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Figure 5.3 Excitatory Synaptic Current Generator (ISYN) circuit
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5.3.10peration of the STDP circuit

The STDP circuit modifies the synaptic weight,according to the STDP rule. The
circuit comprises of 4 sub-circuits namely Long+ihebepression (LTD) circuit, Long-
Term Potentiation (LTP) circuit, Synaptic Weightt Q&SET) circuit, and Synaptic
Weight Buffer (WBUF) circuit. The LTD and LTP ciritiopologies have initially been
proposed by Indiveri (2003) to operate in biologitae scale. However, appropriately
sizing the transistor and capacitors and by slgftthe operating point of some
transistors, the LTD and LTP circuits are desigtedperate in the accelerated time
scale. The weight of the STDP circowstdpis stored in the capacitoryCFirings of
the pre- and post- synaptic neurons induce theggsato the synaptic weight using the
LTD and/or LTP circuits to implement the STDP rule.

The signalVpreis the pre-synaptic firing signal whereas thgostis the post-synaptic
firing signal. The signal/post_baris the inverted post-synaptic firing signal. Once
post-synaptic neuron fires, the gate capacitor a2Ns charged td/dd, the supply
voltage, Vdd, by switching-on the transistor Md3. The gate c#pacis then
continuously discharged with a “leakage” currehtpotigh transistors Md1 and Md2.
The amount discharge from the gate capacitor of Md#proximately proportional to
the time after the last post-synaptic neuron firiige maximum time duration for the
capacitor to discharge to a voltage low enouglotoef the gate voltage of the transistor
Md4 to reach its cut-off region of operation is eglent to the LTD time window’
This is controlled by the voltag¥leakd If a pre-synaptic spike follows the post-
synaptic firing within the LTD time window, the LTBircuit reduces the charge in the
capacitor Cw by switching-on the current path tigtoahe transistors Md4, Md5 and
Md6. The voltagevd limits the maximum current through these transsstdhe LTP
circuit has a complementary topology to the LTxwit. Figure 5.4 shows the effect on
Itp, Itd, Vwstdpandw to twenty pre- and post- synaptic spike pairs\{shim Figure 5.4
(@) - initially, pre-synaptic spike follows the gtesynaptic spike and then the post-

synaptic spike follows the pre-synaptic spike.

The WSET circuit is used to set the weight of ti®B circuit, Vwstdpto the externally
set voltagevwval when a pulse is provided at noderset The WBUF circuit buffers
the synaptic weight and provides it to the ISYNceit (Figure 5.3) that generates the
excitatory post-synaptic current. When the pre-ptinaspike arrives at the synapse, the
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Ms6 of the ISYN is switched-on and the current tigio the transistors Ms5 and Ms6
removes an amount of chargi.swp from the capacitor Csyn. This reduces the voltage
Vsynto generatdepsg The value oqusiap iS removed approximately proportional to
the value of the buffered synaptic weigh.(The Ms4 transistor continuously charges
Vsynto the resting voltage afsyn(Vsynmax TheVwmaxcan be set externally. The
lepsc andVsynvalues for various synaptic weights,are shown in Figure 5.5- this is
obtained by providing continuous pre-synaptic spilé toVpre while slowly varying

w from zero to 2V.

1.8m
time { s )

Figure 5.4 (a) pre and postsynaptic spikes; (b)litp and (c)ltd node voltages of the STDP circuit; (d)
LTP and LTD effects onVwstdpand buffered synaptic weight ().
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Figure 5.5 Responses of ISYN circuit shown in Figer5.3 : The synaptic weightvis varying (as in
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5.3.2Simulation results and the layout of the STDP synage circuit

The STDP synapse circuit is simulated in a stan@a&um CMOS technology and
results are presented in Figure 5.6 to Figure e synaptic weight capacitor (Cw
180 fF) the gate capacitance of the MCw is usedld@yeut of the STDP synapse circuit
used in the Cortical Neural Layer (CNL) chip dissers in Chapter 9 is shown in Figure
5.9.

Figure 5.6 shows the STDP curves generated fronSW@P circuit shown in Figure
5.2. The STDP curves can be adjusted using contltdgesVp, Vd, VIkp andVIkd.
Figure 5.5 (a) and (b) shows the effect on the ntade of weight modificationAw)
whenVd and theVp are varied respectively, whereas Figure 5.6 (d)(bh shows how
LTP and LTD time windows can be varied by varyimg tvoltagesvikd and Vikp
respectively. It should be noted thtw also depends on the valuevofand the plots in
Figure 5.6 and Figure 5.7 are generated whénat its mid value. In a practical circuit,
the device mismatch will also affect these charéttes. By increasing (reducing) the
capacitance of the capacitor Cw the magnitude oagtc modification can be reduced
(increased). Here these values are selected Batthe continuous repetitions of 50-60
pre/post synaptic spike pairs are needed to rdahmiaximum weight of the synapse

(as in biological experiments Morrisons et al., 00 Typically LTP and LTD time
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windows are in the range of 20 ms to 40 ms andé@naccelerated time these are 20
pus to 40 us. Shape of the STDP curve use igeliffeo the standard STDP curve most
commonly used in the theoretical neuroscience. Weweas mentioned in Chapter 2 a
variety of STDP curves have been observed expetatigriAbbot et al., 2000) and as
long as the STDP curve provide a tuneable STDRiglgsrule and the circuit uses a
small number of transistors, it should be a goowictate to use in larger VLSI cortical

networks.
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Figure 5.7 (a) LTD and (b) LTP curves generated fowarious values ofVikd, and VIkp respectively.

The mismatch effect of the circuit has been sinedatsing 1000 Monte Carlo iterations
and Figure 5.8 shows the mean curve and the sthrdsiation of a typical synaptic
weight trace to stimulus of 20 pairs of pre- andtpsynaptic spikes shown in Figure
5.4(a), i.e. synaptic weight response to twenty past- synaptic spike pairs- initially
the pre-synaptic spike follows the post-synaptikespand then the post-synaptic spike
follows the pre-synaptic spike. Here, the mismatsbdels of the AMS 0.35 um
standard CMOS technology are used. It is seen fgure 5.8 that the variability due
to the mismatch is within the operational regiortted STDP circuit. Variability is an

inherent property of a biological system. Hencelpag as the curves follow the STDP
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rule and are within the operating range of the pyinaweight this variability could
possibly be exploited as an advantage in a VLStiarnetwork, analogous to the

variability of the biological synaptic weights.
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Figure 5.8 Mismatch analysis of the STDP curve (apynaptic weight trace showing mean (blue

plot) and the standard deviation(red plot) b) Varidion of signalltp and (c)Itd.
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Figure 5.9 Layout of the (a) STDP Synapse circuitrad (b) STDP circuit

As a capacitor is used to store the synaptic weiglest common problem of this type
of STDP circuit implementation is the continuouakage of the synaptic weight. The
leakage time constant of the synaptic weight isr@agdmately 41 ms (in accelerated
time). This value depends on the value of the weagld average value is taken. As this

circuit operates in ffaster accelerated-time the leakage problem hes tesluced.
5.3.3Mathematical model of the STDP synapse circuit

Approximated mathematical model of the STDP cir@igiven below.

Synaptic weight, w

The weight of the synapse,is evolving as in equation 5.4.

W: _\Zl__v + STDF{A Bre/ post)'d( t= tpraé pos) (54)

Wherer, = 41 ms (an approximated time constant of the lgald weightw due to the
leakage owstdpnode in the circuit shown in Figure 5.2)pre/posttpost- tore-
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STDP curve, STDPx)

As seen in Chapter 5, the STDP curve can be appeigd to a piecewise linear curve

as given in equation 5.5.

AWp When 0<Atpre/post< tIin
AW X (A re/pos In)
( Uorerpost ™ l%\,\,p _t“n)j when t; <At o<t
STDRA Bre/ post) = -A V\ﬁ when 0> A Ere/post ¥n (55)
AW ><(A re/pos! |n)
( d tp - I%wd _tlin)) when _tlin >Atpre/P05t> _t""d
0 o.w

Where, 4w, and4wy can be set to a value between 0 V to 1.2;Vis the start time of
the linear region of the STDP curve, default vati20 pstyp andtyq are time windows
of long-term potentiation and long-term depressiespectively. These can be adjusted

to any value between 1 ps and 70 s € twp,twd)-
Vsyn and Epsc of the ISYN circuit

An intermediate state variabliésynis used to generate the post synaptic curigpdc

The ISYN circuits (Figure 5.3) in the CNL chip theltageVsynmaxs connected to the
supply voltagevdd The voltageVsyndepends on the amount charge and/or discharge
on to the capacitor & The diode connected transistor Ms4 is in satomafi the Vsyn

is below its resting voltagev@d-v). The Ms5 is assumed to be in saturation as the
transistor Ms4 pulls the voltagésynto (Vdd-v) at a higher rate whenevesynvoltage

is reduced. In the practical implementation, Yeynreduction due to a pre-synaptic
spike occurs within 3 ns duration. However in tlgiaion 5.6, the total reduction of
Vsyndue to the pre-synaptic spike is considered amstantaneous reduction at the

arrival time of the pre-synaptic spike. Therefdhtee magnitude of the drain current of

the Ms5 transistor,uks= K,(w-Vv)*At . considered as a rate of reductionMayn

voltage (V/s). Approximated vales of stAtsynandlgpscare given below.

V= K(Vdd= V= V) 2= K{ w V)2 t,5( & t,) | (5.6)
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EPSC —

- max{l, ., K (Vs 25 —VH?}  When pre-neuronfires &/, >V,
0 otherwise

‘ 67

Wherek _ = 1 (ﬂj nC, K= 1 (ﬂj u,C., » Atore Spike duration and it
2 L Ms4 P 2Csyn L Ms5

'syn

p~ ox

IS 3 ns; Kp:%[ﬂj n.C.. ; Gy 20 fF ;Vusogsis the gate to source voltage of the
Ms2

transistor Ms2, which is equal tv/g&Vsyn. The CMOS process parameters, &, L,
andy, are gate oxide capacitance per unit area, thréstutage of transistor, charge-
carrier effective mobility of nMOSFET, and pMOSFEEspectively. From AMS
standard 0.3mm CMOS technology process parametefsy,, Cox, and v; value are
370 cnf/VS, 126 cn/VS, 4.54 fFim?, and V,,=0.5 V respectively. The user can scale
the lgpsc current for a given value of, using externally controllable voltagéop (as
shown in Figure 6.17 in Appendix A). This contrblla voltage could also be used to

limit the maximumlgpsg
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5.4 Dopamine Modulated Synapse Circuit

The DA STDP Synapse Circuit approximately implersethe dynamics of the
dopamine modulated synapse model proposed by Mblke(2007). The DA
Modulated Synapse circuit comprises of three sutuits: the Eligibility-Trace (ET)
circuit, the Synaptic Strength circuit and the S$tiea Current Generator circuit; the
circuit schematics are shown in Figure 5.10 andufeigs.11. The DA modulated
synapses receive DA signal from the common DA Gaper Circuit shown in
Figure 5.12.

5.4.10Operation of the DA Modulated Synapse Circuit

The Eligibility-Trace circuit of the DA ModulatedyBapse generates the ‘eligibility
traces’ (ET) according to the STDP rule where thgilglity potentiates or depresses
depending on the sequence of pre-/post- synapiikingp activity. The Synaptic

Strength circuit ensures strengthening or weakenintpe synapticstrength (synaptic

weight) depending on the eligibility trace and thavard which is signalled by DA. DA
Generator circuit provides the DA signal such tlitat amplitude represents the
rewarding status of the network. Finally, the SyiapCurrent Generator circuit
generates an excitatory post-synaptic current aqpadely proportional to square of

the synaptic strength. Detailed description of eadircircuit is given below.

Elegibility-Trace Circuit

The Eligibility-Trace circuit is shown in Figurel® and it generates potentiating and
depressing parts of the ET separately using twocsghits: Long-Term Eligibility
Potentiation (LTEP) circuit and Long-Term EligilyliDepression (LTED) circuit. The
design of these circuits are similar to the STDRapge circuit proposed in Section 5.3
of this chapter, however complementary topologthef STDP circuit is used here. The
capacitors Cwp and Cwd store the potentiatiéet|) and depression/etd information

of the ET respectively. Firings of the pre- andtpsgnaptic neurons induce changes to
the Vetp and Vetd implementing the STDP rule. If the DA is presdahigse synaptic

changes will result in modification of the synamteength S, (produced in the Synaptic
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Strength circuit) during the critical window of aw milliseconds (equivalent to a few
seconds in biological time) before tWetpandVetddecay to zero.

Vdd
Vdd

M8p Vikd

vdd =" wid
vetp Vdd
Cwp Vikwp
M7p }—C' ﬁ Vo Vdd
Cltd

— y

Vp
o wmep

> ETp Vpost Itd ‘
D—{ M3d
vdd Vpost Vpre_bar

j D_{ M5p 1 D_‘

‘ M4 vd
| o P || Med
M2p Cltp = Vikwd
I cud T M7d |
p— Wi

) (a) (b) l

Figure 5.10 Eligibility-Trace circuit: (a). LTEP circuit; (b). LTED circuit

The signaVpre_baris the inverted pre-synaptic firing sign&lpfre) where as the signal
Vpost is the post-synaptic firing signal. Once the gyeaptic neuron fires, the
capacitor Cltp is charged ¥dd by switching-on the transistor M3p. The capacisor
then continuously discharged with a “leakage” cotréhrough transistors M1lp and
M2p. The amount of charge removed from Cltp is apipnately proportional to the
time after the last pre-synaptic neuron firing. Tim@ximum time duration for the
capacitor to discharge to a voltage low enouglotoef the gate voltage of the transistor
M4p to reach its cut-off region of operation is eglent to the LTP time window’
This is controlled by the voltagékp. If a post-synaptic spike follows the pre-synaptic
firing within the LTP time window, the LTEP circuincreases the charge in the
capacitor Cwp by switching-on the current path dgto the transistors M6p, M5p and
M4p. The voltage/p limits the maximum current through these transsstdheVetp
decays tovdd through M7p-M8p. The speed of decay is controllsdthe voltage
Vikwp.

The LTED circuit has a complementary topology lte LTEP circuit. Both outputs
signals of the ET circuitcTp andETd, are provided to the Synaptic Strength circuit to
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produce the synaptic strength change. When theyraptic neuron fires, the synaptic
strength,S, regulates the amount of post-synaptic cur(@®8C)injected to the post-

synaptic membrane.
Synaptic Strength Circuit

The Synaptic Strength circuit is shown in Figurell5. and it receives the
eligibility-trace signals th&Tp andETd from the ET circuit, and the DA pulse signal,
Vda, and its inverted signal/da_bar,from the DA Generator circuit. The circuit parts
for the synaptic strength potentiation and depoessshown in Figure 5.11 (a), are
complementary. When considering the potentiation phthe circuit, during the time
Vda baris at logic low, the potential divider (transistdvklp, M3p-M4p) creates a
potential atVspproportional to thé/etpvoltage. The pulse width of théda_barsignal

is proportional to the amount of DA. Hence, the himge and the width of the signal
Vsp of the Synaptic Strength circuit carries tMetp and DA level information
respectively. The M6p transistor can operate eittiéhe sub-threshold or in the linear
range depending on the externally controlled vei&gmp If the transistor M6p (M6d)
is biased to operate in the sub-threshold regioa,charge through the M6p and M7p
(M6d and M7d) is proportional to the product of A level and the exponential of the
eligibility traces, Vetp (Vetd. Hence in this case, the net charge increasehat t

capacitor, Cs is proportional to the product of Erfelevel and &°PVet,

If the transistor is biased to operate in the linemion, then the charge through the
M6p and M7p transistors (charging the capacitor i€groportional to the product of
the DA level and th&etdvoltage. The depression circuit M1d-M7d workshe same
way to discharge the capacitor MCs. Hence the hatge increase at the capacitor,
MCs which stores the synaptic strength, is propodi to the product of the DA-level
and theVetp-Vetdvoltage difference.

Once the pre-synaptic neuron fires, the synaptipuiucircuit creates a post-synaptic
current PSQ as a function of the synaptic strengt,The externally controlle¥bp

voltage limits the PSC current flow to the membrahthe post-synaptic neuron.
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Strength potentiation circuit
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Figure 5.11 (a) Synaptic Strength circuit, (b) Syngtic Current Generator circuit.

DA Generator Circuit

The DA Generator circuit is shown in Figure 5.121 @nprovides the DA pulse signal
(Vda) to the DA Modulated Synapses circuit in orderufmdate the strengths of the
synapses. The level of extracellular DA (whichepresented by the voltay&edg is
increased by a burst of spikes provided at the gatee M1 transistor. This burst of
spikes is assumed to be provided from a burstimgameoutput as a consequence of the
reward prediction clue or reward-triggering actiéifter the burst, the DA level decays
towardsvVddthrough the transistor M3. The time constant ofdbeay can be controlled
using the voltag&/lkda The DA level is buffered to the nodédab using the source
follower (M4 and M5) and is provided to the transsion gate TR1. The transmission
gate is switched periodically using an externatiptcolled clock signalyda_clk When
the TR1 is ‘ON’ the parasitic capacitance at thdelddatis charged to the voltage at
node Vdah and the transistors M9 and the M10 are switch@&F and ‘ON’
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respectively. This creates the rising edge of thfe fise {¥da). Then the parasitic
capacitor is discharged through the transistorsdvi@ M7. The speed, at which this
capacitor is discharged, is controlled by the \g#t®lk. If the VIk is kept at a fixed
voltage, the time taken to discharge the capasitich that the transistors M9 and the
M10 are switched ‘ON’ and ‘OFF’ respectively, ispapximately proportional to the
level of DA (Vedg. Therefore, the pulse width of tMelasignal is proportional to the

DA level. The buffer at the output is used to pdeviaster rise and fall times for the

Vdasignal.
vdd
vdd vad vdd 5"7
Vikp Vda_clk_bar % Vdd
—
Vikda Con 4 M5 g ‘ L
= w3 J . T"G M10 Vda
Vdat Vdat1
Veda Vdab >
eDA ‘ Mo
\
Vda_ctl —
o> K M2 Vo
o] Y
Vda_burst >
_D—{ K M1 J_

1

Figure 5.12 DA Generator Circuit of DA modulated syapses.

5.4.2 Simulation results

The DA Modulated circuit is simulated in a stand@r@5 pm CMOS technology and
results are presented in Figure 5.13 to Figure.5.This synapse is designed and
fabricated such that it can be configured to waskaaDA modulated synapse or as a
STDP synapse without the DA modulation. The FighrE8 shows the layout of the
configurable STDP/DA-STDP Synapse circulit.

Figure 5.13 and Figure 5.14 show the STDP curvaesrg¢ed from the Eligibility Trace
circuit shown in Figure 5.10. The STDP curves baradjusted using control voltages
Vp, Vd, VIkp, andVIkd. Figure 5.13 (a) and (b) shows the effect on tlagmiude of
changes to the voltagéetp (4Vetp and theVetd (4Vetd whenVp and theVd is varied
respectively. Figure 5.13 (a) and (b) shows how lafi@ LTD time windows can be
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varied by varying the voltagd4dkp andVIkd respectively. It should be noted th&tetp
and4Vetd also depend on the value \détp and Vetdrespectively; the plots in Figure
5.13 and Figure 5.14 are generated wheV#tpandVetdare at their mid values.
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Figure 5.13 STDP curves generated using the ET cuit; Plots show the changes to th¥etpand
Vetdas a function of a time interval between pre- angost-synaptic spike;AVetp curves with

variation of control voltages (a)Vp, and (b) VIkp.

Characteristics of the Synaptic Strength Circuig(Fe 5.11) are shown in Figure 5.15.
The amount of change in strengih is plotted as a function dfetp'Vetd value and
Vdappulse width for a single update of strength. Tiegdiency of update can be set by

changing the DA clock frequency (using tda_clR. Further, the amount of increase
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or decrease 1S per single update, for variolgetp and Vetd values can be changed
independently by tuningysmpandVsmdvalues respectively. The amount of change in
S also depends on the actual valuespthe plots are shown for a mid-value$f 1V.
The Figure 5.15 shows that the change in synaptngth is dependent both on the
eligibility trace value and DA level, similar todlproduct in Equation 5.2.
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Figure 5.14 STDP curves generated using ET cirduiPlots show the changes to theetpand Vetd
as a function of a time interval between pre- and @st-synaptic spike;4Vetd curves with variation of

control voltages (c)vd and (d) VIkd.
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Figure 5.15 Changes in synaptic strength S for dérent (a) Vetdand VVda pulse widths, (b)Vetp

and Vda pulse widths.

Figure 5.16 shows the waveforms of the responsegdaf synaptic strengthy, the
internal voltages of the Synaptic Strength circUgd Vspto a given sinusoidal inputs
of Vdeg ETp andETd Periodically, high amplitude eligibility poteation input is
provided to the Synaptic Strength circuit than toathe eligibility depression input,
while slowly varying the DA Yedg level provided to the DA Generator circuit. It is
seen that the strength of the synapse is increabed higheVetpvalue and the DA
pulse ¥da) are present. It is seen that the DA pulses anergéed by the DA Generator
circuit when theVedais at a higher value (i.e. where teBA node voltage of the DA

Generator circuit is at a lower value).
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Figure 5.16 Responses of the Synaptic Strength cirit; (a) Top to bottom graphs:Veda Vwp and
Vwd sinusoidal inputs provided to the DA Generator acuit and the Strength circuit; (b) Top to
bottom graphs: Vda pulses, synaptic strengtts and internal voltages of the Synaptic Strength

circuit, Vsdand Vspresponses the sinusoidal inputs given in (a).
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Figure 5.17 Variation of the DA pulse width with respect to the DA level Yeda)generated from the

DA generator circuit shown in Figure 5.12; four graphs correspond to four process corners: Worst
Speed (WS), Worst Power (WP), Worst Zero (WZ) and Wrst One (WO).
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The DA Generator circuit generates Weappulse widths proportional to the DA level.
The variation of th&/dap pulse width with respect to the DA lev&lgdg is shown in

Figure 5.17 for the four worst case process corneosst speed (WS), worst power
(WP), worst zero (WZ) and worst one (WO). Thisiglirates that the DA generator
circuit produces at least O3 pulse width difference for the maximum and minmmu

DA levels.
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Figure 5.18 Changes td&/etp, Vetdand synaptic strengthS when post-synaptic spike {pos) follows

pre-synaptic spike ¥pre) and pre-synaptic spike follows post-synaptic spi

Figure 5.18 shows the effect detp Vetd,and Swhen pre-synaptic spike follows the
post-synaptic spike and the post-synaptic spikiovid the pre-synaptic spike, while
bursting (repeating four spike with higher interditfrequency) spike train of DA pulse

signal is given to the DA Generator circuit to iase the DA level of the synapse.
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Figure 5.19 Layout of the (a) Synaptic Strength ciuit, (b ) STDP circuit, and (c) DA Generator

circuit.

5.5 Discussion and Conclusion

Circuit implementations of a STDP synapse and aabope modulated STDP synapse
are presented in this chapter. The dopamine-magtllaynapse circuit implements a
model similar to the one proposed in IzhikevichQ20) where eligibility traces are used
to provide the dynamics required to facilitate & ning of synaptic strength based on
spike-time-dependent plasticity rule and a distalvard signal. The circuit has

applications in VLSI implementations of biologicaflausible neural networks.

To prove the concept in hardware the STDP/DA Neuwloip and the CNL chip have
been fabricated in a standard 0.35 pum CMOS teclggolbhe STDP/DA Neuron chip
contains 28 STDP and DA modulated STDP synapsdsaMA generator circuit, and
two cortical neuron circuits. The size of the sys®pell layout is 26 um x 50 um and
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these synapses can be configured to work as DA latedlusynapse or as a STDP
synapse without the DA modulation. The experimenggllts obtained from the chip
are given in Chapter 8. The configurable synapsmiititypically consumes between 2
MW and 5 uW power atpre andVpostsynaptic spike rates of 200 kHz (i.e high neural
activity level), but it could be as high as 40 pdépending on the synapse state,
parameters and spike rates. The DA Generator tirethich is shared by many

synapses, consumes up to 600 uW of power (wors).cas
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Figure 5.20 Leakage of the synaptic weight of theT®P circuit: in Spice circuit simulation (red

curve) and 41s time constant decay plot (blue curye

As a capacitor is used to store the synaptic weigbst common problem of the STDP
circuit implementation is the continuing leakagetioé synaptic weight. However, in
DA modulation synapse this effect is used to araathge as the eligibility leakage is a
requirement (as per in Equation 5.1). In the STDBMRapses, this influences the
dynamics of longer time simulations, however, asdincuits operate in £daster time
scale this effect is less detrimental than in lgalal real time VLSI synapse
implementations (Indiveri, 2003). The leakage @& #ynaptic weight is equivalent to
approximately 40 seconds time constant in bioldgtcae. Figure 5.20 shows the

weight change due to leakage of the capacitor mvatgnt biological time scale.
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Although this value depends on the value of thegimeihighest weight leakage value,
corresponding to highest synaptic weight, is tak@nthe purpose of arriving at the
highest leakage. The leakage effect can be mindrigeproviding a regular artificial

spike pair (pre- and post- synaptic spikes) to cemspte the leakage.

It is seen that the circuit variability due to tiiésmatch is within the operational region.
All the curves obtained from the Monte Carlo sintiola follow the STDP rule and are
within the operating range of the synaptic weightis variability could possibly be

exploited as an inherent property of a VLSI cottieatwork that is analogous to the

variability of the synaptic weights in biologicglstems.
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CHAPTER 6 : SHORT-TERM DYNAMIC SYNAPSE
CIRCUITS

The chapter propose inhibitory and excitatory sgeagircuits that have either
facilitating or depressing short-term synaptic dyies. In arriving at these synapse
circuits, the basic properties of short-term dyreamif the computational neural model
by Abbott et al. (1997) is used as a guide to arav a phenomenological model that
implements compact VLSI circuit with suitable plesy rules. Hence, the initial
section introduces the computational neural mogefbbott et al. (1997). Simplified
mathematical formulation of facilitating or depregs dynamics used in the synapse
circuit models are given in Section 6.2, whichhe approximated dynamics used for
implementing short-term dynamics of the proposethpge circuits.

These synapse circuits have been implemented itaadad 0.35 pm CMOS
technology. The circuit operation and the simulati@sults of these circuits are
presented in this chapter. In practical implemeoat these short-term dynamic
plasticity rules can be switched off or switched, @y biasing using appropriate

voltages, as discussed in the circuit operationi@e6.3.

The neurons that excite other neurons are calledagary neurons, and these neurons
are equipped with excitatory synapses. Similarlye tinhibitory neurons inhibit
connected neurons using inhibitory synapses. Hgawhibitory and excitatory neurons
in a network can provide stable network activitifhe synaptic facilitation and
depression of synapses in a network provide a dyngain-control mechanism. A
single neuron in the cortex receives approximat®y000 synaptic inputs, where each
input could have a wide variety of different spiiedes ranging from less than 1 Hz to
more than 200 Hz (Abbott et al., 1997). Hence, ittfermation carried by a slowly
firing input synapse may be ignored by random tlatibns in the activity of a synapse
firing at high rates. This is avoided by having ekgsing synapses that effectively
decrease the gain of high-rate firing as compargd slowly firing inputs (Abbott et
al., 1997). Further, the continuously firing faétaeiling synapse on a network could
become dominant over the other rest of the inputhé neuron (e.g. continuous spike
train to an inhibitory facilitating synapse coul@ kilence the activities of the post-
synaptic neuron). Though these dynamics are impopioperties to have in a cortical
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network, none of the network implementations disedsin Chapter 3 includes the
depressing and facilitating synapses.

In addition to the other circuits, the four typdssgnapses presented in this Chapter are
used in the fabricated CNL IC presented in ChapteFfhe operations of these four
types of synapses are similar and the mathematiodel of one of the VLSI short-term
synapse circuit is presented in Appendix A.

6.1 The Abbott Model of the Short-Term Synaptic Plastiity

In the Abbott et al. (1997) model, the product lbé tmaximum conductanceg_s(),

fraction of open post-synaptic channd®s)(and fraction of pre-synaptic sites that are
releasing a neurotransmittelP.{) is used to obtain the synaptic conductigg @s

shown in equation 6.1. The factBy, incorporates the facilitating or depressing effect
on the short-term dynamics. The facilitating symagsn be modelled as the pre-

synaptic process that alters tAg shown in equation 6.2. THge controls the degree of

the facilitation (0< fg < 1). Similarly, depression is modelled as showednation 6.3

and thefp controls the degree of depressions(€ < 1). TheP, decays exponentially

with a time constants, aiming at the ‘resting’ leve?,.

7 9.PE | (6.1)
P, forfacilitatingsynapse

% - POT-—PPre'* fe(1-Pe)o(t-t,.) (6.2)
P. for depressingsynapse

% :F%T-—Ppre" fo(1-Pg)o(t-t,) (6.3)

Wheretye is the arrival time of the pre-synaptic spiki}) is the Dirac-delta function;
fe and fp controls the degree of facilitation and depressfosith 0 <fg, fp < 1)
respectively.

Other important computational models of short-telynamics include Thomson et al.
(2007) that uses a similar approach as of Abbait.€1997), and Tsodyks et al. (2000).
The Tsodyks et al. (2000) proposed detail mathemlathodel that model the interplay
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between recovered, active, and inactive statesymditic resources to closely fit the
experimental data of synaptic plasticity and depogs However, the model proposed
in Abbott et al. (1997) is a very descriptive simglet of mathematical equations that
can be used abstract the qualititative behaviouthef depression and facilitation

dynamics to design a silicon area efficient synajpseiits.

6.2 A Simplified Model of Short-Term Dynamics

Abbortt et al. (1997) short-term dynamic synapseadehdfacilitating and depressing
dynamics) has been simplified to provide a modat th implemented in hardware. In
order to understand the circuits and their mathmalaformulations better, these
generic facilitation and depression parameters ugedhe circuit description are
elaborated here. The pictorial representationshe$d parameters are given in Figure
6.1. In the circuit implementations, the synaptight change are considered instead of

referring to the synaptic conductance as in thee aafs Abbott's model (It is the

parameter that regulates the post-synaptic cumgedtion). Hence,g. and g.P.P_are

ral

resting weight \rq or wr) and the instantaneous weightv)(of the synapse,

respectively. The amount of spike-induced facilitiat (g_SPSfF(l- P.)o(t-t,.)) or

pre)
depression g:PSfD(l- Pa)O(t-1,.)) is qualititatively modelled with the weight

dependentAwf (degree of facilitation) andwd (degree of depression) respectively.

Here, thePs of the Abbott's model that generates the shapedhef post-synaptic

conduction is not considered as the post-synapticent injection is implemented

simply as a short current spike of a few nanosesafdluration and the location of the
synapse on the dendritic tree is not modelled (lwewesome morphological effect of
the dendritic trees are considered in designingngaon circuit presented in Chapter
4). Furthermore, rather than decaying the weighhe resting weight exponentially, a
linearly decaying is used. The dynamic gain-contméchanism implemented on
hardware consider only the facilitating and depreseffects in the similar range of
magnitude and time as that of the computational ehoand although they may be
important, the finer details are not modelled tduee the transistor count of the
implemented circuit. The generic discrete matherahtequations of facilitating and

depressing dynamics are given in equations 6.%6antkspectively.

Weight (w) of the facilitating synaps&f evolves as follows,
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min {W(t) + AW, , W, max} if pre-neuron fires

w, (t+At) = (6.4)

max{w(t)—AWer ,er} otherwise
Where, At is the time stepwrf is the resting weight of the facilitating synapgevf is
the degree of facilitation, afva f the step decay, providing recovery towards the

resting weightwrf; these can be set externallyfmaxis the maximum value of the

facilitated weight.

Weight (v) of the depressing synapse] evolves as given below,

: : (6.5)
min {w(t) + Aw,,, wr,} otherwise

W, (t+ At) = {max{w(t)—AWd Wi} if pre-neuron fires ‘
Where, wrd is the resting weight of the depressing synagsedis the degree of
depression, andwad the step decay, aiming the resting weigirg; these can be set

externally.wdminis the minimum value of the depressed weight.

pre-synaptic spike train

(c)

****************************************************************************** wrd, resting weight of the synapse

Awd

degree of depression
tan ad, degree of recovery of the depression

(b)

tan af, degree of recovery of the facilitation
degree of facilitation

777777777777777777777777777777777777777777777777777777777777777777777777777777 wif, resting weight of the synapse

Figure 6.1 (a) Facilitation, (b) Depression dynami of the synapse to the pre-synaptic spike train

shown in (c).
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6.3 Synapse Circuits and Their Operations

This section provides circuits of the proposed Eatory Depressing Synapse (EDS)
circuit, Inhibitory Facilitating Synapse (IFS) aiit, Inhibitory Depressing Synapse
(IDS) circuit, and Excitatory Facilitating Synapd&e-S) circuits and their operation. In
obtaining a different combination of excitatory arhibitory, and facilitation or

depression dynamics, same basic circuits and ¢beiplementary circuits are used with
different source follower circuits. Therefore, tB®S circuit is presented in detail and

other synapse circuits and their implementatioessammarised.

Approximate mathematical equations of the EDS dire given in Appendix A.

6.3.1Excitatory Depressing Synapse (EDS) — Circuit

The EDS circuit is shown in Figure 6.2. The circoimprises of Excitatory Weight
Depressing circuit and Excitatory Synaptic Cur@ehnerator circuit as shown in Figure
6.2 (a) and (b) respectively.

Vdd

Vdd Ved
Pre_bar
Vap EIA ; D—{ M4 VLSp
D—{

w=Vvdd-Vw

Vdd
] T Cw | Vib:p>_{ j;l

| M6 s1
M2 :] }7 ‘ - = w
Va
Vwrp_buf Vw
. >—1|  Ms2
Pre :’
M3 M7 — Ms3

Vdd
<:H—+
3
S

/&T
Voffsp1
Vbiasp Vwrp Iepsc
—

(a) (b)

Figure 6.2 Excitatory Depressing Synapse circuifla) Excitatory Weight Depressing circuit, (b)
Excitatory Synaptic Current Generator (EX-ISYN) cir cuit.
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6.3.1.10peration of the EDS circuit

The circuit in Figure 6.2 (a) mimics the short-tedepression dynamics of a synapse
and produces depressing synaptic weight to the &Nl circuit to generate the
synaptic current, when a pre-synaptic spiRee) arrives. The depressing weight of the
synapsew (i.e. wd in equation 6.5)s represented by the voltage at the n¥dewith
reference tovdd It can have a value between the resting weighhefsynapsen({d),
and the zero voltagevfimin) depending on the short-term neural activity & fire-
synaptic neuron. Th¥w follows the voltage across the capacitor Cw withodf-set
(Voffsp3 as the source follower circuit (transistors M8JMfuffers the voltage across

the capacitor on the nodéw.

The pre-synaptic spike is signalled by a short @ua thePre input signal, and its
inverted signal i®re-bar. Once the pre-synaptic neuron fires, finite charggis added

to the capacitor Cw through the transistors M4 Eitd Consequently, the weight is
depressed. The externally controllable gate voltagevp controls the amount ofq
charge added to the capacitor (i.e. the degreepfedsing of the synapse). Depending
on the chosen operating range/dfwp, the amount of charge added can also depend on
the weight of the synapse (when the transistor 8/ ithe linear region). The current
mirror circuit (transistors M1, M2 and M6) contirugly discharges the capacitor
towards the voltag&wrp_buf The source follower circuit (transistors M3 and)M
buffers the voltag&wrp onto theVwrp_bufnode. So tha¥Vwrp_buf= Vwrpt+Voffspl.
Hence, the resting weightv(d) can be set by the externally controlled bias agst
Vwrp (as thewrd =Vdd- wrp - Voffspl- VoffspR Due to the source follower circuit,
the externally provided voltage noderd draws negligible current. Therefore, the
synapses that have the same resting weight caadiy erovided to with a common
reference voltage. The rate of discharge towardsvtto resting weight (i.e. the degree
of recovery of the depressing synapse) is contidiiethe gate voltage of transistor M1,
Vap. By biasing the voltag&¥Awp to the supply voltag®&dd the depressing synaptic
dynamics can be switched off completely, and theapge can be use as a simple

weight dependent excitatory synapse.

When the pre-synaptic spike arrives at the gateaokistor Ms3 of the EX-ISYN circuit
shown in Figure 6.2 (b), the circuit generates xitatory post-synaptic currenizfsd

approximately proportional to the square of theagjitc weight. Thegpsccurrent for a
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given value ofw, can be scaled using externally controllable \gatdbp as shown in
Figure 6.17 in Appendix A. Th¥bp could also be used to limit the maximugasc

depending on the operational region of the Ms1sistar (higher tuning values dbp

as seen in Figure 6.17(a) in Appendix A).

In summary, to configure the short-term dynamicshef excitatory depressing synapse
VAwp (controls the degree of depressing of the synapsey (sets the resting weight
of the synapse)yap (controls the degree of recovery of the depressimapse) and
Vbp (scale the value of thepscor set the maximum cut-off value fapsg can be set

externally. The/biaspandVLSpare used to bias the source follower circuits.
6.3.2Inhibitory Facilitating Synapse (IFS) — Circuit

The IFS circuit comprises of Inhibitory Weight Haeiing circuit and Inhibitory
Synaptic Current Generator (IN-ISYN) circuit as wioin Figure 6.3 (a) and (b)

respectively.

Vdd

vdd vdd vdd
Pre_Bar j
- o, el
——{[_ws [ wo

vawp = N vorsn | v
D—{ M5 . —

CVw M9 [: M11 iipso
w = Vw
[: VLSn
:] | VLSn
M2 }— | Mé

1 Pre Vmen.
- o[ st
Vw
M3 M7 = Ms2
§ }7 ! Va

T w = Ms3
Vbiasp Vwrp
—

@@ (b)

Figure 6.3 Inhibitory Facilitating Synapse circuit; (a) Inhibitory Weight Facilitating, (b) Inhibitory
Synaptic Current Generator (IN-ISYN) circuit.
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6.3.2.10peration of the IFS circuit

The circuit in the Figure 6.3 (a) is designed byliad two n-type source follower
circuits as an output level-shifter to the outputhe Figure 6.2 (a) instead of the p-type
output source follower circuit (the dotted box iiguire 6.3(a); the circuit description is
given in Section 6.3.1.1). However, thfgv output of the IF circuit is treated as a non-
inverted synaptic weight (referenced to zero vajagther than inverted (referenced to
Vddvoltage as in the EDS circuit). Consequently, deping dynamics of Figure 6.2 (a)
in the EDS circuit become facilitating dynamics.eTtwo NMOS source follower
circuits (M8-M9 and M10-M11) are used to shift thetput voltageVw, to a lower
voltage range to generate the required inhibitanyent value. The shifted voltage is
then given to the gate of transistor Ms2 of thel8NN circuit to generate inhibitory

post-synaptic current.

When the pre-synaptic spike arrives at the gateaokistor Ms1 of the IN-ISYN circuit
shown in Figure 6.3 (b), the circuit generates mhibitory post-synaptic current
approximately proportional to the square of theapyit weightw. The external control
biasing voltage/bncan be used to scale the inhibitory post-synapticent or to limit
the maximum current value of the inhibitory postaptic current.

In summary,VAwp (controls the degree of facilitating of the syngpsevrp (sets the
resting weight of the synaps&jap (controls the degree of recovery of the facilitgti
synapse) anbn (scale the value of thigsc or sets maximum cut-off value fopsc

can be set externally. ThébiaspandVLSnare used to bias the source follower circuits.
6.3.3Inhibitory Depressing Synapse (IDS) — Circuit

The IDS circuit is shown in Figure 6.4, it compsasef Inhibitory Weight Depressing
circuit and Inhibitory Synaptic Current Generatid-(SYN) circuit as shown in Figure

6.4 (a) and (b) respectively.
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Figure 6.4 Inhibitory Depressing Synapse circuit; &) Inhibitory Weight Depressing, (b) Inhibitory
Synaptic Current Generator (IN-ISYN).

6.3.3.10peration of the IDS circuit

The circuit shown in Figure 6.4 is the complementarcuit of the EDS circuit. Hence
the circuit shown in Figure 6.4 (a) mimics the apgmated synaptic weight dynamics
of a short-term depressing synapse, functionallyesas the circuit shown in Figure 6.2
(a) of the EDS circuit. However, as these two dtecare complementary, the circuit
shown in Figure 6.4 (a) produces a non-invertecpgiio weight output in contrast to an
inverted in circuit in Figure 6.2 (a). This non-ared output from ID circuit is provided
to the IN-ISYN circuit to generate an inhibitory gtesynaptic current. Usage of
complementary circuit to generate a non-invertagaptic weight minimises the power
and the number of transistors used in the inhipittepressing synapse than using the

circuit shown in Figure 6.2 (a) with an analoguesirter circuit.
The IN-ISYN circuits operation is given in IFS Seat6.3.2.1

Similar to EDS circuit the short-term dynamics loé inhibitory depressing synapse are
configured using control voltagegdwn (controls the degree of depressing of the
synapse)Van (controls the degree of recovery of the depressimapse)Vwrn (sets
the resting weight of the synapse), avoin (scales the value of thgsc or set the
maximum cut-off value forpsg) can be set externally. Thébiasnis a fixed biasing
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voltage used for the source follower (M3 and Mhsiator) circuit. Th&/LSnis used to
bias the source follower (M8 and M9 transistorgait.

6.3.3.2Additional IDS circuit implementation — Somatic IDS

In the circuit implementation discussed in Chaperadditional IDS circuit called
“somatic IDS” has been implemented as shown in feigu5. This synapse circuit is
used to provide a high depressed weight to the d@asevoltage value that sets the
resting weight of the synapse and consequentlyhigber inhibitory post-synaptic
current. This can be considered to model an indmpitiepressing synapse that connects
directly to cell body (soma) since such synapseslyme higher inhibition to the same
input spike train than distal inhibitory depressisgnapses. In using this circuit
arrangement, the same tuning parameters (inclutimdpias voltage that set the resting
weight value) used for IDS circuit described aboae be used, so that the there is no

requirement for extra external bias voltages.

Vbiasn wm

Voffsn, Vdd
Gt T

Ms1

E§ E%

we b
VAawn

Ms2

Ms3

-
P i N A M
—H
R

(@) (b)

Figure 6.5 Somatic Inhibitory Depressing Synapse @uit; (a) Somatic Inhibitory Weight
Depressing, (b) Inhibitory Synaptic Current Generabr (IN-ISYN).

The Somatic IDS circuit is same as the circuit stamw Figure 6.4 (a) without output
source follower circuit (M8-M9). As there is no &hshifting to reduce the weight of
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the synapsey, Somatic-IDS has higher weight and hence provigls inhibitory post-
synaptic current when a pre-synaptic spike fiream&tic IDS equations for synaptic
weights and inhibitory post-synaptic current equadiare the same as the equations for
IDS except that th&/offsn2is not subtracted fromvrd and Vw (wd) as in the IDS
equations.

6.3.4Excitatory Facilitating Synapse (EFS) — Circuit

The EFS circuit comprises of Excitatory Weight Ftating circuit and Excitatory
Synaptic Current Generator (EX-ISYN) circuit as whoin Figure 6.6 (a) and (b)
respectively.

|
|
vdd
| | Vbp D§_{ j
| VLSP E w=vdd-Vw Mot
| L ! | Voffsp Voffsp VW Vw ]
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Van VAwn _I_ | | Me L M0 j
| D—{ [: M1 D—{ . M5 Cw Pre
| Pre L | - = D—{ s?
| 1 M4 | TU
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Figure 6.6 Excitatory Facilitating Synapse circuit;(a) Excitatory Weight Facilitating circuit, (b)
Excitatory Synaptic Current Generator (EX-ISYN) cir cuit.

6.3.4.10peration of the EFS circuit

The circuit shown in Figure 6.6 (a) essentially theeme as the circuit shown in
Figure 6.4 (a) circuit, however it uses two pMOSH®BTrce follower circuits (M8-M11
and M10-M11) as an output level-shifter insteadha¥ing single nMOSFET source
follower.

Similar to IDS circuit the short-term dynamics betEFS are configured using control
voltages:VAwn (controls the degree of facilitation of the sys&pVan (controls the

degree of recovery of the synapséyyrn (sets the resting weight of the synapse), and
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Vbp (scale the value of thgpscor set the maximum cut-off value fapsg can be set
externally. The/biasnandVLSpare used to bias the source follower circuits.
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6.4 Simulation Results of the Synapse Circuits

This section provides simulation results of thepmsed Excitatory Depressing Synapse
(EDS) circuit, Inhibitory Facilitating Synapse (IF&ircuit, Inhibitory Depressing
Synapse (IDS) circuit, and Excitatory Facilitatirf®ynapse (EFS) circuits. These
synapses are simulated in standard Qr83CMOS technology.

6.4.1Excitatory Depressing Synapse - Simulation Results

The simulation results of Excitatory Weight Depregscircuit are given in Figure 6.7
and 6.8.

In order to demonstrate the weight depressionb#i@viour of the circuit for different
values of the main tuning parameters that confighee short-term dynamics of the
excitatory depressing synapse, is simulatad.input pre-synaptic spike$’(e) signal

consisting of a 4 ms burst of spikes at 10 kHz, faiéowed by no spike activity is used.

Figure 6.7 (a) shows the variation \6iv (depressed weightd = Vdd - VW for seven
values ofVAwp starting from 2.3 V (higher degree of depresstor} V (low degree of
depression). It is observed from the seven grémdisthe variable degree of depression
can be obtained by controlling the voltagdAwp appropriately. The mid range of the
parameter are plotted here however, it is alsoiplessonfigure the circuit to fully
depress for a single pre-synaptic spike if lowédwp value is used. Similarly, Figure
6.7 (b) shows the variation ofw for different values olVap starting from 2.74 to
2.78 V. It is observed that higher to lower lindagree of recovery can be obtained by
controlling the narrow range of voltagép appropriately. Figure 6.7 (c) shows the
variation of Vw for six mid range values &fwrp starting from 1.6 V (corresponds to
lower resting weight) to 0.6 V (corresponds to leighesting weight). Hence, it is
observed from the graphs that higher to lower mgstveight can be obtained by

controlling the voltag&rwp appropriately.

The circuit has been simulated to observe the wealgipression of the EDS circuit
resulting from different pre-synaptic input freqaers. TheVw for pre-synaptic input

spike trains with different inter-spike interval§|) starting from 10 ps to 300 ps are
shown in Figure 6.8. It is seen that the lower(I®. high frequency pre-synaptic input)

produces higher and quicker depression than thHeshil.
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Figure 6.7 Simulated EDS circuit dynamics; Variation of Vw to a different values of control
voltages a) degree of depressiovdwp (labelled as VXD), b) degree of recoveryap (labelled as
TDecP), and c) resting weight of the synap3éwrp (labelled as WXD) the pre-synaptic input is a 4
ms burst of 10 kHz spikes followed by a silent pesd; instantaneous synaptic weight isvd=Vdd-Vw,
Vdd=3.3 V.

Figure 6.8 The response\(w) of EDS circuit to 4 ms pre-synaptic input spike itain with different

inter-spike intervals (period) followed by a 4 ms bsilent period.

102



6.4.2Inhibitory Facilitating Synapse - Simulation Resuls

The simulation results of the Inhibitory Weight Higating circuit are shown in Figure
6.9 t0 6.10.

Similar to EDS circuit, in order to demonstrate #ftect on the faciliting weightw),
different values of the main tuning parameters toafigure the short-term dynamics of
the IFSVAwp (controls the degree of facilitationyap (controls degree of recovery),
andVVwrp (sets the resting weight of the synapse) are sitedl An input pre-synaptic
spikes Pre) signal consisting of a 4 ms burst of spikes aki@ rate, followed by no

spike activity is used.

Figure 6.9 (a) shows the variation\éiv (w) for eight values o¥Awp starting from 2.3
V (lower degree of facilitation) to 3 V (higher deg of facilitation). It is also possible
configure the circuit to fully facilitate from a aple of pre-synaptic spikes if a higher
VAwp value is used. Similarly, Figure 6.9 (b) shows Waeation ofVw for different
values ofVap starting from 2.74 V (higher degree of recoveoy2t77 V (low degree of
recovery). Figure 6.9 (c) shows the variationvef for six mid range values afwrp
starting from 1.6 V (corresponds to higher restmgight) to 0.6 V (corresponds to
lower resting weight).

The circuit has been simulated to observe theifaidn effect of the IFS circuit to
different pre-synaptic input frequencies. TW& for pre-synaptic input spike trains with
different inter-spike intervals (ISI) starting froff® pus to 300 ps are shown in Figure
6.10 It is seen that the lower ISI (high frequempcg-synaptic input) produces higher
and quicker depression than for the higher ISI.
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Figure 6.9 IFS dynamics; Variation of weight of thesynapse Yw) to a different values of control
voltages a) degree of facilitatiofVAwp) (labelled as VXD) , b) degree of recoverMap) (labelled as
TDecP), and c) resting weight\{wrp) (labelled as WXD) when a pre-synaptic input of 4ns of 10

kHz spikes followed by a silent period is provided.

time {5 )

Figure 6.10 Response¥w of IFS circuit to 4 ms pre-synaptic input spike tran with different inter-

spike intervals (period) followed by a 4 ms of silent period.
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6.4.3Inhibitory Depressing Synapse - Simulation Results

The IDS circuit has been simulated and the simudatesults are shown in Figure 6.11
to 6.13.

The effect on the depressed weighfor different values of the main tuning parameters
that configure the short-term dynamics of the iitbily depressing synapse are
simulated and the results are shown in Figure 6.11.

Figure 6.11 (a) shows the variation of synaptioghie(Vw) for six values of mid-range
VAwn voltages starting from 1 V (corresponds to higlegree of depression) to 0.53 V
(corresponds to low degree of depression).

It is observed from the six graphs that highetower degree of depression can be
obtained by controlling the voltagéAwn appropriately. However, it is also possible
configure the circuit to fully depress for a singlee-synaptic spikes if higharAwn
value is used. Figure 6.11 (b) shows the variatiosynaptic weight for different values
of Van starting from 0.415 V (corresponds to low degrdéerezovery) to 0.44 V
(corresponds to high degree of recovery). FigutEl §c) shows the variation of
synaptic weight for five mid range values\éiirn starting from 2.1 V (corresponds to

lower resting weight) to 3.2 V (corresponds to leigtesting weight).

Figure 6.12 shows IDS’s inhibition with depresseifect on the neural activity of a
neuron when the IDS synaptic current plus a 0.1 goAtinuous synaptic current
stimulus are given to a post-synaptic neuron wigctonfigured to RS type. The pre-
synaptic input to the IDS is a repetition of thiensilus that has a 10 kHz spike train for
4 ms followed by a silent period of 4 ms. It isdhat the effect of continuous input
spike train on the inhibitory depressing synapselccthecome less significant on the
post-synaptic activities thereby other synapticuinpources responses are not silence
due to the continues spiking activity of the intolby depressing synapse (In a network,
this leads to dynamic gain-control mechanism depgndn the input pattern of the
synapses).

The circuit has been simulated to observe the wealghression of the IDS circuit to
different pre-synaptic input frequencies. The depireg synaptic weight change for pre-

synaptic input spike trains with different interisp intervals (I1SI) starting from 10 ps
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to 300 ps are shown in Figure 6.13. It is seen ttatower ISI (high frequency pre-
synaptic input) produces higher and quicker depragban for the higher ISI.

a).3e

1.10 { i WA 4 A

90@m L

Figure 6.11 IDS dynamics; Variation of synaptic stength,w (Vw) to a different values of a) degree
of depressioncontrol voltage, VAwn (labelled as VID) b) degree of recovery control védge,Van
(labelled as TDecN), and cYwrn (labelled as VWdep) resting voltage control voltaggwhen a pre-

synaptic input of 4 ms of 10 kHz spike train folloved by a 4 ms of silent period is provided.
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Figure 6.12 IDS synapse inhibiting RS neural actity; a) Synaptic weight,w generated to a pre-
synaptic input of a repetition of the stimulus thathas a 10 kHz spike train for 4 ms followed by a
silent period of 4 ms, b). Neuron’s RS spike actity has depressing inhibition effect due to
depressing synapse, the neuron is configured to R®d an extra stimulus of 0.1 pA of constant pre-

synaptic current is given.

Figure 6.13 Distal-IDS’sw responses to 4 ms pre-synaptic input spike train #h different inter-

spike intervals (period) followed by a 4 ms of silent period.

6.4.4Excitatory Facilitating Synapse - Simulation Resul

EFS circuits simulation results are shown in Fighie! to 6.16.

The effects on the facilitating weighty (Vdd-Vw) for different values of the main
tuning parameters that configure the short-termadyins of the excitatory facilitating

synapse are simulated and the results are shofriguine 6.17.

Figure 6.14 (a) shows the variation \év for six values of mid-rang¥Awn voltages

starting from 1 V (corresponds to higher degreéaoilitation) to 0.5 V (corresponds to
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low degree of facilitation). However, it is alsogsible configure the circuit to fully
facilitate from a single pre-synaptic spikes ifliegVAwn value is used. Figure 6.14 (b)
shows the variation dfw for different values o¥an starting from 0.42 V (corresponds
to low degree of recovery) to 0.45 V (correspondshigh degree of recovery).
Figure 6.14 (c) shows the variation W for five mid range values dfwrn starting

from 1.8 V (corresponds to higher resting weigbtBtV (corresponds to lower resting

weight).

Figure 6.15 shows EFS’s excitation with facilitatieffect on the neural activity of a
neuron when the EFS’s synaptic current is givem fpost-synaptic neuron which is
configured to RS type. The pre-synaptic inputht® EFS is a repetition of the stimulus
that has a 10 kHz spike train for 4 ms followedabsilent period of 4 ms. It is seen that
the effect of continues input spike train on theietory facilitating synapse could

become more significant on the post-synaptic aavithereby other synaptic input
sources responses could be ignored due to contspikisg activity of the inhibitory

facilitating synapse.

The circuit has been simulated to observe the wdagtilitation of the EFS circuit to

different pre-synaptic input frequencies. The ftatiing synaptic weight change for pre-
synaptic input spike trains with different interisp intervals (ISI) starting from 10 ps
to 300 ps are shown in Figure 6.16. It is seen ttatiower ISI (high frequency pre-

synaptic input) demonstrate higher and quickelifaton than for higher ISI.

108



Figure 6.14 EFS dynamics; Variation Vw (=vVdd-Vw) to a different values of a) degree of
facilitating control voltage, VAwn (labelled as VID) b) degree of recovery control vedge, Van
(labelled as TDecN), and cywrn (labelled as VWdep) resting voltage control voltagerhen a pre-

synaptic input of 4 ms of 10 kHz spikes followed bg 4 ms of silent period is provided.

Figure 6.15 EFS synapses post-synaptic neural adti; a). Neuron’s spike activity generated from
a facilitating synaptic strength,w shown in b); b) Synaptic strengthw generated to a pre-synaptic
input of a repetition of the stimulus that has a 1&kHz spike train for 4 ms followed by a silent

period of 4 ms.
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Figure
6.16 EFS’sVwresponses to 4 ms pre-synaptic input spikes withfiierent inter-spike intervals

(period) followed by a 4 ms of silent period.
6.5 Discussion and Conclusion

Compact implementations of the Excitatory Deprassidnhibitory Facilitating,

Inhibitory Depression and Excitatory Facilitatingnapse circuits are proposed in this
chapter. These synapse circuits have been fabdidat the Cortical Neural Layer
(CNL) chip, and the detailed implementation desgmipcan be found in Chapter 9. The
mathematical models of these synapses are formluletebe used in the simple

approximated mathematical model of the CNL chiguassed in Chapter 9.

The presented circuits demonstrate depressing aoilitdting dynamics qualititatively
similar to the computational model proposed by Abled al. (1997), while making

approximation to achieve compact circuit impleméeates.

Each synapse circuit has four tunable parametedstwa or three biasing voltages.
Tunable parameters include control voltages ofddxgree of facilitation or depression,
the degree of decay, the resting weight and thé-gamptic current scaling/limiting
voltage ¥bn or Vbp). The simulation results of facilitation and degsien effect for
these tunable variables have been presented. Greedef depression or facilitation of
a synapse can be controlled using the bias voWdgep or VAwn. However, this can be
weight dependent depending on the operational rahtee weight (If the transistor M5
of the respective circuit is in the linear regidroperation).

In different biological synapses short-term dynaefiect have been observed in time
scale ranges from 100 ms to 1 s (Morrison et 8082 possibly due to the exponential
decay. However, it is observed that the linear eéegf recovery range is in the slower

end of the biological synapse’s recovery time raagel it can only be controlled within
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a narrow range~ 0 to 30 mV) of the control voltage. Therefore, dhesynapses

represent sub-set of the synapses from the higbrdgeneous synapses.

Although the degree of depression or facilitationd athe decay can be tuned
individually for different synapses, in a practioaplementation, several same types of
synapse circuits in a group might share same tupargmeter. Hence, the variability,
mismatch and the supply voltage drop could caueadhge of curves to be available
within the same type of synapse. Biological neurasponses are also highly
heterogeneous and have considerable variabilitpsacthe same type of neural

elements, and the network dynamics are possibliogxy these properties.

It is also possible to switch off depressing andailitating dynamics of synapses
completely (by biasing the voltag&wp to the supply voltag¥dd or voltageVAwn to
the analogue ground). If depressing/facilitatinghayic is switched off the synapse

becomes a generic weight dependent excitatoryhabitory synapse.

The excitatory and inhibitory synapses are designéd simple three transistor circuits
(Synaptic Current Generator circuits IN-ISYN or BEXYN) that source or sink weight

dependent current to or from the membrane of theame depending on the synapse
type. The amount of current source or sink can be apprataly proportional to the

square of the weight of the synapse. However, ghigple three transistor circuit can
operate such that post-synaptic current is progueti to the post-synaptic neuron’s
membrane voltage and the synaptic weight, if thegiteconnected transistor of the

Synaptic Current Generator circuits is in the Imeage of operation.

The rise- and fall- time of the post-synaptic ptieda are not modelled by these circuits
as the width of the current pulse is only a few asmtonds (shaping of the
corresponding post synaptic potential pulse adds exrcuitry. The tuning of the rise-
and fall-time has a negligible effect on membramegration as the time scales are so
small). Further, effect of the rise- and fall-timen be neglected as the dendritic location
of the synapse is not considered in modelling #ngral circuits. However, the dendritic
delays can be incorporated by introducing a detathé pre-synaptic spike during the
off-chip spike routing. Neuron circuits designeddhapter 4 account for some dendritic
morphological effects on the spike response, afihdbe full non-linear filtering due to
exact location of the synapse has not been comsiddme dendritic dynamics also

could be introduced by modelling the detailed degiedcompartment model (Elias et
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al., 1995; Rasche et al., 2001); however, this @alisume larger silicon area and hence
limit the size of the network considerably.
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CHAPTER 7 : CORTICAL NEURON CHIP

This chapter presents a Cortical Neuron Chip thattains the Accelerated-Time
Cortical Neuron circuits (Chapter 4). The purpo$ehe chip was to experimentally
verify the spiking behaviour of a single cell. Theuron circuit has been used in other

ICs presented in this thesis.

Neuron is a key element in neural processing, amtical network consists of many
types of neurons. These neuron types exhibit dishonlinear neural responses to the
same set of input stimulus. Therefore, having daffie types of neurons is an important
aspect in neural processing. In implementing a Mi&ural network incorporating the
diverse neuron responses similar to the biologieakon responses are of the essence to
produce brain like computation.

The initial sections of this chapter present annaeg of the chip and the test setup.
The experimental results presented at the end eotcktapter confirm that the neuron
circuit is capable of generating many types of toetical neuron behaviour, with

diversity similar to that of biological neuron llISome of the experimental results
presented in this chapter have been published eénJtiurnal of Neural Networks

(Wijekoon et al., 2008b), and the Proceedings eflEEE International Symposium on
Circuits and Systems (Wijekoon et al., 2008a).

7.1 Chip Overview

A prototype test integrated circuit, the Corticadu¥on chip that contains 202 neuron
cells, with varied circuit parameters (transistaes and capacitances) was fabricated in
a 0.35 um CMOS technology. These neuron circuitsewesed to obtain the best
combinations of neuron circuit parameters thatcaggable of reproducing most of the
firing patterns of neurons using two tuning parare{see Chapter 4 for more details of
the neuron circuit). The size of the cell that ogjuces most of the firing patterns is 40

pm by 70 um. The size of the chip is approximaBetgm by 2 mm, and it has 84 pins.

A photograph showing the chip layout, as well adividual cells is shown in
Figure 7.1. The cells are individually accessibfed adlo not form any network. In
addition to the neuron cells, the chip containstipleixers, buffers and simple synaptic

circuitry to generate excitatory and inhibitory fsysaptic currents. The different
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neurons are provided with three different typesuatput buffers to feed the membrane
potential signal to the output pads, these typelide single stage buffering with two
NMOSFETSs, double stage buffering with two nMOSFEarsl operational amplifier

(OpAmp) buffering. The circuit also contains a npl#xing unit that selects one neuron

at a time. Some cells are designed with an additi@xternal membrane potential

resetting circuit using a single transistor. Monewt design details of this chip are
presented in Wijekoon (2007).

Figure 7.1 Photograph of the fabricated device: (aghip with 202 neurons having different circuit
parameters; (b) six different neuron cells; (c) aiagle neuron including an output buffer and

control circuit.

7.2 Test Setup

The test setup used to record the experimentaltsgstesented in Section 7.3 is shown
in Figure 7.2. The test setup includes the chip, Address Generator Circuit, the
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Programmable Digital Pulse Generator, the Progrdmensoltage Supplies, and an
Oscilloscope. The synaptic input is supplied udimg Digital Pulse Generator, and an
internal circuit converts this pulse to a synaptigrent. The spike rate of the pre-
synaptic signal can be programmed on the Digitalsd®uGenerator. The biasing
parameters are set using Programmable Voltage ®sgpplhe neuron cells are
individually accessible using the test address @maot form any network. The test
address is generated using the Address Generatwitcihat includes seven digital
switches to provide the seven bits address manudlhe spike output of the selected
neuron can be observed using a digitising oscitipec The results presented in the next

section are recorded from an on-chip OpAmp buffengigut of a neuron.

Programmable Voltage

parameters .
Suppliers

Cortical Neuron .
Oscilloscope

Chip observable spike events ™

test address

synaptic input pulses

Addresses Generator
Circuit: Programmable

7 Digital Switches Digital Pulse Generator

Figure 7.2 Test setup of the Cortical Neuron circdi

7.3 Experimental Results

The experimental results presented in this seai@nrecorded from a single Cortical
Neuron circuit that is capable of reproducing maokthe firing patterns of neurons,

using two tuning parameter¥¢ and VVd). The Cortical Neuron circuit is shown in
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Figure 4.2 of Chapter 4. The transistor sizes, cigguaces of the circuit and biasing
voltages used to obtain the results are: (W/L)M1=3/1), (W/L)M2= (2.3/1),
(W/L)M3= (2.3/1), (W/L)M4= (1.3/22), (W/L)M5= (5.3), (W/L)M6= (1.3/18),
(W/L)M7 = (1.3/14), (W/L)M8= (1.3/1), ¢=0.1 pF, G=1pF,Vth=1.70 V,Vdd= 3.3
V, andVbias= 0.6 V. Where (W/L)Mi is the Width to Length ratof the transistor Mi
and lengths are in pm.

Different responses of the circuit to a postsymapiput current step of 0.1 pA are
shown in Figure 7.4 to Figure 7.9 and their respegtarameters of the tuning voltages
V¢ and Vd are provided in Figure 7.3. The circuit operatppreximately 16 to 1¢
times faster than the biological real-time, depegdbn the selected area of the
parameter space &fc and Vd. For comparison purposes, the scaled time donzin i
considered in order to adopt biological classifmas methods given in Nowak et al.
(2003). The circuit mimics various types of caatioeuron firing patterns: fast spiking
(FS), regular spiking (RS), low-threshold spikingT§), intrinsic bursting (IB) and
chattering (CH). Brief definitions of each of theBeng patterns are presented in
Chapter 2. The FS firing patterns recorded fromciheuit are shown in Figure 7.4 and
Figure 7.5. The RS, LTS, IB and CH firing patterasorded are shown in Figure 7.6,
Figure 7.7, Figure 7.8 and Figure 7.9 respectively.

The adaptation index measures the accommodatiotheffiring pattern, i.e. the

progressive decrease in firing frequency despite rtfaintained depolarization. The
adaptation index is calculated as 100k(dF1), whereF:corresponds to the firing rate
of the first inter-spike interval, anék«is the adapted firing rate (Nowak et al., 2003).
The approximate values of delay between the sthrthe supra-threshold current
injection and the first spike of the spike traidaptation index and frequency of spiking

values for each of RS, LTS and FS type firing pagere provided in Table 7.1.
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Figure 7.3 Parametersvc and Vd that were used to obtain the cortical neuron firirg patterns given

in Figure 7.4 to Figure 7.9.

As seen in Figure 7.3 and Figure 7.4, the FS1, FS3 and the rest of the firing
patterns wher&d=0 and 0.36 V¥c<0.5 V behave as a FS type and their frequency of
spiking lies in between 200 kHz and 800 kHz. It banseen that all the firing patterns
acrossVd=0 V are weak-accommodating resulting in either RB1FS type firing
patterns. The FS4 type neuron continues its spilengn after the supra-threshold
current is removed, however, it shuts down if thhibitory postsynaptic current is
provided. In Figure 7.3, the approximate paramspace area where 0.2 V&<3.25 V
andVc<0.4 V results in the RS neuron type and wilenncreases from 0 to 0.4 V, the
frequency of spiking and adaptation index valuesease. The parameter space area
where 0.2 V¥/d3.25 V and 0.45 V¥c<0.56 V results in IB type firing, and different
IB firing patterns can be obtained by varyisig andVc appropriately. Similarly, the
area where 0.2 Wd<3.25 V and 0.56 W¥c<0.65 V produces CH behaviour, and
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various numbers of spikes in a burst and intertmgdrequencies can be obtained by
varying Vd and Vc. In the samevd region, whenVc is greater than 0.65 V the cell
produces a delayed FS firing pattern with highendi frequency. Variations of firing
patterns of the selected RS, IB, CH, and FS ceksywith the variation o¥c across
Vd=1.9 V illustrate the sensitivity of the firing petns and their properties to the tuning
variableVc (Wijekoon et al., 2008a).
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Table 7.1: Neural properties of RS, LTS and Fldipatterns provided in Figure%

to Figure 7.7
Delay” Adaptation Index| Frequency of spiking
Label (=inpus) (= in %) (= in kHz) Type
FS1 4 21 220 FS
FS2 3 22 280 FS
FS3 1 4 400 FS
FS4 <1 2 1000 -
FS5 14 22 5500 FS
FS6 16 35 6300 FS
RS1-1 17 0 50 RS-1
RS1-2 13 13 70 RS-1
RS1-3 12 24 130 RS-1
RS1-4 16 22 51 RS-1
RS2-1 15 35 65 RS-2
RS2-2 14 44 90 RS-2
RS2-3 14 72 190 RS2
LTS1 9 72 300 LTS
LTS2 8 65 480 LTS

Delay between the start of the supra-thresholdustiand the initial spike
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Figure 7.4 Experimental waveforms of FS cells. Eacplot shows voltage response of the fabricated

circuit to a 0.1 pA step current. Parameters/c and VVd of each response are provided in Figure 7. 3.

FS5
FS6 o) 8
3
0.1HA
ouA,_ | 1045
 ——

Time

Figure 7.5 Experimental waveforms of vary fast spilag cells. Each plot shows voltage response of
the fabricated circuit to a 0.1 pA step current. PeametersVc and Vd of each response are provided

in Figure 7. 3.
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Figure 7.6 Experimental waveforms of RS1 and RS2 . Each plot shows voltage response of the
fabricated circuit to a 0.1 YA step current. Paraméers Vc and Vd of each response are provided in

Figure 7.3.
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Figure 7.7 Experimental waveforms of LTS cells. Edtplot shows voltage response of the

fabricated circuit to a 0.1 pA step current. Paramgers V¢ and Vd of each response are provided in

Figure 7.3.
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Figure 7.8 Experimental waveforms of IB cells. Eaclplot shows voltage response of the fabricated

circuit to a 0.1 YA step current. Parameters/c and Vd of each response are provided in Figure 7. 3.
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Figure 7.9 Experimental waveforms of CH cells. Eacplot shows voltage response of the fabricated

circuit to a 0.1 pA step current. Parameters/c and Vd of each response are provided in Figure 7. 3.

The power consumption of the circuit is approximhateroportional to the average
spiking frequency. As shown in Figure 7.10 when pbstsynaptic current is less than
0.1pA, the power consumption of a circuit can varywesn 0.1-65uW. The energy
per spike provides a figure of merit that allowigia comparison of power consumption
with respect to the circuit's computational perfamoe. In the circuit the energy
consumption per spike is 8.5-9.0 pJ (value obtawiadpost-layout simulations). For
comparison, the 1&F circuit described in (Indive2)03) consumes 3-15 nJ/spike. The
high energy efficiency of implementation is a résflthe higher operating frequency,
biasing with low dc currents, and the circuit tagpl that minimizes the current paths
that do not directly contribute to the implemerdatiof the circuit dynamics (i.e.
charging and discharging of,@Gnd G) . However, it has to be remembered that a
complete neural system will need to include synapsedels and spike communication
mechanisms, which are likely to dominate the eneegyirements. It can be also noted,
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for comparisons, that a simulation of the Izhikéviceuron (lzhikevich, 2003) on a

conventional digital hardware platform consumes ea@here in the range of 1 uJ per

spike.
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Figure 7.10 Average steady state power consumptiawith the variation of postsynaptic current for

different firing patterns.
7.4 Conclusion

This CMOS Cortical Neuron circuit replicates manyotwn types of spiking neural

behaviours by adjusting two external voltages. Tioetical Neuron circuit provides a

much richer repertoire of spiking patterns thannapge integrate and fire model. The
circuit provides simple, compact and easily confaple universal cortical neurons,
with potential applications in the development afge VLSI neuromorphic chips that
closely resemble the circuits of the neocortex. deetis neuron circuit is used in other
IC implementations presented in this thesis.

In order to use this circuit in the other ICs neutione acceleration should be same with
all the types of firing patterns. Table 7.2 matcttes biological neuron types with the
corresponding set of VLSI neuron types obtainednfithe parameter space given in
Figure 7.3 that has three orders of magnitude féisténg. The biological neurons spike
timings are adopted from Nowak et al. (2003). Arg/rkeuron types that have less than
0.5 V Vc voltage values could be used as the faster FS(tgpget the frequencies of

VLSI neuron firing patterns see Table 7.1). Any RB8d IB type given in the
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experimental result matched with the required ntagiei increase in time. Although the
CH type matched with the required time scaling, so@H type VLSI neuron

configuration have the refractory period less thars.

Table 7.2. Three orders of magnitude acceleratad ¥LSI neuron to biological time
neuron type mapping ; ISI - inter-spike intervaltelr burst - frequency or ISI between

two burst of spikes, Burst - frequency or ISI bedgwéwo spikes in a bursts of spikes.

IB CH
Description FS RS
Inter
Burst Burst Inter burst
burst
Max 330 1001 500 130 1000 100
F
; requencyl avg| 130 | 45 | 400| 40 500 70
S (Hz)
é Min 66 20 130 20 200 40
S
S Min 3 10 2 7.5 1 10
(@]
2 ISI
@ ag|l 75 22| 25 24 2 14
(ms)
Max 15 50 7.5 50 5 25
Vc< 0.5 All All CH but refractory period
VLSI neuron All 1B _
FS RS is low

Therefore, overall all the VLSI neuron firing patte can be mapped with three orders
of magnitude faster time scaling as given in Tah However, some CH neurons'
inter burst spikes could be ignored, if maximumweek routing delay is set to the

refractory period of the neuron (spike routing gslare discussed in Chapter 9.6).
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CHAPTER 8 : STDP-DA SYNAPSES NEURON CHIP

This chapter presents the STDP-DA Synapses Neurototppe chip. The chip
accommodates accelerated time STDP Synapse cifeeliopamine Modulated STDP
Synapse circuit (Chapter 5) and the Cortical Newweuit (Chapter 4) to verify the
functionality of these circuits experimentally. MBj, this chip tests the STDP Synapse
circuit together with the Neuron circuit so thatesk neural elements can be
accommodated in the CNL chip presented in Chapter 9

The STDP plasticity rule is an important featureaaofortical network for the learning
and memory formation of a network. Recently devetbpDA modulated STDP
plasticity rule (Izhikevich, 2007) is also known feerform learning, in particular,
reinforcement learning in a neural network. Here&ompassing these two promising
rules in a VLSI circuit could have the potentiak fihe formation of learning and

memory in a VLSI based cortical network.

The initial sections of this chapter present anraeg of the chip, and the neural and
auxiliary circuit implementations. This is followely the chip test setup and the
experimental results sections. Some of the masediglcussed in this chapter have been
accepted for publication in the Proceedings of IFEEE International Symposium on
Circuits and Systems, ISCAS (Wijekoon et al., 2011)

8.1 Chip Overview

The prototype test integrated circuit, containsniyesight STDP /DA-STDP synapses
with a global DA generator circuit, and two corticeeuron circuits, fabricated in a
standard 0.35um CMOS technology. The STDP /DA-SEfapse can be configured
to work as a STDP synapse or as a DA-modulated S3ypBpse and the size of the
synapse cell layout is 26 pm by 50 um. The arghethip is 1.8 mm by 1.8 mm with
44 pins. Figure 8.1 shows the layouts of the cinigh tae photographs of the fabricated
chip. Although the actual circuit area is approxiety 0.5 mm by 0.8 mm, a large chip
area is used to accommodate 44 pins needed byirthets This prototype chip is
fabricated to test the functionality of the STDPn&ygse circuit and DA-Modulated
STDP Synapse circuit along with the Neuron CircAidcordingly, some of the internal

states of all the synapses can be observed exXteamal at any given time, the internal
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states of two synapses can be observed along hetlintzerted spike outputs of both
neurons. The STDP or Eligibility traces functiobalof the synapse can be tested and
calibrated. However, due to the pin constrainshef test chip, internal states of DA
Generator circuit and the DA puls€d@ signals are not provided to any pins of the
chip, and hence these signals cannot be observesinalty. More details of the
configurations and functions are presented in thé section.

A Synapse circuit including Spike Generator and 28 Synapses
Test Qutput circuits DA generator

/

14 synapses

@

/I

© )

Figure 8.1 STDP-DA Synapse Neuron chip (a) layouatf a 14 Synapse circuit, (b) STDP chip
layout, (c) picture of the packaged chip, (d) piatre of a fabricated chip.
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8.2 Circuit Implementations

This section provides the circuit implementatiorntaile of the core neural circuit
elements of the STDP-DA Synapses Neuron chip aeid domposition, the auxiliary
circuit details and their configurations. The coreural circuits include Synapses,
Neurons and Dopamine Generator circuits. The pnesyc inputs and spike outputs
are made accessible to an off-chip device prefgrabl FPGA. If necessary, a small
network can be formed by configuring the connedioh the network using this off-
chip device. Therefore, the auxiliary circuits uné the periphery circuit used to route
these inputs and outputs to the bond pads (pinteeothip). The chip also employs a

Synapse Debugging circuit to test the functionalitg to calibrate synapses.
8.2.1Neural Circuits

All the 28 DA Modulated synapses of the STDP-DA &yses Neuron chip share a
single Dopamine Generator circuit. The extracetlD&d level €DA) can be provided
as an analogue voltage through a dedicated chipkigure 8.2 shows the synapses and
neurons composition of the STDP-DA Synapse Neurbip @nd Figure 8.3 shows the

arrangement of the neural circuit elements usingktiagrams.

Extra cellular
Dopamine, eDA

14 STDP or 14 DA-
modulated STDP
synapses

14 STDP or 14 DA
modulated STDP
synapses

spike out of spike out of
the neuron A the neuron B

Figure 8.2 Schematic of the synapse and neuron cowogition of the STDP-DA Synapses Neuron chip.
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Figure 8.3 Synapse and Neuron composition in STBPA Synapses Neuron Chip: block diagrams

of the neural circuit arrangement.

8.2.1.1Synapse Circuit

The 28 synapses can be configured to work in a A&lutated STDP mode or in a
basic STDP mode. Each synapse comprises of anbiitygiTrace (ET) circuit, a
Synaptic Strength circuit and a Post-Synaptic Gur@enerator circuit.

The ET circuit and the Synaptic Strength circug ahown in Figure 5.10 and Figure
5.11 respectively. The ET “leakage” circuit parfstlee ET circuit, and th&/'stdp_en
transmission gate used to configure the type obtimapse are shown in Figure 8.4. The
Vstdp_ercan be provided externally. In the usual modepafration, the DA-modulated
synapse mode, théstdp_enflag is set to logic low (0 V) and the voltageékwd and
Vlkwpare provided with appropriate analogue valuesghaithe synapses to operate as

the DA modulated STDP synapses.

In order to work as an STDP synapse, the sigvisidp_erflag, and voltage¥lkwdand
Vlkwp are set such that the ET circuit is modified takvas STDP circuit. This is done
by switching off the additional circuits of the Eircuits and by combining theTp and

129



ETd nodes of the ET circuit to act as the synapticgivenode, which is connected to
the Post Synaptic Current Generator circuit. Thetfynaptic Current Generator

circuit is shown in Figure 8.5.

By setting thevstdp_erflag to logic high, the transmission gate showkigure 8.4 (b)
connects th&Tpnode of the ET circuit to theTd node. This forms a common synaptic
weight node,Vwstdp (complementary topology of the STDP circuit shownFigure
5.2). Simultaneously, the M2 transistor of thetP&maptic Current Generator circuit
shown in Figure 8.5 is switched on and M4 is swattlff. Consequently, the weight of
the STDP circuit is buffered to théw node of the Synaptic Current Generator circuit
rather than to the strengt8, of the DA-Modulated Synapse circuit (the trangistul1-
M3 when M2 is switched on and the transistors M4, &hd M5 when M4 is switched
on form source follower circuits). The isolation thfe additional “leakage” circuits
(Transistors M8p -M7p and M8d-M7d of the ET cirgug achieved by supplying the
supply voltage Ydd) to theVikwp and 0 V@nd to theVlkwd, so that the ET circuit

becomes the STDP circuit.

vad

Vstdp_en
ETd
li M8 p Vdd
I Vikwd

I - M7d |
Vkmp < Cwp Vet p ETd Vetd ——
D—{ L M7p P J Cwd
M8d
ETp J , =
Vstdp_en
(©

@) (b)

Figure 8.4 Eligibility trace “leakage” circuit part s of the ET circuit shown on (a) and (c) ;The

Transmission Gate use to connedTp node toETd node is shown in (b).
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Figure 8.5 Post-Synaptic Current Generator circuitin STDP-DA Synapses Neuron chip.
8.2.1.2Neuron Circuit

The accelerated time neuron (Chapter 4) is uséusrchip. The tuning voltagasc and

Vd are used to configure the neuron to a given tympiking behaviour. As the limited
numbers of pins are available on the chip, theraarons in the chip use a comméah
chip pin (Figure 8.3). It is also seen in Chaptethdt the basic neuron types can be
obtained for different values &fc, while Vd is at a constant voltage (e.g\at=1.9V

for different values o¥/c most of the neuron types can be obtained; seengdea space
Figure 7.3 of Chapter 7). Therefore, this doessaverely limit the number of possible
spiking patterns. Neuron outputs are buffereciqusnverted buffer circuits, and the
inverted spike outputs are provided to the chipspifherefore, these outputs can be

read directly by an external device.

8.2.1.3Dopamine Generation Circuit

A Dopamine Generator circuit is used to generat@Aasignal for all the synapses
globally, and the level of the DA can be controll®dthe external supply voltageDA
Here, theeDA voltage with referenced tddd is considered as the DA level. The DA

Generator circuit implemented in the chip is giwefrigure 8.6.

The decay of the DA level and the DA injection gsia burst of spikes are not
implemented as in the Dopamine Generator circ@sg@mted in Figure 5.13 of Chapter
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5. This DA level needs to decay with time consta®.2 ms (in accelerated time) and
the level should be able to be increased usingst bfiinput spikes (i.e. digital pulses)
that result in the injection of dopamine as a relasignal. In order to reduce the pin
requirements of the chip, the capacitor/transistouit that does this is implemented

off chip. The operation of the DA Generator cirdgitlescribed in Chapter 5.

The Clock signal\{da_clIk of the DA Generator circuit that generates Wua pulses
also needs to be provided by an off-chip deviclée Width of the pulse can be tuned
using the leakage voltag¥]k. Aforementioned, the internal states of DA Getwra
circuit and the DA pulseMda) output signals are not accessible to the off-gns due
to the pin constrains and hence these signals tdmaobserved externally. However,

the ways that could verifying its function is diseed in Section 8.5.

Vdd
Vikp | la— Vda_clk_bar Vdd
D# L M5 Vik
Co—
M6 % M10 Vda
Vdat Vdat1
Veda Vdab | '—‘ >—1
eDA - 4{ E M9

Y| M4 Vda_clk

Vb

o> M8

Figure 8.6 DA Generator circuit in the STDP-DA Synases Neuron chip.

8.2.2Auxiliary Circuits

The core neural elements discussed above needdonfigured as a network, in which
their characteristics can be set using the tunergupeters, and their functionality can
be measured externally. These functions are faiglit by auxiliary circuits fabricated

on the chip. Some of the auxiliary circuits dis@agssn this section include the
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Pre-synaptic addressing and Spike Generation tsrchie Synaptic weight pre-setting

circuit, and a circuit for observing & debuggingsyinapses.

8.2.2.1Pre-synaptic addressing and the Spike Generationrcuit

The pre-synaptic inputPfe) of each synapse is connected to the output ofSthike

Generator circuit. Figure 8.7 (a) shows the Spika&sator circuit and on the chip this
circuit is physically located next to the synapsgolt to provide non-attenuated spikes.
Using a five bit pre-synaptic address, the Spikeeeator circuit for a target synapse

can be activated to generate a pre-synaptic spike.

When a synapse is addressed, the incoming addrdssaded, which enables the Spike
Generator circuit of the target synapse. Once tldress decoder enables the Spike
Generator, a 5 nBre pulse is sent to the target synapse. The Spikeei@sm circuit
consists of a Four Input NAND gate, a Delay (DLYicuait, an Inverter and a NOR
gate. Figure 8.7 (b) shows the input, intermediate] output signals of the Spike
Generator circuit when the Spike generator cinsugnabled twice.

0 10 30 50 70 90
time / ns

(b)

Figure 8.7 Spike Generator (a) circuit (b) intermedate signals.
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8.2.2.2Synaptic weight pre-setting

For basic STDP synapse mode weight of the synamsde set of reset by providing
appropriate voltages tdlkWdandVIkWpat the network configuration stage (i.e. before
the network emulation). For the DA modulated STD&Imof operation the eligibility
traces (voltage across the capacitors Cwp and Ceeth Jalso be set or reset using the
bias voltaged/IkWd andVIkWpand theSTDP_Enswitch at the network configuration
stage. The leakage circuit for the eligibility teacand the transmission gate are shown

in the Figure 8.4.

8.2.2.30bserving and debugging of synapses

As seen in Figure 8.3 the internal states of theagyes can be observed externally.
These includé&/etp Vetd andS for the synapses of the neuron A, andVe¢n Vetd S,

Itp, andltd for the synapses of the neuron B. At any giveretfiall these internal states
of a synapse from Neuron A and a synapse from NeBroan be observed. A four bit
test address is used to select observable intstatds for a particular synapse. The
address is provided to the 32:1 multiplexer, ushegydedicated test address bus of the
chip. Depending on the test address, the multiplswéches the outputs to observe the

state of the targeted synapse.

For STDP functionality, both synapse types reqthie output of the targeted neuron
(i.e. the post-synaptic neuron’s spike) as an inpiie post-synaptic signal can be
provided either with the output of the targetedroawor with an artificial external post-

synaptic signal, which can be used in order to deba synapse circuits.

8.3 Test Setup

The test setup includes the STDP-DA Synapses Nethign a computer (Host PC), a
Digital to Analogue Converter (DAC) and an Oscitlope (Figure 8.8). This setup can
be used to verify the function of the synapsesrautons. The DAC is used to supply
the tuning parameter voltages that set the charsiits of the synapses and the neuron

types. These bias voltages can initially be prognaeh using the Host PC. The FPGA is
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used to configure the chip, implement the connégtiof the neural network and to
facilitate spike routing (a Xilinx Spartan 3 FP&Ais used here).

Perhaps it is impossible to build a network thamdestrates truly useful network
behaviour using only two neurons. However, thesean be used to build two neuron
networks or to have marwrtual neuronsalong with the two neurons. In addition to the
post-synaptic spikes of the two neurons, spikes lmargenerated on the FPGA (as
spikes from avirtual neuror) using a set of rules or by reading an input fiitan the
computer. Therefore, pre-synaptic spike can beigea to the chip using the FPGA
either depending on the spike event received frieentdvo neurons or by using spikes
from avirtual neuron Furthermore, the required observable outputs alan be set
using the FPGA, by sending a five bit test addtesthe test address bus of the CNL
chip. Once network emulation starts, the obseevablernal state of the synapses,
neurons spike activities and pre-synaptic addresses be fed to a digitising
oscilloscope to observe and record the wavefornmul&neously, the network spike

activities can be recorded on to the FPGA board angm

18 Xilinx Spartan 3 Web link: http://www.xilinx.corslipport/documentation/spartan-3.htm
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Figure 8.8 Test setup of the STDP-DA Synapses Neurgircuit.
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8.4 Experimental Results

This section provides experimental results obtaiinech the chip that verify the STDP

functionality and the cortical neuron functionality

8.4.1STDP Synapse

Initially, the LTP time window and the LTD time wdow can be adjusted usiMieakp
andVleakdrespectively (As explained in Section 5.3). Feg8r9 shows measurements
of the time windows after setting it to 50 ps. Tdignal ltp reaches the maximum
voltage when pre-synaptic spikBré) fires and thdtd reaches its minimum when a
post-synaptic spikePEs) arrives. As thdtp andltd signals are provided to the chip pins
after the NMOS source follower buffer stage, hefic¥ to 0.6 V an approximate
voltage range of the output waveforms could notlbeerved. The lower waveform part
of theltd signal is distorted as shown in Figure 8. The &tofhe charging phase of the
Itd is due to the input capacitance of the sourceval circuit.

Figure 8.10 shows the long-term plasticity effectsynaptic weightw)), for many pre-
and post-synaptic spike pairings. Figure 8.11 mlesisynaptic weight change when
post-synaptic spike follows the pre-synaptic spit@@ 10 occurrences within
approximately 1 ms (accelerated time) duration whdn post-synaptic spike precedes
the pre-synaptic spike for 10 occurrences withmslduration. It is seen that whEne
follows Postthe synaptic weight is potentiated, wherBastprecede®re, the synaptic

weight is depressed, implementing STDP rule insyrepse.
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Figure 8.9 Theltp and Itd signals showing the history of the pre- and postysaptic firing timing
respectively, (a) LTP time window measurement (b) ID time window measurements; their are set

to 50 ps using the tuning voltages of the synapddkp and Vikd.
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Figure 8.11 STDP synapse weight variations (a) degssing and potentiation synaptic weight due to

the Pre and Post firing sequence, (b) weight depssing when Pre follows post, (c) weight

potentiating when Pre precede. Note: here invertedeight is recorded.
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8.4.2Neurons

By providing the same continuous pre-synaptic spike many synapses, synaptic
currents are injected to a neuron regularly. Fergame synaptic current injection, the
neuron's tuning parametevs andVd are set to different firing patterns, CH, RS aBd |

types. These firing patterns (inverted) are shawhigure 8.12.

Volt \% .
oftage, CH configured Neuron

Voltage, V v W AW A WWMM[W
| RS configured Neuron
) { h\ v W [& ‘

Time

Voltage, V W mﬂ m ’MWMWWM IB configured Neuron

Time

Figure 8.12 Different firing patterns obtained for the same pre-synaptic stimulus. Here inverted

spike output of the neuron is recorded.

Power consumption

The synapse circuit typically consumes between 2gnd/5 pW power &re andPost
synaptic spike rates of 200 kHz (i.e high neuraviyg level), but it could be as high as
40 uW, depending on the synapse state, parametérspike rates. The DA generator
circuit, which is shared by many synapses, consuwmpe® 600 uW of power (worst

case).

8.5 Discussion and Conclusion

8.5.1Discussion

Noise of the observable signals

The results presented in this chapter are taken &ananually wired circuit board and
as seen in Figure 8.10 and Figure 8.11 observaalefeorms are noisy. This could be
reduced by rebuilding the test setup with a printeduit board (PCB) that includes

high frequency filtering using capacitor banks daydproperly shielding and reducing
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the length of the wires of the observable analogjgrals. Specially, slowly varying,
narrow voltage swing observable signals such agmimstrength signals are noisier to

observe.

DA-Modulated Synapse circuit

In order to test the DA-Modulated STDP Synapseudir¥etp Vetd andS can be
observed externally however any internal signahtesl to the DA signal cannot be
observed. The noise in the system makes it ditfitmlobserveS which is a slow
varying signal. Under these conditions, DA-modulaggnapse can be verified by using
the synapses in a large network and observing digforcement learning in the
network. Once the CNL chip is ready the STDP-DA &ses Neuron PCB can be
connected together to test the DA-Modulated Syndpsetionality. Once the DA-
modulated chip functionality is verified, this bdacan be use in the Cortical Neural
Network Architecture proposed in Chapter 9 alonghvthe CNL chips to facilitate

reinforcement learning in a large network.

Network Connectivity capacity of the Chip

The two neurons along with the DA-modulated synagsa be use in a network (e.qg.

with the CNL chip discuss in Chapter 9) initially test the DA-modulated synapse

functionality and then to facilitate the reinforcemt learning dynamics on a large VLSI

network. However, there is a limitation to whiclese DA-modulated synapses can be
connected.

The pre-synaptic addressing is provided to the clipg the five bit addresses bus of
the chip. At any given time only one synapse camaddressed, and each pre-synaptic

routing consumes two clock cycles.

Therefore, assuming that the FPGA device faciktabe spike routing for the network
and its clock frequency is 100 MHz, if all the @mesing spikes are from fast neurons
and are continuously firing at the spike frequeat200 kHz, and each incoming spike
is routed to a maximum of two synapses (K =2), tttenmaximum number of spikes
that can be routed within the refractory periodtled neuron (1 ps) is approximately
125. l.e if each incoming spike connect only to synapses (simple connectivity) then
125 neurons (at high spike activity level) can berected to the chip in order to form a

network. The equations used to calculate this &gre given below.
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Average spiking rate of all the neurons =0.2 MHz
Average spike rate of N neurons =0.2 x N MHz

Number of synapses addressed per incoming spiKe =

Clock rate of the FPGA EkGpca
Number of cycles for pre-spike addressing =CYC
Number of spikes can be served = CLKepgal (200 000 x K x CYC)

8.5.2Conclusion

It is verified from the experimental results thaetSDTP Synapse circuit and the
Synapse circuits along with the neuron operatexpsated. Therefore, these circuits are
used in the CNL chip presented in Chapter 9. thle-Mbdulated Synapse functionality
need to be tested by demonstrating reinforcemeanhileg in a network, which require
sufficiently large VLSI network. The CNL board (Gitar 9) can be used to test the

reinforcement feature of the Chip.
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CHAPTER 9 : VLSI CORTICAL NEURAL NETWORK
AND CORTICAL NEURAL LAYER CHIP

A prototype microelectronic Cortical Neural Lay€&NL) integrated circuit that could
closely represent the neuron and synapse type catigpoof a layer of the neocortex is
fabricated using elementary circuits proposed imgiérs 4 to Chapters 6. This chip
incorporates more biologically plausible heterogerseneural elements than the other
similar size VLSI neural network implementationsiid in literature. In order to realise
a larger cortical network in microelectronic hardejea VLSI Cortical Neural Network
(VCNN) architecture that combines many CNL chipgetber is proposed. The next
section presents an overview of the VCNN architegtand Section 9.5 provides details
of CNL board used in the VCNN architecture. The LCBhip overview, circuit
implementations, and model are presented in thieofethe chapter. In analysing the
feasibility of building a large neural network inL8I, estimation of the network size
that can possibly be implemented using similar cositppn of neural elements as of

CNL chip, in a wafer-scale integration is providedChapter 10.

Performing neuron-level recordings on animals isyJMamited both in the number of
observable neuronal activities and in experimetitaé the neural tissue can be kept
alive. The proposed architectures could provideearal accelerator platform that can
test some computational and neurobiological modelsetwork. These platforms can
also perform extensive parameter searches of agriexgnt as it works in three orders
of magnitude faster than biology. These experimertdsld help to improve the

understanding of the underlying principles of atiprocessing.

9.1 VLSI Cortical Neural Network Architecture (VCNN) - Overview

Neocortical neural tissue is composed of anatofyicapeating six-layered neural

network. Each layer is composed of neurons that reegive spikes through synapses
from neurons in the same layer, from the otherrilgyiom external cortical or sensory
afferents, or any combination of these. The contjmrsof neurons and synapses in a
layer is highly heterogeneous and different lay@es composed of a variety of neuron
and synapse type combination (for more detail<¥empter 2).
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The proposed VCNN architecture combines six CNLr#é®aogether to build a six-
layered VLSI cortical network that could closelypeeble a small scale network of the
neocortex. A CNL board comprises of a CNL chip, ardkedicated FPGA device. The
CNL Chip implements generic neural layers. Eachp ctén be pre configured to
represent a layer of the cortical network by camfigg neuron and synapse type
composition appropriately (more details of the Cllip are given in Section 9.3). The
FPGA is used to pre configure the CNL chip and lieevve the spike activities of the
network. Most importantly, the network connectivitgnfiguration and spike routing
within the CNL chip and between CNL boards arelifated by the FPGA (more detail
of CNL board is given in Section 9.5). Thereforke tspike routing of the VCNN
architecture is carried out using the six distgurouters (each implemented in the
FPGA of a CNL board), and according to the connégtmatrix of a given network,
the router's lookup tables (LUTS) of the routei tihefine the inter neuron connectivity,
can be pre configured.

This small six-layered VLSI cortical network conmges of 720 cortical neurons of
different cortical neuron types and 45 360 shomd bong- term plastic synapses. This

architecture operates three orders of magnituderfisan the biological real time.

9.1.1System Implementation of VCNN Architecture

This section discusses the VCNN architecture lyiefigure 9.1 shows a VCNN
architecture setup that includes six CNL boardsnhmater (Host PC), Digital to
Analogue Converter (DAC) and Oscilloscope. Inifialising the Host PC the FPGAs
are programmed to implement the connectivity ofiverg network to facilitate spike
routing. The DAC PCI card is used to supply thartgrparameter voltages that set the
characteristics and weights of the synapses andhébeon types. These voltages can
initially be programmed using the PC. The netwodareectivity and the tuning
parameter voltages define the network on the VCNthitecture. The network
emulation can start after configuring the netwaonkl #he internal synaptic activities of
the network can be recorded using the digitisinglloscope. The spike activities can
be recorded in the FPGA memory and could be aadjwreto the PC using the USB
interface while or/and after running the emulatodrthe network. The spike data can be

processed within the PC to analyse the networkities.
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Figure 9.1 VCNN Architecture with six CNL boards.

Though the integration of six CNL boards is consedean the basic VCNN architecture,
in practice, a few tens of CNL boards chips cowddabsembled to form an architecture
where each cortical layer can be configured usiagytCNL boards, so that a larger six

layer VLSI network can be constructed.

9.2 Cortical Neural Layer (CNL) Chip — Overview

The CNL Chip containing 120 cortical neurons, arisb® synapses has been fabricated
in a standard 0.35 um CMOS technology. The chip m@es generic neuron and
synapse circuits with configurable neuronal conivast The neurons of the chip can be
configured to different known types of neurons ¢dssed in Chapter 4). The chip is
also equipped with different short-term and longntelynamics synapse circuits that
include inhibitory, excitatory, facilitating and piessing and STDP dynamics
(discussed in Chapter 5 and Chapter 6). The sizBeothip is 24 mM(6.78 mm by
3.58 mm), and it has 180 pins. Figure 9.2 and [Ei§u8 show the layout of the chip and
a photograph of the fabricated chip respectivelyosMof the neurons’ outputs are
available in parallel from the chip pins. Some &gt outputs are accessible serially
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and a few of the neurons are internally wired. Phe-synaptic spike inputs can be
provided externally by addressing the synapsegusia address bus of the chip. The
internal states of the selected synapses can limatal and/or observed externally.
More descriptions of the fabricated circuits aneegiin next section.

and Row Address Decoder Eight OpAmp circuit

120 Neuron circuits Serial Spike Out circuit 7 650 Synapses circuits

Figure 9.2 (a) Layout of the CNL Chip: 7 560 synapess, and 120 neurons and auxiliary circuits.
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Figure 9.3 Picture of the fabricated Cortical Neurad Layer Chip.
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9.3 Neural element composition on the chip

The CNL chip can be configured to have a heterogemereuron and synapse type
combination, such that it could closely represem¢ theuron and synapse type
composition of the cortical layer of the neocort&ke neural elements occupy on the
chip in two separate blocks: Block-A and Block-B.

9.3.1The analogy to the neocortex

About 80% of the neurons in a cortical network tie®cortex are excitatory neurons,
and others are inhibitory neurons (Somogyi etl&l89; White, 1989; Peter et al., 1984).
Anatomically, these two types of neurons are ecgdppith different types of input and

output synapse combination. By considering this,GNL chip is designed to represent
the excitatory and inhibitory neurons in the Bloklkand Block-B neurons respectively.

Figure 9.4 shows the neuron and synapse composititre CNL chip, considering the

inhibitory and excitatory representation of thedi®.

The output spike from an excitatory neuron excttess membrane potentials of post-
synaptic neurons using excitatory synapses. Anailiyj most of these neurons
receive synaptic inputs from non-STDP excitatorg amhibitory depressing synapses
and from excitatory STDP synapses (Roth et al. 9200herefore, if the output of a
Block-A neuron is connected to excitatory synapsiesn the Block-A neuron closely

represents an excitatory neuron of a cortical nekwo

The output spikes from an inhibitory neuron inhitie membrane potentials of the
post-synaptic neurons using inhibitory synapsess lalso known that, some of the
inhibitory neurons receive inputs from inhibitorgcilitating and excitatory depressing
synapses, whereas some other inhibitory neuronstypeeive input spikes from
excitatory facilitating and depressing synapsesti{Ret al., 2009). Therefore, by
choosing an appropriate input and output synapsewmination the Block-B neurons
can be configured to represent either of thesetypes of the inhibitory neurons.

Although the Block-A and Block-B neurons are eqeg@pwith a specific type of
synaptic inputs to represent closely the anatomyhefexcitatory and the inhibitory
cortical neurons respectively, it is the selectmhoutput synapse type that purely
determines the excitation or inhibition effect dre tmembrane potential of the post-

synaptic neuron (i.e. excitatory or inhibitory faieoality of a neuron). Hence,
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irrespective of the location of the neurons in RBl#c or Block-B, the user has the
freedom to configure any of these neurons to warlkexaitatory or inhibitory neurons,

by projecting the neuron output to appropriate pgea.

(). Block-A (b). Block-B
21 STDP synapses Excitatory STDP synapses Inhibitory facilitating
4 q v synapses
— — TR DR | T .
Excitatory depressing T 0 q et
22 Non-STDP synapses / piosot i (AR PR SORUORRY TP
Excitatory facilitating
synapses
Inhibitory depressing ) 21 synapses|- - / ................ .
synapses L " P e
17 Non-STDP synapses / B o PP B
@ O """""" O > Excitatory depressing
synapses
Inhibitory depressing
synapses 21 synapses
3 Non-STDP
— 9 N ﬂg
1 2 100 1 2 20

Figure 9.4 Description of a generic layer of VLSI ortical network model; 100 excitatory neurons

and 20 inhibitory neurons with various types of inut synapses.

9.3.2The neural circuit composition on the chip

The Block-A consists of 100 neurons and 6 300 syespEach of the neurons in this
block receives inputs from 43 excitatory depressggapses (21 STDP and 22 Non-
STDP excitatory depressing synapses) and 20 ininybitepressing non-STDP synapses
(3 somatic and 17 distal inhibitory synapses). Bhack-B consists of 20 neurons and
1 260 synapses. Each of the Block-B neurons reseinmputs from 63 non-STDP
synapses. The 63 synapses comprise an equal nuofbexkcitatory facilitating,
inhibitory facilitating, and excitatory depressimynapses. Layout of the Cortical
Neural Layer Chip showing the physical location thie synapses is shown in

Figure 9.5.
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Figure 9.5 Layout of the Cortical Neural Layer Chip.

9.4 Circuit Implementations

The circuit implementation details of the CNL chape given in this section. These
include core neural circuits and auxiliary circudk the chip. The auxiliary circuits
provide circuits to configure and debug the neetaiments and to interface the inputs
and output responses of these neural elementsothitgr microelectronic devices. The
pre-synaptic inputs and spike outputs are accesdigl an off-chip device (Xilinx
Virtex 5 FPGA”) and the network connections are configurable qushis off-chip
device. The CNL chip composition of the neural @it and its auxiliary circuits that
include network configuration details and obsergabltputs are discussed in this

section.

9.4.1Neural Circuits

As mentioned above, the neural circuits uses irCiRe chip include Accelerated Time
Cortical Neuron circuit (see Chapter 4), STDP Sgeapircuit (see Chapter 5) and four
types of Short-Term Dynamic Synapse circuits (XB, ID, and XF Synapse circuits;
see Chapter 6 ). Each of these synapse circutt@CNL chip include Spike Generator

7 Xilinx Virtex 5 FPGA Web Link: http://www.xilinx.om/products/virtex5/
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circuit (SG circuit; discussed in Section 9.4.2i4)addition to their basic circuits
described in their respective Chapters. Synapsaitieceives pre-synaptic inputs from
this Spike Generator circuit. Each Spike Generataruit has two inputs (row and
column address enable) and once these are enatiteylpre-synaptic address, a spike

Is generated to its connected Synapse circuit.

The same type synapse circuits in a block sharedhee set of tuning voltages; e.g. all
the XD Synapse circuits in Block-A share one setba@sing voltages to set the
parameters: th&#Awp (controls the degree of depressing of the synapeg)(controls
the degree of recovery of the depressing synapskYlap (sets maximum cut-off value
of EPSC) except th€wrp of the synapse. The method used to set the pasametp

of the synapses that set the resting weights isuds®ed in Section 9.4.2.2. The XD

Synapse circuits in Block-B shares deferent sebtihges of the same parameter set.

Neural Circuits in a Block-A Neuron Unit

Each of the Block-A Cortical Neuron circuit recesvenputs from 20 Inhibitory

Depressing Synapse circuits, 21 Excitatory STDPagya circuits and from 22
Excitatory Depressing Synapse circuits that forl@k-A Neuron Unit as shown in

Figure 9.6. One hundreds of these common NeurotsUume generated to form the
Block-A of the CNL chip.

20 rows 20 Inhibitory
Depressing (ID)
Synapses
Circuits 20
col |
i Post-synaptic
Pre'_synaptlc spike out
inputs 21 rows 21 STDP —
Synapses // Oméé iuron
Circuits ircui %—
21
col |
22 rows 22 Excitatory
| Depressing (XD) 22
Synapses
Circuits

Figure 9.6 Block-A Neuron Unit and its input synapss.
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Neural Circuits in a Block-B Neuron Unit

Each of the Block-B Cortical Neuron circuit recesvieputs from three types of Short-
Term Dynamic Synapse circuits. As shown in Figuré, 9hey are 21 Excitatory

Facilitating Synapse circuits, 21 Inhibitory Faeting Synapse circuits, and 21
Excitatory Depressing Synapse circuits. The BlockdBirons use the same Excitatory
Depressing Synapse Circuits as in the Block-A nesirdA common structure of a

Neuron Unit that comprises a Cortical Neuron ciramnd its Short-Term Dynamic

Synapse circuits that provide inputs is constru@ed 20 of these Neuron Units are
generated to form the Block-B of the CNL chip.

21 rows 21 Excitatory
+ Facilitating
Synapses (EFS)
21
col |
Post-synaptic
' spike out
Pre_-synaptlc 21 rows 21 Inhibitory
inputs + Facilitating / Neuron —
Synapses (IFS)
21
col |
21 rows 21 Excitatory 21
+‘ Depressing
\ Synapses (EDS)

Figure 9.7 Block-B Neuron Unit and its input synapss.
9.4.2 Auxiliary Circuits

The core circuits of the CNLC are used as prim#iwehen emulating a cortical
network. The network configurations are set usimgexternal device. Hence the
auxiliary circuits of the CNLC facilitate interfagy neural signals to the external
devices and the configurations and debugging dscof the core circuits. The
supplementary circuits include, Pre-Synaptic Spiksecoder, Neural circuit
Configuration circuits, Post-Synaptic Spike Outpucuit, and Debugging circuits. The

pre-synaptic spike decoder circuit decodes thereally provided synaptic address
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(Pre_spikeaddress) to generate pre-synaptic spike) signal to the desired synapse/s.
The neurons’ outputs are available to the extedeafice with the help of the post-
synaptic spike output circuits. Further, the syeapand neurons are configured using
bias voltages and some resistor divider circuitsee TNL chip also supports on-chip
neural connectivity. The debugging circuit allovesre of the internal voltages of a few
synapses to be observed externally as well astttheecharacteristic of the synapses.
The following sections explain the operation of -Bggaptic Spike Decoder, Neural
circuit Configuration circuits, Post-Synaptic Spik&utput circuit, and Debugging

circuits.

9.4.2.1Pre-Synaptic Spike Decoder (PSSD) Circuit

As the neural network connections are configurddha chip, the Pre-Synaptic Spike
Decoder (PSSD) circuit is used to route the inpuikes to the intended synapses,
decoding the incomin&re_spikeaddresses. A synapse address is made up of the row
and column numbers corresponding to the place yhnapse occupies on the chip.
Hence, the column number represents its post-signaptiron’s address. The PSSD is
comprised of Column Address Decoder circuit and Radress Decoder circuit that
share a common address bAsdr <1:14>). At a given time, these decoders can select
one or many synapses depending onRhe spikeinput. Figure 9.8 shows the block
diagrams of these decoders. A crossbar grid laymithas 120 columns and 64 rows of
metal conductors is formed by the output termircdlshese decoders. At each cross
point, a two input NAND gate receives the incomogumn Cb_g and row Cb_1)
outputs of the decoders. The output of the NANDegatt a cross point is given to a
Spike Generator (SG) circuit (except on the rova®,addressing row 0 along with a
column address is used to reset a neuron or grbmewons). Furthermore, the first
100 SG circuits in the row 43 are used to genezaternal post-synaptic spikeBgst
signals) to debug the STDP circuits. Figure 9.9%tews the SG circuit. The SG circuit
is constructed using a Delay circuit, Inverter, N@®l NAND gate. The layout of the
SG circuit is located close to its synapse layoyprovide non-attenuated pre-synaptic
spikes. When the decoders enable a SG circuititbeit generates approximately 5 ns
Pre pulse to its synapse. Figure 9.9 (b) shows thatjmgutput and intermediate signals
of the SG circuit.
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As mentioned above, the PSSD circuit can addreS§&ar a group of SG circuits
simultaneously using Bre_spikeaddress. Thé&re_spikeaddress is defined with the
doubled size of the synaptic address. It includgsastic address bits and their
corresponding “don’t care” address bits. If a “darére” address bit is set to logic one
then its corresponding synaptic address bit is ngghoHence, two synaptic addresses
that match excluding the ignored bit's (ignored ikitat "don’t care") are addressed
simultaneously. Similarly, many “don’t care” adsisebits can be set with logic one to
send pre-synaptic spikes to a larger group of ssemgimultaneously. The Don’t Care
Addressing (DCA) circuit is used to provide the @dding and Figure 9.10 shows the
circuit of one bit DCA element of the PSSD circaitd its truth table. The outputs of the
DCA (DCA<0:6> or DCA<0:5>) are given to the addreds-multiplexer circuit
(DEMUX7 or DEMUX®6) to generate the crossbar signals

Address a synapse or a group of synapses

An external device, preferably an FPGA, providesRhe spikeaddress to the address
bus of the CNL chip in three stages. Firstly, thetdDFlip-Flops (DFF) of the Column
Address Decoder circuit latch the column addregh@®@Pre_spikeby providing a pulse

to the strobe signabtbl_cafter providing the column address onto the addiess.
Secondly, bottStb_randStb_c2signals of the PSSD are given a short pulse stien a
the row address of there_spikeaddress is given to the bus. This starts decodiag t
column and row numbers of the address using Coldaress Decoder circuit and
Row Address Decoder circuit respectively. Finatlye decoded addresses are sent to
the crossbar simultaneously to enable the intei@&caircuit/s by providing a pulse to
the Sth Figure 9.11 shows the timing diagram of Bre_spikeaddressing.
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Figure 9.9 (a) Spike Generator (SG) circuit and (bjts timing diagram of the SG circuit.
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Figure 9.10 (a) Don’t Care Addressing (DCA) circuif and (b) its truth table; Array of DCA circuits

is used in Row Address Decoder and Column AddresseDoder circuits of the PSSD circuit.
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Figure 9.11 Timing diagram of the PSSD shown in Fige 9.8.

9.4.2.2Neural Circuit Configuration Circuits

The neural circuit configurations include configima of resting weight of the
synapses, groupings of neurons and on-chip neurgjegtions (i.e. internal network

connections). Brief descriptions of these are givelow.
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Configuration of Resting Weight of the Synapses

In this section, synaptic weighty is referred to the voltage that sets the restiegkt
control voltage of a non-STDP synapséw(p or Vwrn). The non-STDP synapses
require setting their synaptic resting weights wheapping a cortical network on the
chip. These synapses include 5 356 synapses, Wieicimg to seven groups. The XD
and ID synapses of Block-A and XD, IF and XF syrapsf Block-B receive their pre-
synaptic inputs from an off-chip device. Hence,sthesynapses are calledternally
connectechon-STDP synapses. The synapses of the otherroupg (XD-i and XD-e)
are used to route spikes internally- they are datiéernally connectedynapses. The

synaptic weight configurations of these two typesgiven below.

Resting weight configuration of the externally conected non-STDP synapses

Synaptic weights of the synapses of a group cae hagarly distributed weights along
a column. However, along a row the weights remainstant. The circuit shown in
Figure 9.12 is used to provide the linearly disttdal weights. The externally provided
voltagesWs andW, are used to set the linear distribution as seeRignre 9.12 (b).
The nominal resistance of the resistor R is equdl.425 K2. The Poly-2 resistors are
used in the resistor divider to achieve a highsistance in a compact design. Once the

two ends of the distribution are set, the weighthaf " synapse\(V) can be obtained

from the following equation.

V\/i=V\/A+Avvx(i—1) forl< i< 20
2 (9.1

W, =W, ; Aw=(W - W)/20

Where, W andWg are externally set voltages; For ID synapses griypis irrelevant

as it has only 20 synapses.
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Figure 9.12 (a) The Resistor divider circuit is usé by each of the XD, ID, XD, IF and XF synapse
group, R = 6.425 I©, (b) the generated weight distribution line.

Resting weight configuration of the internally conrected synapses

The XD-i synapses that connect Block-B neurons laclBA have a linear weight
distribution along the row (the chip has 64 synameh that occupy on the row one of
the CNL chip). The resistor divider circuit used X-i is given in Figure 9.13. The
weight of the | synapse\Y,) in the XD-i group can be calculated using theatigum

given below.

(W +Awx ] for 1< j<32 9.2)
FTW, +Awx (j-32) for 33< j< 64 '

Where,Aw = (W, - W, )/32 andWc andW, are externally set voltages;

T
%L: o m"" o o %L: o m&jw
0 0
S 8 S

Figure 9.13 Resistor divider circuit used by XD-i gnapse type in Block-A to receive a linear weight

distribution across the column: R = 4.25 B.
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Further, all the XD-e SYNAPSES (32 synapses on @a# of the CNLC) that connect
Block-A to Block-A neurons can only have the sameight value that can be set

externally.

Groupings of neurons

Neuron circuit can be configured to different coatineuron types (RS, CH, IB, etc.) by
tuning the parameters/¢ and VVd) of a neuron appropriately as given in Chapter 4.
Independent configuration of 120 neurons requirdsaecircuits and consumes extra
chip area. Neurons in a cortical network are coragasf larger groups of the same
neuron type. Hence, 120 neurons are grouped intgrdis where each group can be
configured to a given neuron type independentlyesehgroups are made up of different
numbers of neurons so that a group that contaiesclibssest number of neuron to a
required number in a type can be constructed bybadnmg many groups. Table 9.1
shows the number of neurons in a group and thelireades.

Table 9.1: Independently configurable groupingseirons in Block-A and Block-B

Block-A Block-B
Group size|] No. of groups Addresses of the neufong roufgssize No. of groups  Addresses of the neurpns
15t0 34
20 3 40 to 59 8 1 108 to 115
65 to 84
00 to 09
10 2 6 1 116 to 121
90 to 99
10to 14
4 1 122 to 125
35t0 39
5 4
60 to 64
2 1 126 to 127
85 to 89
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On-chip neuron projections

Though most of the network connections are confiduoff-chip, 1.2% synapses are
hard wired internally to test the prototype withteimal and external connections.
Eventually, this could provide more options to égafe network connections. The
outputs of 16 neurons out of 120 are connectednally. The hard wired connections
are of two types, and they are given below. Thesmections can be switched -off or -

on depending on the network specifications.

Block-A to Block-A neuron projections

Outputs of eight Block-A neurons (with addressestd6l9 and 66 to 69) project
internally to thirty two other neurons in Block-Aavexcitatory depressing synapses
(XD-e). As given in Table 9.2, each output projectdour consecutive neurons. These

synapses can have equal weights that can be sehatky.

Block-B to Block-A neuron projections

Outputs of eight Block-B neurons (with addresse3 tb0107) project internally to sixty
four neurons in Block-A, via XD-i synapses. As give Table 9.2, each output projects
to eight Block-A neurons. These synapses’ weight lbave a linear distribution as

discussed in Section 9.4.2.2.

160



Table 9.2: Hardwired projections of neurons

Neuron projections Neuron projections
Block-A to Block-A Block-B to Block-A
No.
From neuron To neurons From neuron To neurons

1 16 O0to3 100 1810 25
2 17 4107 101 26 to 33
3 18 8to 11 102 341041
4 19 12to 15 103 42 to 49
5 66 50 to 53 104 68 to 75
6 67 54 to 57 105 76 to 83
7 68 58 to 61 106 84 to 91
8 69 62 to 65 107 92 to 99

9.4.2.3Post-Synaptic Spike Out circuit

The spike outputs of 104 neurons in the CNL chip sent to an off-chip device,

whereas the other 16 neurons’ outputs connectialigr 84 of the 104 outputs send to
output chip pins directly, through the output buffecuits. These can be read by an off-
chip device in parallel. These neurons includertterons with addresses 0 to 15, 20 to
54, 79 to 99, and 108 to 119. The rest of the twentputs and two parallel connected
outputs are sent serially. The two signals thapwatst through both parallel and serial
ports are use to debug the Serial Spike Out cir@éscription of the Serial Spike Out

circuit that is used to interface output of themtyetwo neurons is given below.

Serial Spike Out (SSO) Circuit

The twenty two neurons that can read their outpsitsg SSO circuit include the neuron
addresses 55 to 65 and 70 to 80. The SSO ciragithree terminalut_bit, Clk and

Se Spike read-out operation of the SSO circuitxigl@ned below.
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Spike Read-Out from SSO Circuit

An external device can read the neurons’ outputglsefrom the Out_bit terminal
providing a suitable clockJlk) and scan-enabl&§@ signal to the SSO circuit. The SSO
circuit comprises of 22 bits Parallel Input Ser@utput (PISO) shift register, 22
Set/Reset Latch (SRL) and Reset Pulse Generatoauwitsiras shown in Figure 9.14.
When a neuron fires, SRL is set and latched umtilRata Flip Flop (DFF) on the PISO
shift register updates with the SRL state withie thfractory period of the neuron. The
SSO circuit works synchronously with the rising edd the clock and has two phases;
the spikes update phasge= '0’) and the serial scan phasge= '1’). At the spikes
update phase, the PISO shift register updates tithspike data received from SRLs,
whereas in the scan phase the external deviceez@hthe twenty two spikes serially.
Soon after the scan phase is started, the SRLU®see using the Reset Pulse Generator
circuit. The Reset Pulse Generator circuit gensrateeset pulse at the rising edge of the
Sesignal. The circuit comprises of Buffer, Delay diit¢ Inverter, and AND gate as

shown in Figure 9.15.

The 25 MHz clock and repetitive scan-enable sigaalshown in the timing diagram in
Figure 9.16 can be used to read the spikes peailbglic It is also possible to use a
higher clock rate than 25 MHz. However, the scaasphrequires 21 clock cycles, and
for the rest of the time the device should be ptd the update phase. The update phase

should last for at least one clock cycle withinslgo as not to lose any spikes.
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9.4.2.4 The debugging circuits

The debugging circuits are used to test the synapdies for different bias voltages and

parameters as well as to observe their states whildating a cortical network.

The testing of a STDP synapse may include obsenyiagsynaptic dynamics with an
externally provided post-synaptic signd&of) rather than using the output of the
post-synaptic neuron. It is also possible to réisetweight of the STDP synapse. The
observable internal signals of a STDP synapse diedtp, Itd, Wstdp w, andVsyn(see
Chapter 5). For non-STDP synapses the facilitatingepressing weight signalgw)
can be observed off the chip. These signals carudmsl to obtain the on-chip
characteristics of the synapses by sweeping thanpgers of the synapses, and to
facilitate the testing circuits if required.

Due to the limitation of the chip area and the attpins, the signals of only a few
selected synapses of only eight neurons from edotkEBan be observed off the chip.
The observable synapses associated with the Bloekid\ Block-B neurons are the
neurons with the addresses 50 to 57 and 112 to rE¥®ectively. Further, internal
signals of each synapse from each main synapseatgpebservable. That is, from each
of ID/IDS, STDP and XD types in the Block-A neur@md from each of IF and XF/XD
types of the Block-B neuron. The addresses ofettssmapses that belong to each
neuron can be obtained from Table 9.3. The crosksnia Table 9.3 indicate the

synapses and their observable synaptic signaks goren neuron address.

Each of the observable signals is initially bufteresing a source follower circuit (a two
transistor NMOS or PMOS circuit). Then the eighguts from similar synapses of eight
neurons of a block are multiplexed using an 8:1tipleker. Finally, the multiplexed

output is given to an OpAmp before providing thépor to the chip pins. The OpAmp

circuit works in a unity gain voltage follower cagdiration.

To observe the signal/s of a synapse, the testeasidfradd<0:2>) of the synapse’s
neuron should be sent to the address of the 8:lipiexler. This is done using the
common address buéddr). Similar to pre-synaptic addressing, the threst éeldress
bits along with the two flags, tHeost_selndWrstare also provided to the address bus,
followed by a pulse to the Strobe signdtp_t This latches the bits on to five DFFs
(Data Flip Flops). The three DFFs that latch theresls bits are connected to the

address of the 8:1 multiplexer. Hence the addresswitch the output signals is
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decoded. Once a test address is provided, akyhaptic signals of the Block-A and
Block-B neurons belonging to the test Address canliserved simultaneously. The test
addresses corresponding to the neurons addressebecabtained from Table 9.3.
Setting thePost_selflags (Tadd<3>) switches thdostsignal of the STDP synapses to
an externally provide®ostsignal (the externd?ostsignal is provided using the row 43
address in a similar way as tRee signal is provided) rather than to its post-syitapt
neuron’s output, to facilitate debugging and thesueements of the STDP circuit. The
FlagWrst(Tadd<4>) is used to reset the STDP weight to zero.
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Table 9.3: Observable signals of synapses, their @etss and respective test address

Block-A Neurons

Test Address
0 1 2 3 4 5 6 7 Output Output
Synapse] Synapse (Tadd<0:2>
Buffer OpAmp
Type Row
Neuron (col) Type
50 | 51| s2| 53| 54| 5| 86| 57 P Label
Test Signal
ID 63 Vw X X X X
PMOS Vw1l
IDS 44 TVwID X X X X
Itp X X X X X X X X PMOS Ltp
Itd X X X X X X X X NMOS Ltd
Wstdp X X X X X X X X PMOS Wstdp
STDP 42
w X X
NMOS Vsyn_w
Vsyn X X X X X X
XD 21 Vw X X X X X X X X NMOS Vw2
Block-B Neurons
Test Address
s (Tadd<023 0 1 2 3 4 5 6 7 Output Output
Synapse| Synapse add<0:
ynap Buffer Signal
Type Row N (ol
euron (col Type
112 | 113 | 124| 115| 114 117 11 1 Label
Test Signal
IF 63 Vw X X X X X X X X PMOS Vw3
XF 42 Vw X X X X X X
NMOS Vw4
XD 21 Vw X X

9.5 CNL Chip- Model

An approximate mathematical model of the CNL ch#p formulated to simulate

approximated network behaviour of the chip. Figbrg7 shows the block diagram of
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the mathematical simulation setup of the CNL cHipe model has been implemented
in MatLAB'®, The Simulation Core uses mathematical modelseafon and synapses.
It comprises of the same number of neurons andos@saand with the same structure as
that of the CNL chip. The mathematical model of tleeiron is given in Chapter 4 and
the synapse mathematical models are given in Chapéand Chapter 6. The pre-
synaptic inputs to the Simulation Core are provideihg the matrixPreSpike [63
x120]. The spike outputs from the neurons are continyaysdated on to a matrikire
[120x1]. The parameter matriara [60x1] is used to tune the characteristic of the
synapses and the neuron types. The user can setnthirix according to the
characteristic of neural elements of a given neétwdihe incoming spikes from the
neurons of the Simulation Core are routed to tmagges of the Simulation Core using
the Route Spikes function. The Route Spikes funatiges the Connectivity Matrix map
that defines the network connectivity of a givenwwk. Hence, before simulating a
network, the user needs to set up the Connectidélyix and the Parameter Matrix that

define the given network.

Parameter matrix

Simulation Core Para [60x1]

(Neurons and

— Synapse Models,

T Internal state
variables) ' '
Pre-synaptic spike Spike matrix
matrix

Fire [120x1] t+1
PreSpike [63x120] ¢

Route spikes ——

Connectivity matrix

Figure 9.17 Cortical Neural Layer Simulation Core.

8 MATLAB Web Link: http://www.mathworks.co.uk/
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Some simple models so far tested by the usersdackynfire Chains (Grossberg,
1969). Winner-take-all network (Redgrave et al99)Q and AND, OR and XOR gates
(Agmon-Snit et al., 1998).

9.6 The CNL Board

The CNL board consists of the CNL chip board andilanx Vertex 5 FPGA board
(Xilinx ** Opal Kelly*®). Figure 9.18 shows the block diagram of the CNard. The
180 pin CNL Chip is bonded on to a printed circaoaard (PCB), and an FPGA board is
connected onto the PCB to form the CNL board. Ti@ague biasing voltages that
tune the parameters of the CNL chip are routecbtmectors on the board. The tuning
parameters can be provided using externally prograinte voltage supplies to pre
configure the characteristics of the synapses adom types on the VLSI cortical
neural layer. The eight analogue output pins of GiNL chip are used to observe the
internal states of the synapses are also wired ootmectors on the board. All the
digital input and output pins of the CNL chip arennected to the FPGA directly.
These include 14 bits address bus, 5 bits strayals, 84 bits parallel spike outputs of
84 neurons and 3 bits to access serial spike aupuR2 neurons. The address bus
including strobe signals are used to send pre-synapikes to the synapses, to select
observable internal states of the synapse andstotie STDP synapses (see Section
9.4.2.1 and Section 9.4.2.4 for more details). ftven time pre-synaptic spikes can be
sent to one or many synapses that allow dense retaannectivity with reduced

latency.

Opal Kelly Xilinx Virtex 5 FPGA board Web Link: tgt//www.opalkelly.com/products/xem5010/
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Figure 9.18 Cortical Neural Layer Board. (a) Blockdiagram (b) Actual Board (work-in-progress
CNL board, this work is continuing under EPSRC fundng )
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9.6.10peration of the CNL board

In emulating a network in the CNL board, the nekwvoeeds to be configured. This
requires pre configuring the network connectivitpdapresetting of the tuning
parameters of the network. The Routing Module geaforms the spike routing and the
LUT that defines the connectivity of a given netloare implemented on the FPGA.
The LUT needs pre configuring according to the emtinity matrix of the network.
The tuning parameters that set the propertieseohfural elements need to be supplied
by the programmable voltage suppliers. These cordigpns define a network on the
CNL board. Furthermore, required observable outpatsalso be set using the address
bus of the CNL chip.

The CNL spike outputs that include both paralled aerial spike outputs are connected
to the input channels of the FPGA. Once a neunas fithe input stage of the FPGA
detects an arrival of a spike on its input chanmbls generates an address event that
triggers the request to perform routing of spikdse FPGA Routing Module accepts an
incoming request and performs the routing of thikespo its connected synapses by
generating the pre-synaptic spike address to the €&ip. Once the request is served
(routing is performed) the request is acknowledged the next incoming request on
the queue is performed by the Routing Module. Iriggening these routing operations,
the predefined network connectivity table, the LUg ,used to obtain the connected
synapse addresses of a neuron. Simultaneously $pédse activities can be recorded on
the memory and read by the PC using the USB irterfa analyse the spikes. Figure
9.19 shows the test setup of the CNL board.
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Figure 9.19 Cortical Neural Layer Board.
9.7 Discussion and Conclusions

The fabricated generic neural layer prototype I€eatbles the basic neural elements
with diverse properties and composition as of tkaral layer of the neocortex in a
small scale. A VLSI Cortical Neural Network arcluiigre that combines many CNL
chips to build a small scale cortical network isgwsed, and it could provide a platform
to study the network behaviours and learning. Apppnated mathematical model of the
CNL chip is formulated to simulate the approximateehaviour of a network in
software. This helps to understand and possiblyreiduce the network mapping
problems before configuring the network on the CMIs. In addition to the
configurations of neural dynamics of neurons anmhpges discussed above, the delays
of signal propagation due to the location of theapse on the dendrite can be modelled
on the FPGA using delay blocks.

Mapping cortical network on to the CNL chip

The CNL chip is equipped with many configuratiortiops such as on chip and off chip
network connections, different types of synapse m@&gron configuration, etc. On the
other hand, it also has limitations such as charestics of synapse or neurons are set in
groups, synapse can only have fixed linear pattémeight distribution configuration,

etc. These require an extra effort in mapping a&mginetwork on to the CNL chip.
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Therefore, automating the network mapping task edke the usability of the CNL
chip. This could be done by formulating a genetigoathm that implements most

obvious problems of resource mappings using ageteand complex and non-trivial
resource mappings using the trial and error metho@uriving at optimised mapping

parameter set using trial and error techniquesireqerformance figures of network
mapping in order to judge the performance of magpirhe performance figures may
depend on many factors such as the network spatidfits, the expected behaviour of
the network, etc. Example of performance figuresilldobe the percentage of
connections mapped, percentage of neuron typesfiedti percentage of STDP
synapses used, the spike routing time, closenda$® afutput results of the network, etc.
Many performance figures need to be consideredriivigg at optimised mapping

parameter set and these figures could have weggtdepending on the level of
significance on the network performance. Hence #pproach like the Balance
Scorecart® could be used. For example, in a network percengSTDP synapse

mapped on to the chip could be more important thapercentage of excitatory
depression synapses mapped, depending on the kdieloaviour (e.g. STDP learning)
tested on the chip which requires higher weigtihtoearlier factor than later.

Cortical Network Connectivity and Spike Routing Latency

The fact that a spike from a neuron takes time#eh its connected synapses is referred
here as the spike routing latency. The network eotions are implemented external to
the CNL chip, and the time taken to route a spikeds to be within the acceptable
range. The timing delay of the spike outputs of@NL chip to reach the FPGA is short
as the spikes are recorded in parallel. Howevempending on the network
configuration, the spike congestion due to highetmmork activity could slow down the
spike routing from the FPGA to the synapses. If dlogvity level of the network is
higher than the spike routing speed of the routeth® FPGA, there is a chance that
incoming spikes will be queued on the FPGA memmegulting in longer spike routing
latency. This problem could increase further if m&NL chips are connected together

as it increases the number of spikes to be route@ducing the FPGA routing load, the

0 Balance Scorecard Web Link:
http://www.balancedscorecard.org/BSCResources/AbeBalancedScorecard/tabid/55/Default.aspx

172



CNL chip use the "don't care" addressing of theapges that allows simultaneously
addressing of many synapses using one cycle okasidig (discussed in 9.3.2.1). The
chip also implements neuron to synapses fixed adiores that reduce the external
spike routing load. These internal connectionslifatg8 one neuron to many synapse
projections (discussed in 9.3.2.5). The spike muutatency of internal connections is
significantly lower than the external routing latgn

Spike routing delay shorter than the refractoryiqueof the neuron (1 us in accelerated
time) is required to provide integration of poshaptic currents on to the membrane of
the post-synaptic neuron properly. The calculatibnumber of spikes (at full load) that
can be routed within the refractory period of tleeimon is provided below.

Assuming that all the neurons are fast spiking oreuype and spike continuously at
200 MHz (200 Hz in biological time), i.e. at fubdd, where all the neurons are spiking
approximately at their highest spike rate:

Average spiking rate of all the neurons = 0.2 MHz
Average spike rate of N neurons =N x0.2 MHz
Clock Speed of the FPGA ClEKkpea

Number of cycles per pre-synaptic spike addressiGy C
Number of input neurons that can be served

within the refractory period = CLldgA/ (200 000 CYC)

If FPGA clock rate is 100 MHz and spike addresdaiges two clock cycles, assuming
one pre-synaptic addressing per spike is neededetme the connectivity of the
network (i.e. all the synapse groups can be salacteng the "don't care” bits address

patterns), and not considering the serial readeigyd of the serially read spikes.

250 fast spiking, 200 Hz (biological time) contimsty firing neurons can be served by
the router. This is sufficient to combine six CRbards to form a VCNN architecture,
where one third from the full network connectivitgtal number of neurons 720) could

be satisfied even with the full load activity lev&he full load activity level is highly
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unlikely as cortical network comprises of RS, IBda@H firing patters, FS neurons
could not fire continuously for a longer perioddatihe activity levels of the networks

are believed to be well below 10%.

Importance of the STDP synapse and its memory retdion,

The STDP synapse implementation proposed in thrisishack the long-term memory
retention but provides a compact circuit implemgata Other approaches of
implementing STDP synapses that retain memory fdong period include use of
floating gate transistor synapses (Hasler et &99)] and digital memory synapses
(Schemmel et al., 2008) but these implementati@uglire larger silicon area. The
memristor nano-scale device operates similar toTBFS synapse and can keep the
memory for a long period. The emerging VLSI teclogas that incorporate fabrication
of memristor device could make easier to fabricatessively parallel large cortical

neural networks in hardware.

Experimenting cortical network models

The proposed network architectures can be usedndfigare small neural network
models and the scaled down versions of a large setivork models (Redgrave et al.,
1999; Riesenhuber et al., 1999; Grossberg, 19680hgSnit et al., 1998 Traub et al.,
2005; Hausler et al., 2006; Goldberg et al., 20Bdsalyga et al, 2010; Stein et al.,
2008). The Matlab model of the CNL chip has beenvigled to computational
neuroscientists in the COLAMN project (Institute G@omputational Neuroscience,
Plymouth), and to postgraduate students in the @cbb Electronic and Electrical
Engineering and the School of Life Science in thaversity of Manchester to test

models in numerical simulation before implementingm on to the hardware.

Finally, the results obtained using the hardwarel@haould be benchmarked with the
computational models and then with the biologieglordings. This will provide insight

into the closeness of the neural dynamics of thauitiimplementations. Further, these
could help to predict some biological behaviourstlod network by observing the
dynamics of the hardware implemented models.
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CHAPTER 10 : MIMICKING CORTICAL NEURAL
NETWORK IN HARDWARE —A DISCUSSION

This chapter discusses the feasibility of implenmgniarger cortical neural network
architectures in hardware. The complex non-lineature of neural response,
heterogeneity of the neural elements, the complexitneuron connectivity and the
practical limitation of maximum silicon area of hig, limit the maximum size of a
cortical network in silicon. Implementations of cplex non-linear computational
models consume larger silicon area of a chip. Thezethere is a trade-off between the
extent to which the VLSI circuit element can be madlogically plausible and the size

of the cortical network that can be implemente¥ irsl.

Continuing the effort of implementing larger coalimetwork in hardware, the initial
section of this chapter provides estimations of VES8rtical network sizes that can
possibly be built utilising the latest technologieBhis includes VLSI cortical network
size estimates in a large chip fabricated in CM®&hmology 90 nm, in multi-chip
approach, and in wafer-scale integration technoltbgy uses the accelerated-time core
VLSI neural circuits used in CNL chip. Here, thdimate only down to the 90 nm
CMOS technology is used as the design of analogix@dmsignal circuits in the
technologies that have smaller feature sizes idlesttang, and the network size
estimations may be not realistic. Further bendfiiging 3D integration technology to
build the cortical network is also discussed. Althb a network could be implemented
in these estimated sizes, other factors that cprogide problems and limitations are
also discussed. The later part of the chapter ptesdternative approaches that could
be used to mimic cortical networks. Finally, thgher abstractions of neural dynamics
used to obtain brain-inspired computing modelsoaténed.

10.1 Estimates of VLSI Cortical Network Size

The proposed cortical networks include richer nedsaamics than the other VLSI

network implementations found in the literatureisTeection analyses the feasibility of
implementing larger scale cortical neural networkVLSI using the accelerated time
neuron and synapse circuits proposed in ChaptiChapter 6. The CNL chip has been
fabricated in a standard 0.35 um CMOS technology, iacludes 120 neurons and
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7 560 synapses. The CNL chip uses generic newalegits that can be configured to a
variety of neuron and synapse types of a cortieivark layer. Further, a VLSI
Cortical Neural Network architecture that accommeslanulti-chips to build a larger
network that comprises 2 400 neurons and 151 20@pses has been proposed in
Chapter 9. By continuing this analysis, this setfoovides possible size estimations of
the VLSI cortical network implementations in 120 fehip area, (corresponding to a
relatively large die size, which can neverthelessfdbricated with a good yield on a
modern standard CMOS 90 nm process technology [Jj-aiip integration and wafer-
scale integration. Further, the advantages of u3DxyLSI integration are also briefly
discussed.

Using a straightforward area scaling from the impated CNL chip, it is estimated
that the 120 mMmVLSI chip in 0.35 um technology can accommodatetaps00
neurons and 38 000 synapses. Migration of 0.35 eolnblogy analogue circuits into
90 nm technology require redesigning the analogearal circuits proposed in
Chapter 4 to Chapter 6. Redesigning these cireaiisires taking into account high
sub-threshold leakages and mismatch problems tieatnherent in deep sub-micron
circuit implementations. Here, a conservative aeaing factor is used to estimate the
equivalent silicon area consumption in deep sulrenidmplementation, and it is
estimated that in a 90 nm CMOS technology, 120nmuhip can accommodate
approximately 5 000 neurons and 300 000 synap3és multi-chip approach that uses
twenty 120 mri VLSI chips in 90 nm technology could accommod4i8 @00 neurons
and 6 million synapses. A hypothetical deep submnicwvafer-scale integration of a
system on a 12" wafer can accommodate approxim&@&ymillion neurons and 180
million synapses (This assumes very low scalingofamclude additional penalty for
increased routing). These network size estimatafculations are provided in
Appendix B. The largest network of wafer-scale andlti-chip integration requires
high bandwidth communication architecture (GHz gn¢p communicate between
neurons. Brain has evolved in three-dimensionatespehere close by neurons have
been connected to each other via synapses withrkabig dense connectivity patterns
to form a 3-dimensional cortical network. Thoughe tVLSI networks can be
implemented on a large scale the complexity ofringuron connectivity limits the
network models that can be configured to be emdlaiethese microelectronic devices.

Therefore, the larger networks require the use igital technology to route spikes
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between distal parts of the network in order toupedthe inter-neuron communication
problem. Architectures like Network on Chip (Plaetal., 2007) could be used to
facilitate the multi-chip communication requirem&nthe larger wafer-scale integration
network proposed by Schemmel et al. (2008, 2009%s ukierarchical digital
communication architecture to support the high kadth of inter-neuron

communication.

On the other hand, the 3D-VLSI techniques are bé&ugravailable that stack many
layers of silicon circuits to form a three dimemsib (3D) chig’. These technologies
can be used to reduce the inter neuron connectamgtraint. The size of the network
that can be implemented in a chip can be increasedral times due to the increase in
silicon area. The VLSI 3-D integration technologies at their early stage, though they
provide higher density of wiring and fast signalogagation. Currently, these
technologies cannot provide the full random 3-disi@mal connectivity such as that of
neurons in the neural tissue, although the densityonnectivity between circuit
elements has been improved greatly. Since theitiic very densely packed, power
dissipation may impose a limit on the size of tleéwork that could be implemented

using these technologies.

10.2Limitations of VLSI Cortical Network

Although the efforts are made to propose larger Mi@tical networks, they can only
be built with relatively basic models, limited inze, and with reduced flexibility.
Further, the contemporary science also lacks thleuhderstanding of the cortical
network dynamics. Therefore, cortical network expents in larger implementation of

VLSI cortical network could encounter the followiddficulties:

- Calibrating the VLSI cortical network

Hardware neural network model is built with approations and with reduced
flexibility. On the other hand, biological neurasponses are highly heterogeneous.
Hence, the optimal configuration that should bedusean experiment is non trivial and

in most of the cases, setting-up the initial capndg and calibrating all the neural

23D-IC Alliance http://www.3d-ic.org/
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elements to an optimal set of parameters that thaetgiven network model may not be
trivial. Comparing VLSI network results and biologi network results in order to
calibrate the neural elements is also not straogitird due to the highly non-linear
nature of the relation between the characteristitshe neural elements and the

dynamics of the network.

- Mapping a cortical network model onto the hardware

Mapping larger cortical network models onto thedwaare may require approximations,
simplifications, and scale reductions. It is nosteaight forward task to find the best
mapping that satisfies the hardware constrains.nBeessary modifications may not be
valid and due to the non-linear dynamics it may het possible to find the best

approximated, or/and scaled network model thatccbalmapped to the hardware.

As the neural elements are heterogeneous and compléheir connectivity, the
unavailability of standard method of classifyingured elements and simplifying
connectivity patterns makes the approximating andéalucing the network size a

challenging task.

There are attempts by the neuroscience communitystemdardise the neural
classification methods (e.g. Pettila converfffonsee Markram, (2006)). The
standardising of the neural classification methedfifficult due to the unavailability of
the pool of known data and as some types of nelandssynapses are yet to be found.
Recently pooling of known neuron and synapse dad@e hbeen begun (e.g.
Neuromorpho.ord) and data is publicly available, which might hetp formulate
universal classification methods for the neuraiadats once a sufficiently large data set
is accumulated. Methods of simplifying network ceativity need better understanding
of the cortical network dynamics, and these cowdhe hand in hand with the

evolution of the hardware emulating platforms.

22 petilla Convention (2005)
Web Link: http://krasnow.gmu.edu/cng/petilla/

23 Neuromorpho.org

Web Link: http://neuromorpho.org/neuroMorpho/ingsg.
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- Variability and noise of the hardware

Though it seems possible to compensate for thabiiity and noise of the hardware by
properly configuring the cortical network, compudagl principles that facilitate fault

tolerance in a network are yet unknown. Therefat¢his stage the variability and noise
in VLSI hardware could not be properly analysealbtain the desired cortical network
dynamics. However, by emulating different cortinatworks on hardware the effect of

the variability and noise on cortical network dynesrcould be studied.

- Acquiring and processing of data

There is a limit to which the VLSI network data e observed. Access to all the
internal variable of the neural elements may notabailable due to the hardware
constrains and the chips usually provide only thikes outputs of the neurons rather
than instantaneous status of the state variablesl afeurons and synapse. Even so,
these data may reach a very larger volume, whighimres high computing power to

analyse.

- Benchmarking of VLSI hardware results with the bgtal recordings

The procedure for validating the closeness of thigvark results against the result of
computational models and then against the biolbgiata is not obvious and there is no
standard method for doing so this is true evenvilidating computational models
against the biological data. However, it can beddogthat the standard method for
benchmarking hardware neural accelerator platfolmesome available with the

evolution of the hardware neural accelerator ptatfo

- Lack of availability of promising cortical networkodels

Most of the known cortical network models address tortical networks of early
sensory processing stages. These preliminary stafyegnsory processing perform
simple feature detections and do not perform primmisognitive processing. For

example, the most researched area of the neoasrteg area V1 which belongs to the
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visual cortex; area V1 performs preliminary stagés/isual processing that include
directional selectivity, orientation selectivityjnbcular disparity, etc. The intelligent
complex processing is believed to be done in higbetical areas of the brain and how

the information is processed is still a mysterjNguroscience.

Furthermore, due to the limitations of acquiringadé&om biological systems, the
available models represent a small part of thacametworks, with many assumptions
and approximations. These network models providg simple oscillation or wave
propagation behaviours and do not demonstrate lusetelligent information
processing phenomena (Traub et al., 2005; Hauslal,e2006; Goldberg et al., 2004;
Basalyga et al, 2010; Stein et al., 2008). Howewxperimenting with different
hypothetical network models may help to improve timelerstanding of the cortical

network dynamics.

10.3Alternative Approaches

This section discusses some alternative approdachesmicking the cortical networks

in hardware platforms. These include the need fterrative IC fabrication
technologies, the utilisation of a memristor dewvasea synapse, and an approach based
on cell cultures. Finally, the scientific approatttat can be used to develop brain-
inspired computing models at a higher abstractibmeural network dynamics is

outlined.

10.3.1Alternative IC fabrication technologies

As discussed in Chapter 1, there is a need for @lWechnology that can mimic cortical
neural network architecture optimally. The circghiould be able to accommodate cells
with 3-D connections, while the requirements on #peed, preciseness and the
minimum feature size can be more relaxed. Theilplesalternative approach that
could provide these properties includes 3D VLSIhtetogies, such as Plastic (or
organic) VLSI that uses organic materials to b or 2D circuit elements. Further,
invention of a dedicated neural element as a dewatteer than constructing these using
transistors would reduce the complexity of largalescnetwork implementations

(Linares-Barranco et al., 2009; Yajie et al., 2007)
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10.3.2Memristor as a synapse

A fabrication of the memristor devices is an enmmggtechnology that could
substitute the STDP synaptic circuit with a nanalsalevice (Linares-Barranco et al.,
2009). The memristor theory was first formulated@iyua (1971). The memristor is a
two dimensional circuit element that has the charatic of resistance change due to
the history of its current flow and the potenti#fetence across the terminals that can
be described as a functional relationship betwersrge and magnetic flux. This
characteristic can be used to implement STDP rifle mon leaky long-term memory
retention while occupying only a few square naneegebf chip area. For comparison,
the proposed STDP circuit (Chapter 5) occupiesositers of magnitude larger circuit
area while not providing adequate long-term memaogjention. The memristor
technologies are being developed (e.g. Hewlett-frackab) at many research institutes
and are not yet available as a generic technologynplement circuits. Once these
devices are available, replacing the STDP cirafitS§NL with memristors would make
a large-scale massively parallel cortical netwarkhardware more feasible, as some of
the area constrains in implementing cortical nekwior VLSI technologies would be

relaxed.

10.3.3Cell culture

Another approach includes culturing of biologicaural networks to study the network
behaviours (Wagenaar et al., 2006; Stegenga e2@8). This uses biological neural
tissues taken from animal brains, cultured on tbpnalti-electrode arrays that allow
communication to and from the cultured neural nekwdhese networks are typically
flat single layer sheets, which are limited to ratkg¢ with two-dimensional

connectivity.
10.3.4Higher abstractions of neural dynamics

Although this thesis uses neural level abstractmmuild and understand biological
systems, it is an open question, which level oftralbon neural circuits should be
modelled to yield a practical computational arattilee. The “bottom-up” approach that

links the neuron-level activities to higher-levetians such as decision making, storing
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memories, experiencing the world, emotions, etcwall as its opposite “top-down”

approach is popular in brain science as a wayMerse engineer the brain.

Most of the models that abstract higher level nemeavork dynamics are efficient and
cost-effective to implement in hardware, thoughytbend to deviate away from the
biological plausibility. On the other hand, as gred in this thesis, neural level
abstraction of circuits requires higher computalgrower to simulate or emulate small
neural network, though, in comparison, it is mor@dgically plausible. It should be

also noted that whether biologically plausible ot,nf the brain-inspired system could

perform intelligent processing, it would be an dba@ achievement.

Some of the higher level abstracted models of cartprocessing presented in the
literature include Kalman filter neural model (Rabal., 1996), the Bayesian neural
model (Lee et al., 2003), Factor graphs (Bisho®620LaminART model (Grossberg,

2007) and LISSOM Model (Miikkulainen et al., 200%5hese models demonstrate some
basic functions such as autonomous following of @bject, predicting future

probabilities of an action, object recognition, .efhhiese models are not capable of
performing sophisticated intelligent functions aiological systems but are capable of

far more complex functionalities than the neurorelanodels.

Once the underlying principles of brain computatame known, the abstract models

implemented in hardware could be more efficient eost effective.
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CHAPTER 11 : CONCLUSION

Generic compact VLSI implementations of neural wirelements that can be used to
mimic the functions of a cortical network have bedgsigned and fabricated in a
standard 0.35um CMOS technology. The VLSI netwak be used as an emulation
platform to research into the potential capabsited a cortical network in performing
real-world psychophysical tasks. The accelerate@-tnetwork implementation saves
time in performing an experiment (e.g. hours ofldmecal network simulation could be
performed in seconds), providing considerable ggvim the case where parameter
sweeps are an essential part of the experiment.K€gecontributions of this thesis

include:

* implementation of silicon cortical neuron with thewest reported energy
consumption per spike, in a generic and compaat;for

* mixed signal VLSI implementations of the Izhikeviokuron, first time in the
neuromorphic research, both in accelerated time dmological time
implementations;

» first hardware implementation of the dopamine mathd synapse;

* implementation of novel, compact, short-term ptastiSI synapse circuits;

* implementation of the configurable mixed signal \L8ortical network
integrated circuit with the most diverse neural ayics that include diverse
nonlinear neuronal responses and most of the shod-long- term plastic

synapse types.

The accelerated-time VLSI neural circuits desigaed fabricated include a compact
cortical neuron circuit, two different long-termagtic synapse circuits and four
different short-term plastic synapse circuits. Rarf a biological-time cortical neuron
circuit with similar dynamics as of the acceleratede neuron is designed to
demonstrate the feasibility of migrating acceledaiene circuits into a biological-time
domain implementations, which could be used todbliblogical time cortical network

that has applications such as the real- time, sgrssgnal processing.

The neuron circuit is capable of replicating mamown types of cortical neurons,

simply by tuning two external voltages. The neureproduces biologically plausible
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action potentials. The spiking and bursting firippgtterns observed in cortical neurons
such as regular spiking, fast spiking, chatterimg @ntrinsically bursting and other

complex activity patterns can easily be reprodudds circuit uses only 14 transistors
and is extremely compact. It consumes about 8pBp&e and hence consumes low
energy per experiment. Therefore, this circuitnsadtractive candidate for building a
massively parallel VLSI cortical neural network thacorporates diverse nonlinear

neural responses, which seems essential for proglicain like computation.

The STDP and the Dopamine Modulated STDP synapeeitsi that demonstrate long-
term plasticity dynamics have been designed andcttied in hardware. The STDP
dynamics of the STDP circuit follows an approxintat8 TDP curve to arrive at
compact design. STDP synapse’s amount of weightgdhaue to LTP and LTD and
the time windows of the LTP and LTD can be confeglindependently. This circuit
can be incorporated in a cortical network to fé&ié the learning and memory of a
network. However, as the circuit holds the synapteight using a capacitor the
operational time of an experiment is limited. Tlogamine modulated synapse circuit is
implemented based on the computational model pempby Izhikevich (2007). This
circuit has been designed by extending the STDRmsacircuit to facilitate regulation
of eligibility traces based on the dopamine conegimn. The changes in an eligibility
trace due to LTEP or LTED, and the time windowstleé LTEP or LTED can be
configured independently, and the dopamine conaBotr can be generated globally
using an external voltage bias or using a burstpies. This circuit can be used to
provide the reinforcement learning in a VLSI caatimetwork. In the case of DA
modulated synapse, the use of capacitors to h@drtbmory traces does not directly
limit the operational time of an experiment. Thésgg term synapse circuits can only
be used in small-scale cortical network implemeaoitet

Excitatory depressing, inhibitory facilitating, iibitory depressing, and excitatory
facilitating synapse circuits that demonstrate stem plasticity dynamics have been
designed and fabricated in VLSI hardware. Thengfite of depression or facilitation
and the time constant of the recovery can be corddjindependently using externally
controlled tuning voltages. The post-synaptic aurian be scaled using an externally
adjustable bias voltage. Accommodating inhibitonyd aexcitatory synapses in a
network provides stable network activities withhrinetwork dynamics. Incorporating
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facilitation and depression of the synapse circinta VLSI neural network provides
dynamic gain-control inherent in the biological tozal networks.

To prove the concept in VLSI, different combinagoof these accelerated-time neural
circuits have been fabricated in a standard 0.35GQM®S technology. These include
the Cortical Neuron Chip, STDP-DA Synapses NeurbipCand Cortical Neural Layer
Chip (CNL chip). The former two ICs are designedtdst the function of the basic
neural elements, and the CNL chip is designeddiitite cortical network emulations.
The Cortical Neuron Chip has been fabricated wii# @ortical neurons, and the neuron
function is experimentally verified. The STDP-DA ri&ypses Neuron Chip has been
fabricated with two cortical neurons and 28 STDR/&unine modulated synapses to
test the functionality of long-term dynamics syregs These two fabricated chips have
been tested, and the functions of cortical neurad 8TDP synapse have been
experimentally verified. The CNL chip that has tieural circuit composition similar
to the cortical layer of the neocortex has beengdes with 120 cortical neurons and
7650 synapses, and its design and implementatitmilgibave been provided. Further,
the approximated mathematical models of the chémehts have been formulated to
build a chip simulation platform that could test approximated behaviour of the

cortical network implemented on the CNL chip intaafre.

A Cortical Neural Network Architecture that utilseseveral CNL chips to build a
cortical network of neocortex has been proposetialfy, estimations of VLSI cortical
network sizes that could possibly be built in theest silicon technologies have been
provided. The estimations suggest that a waferesicaégration of a system on a 12”
wafer in 90 nm technology could accommodate appnately 2.8 million neurons and
180 million synapses, if the composition of theibasrcuit blocks is similar to the
CNL chip. The largest network of the wafer-scategnation requires a high-bandwidth
communication architecture to communicate betwesurans. At full load, the largest
fraction of the power consumption of the system Mobe consumed by the
communication architecture (most likely to be itowiatts range). Therefore, design of
the communication architecture needs a great atenthe limitations in configuring

cortical networks in large neuromorphic hardwareehaeen discussed.

Building a large-scale network in VLSI that mimitdse full cortical network of a

primate brain requires novel compact synapse devigtéh long memory retention and
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low power, and a dense synaptic wiring mechanisnartler to accommodate a larger
network in a portable integrated circuit, the siaf¢he synapse circuit should be on the
nanometre scale or even smaller. In order for thep consumption not to exceed
kilowatts of power, the synapse device should adypsume a few pico Joules of
energy per synaptic transfer operation. Integratimgse devices in a 3D integrated
technology reduces the dense inter-neuron conigcgxoblem. As the precision of a

synaptic transmission in a neural network is ndical, attention on accuracy of the

process parameters of the nanometre technologyrewtiee synaptic devices are
fabricated, can be relaxed. Investigating into aon@etre synapse device in 3D VLSI
technology that satisfies the above criteria wdadda promising research direction in

implementing the next generation of neuromorphiaiais.

Although the neuromorphic devices are at an eaalgesof evolution, these systems can
be used as an emulation platform to support unaiedstg of the processing principles
of the cortical network. However, the lack of premg cortical network models makes
it difficult to utilise the ability of neuromorphicardware in intelligent processing tasks.
This VLSI cortical network design exercise has eagwed the physical hardware
constraints that computational models should tak® iaccount in formulating
computational models of cortical networks. Finalthe design and implementation
exercises and experiments in VLSI cortical netwdr&lp to develop intuitive
understanding of the models and behaviours which pave the way towards
developing future technologies that could build dpawer real-time intelligent control
systems for real-life applications, including thature-inspired intelligent computing

machines.
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APPENDIX A: Short-Term Dynamic Synapse Equations

Approximated mathematical equations of the EDSudir@re derived below. Since, IFS,
IDS, and EFS circuits have the same circuit topplag of the EDS, the equations for

IFS, IDS and EFS circuits can be derived in theesarmy.

Excitatory Depressing Synapse (EDS) Model

Recovery of w per time stefiwqq/ At

Considering the current mirror circuit (transisttdd, M2 and M6) of the EDS circuit,

the rate of recovery of the depressing synapg@joq/ At = SICWX lgm1

Where,lgm1 is the drain current through the M1 transistor #ve&p is the current gain of
the current mirrorCw is the capacitance of the capacitor Cit.is time-step of the

simulation. Assuming transistor M1 operate in saion region,

AW, = Kk (2.8-V,, ¥ (6.6)

Where k. :Eﬁ(v_vj 4 C,is a constant,(wj is width to length ratio of the
2 CW L M1 P L M1

transistor M1; CMOS process Parametéss up, andV; are gate oxide capacitance per

unit area, charge-carrier effective mobility of pEET, and threshold voltage of

PMOSFET transistor respectively.
Depression of w per pre-synaptic spikByg

Amount of depression per pre-synaptic spike, Awy = 49J/Cy

tSW
Amount charge added to the capacitor Cw per spiges _[ gy X dt

1'%
C—J- IdMsxdt

W o

Aw, =

By considering the drain current of Migys amount of depression approximately,

N %(Z.S—VAWp Y when M5 is in saturation region

Aw, = (6.7)

ky(2.8=VAw, )(w- Voffsi2) when M5 is in linear region

196



Wherek =L (W u.C., W is width to length ratio of the transistor Migis
d C p ~ox L s
M5

is the drain current through the M5 transistor (ifg36.2 (a)) during the pre-synaptic
spike pulse durationt, (= 3 ns),Voffsp2is off-set of the M8-M9source follower
(Shown in Figure 6.2 (a) and this value can be ghdnusing/LSp the default value of
the offset can be assumed as 0.4V).

Excitatory Wight Depressing (ED) circuit’s outputoltage, Vw

Approximated discrete mathematical model of the EDSuit's output voltagew(t)
evolves same as the mathematical model equatia@ngiv equation 6.5. This can be
rewritten with the circuit parameters.

max{w (t)- Aw, ,w,.,.} if pre-neuron fires

w, (t+At) ={ (6.5)

min {w(t) +Aw,,, wr,} otherwise
Where, Aw,g and 4wy are given from the equation 6.6 and 6.7 respdgtivEhe

externally control tuning voltage¥,, andV4wd sets the degree of the decay and the

depression respectively; The design parametg{wj used in the circuit
M1

w

implementation of Chapter 9 is 14, Cox andV; value from AMS standard 0.36n
CMOS technology process parameters is 126/\¢8) 4.54 fFim? and \4,=0.5 V
respectivelywgmin = 0, andwry = (3.3-Vwrd-Voffsp1Voffsp3, wry is the resting of the
synapse. The biasing voltayevrp is used to set thery of the circuit The voltages
Voffspl and Voffsp2is off-set of the M3-M7 and M8-M8ource follower (shown in

Figure 6.2 (a) and these offset can be assumedhd} @spectively.

EX-Isyn circuit’s excitatory post-synaptic currefEPSC), kpsc

The amount of post-synaptic current injectidghsg caused by a pre-synaptic spike
depends on the synaptic strength, However, user can scale thesc current for a
given value ofw using externally controllable voltagébp as shown in Figure 6.17.
This controllable voltage could also be used tatliitme maximumigpsg depending on
the operational region of the Ms1 transistor (fa higher tuning values &bp as seen
in Figure 6.17(a)). Each post-synaptic currentatige lasts for a period of a few
nanoseconds (Pre-Gen circuit used in the CNL chiphapter 9 use approximately 3 ns
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pulse). The excitatory post-synaptic current caroliained/modelled as per the graph
shown in Figure 6.17(a)).

S
Q

Vbp

]

w=vdd-Vw
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Figure 6.17: Excitatory Synaptic Current Generator (EX-ISYN) circuit’s igpsc values for different

Vbp and synaptic weightw: (a) in a 2D plot, (b) in a 3D plot; (c) the EX-I¥N circuit.
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APPENDIX B: Estimation of Cortical Network Size in VLSI

Current CNL Chip (120 neurons unit)

The CNL chip is fabricated in 0.35um CMOS technglog
Total number of neurons =120
Number of excitatory neurons per unit 100

Number of inhibitory neurons per unit 20

Total number of synapses per unit 560
Number of STDP/DA-STDP synapses =2100
Number of Non-STDP synapses =5 460

Area of the 120 neurons unit in 0.35um CMOS teabgyl =24 mfn

Approximate number of neurons and synapses in 120 mtf chip

120 mn? chip in 0.35pum CMOS technology:
Number of neurons = 120/24 x 120= 600

Number of synapses = 120/24 x 7 56@7 800

Using sub-micron technology (90 nm) 120 mfirchip

In 90nm technology; assuming effective technoldgin@ration scaling factor ‘8(theoretical

area multiplication factor 15): Number of newsor= 600 x 8 ~ 5000
Number of synapses = 37 800 x 8 = 300 000

" Even though the theoretical area multiplicatiortdads 15, analogue circuit cannot be scales
in the same factor. However, since spike routingre-synapses and the auxiliary circuit use
digital circuit elements these can be scaled wighér scaling factor than the pure analogue

circuit scaling factor.

Using multi-chip sub-micron technology (using 90 nm120 mnf chips)

If twenty 120 mm 90 nm chips are used to form multi-chip netwoHe size of the network
could be: Number of neurons =5000x 20 ~= 100 000
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Number of synapses = 300 000 x 20~ 6 000 000

Size of the network with hypothetical wafer scalentegration

Wafer scale integration size of the network, if @rafliameter is 12" (30 cm); (wafer area 730

cnt)
Assuming extra overhead of 25 tarea
Number of neurons =600 x 8 x705/120 x100~ 2 800 000

Number of synapses =37 800 x 8 x 705/12Mx£A.80 000 000
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